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Positron emission tomography (PET) is a functional imaging technique that enables 

brain function to be measured m PET is a challenging apphcation area for data 

modelling with four dimensional data in space (3D) and time (ID). The spatio-temporal 

data sets are typically quantified using tracer kinetic models. An improper reference 

tissue input function will bias the modelling result. This thesis addresses the automatic 

extraction of a reference tissue region, devoid of receptor sites, which can then be used as 

an input for a reference tissue model, allowing for the quantification of receptor sites. It is 

shown that this segmentation can be determined from the time-activity curves associated 

with each voxel within the 3D volume, using modem machine learning methods. 

Previously, supervised learniug techniques have not been considered in PET reference 

region extraction. In this thesis, two new methods are proposed to incorporate expert 

knowledge and the image models with the data: a hierarchical method and a semi-

supervised image segmentation framework. Markov random field (MRF) models are 

used as a stochastic image model to specif the spatial interactions. The Erst method 

uses a Bayesian neural network with a hierarchical Markov random held model. The 

second method advances the Srst method by employing a semi-supervised image seg-

mentation framework to combine the fidelity of supervised data with the quantity of 

unsupervised data. This is realised by a three-level image model structure with prob-

ability distributions specifying the interconnections. This has the advantages for the 

generalisation performance and hence the reduction of bias in P E T reference region 

extraction. An Expectation Maximisation based algorithm is proposed to solve this 

combined learning problem. The performance of unsupervised, supervised and semi-

supervised clagsiGcation in temporal models and spatio-temporal models are compared, 

using both simulated and [^^C](7f)-PK11195 PET data. In conclusion, it shows that 

the inclusion of expert knowledge greatly reduces the uncertainty in the segmentation 

with the new semi-supervised framework achieving substantial performance gains over 

the other methods. 
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Chapter 1 

Introduction 

1.1 B ackground 

The human brain is amazing, enabling complex tasks to be performed in a diversity of 

environments. It is now possible to examine its anatomical structure m using tech-

niques such as X-rays, computerised tomography (CT) and magnetic resonance imaging 

(MRI). There are many circumstances where dynamical information is also needed, for 

example, in study of brain function and in the diagnosis of benignancy or mahgnancy of 

a brain tumour. The measurement of the electrical signals on the scalp using electroen-

cephalography (EEG), opens up new possibilities in studying brain function. However, 

signals recorded in the scalp may not represent the activity in the underlying cortex. 

The advent of functional imaging modalities of single photon emission computerised 

tomography (SPECT), positron emission tomography (PET), functional magnetic reso-

nance imaging (fMRI), and magnetoencephaiography (MEG) over the last twenty years 

hag led to a new era in the study of brain function. 

Medical image processing benehts greatly from computer processing. In early stage, 

image processing wag hmited to 2D images. In 1987, the hrst at tempts at fully automatic 

computer-aided diagnosis of X-ray mammograms were proposed (Chan et al. 1987). The 

advancement in computing alongside the development of new imaging and modelling 

techniques, has enabled medical image processing to be extended from 2D to 3D. The 

appecirance of functional images gives a challenge to data modelhng, as the data are 

often in 4D (3D in spatial domain and ID in time domain). This new type of data 

is highly multivariate: there are typically 100,000-400,000 voxels in each observation 

and the observation varies with time. Statistical tools have been developed to analyse 

functional image data, such as statistical parametric mapping (SPM) (Friston et al. 

1995). Recently, more scientists have begun to use Bayesian techniques in modelling 

functional image data (Genovese 2000; Svensen et ai. 2000). 

The earhest experiments to measure cerebral blood Sow were performed in 1948 by Kety 

1 
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and Schmidt (1948). The development of computer tomography in the 1970's allowed 

mapping of the distribution of the reidioisotopes in the brain, and led to the development 

of SPECT imaging (Kuhl and Edwards 1963). The radiotracer used in SPECT emits 

gamma rays, as opposed to the positron emitters used in PET. The Erst PET scanner 

appeared in 1975. Positron emission tomography hag two major advantages over SPECT, 

namely better spatial resolution and greater sensitivity (Fox et al. 1984). PET imaging 

involves injecting the human body with a radiolabeUed compound and measuring the 

distribution of the radiotracer. The distribution of the radiolabeled compound measures 

how the body functions with that compound. Dynamic imaging involves acquiring 

a sequence of images that measure some temporal property of an object of interest. 

These changes relate to the biochemical and physiological interactions of a particular 

radiotracer within the human body. Using this imaging modality, information can be 

gathered about processes that occur over time within the human body. This information 

can then be used to study how organs function in normal and diseased states, and under 

external iu&uences such as drugs or other therapeutic actions. 

1.2 Mot iva t ion of This Rcscarch 

The problem under investigation in this research can be stated aa follows: given 4D PET 

dynamic images of a subject, how can the image to be segmented into regions based 

on their diSerent dynamic behaviours? Apart from the application of various image 

segmentation techniques to PET, this thesis also investigates methods for increasing 

the segmentation accuracy by Improving the generalisation in learning. Specifically, the 

combination of expert knowledge with the image data is investigated. 

In 4D spatio-temporal PET data, the "intensity" of each voxel is a signal over time, repre-

senting the changing of tissue concentration. Signal modelling can often be categorised 

as parametric modelhng and non-parametric modelling. In parametric modelling, an 

exphcit model based on prior knowledge of the system, using a set of biological or phys-

iological meaningful parameters which describe the process, is used. In non-parametric 

modelhng, no assumption is made about the data generating system. 

The reference region model (Lammertsma and Hume 1996) is a widely used parametric 

model in PET to produce the parametric images of binding potential and relative deliv-

ery. The model requires the reference region time-activity curve (TAG) as an input. The 

reference region TAG is often obtained from a non-parametric technique or from the co-

registered Magnetic Resonajice Image (MRI). Currently, most non-parametric reference 

region segmentation methods (Ashburner et al. 1996; Yap et al. 1996) used in P E T 

belong to the class of unsupervised techniques, where no a priori knowledge is involved 

in the segmentation process. Both the number of underlying patterns and the final dis-

crimination need to be determined manually. Another option, the co-registration with 
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MRI, means that an extra MRI is needed in every PET experiment, which is expensive 

and time-consmning. Additionally, this image co-registration between diEerent modali-

ties can be di&cnlt (Kiebel et al. 1997). The two modalities may image very diGFerent 

properties: e.g. analytical information and functional information. There is no proved 

evidence that any links between the regions in MRI and the reference region in PET 

exist. Accordingly an eScient methodology to segment P E T images into a reference 

region and a non-reference region is needed. 

The work described in this thesis investigates the integration of knowledge from diSer-

ent sources to enhance the accuracy of PET image segmentation. Supervised learning 

techniques are applied to the characterisation of dynamic P E T images, in combination 

with expert knowledge. A supervised neural network (Haykin 1999; Patterson 1996) 

is configured to learn the distinction between reference and non-reference regions using 

examples labelled by an expert. The resulting claasiher is used to select the reference 

curve used in the reference model, producing an automatic system, which enables the 

generation of parametric maps of binding potential without human intervention and 

MRI co-registration. 

Ideally an image segmentation method should be able to use knowledge from various 

available sources: expert knowledge and the knowledge embedded in the image to be 

segmented. By integrating knowledge across scans, we may enhance the robustness of 

the segmentation process and hence increase confidence in the extraction of the reference 

regions. 

1.3 Con t r ibu t ions 

The main contributions of this work are the application of statistical classification tech-

niques to P E T modelling and the proposition of two new methods to incorporate knowl-

edge from different sources (such as expert knowledge and the image models) into the 

PET reference region extraction process: a hierarchical supervised method and a semi-

supervised image segmentation framework. This work first introduces supervised and 

semi-supervised learning into PET modelling. Previously, most learning techniques con-

sidered in PET reference region segmentation belongs to unsupervised learning. The 

theoretical analysis is supported with experimental comparison of the classification Eind 

image segmentation techniques with simulated and real PET da ta showing performance 

gains of the proposed methods over previous methods. The main contributions are 

detailed below: 

* The use of statistical classification techniques to P E T modelling is investigated. 

Various data classification techniques such as supervised, unsupervised and semi-

supervised methods are formulated. Several classification techniques such as Bay-
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esian neural networks, Gaussian mixture modelling are applied to simulated and 

real PET data segmentation. 

# Statistical classiScation techniques are used in image segmentation with the use 

of stochastic models - Markov random fields (Geman and Geman 1984). Markov 

random field models are very suited for modelling the image's pixel (voxel) local 

connections. The use of Markov random field models in classification enables 

image pixel correlations to be considered instead of the mirealistic independence 

assumption. The Markov random Geld model can be combined naturally into 

the unsupervised Gaussian mixture modelling, with optimisation methods such 

as simulated annealing and mean field annealing being used to find a global or 

approximated solution to the problem. The combination of a Markov random field 

model with supervised classification techniques can be carried out in a hierarchical 

manner. 

» A new semi-supervised image segmentation framework is developed. Both the 

labelled data and unlabelled data are used in the learning phase, so that the clas-

sifier uses knowledge in the labelled samples as well as additional knowledge of the 

data distribution from the unlabelled data, which is very important when labelled 

data are sparse. Ea;Ch image is modelled at three diSerent levels: the observed 

image, the "mixture label" image and the "class label" image, where connections 

between different levels are described by probability distributions, enabling a pos-

terior probability distribution of the data to be recovered. A Markov rajidom field 

model is used to incorporate neighbourhood information into the learning process. 

All information is considered in an integrated framework instead of hierarchically. 

» Segmentation techniques are applied to simulated and real P E T data. In simula-

tions, performance assessment is measured by the estimation error as the ground 

truth is known. These simulations confirm that expert knowledge can be integrated 

successfully with the learning, reducing the uncertainty in the segmentation, and 

improving segmentation accuracy. In real PET data, a test-retest scheme is used 

to compare different segmentation techniques. 

The work in this thesis has contributed to the following publications; 

® Jun L. Chen, Steve R. Gunn and Mark S. Nixon, Markov random field models 

for segmentation of PET images, Proceedings of 17th International conference 

on information processing in medical imaging (IPMI), Davis, USA, June, 2001, 

pp.468-474. 

# Jun L. Chen and Steve R. Gunn, A model-based image segmentation framework 

using labeled and unlabeled data. Proceedings of Advanced Concepts for Intelligent 

Vision Systems, Germany, July, 2001, pp.112-126. 
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8 Jun L. Chen, Steve R. Gunn, Mark S. Nixon, Ralph P. Myers and Roger N. 

Gnnn, A Supervised Method for PET Reference Region Extraction, Proceedings 

of Medical Image Understanding and Analysis, London, UK, July, 2001, pp.179-

182. 

1.4 Scope of Thesis 

The research undertaken as part of this thesis is concerned with the development and 

application of machine learning techniques to PET image segmentation to enhance the 

segmentation accuracy. The thesis 6rst gives an introduction of PET imaging and the 

classiBcation problem, followed by applying classiEcation techniques to P E T temporal 

reference region extraction. Then the new image segmentation techniques combined with 

expert knowledge are proposed with the application to PET spatio-temporal reference 

region extraction. The thesis is structured as follows: 

C h a p t e r 2: P E T D y n a m i c I m a g e Mode l l ing 

This chapter gives an introduction to PET imaging and describes the problem tackled in 

the thesis. The physical principles, data acquisition and data reconstruction processes 

are described. This gives a general idea of the PET data generation process and the 

quantity of data generated from a PET scan. The factors that limit spatial resolution of 

PET data are discussed. Relevant PET modeUing techniques including compartmental 

models and reference region models, are discussed. The reference region model is of 

central interest since the segmentation of PET images to extract these reference regions 

is the central aim of this research. 

C h a p t e r 3: D a t a Classif icat ion 

This chapter provides a short introduction to learning and pattern recognition. The fun-

damental goal of learning techniques is to maximise the generalisation performance of 

the learning machine. The mathematical formulations of unsupervised, supervised emd 

semi-supervised classlhcation methods are given. Various eScient classification tech-

niques are illustrated. In unsupervised classiGcation, the Gaussian mixture modelling 

method often outperforms other methods as it provides a tractable probabilistic rep-

resentation. In supervised classification, neural networks and kernel machines (such as 

support vector machine) are often used. As both unsupervised and supervised classihca-

tion uses only the knowledge in the labelled examples or the knowledge in the unlabeUed 

data, semi-supervised classification provides methods for including knowledge from both 

sources. The methodology to combine both forms of knowledge remains an active re-

search topic. The concept of induction and transduction learning is distinguished within 

both supervised and semi-supervised classification. 

C h a p t e r 4: T e m p o r a l P E T R e f e r e n c e Reg ion E x t r a c t i o n 
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This chapter deals with using unsupervised, supervised and semi-supervised pattern 

recognition techniques in PET image segmentation with the assumption of data in-

dependence. The PET reference region localisation problem is addressed using both 

simulated and real PET data. The segmentation results with different pattern recogni-

tion techniques are compared. In real PET data, a test-retest scheme is used to estimate 

performance. Parametric images of binding potential are generated by using a simplifed 

reference region model. Additionally, as the subject's age is increasingly being recog-

nised as an important factor in&uencing the brain's fmiction, the binding potential's 

correlation with age is investigated to 5nd possible connections between them. 

C h a p t e r 5: I m a g e Segmen ta t i on 

A Markov random Geld model is introduced to model the image's pixel interactions. The 

introduction of Markov random field models enables regularisation in low-level image 

segmentation. When the model parameters are known, the iterated continual mode 

(ICM) method can be used as an ad Aoc iterative optimisation method. When joint 

image segmentation and parameter estimation is needed, Markov chain Monte Carlo, 

Mean Geld annealing and EM methods can be used to deal with the optimisation problem 

in unsupervised image segmentation. 

Apart from modelling the image segmentation problem in an unsupervised manner, this 

chapter introduces the new idea of learning in image segmentation, i.e., combination 

of image models with expert knowledge in the image segmentation process. Two new 

methods are proposed to reahse this. One method is to hierarchically use a supervised 

neural network and statistical image models to model image's pixel correlations. A 

new combined learning framework is also proposed to solve this diScult problem with 

improved accuracy. The new semi-supervised image segmentation scheme uses both 

labelled and unlabelled data as well as imposing local constraints on image pixels in 

the learning process, so that the classifier uses knowledge in the labelled samples as 

well as additional knowledge of the data distribution from the unlabelled data, which 

is important when labelled data are sparse. Each image is modelled at three diSerent 

levels: the observed image, the "mixture label" image and the "claas label" image, where 

connections between different levels are described by probability distributions, enabling 

a posterior probability distribution of the data to be recovered. A Markov random field 

model is used to incorporate neighbourhood interaction into the learning process. All 

information is considered in an integrated framework instead of hierarchically. A method 

based on Expectation-Maximisation is also presented to solve the difficult optimisation 

problem. 

C h a p t e r 6: Spa t io -Tempora l P E T Refe rence Region A n a l y s i s 

This chapter applies the spatio-temporal segmentation techniques to P E T reference re-

gion extraction, with comparisons between unsupervised image segmentation, hierarchi-

cal supervised image segmentation and semi-supervised image segmentation on simu-
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lated and real PET data. The segmentation results are compared with each other as 

well as the temporal segmentation results in chapter 4. The experimental results show 

that the use of expert knowledge and image's pixel local connections reduces the uncer-

tainty in segmentation and improves the segmentation performance. Similar to chapter 

4, parametric images of binding potential and the binding potential's correlation with 

age are also given. 

C h a p t e r 7: Conclusions a n d F u t u r e W o r k 

The final chapter summaries the theoretical and experimental results and suggests di-

rections for future work. 



Chapter 2 

P E T Dynamic Image Modelling 

As a dynamic imaging technique, PET enables investigating human body m This 

chapter gives a brief review of the physical principles of P E T imaging, including the 

imaging and reconstruction process. The parametric models such as the simpilified 

reference region model will be described for ajialysing PET images. 

2.1 Physical Pr inciples a n d D a t a Acquis i t ion 

2 .1 .1 P h y s i c a l P r i n c i p l e s 

Phelps et al. (1986) give a rigorous treatment of the theoretical and practical issues 

related to PET imaging. PET uses radio tracers to image human biological and chemical 

processes m (Phelps and Gambhir 1993). A tracer is an analogue of a biologically 

active compound in which one of the atoms has been replaced by a radioactive atom. 

When the tracer is introduced into the body, its spatio-temporal distribution can be 

located by means of the radioactive atom. PET requires an on-site cyclotron to produce 

the short-lived radioisotopes. 

All radioisotopes used with PET decay by positron emission. Positrons are positively 

charged electrons. They are emitted from the nucleus of some radioisotopes that are 

unstable because they have an excessive number of protons and hence a positive charge. 

Positron emission stabilises the nucleus by removing this positive charge through the 

conversion of a proton into a neutron. 

A positron emitted from a decaying nucleus travels a short distance before colliding with 

an electron of a nearby atom. When a positron comes in contact with an electron, the 

two particles annihilate turning their mass to energy (via Einstein's equation the total 

energy released is — 2moc^). Conservation of energy yields two 511-keV gamma-rays 

that are emitted in opposite directions (see Fig. 2.1). 
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positron p 

gamma-ray 

gamma-ray 

FIGURE 2 .1 : Positron and electron annihilation 

2 .1 .2 D a t a A c q u i s i t i o n 

The Gamma-rays which escape from the human body can be recorded by external de-

tectors, as shown in Fig. 2.2. The PET detector is set up in such a way as to accept 

events in which both annihilation photons are detected in coincidence. Typically, two 

photons are identified as coming from a single event if they arrive at detectors within 

about 15ns of one another. Events are recorded between the currently many millions 

of detector pairs which represent line integrals or projections at different angles around 

the subject. The raw data set is termed a sinogram (a matrix of angles vs. projection). 

FIGURE 2.2: Detection of Gamma-rays 

2,2 Recons t ruc t i on 

From the raw data (sinogram) acquired by the tomography, it is desired to reconstruct 

the regional decay rates, as it indicates the tracer concentration. Image reconstruction 

is a rich research area where a large number of algorithms are available. Filtered back-

projection (FBP) (Kak and Slaney 1988) is the reconstruction method routinely used 

in most PET scans. Accurate correction for scatter and attenuation is essential for the 

production of quantitative images. Each reconstructed image shows the spatial measure 

of tracer concentration at a certain time frame. In a P E T scan, the images at different 
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time frames are reconstructed to form a dynamic image volume. Thus the information 

obtained from a PET scan is a spatio-temporal meaaure of the tracer concentration in 

the subject. Region of Interest (ROI) analysis or voxel level analysis of dynamic images 

can be used to produce tissue time-activity curves (TACs). These curves represent the 

counts/second/voxel (or kBq/ml) of the tracer concentration. TACs provide the key 

information for PET modelhng and diagnosis aa the kinetics of the tracer in tumours 

and normal tissues are signihcantly diSerent. 

The spatial resolution of PET images is limited, mainly as a result of the following 

factors: 

8 A positron travels a long distance (a few mm) before annihilating with an electron. 

# Absorption and scatter of the gamma rays occur in the tissue before detection in 

the detector rings. 

# The size of the detector ring limits the spatial resolution of the reconstructed 

distributions. 

# The decay rate of the isotope and radioactive safety levels hmits the temporal 

resolution 

The random gamma-ray photons and the scattered photons recorded by the detector 

need to be removed to provide quantitative images. 

A dynamic PET scan yields 4-D data (in space 3-D and time 1-D) which quantifies 

the distribution of the tracer over the period of scanning (typically 1-2 hours). Fig. 

2.3 illustrates the reconstructed dynamic images for one shce &om a PET scan. Each 

subfigure represents the tracer concentration in the shce during a short time period. 

In functional imaging techniques such as PET, the interest is in the dynamic image or 

correspondingly, for each voxel, the interest is the tracer concentration's change over 

time, which constitutes a time-activity curve. Fig. 2.4 shows an example of a TAG for 

one voxel. 

A PET experiment produces a large amount of data, with reasonably high noise, as 

shown in Fig. 2.4. Thus eScient modelling techniques are necessary for P E T image 

analysis. The raw detector data gives little direct insight of what is happening inside 

the human body. This data must be reconstructed, de-noised and pre-processed to 

produce an interpretable form as in Fig. 2.3. Statistical modelling techniques can then 

be apphed to enable biochemical or physiological meaningful parameters to be extracted. 
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(a) 0-30s (b) 30-45s (c) 45-60s (d) 50-60S 

(e) 60-908 (f) 90-1608 (g) 160-2108 (h) 210-2708 

(i) 270-3308 (j) 330-6308 (k) 630-9308 (1) 930-12308 

(m) 1230-15308 (n) 1530-1830S (o) 1830-21308 (p) 2130-24308 

(q) 2430-30308 (r) 3030-36308 

F I G U R E 2 . 3 : [^^C](i?)-PK11195 PET dynamic images at different time frames (one slice 
of PET scan No. n03578) 
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FIGURE 2.4: An example of a time-activity curve 

2.3 Model l ing 

A goal in PET is to produce functional parametric images of the biological parameters of 

interest, and as such it is not the "raw" images that we are interested in, but rather some 

function of them. Different TACs correspond to different properties of the underlying 

tissue. Often a compartmental model (Guim et al. 2001; Lammertsma and Hume 1996) 

is used to set up the relation between the TAG and the biological parameters. For each 

parameter, a 3-D (or 2-D) parametric image can be obtained to view the parameter for 

each voxel (or pixel). 

Kinetic modelling is a very useful and widely used tool for analysis of living systems. 

In kinetic modeUing, the system to be observed is modelled aa a set of macroscopic 

subsystems, called compartments. It is assumed that each compartment is homogeneous 

and interacts with each other and the environment. Compartmental analysis forms the 

basis for tracer kinetic modelling in PET. A comprehensive analysis of compartmental 

models can be found in Jacquez (1985). 

