The Reactivity and Catalytic Activity of Bidentate Indenyl-Phosphine Tethered Complexes of Rhodium and Ruthenium

DAVID CHARLES PUGH, B.Sc.

A thesis submitted to the University of Southampton in accordance with the requirements of the degree of M.Phil. in the Faculty of Science.

UNIVERSITY OF SOUTHAMPTON

Abstract
FACULTY OF PHYSICAL SCIENCES
SCHOOL OF CHEMISTRY

MASTER OF PHILOSOPHY

THE REACTIVITY AND CATALYTIC ACTIVITY OF BIDENTATE INDENYLPHOSPHINE TETHERED COMPLEXES OF RHODIUM AND RUTHENIUM by David Charles Pugh

A higher-yielding route to racemic ligand 2-cyclohexyl-2-($3^{\prime} H$-1'-indenyl)ethyl diphenylphosphine has been adapted from the known route to the chiral phosphine. Protection via formation of the borane adduct allows easy handling of the air-sensitive phosphine and has improved overall yields of known complexes ($\eta^{5}: \eta^{1}$-indenyl- $\mathrm{CH}(\mathrm{Cy})$ $\left.\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Rh}(\mathrm{CO})$ and $\left(\eta^{5}: \eta\right.$-indenyl- $\left.\mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)$. Tetrahydroindenyl and cationic derivatives have been synthesised from the ruthenium complex and all the complexes have been tested for catalytic activity, along with ($\eta^{5}: \eta^{1}$-indenyl- $\mathrm{CH}(\mathrm{Cy})$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)$ and $\left[\left(\eta^{5}: \eta^{1} \text {-indenyl- } \mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$(from P. Wright).

Catalytic activity was seen for the transfer hydrogenation of acetophenone, but the resulting alcohol was racemic. It was also seen for the hydrogenation of iminium tetrafluroroborate salts, though the amount of reduction seen was too small to observe a reproducible e.e. The complexes were catalytically inactive for the nucleophilic displacement of allylic acetates, the cyclopropanation of styrene and the Diels-Alder reaction between cyclopentadiene and methacrolein.

It has also been shown that displacement of PPh_{3} from ruthenium complex $\left(\eta^{5}: \eta^{1}\right.$-indenyl-$\left.\mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)$ with more electron-rich phosphines occurs with retention of stereochemistry at the metal centre. X-ray structures of the tetrahydroindenyl and cationic ruthenium complexes, as well as the complexes formed by phosphine displacement, have been obtained.

ACKNOWLEDGEMENTS

Firstly, I would like to thank Professor Richard Whitby for allowing me the opportunity to undertake this degree. His advice, encouragement and support have been invaluable in allowing me to complete the work.

The past year would have been much duller without the Whitby group members past and present: Emma Thomas, Peter Wright and Drs Sally Dixon, Rupert Hunter and David Norton (many thanks to Emma and Pete for proofing this thesis). Thanks also to Thomas, Pam, Sofia and Lionel, who shared a lab with me, and the other members of the Brown group for the laughs and many trips to The Crown.

I would also like to thank the superb analytical services at Southampton: Joan Street and Neil Wells for NMR and John Langley and Julie Herniman for Mass Spec. Special thanks to Susanne Huth from the EPSRC crystallography service, who ran my X-ray structures and had to put up with a lot of my pestering.

Thanks to Johnny, Ben, Sarah, Andrea and Sky, my housemates over the past year, for the laughs, card games, pool and drunken antics (especially in The Gate!) and last, but by no means least, my family for their support, encouragement and financial assistance over the years.

LIST OF AbBREVIATIONS

Ac	Acetyl
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binapthyl
biphop-F	1,2-bis[bis(pentafluorophenyl)phosphanyloxy]-1,2-diphenylethane
Bn	Benzyl
Cp	Cyclopentadienyl
Cp*	Pentamethylcyclopentadienyl
DCM	Dichloromethane
DKR	Dynamic Kinetic Resolution
DMAP	N, N-Dimethylaminopyridine
DME	1,2-dimethoxyethane
DMPM	bis(dimethylphosphino)methane
DMS	Dimethylsulfide
DPPE	bis(diphenylphosphino)ethane
EDA	Ethyl diazoacetate
EI	Electron Impact (MS)
ES	Electrospray (MS)
GC	Gas Chromatography
HMPA	Hexamethylphosphoramide
HRMS	High Resolution Mass Spectrometry
Ind	Indenyl
IPA	Isopropanol
${ }^{i} \mathrm{Pr}$	iso-propyl
IR	Infra-Red (spectroscopy)
LRMS	Low Resolution Mass Spectrometry
MA	Methacrolein
MP	Melting Point
MPV	Meerwein-Ponndorf-Verley
Ms	Mesyl (methanesulfonyl)
m / z	Mass to Charge Ratio

${ }^{n} \mathrm{Bu}$	n-butyl
NMR	Nuclear Magnetic Resonance (spectroscopy)
RCM	Ring Closing Metathesis
ROMP	Ring Opening Metathesis Polymerisation
RT	Room Temperature
TBDMS	tert-butyl dimethylsilyl
${ }^{t}$ Bu	tert-butyl
TEA	Triethylamine
TEAF	Triethylamine/Formic Acid
Tf	Triflyl (trifluoromethanesulfonyl)
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
Ts	Tosyl (p-toluenesulfonyl)
w/v	Weight per Volume

CONTENTS

Abstract i
Acknowledgements ii
Abbreviations iii
Contents v
1.0 INTRODUCTION 1
1.1 GENERal Introduction 1
Bidentate Cyclopentadienyl-Phosphine Complexes I - Planar
1.2
Chirality and the Effect of Changing the Cp-Phosphine Ligand
1.21 Rhodium Complexes 3
1.22 Ruthenium Complexes 5
Bidentate Cyclopentadienyl-Phosphine Complexes II - Varying
the Ligand Environment Around the Metal Centre1.3
1.31 Varying the Metal Source 8
$1.32 \mathrm{PPh}_{3}$ Substitution 9
1.33 Chloride Displacement 11
1.34 Reactions at the Rhodium Centre 13
Reactions Catalysed by Rhodium and Ruthenium Cp-Phosphine1.4Complexes
1.41 Hydrogenation 16
1.42 Transfer Hydrogenation 17
1.43 Allylic Displacement 19
1.44 Diels-Alder Reaction 20
1.45 Cyclopropanation of Olefins 21
2.0 Synthesis of Rhodium and Ruthenium Complexes 23
2.1 Background and Aims 23
2.2 Bidentate Indenyl-Phosphine Synthesis 25
2.3 Synthesis of Rhodium Complex 22 28
2.4 Synthesis of Ruthenium Complexes 30
2.5 CONClUSIONS 34
3.0 Catalytic Studies of Rhodium and Ruthenium Complexes 35
3.1 Hydrogenation 35
3.2 Transfer Hydrogenation 37
3.3 Allylic Displacement 39
3.4 Diels-Alder Reaction 40
3.5 Cyclopropanation 41
3.6 Stoichiometric Reactions 42
3.7 CONCLUSIONS 43
3.8 Future Work 44
4.0 EXPERIMENTAL 45
5.0 References 67

APPENDICES

Appendix I Specific details of the catalytic studies
Appendix II X-Ray structure of ruthenium complex 80
Appendix III $\quad \mathrm{X}$-Ray structure of ruthenium complex 81
Appendix IV X-Ray structure of ruthenium complex 82
Appendix V X-Ray structure of ruthenium complex 112
Appendix VI X-Ray structure of ruthenium complex 113

1.0: INTRODUCTION

1.1-General Introduction

Over the past couple of decades, there has been much research into the use of transition metal complexes as catalysts for organic transformations. In particular, metal-cyclopentadienyl complexes have proved successful, due to their synthetic diversity and stability imparted by the strength of the metal-cyclopentadienyl bond. More recent research has looked into the use of chiral transition metal complexes to effect enantioselective transformations, thus enabling savings of time and cost to be made in the syntheses of complex chiral molecules.

In order for a chiral complex to be a successful catalyst for asymmetric reactions, the stereochemistry of the catalytic site must be controlled. In transition metal catalysis, the active site is the metal centre, and the surrounding environment is controlled by the ligands attached to the metal. Chirality in transition metal complexes can arise in several different ways: from a chiral ligand (ligand-derived chirality, 1), ${ }^{1}$ at the metal centre itself (metalcentred chirality, $\mathbf{2})^{2}$ or by planar chirality of a bound achiral ligand (3) ${ }^{3}$ (Figure 1).

1
Ligand-derived chirality

2
Metal-centred chirality

3
Planar chirality

Figure 1
Planar-chiral transition metal complexes enable chirality to be placed very close to the metal centre with no danger of racemisation, due to the strength of the metal-Cp bond. However, accessing single enantiomers often involves a costly resolution step. Despite this, planarchiral complexes of titanium and zirconium (in particular, their ansa-metallocenes (Figure 2)) are active catalysts for a range of organic transformations, including hydrogenation, ${ }^{4}$ DielsAlder reactions ${ }^{5}$ and carbomagnesiation reactions. ${ }^{6}$

Chapter 1: Introduction

Figure 2
Previous research within the Whitby group led to the development of a C_{1}-symmetric catalyst model for early transition metals, which achieved good results in asymmetric catalysis (Figure 3). ${ }^{7}$

Substrate can only approach catalyst from one side.

Figure 3

Subsequent work to apply this model to late transition metal complexes focused initially on the 1-neomenthylindene ligand 8 , with the neomenthyl group acting as the 'wall' and the indenyl ligand the 'roof' (Scheme 1). ${ }^{8}$

Scheme 1

Although complex 9 and its derivative 10 were synthesised, they were not isolated. Instead, the successful complexation of a substituted indenyl ligand to rhodium encouraged the development of indenyl-phosphine bidentate complexes which fitted the 'roof-wall' model.

1.2 - Bidentate Cyclopentadienyl-Phosphine Complexes I - Planar Chirality and the Effect of Changing the Cyclopentadienyl-Phosphine Ligand

Cp-heteroatom bidentate ligands are an important class of ligand, especially because these complexes are expected to have properties different to monodentate Cp or heteroatom complexes. Cp-phosphine complexes in particular have been studied in some detail. ${ }^{9}$

11

12

Figure 4
Complexes $\mathbf{1 1}$ and $\mathbf{1 2}$ are the first reported example of Cp-phosphine complexes of rhodium and ruthenium respectively. Prepared by the reaction of the lithium anion of the Cp phosphine ligand with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}{ }^{10}$ and $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{11}$, these, and their derivatives, have found applications in catalysis.

These complexes also have enormous potential for variability, allowing them to be 'tuned' for specific reactions. For example, a variant of $\mathbf{1 2}$ where the Cp-phosphine tether has 4 , rather than 2 , carbon atoms is the most effective chiral catalyst for Trost's 'reconstitutive condensation' reaction (Scheme 2). ${ }^{12}$

Scheme 2

1.21 - Rhodium Complexes

Although 11 is not a chiral complex, there are many ways of making it so. Perhaps the most obvious is to introduce a source of chirality onto the alkyl tether (Figure 5):

15b
Figure 5

Complexes 13 and 15 have a chiral tether derived from L-threitol and 14 from transdimethylenecyclopentane. They were prepared by the reaction of the lithium salts of the Cpphosphine ligand with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}{ }^{13}$ and $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{12}$. However, the reported complexation yields for the rhodium complexes were modest: 22% (13) and $<20 \%$ (14) whilst the ruthenium complex was synthesised in 49% yield and a $41: 59$ ratio of diastereomers.

16

17

Figure 6
Salzer et al reported the chiral Cp-phosphine complex 16 (Figure 6). ${ }^{14}$ Its indenyl-phosphine analogue, $\mathbf{1 7}$, was synthesised by Brookings within the Whitby group. ${ }^{8}$ Both complexes were prepared via similar synthetic routes and the complexation step for $\mathbf{1 7}$ occurs with some degree of planar-chirality induction, despite the chiral information being remote from the metal centre. This induction may be explained by using Poilblanc's suggested mechanism for complexation. ${ }^{10}$ If phosphine co-ordination is the first step, chloride displacement then takes place via a cyclic transition state (Figure 7) and the remote chiral phenyl group is responsible for the induction of planar chirality.

vs.

Figure 7
For indenyl-phosphine bidentate ligands where the tether is attached to the 1-or 3-position, these can be classed as unsymmetrically substituted Cp ligands. As such, they will form planar-chiral complexes irrespective of the arrangement of ligands around the metal atom. Indenyl ligands can also form η^{3}-indenyl complexes, freeing up a co-ordination site on the metal (ring slippage) and reducing the electron count by 2 , often leading to a dramatic increase in the rate of associative reactions. ${ }^{15}$ This peculiarity has been termed the "indenyl ligand effect" (also see section 1.4).

Tani's indenyl-phosphine analogue of complex $\mathbf{1 3}$ was synthesised in 38% d.e., showing that the remote chiral information is capable of inducing planar-chirality. ${ }^{13}$ Further work into

CHAPTER 1: InTRODUCTION

indenyl-phosphines with chiral groups attached directly to the indene moiety showed that the neoisomenthyl group gave the highest d.e. upon complexation to $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ (Figure 8).

24% d.e.

8\% d.e.

74\% d.e.

Figure 8

The increased d.e. shown with the indenyl ligands shows the importance of the extra aromatic group in discriminating between the diastereotopic faces. The low d.e. seen with ligand 18 was repeated when complexation of the lithium salt of 18 to $\left[\mathrm{RhCl}(\mathrm{COD})_{2}\right]_{2}$ showed only a 20% d.e. ${ }^{16}$

Previous work within the Whitby group on placing the chiral information on the tether has resulted in a reasonably high d.e. upon complexation to rhodium. Complex 17 was synthesised in 50% d.e. and 21 in $40 \% .{ }^{8}$ Changing the length of the phosphine tether resulted in a slight drop in the d.e.: $\mathbf{2 2}$ was synthesised in 56% d.e. and $\mathbf{2 3}$, with one extra carbon, in 48% d.e. (Figure 9). ${ }^{17}$ It should be noted that in each case, it is possible to separate the major isomer by crystallisation.

17

21

$22-n=1$
$23-n=2$

Figure 9

1.22 - Ruthenium Complexes

Ruthenium complex 12 (Figure 4) is chiral due to the asymmetric arrangement of ligands around the ruthenium atom. Although 12 was synthesised as a racemate, complex 15 (Figure 5) was synthesised in 18% d.e. Further investigation into the effect of the protecting group on the d.e. showed that the diol (24a) and the dibenzyl ether (24b) complexes retained the 18% d.e., whereas the bis-TBDMS complex (24c) was synthesised in 43% d.e. (Figure 10). ${ }^{12}$

24a-R=H
$24 b-R=B n$
$24 \mathrm{c}-\mathrm{R}=\mathrm{TBDMS}$

Figure 10

Increasing the d.e. of the complexation step to almost 100% is possible with more exotic ligands. The lithium salts of tethered Cp-ferrocenyl phosphole ligands were reacted with $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ to form the ruthenium complexes 25 and 26 in 63% and 68% yield, but 90% and $>98 \%$ d.e. respectively (Figure 11). ${ }^{18}$

Figure 11

Harrison synthesised a variety of chiral indenyl-phosphine ruthenium complexes, showing a varying degree of enantioselectivity (Figure 12). Interestingly, the extra carbon in the tether between complexes $\mathbf{2 7}$ and $\mathbf{2 8}$ results in an increase in the observed d.e. upon complexation: 60% d.e. (rising to 84% after purification) for 27 and 66% d.e. (diastereomers separable by flash chromatography) for $\mathbf{2 8}$. This is at odds with the rhodium indenyl-phosphine complexes 22 and 23, where increasing the tether length saw a decrease in the d.e. Complex 29 was formed in 82% d.e. and 30 in 66% d.e., but crystallisation of the diastereomeric mixture resulted in purely the major isomer in all cases. ${ }^{17}$ It should also be noted that complexes 2729 showed complete control of the arrangement of the ligands at the metal centre and the d.e. is a reflection of the facial selectivity of the indenyl ligand, whereas for complex $\mathbf{3 0}, 66 \%$ d.e. represents the metal-centred asymmetry only.

27-n=1
$28-n=2$

29

30

Figure 12

Chapter 1: Introduction

Although there are many more examples of Cp- and indenyl-phosphine bidentate complexes of mid-late transition metals in the literature, this project is more concerned with the catalytic applications of these complexes; hence the remainder of this introduction will concentrate on the reactions and catalytic applications of such complexes.

1.3 - Bidentate Cyclopentadienyl-Phosphine Complexes II - Varying the Ligand Environment Around the Metal Centre

Varying the Cp-phosphine ligand itself is probably the most obvious way of changing a complex to suit a particular reaction. However, it is also possible to vary the ligand environment around the metal centre without affecting the Cp-phosphine ligand, often whilst retaining/improving upon any diastereomeric selectivity induced upon complexation of the Cp-phosphine ligand to the metal.

1.31 - Varying the Metal Source

Perhaps the simplest way of changing the ligand environment is to vary the metal source used for complexation of the ligand. By far the most widely used metal source for rutheniumbased Cp complexes is $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$. It reacts with Cp -phosphine ligands to form neutral, 18electron ruthenium (II) complexes (Scheme 3) and has been the metal source of choice within the Whitby group. ${ }^{17}$ Other ruthenium sources include $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]_{2}{ }^{3}$ and $\mathrm{RuCl}_{2}(\mathrm{CO})_{3} .{ }^{19}$

Scheme 3
In contrast with ruthenium, there are many common metal sources for rhodium-based complexes. Within the Whitby group, $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}{ }^{8}$ (Figure 5) and $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}{ }^{17}$ (Figure 8) have been used and both form 18 -electron rhodium (I) complexes, but experience within the Whitby group has shown that the carbonyl complex of Cp -phosphine ligands is the easiest to handle (Scheme 3); being air- and moisture-stable in the solid form, though considerably less stable when in solution. ${ }^{17}$

Substitution of the other ligands at the metal centre is another way of varying the ligand environment. For ruthenium (II) complexes based on $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$, substitution of both the chloride and PPh_{3} is possible. For rhodium (I) complexes, there is only one possible ligand to substitute, the nature of which depends on the starting material.

1.32 - $\mathbf{P P h}_{3}$ Substitution

The PPh_{3} ligand can be substituted by more electron-rich neutral donor ligands, such as alkyl phosphines and amines. Whilst refining his olefin metathesis catalysts, Grubbs tried a variety of different phosphine ligands to see which proved the most effective. ${ }^{20}$ Using phenyldiazomethane to oxidise the ruthenium (II) centre to ruthenium (IV), reaction of the diazo compound and the phosphine in one pot furnished the metathesis catalyst (Scheme 4).

Scheme 4

Although phosphine displacement occurred at the same time as oxidation, further work established that the free alkyl phosphine would displace PPh_{3} simply by stirring a solution of the vinylidene complex and the free alkyl phosphine in DCM (Scheme 5). ${ }^{21}$

Scheme 5

Catalyst	Activity (turnovers/h)
32 a	19.0
32 b	8.0
32 c	17.5
32 d	5.5

Table 1

Table 1 shows the relative activities of catalysts $\mathbf{3 6 a} \mathbf{- d}$ in the RCM of diethyldiallylmalonate, using a 20:1 ratio of substrate:catalyst in DCM. ${ }^{21}$ The tricyclohexylphosphine catalyst 36a proved the most active: indeed, similar catalyst 34a is widely known as Grubbs' $1^{\text {st }}$-generation olefin metathesis catalyst.

Displacement of PPh_{3} has also been used to synthesise the complex $\mathrm{RuCl}_{2}(\mathrm{dmpm})_{2}$, where dmpm $=$ bis(dimethylphosphino)methane. ${ }^{22}$ Similarly to Grubbs' method above, $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ was suspended in petroleum ether and stirred for 2 hours with an excess of dmpm (it was noted that if ethanol was used as solvent, $\mathrm{RuCl}_{2}(\mathrm{dmpm})_{3}$ was obtained). ${ }^{23}$

As well as electronic effects, steric effects play a huge part in phosphine displacement. For the equilibrium in Scheme 6, phosphines show a bonding order $\mathrm{R}^{\prime}=\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}>\mathrm{PMe}_{2} \mathrm{Ph} \sim$ $\mathrm{P}(\mathrm{OEt})_{3}>\mathrm{PEt}_{3}>\mathrm{PEt}_{2} \mathrm{Ph} \sim \mathrm{PPr}_{2} \mathrm{Ph} \sim \mathrm{PBu}_{2} \mathrm{Ph}^{24}$ With the exception of $\mathrm{P}(\mathrm{OEt})_{3}$, the order of the phosphine ligands correlate with the increasing cone angle, θ, of the phosphine.

$$
\mathrm{R}=\mathrm{PEt} \mathrm{t}_{2} \mathrm{Ph}, \mathrm{PPr}_{2} \mathrm{Ph} \text { or } \mathrm{PBu}_{2} \mathrm{Ph}
$$

Scheme 6

Displacement of phosphines with other group XV ligands is less-well-known. For example, arsines $\mathrm{R}^{\prime}=\mathrm{AsMe}_{2} \mathrm{Ph}$ and $\mathrm{AsEt}_{2} \mathrm{Ph}$ will not displace $\mathrm{R}=\mathrm{PEt}_{2} \mathrm{Ph}, \mathrm{PPr}_{2} \mathrm{Ph}$ or $\mathrm{PBu}_{2} \mathrm{Ph}$ (Scheme 5). ${ }^{24}$ However, neutral amine ligands will displace PPh_{3} from $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$; in particular, pyridine (Scheme 7) and picolines. ${ }^{25}$

Scheme 7

In addition to aromatic amines, aliphatic amines will also displace PPh_{3}. The terdentate amine ligand 2,6-[bis(dimethylamino)methyl]pyridine will react with $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$, displacing 2 phosphines (Scheme 8). ${ }^{26}$

CHAPTER 1: INTRODUCTION

1.33 - Chloride Displacement

The chloride ligand can be replaced with a wide range of anionic ligands. Direct substitution results in the formation of thiocyanate, cyanate, cyanide, hydride and deuteride complexes, with the other halide complexes being formed by reaction of HX with the hydride complex (Scheme 9). ${ }^{27}$

Scheme 9
Of the substituted complexes, hydride 41 has proved to be the most useful, being an active catalyst for the hydrogenation of iminium salts (see section 1.41). ${ }^{28}$ The deuteride complex is synthesised using $\mathrm{CD}_{3} \mathrm{ONa}$ in $\mathrm{CD}_{3} \mathrm{OD}$. The hydride has also been synthesised from the chloride using KOMe in MeOH^{29} and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in refluxing $\mathrm{MeOH}{ }^{30}$

With use of an appropriate chloride scavenger, it is possible to form a stable cationic ruthenium complex. Refluxing complex 37 in MeCN with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ results in the formation of an air- and moisture-stable ruthenium cationic complex (Scheme 10). ${ }^{31}$

Scheme 10

Other neutral 2-electron donor ligands have been used to stabilise the cationic complex, notably acetone ${ }^{32}$ and THF. ${ }^{33}$ The MeCN complexes are by far the most stable, but the THF complex is generally used when a reactive cationic ruthenium intermediate is needed. Other counterions can be used, in particular $\mathrm{BF}_{4}{ }^{-}$and $\mathrm{BPh}_{4} .^{-31} \mathrm{Ag}^{+}$is another widely used, but more expensive and less stable, chloride scavenger.

Bidentate amine ligands will also displace Cl^{-}from complex 37, forming a mono-coordinated cationic amine complex 44 (Scheme 11). ${ }^{34}$

Chapter 1: Introduction

Scheme 11
After heating, the un-co-ordinated end of the bis-amine will displace one of the PPh_{3} ligands, forming bidentate amine complex 45 . Both the bis- and mono-co-ordinated amine salts can be isolated by changing the counterion to BPh_{4}^{-}.

Another important set of complexes are the vinylidene and acetylene complexes. Otherwise known as carbene complexes, the main application of vinylidene complexes is in olefin metathesis. However, ruthenium vinylidene complexes have also been detected as an intermediate in Trost's reconstitutive condensation reaction (see section 1.4). ${ }^{12}$

In addition to the diazo method employed by Grubbs, above, ruthenium vinylidene complexes can also be synthesised by reacting complex 37 with a chloride scavenger and a terminal alkyne (starting from cationic complex 43 and not employing a scavenger is also possible). Upon deprotonation, a ruthenium acetylide complex is formed (Scheme 12). ${ }^{31,35}$

Scheme 12
Acetylide complexes will react with strong electrophiles (e.g. $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}$) on the β carbon, generating a cationic vinylidene species. If HPF_{6} is used, the intermediate in Scheme 12 is regenerated; otherwise a disubstituted vinylidene species is formed (when $R \neq H$). Acetylide complexes will also react with simple alkyl halides to give disubstituted vinylidene complexes under relatively mild conditions. ${ }^{35}$ However, reaction with elemental bromine results in bromovinylidene complexes and, in the case for $\mathrm{R}=\mathrm{Ph}$, a bromine atom is substituted in the 4-position on the phenyl ring (Scheme 13). ${ }^{36}$

CHAPTER 1: INTRODUCTION

Scheme 13
Vinylidene complexes will also add nucleophiles to the a carbon. A high degree of stereoselectivity is observed upon addition of cyanide to non-symmetrical vinylidene ligands, the stereoselectivity being determined by the steric bulk of the vinylidene groups. ${ }^{37}$

1.34 - Reactions at the Rhodium Centre

Displacement of the carbonyl from Cp-phosphine bidentate rhodium (I) carbonyl complexes is not facile. Indeed, when reacted with PMe_{3}, complex 48 dissociates the Cp -bound phosphine in preference to the carbonyl (Scheme 14). ${ }^{38}$

Scheme 14
However, when tethered indenyl-phosphine complex 50 was reacted with $\mathrm{P}^{\prime} \mathrm{Bu}_{3}$, displacement of the carbonyl did take place (Scheme 15). ${ }^{10}$

Scheme 15
Instead of carbonyl displacement, Rh^{I} complexes tend to undergo oxidative addition, especially with iodine and small alkyl halides. Rhodium complex 11 was reacted with I_{2} to form the bis-iodide rhodium (III) complex 52 (Scheme 16). ${ }^{10}$

Tani has investigated the oxidative addition of alkyl halides to bidentate indenyl phosphine rhodium carbonyl complexes. ${ }^{39}$ Instead of displacing the carbonyl, as the iodine did above, the alkyl group migrated to the carbonyl, forming a rhodium (III) acetyl complex (Scheme 17).

Scheme 17

Reaction	Complex	RX	Yield (\%)	$(R, S):(R, R)$
1	$\mathbf{5 3}$	MeI	90	$33: 67(34 \%$ d.e. $)$
2	$\mathbf{5 3}$	EtI	83	$4: 96(92 \%$ d.e. $)$
3	$\mathbf{5 4}$	MeI	97	$89: 11(78 \%$ d.e. $)$
4	$\mathbf{5 0}$	MeI	92	$85: 15(70 \%$ d.e. $)$
5	$\mathbf{5 0}$	EtI	77	$98: 2(96 \%$ d.e. $)$

Table 2

Tani found that the size of the alkyl group and the length of the tether both had an influence on the reactivity and the stereochemical outcome. Complex 53 with a 2-carbon tether proved more
active than 50 with a 4 -carbon tether (reactions 2 and 5, Table 2). However, as the tether length increased, the stereocontrol also increased (reactions 1,3 and 4, Table 2). Only $\mathrm{R}=$ Me or Et successfully formed the acyl complexes, with the smaller methyl group showing greater reactivity, but the larger ethyl group showing greater stereocontrol.

Although there are many more synthetic transformations of rhodium and ruthenium complexes in the literature, this brief review has covered the ones which are of most interest to this project. The remainder of the introduction will concentrate on the 5 reactions which complexes 22 and 27 , and their derivatives, will hopefully catalyse.

1.4 - Reactions Catalysed by Rhodium and Ruthenium Cp-Phosphine Complexes

A recent review of ruthenium-catalysed chemistry, although not comprehensive, showed a large number of reactions catalysed by ruthenium complexes, of which a significant portion were catalyzed by $\mathrm{CpRuCl}\left(\mathrm{PPh}_{3}\right)_{2}$ or derivatives thereof. ${ }^{40}$ The number of reactions was condensed further to 5 , all of which resulted in a chiral product being formed in the hope that enantioinduction, as well as catalytic activity, would be observed.

Harrison tested complex 27 in Trost's 'reconstitutive condensation' reaction, where terminal alkynes and secondary alcohols are combined, affording a chiral ketone (also see section 1.2) (Scheme 18). ${ }^{12,17}$

Scheme 18

Unfortunately, when complex 27 was attempted with Trost's conditions, no product was observed. Complete consumption of the alcohol was noted by GC monitoring (despite being in a three-fold excess) which led Harrison to suggest some isomerisation of the allyl alcohol was occurring, in keeping with other aspects of ruthenium chemistry. ${ }^{41}$ Further investigation led to the synthesis of the vinylidene complex which Trost postulated was the first step in the catalytic cycle, although this too yielded no product when reacted with the allylic alcohol. Switching the chloride scavenger to $\mathrm{NH}_{4} \mathrm{PF}_{6}$ reduced the number of byproducts formed, but still no catalytic turnover was observed.

It was thought that the main reason for the reaction not taking place is the presence of the indenyl ligand, instead of a Cp . Trost reported a large decrease in reactivity with large Cp groups and the indenyl ligand in complex 27 can be thought of as a tri-substituted Cp ligand.

The electronic effects of the indenyl ligand could also have had an effect. Although indenyl groups can 'ring-slip' to form η^{3} complexes, often leading to an increase in reactivity (see section 1.2), the presence of an indenyl ligand is not always beneficial. ${ }^{42}$ The extra benzene ring can act as an 'electron reservoir', donating electron density towards electron-poor ruthenium species, thus deactivating them for catalytic activity. ${ }^{43}$

Harrison postulated some improvements to complex 27 in an attempt to achieve catalysis, ${ }^{17}$ but it is unlikely this project will return to this reaction.

1.41 - Hydrogenation

The hydrogenation of unsaturated systems is a classic application of homogeneous catalysis, and numerous catalysts are known which will reduce double bonds enantioselectively. For carbon-carbon double bonds, the catalytic system involves addition of H_{2} to a catalyst, coordination of the olefin, then reductive elimination of the saturated compound. ${ }^{44}$ However, a different mechanism involving the reduction of double bonds by addition of hydride in acidic solution has been reported: this mechanism is selective for polar $\mathrm{C}=\mathrm{X}$ bonds over $\mathrm{C}=\mathrm{C}$ bonds (Scheme 19). ${ }^{45,46}$

Ruthenium BINAP complexes are perhaps the most well-known mediators of enantioselective reduction. BINAP complexes offer several advantages: they are chemoselective, preferentially reducing carbonyls over alkenes and nitriles; both enantiomers are easy to prepare, thus allowing access to both enantiomers of the product; the required catalyst loading is often very small and the catalysts offer excellent yields and e.e.'s. ${ }^{47}$

Cp-ruthenium BINAP complexes are also known to reduce carbonyl compounds. ${ }^{48}$ Hoke reacted $\mathrm{CpRuCl}\left(\mathrm{PPh}_{3}\right)_{2}$ with enantiopure BINAP to form $\mathrm{CpRuCl}(\mathrm{BINAP})$ complexes.

However, he postulated that retention of the chloride ligand is essential to retaining the enantioselectivity of the reaction, meaning that loss of the cyclopentadienyl anion is the catalyst activation step.

The specific reaction chosen for catalyst testing is one developed by Norton, who reduced iminium tetrafluoroborate salts to the corresponding ammonium salt both catalytically and stoichiometrically with a Cp-ruthenium hydride complex (Scheme 20). ${ }^{28}$

Scheme 20

The iminium cation is generally pre-formed as a crystalline solid by reaction of the ammonium salt with a carbonyl, although in-situ formation from the corresponding imine is also possible. Norton's choice of catalyst is a Cp-ruthenium hydride with a chiral bidentate phosphine ligand, incredibly similar to complex 27. Varying the temperature and pressure of the reaction had no effect on the yield and e.e., indicating that hydride transfer from the metal to the iminium cation is the turnover-limiting step. Although complex 27 contains a chloride ligand rather than a hydride, synthesis of ruthenium hydride species is a well-known reaction (see section 1.32).

1.42 - Transfer hydrogenation

Transfer hydrogenation is a particular variant of hydrogenation where no gaseous hydrogen is involved. Instead, metal-hydride complexes are generated in-situ by oxidation of a suitable substrate (usually IPA or formic acid).

Transfer hydrogenation has its roots in the Meerwein-Ponndorf-Verley (MPV) reduction, where ketones are reduced with $\mathrm{Al}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ in IPA (Scheme 21).

Scheme 21
Although the reaction is actually an equilibrium (the reverse is known as the Oppenhauer oxidation), the reaction is driven by loss of acetone. Attempts to develop an asymmetric version of the MPV reduction succeeded with chiral lanthanide catalysts, although the high catalyst loading required meant that scale-up was impractical. ${ }^{49}$

To this end, attention turned to transition metals; in particular rhodium, ruthenium and iridium. Avecia focused on rhodium (and latterly iridium), whilst Noyori specialised in ruthenium. Both groups hold similar patents: a metal halide (typically chloride) with aromatic ligand (anionic for Avecia, e.g. Cp^{*}; neutral for Noyori, e.g. p-cymene) and a chiral bidentate ligand, where one end is a neutral amine. The mechanism is the same for both systems (Scheme 22). ${ }^{50}$

Scheme 22
Much like the MPV reduction, the hydride source is IPA, which is oxidised to acetone. However, the reduction step is not a concerted hydride transfer from IPA to the substrate, but a transfer of hydride from the metal to the ketone, via a 6-membered transition state. ${ }^{51}$

Transfer hydrogenation has also been shown to work with imines, although IPA is not a suitable solvent for this reaction. A 5:2 mixture of formic acid:TEA (TEAF) is used instead, where the formic acid is the hydride source, being oxidised to CO_{2}. If necessary, a polar aprotic solvent can be used to aid dissolution of the substrate. ${ }^{52}$

CHAPTER 1: Introduction

The specific reaction chosen for catalyst testing is the reduction of acetophenone in IPA. Although complex 27 has no amine ligand, it should be possible to form an amine complex by displacing PPh_{3} with an amine (see section 1.31). It should also be possible to use the TEAF system to reduce acetophenone, and an imine derived from acetophenone, e.g. acetophenone anil.

1.43 - Allylic Displacement

One method of effecting an enantioselective reaction is through the enantiofacial selection of a prochiral substrate. Many enantioselective reactions proceed via this method, e.g. transfer hydrogenation (see above). The addition of a nucleophile to a π-allyl complex of a transition metal is another such reaction.

Transition metal-allyl complexes offer several advantages for enantioselective syntheses: the ability to produce enantiomerically enriched products from chiral or achiral starting materials, the large variety of nucleophiles which can be used (both carbon and heteroatom nucleophiles) and the ability to form π-allyl complexes from a variety of different substrates (olefins, diolefins and olefins with a leaving group in the allylic position) ${ }^{53}$

Stoichiometric allylic substitution was discovered in the 1960 s by Tsuji, ${ }^{54}$ although it wasn't until 1970 when catalytic allylic substitution was first reported. In many cases, the products were chiral: these results led to much study into the stereochemistry, mechanism and applications of catalytic allylic substitution. ${ }^{53}$

The majority of transition metal catalysts are palladium based, although catalysts based around ruthenium, ${ }^{55}$ nickel, ${ }^{56}$ copper ${ }^{57}$ and others are known. The most common ligands are bidentate phosphines e.g. DPPE, although P-N bidentate ligands are also widely used. ${ }^{58}$

The reaction chosen for testing is the displacement of 3-acetoxy-1,3-diphenylpropene, with benzylamine, ${ }^{59}$ although ethyl 3-(1,3-diphenylpropenyl) carbonate, 62, is also a suitable starting material (Scheme 23). ${ }^{55}$ There are many similarities between Takahashi's ruthenium catalyst and complex 27, but the majority of the published catalysts for this reaction were tested with the allylic acetate and not the carbonate.

