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Positron emission tomography (PET) is a functional imaging technique that enables
brain function to be measured in vivo. PET is a challenging application area for data
modelling with four dimensional data in space (3D) and time (1D). The spatio-temporal
data sets are typically quantified using tracer kinetic models. An improper reference
tissue input function will bias the modelling result. This thesis addresses the automatic
extraction of a reference tissue region, devoid of receptor sites, which can then be used as
an input for a reference tissue model, allowing for the quantification of receptor sites. It is
shown that this segmentation can be determined from the time-activity curves associated

with each voxel within the 3D volume, using modern machine learning methods.

Previously, supervised learning techniques have not been considered in PET reference
region extraction. In this thesis, two new methods are proposed to incorporate expert
knowledge and the image models with the data: a hierarchical method and a semi-
supervised image segmentation framework. Markov random field (MRF) models are
used as a stochastic image model to specify the spatial interactions. The first method
uses a Bayesian neural network with a hierarchical Markov random field model. The
second method advances the first method by employing a semi-supervised image seg-
mentation framework to combine the fidelity of supervised data with the quantity of
unsupervised data. This is realised by a three-level image model structure with prob-
ability distributions specifying the interconnections. This has the advantages for the
generalisation performance and hence the reduction of bias in PET reference region
extraction. An Expectation Maximisation based algorithm is proposed to solve this
combined learning problem. The performance of unsupervised, supervised and semi-
supervised classification in temporal models and spatio-temporal models are compared,
using both simulated and ['}C](R)-PK11195 PET data. In conclusion, it shows that
the inclusion of expert knowledge greatly reduces the uncertainty in the segmentation
with the new semi-supervised framework achieving substantial performance gains over

the other methods.
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Chapter 1

Introduction

1.1 Background

The human brain is amazing, enabling complex tasks to be performed in a diversity of
environments. It is now possible to examine its anatomical structure in vivo using tech-
niques such as X-rays, computerised tomography (CT) and magnetic resonance imaging
(MRI). There are many circumstances where dynamical information is also needed, for
example, in study of brain function and in the diagnosis of benignancy or malignancy of
a brain tumour. The measurement of the electrical signals on the scalp using electroen-
cephalography (EEG), opens up new possibilities in studying brain function. However,
signals recorded in the scalp may not represent the activity in the underlying cortex.
The advent of functional imaging modalities of single photon emission computerised
tomography (SPECT), positron emission tomography (PET), functional magnetic reso-
nance imaging (fMRI), and magnetoencephalography (MEG) over the last twenty years

has led to a new era in the study of brain function.

Medical image processing benefits greatly from computer processing. In early stage,
image processing was limited to 2D images. In 1987, the first attempts at fully automatic
computer-aided diagnosis of X-ray mammograms were proposed (Chan et al. 1987). The
advancement in computing alongside the development of new imaging and modelling
techniques, has enabled medical image processing to be extended from 2D to 3D. The
appearance of functional images gives a challenge to data modelling, as the data are
often in 4D (3D in spatial domain and 1D in time domain). This new type of data
is highly multivariate: there are typically 100,000-400,000 voxels in each observation
and the observation varies with time. Statistical tools have been developed to analyse
functional image data, such as statistical parametric mapping (SPM) (Friston et al.
1995). Recently, more scientists have begun to use Bayesian techniques in modelling

functional image data (Genovese 2000; Svensen et al. 2000).

The earliest experiments to measure cerebral blood flow were performed in 1948 by Kety

1



Chapter 1 Introduction 2

and Schmidt (1948). The development of computer tomography in the 1970’s allowed
mapping of the distribution of the radioisotopes in the brain, and led to the development
of SPECT imaging (Kuhl and Edwards 1963). The radiotracer used in SPECT emits
gamma rays, as opposed to the positron emitters used in PET. The first PET scanner
appeared in 1975. Positron emission tomography has two major advantages over SPECT,
namely better spatial resolution and greater sensitivity (Fox et al. 1984). PET imaging
involves injecting the human body with a radiolabelled compound and measuring the
distribution of the radiotracer. The distribution of the radiolabelled compound measures
how the body functions with that compound. Dynamic imaging involves acquiring
a sequence of images that measure some temporal property of an object of interest.
These changes relate to the biochemical and physiological interactions of a particular
radiotracer within the human body. Using this imaging modality, information can be
gathered about processes that occur over time within the human body. This information
can then be used to study how organs function in normal and diseased states, and under

external influences such as drugs or other therapeutic actions.

1.2 Motivation of This Research

The problem under investigation in this research can be stated as follows: given 4D PET
dynamic images of a subject, how can the image to be segmented into regions based
on their different dynamic behaviours? Apart from the application of various image
segmentation techniques to PET, this thesis also investigates methods for increasing
the segmentation accuracy by improving the generalisation in learning. Specifically, the

combination of expert knowledge with the image data is investigated.

In 4D spatio-temporal PET data, the “intensity” of each voxel is a signal over time, repre-
senting the changing of tissue concentration. Signal modelling can often be categorised
as parametric modelling and non-parametric modelling. In parametric modelling, an
explicit model based on prior knowledge of the system, using a set of biological or phys-
iological meaningful parameters which describe the process, is used. In non-parametric

modelling, no assumption is made about the data generating system.

The reference region model (Lammertsma and Hume 1996) is a widely used parametric
model in PET to produce the parametric images of binding potential and relative deliv-
ery. The model requires the reference region time-activity curve (TAC) as an input. The
reference region TAC is often obtained from a non-parametric technique or from the co-
registered Magnetic Resonance Image (MRI). Currently, most non-parametric reference
region segmentation methods (Ashburner et al. 1996; Yap et al. 1996) used in PET
belong to the class of unsupervised techniques, where no a priori knowledge is involved
in the segmentation process. Both the number of underlying patterns and the final dis-

crimination need to be determined manually. Another option, the co-registration with
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MRI, means that an extra MRI is needed in every PET experiment, which is expensive
and time-consuming. Additionally, this image co-registration between different modali-
ties can be difficult (Kiebel et al. 1997). The two modalities may image very different
properties: e.g. analytical information and functional information. There is no proved
evidence that any links between the regions in MRI and the reference region in PET
exist. Accordingly an efficient methodology to segment PET images into a reference

region and a non-reference region is needed.

The work described in this thesis investigates the integration of knowledge from differ-
ent sources to enhance the accuracy of PET image segmentation. Supervised learning
techniques are applied to the characterisation of dynamic PET images, in combination
with expert knowledge. A supervised neural network (Haykin 1999; Patterson 1996)
is configured to learn the distinction between reference and non-reference regions using
examples labelled by an expert. The resulting classifier is used to select the reference
curve used in the reference model, producing an automatic system, which enables the
generation of parametric maps of binding potential without human intervention and

MRI co-registration.

Ideally an image segmentation method should be able to use knowledge from various
available sources: expert knowledge and the knowledge embedded in the image to be
segmented. By integrating knowledge across scans, we may enhance the robustness of
the segmentation process and hence increase confidence in the extraction of the reference

regions.

1.3 Contributions

The main contributions of this work are the application of statistical classification tech-
niques to PET modelling and the proposition of two new methods to incorporate knowl-
edge from different sources (such as expert knowledge and the image models) into the
PET reference region extraction process: a hierarchical supervised method and a semi-
supervised image segmentation framework. This work first introduces supervised and
semi-supervised learning into PET modelling. Previously, most learning techniques con-
sidered in PET reference region segmentation belongs to unsupervised learning. The
theoretical analysis is supported with experimental comparison of the classification and
image segmentation techniques with simulated and real PET data showing performance
gains of the proposed methods over previous methods. The main contributions are

detailed below:

e The use of statistical classification techniques to PET modelling is investigated.
Various data classification techniques such as supervised, unsupervised and semi-

supervised methods are formulated. Several classification techniques such as Bay-
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esian neural networks, Gaussian mixture modelling are applied to simulated and

real PET data segmentation.

o Statistical classification techniques are used in image segmentation with the use
of stochastic models - Markov random fields (Geman and Geman 1984). Markov
random field models are very suited for modelling the image’s pixel (voxel) local
connections. The use of Markov random field models in classification enables
image pixel correlations to be considered instead of the unrealistic independence
assumption. The Markov random field model can be combined naturally into
the unsupervised Gaussian mixture modelling, with optimisation methods such
as simulated annealing and mean field annealing being used to find a global or
approximated solution to the problem. The combination of a Markov random field
model with supervised classification techniques can be carried out in a hierarchical

manner.

o A new semi-supervised image segmentation framework is developed. Both the
labelled data and unlabelled data are used in the learning phase, so that the clas-
sifier uses knowledge in the labelled samples as well as additional knowledge of the
data distribution from the unlabelled data, which is very important when labelled
data are sparse. Each image is modelled at three different levels: the observed
image, the “mixture label” image and the “class label” image, where connections
between different levels are described by probability distributions, enabling a pos-
terior probability distribution of the data to be recovered. A Markov random field
model is used to incorporate neighbourhood information into the learning process.

All information is considered in an integrated framework instead of hierarchically.

e Segmentation techniques are applied to simulated and real PET data. In simula-
tions, performance assessment is measured by the estimation error as the ground
truth is known. These simulations confirm that expert knowledge can be integrated
successfully with the learning, reducing the uncertainty in the segmentation, and
improving segmentation accuracy. In real PET data, a test-retest scheme is used

to compare different segmentation techniques.

The work in this thesis has contributed to the following publications:

e Jun L. Chen, Steve R. Gunn and Mark S. Nixon, Markov random field models
for segmentation of PET images, Proceedings of 17th International conference
on information processing in medical imaging (IPMI), Davis, USA, June, 2001,
pp-468-474.

e Jun L. Chen and Steve R. Gunn, A model-based image segmentation framework
using labeled and unlabeled data, Proceedings of Advanced Concepts for Intelligent

Vision Systems, Germany, July, 2001, pp.112-126.
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e Jun L. Chen, Steve R. Gunn, Mark S. Nixon, Ralph P. Myers and Roger N.
Gunn, A Supervised Method for PET Reference Region Extraction, Proceedings
of Medical Image Understanding and Analysis, London, UK, July, 2001, pp.179-
182.

1.4 Scope of Thesis

The research undertaken as part of this thesis is concerned with the development and
application of machine learning techniques to PET image segmentation to enhance the
segmentation accuracy. The thesis first gives an introduction of PET imaging and the
classification problem, followed by applying classification techniques to PET temporal
reference region extraction. Then the new image segmentation techniques combined with
expert knowledge are proposed with the application to PET spatio-temporal reference

region extraction. The thesis is structured as follows:
Chapter 2: PET Dynamic Image Modelling

This chapter gives an introduction to PET imaging and describes the problem tackled in
the thesis. The physical principles, data acquisition and data reconstruction processes
are described. This gives a general idea of the PET data generation process and the
quantity of data generated from a PET scan. The factors that limit spatial resolution of
PET data are discussed. Relevant PET modelling techniques including compartmental
models and reference region models, are discussed. The reference region model is of
central interest since the segmentation of PET images to extract these reference regions

is the central aim of this research.
Chapter 3: Data Classification

This chapter provides a short introduction to learning and pattern recognition. The fun-
damental goal of learning techniques is to maximise the generalisation performance of
the learning machine. The mathematical formulations of unsupervised, supervised and
semi-supervised classification methods are given. Various efficient classification tech-
niques are illustrated. In unsupervised classification, the Gaussian mixture modelling
method often outperforms other methods as it provides a tractable probabilistic rep-
resentation. In supervised classification, neural networks and kernel machines (such as
support vector machine) are often used. As both unsupervised and supervised classifica-
tion uses only the knowledge in the labelled examples or the knowledge in the unlabelled
data, semi-supervised classification provides methods for including knowledge from both
sources. The methodology to combine both forms of knowledge remains an active re-
search topic. The concept of induction and transduction learning is distinguished within

both supervised and semi-supervised classification.

Chapter 4: Temporal PET Reference Region Extraction



Chapter 1 Introduction

This chapter deals with using unsupervised, supervised and semi-supervised pattern
recognition techniques in PET image segmentation with the assumption of data in-
dependence. The PET reference region localisation problem is addressed using both
simulated and real PET data. The segmentation results with different pattern recogni-
tion techniques are compared. In real PET data, a test-retest scheme is used to estimate
performance. Parametric images of binding potential are generated by using a simplified
reference region model. Additionally, as the subject’s age is increasingly being recog-
nised as an important factor influencing the brain’s function, the binding potential’s

correlation with age is investigated to find possible connections between them.

Chapter 5: Image Segmentation

A Markov random field model is introduced to model the image’s pixel interactions. The
introduction of Markov random field models enables regularisation in low-level image
segmentation. When the model parameters are known, the iterated continual mode
(ICM) method can be used as an ad hoc iterative optimisation method. When joint
image segmentation and parameter estimation is needed, Markov chain Monte Carlo,
Mean field annealing and EM methods can be used to deal with the optimisation problem

in unsupervised image segmentation.

Apart from modelling the image segmentation problem in an unsupervised manner, this
chapter introduces the new idea of learning in image segmentation, i.e., combination
of image models with expert knowledge in the image segmentation process. Two new
methods are proposed to realise this. One method is to hierarchically use a supervised
neural network and statistical image models to model image’s pixel correlations. A
new combined learning framework is also proposed to solve this difficult problem with
improved accuracy. The new semi-supervised image segmentation scheme uses both
labelled and unlabelled data as well as imposing local constraints on image pixels in
the learning process, so that the classifier uses knowledge in the labelled samples as
well as additional knowledge of the data distribution from the unlabelled data, which
is important when labelled data are sparse. Each image is modelled at three different
levels: the observed image, the “mixture label” image and the “class label” image, where
connections between different levels are described by probability distributions, enabling
a posterior probability distribution of the data to be recovered. A Markov random field
model is used to incorporate neighbourhood interaction into the learning process. All
information is considered in an integrated framework instead of hierarchically. A method
based on Expectation-Maximisation is also presented to solve the difficult optimisation

problem.
Chapter 6: Spatio-Temporal PET Reference Region Analysis

This chapter applies the spatio-temporal segmentation techniques to PET reference re-
gion extraction, with comparisons between unsupervised image segmentation, hierarchi-

cal supervised image segmentation and semi-supervised image segmentation on simu-



Chapter 1 Introduction

lated and real PET data. The segmentation results are compared with each other as
well as the temporal segmentation results in chapter 4. The experimental results show
that the use of expert knowledge and image’s pixel local connections reduces the uncer-
tainty in segmentation and improves the segmentation performance. Similar to chapter

4, parametric images of binding potential and the binding potential’s correlation with

age are also given.
Chapter 7: Conclusions and Future Work

The final chapter summaries the theoretical and experimental results and suggests di-

rections for future work.