In the circumstance that the experiment conditions can be tightly controlled, very de-

tailed models can be applied, for example in physiology experiments. However, as a 

nuclear imaging techniques, safety factors Umit the injected radioactive doses and hence 

the temporal resolution of PET imaging. Furthermore, the relative low temporal reso-

lution and the noise in the PET data means that only a coarse model can be applied. 

There are various parametric PET models in the literature, e.g., one tissue compartment 

models, two tissue compartment models with various number of input or unknown model 

parameters, three tissue compartment models, etc. These compartmental models are 

used for the quantification of blood flow (Kety and Schmidt 1948), cerebral metabolic 

rate of glucose (SokoloS et al. 1977) and for neuroreceptor hgand binding (Mintun et al. 

1984) etc. For neuroreceptor hgand modelling, compartmental models can be placed into 
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two groups: those requiring an arterial blood or pleisma input function and "reference 

region models" which requires no blood sampling. Gunn et al. (2001) have developed 

a general theory for compartmental models in PET using state space representation, 

for both plasma input models and reference tissue models. Among PET models, the 

reference region model is the main interest in this thesis as it needs no blood sampling. 

The reference region model has been validated and applied successfully at the region 

of interest level and voxel level for other PET studies (Lammertsma and Hume 1996; 

Gunn et al. 1996). 

2 .3 .1 R a d i o l i g a n d B i n d i n g 

A radioligand is a radioactively labelled drug that binds with a receptor, transporter, 

enzyme, or any site of interest. Binding occurs when the ligand and receptor collide 

due to diEusion, and when the collision has the correct orientation and enough energy. 

Measuring the rate and extent of binding provides information on the number of binding 

sites, and their affinity and accessibility for various drugs. 

Analysis of radioligand binding experiments is based on a simple model, called the law 

of mass action. This model assumes that binding is reversible, that is, the ligand and 

receptor are the same after dissociation as they were before binding (Yamamura 1990), 
Kpn 

Receptor + Ligand Receptor+ligand 

where is the on-rate (association rate) constant and is the oS-rate (dissocia-

tion rate) constant. Equilibrium is reached when the rate at which new ligandreceptor 

complexes are formed equals the rate at which the ligandreceptor complexes dissociate: 

C^Ligand ' ^Receptor ' Kpn — Ccomplex ' ^ o f f ^ (2-1) 

where C* is the concentration of *. The equilibrium dissociation constant is de&ned 

as 
TV _ ^off C!Ligand • CReceptor /n 

— -j^ — p; 

A low Kf) indicates the receptor has a high affinity for the ligand and it will take a low 

concentration of ligand in the experiment. 

In addition to binding to receptors of interest, radioligands may also bind to other sites. 

Binding to the receptor of interest is called bmcfmg, while binding to the other 

sites is called no/wpeci/ic Amcfmg. 
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2 .3 .2 R e f e r e n c e R e g i o n M o d e l s a n d t h e B a s i s F u n c t i o n M e t h o d 

A reference tissue model based on compartmental structures has been derived (Lam-

mertsma and Hume 1996) and applied successfully on a region of interest (ROI) level. 

Consequently the model has been successfully used to quan t i^ ligand-receptor binding 

at the voxel level (Gunn et al. 1996), using a basis function method. 

2.3.2.1 A T w o - C o m p a r t m e n t E x a m p l e 

The reference region refers to the region in the subject which shows no binding, devoid 

of specihc receptor sites. The compartmental structure for a simphSed reference tissue 

model is shown in Fig. 2.5. The model describes the relation between the reference 

tissue TAG and the target tissue TAG. Given a reference tissue TAG, the model can be 

used to estimate the biological parameters associated with each target tissue TAG. 

Plasma 

Ki 

K'2 

K 

Free 

V NS 

Reference Tissue 

K2/(1+BP) 

Free — 
1 j Specific 
j J 

Specific 

NS 

Target Tissue 

FIGURE 2.5: The compartmental structure for the reference tissue model (NS: non-
specific) 

The model structure shown in Fig. 2.5 is based on the following assumptions for the 

radiohgand: (1) there exists a reference region that is devoid of specihc binding, (2) 

labelled metabolites of the parent tra.cer do not cross the blood-brain barrier, (3) the 

degree of nonspecrhc binding and the volume of distribution of the free/nonspecif c com-

partment is the same in the reference and target tissues, and (4) the exchange between 

free/nonspecific and specific compartments is rapid such that a single compartment can 

approximate their behaviours. Under these assumptions the target tissue concentration 

may be expressed as. 

Rlk2 
C;;(t) Ig) e . l+Bf 4-A) t (2.3) 

where C^(f) is the TAG in the reference tissue, Cr( t ) is the TAG in the target tissue, 

.Rf is the ratio of the dehvery in the target tissue to the reference tissue, &2 is the eSux 
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rate constant from the target tissue, is the binding potential, A is the physical decay 

constant of the isotope, and (gi is the convolution operator. 

The model allows for parameter estimates of relative delivery and binding potential. 

Relative delivery, is defined as 

^ A:; f ' ( 1 - ^ - ' ' 

where f and are the blood Sows in the target tissue and reference tissue, respectively, 

and f5" and are the permeability surface area products in the target tissue and 

the reference tissue respectively. Binding potential (BP) (Mintiin et al. 1984) describes 

the potential of a specihc membrane to interact with either a specihc radiohgand or a 

specihc neurotransmitter. is deGned here as 

BP=- = (2.5) 

i * 

where Bmoz is the total concentration of specific binding sites, is the equilib-

rium disassociation constant of the radioligand, /g is the "free fraction" of the unbound 

radioligand in the tissue, and and a:re the concentration and equihbrium disas-

sociation constants of competing endogenous Ugands. 

2.3.2.2 P a r a m e t e r E s t i m a t i o n 

The PET TAG at the voxel level has a low signal to noise ratio. Direct application of the 

above reference region model at the voxel level using conventional least squares Etting 

to estimate parameters is slow and sensitive to noise. A basis function method (Guim 

et al. 2001) has been proposed to find a fast and robust solution of Equation (2.3) at 

the voxel level, 

C r W = ® (2.6) 

where = .Rj, ^2 — ^2 — Defining the following set of basis 

functions 

B i ( t )=Cj ; ( ( )®e-^= ' ^ (2.7) 

The number and range of the discrete values for 6^i should be decided in advance. The 

target tissue time-activity curve can then be expressed as, 

Q 
Cr(^) = OiCj;(<)-t-^02i-Bi(() (2.8) 

, where g is the number of basis functions. and can be solved for by using standard 

weighted linear least squares fitting (Gunn 1996). However, the overcomplete basis can 

leads to an under-determined set of equations. Basis pursuit denoising (Gunn et al. 
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2001) can be used to determine a sparse selection of kinetic basis functions. Each 

corresponds to one % which has been calculated in advance. After that R j , B P and 

A:2 are easily computed, enabling the binding potential and relative delivery associated 

with each voxel to be obtained. It is then possible to produce parametric images of these 

quantities. 

2.4 Refe rence Region Localisat ion 

The above reference region model is widely used in PET parametric modelling. However, 

the use of the reference region model requires a reference region TAG as an input to 

the model. Although there is a certain degree of consistency in reference region TACs 

from diSerent PET scans, the reference region TAG is dependent upon factors in the 

PET scan such as injection dose, subject, weight, etc. An improper reference region 

TAG chosen in a PET experiment will lead to biased results. To use the reference region 

model for a specific PET scan, an important step is to localise reference regions in that 

scan. 

Gurrently, there are two types of methods to localise reference regions: 

« Anatomical information from a co-registered Magnetic Resonance Image (MRI); 

« Unsupervised techniques followed by manually choosing the closest TAG. 

MRI can be used to define an anatomical region to be the reference region, usually the 

cortex or thalamus. Then the reference region in PET is obtained by co-registration of 

the MRI and PET images. This means an extra MRI image is required for each PET 

image, which is expensive and the image co-registration from diSerent modalities can 

be very difficult. 

An alternative way is to use cluster analysis (Ashburner et al. 1996; Boudraa et al. 

1996; Kimura et al. 1999), where the dynamic PET data are partitioned into a small 

number of clusters, each described by a multivariate Gaussian distribution. The means of 

these Gaussian distributions represent the underlying TAG associated with each cluster. 

However, final discrimination in each cluster depends on expert knowledge, which is 

time-consuming since it must be repeated for each new image. 

2.5 ["C](A)-PK11195 P E T Data 

The P E T data used in this thesis was obtained with the hgand [^^G](.R)-PK11195 which 

is a marker for activated glial cells (Banati et al. 1999)). PK 11195 is the name commonly 

given to l-(2-chlorophenyl)-N-(l-methylpropyl)-l-isoquinohne carboxamide. It is one of 
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the most powerful peripheral benzodiazepine binding (PBB) ligands known (Langer and 

Arbilla 1988). It is known to bind to PBB sites on activated microglia and macrophages 

in regions of active pathology in brain. It exhibits minimal binding in normal brains. 

However there is a large increase in PBB sites in the locality of brain lesions. 

PK 11195 has been used as an imaging ligand in PET studies, where it identifies multiple 

sclerotic plaques, malignant gliomas and areas surrounding infarcted zones in stroke 

patients (Vowinckel et al. 1997; Benavides et al. 1988). Quantification of specific 

binding of this ligand in PET is necessary if it is to realise its potential in the longitudinal 

monitoring of disease progression. However, compared to other neuroreceptors, in PK 

11195 P E T studies, the reference region is very difficult to localise anatomically, as there 

is no obvious hnk between reference region and the anatomical regions. However the 

TACs in the normal brain tissue have similar kinetics, implying consistent behaviour of 

the ligand in the non-pathological tissue. 

The 18-scan PET data set used in this thesis was kindly collected and provided by MRC 

cyclotron Unit, Hammersmith hospital in London. The 18 subjects considered are 17 

normal volunteers and one patient. In the scans for normal volunteers, they would be 

expected to have a reference region represented by grey matter. Each scan contains 

3-D spatial sampled images over 18 diSerent time instants. Each 3-D image contains 

128 X 128 X 25 (z X 2/ X z) voxels with the resolution of 2.09?72,7n x 2.09mm x 3.42mm. 

In each scan, the TAG for each voxel was extracted from the dynamic PET images of 

tracer concentration. To produce the target data, the cortex, thaieimus and cerebellum 

regions were labelled from a co-registered MRI image. Experimental evidence shows 

that the cortex region in all the investigated normal scans had no binding. Thus the 

TACs from the cortex region are treated as the reference region TAG, while TACs from 

other regions are treated as non-reference region TACs. Fig. 2.6 summarises the TACs 

in the scalp, thalamus, cerebellum and cortex region. The scalp region TAG is different 

from others in both the amplitude and the shape. 

Table 2.1 lists the details of all eighteen [^^G](i?)-PK11195 P E T scans. Among all scans, 

there are four set of scans used for test-retest studies (shown as subject a, b, c, d in Table 

2.1). Each test-retest study contains two scans from the same subject, who was scanned 

on two separate occasions. Additionally, the age of each healthy subject is recorded for 

age-related binding studies. 

Examples of binding potential images of a healthy subject and a diseased subject at the 

voxel level are shown in Fig. 2.7 for comparison. The diseased subject (scan n02904) 

exhibits a high value of binding potential while the healthy subject shows minimal 

pC](A)-PK11195 binding. 
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— Thalamus Region TAC 

Cerebellum Region TAC 
Scalp Region TAC 
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F I G U R E 2 . 6 : Example of mean TACs in different regions in a P ^ C ] ( / ? ) - P K 1 1 1 9 5 normal 
scan 

Scan No. Disease Age Other Information 

n02791 X 48 
n02805 X 54 
1102816 X 48 
1102833 X 53 
1102870 X 57 
1102904 / 
n02907 X 80 
1102938 X 34 
1103578 X 59 subject a 
1103637 X 78 
1103642 X 64 subject b 
1103657 X 64 subject b 
1103661 X 74 subject c 
1103689 X 59 subject a 
1103694 X 74 subject d 
n04071 X 74 subject c 
1104073 X 74 subject d 
n04128 X 32 

TABLE 2 . 1 : Data Set Description 

2.6 S u m m a r y 

Positron emission tomography uses radio tracers to image human biological and chemical 

processes in vivo. By using the tracer that is involved in the biological or chemical 

processes, the process can be quantified. In a P E T experiment, the unstable nucleus 

emits a positron that will annihilate with a nearby electron. Annihilation produces two 

almost collinear gamma rays of 511keV that are detected in coincidence on either side of 

the active volume. The localisation of the annihilation allows the tracers spatio-temporal 
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(a) B P image of slice 20 of scan n0357S (b) B P image of slice 20 of scan n02904 

F I G U R E 2 . 7 : Binding Potential (BP) images for a healtliy subject and diseased subject 

distribution to be determined. A PET experiment generates 4-D data sets where each 

voxel has a vector which describes how the tracer concentration changes with time, called 

a time-activity curve. 

The data obtained from a PET scan is a realisation of a complex spatio-temporal process 

with many great variables and a significant noise component. The analysis of the PET 

data set is not a trivial problem as the raw data gives little insight of what is happening 

inside the human body. The parametric models (especially compartmental models) 

reviewed in this chapter enable the analysis of PET data using meaningful variables. 

These compartmental models fall into two groups, of which the reference region models 

are most attractive since these avoid the necessity of having an arterial blood or plasma 

input function. 

The difficulty with reference region approaches is the determination of the reference TAG. 

This thesis is concerned with developing intelligent methods for this determination. The 

following chapters will present the machine learning methods and image segmentation 

methods in the view of solving the reference region localisation problem and the potential 

of tackling other functional image segmentation problems. 
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Data Classification 

ClagslScation (Devroye et al. 1996) is the grouping of similEir objects. To formalise 

a classiBcation problem, it is assmned that objects belong to one of several classes. 

The task is to predict class identities based on observed features or properties of the 

objects. ClassiGcation is often termed pattern recognition in practical applications such 

as medical diagnosis, speech recognition, image understanding, handwritten recognition, 

and fault detection in machinery. These classification problems may be solved by humans 

in a seemingly effortless fashion while their solution using computers has often proved to 

be immensely difficult. Thus research has been carried out towards Ending a theoretical 

way to solve this learning problem. 

3.1 Learn ing a n d Classification 

Learning is the process of estimating an unknown dependency or structure using a lim-

ited number of observations. The problem of a learning machine is to select a function 

^ = / ( x , w) that best approximates the system's response ^ (induction), and then use 

this dependency estimated between x and to predict outputs for future input values 

(deduction), as illustrated in Fig. 3.1. The inductive step involves finding the optimum 

value of w, the model parameters. The deductive step involves evaluating the function 

/ ( x , a;) at x. This two-step (induction/deduction) approach to learning is of our 

main interest, although a one-step (transduction) approach exists (Vapnik 1998; Devroye 

et al. 1996). The inductive step is an ill-posed problem: to form generalisations from 

finite particular examples (training data). The general inductive problem can be formu-

lated as: given a Gnite set of observations D = {(xi,3/i)}^i derived from an unknown 

joint probabihty density function (pdf) p(x, ?/) = p(x)p(3/|x), how can the underlying 

functional relationship 

i/ = / ( x , w ) (3.1) 

20 
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Learning Machine 

Induction 

x' 
System System Deduction 

FIGURE 3 .1 : Induction/deduction formulation of learning 

be found. A loss function !,({/,/(x,c«;)) is used to penalise the mismatch between the 

observations and the learning machine. The learning process could estimate the function 

/ ( x , w) by minimising the expected rwA; yiinctzonoZ: 

Z, (i/, / ( x , w)) p(x , 3/)(fxd^ (3.2) 

from the data set D. It is an iU-posed problem due to the Anite number of data. This 

general formulation of the learning problems includes three particular type of basic 

statistical problems (Vapnik 1998): 

« Classification; 

« Regression; 

# Density Estimation. 

In classification problems, the task is to assign an input x to one of a number of discrete 

classes i/. In regression problems, the output is a continuous variable. Both classihca-

tion and regression problems can be seen as particular cases of function approximation. 

If the density p(x,;/) can be estimated, then the regression and classification problem can 

be easily solved by minimising Equation (3.2). Hence the density estimation problem 

can been seen as a more general problem than classification and regression (Cherkassky 

and Mulier 1998). When solving a problem based on finite information, a common rule 

is: Do mot attempt to goZ{;e a pmMem 6?/ mtfzrect/^ goMfig a Aanfer genemZ 

og an mte?7ne(fmte gtep (Vapnik 1998). That is for a specihed problem such as 

classification and regression, instead of estimating the joint probability p(x, i/) directly, 

it is better to estimate only some features of the joint density which are critical for 

solving the specific problem. 
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Among three types of learning problem, classihcation is our main interest. Classihcation 

is often categorised into supervised classification and unsupervised classification (Bishop 

1995). In unsupervised learning, the learning must proceed on the distribution of the 

patterns in the input space alone. The goal of unsupervised classification is to model 

the probability distribution of the input data and to use this to segment the input 

space into regions. The resulting model consists of a set of distributions. An expert 

can then decide how to assign these clusters. Each time a new data set appears, the 

whole learning process must repeat, and as such no information is aggregated from 

previous learning. In supervised classification, the desired output is known for each input 

pattern and the system can learn from these examples to generahse for "unseen" input 

patterns. Supervised learning diEers from unsupervised learning in that a teacher is used 

to instruct the system with known examples, e.g. in a two-class classification problem, 

positive and negative examples of objects belonging to these classes. An inductive 

process is used to build up a model from the examples, producing a system which can 

determine the class membership of an input pattern. The merit of supervised learning 

is that it exploits the knowledge provided by the teacher in learning to discriminate. 

Often both labelled examples and unlabelled data exist and recently research (MiUer 

and Uyar 1996; Jaakkola and Haussler 1998) has been conducted to build hybrid un-

supervised and supervised classification methods, termed semi-supervised classihcation 

methods. 

3.2 Genera l i sa t ion 

Due to the hniteness of the data set D, the expected risk functional in Equation (3.2) 

cannot be accurately evaluated.Instead it can be approximated by the empirical risk 

functional: 
1 " 

-Remp(w) = - ^ /(Xi, w)). (3.3) 
Z — 1 

This approach causes two types of error, namely the approximation error and the es-

timation error (Niyogi and Girosi 1996), shown in Fig. 3.2. The approximation error 

arises because the exact behaviour of function / ( x ) is unknown and belongs to some 

large space of functions, called the target space. Consequently, / ( x ) has to be estimated 

by parameterised functions / (x ,w) , and the resulting sub-space is referred to as the 

hypothesis space. The predictor / (x ,w) obtained by empirical error minimisation will 

approximate / ( x , w) as the number of data increases without bound. The approxima-

tion error decreases as the size of the hypothesis space increases and has more capacity 

to approximate / (x ) . The estimation error comes from lack of knowledge about the 

conditional distribution p(3/|x, ci;), which is unknown. The best that can be done is to 

minimise the empirical risk, as only hnite number of examples are available. It is ex-

pected that as the model structure has more capacity, the estimation error can increase 
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(Niyogi and Girosi 1996). 

Target Space 

Gen en 

Hypothesis Space 

Estimation Error 

ligation Error 
ffx.cg 

Approximation Error 

F I G U R E 3 . 2 : Generalisation error = Approximation error + Estimation error 

A learning machine's performance is determined by its generalisation ability or its pre-

dictive capability. Estimation of a function from a finite data set is ill-posed, which 

makes precise estimation Impossible. In order to make the problem weU-posed, a prior, 

or structure, over the hypothesis space must be deAned. A prior that is often consistent 

with the physical world is the characteristic of smoothness. Following the well known 

principle of Occom'a simpler models are preferred. A good model should have a 

trade-o5 between the empirical error and the model complexity. Thus Instead of using 

the empirical risk, a regularised risk functional is often used to control generahsation 

performance, 

Rregi^) — Rempif^) '^))! (3.4) 

where (/?() is called a regularisation term. A common form for the regulariser is a measure 

of smoothness, assigning greater likelihood to smoother functions. The regularisation 

parameter z/ controls the tradeoS between .Remp(^) and y ( / ( x , w)). Consider the two-

class classification problem m Fig. 3.3, the classihcation with solid Ime causes over-httmg 

while the dash line is preferred. 

Bayesian learning (Mackay 1992a; Neal 1994) gives a diSerent view of selecting weights. 

Regularisation can be given a natural interpretation in the Bayesian framework. An 

advantage of the Bayesian method is that the values of regularisation coeScients can 

be selected using the training data. Furthermore, a Bayesian framework provides an 

objective and principled framework for dealing with the issues of model complexity 

which avoids many of the problems which arise when using maximum likelihood. 

After a risk functional has been set up, an optimisation procedure is used to mininaise the 

risk functional with respect to the adjustable parameters. Non-linear optimisation is a 

^William of Occam (1285-1349): Causes should not be multiplied beyond necessity. 
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O : Class 1 

+ : Class 2 

FIGURE 3.3: Over-Gtting in a classificatioii problem 

very difficult problem and often only local minimum can be found. However, careful con-

struction of the hypothesis space, and the regulariser can result in convex, even quadratic 

functions for which unique global solutions can be obtained, e.g. SVMs (Vapnik 1998), 

Gaussian processes (Barber ajid Williams 1996). The expectation-maximisation (EM) 

method (Dempster et al. 1977) and the gradient decent related method play a central 

role for optimisation in unsupervised learning and supervised learning respectively. 

3.3 Unsupe rv i sed Classif ication 

Unsupervised classification aims to separate a data set into a number of groups (called 

clusters) based on some measure of similarity. The goal is to find a set of clusters for 

which samples within a cluster are more similar than samples from diSerent clusters. 

The task of clustering can fall outside of the framework of predictive learning, since the 

goal is to cluster the data at hand instead of providing an accurate characterisation of 

future data generated from the same probability distribution. 

Unsupervised classification is a diScult problem, as the clusters may have various sizes 

and shapes and the number of clusters is unknown and needs to be specified by user. 