Chapter 1: Introduction

Scheme 23

1.44 - Diels-Alder reaction

The Diels-Alder reaction is possibly the most useful and reliable structural transformation in organic synthesis. It is a widely used method for forming carbon-carbon, carbon-heteroatom and heteroatom-heteroatom bonds via a $[4+2]$ cycloaddition mechanism, in which a conjugated diene (e.g. 1,3-butadiene) reacts with a dienophile (e.g. ethene). It has been found that the fastest reactions occur with dienes locked in the cisoid conformation and when the dienophile is electron-poor. ${ }^{60}$

The reaction can be accelerated by high pressures, and is catalysed by a range of compounds. It was first observed in 1942 by Wasserman that Diels-Alder reactions in acidic media were faster than those not run in acidic media. ${ }^{61}$ Ever since 1960, however, Lewis acid catalysed Diels-Alder reactions have been known: Yates and Eaton noted the effect of AlCl_{3} on the Diels-Alder reaction between anthracene and maleic anhydride. ${ }^{62}$

The traditional Lewis acids (e.g. $\mathrm{BCl}_{3}, \mathrm{AlCl}_{3}, \mathrm{TiCl}_{4}$) can give excellent reaction rates at moderate catalyst loadings, provided the dienophile contains oxygen. However, their major disadvantage is their moisture sensitivity, requiring the rigorous exclusion of water from the reactions. Lanthanide Lewis acids (e.g. $\mathrm{Eu}(\mathrm{fod})_{3}{ }^{63}$) are much more moisture-stable, though markedly less reactive. To this end, Hollis et al turned to transition metal Lewis acid catalysts, which would ideally possess the reactivity of traditional Lewis acids, combined with the stability of lanthanide-based Lewis acids (in addition to a range of other desirable properties). ${ }^{64}$

A few examples of transition metal Lewis acid catalysts had already been reported (Figure 13), including cationic ruthenium complex 66. All had their drawbacks: 64 was moisture sensitive and tended to polymerise the diene, a fault of $\mathbf{6 5}$ as well. However, it indicated that normally electron-rich tungsten (0) complexes could act as Lewis acids, with the right
ligands. ${ }^{5}$ Complex 66 was a poor Lewis acid despite the positive charge at the ruthenium metal centre: this was due to the electron-donating properties of the phosphine and the Cp group, thus the complex had a tendency to bind electron-poor olefins and not catalyse the reaction. ${ }^{65}$

Figure 13
Chiral ruthenium-based Lewis acids analogous to 66 have been reported, in particular $\left[\mathrm{CpRu}(\text { biphop-F)(methacrolein) }]^{+} \mathrm{SbF}_{6}{ }^{-}\right.$, where biphop-F is the chiral ligand 1,2-bis[bis(pentafluorophenyl)phosphanyloxy]-1,2-diphenylethane. ${ }^{66}$ It catalyses the reaction between methacrolein and cyclopentadiene (Scheme 24) with an exo:endo ratio of 97:3, rising to $99.7: 0.3$ if the Cp ligand is replaced by an indenyl ligand. This reaction is also the reaction of choice for testing complexes in this project.

1.45 - Cyclopropanation of Olefins

The reaction between a diazo compound and an olefin is one that has been used to test many new transition metal complexes for activity (and if the complex is chiral, enantioselectivity). Transition metal-catalysed decomposition of diazo compounds has been known for almost a century, ${ }^{67}$ and cyclopropanation is merely one of many reactions that involve the subsequent metal-carbene complex. Other reactions include C-H insertions, cyclopropenations, ylide generation ${ }^{68}$ and metathesis (see section 1.3).

Hubert et al discovered that dirhodium tetraacetate was a very efficient catalyst for the decomposition of diazo compounds and then the formation of cyclopropanes. ${ }^{69}$ Although the catalyst showed no enantioselectivity, it remains in use to this day as a cyclopropanation catalyst.

The first transition metal complex shown to induce an e.e. was discovered by Nozaki in 1966. Complexation of a salicylaldimine ligand to copper II created a complex which gave a 6% e.e. for the reaction between ethyl diazoacetate and styrene. ${ }^{70}$ Although there are many transition metal complexes in the literature which claim to catalyse the cyclopropanation of styrene, ${ }^{68}$ it was discovered that $\mathrm{CpRuCl}\left(\mathrm{PPh}_{3}\right)_{2}, 37$, and its indenyl analogue were also efficient catalysts for this reaction. ${ }^{71,72}$ Therefore, the reaction between EDA and styrene is the final reaction which will be used to screen complexes 22 and 27 for activity.

Scheme 25

2.0: SYNTHESIS OF RHODIUM AND RUTHENIUM COMPLEXES

2.1-Background and Aims

Previous work within the Whitby group led to a short, high-yielding route to ruthenium 27 and rhodium 22 complexes (Scheme 26). ${ }^{8,17}$

Starting with vinylcyclohexane, 73, asymmetric dihydroxylation under Sharpless' conditions, ${ }^{73}$ mesylation of the chiral diol and displacement of the mesylates formed an indenyl spirocyclopropane intermediate. The cyclopropane ring was opened with KPPh_{2} to give the asymmetric indenyl-phosphine ligand 31 in 81% overall yield. Complexation of ligand 31 to $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ gave rhodium complex $\mathbf{2 2}$ in modest yield and complexation to $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ afforded ruthenium complex 27 in good yield.

With the exception of phosphine 31, an air-sensitive oil, compounds 73-76, 23 and 27 are airstable solids, although purification of the metal complexes was carried out in an inert atmosphere due to uncertainties about their air stability in solution. Harrison looked into protection of the phosphine by formation of the borane adduct in an effort to simplify

Chapter 2: Synthesis of Rhodium and Ruthenium Complexes

handling of the phosphine, but decided not to optimise the route. The yield of the complexation step to rhodium was worryingly low, mainly due to the high cost of the metal. It was hoped that this step would be optimised over the course of the project, but literature precedence for high-yielding complexations of indenyl ligands to rhodium is sparse: indeed, the formation of 23, the three-carbon tethered analogue of 22, proceeded in a miserly 16% (Scheme 27). ${ }^{17}$

Scheme 27
Once complexes 22 and 27 had been synthesised, it was hoped that slight modifications would allow the easy synthesis of derivatives with the aim of increasing the reactivity (Scheme 28).

Scheme 28

Hydrogenation of ruthenium complex $\mathbf{2 7}$ to the tetrahydroindenyl complex $\mathbf{8 1}$ is a known process, but is unoptimised. ${ }^{17}$ Formation of cationic ruthenium complexes is a known literature procedure (see section 1.33) and should give cationic ruthenium complexes $\mathbf{8 0}$ and 82 in good yield.

2.2-Bidentate Indenyl-Phosphine Ligand Synthesis

Following the procedure outlined in Scheme 26 above, dihydroxylation of vinylcyclohexane (98% yield), mesylation (96%) and then reaction to form the spirocycle (98%) proceeded as expected. However, isolation of phosphine 31 proved problematic due to its air sensitivity and a yield of 15% was recorded after purification. To avoid wasting valuable enantiopure compound on learning the techniques to effectively purify the phosphine, and also to avoid using complexes 22 and 27 for general activity screening, it was decided to synthesise racemic versions of phosphine ligand 31. This would also allow the optimisation of the synthesis of rhodium complex 22 with racemic ligand; again, not wasting valuable enantiopure ligand.

Scheme 29

Slightly modifying the procedure outlined in Scheme 26 gave a more direct route to spirocycle 76, which proceeded in an excellent 95% overall yield (Scheme 29). However, formation of the phosphine again failed to proceed in good yield. At this point, other methods of purifying the phosphine were looked at, all of which involved protection then purification of the protected phosphine. Three well-known phosphine protection methods were looked at: forming the phosphine oxide, ${ }^{74}$ forming the phosphine-borane complex ${ }^{75}$ and also forming the phosphine sulfide ${ }^{76}$ (Scheme 30).

The first protection method to be looked at was the phosphine oxide, mainly because of the ease of formation - simply expose the phosphine to air! Oxidation with peroxide is another facile method of forming phosphine oxides. ${ }^{77}$ Deoxygenation of phosphine oxides is traditionally carried out with trichlorosilane ${ }^{78}$ or $\mathrm{LiAlH}_{4}{ }^{79}$, although here LiAlH_{4} may reduce the indenyl olefin bond as well. Using AlH_{3} removes the need for an aqueous workup, but it does require column chromatography in an inert atmosphere, ${ }^{80}$ the difficulties of which were one of the reasons for looking at protecting the phosphine.

Crude phosphine 31 was reacted with $\mathrm{H}_{2} \mathrm{O}_{2}$ and after 15 minutes, no phosphine was present by TLC. However, upon workup, a disappointing 21% yield of phosphine oxide 84 was isolated. Although optimisation of this reaction was an option, removing the protecting group looked like it would provide more problems, so another method of protecting the phosphine was tried.

The second method to be looked at was the phosphine-borane complex. Reacting the phosphine with a source of borane (THF- $\mathrm{BH}_{3}, \mathrm{DMS}-\mathrm{BH}_{3}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{BH}_{3}$ etc.) should furnish the phosphine-borane complex ${ }^{75}$ and the deprotection is much easier than the phosphine oxide; merely reaction with a secondary amine. ${ }^{81}$ Upon reacting crude phosphine 31 with DMSBH_{3}, phosphine-borane complex 85 was isolated in 49% yield as a white, air-stable solid. By quenching the indenyl anion with a stoichiometric amount of water, rather than a large excess, the yield was upped to 91%. Due to the success of this route, no investigations into the phosphine sulfide were carried out.

Harrison synthesised phosphine-borane 85 directly from spirocycle 76 with the use of lithium diphenylphosphide-borane in 61% yield (Scheme 31). ${ }^{17}$ Although many attempts to repeat this result were carried out, the maximum isolated yield was 16%.

Scheme 31
The $\mathrm{LiPPh}_{2}-\mathrm{BH}_{3}$ was initially synthesised from $\mathrm{PPh}_{3}-\mathrm{BH}_{3}$, in accordance with the procedure devised by Brisset et al, ${ }^{81}$ whereby lithium metal is reacted with $\mathrm{PPh}_{3}-\mathrm{BH}_{3}$. A byproduct of this reaction is PhLi , which has to be destroyed before use - this is accomplished by adding 1
equivalent of ${ }^{t} \mathrm{BuCl}$. It is conceivable that if the reaction of $\mathrm{PPh}_{3}-\mathrm{BH}_{3}$ with lithium did not go to completion, an excess of ${ }^{t} \mathrm{BuCl}$ could also have destroyed some of the $\mathrm{LiPPh}_{2} \cdot \mathrm{BH}_{3}$, accounting for the low yields. To test this theory, $\mathrm{HPPh}_{2}-\mathrm{BH}_{3}$ was reacted with 1 equivalent of ${ }^{n} \mathrm{BuLi}$, and the $\mathrm{LiPPh}_{2}-\mathrm{BH}_{3}$ formed by this method was reacted with spirocycle 76. No increase in the isolated yield was seen. Increasing the concentration of the $\mathrm{LiPPh}_{2}-\mathrm{BH}_{3}$ also had no effect on the yield, so this route was abandoned in favour of the established KPPh_{2} route outlined above.

Once a reliable, high-yielding route to phosphine-borane $\mathbf{8 5}$ had been established, enantiopure $\mathbf{8 5}$ was synthesised from spirocycle 76 in 91% yield. Chiral complex $\mathbf{8 5}$ had been synthesised in 84% overall yield from vinylcyclohexane: asymmetric dihydroxylation and mesylation of the resulting diol, then reaction with indenyl lithium furnished spirocycle 76, which was ring-opened with KPPh_{2} and protected with $\mathrm{DMS}^{-\mathrm{BH}_{3}}$. Racemic 85 was synthesised in 87% overall yield from vinylcyclohexane: bromination of vinylcyclohexane and reaction with indenyl lithium yielded racemic spirocycle 76.

Deprotection of the protected phosphine was carried out by refluxing the phosphine-borane in a large excess of HNEt_{2}, with TLC monitoring. After reflux for 16 hours, no phosphineborane was detected, so the HNEt_{2} was removed via vacuum transfer, leaving a yellow oil. Although phosphine 31 is supposed to be white, the yellow colouration came from trace impurities in the HNEt_{2} and no purification of the phosphine was carried out. The yield of the reaction was not measured; rather the phosphine was used directly in the synthesis of the metal complexes.

2.3-Synthesis of Rhodium Complex 22

Following the procedure outlined by Harrison, ${ }^{17}$ phosphine 31 was deprotonated and reacted with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$. After workup and purification, rhodium complex 22 was isolated in 9% yield (Scheme 32).

Scheme 32
Despite repeated attempts at optimisation, the isolated yield never increased above 18%. Varying solvent, temperature, time and even the rhodium metal source did not bring about a high-yielding reaction (summary of results in Table 3).

Reaction	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Rh source	Yield (\%) ${ }^{\text {a }}$
1	THF	RT	16	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$	25
2	THF	65	16	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$	26
3	THF	RT	60	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$	27
4	Toluene	RT	16	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$	18
5	Toluene	110	16	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$	20
6	MeOH	RT	16	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$	9
7	MeOH	70	16	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$	11
8	DME	RT	60	$\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	
9	DME	85	60	RhCl_{3}	-
10	THF	RT	16	$[\mathrm{RhCl}(\mathrm{COD})]_{2}$	<5
11	THF	RT	16	$\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}$	-
12	THF	RT	16	$[\mathrm{RhCl} \text { (norbornadiene) }]_{2}$	<5
13	THF	RT	16	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$	<5

a-crude yield, calculated by integration of Cp peaks in ${ }^{1} H$ NMR against an internal standard
Table 3 - attempted synthesis of rhodium indenyl complexes
Unfortunately, a crude yield of 25% (reaction 1) under the initial conditions only yielded 15% after purification. The established conditions for purification were flash chromatography
on alumina (neutral, Brockmann Grade III) in an inert atmosphere. Switching to chromatography in air slightly increased the amount of material lost, whilst switching to silica resulted in the loss of almost all the complex.

Reluctantly, mainly due to time pressures, the optimisation of the synthesis of rhodium complex 22 was abandoned, as was the synthesis of novel derivatives of 22. The small amount of material already synthesised was sufficient for activity testing: should complex $\mathbf{2 2}$ prove active, optimisation could be attempted again.

2.4-Synthesis of Ruthenium Complexes

Following the procedure outlined by Harrison, ${ }^{17}$ phosphine 31 was deprotonated and reacted with $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$. It was discovered that chromatography under argon was unnecessary for complex 27, which resulted in a yield of 82% (Scheme 33). Use of the chiral phosphine ligand resulted in the synthesis of the chiral version of $\mathbf{2 7}$ in 71% yield.

Scheme 33

Harrison found non-optimised conditions for the hydrogenation of ruthenium indenyl complex 27 to tetrahydroindenyl complex 81, using 1800 psi H_{2} and $10 \mathrm{~mol} \% \mathrm{PtO}_{2}$ in DCM at $65{ }^{\circ} \mathrm{C}$ for 3 days (Scheme 34). ${ }^{17}$ It was hoped that cationic indenyl complex 80 would reduce to cationic tetrahydroindenyl complex $\mathbf{8 2}$ under milder conditions, but literature precedent for the reduction of indenyl rings attached to late transition metals was sparse. ${ }^{82}$

Scheme 34

Cationic indenyl complex 80 was synthesised by refluxing $\mathrm{NH}_{4} \mathrm{PF}_{6}$ and neutral indenyl complex 27 in MeCN (Scheme 35). Crystallisation by slow diffusion of ether into a concentrated MeCN solution of $\mathbf{8 0}$ allowed full analysis: the crystals grown were of X-ray quality (Appendix II). The chiral cationic complex, starting from chiral 27, was also synthesised.

For the reduction of $\mathbf{8 0}$ to $\mathbf{8 2}$, various H_{2} pressures ranging from atmospheric pressure up to 50 bar were tried at RT with $10 \mathrm{~mol} \% \mathrm{PtO}_{2}$ catalyst for $21 / 2$ days, but only slight reduction was observed at 50 bar. Heating the reaction to $65^{\circ} \mathrm{C}$ saw increased reduction product, but also the presence of two new products (one major and one minor) in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Scheme 36). Leaving the reaction for increased amounts of time merely decreased the amount of $\mathbf{8 2}$ present and increased the amount of the minor impurity product.

Scheme 36

It was thought that reduction of the acetonitrile ligand to the corresponding neutral ethylamine complex 87 was one of the possible impurities and indeed, a peak at 818.5 in the ES^{+}MS was observed. This peak corresponds to the indenyl ethylamine complex 87 and none of the corresponding tetrahydroindenyl ethylamine complex was observed, indicating that once the neutral indenyl ethylamine complex is formed, it is inert to hydrogenation under these conditions. A peak corresponding to complex $\mathbf{8 2}\left(\mathrm{M}-\mathrm{PF}_{6}-\mathrm{MeCN}\right)^{+}$was observed and a small impurity peak at 811.6 , probably corresponding to the minor reduction impurity.

To be sure that the ethylamine complex was the byproduct of the reduction of $\mathbf{8 0}$, direct synthesis of the ethylamine complex was attempted. Stirring diethylamine and complex $\mathbf{8 0}$ in TEA afforded neutral complex 87 (Scheme 37). Unfortunately, complex 87 was unstable to column chromatography and resisted all attempts at crystallisation, so full characterisation was not achieved. However, the presence of two doublets in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum at 51.95 and $53.28 \mathrm{ppm}(\mathrm{J}=20.2 \mathrm{~Hz})$, corresponding to the doublets from the reduction of complex 80 , indicated that ethylamine complex $\mathbf{8 7}$ was a byproduct of the reduction of $\mathbf{8 0}$.

Scheme 37

Purification of tetrahydroindenyl cationic complex 82 was attempted, but no TLC system could be found which separated the compounds (MeOH streaked the compound up an alumina plate, whilst MeCN and DCM afforded no separation - no other solvents moved the compounds). Crystallisation also failed to afford a pure product, so other methods of purification were investigated.

One attempt involved taking the products of the reduction of $\mathbf{8 0}$ and treating them with chloride ions, in an attempt to reform neutral complex 81. Literature precedent is again sparse, so a trial of complex $\mathbf{8 0}$ was stirred with brine in DCM. This failed to yield neutral complex 27, as did stirring complex 80 in a mixture of concentrated HCl and DCM . However, Lindsay et al used tetra- ${ }^{n}$ butylammonium chloride in refluxing acetone to form a neutral ruthenium complex from the cationic hexafluorophosphate species. ${ }^{83}$ In the absence of tetra-"butylammonium chloride, tetraethylammonium chloride was tried instead. After refluxing with complex $\mathbf{8 0}$ for 2 days in dry acetone, complex $\mathbf{2 7}$ was isolated in 81% yield (Scheme 38). These conditions were applied to the crude product of the reduction of complex 80 and after purification, complex 81 was isolated in 42% yield. However, it was decided that synthesising complex 82 via the reduction of complex 27 would be a more economic and faster method.

Scheme 38
Submitting 27 to the known conditions afforded tetrahydroindenyl complex 81 in 33% yield, along with a significant impurity. After purification, complex 81 was crystallised by slow diffusion of pentane into a benzene solution and the crystals formed were suitable for X-ray analysis (Appendix III). Reducing the pressure to 1600 psi made no difference to the yield, but lowering the pressure further did reduce the yield.

Park found that (Ind) $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}$ reacted with certain chlorinated solvents (DCM and chloroform in particular). ${ }^{84}$ It was therefore not an unreasonable assumption that the unknown impurities in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra of the reduced complexes were products of the reaction between the solvent (DCM) and complex 27. Switching the solvent to DME
eliminated the impurity in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum and the yield for the reduction of $\mathbf{2 7}$ to $\mathbf{8 1}$ increased to 55%, with no sign of any impurity.

Another route to cationic tetrahydroindenyl complex 82 was to take complex 81 and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in refluxing MeCN (Scheme 39). This went in 65% yield and cationic tetrahydroindenyl complex $\mathbf{8 2}$ was crystallised by slow diffusion of ether into a MeCN solution. X-ray analysis of the crystals was obtained (Appendix IV).

Scheme 39
The reduction of cationic indenyl complex $\mathbf{8 0}$ to cationic tetrahydroindenyl complex $\mathbf{8 2}$ was attempted again, this time in DME. Only two reduced products were observed: ethylamine complex 87 and tetrahydroindenyl complex 82. However, isolation again proved to be a problem and separating the two complexes (plus unreduced complex 27) via reforming the neutral species did not improve on the previous 42% yield.

2.5-Conclusions

Adaptation of the existing route to spirocycle 76 gave easy access to a racemic version of ligand 31. An easy method of handling air-sensitive phosphine 31 via protection with BH_{3} has also been optimised. This led to the syntheses of racemic ruthenium complexes 27 and $\mathbf{8 0 - 8 2}$, all of which have been synthesised in sufficient quantity to allow testing of their catalytic properties. Should any complexes prove active, chiral versions of complexes 27 and 80 have also been synthesised in excellent yield to test for enantioinduction.

The attempted reduction of cationic indenyl ruthenium complex $\mathbf{8 0}$ to tetrahydroindenyl complex 82 failed to go cleanly. Reduction of the acetonitrile ligand was a competing sidereaction and the resulting ethylamine complex 87 was inseparable from complex $\mathbf{8 2}$. Unfortunately, characterisation of this novel compound was not possible due to its instability to chromatography.

The optimisation of the synthesis of rhodium complex 22 was not possible, due to the low reactivity of the indenyl phosphine ligand with various rhodium sources. Enough complex was synthesised to allow testing of its catalytic properties, but the derivatives 78 and 79 were not synthesised. Whilst this was a major setback, enough indenyl-phosphine metal complexes had been synthesised to allow testing for catalytic activity, the results of which will be discussed in chapter 3.

3.0: CATALYTIC STUDIES OF RHODIUM AND RUTHENIUM COMPLEXES

In addition to complexes 22, $\mathbf{2 7}$ and $\mathbf{8 0 - 8 2}$, the analogues of $\mathbf{2 7}$ and $\mathbf{8 0}$ with one extra carbon in the tether $(\mathbf{2 8}, \mathbf{9 2})$ were donated by P. Wright for catalytic testing (Figure 14).

Figure 14

3.1-Hydrogenation

The first reaction chosen for catalytic activity testing was the hydrogenation of iminium salts under Norton's conditions (see section 1.41). ${ }^{28}$ The iminium salt was generated in-situ from the corresponding imine (Scheme 40) and a summary of the results are in Table 4.

Scheme 40
The reactions were all run for 60 hours

Reaction	Complex	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
1	27	50	11
2	80	50	9
3	27	RT	10
4	80	RT	9
5	81	RT	<5
6	82	RT	<5
7	28^{b}	RT	<5
8	92^{b}	RT	<5
9	93	RT	-

[^0]Table 4 - the hydrogenation of iminium salts

Scheme 41
Complex 93 is the crude ruthenium hydride species, formed by displacement of the chloride from complex 27 (Scheme 41). Although ${ }^{1} \mathrm{H}$ NMR showed a 'filled-in doublet' and another doublet at -15 ppm , characteristic of Cp-ruthenium hydride species, ${ }^{29}$ the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR showed a large singlet at 70 ppm , in addition to the expected two doublets. Hydride 93 could not be purified by chromatography, sublimation or crystallisation and was unstable to light and air, decomposing if left exposed for more than 12 hours. The nature of the impurity was indeterminable - the singlet in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR shows a single phosphorus environment is present, but no trace of PPh_{3} or uncomplexed indenyl-phosphine was seen in the spectrum. The downfield shift also implies an electron-deficient phosphine, but it did not correspond to triphenylphosphine oxide or the indenyl-phosphine oxide. Although the crude product was tried in reaction 9 , no reduction was observed.

Scheme 42
Another method of forming the iminium salt is to react an amine with HBF_{4} and then a carbonyl (Scheme 42). Norton mainly used this method, so HBF_{4} was added to pyrrolidine, forming a clear oil (95a). Despite repeated attempts, crystallisation was not achieved - a soft solid was formed, but condensation with acetophenone failed to yield iminium salt 96a. Switching to dicyclohexylamine did give a white crystalline solid (95b), but the amine was too hindered to react with acetophenone. The last attempt was with diethylamine - although this did also form a soft solid (95c), condensation with acetophenone failed again. It is not known why the condensation step repeatedly failed - the use of $4 \AA$ molecular sieves and Dean and Stark traps were employed with refluxing toluene to remove water, but no condensation was observed. Reluctantly, due to time pressure, this line of investigation was abandoned.

3.2-Transfer Hydrogenation

The reduction of acetophenone via transfer hydrogenation was the second reaction chosen to test complexes for catalytic activity. Although none of the complexes have amine ligands attached, they were initially tried in IPA with KOH as base and a little reduction was observed. When the conditions were varied, it was found that the best conditions were in the presence of an excess of cyclohexylamine and $\mathrm{NaO}^{i} \mathrm{Pr}$ as base (Table 5).

Reaction	Complex	Base	Solvent	Additive	Yield (\%) $^{\text {a }}$
1	27	KOH	IPA	-	<5
2	80	KOH	IPA	-	10
3	80	KOH	IPA	-	-
4	81	KOH	IPA	-	9
5	82	KOH	IPA	-	5
6	82	KOH	IPA	-	-
7^{b}	28	KOH	IPA	-	21
8^{b}	92	KOH	IPA	-	-
9^{b}	92	KOH	IPA	-	-
10	80	$\mathrm{NaO}^{i} \operatorname{Pr}$	IPA	-	10
11	80	$\mathrm{NaO}^{i} \operatorname{Pr}$	IPA	1 eq. O_{2}	25
12	80	$\mathrm{NaO}^{i} \operatorname{Pr}$	MeOH	-	-
13	80	$\mathrm{NaO}^{i} \mathrm{Pr}$	IPA	CyNH_{2}	72
14^{b}	28	$\mathrm{NaO}^{i} \mathrm{Pr}$	IPA	-	5
15^{b}	28	$\mathrm{NaO}^{i} \operatorname{Pr}$	IPA	1 eq. O_{2}	19
16^{b}	28	$\mathrm{NaO}^{i} \operatorname{Pr}$	MeOH	-	-
17^{b}	28	$\mathrm{NaO}^{i} \operatorname{Pr}$	IPA	CyNH ${ }_{2}$	43

a - yield calculated by GC
b-complexes supplied by P. Wright
All reactions were run overnight in an inert atmosphere at $60^{\circ} \mathrm{C}$, to remove any acetone formed.

The other transfer hydrogenation system of triethylamine/formic acid was also tried, but no reduction was observed with any catalysts. It was also tried with acetophenone anil, 89, but again, no reduction was observed - the only products detectable by GC were acetophenone and aniline.

Table 5 - transfer hydrogenation of acetone
The best conditions found with the racemic catalysts were chosen to test the chiral catalysts. Chiral variants of complexes $\mathbf{2 8}$ and $\mathbf{8 0}$ were reacted with $\mathrm{NaO}^{i} \mathrm{Pr}$ in the presence of an excess of cyclohexylamine and oxygen and the e.e. measured on a chiral GC. Unfortunately, despite many repeat measurements, the reduction product was racemic. It is possible that loss
of the indenyl ring is the step which forms the catalytically active species - this would result in the loss of the chirality at the metal centre and a racemic product.

In an attempt to synthesise a closer analogue of the more common transfer hydrogenation catalysts, and in an attempt to explain the effectiveness of adding an excess of cyclohexylamine in the above series of reactions, displacement of the PPh_{3} ligand with an amine was attempted. When complex 27 was refluxed in pyridine, free PPh_{3} was observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, along with many other products. The lack of a clean displacement of PPh_{3} was in accordance with the attempt to synthesise the ethylamine complex 87 (section 2.4) where many products were obtained and the complex was unstable to chromatography.

With no prospect of synthesising a pure ruthenium amine complex by displacement, it was decided that this reaction offered no hope of gaining an e.e. and studies were halted.

3.3-Allylic Displacement

The displacement of an allylic acetate by a nucleophile was the third reaction chosen for catalytic testing. Most examples in the literature use 3 -acetoxy-1,3-diphenylpropene as a starting material (see section 1.43), which is synthesised by reducing chalcone with LiAlH_{4} and acetylating (Scheme 42). Unfortunately, when allylic acetate 62 and benzylamine were reacted in the presence of ruthenium catalysts $27,28,80-82$ and 92 , no reaction was observed. Even upon heating to $60^{\circ} \mathrm{C}$, no loss of starting material was observed by GC, although free PPh_{3} was detected by GC.

Takahashi used an allylic carbonate instead of an allylic acetate for his displacement reaction. ${ }^{55}$

The allylic carbonate 98 was synthesised by reaction of allylic alcohol 97 with ethyl chloroformate (Scheme 43). Upon reaction with benzylamine at $60^{\circ} \mathrm{C}$ with catalysts $\mathbf{2 7}, \mathbf{2 8}$, $\mathbf{8 0 - 8 2}$ and 92, free PPh_{3} was again observed by GC but no loss of starting material was seen by GC. The presence of free PPh_{3} can be explained by Rigo's observation that PPh_{3} will dissociate from (Ind) $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}$ at $65{ }^{\circ} \mathrm{C}^{71}$ and should not be taken as evidence of the formation of an allylic ruthenium intermediate. Although a stronger nucleophile was not tried in these reactions, there was no evidence to suggest the formation of an allylic metal intermediate, which would not change with the use of a stronger nucleophile. On the basis of this complete lack of activity, it was decided to abandon this course of investigation.

3.4-Diels-Alder Reaction

The Diels-Alder reaction between cyclopentadiene and methacrolein is a simple reaction which offers 4 possible product diastereomers, all of which are separable by chiral GC (Scheme 24, section 1.44).

Freshly cracked cyclopentadiene and methacrolein were mixed in DCM with the rhodium and ruthenium complexes at $-18^{\circ} \mathrm{C}$, along with a non-catalysed reaction to take into account any background reaction that may occur. After GC showed no sign of reaction after 48 hours, the temperature was raised to $40^{\circ} \mathrm{C}$. Again, no reaction was observed and there was no trace of the Cp peak on the GC, indicating that it had evaporated before any reaction could take place.

To try and counter this problem, the diene was switched to 1,3 -cyclohexadiene which is much less volatile than cyclopentadiene (Scheme 44). Unfortunately, it is also much less reactive and no reaction was observed with methacrolein.

Attempts were made to synthesise a more Lewis acidic ruthenium complex by oxidative addition of iodine, but the reaction produced a complex mix of products. Insufficient rhodium complex remained to try the oxidative addition of MeI to 22 and produce a $\mathrm{Rh}^{\text {III }}$ complex, which would be more Lewis acidic than the Rh^{I} complex. With time rapidly running out, no further studies into creating a more Lewis acidic ruthenium complex were undertaken and this line of research was abandoned.

3.5-Cyclopropanation

The cyclopropanation of styrene was the final reaction chosen to test the complexes for catalytic activity (Scheme 45). There are many examples in the literature of complexes that catalyse this reaction, so hopes were high that activity would be seen. Initial studies looked promising: after dissolving complexes $\mathbf{2 7}$, and $\mathbf{8 0 - 8 2}$ in styrene at $40^{\circ} \mathrm{C}$, EDA was added over a 4 hour period and the reactions were monitored by GC. The ratio of $\mathbf{7 2}$ to byproducts 101 (diethylmaleate) and 102 (diethylfumarate) was encouraging. However, work by P. Wright had shown that complex 28 was inactive in this reaction and the ratio of products seen was a result of a background reaction. When EDA was added to styrene without any complex present, the same ratio of product peaks was seen, indicating that the complexes were inactive in this reaction. This is at odds with the variety of reactions in the literature (see section 1.45) which claim to have complexes which catalyse this reaction - the substantial background reaction does raise questions about the level of activity of the literature complexes.

The carbene intermediate is similar to Grubbs' olefin metathesis catalysts, so metathesis was attempted. 4,4-bis(methoxymethyl)-1,6-heptadiene was dissolved in chlorobenzene with complex 27 and a catalytic amount of trimethylsilyldiazomethane was added at $60^{\circ} \mathrm{C}$. After overnight heating, no cyclised product was seen by GC. However, when norbornylene was used instead of a diene, polynorbornylene was produced after overnight heating (Scheme 46).

This time, when a background reaction was run, no ROMP was seen without the presence of 27. An attempt was made to synthesise the metal-carbene species formed by the decomposition of EDA, but the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum showed many products and no carbene signal could be found in the ${ }^{13} \mathrm{C}$ spectrum. It is not known why the ROMP succeeded whilst the cyclopropanation proved inactive, but no further studies were undertaken in this area.

3.6 - Stoichiometric Reactions

Due to the failure of the complexes to produce a non-racemic product in any of the above 5 reactions, a couple of stoichiometric reactions were carried out on complex 27. The first was the formation of the phenylacetylide complex by chloride displacement - it was hoped that the chiral environment around the metal would influence the product formed upon addition of a nucleophile. The second was a series of phosphine displacements, in an attempt to determine whether displacement was an associative or dissociative process.

Several literature methods were known for synthesising acetylide complexes (see section 1.32). Phenylacetylene and ammonium hexafluorophosphate were added to complex 27 and the resulting solution was filtered through basic alumina. ${ }^{31} \mathrm{~A}$ complex mix of products resulted and further attempts at chromatography were unsuccessful, although the molecular ion of the acetylide complex was observed by $\mathrm{ES}^{+} \mathrm{MS}$ in the crude reaction mixture. A different method of synthesising the acetylide complex was tried; lithium phenylacetylide was reacted with complex 27 - again, a complex mix of products was obtained which did not separate via chromatography. Unfortunately, a lack of time precluded any further efforts at synthesising the acetylide complex.

Complex 27 was also reacted with various phosphines, in order to see whether displacement of PPh_{3} occurred. Although there was no reaction with tricyclohexylphosphine, when 27 and the phosphine were refluxed in toluene, displacement occurred with tri- ${ }^{n}$ butylphosphine, methyldiphenylphosphine and dimethylphenylphosphine. X-ray structures of the methyldiphenylphosphine (Appendix V) and dimethylphenylphosphine (Appendix VI) complexes were obtained, both of which show the phosphine occupying the same position that the PPh_{3} ligand was. This indicates the thermodynamic product was formed in these displacements, and also that the displacement is probably a dissociative process, as inversion of configuration at the metal centre might have been seen if it was an associative process.

3.7-Conclusions

Catalytic studies of complexes $\mathbf{2 2}, 27$ and $\mathbf{8 0 - 8 2}$ have been carried out on a variety of reactions. Although activity was noted for the transfer hydrogenation of acetophenone, no e.e. was recorded, possibly because the catalytically active species had no chiral environment at the metal centre. No other reactions recorded catalytic activity, although the ROMP of norbornylene was successful with TMS-diazomethane as an initiator.

Stoichiometric transformations of complex 27 were undertaken: although the phenylacetylide complex could not be isolated, displacement of the PPh_{3} ligand was successful. X-ray structures of the displacement products indicated that phosphine displacement went via a dissociative mechanism.

3.8 - Future Work

Although the overall lack of catalytic activity is a big disappointment, the transfer hydrogenation result is encouraging. Work is ongoing into amine analogues of rhodium and ruthenium complexes 22 and 27 , which would be a much closer analogue of the known transfer hydrogenation catalysts (Figure 15).

108

109

110

Figure 15
Increasing the Lewis acidity of the ruthenium complexes might result in an active catalyst for the Diels-Alder reaction, as might performing an oxidative addition on rhodium complex 22. The positive result gained from the ROMP of norbornylene indicates that olefin metathesis may also be achievable with suitable modification of 27 .

4.0: EXPERIMENTAL

Instrumentation and Experimental Techniques

Unless otherwise stated, all reactions and manipulations involving organometallic complexes were carried out under an argon atmosphere using standard Schlenk, syringe and vacuum line techniques. Reaction flasks, syringes and needles were dried in a hot oven $\left(>160^{\circ} \mathrm{C}\right)$ for 12 hours prior to use and allowed to cool in a sealed desiccator over silica gel.

Unless otherwise indicated, materials were obtained from commercial sources and used without further purification. Specific purifications were carried out according to standard methods. ${ }^{85}$ "Butyllithium was purchased from Aldrich as a 2.5 M solution in hexanes. Potassium diphenylphosphide (0.5 M solution in THF) was purchased from Aldrich. OsO_{4} was purchased as a solid from Aldrich and made up into a 0.04 M solution in ${ }^{t} \mathrm{BuOH}$, stabilised with $2 \mathrm{~mol} \%^{t}{ }^{t} \mathrm{BuOOH}$.

Diethyl ether, THF, benzene and toluene were freshly distilled from dark purple solutions of sodium/benzophenone ketyl under an argon atmosphere. Chlorinated solvents, TEA, diethylamine and HMPA were distilled from, and stored over, CaH_{2}. Petrol refers to the fraction of petroleum ether which boils between $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.
$\left[\mathrm{Rh}-\mu \mathrm{Cl}(\mathrm{CO})_{2}\right]_{2}{ }^{86}$ and $[\mathrm{Rh}-\mu \mathrm{Cl}(\mathrm{COD})]_{2}{ }^{87}$ were synthesised from $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ according to literature procedures in 75% and 77% yield respectively. All other rhodium sources were obtained commercially. $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ was synthesised from $\mathrm{RuCl}_{3} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ according to a literature procedure in 96% yield. ${ }^{88}$ Borane complexes of di- and tri-phenylphosphine were obtained by reacting a solution of the free phosphine in THF with DMS-borane in 88% and 94% yield respectively after recrystallisation from $\mathrm{Et}_{2} \mathrm{O} .^{75}$

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR), carbon- 13 nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR $)$ spectra, phosphorus-31 $\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR $)$ spectra and fluorine-19 $\left({ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR) spectra were recorded on Bruker AM300, AC300, AV300 or DPX400 spectrometers.

NMR spectra of organic compounds were recorded using CDCl_{3} as the solvent, stored over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. Unless otherwise stated, the NMR spectra of organometallic compounds were recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$, stored over $4 \AA$ molecular sieves. Coupling constants (J) are expressed in Hertz (Hz), approximated to the nearest 0.5 Hz . Chemical shifts are quoted in parts per million (δ) downfield from tetramethylsilane and are referenced to the residual solvent signal. ${ }^{89}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}$ and CFCl_{3} standards respectively.

When reporting splitting patterns, the following abbreviations are used: (s) singlet, (d) doublet, (t) triplet, (q) quartet, (m) multiplet, (br) broad and (fs) fine splitting. ${ }^{13} \mathrm{C}$ spectra are reported as $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}$ and CH_{3} depending on the number of attached protons ($0,1,2,3$ respectively); this being determined by DEPT experiments. 2D COSY spectra ($\mathrm{H}-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}$ correlation) were routinely used to conclusively assign signals from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra and have not been specifically documented.