Chapter 2

PET Dynamic Image Modelling

As a dynamic imaging technique, PET enables investigating human body in vivo. This
chapter gives a brief review of the physical principles of PET imaging, including the
imaging and reconstruction process. The parametric models such as the simpilified

reference region model will be described for analysing PET images.

2.1 Physical Principles and Data Acquisition

2.1.1 Physical Principles

Phelps et al. (1986) give a rigorous treatment of the theoretical and practical issues
related to PET imaging. PET uses radio tracers to image human biological and chemical
processes in vivo (Phelps and Gambhir 1993). A tracer is an analogue of a biologically
active compound in which one of the atoms has been replaced by a radioactive atom.
When the tracer is introduced into the body, its spatio-temporal distribution can be
located by means of the radioactive atom. PET requires an on-site cyclotron to produce

the short-lived radioisotopes.

All radioisotopes used with PET decay by positron emission. Positrons are positively
charged electrons. They are emitted from the nucleus of some radioisotopes that are
unstable because they have an excessive number of protons and hence a positive charge.
Positron emission stabilises the nucleus by removing this positive charge through the

conversion of a proton into a neutron.

A positron emitted from a decaying nucleus travels a short distance before colliding with
an electron of a nearby atom. When a positron comes in contact with an electron, the
two particles annihilate turning their mass to energy (via Einstein’s equation the total
energy released is E = 2mgc?). Conservation of energy yields two 511-keV gamma-rays

that are emitted in opposite directions (see Fig. 2.1).

8
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FIGURE 2.1: Positron and electron annihilation
2.1.2 Data Acquisition

The Gamma-rays which escape from the human body can be recorded by external de-
tectors, as shown in Fig. 2.2. The PET detector is set up in such a way as to accept
events in which both annihilation photons are detected in coincidence. Typically, two
photons are identified as coming from a single event if they arrive at detectors within
about 15ns of one another. Events are recorded between the currently many millions
of detector pairs which represent line integrals or projections at different angles around

the subject. The raw data set is termed a sinogram (a matrix of angles vs. projection).

Detector

FIGURE 2.2: Detection of Gamma-rays

2.2 Reconstruction

From the raw data (sinogram) acquired by the tomography, it is desired to reconstruct
the regional decay rates, as it indicates the tracer concentration. Image reconstruction
is a rich research area where a large number of algorithms are available. Filtered back-
projection (FBP) (Kak and Slaney 1988) is the reconstruction method routinely used
in most PET scans. Accurate correction for scatter and attenuation is essential for the
production of quantitative images. Each reconstructed image shows the spatial measure

of tracer concentration at a certain time frame. In a PET scan, the images at different
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time frames are reconstructed to form a dynamic image volume. Thus the information
obtained from a PET scan is a spatio-temporal measure of the tracer concentration in
the subject. Region of Interest (ROI) analysis or voxel level analysis of dynamic images
can be used to produce tissue time-activity curves (TACs). These curves represent the
counts/second/voxel (or kBg/ml) of the tracer concentration. TACs provide the key
information for PET modelling and diagnosis as the kinetics of the tracer in tumours

and normal tissues are significantly different.

The spatial resolution of PET images is limited, mainly as a result of the following

factors:

e A positron travels a long distance (a few mm) before annihilating with an electron.

e Absorption and scatter of the gamma rays occur in the tissue before detection in

the detector rings.

e The size of the detector ring limits the spatial resolution of the reconstructed

distributions.

o The decay rate of the isotope and radiocactive safety levels limits the temporal

resolution

The random gamma-ray photons and the scattered photons recorded by the detector

need to be removed to provide guantitative images.

A dynamic PET scan yields 4-D data (in space 3-D and time 1-D) which quantifies
the distribution of the tracer over the period of scanning (typically 1-2 hours). Fig.
2.3 illustrates the reconstructed dynamic images for one slice from a PET scan. Each
subfigure represents the tracer concentration in the slice during a short time period.
In functional imaging techniques such as PET, the interest is in the dynamic image or
correspondingly, for each voxel, the interest is the tracer concentration’s change over
time, which constitutes a time-activity curve. Fig. 2.4 shows an example of a TAC for

one voxel.

A PET experiment produces a large amount of data, with reasonably high noise, as
shown in Fig. 2.4. Thus efficient modelling techniques are necessary for PET image
analysis. The raw detector data gives little direct insight of what is happening inside
the human body. This data must be reconstructed, de-noised and pre-processed to
produce an interpretable form as in Fig. 2.3. Statistical modelling techniques can then

be applied to enable biochemical or physiological meaningful parameters to be extracted.
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FIGURE 2.4: An example of a time-activity curve

2.3 Modelling

A goal in PET is to produce functional parametric images of the biological parameters of
interest, and as such it is not the “raw” images that we are interested in, but rather some
function of them. Different TACs correspond to different properties of the underlying
tissue. Often a compartmental model (Gunn et al. 2001; Lammertsma and Hume 1996)
is used to set up the relation between the TAC and the biological parameters. For each
parameter, a 3-D (or 2-D) parametric image can be obtained to view the parameter for

each voxel (or pixel).

Kinetic modelling is a very useful and widely used tool for analysis of living systems.
In kinetic modelling, the system to be observed is modelled as a set of macroscopic
subsystems, called compartments. It is assumed that each compartment is homogeneous
and interacts with each other and the environment. Compartmental analysis forms the
basis for tracer kinetic modelling in PET. ‘A comprehensive analysis of compartmental

models can be found in Jacquez (1985).

In the circumstance that the experiment conditions can be tightly controlled, very de-
tailed models can be applied, for example in physiology experiments. However, as a
nuclear imaging techniques, safety factors limit the injected radioactive doses and hence
the temporal resolution of PET imaging. Furthermore, the relative low temporal reso-

lution and the noise in the PET data means that only a coarse model can be applied.

There are various parametric PET models in the literature, e.g., one tissue compartment
models, two tissue compartment models with various number of input or unknown model
parameters, three tissue compartment models, etc. These compartmental models are
used for the quantification of blood flow (Kety and Schmidt 1948), cerebral metabolic
rate of glucose (Sokoloff et al. 1977) and for neuroreceptor ligand binding (Mintun et al.

1984) etc. For neuroreceptor ligand modelling, compartmental models can be placed into
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two groups: those requiring an arterial blood or plasma input function and “reference
region models” which requires no blood sampling. Gunn et al. (2001) have developed
a general theory for compartmental models in PET using state space representation,
for both plasma input models and reference tissue models. Among PET models, the
reference region model is the main interest in this thesis as it needs no blood sampling.
The reference region model has been validated and applied successfully at the region

of interest level and voxel level for other PET studies (Lammertsma and Hume 1996;

Gunn et al. 1996).

2.3.1 Radioligand Binding

A radioligand is a radioactively labelled drug that binds with a receptor, transporter,
enzyme, or any site of interest. Binding occurs when the ligand and receptor collide
due to diffusion, and when the collision has the correct orientation and enough energy.
Measuring the rate and extent of binding provides information on the number of binding

sites, and their affinity and accessibility for various drugs.

Analysis of radioligand binding experiments is based on a simple model, called the law
of mass action. This model assumes that binding is reversible, that is, the ligand and

receptor are the same after dissociation as they were before binding (Yamamura 1990),

KOTL
!Receptor I—I—J Ligand ‘ —’I Receptor+ligand J

Kogs
where Koy, is the on-rate (association rate) constant and K,s is the off-rate (dissocia-
tion rate) constant. Equilibrium is reached when the rate at which new ligandreceptor

complexes are formed equals the rate at which the ligandreceptor complexes dissociate:

CLigand : CReceptm" . Kon = CComplea: : Koff7 (2'1)

where C, is the concentration of . The equilibrium dissociation constant Kp is defined
as
Koff _ C'Lig(md ' CReceptor (2.2)

Kp =
Kon CComplea:

A low Kp indicates the receptor has a high affinity for the ligand and it will take a low

concentration of ligand in the experiment.

In addition to binding to receptors of interest, radioligands may also bind to other sites.
Binding to the receptor of interest is called specific binding, while binding to the other

sites is called nonspecific binding.
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2.3.2 Reference Region Models and the Basis Function Method

A reference tissue model based on compartmental structures has been derived (Lam-
mertsma and Hume 1996) and applied successfully on a region of interest (ROI) level.
Consequently the model has been successfully used to quantify ligand-receptor binding

at the voxel level (Gunn et al. 1996), using a basis function method.

2.3.2.1 A Two-Compartment Example

The reference region refers to the region in the subject which shows no binding, devoid
of specific receptor sites. The compartmental structure for a simplified reference tissue
model is shown in Fig. 2.5. The model describes the relation between the reference
tissue TAC and the target tissue TAC. Given a reference tissue TAC, the model can be

used to estimate the biological parameters associated with each target tissue TAC.

Ki - Free . Reference Tissue
< TNs |
Plasma
K, -
Free —=
» ‘ ? Specific Target Tissue
K:/(1+BP) NS

FIGURE 2.5: The compartmental structure for the reference tissue model (NS: non-
specific)

The model structure shown in Fig. 2.5 is based on the following assumptions for the
radioligand: (1) there exists a reference region that is devoid of specific binding, (2)
labelled metabolites of the parent tracer do not cross the blood-brain barrier, (3) the
degree of nonspecific binding and the volume of distribution of the free/nonspecific com-
partment is the same in the reference and target tissues, and (4) the exchange between
free/nonspecific and specific compartments is rapid such that a single compartment can
approximate their behaviours. Under these assumptions the target tissue concentration

may be expressed as,

Cr(t) = RiCg(2) + <k2 - %) Cr(t) ® o (FEp )t (2.3)

where Cr(t) is the TAC in the reference tissue, Cp(¢) is the TAC in the target tissue,
Ry is the ratio of the delivery in the target tissue to the reference tissue, kz is the efflux
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rate constant from the target tissue, BP is the binding potential, X is the physical decay

constant of the isotope, and & is the convolution operator.

The model allows for parameter estimates of relative delivery and binding potential.

Relative delivery, Rj, is defined as

Ky F(1-e P

= — = 2.4
I{':Il F/(l - e___P/S//F/) ( )

Ry

where F and F” are the blood flows in the target tissue and reference tissue, respectively,
and PS and P'S’ are the permeability surface area products in the target tissue and
the reference tissue respectively. Binding potential (BP) (Mintun et al. 1984) describes
the potential of a specific membrane to interact with either a specific radioligand or a

specific neurotransmitter. BP is defined here as

k B
BP = k_3 _ ma:vf? - (2.5)
4 KDTTa,ccr(l + Z —}?—;_z)
[
where Bpq. is the total concentration of specific binding sites, Kp,,,... is the equilib-
rium disassociation constant of the radioligand, fs is the “free fraction” of the unbound
radioligand in the tissue, and F; and Kp, are the concentration and equilibrium disas-

sociation constants of competing endogenous ligands.

2.3.2.2 Parameter Estimation

The PET TAC at the voxel level has a low signal to noise ratio. Direct application of the
above reference region model at the voxel level using conventional least squares fitting
to estimate parameters is slow and sensitive to noise. A basis function method (Gunn
et al. 2001) has been proposed to find a fast and robust solution of Equation (2.3) at

the voxel level,
Cr(t) = 0,Cr(t) + 02Cr(t) ® e~ (2.6)

where 81 = Ry, 05 = ko — ﬁfgﬁ; and 83 = Tf_féﬁ + A. Defining the following set of basis

functions
Bi(t) = Cr(t) ® e~ %, (2.7)

The number and range of the discrete values for 83; should be decided in advance. The

target tissue time-activity curve can then be expressed as,
q
Cr(t) = 01Cr(t) + > 02:B;(t) (2.8)
i=1
, where ¢ is the number of basis functions. #; and #5; can be solved for by using standard

weighted linear least squares fitting (Gunn 1996). However, the overcomplete basis can

leads to an under-determined set of equations. Basis pursuit denoising (Gunn et al.
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2001) can be used to determine a sparse selection of kinetic basis functions. Each Bj(t)
corresponds to one #3; which has been calculated in advance. After that Ry, BP and
ko are easily computed, enabling the binding potential and relative delivery associated
with each voxel to be obtained. It is then possible to produce parametric images of these

quantities.

2.4 Reference Region Localisation

The above reference region model is widely used in PET parametric modelling. However,
the use of the reference region model requires a reference region TAC as an input to
the model. Although there is a certain degree of consistency in reference region TACs
from different PET scans, the reference region TAC is dependent upon factors in the
PET scan such as injection dose, subject, weight, etc. An improper reference region
TAC chosen in a PET experiment will lead to biased results. To use the reference region

model for a specific PET scan, an important step is to localise reference regions in that

scarl.

Currently, there are two types of methods to localise reference regions:

o Anatomical information from a co-registered Magnetic Resonance Image (MRI);

o Unsupervised techniques followed by manually choosing the closest TAC.

MRI can be used to define an anatomical region to be the reference region, usually the
cortex or thalamus. Then the reference region in PET is obtained by co-registration of
the MRI and PET images. This means an extra MRI image is required for each PET
image, which is expensive and the image co-registration from different modalities can

be very difficult.

An alternative way is to use cluster analysis (Ashburner et al. 1996; Boudraa et al.
1996; Kimura et al. 1999), where the dynamic PET data are partitioned into a small
number of clusters, each described by a multivariate Gaussian distribution. The means of
these Gaussian distributions represent the underlying TAC associated with each cluster.
However, final discrimination in each cluster depends on expert knowledge, which is

time-consuming since it must be repeated for each new image.

2.5 [C](R)-PK11195 PET Data

The PET data used in this thesis was obtained with the ligand [*!C](R)-PK11195 which
is a marker for activated glial cells (Banati et al. 1999)). PK 11195 is the name commonly
given to 1-(2-chlorophenyl)-N-(1-methylpropyl)-1-isoquinoline carboxamide. It is one of



Chapter 2 PET Dynamic Image Modelling 17

the most powerful peripheral benzodiazepine binding (PBB) ligands known (Langer and
Arbilla 1988). It is known to bind to PBB sites on activated microglia and macrophages
in regions of active pathology in brain. It exhibits minimal binding in normal brains.