But it has wide applications in the real world. 

As no known target exists in unsupervised classification, learning aims to find 

centres, k ~ to describe the distribution of the data. In this case, the 

problem can be expressed as 

-R(Att) = y ||x - /^j(.||^p(x)(fx (3.5) 

In the following sections, two eScient and widely used clustering algorithms: K-means 

and Gaussian Mixture Model (GMM) are introduced. 
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3 .3 .1 K - m e a n s C l u s t e r i n g 

The K-means clustering algorithm (MacQueen 1967) is a well-known unsupervised al-

gorithm. The algorithm involves a simple re-estimation procedure. Suppose we wish 

to find a set of AT representative vectors where k = 1 , . . . , for data points 

i = 1 , . . . , n. The algorithm seeks to partition the data points into K disjoint 

subsets. 5'k containing d&ta points, in such a way as to minimise the sum-of-squares 

clustering function given by 

7% 

^empif^k) ~ ^ ^ min IIX; — /x l̂l , (3-6) 
f—I' K 
t=l 

where denotes the means of the data points in set 9̂̂  and is given by 

/ .I = - E ='• (3-7) 

. i S 

Each point is re-assigned to a new set according to which is the nearest mean vector. 

The means of the set are then recomputed. This procedure is continued until there is 

no further change in the grouping of the data points. The resulting representation is 

one of the vectors, which can be used to partition the input space into AT regions or 

as the basis for further algorithms. The number of centres must be chosen in advance. 

3 .3 .2 M i x t u r e M o d e l s 

Mixture models (MaLachlan and Basford 1988) are a flexible and powerful probabilistic 

modeUing tool. As in the K-means algorithm, n, data points — 1 , . . . are to be 

claasihed into A" clusters, where is specihed in advance. Consider the following scheme 

where these data are generated: There Eire random sources, each characterised by a 

probability function p{xi\k), k = 1,2,-•• ,K with mixing parameters P(k), such that 

the overall distribution is given by p(xi). p(x^) is formed from the linear combination 

of component densities p(xi|A;), 

K 

== (A), (3.8) 

where f (A) can be regarded as the prior probabihty for the data having been generated 

from the kth component of the mixture which are chosen to satisfy the constraints 

K 

^ f ( A : ) - l (3.9) 
k=l 

0 < f (k) < 1. (3.10) 
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The individual density component p(xi|fc) are normalised such that 

p(x^|A;)dxi — 1. (3 11) 

According to Bayes' theorem, the corresponding posterior probabilities are given by, 

,3.12) 
P[^i) 

The value of p(A;|x;) represents the probability that a particular component k is respon-

sible for generating the data point X{, which can be used to classify to a certain class 

k. It is usually assumed that all the components p(x\k) have the same functional form, 

such as multivariate Gaussian. Fitting a mixture model to a set of observations 

consists of estimating the set of mixture parameters that best describes this data set. 

Adopting a framework of parametric statistics, the detection of data clusters reduces 

mathematically to the problem of how to estimate the parameters of the probability 

density for a given mixture model. A powerful statistical tool for finding mixture pa-

rameters is the maximum likelihood method, i.e., one maximises the probability of the 

independently, Identically distributed set {x ,̂% = 1,...,?%} given a particular mixture 

model. For analytical purposes, it is more convenient to minimise the negative log-

likelihood with respect p{xi\k) 

n n / K \ 

^ = - y ^ l n p ( x i ) = - ^ I n f ^ p ( x i | A : ) f (A;) j . (3.13) 
t = l 2=1 \A;=1 / 

The parameter estimation in mixture models is often carried out by maximum likelihood 

learning using the Expectation-Maximisation method or the Markov chain Monte Carlo 

method. 

3.3.2.1 E M A l g o r i t h m 

The Expectation-Maximisation (EM) algorithm (Dempster et al. 1977) is the standard 

technique for maximum likelihood estimation of the parameters in mixture models. In 

general, the EM algorithm is used to solve the maximum likelihood estimation from 

incomplete data. The EM algorithm is a simple, practical method for estimating the 

mixture parameters which avoids the complexities of non-linear optimisation. An itera-

tion of these two steps renders the following algorithm: 

o E-step: Guess some values for the parameters of the mixture model ('old' parame-

ter values). This yields the expected assignments of data to mixture components. 

Then with respect to this compute the expectation in Equation (3.13). 
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# M-step: "new" parameter values are found by minimising the expected error with 

respect to the "old" parameters. These parameter values then become the "old" 

values in the E-step. 

By using Jensen's inequality, EM achieves a bound maximisation. The idea in the EM 

algorithm is that to hnd the model parameters that maximise the likelihood. Since the 

likehhood is unknown, its current expectation is maximised given the observed data 

and the current parameter ht. Provided some care is taken over the way in which the 

updates are performed, this algorithm is guaranteed to decrease the error function at 

each iteration, until a local minimum is found. 

The algorithm can be modified to the generahsed EM method (Neal and Hinton 1998): 

in each M step, the likehhood is increased but not necessarily maximised. The main 

difficulty in using EM for mixture models is local minimum, which makes its performance 

critically dependent on initialisation. 

3.3.2.2 E M A l g o r i t h m for Gauss i an M i x t u r e Mode l s 

The mixture model is called a Gaussian Mixture Model (GMM) when the individual 

component densities are given by multivariate Gaussian distribution functions: 

^ , (314) 

where d is the dimensionality of input vector x,. and are the mean and diagonal 

standard deviation of the t t h Gaussian distribution. |Zk| is the determinant of 

Although mixture models can be built from different types of components, the majority 

of the literature focuses on Gaussian mixtures (Titterington et al. 1985). The K-means 

clustering algorithm can be seen as a particular limit of the Gaussian mixture model as 

the variance in Gaussian distribution approaches zero (Bishop 1995). Therefore, the K-

means algorithm is a sensible choice to initialise the cluster centers in Gaussian mixture 

modelhng. 

Let z = denote the cluster index of data. After initialising parameters = 

^K^)} and the algorithm iterates the 

following two steps: 

# E step: find the function Q($ |$W) — -E'[logp(x, z |$) | (x, $W)] 

« M step: hnd = a rgmaxQ($ |$W) 

In the M step, the parameter 0 is updated by (in the following p( ) is a simphSed 
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notation of p(-|$)): 
ft 

Xi 
"1 '+" = " . (3-15) 

Z P(A = ^1^:) 
= 1 

( S n ((+1) _ i=i ^ ^ ^ (3.16) 

where 

= A:|xi) = 
p(xt|zj*^ = &)f = A:) 

p{xi\zP = k)P{zf^ = k) 

Ep(xi |z j^) - A)f(zj^) = t ) 
i = l 

(3.17) 

p(xt|zj*^ = A) is calculated from Equation (3.14). The prior can be updated by 

Z p(zj^) = /u|Xi) 

— A) — — . (3.18) 

The above Gaussian mixture model with EM algorithm for parameter optimisation is 

widely used in the unsupervised classification. The maximum likelihood estimation 

can also be achieved by Markov chain Monte Carlo method (Neal 1993; Richardson 

and Green 1997) in a fully Bayesian flavour to find a global solution instead of a local 

minimum in EM algorithm. But MCMC is computation expensive and thus is less used 

in unsupervised classiScation. 

A problem in unsupervised classification is determining the appropriate number of clus-

ters. The maximum likehhood criterion cannot be used to End the optimal number 

of clusters. There are several model selection criteria in literature: minimum de-

scription length (MDL) (Rissanen 1987; Barron et al. 1998), Bayesian inference cri-

terion(BIC)(Schwarz 1978; Whindham and Cutler 1992), Akaike's information criterion 

(AIC) (Akaike 1974), Minimum message length (MML)(Sclove 1983) and reverse jump-

ing MCMC (Green 1995). These techniques are employed with the attempt to reduce 

the number of parameters in the model while maintaining a reasonable performance. 

Among these methods, BIG and AIC are widely used. If the complexity of the true 

model does not increase with the size of the data set (such as the above j^-means and 

Gaussian mixture model clustering), BIG is the preferred criterion, otherwise AIG is 

preferred (Burnham and Anderson 1998). Use of AIC criterion generally results in a 

good fit to the dataaet, but it often causes an overestimation of the number of compo-

nents. BIG is a likelihood criterion penalised by the model complexity, i.e. the number 
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of parameters in the model. Let x = be the data set and Ai = be the 

candidates for the parametric models. | | is the number of parameters in the model 

Mi, then the BIG criterion is defined as 

= log 5(x,M<; M X log(n) (3.19) 

where H(x, Mj) is the likelihood of the data with model Mj. Reverse jump MCMC 

methods have been used to improve GMMs by splitting and merging clusters (Williams 

2000). But as a sampling method, its computation is expensive. 

3.4 Superv ised Classif ication 

Supervised classihcation is often referred to as "pattern recognition", which was formu-

lated in late 1950s. A supervisor observes occurring situations and determines to which 

of k classes each one of them belongs. It is required to construct a machine which, after 

observing the supervisor's classification, carries out the classification in the same man-

ner as the supervisor. The induction-deduction supervised learning diagram is shown in 

Fig. 3.4. In the induction process, the labelled data and the prior knowledge are used to 

build a model. Once the model has been built, it can be used in the deduction process 

to predict output for the testing data. 

Prior Knowledge 

Training Data 
1 Induction J 

Training Data Estimated Model 

Estimated Model 

Testing Data 
Deduction 

Output 

FIGURE 3.4: Induction-deduction supervised learning 

In a two-class supervised classifcation problem, the output can taJce either of two 

values {0,1}, each denoting one of the two classes. The problem is to find the classiher 

/ ( x , w) that minimises the risk of misclassification: 

.R(w)== y y Z,(^,/(x,w))p(x,!/)dxd3/ 

The binary loss function Z,(i/,/(x,c«;)) is 

(3.20) 

(3.21) 
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In many supervised classification problems, the cross-entropy loss function (Bishop 1995) 

of the form 

-^(3/ , / (x,w)) = - i / h i / ( x , w ) - (1 - 3/)hi(l - / ( x , w ) ) (3.22) 

is used. The use of this cross-entropy loss function in a two-class problem enables the 

classifier output y(x) to represent the probability of belonging to one class (Hampshire 

and Pearlmutter 1990). 

3 .4 .1 C las s i f i e r T y p e 

There are a large number of various classiBers in the literature. Three widely used 

classiSers are introduced in this section. 

3.4.1.1 Mul t i -Layer P e r c e p t r o n 

Output Classes 

1 2 

Output Layer Y 

Hidden Layer Z 

Input Layer X 

Inputs 

FIGURE 3.5: Architecture of a three-layer feed-forward claasfier 

The most widely used neural classifier is a Multi-Layer Perceptron (MLP) network which 

has been extensively analysed and for which many learning algorithms have been devel-

oped. The MLP classifer consists of a network of processing elements or nodes arranged 

in layers. Typically it requires three or more layers: an input layer which accepts the 

input variables used in the classification procedure, one or more hidden layers, and an 

output layer with one node per class. The output of hidden layer and output layer is 

obtained by transforming a weighted linear sum with a non-linear activation function. 

Fig. 3.5 shows the structure of a three-layer network. The unit in the hidden layer j 

has the form: 

^ ̂  I -
\«=0 / 

(3.23) 
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The output layer has the form: 

/ M 
(3.24) 

where denotes a weight in the first layer, going from input i to hidden layer j and 

denotes a weight in the second layer, going from hidden layer j to output A;. g ( ) 

and g'(-) are activation functions of hidden layer and output layer. 

For the classihcation problem, the network can be trained by minimising the cross-

entropy error using error back-propagation (Werbos 1994). When data from an input 

pattern is presented to the input layer of a trained network, the network nodes perform 

calculations in the successive layers until an output value is computed at each of the 

output nodes. This output signal should indicate which is the appropriate clags for the 

input data. 

3.4.1.2 Rad i a l Basis Func t ions 

The Radial Basis Functions (RBF) classiher (Broomhead and Lowe 1988) has the fol-

lowing form: 
K 

^(x) ^ ^ (x) + lUQ (3.25) 

where x is the input vector, %/ is the output, lUj is the weight and wo is bias, (^j(x) 

denotes a local radial basis function, typically the local basis function is Gaussian: 

1 / I|X - |2 

" ' P [ ^ 

Training radicil basis function networks involves a two-stage training procedure: 

# Determine the parameters of basis function < ĵ(a;) using an unsupervised technique 

(Use only the input data and not the target data). 

» Determine remaining weights using standard linear methods. The target values of 

training data are only used in this stage. 

There are many potential apphcations where unlabelled input data are plentiful, but 

where labelled data are in short supply as the labeUing of the da ta with target variables 

may require the time of a human expert which therefore limits the amount of the data 

which can be labelled within a reasonable time. With such applications, the two-stage 

training process for a radial basis function is particularly advantageous since the deter-

mination of the nonlinear representation can be done on a large quantity of unlabelled 
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data, leaving a relatively small number of parameters to be determined using the labelled 

data. 

3.4.1.3 S u p p o r t Vector Mach ines 

A view of the regularisation method can be obtained from statistical learning theory, 

where an induction principle called (Vapnik 1998; Cristian-

ini and Shawe-Taylor 2000) is presented. 

The support vector machine (SVM) approach is motivated by results of statistical learn-

ing theory (Vapnik 1998). It is baaed on the Structural Risk Minimization (SRM) prin-

ciple that is rooted in VC (Vapnik-Chervonenkis) dimension theory. 

Given a set of examples 

(xi,3/i),..., (xn,yn),x 6 e {-1, +1}, (3.27) 

where denotes d-dimensional Euchdean space. The goal of learning is to 6nd the 

decision function / : R"̂  —̂  ± 1 which provides the smallest viaA 

^(/) | / (x ) - i / |dP(x ,3/ ) (3.28) 

where f is the unknown distribution that data are drawn kom. To realise this, the 

strciightforward approach is to minimise the via/c 

^emp(/) = Z ^ ^ 1 / W - 2/:|- (3.29) 

The main idea of a support vector meichine is to construct a hyperplane aa the decision 

surface in such a way that the margin of separation between positive and negative 

examples is maximised (Gunn 1998). The set of vectors is said to be optimally separated 

by the hyperplane if it is separated without error and the distance between the closest 

vector to the hyperplane is maximal, as shown in Fig. 3.6. 

# CImw A N«i SV 
e ClmM B Non SV 
o ClmnASV 
o ClwBSV 

OSII 
' ' SH 

FIGURE 3.6: SVM optimal hyperplane 
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For examples given in Equation (3.27), we want to &nd a decision function 

A,,6 ^ 5g7%((w^x) + 6) (3.30) 

with the property 

and 

If this function exists, then 

sgn((w^X;) + 6) = (3.31) 

min | x f w + 6| = 1. (3.32) 

- ((w^Xi) + 6) > 1. (3.33) 

In the hnearly separable case, the optimal separating hyperplane which generalises well 

can be found by minimising the regularized risk functional (This is equivalent to min-

imising the VC dimension.) 

'$^(w) = ^||w||^ (3.34) 

subject to Equation (3.33). To solve this convex optimisation problem, one introduces 

a Lagrangian 
n 

i;(w,6,a!) = - | |w| |^ - ^ a i ( 3 / i ( ( x ^ w ) + 6) - 1) (3.35) 
i=l 

with multiphers a* > 0. The Lagrangian has to be minimised with respect to w, 6 and 

simultaneously maximised with respect to %. This means at the saddle point, 

^ i ; ( w , 6 , a ! ) = 0, ^ i ; ( w , b , a : ) = 0. (3.36) 

This leads to 

and 

w = 
i = l 

(3.37) 

= 0 (3.38) 

By solving its dual problem, the solution is given by: 

2 1 2 ^ aiaj%3/j(x^Xj) - ^ Oi ) (3 39) 
i=l j=l 2—1 

with constraints 

> 0, (3.40) 
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^ a ; i / t = 0. (3.41) 

In many applications, most of the CK; which are found by solving a quadratic program 

turn out to be 0. Those with ^ 0 are called 6'uppor't On substitution of 

Equation (3.37) into the decision function (3.30), gives the expression for the decision 

function in terms of dot products: 

ai2/i(x^xi) + 6^ (3.42) 

The data only appears in the training problem in the form of dot products, x^ x^. In the 

nonlinear case, one can hrst nonlinearly transform input vectors into a high-dimensional 

feature space by a mapping 0 : jZ" —̂  and then do a linear separation there. The 

training algorithm only depends on $(xi )^$(xj) . We have 

/w,b = agn ati/i($(x)^$(xi)) + (3.43) 

If there is a kernel function, K, such that K{xi,xj) = $ (x , ) ^# (x j ) , it is only necessary 

to evaluate jiT in the input space and it is not even necessary to know $ . The decision 

function becomes 

yw,6 ^ a;i/iA'(x, Xi) + 6 j (3.44) 

According to Mercer's condition (Courant and Hilbert 1953): There exists a mapping $ 

and an expansion A!'(xi,xj) = $(x ; )^$(x j ) if and only if, for any g(x) such that 

y g ( x ) ^ d x < o o , (3.45) 

the following inequahty holds 

y j( '(xi,xj)g(xi)g(x;)(ixi(6(j>0. (3.46) 

Depending on how the inner-product kernel K is generated, it is possible to construct 

diSerent learning machines characterized by their nonlinear decision surface. Gunn 

(1998) gives the details of several kernel functions which satisfy Mercer's conditions, 

such as: 

» Polynomial 

K{yL, x') = (x - x ' 4-1)"^, d=l,... (3.47) 
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o Gaussian Radial Basis Function (RBF) 

A'(x,x') = exp ^ (3.48) 

In the nonseparable case, slack variables are introduced to tolerate misclassifications, 

> 0. (3.49) 

The constraint of (3.33) is modified to 

3/i/w,6(x«) > 1 - (3 50) 

The regularised risk functional is given by 

71 
» (w ,^ ) = ^||w||^ + C ^ ( ^ , (3.51) 

2=1 

where C is a given value determining the trade-off between minimizing training errors 

and minimising the model complexity term ||w|p. The whole optimization process is 

similar to separable case except additional constraints 

0 < < C (3.52) 

are required. 

3 .4 .2 O p t i m i s a t i o n 

After setting up a model and specifying a loss function (and regulariser), the supervised 

pattern recognition problem is reduced to an error minimisation problem. Thus choosing 

suitable optimisation methods is of critical importance to pat tern recognition. When 

gradient information is available, this oSers a natural way to perform the minimisation. 

Many standard iterative optimisation methods are based on gradients, such as gradient 

descent, conjugate gradients and Newton's method. 

Expectation-Maximisation (EM) based optimisation method (Dempster et al. 1977) is 

a standard technique for maximum likelihood optimisation for incomplete data prob-

lem. The EM technique has been used widely to solve supervised learning problems 

(Ghahramani and Jordan 1994) (Jordan 1998). 

The main idea of the EM algorithm is to decouple the problem by estimating the dis-

tribution of the hidden parameters given the data and the estimated model parameters 

in the E-step and in the M-step, estimate the model parameters by maximising this 

distribution, which is a lower bound problem. 
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3 .4 .3 T r a n s d u c t i v e C l a s s i f i c a t i o n 

The supervised classihcation method reviewed above belongs to induction-deduction 

learning category. Unlike the induction-deduction learning, transduction learning does 

not need an explicit classifier function estimated everywhere (Fig. 3.7). As most classi-

Ecation problems only require one to estimate the outputs of the unknown function for 

a given test set, the global function estimation (in the induction step) may be overkill 

(Cherkassky and Muher 1998). Notice that transductive learning does not combine the 

unlabelled data in the learning process. Only labelled data are elective in setting up 

the transductive classiher. Thus transductive learning belongs to supervised learning. 

Training Data 

Testing Data 

Prior Knowledge 

Output 

F I G U R E 3 . 7 : T r a n s d u c t i o n 

K-nearest-neighbour (KNN) (Bishop 1995) ia a popular non-parametric memory-based 

model. No assumptions are made about the distribution of the data. Simple nearest 

neighbour models do not require any training. The algorithm for making predictions 

involves hnding the smallest hypersphere centred around the point % (Fig. 3.8) which 

contains K points (independent of their class membership), and then assigning it to the 

class having the largest number of representatives inside the hypersphere. This is done 

by a majority voting which states it should be assigned the label which occurs the most 

amongst its jiT neighbours. KNN performs transduction as the local misclassihcation 

error is minimised directly. 

l o , 1° 
1 * ; O 1 O -I 

1° 1° e • o 1 

lo 

®-l 

FIGURE 3.8: An example of K-nearest-neighbour classiRer 

Two important problems need to be considered in defining the classi6er. One is how to 

measure 'closeness'. The simple and common choice is Euchdean distance. The other 

question is how to choose a suitable value for jT. AT acts as a smoothing parameter. Too 
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large a value of may lead to a relatively poor estimator whereas too small a value 

of makes the model very sensitive to the individual data points, which can result in 

poor generalisation. The value of A" is problem dependent and an optimal value for AT 

can be estimated by using cross-validation. 

3.5 Semi-supervised Classification 

Semi-supervised classification refers to learning a classifier using both labelled data and 

unlabelled data. It seeks to combine the two well-developed fields; supervised classifi-

cation and unsupervised classihcation. The semi-supervised learning diagreim is shown 

in Fig. 3.9. Note that it is a induction-deduction type of learning process. It is different 

from transductive learning as no unlabelled data are involved in transductive learn-

ing process, while labelled data, prior knowledge and unlabelled data are three factors 

needed for the inductive step of semi-superviaed classihcation. 