Thin layer chromatography (TLC) was performed using aluminium plates coated with Merck $60 \mathrm{H}-\mathrm{F}_{254}$ silica gel, except for organometallic compounds when Polygram Alox $\mathrm{N} / \mathrm{UV}_{254}$ plates coated in $0.2 \mathrm{~mm} \mathrm{Al}_{2} \mathrm{O}_{3}$ was used. TLC was used both to monitor the progress of reactions and to assess the purity of compounds. Visualisation of compounds was achieved by illumination under ultra-violet light (254 nm), by the use of sulphuric acid stain ($5 \% \mathrm{w} / \mathrm{v}$ in $\mathrm{MeOH})$ or by iodine $\left(\mathrm{SiO}_{2}\right)$. Column chromatography of organic compounds was performed on silica 60 (230-400 mesh) under slight positive pressure and column chromatography of organometallic compounds was performed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral, commercial Brockman grade I deactivated with $6 \% \mathrm{w} / \mathrm{v}$ water), under argon if necessary.

Mass spectra, including accurate masses, were recorded on a VG Analytical 70-250-SE double focussing mass spectrometer using Electron Impact (EI) at 70 eV in DCM. Electrospray (ES^{+}) were recorded on a VG Platform quadropole spectrometer in acetonitrile. M / z signals are reported as values in atomic mass units followed by the peak intensity relative to the base peak. All ruthenium compounds showed the expected ruthenium isotope pattern.

Infra-red spectra were recorded on a Perkin Elmer 1600 FT-IR spectrometer as films between NaCl plates or as a powder. Absorptions are given in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and peaks are described as ' s ' (strong), ' m ' (medium), ' w ' (weak) and may be compounded by 'br' (broad).

Optical rotations were measured in an AA-100 Polarimeter (Optical Activity Ltd.).

Elemental analyses were performed by MEDAC Ltd., Egham, Surrey.

Melting points were determined on a Kofler hotstage.

Gas chromatography was carried out on a Hewlett Packard 6890 system with autosampler, passing through a $30 \mathrm{~m} \mathrm{5} \mathrm{\%}$ phenyl methyl siloxane column with He as the carrier gas.

- Method A: $80-250^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C} / \mathrm{min}$, then held at $250^{\circ} \mathrm{C}$ for 4.2 minutes
- Method B: $40^{\circ} \mathrm{C}$ for 2 minutes, then $40-100^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$, then $25^{\circ} \mathrm{C} / \mathrm{min}$ to $200^{\circ} \mathrm{C}$
- Method C: $60^{\circ} \mathrm{C}$ for 2 minutes, then $60-130^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$, then $25^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, hold 2 minutes

Chiral GC was carried out on a Hewlett Packard 6890 system with autosampler, passing through a 25 m FS-Hydrodex β-3p column.

- Method D: $110^{\circ} \mathrm{C}$ for 20 minutes, then to $150^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$, hold 2 minutes

Rac-1-cyclohexyl-1,2-dibromoethane (83) ${ }^{90}$

83

A solution of bromine ($5.1 \mathrm{~mL}, 99.8 \mathrm{mmol}$) in DCM (50 mL) was dropped into a solution of vinylcyclohexane ($12.4 \mathrm{~mL}, 91.0 \mathrm{mmol}$) in $\mathrm{DCM}(100 \mathrm{~mL})$, gradually forming a pale yellow solution. When the solution turned permanently deep yellow, one drop of vinylcyclohexane was then added, returning the solution to a pale yellow colour. Solvents were removed in vacuo and the crude yellow oil was Kugelrohr distilled at $140^{\circ} \mathrm{C}(1.0 \mathrm{mmHg})$, affording 23.52 g (96% yield) of the title compound as a pale yellow oil. Compound data was identical to that in the literature. ${ }^{90}$
$\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 4.17(1 \mathrm{H}, \mathrm{ddd}, J=9.0,5.0,3.5 \mathrm{~Hz}, \mathrm{H} 2), 3.72-3.87(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 1.56-$ 1.93 (6H, m, Cy), 1.08-1.44 (5H, m, Cy) ppm.

Rac-Spiro-[(2-cyclohexylcyclopropane)-1,1'-indene] (76) ${ }^{17}$

76
A solution of indene ($5.8 \mathrm{~mL}, 50.0 \mathrm{mmol}$) in THF (50 mL) was cooled to $-78^{\circ} \mathrm{C}$ and ${ }^{n} \mathrm{BuLi}$ (15.8 mL of a 2.5 M solution in hexanes, 39.4 mmol) was added dropwise in the dark. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes, then warmed to RT and stirred for 90 minutes. After this time, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of dibromide $83(4.42 \mathrm{~g}, 16.40$ mmol) in THF (25 mL) was added dropwise over 2 minutes. The solution was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes then warmed to RT overnight.

After 20 hours, TLC showed no dibromide remaining, so the reaction was quenched with water (50 mL), diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and more water (50 mL). The aqueous layer was extracted into $\mathrm{Et}_{2} \mathrm{O}(3 * 30 \mathrm{~mL})$, then the combined organic layers were washed with satd. NaHCO_{3} solution (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting dark brown liquid was purified by flash chromatography (100% petrol), yielding the title
compound contaminated by a small amount of indene. The indene was removed by evaporation under vacuum (1.0 mmHg) for 8 hours at RT , affording 3.64 g of the title compound in 99% yield as a clear oil in a $1: 1$ mixture of diastereoisomers. Compound data was identical to that in the literature. ${ }^{17}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathbf{C D C l}_{3}\right): 7.00-7.40(4 \mathrm{H}, \mathrm{m}$, indene Ar$), 6.96(1 / 2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H} 2$ ' of diastereoisomer 1), $6.82(1 / 2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H} 2$ ' of diastereoisomer 2), $6.42(1 / 2 \mathrm{H}, \mathrm{d}, J=6.0$ $\mathrm{Hz}, \mathrm{H} 3$ ' of diastereoisomer 1), $6.17(1 / 2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H} 3$ ' of diastereoisomer 2), 1.94-2.03 $(1 \mathrm{H}, \mathrm{m}, \mathrm{Cy}), 1.00-1.87(10 \mathrm{H}, \mathrm{m}, \mathrm{Cy}), 0.80-1.00(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2+\mathrm{H} 3) \mathrm{ppm}$.
$\mathbf{G C R}_{\mathbf{T}}(\mathbf{M e t h o d} \mathbf{A}): 6.32 \mathrm{mins}$

Rac-2-cyclohexyl-2-(3'H-1'-indenyl)ethyl diphenylphosphine (31) ${ }^{17}$

To a solution of spirocycle $76(1.23 \mathrm{~g}, 5.50 \mathrm{mmol})$ and 18 -crown-6 ($29 \mathrm{mg}, 2 \mathrm{~mol} \%$) in THF $(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{KPPh}_{2}(11.00 \mathrm{~mL}$ of a 0.5 M solution in THF, 5.50 mmol$)$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes then at RT for 60 hours.

After 60 hours, G.C. showed no spirocycle starting material remaining (Method A), so the reaction was quenched with degassed $\mathrm{EtOH}(10 \mathrm{~mL})$ and approximately half the solvents were removed via vacuum transfer under an Ar atmosphere. The remainder was filtered through a 3 cm plug of silica, washing through with THF ($3 * 10 \mathrm{~mL}$) and concentrated by vacuum transfer. The resulting yellow oil was purified by flash chromatography under slight argon pressure (100% hexane then $97: 3$ hexane:EtOAc) affording 345 mg of the title compound as a cloudy, air-sensitive oil in 15% yield. Compound data was identical to that in the literature. ${ }^{17}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.56-7.64(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.31-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.00-7.26(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $5.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 1$ '), 3.12-3.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$), 2.69-2.93 (3H, m, H2' + H1) 2.52-2.62 (1 H , ddd, $J=13.5,10.0,2.0 \mathrm{~Hz}, \mathrm{H} 1), 0.83-1.79(11 \mathrm{H}, \mathrm{m}, \mathrm{Cy}) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathbf{P}}\left(\mathbf{1 2 1 . 5} \mathbf{M H z}, \mathbf{C D C l}_{3}\right):-17.9$ (s) ppm.

Rac-[2-cyclohexyl-2-(3'H-1'-indenyl)ethyl]diphenylphosphine oxide (84)

To a solution of crude phosphine 31 (max. 9 mmol) in $\mathrm{DCM}(20 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}_{2}(0.90$ mL of a $35 \% \mathrm{w} / \mathrm{w}$ solution in water, 9 mmol). After 5 minutes, TLC showed no free phosphine present, so the aqueous layer was extracted into DCM ($3 * 10 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. The resulting yellow liquid was purified by flash chromatography ($100 \% \mathrm{Et}_{2} \mathrm{O}$), yielding a white solid which was recrystallised from $\mathrm{Et}_{2} \mathrm{O}$, yielding 803 mg of the title compound as a white, air-stable solid in 21% yield.

MP: $130-132{ }^{\circ} \mathrm{C}$
$\delta_{\mathbf{H}}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): 7.56-7.64(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.00-7.44(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.94\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-\mathbf{2}^{\prime}\right)$, 3.12-3.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 2.52-2.93 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}+\mathrm{H}-1$), 0.83-1.79 ($11 \mathrm{H}, \mathrm{m}, \mathrm{Cy}$) ppm.
$\delta_{\mathbf{C}}\left(\mathbf{7 5 . 5} \mathrm{MHz}, \mathbf{C D C l}_{3}\right): 131.81,131.67,131.22,131.20,131.12,131.03,130.91,130.82$, $129.16,128.94,128.83,128.08,127.96,127.05,126.03,124.67,124.04,120.40,42.50$, $38.55,37.83,33.51,31.60,31.53,30.94,26.86,26.79 \mathrm{ppm}$.
$\delta_{\mathrm{P}}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): 31.20$ (s) ppm.
IR ($\mathbf{N a C l}$, thin film): 3051 (m), 2984 (w), 2305 (w), 1421 (m), 1265 (s), 896 (m), 739 (s) cm^{-1}

LRMS (EI'): $\mathrm{m} / \mathrm{z}=427.3\left([\mathrm{M}+\mathrm{H}]^{+}, 82 \%\right), 490.3$ (44), 528.4 (100), 875.3 (47)
HRMS (ES ${ }^{+}$): submitted, awaiting analysis

Lithium diphenvlphosphide-borane ${ }^{81}$

Method i : To a solution of triphenylphosphine-borane complex ($450 \mathrm{mg}, 1.63 \mathrm{mmol}$) in THF (5 mL) was added, under a counterflow of argon, very small pieces of lithium metal (24.80 $\mathrm{mg}, 3.59 \mathrm{mmol}$), which was stirred overnight. After 16 hours, there was very little lithium remaining and the solution had turned deep orange, so the liquid was transferred to a flask
containing ${ }^{t} \mathrm{BuCl}(0.2 \mathrm{~mL}, 1.6 \mathrm{mmol})$ and refluxed for 5 minutes. The resulting yellow solution was used without further purification.

Method ii: ${ }^{n} \mathrm{BuLi}(0.9 \mathrm{~mL}$ of a 2.5 M solution in hexanes, 2.25 mmol) was added dropwise to a solution of diphenylphosphine-borane complex ($400 \mathrm{mg}, 2.00 \mathrm{mmol}$) in THF (5 mL) at 0 ${ }^{\circ} \mathrm{C}$, until the solution was permanently yellow. The solution was stirred at RT for 15 minutes and then used without further purification.

Rac-[2-cyclohexyl-2-(3'H-1'-indenyl)ethyl]diphenylphosphine-borane (85) ${ }^{17}$

85

Method i : To a solution of $\mathrm{LiPPh}_{2}-\mathrm{BH}_{3}$ in THF at $0^{\circ} \mathrm{C}$ was added HMPA ($0.2 \mathrm{~mL}, 1.0 \mathrm{mmol}$) and a solution of spirocycle $76(224 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes then at RT for 60 hours. After this time, the reaction was quenched by the addition of ice-water (5 mL) and then extracted into EtOAc ($3 * 5 \mathrm{~mL}$). The combined organic layers were washed with brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting dark green liquid was then purified by flash chromatography (9:1 petrol:EtOAc), affording 55 mg of the title compound in 16% yield as a white solid.

Method ii: To a solution of spirocycle $76(1.50 \mathrm{~g}, 6.69 \mathrm{mmol})$ and 18-crown-6 ($35 \mathrm{mg}, 2$ $\mathrm{mol} \%$) in THF (30 mL) at $0^{\circ} \mathrm{C}$, was added $\mathrm{KPPh}_{2}(14.7 \mathrm{~mL}$ of a 0.5 M solution in THF, 7.35 mmol) dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes then at RT for 60 hours. After this time, the reaction was quenched with water ($0.15 \mathrm{~mL}, 8.3 \mathrm{mmol}$) and DMS-borane ($3.0 \mathrm{~mL}, 30.0 \mathrm{mmol}$) was added dropwise. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour, after which time no starting material remained by TLC. The reaction was quenched by the addition of ice-water $(25 \mathrm{~mL})$ and then extracted into EtOAc $(3 * 25 \mathrm{~mL})$. The combined organic layers were washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting dark green liquid was then purified by flash chromatography ($9: 1$ petrol:EtOAc), affording 2.59 g of the title compound in 91% yield as a white solid. Compound data was identical to that in the literature. ${ }^{17}$

MP: $123-125^{\circ} \mathrm{C}$ (EtOAc) (Lit. $\left.124-126^{\circ} \mathrm{C}\right)^{17}$
$\boldsymbol{\delta}_{\mathrm{H}}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): 7.00-7.64(14 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.94\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 2{ }^{\prime}\right), 3.12-3.24(1 \mathrm{H}$, dddd, J $=13.0,10.0,7.5,2.5 \mathrm{~Hz}, \mathrm{H} 2), 2.69-2.93\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{\prime}+\mathrm{H} 1\right) 2.52-2.62(1 \mathrm{H}, \mathrm{ddd}, J=14.0,9.5$, $3.0 \mathrm{~Hz}, \mathrm{H} 1), 1.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{BH}_{3}\right), 0.83-1.79(11 \mathrm{H}, \mathrm{m}, \mathrm{Cy}) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathrm{P}}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right):-16.94(\mathrm{~d}, J=60.5 \mathrm{~Hz}) \mathrm{ppm}$.

$\underline{R a c-\left(\eta^{5}: \eta^{1} \text {-indenyl- } \mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathbf{P P h}_{2}\right) \mathbf{R h}(\mathrm{CO})(22)^{17}}$

22
Phosphine-borane complex 85 ($200 \mathrm{mg}, 0.47 \mathrm{mmol}$) was dissolved in $\mathrm{HNEt}_{2}(5 \mathrm{~mL})$ and refluxed for 3 hours. After 3 hours, TLC showed phosphine-borane was still present, so the HNEt_{2} was removed in vacuo and fresh $\mathrm{HNEt}_{2}(5 \mathrm{~mL}$) was added. The reaction was refluxed overnight and TLC now showed no sign of phosphine-borane. HNEt_{2} was removed in vacuo and the resultant phosphine (yellow oil) was dissolved in THF (10 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. ${ }^{n} \mathrm{BuLi}(0.2 \mathrm{~mL}$ of a 2.5 M solution in hexanes, 0.5 mmol$)$ was added dropwise in the dark, the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes then for 2 hours at RT.

After this time, the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and added dropwise to a solution of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(88 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 15 minutes then overnight at RT. After this time, solvents were removed in vacuo and the product purified by flash chromatography ($3: 7$ toluene:petrol $\rightarrow 100 \%$ toluene) on alumina under slight argon pressure, affording 41 mg of the title compound in 18% yield as a yellow powder. Compound data was identical to that in the literature. ${ }^{17}$

MP: decomposes $165^{\circ} \mathrm{C}$ (diffusion of hexane into an $\mathrm{Et}_{2} \mathrm{O}$ solution) (Lit. $168{ }^{\circ} \mathrm{C}\left(\right.$ dec.)) ${ }^{17}$ $\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}\right): 7.55-7.79(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.19-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.05-7.15(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $6.99(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 6.22(1 \mathrm{H}, \mathrm{dd}, J=3.0,3.0 \mathrm{~Hz}, \mathrm{H} 3), 6.14(1 \mathrm{H}, \mathrm{dd}, J=3.0,2.5 \mathrm{~Hz}$, H2), 3.28 (1 H , dddd, $J=13.5,13.5,4.5,2.5 \mathrm{~Hz}, \mathrm{H} 9$), $2.95(1 \mathrm{H}, \mathrm{ddd}, J=13.5,13.5,7.0 \mathrm{~Hz}$, H9), 2.59 (1 H , dddd, $J=13.5,9.0,4.5,4.5 \mathrm{~Hz}, \mathrm{H} 8$), $0.77-1.72$ ($11 \mathrm{H}, \mathrm{m}, \mathrm{Cy}$) ppm. $\delta_{\mathrm{P}}\left(\mathbf{1 2 1 . 5} \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 57.19(\mathrm{~d}, J=212 \mathrm{~Hz}), 53.66(\mathrm{~d}, J=212 \mathrm{~Hz}) \mathrm{ppm}$.

Rac- $\left(\eta^{5}: \eta^{1}\right.$-indenyl- $\left.\mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{RuCl}_{\left(\mathrm{PPh}_{3}\right)(27)^{17}}$

27
Phosphine-borane complex 85 ($2.12 \mathrm{~g}, 4.24 \mathrm{mmol}$) was dissolved in $\mathrm{HNEt}_{2}(20 \mathrm{~mL})$ and refluxed for 3 hours. TLC showed phosphine-borane still remaining, so the HNEt_{2} was removed in vacuo and fresh HNEt_{2} added (20 mL). The reaction was refluxed overnight and TLC now showed no sign of phosphine-borane. HNEt_{2} was removed in vacuo and the resultant phosphine (pale yellow oil) was dissolved in toluene (20 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. ${ }^{n} \mathrm{BuLi}(1.7 \mathrm{~mL}$ of a 2.5 M solution in hexanes, 4.24 mmol) was added dropwise with the exclusion of light, the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes and then for 2 hours at room temperature.

After 2 hours, the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and added dropwise to a suspension of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(4.07 \mathrm{~g}, 4.24 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes then gently warmed to reflux overnight. After this time, the solvents were removed in vacuo and the product purified by flash chromatography (4:6 $\mathrm{Et}_{2} \mathrm{O}$:petrol \rightarrow $100 \% \mathrm{Et}_{2} \mathrm{O}$) on alumina, affording 2.42 g of the title compound in 71% yield as a brown powder and a single metal-centred diastereoisomer. Compound data was identical to that in the literature. ${ }^{17}$

MP: $165-166^{\circ} \mathrm{C}$ (diffusion of pentane into a benzene solution) (Lit. $165-167^{\circ} \mathrm{C}$) ${ }^{17}$
$\delta_{\mathbf{H}}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): 8.19(2 \mathrm{H}, 2 \mathrm{~d}, J=9.0,10.0 \mathrm{~Hz}, \mathrm{Ar}), 7.74(5 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{Ar}), 7.04-7.34(8 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 6.87-6.98(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.75(1 \mathrm{H}, \mathrm{t}+\mathrm{fs}, J=7.0 \mathrm{~Hz}, \mathrm{Ar}), 6.62(2 \mathrm{H}, \mathrm{t}+\mathrm{fs}, J=7.0 \mathrm{~Hz}$, Ar), $4.94(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{H} 3), 3.36(1 \mathrm{H}, \mathrm{ddd}, J=16.0,12.0,4.5 \mathrm{~Hz}, \mathrm{H} 9), 2.72(1 \mathrm{H}$, ddd, J $=16.0,12.0,4.5 \mathrm{~Hz}, \mathrm{H} 9), 2.27-2.39(1 \mathrm{H}, \mathrm{dddd}, J=13.0,8.5,4.5,4.5 \mathrm{~Hz}, \mathrm{H} 8), 2.13(1 \mathrm{H}$, $\mathrm{s}+\mathrm{fs}, \mathrm{H} 2), 1.21-1.64(5 \mathrm{H}, \mathrm{m}, \mathrm{Cy}), 0.79-0.91(6 \mathrm{H}, \mathrm{m}, \mathrm{Cy}) \mathrm{ppm}$. $\boldsymbol{\delta}_{\mathbf{P}}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): 47.90(\mathrm{~d}, J=26.5 \mathrm{~Hz}), 38.91(\mathrm{~d}, J=26.5 \mathrm{~Hz}) \mathrm{ppm}$.

$\underline{R a c-\left[\left(\eta^{5}: \eta^{1}-\text { indenyl- } \mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Ru}(\mathrm{MeCN})\left(\mathrm{PPh}_{3}\right)\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}(\mathbf{8 0})}$

Indenyl ruthenium complex $27(2.00 \mathrm{~g}, 2.47 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(484 \mathrm{mg}, 2.97 \mathrm{mmol})$ were dissolved in dry $\mathrm{MeCN}(100 \mathrm{~mL})$ and refluxed for 16 hours. After this time, the solution was cooled, filtered through celite and concentrated in vacuo, yielding a red solid. The product was recrystallised from a slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into an acetonitrile solution, affording 2.31 g of the title compound in 98% yield as a dark red crystalline solid. The X-ray structure has been obtained (see Appendix II).

MP: decomposes $200^{\circ} \mathrm{C}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): 7.22-7.45(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.94-7.14(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{td}, J=$ $8.0,2.0 \mathrm{~Hz}, \mathrm{Ar}), 6.76(1 \mathrm{H}, \mathrm{d}+\mathrm{fs}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 5.11(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H} 3), 4.26(1 \mathrm{H}, \mathrm{d}, J$ $=2.0 \mathrm{~Hz}, \mathrm{H} 2), 3.50(1 \mathrm{H}, \mathrm{td}, J=13.5,5.0 \mathrm{~Hz}, \mathrm{H} 9), 3.05(1 \mathrm{H}, \mathrm{td}, J=13.5,5.0 \mathrm{~Hz}, \mathrm{H} 9), 2.72-$ $2.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.79-1.91(2 \mathrm{H}, \mathrm{m}, \mathrm{Cy}), 1.40-1.71\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Cy}+\mathrm{CH}_{3} \mathrm{CN}\right), 0.79-1.23(5 \mathrm{H}, \mathrm{m}$, Су) ppm.
$\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): 134.83\left(3 \mathrm{C}, \mathrm{d}, J=43.5 \mathrm{~Hz},{ }^{i} \mathrm{Ph}\left(\mathrm{PPh}_{3}\right)\right), 134.53(2 \mathrm{C}, \mathrm{d}, J=37.5 \mathrm{~Hz}$, $\left.{ }^{i} \mathrm{Ph}\left(\mathrm{PPh}_{2}\right)\right), 132.81\left(6 \mathrm{CH}, \mathrm{d}, J=11.0 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\left(\mathrm{PPh}_{3}\right)\right), 131.90\left(2 \mathrm{CH}, \mathrm{d}, J=10.0 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\right.$ $\left.\left(\mathrm{PPh}_{2}\right)\right), 131.67\left(2 \mathrm{CH}, \mathrm{d}, J=10.0 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\left(\mathrm{PPh}_{2}\right)\right), 129.87(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 7),{ }^{*} 129.21(\mathrm{CH}, \mathrm{Ar})$, *128.23 (CH, Ar), *128.15 (CH, Ar), *128.02 (CH, Ar), *127.71 (CH, Ar), *127.58 (CH, Ar), $126.07(\mathrm{CH}, \mathrm{C} 5 / 6), 124.73(\mathrm{CH}, \mathrm{C} 5 / 6), 121.61(\mathrm{CH}, \mathrm{C} 4 / 7), 117.01\left(\mathrm{C}, \mathrm{CH}_{3} \mathrm{CN}\right), 109.96$ (C, s+fs, C3a), 100.27 (C, d, $J=7.0 \mathrm{~Hz}, \mathrm{C} 7 \mathrm{a}), 95.11$ (C, d, $J=8.0 \mathrm{~Hz}, \mathrm{C} 1$), 80.15 (CH, C3), $64.72(\mathrm{CH}, \mathrm{C} 2), 50.30\left(\mathrm{CH}_{2}, \mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{C} 9\right), 42.03(\mathrm{CH}, \mathrm{d}, J=20.0 \mathrm{~Hz}, \mathrm{C} 8), 38.91(\mathrm{CH}$, s, Cy$), 32.62\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 30.55\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 25.70\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 25.48\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 25.42$ $\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 3.25\left(\mathrm{CH}_{3}, \mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathbf{P}}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{C N}\right): 49.85(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 47.68(\mathrm{~d}, J=25.0 \mathrm{~Hz}) \mathrm{ppm}$.
$\left.\boldsymbol{\delta}_{\mathbf{F}} \mathbf{(\mathbf { 2 8 2 . 4 }} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{C N}\right):-72.88(\mathrm{~d}, J=708.0 \mathrm{~Hz}) \mathrm{ppm}$.
IR ($\mathbf{N a C l}$, thin film): 3049 (m), 2917 (s), 2851 (w), 2368 (m), 1484 (s), 1434 (s), 1093 (w), $838(\mathrm{~m}), 746$ (w), 696 (s) cm^{-1}
LRMS (ES ${ }^{+}$): $\mathrm{m} / \mathrm{z}=773.5\left(\left(\mathrm{M}-\mathrm{MeCN}-\mathrm{PF}_{6}\right)^{+}, 100 \%\right)$
HRMS (ES ${ }^{+}$): $\left(\mathrm{M}-\mathrm{MeCN}-\mathrm{PF}_{6}\right)^{+} \mathrm{C}_{47} \mathrm{H}_{45} \mathrm{P}_{2} \mathrm{Ru}$ requires $m / z=773.2034$ found 773.2031

Anal. Calc'd for $\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{NP}_{3} \mathrm{~F}_{6} \mathrm{Ru}: \mathrm{C}, 61,38$; H, 5.05; N, 1.46. Found: C, 61.20; H, 4.97; N, 1.56.

* = Unable to assign signals, determine integrals and J values due to overlapping peaks.

81
A solution of indenyl ruthenium complex $27(172 \mathrm{mg}, 0.21 \mathrm{mmol})$ in DME (10 mL) was injected into an argon-filled stainless-steel hydrogenation bomb containing $\mathrm{PtO}_{2}(5.0 \mathrm{mg}, 10$ $\mathrm{mol} \%$). The bomb was purged with H_{2}, then pressurised to 1600 psi, heated to $65^{\circ} \mathrm{C}$ and stirred for $21 / 2$ days. After this time, the bomb was cooled, depressurised and the contents filtered through celite. Solvent was removed in vacuo and the resultant yellow-brown solid was purified by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 4: 6 \mathrm{Et}_{2} \mathrm{O}\right.$:petrol $\left.\rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}\right)$, affording 99 mg of the title compound as a yellow solid in 57% yield.

Crystals were obtained by slow diffusion of pentane into a benzene solution of the complex and an X-ray of the structure was obtained (Appendix III). Compound data was identical to that in the literature. ${ }^{17}$

MP: $158-159^{\circ} \mathrm{C}\left(\text { Lit. } 157-159{ }^{\circ} \mathrm{C}\right)^{17}$
$\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathbf{C}_{6} \mathrm{D}_{6}\right): 78.67(2 \mathrm{H}, \mathrm{dd}, J=10.0,8.5 \mathrm{~Hz}, \mathrm{Ar}), 7.67-7.91$ ($\left.5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}\right), 7.38$ $(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{Ar}), 7.19-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.01-7.13(10 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}), 6.87(1 \mathrm{H}, \mathrm{t}+\mathrm{fs}, J=$ $7.5 \mathrm{~Hz}, \mathrm{Ar}), 6.76(2 \mathrm{H}, \mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, \mathrm{Ar}), 4.53(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H} 3), 3.39(1 \mathrm{H}$, ddd, J $=12.0,12.0,5.0 \mathrm{~Hz}, \mathrm{H} 9), 3.28(1 \mathrm{H}, \mathrm{ddd}, J=11.0,11.0,5.5 \mathrm{~Hz}, \mathrm{H} 4 / 5 / 6 / 7)$, $2.70(1 \mathrm{H}, \mathrm{ddd}, J=$ $12.0,12.0,5.0 \mathrm{~Hz}, \mathrm{H} 9), 2.68-2.76(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 / 5 / 6 / 7), 2.47-2.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 / 5 / 6 / 7), 2.39(1 \mathrm{H}$, d, $J=2.0 \mathrm{~Hz}, \mathrm{H} 2), 2.28-2.39(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 / 5 / 6 / 7), 2.05(1 \mathrm{H}, \mathrm{ddd}, J=13.5,9.0,4.5 \mathrm{~Hz}, \mathrm{H} 8)$, 0.70-1.92 (13H, m, Cy + H4/5/6/7) ppm.
$\boldsymbol{\delta}_{\mathrm{P}}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): 43.27(\mathrm{~d}, J=39.2 \mathrm{~Hz}), 36.72(\mathrm{~d}, J=39.2 \mathrm{~Hz}) \mathrm{ppm}$.

Ruthenium complex 81 ($110 \mathrm{mg}, 0.14 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{PF}_{6}(27 \mathrm{mg}, 0.16 \mathrm{mmol})$ were dissolved in dry $\mathrm{MeCN}(10 \mathrm{~mL})$ and refluxed for 16 hours. After this time, the solution was cooled, filtered through celite and concentrated in vacuo, yielding an orange solid. The product was crystallised from slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into an acetonitrile solution, affording 110 mg of the title compound in 61% yield as an orange crystalline solid. The X-ray structure has been obtained (see Appendix IV).

MP: decomposes $195{ }^{\circ} \mathrm{C}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): 7.28-7.54(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.86-7.17(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.51(1 \mathrm{H}, \mathrm{d}, J=2.0$ $\mathrm{Hz}, \mathrm{H} 3), 4.20(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H} 2), 3.46(1 \mathrm{H}, \mathrm{td}, J=6.0,14.0 \mathrm{~Hz}, \mathrm{H} 9), 2.94(1 \mathrm{H}, \mathrm{td}, J=$ $6.0,14.0 \mathrm{~Hz}, \mathrm{H} 8), 1.84-2.38\left(11 \mathrm{H}, \mathrm{m}, \mathrm{H} 9+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{Cy}+\mathrm{H} 4 / 5 / 6 / 7\right), 1.47-1.78(7 \mathrm{H}, \mathrm{m}, \mathrm{Cy}$ + H4/5/6/7), 0.92-1.26 (5H, m, Cy) ppm.
$\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): 136.66\left(3 \mathrm{C}, \mathrm{d}, J=40.0 \mathrm{~Hz},{ }^{i} \mathrm{Ph}\left(\mathrm{PPh}_{3}\right)\right.$), $136.25(2 \mathrm{C}, \mathrm{d}, J=42.0 \mathrm{~Hz}$, $\left.{ }^{i} \mathrm{Ph}\left(\mathrm{PPh}_{2}\right)\right), 134.88\left(6 \mathrm{C}, \mathrm{d}, J=11.5 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\left(\mathrm{PPh}_{3}\right)\right), 133.79\left(2 \mathrm{C}, \mathrm{d}, J=10.0 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\left(\mathrm{PPh}_{2}\right)\right)$, $133.58\left(2 \mathrm{C}, \mathrm{d}, J=10.0 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\left(\mathrm{PPh}_{2}\right)\right),{ }^{*} 130.99(\mathrm{CH}, \mathrm{Ar}),{ }^{*} 130.49(\mathrm{CH}, \mathrm{Ar}),{ }^{*} 130.37(\mathrm{CH}$, $\mathrm{Ar}),{ }^{*} 130.22(\mathrm{CH}, \mathrm{Ar}),{ }^{*} 130.10(\mathrm{CH}, \mathrm{Ar}),{ }^{*} 129.72(\mathrm{CH}, \mathrm{Ar}),{ }^{*} 129.59(\mathrm{CH}, \mathrm{Ar}), 119.09(\mathrm{C}$, $\mathrm{CH}_{3} \mathrm{CN}$), 97.32 ($\mathrm{C}, \mathrm{s}+\mathrm{fs}, \mathrm{C} 3 \mathrm{a}$), 96.02 (C, $\mathrm{s}+\mathrm{fs}, \mathrm{C} 7 \mathrm{a}$), 95.73 (C, s, C1), $86.02(\mathrm{CH}, \mathrm{s}, \mathrm{C} 3)$, $59.41(\mathrm{CH}, \mathrm{s}, \mathrm{C} 2), 52.06\left(\mathrm{CH}_{2}, \mathrm{~d}, J=33.0 \mathrm{~Hz}, \mathrm{C} 9\right), 43.98(\mathrm{CH}, \mathrm{d}, J=18.5 \mathrm{~Hz}, \mathrm{C} 8), 39.85$ $(\mathrm{CH}, \mathrm{s}, \mathrm{Cy}), 34.17\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7\right), 32.38\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7\right), 27.44\left(\mathrm{CH}_{2}, \mathrm{~s}\right.$, $\mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7), 27.28\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7\right), 27.13\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7\right), 23.91\left(\mathrm{CH}_{2}, \mathrm{~s}\right.$, $\mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7), 23.74\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7\right), 23.00\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7\right), 22.39\left(\mathrm{CH}_{2}, \mathrm{~s}\right.$, $\mathrm{Cy} / \mathrm{C} 4 / 5 / 6 / 7), 2.10\left(\mathrm{CH}_{3}, \mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathbf{P}}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{C N}\right): 43.58(\mathrm{~d}, J=34.1 \mathrm{~Hz}), 50.04(\mathrm{~d}, J=34.1 \mathrm{~Hz}) \mathrm{ppm}$.
$\delta_{\mathrm{F}}\left(\mathbf{2 8 2 . 4} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{CN}\right):-72.27(\mathrm{~d}, J=706.0 \mathrm{~Hz}) \mathrm{ppm}$.
IR ($\mathbf{N a C l}$, thin film): 3055 (s), 2987 (s), 2306 (s), 1422 (m), 1265 (w), 896 (s), 846 (w), 739 (m) cm^{-1}

LRMS (ES ${ }^{+}$): $\mathrm{m} / \mathrm{z}=777.5\left(\left(\mathrm{M}-\mathrm{MeCN}-\mathrm{PF}_{6}\right)^{+}, 100 \%\right)$
HRMS (ES ${ }^{+}$): $\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+} \mathrm{C}_{49} \mathrm{H}_{52} \mathrm{NP}_{2}$ Ru requires $m / z=818.2613$ found 818.2638

Anal. Calc'd for $\mathrm{C}_{49} \mathrm{H}_{52} \mathrm{NP}_{3} \mathrm{~F}_{6} \mathrm{Ru}: \mathrm{C}, 61.12 ; \mathrm{H}, 5.44$; $\mathrm{N}, 1.45$. Found: C, $60.90 ; \mathrm{H}, 5.48 ; \mathrm{N}$, 1.54 .

* = Unable to assign signals, determine integrals and J values due to overlapping peaks.

111
To a solution of ruthenium complex $27(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in toluene (10 mL) was added tributylphosphine ($0.1 \mathrm{~mL}, 0.37 \mathrm{mmol}$) and the solution was refluxed for 16 hours. After this time, solvents were removed in vacuo and the resulting solid purified by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 4: 6 \mathrm{Et}_{2} \mathrm{O}\right.$:petrol $\left.\rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}\right)$ affording 65 mg of the title compound as a brown solid in 70% yield. The compound was recrystallised by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{C}_{6} \mathrm{H}_{6}$ solution.