However there is a large increase in PBB sites in the locality of brain lesions.

PK 11195 has been used as an imaging ligand in PET studies, where it identifies multiple
sclerotic plaques, malignant gliomas and areas surrounding infarcted zones in stroke
patients (Vowinckel et al. 1997; Benavides et al. 1988). Quantification of specific
binding of this ligand in PET is necessary if it is to realise its potential in the longitudinal
monitoring of disease progression. However, compared to other neuroreceptors, in PK
11195 PET studies, the reference region is very difficult to localise anatomically, as there
is no obvious link between reference region and the anatomical regions. However the
TACs in the normal brain tissue have similar kinetics, implying consistent behaviour of

the ligand in the non-pathological tissue.

The 18-scan PET data set used in this thesis was kindly collected and provided by MRC
cyclotron Unit, Hammersmith hospital in London. The 18 subjects considered are 17
normal volunteers and one patient. In the scans for normal volunteers, they would be
expected to have a reference region represented by grey matter. Each scan contains
3-D spatial sampled images over 18 different time instants. Each 3-D image contains
128 x 128 x 25 (z x y x z) voxels with the resolution of 2.09mm x 2.09mm x 3.42mm.
In each scan, the TAC for each voxel was extracted from the dynamic PET images of
tracer concentration. To produce the target data, the cortex, thalamus and cerebelium
regions were labelled from a co-registered MRI image. Experimental evidence shows
that the cortex region in all the investigated normal scans had no binding. Thus the
TACs from the cortex region are treated as the reference region TAC, while TACs from
other regions are treated as non-reference region TACs. Fig. 2.6 summarises the TACs
in the scalp, thalamus, cerebellum and cortex region. The scalp region TAC is different

from others in both the amplitude and the shape.

Table 2.1 lists the details of all eighteen [1C](R)-PK11195 PET scans. Among all scans,
there are four set of scans used for test-retest studies (shown as subject a, b, ¢, d in Table
2.1). Each test-retest study contains two scans from the same subject, who was scanned
on two separate occasions. Additionally, the age of each healthy subject is recorded for

age-related binding studies.

Examples of binding potential images of a healthy subject and a diseased subject at the
voxel level are shown in Fig. 2.7 for comparison. The diseased subject (scan n02904)
exhibits a high value of binding potential while the healthy subject shows minimal
[*1C](R)-PK11195 binding.
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FIGURE 2.6: Example of mean TACs in different regions in a ['*C](R)-PK11195 normal
scan

| Scan No. | Disease | Age | Other Information |

n02791 X 48

n02805 X 54

n02816 X 48

n02833 X 53

n02870 X 57

n02904 v

n02907 X 80

n02938 X 34

n03578 X 59 subject a
n03637 X 78

n03642 X 64 subject b
n03657 X 64 subject b
n03661 X 74 subject ¢
n03689 X 59 subject a
n03694 X 74 subject d
n04071 X 74 subject ¢
n04073 X 74 subject d
n04128 X 32

TABLE 2.1: Data Set Description
2.6 Summary

Positron emission tomography uses radio tracers to image human biological and chemical
processes in vivo. By using the tracer that is involved in the biological or chemical
processes, the process can be quantified. In a PET experiment, the unstable nucleus
emits a positron that will annihilate with a nearby electron. Annihilation produces two
almost collinear gamma, rays of 511keV that are detected in coincidence on either side of
the active volume. The localisation of the annihilation allows the tracers spatio-temporal
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(a) BP image of slice 20 of scan n03578 (b) BP image of slice 20 of scan n02904

FIGURE 2.7: Binding Potential (BP) images for a healthy subject and diseased subject

distribution to be determined. A PET experiment generates 4-D data sets where each
voxel has a vector which describes how the tracer concentration changes with time, called

a time-activity curve.

The data obtained from a PET scan is a realisation of a complex spatio-temporal process
with many great variables and a significant noise component. The analysis of the PET
data set is not a trivial problem as the raw data gives little insight of what is happening
inside the human body. The parametric models (especially compartmental models)
reviewed in this chapter enable the analysis of PET data using meaningful variables.
These compartmental models fall into two groups, of which the reference region models
are most attractive since these avoid the necessity of having an arterial blood or plasma

input function.

The difficulty with reference region approaches is the determination of the reference TAC.
This thesis is concerned with developing intelligent methods for this determination. The
following chapters will present the machine learning methods and image segmentation
methods in the view of solving the reference region localisation problem and the potential

of tackling other functional image segmentation problems.
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Data Classification

Classification (Devroye et al. 1996) is the grouping of similar objects. To formalise
a classification problem, it is assumed that objects belong to one of several classes.
The task is to predict class identities based on observed features or properties of the
objects. Classification is often termed pattern recognition in practical applications such
as medical diagnosis, speech recognition, image understanding, handwritten recognition,
and fault detection in machinery. These classification problems may be solved by humans
in a seemingly effortless fashion while their solution using computers has often proved to
be immensely difficult. Thus research has been carried out towards finding a theoretical

way to solve this learning problem.

3.1 Learning and Classification

Learning is the process of estimating an unknown dependency or structure using a lim-
ited number of observations. The problem of a learning machine is to select a function
7 = f(x,w) that best approximates the system’s response y (induction), and then use
this dependency estimated between x and y to predict outputs for future input values
(deduction), as illustrated in Fig. 3.1. The inductive step involves finding the optimum
value of w, the model parameters. The deductive step involves evaluating the function
¥ = f(x,w) at x. This two-step (induction/deduction) approach to learning is of our
main interest, although a one-step (transduction) approach exists (Vapnik 1998; Devroye
et al. 1996). The inductive step is an ill-posed problem: to form generalisations from
finite particular examples (training data). The general inductive problem can be formu-
lated as: given a finite set of observations D = {(x;,y;)}.; derived from an unknown
joint probability density function (pdf) p(x,y) = p(x)p(y|x), how can the underlying

functional relationship

y=rf(xw) 3.1)

20
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Ficure 3.1: Induction/deduction formulation of learning

be found. A loss function L (y, f(x,w)) is used to penalise the mismatch between the
observations and the learning machine. The learning process could estimate the function

f(x,w) by minimising the expected risk functional:

R(w) = / / L (y, f(x,w)) p(x, y)dxdy (3.2)

from the data set D. It is an ill-posed problem due to the finite number of data. This
general formulation of the learning problems includes three particular type of basic

statistical problems (Vapnik 1998):

e Classification;
e Regression;

e Density Estimation.

In classification problems, the task is to assign an input x to one of a number of discrete
classes y. In regression problems, the output ¥ is a continuous variable. Both classifica-
tion and regression problems can be seen as particular cases of function approximation.
If the density p(x,y) can be estimated, then the regression and classification problem can
be easily solved by minimising Equation (3.2). Hence the density estimation problem
can been seen as a more general problem than classification and regression (Cherkassky
and Mulier 1998). When solving a problem based on finite information, a common rule
is: Do not attempt to solve a specified problem by indirectly solving a harder general
problem as an intermediate step (Vapnik 1998). That is for a specified problem such as
classification and regression, instead of estimating the joint probability p(x,y) directly,
it is better to estimate only some features of the joint density which are critical for

solving the specific problem.
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Among three types of learning problem, classification is our main interest. Classification
is often categorised into supervised classification and unsupervised classification (Bishop
1995). In unsupervised learning, the learning must proceed on the distribution of the
patterns in the input space alone. The goal of unsupervised classification is to model
the probability distribution of the input data and to use this to segment the input
space into regions. The resulting model consists of a set of distributions. An expert
can then decide how to assign these clusters. Each time a new data set appears, the
whole learning process must repeat, and as such no information is aggregated from
previous learning. In supervised classification, the desired output is known for each input
pattern and the system can learn from these examples to generalise for “unseen” input
patterns. Supervised learning differs from unsupervised learning in that a teacher is used
to instruct the system with known examples, e.g. in a two-class classification problem,
positive and negative examples of objects belonging to these classes. An inductive
process is used to build up a model from the examples, producing a system which can
determine the class membership of an input pattern. The merit of supervised learning

is that it exploits the knowledge provided by the teacher in learning to discriminate.

Often both labelled examples and unlabelled data exist and recently research (Miller
and Uyar 1996; Jaakkola and Haussler 1998) has been conducted to build hybrid un-
supervised and supervised classification methods, termed semi-supervised classification

methods.

3.2 Generalisation

Due to the finiteness of the data set D, the expected risk functional in Equation (3.2)
cannot be accurately evaluated.Instead it can be approximated by the empirical risk

functional:
n

Romp(e2) = = >~ Ly £33, ). (3.3
i=1

This approach causes two types of error, namely the approximation error and the es-
timation error (Niyogi and Girosi 1996), shown in Fig. 3.2. The approximation error
arises because the exact behaviour of function f(x) is unknown and belongs to some
large space of functions, called the target space. Consequently, f(x) has to be estimated
by parameterised functions f(x,@), and the resulting sub-space is referred to as the
hypothesis space. The predictor f(x,&?) obtained by empirical error minimisation will
approximate f(x,J) as the number of data increases without bound. The approxima-
tion error decreases as the size of the hypothesis space increases and has more capacity
to approximate f(x). The estimation error comes from lack of knowledge about the
conditional distribution p{y|x,w), which is unknown. The best that can be done is to
minimise the empirical risk, as only finite number of examples are available. It is ex-

pected that as the model structure has more capacity, the estimation error can increase
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(Niyogi and Girosi 1996).

Target Space

Hypothesis Space

N A
f(x,w)

<—Estimation Error

Generglisation Error —

<—Approximation Error

FIGURE 3.2: Generalisation error = Approximation error + Estimation error

A learning machine’s performance is determined by its generalisation ability or its pre-
dictive capability. Estimation of a function from a finite data set is ill-posed, which
makes precise estimation impossible. In order to make the problem well-posed, a prior,
or structure, over the hypothesis space must be defined. A prior that is often consistent
with the physical world is the characteristic of smoothness. Following the well known
principle of Occam’s razor', simpler models are preferred. A good model should have a
trade-off between the empirical error and the model complexity. Thus instead of using
the empirical risk, a regularised risk functional is often used to control generalisation

performance,

RTeg(w) = Remp(w) + vo(f(x,w)), (3.4)

where @(+) is called a regularisation term. A common form for the regulariser is a measure
of smoothness, assigning greater likelihood to smoother functions. The regularisation
parameter v controls the tradeoff between Rep,(w) and ¢(f(x,w)). Consider the two-
class classification problem in Fig. 3.3, the classification with solid line causes over-fitting

while the dash line is preferred.

Bayesian learning (Mackay 1992a; Neal 1994) gives a different view of selecting weights.
Regularisation can be given a natural interpretation in the Bayesian framework. An
advantage of the Bayesian method is that the values of regularisation coefficients can
be selected using the training data. Furthermore, a Bayesian framework provides an
objective and principled framework for dealing with the issues of model complexity

which avoids many of the problems which arise when using maximum likelihood.

After a risk functional has been set up, an optimisation procedure is used to minimise the

risk functional with respect to the adjustable parameters. Non-linear optimisation is a

William of Occam (1285-1349): Causes should not be multiplied beyond necessity.
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Fi1GURE 3.3: Over-fitting in a classification problem

very difficult problem and often only local minimum can be found. However, careful con-
struction of the hypothesis space, and the regulariser can result in convex, even quadratic
functions for which unique global solutions can be obtained, e.g. SVMs (Vapnik 1998),
Gaussian processes (Barber and Williams 1996). The expectation-maximisation (EM)
method (Dempster et al. 1977) and the gradient decent related method play a central

role for optimisation in unsupervised learning and supervised learning respectively.

3.3 Unsupervised Classification

Unsupervised classification aims to separate a data set into a number of groups (called
clusters) based on some measure of similarity. The goal is to find a set of clusters for
which samples within a cluster are more similar than samples from different clusters.
The task of clustering can fall outside of the framework of predictive learning, since the
goal is to cluster the data at hand instead of providing an accurate characterisation of

future data generated from the same probability distribution.

Unsupervised classification is a difficult problem, as the clusters may have various sizes
and shapes and the number of clusters is unknown and needs to be specified by user.

But it has wide applications in the real world.

As no known target y exists in unsupervised classification, learning aims to find K
centres, py, k = 1,..., K, to describe the distribution of the data. In this case, the

problem can be expressed as

R(py) = [ min x — oyl %p(x)dx (3.5)

In the following sections, two efficient and widely used clustering algorithms: K-means
and Gaussian Mixture Model (GMM) are introduced.
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3.3.1 K-means Clustering

The K-means clustering algorithm (MacQueen 1967) is a well-known unsupervised al-
gorithm. The algorithm involves a simple re-estimation procedure. Suppose we wish
to find a set of K representative vectors p, where k = 1,..., K for n data points x;,
i =1,...,n. The algorithm seeks to partition the data points {z;}7; into K disjoint
subsets. Si containing n; data points, in such a way as to minimise the sum-of-squares

clustering function given by
n
Remp () = D min [xi — |, (3.6)
i=1

where p;, denotes the means of the data points in set Sy and is given by

1
My = o E X (3.7)
k 1€SE

Each point is re-assigned to a new set according to which is the nearest mean vector.
The means of the set are then recomputed. This procedure is continued until there is
no further change in the grouping of the data points. The resulting representation is
one of the K vectors, which can be used to partition the input space into K regions or

as the basis for further algorithms. The number of centres must be chosen in advance.

3.3.2 Mixture Models

Mixture models (MaLachlan and Basford 1988) are a flexible and powerful probabilistic
modelling tool. As in the K-means algorithm, n data points x;,7 = 1,...,n are to be
classified into K clusters, where K is specified in advance. Consider the following scheme
where these data are generated: There are K random sources, each characterised by a
probability function p(x;|k), ¥ = 1,2,--+, K with mixing parameters P(k), such that
the overall distribution is given by p(x;). p(x;) is formed from the linear combination

of component densities p(x;|k),
K
p(xi) =D p(xilk) P(k), (3.8)
k=1

where P(k) can be regarded as the prior probability for the data having been generated

from the kth component of the mixture which are chosen to satisfy the constraints

K
> Plk)=1 (3.9)

k=1

0< Pk)< 1. (3.10)
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The individual density component p(x;|k) are normalised such that

/p(Xi|k)dXi = 1. (3.11)

According to Bayes’ theorem, the corresponding posterior probabilities are given by,

p(xs|k) P (k)
p(x:) '

The value of p(k|x;) represents the probability that a particular component k is respon-
sible for generating the data point x;, which can be used to classify x; to a certain class
k. It is usually assumed that all the components p(x|k) have the same functional form,

such as multivariate Gaussian. Fitting a mixture model to a set of observations {z;}7 ;

p(klx;) = (3.12)

consists of estimating the set of mixture parameters that best describes this data set.