Prior Knowledge 

Induction Deduction 
Training Data 

Testing Data 

Estimated Model Output 

F I G U R E 3.9: Semi-supervised induction-deduction learning 

3 .5 .1 A T o y E x a m p l e 

A toy example is used to demonstrate the necessity of using both labelled and unlabelled 

examples in clagsihcation. A set of 2-D data is generated independently from three 

Gaussians as two classes, where the two clusters close to each other belongs to diSerent 

classes. Each class has 6 labelled data, as shown in Fig. 3.10. Unsupervised learning 

with two Gaussian mixtures fails as it tends to classi^ the da ta based on the distance 

(Fig. 3.10(a)); supervised classihcation using Bayesian MLP network with two hidden-

layers gives a relatively large error on test data as a result of limited umepresentative 

training data (Fig. 3.10(b)) while a much better classihcation is shown in Fig. 3.10(c). 

This example shows the importance of using all the available information in the data. 

Although the labelled data contains important class information, it fails to represent 

the distribution of the whole data due to its small size. A theoretical framework that 

can exploit the unsupervised data to enhance classihcation, particularly when obtaining 

supervised examples is expensive, is a fruitful goal for research. 
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o % 

99=^ c 

(a) ClassiAcation with no labelled seim-
ples 

(b) ClassiEcation using 6 labelled sam-
ples 

1 
° o ° ^ 

. 

^ 2 U 1 U 

(c) An ideal classification 

F I G U R E 3 . 1 0 : A toy example (+, A: labelled samples in two different classes; o: unla-
beled data) 

3.5.2 A Review of t h e Value of Labelled and Unlabe l led D a t a in Learn-

ing 

The problem of combining labelled data and unlabelled data in learning has been an 

active research area in recent years, since traditional supervised techniques provide no 

means to incorporate extra knowledge contained in unlabelled data. Unsupervised clas-

sification techniques only uses unlabelled data and group them into clusters and provides 

no class information. Both supervised and unsupervised classification techniques learn 

information from data with the same form, i.e. either with class label or without class 

label. 

Castelli and Cover (1996) shows that labelled samples are necessary to construct a 

classifier and are more valuable than unlabelled samples. However, supervised neural 

networks have not played an important role in image segmentation, since labelled data 

are often difficult to obtain or is unable to represent all possible variations of the op-

erational environment to which the classifier will be applied (e.g. medical and remote 

sensing images). When labelled data are very difficult to obtain and input dimension-

ality is high, the unlabelled data can enhance learning. However, there is no framework 
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to address the optimisation problem in combining both labelled examples and image 

models. 

Amongst early work, Gutfinger and Sklansky (1991) discuss mixed adaption to make 

the classifier robust. Shahshahani and Landgrebe (1994) analyse the value of unlabelled 

data in classification from the point of Fisher information matrix. They propose a 

method of using milabelled data in classiBcation using mixture models where each cluster 

is manually assigned to a class in the learning, which is termed "hard-partition". A 

cluster-class "soft-partition" method is proposed by Miller and Uyar (1996). Miller also 

analyses the connection of his method to the radial basis function networks. Nigam et al. 

(2000) use a method similar to Shahshahani and Landgrebe (1994) in text classification 

using both labelled and unlabelled documents. Jaakkola and Haussler (1998) consider 

a two-step learning for supervised techniques such as support vector machines: they 

build a generative model from unlabelled data and then exploit this generative model 

in supervised learning. Joachims (1999) first proposes a sparse and regularised method 

for inference for text classification using support vector machines using both labelled 

and unlabelled examples. Blum and Mitchell (1998) propose a learning paradigm called 

to address the problem where strong structural prior knowledge is available. 

In (Nigam and Ghani 2000), Nigam analyses the effectiveness and applicability of co-

training. Cohn et al. (1996) discuss active learning with statistical models. These results 

indicate that it is advantageous to incorporate unlabelled data with labelled data in the 

learning process. 

More recently, Jebara and Pent land (1998) propose a maximum conditional likelihood 

method as an extension of the EM algorithm to conditional density estimation un-

der missing data, where a bounding Eind maximisation process is given to specifically 

optimise conditional likelihood instead of the usual joint likelihood. Schuurmans and 

Southey (2001) discuss metric-based methods for adaptive model selection and regu-

larisation that exploits unlabelled data to adaptively control hypothesis complexity in 

supervised learning tasks. The idea is to impose a metric structure on hypothesis by 

determining the discrepancy between their predictions across the distribution of unla-

belled data. Blum and Chawla (2001) discuss learning from labelled data and unlabelled 

data using graph minicuts which is seen to be robust to noise on the labelled data. This 

method uses a similarity measurement between data to construct a graph and then out-

puts a classification corresponding to partitioning the graph in a way that minimises the 

number of similar pairs of examples that are given different labels. Ivanov et al. (2001) 

discuss EM method for weakly labelled data. 

As a problem involving both labelled and unlabelled data, it is believed that semi-

supervised learning is capable of learning more information from the data and thus 

achieve improved performance. However, as both labelled da ta and unlabelled data 

are involved, the model assumption and model optimisation become very diScult. Re-

cently, kernel machines such as support vector machines are an very active research 
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field by mapping input spaces into kernel spaces. The capacity and flexibility provided 

by kernel machines might enable them to be used in the complex modelling problem 

with labelled and unlabelled data. In terms of optimisation, the Expectation Maximisa-

tion (EM) algorithm can be used by treating the unlabelled data 's labels as the missing 

data. Thus kernel machines and EM algorithm may provide useful insights and powerful 

methodologies in the direction of semi-supervised learning research. 

The following section will give an probabilistic method for semi-supervised classiBcation. 

The detailed model assumption and parameter optimisation will be discussed. 

3.5.3 A Probabi l is t ic M e t h o d 

In the following, the data to be classiBed will be denoted x = {xi,x2, - - ,Xn} with 

mixture (cluster) labels z = {zi,z2, ' ,4i}, 6 {1,2,- - ,A'} and class labels y = 

{3/1,2/2, " ,%/»}, !/t 6 {1,2, - J } to be decided, as shown in Fig. 5.4. Xj is an m-

dimensional feature vector for pixel i Note that the class labels c are distinguished 

from mixture labels z, as z are not necessarily the meaningful physical class labels c. 

In addition, D = {(3^1,3/1), (xg,1/2), -- ,(xj^i,3/j^!)} are the labelled samples and their 

associated class labels, where 71̂  is the number of labelled samples. 

A probabilistic method for using both labelled and unlabelled data are proposed in 

(Miller and Uyar 1996). Given the model, the joint data log-likelihood is written in the 

form 

log 2 = logp(x)- | - logp(x\i / ' ) 

= l ogpW + ^ l o g p ( x ^ , i / j ) . (3.53) 

This objective function consists of a "supervised" term ^ l o g p ( x ^ , ^ j ) based on the 

labelled data x; and an "unsupervised" term logp(x) based on unlabelled data x. The 

joint likelihood allows the inclusion of unlabelled data in the learning. The supervised 

term can be expressed as 

K 

pM,3/i) = ^ = ^)p(W = ^)- (3-54) 
&=i 

The labelled examples make possible the establishment of a probabilistic distribution 

p(2/« — j ki = ^) to describe the connections between the "mixture label" z, and the 

"class label" i/,. 

A model is needed to classify each mixture to each class. A hard "partitioned" mixture 

model is used in (Shahshahani and Landgrebe 1994), where each mixture component is 
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hard-partitioned to claases, that is the mixture component t belonging to which class 

J is predetermined. A probabilistic "generalised mixture" (GM) model is introduced in 

(Miller and Uyar 1996) and shows improved performance: 

-Yjlt - = A:) = (3-55) 

4 

where is used as = t ) is independent of the pixel %. Finally, the class 

membership of each data is decided by 

K 

p(3/i = j |x i ) = = A|xi). (3.56) 
k=l 

An algorithm is needed to solve the integrated optimisation in Equation (3.53). This 

optimisation is very di&cult as it involves both labelled and unlabelled data. It is 

noted that the EM algorithm is an efficient method to solve an optimisation problem 

where there is hidden data. For supervised learning, a gradient-based method can be 

used for optimisation. In recent years some EM-based optimisation algorithms have 

been proposed for parameter estimation in unsupervised learning. Jordan and Jacobs 

(1994) use an EM algorithm to maximise conditional likelihood in a mixture of experts 

framework. The mathematical connections between the EM algorithm and the gradient-

based approaches for maximum likelihood learning of finite Gaussian mixtures were 

developed in (Xu and Jordan 1996). These make the EM algorithm a natural method 

for solving optimisation problems involving both unlabelled and labelled data. 

Starting with an initial estimate of model parameters, the algorithm iterates: 

« E-step: Estimate Q(0 |$W) = f7[logp(x, z ) - i - logp (x \ c ' ) |x , 

» M-step: Find = a r g n ^ Q ( $ | $ W ) . 

Here t represents the t th iteration. As the unlabelled data are independent of each other, 

the mixture label's prior is updated by, 

= t j x , ) -I- = ^|xj,c^) 

P ( z r ' ) = A:) = . (3.57) 
n, 4- n' 

When using a Gaussian distribution to model the conditional distribution p(xi|zt = k, ^ ) , 

. ( . . I . = ( 3 . 8 , 
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the mean vector and the covariance matrix of component A, re-

estimated using: 

^ p(zj = A:|xj)x^ + ^ = A:|x|, c|)x^ 

g = t |x() + = A:|x|, c|) 
t=l t=l 

/ . r ' ) = , (3.59) 

E == + Z = A;|x ,̂ 

, (3.60) 

E p(zj = A:|xi) + E P W = 4 ) 
«=1 i=l 

. .W\r where = (x. - /^]^^)(x{ - / l y ) ^ , 

P ( 4 " = t | x j = ^P(x.l4" = t ) f W " = ") , (3^61, 

z p(xi|zj*^ = A:)f (zj*^ = k) 
fc=l 

X»!" = ° ° " (3.62) 

Z p(x^|zj^) = A:)'yj|^P(zj*) = A:) 
k=l 

with updated by Equation (3.55). 

This EM re-estimation continues until the updates fall below a tolerance or the maximum 

number of iteration reaches. Finally, the class label is determined using Equation (3.56). 

3.6 S u m m a r y 

This chapter has reviewed classical approaches to pattern recognition, with the em-

phasis on learning and generalisation. There may be several factors that inEuence the 

performance of the pattern recognition classifer. First the correctness and eSciency of 

the labelling process to generate data for training the classifier. This part may need 

a large amount of expert knowledge. The correct labelling process is often critical to 

the following training process. Secondly what kind of environment the classifier will be 

used. Most classifier performs better on the data that is similar to the labelled data 

used for setting up the classifier while fails on the data that is different from the labelled 

data. Thirdly the way the classifier will be trained. This is a very important step and 

the field that quite a lot of research have been done. Mciny classifers have been set up 

using various model assumptions and optimisation algorithms. The problem of setup of 

a classifier which has good generalisation with respect to the testing data is still an open 

question. The semi-supervised techniques are a good way to treat this problem. 
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The next chapter will use the three different types of classification techniques introduced 

in this chapter in simulated and real PET reference region extraction. 



Chapter 4 

Temporal P E T Reference Region 

Extraction 

The purpose of the work described in this chapter is to investigate whether the charac-

terisation of dynamic P E T images will beneht from the application of expert knowledge 

contained in the labelled data, using supervised and semi-supervised classiGcation. 

Pattern recognition techniques are applied to solve the PET reference region localisation 

and modelling problem for [^^C](i?)-PK11195 PET images. Results on simulated PET 

data are presented, followed by the results on real P E T data. For both types of data, 

results of reference region exaction via unsupervised, supervised and semi-supervised 

pattern recognition are compared. 

4.1 P a r a m e t r i c and N o n - p a r a m e t r i c Mode l l ing 

There are two general approaches to the analysis of PET images: parametric approaches 

and non-parametric approaches. Parametric methods construct an explicit TAG model, 

using a set of biochemically or physiologically meaningful parameters. Often the param-

eters are chosen such that they represent the desired chara.cteristic, and so estimation of 

the parameters is the main task of interest. After the modelling, a "statistical image" 

can be displayed to show the value of one feature (non-parametric modelling) or one pa-

rameter such as binding potential in PET (parametric modelling) associated with ea.ch 

voxel (Gunn et al. 2001). 

The parametric approach (model-based approach) has traditionally been apphed to the 

design of signal processing algorithms. A mathematical model is derived that describes 

the physical signal-generating system, such as compartmental models in PET. This 

model is then used to derive a mathematical procedure that should constitute an optimal 

solution to the processing problem faced. An optimisation procedure is then devised 
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which minimises some error between the model and the data to recover the optimal 

model parameters. However, the approach is often hampered by the lack of knowledge 

about the signal generating system. Thus simplified assumptions are often made about 

the system, producing suboptimal solutions. 

Non-parametric approaches apply some manner of filtering or transformation to the TAG 

such that features which represent a desired characteristic can be obtained (principal 

component analysis; factor analysis; clustering technique etc.). Data-driven approaches 

are an alternative to the model-based approach, which avoid the deEnition of a mathe-

matical model based on the prior assumptions about the system. Examples of the signals 

are provided as the inputs to the system. Then, by learning from these examples, the 

characteristics of the real system (non-linear, non-stationary, non-Gaussian etc.) are 

taken into the learning system implicitly. No explicit model is necessary. However, 

the parameters in the generated learning system are not directly related to meaningful 

parameters. 

P E T modelling in this thesis 6rst uses non-parametric methods to extract the reference 

region, then uses a parametric model, a simplified reference region model, to generate 

statistical images of parameters of interest such aa binding potentieil. The next three 

sections describe three non-parametric methods - unsupervised classification, supervised 

classification and semi-supervised classification - in PET modelling. 

4.2 Unsupe rv i sed Reference Region E x t r a c t i o n 

Most classification methods used in PET are unsupervised. A basic method is Principal 

Component Analysis (PGA) which has been used in PET for dimensionality reduction 

(Yap et al. 1996). However, the orthogonal factors produced by PGA are not necessarily 

related to physiologically meaningful time-activity distributions. For PET reference 

region segmentation, K-means and Gaussian Mixture Model (GMM) are two e&cient 

techniques that have been used (Ashburner et al. 1996). No oprion knowledge is 

involved in the segmentation process, and the number of underlying patterns and the 

final discrimination are determined manually. 

In (Ashburner et al. 1996), cluster analysis is used for the characterisation of dynamic 

[^^CjSumazenil P E T data. The data are partitioned according to its probability of 

belonging to each of A; clusters, as described in the Gaussian mixture unsupervised 

modelling techniques introduced in Section 3.3.2 (Hartigan 1975). The superiority of 

Gaussian mixture models for clustering over other methods like K-means is that it 

provides a powerful probabilistic representation. In the experiments in this chapter, the 

unsupervised classification method used is the Gaussian mixture models. It is optimised 

using EM algorithm described in Section 3.3.2.2. 
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Fig. 4.1 shows the procedure in the unsupervised classification for PET image modelling 

to generate binding potential images. After setting up an unsupervised clustering algo-

rithm using Gaussian mixture models, an expert manually selects one or two clusters as 

the data from the reference region with the other clusters representing the non-reference 

region. The mean TAG from all the manually chosen reference clusters is calculated. 

This is fed into the reference region model, allowing the generation of parametric maps 

of binding potential and relative dehvery of each voxel. 

Gaussian Mixture 
Modeling 

Average 

TACs 

One Reference TAG 

Reference region TAG Non-reference region TAG 

Binding Potental image 

Reference Region Model 

Manually choose one or more clusters 
as the referenc region TACs 

FIGURE 4.1: The unsupervised Gaussian mixture models and the reference region 
model to generate the binding potential image 

4.3 Supervised Refe rence Region E x t r a c t i o n 

No supervised classification techniques have been used before in P E T modelling. In this 

section a supervised classiGcation approach is proposed to extract of the re^srence region 

from PET dynamic images. When enough representative training data are available, 

supervised classification is more suitable for extracting the reference region from P E T 

dynamic images than unsupervised classihcation. In unsupervised learning, the learning 

must proceed on the distribution of the patterns in the input space alone. The goal of 

unsupervised classification is to model the probability distribution of the input data and 

to use this to segment the input space into regions. As no classifier is produced, an expert 

must decide how many patterns there are, as well as how to map from the clusters to 

target patterns after unsupervised learning. Each time a new da t a set appears, the whole 

learning process must repeat, and as such no information is aggregated over diSerent 

scans. In supervised classification, the desired output is known for each input pattern 

and the system can learn from these examples to generalise to "unseen" values for a 

new input pattern. The basic notion of supervised learning is to construct a model from 

examples. For a system to use supervised learning, a teacher must help the system in 

its model construction by providing positive and negative examples of objects belonging 
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to these classes. An inductive process is used to build up a model from the examples, 

producing a system which can determine the class membership of an input pattern. The 

merit of supervised learning is that it sets up a classifier that can remember the expert 

knowledge and can be reused. 

As Cherkaasky and Muher (1998) observe, no single universally accepted theoretical 

framework for predictive learning currently exists. Neural networks have received an 

immense research interest and have been applied in many areas. The Bayesian approach 

to neural networks can be considered to be an example of the parameter space approach 

to learning, viz. the learning machine is parameterised by a weight vector and the 

task of learniug is to hnd optimal values of these weights. Kernel methods such as 

support vector machine can find the unique and optimal solution. In this application, 

there are a large number of data sets and also a relative large amount of noise. If a 

support vector machine claasiher were used, a large proportion of training data would 

be kept as support vectors. As a result, the classification process wiU be relatively slow. 

Additionally, the inaccurate data kept as support vectors will aSect the accuracy of 

the classification. Thus, instead of support vector machine or other kernel methods, a 

Bayesian multi-layer perceptron classifier is used. 

4.3.1 Bayesian Network S t ruc tu re 

The Multi-Layer Perceptron (MLP) network is one of the most widely used supervised 

neural networks, but it can suSer from "overfitting", especially when the data are noisy. 

A Bayesian framework (Mackay 1992b) avoids "overfitting" by incorporating capacity 

control to the model. 

In this section, a multi-layer perceptron (MLP) network with a logistic activation func-

tion is trained with a regularised cost function according to the Bayesian framework. 

The network is trained using the cost function 

Rreg{^) = -Remp(^) + ^ ^ ' (^-l) 
c 

where Uc is the regularizer for the subset c of weights Wc, ||^||c — ^ is the 
weWc 

regulariser for the weights Wc, w is the weight vector and .ReTn,p(̂ ) is the sum of cross-

entropy loss term 

^emp(w) == - hi / (z t , w) -I- (1 - 1/i) hi(l - /(a;^, a,))}. (4.2) 
i=l 

The initial values for ac set to small arbitrary values and the network is then trained 

using gradient descent to minimise ^eg(''^)- The regularisers etc then re-estimated 
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using the evidence framework 

where 

j=l ; ^ 

J is the total number of network weights, Xj and the j t h column of V are the j t h 

eigenvalue and eigenvector of the Hessian matrix V^G. 

Once the regularisation parameters have been re-estimated, further minimisation is per-

formed. This re-estimation and further training continues until the updates fall below 

a tolerance. This re-estimation scheme enables the network to adjust its regulariser 

controlling the capacity of the network and limiting over-fitting. 

4.3.2 Decision Making 

Let Ci and Cg denote reference region TAG class and non-reference region TAG class 

respectively. The logistic activation function allows the network output to be inter-

preted as the probabihty p(Ci|x,) . In this two-class problem, p(Ci |x:) 4-p(C2|xi) = 1. 

The discrimination rule is: 

Xi ^ Ci if p(Ci|xi) > 0.5; 

X{'^C2 if p ( C i | x i ) < 0 . 5 . 

In a P E T scazi, once all the voxels belonging to the reference region are extracted, the 

mean reference region TAG can be obtained. 

4.3.3 Supervised Neura l Network Reference Reg ion Ex t rac t ion 

After setting up a supervised neural network, each voxel in the P E T image is segmented 

as the reference region and the non-reference region. The mean TAG from the extracted 

reference region is calculated. This is fed into the reference region model, allowing the 

generation of parametric maps of binding potential and relative dehvery of ea<:h voxel. 

Fig. 4.2 shows the procedure used in the supervised reference region extraction and 

binding potential image generating. 

4.4 Semi-supervised Refe rence Region E x t r a c t i o n 

Semi-supervised classification enables learning information f rom both labelled and un-

labelled data. This section gives the detailed procedure of extracting reference region 

using the semi-supervised learning method and generating binding potential images. 
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First Step Second Step 

Training 

Neural Network 

Average 

One Reference TAG 

Labelled Data 

RefMtnce region TACs Non-reference region TACs 

Binding Potental Image 

TACs 

Reference Region Model 

FIGURE 4 .2 : T h e supervised neural network and the reference region model to generate 
the binding potent ia l image 

The labelled reference and non-reference TAG data and all the TACs in the PET images 

are used to train the probabilistic semi-supervised classifier. 

Similarly, let Ci and C2 denote reference region TAG class and non-reference region TAG 

class respectively. The semi-supervised classification output can be interpreted as the 

probabihty Each voxel in the PET image can be segmented Eis the reference 

region and the non-reference region according to the same decision rule as described in 

the supervised decision making (Section 4.3.2). 

In a P E T scan, once all the voxels belonging to the reference region are extracted, the 

mean reference region TAG can be obtained. This is fed into the reference region model, 

allowing generating parametric maps of binding potential and relative delivery of each 

voxel. 

Fig. 4.3 shows the procedure of using semi-supervised classification in P E T reference 

region extraction and parametric image generation. 

4.5 S imula ted P E T E x p e r i m e n t s 

In this section, synthetic positron emission tomography (PET) images are used to ex-

amine the performance of the algorithms. 
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TACs Labelled data 

Scmisupervised 
segmentation 

Reference region TACs Non-reference region TACs 

One Reference TAC 

Reference Region Model 

Binding Potental Image 

FIGURE 4 . 3 : T h e p r o b a b i l i s t i c s e m i - s u p e r v i s e d m e t h o d a n d t h e r e f e r e n c e r e g i o n m o d e l 

t o g e n e r a t e t h e b i n d i n g p o t e n t i a l i m a g e 

4.5.1 D a t a Descr ipt ion 

Simulated data are generated as follows: an 18-D vector from the cortex in a real PET 

scan is extracted as a reference region time-activity curve with binding potential value 

.BP =: 0. Three other vectors are generated by using this reference region TAC and the 

simplified reference region model (Mintun et al. 1984) with B P — 1,2,3 respectively. 