MP: $194-195^{\circ} \mathrm{C}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathbf{C}_{6} \mathrm{D}_{6}\right): 8.24(2 \mathrm{H}, \mathrm{s}+\mathrm{fs}, \mathrm{Ar}), 7.56(2 \mathrm{H}, \mathrm{s}+\mathrm{fs}, \mathrm{Ar}), 7.21-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 6.94-7.09 (5H, m, Ar), $5.25(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 3), 3.65-3.76(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2+\mathrm{H} 9), 2.92(1 \mathrm{H}, \mathrm{dd}+\mathrm{fs}, J=$ $12.5,13.0 \mathrm{~Hz}, \mathrm{H} 9), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 8), 1.91-2.04(3 \mathrm{H}, \mathrm{m}, \mathrm{Cy}), 1.66-1.76$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Cy}$), 1.47$1.62\left(8 \mathrm{H}, \mathrm{m}, \mathrm{P}-\mathrm{CH}_{2}+\mathrm{Cy}\right), 1.29-1.43\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left({ }^{n} \mathrm{Bu}\right)\right), 0.97-1.05\left(11 \mathrm{H}, \mathrm{CH}_{3}\left({ }^{n} \mathrm{Bu}\right)+\mathrm{Cy}\right)$, 0.69-0.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Cy}$) ppm.
$\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathbf{D}_{6}\right): 143.01\left(2 \mathrm{C}, \mathrm{d}, J=26.0 \mathrm{~Hz},{ }^{i} \mathrm{Ph}\right), 135.49\left(4 \mathrm{CH}, \mathrm{d}, J=10.0 \mathrm{~Hz},{ }^{o} \mathrm{Ph}\right)$, $132.10\left(4 \mathrm{CH}, \mathrm{d}, J=8.0 \mathrm{~Hz},{ }^{m} \mathrm{Ph}\right), 129.03(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7), 128.86(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7), 128.42$ (2CH, d, $\left.J=9.0 \mathrm{~Hz},{ }^{p} \mathrm{Ph}\right), 122.38(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7), 121.68(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7), 110.64(\mathrm{C}, \mathrm{s}$, $\mathrm{C} 3 \mathrm{a} / 7 \mathrm{a}$), 103.12 (C, s, C3a/7a), 95.28 (C, d, $J=10.0 \mathrm{~Hz}, \mathrm{C} 1$), 70.47 (CH, d, $J=10.0 \mathrm{~Hz}, \mathrm{C} 3$), $63.28(\mathrm{CH}, \mathrm{s}, \mathrm{C} 2), 52.60\left(\mathrm{CH}_{2}, \mathrm{~d}, J=33.0 \mathrm{~Hz}, \mathrm{C} 9\right), 43.46(\mathrm{CH}, \mathrm{d}, J=18.5 \mathrm{~Hz}, \mathrm{C} 8), 37.58$ $(\mathrm{CH}, \mathrm{s}, \mathrm{Cy}), 33.90\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 31.81\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 28.88\left(3 \mathrm{CH}_{2}, \mathrm{~d}, J=24.0 \mathrm{~Hz}, \mathrm{Bu}\right), 27.20$ $\left(3 \mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Bu}\right), 27.03\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 26.81\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 26.65\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 25.30\left(3 \mathrm{CH}_{2}, \mathrm{~d}, \mathrm{~J}=\right.$ $12.5 \mathrm{~Hz}, \mathrm{Bu}), 14.59\left(3 \mathrm{CH}_{3}, \mathrm{~s}, \mathrm{Bu}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathbf{P}}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right): 33.15(\mathrm{~d}, J=31.0 \mathrm{~Hz}), 38.43(\mathrm{~d}, J=31.0 \mathrm{~Hz}) \mathrm{ppm}$.
IR (Powder): 3049 (w), 2916 (m), 2851 (m), 1586 (w), 1483 (w), 1433 (s), 1184 (w), 1093 (s), 884 (s), 737 (s), $719(\mathrm{~s}) \mathrm{cm}^{-1}$

LRMS (ES ${ }^{+}$): $\mathrm{m} / \mathrm{z}=748.5\left(\mathrm{M}^{+}, 100 \%\right)$
HRMS (ES ${ }^{+}$): $\left(\mathrm{M}^{+}{ }^{+} \mathrm{C}_{41} \mathrm{H}_{57} \mathrm{ClP}_{2}\right.$ Ru requires $m / z=748.2663$ found 748.2658
Anal. Calc'd for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{ClP}_{2} \mathrm{Ru}$: C, 65.80; H, 7.68. Found: C, 65.75; H, 7.72.

$\underline{R a c-\left(\eta \eta^{5}: \eta \eta^{1}-\text { indenyl- } \mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{RuCl}\left(\mathrm{PMePh}_{2}\right)(\mathbf{1 1 2)})}$

112
To a solution of ruthenium complex $27(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added methyldiphenylphosphine ($0.1 \mathrm{~mL}, 0.37 \mathrm{mmol}$) and the solution was refluxed for 16 hours. After this time, solvents were removed in vacuo and the resulting solid purified by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 4: 6 \mathrm{Et}_{2} \mathrm{O}\right.$:petrol $\left.\rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}\right)$ affording 87 mg of the title compound as a brown solid in 94% yield. The compound was recrystallised by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{C}_{6} \mathrm{H}_{6}$ solution and the X -ray structure has been obtained (Appendix V).

MP: decomposes $225-226^{\circ} \mathrm{C}$
$\boldsymbol{\delta}_{\mathrm{H}}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}\right): 7.98(4 \mathrm{H}, \mathrm{ddd}, J=27.5,9.0,7.0 \mathrm{~Hz}, \mathrm{Ar}), 6.75-7.28(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.83$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 3$), $3.14-3.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 3.03(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2), 2.16(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H} 9), 1.17-1.46$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Cy}$), 0.72-0.96 (4H, m, Cy $+\mathrm{CH}_{3}$), 0.38-0.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Cy}$) ppm. $\delta_{\mathrm{C}}\left(\mathbf{7 5 . 5} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right): 143.02\left(\mathrm{C}, \mathrm{d}, J=40.0 \mathrm{~Hz},{ }^{i} \mathrm{Ph}\right), 141.85\left(\mathrm{C}, \mathrm{d}, J=43.5 \mathrm{~Hz},{ }^{i} \mathrm{Ph}\right), 140.97$ (C, d, $J=29.0 \mathrm{~Hz},{ }^{i} \mathrm{Ph}$), 139.47 (C, d, $J=26.0 \mathrm{~Hz},{ }^{i} \mathrm{Ph}$), $134.08\left(4 \mathrm{CH}, \mathrm{d}, J=10.0 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\right.$), $133.00\left(4 \mathrm{CH}, \mathrm{d}, J=11.0 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\right), 130.76\left(4 \mathrm{CH}, \mathrm{d}, J=9.0 \mathrm{~Hz},{ }^{m} \mathrm{Ph}\right), 130.47(4 \mathrm{CH}, \mathrm{d}, J=9.0$ $\left.\mathrm{Hz},{ }^{m} \mathrm{Ph}\right), 128.75\left(2 \mathrm{CH}, \mathrm{d}, J=10.5 \mathrm{~Hz},{ }^{p} \mathrm{Ph}\right), 128.30(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7), 127.73(2 \mathrm{CH}, \mathrm{d}, J=$ $\left.7.0 \mathrm{~Hz},{ }^{\rho} \mathrm{Ph}\right), 127.51(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7), 121.81(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7), 120.53(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7)$, 107.54 (C, s, C3a/7a), 103.32 (C, s, C3a/7a), 93.52 (C, d, $J=11.0 \mathrm{~Hz}, \mathrm{C} 1$), 73.01 (CH, s, C3), $65.93(\mathrm{CH}, \mathrm{s}, \mathrm{C} 2), 51.02\left(\mathrm{CH}_{2}, \mathrm{~d}, J=33.0 \mathrm{~Hz}, \mathrm{C} 9\right), 42.95(\mathrm{CH}, \mathrm{d}, J=19.0 \mathrm{~Hz}, \mathrm{C} 8)$, $37.74(\mathrm{CH}, \mathrm{s}, \mathrm{Cy}), 33.80\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 31.67\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 26.82\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 26.62\left(\mathrm{CH}_{2}, \mathrm{~s}\right.$, $\mathrm{Cy}), 26.52\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 15.37\left(\mathrm{CH}_{3}, \mathrm{~s}, \mathrm{Me}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathbf{P}}\left(\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right): 38.89(\mathrm{~d}, J=27.5 \mathrm{~Hz}), 39.99(\mathrm{~d}, J=27.5 \mathrm{~Hz}) \mathrm{ppm}$.
IR (Powder): 3046 (w), 2923 (s), 2857 (m), 1449 (w), 1433 (m), 1089 (m), 1036 (w), 900 (w), 875 (w), 798 (w), 727 (s) cm^{-1}

LRMS (ES ${ }^{+}$: $\mathrm{m} / \mathrm{z}=746.3\left(\mathrm{M}^{+}, 100 \%\right)$

HRMS (ES ${ }^{\dagger}$): $\left(\mathrm{M}^{+} \mathrm{C}_{42} \mathrm{H}_{43} \mathrm{ClP}_{2} \mathrm{Ru}\right.$ requires $m / z=746.1557$ found 746.1566
Anal. Calc'd for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{ClP}_{2} \mathrm{Ru}$: C, 67.60; H, 5.81. Found: C, $67.73 ; \mathrm{H}, 5.88$.

$\underline{\left.\mathrm{Rac}-\left(\eta^{5}: \eta^{1} \text {-indenyl- } \mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{RuCl}_{\left(\mathrm{PMe}_{2}\right.} \mathbf{P h}\right)(113)}$

113
To a solution of ruthenium complex $27(200 \mathrm{mg}, 0.25 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added dimethylphenylphosphine (0.4 mL of a 4.0 M solution in toluene, 0.75 mmol) and the solution was refluxed for 16 hours. After this time, solvents were removed in vacuo and the resulting solid purified by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 4: 6 \mathrm{Et}_{2} \mathrm{O}:\right.$ petrol $\left.\rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}\right)$ affording 152 mg of the title compound as a brown solid in 90% yield. The compound was recrystallised by cooling a $\mathrm{CD}_{3} \mathrm{CN}$ solution to $-18{ }^{\circ} \mathrm{C}$ and the X -ray structure has been obtained (Appendix VI).

MP: decomposes $144-145{ }^{\circ} \mathrm{C}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right): 8.16(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Ar}), 7.82(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.57(2 \mathrm{H}, \mathrm{s}+$ fs, Ar), $7.01-7.38(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.90(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}), 4.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 3), 3.67(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, \mathrm{H} 8), 3.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2), 2.55(1 \mathrm{H}, \mathrm{t}, J=12.5 \mathrm{~Hz}, \mathrm{H} 9), 2.39(1 \mathrm{H}, \mathrm{ddd}, J=22.5,93.5,4.5$ $\mathrm{Hz}, \mathrm{H} 9), 1.77$ (2H, dd, $J=23.5,13.5, \mathrm{Cy}), 1.50-1.61$ (3H, m, Cy), 1.44 ($3 \mathrm{H}, 6, J=8.0 \mathrm{~Hz}, \mathrm{P}-$ $\mathrm{Me}), 1.35(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{P}-\mathrm{Me}), 1.13-1.31(2 \mathrm{H}, \mathrm{m}, \mathrm{Cy}), 1.01-1.13$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Cy}$), 0.77$0.89(1 \mathrm{H}, \mathrm{m}, \mathrm{Cy}), 0.59-0.69(1 \mathrm{H}, \mathrm{m}, \mathrm{Cy}) \mathrm{ppm}$.
$\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}\right): 145.27\left(\mathrm{C}, \mathrm{d}, J=38.0 \mathrm{~Hz},{ }^{i} \mathrm{Ph}\right), 141.32\left(\mathrm{C}, \mathrm{d}, J=28.0 \mathrm{~Hz},{ }^{i} \mathrm{Ph}\right), 138.69$ (C, d, $\left.J=25.5 \mathrm{~Hz},{ }^{i} \mathrm{Ph}\right), 134.49\left(2 \mathrm{CH}, \mathrm{d}, J=10.5 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\right), 131.42\left(2 \mathrm{CH}, \mathrm{d}, J=9.0 \mathrm{~Hz},{ }^{\circ} \mathrm{Ph}\right)$, *129.82 (CH, Ar), *129.76 (CH, Ar), *129.32 (CH, Ar), $129.00(\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7), 128.78$ (CH, s, C4/5/6/7), *128.57 (CH, Ar), *128.49 (CH, Ar), *128.25 (CH, Ar), *128.20 (CH, $\mathrm{Ar})$, *128.16 (CH, Ar), 121.74 ($\mathrm{CH}, \mathrm{s}, \mathrm{C} 4 / 5 / 6 / 7$), 121.14 (CH, s, C4/5/6/7), 112.76 (C, s, $\mathrm{C} 3 \mathrm{a} / 7 \mathrm{a}), 101.51(\mathrm{C}, \mathrm{s}+\mathrm{fs}, \mathrm{C} 3 \mathrm{a} / 7 \mathrm{a}), 95.54(\mathrm{C}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{C} 1), 72.35(\mathrm{CH}, \mathrm{d}, J=11.0 \mathrm{~Hz}$, C3), $66.55(\mathrm{CH}, \mathrm{s}, \mathrm{C} 2), 51.21\left(\mathrm{CH}_{2}, \mathrm{~d}, J=33.0 \mathrm{~Hz}, \mathrm{C} 9\right), 42.90(\mathrm{CH}, \mathrm{d}, J=18.5 \mathrm{~Hz}, \mathrm{C} 8)$, $37.26(\mathrm{CH}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{Cy}), 33.62\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 31.44\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 26.63\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right)$, $26.38\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 26.28\left(\mathrm{CH}_{2}, \mathrm{~s}, \mathrm{Cy}\right), 16.97\left(2 \mathrm{CH}_{3}, \mathrm{~d}, J=28.0 \mathrm{~Hz}, \mathrm{P}-\mathrm{Me}\right) \mathrm{ppm}$.
$\delta_{\mathrm{P}}\left(\mathbf{1 2 1 . 5} \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}\right): 24.13(\mathrm{~d}, J=34.4 \mathrm{~Hz}), 39.26(\mathrm{~d}, J=34.4 \mathrm{~Hz}) \mathrm{ppm}$.

IR (Powder): 3047 (w), 2924 (m), 2853 (w), 1477 (w), 1432(s), 1275 (w), 1099 (w), 942 (m), 904 (s$), 885(\mathrm{~m}), 856$ (w), 835 (w), 736 (s$) \mathrm{cm}^{-1}$

LRMS (ES ${ }^{\dagger}$): $\mathrm{m} / \mathrm{z}=684.3\left(\mathrm{M}^{+}, 100 \%\right)$
HRMS (ES ${ }^{+}$): $(\mathrm{M})^{+} \mathrm{C}_{37} \mathrm{H}_{41} \mathrm{ClP}_{2} \mathrm{Ru}$ requires $\mathrm{m} / \mathrm{z}=$ sub. found sub.
Anal. Calc'd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{ClP}_{2} \mathrm{Ru}$: C, 64.95; H, 6.04. Found: C, $64.86 ; \mathrm{H}, 6.12$.

* = Unable to assign signals, determine integrals and J values due to overlapping peaks.

(R)-1-cyclohexyl-1,2-ethanediol (74) ${ }^{73}$

74

To a stirred solution of ${ }^{\prime} \mathrm{BuOH}(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(19.76 \mathrm{~g}$, 60.00 mmol), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(8.29 \mathrm{~g}, 60.00 \mathrm{mmol})$, (DHQD) ${ }_{2} \mathrm{PYR}$ ($0.26 \mathrm{mg}, 0.30 \mathrm{mmol}$) and OsO_{4} (7.5 mL of a 0.04 M solution in ${ }^{t} \mathrm{BuOH}, 0.30 \mathrm{mmol}$). The solution was cooled to 0 ${ }^{\circ} \mathrm{C}$ and vinylcyclohexane ($2.74 \mathrm{~mL}, 20.00 \mathrm{mmol}$) was added. The solution was stirred for 24 hours, after which time GC (Method B) showed no trace of starting material. The reaction was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(30 \mathrm{~g})$ and diluted with $\mathrm{DCM}(200 \mathrm{~mL})$. The aqueous layer was extracted into DCM (3 * 200 mL) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting crude liquid was purified by flash chromatography (9:1 $\mathrm{Et}_{2} \mathrm{O}$:petrol), affording 2.81 g of the title compound as a cream solid in 98% yield. Compound data was identical to that in the literature. ${ }^{73}$

MP: $36-37^{\circ} \mathrm{C}\left(\text { Lit. } 38-39{ }^{\circ} \mathrm{C}\right)^{73}$
$[\alpha]_{\mathrm{D}}{ }^{20}=+3.58\left(\mathrm{c}=1.73, \mathrm{CHCl}_{3}\right)\left(\mathrm{Lit} .+3.56, \mathrm{CHCl}_{3}\right)^{73}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 3.67-3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 3.40-3.57(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 2.20(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 1.59-1.92 (5H, m, Cy), 1.34-1.47 (1H, m, Cy), 0.96-1.29 (5H, m, Сy) ppm.

(R)-1-cyclohexyl-1,2-di(methanesulfonyl)ethane (75) ${ }^{17}$

75
A solution of diol $74(2.12 \mathrm{~g}, 14.70 \mathrm{mmol})$ in DCM $(100 \mathrm{~mL})$ was cooled to $-30^{\circ} \mathrm{C}$. TEA $(7.2 \mathrm{~mL}, 51.5 \mathrm{mmol})$ and methanesulfonyl chloride ($2.9 \mathrm{~mL}, 36.8 \mathrm{mmol}$) were added dropwise and the reaction was stirred at $-30^{\circ} \mathrm{C}$ for 3 hours. TLC showed no sign of starting material, so the solution was filtered cold, washing through with cold DCM ($2 * 25 \mathrm{~mL}$). The filtrate was washed with water and extracted into DCM ($3 * 25 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo, affording 4.22 g of the title compound as a white solid in 96% crude yield. Compound data was identical to that in the literature. ${ }^{17}$

MP: $115-116^{\circ} \mathrm{C}(\mathrm{DCM})\left(\text { Lit. } 114-116{ }^{\circ} \mathrm{C}\right)^{17}$
$[\alpha]_{\mathbf{D}}{ }^{25}=-17.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)\left(\text { Lit. -17.2, } \mathrm{CHCl}_{3}\right)^{17}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.67(1 \mathrm{H}, \mathrm{ddd}, J=6.5,6.5,2.5 \mathrm{~Hz}, \mathrm{H} 2), 4.47(1 \mathrm{H}, \mathrm{dd}, J=12.0,2.5$ $\mathrm{Hz}, \mathrm{H} 1), 4.35(1 \mathrm{H}, \mathrm{dd}, J=12.0,6.5 \mathrm{~Hz}, \mathrm{H} 1), 3.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Ms}), 3.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Ms}), 1.65-1.91$ (6H, m, Сy), 1.03-1.37 (5H, m, Cy) ppm.

trans-Spiro-[(2-cyclohexylcyclopropane)-1,1'-indene)] (76) ${ }^{17}$

76
A solution of indene ($0.5 \mathrm{~mL}, 3.8 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and ${ }^{n} \mathrm{BuLi}$ (1.5 mL of a 2.5 M solution in hexanes, 3.75 mmol) was added dropwise in the dark. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes then warmed to RT and stirred for 90 minutes. After this time, the solution was cooled to $0^{\circ} \mathrm{C}$ and a solution of dimesylate $75(476 \mathrm{mg}, 1.59$ $\mathrm{mmol})$ in THF (15 mL) was added dropwise over 2 minutes. The solution was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes then warmed to RT overnight.

Workup was as above, yielding the title compound contaminated by a small amount of indeed. The indene was removed by evaporation under vacuum (1.0 mmHg) for 8 hours at

RT, affording 350 mg of the title compound in 98% yield as a clear oil and a $3: 1$ mixture of diastereoisomers.

Spectral data was identical to the racemic compound prepared from dibromide 83, with the exception that the signals corresponding to the olefinic protons (H2' and H3') were in a 3:1 ratio as opposed to a $1: 1$ ratio.

$\left[(2 R)\right.$-2-cyclohexyl-2-(3'H-1'-indenyl)ethylldiphenylphosphine-borane (85) ${ }^{17}$

Synthesis, workup and spectral data were identical to that given above. The compound was synthesised in 91% yield, MP as above, optical rotation as per the literature. ${ }^{17}$

Chiral- $\left(\eta^{5}: \eta^{1}\right.$-indenyl- $\left.\mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{RuCl}^{\left(\mathrm{PPh}_{3}\right)(27)^{17}}$

27
Synthesis, workup and spectral data were identical to that given above. The compound was synthesised in 71% yield, MP and optical rotation as per the literature. ${ }^{17}$

Chiral- $\left[\left(\eta^{5}: \eta^{1} \text {-indenyl- } \mathrm{CH}(\mathrm{Cy})-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Ru}(\mathrm{MeCN})\left(\mathrm{PPh}_{3}\right)\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}(80)$

Synthesis, workup and spectral data were identical to that given above. The compound was synthesised in 95% yield, $\mathrm{MP}=196^{\circ} \mathrm{C}($ dec. $),[\alpha]_{\mathrm{D}}{ }^{23}=-0.90\left(\mathrm{c}=0.5, \mathrm{CH}_{3} \mathrm{CN}\right)$

Rac-1-phenylethanol (114) ${ }^{91}$

$\mathrm{NaBH}_{4}(84 \mathrm{mg}, 2.2 \mathrm{mmol})$ was added to a solution of acetophenone ($240 \mathrm{mg}, 2.0 \mathrm{mmol}$) in IPA (10 mL) and the solution was stirred for 30 minutes. At this point, TLC showed no starting material remaining, so water (10 mL) was added to quench the reaction, then the product was extracted into $\mathrm{Et}_{2} \mathrm{O}(3 * 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and solvents removed in vacuo, affording 296 mg of an orange liquid. The product was not purified further, but was analysed by GC to determine the retention time. Compound data was identical to that in the literature. ${ }^{91}$
$\delta_{\mathbf{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.16-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.81(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{H} 2), 1.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 1.42(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H} 1) \mathrm{ppm}$.
$\mathbf{G C R}_{\mathrm{T}}$ (Method C): 6.17 mins
$\mathbf{G C R}_{\mathrm{T}}$ (Method D): $12.77,14.05 \mathrm{mins}$

Rac- N -(1-phenylethylidene) aniline (89) ${ }^{92}$

To a solution of acetophenone ($1.2 \mathrm{~mL}, 10.0 \mathrm{mmol}$), aniline ($1.1 \mathrm{~mL}, 12.0 \mathrm{mmol}$) and TEA $(2.8 \mathrm{~mL}, 20.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ in $\mathrm{DCM}(35 \mathrm{~mL})$, was added $\mathrm{TiCl}_{4}(0.6 \mathrm{~mL}, 5.0 \mathrm{mmol})$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, then at RT for 7 hours. After this time, satd. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (30 mL) was added, then the solution was filtered and the aqueous layer extracted into DCM ($3 * 10 \mathrm{~mL}$). The combined organic layers were washed with brine (20 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. The resulting brown solid was recrystallised from hot EtOH , affording 1.33 g of the title compound as a yellow solid in 68% yield. Compound data was identical to that in the literature. ${ }^{92}$

MP: $37-38^{\circ} \mathrm{C}\left(\text { Lit. } 39-40{ }^{\circ} \mathrm{C}\right)^{92}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 7.84-8.07(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.91-7.49(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.67-6.82(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
$\mathbf{G C ~ R}_{\mathbf{T}}$ (Method A): 5.63 mins

Rac- N-phenyl- α-methylbenzylamine (91) ${ }^{92}$

To a solution of imine $\mathbf{8 9}(60 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(58 \mathrm{mg}, 1.55 \mathrm{mmol})$ in IPA (10 mL) was added acetic acid (neat, 1 drop). The reaction was stirred for 1 hour, after which time GC showed complete consumption of imine. The reaction was quenched with water (10 mL), then the aqueous layer was extracted into $\mathrm{Et}_{2} \mathrm{O}(3 * 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo, affording 60 mg of the title compound in 99% yield as a brown liquid. The product was not purified further, but was analysed by GC (Method A) to determine its retention time. Compound data was identical to that in the literature. ${ }^{92}$
$\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right): 7.11-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.01(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}), 6.56(1 \mathrm{H}, \mathrm{t}, J=$ $7.5 \mathrm{~Hz}, \mathrm{Ar}), 6.43(2 \mathrm{H}, \mathrm{d}+\mathrm{fs}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 4.41(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz} \mathrm{~Hz}, \mathrm{H} 2), 3.86(1 \mathrm{H}, \mathrm{v} \mathrm{br}$ $\mathrm{s}, \mathrm{NH}), 1.43(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz} \mathrm{~Hz}, \mathrm{H} 1) \mathrm{ppm}$.
$\mathbf{G C ~ R}_{\mathrm{T}}$ (Method A): 5.53 mins

Rac-1,3-diphenyl-3-propenol (97) ${ }^{59}$

97
To a solution of $\mathrm{LiAlH}_{4}(243 \mathrm{mg}, 6.4 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of chalcone ($2.00 \mathrm{~g}, 9.6 \mathrm{mmol}$) in THF (10 mL) dropwise and the reaction was stirred at $0{ }^{\circ} \mathrm{C}$. After 1 hour, TLC showed no starting material remaining, so the reaction mixture was quenched with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ and extracted into $\mathrm{Et}_{2} \mathrm{O}(3 * 15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to give a clear,
viscous oil. The crude product was purified by flash chromatography (9:1 petrol:EtOAc) affording 1.29 g of the title compound in 64% yield as a clear liquid. Compound data was identical to that in the literature. ${ }^{59}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.12-7.42(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.61(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H} 1), 6.31(1 \mathrm{H}, \mathrm{dd}$, $J=16.0,6.5 \mathrm{~Hz}, \mathrm{H} 2), 5.31(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H} 3), 1.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) \mathrm{ppm}$.

Rac-3-acetoxy-1,3-diphenylpropene (98) ${ }^{59}$

A solution of $\mathrm{Ac}_{2} \mathrm{O}(0.9 \mathrm{~mL}, 10.0 \mathrm{mmol})$ and alcohol $97(1.29 \mathrm{~g}, 6.13 \mathrm{mmol})$ in dry pyridine $(10 \mathrm{~mL})$ was refluxed for 1 hour. After this time, the reaction mixture was cooled, poured onto $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 * 25 \mathrm{~mL})$. The combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$ and saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(50 \mathrm{~mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo, affording 1.40 g of the title compound in 91% yield as a yellow liquid. Compound data was identical to that in the literature. ${ }^{59}$
$\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.12-7.36(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.55(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H} 1), 6.37(1 \mathrm{H}, \mathrm{d}, J$ $=7.0 \mathrm{~Hz}, \mathrm{H} 3), 6.26(1 \mathrm{H}, \mathrm{dd}, J=15.5,7.0 \mathrm{~Hz}, \mathrm{H} 2), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 4) \mathrm{ppm}$.
$\mathbf{G C R}_{\mathrm{T}}$ (Method A): 6.48 mins

Rac-Ethyl-3-(1,3-diphenylpropenyl) carbonate (62) ${ }^{55}$

To a solution of alcohol $97(1.11 \mathrm{~g}, 5.30 \mathrm{mmol})$, dry pyridine ($1.6 \mathrm{~mL}, 20.0 \mathrm{mmol}$) and a catalytic amount of DMAP in THF (5 mL) at $0^{\circ} \mathrm{C}$ was added ethyl chloroformate (1.3 mL , $17.0 \mathrm{mmol})$ and the solution was stirred at RT. After 16 hours, water $(15 \mathrm{~mL})$ was added to quench and the aqueous was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 * 20 \mathrm{~mL})$. The combined organic layers
were washed with $1 \mathrm{~N} \mathrm{HCl}(3 * 20 \mathrm{~mL})$, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(20 \mathrm{~mL})$, water (20 mL), then dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography ($9: 1$ petrol:EtOAc), affording 804 mg of the title compound as a clear oil in 54% yield. Compound data was identical to that in the literature. ${ }^{55}$
$\delta_{\mathbf{H}}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right): 7.12-7.36(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.55(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H} 1), 6.37(1 \mathrm{H}, \mathrm{d}, J$ $=7.0 \mathrm{~Hz}, \mathrm{H} 3), 6.26(1 \mathrm{H}, \mathrm{dd}, J=15.5,7.0 \mathrm{~Hz}, \mathrm{H} 2), 4.11(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{Et}), 1.22(3 \mathrm{H}, \mathrm{t}, J$ $=7.5 \mathrm{~Hz}, \mathrm{Et}) \mathrm{ppm}$.
$\mathbf{G C ~ R}_{\mathbf{T}}$ (Method A): 6.76 mins

General procedures and specific details of the catalytic studies are listed in Appendix I.

5.0: REFERENCES

1) Schafer, A.; Karl, E.; Zsolnai, L.; Huttner, G.; Brintzinger, H. H., J. Organomet. Chem. 1987, 328, 87-89.
2) Cesarotti, E.; Kegan, H. B.; Goddard, R.; Krüger, C., J. Organomet. Chem. 1978, 162, 297-309.
3) Komatsuzaki, N.; Uno, M.; Kikuchi, H.; Takahashi, S., Chem. Lett. 1996, 677-678.
4) Willoughby, C. A.; Buchwald, S., J. Am. Chem. Soc. 1994, 116, 8952-8965.
5) Jaquith, J. B.; Gaun, J.; Wang, S.; Collins, S., Organometallics 1995, 14, 1079-1081.
6) Morken, J. P.; Diduik, M. T.; Hoveyda, A. H., J. Am. Chem. Soc. 1993, 115, 69976998.
7) Bell, L.; Whitby, R. J., Tetrahedron Lett. 1996, 37, 7139-7142.
8) Brookings, D. C. Ph.D. Thesis. University of Southampton, 1999.
9) Butenschön, H., Chem. Rev. 2000, 100, 1527-1564.
10) Lee, I.; Dahan, F.; Maisonnat, A.; Poilblanc, R., Organometallics 1994, 13, 2743-2750.
11) Davies, S. G.; Scott, F., J. Organomet. Chem. 1980, 188, C41-42.
12) Trost, B. M.; Vidal, B.; Thommen, M., Chem. Eur. J. 1999, 5, 1055-1069.
13) Kataoka, Y.; Saito, Y.; Nagata, K.; Kitamura, K.; Shibahara, A.; Tani, K., Chem. Lett. 1995, 833-834.
14) Ciruelos, S.; Englert, U.; Salzer, A.; Bolm, C.; Maischak, A., Organometallics 2000, 19, 2240-2242.
15) Habib, A.; Tanke, R. S.; Holt, E. M.; Crabtree, R. H., Organometallics 1989, 8, 12251231.
16) Schumann, H.; Stenzel, O.; Dechert, S.; Girgsdies, F.; Halterman, R. L., Organometallics 2001, 20, 2215-2225.
17) Harrison, S. A. Ph.D. Thesis. University of Southampton, 2002.
18) Kaulen, C.; Pa1a, C.; Hu, C. H.; Ganter, C., Organometallics 2001, 20, 1614-1619.
19) Bitterwolf, T. E.; Leonard, M. B.; Horine, P. A.; Shade, J. E.; Rheingold, A. L.; Staley, D. J.; Yap, G. P. A., J. Organomet. Chem. 1995, 512, 11-20.
20) Schwab, P.; Grubbs, R. H.; Ziller, J. W., J. Am. Chem. Soc. 1996, 118, 100-110.
21) Dias, E. L.; Nguyen, S. T.; Grubbs, R. H., J. Am. Chem. Soc. 1997, 119, 3887-3897.
22) Palma-Ramirez, P.; Cole-Hamilton, D. J.; Pogorzelec, P.; Campora, J., Polyhedron 1990, 9, 1107-1112.
23) Wong, W. K.; Chiu, K. W.; Wilkinson, G.; Howes, A. J.; Hursthouse, M. B., Polyhedron 1985, 4, 603-614.
24) Douglas, P. G.; Shaw, B. L., J. Chem. Soc. A 1970, 1556-1557.
25) Ashok, R. F. N.; Gupta, M.; Arulsamy, K. S.; Agarwala, U. C., Inorg. Chim. Acta. 1985, 98, 161-167.
26) Abbenhuis, R. A. T. M.; del Rio, I.; Bergshoef, M. M.; Boersma, J.; Veldman, N.; Spek, A. L.; van Koten, G., Inorg. Chem. 1998, 37, 1749-1758.
27) Wilczewski, T.; Bochenska, M.; Biernat, J. F., J. Organomet. Chem. 1981, 215, 87-96.
28) Magee, M. P.; Norton, J. R., J. Am. Chem. Soc. 2001, 123, 1778-1779.
29) Lemke, F. R., J. Am. Chem. Soc. 1994, 116, 11183-11184.
30) Crochet, P.; Demerseman, B.; Rocaboy, C.; Schleyer, D., Organometallics 1996, 15, 3048-3061.
31) Bruce, M. I.; Wallis, R. C., Aust. J. Chem. 1979, 32, 1471-1485.
32) Ashworth, T. V.; Chalmers, A. A.; Singleton, E.; Swanepoel, H. E., J. Chem. Soc. Chem. Commun. 1982, 214-215.
33) Bruce, M. I.; Hinterding, P.; Tiekink, E. R. T.; Skelton, B. W.; White, A. H., J. Organomet. Chem. 1993, 450, 209-218.
34) Prasad, R.; Mishra, L.; Agarwala, U. C., Indian J. Chem. 1991, 30A, 162-165.
35) Abbott, S.; Davies, S. G.; Warner, P., J. Organomet. Chem. 1983, 246, C65-68.
36) Bruce, M. I.; Humphrey, M. G.; Koutsantonis, G. A., J. Organomet. Chem. 1985, 296, C47-50.
37) Davies, S. G.; Smallridge, A. J., J. Organomet. Chem. 1991, 413, 313-319.
38) Lefort, L.; Crane, T. W.; Farwell, M. D.; Baruch, D. M.; Kaeuper, J. A.; Lachicotte, R. J.; Jones, W. D., Organometallics 1998, 17, 3889-3899.
39) Kataoka, Y. S. A.; Saito, Y.; Yamagata, T.; Tani, K., Organometallics 1998, 17, 43384340.
40) Naota, T.; Takaya, H.; Murahashi, S.-I., Chem. Rev. 1998, 98, 2599-2660.
41) Trost, B. M.; Kulawiec, R. J., J. Am. Chem. Soc. 1993, 115, 2027-2036.
42) del Zotto, A.; Baratta, W.; Sandri, M.; Verardo, G.; Rigo, P., Eur. J. Inorg. Chem. 2004, 524-529.
43) Gamasa, M. P.; Gimeno, J.; GonzalezBernardo, C.; MartinVaca, B. M.; Monti, D.; Bassetti, M., Organometallics 1996, 15, 302-308.
44) Landis, C. R.; Branch, T. W., Inorg. Chim. Acta. 1998, 270, 285-297.
45) Gaus, P. L.; Kao, S. C.; Youngdahl, K.; Darensbourg, M. Y., J. Am. Chem. Soc. 1985, 107, 2428-2434.
46) Gibson, D. H.; El-Omrani, Y. S., Organometallics 1985, 4, 1473-1475.
47) Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H.; Noyori, R., J. Am. Chem. Soc. 1988, 110, 629-631.
48) Hoke, J. B.; Hollis, L. S.; Stern, E. W., J. Organomet. Chem. 1992, 455, 193-196.
49) Evans, D. A.; Nelson, S. G.; Gagné, S. G.; Muci, A. R., J. Am. Chem. Soc. 1993, 115, 9800-9801.
50) Yamakawa, M.; Yamada, I.; Noyori, R., Angew. Chem. Int. Ed. 2001, 40, 2818-2821.
51) Yamakawa, M.; Ito, H.; Noyori, R., J. Am. Chem. Soc. 2000, 122, 1466-1478.
52) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R., J. Am. Chem. Soc. 1996, 118, 4916-4917.
53) Consiglio, G.; Waymouth, R. M., Chem. Rev. 1989, 89, 257-276.
54) Tsuji, J.; Takahashi, H.; Morikawa, M., Tetrahedron Lett. 1965, 6, 4387-2388.
55) Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S., J. Am. Chem. Soc. 2001, 123, 10405-10406.
56) Nomura, N.; Rajanbabu, T. V., Tetrahedron Lett. 1997, 38, 1713-1716.
57) Baruah, J. B.; Samuelson, A. G., New J. Chem. 1994, 18, 961-971.
58) Constantineux, T.; Brunel, J. M.; Labande, A.; Buono, G., Syn. Lett. 1998, 1, 49-50.
59) Leung, W.; Cosway, S.; Jones, R. H. V.; McCann, H.; Wills, M., J. Chem. Soc. Perkin Trans. I 2001, 2588-2594.
60) Fringuelli, F.; Taticchi, A., Dienes in the Diels-Alder Reaction. ed.; Wiley-Interscience: 1990; 'Vol.' p.
61) Wasserman, A., J. Chem. Soc. 1942, 618-621.
62) Yates, P.; Eaton, P., J. Am. Chem. Soc. 1960, 82, 4436-4437.
63) Bednarski, M.; Danishefsky, S., J. Am. Chem. Soc. 1983, 105, 3716-3717.
64) Hollis, T. K.; Odenkirk, W.; Robinson, N. P.; Whelan, J.; Bosnich, B., Tetrahedron 1993, 49, 5415-5430.
65) Faller, J. W.; Smart, C. J., Tetrahedron Lett. 1989, 30, 1189-1192.
66) Kündig, E. P.; Saudan, C. M.; Alezra, V.; Viton, F.; Bernardinelli, G., Angew. Chem. Int. Ed. 2001, 40, 4481-4485.
67) Silberrad, O.; Roy, C. S., J. Chem. Soc. 1906, 89, 179-182.
68) Doyle, M. P.; Forbes, D. C., Chem. Rev. 1998, 98, 911-935.
69) Paulissenen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssie, P. H., Tetrahedron Lett. 1973, 14, 2233-2236.
70) Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R., Tetrahedron Lett. 1966, 7, 5239-5244.
71) Baratta, W.; del Zotto, A.; Rigo, P., Organometallics 1999, 18, 5091-5096.
72) Tutusaus, O.; Delfosse, S.; Demonceau, A.; Noels, A. F.; Núñez, R.; Viñas, C.; Teixidor, F., Tetrahedron Lett. 2002, 43, 983-987.
73) Crispino, G. A.; Jeong, K.-S.; Kolb, H. C.; Wang, Z.-M.; Xu, D.; Sharpless, K. B., J. Org. Chem. 1993, 58, 3785-3786.
74) Buss, A. D.; Warren, S., J. Chem. Soc. Perkin Trans. 1 1985, 2307-2325.
75) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K., J. Am. Chem. Soc. 1990, 112, 5244-5252.
76) Piettre, S. R., Tetrahedron Lett. 1996, 37, 4707-4710.
77) Goodwin, N. J.; Henderson, W.; Nicholson, B. J.; Sarfo, J. K.; Fawcett, J.; Russel1, D. R., J. Chem. Soc. Dalton Trans. 1997, 4377-4384.
78) Naumann, K.; Zon, G.; Mislow, K., J. Am. Chem. Soc. 1969, 91, 7012-7023.
79) Imamoto, T.; Kikuchi, S.-I.; Miura, T.; Wada, Y., Org. Lett. 2001, 3, 87-90.
80) Griffin, S.; Heath, L.; Wyatt, P., Tetrahedron Lett. 1998, 39, 4405-4406.
81) Brisset, H.; Gourdel, Y.; Pellon, P.; Le Corre, M., Tetrahedron Lett. 1993, 34, 45234526.
82) Gansow, O. A.; Burke, A. R.; Vernon, W. D., J. Am. Chem. Soc. 1976, 98, 5817-5826.
83) Lindsay, C.; Cesarotti, E.; Adams, H.; Bailey, N. A.; White, C., Organometallics 1990, 9, 2594-2602.
84) Park, J. H.; Koh, J. H.; Park, J., Organometallics 2001, 20, 1892-1894.
85) Armarego, W. L. F.; Perrin, D. D., Purification of Laboratory Chemicals. 4th ed.; Butterworth-Heinemann: 1997; 'Vol.' p.
86) McCleverty, J. A.; Wilkinson, G., Inorg. Synth. 1966, 8, 211-212.
87) Potgeiter, H. H., J. Organomet. Chem. 1989, 366, 369-376.
88) Wilkinson, G.; Hallman, P. S.; Stephenson, T. A., Inorg. Synth. 1970, 12, 237-239.
89) Gottleib, H. E.; Kotlyar, V.; Nudelman, A., J. Org. Chem. 1997, 62, 7512-7515.
90) Hubert, A. J., J. Chem. Soc. 1965, 6669-6674.
91) Lee, D.; Huh, E. A.; Kim, M.-J.; Jung, H. M.; Koh, J. H.; Park, J., Org. Lett. 2000, 2, 2377-2379.
92) Periasamy, M.; Srinivas, G.; Bharathi, P., J. Org. Chem. 1999, 64, 4204-4205.