Adopting a framework of parametric statistics, the detection of data clusters reduces
mathematically to the problem of how to estimate the parameters of the probability
density for a given mixture model. A powerful statistical tool for finding mixture pa-
rameters is the maximum likelihood method, i.e., one maximises the probability of the
independently, identically distributed set {x;,7 = 1,...,n} given a particular mixture
model. For analytical purposes, it is more convenient to minimise the negative log-

likelihood with respect p(x;|k)
n n K
E=-) Inp(x;)=-) In (Zp(xizk)P(k)> . (3.13)
i=1 i=1 k=1

The parameter estimation in mixture models is often carried out by maximum likelihood

learning using the Expectation-Maximisation method or the Markov chain Monte Carlo

method.

3.3.2.1 EM Algorithm

The Expectation-Maximisation (EM) algorithm (Dempster et al. 1977) is the standard
technique for maximum likelihood estimation of the parameters in mixture models. In
general, the EM algorithm is used to solve the maximum likelihood estimation from
incomplete data. The EM algorithm is a simple, practical method for estimating the
mixture parameters which avoids the complexities of non-linear optimisation. An itera-

tion of these two steps renders the following algorithm:

o E-step: Guess some values for the parameters of the mixture model (‘old’ parame-
ter values). This yields the expected assignments of data to mixture components.

Then with respect to this compute the expectation in Equation (3.13).
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o M-step: “new” parameter values are found by minimising the expected error with
respect to the “old” parameters. These parameter values then become the “old”

values in the E-step.

By using Jensen’s inequality, EM achieves a bound maximisation. The idea in the EM
algorithm is that to find the model parameters that maximise the likelihood. Since the
likelihood is unknown, its current expectation is maximised given the observed data
and the current parameter fit. Provided some care is taken over the way in which the
updates are performed, this algorithm is guaranteed to decrease the error function at

each iteration, until a local minimum is found.

The algorithm can be modified to the generalised EM method (Neal and Hinton 1998):
in each M step, the likelihood is increased but not necessarily maximised. The main
difficulty in using EM for mixture models is local minimum, which makes its performance

critically dependent on initialisation.

3.3.2.2 EM Algorithm for Gaussian Mixture Models

The mixture model is called a Gaussian Mixture Model (GMM) when the individual

component densities are given by multivariate Gaussian distribution functions:

p(x|k) = W exp <_%(Xi — ) E (s - Mk)) ; (3.14)

where d is the dimensionality of input vector x;. p; and Xy are the mean and diagonal

standard deviation of the kth Gaussian distribution. |3j]| is the determinant of 3.

Although mixture models can be built from different types of components, the majority
of the literature focuses on Gaussian mixtures (Titterington et al. 1985). The K-means
clustering algorithm can be seen as a particular limit of the Gaussian mixture model as
the variance in Gaussian distribution approaches zero (Bishop 1995). Therefore, the K-
means algorithm is a sensible choice to initialise the cluster centers in Gaussian mixture

modelling.

Let z = {z;}7_; denote the cluster index of data. After initialising parameters ®(©) =
{(pgg), Zgo)), ([,Léo), 2&0)), e (ug), Eg))} and p(zi(o):k]@(o)), the algorithm iterates the

following two steps:

o E step: find the function Q(<I>|€I\>(t)) = E[log p(x, z|®)|(x, &)U))]

e M step: find ) = arg max Q(®|3®)

In the M step, the parameter @ is updated by (in the following p(-) is a simplified
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notation of p(-|®)):

(3.15)

(z2)F) _ = (3.16)

2

where
p(xi|2” = k)P(z{Y = k)

P(Xi)
p(aiz? = B)P(Y = k)

= - . (3.17)
> plalzn” = WP = k)
i=1
p(x,—]zi(t) = k) is calculated from Equation (3.14). The prior can be updated by
> p(5” = kixa)
p(2IY = k) = =L . (3.18)

The above Gaussian mixture model with EM algorithm for parameter optimisation is
widely used in the unsupervised classification. The maximum likelihood estimation
can also be achieved by Markov chain Monte Carlo method (Neal 1993; Richardson
and Green 1997) in a fully Bayesian flavour to find a global solution instead of a local
minimum in EM algorithm. But MCMC is computation expensive and thus is less used

in unsupervised classification.

A problem in unsupervised classification is determining the appropriate number of clus-
ters. The maximum likelihood criterion cannot be used to find the optimal number
of clusters. There are several model selection criteria in literature: minimum de-
scription length (MDL) (Rissanen 1987; Barron et al. 1998), Bayesian inference cri-
terion(BIC)(Schwarz 1978; Whindham and Cutler 1992), Akaike’s information criterion
(AIC) (Akaike 1974), Minimum message length (MML)(Sclove 1983) and reverse jump-
ing MCMC (Green 1995). These techniques are employed with the attempt to reduce
the number of parameters in the model while maintaining a reasonable performance.
Among these methods, BIC and AIC are widely used. If the complexity of the true
model does not increase with the size of the data set (such as the above K-means and
Gaussian mixture model clustering), BIC is the preferred criterion, otherwise AIC is
preferred (Burnham and Anderson 1998). Use of AIC criterion generally results in a
good fit to the dataset, but it often causes an overestimation of the number of compo-

nents. BIC is a likelihood criterion penalised by the model complexity, i.e. the number
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of parameters in the model. Let x = {x;}*; be the data set and M = {M;}E | be the
candidates for the parametric models. | M; | is the number of parameters in the model

M;, then the BIC criterion is defined as
1
BIC(M;) = log Z(x, M;) — 3 | M |; xlog(n) (3.19)

where Z(x, M;) is the likelihood of the data with model A;. Reverse jump MCMC
methods have been used to improve GMMs by splitting and merging clusters (Williams

2000). But as a sampling method, its computation is expensive.

3.4 Supervised Classification

Supervised classification is often referred to as “pattern recognition”, which was formu-
lated in late 1950s. A supervisor observes occurring situations and determines to which
of k classes each one of them belongs. It is required to construct a machine which, after
observing the supervisor’s classification, carries out the classification in the same man-
ner as the supervisor. The induction-deduction supervised learning diagram is shown in
Fig. 3.4. In the induction process, the labelled data and the prior knowledge are used to
build a model. Once the model has been built, it can be used in the deduction process

to predict output for the testing data.

Prior Knowledge

Estimated Model

FI1GURE 3.4: Induction-deduction supervised learning

Induction

Estimated Model ]

Deduction

In a two-class supervised classification problem, the output y can take either of two
values {0, 1}, each denoting one of the two classes. The problem is to find the classifier

f(x%,w) that minimises the risk of misclassification:

R = [ [ 20,6 0)pix pixdy (3.20)
The binary loss function L{y, f(x,w)) is

0 1ff(xw)=y

. (3.21)
L if f(x,w) #y.

Ly, f(x,w)) = {



Chapter 3 Data Classification 30

In many supervised classification problems, the cross-entropy loss function (Bishop 1995)

of the form
Ly, f(x,w)) = —yIn f(x,w) — (1 — y) In(1 = f(x,w)) (3.22)

is used. The use of this cross-entropy loss function in a two-class problem enables the
classifier output y(x) to represent the probability of belonging to one class (Hampshire
and Pearlmutter 1990).

3.4.1 Classifier Type

There are a large number of various classifiers in the literature. Three widely used

classifiers are introduced in this section.

3.4.1.1 Multi-Layer Perceptron

Output Classes
1 2

Output Layer Y

Hidden Layer Z

Input Layer X

FIGURE 3.5: Architecture of a three-layer feed-forward classfier

The most widely used neural classifier is a Multi-Layer Perceptron (MLP) network which
has been extensively analysed and for which many learning algorithms have been devel-
oped. The MLP classifer consists of a network of processing elements or nodes arranged
in layers. Typically it requires three or more layers: an input layer which accepts the
input variables used in the classification procedure, one or more hidden layers, and an
output layer with one node per class. The output of hidden layer and output layer is
obtained by transforming a weighted linear sum with a non-linear activation function.
Fig. 3.5 shows the structure of a three-layer network. The unit in the hidden layer j

d
zj=yg (Zwﬁ)mJ . (3.23)
=0

has the form:
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The output layer has the form:
l 2
=g Zw](gj)zj ) (3.24)
§=0

1) o . . . . .
where w;;” denotes a weight in the first layer, going from input ¢ to hidden layer j and
w,g) denotes a weight in the second layer, going from hidden layer j to output k. g(-)

and ¢'() are activation functions of hidden layer and output layer.

For the classification problem, the network can be trained by minimising the cross-
entropy error using error back-propagation (Werbos 1994). When data from an input
pattern is presented to the input layer of a trained network, the network nodes perform
calculations in the successive layers until an output value is computed at each of the
output nodes. This output signal should indicate which is the appropriate class for the

input data.

3.4.1.2 Radial Basis Functions

The Radial Basis Functions (RBF) classifier (Broomhead and Lowe 1988) has the fol-
lowing form:
K
y(x) =Y wi;(x) +w (3.25)
j=1
where x is the input vector, y is the output, w; is the weight and wq is bias. ¢;(x)

denotes a local radial basis function, typically the local basis function is Gaussian:

1 P — 517
¢;(x) = W exp <—'—§;§i‘—> (3.26)

Training radial basis function networks involves a two-stage training procedure:

e Determine the parameters of basis function ¢;(z) using an unsupervised technique

(Use only the input data and not the target data).

e Determine remaining weights using standard linear methods. The target values of

training data are only used in this stage.

There are many potential applications where unlabelled input data are plentiful, but
where labelled data are in short supply as the labelling of the data with target variables
may require the time of a human expert which therefore limits the amount of the data
which can be labelled within a reasonable time. With such applications, the two-stage
training process for a radial basis function is particularly advantageous since the deter-

mination of the nonlinear representation can be done on a large quantity of unlabelled
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data, leaving a relatively small number of parameters to be determined using the labelled

data.

3.4.1.3 Support Vector Machines

A view of the regularisation method can be obtained from statistical learning theory,
where an induction principle called structural risk minimisation (Vapnik 1998; Cristian-

ini and Shawe-Taylor 2000) is presented.

The support vector machine (SVM) approach is motivated by results of statistical learn-
ing theory (Vapnik 1998). It is based on the Structural Risk Minimization (SRM) prin-
ciple that is rooted in VC (Vapnik-Chervonenkis) dimension theory.

Given a set of examples
(x1,91),- -+, Xnyyn),x € Ry € {—1,+1}, (3.27)

where R? denotes d-dimensional Euclidean space. The goal of learning is to find the

decision function f : R? — +1 which provides the smallest risk

R(P) = [ 5176 = sldPx.) (3.25)

where P is the unknown distribution that data are drawn from. To realise this, the

straightforward approach is to minimise the empirical risk

T

Remp(f) = = S 517(x) — il (3.29)
=1

The main idea of a support vector machine is to construct a hyperplane as the decision
surface in such a way that the margin of separation between positive and negative
examples is maximised (Gunn 1998). The set of vectors is said to be optimally separated
by the hyperplane if it is separated without error and the distance between the closest

vector to the hyperplane is maximal, as shown in Fig. 3.6.

&  Class ANon SV

@ @ ClassBNonSV
O Classasv
@ O casBsv
® .7 osi i

,7 SH

FIGURE 3.6: SVM optimal hyperplane
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For examples given in Equation (3.27), we want to find a decision function

Fup = sgn((wx) +1b) (3.30)
with the property
sgn((w'x;) +b) = i, (3.31)
and
nglciin IxFw +b| = 1. (3.32)
If this function exists, then
yi - (Whxi) +0) > 1. (3.33)

In the linearly separable case, the optimal separating hyperplane which generalises well

can be found by minimising the regularized risk functional (This is equivalent to min-

imising the VC dimension.)

W(w) = llwlp? (3.34)

subject to Equation (3.33). To solve this convex optimisation problem, one introduces
a Lagrangian
L(w,b,at) = —HWHQ Zaz yi((<Fw) +b) — 1) (3.35)

with multipliers o; > 0. The Lagrangian has to be minimised with respect to w,b and

simultaneously maximised with respect to «;. This means at the saddle point,

o 0
é_x;v_L<W’ b)) =0, = 30 L(w,b, ) = 0. (3.36)
This leads to "
W= Z 0 YiX; (3.37)
i=1

and

n
E aiy; =0 (3.38)
i=1
By solving its dual problem, the solution is given by:

o’ = argmin | = Z Z oy (X2 %) — Z oy (3.39)

11]1

with constraints
a; > 0, (3.40)
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n
> o =0. (3.41)
g=1

In many applications, most of the «; which are found by solving a quadratic program
turn out to be 0. Those with a; # 0 are called Support Vectors. On substitution of
Equation (3.37) into the decision function (3.30), gives the expression for the decision
function in terms of dot products:
!
Jwp = sgn (Z iy (x7xi) + b) (3.42)
i=1

The data only appears in the training problem in the form of dot products, x;-x;. In the
nonlinear case, one can first nonlinearly transform input vectors into a high-dimensional

feature space by a mapping ® : R® — H and then do a linear separation there. The

training algorithm only depends on ®(x;)T ®(x;). We have

n
fwp = sgn (Z o (P(x)T@(x;)) + b) (3.43)
i=1

If there is a kernel function, K, such that K (x;,x;) = ®(x;)7 ®(x;), it is only necessary
to evaluate K in the input space and it is not even necessary to know ®. The decision
function becomes

Jwp = sgn (Z i K (%, %) + b) (3.44)

i=1

According to Mercer’s condition (Courant and Hilbert 1953): There exists a mapping ®
and an expansion K (x;,x;) = ®(x;)7®(x;) if and only if, for any g(x) such that

[ oxax < o, (3.45)
the following inequality holds
/K(xi,xj)g(xi)g(xj)dxidxj > 0. (3.46)

Depending on how the inner-product kernel K is generated, it is possible to construct
different learning machines characterized by their nonlinear decision surface. Gunn
(1998) gives the details of several kernel functions which satisfy Mercer’s conditions,

such as:

e Polynomial
Kxx)=x-x+1%d=1,... (3.47)
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e Gaussian Radial Basis Function (RBF)

K(x,x) = exp <~§§~21&12‘/—)3> (3.48)

In the nonseparable case, slack variables are introduced to tolerate misclassifications,
& 2 0. (3.49)
The constraint of (3.33) is modified to
Yifwn(xi) > 1—&. (3.50)

The regularised risk functional is given by

1 n
U(w,&) = s |w?+C Y&, (3.5)

=1
where C' is a given value determining the trade-off between minimizing training errors
and minimising the model complexity term |[w|/?. The whole optimization process is

similar to separable case except additional constraints
0<e; <0 (3.52)

are required.