Thus four vectors with diSerent binding potential are generated. These vectors are 

assigned to each of four regions in the simulated image as shown in Fig. 4.4, with added 

noise for TACs in voxels. The reference region, with BP — 0 is the oval background. 

Additionally, labelled examples are obtained by generating 18-D vectors with .BP = 0 

in one class and B P — 1,2,3 as the other class. In aU experiments, Gaussian noise 

with zero mean and a certain standard deviation is added to the TACs. The standard 

deviation varies from 0.3 to 2.6 with the increment of 0.1 in the trials. In each trial, the 

noise level in the labelled samples and the image to be segmented are the same. The 

standard deviation is directly used to represent the noise level instead of the traditional 

Signal-to-Noise Ratio (SNR) representation, as the underlying signal is constant in the 

trials with different noise level. 

Three different methods are compared to extract the region with B P 

regions with BP — 1,2,3: 

0 from the 

« Unsupervised classiBcation using GaussiEin mixture model described in Section 4.2; 

» Supervised segmentation using Bayesian neural networks as described in Section 

4,3; 

Semi-supervised method described in Section 4.4. 
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(a) Four regions in t he image (b) Four t ime-act ivi ty curves associated 
with four regions 

F I G U R E 4 . 4 : The simulation data: Each voxel in the image has an 1 8 - D feature vectors 

The detailed description of the procedures are given in the previous three sections and 

illustrated in Fig. 4.1, Fig. 4.2 and Fig. 4.3. In supervised and semi-supervised algo-

rithms, the final classification is carried out automatically by assigning every voxel to the 

class where it has the highest posterior probability. In the unsupervised segmentation, 

the number of clusters is manually specified. In this simulated experiment, the cluster 

assignment can be done automatically by choosing the cluster whose centre has lowest 

BP as the reference class, while the rest are treated as the other class. 

4.5.2 Resul ts 

The image segmentation results using these three methods, with 500 labelled data and 

noise standard deviation a — 0.8, are displayed in Fig. 4.5. The unsupervised segmenta-

tion result (Fig. 4.5(a)) fails to localise the reference region, when 4 clusters were used. 

The supervised segmentation result in Fig. 4.5(b) gives an improved result, while the 

semi-supervised segmentation result in Fig. 4.5(c) gives the best classification accuracy. 

A 3 X 3 median filter is applied to the segmentation result in Fig. 4.5, as shown in 

Fig. 4.6. It can be seen that after the median filtering, a large amount of scattered 

points inside the images are removed. However, the scattered points remain around the 

image edge. The semi-supervised method gives the best accuracy. In the supervised 

segmentation image, the edge of the right side object is still not ideal, compared to the 

original image. 

To further compare the algorithms' performance, the influence of the number of labelled 

examples and the noise level in the data is examined. Although the unsupervised seg-

mentation results are not affected with the change in the number of labelled examples, 

for the sake of comparison, they are displayed in the same way as the other two meth-
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3m 

20 40 00 

(a) Unsupervised segmentation 

20 40 80 00 100 120 20 40 00 80 100 120 

(b) Supervised segmentation (c) Semi-supervised segmentat ion 

F I G U R E 4 . 5 ; Segmentation results with 5 0 0 labelled examples, noise standard deviation 
a = 0.8 

ods. Fig. 4.7, 4.8, 4.9 show the mean and standard deviation for the voxel classification 

accuracy, the non-reference region classification error and the BP value of the extracted 

TAG respectively. The four rows in each figure correspond to the labelled examples's 

number 100, 200, 500 and 1000 respectively. The error bars are generated by running 

every method for ten times with different initial values for model parameters. The num-

ber of clusters is set to 4 in both the unsupervised and semi-supervised classification. 

The three types of error are defined as follows: 

. The total c te i i icat ion error is calculated by 

• The non-reference region classification error is 
Number of misclassified non—reference region voxels 

TotaZ nttmber o/ nort—re/erence region UU/O, 

• The BP value of the extracted reference TAG is calculated using the simplified 

reference region model (Equation (2.3)) and the basis function method (Equation 

(2.6),(2.7),(2.8)). 
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20 40 60 

(a) Unsupervised segmentation 

20 40 eo 20 40 60 

(b) Supervised segmentation (c) Semi-supervised segmentation 

F I G U R E 4 . 6 : Results after median filtering 

Each figure shows the change of one of these three types of error with a different noise 

level. The noise level runs from 0.2 to 2.6. 

Fig. 4.10, 4.11, 4.12 show the results with the number of clusters in the unsupervised 

and semi-supervised classification changed to 10. 

Fig.4.7 and Fig.4.10 shows the total classification error with 100, 200, 500, 1000 training 

data. In both figures, the semi-supervised segmentation achieves best classification per-

formance while the unsupervised segmentation result gives the worst classification error. 

As each optimisation process involved in this simulation can only find a local minimum, 

the classification results vary with different initial values for model parameters. With 

smallest standard deviation, the semi-supervised method shows its robustness with dif-

ferent starting points. Unsupervised classification performance is also unstable as it 

gives highest standard deviation. As the noise level increases, the classification error 

for supervised and semi-supervised classification increases, as expected. However, the 

unsupervised classification error decreases in the four-cluster case. One possible expla-

nation is that when the noise level is low, the algorithm tends to split the true reference 
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(a) Classification error wi th 100 t ra in ing d a t a (b) Classification error wi th 200 t ra ining d a t a 

(c) Classification error wi th 500 t ra ining d a t a (d) Classification error wi th 1000 t ra ining d a t a 

FIGURE 4.7: Simulation results on classlBcation accuracy, with 4 clusters in unsuper-
vised classiGcation (Red solid : Error bar for semi-supervised classiGcation; Blue dotted: 
Error bar for supervised classiGcation; Black dashdot: Error bar for unsupervised clas-

siScation.) 

region data into more than one clusters, as only one cluster will be picked, the total 

classification error is large. When the noise level increases, the chosen cluster contains 

more true reference region data. This downtrend is less severe when the cluster number 

increases to 10, as shown in Fig.4.10. 

As our main interest is the accuracy of reference regions, the percentage of non-reference 

regions classi&ed as reference regions are emphasized. Fig.4.8 and Fig.4.11 show the non-

reference region mis-claasiAcation error. The unsupervised classi5cation achieves best 

accuracy. The result for the 10-cluster case achieves more accuracy than the 4-cluster 

case. However, semi-supervised classification has the lowest standard deviation, showing 

that its performance is very stable. 

Fig.4.9 and Fig.4.12 show the binding potential error of the classiGed reference region 

voxels. The binding potential is the meaning parameter that will be extracted to de-
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(a) Non-reference region classiGcation error with (b) Non-reference region classiGcation error with 
100 training data 200 training data 

(c) Non-reference region classification error with (d) Non-reference region classification error with 
500 training d a t a 1000 training da ta 

F I G U R E 4 . 8 : Simulation results on non-reference region classification accuracy, witfi 
4 clusters in unsupervised classification (Red solid : Error bar for semi-supervised 
classification; Blue dotted: Error bar for supervised classification; Black dashdot: Error 

bar for unsupervised classification.) 

scribe the characteristic of PET images. Thus minimising the binding potential error 

is very important in PET segmentation. The semi-supervised method achieves the best 

performance with excellent stability reflected by the low standard deviation in Fig.4.7 

and Fig.4.10. The unsupervised method also achieves competitive performance but it is 

less stable. 

Overall, the semi-supervised method obtains the best accuracy in this simulation. The 

semi-supervised performance is also very stable in that the error bar for the semi-

supervised classification in all the above figures are small compared to the other two 

methods. One possible reason is that the simulated data is generated from a Gaus-

sian distribution with additional noise. As there are Gaussian mixtures in the semi-

supervised model (Section 3.5.3), it is easier to find similar optimal solutions for the 
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(a) Binding potent ial error with 100 training da t a (b) Binding potent ial error with 200 training da t a 

r T I- 1 

(c) Binding potent ial error with 500 training da t a (d) Binding potent ia l error with 1000 t ra ining d a t a 

FIGURE 4.9: Simulation results on binding potential accuracy, wi th 4 clusters in un-
supervised classification (Red solid : Error bar for semi-supervised classification; Blue 
dotted: Error bar for supervised classiRcation; Black dashdot: Error bar for unsuper-

vised classiBcation.) 

model parameters from different starting points in the optimisation process. Although 

Gaussian mixtures are also used in the unsupervised model, the unsupervised method 

often fails to And the right class membership for Gaussian components, making the 6nal 

result less stable. 

4.5.3 Discussions 

4.5.3.1 Di f fe ren t Ways to E s t i m a t e U n s u p e r v i s e d Class i f ica t ion E r r o r 

In the above section, the total classification error and the non-reference region classifi-

cation error (i.e. false positive) is used. Another aspect of classification error is 

the reference region classification error (i.e. false negative), defined as 
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T l l l l l l 

(a) Classification error with 100 training da ta (b) Classification error with 200 training da ta 

(c) Classification error with 500 training d a t a (d) Classification error with 1000 training d a t a 

FIGURE 4.10: Simulation results on classification ELCcuracy, with 10 clusters in unsu-
pervised classification (Red solid : Error bar for semi-supervised classiRcation; Blue 
dotted: Error bar for supervised classiBcation; Black dashdot: Error bar for unsuper-

vised classification.) 

Number of misclassified reference region voxels ^ inn'?' 
Total number of reference region voxels 

These three diSerent aspects of the same unsupervised clagsiGcation result is shown in 

Fig. 4.13. The non-reference region classification error is very small. As we only choose 

one cluster that has the smallest binding, there may be a large amount of reference 

region data missed, leeiding to a large reference region classification error. 

4.5.3.2 T h e Inf luence of C lus te r N u m b e r 

In this simulation experiment, we notice that the specification of cluster number is 

subjective and could significantly influence the unsupervised classification result. To 

compare the infuence of the number of clusters, the noise level in data is fixed at 0.8 

and the cluster centre vectors for 4-clu8ter and 10-cluster classiScation after K-means 
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(a) Non-reference region classification error with (b) Non-reference region classification error wi th 
100 t ra in ing d a t a 200 t ra in ing da t a 

(c) Non-reference region classification error with (d) Non-reference region classification error wi th 
500 t ra in ing da t a 1000 t ra in ing d a t a 

FIGURE 4.11: Simulation results on non-reference region classiGcation accuracy, with 
10 clusters in unsupervised clagsification (Red solid : Error bar for semi-supervised 
claasiRcation; Blue dotted: Error bar for supervised classiEcation; Black dashdot: Error 

bar for unsupervised classiGcation.) 

initialisation and Gaussian mixture modeling are plotted separately. As shown in Fig. 

4.14 and Fig. 4.15, the cluster centre chosen from the 10 cluster result appears to have 

less binding but more noise. The higher this cluster number we specify, the more chance 

of choosing the cluster that has very small binding (i.e. very close to reference region). 

However, the cluster may have less data inside and is thus subject to noise. A trade oS 

needs to be made in choosing a suitable cluster number. 
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(a) Binding potent ia l error wi th 100 t ra ining d a t a (b) Binding potent ia l e r ror wi th 200 training d a t a 

(c) Binding potent ia l error with 500 t ra ining d a t a (d) Binding potent ia l e r ror with 1000 t ra in ing d a t a 

FIGURE 4.12: Simulation results on binding potential accuracy, with 10 clusters in 
unsupervised classification (Red solid : Error bar for semi-supervised classification; 
Blue dotted: Error bar for supervised classification; Black dashdot: Error bar for 

unsupervised classification.) 

- AC OmwiAcabon Error 
- R#f#f#nce R#gion Clawificmtion Error 
- Non-r#f#f#nc# Ragion Error 

FIGURE 4.13: Three different ways to meeisure the unsupervised classiScation error 
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(a) Cluster centres af ter k-means ini-
t ial isation 

(b) Cluster centres a f t e r Gaussian 
mixture modeling 

FIGURE 4.14: Cluster Centres for four cluster classificatioii 

h . ' v \ \ \ \ 

(a) Cluster centres af ter k-means ini-
tialisation 

(b) Cluster centres a f t e r Gaussian 
mixture model ing 

FIGURE 4.15: Cluster centres for 10 cluster classification 

4.6 Real P E T E x p e r i m e n t s 

As in the simulation, the three different methods are compared to extract the reference 

region from the regions with binding: 

« Unsupervised image segmentation using EM with a Gaussian mixture model, ag 

introduced in Section 4.2; 

« Supervised segmentation using Bayesian neural networks as described in Section 

4.3; 

« Semi-supervised method proposed in Section 4.4. 

Eighteen [^^G](i?)-PK11195 PET scans from 17 normal volunteers and one patient were 

used in the experiment. The data details have been described in Section 2.5. Our goal 

is to extract the prototype cortex region. This is carried out as follows. 2800 TACs 

from the cortex region and 2100 TACs from the scalp, thalamus and cerebellum regions 
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were randomly sampled from seven scans as the labelled data in supervised and semi-

supervised segmentation. The data from the cortex region is labelled as the reference 

region examples, while the 2100 data from other regions are labelled as the other class, 

the non-reference region examples. The choice of the cortex aa the ground truth is based 

on the evidence that the cortex part of the brain in all healthy scans investigated has 

no significant binding. The seven scans involved in training are listed in Table 4.1. The 

segmentation results for all 18 scans will be generated. The segmentation results on the 

11 scans not used in the training are independent results for performance evaluation. 

Scan used in training 
n02791 
n02805 
n02816 
n02833 
n02870 
n03637 
n03657 

TABLE 4 . 1 : Scan used in training 

In the unsupervised and semi-supervised segmentation, after several trials with various 

cluster number, the cluster number is set as 10. 10 is also found as a suitable clus-

ter number in the previous simulations and PET image segmentation experiments in 

hterature (Ashburner et al. 1996). In supervised classification, after initial investiga-

tions varying the number of hidden nodes, four hidden nodes are found to be suitable 

for this segmentation problem. In supervised and semi-supervised algorithms, the final 

classification is carried out automatically by assigning every voxel to the class that has 

the highest posterior probability. As there is no information about cluster identification 

available in unsupervised segmentation, the final classification is carried out by choosing 

the cluster whose centre has lowest BP as the reference class, while the rest are treated 

as the other class. 

4.6.1 D a t a Pre-process ing and Inpu t Normal i sa t ion 

The characterisation of each voxel to the reference region and the non-reference region 

is decided by its TAG. An 18 dimensional feature vector for each voxel is extracted from 

the tracer concentration at 18 dMerent time instants, see Fig. 4.16. This is based on a 

pTion knowledge that the information contained in this 18 dimensional feature vector is 

suScient to represent the time activity curve and distinguish the reference region and 

the non-reference region. 

Input normalisation ensures that all of the input dimensions and the network weights are 

of order unity. Data are normalised before input to the network. By treating each of the 

18 input dimensions independently, each dimension's mean and variance with respect to 
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0 500 1000 1500 2000 2500 3000 3500 

FIGURE 4.16: An example of feature vector extracted from 18 diSerent time instants 
in a TAG 

the training set are calculated. Thus each dimension of the transformed training data 

has zero mean and unit standard deviation. 

4.6.2 Segmenta t ion Resul t 

Fig. 4.17 shows the extracted reference TACs in the 7 scans, where part of data are used 

in training supervised and semi-supervised classihers. Three curves are shown in ea^ch 

6gure: the curve extracted from the semi-supervised classihcation; the curve extracted 

from the supervised neural network and the curve extracted from the unsupervised 

clustering. In unsupervised claasificatlon, the mean curve is obtained by choosing the 

largest cluster, as the way used in Hammersmith hospital. 

To assess the performance across diEerent P E T scans, the performance on 11 indepen-

dent scans are tested. Fig. 4.18 shows the independent testing results. The curves 

extracted from supervised and semi-supervised classification catch the shape of the ref-

erence region curves very well. However, the unsupervised classiScation performs incon-

sistently. It fails to capture the features of reference region curve in 4 scans n02833, 

n02870, n03637, n03657 in Fig. 4.18. In the test scans, unsupervised classihcation also 

fails on scans n02907, n02938, n3642, n03661, n04071, n04073 and n02904. 

By using the labelled data information, the supervised and semi-supervised classification 

have successfully leEirnt the information to discriminate the reference region from the 

other regions based on the shape of their TACs. In each sub-Agure of Fig. 4.17 and Fig. 

4.18, the curve extracted from the semi-supervised method has lower tracer concentration 

value in last severEil time instants. Comparing these to the curves extracted from the 

supervised method, it indicates that the extracted reference region TACs extracted from 

the semi-supervised method have lower binding potential value than the reference region 
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TACs extracted from the supervised method. Their performances are consistent across 

subjects. 

The output TACs from the supervised neural network capture the shape of the curve 

well as a result of successfully learning the knowledge in the network. However, the 

unsupervised clustering technique suSers from the mismatch between the number of un-

known underlying clusters and the number of clusters specified in advance. Additionally, 

manual selection of one cluster makes the process time-consuming and user dependent. 

In the cage where the cortex has signihcant binding that ma tes it unsuitable to be the 

reference region in P E T reference region, the supervised and semi-supervised methods 

have the advantage of hnding the reference region, unrestricted to a specific region. As 

no ground truth is available, a quantitative performance comparison based on these 

hgures are dlBcult. However, this is done by test-retest experiments. 

4.6.3 Pa rame t r i c Images 

Applying the learnt TAG to the reference region model enables parametric images to 

be obtained from P E T scans. Parametric images such as binding potential images give 

functional information instead of anatomical information of the scan subject. Binding 

occurs when the ligand and receptor collide due to diffusion, and when the collision has 

the correct orientation and enough energy. Measuring the ra te and extent of binding 

provides Information on the number of binding sites, and their Ei&nity and accessibil-

ity for various drugs. The scan subject's anatomical information can be obtained by 

registering P E T images with an anatomical image (such as CT, MRI) of the subject. 

Fig. 4.19 shows an example of binding potential image generated for plane no.20 of scan 

n03578, a healthy subject. These three figures correspond to using the reference region 

TAG generated from unsupervised, supervised and semi-supervised method respectively. 

The binding potential images are generated as follows: Firstly most voxels outside the 

scalp with low TAGs need to be Altered out to avoid unnecessary computation. Let a; 

represent the TAG to be filtered and Zr represent the reference region TAG extracted 

by the semi-supervised method. The filtering (i.e. thresholding) rule is : 

18 , 18 . 

if ^ Z-) > 0.5 ^ calculate value; 
j=i j=i 

18 , 18 . 
if ^ a?-) < 0.5 ^ = 0. 

j=l j=i 

The calculation of .Bf value is realised by applying the simplified reference region model 

(Equation (2.3)) and the basis function method. 

The binding potential image for plane no. 20 of the patient scan n02904 using three 

reference region extraction techniques are shown in Fig. 4.20. The binding potential 
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F I G U R E 4 . 1 7 : Results in seven scans (Each figure shows the mean TACs from the refer-
ence region extracted from unsupervised, supervised and semi-supervised classification.) 
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(a) n02907 (b) n02938 n03578 

(d) n03642 (e) n03661 ( 0 n03689 

(g) n03694 (h) n04071 (i) n04073 

(j) n04128 (k) 1102904 

F I G U R E 4 . 1 8 : Results in 11 independent scans (Each figure shows the mean TACs 
from the reference region extracted from unsupervised, supervised and semi-supervised 

classification.) 
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(c) B P image using semi-supervised extracted 
reference region 

F I G U R E 4 . 1 9 : Parametric image of binding potential (BP) for a healthy subject's PET 
scan n03578 plane 20 
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images are generated using the same procedure aa for the scan n03578. The reference 

region TAG extracted by the unsupervised segmentation hag a large error and fails to 

extract the reference region TAG, as shown in Fig. 4.18(k). The binding potential 

image using the unsupervised extracted reference TAG is dramatically diS^erent from 

the others, with the binding potential value in the range [—15,30]. Prom the binding 

potential image, it can be seen that the scan contains a strong binding area around the 

middle-right region. 

4.6.4 Improved Tests 

As there is no obvious ground truth for performance evaluation in real PET data exper-

iment, improved tests for performance evaluation are introduced. 

The performance of the diEerent classihers is to be compared by 4 test-retest exper-

iments. Each test-retest experiment contains a scan pair, where two PET scans are 

carried out for the same subject over aa internal of several days, under the same scan-

ning condition. Thus these two scans should be very close to each other. Any robust and 

good modelling methodology should be able to generate similar BP values for the same 

region in these two scans. The diEerence between the segmentation results for these 

two scans can be measured and used as a criterion for evaluating the performance of the 

segmentation method. The scan pairs from the same subjects for test-retest experiments 

are listed in Table 4.2. The details of the test-retest experiment are illustrated in Fig. 

4.21. 

Test-Retest Scan Pair 
n03578,n03689 
n03642, n03657 
n03661,n04071 
n03694, n04073 

TABLE 4.2: Test-Retest Data Set 

Fig. 4.22 shows the test-retest results. Each sub-figure shows the test-retest diEerence 

between a scEin pair, where the binding potential diSerences for thalamus, cerebellum 

and cortex are displayed. The binding potential of each region is calculated by using the 

extracted reference region TAG and the shnplihed reference region model. Three bars 

for each region correspond to three diSerent clagsihcation methods. 