APPENDICES

Appendix I Specific details of the catalytic studies 1-1
Appendix II X-Ray structure of ruthenium complex 80 2-1
Appendix III X-Ray structure of ruthenium complex 81 3-1
Appendix IV X-Ray structure of ruthenium complex 82 4-1
Appendix V X-Ray structure of ruthenium complex 112 5-1
Appendix VI X-Ray structure of ruthenium complex 113 6-1

Many thanks to Susanne Huth for running and solving the X-Ray structures

General Procedure for the hydrogenation reaction:

Catalyst (3 mg), imine $89(40 \mathrm{mg}), \mathrm{HBF}_{4}(10 \mu \mathrm{~L})$ and $\mathrm{DCM}(3 \mathrm{~mL})$ were placed in a stainless-steel hydrogenation bomb under an inert atmosphere. The bomb was purged with hydrogen and pressurised to 6 bar, then stirred for 60 hours at RT. After this time, the reaction was analysed by GC (Method A). Two more reactions, with complexes 27 and $\mathbf{8 0}$, were performed at $50^{\circ} \mathrm{C}$. See Table 4 (section 3.1) for results.

General Procedure for the transfer hydrogenation reactions:

IPA system: To a solution of catalyst (3 mg) in IPA (4 mL) was added base, acetophenone and any other additives. The reactions were stirred with GC monitoring (Method C). See Table 5 (section 3.2) for results.

General Procedure for the allylic displacement reaction:

To a solution of catalyst (3 mg) in THF (2 mL) was added the allylic acetate, followed by benzylamine at RT. The reactions were monitored by GC (Method A).

No.	Catalyst	$\mathbf{9 8}$	$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$	No.	Catalyst	$\mathbf{6 2}$	$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$
1	27	19 mg	9 mg	7	27	20 mg	10 mg
2	80	19 mg	9 mg	8	80	20 mg	10 mg
3	81	19 mg	9 mg	9	81	20 mg	10 mg
4	82	19 mg	9 mg	10	82	20 mg	10 mg
5	28^{a}	19 mg	9 mg	11	28^{a}	20 mg	10 mg
6	92^{a}	19 mg	9 mg	12	92^{a}	20 mg	10 mg

a-complexes supplied by P. Wright
Table 6 - Allylic Displacement Details

General Procedure for the Diels-Alder reaction:

To a solution of catalyst (3 mg) in DCM (1 mL) was added methacrolein and either cyclopentadiene or 1,3 -cyclohexadiene. The reactions were shaken, then cooled to $-18^{\circ} \mathrm{C}$ and monitored by GC (Method C). After 48 hours, the reactions were heated to $40^{\circ} \mathrm{C}$.

No.	Catalyst	Cyclopentadiene*	MA *	No.	Catalyst	1,3-hexadiene	MA *
1	27	0.3 mL	0.3 mL	9	27	15 mg	0.3 mL
2	80	0.25 mL	0.25 mL	10	80	13 mg	0.25 mL
3	81	0.3 mL	0.3 mL	11	81	15 mg	0.3 mL
4	82	0.25 mL	0.25 mL	12	82	13 mg	0.25 mL
5	28^{a}	0.3 mL	0.3 mL	13	28^{a}	16 mg	0.3 mL
6	92^{a}	0.25 mL	0.25 mL	14	92^{a}	13 mg	0.25 mL
7	22	0.3 mL	0.3 mL	15	22	21 mg	0.3 mL
8	-	0.3 mL	0.3 mL	16	-	15 mg	0.3 mL

* - $0.64 M$ solution in DCM
a-complexes supplied by P. Wright
Table 7 - Diels-Alder Reaction Details

General Procedure for the cyclopropanation of styrene:

To a solution of catalyst (3 mg) in styrene $(1 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ was added 1 mL of a $1: 1 \mathrm{mix}$ of styrene and EDA over a 4 hour period. The reaction was monitored by GC (Method A). A blank reaction where 1 mL of a 1:1 mix of styrene and EDA was added to styrene (1 mL) at $40^{\circ} \mathrm{C}$ over a 4 hour period was also performed.

Table 1. Crystal data and structure refinement.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
R indices (aIl data)
Extinction coefficient
Largest diff. peak and hole

03sot0165 (DCP 070/1)
$\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{NP}_{3} \mathrm{Ru}$
958.86
120(2) K
0.71073 A
Triclinic
$P-1$
$a=11.5522(9) \AA \quad \alpha=105.232(5)^{\circ}$
$b=12.4256(5) \AA \quad \beta=96.698(10)^{\circ}$
$c=16.8434(17) \AA \quad \gamma=111.231(7)^{\circ}$
2113.3 (3) \AA^{3}
2
$1.507 \mathrm{Mg} / \mathrm{m}^{3}$
$0.548 \mathrm{~mm}^{-1}$
984
Cut block; dark red
$0.36 \times 0.22 \times 0.20 \mathrm{~mm}^{3}$
$3.02-27.50^{\circ}$
$-15 \leq h \leq 14,-16 \leq k \leq 16,-21 \leq 1 \leq 21$
39295
$9615\left[R_{\text {int }}=0.0281\right]$
99.3 \%
Multiscans
0.8983 and 0.8271
Full-matrix least-squares on F^{2}
9615 / 0 / 734
1.059
$R I=0.0301, w R 2=0.0722$
$R I=0.0354, w R 2=0.0753$
0.0023(3)
0.807 and -0.767 e \AA^{-3}

03 sot0165 (DCP 070/1)

$\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{NP}_{3} \mathrm{Ru}$
958.86

120(2) K
$0.71073 \AA$
Triclinic
$P-1$
$a=11.5522(9) \AA \quad \alpha=105.232(5)^{\circ}$
$b=12.4256(5) \AA \quad \beta=96.698(10)^{\circ}$
$c=16.8434(17) \AA \quad \gamma=111.231(7)^{\circ}$
$2113.3(3) \AA^{3}$
2
$0.548 \mathrm{mg}^{-1}$
984
Cut block; dark red
$0.36 \times 0.22 \times 0.20 \mathrm{~mm}$
$-15 \leq h \leq 14,-16 \leq k \leq 16,-21 \leq / \leq 21$
39295
$9615\left[R_{\text {int }}=0.0281\right]$
99.3 \%

Multiscans
0.8983 and 0.8271

Full-matrix least-squares on F^{2}
9615/0/734
$R I=0.0301, w R 2=0.0722$
$R I=0.0354, w R 2=0.0753$
0.0023 (3)
0.807 and $-0.767 \mathrm{e}^{-3}$

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill asymmetric unit sphere). Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

Special details:

Appendix II: X-Ray Structure of Ruthenium Complex 80

Table 2. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{e q}$	S.o.f.
Cl	2285(2)	3239(2)	2480(1)	16(1)	1
C2	3575(2)	3375(2)	2744(1)	17(1)	1
C3	3882(2)	3704(2)	3641(1)	19(1)	1
C3A	2819(2)	3829(2)	3954(1)	18(1)	1
C4	2627(2)	4224(2)	4785(1)	23(1)	1
C5	1501(2)	4272(2)	4865(1)	28(1)	1
C6	502(2)	3943(2)	4148(2)	30(1)	1
C7	637(2)	3578(2)	3340(1)	22(1)	1
C7A	1827(2)	3531(2)	3225(1)	15(1)	1
C8	1530(2)	2811(2)	1576(1)	17(1)	1
C9	1623(2)	1635(2)	1091(1)	18(1)	1
C10	1914(2)	3780(2)	1126(1)	20(1)	1
C11	3305(2)	4215(2)	1058(1)	24(1)	1
C11'	1609(2)	4858(2)	1541(2)	$26(1)$	1
C12'	1951(3)	5807(2)	1088(2)	$35(1)$	1
C12	3640(3)	5171(2)	610(2)	$32(1)$,
C13	3345(3)	6243(2)	1047(2)	37(1)	1
C14	-270(2)	-372(2)	1437(1)	17(1)	1
C15	-1147(2)	-6(2)	1086(1)	18(1)	1
C16	-2453(2)	-721(2)	896(1)	24(1)	1
C17	-2896(2)	-1805(2)	1059(1)	27(1)	1
C18	-2039(2)	-2181(2)	1417(2)	32(1)	1
C19	-737(2)	-1470(2)	1608(2)	$29(1)$	1
C20	2145(2)	-368(2)	1120(1)	19(1)	,
C21	1441(2)	-1478(2)	472(1)	$26(1)$	1
C22	2062(3)	-2040(2)	-35(2)	34(1)	,
C23	3374(3)	-1513(2)	96(2)	$35(1)$	1
C24	4079(3)	-425(2)	746 (2)	$31(1)$	1
C25	3471(2)	146(2)	1255(1)	23(1)	,
C26	2548(2)	-497(2)	3798(1)	14(1)	1
C27	1862(2)	-1467(2)	3052(1)	17(1)	1
C28	1077(2)	-2605(2)	3072(1)	22(1)	1
C29	966(2)	-2781(2)	3844(2)	24(1)	1
C30	1658(2)	-1834(2)	4588(2)	24(1)	1
C31	2452(2)	-698(2)	4568(1)	19(1)	,
C32	4822(2)	802(2)	3335(1)	15(1)	1
C33	5018(2)	-262(2)	3242(1)	20(1)	1
C34	6083(2)	-354(2)	2982(2)	$26(1)$,
C35	6980(2)	619(2)	2837(1)	$26(1)$	1
C36	6798(2)	1683(2)	2930(1)	24(1)	1
C37	5719(2)	1767(2)	3169(1)	$21(1)$	1
C38	4212(2)	1942(2)	4830(1)	$15(1)$,
C39	5499(2)	2339(2)	5200(1)	$21(1)$,
C40	5992(2)	3073(2)	6044(1)	2661)	1
C41	5207(2)	3393(2)	6524(1)	25(1)	1
C42	3923(2)	2997(2)	6165(1)	22(1)	1
C43	3432(2)	2286(2)	5319(1)	18(1)	1
C44	-5(2)	118(2)	3612(1)	$21(1)$	1
C45	-1012(2)	-812(2)	3810(2)	$31(1)$	1
N1	807(2)	801(2)	3443(1)	17(1)	1
P1	1444(1)	590(1)	1716(1)	$15(1)$	1
P2	3475(1)	1003(1)	3720(1)	12(1)	1
Ru1	2303(1)	1872(1)	3094(1)	12(1)	1
P3	2654(1)	-4722(1)	-2226(1)	$26(1)$	1
F1	3279(2)	-4539(1)	-3003(1)	43(1)	1
F2	1536(2)	-4422(2)	-2625(1)	$63(1)$	1
F3	1844(1)	-6141(1)	-2763(1)	44(1)	1
F4	3747(2)	-5085(2)	-1885(1)	56(1)	1
F5	3482(2)	-3323(2)	-1720(1)	$65(1)$	1

Appendix II: X-Ray Structure of Ruthenium Complex 80

$\begin{array}{llllll}\text { F6 } & \text { 1996(3) } & \text {-4930(2) } & \text {-1477(1) } & 80(1) & 1\end{array}$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

C1-C7A	1.429(3)	C16-H16	0.93(3)
C1-C2	1.438(3)	C17-C18	$1.380(3)$
C1-C8	1.513(3)	C17-H17	0.95(3)
C1-Rul	2.2147 (18)	C18-C19	$1.386(3)$
C2-C3	1.422(3)	C18-H18	0.86(3)
C2-Rul	$2.1878(19)$	C19-H19	0.93(3)
$\mathrm{C} 2-\mathrm{H} 2$	0.96(2)	C20-C25	1.393 (3)
C3-C3A	1.434(3)	C20-C21	1.395 (3)
C3-Ru1	$2.2038(18)$	C20-P1	1.828(2)
C3-H3	0.97(2)	C21-C22	$1.387(3)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	1.427(3)	C21-H21	0.96 (3)
C3A-C7A	1.444(3)	C22-C23	1.379(4)
C3A-Rul	2.2954(18)	C22-H22	0.92(3)
C4-C5	1.344(3)	C23-C24	$1.381(4)$
C4-H4	0.96(2)	C23-H23	0.94(3)
C5-C6	1.425(3)	C24-C25	1.384(3)
C5-H5	0.93(3)	C24-H24	0.91(3)
C6-C7	1.363(3)	C25-H25	0.91 (3)
C6-H6	0.91(3)	C26-C27	1.393(3)
C7-C7A	1.431(3)	C26-C31	1.394 (3)
$\mathrm{C} 7-\mathrm{H} 7$	0.93(3)	C26-P2	1.8304(19)
C7A-Rul	2.2833(18)	C27-C28	1.388 (3)
C8-C9	1.523(3)	C27-H27	0.94(2)
C8-C10	1.547(3)	C28-C29	1.387(3)
C8-H8	1.00(2)	C28-H28	0.94(3)
C9-P1	1.846(2)	C29-C30	1.379(3)
C9-H9A	0.97(2)	C29-H29	0.94(3)
С9-H9B	0.99(2)	C30-C31	$1.389(3)$
C10-C11'	1.522(3)	C30-H30	0.92(3)
C10-C11	1.527(3)	C31-H31	0.91(2)
$\mathrm{C} 10-\mathrm{H} 10$	1.00 (2)	C32-C37	1.390 (3)
C11-C12	1.528(3)	C32-C33	1.392 (3)
C11-H11A	1.01(2)	C32-P2	1.8263(19)
C11-H11B	0.96(3)	C33-C34	$1.386(3)$
C11'-C12'	1.528 (3)	C33-H33	0.93(3)
C11'-H11C	0.99(2)	C34-C35	$1.380(3)$
C11'-H11D	0.96(3)	C34-H34	0.93(3)
C12'-C13	1.518(4)	C35-C36	1.384(3)
C12'-H12C	0.98(3)	C35-H35	0.95(3)
C $12{ }^{\prime}-\mathrm{H} 12 \mathrm{D}$	0.93(3)	C36-C37	$1.385(3)$
$\mathrm{C} 12-\mathrm{Cl} 13$	1.519(4)	C36-H36	0.95 (3)
C12-H12A	0.94(2)	C37-H37	0.94(2)
C12-H12B	0.96(3)	C38-C39	1.391 (3)
C13-H13A	1.04(3)	C38-C43	1.394(3)
C13-H13B	1.00(3)	C38-P2	1.8287(19)
C14-C15	1.384(3)	C39-C40	$1.389(3)$
C14-C19	1.395 (3)	C39-H39	0.93(3)
C14-P1	1.8286(19)	C40-C41	1.378 (3)
C15-C16	1.391 (3)	C40-H40	0.93(3)
C15-H15	0.92(2)	C41-C42	1.383(3)
C16-C17	1.371(3)	C41-H41	0.97(3)

Appendix II: X-Ray Structure of Ruthenium Complex 80

C42-C43	$1.385(3)$	C1-C8-C10	114.44(16)
C42-H42	0.95(3)	C9-C8-C10	112.08(16)
C43-H43	0.93(2)	C1-C8-H8	106.7(12)
C44--N1	1.137(3)	C9-C8-H8	108.5(12)
$\mathrm{C} 44-\mathrm{C} 45$	$1.455(3)$	C10-C8-H8	106.6(12)
C45-H45A	0.87(5)	C8-C9-P1	111.91 (14)
C45-H45B	0.91(4)	C8-C9-H9A	$111.8(13)$
C45-H45C	0.94(5)	P1-C9-H9A	111.7(13)
N1-Rul	2.0216(17)	C8-C9-H9B	109.2(13)
P1-Rul	2.2990 (6)	P1-C9-H9B	103.2(13)
P2-Rul	$2.3311(5)$	H9A-C9-H9B	108.7(18)
P3-F6	$1.5775(18)$	C11--C10-Cl1	$110.85(17)$
P3-F5	$1.5786(17)$	C11'-C10-C8	110.98(17)
P3-F4	$1.5823(16)$	C11-C10-C8	$113.86(17)$
P3-F2	$1.5923(17)$	C11'-C10-H10	106.8(14)
P3-F1	$1.5944(16)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	107.4(14)
P3-F3	1.6032(15)	C8-C10-H10	106.5(14)
		$\mathrm{C} 10-\mathrm{Cl1-C12}$	111.99 (19)
C7A-C1-C2	107.54(17)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.0(13)
C7A-C1-C8	126.13(17)	C12-C11-H11A	108.2(13)
C2-C1-C8	126.28(18)	C10-C11-H11B	108.0(16)
C7A-C1-Ru1	74.11(10)	C12-C11-H11B	107.5(16)
C2-Cl-Rul	69.92(11)	H11A-C11-H11B	112(2)
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{Ru} 1$	119.44(12)	$\mathrm{C} 10-\mathrm{C} 11^{\prime}-\mathrm{C} 12^{\prime}$	$111.5(2)$
C3-C2-C1	108.02(17)	C10-C11--H11C	109.2(13)
C3-C2-Ru1	71.72(11)	$\mathrm{C} 12{ }^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{H} 11 \mathrm{C}$	108.8(13)
C1-C2-Rul	71.94(11)	C10-C11'-H11D	108.1(15)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	125.8(14)	C12'-C11'-H11D	112.8(15)
C1-C2-H2	125.9(14)	H11C-C11'-H11D	106(2)
Ru1-C2-H2	126.4(15)	C13-C12'-C11'	111.2(2)
C2-C3-C3A	108.98(17)	C13-C12'-H12C	106.4(18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Ru} 1$	70.51(11)	$\mathrm{C} 11^{\prime}-\mathrm{C} 12{ }^{\prime}-\mathrm{H} 12 \mathrm{C}$	108.1(18)
C3A-C3-Rul	74.92(11)	C13-C12'-H12D	109.3(18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	125.7(14)	C11 ${ }^{-} \mathrm{C} 12{ }^{\prime}-\mathrm{H} 12 \mathrm{D}$	$109.9(18)$
C3A-C3-H3	125.3(14)	H12C-C12'-H12D	112(3)
Ru1-C3-H3	122.5(14)	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	110.8(2)
C4-C3A-C3	133.37(19)	C13-C12-H12A	108.6(13)
C4-C3A-C7A	119.80(19)	C11-C12-H12A	107.5(13)
C3-C3A-C7A	106.74(17)	C13-C12-H12B	$110.2(16)$
C4-C3A-Ru1	128.44(14)	C11-C12-H12B	$110.9(16)$
C3-C3A-Ru1	67.97(10)	H12A-C12-H12B	109(2)
C7A-C3A-Rul	71.17(10)	C12'-C13-C12	$110.5(2)$
C5-C4-C3A	118.6(2)	C12'-C13-H13A	109.5(16)
C5-C4-H4	121.0(14)	C12-C13-H13A	108.6(16)
C3A-C4-H4	120.4(14)	C12'-C13-H13B	$111.5(18)$
C4-C5-C6	122.0(2)	C12-C13-H13B	108.8(18)
C4-C5-H5	118.3(16)	H13A-C13-H13B	108(2)
C6-C5-H5	119.6(16)	C15-C14-C19	$117.95(18)$
C7-C6-C5	122.0(2)	C15-C14-P1	121.04(15)
C7-C6-H6	118.3(17)	C19-C14-P1	120.95(15)
C5-C6-H6	119.7(17)	C14-C15-C16	121.09 (19)
C6-C7-C7A	117.9(2)	C14-C15-H15	121.8(15)
C6-C7-H7	122.8(15)	C16-C15-H15	117.1(15)
C7A-C7-H7	119.2(15)	C17-C16-C15	120.2(2)
C1-C7A-C7	131.71(18)	C17-C16-H16	122.4(16)
C1-C7A-C3A	108.67(17)	C15-C16-H16	117.4(16)
C7-C7A-C3A	119.61(18)	C16-C17-C18	119.6 (2)
C1-C7A-Ru1	68.89(10)	C16-C17-H17	120.6(16)
C7-C7A-Ru1	125.50(13)	C18-C17-H17	$119.8(16)$
C3A-C7A-Rul	72.08(10)	C17-C18-C19	120.3(2)
C1-C8-C9	108.28(15)	C17-C18-H18	120(2)

Appendix II: X-Ray Structure of RuThenium Complex 80

C19-C18-H18	120(2)	C40-C39-C38	120.1(2)
C18-C19-C14	120.8(2)	C40-C39-H39	119.1(15)
C18-C19-H19	120.2(18)	C38-C39-H39	120.8(15)
C14-C19-H19	118.9(18)	C41-C40-C39	120.4(2)
C25-C20-C21	118.9(2)	C41-C40-H40	119.7(17)
C25-C20-P1	116.19(15)	C39-C40-H40	119.9(17)
C21-C20-P1	124.26(17)	C40-C41-C42	120.10(19)
C22-C21-C20	119.9(2)	C40-C41-H41	120.3(15)
C22--C21-H21	121.1(15)	C42-C41-H41	119.6(15)
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$	118.9(15)	C41-C42-C43	119.8(2)
C23-C22-C21	120.6(2)	$\mathrm{C} 41-\mathrm{C} 42-\mathrm{H} 42$	119.8(15)
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	120.8(19)	$\mathrm{C} 43-\mathrm{C} 42-\mathrm{H} 42$	120.4(15)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	$118.5(19)$	C42-C43-C38	120.71(19)
C22-C23-C24	119.7(2)	C42-C43-H43	118.9(14)
C22-C23-H23	$119.9(17)$	C38-C43-H43	120.4(14)
C24-C23-H23	120.3(17)	N1-C44-C45	176.5(2)
C23--C24-C25	120.2(2)	C44-C45-H45A	108(3)
C23-C24-H24	122.0(18)	C44-C45-H45B	107(2)
C25-C24-H24	117.8(19)	H45A-C45-H45B	117(4)
C24-C25-C20	120.6(2)	C44-C45-H45C	111(3)
C24-C25-H25	121.8(16)	H45A-C45-H45C	106(4)
C20-C25-H25	$117.6(16)$	H45B-C45-H45C	108(4)
C27-C26-C31	118.58(18)	C44-N1-Ru1	174.03(16)
C27-C26-P2	118.34(15)	C20-P1-C14	104.95(9)
C31-C26-P2	123.02(15)	C20-P1-C9	98.12(9)
C28-C27-C26	120.90(19)	C14-P1-C9	104.59(9)
C28-C27-H27	118.5(14)	C20-P1-Ru1	125.10(6)
C26-C27-H27	120.6(14)	C14-Pl-Rul	$116.44(6)$
C29-C28-C27	119.8(2)	C9-P1-Ru1	104.20(6)
C29-C28-H28	119.8(15)	C32-P2-C38	102.31(9)
C27-C28-H28	120.4(15)	C32-P2-C26	102.93(9)
C30-C29-C28	119.90(19)	C38-P2-C26	102.43(9)
C30-C29-H29	120.6(16)	C32-P2-Ru1	121.43(6)
C28-C29-H29	$119.5(16)$	C38-P2-Rul	109.59(6)
C29-C30-C31	120.4(2)	C26-P2-Rul	115.81(6)
C29-C30-H30	119.9(18)	N1-Rul-C2	162.05(7)
C31-C30-H30	119.8(18)	N1-Ru1-C3	137.87(7)
C30-C31-C26	120.42(19)	C2-Ru1-C3	37.77(7)
C30-C31-H31	119.1(14)	N1-Rul-C1	125.68(7)
C26-C31-H31	$120.5(14)$	C2-Ru1-C1	38.14(7)
C37-C32-C33	118.75(18)	C3-Rul-Cl	63.17(7)
C37-C32-P2	118.89(15)	N1-Ru1-C7A	99.93(7)
C33-C32-P2	122.28(15)	C2-Rul-C7A	62.26(7)
C34-C33-C32	120.3(2)	C3-Ru1-C7A	61.92(7)
C34-C33-H33	$118.5(16)$	C1-Rul-C7A	37.01(7)
C32-C33-H33	121.1(16)	N1-Ru1-C3A	105.26(7)
C35-C34-C33	120.4(2)	C2-Rul-C3A	62.41 (7)
C35-C34-H34	120.5(16)	C3-Rul-C3A	$37.10(7)$
C33-C34-H34	119.1(16)	C1-Rul-C3A	$62.29(7)$
C34-C35-C36	119.8(2)	C7A-Ru1-C3A	$36.75(7)$
C34-C35-H35	120.1(16)	N1-Rul-P1	89.65(5)
C36-C35-H35	120.0(16)	C2-Ru1-P1	$93.68(5)$
C35-C36-C37	119.9(2)	C3-Rul-P1	131.09(6)
C35-C36-H36	122.3(15)	Cl-Ru1-P1	81.01 (5)
C37-C36-H36	$117.8(15)$	C7A-Rul-P1	107.71(5)
C36-C37-C32	120.80(19)	C3A-Ru1-Pl	142.57(5)
C36-C37-H37	119.2(14)	N1-Rul-P2	85.78(5)
C32-C37-H37	120.0(14)	C2-Rul-P2	$110.23(5)$
C39-C38-C43	118.96 (18)	C3-Rul-P2	91.79(5)
C39-C38-P2	123.60(15)	C1-Rul-P2	148.33(5)
C43-C38-P2	117.43(14)	C7A-Ru1-P2	146.54(5)

Appendix II: X-Ray Structure of Ruthenium Complex 80

C3A-Ru1-P2	$109.86(5)$	F5-P3-F1	$88.65(10)$
P1-Ru1-P2	$105.243(19)$	F4-P3-F1	$89.42(10)$
F6-P3-F5	$92.69(12)$	F2-P3-F1	$88.48(10)$
F6-P3-F4	$9.64(12)$	F6-P3-F3	$89.25(11)$
F5-P3-F4	$91.77(11)$	F5-P3-F3	$178.01(11)$
F6-P3-F2	$90.40(12)$	F4-P3-F3	$87.71(9)$
F5-P3-F2	$91.09(11)$	F2-P3-F3	$89.36(10)$
F4-P3-F2	$176.40(12)$	F1-P3-F3	$89.42(9)$
F6-P3-F1	$178.27(13)$		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C1	$18(1)$	$11(1)$	$20(1)$	$8(1)$	$5(1)$	$5(1)$
C2	$15(1)$	$13(1)$	$22(1)$	$7(1)$	$5(1)$	$3(1)$
C3	$14(1)$	$10(1)$	$27(1)$	$6(1)$	$-1(1)$	$1(1)$
C3A	$21(1)$	$9(1)$	$19(1)$	$3(1)$	$0(1)$	$4(1)$
C4	$33(1)$	$15(1)$	$18(1)$	$4(1)$	$2(1)$	$9(1)$
C5	$43(1)$	$24(1)$	$21(1)$	$6(1)$	$13(1)$	$18(1)$
C6	$31(1)$	$29(1)$	$38(1)$	$12(1)$	$17(1)$	$20(1)$
C7	$21(1)$	$19(1)$	$28(1)$	$8(1)$	$3(1)$	$11(1)$
C7A	$18(1)$	$10(1)$	$19(1)$	$5(1)$	$2(1)$	$6(1)$
C8	$15(1)$	$17(1)$	$19(1)$	$7(1)$	$2(1)$	$6(1)$
C9	$19(1)$	$17(1)$	$18(1)$	$7(1)$	$3(1)$	$5(1)$
C10	$23(1)$	$17(1)$	$18(1)$	$7(1)$	$1(1)$	$7(1)$
C11	$27(1)$	$20(1)$	$24(1)$	$8(1)$	$7(1)$	$7(1)$
C11	$30(1)$	$21(1)$	$29(1)$	$12(1)$	$6(1)$	$11(1)$
C12	$48(2)$	$26(1)$	$40(1)$	$19(1)$	$11(1)$	$20(1)$
C12	$35(1)$	$30(1)$	$30(1)$	$18(1)$	$10(1)$	$6(1)$
C13	$45(2)$	$23(1)$	$42(1)$	$19(1)$	$7(1)$	$9(1)$
C14	$17(1)$	$15(1)$	$13(1)$	$3(1)$	$0(1)$	$3(1)$
C15	$19(1)$	$18(1)$	$16(1)$	$4(1)$	$5(1)$	$7(1)$
C16	$18(1)$	$29(1)$	$22(1)$	$5(1)$	$4(1)$	$11(1)$
C17	$17(1)$	$28(1)$	$25(1)$	$4(1)$	$3(1)$	$-1(1)$
C18	$27(1)$	$22(1)$	$37(1)$	$14(1)$	$-1(1)$	$-4(1)$
C19	$23(1)$	$23(1)$	$33(1)$	$14(1)$	$-6(1)$	$2(1)$
C20	$25(1)$	$20(1)$	$15(1)$	$7(1)$	$3(1)$	$13(1)$
C21	$34(1)$	$20(1)$	$23(1)$	$6(1)$	$0(1)$	$14(1)$
C22	$59(2)$	$25(1)$	$21(1)$	$3(1)$	$4(1)$	$26(1)$
C23	$59(2)$	$40(1)$	$27(1)$	$17(1)$	$20(1)$	$38(1)$
C24	$35(1)$	$46(1)$	$30(1)$	$21(1)$	$16(1)$	$27(1)$
C25	$27(1)$	$28(1)$	$18(1)$	$8(1)$	$6(1)$	$14(1)$
C26	$12(1)$	$14(1)$	$19(1)$	$6(1)$	$4(1)$	$7(1)$
C27	$17(1)$	$17(1)$	$19(1)$	$6(1)$	$3(1)$	$8(1)$
C28	$17(1)$	$16(1)$	$29(1)$	$5(1)$	$2(1)$	$6(1)$
C29	$19(1)$	$18(1)$	$38(1)$	$14(1)$	$10(1)$	$5(1)$
C30	$24(1)$	$24(1)$	$30(1)$	$16(1)$	$12(1)$	$10(1)$
C31	$20(1)$	$18(1)$	$20(1)$	$7(1)$	$6(1)$	$9(1)$
C32	$13(1)$	$18(1)$	$14(1)$	$4(1)$	$2(1)$	$7(1)$
C33	$19(1)$	$20(1)$	$24(1)$	$9(1)$	$7(1)$	$9(1)$
C34	$25(1)$	$26(1)$	$33(1)$	$10(1)$	$11(1)$	$17(1)$
C35	$21(1)$	$36(1)$	$26(1)$	$11(1)$	$11(1)$	$16(1)$
C36	$19(1)$	$29(1)$	$29(1)$	$16(1)$	$11(1)$	$9(1)$
C37	$19(1)$	$20(1)$	$27(1)$	$11(1)$	$7(1)$	$9(1)$
C38	$18(1)$	$13(1)$	$15(1)$	$6(1)$	$2(1)$	$6(1)$

Appendix II: X-Ray Structure of Ruthenium Complex 80

C39	$20(1)$	$21(1)$	$22(1)$	$6(1)$	$2(1)$	$10(1)$
C40	$22(1)$	$24(1)$	$24(1)$	$4(1)$	$-5(1)$	$7(1)$
C41	$35(1)$	$16(1)$	$16(1)$	$1(1)$	$-1(1)$	$8(1)$
C42	$31(1)$	$16(1)$	$18(1)$	$6(1)$	$9(1)$	$9(1)$
C43	$19(1)$	$15(1)$	$20(1)$	$6(1)$	$5(1)$	$5(1)$
C44	$16(1)$	$20(1)$	$28(1)$	$9(1)$	$7(1)$	$9(1)$
C45	$21(1)$	$30(1)$	$48(2)$	$21(1)$	$16(1)$	$8(1)$
N1	$15(1)$	$17(1)$	$19(1)$	$6(1)$	$4(1)$	$8(1)$
P1	$14(1)$	$12(1)$	$15(1)$	$5(1)$	$1(1)$	$4(1)$
P2	$12(1)$	$12(1)$	$13(1)$	$4(1)$	$3(1)$	$4(1)$
Rul	$11(1)$	$11(1)$	$15(1)$	$4(1)$	$2(1)$	$4(1)$
P3	$26(1)$	$26(1)$	$32(1)$	$14(1)$	$9(1)$	$13(1)$
F1	$52(1)$	$33(1)$	$44(1)$	$16(1)$	$24(1)$	$10(1)$
F2	$41(1)$	$64(1)$	$113(2)$	$54(1)$	$23(1)$	$36(1)$
F3	$26(1)$	$27(1)$	$69(1)$	$18(1)$	$5(1)$	$2(1)$
F4	$32(1)$	$50(1)$	$83(1)$	$32(1)$	$-10(1)$	$14(1)$
F5	$105(2)$	$28(1)$	$40(1)$	$-2(1)$	$-2(1)$	$17(1)$
F6	$136(2)$	$82(1)$	$76(1)$	$53(1)$	$79(2)$	$69(2)$

Table 1. Crystal data and structure refinement.

Identification code	03sot0178 (DCP099/1)
Empirical formula	$\mathrm{C}_{53} \mathrm{H}_{54} \mathrm{ClP}_{2} \mathrm{Ru}$
Formula weight	889.42
Temperature	120(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	Pna2 ${ }_{1}$
Unit cell dimensions	$a=17.914(2) \AA \quad \alpha=90^{\circ}$
	$b=10.939(2) \AA \quad \beta=90^{\circ}$
	$c=22.184(5) \AA \quad \gamma=90^{\circ}$
Volume	$4347.2(14) \AA^{3}$
Z	4
Density (calculated)	$1.359 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.532 \mathrm{~mm}^{-1}$
F(000)	1852
Crystal	Plate; orange
Crystal size	$0.16 \times 0.08 \times 0.02 \mathrm{~mm}^{3}$
θ range for data collection	$2.92-27.47^{\circ}$
Index ranges	$-23 \leq h \leq 22,-13 \leq k \leq 14,-28 \leq l \leq 28$
Reflections collected	56108
Independent reflections	$9792\left[R_{\text {int }}=0.0991\right]$
Completeness to $\theta=27.47^{\circ}$	99.5\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9894 and 0.9197
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9792/1/515
Goodness-of-fit on F^{2}	1.133
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0652, w R 2=0.1476$
R indices (all data)	$R 1=0.0802, w R 2=0.1546$
Absolute structure parameter	0.04(5)
Extinction coefficient	0.0023(4)
Largest diff. peak and hole	0.964 and -0.908 e \AA^{-3}

[^1]Special details:
The system was found to have higher symmetry than the data suggested. The symmetry was changed using the Addsym module of Platon.