3.4.2 Optimisation

After setting up a model and specifying a loss function (and regulariser), the supervised
pattern recognition problem is reduced to an error minimisation problem. Thus choosing
suitable optimisation methods is of critical importance to pattern recognition. When
gradient information is available, this offers a natural way to perform the minimisation.
Many standard iterative optimisation methods are based on gradients, such as gradient

descent, conjugate gradients and Newton’s method.

Expectation-Maximisation (EM) based optimisation method (Dempster et al. 1977) is
a standard technique for maximum likelihood optimisation for incomplete data prob-
lem. The EM technique has been used widely to solve supervised learning problems
(Ghahramani and Jordan 1994) (Jordan 1998).

The main idea of the EM algorithm is to decouple the problem by estimating the dis-
tribution of the hidden parameters given the data and the estimated model parameters
in the E-step and in the M-step, estimate the model parameters by maximising this

distribution, which is a lower bound problem.
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3.4.3 Transductive Classification

The supervised classification method reviewed above belongs to induction-deduction
learning category. Unlike the induction-deduction learning, transduction learning does
not need an explicit classifier function estimated everywhere (Fig. 3.7). As most classi-
fication problems only require one to estimate the outputs of the unknown function for
a given test set, the global function estimation (in the induction step) may be overkill
(Cherkassky and Mulier 1998). Notice that transductive learning does not combine the
unlabelled data in the learning process. Only labelled data are effective in setting up

the transductive clagsifier. Thus transductive learning belongs to supervised learning.

[ Prior Knowledge }'
[ Training Data }7%[ Output )
[ Testing Data }J

FIGURE 3.7: Transduction

K-nearest-neighbour (KNN) (Bishop 1995) ia a popular non-parametric memory-based
model. No assumptions are made about the distribution of the data. Simple nearest
neighbour models do not require any training. The algorithm for making predictions
involves finding the smallest hypersphere centred around the point X (Fig. 3.8) which
contains K points (independent of their class membership), and then assigning it to the
class having the largest number of representatives inside the hypersphere. This is done
by a majority voting which states it should be assigned the label which occurs the most
amongst its K neighbours. KNN performs transduction as the local misclassification

error is minimised directly.
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FI1GURE 3.8: An example of K-nearest-neighbour classifier

Two important problems need to be considered in defining the classifier. One is how to
measure ‘closeness’. The simple and common choice is Euclidean distance. The other

question is how to choose a suitable value for K. K acts as a smoothing parameter. Too
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large a value of K may lead to a relatively poor estimator whereas too small a value
of K makes the model very sensitive to the individual data points, which can result in
poor generalisation. The value of K is problem dependent and an optimal value for K

can be estimated by using cross-validation.

3.5 Semi-supervised Classification

Semi-supervised classification refers to learning a classifier using both labelled data and
unlabelled data. It seeks to combine the two well-developed fields: supervised classifi-
cation and unsupervised classification. The semi-supervised learning diagram is shown
in Fig. 3.9. Note that it is a induction-deduction type of learning process. It is different
from transductive learning as no unlabelled data are involved in transductive learn-
ing process, while labelled data, prior knowledge and unlabelled data are three factors

needed for the inductive step of semi-supervised classification.

Prior Knowledge
Inducti { } Deducti { }
L Estimated Model coon Output
Testing Data

FI1GURE 3.9: Semi-supervised induction-deduction learning

3.5.1 A Toy Example

A toy example is used to demonstrate the necessity of using both labelled and unlabelled
examples in classification. A set of 2-D data is generated independently from three
Gaussians as two classes, where the two clusters close to each other belongs to different
classes. Each class has 6 labelled data, as shown in Fig. 3.10. Unsupervised learning
with two Gaussian mixtures fails as it tends to classify the data based on the distance
(Fig. 3.10(a)); supervised classification using Bayesian MLP network with two hidden-
layers gives a relatively large error on test data as a result of limited unrepresentative
training data (Fig. 3.10(b)) while a much better classification is shown in Fig. 3.10(c).

This example shows the importance of using all the available information in the data.
Although the labelled data contains important class information, it fails to represent
the distribution of the whole data due to its small size. A theoretical framework that
can exploit the unsupervised data to enhance classification, particularly when obtaining

supervised examples is expensive, is a fruitful goal for research.
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FIGURE 3.10: A toy example (+, A: labelled samples in two different classes; o: unla-
belled data)

3.5.2 A Review of the Value of Labelled and Unlabelled Data in Learn-

ing

The problem of combining labelled data and unlabelled data in learning has been an
active research area in recent years, since traditional supervised techniques provide no
means to incorporate extra knowledge contained in unlabelled data. Unsupervised clas-
sification techniques only uses unlabelled data and group them into clusters and provides
no class information. Both supervised and unsupervised classification techniques learn

information from data with the same form, i.e. either with class label or without class

label.

Castelli and Cover (1996) shows that labelled samples are necessary to construct a
classifier and are more valuable than unlabelled samples. However, supervised neural
networks have not played an important role in image segmentation, since labelled data
are often difficult to obtain or is unable to represent all possible variations of the op-
erational environment to which the classifier will be applied (e.g. medical and remote
sensing images). When labelled data are very difficult to obtain and input dimension-

ality is high, the unlabelled data can enhance learning. However, there is no framework
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to address the optimisation problem in combining both labelled examples and image

models.

Amongst early work, Gutfinger and Sklansky (1991) discuss mixed adaption to make
the classifier robust. Shahshahani and Landgrebe (1994) analyse the value of unlabelled
data in classification from the point of Fisher information matrix. They propose a
method of using unlabelled data in classification using mixture models where each cluster
is manually assigned to a class in the learning, which is termed “hard-partition”. A
cluster-class “soft-partition” method is proposed by Miller and Uyar (1996). Miller also
analyses the connection of his method to the radial basis function networks. Nigam et al.
(2000) use a method similar to Shahshahani and Landgrebe (1994) in text classification
using both labelled and unlabelled documents. Jaakkola and Haussler (1998) consider
a two-step learning for supervised techniques such as support vector machines: they
build a generative model from unlabelled data and then exploit this generative model
in supervised learning. Joachims (1999) first proposes a sparse and regularised method
for inference for text classification using support vector machines using both labelled
and unlabelled examples. Blum and Mitchell (1998) propose a learning paradigm called
co-training to address the problem where strong structural prior knowledge is available.
In (Nigam and Ghani 2000), Nigam analyses the effectiveness and applicability of co-
training. Cohn et al. (1996) discuss active learning with statistical models. These results
indicate that it is advantageous to incorporate unlabelled data with labelled data in the

learning process.

More recently, Jebara and Pentland (1998) propose a maximum conditional likelihood
method as an extension of the EM algorithm to conditional density estimation un-
der missing data, where a bounding and maximisation process is given to specifically
optimise conditional likelihood instead of the usual joint likelihood. Schuurmans and
Southey (2001) discuss metric-based methods for adaptive model selection and regu-
larisation that exploits unlabelled data to adaptively control hypothesis complexity in
supervised learning tasks. The idea is to impose a metric structure on hypothesis by
determining the discrepancy between their predictions across the distribution of unla-
belled data. Blum and Chawla (2001) discuss learning from labelled data and unlabelled
data using graph minicuts which is seen to be robust to noise on the labelled data. This
method uses a similarity measurement between data to construct a graph and then out-
puts a classification corresponding to partitioning the graph in a way that minimises the
number of similar pairs of examples that are given different labels. Ivanov et al. (2001)
discuss EM method for weakly labelled data.

As a problem involving both labelled and unlabelled data, it is believed that semi-
supervised learning is capable of learning more information from the data and thus
achieve improved performance. However, as both labelled data and unlabelled data
are involved, the model assumption and model optimisation become very difficult. Re-

cently, kernel machines such as support vector machines are an very active research
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field by mapping input spaces into kernel spaces. The capacity and flexibility provided
by kernel machines might enable them to be used in the complex modelling problem
with labelled and unlabelled data. In terms of optimisation, the Expectation Maximisa-
tion (EM) algorithm can be used by treating the unlabelled data’s labels as the missing
data. Thus kernel machines and EM algorithm may provide useful insights and powerful

methodologies in the direction of semi-supervised learning research.

The following section will give an probabilistic method for semi-supervised classification.

The detailed model assumption and parameter optimisation will be discussed.

3.5.3 A Probabilistic Method

In the following, the data to be classified will be denoted x = {x1,Xs2, " ,X,} with
mixture (cluster) labels z = {z1,29, -+, 2y}, z; € {1,2,---, K} and class labels y =
{vi,92,- * ,yn}, vi € {1,2,---,J} to be decided, as shown in Fig. 5.4. x; is an m-
dimensional feature vector for pixel 7. Note that the class labels ¢ are distinguished
from mixture labels z, as z are not necessarily the meaningful physical class labels c.
In addition, D = {(x},4}), (xh,5),---,(x!,,4',)} are the labelled samples and their

nl?
associated class labels, where n! is the number of labelled samples.

A probabilistic method for using both labelled and unlabelled data are proposed in
(Miller and Uyar 1996). Given the model, the joint data log-likelihood is written in the

form

logZ = logp(x)+logp(x’,y")

nt

= logp(x)+ Y _logp(xl,u}). (3.53)

i=1
nl
This objective function consists of a “supervised” term ) log p(xi,yé) based on the
1=
labelled data x; and an “unsupervised” term logp(x) based on unlabelled data x. The
joint likelihood allows the inclusion of unlabelled data in the learning. The supervised

term can be expressed as

K
p(x ) = p(hixl, 2 = k)p(xl|zl = k)p(z} = k). (3.54)
k=1
The labelled examples make possible the establishment of a probabilistic distribution
ply; = jlz = k) to describe the connections between the “mixture label” z; and the

“class label” y;.

A model is needed to classify each mixture to each class. A hard “partitioned” mixture

model is used in (Shahshahani and Landgrebe 1994), where each mixture component is
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hard-partitioned to classes, that is the mixture component k& belonging to which class
J is predetermined. A probabilistic “generalised mixture” (GM) model is introduced in
(Miller and Uyar 1996) and shows improved performance:

> plz = kixl, o))

xl.}cl.:j
Vi =0y = jloi = k) = —= , (3.55)
d ’ ‘ Zl)p(% = klx!, cl)

X

i

where v;; is used as p(y; = jlz = k) is independent of the pixel i. Finally, the class

membership of each data is decided by

K
Py = jlxi) = Y vyp(z = klxs). (3.56)
=1

An algorithm is needed to solve the integrated optimisation in Equation (3.53). This
optimisation is very difficult as it involves both labelled and unlabelled data. It is
noted that the EM algorithm is an efficient method to solve an optimisation problem
where there is hidden data. For supervised learning, a gradient-based method can be
used for optimisation. In recent years some EM-based optimisation algorithms have
been proposed for parameter estimation in unsupervised learning. Jordan and Jacobs
(1994) use an EM algorithm to maximise conditional likelihood in a mixture of experts
framework. The mathematical connections between the EM algorithm and the gradient-
based approaches for maximum likelihood learning of finite Gaussian mixtures were
developed in (Xu and Jordan 1996). These make the EM algorithm a natural method
for solving optimisation problems involving both unlabelled and labelled data.

Starting with an initial estimate of model parameters, @(0), the algorithm iterates:

e E-step: Estimate Q(®|®®) = E[log p(x, z) + log p(x!, ¢ |x, ™)

e M-step: Find P+ = arg max Q((P]@(t)).

Here ¢ represents the ¢th iteration. As the unlabelled data are independent of each other,

the mixture label’s prior is updated by,

n nl
5 :” = bix) + £ 6 = b, )
7=1

Pz = k)= =

1

(3.57)

n + n!

When using a Gaussian distribution to model the conditional distribution p(x;|z; = k, ®),

exp {—5 (% — 1) T2 (i — 1) }

p(xi|z =k, @) =
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the mean vector and the covariance matrix of component &, ¢r = (p, Xg), are re-

estimated using:

i

zm<.—m&&+zm<@~m%lh

“](gt—i—l) — i:ln , (3.59)
$° (= = k) + 3202 = K, )
i=1 i=1
t n!
P(Zi() = k[x;)Sik + zp( = k|xt, c)Sik

()Y = = =l : (3.60)
;¢< *MX%+EPU)“M&,J

 p(xil2 = B)P(EY = k)

zp&w“-m U”—m

(3.61)

® ®) pr,®
p(xilz;” = k), Pz =k
p(z = kjxd, ) = — | it ) (3.62)

2 plxil” = kP = k)

with 'Y(le ) updated by Equation (3.55).

This EM re-estimation continues until the updates fall below a tolerance or the maximum

number of iteration reaches. Finally, the class label is determined using Equation (3.56).

3.6 Summary

This chapter has reviewed classical approaches to pattern recognition, with the em-
phasis on learning and generalisation. There may be several factors that influence the
performance of the pattern recognition classifier. First the correctness and efficiency of
the labelling process to generate data for training the classifier. This part may need
a large amount of expert knowledge. The correct labelling process is often critical to
the following training process. Secondly what kind of environment the classifier will be
used. Most classifier performs better on the data that is similar to the labelled data
used for setting up the classifier while fails on the data that is different from the labelled
data. Thirdly the way the classifier will be trained. This is a very important step and
the field that quite a lot of research have been done. Many classifiers have been set up
using various model assumptions and optimisation algorithms. The problem of setup of
a classifier which has good generalisation with respect to the testing data is still an open

question. The semi-supervised techniques are a good way to treat this problem.
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The next chapter will use the three different types of classification techniques introduced

in this chapter in simulated and real PET reference region extraction.