Fig. 4.22 shows that unsupervised classification methods achieve best performance in 

the first test-retest subject while it gives a large variance in the other three test-retest 

cage. The supervised and semi-supervised classiBcation performs quite stable in all these 

four test-retest cases. However, there may be more than one factor that inEuences the 

test-retest results and making final conclusions needs more experiments and further 

investigation. 
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(a) B P image using unsupervised extracted ref-
erence region 

f 
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I 
(b) B P image using supervised neural network 
extracted reference region 

(c) BP image using semi-supervised extracted 
reference region 

FIGURE 4.20: Parametr ic image of Binding Potential (BP) for pa t i en t P E T scan n02904 
plane 20 



3 
o 
a 
g 

i\3 

I 
I 

# 8 

PET scan 1 for subject A 

t 
6 M 

I 
Reference region model Reference region model 

BP image BP_cluster_A_l BP image BP_snn_A_l 

m 
a 
c 
'U 
3 

i o. i 

r 
a a 

g 
5 3 VQ 

Reference region model 

BP image BP _Bemi_A_l 

3 

it 
g.8 
^ 8 

PET scan 2 for subject A 

(several days after scan 1 ) 

3 

i| 
I I 
11 

Reference region model Reference region model 

BP image BP_cluster_A_2 BP image BP_snn_A_2 

a 5 
8 g 
§ TO 

Reference region model 

BP image BP _semi__A_2 

Consistency of clustering 

JL_ 
Consistency of supervised neural network 

V Y 

Consistency of semi-supervised classification 

I 
5 

f 
I 
I 

05 (O 



Chapter 4 Temporal PET Reference Region Extraction 70 

SuBjecJ a: scan n03578, r03689 #uH#el b: scar n03642, 

I hi 
Subject c: scan r>03661, n04071 

t : (fialamus; Z cerebellum: 3r cc 

F I G U R E 4 . 2 2 : Test-retest result 

4.6.5 Cerebe l lum Binding 's Corre la t ion wi th Age 

The subject's age is increasingly being recognised as an important factor influencing the 

brain's function. However, there is a relatively small literature on actual neurochemical 

differences on their interaction with age (Zubieta et al. 1999; lidaka et al. 1999). The 

age-associated variations in the receptor binding is examined using PET data from a 

group of heathy human subjects at different ages. 

The binding of the cerebellum in 17 healthy scans are examined. Fig. 4.23 shows the 

estimation of cerebellum in these scans with extracted reference region TAG and the 

simplified reference region model. Three sub-figures correspond to the results with three 

different reference region extraction methods. statistics is a descriptive measure of 

how the variation in binding potential can by explained by the variability of age. Table 

4.3 shows the R^ statistics analysis of binding potential's variation explained by age for 

three methods. No obvious correlation of age with cerebellum binding potential value 

can be found in these 17 scans. 

Method R^ statistics 

Unsupervised 3.28% 
Supervised 14.4% 

SemiSupervised 2.06% 

TABLE 4.3: statistics 
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(a) Using semi-supervised extracted ref-
erence region 

(b) Using supervised extracted reference 
region 

[umrgummj 

(c) Using unsupervised extracted refer-
ence region 

FIGURE 4.23: Cerebellum binding's correlation with age 
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4.6.6 S u m m a r y 

From this series of segmentation and data analysis for 18 [^^C](ii)-PK11195 PET data, 

the importance of using labelled data (i.e. expert knowledge) in the segmentation process 

has been justihed . The extracted TAG using methods using labelled data, supervised 

and semi-supervised classihcation, leads to more stable and reliable results than using 

unsupervised clustering. Although the performance evaluation is very diScuIt for real 

PET data, the test-retest scheme and cerebellum's binding experiment show that the 

supervised and semi-supervised extracted reference region TACs are relatively consistent. 

4.7 Conclusions 

DiGFerent data modelling techniques are used in this chapter for PET reference region 

extraction based on the time-activity curves. Both simulated and real PET data are 

used. In simulations, performance evaluation can be examined as there is ground truth. 

The unsupervised segmentation technique with Gaussian mixture modelling is very un-

stable as there are great uncertainties in the choice of cluster number and the physical 

meaning of each cluster. The semi-supervised segmentation technique outperforms both 

unsupervised and supervised Bayesian neural networks in that it uses all the information 

provided in the data at the same time. The performance of these three segmentation 

methods is also tested and compared on real PET data. As there is no ground truth 

available in the real data set, a test-retest scheme is used to examine the consistency 

of the segmentation methods. Finally the correlation of thalamus's binding with age is 

also analysed. 

By building expert knowledge into the segmentation process, and integrating this knowl-

edge across scans, we may enhance the robustness of the segmentation process and hence, 

conhdence in the extraction of the reference regions. Additionally, the development of 

these methods to segment reference regions enables automatic generation of parametric 

maps of microscopic parameters such as binding potential. 

As a result of the data independence assumption for all these learning methods, the 

connections between image voxels are not modelled. As a result, the segmented im-

age appears to be noisy. The next two chapters will deal with incorporating spatial 

information within the image segmentation problem. 
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Image Segmentation 

This chapter presents the theory of Markov random helds and show how they can be 

used in P E T reference region segmentation. It is widely recognised that the image 

segmentation and processing algorithms perform more satisfactory if they have a sohd 

foundation in mathematical models. The Markov random field (MRF) is a class of sta-

tistical models for random variables that is well suited for image models. It provides a 

rich framework for modelling images and other spatial systems (Besag 1986; Ripley and 

Sutherland 1990); and its Gexibihty making it apphcable in various image segmentation 

problem. In this chapter, Markov random Eeld models are used to incorporate local de-

pendency into the segmentation process. The theory of Markov random fields, including 

the details of the model, how to incorporate them into various learning process and the 

related optimisation methods, will be described. 

5.1 Markov R a n d o m Field Models 

Contextual constraints are ultimately necessary in vision system. The use of context 

is indispensable to analysic images. The idea of using contextual information in image 

modelling and segmentation has given rise to algorithms based on Markov random fields 

(MRFs) (Geman and Geman 1984; Derin et al. 1984; Li 1995). Markov random field 

theory provides a convenient and consistent way for modelling context dependent entities 

such as image voxels and correlated features. This is achieved through characterising 

mutual influences among such entities using conditional MRF distributions. 

A Markov random held consists of a collection or a lattice of random variables (voxel 

values) with local interactions. MRF models define a probability distribution over a set 

of interacting variables. A number of concepts are fundamental to the use of MRFs, 

namely neighbourhoods, cliques, the Hammersley-ClifFord theorem, Gibbs distributions 

and potential functions. 

73 
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5.1.1 Ne ighbourhood System and Cliques 

If the observed image x = {xj,z 6 6'} is defined on a rectangular lattice which contains 

n voxels, 

5 = {i|l < « < n}. (5.1) 

Each voxel can be called a site. For each site i, there is a label The labelling problem 

is to assign a label from the label set to each of the sites in S. The sites in S are related 

to one another via a neighbourhood system, defined as 

A/" = {Mi\i E iS}, (5.2) 

where Mi is the set of sites neighbouring i. 

Neighbourhoods on the voxel lattice are defined in the following way. The set of neigh-

bours of lattice point z* are those points j such that the functional form of the local 

conditional probability, p(zj |zi, • • • , • • • , Zn), depends only on zj; if site z is a 

neighbour of site j , then site j is also a neighbour of site i. A clique is a set of points 

which are all neighbours of each other. Fig. 5.1 shows the first order and second order 

neighbourhood system and corresponding cliques for images. Clearly, the number and 

the types of cliques grows very rapidly with the increase of the neighbourhood size, and 

allows almost unlimited forms of interaction between voxels in a neighbourhood to be 

specified. In applications, first and second-order clique systems are widely used. 

(a) Firs t order (b) Cliques for first order neigh-
neiglibour system hour system 

(c) Second order 
neiglibour system 

(d) Cliques for second o rde r 
neighbour system 

F I G U R E 5 . 1 : First order and second order neighbourhood systems and cliques 
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5.1.2 Markov R a n d o m Fields 

As stated above, MRF models are built by specifying the local probabihty structure 

- how voxels in a neighbourhood interact - and this is a natural way of modelling. 

The difficulty lies in the lack of a formulation specifying these conditional probabilities 

which leads to a consistent form for the joint probabihty. The distribution of image 

labels z = {zi, i 6 ,$} is a Markov random field over if 

p(z) > 0 (5.3) 

(5.4) 

This depicts the local characteristics of z. That is in MRFs, only neighbouring labels 

have direct interaction with each other. The conditional distribution of any variable in 

the random held given the remaining held is identical to the distribution conditioned 

only on values in a hnite size local chque of neighbouring voxel values. 

5.1.3 Gibbs R a n d o m Fields 

A set of random variables z is a Gibbs Random Field (GRF) on <S with respect to Af if 

and only if its conSgurations obey a Gibbs distribution of the form 

p(z) = (5.5) 

where Q is a normalising constant called the /imctmn and T is a constant, 

(z) is the emeTgy The energy 

[/(z) = Y^K:(z). (5.6) 

is the sum over all possible chques C on the lattice and potentials K:(z) is the 

/unction depending on the variables within the clique C. 

5.1.4 Markov-Gibbs Equivalence 

The Hammersley-clifford theorem (Hammersley and Clifford 1971) establishes the equiv-

alence of the Markov random held and the Gibbs distribution. The theorem states that 

z w G Mar/coi; random on mt/i reapect to ^ ancf omZ;/ z zg a rancfom 

/zeM on respect to A/̂ . 

The proof that a Gibbs random field is a Markov random field is relatively straightfor-

ward and shown in the following: 
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Let p(z) be a Gibbs distribution on with respect to neighbourhood system The 

conditional probability 

- E 
where z' = {zi, " , ^i+i, " , E x p a n d i n g p(z) = Q =ec giygg 

E %:(z) 

^ (5 8) 
cec 

The potential functions that do not include voxel i cancel each other in the dominator 

and numerator, thus 
- E %:(Z) 

p{^i\^s-i) — - y y (z) (^•^) 

where ^ consists of chques that contains voxel i. That is it only depends on f s neigh-

bours. So it is a Markov random held. This proves that a Gibbs random held is a 

Markov reindom held. The proof that a Markov random held is a Gibbs random field is 

more involved. For details see (GhSord 1990). 

This theorem provides a simple way of specifying the joint probabihty p(z) in Markov 

random held using Equation (5.5). 

In summary, Markov random field model builds up hierarchically in the following man-

ner: 

# Specif a neighbourhood system. 

» Determine the cliques associated with that neighbourhood system. 

« Specify the potential functions associated with each chque. 

* Form p(z) = 

A MRF is said to be homogenous if potential function %.(z) in the Gibbs distribution 

(Equation (5.5)) is independent of the relative position of the clique C. It is said to 

be isotropic if K(z) is independent of the orientation of C. For mathematical and 

computational convenience, the homogeneity is assumed in most MRF models. 

5.2 Segmenta t ion Technique 

Markov random held models allow the spatial continuity of image voxel labels to be 

incorporated into the modelhng process. This section details a heuristic and statistical 
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physics based optimisation method to find the maximum a posteriori (MAP) solution to 

image segmentation based on MRFs. An Example of PET image segmentation is given 

to illustrate the process. 

5.2.1 M A P Es t imat ion 

Let X — {xi,x2, - - ,Xn} denote the observation of an image which contains m voxels 

while z — {zi, Z2, " , is the true label for the image. 

A maximum a posteriori (MAP) estimation is achieved at z = z*, where 

z* = argmaxp(z|x). (5.10) 

As data model p(x) is known, 

p(z|x)ocp(x|z)p(z). (5.11) 

5.2.2 M R F - M A P Es t imat ion 

Assuming the data are conditionally independent, 

p(x|z) = ]][p(xi|zi). (5.12) 

and 

Then 

1 
p(xi|zi) = ^— e 2,̂ ^ . (5.13) 

v27rcr 

_ y (x,;-Zj) 

"'"I") = ^ 

The prior model p(z) is a Gibbs distribution of the form in Equation (5.5), where 

[/(z) = Z E 
i=l i 'eA/i 

Then from Equation (5.11), the posterior probability 

p(z|x) oc (5.16) 

where 
71 , \2 ^ 

i=l 1=1 
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Thus the MAP estimation is equivalently found by 

z* = argniin(7(z|x). (5.18) 

However, the optimisation of Equation (5.18) is a difficult problem. A computationally 

expensive method - simulated annealing (Geman and Geman 1984) - is often used to 

find a global minimum for combinational optimisation problems. This is a statistical 

mechanics formulation of the optimisation problem. Simulated annealing is capable of 

- at least at the limit of infinite computing time - localising the mode of the energy 

function even in the presence of local minima. 

The function in Equation (5.17) satisEes the convexity property. Convexity guarantee 

simplifies the optimisation process. The local minimisation algorithms such as iterated 

conditional modes (ICM) (Besag 1986) could be used. This method Ands an approximate 

solution to Equation (5.18), by iteratively minimising the function with respect to each 

voxel 

z* = argmin(7(zi|xi) (5.19) 

where 

The initial value for z can be set to the maximum likelihood solution for each voxel, 

which ignores the local dependence and merely choose to majdmise p(zt|xi) at each i 

separately. The solution is obtained by iterating Equation (5.19) for a certain number 

of cycles or until convergence. This approach will converge to a local minimum. Often 

in the iteration process, the raster is varied from cycle to cycle to reduce the small 

directional eSects. 

5.3 Unsupe rv i sed Image Segmenta t ion 

5.3.1 Joint Segmenta t ion and P a r a m e t e r E s t i m a t i o n 

When the model parameters are known, image segmentation can be achieved by atf Aoc 

ICM iterations, as described in the previous section. When the model parameters are 

unknown, an algorithm that enables joint parameter estimation and image segmentation 

is needed. EM, mean field annealing and Markov chain Monte Carlo methods can all 

be used to find (or approximate) the solution to the problem with different computa-

tional demands. These segmentation techniques are referred t o as unsupervised image 

segmentation here as no labels are involved. 
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5.3.1.1 EM based Optimisation 

As before, let x = {xi,x2, - - - ,Xn} denote the observation of an image which contains 

71 voxels while z = {zi, Z2, " , is the true label for the image. After setting up the 

model for z and x, we need to estimate the distribution z = zi, zg, - , and the pa-

rameter 0 . A general and elective algorithm for solving this problem is the Expectation 

Maximisation (EM) (Dempster et al. 1977) algorithm. In chapter 3, EM algorithm is 

introduced to solve the incomplete data problem in unsupervised and supervised classi-

fication. 

Starting with an initial estimate of the algorithm iterates the following two steps: 

* E step: 6nd the function Q(0 |$W) = J5[logp(x, z |$) | (x , $M)] 

# M step: Gnd - argmaxQ($|$(*)) 

For the observed image model x in Equations (5.12) and (5.13), after initialising param-

eters parameter 

$ is updated by (in the following p{-) is a simplified notation of p( |0)): 

^p(zj*^ = 

= ^4^ Z , (5.21) 

z pW ^ ^ixi) 
i=l 

E = ^ K ) ( x ( - /i(*+^))^(x^ -

, (5.22) 

E P(^i = /:|xi) 

where 

. tlx.) = P k l f = = Q 
P[^i) 

p(xi|zj*^ = A:)f (zj*̂  = A) 

^p(xi|zj*^ — A:)f(zj^^ = A:) 
i=l 

(5.23) 

p(x*|zj*^ — t ) is calculated from Equation (5.13). In the case that %'8 are independent, 

the prior can be updated by 

= A:|x{) 
p(zj '+') = k) = . (5.24) 

When the aasumption of independence of image voxels does not hold, the estimation 

of the prior model p(zĵ "'"^^ — k) (A; = 1,2, - ,A') is very diScult . An approximate 
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technique is considered here, using a simple state prior model (Besag 1986; Zhang et al. 

1994), approximate Equation (5.24) by 

p(zi = A:)%p(zt = A:|zi,ZeA/^). (5.25) 

By substituting an independent voxel prior with a Markov random field model, an 

approximate implementation of the EM procedure for the MRF model can be obtained. 

Here a simple Markov random field model 

p(zi = /c|z;,ZEV\4) = -^^ , (5.26) 
^ g%(k) 

k=l 

is used, where ^.( t) is the number of neighbours of * in state t and ,9 > 0 is a parameter 

controlling the inEuence of neighbouring voxels ^ on voxel i. The neighbour of voxel i 

is selected to be 3 x 3 voxel grid. 

Currently, Markov random field models have been used for modelling static images where 

Xi for each voxel i is a scalar. As shown in Equation (5.5), it is the hidden labelled image 

z instead of x that is modelled as a Markov random field, so the MRF model can be 

directly extended to dynamic image modelhng. 

The algorithms used to segment images in the independent voxel case and dependent 

voxel case (MRF model) are listed in Table 5.1 and Table 5.2 respectively. 

in Equation (5.26) is a regularisation parameter. The larger the parameter, the more 

iofiuence the pixel's neighbour on the pixel. Optimal parameter estimation of the MRF 

model parameter is a diScult problem as the intractable nature of the partition function 

(See Equation (5.5)). 

TABLE 5.1: Segmentation Algorithm for Independent Voxel Case 

Given data set Xj, i = 1,2, - - , n; 
1. Data preprocessing; 
2. Set the number of Gaussian distributions, jiT; 
3. Initialise the parameter 
4. Apply TiT-means until a maximum iteration number is reached; 
5. Apply EM iteration until convergence or a maximum iteration number is reached: 

5a. Calculate each probability p(xi) using Equation (5.13), (5.23); 
5b. Update the prior using Equation (5.24); Update parameter $ using 

Equation (5.21), (5.22); 
6. Segment the image: Zi = argmaxp(zt = A;|x;). 

k 
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TABLE 5.2: Segmentation Algorithm for Dependent Voxel Case 

Given data set x^, % = 1,2, - - , 
1. Data preprocessing; 
2. Set the number of Gaussian distribution, 
3. Initialise the parameter 0; 
4. Apply jiT-means until a maximum iteration number is reached; 
5. Set parameter /3; 
6. Iterate until convergence or the maximum iteration number is reached: 

6a. Calculate each probability p(xi) using Equation (5.13), (5.23); 
6b. Update prior using Equation (5.41); Update parameter 0 using 

Equation (5.21), (5.22); 
7. Segment the image: z, = argmaxp(zi = &|xi). 

k 

5.3.1.2 M e a n Field Theo ry and M e a n Field Annea l ing 

If the random variable set z = i E 5'} is a Markov random field, then it has a Gibbs 

distribution: p(z) = where Q is the /uMctzom, [/(z) is the energ?/ 

The energy (7(z) = ^ ^ ( z ) is the sum of clique potentials l{:(z) over all 
cEC 

possible cliques C. Mean field theory (Chandler 1987) concerns the following problem: 

How to find the mean of the above field? 

The mean value at site i is given by 

(%) — y ] ^ip{z) 

- (5.27) 

However, due to the interaction between the z^'s, the sum in Equation (5.27) involves 

all the possible realisations of the MRF and the precise calculation of (z^) is not com-

putational feasible (Chandler 1987). 

The mean held assumption maintains that the inEuence of z /̂, 7̂  ^ i in the calculation of 

(zj) can be approximated by the inEuence of (z*/). For the sake of simplicity, here only 

the second-order chques are considered. That is the energy function can be written as 

u{^)=i: Vc(ui) + ~ ^2 
2 

(5.28) 

where l ^ ( ) and %=(-, ) represent clique potentials for a single site and a pair of neigh-

bouring sites respectively. The meaa held local energy at site z is 

= K : ( Z i ) + ^ K : ( Z ^ , ( Z , , ) ) . (5.29) 
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Define: 

Similarly, define 

Qr^ = ^ e x p 
Z-i 

= exp ((%-^)) , 

where is called the mean field local partition function, given by 

qm/ = ^ gxp (z.) 

Then, by the mean field approximation 

1 
(̂ i> ^ e x p 

Q. 

>2 % 

^ ^ e x p 
i Zi 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

Mean field theory suggests that when estimating the mean field at the influence of the 

field at other sites can be approximated by that of their mean. Therefore, the Euctuations 

on these sites are neglected. The ability to calculate the mean field component at site i 

in terms of its neighbours allows the complete mean Held to be found using an iterative 

update procedure. If the inverse temperature parameter is increased so that » oo, 

then the system undergoes an annealing process, converging to the MAP estimate, and 

is known as mean field annealing. 

Zhang (1992) and Greiger and Firosi (1991) propose a further approximation, neglecting 

the fluctuations at neighbouring sites in the partition function Q. 

U(i) = 

= E % 

= E K:('Zt) + % ^ K:(^i, (^«')) 

(5.34) 
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and 

= ] ] [ ^ e x p 

ieg % 

(5.35) 

This is very similar to Besag's pseudo-likelihood approximation. The only diSerence is it 

is conditioned on the mean values instead of current state. While pseudo-likelihood ap-

proximation is an a&/ioc method, the mean field approximation has a plausible physical 

meaning. 

5.3.1.3 S imula ted Annea l ing 

Simulated annealing is a numerical optimisation technique based on the principles of 

thermodynamics. Annealing refers to the process in which a solid material is first melted 

and then allowed to cool by slowly reducing the temperature. The primary advantage 

of simulated annealing is the ability to move from local optima. Thus the ability to hnd 

the global optimum is not dependent upon the starting point. 

The temperature T in Equation (5.5) is set to a constant. If we allow the value of T 

to be varied, then it will alter the kurtosis of the distribution and is therefore known as 

the "temperature" by analogy with physical systems governed by Gibbs distributions. 

Simulated annealing uses this as a control parameter to enable the MAP configuration 

of the field to be found. For large values of T the distribution in Equation (5.5) is 

relatively Eat. The temperature is then steadily lowered, making the local and global 

minima become further pronounced. Then as the temperature tends to zero, the surface 

moves towards a set of inverted peaks, the deepest at the global minimum. 