Appendix III: X-Ray Structure of Ruthenium Complex 81
Table 2. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors.
$U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{e q}$	S.o.f.
Cl	9208(4)	10323(6)	8473(3)	33(1)	1
C2	8716(3)	10836(5)	8032(3)	32(1)	1
C3	9155(4)	$11769(5)$	7726 (3)	$38(2)$	1
C3A	9830(4)	11808(5)	7951(3)	40(2)	1
C4	10483(4)	12707(6)	7826(4)	51(2)	1
C5	11180(4)	12390(7)	8170(3)	51(2)	1
C6	11044(4)	11976(7)	8809(3)	47(2)	1
C7	10601(4)	10772(6)	8821(3)	40(2)	1
C7A	9913(4)	10916(5)	8424(3)	35(1)	1
C8	9021(4)	9267(6)	8895(3)	$38(1)$	1
C9	8732(3)	8192(5)	8511(3)	$35(1)$	1
C10	8473(4)	9717(7)	9397(3)	42(2)	1
C11'	8840(5)	10632(9)	9811(4)	65(2)	1
C11	8152(4)	8640(7)	9760(3)	43(2)	1
C12	7624(5)	9094(8)	10259(3)	57(2)	1
C12'	8301(6)	11056(9)	10293(4)	$76(3)$	1
C13	7998(6)	10006(10)	10667(4)	77(3)	1
C14	10168(4)	7153(6)	8280(3)	38(1)	1
C15	$10911(4)$	7525(7)	8246(3)	43(2)	1
C16	$11462(4)$	6860(8)	8524(4)	56(2)	1
C17	11283(5)	5783(8)	8844(4)	61(2)	1
C18	10561(6)	5395(7)	8882(4)	60(2)	1
C19	9992(5)	6060(6)	8603(3)	47(2)	1
C20	9007(3)	6655(5)	7483(3)	36(1)	1
C21	9466(4)	5853(6)	7171(4)	49(2)	1
C22	9162(5)	4886(6)	6865(4)	54(2)	1
C23	8436(5)	4675(6)	6839(4)	52(2)	1
C24	7958(4)	5428(6)	7145(3)	45(2)	1
C25	8237(4)	6429(6)	7473(3)	41(2)	1
C26	9263(3)	8396(6)	6141(3)	34(1)	1
C27	9957(4)	7802(7)	6179(3)	45(2)	1
C28	10115(5)	6795(8)	5835(4)	57(2)	1
C29	9576(5)	6327(8)	5443(4)	$58(2)$	1
C30	8901(5)	6887(7)	5404(3)	55(2)	1
C31	8724(4)	7933 (7)	5745(3)	49(2)	1
C32	8101(3)	9967(5)	6609(3)	30 (1)	1
C33	7636(4)	8989(7)	6747(4)	53(2)	1
C34	6872(4)	9170(8)	6826(4)	59(2)	1
C35	6569(4)	10332(8)	6772(4)	52(2)	1
C36	7018(4)	11334(7)	6643(4)	51(2)	1
C37	7793(3)	11145(6)	6555(3)	40(2)	1
C38	9414(4)	10972(6)	6056(3)	$35(1)$	1
C39	9096(4)	11026(7)	5484(3)	47(2)	1
C40	9325(4)	11905(7)	5073(3)	49(2)	1
C41	9884(4)	12728(6)	5224(3)	45(2)	1
C42	10213(4)	12649(6)	5780(3)	40(2)	1
C43	9989(4)	11771(6)	6194(3)	$35(1)$	1
Cll	10898(1)	9765(2)	7159(1)	38(1)	1
P1	9416(1)	7967(1)	7893(1)	31(1)	1
P2	9126(1)	9787(2)	6604(1)	27(1)	1
Rul	9621(1)	9927(1)	7565(1)	26(1)	1
C101	8585(7)	14028(11)	9608(7)	103(4)	1
C102	8572(7)	13672(11)	9038(5)	88(3)	1
C103	8126(7)	14177(9)	8632(6)	83(3)	1
C104	7534(6)	15370(8)	9351(6)	73(3)	1
C105	7639(5)	14989(9)	8798(5)	68(3)	1
C106	8054(12)	15000(11)	9819(6)	120(7)	1

Appendix III: X-Ray Structure of Ruthenium Complex 81

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

C1-C7A	1.424(9)	C18-H18	0.9500
C1-C2	1.432(9)	C19-H19	0.9500
C1-C8	1.525(9)	C20-C21	$1.386(9)$
C1-Rul	$2.188(7)$	C20-C25	1.403(8)
C2-C3	$1.456(9)$	C20-P1	1.850(6)
C2-Rul	$2.166(6)$	C21-C22	1.370(9)
C2-H2	0.9500	$\mathrm{C} 21-\mathrm{H} 21$	0.9500
C3-C3A	1.309(10)	C22-C23	1.322(12)
$\mathrm{C} 3-\mathrm{Ru} 1$	$2.210(6)$	C22-H22	0.9500
C3-H3	0.9500	C23-C24	1.368(12)
C3A-C7A	1.441(9)	C23-H23	0.9500
C3A-C4	1.554(9)	C24-C25	1.406(9)
C3A-Ru1	2.260 (6)	C24-H24	0.9500
C4-C5	1.504(11)	C25-H25	0.9500
C4-H4A	0.9900	C26-C31	1.400(9)
C4-H4B	0.9900	C26-C27	1.406(9)
C5-C6	1.508(10)	C26-P2	$1.853(6)$
C5-H5A	0.9900	C27-C28	1.370(10)
C5-H5B	0.9900	C27-H27	0.9500
C6-C7	1.538(9)	C28-C29	$1.396(11)$
C6-H6A	0.9900	C28-H28	0.9500
C6-H6B	0.9900	C29-C30	1.359(12)
C7-C7A	1.522(9)	C29-H29	0.9500
C7-H7A	0.9900	C30-C31	1.408(11)
C7-H7B	0.9900	C30-H30	0.9500
C7A-Ru1	2.253(6)	C31-H31	0.9500
C8-C9	1.542(8)	C32-C33	1.389(9)
C8-C10	1.564(9)	C32-C37	1.408 (8)
C8-H8	1.0000	C32-P2	$1.846(6)$
C9-P1	1.855(6)	C33-C34	1.394(10)
C9-H9A	0.9900	C33-H33	0.9500
C9-H9B	0.9900	C34-C35	$1.388(11)$
C10-C11'	1.508(11)	C34-H34	0.9500
$\mathrm{C} 10-\mathrm{C} 11$	$1.538(10)$	C35-C36	1.389(11)
C11'-C12'	1.514(12)	C35-H35	0.9500
C11-H11A	0.9900	C36-C37	1.417(9)
C11'-H11B	0.9900	C36-H36	0.9500
C11-C12	1.539(10)	C37-H37	0.9500
C11-H11C	0.9900	C38-C43	1.384(9)
C11-H11D	0.9900	C38-C39	1.393(9)
$\mathrm{C} 12-\mathrm{C} 13$	1.504(12)	C38-P2	1.851(6)
C12-H12A	0.9900	C39-C40	$1.387(10)$
C12-H12B	0.9900	C39-H39	0.9500
C12'-C13	1.517(13)	C40-C41	1.387(10)
C12'-H12C	0.9900	C40-H40	0.9500
C12'-H12D	0.9900	C41-C42	1.370(10)
C13-H13A	0.9900	C41-H41	0.9500
C13-H13B	0.9900	C42-C43	1.389(9)
C14-C15	$1.395(10)$	C42-H42	0.9500
C14-C19	1.429(9)	$\mathrm{C} 43-\mathrm{H} 43$	0.9500
C14-P1	1.827(6)	Cll-Rul	2.4646(15)
C15-C16	1.373(10)	P1-Ru1	2.2937(17)
C15-H15	0.9500	P2-Rul	$2.3144(18)$
C16-C17	1.412(13)	C101-C102	1.324(16)
C16-H16	0.9500	C101-C106	1.50(2)
C17-C18	1.363(13)	C101-H101	0.9500
C17-H17	0.9500	C102-C103	1.325(15)
C18-C19	1.397(10)	C102-H102	0.9500

Appendix III: X-Ray Structure of Ruthenium Complex 81			
C103-C105	1.299(14)	C7-C7A-Ru1	128.9(4)
C103-H103	0.9500	C1-C8-C9	108.2(6)
C104-C105	$1.309(15)$	C1-C8-C10	109.7(5)
C104-C106	1.45(2)	C9-C8-C10	115.0(6)
C104-H104	0.9500	C1-C8-H8	107.9
C105-H105	0.9500	C9-C8-H8	107.9
C106-H106	0.9500	C10-C8-H8	107.9
		C8-C9-P1	106.8(4)
C7A-C1-C2	108.4(6)	C8-C9-H9A	110.4
C7A-C1-C8	125.9(6)	Pl-C9-H9A	110.4
C2-C1-C8	125.5(6)	C8-C9-H9B	110.4
C7A-C1-Rul	73.8(4)	$\mathrm{Pl}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	110.4
C2-Cl-Rul	69.9(4)	H9A-C9-H9B	108.6
C8-Cl-Rul	119.3(4)	C11'-C10-C11	$110.7(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	105.1(5)	$\mathrm{C} 11{ }^{\prime}-\mathrm{C} 10-\mathrm{C} 8$	111.66 (6)
C1-C2-Ru1	71.7(4)	C11-C10-C8	$111.4(6)$
C3-C2-Rul	72.2(3)	$\mathrm{C10-C11--C12'}$	110.8(7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	127.5	$\mathrm{Cl} 0-\mathrm{C} 11^{\prime}-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	127.5	C12'-C11'-H11A	109.5
Ru1-C2-H2	120.6	C10-C11-H11B	109.5
C3A-C3-C2	$110.2(6)$	C12'-C11'-H11B	109.5
C3A-C3-Ru1	75.1 (4)	H11A-Cl1'-H11B	108.1
C2-C3-Rul	68.9(3)	$\mathrm{C} 10-\mathrm{Cl} 1-\mathrm{Cl} 2$	111.0(6)
C3A-C3-H3	124.9	C10-C11-H11C	109.4
C2-C3-H3	124.9	C12-C11-H11C	109.4
Ru1-C3-H3	122.6	C10-C11-H11D	109.4
C3-C3A-C7A	110.6 (6)	C12-C11-H11D	109.4
C3-C3A-C4	130.4(6)	H11C-C11-H11D	108.0
C7A-C3A-C4	118.7(6)	C13-C12-C11	112.0(7)
C3-C3A-Rul	70.9(4)	C13-C12-H12A	109.2
C7A-C3A-Rul	71.1 (3)	C11-C12-H12A	109.2
C4-C3A-Rul	129.3(4)	C13-C12-H12B	109.2
C5-C4-C3A	112.9(6)	C11-C12-H12B	109.2
C5-C4-H4A	109.0	H12A-C12-H12B	107.9
C3A-C4-H4A	109.0	C11'-C12'-C13	112.5(8)
C5-C4-H4B	109.0	$\mathrm{C} 11^{\prime}-\mathrm{C} 12{ }^{\prime}-\mathrm{H} 12 \mathrm{C}$	109.1
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.0	C13-C12--H12C	109.1
H4A-C4-H4B	107.8	C11'-C12'-H12D	109.1
C4-C5-C6	114.3(6)	C13-C12'-H12D	109.1
C4-C5-H5A	108.7	H12C-C12'-H12D	107.8
C6-C5-H5A	108.7	C12-C13-C12'	109.4(7)
C4-C5-H5B	108.7	C12-C13-H13A	109.8
C6-C5-H5B	108.7	$\mathrm{C} 12{ }^{\prime}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	109.8
H5A-C5-H5B	107.6	C12-C13-H13B	109.8
C5-C6-C7	110.9(6)	$\mathrm{C} 12{ }^{\prime}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	109.8
C5-C6-H6A	109.5	H13A-C13-H13B	108.2
C7-C6-H6A	109.5	C15-C14-C19	118.8 (6)
C5-C6-H6B	109.5	C15-C14-P1	122.4(5)
C7-C6-H6B	109.5	C19-C14-P1	118.7(5)
H6A-C6-H6B	108.0	C16-C15-C14	120.5(7)
C7A-C7-C6	108.6(6)	C16-C15-H15	119.7
C7A-C7-H7A	110.0	C14-C15-H15	119.7
C6-C7-H7A	110.0	C15-C16-C17	120.2(8)
C7A-C7-H7B	110.0	C15-C16-H16	119.9
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	110.0	C17-C16-H16	119.9
H7A-C7-H7B	108.4	C18-C17-C16	120.4(7)
C1-C7A-C3A	105.8(6)	C18-C17-H17	119.8
C1-C7A-C7	128.8(6)	C16-C17-H17	119.8
C3A-C7A-C7	125.1(6)	C17-C18-C19	120.2(8)
C1-C7A-Ru1	68.8(4)	C17-C18-H18	119.9
C3A-C7A-Ru1	71.6(4)	C19-C18-H18	119.9

Appendix III: X-Ray Structure of Ruthenium Complex 81

C18-C19-C14	119.7(8)	C40-C39-H39	119.7
C18-C19-H19	120.1	C38-C39-H39	119.7
C14-C19-H19	120.1	C41-C40-C39	120.2(7)
C21-C20-C25	117.6(6)	C41-C40-H40	119.9
C21-C20-P1	120.1(5)	C39-C40-H40	119.9
C25-C20-P1	122.3(5)	C42-C41-C40	119.2(6)
C22-C21-C20	120.1(7)	C42-C41-H41	120.4
C22-C21-H21	120.0	C40-C41-H41	120.4
C20-C21-H21	120.0	C41-C42-C43	$121.0(6)$
C23-C22-C21	123.1(8)	C41-C42-H42	119.5
C23-C22-H22	118.4	C43-C42-H42	119.5
C21-C22-H22	118.4	C38-C43-C42	120.4(6)
C22-C23-C24	119.3(7)	C38-C43-H43	119.8
C22-C23-H23	120.4	C42-C43-H43	119.8
C24-C23-H23	120.4	C14-P1-C20	98.3(3)
C23-C24-C25	120.2(7)	C14-P1-C9	101.8 (3)
C23-C24-H24	119.9	C20-P1-C9	101.8(3)
C25-C24-H24	119.9	C14-P1-Rul	$119.1(2)$
C20-C25-C24	119.7(7)	C20-Pl-Rul	$129.2(2)$
C20-C25-H25	120.2	C9-P1-Ru1	$102.4(2)$
C24-C25-H25	120.2	C32-P2-C38	$101.9(3)$
C31-C26-C27	118.8(6)	C32-P2-C26	102.9(3)
C31-C26-P2	123.6(5)	C38-P2-C26	$100.0(3)$
C27-C26-P2	117.6(5)	C32-P2-Rul	$111.6(2)$
C28-C27-C26	121.3(7)	C38-P2-Ru1	116.9(2)
C28-C27-H27	119.4	C26-P2-Rul	121.0 (2)
C26-C27-H27	119.4	C2-Rul-C1	38.4(2)
C27-C28-C29	120.0(8)	C2-Ru1-C3	38.9(2)
C27-C28-H28	120.0	C1-Rul-C3	62.8(2)
C29-C28-H28	120.0	C2-Rul-C7A	63.2(2)
C30-C29-C28	119.3(7)	C1-Ru1-C7A	37.4(2)
C30-C29-H29	120.3	C3-Ru1-C7A	60.9(2)
C28-C29-H29	120.3	C2-Rul-C3A	61.6(2)
C29-C30-C31	122.2(7)	C1-Ru1-C3A	61.8(2)
C29-C30-H30	118.9	C3-Rul-C3A	34.0(2)
C31-C30-H30	118.9	C7A-Rul-C3A	37.2(2)
C26-C31-C30	118.4(7)	C2-Rul-P1	99.10(17)
C26-C31-H31	120.8	C1-Ru1-P1	80.76(17)
C30-C31-H31	120.8	C3-Rul-P1	137.79(16)
C33-C32-C37	119.2(6)	C7A-Ru1-P1	102.59(17)
C33-C32-P2	$121.0(5)$	C3A-Rul-P1	139.24 (17)
C37-C32-P2	119.1(4)	C2-Ru1-P2	100.59(16)
C32-C33-C34	$120.5(7)$	$\mathrm{Cl}-\mathrm{Ru} 1-\mathrm{P} 2$	137.00(18)
C32-C33-H33	119.8	C3-Rul-P2	93.68(18)
C34-C33-H33	119.8	C7A-Ru1-P2	154.15(17)
C35-C34-C33	120.2(7)	C3A-Rul-P2	118.20(18)
C35-C34-H34	119.9	P1-Ru1-P2	99.75 (6)
C33-C34-H34	119.9	C2-Rul-Cl1	154.50(17)
C34-C35-C36	120.9(7)	$\mathrm{Cl}-\mathrm{Rul}-\mathrm{Cl} 1$	131.61(19)
C34-C35-H35	119.5	C3-Rul-Cl1	118.37(18)
C36-C35-H35	119.5	C7A-Rul-Cl1	97.35(17)
C35-C36-C37	118.8(6)	C3A-Rul-Cll	92.88(19)
C35-C36-H36	120.6	P1-Rul-Cll	101.36 (6)
C37-C36-H36	120.6	P2-Rul-Cll	90.81(6)
C32-C37-C36	120.4(6)	C102-C101-C106	119.8(12)
C32-C37-H37	119.8	C102-C101-H101	120.1
C36-C37-H37	119.8	C106-C101-H101	120.1
C43-C38-C39	118.6 (6)	C101-C102-Cl03	122.5(13)
C43-C38-P2	120.3(5)	C101-C102-H102	118.7
C39-C38-P2	$121.0(5)$	C103-Cl02-H102	118.7
C40-C39-C38	120.5(7)	C105-C103-C102	119.8(12)

Appendix III: X-RAy STRUCTURE OF RUTHENIUM COMPLEX 81			
C105-C103-H103	120.1	C103-C105-H105	117.2
C102-C103-H103	120.1	C104-C105-H105	117.2
C105-C104-C106	$119.3(11)$	C104-C106-C101	$112.3(10)$
C105-C104-H104	120.4	C104-C106-H106	123.8
C106-C104-H104	120.4	C101-C106-H106	123.8
C103-C105-C104	$125.5(11)$		

Symmetry transformations used to generate equivalent atoms:

Appendix III: X-Ray Structure of Ruthenium Complex 81
Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*^{2}} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C 1	47(4)	20(3)	33(3)	-1(3)	-4(3)	-2(3)
C2	33(3)	38(3)	27(3)	-4(2)	-6(2)	0 (2)
C3	64(4)	25(3)	25(3)	-3(2)	21(3)	4(3)
C3A	72(5)	26(3)	21(3)	-5(2)	12(3)	4(3)
C4	65(5)	40(4)	48(4)	-5(3)	1 (4)	-21(3)
C5	52(4)	$51(4)$	51(4)	-9(3)	11(4)	-8(3)
C6	41(4)	49(4)	52(4)	-5(3)	-6(3)	-6(3)
C7	$41(4)$	44(4)	36(3)	-7(3)	-1(3)	-4(3)
C7A	43(3)	$31(3)$	31(3)	-8(2)	3(3)	-4(3)
C8	44(4)	34(3)	35(3)	-9(3)	-3(3)	1 (3)
C9	35(3)	33(3)	39(3)	-4(3)	6 (3)	-1(2)
C10	34(3)	68(5)	25(3)	0 (3)	8 (3)	10(3)
C11'	65(6)	82 (6)	49(5)	-14(4)	14(4)	-28(5)
C11	44(4)	52(4)	34(4)	-4(3)	-2(3)	4(3)
C12	70(5)	69(5)	$31(4)$	9 (4)	12(4)	-12(4)
C12'	80(6)	84(6)	64(6)	-41(5)	24(5)	-37(5)
C13	62 (6)	139(10)	$30(4)$	-23(5)	16(4)	-37(6)
C14	47(4)	36(3)	32(3)	-1(3)	-6(3)	10(3)
C15	38(4)	46(4)	45(4)	-3(3)	-10(3)	1(3)
C16	37(4)	77(5)	54(5)	-7(4)	-8(3)	16(4)
C17	75(6)	65(5)	44(4)	-8(4)	-17(4)	35(5)
C18	95(7)	43(4)	41(4)	-7(3)	-22(4)	27(4)
C19	59(5)	39(4)	42(4)	4(3)	-7(3)	1(3)
C20	34(3)	39(3)	34(4)	3(3)	1(3)	-2(2)
C21	47(4)	44(4)	57(5)	-11(3)	-7(4)	3(3)
C22	60(5)	44(4)	56(5)	-15(3)	-24(4)	6 (3)
C23	$71(5)$	37(4)	47(4)	-4(3)	-28(4)	-2(4)
C24	54(4)	44(4)	36(4)	6(3)	-18(3)	-8(3)
C25	39(3)	40(3)	45(4)	2 (3)	$1(3)$	-5(3)
C26	36(3)	36(3)	29(3)	0 (2)	1(3)	3(3)
C27	38(4)	52(4)	47(4)	-15(3)	0 (3)	4(3)
C28	58(5)	59(5)	52(5)	-19(4)	5(4)	12(4)
C29	71(6)	60(5)	44(4)	-22(4)	3(4)	6 (4)
C30	64(5)	61(5)	40(4)	$-15(4)$	-10(4)	-10(4)
C31	45(4)	58(4)	44(4)	-7(3)	-14(3)	-2(3)
C32	28(3)	32(3)	$28(3)$	2(2)	-1(2)	-1(2)
C33	28(3)	65(5)	68(5)	35(4)	-1(3)	2 (3)
C34	32(4)	69(5)	$76(6)$	$31(4)$	0(4)	1(3)
C35	26(3)	72(5)	$59(5)$	4(4)	3(3)	$8(3)$
C36	39(4)	46(4)	70 (5)	-11(4)	-7(4)	15(3)
C37	30(3)	37(3)	54(4)	-6(3)	$-6(3)$	-2(3)
C38	36(3)	46(4)	23(3)	5(3)	4(3)	-5(3)
C39	50(4)	58(4)	$33(4)$	7(3)	-10(3)	-16(4)
C40	56(5)	54(4)	$37(4)$	$8(3)$	-6(3)	-10(3)
C41	$52(4)$	35(3)	48(4)	8 (3)	7 (4)	0 (3)
C42	43(4)	42(4)	35(4)	-5(3)	7(3)	-5(3)
C43	37(3)	41 (3)	25(3)	2(3)	0 (3)	-1(3)
Cl 1	24(1)	52(1)	38(1)	-5(1)	6(1)	-5(1)
P1	$33(1)$	31 (1)	30 (1)	-2(1)	0 (1)	4(1)
P2	27(1)	30(1)	23(1)	-1(1)	$0(1)$	-1(1)
Ru1	24(1)	31(1)	24(1)	-1(1)	1(1)	1(1)
C101	114(10)	81(8)	114(10)	-30(7)	-49(8)	$8(7)$
C102	98(8)	96(8)	70 (7)	10(6)	$9(6)$	4(7)
C103	100(8)	58(5)	91(8)	13(5)	7(7)	-7(6)
C104	56(5)	53(5)	110(9)	-1(5)	$26(6)$	1(4)
C105	$51(5)$	78(6)	73(6)	13(5)	12(5)	-5(4)
C106	220(20)	89(8)	$55(6)$	-11(6)	28(9)	-69(10)

Appendix III: X-Ray Structure of Ruthenium Complex 81

Table 1. Crystal data and structure refinement.

Identification code	04sot0423 (DCP 115/1)
Empirical formula	$\mathrm{C}_{49} \mathrm{H}_{52} \mathrm{~F}_{6} \mathrm{NP}_{3} \mathrm{Ru}$
Formula weight	962.90
Temperature	120(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$a=11.6409(5) \AA \quad \alpha=105.529(5)^{\circ}$
	$b=12.5802(6) \AA \quad \beta=96.483(7)^{\circ}$
	$c=16.8044(11) \AA \quad \gamma=112.081(5)^{\circ}$
Volume	2133.4(2) ${ }^{3}$
Z	2
Density (calculated)	$1.499 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.543 \mathrm{~mm}^{-1}$
F(000)	992
Crystal	Cut plate; light orange
Crystal size	$0.24 \times 0.16 \times 0.06 \mathrm{~mm}^{3}$
θ range for data collection	$3.33-27.50^{\circ}$
Index ranges	$-15 \leq h \leq 14,-15 \leq k \leq 16,-21 \leq l \leq 21$
Reflections collected	35674
Independent reflections	$9730\left[R_{i m t}=0.0326\right]$
Completeness to $\theta=27.50^{\circ}$	99.2\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9681 and 0.8807
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9730/0/750
Goodness-of-fit on F^{2}	1.044
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0360, w R 2=0.0783$
R indices (all data)	$R 1=0.0435, w R 2=0.0818$
Extinction coefficient	0.0027(4)
Largest diff. peak and hole	0.739 and $-0.786 \mathrm{e}^{\AA^{-3}}$

[^2]
Special details

The system was found to have higher symmetry than the data suggested. The Addsym module of Platon was used to change the symmetry.

Appendix IV: X-Ray Structure of Ruthenium Complex 82
Table 2. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{y /}$ tensor.

Atom	x	y	z	$U_{e q}$	S.o.f.
Cl	7685(2)	1717(2)	2524(2)	21(1)	1
C2	6397(2)	1557(2)	2251(2)	22(1)	1
C3	6090(2)	1179(2)	1354(2)	23(1)	1
C3A	7174(2)	1114(2)	1048(1)	20(1)	1
C4	7296 (3)	603(2)	170(2)	27(1)	1
C5	8679(3)	1036(3)	141(2)	33(1)	1
C6	9435(3)	808(3)	821(2)	36(1)	1
C7	9452(2)	1500(2)	1734(2)	26(1)	1
C7A	8155(2)	1462(2)	1790(1)	17(1)	1
C8	8451 (2)	2174(2)	3434(2)	22(1)	1
C9	8358(2)	3334(2)	3909(2)	23(1)	1
C10	8069(2)	1228(2)	3901(2)	24(1)	1
C11	8395(3)	172(2)	3511(2)	30(1)	1
C11'	6676(3)	759(2)	3954(2)	29(1)	1
C12	8079(3)	-731(3)	3992(2)	39(1)	1
C12'	6362(3)	-152(3)	4435(2)	36(1)	1
C 13	6696(3)	-1197(3)	4037(2)	42(1)	1
C14	10252(2)	5314(2)	3545(1)	19(1)	1
C15	10732(2)	6397(2)	3370(2)	$31(1)$	1
C15	11126(2)	4964(2)	3903(1)	21(1)	1
C16	12032(3)	7112(3)	3561(2)	$36(1)$	1
C16	12428(2)	5677(2)	4089(2)	26(1)	1
C17	12881(2)	6749(2)	3920(2)	30(1)	1
C18	7853(2)	5309(2)	3871(1)	22(1)	1
C19	8563(3)	6432(2)	4504(2)	$30(1)$	1
C19'	6529(3)	4789(3)	3741(2)	27(1)	1
C20	7952(3)	7009(3)	5006(2)	$38(1)$	1
C20'	5928(3)	5368(3)	4240(2)	$35(1)$	1
C21	6641(3)	6469(3)	4878(2)	$39(1)$	1
C22	5149(2)	4091(2)	1663(1)	18(1)	1
C23'	4955(2)	5140(2)	1762(2)	23(1)	1
C23	4247(2)	3120 (2)	1821(2)	23(1)	1
C24	3170(2)	3190 (2)	2062(2)	27(1)	1
C24'	3895(2)	5220 (2)	2023(2)	29(1)	1
C25	2996(2)	4245(2)	2165(2)	28(1)	1
C26	7436(2)	5424(2)	1233(1)	17(1)	1
C27	8120(2)	$6381(2)$	1993(2)	20(1)	,
C27 ${ }^{\prime}$	7547(2)	5649(2)	470(2)	21(1)	1
C28	8924(2)	7522(2)	1995(2)	23(1)	1
C28	8363(2)	6793(2)	472(2)	25(1)	1
C29	9061(2)	7719(2)	1230(2)	26(1)	1
C30	5758(2)	3027(2)	153(1)	18(1)	1
C31	4503(2)	2725(2)	-234(2)	22(1)	1
C31 ${ }^{\prime}$	6516(2)	2666(2)	-344(2)	20(1)	1
C32	4022(2)	2067(2)	-1096(2)	28(1)	1
C32	6039(2)	2023(2)	-1204(2)	24(1)	1
C33	4785(3)	1720(2)	-1579(2)	27(1)	1
C34	9977(2)	4796(2)	1365(2)	22(1)	1
C35	11000(3)	5742(3)	1194(2)	34(1)	1
N1	9154(2)	4094(2)	1515(1)	20(1)	1
P1	8534(1)	4350(1)	3271(1)	18(1)	1
P2	6495(1)	3913(1)	1282(1)	15(1)	1
Rul	7649(1)	3032(1)	1885(1)	15(1)	1
P3	2611(1)	198(1)	2795(1)	30(1)	1
F1	3287(2)	428(2)	2046(1)	45(1)	1
F2	3370 (2)	1594(2)	3327(1)	66(1)	1
F3	1482(2)	440(2)	2367(1)	52(1)	1
F4	1857(2)	-1219(1)	2237(1)	44(1)	1
F5	3716(2)	-101(2)	3180(1)	59(1)	1
F6	1893(2)	-68(2)	3515(2)	75(1)	1

Appendix IV: X-Ray Structure of Ruthenium Complex 82

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

Cl-C7A	1.414(3)	C16-C17	1.371(4)
C1-C2	1.437(3)	C16-H16A	0.92(3)
C1-C8	1.517(3)	C17-H17	0.92(3)
C1-Ru1	$2.211(2)$	C18-C19	1.390 (3)
$\mathrm{C} 2-\mathrm{C} 3$	1.413(4)	C18-C19'	$1.393(4)$
C2-Rul	$2.175(2)$	C18-P1	1.830 (2)
$\mathrm{C} 2-\mathrm{H} 2$	0.98(3)	C19-C20	$1.393(4)$
C3-C3A	1.437(3)	C19-H19A	0.95(3)
C3-Rul	2.206(2)	C19'-C20'	$1.382(4)$
C3-H3	0.88(3)	C19'-H19B	0.90(3)
C3A-C7A	$1.435(3)$	C20-C21	$1.380(5)$
C3A-C4	1.489(3)	$\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	0.97(3)
C3A-Rul	2.261(2)	C20'-C21	$1.377(4)$
C4-C5	1.504(4)	C20'-H20B	0.92(3)
C4-H4A	0.99(3)	C21-H21	0.93(3)
C4-H4B	0.96(3)	C22-C23'	1.391 (3)
C5-C6	1.518(4)	C22-C23	$1.393(3)$
C5-H5A	1.07(3)	C22-P2	1.825 (2)
C5-H5B	0.99(3)	C23'-C24'	$1.384(3)$
C6-C7	1.543(4)	C23'-H23B	0.91 (3)
C6-H6A	1.08(3)	C23-C24	1.387 (3)
C6-H6B	0.98(3)	C23-H23A	0.94(3)
C7-C7A	1.508(3)	C24-C25	$1.385(4)$
C7-H7A	0.97(3)	C24-H24A	0.93(3)
C7-H7B	0.99(3)	C24'-C25	$1.380(4)$
C7A-Rul	2.236(2)	C24'-H24B	0.91(3)
C8-C9	$1.515(3)$	C25-H25	0.94(3)
C8-C10	1.552(3)	C26-C27	1.393 (3)
C8-H8	1.05(3)	C26-C27 ${ }^{\prime}$	1.394(3)
C9-P1	1.848(2)	C26-P2	1.833(2)
C9-H9A	0.99(3)	C27-C28	$1.387(3)$
C9-H9B	0.95(3)	C27-H27A	0.95(3)
C10-C11	1.519(3)	C27'-C28'	$1.393(3)$
C10-C11	1.526(4)	C27'-H27B	0.93(3)
C10-H10	1.07(3)	C28-C29	1.388(4)
C11-C12	$1.525(4)$	C28-H28A	0.91(3)
Cl1-H11A	1.02(3)	C28'-C29	1.377(4)
C11-H11B	0.98(3)	C28'-H28B	0.95 (3)
$\mathrm{C} 11^{\prime}-\mathrm{C} 12{ }^{\prime}$	1.532(4)	C29-H29	0.93(3)
C11'-H11C	1.02(3)	C30-C31	1.392 (3)
C11'-H11D	0.95(3)	C30-C31'	$1.396(3)$
C12-Cl3	1.511(5)	C30-P2	$1.833(2)$
C12-H12A	0.94(3)	C31-C32	$1.388(3)$
C12-H12B	1.02(4)	C31-H31A	0.91 (3)
C12'-C13	1.517(4)	C31'-C32'	1.380 (3)
C12'-H12C	0.99(3)	C31'-H31B	0.94 (3)
C12'-H12D	0.95(2)	C32-C33	1.380(4)
C13-H13A	1.12(3)	C32-H32A	0.93(3)
C13-H13B	1.00 (4)	C32-C33	$1.386(4)$
C14-C15	1.390(3)	C32'-H32B	0.93(3)
C14-C15'	1.390(3)	C33-H33	1.00 (3)
C14-P1	1.831(2)	C34-N1	1.140 (3)
C15'-C16'	1.384(4)	C34-C35	$1.453(3)$
C15'-H15B	0.94(3)	C35-H35A	0.93(4)
C15-C16	$1.385(3)$	C35-H35B	0.90(5)
C15-H15A	0.96(3)	C35-H35C	0.91(4)
C16'-C17	1.379(4)	N1-Rul	2.0423(19)
C16'-H16B	0.90(3)	Pl-Rul	$2.3112(6)$

Appendix IV: X-Ray Structure of Ruthenium Complex 82

P2-Rul	$2.3380(6)$	C7-C7A-Ru1	124.43(15)
P3-F2	$1.5744(19)$	C9-C8-C1	108.10(19)
P3-F6	$1.585(2)$	C9-C8-C10	111.73(19)
P3-F5	$1.5872(18)$	C1-C8-C10	114.56(19)
P3-F1	$1.5919(18)$	C9-C8-H8	107.6(14)
P3-F3	$1.5950(18)$	C1-C8-H8	107.2(14)
P3-F4	$1.6031(17)$	C10-C8-H8	107.4(14)
		C8-C9--P1	111.85(16)
C7A-C1-C2	107.6(2)	C8-C9-H9A	107.9(15)
C7A-C1-C8	125.4(2)	P1-C9-H9A	102.7(15)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8$	126.8(2)	C8-C9-H9B	113.3(16)
C7A-C1-Ru1	72.45(12)	Pl-C9-H9B	109.9(16)
C2-Cl-Rul	69.53(13)	H9A-C9-H9B	111(2)
C8-C1-Ru1	119.94(15)	C11-C10-C11'	110.5(2)
C3-C2-C1	107.6(2)	C11-C10-C8	111.1(2)
C3-C2-Ru1	72.36(13)	$\mathrm{C} 11{ }^{-}-\mathrm{Cl} 0-\mathrm{C} 8$	114.2(2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Ru} 1$	72.22(13)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	108.7(15)
C3-C2-H2	126.3(18)	$\mathrm{C} 11^{\prime}-\mathrm{Cl} 10-\mathrm{H} 10$	106.0(15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	125.8(18)	C8-C10-H10	106.0(15)
Ru1-C2-H2	126.1(18)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	111.4(2)
C2-C3-C3A	109.4(2)	C10-C11-H11A	108.0(16)
C2-C3-Rul	70.02(13)	C12-C11-H11A	109.4(16)
C3A-C3-Ru1	73.36 (12)	C10-C11-H11B	106.7(17)
C2-C3-H3	128.0(18)	C12-C11-H11B	110.7(17)
C3A-C3-H3	122.6(18)	H11A-C11-H11B	111(2)
Ru1-C3-H3	121.5(17)	$\mathrm{C} 10-\mathrm{C} 11^{\prime}-\mathrm{C} 12^{\prime}$	111.8(2)
C7A-C3A-C3	105.9(2)	C10-C11--H11C	106.5(16)
C7A-C3A-C4	122.5(2)	$\mathrm{C} 12{ }^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{H} 11 \mathrm{C}$	111.3(16)
C3-C3A-C4	130.8(2)	C10-C11-H11D	106.8(17)
C7A-C3A-Ru1	70.45(12)	C12'-C11'-H11D	104.1(17)
C3-C3A-Ru1	69.14(12)	H11C-Cl1'-H11D	116(2)
C4-C3A-Rul	132.57(16)	C13-C12-C11	111.7(2)
C3A-C4-C5	110.6(2)	$\mathrm{C} 13-\mathrm{Cl} 2-\mathrm{H} 12 \mathrm{~A}$	111(2)
C3A-C4-H4A	108.1(15)	C11-C12-H12A	112(2)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.1(15)	C13-C12-H12B	103(2)
C3A-C4-H4B	113.5(17)	C11-C12-H12B	107(2)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.2(17)	H12A-C12-H12B	111(3)
H4A-C4-H4B	106(2)	$\mathrm{C} 13-\mathrm{Cl} 2^{\prime}-\mathrm{C} 11^{\prime}$	$110.9(2)$
C4-C5-C6	$111.2(2)$	C13-C12'-H12C	109.2(17)
C4-C5-H5A	110.7(16)	C11'-C12'-H12C	110.1(17)
C6-C5-H5A	107.8(16)	C13-C12'-H12D	109.4(13)
C4-C5-H5B	109.7(18)	C11'-C12'-H12D	107.2(13)
C6-C5-H5B	107.2(19)	H12C-C12'-H12D	110(2)
H5A-C5-H5B	110(2)	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 12{ }^{\prime}$	$110.9(2)$
C5-C6-C7	113.5(2)	C12-C13-H13A	107.8(17)
C5-C6-H6A	105.5(17)	C12'-C13-H13A	109.3(17)
C7-C6-H6A	108.1(16)	C12-C13-H13B	113(2)
C5-C6-H6B	110.6(18)	C12'-C13-H13B	109(2)
C7-C6-H6B	108.5(18)	H13A-C13-H13B	107(3)
H6A-C6-H6B	111(2)	C15-C14-C15'	117.6 (2)
C7A-C7-C6	110.8(2)	C15-C14-P1	121.16(17)
C7A-C7-H7A	108.6(18)	C15'-C14-P1	121.17(18)
C6-C7-H7A	112.3(18)	C16'-C15'-C14	121.2(2)
C7A-C7-H7B	109.6(18)	C16'-C15'-H15B	118.5(19)
C6-C7-H7B	106.9(18)	C14-C15'-H15B	120.3(19)
H7A-C7-H7B	109(2)	C16-C15-C14	121.1(2)
C1-C7A-C3A	109.4(2)	C16-C15-H15A	119.3(16)
C1-C7A-C7	128.4(2)	C14-C15-H15A	119.6(16)
C3A-C7A-C7	122.2(2)	C17-C16'-C15'	120.1(2)
C1-C7A-Ru1	70.47(12)	C17-C16'-H16B	118(2)
C3A-C7A-Rul	72.35(12)	C15'-C16'-H16B	122(2)