Chapter 4

Temporal PET Reference Region

Extraction

The purpose of the work described in this chapter is to investigate whether the charac-
terisation of dynamic PET images will benefit from the application of expert knowledge

contained in the labelled data, using supervised and semi-supervised classification.

Pattern recognition techniques are applied to solve the PET reference region localisation
and modelling problem for ['!C](R)-PK11195 PET images. Results on simulated PET
data are presented, followed by the results on real PET data. For both types of data,
results of reference region exaction via unsupervised, supervised and semi-supervised

pattern recognition are compared.

4.1 Parametric and Non-parametric Modelling

There are two general approaches to the analysis of PET images: parametric approaches
and non-parametric approaches. Parametric methods construct an explicit TAC model,
using a set of biochemically or physiologically meaningful parameters. Often the param-
eters are chosen such that they represent the desired characteristic, and so estimation of
the parameters is the main task of interest. After the modelling, a “statistical image”
can be displayed to show the value of one feature (non-parametric modelling) or one pa-
rameter such as binding potential in PET (parametric modelling) associated with each
voxel (Gunn et al. 2001).

The parametric approach (model-based approach) has traditionally been applied to the
design of signal processing algorithms. A mathematical model is derived that describes
the physical signal-generating system, such as compartmental models in PET. This
model is then used to derive a mathematical procedure that should constitute an optimal

solution to the processing problem faced. An optimisation procedure is then devised

44
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which minimises some error between the model and the data to recover the optimal
model parameters. However, the approach is often hampered by the lack of knowledge
about the signal generating system. Thus simplified assumptions are often made about

the system, producing suboptimal solutions.

Non-parametric approaches apply some manner of filtering or transformation to the TAC
such that features which represent a desired characteristic can be obtained (principal
component analysis; factor analysis; clustering technique etc.). Data-driven approaches
are an alternative to the model-based approach, which avoid the definition of a mathe-
matical model based on the prior assumptions about the system. Examples of the signals
are provided as the inputs to the system. Then, by learning from these examples, the
characteristics of the real system (non-linear, non-stationary, non-Gaussian etc.) are
taken into the learning system implicitly. No explicit model is necessary. However,

the parameters in the generated learning system are not directly related to meaningful

parameters.

PET modelling in this thesis first uses non-parametric methods to extract the reference
region, then uses a parametric model, a simplified reference region model, to generate
statistical images of parameters of interest such as binding potential. The next three
sections describe three non-parametric methods - unsupervised classification, supervised

clagsification and semi-supervised classification - in PET modelling.

4.2 Unsupervised Reference Region Extraction

Most classification methods used in PET are unsupervised. A basic method is Principal
Component Analysis (PCA) which has been used in PET for dimensionality reduction
(Yap et al. 1996). However, the orthogonal factors produced by PCA are not necessarily
related to physiologically meaningful time-activity distributions. For PET reference
region segmentation, K-means and Gaussian Mixture Model (GMM) are two efficient
techniques that have been used (Ashburner et al. 1996). No apriori knowledge is
involved in the segmentation process, and the number of underlying patterns and the

final discrimination are determined manually.

In (Ashburner et al. 1996), cluster analysis is used for the characterisation of dynamic
["'C]flumazenil PET data. The data are partitioned according to its probability of
belonging to each of k clusters, as described in the Gaussian mixture unsupervised
modelling techniques introduced in Section 3.3.2 (Hartigan 1975). The superiority of
Gaussian mixture models for clustering over other methods like K-means is that it
provides a powerful probabilistic representation. In the experiments in this chapter, the
unsupervised classification method used is the Gaussian mixture models. It is optimised

using EM algorithm described in Section 3.3.2.2.
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Fig. 4.1 shows the procedure in the unsupervised classification for PET image modelling
to generate binding potential images. After setting up an unsupervised clustering algo-
rithm using Gaussian mixture models, an expert manually selects one or two clusters as
the data from the reference region with the other clusters representing the non-reference
region. The mean TAC from all the manually chosen reference clusters is calculated.
This is fed into the reference region model, allowing the generation of parametric maps

of binding potential and relative delivery of each voxel.

!
Gaussian Mixture
Modelling

Manually choose one or more clusters
as the referenc region TACs

—

l Reference region TAC I | Non-reference region TAC J

Average

One Reference TAC

Reference Region Model

|

Binding Potental Image

FiGUre 4.1: The unsupervised Gaussian mixture models and the reference region
model to generate the binding potential image

4.3 Supervised Reference Region Extraction

No supervised classification techniques have been used before in PET modelling. In this
section a supervised classification approach is proposed to extract of the reference region
from PET dynamic images. When enough representative training data are available,
supervised classification is more suitable for extracting the reference region from PET
dynamic images than unsupervised classification. In unsupervised learning, the learning
must proceed on the distribution of the patterns in the input space alone. The goal of
unsupervised classification is to model the probability distribution of the input data and
to use this to segment the input space into regions. As no clagsifier is produced, an expert
must decide how many patterns there are, as well as how to map from the clusters to
target patterns after unsupervised learning. Each time a new data set appears, the whole
learning process must repeat, and as such no information is aggregated over different
scans. In supervised classification, the desired output is known for each input pattern
and the system can learn from these examples to generalise to “unseen” values for a
new input pattern. The basic notion of supervised learning is to construct a model from
examples. For a system to use supervised learning, a teacher must help the system in

its model construction by providing positive and negative examples of objects belonging
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to these classes. An inductive process is used to build up a model from the examples,
producing a system which can determine the class membership of an input pattern. The
merit of supervised learning is that it sets up a classifier that can remember the expert

knowledge and can be reused.

As Cherkassky and Mulier (1998) observe, no single universally accepted theoretical
framework for predictive learning currently exists. Neural networks have received an
immense research interest and have been applied in many areas. The Bayesian approach
to neural networks can be considered to be an example of the parameter space approach
to learning, viz. the learning machine is parameterised by a weight vector and the
task of learning is to find optimal values of these weights. Kernel methods such as
support vector machine can find the unique and optimal solution. In this application,
there are a large number of data sets and also a relative large amount of noise. If a
support vector machine classifier were used, a large proportion of training data would
be kept as support vectors. As a result, the classification process will be relatively slow.
Additionally, the inaccurate data kept as support vectors will affect the accuracy of
the classification. Thus, instead of support vector machine or other kernel methods, a

Bayesian multi-layer perceptron classifier is used.

4.3.1 Bayesian Network Structure

The Multi-Layer Perceptron (MLP) network is one of the most widely used supervised
neural networks, but it can suffer from “overfitting”, especially when the data are noisy.
A Bayesian framework (Mackay 1992b) avoids “overfitting” by incorporating capacity

control to the model.

In this section, a multi-layer perceptron (MLP) network with a logistic activation func-
tion is trained with a regularised cost function according to the Bayesian framework.

The network is trained using the cost function

Rreg() = Remplw) + 3 3 . (4.1)

where o, is the regularizer for the subset ¢ of weights W,, |[w|?2 = . w? is the
weWe

regulariser for the weights W, w is the weight vector and Renp(w) is the sum of cross-

entropy loss term

Remp(w) = — Z{yZ In fzi,w) + (1 —yi) In(1 = fzi,w))}. (4.2)
i=1

The initial values for q. are set to small arbitrary values and the network is then trained

using gradient descent to minimise Ryeq(w). The regularisers « are then re-estimated
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using the evidence framework

Ye
Qe = 75, (43)
w2
where ; N
=  (VTILV),; 4.4
’YC = >\] —f-Odc( c )j]: ( >

J is the total number of network weights, A; and the jth column of V are the jth

eigenvalue and eigenvector of the Hessian matrix V2G.

Once the regularisation parameters have been re-estimated, further minimisation is per-
formed. This re-estimation and further training continues until the updates fall below
a tolerance. This re-estimation scheme enables the network to adjust its regulariser

controlling the capacity of the network and limiting over-fitting.

4.3.2 Decision Making

Let Cy and C5 denote reference region TAC class and non-reference region TAC class
respectively. The logistic activation function allows the network output y; to be inter-
preted as the probability p(C1]x;). In this two-class problem, p(Ci|x;) + p(Calx;) = 1.
The discrimination rule is:

x;~C1 if  p(Cilx) > 0.5

x;~Cy if p(Ch]x;) < 0.5.

In a PET scan, once all the voxels belonging to the reference region are extracted, the

mean reference region TAC can be obtained.

4.3.3 Supervised Neural Network Reference Region Extraction

‘After setting up a supervised neural network, each voxel in the PET image is segmented
as the reference region and the non-reference region. The mean TAC from the extracted
reference region is calculated. This is fed into the reference region model, allowing the
generation of parametric maps of binding potential and relative delivery of each voxel.
Fig. 4.2 shows the procedure used in the supervised reference region extraction and

binding potential image generating.

4.4 Semi-supervised Reference Region Extraction

Semi-supervised classification enables learning information from both labelled and un-
labelled data. This section gives the detailed procedure of extracting reference region

using the semi-supervised learning method and generating binding potential images.
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First Step Second Step
Labelled Data TACs
Training v
Neural Network Neural Network

n

l Reference region TACs I J Non-reference region TACSJ

Average
One Reference TAC

Reference Region Model (<—

Binding Potental Image

FIGURE 4.2: The supervised neural network and the reference region model to generate
the binding potential image

The labelled reference and non-reference TAC data and all the TACs in the PET images

are used to train the probabilistic semi-supervised classifier.

Similarly, let C and C denote reference region TAC class and non-reference region TAC
class respectively. The semi-supervised classification output y; can be interpreted as the
probability p(Cy|x;). Each voxel in the PET image can be segmented as the reference
region and the non-reference region according to the same decision rule as described in

the supervised decision making (Section 4.3.2).

In a PET scan, once all the voxels belonging to the reference region are extracted, the
mean reference region TAC can be obtained. This is fed into the reference region model,
allowing generating parametric maps of binding potential and relative delivery of each

voxel.

Fig. 4.3 shows the procedure of using semi-supervised classification in PET reference

region extraction and parametric image generation.

4.5 Simulated PET Experiments

In this section, synthetic positron emission tomography (PET) images are used to ex-

amine the performance of the algorithms.
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FIGURE 4.3: The probabilistic semi-supervised method and the reference region model
to generate the binding potential image

4.5.1 Data Description

Simulated data are generated as follows: an 18-D vector from the cortex in a real PET
scan is extracted as a reference region time-activity curve with binding potential value
BP = 0. Three other vectors are generated by using this reference region TAC and the
simplified reference region model (Mintun et al. 1984) with BP = 1,2, 3 respectively.
Thus four vectors with different binding potential are generated. These vectors are
assigned to each of four regions in the simulated image as shown in Fig. 4.4, with added
noise for TACs in voxels. The reference region, with BP = 0 is the oval background.
Additionally, labelled examples are obtained by generating 18-D vectors with BP = 0
in one class and BP = 1,2,3 as the other class. In all experiments, Gaussian noise
with zero mean and a certain standard deviation is added to the TACs. The standard
deviation varies from 0.3 to 2.6 with the increment of 0.1 in the trials. In each trial, the
noise level in the labelled samples and the image to be segmented are the same. The
standard deviation is directly used to represent the noise level instead of the traditional
Signal-to-Noise Ratio (SNR) representation, as the underlying signal is constant in the

trials with different noise level.
Three different methods are compared to extract the region with BP = 0 from the
regions with BP =1,2,3:

e Unsupervised classification using Gaussian mixture model described in Section 4.2;

e Supervised segmentation using Bayesian neural networks as described in Section
4.3;

e Semi-supervised method described in Section 4.4.
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(a) Four regions in the image (b) Four time-activity curves associated
with four regions

FIGURE 4.4: The simulation data: Each voxel in the image has an 18-D feature vectors

The detailed description of the procedures are given in the previous three sections and
illustrated in Fig. 4.1, Fig. 4.2 and Fig. 4.3. In supervised and semi-supervised algo-
rithms, the final classification is carried out automatically by assigning every voxel to the
class where it has the highest posterior probability. In the unsupervised segmentation,
the number of clusters is manually specified. In this simulated experiment, the cluster
assignment can be done automatically by choosing the cluster whose centre has lowest

BP as the reference class, while the rest are treated as the other class.

4.5.2 Results

The image segmentation results using these three methods, with 500 labelled data and
noise standard deviation o = 0.8, are displayed in Fig. 4.5. The unsupervised segmenta-
tion result (Fig. 4.5(a)) fails to localise the reference region, when 4 clusters were used.
The supervised segmentation result in Fig. 4.5(b) gives an improved result, while the
semi-supervised segmentation result in Fig. 4.5(c) gives the best classification accuracy.

A 3 x 3 median filter is applied to the segmentation result in Fig. 4.5, as shown in
Fig. 4.6. It can be seen that after the median filtering, a large amount of scattered
points inside the images are removed. However, the scattered points remain around the
image edge. The semi-supervised method gives the best accuracy. In the supervised
segmentation image, the edge of the right side object is still not ideal, compared to the

original image.

To further compare the algorithms’ performance, the influence of the number of labelled
examples and the noise level in the data is examined. Although the unsupervised seg-
mentation results are not affected with the change in the number of labelled examples,

for the sake of comparison, they are displayed in the same way as the other two meth-
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(a) Unsupervised segmentation

60 80 100 120

20 40 60 20 40

(b) Supervised segmentation (¢) Semi-supervised segmentation

FIGURE 4.5: Segmentation results with 500 labelled examples, noise standard deviation
c=0.8

ods. Fig. 4.7, 4.8, 4.9 show the mean and standard deviation for the voxel classification
accuracy, the non-reference region classification error and the B P value of the extracted
TAC respectively. The four rows in each figure correspond to the labelled examples’s
number 100, 200, 500 and 1000 respectively. The error bars are generated by running
every method for ten times with different initial values for model parameters. The num-
ber of clusters is set to 4 in both the unsupervised and semi-supervised classification.

The three types of error are defined as follows:

e The total classification error is calculated by N“m:,?s:a;’{lxrﬁcel:f;{)fg;:zels * 100%;

e The non-reference region classification error is

Number of misclassified non—reference region vozels % 100%:
Total number of non—reference region vozels s

e The BP value of the extracted reference TAC is calculated using the simplified
reference region model (Equation (2.3)) and the basis function method (Equation

(2.6),(2.7),(2.8)).
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(a) Unsupervised segmentation

20 40 60 80 100 120 20 40 60 80 100 120

(b) Supervised segmentation (c) Semi-supervised segmentation

FIGURE 4.6: Results after median filtering

Each figure shows the change of one of these three types of error with a different noise

level. The noise level runs from 0.2 to 2.6.