Geman and Geman (1984) provide a Gibbs sampler to perform the simulated annealing, 

called Markov chain Monte Carlo. First a coohng schedule is designated for the Gibbs 

distribution temperature parameter. The temperature begins in a hot state, causing the 

energy surface to be relatively fiat, since the system is relatively excited. The Gibbs 

sampler can be used to draw samples from the distribution of Equation (5.5) at any 

temperature. However as the temperature of the distribution is altered the transition 

probabilities will change, causing the Gibbs sampler to sample from an inhomogeneous 

Markov chain. Geman and Geman (1984) proved that if the temperature is reduced 

according to 

where k denotes the number of full scans of the lattice and C is a fixed constant, then 

the Gibbs sampler will converge to the uniform distribution over all the configurations 
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with maximum probability. 

Two important factors governing the cooling schedule is the temperature and the step 

size for perturbation. Geman also showed that the constant C = jV A (7, where is 

the number of sites in the lattice and A (7 is the maximum diSerence in energy function 

for two configurations which differ at only one site. This is a huge number, making 

simulated annealing computationally expensive. Many authors have carried out research 

in an attempt to find an optimal annealing schedule or an adaptive annealing schedule. 

Much of these are reviewed iu Ruanaidh and Fitzgerald (1996) and Neal (1993). 

Barker and Rayner (2000) proposed a reversible jump Markov chain Monte Carlo method 

for image segmentation, enabling the sampling to include the cluster number. The re-

versible jump waa developed by Green (1995) to allow a Metropolis-Hastings baaed 

algorithm to sample the model order - the number of clusters from the posterior distri-

bution. 

5.3.2 Mult i - resolut ion Segmenta t ion 

In recent years, substantial interest has been devoted to developing multi-resolution 

algorithms to the image and signal processing problems. One reason for this is that 

the multi-resolution methods mimic the human vision system. Multi-resolution enables 

combination of local and global information in images. In Bouman and Shapiro (1994), 

a multi-resolution random held model replaced the Markov random held model in image 

segmentation and a sequential maximum a posterior optimisation was proposed. 

Founded in re-normalisation group theory (Chandler 1987), the multi-resolution ap-

proach to image segmentation usually begins by establishing the model parameters o 

pno / i at the highest resolution of interest in the original image. The image is then 

repeatedly down-sampled, while fresh model parameters are estimated at each of these 

ensuing resolutions. Segmentation is first carried out at the coarsest resolution through 

the use of a standard segmentation algorithm. The resulting segmentation is then used 

to initiahse or constrain the segmentation process at the next coarsest level. The scheme 

is repeated at each resolution until the segmentation is carried out at the highest one. 

5.3.3 S u m m a r y 

In terms of learning, the above image segmentation methods (with specified or unspec-

ihed model parameters) are unsupervised methods, as no image data are labelled. The 

Markov random held model is one of the most eScient statistical models for image seg-

mentation. However, most works related to its application belong to the unsupervised 

learning category and cannot include labelled data. Consequently, unsupervised learning 

suS^ers &om two problems: choosing and validating the correct number of clusters and 
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F I G U R E 5 . 2 : Multi-resolution image segmentation 

ensuring that algorithmic cluster labels correspond to meaningful physical labels. This 

is why supervised classifiers such as Bayesian networks, support vector machines etc. 

can be preferred for data classification. However, these traditional supervised learning 

methods provide no way to incorporate either image models or unlabelled data. 

In the following, two new methods for incorporating labelled samples in image segmen-

tation will be presented, termed supervised and semi-supervised image segmentation 

respectively. The first one is a baseline method, hierarchically applying a neural net-

work to the image models in the learning process, details of which will be shown in 

Section 5.4. In Section 5.5, a new semi-supervised image segmentation scheme is pro-

posed by using both labelled and unlabelled data as well as imposing local constraints 

on image voxels in the learning process. 

5.4 Supervised I m a g e Segmenta t ion - A Hierarch ica l M e t h o d 

In the following, the image to be segmented will be denoted x = {xi, xg, - - - ,x„} 

with mixture (cluster) labels z = {zi ,Z2,-" , Z i G {1,2,-- - ,K} and class la-

bels c = {ci,c2,--- ,Cn}, Ci e { 1 , 2 , - , J } to be decided, x, (z — 1,2,-- - ,n) is 

an m-dimensional feature vector for voxel i. Note that the class label c is distin-

guished from mixture label z, as z is not necessarily the meaningful physical class 

labels c. The image is often either under-segmented or over-segmented. In addition, 

(x', c') = {(xj, 4 ) , (x2, C2), • • • , (x^i, c|^,)} are the labelled samples and their associated 

class labels. 

Supervised classification learns the mapping from the input feature to an output class 

label from labelled examples. Thus the classifier can be used to determine the class label 

c of the feature for image voxels x (Fig. 5.3). Because of the success of supervised learn-

ing methods (such as neural networks) in pattern recognition, they have been applied to 

image segmentation such as texture and within MPEG4 (Jain and Karu 1996; Doulamis 
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observed image 

'class label' image ^ 
(cj) W 

FIGURE 5.3: Image segmentation by supervised learning 

et al. 2000). However, supervised techniques has not been widely used in medical image 

segmentation. One likely reason is that it is sometimes very expensive to obtain labelled 

examples. This may also be because the standard supervised learning techniques such 

as error back-propagation often assume the data are generated independently and pro-

vide no way to incorporate either unlabelled data or image models. Here a hierarchical 

method is proposed. Given labelled data (x \ c^), hrst a Bayesian multi-layer perceptron 

(MLP) network is trained with a regularized cost function according to the evidence 

framework (Mackay 1992b). As this neural network considers no spatial continuity, the 

output of the neural network was further modelled as a Markov random field, using 

Besag's ad /loc iterated conditional modes (ICM) (Besag 1986) method. 

The image segmentation can be carried out by hierarchically training a supervised neu-

ral network and modelling the test image's spatial continuity as a Markov random field. 

This hierarchical fusion method provides a way to use labelled data in the image seg-

mentation process. However, the two diSerent steps of this fusion process are based 

on two contradictory assumptions: the setup of the neural network in the first stage 

assumes that the data are independent upon each other while the second step using a 

Markov random field to model data's inter-connections. This problem comes from the 

neural networks being based on the data-independence assumptions and provide no way 

to incorporate spatial dependence within the data. 

5.5 Semi-supervised Image S e g m e n t a t i o n - A N e w Com-

bined Learn ing Framework 

5.5.1 T h e Advantage of Using Labelled and Unlabe l led D a t a in Image 

Segmenta t ion 

The importance of combining labelled data and unlabelled data in learning has been 

illustrated by an example in Section 3.5.1. In image segmentation, the combination of 

labelled and unlabelled samples is necessary to achieve ideal performance, as the images 

obtained at diSerent times may be subject to various changes, eind expert knowledge 

embedded in the labelled samples is critical in understanding the images. This section 

presents a combined framework for image segmentation. 
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5.5.2 Image at Th ree Levels: Observed Image; "Mix tu re Label" Im-

age; "Class Label" Image 

In the new framework, the image to be segmented is modeUed at three diSerent levels: 

the observed image; the "mixtmre label" image; the "class label" image, as shown in 

Fig. 5.4. Probability distributions are used to model the connections between different 

levels, enabling more accurate estimation to be made. 

observed image 

.X3, X4, 

Z4j 

'mixture label' image 

'class label' image 

FIGURE 5.4: Image modeUed a,t three levels 

5.5.3 Incorpora te Labelled D a t a In Image Segmenta t ion 

An image segmentation scheme is proposed here for the cage that the image to be seg-

mented X and labelled examples (x \ c'). We call this learning scheme "semisupervised" 

as it involves both labelled and unlabelled examples. As shown in Fig. 5.4, the image 

to be segmented is modelled at three diSerent levels: the observed image x, the mix-

ture label image z and the class label image c. The model assumptions for x and z 

are the same as the unsupervised case introduced in Section 5.2: an MRF model (see 

Equation (5.5)) for z and the conditional independence assumption (Equation (5.12)) for 

X. Additionally, the connections between diSerent levels are modelled by a probability 

distribution determined from the labelled examples. 

Labelled samples are incorporated into image segmentation by maximising 

log_L == logp(x, z)- | - logp(x' ,c ' ) 

= l o g p ( x , z ) 4 - ^ l o g X x ' , c ^ ) . (5.37) 

This expression diSers from both the unsupervised segmentation function (Equation 

(5.10)) and the supervised segmentation function. The framework integrates three parts 

of information from diSerent sources: the image data and their spatial continuity em-

bedded in p(x, z); further knowledge in the labelled samples given in p ( x \ c^). The last 
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term in Equation (5.37) can be expanded as 

K 

p M , c|) == ̂ p ( c | | x | , zj ^ ^ A;)p(z^ = /c). (5.38) 
k=:l 

The labelled examples enable the establishment of a probabilistic distribution p(cj = 

= k) to describe the coimection between the "mixture label" Zi and the "class 

label" Ci- Here the "generalized mixture" (GM) model proposed in (Miller and Uyar 

1996) is used: 

^ P k = = &) = - (5 39) 

A 

('Yjlk is used aa p(ci = = A;) is independent of the voxel z). Finally, the claas 

membership of each data is decided by 

K 

p{ci = j |xi) = ^ ]lj|kP(% — k\xi). (5.40) 
k=l 

5.5 .4 M o d e l t h e I m a g e ' s S p a t i a l D i s t r i b u t i o n in " M i x t u r e L a b e l " I m -

a g e 

The modelhng of spatial continuity within images is important as the contextual infor-

mation is vital in understanding images. A Markov random Seld model is used in the 

second level of the three level framework, i.e. "mixture label" image z is modelled as a 

Markov random field, i.e., p(z) > 0 and p(zi|zg_{i}) — p(z i | z^ ) . 

Thus p(z) obeys Gibbs distribution. To incorporate neighbourhood interactions into the 

model, a pseudo-likelihood approximate technique proposed in (Zhang et al. 1994) will 

be used to approximate the mixture label's prior 

P(y^i — ^) ^ Pi^^i — Î̂ 171) G -^i) — ; (^'41) 
^ e%(k) 

k=l 

where Si{k) is the number of neighbours of i whose mixture label is k and /? > 0 

is a parameter controlling the inGuence of neighbouring voxels. This approximation 

technique is chosen for computational convenience. 

5 .5 .5 O p t i m i s a t i o n 

An algorithm is needed to solve the optimisation problem in Equation (5.37). It is noted 

that the EM algorithm is an eScient method to solve an optimisation problem where 
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there is hidden data. For supervised learning, a gradient-based method can be used 

for optimisation. In recent years some EM-based optimisation algorithms have been 

proposed. (Jordan and Jacobs 1994) uses an EM algorithm to maximise conditional 

hkelihood in a mixture of experts framework. The mathematical comiections between 

the EM algorithm and the gradient-based approaches for maximum likelihood learning 

of finite Gaussian mixtures were developed in (Xu and Jordan 1996). These make the 

EM algorithm a natural method for solving optimisation problems that involve both 

unlabelled and labelled data. 

Starting with an initial estimate of model parameters the algorithm iterates: 

8 E-step: Estimate 

Q($|#(*)) = jB'[logp(x, z) logp(x\ c')|x, 

# M-step: Find - a rgmaxQ(0 |$M) . 
<& 

Here t represents the t th iteration. When the unlabelled data are independent of each 

other, the mixture label's prior is updated by, 

- k|x{) -h = ^|xLc() 
= A;) - . (5.42) 

M 4-

When using a Gaussian distribution to model the conditional distribution p(xi|% = &,$), 

(5^43) 

the mean vector and the covariance matrix of component t , — ( / ^ f ^ k ) , are re-

estimated using: 

p(zj*) = A:|xi)xt -h ^ p(zj*) = &|x^, c^)x| 

4 ^ , (5.44) 

^ p(zj = A;|X() -H ^ p(zj = A:|x4, c() 
i=l i=l 

, (5-45) 

E ^ ^|xi) + E p(Z'̂ ^ = k|X', 4 ) 
t=l t=l 

where 5'̂ * = (x, -

p(zW = &|x,) = ( f = (546) 

E ^ A;)P(zj^) = t ) 
& = ! 
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and 

k 4 " (,^47) 

E p ( x : k r ^ = = k ) 
&=i 

with updated by Equation (5.39). This EM re-estimation continues until the 

updates fall below a speci&ed threshold or the maximuin number of iteration reaches. 

Finally, the clags label is determined using Equation (5.40). 

5.5.6 S u m m a r y 

A new semi-supervised image segmentation framework is proposed with the view to en-

abling the labelled examples and the image to be considered in the learning process. 

Thus the generalisation performance can be improved. The learning scheme proposed 

here is a three-level image model with probability distributions describing the connec-

tion. The image voxel's connection is modelled as a Markov random field model in the 

second level. An EM based optimisation algorithm is also proposed to solve this difficult 

combined learning problem. 

The proposed approach is superior in that: 

« Both the labelled data and unlabelled data are used in the learning phage, so that 

the classifier uses knowledge in the labelled samples as weH as additional knowledge 

of the data distribution from the unlabeUed data, which is very important when 

labelled data are sparse. 

# Each image is modelled at three diSerent levels: the observed image, the "mixture 

label" image and the "class label" image, where connections between diSerent 

levels being described by probability distributions, enabling a posterior probabihty 

distribution of the data to be recovered. 

« A Markov random field model is used to incorporate neighbourhood interaction 

into the learning process. 

« All information is considered within an integrated framework instead of in a hier-

archical way. 

5.6 Conclusions 

Low-level image segmentation is a fundamental and yet d iScul t task in machine vision. 

Markov random field (MRF) models are one of the widely used model-based methods 

for image segmentation. The main theory of Markov random field model-baaed image 
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segmentation has been presented in this chapter. The local interactions between image 

voxels, Mcirkov random helds models are introduced. The Markov random Aeld model 

enables consideration of contextual dependence which is indispensable in image analysis. 

By modelling interactions between image voxels, regularisation in image segmentation 

is realised, thug maximum a posterior (MAP) image segmentation can be achieved. 

However, the inclusion of MRF models makes the optimisation process difficult. The 

computationally expensive MCMC method can be used with the potential to find the 

global minimum. Further more if the cluster number is unknown, reversible jump MCMC 

can be used. If the model parameters are known, ICM is an efficient approximation 

optimisation method to find a local solution. Mean field annealing is a method to 

find the minimum variance approximation. Both ICM and mean field annealing can to 

used in Expectation-Maximisation algorithm to do joint model parameter and image 

segmentation. 

As Markov random field models express global relationships in terms of local statistics, 

with the expense of heavy computation burden. Multi-resolution techniques attempt to 

circumvent this problem by providing a mechanism by which longer range interactions 

can quickly propagate the image model. 

Following the introduction of general image segmentation issues and the unsupervised 

image segmentation techniques, a new hierarchical supervised method for image segmen-

tation was proposed in Section 5.4 and a new combined image segmentation framework 

and the optimisation algorithm in Section 5.5. It can be seen that the new combined 

image segmentation framework has an integrated learning process without any contra-

dictory assumptions as exists in the hierarchical supervised image segmentation process. 

As the combination of labelled and unlabelled data are a developing research held in 

machine learning, there may be other ways to combine labelled samples in the image seg-

mentation as well. However, the combined framework proposed in this chapter provides 

a natural way to incorporate the Markov random held data model into the combined 

learning process. The use of this combined image segmentation scheme and other unsu-

pervised ajid supervised segmentation schemes will be compared in the next chapter. 
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Spatio-temporal P E T Reference 

Region Extraction 

The methods presented in chapter 5 enable labelled data, image models and unlabelled 

data to be used in the image segmentation process. In this chapter, these methods 

will be used in simulated and real PET images for reference region extraction. This is 

referred as spatio-temporal P E T reference region extraction as both spatial information 

(voxel location) and the temporal information (time activity curves) are used. 

6.1 Simula t ion Studies 

6.1.1 Descr ipt ion of Exper imen t s 

The synthetic data used here is the same as described in Section 4.5.1. Three different 

methods are compared to extract the region with BP — 0 from the regions with BP = 

1,2,3: 

# Unsupervised image segmentation using EM with a pseudo-hkehhood prior ap-

proximation in Section 5.3.1.1; 

# Supervised segmentation by hierarchically using trained neural networks and ICM 

as described in Section 5.4; 

# Semi-supervised method proposed in Section 5.5. 

A 3 X 3 pixel neighbourhood is used in the Gaussian Markov random field model, 

in Equation (5.41) is set to 1. In supervised and semi-supervised algorithms, the final 

classification is carried out automatically by assigning every pixel to the class that it 

has the highest posterior probabihty. In the unsupervised segmentation, the cluster 

92 
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number is set to 4. As there is no information about cluster identification available, the 

classification is carried out by choosing the cluster whose centre has the lowest BP value 

as the reference class, while the rest are treated as the other class. 

6.1.2 Segmenta t ion Resul t s 

The image segmentation results using these three methods, with 500 labelled data and 

noise standard deviation a — 2.1, are displayed in Fig. 6.1. The unsupervised segmen-

tation result (Fig. 6.1(a)) fails to localise the reference region, although the mixture 

number is set as 4, which is the real cluster number. The semi-supervised segmentation 

result in Fig. 6.1(c) gives the best classification accuracy as it captures the edges of 

different classes better than the supervised segmentation result in Fig. 6.1(b). 

20 40 eo 

(a) Unsupervised segmentation 

(b) Supervised segmentation (c) Semi-supervised segmentat ion 

FIGURE 6.1: Image segmentation results with 500 labelled examples, noise s tandard 
deviation a = 0.8 

To further compare the algorithms' performance, the influence of the number of labelled 

examples and the noise level in the data is examined. Although the unsupervised seg-

mentation results are not affected by the change in the number of labelled examples, for 
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the sake of comparison, they are displayed in the same way as the other two methods. 

Fig. G.2 shows the mean and standard deviation for the voxel classifcation accuracy, 

the non-reference region classification error and the B f value of the extracted TAG. 

The four rows correspond to the labelled examples's number 100, 200, 500 and 1000 

respectively. The error bars are generated by running every method for ten times with 

diSerent initial values for model pareimeters. The number of clusters is set to 4 in both 

the unsupervised and semi-supervised classification. The three types of error are dehned 

as foUows: 

. The total c M c a t i o n error is cWc.lated by « W ™ : 

« The non-reference region classification error is 
Number of misclassified non—reference region voxels 

TotfiZ number o / non—re/erertce repiom t/ozefa 

# The BP value of the extracted reference TAG is calculated using the simplihed 

reference region model (Equation (2.3)) and the basis function method (Equation 

(2.6),(2.7),(2.8)). 

Each sub-hgure shows the change of one of these three types of error with a di&rent 

noise level. The noise level runs from 0.2 to 2.6. 

Fig. 6.5 shows the results with the number of clusters in the unsupervised and semi-

supervised classification changed to 10. 

Fig. 6.2 and Fig. 6.5 shows the total classiGcation error. In both Sgures, the semi-

supervised segmentation achieves best classification performance while the unsupervised 

segmentation result gives the worst classiGcation error. As each optimisation process in-

volved in this simulation can only find a local minimum, the classification results vary 

with different initial values for model parameters. With smallest standard deviation, the 

semi-supervised method shows its robustness with different starting points. Unsuper-

vised classiScation performance is also unstable as it gives a highest standard deviation. 

Similar to the independent data case in Chapter 3, when the noise level increases, the 

classification error for supervised and semi-supervised classification increases as expected 

while the unsupervised classification error decreases slightly in the four-cluster case. One 

possible explanation is that when the noise level is low, the algorithm tends to split the 

true reference region data into more than one clusters, as only one cluster will be picked, 

the total classification error is large. When the noise level increases, the chosen cluster 

contains more true reference region data. This downtrend is less severe when the cluster 

number increases to 10, as shown in Fig. 6.5. 

Fig. 6.3 and Fig. 6.6 give the non-reference region mis-classification error. The unsu-

pervised classification achieves best accuracy. The result for the 10-cluster case achieves 

more accuracy than the 4-cluster case. However, semi-supervised classification has the 

lowest standard deviation, showing that its performance is very stable. 
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(a) Classification error wi th 100 t ra ining d a t a (b) Classification e r ror wi th 200 t ra ining d a t a 

(c) Classification error with 500 t ra in ing d a t a (d) Classification e r ror wi th 1000 t ra in ing d a t a 

FIGURE 6.2: Simulation results on classiAcation accuracy, with 4 clusters in unsuper-
vised classiRcation (Red solid : Error bar for semi-supervised classiScation; Blue dotted: 
Error bar for supervised classiGcation; Black dashdot: Error bar for unsupervised clas-

siBcation.) 

Fig. 6.4 and Fig. 6.7 show the binding potential error of the classified reference region 

voxels. Minimising the binding potential error is very important in P E T segmentation 

as binding potential describes the characteristics of PET images. The semi-supervised 

method achieves the best performance with excellent stabihty rejected by the low stan-

dard deviation. The unsupervised method also achieves competitive performance but it 

is less stable. 

6.1.3 Compar i son of t h e Resul t s Based on M a r k o v R a n d o m Field 

Models and t h e Independence Assumpt ions 

Fig. 6.8, 6.9, 6.10 give the differences between independent assumption results and MRF-

model assumption results, for all three learning methods with 4 clusters in unsupervised 
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(a) Non-reference region classification error with 
100 training data 

J-.-

(b) Non-reference region classification error with 
200 training da ta 

(c) Non-reference region classification error with 
500 training da ta 

(d) Non-reference region classification error with 
1000 training da ta 

PiGURE 6.3: Simulation results on non-reference region classiBcation accuracy, with 
4 clusters in unsupervised classification (Red solid : Error bar for semi-supervised 
classiRcation; Blue dotted: Error bar for supervised classiGcation; Black dashdot: Error 

bar for unsupervised classiRcation.) 

and semi-supervised segmentation. 

Fig. 6.8 shows the dlGFerence of the total classiBcation error, generated by the mean value 

of each variable from error bars in Fig. 4.7 minus the corresponding mean value from 

error bars in Fig. 6.2. Thus positive value in the figures indicates the MRF model-based 

segmentation improves the image segmentation accuracy compared to the independent 

segmentation. For supervised segmentation, the MRF model-based segmentation im-

proves the classihcation accuracy significantly. No obvious improvement or deterioration 

for the semi-supervised segmentation while the unsupervised segmentation with a MRF 

model haa more classihcation error. 