Appendix IV: X-Ray Structure of Ruthenium Complex 82			
C17-C16-C15	120.4(2)	C31-C30-P2	123.65(17)
C17-C16-H16A	121.6(18)	C31'-C30-P2	117.60(17)
C15-C16-H16A	118.0(18)	C32-C31-C30	120.1(2)
C16-C17-C16	119.6(2)	C32-C31-H31A	$119.2(16)$
C16-C17-H17	123.1(18)	C30-C31-H31A	120.6(16)
C16'-C17-H17	117.3(18)	C32'-C31'-C30	121.0(2)
C19-C18-C19'	118.9(2)	C32'-C31'-H31B	119.6(15)
C19-C18-P1	124.6(2)	C30-C31'-H31B	119.4(15)
C19'-C18-P1	116.06(18)	C33-C32-C31	120.4(2)
C18-C19-C20	120.0(3)	C33-C32-H32A	119.4(18)
C18-C19-H19A	118.2(17)	C31-C32-H32A	120.2(18)
C20-C19-H19A	121.8(17)	C31'-C32'-C33	119.6(2)
C20'-C19'-C18	120.8(3)	C31'-C32'-H32B	120.1(16)
$\mathrm{C} 20^{\prime}-\mathrm{C} 19{ }^{\prime}-\mathrm{H} 19 \mathrm{~B}$	120.6(18)	C33-C32'-H32B	120.2(16)
C18-C19'-H198	118.6(18)	C32-C33-C32'	120.1(2)
C21-C20-C19	120.3(3)	C32-C33-H33	119.1(16)
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	121.8(19)	C32'--C33-H33	120.8(16)
C19-C20-H20A	117.9(19)	N1-C34-C35	176.7(3)
C21-C20'-C19'	120.0(3)	C34-C35-H35A	109(2)
$\mathrm{C} 21-\mathrm{C} 20^{\prime}-\mathrm{H} 20 \mathrm{~B}$	120(2)	C34-C35-H35B	111(3)
$\mathrm{C} 19^{\prime}-\mathrm{C} 20^{\prime}-\mathrm{H} 20 \mathrm{~B}$	120(2)	H35A-C35-H35B	111(4)
C20'-C21-C20	120.1(3)	C34-C35-H35C	112(3)
C20'--C21-H21	119(2)	H35A-C35-H35C	112(3)
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$	121(2)	H35B-C35-H35C	103(4)
C23'-C22-C23	118.6(2)	C34-N1-Ru1	172.25 (18)
$\mathrm{C} 23{ }^{\prime}-\mathrm{C} 22-\mathrm{P} 2$	122.46(17)	C18-P1-C14	104.99(11)
C23-C22-P2	118.85(17)	C18-P1-C9	97.92(11)
C24'-C23'-C22	120.6(2)	C14-P1-C9	104.23(11)
C24'-C23'-H23B	118.9(17)	C18-P1-Ru1	125.40(8)
C22-C23'-H23B	120.5(17)	C14-P1-Rul	116.53 (7)
C24-C23-C22	120.7(2)	C9-P1-Ru1	104.10(8)
C24-C23-H23A	119.8(17)	C22-P2-C26	102.58(10)
C22-C23-H23A	119.5(17)	C22-P2-C30	101.58 (10)
C25-C24-C23	120.0(2)	C26-P2-C30	$101.38(10)$
C25-C24-H24A	120.1(17)	C22-P2-Rul	121.99(7)
C23-C24-H24A	119.9(17)	C26-P2-Ru1	$115.95(7)$
$\mathrm{C} 25-\mathrm{C} 24^{\prime}-\mathrm{C} 23{ }^{\prime}$	120.4(2)	C30-P2-Ru1	110.60(7)
C25-C24'-H24B	119.1(19)	N1-Ru1-C2	161.61(8)
$\mathrm{C} 23{ }^{-}-\mathrm{C} 24^{\prime}-\mathrm{H} 24 \mathrm{~B}$	120.5(19)	N1-Ru1-C3	137.32(9)
C24'-C25-C24	119.7(2)	$\mathrm{C} 2-\mathrm{Ru} 1-\mathrm{C} 3$	37.62 (9)
C24'-C25-H25	120.1(17)	N1-Ru1-C1	125.26(8)
C24-C25-H25	120.1(17)	C2-Ru1-C1	38.25 (9)
C27-C26-C27	118.4(2)	C3-Ru1-C1	62.77 (9)
C27-C26-P2	118.43 (17)	N1-Ru1-C7A	98.84(7)
$\mathrm{C} 27{ }^{-}-\mathrm{C} 26-\mathrm{P} 2$	123.09(17)	C2-Rul-C7A	62.87 (8)
C28-C27-C26	121.0(2)	C3-Ru1-C7A	62.14(8)
$\mathrm{C} 28-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~A}$	118.4(16)	C1-Ru1-C7A	$37.07(8)$
C26-C27-H27A	120.5(16)	N1-Ru1-C3A	103.90(8)
C28'-C27 --C26	120.5(2)	C2-Ru1-C3A	63.21 (9)
$\mathrm{C} 28^{\prime}-\mathrm{C} 27^{\prime}-\mathrm{H} 27 \mathrm{~B}$	119.2(16)	C3-Ru1-C3A	37.50 (9)
C26-C27'-H27B	120.3(16)	C1-Rul-C3A	62.64 (8)
C27-C28-C29	119.9(2)	C7A-Ru1-C3A	37.20 (8)
C27-C28-H28A	121.3(18)	N1-Rul-Pl	89.78(6)
C29-C28-H28A	118.8(18)	C2-Ru1-P1	93.67(7)
C29-C28'--C27'	120.3(2)	$\mathrm{C} 3-\mathrm{Ru} 1-\mathrm{P} 1$	131.07(7)
C29-C28'-H28B	120.7(17)	C1-Ru1-P1	80.57(6)
C27'-C28'-H28B	118.9(17)	C7A-Ru1-P1	106.60 (6)
C28'-C29-C28	119.8(2)	C3A-Rul-P1	142.20(6)
C28'-C29-H29	120.1(17)	N1-Ru1-P2	85.75(5)
C28-C29-H29	120.0(17)	C2-Ru1-P2	110.88(7)
C31-C30-C31'	118.7(2)	$\mathrm{C} 3-\mathrm{Ru} 1-\mathrm{P} 2$	94.18(6)

Appendix IV: X-Ray Structure of Ruthenium Complex 82

C1-Ru1-P2	$148.95(6)$	F2-P3-F3	$90.72(11)$
C7A-Ru1-P2	$149.49(6)$	F6-P3-F3	$89.86(12)$
C3A-Ru1-P2	$112.35(6)$	F5-P3-F3	$177.18(12)$
P1-Ru1-P2	$103.56(2)$	F1-P3-F3	$88.93(11)$
F2-P3-F6	$92.40(13)$	F2-P3-F4	$178.71(12)$
F2-P3-F5	$91.80(12)$	F6-P3-F4	$88.88(12)$
F6-P3-F5	$91.29(13)$	F5-P3-F4	$88.03(10)$
F2-P3-F1	$89.31(11)$	F1-P3-F4	$89.41(10)$
F6-P3-F1	$177.91(13)$	F3-P3-F4	$89.41(10)$
F5-P3-F1	$89.84(11)$		

Symmetry transformations used to generate equivalent atoms:

Appendix IV: X-Ray Structure of Ruthenium Complex 82
Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C1	27(1)	16(1)	24(1)	10(1)	11(1)	10(1)
C2	22(1)	15(1)	27(1)	8(1)	$7(1)$	6 (1)
C3	13(1)	13(1)	39(1)	10(1)	-3(1)	2(1)
C3A	23(1)	10(1)	23(1)	4(1)	$2(1)$	6 (1)
C4	39(1)	21(1)	22(1)	$5(1)$	3(1)	16(1)
C5	42(2)	34(2)	26(1)	$7(1)$	12(1)	20(1)
C6	37(2)	45(2)	39(2)	16(1)	19(1)	28(1)
C7	22(1)	26(1)	31(1)	$8(1)$	3(1)	15(1)
C7A	18(1)	11(1)	22(1)	$5(1)$	3(1)	7(1)
C8	22(1)	21(1)	22(1)	9(1)	5(1)	$9(1)$
C9	23(1)	22(1)	22(1)	10(1)	4(1)	7(1)
C10	$30(1)$	23(1)	20(1)	8(1)	3(1)	11(1)
C11	35(2)	26(1)	33(2)	14(1)	8(1)	14(1)
C11'	32(1)	23(1)	33(1)	11(1)	10(1)	11(1)
C12	53(2)	32(2)	46(2)	23(1)	15(2)	24(1)
C12'	41 (2)	34(2)	37(2)	20(1)	15(1)	14(1)
C13	54(2)	31(2)	49(2)	25(1)	15(2)	18(1)
C14	19(1)	18(1)	16(1)	4(1)	1(1)	$5(1)$
C15'	25(1)	26(1)	38(2)	16(1)	-4(1)	$5(1)$
C15	22(1)	21(1)	19(1)	5(1)	$5(1)$	$9(1)$
C16'	28(1)	25(1)	44(2)	17(1)	0 (1)	1(1)
C16	24(1)	32(1)	25(1)	8(1)	$6(1)$	15(1)
C17	19(1)	30(1)	30(1)	6 (1)	3(1)	2(1)
C18	29(1)	23(1)	18(1)	$9(1)$	4(1)	16(1)
C19	38(2)	26(1)	26(1)	$8(1)$	1(1)	16(1)
C19'	$30(1)$	35(1)	21(1)	11(1)	$8(1)$	18(1)
C20	64(2)	30(1)	28(1)	$9(1)$	7(1)	30(2)
C20'	40(2)	51(2)	33(2)	24(1)	19(1)	30(1)
C21	62(2)	48(2)	34(2)	22(1)	23(1)	42(2)
C22	16(1)	19(1)	17(1)	$5(1)$	3(1)	7 (1)
C23'	$21(1)$	20(1)	30(1)	10(1)	$8(1)$	9 (1)
C23	$20(1)$	21(1)	30(1)	10(1)	$8(1)$	9 (1)
C24	20(1)	30(1)	33(1)	14(1)	10(1)	$9(1)$
C24'	26(1)	26(1)	40(2)	10(1)	11(1)	16(1)
C25	$21(1)$	35(1)	$33(1)$	10(1)	11(1)	14(1)
C26	13(1)	16(1)	23(1)	9(1)	5(1)	$8(1)$
C27	17(1)	20(1)	24(1)	$9(1)$	4(1)	9(1)
C27	$21(1)$	21(1)	24(1)	$9(1)$	7(1)	10(1)
C28	18(1)	17(1)	$30(1)$	6(1)	1(1)	7(1)
C28 ${ }^{\prime}$	25(1)	27(1)	31(1)	16(1)	13(1)	13(1)
C29	20 (1)	19(1)	41(2)	16(1)	10(1)	7 (1)
C30	18(1)	14(1)	20(1)	7 (1)	3(1)	$5(1)$
C31	21(1)	22(1)	25(1)	$7(1)$	4(1)	10(1)
C31'	$21(1)$	18(1)	22(1)	$6(1)$	$6(1)$	$8(1)$
C32	23(1)	25(1)	27(1)	6 (1)	-4(1)	7 (1)
C32'	32(1)	19(1)	22(1)	$7(1)$	11(1)	12(1)
C33	35(1)	18(1)	22(1)	$4(1)$	1(1)	9 (1)
C34	18(1)	19(1)	29(1)	8 8(1)	7(1)	$9(1)$
C35	25(1)	29(1)	52(2)	21(1)	19(1)	$8(1)$
N1	17(1)	16(1)	25(1)	6(1)	$4(1)$	$8(1)$
P1	17(1)	16(1)	19(1)	$7(1)$	2(1)	$6(1)$
P2	14(1)	13(1)	17(1)	$5(1)$	4(1)	6 (1)
Rul	12(1)	12(1)	19(1)	5(1)	4(1)	5(1)
P3	26(1)	28(1)	37(1)	14(1)	$8(1)$	13(1)
F1	48(1)	35(1)	54(1)	20(1)	25(1)	13(1)
F2	87(2)	36(1)	49(1)	-5(1)	-9(1)	19(1)
F3	39(1)	47(1)	84(1)	31(1)	11(1)	28(1)
F4	27(1)	26(1)	75(1)	18(1)	9(1)	7(1)
F5	34(1)	56(1)	86(2)	34(1)	-9(1)	16(1)
F6	105(2)	93(2)	69(1)	51(1)	58(1)	60(2)

Table 1. Crystal data and structure refinement.

Identification code	04sot0700 (DCP156/1)
Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{ClP}_{2} \mathrm{Ru}$
Formula weight	746.22
Temperature	120(2) K
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	Pc
Unit cell dimensions	$a=11.0846(8) \AA \quad \alpha=90^{\circ}$
	$b=23.7847(12) \AA \quad \beta=123.825(5)^{\circ}$
	$c=16.5912(12) \AA \quad \gamma=90^{\circ}$
Volume	3633.8(4) \AA^{3}
Z	4 (2 molecules in ASU)
Density (calculated)	$1.364 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.622 \mathrm{~mm}^{-1}$
$F(000)$	1544
Crystal	Slab; dark red
Crystal size	$0.20 \times 0.15 \times 0.08 \mathrm{~mm}^{3}$
θ range for data collection	$3.17-27.50^{\circ}$
Index ranges	$-14 \leq h \leq 12,-30 \leq k \leq 26,-21 \leq l \leq 21$
Reflections collected	45086
Independent reflections	14611 [$\left.R_{\text {int }}=0.0527\right]$
Completeness to $\theta=27.50^{\circ}$	99.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9519 and 0.8857
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14611/2/830
Goodness-of-fit on F^{2}	1.067
Final R indices [$\left.F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R I=0.0422, w R 2=0.0807$
R indices (all data)	$R I=0.0695, w R 2=0.0887$
Absolute structure parameter	0.002(18)
Extinction coefficient	0.00034 (16)
Largest diff. peak and hole	0.863 and -0.531 e \AA^{-3}

Largest diff. peak and hole

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill asymmetric unit sphere) Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B. V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276 Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. AppI Cryst 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

Special details:

Appendix V: X-Ray Structure of Ruthenium Complex 112

Table 2. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{e q}$	S.o.f.
Cl	9495(5)	1766(2)	-665(3)	27(1)	1
C2	10281(5)	2009(2)	273(3)	$26(1)$	1
C3	9413(5)	1952(2)	662(3)	$26(1)$	1
C4	9651 (6)	2125(2)	1556(3)	$31(1)$	1
C5	8590(6)	2016(2)	1723(4)	36(1)	1
C6	7315(6)	1734(2)	1046(4)	35(1)	1
C7	7043(5)	1560(2)	167(4)	$32(1)$	1
C8	8104(5)	1662(2)	-37(3)	$26(1)$	1
C9	8180(5)	1535(2)	-865(3)	$28(1)$	1
C10	7013(6)	1231(2)	-1765(3)	$32(1)$	1
C11	6356(6)	1605(2)	-2659(3)	41(1)	1
C12	5765(6)	2147(2)	-2535(4)	57(2)	1
C13	5157(8)	2531(2)	-3407(4)	85(2)	1
C14	4011(10)	2228(2)	-4342(5)	118(4)	1
C16	5182(7)	1313(2)	-3590(4)	61(2)	1
C17	7630(5)	666(2)	-1841(3)	$30(1)$	1
C18	7134(6)	129(2)	-506(3)	$26(1)$	1
C19	7253(5)	204(2)	364(3)	27(1)	1
C20	6133(6)	21(2)	456(4)	33(1)	1
C21	4898(5)	-217(2)	-318(4)	$31(1)$	1
C22	4774(5)	-287(2)	-1179(3)	33(1)	1
C23	5865(5)	-123(2)	-1278(3)	29(1)	1
C24	9277(5)	-323(2)	-716(3)	23(1)	1
C25	9481 (5)	-460(2)	-1443(3)	$28(1)$	1
C26	10086(5)	-971(2)	-1436(3)	32(1)	1
C27	10457(6)	-1349(2)	-711(4)	37(1)	1
C28	10272(5)	-1223(2)	20(3)	36(1)	1
C29	9675(5)	-717(2)	24(3)	29(1)	1
C30	12459(5)	1062(2)	-324(3)	22(1)	1
C31	12010(5)	704(2)	-1100(3)	$31(1)$	1
C32	12152(6)	849(2)	-1853(4)	43(1)	1
C33	12764(6)	1359(2)	-1824(4)	39(1)	1
C34	13190(5)	1720(2)	-1071(3)	32(1)	1
C35	13036(5)	1578(2)	-322(3)	$29(1)$	1
C36	13703(5)	1218(2)	1698(3)	27(1)	1
C37	15122(5)	1164(2)	1944(4)	32(1)	1
C38	16280(6)	1418(2)	2767(4)	41(1)	1
C39	16024(6)	1727(2)	3355(4)	42(1)	1
C40	14633(6)	1785(2)	3139(4)	$36(1)$	1
C41	13471(6)	1541(2)	2309(3)	31(1)	1
C42	12797(6)	132(2)	892(4)	30 (1)	1
Cl 1	10859(1)	595(1)	1844(1)	$26(1)$	1
P1	8603(1)	355(1)	-622(1)	22(1)	1
P2	12184(1)	863(1)	627(1)	23(1)	1
Ru1	9971(1)	1082(1)	323(1)	20(1)	1
C15	4525(8)	1694(2)	-4481(4)	$76(2)$	1
C101	5025(5)	3285(2)	-877(3)	28(1)	1
C102	5817(5)	3019(2)	52(3)	23(1)	1
C103	4963(5)	3051(2)	449(3)	26(1)	1
C104	5167(6)	2855(2)	1314(3)	$34(1)$	1
C105	4084(6)	2928(2)	1464(4)	37(1)	1
C106	2787(7)	3198(2)	789(4)	44(2)	1
C107	2534(6)	3410(2)	-60(4)	37(1)	1
C108	3628(5)	3341(2)	-251(3)	27(1)	1
C109	3706(5)	3501(2)	-1052(3)	29(1)	1
C110	2561(6)	3823(2)	-1935(3)	37(1)	1
C111	1872(7)	3456(2)	-2846(4)	59(2)	1
C112	1192(8)	2922(2)	-2735(4)	$77(2)$	1
C113	586(9)	2529(3)	-3587(5)	115(3)	1

Appendix V: X-Ray Structure of Ruthenium Complex 112

C114	$-490(11)$	$2818(3)$	$-4504(6)$	$124(4)$	1
C115	$82(10)$	$3335(3)$	$-4653(5)$	$113(3)$	1
C116	$752(8)$	$3741(2)$	$-3757(4)$	$78(2)$	1
C117	$3174(5)$	$4381(2)$	$-1994(3)$	$33(1)$	1
C118	$2652(5)$	$4891(2)$	$-649(3)$	$24(1)$	1
C119	$1400(6)$	$5135(2)$	$-1424(3)$	$32(1)$	1
C120	$262(6)$	$5273(2)$	$-1338(4)$	$37(1)$	1
C121	$404(6)$	$5192(2)$	$-472(4)$	$33(1)$	1
C122	$1657(6)$	$4948(2)$	$303(4)$	$33(1)$	1
C123	$2771(5)$	$4796(2)$	$210(3)$	$29(1)$	1
C124	$4801(5)$	$5368(2)$	$-846(3)$	$24(1)$	1
C125	$5134(5)$	$5768(2)$	$-135(3)$	$29(1)$	1
C126	$5683(5)$	$6289(2)$	$-142(3)$	$32(1)$	1
C127	$5915(5)$	$6415(2)$	$-862(3)$	$35(1)$	1
C128	$5611(5)$	$6027(2)$	$-1567(3)$	$32(1)$	1
C129	$5034(5)$	$5509(2)$	$-1572(3)$	$28(1)$	1
C130	$7935(5)$	$3964(2)$	$-518(3)$	$22(1)$	1
C131	$7437(5)$	$4334(2)$	$-1292(3)$	$28(1)$	1
C132	$7492(6)$	$4185(2)$	$-2085(3)$	$33(1)$	1
C133	$8061(6)$	$3670(2)$	$-2084(3)$	$34(1)$	1
C134	$8542(5)$	$3303(2)$	$-1329(3)$	$31(1)$	1
C135	$8484(5)$	$3446(2)$	$-540(3)$	$28(1)$	1
C136	$9261(5)$	$3801(2)$	$1522(3)$	$23(1)$	1
C137	$10648(5)$	$3836(2)$	$1715(3)$	$30(1)$	1
C138	$11831(6)$	$3596(2)$	$2551(3)$	$37(1)$	1
C139	$11611(6)$	$3328(2)$	$3202(3)$	$38(1)$	1
C140	$10244(6)$	$3282(2)$	$3008(3)$	$31(1)$	1
C141	$9051(6)$	$3515(2)$	$2172(3)$	$28(1)$	1
C142	$8354(6)$	$4889(2)$	$750(3)$	$24(1)$	1
C12	$6364(1)$	$4396(1)$	$1698(1)$	$25(1)$	1
P3	$4149(1)$	$4684(1)$	$-764(1)$	$23(1)$	1
P4	$7713(1)$	$4160(1)$	$463(1)$	$21(1)$	1
Ru2	$5501(1)$	$3940(1)$	$153(1)$	$19(1)$	1

Appendix V: X-Ray Structure of Ruthenium Complex 112

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$].

C1-C9	$1.415(6)$	C25-C26	1.385(6)
C1-C2	$1.416(6)$	C25-H25	0.9500
Cl-Rul	$2.155(4)$	C26-C27	1.368(6)
C1-H1	0.9500	C26-H26	0.9500
C2-C3	1.433(6)	C27-C28	$1.372(6)$
C2-Rul	2.240 (4)	C27-H27	0.9500
C2-H2	0.9500	C28-C29	$1.375(6)$
C3-C4	$1.416(6)$	C28-H28	0.9500
C3-C8	$1.432(6)$	C29-H29	0.9500
C3-Rul	$2.318(4)$	C30-C35	$1.383(5)$
C4-C5	1.376(6)	C30-C31	$1.384(6)$
C4-H4	0.9500	C30-P2	$1.830(4)$
C5-C6	1.393(7)	C31-C32	$1.386(6)$
C5-H5	0.9500	C31-H31	0.9500
C6-C7	$1.378(6)$	C32-C33	$1.377(6)$
C6-H6	0.9500	C32-H32	0.9500
C7-C8	1.415(6)	C33-C34	$1.367(6)$
C7-H7	0.9500	C33-H33	0.9500
C8-C9	1.454(6)	C34-C35	$1.388(6)$
$\mathrm{C} 8-\mathrm{Rul}$	$2.273(4)$	C34-H34	0.9500
C9-C10	$1.508(6)$	C35-H35	0.9500
C9-Rul	$2.152(4)$	C36-C37	1.394(6)
C10-Cl1	1.524(6)	C36-C41	1.405 (6)
C10-C17	1.543(6)	C36-P2	1.838(5)
C10-H10	1.0000	C37-C38	$1.388(6)$
C11-C12	$1.512(7)$	C37-H37	0.9500
C11-C16	1.524(7)	C38-C39	1.372(7)
C11-H11	1.0000	C38-H38	0.9500
C12-C13	1.516(7)	C39-C40	$1.383(7)$
C12-H12A	0.9900	C39-H39	0.9500
C12-H12B	0.9900	C40-C41	$1.385(6)$
C13-C14	1.532(8)	C40-H40	0.9500
C13-H13A	0.9900	C41-H41	0.9500
C13-H13B	0.9900	C42-P2	$1.828(4)$
C14-C15	1.462(9)	C42-H42A	0.9800
C14-H14A	0.9900	C42-H42B	0.9800
C14-H14B	0.9900	C42-H42C	0.9800
C16-C15	1.530(7)	$\mathrm{Cll-Rul}$	$2.4316(10)$
C16-H16A	0.9900	P1-Ru1	2.2589(12)
C16-H16B	0.9900	P2-Ru1	2.2717(12)
C17-Pl	1.836(4)	Cl5-H15A	0.9900
C17-H17A	0.9900	C15-H15B	0.9900
C17-H17B	0.9900	C101-C109	1.419(6)
C18-C19	$1.386(6)$	C101-C102	1.427(6)
C18-C23	1.404(6)	C101-Ru2	$2.151(4)$
C18-P1	1.824(5)	C101-H101	0.9500
C19-C20	$1.402(6)$	C102-C103	$1.426(6)$
C19-H19	0.9500	C102-Ru2	2.240(4)
C20-C21	1.374(7)	C102-H102	0.9500
C20-H20	0.9500	C103-C104	1.404(6)
C21-C22	1.368(6)	C103-C108	$1.450(6)$
C21-H21	0.9500	C103-Ru2	$2.322(4)$
C22-C23	1.365(6)	C104-C105	$1.365(6)$
$\mathrm{C} 22-\mathrm{H} 22$	0.9500	Cl04-H104	0.9500
C23-H23	0.9500	C105-C106	1.393(8)
C24-C25	$1.384(5)$	C105-H105	0.9500
C24-C29	$1.405(5)$	C106-C107	1.371(7)
C24-P1	1.820 (4)	C106-H106	0.9500

Appendix V: X-Ray Structure of Ruthenium Complex 112			
C107-C108	$1.423(6)$	C133-H133	0.9500
C107-H107	0.9500	C134-C135	1.388(6)
C108-C109	1.430(6)	C134-H134	0.9500
C108-Ru2	$2.289(4)$	C135-H135	0.9500
C109-C110	$1.508(6)$	C136-C137	$1.387(6)$
C109-Ru2	$2.149(4)$	C136-C141	1.400(6)
C110-C117	$1.518(6)$	C136-P4	1.845(4)
C110-C111	$1.531(6)$	C137-C138	1.394(6)
C110-H110	1.0000	C137-H137	0.9500
C111-C116	1.481 (8)	C138-C139	1.387(6)
C111-C112	1.541(8)	C138-H138	0.9500
C111-H111	1.0000	C139-C140	$1.368(7)$
C112-C113	1.506(8)	C139-H139	0.9500
C112-H11C	0.9900	C140-C141	$1.392(6)$
C112-H11D	0.9900	C140-H140	0.9500
C113-C114	$1.480(9)$	C141-H141	0.9500
C113-H11K	0.9900	C142-P4	1.834(4)
C113-H11L	0.9900	C142-H14C	0.9800
C114-C115	1.467(11)	C142-H14D	0.9800
C114-H11]	0.9900	C142-H14E	0.9800
C114-H11J	0.9900	$\mathrm{Cl} 2-\mathrm{Ru} 2$	$2.4351(10)$
C115-CI16	1.571(8)	P3-Ru2	$2.2695(11)$
C115-H11G	0.9900	P4-Ru2	$2.2684(12)$
C115-H11H	0.9900		
C116-H11E	0.9900	C9-C1-C2	109.9(4)
C116-H11F	0.9900	C9-C1-Ru1	70.7(2)
C117-P3	1.843(4)	C2-C1-Rul	74.5(2)
C117-H11A	0.9900	C9-C1-H1	125.1
C117-H11B	0.9900	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{H} 1$	125.1
C118-C123	1.375(6)	$\mathrm{Ru} 1-\mathrm{C} 1-\mathrm{H1}$	121.4
C118-C119	1.390 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	107.5(4)
C118-P3	1.840(5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Ru} 1$	68.0(2)
C119-C120	$1.386(7)$	C3-C2-Ru1	74.7(2)
C119-H119	0.9500	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	126.3
C120-C121	1.369(6)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.3
C120-H120	0.9500	Ru1-C2-H2	122.7
C121-C122	$1.390(6)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$120.2(4)$
C121-H121	0.9500	C4-C3-C2	131.6(4)
C122-C123	$1.375(6)$	C8-C3-C2	108.2(4)
C122-H122	0.9500	C4-C3-Rul	126.5(3)
C123-H123	0.9500	C8-C3-Ru1	70.1(2)
C124-C125	$1.396(5)$	C2-C3-Rul	68.8(2)
C124-C129	$1.404(5)$	C5-C4-C3	118.3(5)
C124-P3	1.816(4)	C5-C4-H4	120.8
C125-C126	$1.383(6)$	C3-C4-H4	120.8
C125-H125	0.9500	C4-C5-C6	121.8(5)
C126-C127	1.388(6)	C4-C5-H5	119.1
C126-H126	0.9500	C6-C5-H5	119.1
C127-C128	1.376(6)	C7-C6-C5	121.5(5)
C127-H127	0.9500	C7-C6-H6	119.2
C128-C129	$1.388(6)$	C5-C6-H6	119.2
C128-H128	0.9500	C6-C7-C8	118.8 (4)
C129-H129	0.9500	C6-C7-H7	120.6
C130-C135	$1.385(6)$	C8-C7-H7	120.6
C130-C131	1.393(5)	C7-C8-C3	119.4(4)
C130-P4	$1.835(4)$	C7-C8-C9	133.1(4)
C131-C132	1.396(6)	C3-C8-C9	107.5(4)
C131-H131	0.9500	C7-C8-Rul	126.2(3)
C132-C133	$1.377(6)$	C3-C8-Ru1	$73.5(3)$
C132-H132	0.9500	C9-C8-Ru1	66.4(2)
C133-C134	1.368(6)	C1-C9-C8	106.9(4)

Appendix V: X-Ray Structure of Ruthenium Complex 112

C1-C9-C10	128.5(4)	C21-C22-H22	119.6
C8-C9-C10	124.6(4)	C22-C23-C18	121.1(4)
$\mathrm{C} 1-\mathrm{C} 9-\mathrm{Ru} 1$	$71.0(2)$	C22-C23-H23	119.5
C8-C9-Rul	75.4(2)	C18-C23-H23	119.5
C10-C9-Ru1	120.9(3)	C25-C24-C29	118.8(4)
C9-C10-C11	111.5(4)	C25-C24-P1	123.8(3)
C9-C10-C17	108.9(4)	C29-C24-P1	117.4(3)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 17$	115.0(4)	C24-C25-C26	120.7(4)
C9-Cl0-H10	107.0	C24-C25-H25	119.6
C11-C10-H10	107.0	C26-C25-H25	119.6
$\mathrm{C} 17-\mathrm{Cl} 0-\mathrm{H} 10$	107.0	C27-C26-C25	$119.5(4)$
C12-C11-C10	112.0(4)	C27-C26-H26	120.2
C12-C11-C16	109.7(4)	C25-C26-H26	120.2
C10-C11-C16	113.3(4)	C26-C27-C28	120.8(4)
C12-Cl1-H11	107.2	C26-C27-H27	119.6
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	107.2	C28-C27-H27	119.6
C16-C11-H11	107.2	C27-C28-C29	120.4(4)
C11-C12-C13	112.3(5)	C27-C28-H28	119.8
C11-C12-H12A	109.1	C29-C28-H28	119.8
C13-C12-H12A	109.1	C28-C29-C24	119.7(4)
C11-C12-H12B	109.1	C28-C29-H29	120.1
C13-C12-H12B	109.1	C24-C29-H29	120.1
$\mathrm{H} 12 \mathrm{~A}-\mathrm{Cl} 2-\mathrm{H} 12 \mathrm{~B}$	107.9	C35-C30-C31	118.4(4)
C12-C13-C14	111.1(5)	C35-C30-P2	121.7(3)
C12-C13-H13A	109.4	C31-C30-P2	$119.8(3)$
C14-C13-H13A	109.4	C30-C31-C32	121.5(4)
C12-C13-H13B	109.4	C30-C31-H31	119.3
C14-C13-H13B	109.4	C32-C31-H31	119.3
H13A-C13-H13B	108.0	C33-C32-C31	119.3(5)
C15-C14-C13	113.1(6)	C33-C32-H32	120.3
C15-C14-H14A	109.0	C31-C32-H32	120.3
C13-C14-H14A	109.0	C34-C33-C32	119.9(4)
C15-C14-H14B	109.0	C34-C33-H33	120.1
C13-C14-H14B	109.0	C32-C33-H33	120.1
H14A-C14-H14B	107.8	C33-C34-C35	120.9(4)
C11-C16-C15	$112.8(4)$	C33-C34-H34	119.6
C11-C16-H16A	109.0	C35-C34-H34	119.6
C15-C16-H16A	109.0	C30-C35-C34	120.1(4)
C11-C16-H16B	109.0	C30-C35-H35	120.0
C15-C16-H16B	109.0	C34-C35-H35	120.0
H16A-C16-H16B	107.8	C37-C36-C41	118.0(4)
C10-C17-P1	106.1(3)	C37-C36-P2	$121.2(3)$
$\mathrm{C} 10-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	110.5	C41-C36-P2	120.8(4)
P1-C17-H17A	110.5	C38-C37-C36	121.5(5)
C10-C17-H17B	110.5	C38-C37-H37	119.3
Pl-C17-H17B	110.5	C36-C37-H37	119.3
H17A-C17-H17B	108.7	C39-C38-C37	119.2(5)
C19-C18-C23	118.2(4)	C39-C38-H38	120.4
C19-C18-P1	119.9(4)	C37-C38--H38	120.4
C23-C18-P1	121.9(3)	C38-C39-C40	120.9(5)
C18-C19-C20	$119.8(4)$	C38-C39-H39	119.6
C18-C19-H19	120.1	C40-C39-H39	119.6
C20-C19-H19	120.1	C39-C40-C41	120.0(5)
C21-C20-C19	120.5(4)	C39-C40-H40	120.0
C21-C20-H20	119.7	C41-C40-H40	120.0
C19-C20-H20	119.7	C40-C41-C36	120.3(5)
C22-C21-C20	119.7(4)	C40-C41-H41	119.9
C22-C21-H21	120.2	C36-C41-H41	119.9
C20-C21-H21	120.2	P2-C42-H42A	109.5
C23-C22-C21	120.7(5)	P2-C42-H42B	109.5
C23-C22-H22	119.6	H42A-C42-H42B	109.5

Appendix V: X-Ray Structure of Ruthenium Complex 112			
P2-C42-H42C	109.5	C104-C103-C102	133.3(5)
H42A-C42-H42C	109.5	C104-C103-C108	$119.3(4)$
H42B-C42-H42C	109.5	C102-C103-C108	107.4(4)
C24-P1-C18	100.41(19)	C104-C103-Ru2	$127.3(3)$
C24-P1-C17	106.30(19)	C102-C103-Ru2	68.7(2)
C18-P1-C17	102.9(2)	C108-C103-Ru2	70.4(2)
C24-P1-Rul	126.07(15)	C105-C104-C103	119.1(5)
C18-P1-Ru1	116.53(15)	C105-C104-H104	120.4
C17-P1-Rul	102.18(14)	C103-Cl04-H104	120.4
C42-P2-C30	103.6(2)	C104-C105-C106	122.1(5)
C42-P2-C36	100.8(2)	C104-C105-H105	118.9
C30-P2-C36	102.2(2)	C106-Cl05-H105	118.9
C42-P2-Ru1	$118.88(17)$	C107-C106-C105	121.6 (5)
C30-P2-Ru1	115.26(14)	C107-C106-H106	119.2
C36-P2-Ru1	113.85(15)	C105-C106-H106	119.2
C9-Ru1-C1	38.35(17)	C106-C107-C108	118.3(5)
$\mathrm{C} 9-\mathrm{Ru} 1-\mathrm{C} 2$	63.65(17)	C106-C107-H107	120.8
C1-Ru1-C2	37.53(15)	C108-C107-H107	120.8
C9-Ru1-Pl	80.01(12)	C107-C108-C109	$132.5(5)$
Cl-Rul-P1	105.35(12)	C107-C108-C103	$119.5(4)$
C2-Ru1-P1	141.78(12)	C109-C108-C103	108.0(4)
C9-Ru1-P2	130.58(13)	C107-C108-Ru2	127.5(3)
C1-Ru1--P2	96.87(13)	C109-C108-Ru2	66.0(2)
C2-Ru1-P2	93.78(13)	C103-Cl08-Ru2	72.9 (3)
P1-Ru1-P2	101.73(4)	C101-C109-C108	$107.5(4)$
C9-Rul-C8	38.24(15)	C101-C109-Cl10	126.6(4)
$\mathrm{Cl}-\mathrm{Ru} 1-\mathrm{C} 8$	62.65(17)	C108-C109-C110	125.8(5)
C2-Rul-C8	61.88(17)	Cl01-Cl09-Ru2	70.8(3)
Pl-Ru1-C8	96.95(11)	Cl08-C109-Ru2	76.6 (3)
P2-Ru1-C8	155.51(11)	C110-C109-Ru2	120.0(3)
C9-Rul-C3	62.64(16)	C109-C110-C117	110.0(4)
C1-Ru1-C3	61.66(16)	C109-C110-C111	$111.0(4)$
$\mathrm{C} 2-\mathrm{Ru} 1-\mathrm{C} 3$	36.59(15)	C117-C110-C111	115.4(4)
P1-Rul-C3	133.26(12)	C109-Cl10-H110	106.6
P2-Ru1-C3	123.52(12)	C117-C110-H110	106.6
C8-Rul-C3	36.35(15)	C111-Cl10-H110	106.6
C9-Rul-Cl1	145.36(13)	C116-C111-C110	114.9(5)
$\mathrm{Cl}-\mathrm{Rul}-\mathrm{Cl} 1$	159.17(12)	C116-Cl11-C112	108.2(5)
C2-Rul-Cl1	121.68(12)	$\mathrm{Cl10-Cl11-C112}$	111.1(5)
Pl-Rul-Cll	94.76(4)	Cl16-Cl11-H111	107.5
P2-Rul-Cl1	84.06(4)	$\mathrm{C} 110-\mathrm{Cl11-H111}$	107.5
C8-Rul-Cll	110.17(11)	C112-C111-H111	107.5
C3-Ru1-Cl1	100.47(12)	C113-C112-C111	113.1(6)
C14-C15-C16	112.4(5)	C113-C112-H11C	109.0
C14-C15-H15A	109.1	C111-C112-H11C	109.0
C16-C15-H15A	109.1	C113-C112-H11D	109.0
C14-C15-H15B	109.1	Cll1-Cl12-H11D	109.0
C16-C15-H15B	109.1	H11C-C112-H11D	107.8
H15A-C15-H15B	107.9	C114-Cl13-Cl12	111.1(6)
C109-C101-C102	109.1(4)	C114-C113-H11K	109.4
C109-C101-Ru2	70.7(2)	$\mathrm{Cl12-Cl13-H11K}$	109.4
C102-Cl01-Ru2	74.4(2)	C114-C113-H11L	109.4
C109-C101-H101	125.5	Cl12-C113-H11L	109.4
C102-Cl01-H101	125.5	H11K-C113-H11L	108.0
Ru2-C101-H101	121.1	C115-C114-C113	112.8(8)
C103-C102-C101	107.9(4)	C115-C114-H11I	109.0
C103-C102-Ru2	75.0(2)	C113-C114-H11I	109.0
C101-C102-Ru2	67.7(2)	C115-C114-H11J	109.0
C103-C102-H102	126.0	C113-C114-H11J	109.0
C101-C102-H102	126.0	H111-C114-H11J	107.8
Ru2-Cl02-H102	122.9	C114-C115-C116	112.1(7)