Fig. 4.10, 4.11, 4.12 show the results with the number of clusters in the unsupervised

and semi-supervised classification changed to 10.

Fig.4.7 and Fig.4.10 shows the total classification error with 100, 200, 500, 1000 training
data. In both figures, the semi-supervised segmentation achieves best classification per-
formance while the unsupervised segmentation result gives the worst classification error.
As each optimisation process involved in this simulation can only find a local minimum,
the classification results vary with different initial values for model parameters. With
smallest standard deviation, the semi-supervised method shows its robustness with dif-
ferent starting points. Unsupervised classification performance is also unstable as it
gives highest standard deviation. As the noise level increases, the classification error
for supervised and semi-supervised classification increases, as expected. However, the
unsupervised classification error decreases in the four-cluster case. One possible expla-

nation is that when the noise level is low, the algorithm tends to split the true reference
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FIGURE 4.7: Simulation results on classification accuracy, with 4 clusters in unsuper-

vised classification (Red solid : Error bar for semi-supervised classification; Blue dotted:

Error bar for supervised classification; Black dashdot: Error bar for unsupervised clas-
sification.)

region data into more than one clusters, as only one cluster will be picked, the total
classification error is large. When the noise level increases, the chosen cluster contains
more true reference region data. This downtrend is less severe when the cluster number

increases to 10, as shown in Fig.4.10.

As our main interest is the accuracy of reference regions, the percentage of non-reference
regions classified as reference regions are emphasized. Fig.4.8 and Fig.4.11 show the non-
reference region mis-classification error. The unsupervised classification achieves best
accuracy. The result for the 10-cluster case achieves more accuracy than the 4-cluster
case. However, semi-supervised classification has the lowest standard deviation, showing

that its performance is very stable.

Fig.4.9 and Fig.4.12 show the binding potential error of the classified reference region
voxels. The binding potential is the meaning parameter that will be extracted to de-
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scribe the characteristic of PET images. Thus minimising the binding potential error
is very important in PET segmentation. The semi-supervised method achieves the best
performance with excellent stability reflected by the low standard deviation in Fig.4.7
and Fig.4.10. The unsupervised method also achieves competitive performance but it is

less stable.

Overall, the semi-supervised method obtains the best accuracy in this simulation. The
semi-supervised performance is also very stable in that the error bar for the semi-
supervised classification in all the above figures are small compared to the other two
methods. One possible reason is that the simulated data is generated from a Gaus-
sian distribution with additional noise. As there are Gaussian mixtures in the semi-

supervised model (Section 3.5.3), it is easier to find similar optimal solutions for the
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FIGURE 4.9: Simulation results on binding potential accuracy, with 4 clusters in un-

supervised classification (Red solid : Error bar for semi-supervised classification; Blue
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model parameters from different starting points in the optimisation process. Although
Gaussian mixtures are also used in the unsupervised model, the unsupervised method

often fails to find the right class membership for Gaussian components, making the final

result less stable.

4.5.3 Discussions
4.5.3.1 Different Ways to Estimate Unsupervised Classification Error

In the above section, the total classification error and the non-reference region classifi-

cation error (i.e. false positive) is used. Another aspect of classification error is

e the reference region classification error (i.e. false negative), defined as
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Fi1Gure 4.10: Simulation results on classification accuracy, with 10 clusters in unsu-

pervised classification (Red solid : Error bar for semi-supervised classification; Blue

dotted: Error bar for supervised classification; Black dashdot: Error bar for unsuper-
vised classification.)

Number of misclassified reference region vozels * 100%
Total number of reference region vozels 0.

These three different aspects of the same unsupervised classification result is shown in
Fig. 4.13. The non-reference region classification error is very small. As we only choose
one cluster that has the smallest binding, there may be a large amount of reference

region data missed, leading to a large reference region classification error.

4.5.3.2 The Influence of Cluster Number

In this simulation experiment, we notice that the specification of cluster number is
subjective and could significantly influence the unsupervised classification result. To
compare the influence of the number of clusters, the noise level in data is fixed at 0.8

and the cluster centre vectors for 4-cluster and 10-cluster classification after K-means
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Fi1GURE 4.11: Simulation results on non-reference region classification accuracy, with

10 clusters in unsupervised classification (Red solid : Error bar for semi-supervised

classification; Blue dotted: Error bar for supervised classification; Black dashdot: Error
bar for unsupervised classification.)

initialisation and Gaussian mixture modeling are plotted separately. As shown in Fig.
4.14 and Fig. 4.15, the cluster centre chosen from the 10 cluster result appears to have
less binding but more noise. The higher this cluster number we specify, the more chance
of choosing the cluster that has very small binding (i.e. very close to reference region).
However, the cluster may have less data inside and is thus subject to noise. A trade off

needs to be made in choosing a suitable cluster number.
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4.6 Real PET Experiments

As in the simulation, the three different methods are compared to extract the reference

region from the regions with binding:

e Unsupervised image segmentation using EM with a Gaussian mixture model, as

introduced in Section 4.2;

e Supervised segmentation using Bayesian neural networks as described in Section
4.3;

e Semi-supervised method proposed in Section 4.4.

Eighteen [1C](R)-PK11195 PET scans from 17 normal volunteers and one patient were
used in the experiment. The data details have been described in Section 2.5. Our goal
is to extract the prototype cortex region. This is carried out as follows. 2800 TACs

from the cortex region and 2100 TACs from the scalp, thalamus and cerebellum regions
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were randomly sampled from seven scans as the labelled data in supervised and semi-
supervised segmentation. The data from the cortex region is labelled as the reference
region examples, while the 2100 data from other regions are labelled as the other class,
the non-reference region examples. The choice of the cortex as the ground truth is based
on the evidence that the cortex part of the brain in all healthy scans investigated has
no significant binding. The seven scans involved in training are listed in Table 4.1. The
segmentation results for all 18 scans will be generated. The segmentation results on the

11 scans not used in the training are independent results for performance evaluation.

Scan used in training
n(2791
n02805
n02816
n02833
n(02870
n(03637
n03657

TABLE 4.1: Scan used in training

In the unsupervised and semi-supervised segmentation, after several trials with various
cluster number, the cluster number is set as 10. 10 is also found as a suitable clus-
ter number in the previous simulations and PET image segmentation experiments in
literature (Ashburner et al. 1996). In supervised classification, after initial investiga-
tions varying the number of hidden nodes, four hidden nodes are found to be suitable
for this segmentation problem. In supervised and semi-supervised algorithms, the final
classification is carried out automatically by assigning every voxel to the class that has
the highest posterior probability. As there is no information about cluster identification
available in unsupervised segmentation, the final classification is carried out by choosing
the cluster whose centre has lowest BP as the reference class, while the rest are treated

as the other class.

4.6.1 Data Pre-processing and Input Normalisation

The characterisation of each voxel to the reference region and the non-reference region
is decided by its TAC. An 18 dimensional feature vector for each voxel is extracted from
the tracer concentration at 18 different time instants, see Fig. 4.16. This is based on a
priori knowledge that the information contained in this 18 dimensional feature vector is
sufficient to represent the time activity curve and distinguish the reference region and

the non-reference region.

Input normalisation ensures that all of the input dimensions and the network weights are
of order unity. Data are normalised before input to the network. By treating each of the

18 input dimensions independently, each dimension’s mean and variance with respect to
Y, p
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FIGURE 4.16: An example of feature vector extracted from 18 different time instants
ina TAC

the training set are calculated. Thus each dimension of the transformed training data

has zero mean and unit standard deviation.

4.6.2 Segmentation Result

Fig. 4.17 shows the extracted reference TACs in the 7 scans, where part of data are used
in training supervised and semi-supervised classifiers. Three curves are shown in each
figure: the curve extracted from the semi-supervised classification; the curve extracted
from the supervised neural network and the curve extracted from the unsupervised
clustering. In unsupervised classification, the mean curve is obtained by choosing the

largest cluster, as the way used in Hammersmith hospital.

To assess the performance across different PET scans, the performance on 11 indepen-
dent scans are tested. Fig. 4.18 shows the independent testing results. The curves
extracted from supervised and semi-supervised classification catch the shape of the ref-
erence region curves very well. However, the unsupervised classification performs incon-
sistently. It fails to capture the features of reference region curve in 4 scans n02833,
n02870, n03637, n03657 in Fig. 4.18. In the test scans, unsupervised classification also
fails on scans n02907, n02938, n3642, n03661, n04071, n04073 and n02904.

By using the labelled data information, the supervised and semi-supervised classification
have successfully learnt the information to discriminate the reference region from the
other regions based on the shape of their TACs. In each sub-figure of Fig. 4.17 and Fig.
4.18, the curve extracted from the semi-supervised method has lower tracer concentration
value in last several time instants. Comparing these to the curves extracted from the
supervised method, it indicates that the extracted reference region TACs extracted from

the semi-supervised method have lower binding potential value than the reference region
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TACs extracted from the supervised method. Their performances are consistent across

subjects.

The output TACs from the supervised neural network capture the shape of the curve
well as a result of successfully learning the knowledge in the network. However, the
unsupervised clustering technique suffers from the mismatch between the number of un-
known underlying clusters and the number of clusters specified in advance. Additionally,

manual selection of one cluster makes the process time-consuming and user dependent.

In the case where the cortex has significant binding that makes it unsuitable to be the
reference region in PET reference region, the supervised and semi-supervised methods
have the advantage of finding the reference region, unrestricted to a specific region. As
no ground truth is available, a quantitative performance comparison based on these

figures are difficult. However, this is done by test-retest experiments.

4.6.3 Parametric Images

Applying the learnt TAC to the reference region model enables parametric images to
be obtained from PET scans. Parametric images such as binding potential images give
functional information instead of anatomical information of the scan subject. Binding
occurs when the ligand and receptor collide due to diffusion, and when the collision has
the correct orientation and enough energy. Measuring the rate and extent of binding
provides information on the number of binding sites, and their affinity and accessibil-
ity for various drugs. The scan subject’s anatomical information can be obtained by

registering PET images with an anatomical image (such as CT, MRI) of the subject.

Fig. 4.19 shows an example of binding potential image generated for plane 1n0.20 of scan
n03578, a healthy subject. These three figures correspond to using the reference region
TAC generated from unsupervised, supervised and semi-supervised method respectively.
The binding potential images are generated as follows: Firstly most voxels outside the
scalp with low TACs need to be filtered out to avoid unnecessary computation. Let x
represent the TAC to be filtered and z, represent the reference region TAC extracted
by the semi-supervised method. The filtering (i.e. thresholding) rule is :

18 8

if > 27 > 0.5 3" xl, calculate BP value;
18 18

i 527 <055 4, BP=0.

The calculation of BP value is realised by applying the simplified reference region model

(Equation (2.3)) and the basis function method.

The binding potential image for plane no. 20 of the patient scan n02904 using three

reference region extraction techniques are shown in Fig. 4.20. The binding potential
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(a) BP image using unsupervised extracted ref-
erence region

(b) BP image using supervised neural network
extracted reference region

(c) BP image using semi-supervised extracted
reference region

FIGURE 4.19: Parametric image of binding potential (BP) for a healthy subject’s PET
scan n03578 plane 20
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images are generated using the same procedure as for the scan n03578. The reference
region TAC extracted by the unsupervised segmentation has a large error and fails to
extract the reference region TAC, as shown in Fig. 4.18(k). The binding potential
image using the unsupervised extracted reference TAC is dramatically different from
the others, with the binding potential value in the range [—15,30]. From the binding
potential image, it can be seen that the scan contains a strong binding area around the

middle-right region.

4.6.4 Improved Tests

As there is no obvious ground truth for performance evaluation in real PET data exper-

iment, improved tests for performance evaluation are introduced.

The performance of the different classifiers is to be compared by 4 test-retest exper-
iments. Each test-retest experiment contains a scan pair, where two PET scans are
carried out for the same subject over an internal of several days, under the same scan-
ning condition. Thus these two scans should be very close to each other. Any robust and
good modelling methodology should be able to generate similar BP values for the same
region in these two scans. The difference between the segmentation results for these
two scans can be measured and used as a criterion for evaluating the performance of the
segmentation method. The scan pairs from the same subjects for test-retest experiments
are listed in Table 4.2. The details of the test-retest experiment are illustrated in Fig.

4.21.

Test-Retest Scan Pair
n03578, n03689
n03642, n03657
n03661, n04071
n03694, n04073

TABLE 4.2: Test-Retest Data Set

Fig. 4.22 shows the test-retest results. Each sub-figure shows the test-retest difference
between a scan pair, where the binding potential differences for thalamus, cerebellum
and cortex are displayed. The binding potential of each region is calculated by using the
extracted reference region TAC and the simplified reference region model. Three bars

for each region correspond to three different classification methods.

Fig. 4.22 shows that unsupervised classification methods achieve best performance in
the first test-retest subject while it gives a large variance in the other three test-retest
case. The supervised and semi-supervised classification performs quite stable in all these
four test-retest cases. However, there may be more than one factor that influences the
test-retest results and making final conclusions needs more experiments and further

investigation.
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(a) BP image using unsupervised extracted ref-
erence region

(b) BP image using supervised neural network
extracted reference region

(c) BP image using semi-supervised extracted
reference region

FIGURE 4.20: Parametric image of Binding Potential (BP) for patient PET scan n02904
plane 20
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Subject a: scan 03578, n03689 Subject b: scan n03642, n03657
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FIGURE 4.22: Test-retest result
4.6.5 Cerebellum Binding’s Correlation with Age

The subject’s age is increasingly being recognised as an important factor influencing the
brain’s function. However, there is a relatively small literature on actual neurochemical
differences on their interaction with age (Zubieta et al. 1999; Iidaka et al. 1999). The
age-associated variations in the receptor binding is examined using PET data from a

group of heathy human subjects at different ages.

The binding of the cerebellum in 17 healthy scans are examined. Fig. 4.23 shows the
estimation of cerebellum in these scans with extracted reference region TAC and the
simplified reference region model. Three sub-figures correspond to the results with three
different reference region extraction methods. R? statistics is a descriptive measure of
how the variation in binding potential can by explained by the variability of age. Table
4.3 shows the R? statistics analysis of binding potential’s variation explained by age for
three methods. No obvious correlation of age with cerebellum binding potential value

can be found in these 17 scans.