Fig. 6.9 shows the diSerence of the non-reference region classification error, generated 

by the mean value of each variable from error bars in Fig. 4.8 minus the corresponding 
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(a) Binding potential error with 100 training data (b) Binding potential error with 200 training data 

(c) Binding potential error with 500 training data (d) Binding potential error with 1000 training data 

FIGURE 6.4: Simulation results on binding potential accuracy, with 4 clusters in un-
supervised classifcation (Red solid : Error bar for semi-supervised classiGcation; Blue 
dotted: Error bar for supervised classification; Black dashdot: Error bar for unsuper-

vised classiRcation.) 

mean value from error bars in Fig. 6.3. Both supervised and unsupervised segmentation 

using a MRF model hag improved non-reference region classiAcation error, while the 

performance is slightly worse in the semi-supervised cage. 

Fig. 6.10 shows the difference of the BP value of the extracted reference TAG, generated 

by the mean value of each variable from error bars in Fig. 4.9 minus the corresponding 

mean value from error bars in Fig. 6.4. The BP is the main interest. The semi-

supervised segmentation using a MRF model achieves improved results compared to 

the independent case. The BP value diSerence for both supervised and unsupervised 

segmentation are not very stable, although better BP accuracy is obtained in the MRF 

model-based supervised segmentation with high noise level in the 500 and 1000 training 

data case. 

Fig. 6.11, 6.12, 6.13 show the corresponding results with 10 clusters in unsupervised eind 
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(a) Classification error with 100 training da ta (b) Classification error with 200 training da ta 

^ ^ I ^ 11 

(c) Classification error with 500 training da ta (d) Classification error with 1000 training d a t a 

FIGURE 6.5: Simulation results on classiBcation accuracy, with 10 clusters in unsu-
pervised classiGcation (Red solid : Error bar for semi-supervised classification; Blue 
dotted: Error bar for supervised classification; Black dashdot: Error bar for unsuper-

vised classification.) 

semi-supervised segmentation. Similarly, Fig. 6.11 is generated by the mean value of 

each variable from error bars in Fig. 4.10 minus the corresponding mean value from error 

bars in Fig. 6.5. Fig. 6.12 is generated by the mean value ofeach variable from error bars 

in Fig. 4.11 minus the corresponding mean value from error bars in Fig. 6.6. Fig. 6.13 

is generated by the mean value of each variable from error bars in Fig. 4.12 minus the 

corresponding mean value from error bars in Fig. 6.4. The performance diEerence in the 

10-cluster segmentation case follows the similar pattern aa the performance difference in 

the above 4-cluster segmentation caae. 
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(a) Non-reference region classification error with (b) Non-reference region classification error wi th 
100 t ra in ing d a t a 200 t ra in ing d a t a 

(c) Non-reference region classification error with (d) Non-reference region classification error wi th 
500 t ra in ing d a t a 1000 t ra in ing d a t a 

FIGURE 6.6: Simulation results on non-reference region classification accuracy, with 
10 clusters in unsupervised classiGcation (Red solid : Error bar for semi-supervised 
classification; Blue dotted: Error bar for supervised classification; Black dashdot: Error 

bar for unsupervised classihcation.) 

6.2 P E T D a t a S tudies 

6.2.1 Exper imen t Descr ipt ion 

The developed algorithms are also appUed to eighteen [^^C](-R)-PK11195 PET data, 

which hag been used in the experiments in Chapter 4. Same pre-processing and data 

normalisation are used. As in the previous simulation, three different spatio-temporal 

segmentation methods are compared to extract the reference region from the binding 

region: 

# Unsupervised image segmentation using EM with a pseudo-likelihood prior ap-

proximation (Equation (5.41)); 
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(a) Binding error with 100 training da ta (b) Binding potent ial error with 200 training da ta 

(c) Binding potential error with 500 training da ta (d) Binding potent ial error with 1000 training d a t a 

F I G U R E 6 . 7 : Simulation results on binding potential accuracy, with 10 clusters in un-
supervised clagsiRcation (Red solid : Error bar for semi-supervised classiGcation; Blue 
dotted: Error bar for superviged classiGcation; Black dashdot: Error bar for unsuper-

vised classification.) 

« Supervised segmentation by hierarchically using trained neural networks and ICM 

as described in Section 5.4; 

# Semi-supervised method proposed in Section 5.5. 

In the unsupervised and semi-supervised segmentation, the cluster number is set as 10. 

In supervised classification, four hidden nodes were found to be suitable for this segmen-

tation problem. In supervised and semi-supervised algorithms, the final classification 

is carried out automatically by assigning every voxel to the class that has the highest 

posterior probability. In unsupervised segmentation, the hnal classification is carried 

out by choosing the cluster whose centre has lowest BP as the reference class, while the 

rest are treated as the other class. 
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Semisupervised 
SupmnHwd 
Unsupervised 

Semisupervised 
Supervised 
Unsupervised 

(a) Classification error difference wi th 100 t raining (b) Classification error difference wi th 200 t raining 
da t a da t a 

(c) Classification error difference with 500 t raining (d) Classification error difference wi th 1000 t ra in-
da t a ing da t a 

F I G U R E 6.8: Simulation results difference between temporal and spatial-temporal mod-
elling on classification accuracy, with 4 clusters in unsupervised and semi-supervised 

classification 

The labelled data are needed for supervised and semi-supervised segmentation. The 

labelling data are the same as the experiments in Chapter 4, 2800 TACs from the cortex 

region and 2100 TACs from the scalp, thalamus and cerebellum regions were randomly 

sampled from seven scans as the labelled data. For comparison convenience, they are 

exactly the same as in Chapter 4. The same pre-processing and input normalisation is 

also used. 

6.2.2 Resul t s 

6.2.2.1 E x t r a c t e d R e f e r e n c e Reg ion TAG 

Fig. 6.14 shows the extracted reference TACs in the 7 scans where part of data are used 

in training supervised and semi-supervised classifiers. Three curves are shown in each 
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— a#ml»up#fvl«#d 
Supervised 

- Unsupervised 

— Semisupervisad 
Supervised 

- Unsupervised 

(a) Non-reference region classification error differ-
ence with 100 training data 

- Semisupervised 
Supervised 
Unsupervised 

(b) Non-reference region classiScation 
ence with 200 training data 

error differ-

(c) Non-reference region classiScation error differ-
ence with 500 training data 

•• Semisupefvised 
Supervised 
Unsupervised 

(d) Non-reference region classi^cation error di8er-
ence with 1000 training data 

F I G U R E 6 . 9 : Simulation results difference between temporal and spatial-temporal mod-
elling on non-reference region classification accuracy, with 4 clusters in unsupervised 

and semi-supervised classification 

figure: the curve extracted from the semi-supervised classification; the curve extracted 

from the supervised neural network and the curve extracted from the unsupervised 

clustering. In unsupervised classification, the mean curve is obtained by choosing the 

largest cluster, which is the current method used at Hammersmith hospital. 

The performance across PET scans is assessed by testing the performance in the other 

11 independent P E T scans, shown in Fig. 6.15. In both Fig. 6.14 and Fig. 6.15, the 

curves extracted from supervised and semi-supervised classification catch the shape of 

the reference region curves very well. However, the unsupervised classification performs 

inconsistently. It fails to capture the features of reference region curve in most scans. It 

fails to capture the features of reference region in Fig. 6.14(c) for scan n02816. It also 

fails to capture the shape and magnitude of the refernce region TAG in most scans with 

an exception of scan n03694 in Fig. 6.15(g). 
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•• Semisupervised 
5up#n*#d 
Unsupervised 

Semisupervised 
Supervised 

- Unsupervrsed 

(a) Binding potential error diSerence with 100 
training data 

(b) Binding potential error difference with 200 
training data 

Semisupervised 
• Supervised 

- Unsupervised 
Supervised 

- Unsupervised 

(c) Binding potential error difference with 500 (d) Binding potent ia l error difference with 1000 
training da ta training da ta 

F I G U R E 6 . 1 0 : Simulation results difference between temporal and spatial-temporal 
modelling on binding potential accuracy, with 4 clusters in unsupervised and semi-

supervised classification 

The supervised and semi-supervised classification have successfully learnt the informa-

tion to discriminate the reference region from the other regions based on the shape of 

their TACs. Their performances are consistent across subjects. In the figure for each 

scan, the curve extracted from the semi-supervised method has lower tracer concen-

tration value in the last several time instants, compared to the curve extracted from 

the supervised method, indicating the semi-supervised methods extracted reference re-

gion TACs have a lower binding potential value than the supervised method extracted 

reference region TACs. 
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- Semisupervised 
Supervised 
Unsupervised 

Semisupervised 
Supervised 
Unsupervised 

(a) ClassiAcation error diiference with 100 training 
data 

(b) Classif cation error di&rence with 200 training 
data 

Semisupervised 
Supervised 

- Unsupervised 

Semisupervised 
Supervised 

- Unsupervised 

(c) ClaasiAcation error diiference with 500 training 
data 

(d) ClagsiHcation error difference with 1000 train-
ing data 

F I G U R E 6 . 1 1 : Simulation results difference between temporal and spatial-temporal 
modelling on classification accuracy, with 10 clusters in unsupervised and semi-

supervised classification 

6.2.2.2 P a r a m e t r i c Images 

Binding potential images can be generated by applying the learnt TAG to the reference 

region model. Fig. 6.16 shows an example of binding potential image generated for 

plane no.20 of scan n03578, a healthy subject. These three figures correspond to using 

reference region TAG generated from the unsupervised, supervised and semi-supervised 

Markov random field model based image segmentation methods respectively. They are 

generated in the same way as in Section 4.6.3. First, voxels outside the scalp with low 

TACs are filter out to avoid unnecessary computation, using: 

IS , M 
if ^ x-' > 0.5 ^ xi, calculate BP value; 

3=1 j=i 
18 ^ . 

if E < 0.5 ^ = 0. 
i=i i=i 
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8 

L: 

Semisupervised 
Supervised 
Unsupervised 

— Semisupervised 
Supervised 

- Unsupervised 

(a) Non-reference region classiScation error differ-
ence with 100 training data 

Semisupervised 
Supenrfsed 

- Unsupervised 

(b) Non-reference region classiAcation error differ-
ence with 200 training data 

- Semisupervised 
Suparvised 
Unsupervised 

(c) Non-reference region classification error differ-
ence with 500 training da ta 

(d) Non-reference region classification error differ-
ence with 1000 t ra in ing da ta 

F I G U R E 6 . 1 2 : Simulation results difference between temporal and spatial-temporal 
modelling on non-reference region classification accuracy, with 10 clusters in unsu-

pervised and semi-supervised classification 

The calculation of BP value is realised by applying the simplified reference region model 

(Equation (2.3)) and the basis function method. 

The binding potential images for plane no. 20 of a patient scan n02904 using the 

reference region model and the extracted reference region TAG for the three different 

methods are shown in Fig. 6.17. The binding potential images are generated in the 

same procedure as for the above scan n03578. The reference region TAG extracted by 

the unsupervised segmentation has a large error and fails to extract the reference region 

TAG. The binding potential image using the unsupervised extracted reference TAG is 

dramatically different from the others, with the binding potential value in the range 

[—15,45], Prom the binding potential image, it can be seen that the scan contains a 

strong binding area around the middle-right region. 
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Semisupervised 
Supervised 

(a) Binding potent ial error difference wi th 100 
t raining d a t a 

(b) Binding po ten t ia l error difference with 200 
t raining da t a 

Semisupefvised 
Supervised 

- Unsupervised 

- Semisupervised 
Supervised 
Unsupervised 

(c) Binding potent ial error difference wi th 500 (d) Binding po ten t ia l error difference wi th 1000 
t raining d a t a t ra ining da t a 

F I G U R E 6 . 1 3 : Simulation results difference between temporal and spatial-temporal 
modelling on binding potential accuracy, with 10 clusters in unsupervised and semi-

supervised classification 

6.2.2.3 I m p r o v e d Test 

The lack of ground truth for performance evaluation in real P E T data experiment, 

the test-retest scheme are used for performance evaluation. The four test-retest scan 

pair from four healthy subjects (as shown in Table 4.2) are used here. The difference 

between the segmentation results for each scan pair is measured and used as a criterion 

for evaluating the performance of the segmentation method. T h e test-retest experiment 

for the three reference region extraction techniques is illustrated in Fig. 6.18. 

The test-retest results are shown in Fig. 6.19. Each sub-figure shows the test-retest 

difference between a scan pair, where the binding potential differences for thalamus, 

cerebellum and cortex are displayed. The binding potential of a region is calculated 

by using the extracted reference region TAG and the simplified reference region model. 
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F I G U R E 6 . 1 4 : Results in seven different planes (Each figure shows the mean TACs from 
the reference region extracted in three different ways.) 
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(a) n02907 (b) n02938 (c) nD3578 

(d) n03642 (e) n03661 (f) n03689 

(g) n03694 (h) n04071 (i) n04073 

G) n04128 (1^ n02904 

F I G U R E 6 . 1 5 : Results in ten planes from independent scans (Each figure shows the 
mean TACs from the reference region extracted in three different ways.) 
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(a) BP image using unsupervised extracted ref-
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(c) BP image using semi-supervised extracted 
reference region 

F I G U R E 6 . 1 6 : Parametric image of binding potential (BP) for a healthy subject's PET 
scan n03578 plane 20 
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20 40 80 

(a) BP image using unsupervised extracted ref-
erence region 

I 
I 

(b) BP image using supervised neural network 
extracted reference region 

20 40 80 

(c) B P image using semi-supervised extracted 
reference region 

F I G U R E 6 . 1 7 : Parametric image of binding potential (BP) for patient PET scan n02904 
plane 20 
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Extract reference region by new 
semisupervised segmentation 

Extract reference region by hiera-
-rcliical supervised segmentation 

Extract reference region using 
unsupervised image segmentation 
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F I G U R E 6 . 1 8 : Improved test scheme (g UBRARY g, 
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Three bars for the same region correspond to three different classification methods. 

Subject a: scan n03578, Subiecl b: scan "03642, 

us; 2; cerebellum; 3; 

Subject e scan n03661, n04071 Subject d; scan n03694, r04073 

I J J J iJ 
s; 2: cerebellum; 3. coftax 

F I G U R E 6 . 1 9 : Test-retest result 

6.2.3 Cerebe l lum Binding 's Corre la t ion wi th Age 

To find possible connections between age and brain function, the age-associated varia-

tions in the receptor binding will to be examined using PET data from a group of heathy 

human subjects at different ages. 

The binding of the cerebellum in 17 healthy scans are examined. Fig. 4.23 shows the 

estimation of cerebellum in these scans with extracted reference region TAG and the 

simplified reference region model. Three sub-figures correspond to the results with three 

different reference region extraction methods. Cerebellum binding's correlation with age 

is examined using the simplified reference region model. Fig. 6.20 shows the extracted 

reference TACs via different methods. Table 6.1 shows the statistics analysis of 

binding potential's variation explained by age for the three methods. Again, no obvious 

correlation of age with cerebellum binding potential value can be found in these 17 scans. 
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(a) Using semi-supervised extracted ref-
erence region 

(b) Using supervised extracted reference 
rqgion 

(c) Using unsupervised extracted refer-
ence region 

FIGURE 6.20: Cerebellum binding's correlation with age 

Method statistics 

Unsupervised 0.08% 
Supervised 18.12% 

SemiSupervised 9.67% 

TABLE 6.1: statistics 
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6.2.4 S u m m a r y 

The spatio-temporal extraction of the reference region TAG for 18 [^^C](A)-PK11195 

PET data has been described and analogised. The importance of using labelled data 

(i.e. expert knowledge)in the segmentation process has been justified . The extracted 

TAG using methods using labelled data, supervised and semi-supervised image segmen-

tation, leads to more stable and reliable results than using unsupervised Image segmen-

tation, which justihes the two proposed image segmentation methods. Although the 

performance evaluation is very difficult for real P E T data, the test-retest scheme show 

that the supervised and semi-supervised extracted reference region TACs are relatively 

consistent. 

6.3 Conclusions 

Spatio-temporal reference region extraction with simulated and real P E T data are per-

formed in this chapter, using MRF model-based image segmentation. The unsupervised 

image segmentation and the two new methods developed in chapter 5 is used. It shows 

that the inclusion of expert knowledge and image models greatly reduces the uncer-

tainty in the segmentation. The new semi-supervised framework achieves substantial 

performance gains over the other methods. 



Chapter 7 

Conclusions and Future Work 

7.1 S u m m a r y of t h e Thesis 

This thesis has focused on modern data classification techniques for automatic positron 

emission tomography image segmentation. The aim of this thesis is to explore reference 

region localisation in P E T with the unlabeUed data and expert labelled data to achieve 

higher accuracy. A hierarchical supervised image segmentation enables labelled data to 

be used in image segmentation. A combined learning framework for model-based image 

segmentation is proposed to tackle the general image segmentation problem with the 

aid of both labelled and unlabelled data. The eSiciency of these two methods are tested 

on both simulated and real PET data. 

The background knowledge of PET imaging is reviewed in Chapter 2. The process of the 

PET experiment to obtain data in both spatial and time domain is introduced. With 

the consideration of the quahty of the data and the complexity of the noise sources, 

the analysis of the PET data is very important. Different compartmental models have 

been developed, while the simphGed reference region model is our main interest in this 

thesis. The simplified reference region model is superior to other models in that no blood 

sampling is needed, based on the assumption that there is a region devoid of specrhc 

binding. Finally the problem of eSciently and accurately extracting this P E T reference 

region is proposed. 

Since the extraction of the reference region in PET is inherently a problem of learn-

ing, or more specihcahy, classihcation from data, the problem of pattern recognition is 

formulated in chapter 3. Learning and generalisation is introduced. The mathematical 

formulations of supervised classiGcation, unsupervised classlhcation and semi-supervised 

classrhcation are given, with a review of related methods and optimisation processes. 

Chapter 4 shows the result of using different pattern recognition techniques to the P E T 

reference region exaction, for both synthetic and [^^C](A)-PK11195 P E T data sets. The 

115 
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experimental comparison is also given. In simulations, the error bars generated by 

semi-supervised method show less error and display more stability than those for un-

supervised and supervised method. In [^^C](i?)-PK11195 P E T data application, as no 

ground truth is available, a test-retest scheme is used to estimate the performance. The 

simplified reference region model is used for generating binding potential images, which 

give important information on the scanned subject. 

Various statistical models are widely apphed in image segmentation since the paper of 

Geman and Geman (1984). The models and techniques for low-level image segmentation 

are reviewed in chapter 5. Markov random field models are discussed to model the spatial 

correlation of image pixels or voxels, which is not considered in chapter 3 and 4. The 

use of image models hke MRFs in image segmentation is equivalent to regularisation 

in the spatial domain, overcoming the data independence assumption in most data 

classification techniques, which is more suitable for modelling images. However, the 

introduction of MRF models in the image segmentation makes the optimisation difficult. 

The unsupervised image segmentation problem is discussed. The problem of learning 

in image segmentation with labelled data is also discussed. A new hierarchical image 

segmentation with supervised learning is proposed. Additionally, a new framework of 

learning from both labelled and unlabelled data as well as modelling the voxel's spatial 

correlations is proposed. An approximate EM algorithm is also proposed to solve the 

related difficult optimisation problem. 

Chapter 6 shows the application of the image segmentation with labelled data. The 

unsupervised image segmentation, as well as the two proposed supervised and semi-

supervised image segmentation methods, are applied to the synthetic and 

PK11195 PET data set. Similar to chapter 4, error bars are displayed to compare 

three segmentation results. Semi-supervised image segmentation achieves best accuracy 

and has more stable performance than the rest. These spatio-temporal segmentation 

results also show performance gains over the temporal segmentation results in chapter 

4. In p^C](JZ)-PK11195 PET data application, the test-retest scheme is used to estimate 

the performance. The simphfied reference region model is used for generating binding 

potential images. 

In conclusion, this thesis shows that the inclusion of expert knowledge greatly reduces the 

uncertainty in the PET segmentation. The new semi-supervised framework achieving 

substantial performance gains over the other methods. 

7.2 Suggest ions for F u t u r e W o r k 

As is often the case in research, a lot of problems remain unsolved and many new 

problems arise as the result of the research conducted. Some possible avenues for future 

research are outlined here. 



Chapter 7 Conclusions and Future Work ^ 

# Application of the combined learning image segmentation framework to other con-

texts, such as function MRI, sonar images, remote sensing images and text. In this 

thesis, diSerent image segmentation methods have been used for P E T reference 

region localisation and modelling. There are various medical imaging techniques 

available, such as functional MRI, BEG, MEG etc. From the view of statistical 

learning, the data generated from these imaging methodologies are in the similar 

form as PET data, i.e. data are spatial-temporally connected. This enables the 

image segmentation methods proposed in this thesis to be used in these wider med-

ical imaging fields. Apart from potential applications in various types of medical 

images, these methods can also be apphed to images &om other sources such as 

remote sensing. Text segmentation is another Geld where the segmentation result 

depends heavily on context. The segmentation methods proposed in this thesis 

may have application here. 

# The development of new combined learning methods and the quantitative analy-

sis of the efEciency of the combined classification models. The combined learning 

using both labelled data and unlabelled data hes between two well-founded areas: 

supervised learning and unsupervised learning. Thus there are naturally two ways 

to treat the combined learning problem: supervised learning methods based tech-

niques with the additional unlabelled data to provide extra prior knowledge or a 

source of information to add more generalisation to the model; unsupervised learn-

ing category with the labelled data treated as the complete (or partially complete) 

data set while the unlabelled data as the incomplete data set. Further research into 

a more general combined framework, which sees these two avenues as particular 

approaches would be elegant. 
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