Appendix V: X-Ray Structure of Ruthenium Complex 112			
C114-C115-H11G	109.2	C131-C132-H132	120.5
C116-C115-H11G	109.2	C134-C133-C132	120.9(4)
$\mathrm{C} 114-\mathrm{Cl} 15-\mathrm{H1} 1 \mathrm{H}$	109.2	C134-C133-H133	119.6
C116-C115-H11H	109.2	C132-C133-H133	119.6
H11G-C115-H11H	107.9	C133-C134-C135	120.5(4)
C111-C116-C115	111.7(5)	C133-C134-H134	119.7
C111-C116-H11E	109.3	C135-C134-H134	119.7
C115-C116-H11E	109.3	C130-C135-C134	119.7(4)
C111-C116-H11F	109.3	C130-C135-H135	120.2
$\mathrm{Cl15-Cl16-H11F}$	109.3	C134-C135-H135	120.2
H11E-C116-H11F	107.9	C137-C136-C141	119.3(4)
C110-C117-P3	106.1(3)	C137-C136-P4	$121.1(3)$
C110-C117-H11A	110.5	C141-C136-P4	119.5(4)
P3-C117-H11A	110.5	C136-C137-C138	$120.9(4)$
C110-C117-H11B	110.5	C136-C137-H137	119.6
P3-C117-H11B	110.5	C138-C137-H137	119.6
H11A-C117-H11B	108.7	C139-C138-C137	119.1(5)
C123-C118-C119	119.9(5)	C139-C138-H138	120.4
C123-C118-P3	119.5(4)	C137-C138-H138	120.4
C119-C118-P3	120.6(3)	C140-C139-C138	120.4(5)
C120-C119-C118	120.1(4)	C140-C139-H139	119.8
C120-C119-H119	120.0	C138-C139-H139	119.8
C118-C119-H119	120.0	C139-C140-C141	121.0(4)
C121-Cl20-C119	119.7(5)	C139-C140-H140	119.5
C121-C120-H120	120.1	C141-C140-H140	119.5
C119-C120-H120	120.1	C140-C141-C136	$119.2(5)$
C120-C121-C122	120.1(4)	C140-C141-H141	120.4
C120-Cl21-H121	119.9	C136-C141-H141	120.4
C122-C121-H121	119.9	P4-C142-H14C	109.5
C123-C122-C121	120.2(4)	P4-C142-H14D	109.5
C123-C122-H122	119.9	H14C-C142-H14D	109.5
C121-C122-H122	119.9	P4-C142-H14E	109.5
C118-C123-C122	120.0(5)	H14C-C142-H14E	109.5
C118-C123-H123	120.0	H14D-C142-H14E	109.5
C122-Cl23-H123	120.0	C124-P3-C118	100.79(19)
C125-C124-C129	118.3(4)	C124-P3-C117	106.25(19)
C125-C124-P3	118.4(3)	C118-P3-C117	102.3 (2)
C129-C124-P3	123.2(3)	C124-P3-Ru2	127.36(15)
C126-C125-C124	120.9(4)	C118-P3-Ru2	115.83(15)
C126-C125-H125	119.6	C117-P3-Ru2	101.50(15)
C124-C125-H125	119.6	C142-P4-C130	104.25(19)
C125-C126-C127	119.6(4)	C142-P4-C136	$99.7(2)$
C125-C126-H126	120.2	C130-P4-C136	102.4(2)
C127-C126-H126	120.2	C142-P4-Ru2	119.33 (16)
C128-C127-C126	120.8(4)	C130-P4-Ru2	113.76(15)
C128-C127-H127	119.6	C136-P4-Ru2	115.10(14)
C126-C127-H127	119.6	C109-Ru2-C101	$38.55(17)$
C127-C128-C129	119.7(4)	C109-Ru2-C102	63.74(17)
C127-C128-H128	120.2	C101-Ru2-C102	37.87(15)
C129-C128-H128	120.2	C109-Ru2-P4	130.28(13)
C128-C129-C124	120.7(4)	C101-Ru2-P4	95.90(13)
C128-C129-H129	119.6	C102-Ru2-P4	92.71(13)
C124-C129-H129	119.6	C109-Ru2-P3	80.26(12)
C135-C130-C131	119.5(4)	C101-Ru2-P3	104.68(12)
C135-C130-P4	121.8(3)	C102-Ru2-P3	$141.65(12)$
C131-C130-P4	118.6(3)	P4-Ru2-P3	101.49(4)
C130-C131-Cl32	120.4(4)	C109-Ru2-C108	37.42 (16)
C130-C131-H131	119.8	C101-Ru2-C108	62.25(17)
C132-C131-H131	119.8	C102-Ru2-C108	61.54(16)
C133-C132-C131	119.1 (4)	P4-Ru2-C108	154.05(11)
C133-C132-H132	120.5	P3-Ru2-C108	97.82(12)

Appendix V: X-Ray Structure of Ruthenium Complex 112			
C109-Ru2-C103	62.65(16)	C101-Ru2-Cl2	159.72(12)
C101-Ru2-C103	61.94(15)	C102-Ru2-Cl2	121.91(12)
C102-Ru2-C103	36.36(15)	$\mathrm{P} 4-\mathrm{Ru} 2-\mathrm{Cl} 2$	85.28(4)
P4-Ru2-C103	122.27(13)	P3-Ru2-Cl2	94.87(4)
P3-Ru2-C103	134.43(13)	$\mathrm{C} 108-\mathrm{Ru} 2-\mathrm{Cl} 2$	$110.28(12)$
C108-Ru2-C103	36.64(16)	$\mathrm{Cl} 03-\mathrm{Ru} 2-\mathrm{Cl} 2$	100.35(11)
Cl09-Ru2-Cl2	144.43(13)		

Symmetry transformations used to generate equivalent atoms:

Appendix V: X-Ray Structure of Ruthenium Complex 112
Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{14}+\cdots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	$U^{\beta 3}$	U^{23}	U^{13}	U^{12}
C1	31(3)	15(2)	32(3)	11(2)	15(3)	3(2)
C2	23(3)	16(2)	31(3)	0(2)	$11(3)$	-1(2)
C3	21(3)	14(2)	34(3)	2(2)	9(3)	1(2)
C4	$31(3)$	21(2)	29(3)	2(2)	9(3)	7 (2)
C5	42(4)	21(2)	44(3)	4(2)	23(3)	9 (2)
C6	31(3)	27(3)	$51(4)$	-2(2)	24(3)	6(2)
C7	19(3)	15(2)	51(3)	0(2)	12(3)	2(2)
C8	20(3)	16(2)	31(3)	6(2)	8(2)	9 (2)
C9	23(3)	16(2)	31(3)	12(2)	7(2)	$5(2)$
C10	31(3)	23(2)	$26(3)$	4(2)	7(2)	$5(2)$
C 11	40(4)	25(3)	28(3)	8(2)	1(3)	-1(2)
C12	44(4)	29(3)	50(4)	9 (2)	-3(3)	7(3)
C 13	84(6)	41(3)	46(4)	16(3)	-16(4)	15(3)
C14	131(8)	51(4)	43(4)	12(3)	-31(4)	5(4)
C16	62(5)	29(3)	39(3)	10(2)	-5(3)	5(3)
C17	28(3)	26(2)	27(3)	1(2)	10(2)	-2(2)
C18	26(3)	17(2)	$31(3)$	0 (2)	14(3)	1(2)
C19	19(3)	25(2)	31(3)	0 (2)	10(2)	1(2)
C20	34(3)	32(3)	36(3)	4(2)	21(3)	-1(2)
C21	24(3)	303)	41 (3)	2(2)	19(3)	-2(2)
C22	20(3)	26(2)	33(3)	-4(2)	3(2)	-7(2)
C23	23(3)	29(2)	29(3)	-7(2)	10(2)	-6(2)
C24	23(3)	15(2)	23(2)	-1(2)	9(2)	-2(2)
C25	25(3)	28(2)	29(3)	-5(2)	14(2)	-9(2)
C26	33(3)	27(2)	43(3)	0 (2)	25(3)	1(2)
C27	33(3)	28(3)	52(3)	-2(2)	25(3)	7 (2)
C28	40(4)	27(2)	33(3)	8(2)	$17(3)$	3(2)
C29	29(3)	27(3)	28(3)	4(2)	15(2)	$8(2)$
C30	13(2)	23(2)	26(2)	6(2)	9(2)	$5(2)$
C31	32(3)	$21(2)$	42(3)	-3(2)	22(3)	-3(2)
C32	58(4)	35(3)	46(3)	0(2)	34(3)	0 (3)
C33	38(4)	44(3)	44(3)	0 (2)	29(3)	-6(3)
C34	27(3)	26(2)	45(3)	3(2)	20(3)	-5(2)
C35	27(3)	28(3)	26(3)	-3(2)	11(2)	-3(2)
C36	$21(3)$	25(2)	28(3)	6(2)	10(2)	1(2)
C37	25(3)	23(2)	43(3)	5(2)	16(3)	-1(2)
C38	17(3)	36(3)	48(3)	6(2)	5(3)	-3(2)
C39	$29(3)$	40(3)	37(3)	-6(2)	6(3)	-5(2)
C40	26(3)	29(3)	35(3)	-5(2)	5(3)	-6(2)
C41	28(3)	25(2)	28(3)	3(2)	9(3)	2(2)
C42	25(3)	23(2)	39(3)	6 (2)	17(3)	6(2)
Cl	23(1)	27(1)	25(1)	$5(1)$	11(1)	2(1)
P1	21(1)	20(1)	20(1)	2(1)	$9(1)$	0 (1)
P2	18(1)	20(1)	$28(1)$	2(1)	11(1)	1(1)
Ru1	17(1)	17(1)	23(1)	2(1)	8(1)	1(1)
C15	86(6)	46(4)	40(4)	$11(3)$	O(4)	-2(4)
C101	$31(3)$	19(2)	31(3)	-9(2)	16(3)	-7(2)
C102	21(3)	17(2)	30(3)	-1(2)	13(2)	0(2)
C103	28(3)	17(2)	29(3)	-8(2)	14(3)	-4(2)
C104	42(4)	22(2)	44(3)	-4(2)	27(3)	-5(2)
C105	55(4)	18(2)	56(4)	-4(2)	42(3)	-8(2)
C106	57(5)	30(3)	$72(4)$	-17(3)	53(4)	-21(3)
C107	29(3)	22(2)	53(3)	-16(2)	19(3)	$-9(2)$
C108	21(3)	14(2)	43(3)	-12(2)	16(3)	-7(2)
C109	24(3)	22(2)	26(3)	-9(2)	$5(2)$	-7(2)
C110	27(3)	31(3)	32(3)	-9(2)	4(3)	2(2)
C111	53(4)	59(4)	33(3)	-20(3)	3(3)	3(3)
C112	76(6)	34(3)	59(4)	-15(3)	-2(4)	-7(3)

APPENDIX V: X-RAY	STRUCTURE OF RUTHENIUM COMPLEX 112					
C113	101(7)	$68(5)$	$73(6)$	$-23(4)$	$-15(5)$	$7(5)$
C114	$156(9)$	$33(4)$	$82(6)$	$-11(4)$	$3(6)$	$-15(5)$
C115	$105(7)$	$91(6)$	$40(4)$	$-23(4)$	$-24(4)$	$9(5)$
C116	$85(6)$	$54(4)$	$43(4)$	$-7(3)$	$3(4)$	$-1(4)$
C117	$31(3)$	$34(3)$	$22(2)$	$-2(2)$	$8(2)$	$8(2)$
C118	$20(3)$	$21(2)$	$27(3)$	$-4(2)$	$11(2)$	$-5(2)$
C119	$28(3)$	$32(3)$	$32(3)$	$16(2)$	$15(3)$	$4(2)$
C120	$22(3)$	$35(3)$	$40(3)$	$16(2)$	$9(3)$	$1(2)$
C121	$28(3)$	$25(2)$	$49(3)$	$4(2)$	$24(3)$	$3(2)$
C122	$29(3)$	$40(3)$	$35(3)$	$3(2)$	$20(3)$	$2(2)$
C123	$292(3)$	$27(2)$	$28(3)$	$4(2)$	$14(3)$	$8(2)$
C124	$22(3)$	$21(2)$	$22(2)$	$5(2)$	$8(2)$	$6(2)$
C125	$32(3)$	$28(3)$	$22(2)$	$-1(2)$	$12(2)$	$-2(2)$
C126	$30(3)$	$31(2)$	$32(3)$	$-5(2)$	$15(3)$	$-3(2)$
C127	$32(3)$	$26(3)$	$44(3)$	$12(2)$	$20(3)$	$2(2)$
C128	$29(3)$	$38(3)$	$32(3)$	$9(2)$	$19(3)$	$4(2)$
C129	$28(3)$	$33(3)$	$23(2)$	$6(2)$	$14(2)$	$6(2)$
C130	$20(3)$	$25(2)$	$18(2)$	$0(2)$	$9(2)$	$-2(2)$
C131	$26(3)$	$28(2)$	$25(2)$	$2(2)$	$12(2)$	$1(2)$
C132	$36(3)$	$36(3)$	$25(3)$	$6(2)$	$16(3)$	$1(2)$
C133	$38(4)$	$37(3)$	$31(3)$	$-5(2)$	$21(3)$	$2(2)$
C134	$40(3)$	$20(2)$	$34(3)$	$-3(2)$	$23(3)$	$0(2)$
C135	$26(3)$	$26(3)$	$29(3)$	$1(2)$	$13(3)$	$1(2)$
C136	$19(3)$	$21(2)$	$18(2)$	$-2(2)$	$4(2)$	$-4(2)$
C137	$27(3)$	$27(2)$	$31(3)$	$1(2)$	$12(2)$	$2(2)$
C138	$24(3)$	$32(3)$	$37(3)$	$-4(2)$	$7(3)$	$4(2)$
C139	$30(3)$	$32(3)$	$27(3)$	$1(2)$	$0(3)$	$3(2)$
C140	$38(4)$	$27(2)$	$22(3)$	$4(2)$	$12(3)$	$4(2)$
C141	$33(3)$	$24(2)$	$25(3)$	$-4(2)$	$16(3)$	$-6(2)$
C142	$24(3)$	$22(2)$	$32(3)$	$-5(2)$	$19(3)$	$-3(2)$
C12	$24(1)$	$29(1)$	$20(1)$	$-3(1)$	$11(1)$	$-1(1)$
P3	$22(1)$	$23(1)$	$19(1)$	$0(1)$	$10(1)$	$2(1)$
P4	$21(1)$	$19(1)$	$22(1)$	$0(1)$	$12(1)$	$0(1)$
Ru2	$18(1)$	$19(1)$	$19(1)$	$-1(1)$	$8(1)$	$-1(1)$

Appendix VI: X-Ray Structure of Ruthenium Complex 113

University of Southampton - Department of Chemistry

Table 1. Crystal data and structure refinement.

Identification code	04sot0782 (DCP165/2)
Empirical formula	$\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{ClP}_{2} \mathrm{Ru}$
Formula weight	684.16
Temperature	120(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a=18.93(2) \AA \quad \alpha=90^{\circ}$
	$b=16.508(13) \AA \quad \beta=90^{\circ}$
	$c=20.610(5) \AA \quad \gamma=90^{\circ}$
Volume	6441 (9) \AA^{3}
Z	8
Density (calculated)	$1.411 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.694 \mathrm{~mm}^{-1}$
$F(000)$	2832
Crystal	Cut block; dark red
Crystal size	$0.16 \times 0.10 \times 0.08 \mathrm{~mm}^{3}$
θ range for data collection	$2.92-27.50^{\circ}$
Index ranges	$-24 \leq h \leq 24,-19 \leq k \leq 19,-26 \leq l \leq 16$
Reflections collected	38570
Independent reflections	$7146\left[R_{\text {int }}=0.2476\right]$
Completeness to $\theta=27.50^{\circ}$	96.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9466 and 0.8970
Refinement method	Full-matrix Jeast-squares on F^{2}
Data / restraints / parameters	7146/0/371
Goodness-of-fit on F^{2}	0.972
Final R indices [$F^{2}>2 \sigma\left(F^{2}\right)$]	$R 1=0.0792, w R 2=0.1273$
R indices (all data)	$R 1=0.1949, w R 2=0.1611$
Extinction coefficient	0.0011(2)
Largest diff. peak and hole	1.514 and $-3.492 \mathrm{e}^{\AA^{-3}}$

Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill asymmetric unit sphere). Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallograply Laboratory, University of Oxford, 1993).

Special details

Appendix VI: X-Ray Structure of Ruthenium Complex 113

Table 2. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y	z	$U_{\text {eq }}$	S.of.
Ru1	$758(1)$	$1573(1)$	$1644(1)$	$15(1)$	1
C11	$24(1)$	$362(1)$	$1716(1)$	$21(1)$	1
P1	$1087(1)$	$1420(1)$	$2697(1)$	$17(1)$	1
P2	$-98(1)$	$2501(1)$	$1832(1)$	$15(1)$	1
C1	$1735(2)$	$2163(4)$	$1442(2)$	$20(1)$	1
C2	$1833(3)$	$1345(4)$	$1220(2)$	$22(1)$	1
C3	$1375(3)$	$1223(4)$	$677(2)$	$23(1)$	1
C4	$1279(3)$	$528(4)$	$272(2)$	$30(2)$	1
C5	$825(3)$	$600(5)$	$-242(2)$	$36(2)$	1
C6	$454(3)$	$1315(5)$	$-365(2)$	$35(2)$	1
C7	$508(3)$	$1992(4)$	$30(2)$	$26(2)$	1
C8	$980(3)$	$1945(4)$	$572(2)$	$15(1)$	1
C9	$1181(3)$	$2528(4)$	$1071(2)$	$18(1)$	1
C10	$880(3)$	$3379(4)$	$1120(2)$	$17(1)$	1
C11	$1483(3)$	$4016(4)$	$1135(2)$	$21(1)$	1
C12	$1962(3)$	$3957(5)$	$535(2)$	$28(2)$	1
C13	$1598(3)$	$4266(5)$	$-75(2)$	$37(2)$	1
C14	$1326(4)$	$5121(5)$	$10(3)$	$43(2)$	1
C15	$833(3)$	$5195(5)$	$609(3)$	$36(2)$	1
C16	$1220(3)$	$4878(4)$	$1208(3)$	$27(2)$	1
C17	$378(3)$	$3459(4)$	$1707(2)$	$19(1)$	1
C18	$-577(3)$	$2644(4)$	$2593(2)$	$15(1)$	1
C19	$-585(3)$	$3361(4)$	$2947(2)$	$17(1)$	1
C20	$-1008(3)$	$3415(4)$	$3501(2)$	$19(1)$	1
C21	$-1424(3)$	$2779(4)$	$3695(2)$	$23(1)$	1
C22	$-1414(3)$	$2055(4)$	$3353(2)$	$23(1)$	1
C23	$-1000(3)$	$1992(4)$	$2799(2)$	$22(1)$	1
C24	$-872(3)$	$2564(4)$	$1281(2)$	$19(1)$	1
C25	$-1346(3)$	$3203(4)$	$1319(2)$	$21(1)$	1
C26	$-1954(3)$	$3222(4)$	$940(2)$	$25(2)$	1
C27	$-2085(3)$	$2581(4)$	$515(2)$	$27(2)$	1
C28	$-1620(3)$	$1942(4)$	$478(2)$	$24(1)$	1
C29	$-1008(3)$	$1925(4)$	$859(2)$	$19(1)$	1
C30	$1866(3)$	$769(4)$	$2789(2)$	$19(1)$	1
C31	$1813(3)$	$-17(4)$	$2534(2)$	$23(1)$	1
C32	$2364(3)$	$-556(4)$	$2605(2)$	$28(2)$	1
C33	$2988(3)$	$-325(4)$	$2912(2)$	$27(2)$	1
C34	$3051(3)$	$452(4)$	$3151(2)$	$26(2)$	1
C35	$2495(3)$	$993(4)$	$3096(2)$	$21(1)$	1
C36	$480(3)$	$926(4)$	$3264(2)$	$29(2)$	1
C37	$1319(3)$	$2331(4)$	$3146(2)$	$28(2)$	1

Appendix VI: X-Ray Structure of Ruthenium Complex 113
Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$].

Ru1-C9	2.127(6)	C20-H20	0.9500
Rul--C1	2.131(5)	C21-C22	$1.388(9)$
Ru1-C2	2.246 (5)	C21-H21	0.9500
Rul-P2	2.264(2)	C22-C23	$1.389(6)$
Rul-P1	2.2713(13)	C22-H22	0.9500
Rul-C8	2.331 (4)	C23-H23	0.9500
Ru1-C3	2.380 (5)	C24-C29	1.391 (8)
Ru1--Cll	2.439(2)	C24-C25	1.387(8)
P1-C37	1.819(6)	C25-C26	$1.392(7)$
P1-C30	$1.834(6)$	C25-H25	0.9500
P1-C36	$1.832(6)$	C26-C27	1.397(8)
P2-C18	1.828(5)	C26-H26	0.9500
P2-C17	1.838(6)	C27-C28	1.375 (9)
P2-C24	1.857(5)	C27-H27	0.9500
$\mathrm{Cl}-\mathrm{C} 9$	1.431(7)	C28-C29	1.400(7)
$\mathrm{C} 1-\mathrm{C} 2$	1.437(9)	C28-H28	0.9500
CI-H1	0.9500	C29-H29	0.9500
C2-C3	1.430(7)	C30-C35	$1.398(7)$
C2-H2	0.9500	C30-C31	1.403(9)
C3-C8	1.424(8)	C31-C32	1.379(8)
C3-C4	1.430 (8)	C31-H31	0.9500
C4-C5	1.371(7)	C32-C33	1.393(8)
C4-H4	0.9500	C32-H32	0.9500
C5-C6	$1.396(10)$	C33-C34	1.378(9)
C5-H5	0.9500	C33-H33	0.9500
C6-C7	1.386(9)	C34-C35	$1.386(8)$
C6-H6	0.9500	C34-H34	0.9500
C7-C8	1.432(6)	C35-H35	0.9500
C7-H7	0.9500	C36-H36A	0.9800
C8-C9	1.459(7)	C36-H36B	0.9800
C9-C10	$1.519(8)$	C36-H36C	0.9800
C10-C17	$1.544(6)$	C37-H37A	0.9800
C10-C11	1.553 (8)	C37-H37B	0.9800
C10-H10	1.0000	C37-H37C	0.9800
C11-C16	$1.515(9)$		
C11-C12	1.537(7)	C9-Ru1-C1	39.27(19)
C11-H11	1.0000	C9-Rul-C2	64.3(2)
C12-C13	1.521(7)	C1-Ru1-C2	38.2(2)
C12-H12A	0.9900	C9-Rul-P2	$82.07(16)$
C12-H12B	0.9900	C1-Ru1-P2	110.15 (19)
C13-C14	1.512(10)	C2-Ru1-P2	145.90 (18)
C13-H13A	0.9900	C9-Rul-Pl	120.61(14)
C13-H13B	0.9900	C1-Ru1-P1	89.96(13)
C14-C15	1.553(8)	C2-Rul-Pl	96.01(13)
C14-H14A	0.9900	P2-Ru1-P1	96.20 (5)
C14-H14B	0.9900	C9-Rul--C8	37.9(2)
C15-C16	1.527(8)	C1-Ru1-C8	62.50 (17)
C15-H15A	0.9900	C2-Ru1-C8	60.83(18)
C15-H15B	0.9900	P2-Ru1-C8	96.42(15)
C16-H16A	0.9900	Pl-Rul-C8	152.27(13)
C16-H16B	0.9900	C9-Ru1-C3	62.0 (2)
C17-H17A	0.9900	C1-Ru1-C3	61.4(2)
C17-H17B	0.9900	$\mathrm{C} 2-\mathrm{Ru} 1-\mathrm{C} 3$	$35.86(17)$
C18-C19	1.391 (8)	P2-Rul-C3	131.16 (15)
C18-C23	1.407(8)	P1-Ru1-C3	129.67(14)
C19-C20	1.398(7)	C8-Rul-C3	35.2(2)
C19-H19	0.9500	$\mathrm{C} 9-\mathrm{Ru} 1-\mathrm{Cl} 1$	148.86(13)
$\mathrm{C} 20-\mathrm{C} 21$	1.372(8)	Cl-Rul-Cll	151.81(17)

Appendix VI: X-Ray Structure of Ruthenium Complex 113

C2-Rul-Cll	113.80(18)	C17-C10-C11	112.2(4)
P2-Ru1-Cl1	97.83(9)	C9-C10-H10	107.5
Pl-Rul-Cll	90.44(5)	$\mathrm{C} 17-\mathrm{C} 10-\mathrm{H} 10$	107.5
$\mathrm{C} 8-\mathrm{Ru} 1-\mathrm{Cll}$	112.11(14)	C11-C10-H10	107.5
C3-Rul-Cll	97.59(16)	C16-C11-C12	109.5(5)
C37-P1-C30	103.8(3)	C16-C11-C10	113.4(5)
C37-P1-C36	101.2(3)	C12-C11-C10	112.0(5)
C30-P1-C36	100.2(3)	C16-C11-H11	107.2
C37-P1-Ru1	117.4(2)	$\mathrm{C} 22-\mathrm{C} 11-\mathrm{H} 11$	107.2
C30-P1-Ru1	112.62(15)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	107.2
C36-P1-Ru1	119.13(18)	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{Cl1}$	112.0(4)
C18-P2-C17	104.6(2)	C13-C12-H12A	109.2
C18-P2-C24	97.2(2)	C11-C12-H12A	109.2
C17-P2-C24	104.6(3)	C13-C12-H12B	109.2
C18-P2-Ru1	126.13(18)	C11-C12-H12B	109.2
C17-P2-Rul	102.05(19)	H12A-C12-H12B	107.9
C24-P2-Ru1	119.92(19)	C14-C13-C12	$111.9(5)$
C9-C1-C2	108.7(5)	C14--C13-H13A	109.2
C9-Cl-Rul	70.2(3)	C12-C13-H13A	109.2
C2-C1-Rul	75.2(3)	C14-C13-H13B	109.2
C9-Cl-H1	125.7	C12-C13-H13B	109.2
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Hl}$	125.7	H13A-C13-H13B	107.9
$\mathrm{Ru} 1-\mathrm{Cl}-\mathrm{H1}$	120.6	C13-C14-C15	$111.7(5)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	107.6(5)	C13-C14-H14A	109.3
C3-C2-Ru1	$77.2(3)$	C15-C14-H14A	109.3
C1-C2-Rul	66.6(3)	C13-C14-H14B	109.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.2	C15-C14-H14B	109.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	126.2	H14A-C14-H14B	107.9
Ru1-C2-H2	121.6	C16-C15-C14	109.1(5)
C8--C3-C4	121.1(5)	C16-C15-H15A	109.9
C8-C3-C2	108.7(5)	C14-C15-H15A	109.9
C4-C3-C2	130.3(6)	C16-C15-H15B	109.9
C8-C3-Ru1	70.5(3)	C14-C15-H15B	109.9
C4-C3-Ru1	128.3(4)	H15A-C15-H15B	108.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Ru} 1$	66.9(3)	C11-C16-C15	113.5(5)
C5-C4-C3	117.5(6)	C11-C16-H16A	108.9
C5-C4-H4	121.2	C15-C16-H16A	108.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	121.2	C11-C16-H16B	108.9
C4-C5-C6	121.9(6)	C15-C16-H16B	108.9
C4-C5-H5	119.1	H16A-C16-H16B	107.7
C6-C5-H5	119.1	C10-C17-P2	109.7(4)
C7-C6-C5	122.6(5)	$\mathrm{C} 10-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	109.7
C7-C6-H6	118.7	P2-C17-H17A	109.7
C5-C6-H6	118.7	$\mathrm{C} 10-\mathrm{C} 17-\mathrm{H17B}$	109.7
C6-C7-C8	117.4(6)	P2-C17-H17B	109.7
C6-C7-H7	121.3	H17A-C17-H17B	108.2
C8-C7-H7	121.3	C19-C18-C23	119.1(5)
C3-C8-C7	119.4(5)	C19-C18-P2	124.5(4)
C3-C8-C9	107.9(4)	C23-C18-P2	116.3(4)
C7-C8-C9	132.6(6)	C18-C19-C20	119.3(5)
C3-C8-Rul	74.3(3)	C18-C19-H19	120.4
C7-C8-Rul	129.9(3)	C20-C19-H19	120.4
C9-C8-Rul	63.5(3)	C21-C20-C19	121.2(6)
C1-C9-C8	106.9(5)	C21-C20-H20	119.4
C1-C9-C10	129.0(5)	C19-C20-H20	119.4
C8-C9-C10	123.9(4)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	120.3(5)
Cl-C9-Rul	70.5(3)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$	119.9
C8-C9-Ru1	78.7(3)	C22-C21-H21	119.9
C10-C9-Rul	120.5(3)	C23-C22-C21	119.3 (6)
C9-C10-C17	$111.3(4)$	C23-C22-H22	120.4
C9-C10-C11	110.6(4)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	120.4

APPENDIX VI: X-RAY STRUCTURE OF RUTHENIUM COMPLEX 113			
C22-C23-C18	$120.8(6)$	C30-C31-H31	
C22-C23-H23	119.6	C31-C32-C33	119.9
C18-C23-H23	119.6	C31-C32-H32	$110.8(6)$
C29-C24-C25	$119.4(5)$	C33-C32-H32	119.6
C29-C24-P2	$119.1(4)$	C34-C33-C32	$119.4(6)$
C25-C24-P2	$121.3(4)$	C34-C33-H33	120.3
C24-C25-C26	$121.4(5)$	C32-C33-H33	120.3
C24-C25-H25	119.3	C33-C34-C35	$120.2(5)$
C26-C25-H25	119.3	C33-C34-H34	119.9
C27-C26-C25	$118.8(6)$	C35-C34-H34	119.9
C27-C26-H26	120.6	C34-C35-C30	$121.0(6)$
C25-C26-H26	120.6	C34-C35-H35	119.5
C28-C27-C26	$120.2(5)$	C30-C35-H35	119.5
C28-C27-H27	119.9	P1-C36-H36A	109.5
C26-C22-H27	119.9	P1-C36-H36B	109.5
C27-C28-C29	$120.9(6)$	H36A-C36-H36B	109.5
C27-C28-H28	119.5	P1-C36-H36C	109.5
C29-C28-H28	119.5	H36A-C36-H36C	109.5
C24-C29-C28	$119.3(6)$	H36B-C36-H36C	109.5
C24-C29-H29	120.3	P1-C37-H37A	109.5
C28-C29-H29	120.3	P1-C37-H37B	109.5
C35-C30-C31	$118.3(5)$	H37A-C37-H37B	109.5
C35-C30-P1	$125.2(5)$	P1-C37-H37C	109.5
C31-C30-P1	$116.5(4)$	H37A-C37-H37C	109.5
C32-C31-C30	$120.2(5)$	H37B-C37-H37C	109.5
C32-C31-H31	119.9		

Symmetry transformations used to generate equivalent atoms:

Appendix VI: X-Ray Structure of Ruthenium Complex 113
Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement
factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Ru1	$16(1)$	$17(1)$	$11(1)$	$-2(1)$	$0(1)$	$0(1)$
C11	$23(1)$	$18(1)$	$24(1)$	$-1(1)$	$-4(1)$	$-1(1)$
P1	$19(1)$	$21(1)$	$12(1)$	$-1(1)$	$-1(1)$	$1(1)$
P2	$16(1)$	$17(1)$	$12(1)$	$-1(1)$	$2(1)$	$1(1)$
C1	$14(2)$	$34(5)$	$13(2)$	$-5(2)$	$0(2)$	$-3(3)$
C2	$15(2)$	$28(5)$	$23(2)$	$3(3)$	$1(2)$	$3(3)$
C3	$26(3)$	$26(4)$	$15(2)$	$-4(2)$	$5(2)$	$0(3)$
C4	$29(3)$	$36(5)$	$25(2)$	$-10(3)$	$2(2)$	$0(3)$
C5	$40(3)$	$46(6)$	$21(2)$	$-12(3)$	$-1(3)$	$2(4)$
C6	$32(3)$	$52(6)$	$20(2)$	$-6(3)$	$-6(2)$	$-6(3)$
C7	$23(3)$	$38(5)$	$16(2)$	$2(3)$	$-2(2)$	$2(3)$
C8	$21(2)$	$15(4)$	$9(2)$	$3(2)$	$3(2)$	$-2(2)$
C9	$21(2)$	$21(4)$	$11(2)$	$1(2)$	$3(2)$	$2(3)$
C10	$20(2)$	$11(4)$	$19(2)$	$1(2)$	$3(2)$	$-5(2)$
C11	$24(3)$	$19(4)$	$21(2)$	$3(2)$	$2(2)$	$-4(3)$
C12	$22(3)$	$34(5)$	$29(3)$	$7(3)$	$9(2)$	$0(3)$
C13	$48(4)$	$42(5)$	$21(2)$	$7(3)$	$10(3)$	$3(4)$
C14	$53(4)$	$40(6)$	$37(3)$	$15(3)$	$4(3)$	$1(4)$
C15	$34(3)$	$37(5)$	$37(3)$	$8(3)$	$6(3)$	$4(3)$
C16	$31(3)$	$19(4)$	$31(3)$	$-1(3)$	$2(2)$	$-10(3)$
C17	$25(3)$	$16(4)$	$16(2)$	$0(2)$	$4(2)$	$0(3)$
C18	$20(2)$	$8(4)$	$16(2)$	$0(2)$	$-1(2)$	$0(2)$
C19	$21(2)$	$16(4)$	$15(2)$	$2(2)$	$0(2)$	$-2(3)$
C20	$28(3)$	$14(4)$	$16(2)$	$-2(2)$	$-4(2)$	$1(3)$
C21	$26(3)$	$23(4)$	$21(2)$	$2(3)$	$4(2)$	$8(3)$
C22	$23(2)$	$21(4)$	$26(2)$	$5(3)$	$7(2)$	$2(3)$
C23	$19(2)$	$21(4)$	$25(2)$	$-5(3)$	$4(2)$	$-1(3)$
C24	$19(2)$	$26(4)$	$11(2)$	$4(2)$	$2(2)$	$5(3)$
C25	$30(3)$	$20(4)$	$15(2)$	$1(2)$	$-2(2)$	$-1(3)$
C26	$27(3)$	$23(5)$	$25(2)$	$5(3)$	$-1(2)$	$6(3)$
C27	$31(3)$	$30(5)$	$20(2)$	$0(3)$	$-9(2)$	$2(3)$
C28	$33(3)$	$21(4)$	$19(2)$	$-8(2)$	$-2(2)$	$-1(3)$
C29	$21(2)$	$14(4)$	$20(2)$	$0(2)$	$0(2)$	$-1(3)$
C30	$21(3)$	$24(4)$	$11(2)$	$1(2)$	$1(2)$	$1(3)$
C31	$26(3)$	$27(4)$	$17(2)$	$-2(3)$	$-1(2)$	$1(3)$
C32	$30(3)$	$27(5)$	$27(3)$	$0(3)$	$2(2)$	$3(3)$
C33	$27(3)$	$24(5)$	$28(3)$	$7(3)$	$5(2)$	$10(3)$
C34	$24(3)$	$26(5)$	$26(2)$	$2(3)$	$0(2)$	$2(3)$
C35	$21(2)$	$26(4)$	$16(2)$	$-1(3)$	$-1(2)$	$-2(3)$
C36	$30(3)$	$36(5)$	$21(2)$	$7(3)$	$2(2)$	$-3(3)$
C37	$28(3)$	$38(5)$	$17(2)$	$-6(3)$	$-6(2)$	$6(3)$

[^0]: a-yield calculated by GC
 b - complexes supplied by P. Wright

[^1]: Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill asymmetric unit sphere). Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

[^2]: Diffractometer: Nonius KappaCCD area detector (ϕ scans and ω scans to fill asymmetric unit sphere). Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276 Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr, \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXZ97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemica Crystallography Laboratory, University of Oxford, 1993).