[ Method ] R* s‘catistics—l
Unsupervised 3.28%
Supervised 14.4%
SemiSupervised 2.06%

TABLE 4.3: R? statistics
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4.6.6 Summary

From this series of segmentation and data analysis for 18 [\'C}(R)-PK11195 PET data,
the importance of using labelled data (i.e. expert knowledge) in the segmentation process
has been justified . The extracted TAC using methods using labelled data, supervised
and semi-supervised clagsification, leads to more stable and reliable results than using
unsupervised clustering. Although the performance evaluation is very difficult for real
PET data, the test-retest scheme and cerebellum’s binding experiment show that the

supervised and semi-supervised extracted reference region TACs are relatively consistent.

4.7 Conclusions

Different data modelling techniques are used in this chapter for PET reference region
extraction based on the time-activity curves. Both simulated and real PET data are
used. In simulations, performance evaluation can be examined as there is ground truth.
The unsupervised segmentation technique with Gaussian mixture modelling is very un-
stable as there are great uncertainties in the choice of cluster number and the physical
meaning of each cluster. The semi-supervised segmentation technique outperforms both
unsupervised and supervised Bayesian neural networks in that it uses all the information
provided in the data at the same time. The performance of these three segmentation
methods is also tested and compared on real PET data. As there is no ground truth
available in the real data set, a test-retest scheme is used to examine the consistency
of the segmentation methods. Finally the correlation of thalamus’s binding with age is

also analysed.

By building expert knowledge into the segmentation process, and integrating this knowl-
edge across scans, we may enhance the robustness of the segmentation process and hence,
confidence in the extraction of the reference regions. Additionally, the development of
these methods to segment reference regions enables automatic generation of parametric

maps of microscopic parameters such as binding potential.

As a result of the data independence assumption for all these learning methods, the
connections between image voxels are not modelled. As a result, the segmented im-
age appears to be noisy. The next two chapters will deal with incorporating spatial

information within the image segmentation problem.



Chapter 5
Image Segmentation

This chapter presents the theory of Markov random fields and show how they can be
used in PET reference region segmentation. It is widely recognised that the image
segmentation and processing algorithms perform more satisfactory if they have a solid
foundation in mathematical models. The Markov random field (MRF) is a class of sta-
tistical models for random variables that is well suited for image models. It provides a
rich framework for modelling images and other spatial systems (Besag 1986; Ripley and
Sutherland 1990); and its flexibility making it applicable in various image segmentation
problem. In this chapter, Markov random field models are used to incorporate local de-
pendency into the segmentation process. The theory of Markov random fields, including
the details of the model, how to incorporate them into various learning process and the

related optimisation methods, will be described.

5.1 Markov Random Field Models

Contextual constraints are ultimately necessary in vision system. The use of context
is indispensable to analysic images. The idea of using contextual information in image
modelling and segmentation has given rise to algorithms based on Markov random fields
(MRFs) (Geman and Geman 1984; Derin et al. 1984; Li 1995). Markov random field
theory provides a convenient and consistent way for modelling context dependent entities
such as image voxels and correlated features. This is achieved through characterising

mutual influences among such entities using conditional MRF distributions.

A Markov random field consists of a collection or a lattice of random variables (voxel
values) with local interactions. MRF models define a probability distribution over a set
of interacting variables. A number of concepts are fundamental to the use of MRFs,
namely neighbourhoods, cliques, the Hammersley-Clifford theorem, Gibbs distributions

and potential functions.

73
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5.1.1 Neighbourhood System and Cliques

If the observed image x = {x;,7 € S} is defined on a rectangular lattice which contains
n voxels,

S={i|l <i<n}. (5.1)

Each voxel can be called a site. For each site 7, there is a label z;. The labelling problem
is to assign a label from the label set to each of the sites in S. The sites in S are related

to one another via a neighbourhood system, defined as

N = {Nji € 8}, (5.2)

where N is the set of sites neighbouring 7.

Neighbourhoods on the voxel lattice are defined in the following way. The set of neigh-
bours of lattice point z; are those points j such that the functional form of the local
conditional probability, p(z;|z1,- - ,Zi—1, %41, " - , #n), depends only on z;; if site 7 is a
neighbour of site 7, then site j is also a neighbour of site i. A clique is a set of points
which are all neighbours of each other. Fig. 5.1 shows the first order and second order
neighbourhood system and corresponding cliques for images. Clearly, the number and
the types of cliques grows very rapidly with the increase of the neighbourhood size, and
allows almost unlimited forms of interaction between voxels in a neighbourhood to be

specified. In applications, first and second-order clique systems are widely used.

O
O | a O 0 O
[m]
(a) First order (b) Cliques for first order neigh-

neighbour system bour system

N

%

= |

(c) Second order
neighbour system

FIGURE 5.1: First order and second order neighbourhood systems and cliques

AN IF K

(d) Cliques for second order
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5.1.2 Markov Random Fields

As stated above, MRF models are built by specifying the local probability structure
- how voxels in a neighbourhood interact - and this is a natural way of modelling.
The difficulty lies in the lack of a formulation specifying these conditional probabilities
which leads to a consistent form for the joint probability. The distribution of image

labels z = {%;,7 € 8} is a Markov random field over S if

p(z) >0 (5.3)

p(ZiIZS—{i}) = p(zilzn;).- (5.4)

This depicts the local characteristics of z. That is in MRFs, only neighbouring labels
have direct interaction with each other. The conditional distribution of any variable in
the random field given the remaining field is identical to the distribution conditioned

only on values in a finite size local cligue of neighbouring voxel values.

5.1.3 Gibbs Random Fields

A set of random variables z is a Gibbs Random Field (GRF) on S with respect to AV if

and only if its configurations obey a Gibbs distribution of the form
plz) = Q7le 77, (5.5)

where @) is a normalising constant called the partition function and T is a constant.

U(z) is the energy function. The energy

U(z) = Z Ve(z). (5.6)
ceC
is the sum over all possible cliques C on the lattice and potentials V,(z) is the potential

function depending on the variables z; within the clique C.

5.1.4 Markov-Gibbs Equivalence

The Hammersley-clifford theorem (Hammersley and Clifford 1971) establishes the equiv-
alence of the Markov random field and the Gibbs distribution, The theorem states that
z 15 a Markov random field on S with respect to N if and only if z is o Gibbs random

field on S with respect to N

The proof that a Gibbs random field is a Markov random field is relatively straightfor-

ward and shown in the following:
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Let p(z) be a Gibbs distribution on S with respect to neighbourhood system A. The
conditional probability

(i, 25-i) p(z)
p(z|zs-:) = = 5.7)
A R M S (
_ I A O
where z’ = {z1,- , 2i-1,Zi+1," - , zn}. Expanding p(z) = Q 'e << gives
-2 Ve(z)
e cel
p(zilzs—i) = TS Ve(e) (5.8)

Zz’. e c€C
The potential functions that do not include voxel ¢ cancel each other in the dominator
and numerator, thus

-2 Vel

e cEA
p(zilzs-i) = ——s v
Zz,ﬁ e cEA
where A consists of cliques that contains voxel <. That is it only depends on i’s neigh-
bours. So it is a Markov random field. This proves that a Gibbs random field is a
Markov random field. The proof that a Markov random field is a Gibbs random field is
more involved. For details see (Clifford 1990).

(5.9)

This theorem provides a simple way of specifying the joint probability p(z) in Markov
random field using Equation (5.5).

In summary, Markov random field model builds up hierarchically in the following man-
ner:

e Specify a neighbourhood system.

e Determine the cliques associated with that neighbourhood system.

e Specify the potential functions associated with each clique.

e Form p(z) = Qe V().
A MRF is said to be homogenous if potential function V,(z) in the Gibbs distribution
(Equation (5.5)) is independent of the relative position of the clique C. It is said to

be isotropic if V.(z) is independent of the orientation of C. For mathematical and

computational convenience, the homogeneity is assumed in most MRF models.

5.2 Segmentation Technique

Markov random field models allow the spatial continuity of image voxel labels to be

incorporated into the modelling process. This section details a heuristic and statistical
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physics based optimisation method to find the maximum a posteriori (MAP) solution to
image segmentation based on MRFs. An Example of PET image segmentation is given

to illustrate the process.

5.2.1 MAP Estimation

Let x = {x1,x%2, -, X} denote the observation of an image which contains n voxels

while z = {21,22, -+ , 25} is the true label for the image.

A maximum a posteriori (MAP) estimation is achieved at z = z*, where
z* = argmax p(z|x). (5.10)
z
As data model p(x) is known,

p(z[x) o p(x|z)p(z). (5.11)

5.2.2 MRF-MAP Estimation

Assuming the data are conditionally independent,

p(x|z) = [ [ p(xilz). (5.12)

€S
and
1 _Gnmz?
p(xi)2i) = o€ 20?2, (5.13)
Then . )
_ Z (xi~z2~)
p(xlz) = e = ¥ (5.14)
(V2ma)™

The prior model p(z) is a Gibbs distribution of the form in Equation (5.5), where
n
Uz)=>_ > (z—2) (5.15)
i=1 ¢ eN;
Then from Equation (5.11), the posterior probability

plzlx) oc eVl (5.16)

where

" (2~ xq)? =
Ulzlx) =Y ﬁ-—z—(jg—) YD) (- z)* (5.17)

i=1 i=1 i eN;
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Thus the MAP estimation is equivalently found by

z* = arg min U(z|x). (5.18)

However, the optimisation of Equation (5.18) is a difficult problem. A computationally
expensive method - simulated annealing (Geman and Geman 1984) - is often used to
find a global minimum for combinational optimisation problems. This is a statistical
mechanics formulation of the optimisation problem. Simulated annealing is capable of
- at least at the limit of infinite computing time - localising the mode of the energy

function even in the presence of local minima.

The function in Equation (5.17) satisfies the convexity property. Convexity guarantee
simplifies the optimisation process. The local minimisation algorithms such as iterated
conditional modes (ICM) (Besag 1986) could be used. This method finds an approximate
solution to Equation (5.18), by iteratively minimising the function with respect to each

voxel z;,
zf = arg min U (z|x;) (5.19)
zi
where ( )
Z; — Xj
Ulzlxi) = _?g“i’“)“ + %‘[ (% — z)>. (5.20)
i'eN;

The initial value for z can be set to the maximum likelihood solution for each voxel,
which ignores the local dependence and merely choose z; to maximise p(z;|x;) at each 4
separately. The solution is obtained by iterating Equation (5.19) for a certain number
of cycles or until convergence. This approach will converge to a local minimum. Often
in the iteration process, the raster is varied from cycle to cycle to reduce the small

directional effects.

5.3 Unsupervised Image Segmentation

5.3.1 Joint Segmentation and Parameter Estimation

When the model parameters are known, image segmentation can be achieved by ad hoc
ICM iterations, as described in the previous section. When the model parameters are
unknown, an algorithm that enables joint parameter estimation and image segmentation
is needed. EM, mean field annealing and Markov chain Monte Carlo methods can all
be used to find (or approximate) the solution to the problem with different computa-
tional demands. These segmentation techniques are referred to as unsupervised image

segmentation here as no labels are involved.
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5.3.1.1 EM based Optimisation

As before, let x = {x1,X2, -+ ,X,} denote the observation of an image which contains
n voxels while z = {21, z2,- -+, z,} is the true label for the image. After setting up the
model for z and x, we need to estimate the distribution z = 21, 29, , 2z, and the pa-

rameter . A general and effective algorithm for solving this problem is the Expectation
Maximisation (EM) (Dempster et al. 1977) algorithm. In chapter 3, EM algorithm is
introduced to solve the incomplete data problem in unsupervised and supervised classi-

fication.

Starting with an initial estimate of <§<O>, the algorithm iterates the following two steps:

o E step: find the function Q(®|®®)) = E[log p(x, z|®)|(x, D®)]
e M step: find D) = arg max Q(®|d®)
For the observed image model x in Equations (5.12) and (5.13), after initialising param-

eters @ = {(pf”, 5, (u”, =P, -, (WP, D)} and p(=)|2@), the parameter
® is updated by (in the following p(-) is a simplified notation of p(:|®)):

2 (A7 = kjx;)x;
S ’ (5.21)
> p(z" = klxi)
i=1
52 p(2 = kpxi) (xi — )T (i — )
2y (t+1) .
by = = n ) (5.22)
- > (2 = kix)
i=1
where
p(z.(t) =klx;) = p(xilzi(t) - ]{;)P(Zi(t) = k)
Z p(x3)
1.8 ®
pila” = PG = K) (5.2

S p(xile® = 0P = k)
=1

p(x,-]zi(t) = k) is calculated from Equation (5.13). In the case that z;’s are independent,

the prior can be updated by

> p(z? = kfxi)

(t+1) _ 1y _ =1 5.94

When the assumption of independence of image voxels does not hold, the estimation
of the prior model p(z-(tﬂ) =k) (k=1,2,---,K) is very difficult. An approximate

1



Chapter 5 Image Segmentation 80

technique is considered here, using a simple state prior model (Besag 1986; Zhang et al.

1994), approximate Equation (5.24) by
plzi =k) = p(z = k|z;,1 € ;). (5.25)

By substituting an independent voxel prior with a Markov random field model, an
approximate implementation of the EM procedure for the MRF model can be obtained.
Here a simple Markov random field model
N eB%i(k)
p(z = k|zZi,l € N}) = = (5.26)

E €ﬁ5i(k)

k=1
is used, where §;(k) is the number of neighbours of ¢ in state & and § > 0 is a parameter
controlling the influence of neighbouring voxels N; on voxel 7. The neighbour of voxel i

is selected to be 3 x 3 voxel grid.

Currently, Markov random field models have been used for modelling static images where
x; for each voxel i is a scalar. Asshown in Equation (5.5), it is the hidden labelled image
z instead of x that is modelled as a Markov random field, so the MRF model can be

directly extended to dynamic image modelling.

The algorithms used to segment images in the independent voxel case and dependent
voxel case (MRF model) are listed in Table 5.1 and Table 5.2 respectively.

£ in Equation (5.26) is a regularisation parameter. The larger the parameter, the more
influence the pixel’s neighbour on the pixel. Optimal parameter estimation of the MRF
model parameter is a difficult problem as the intractable nature of the partition function
(See Equation (5.5)).

TABLE 5.1: Segmentation Algorithm for Independent Voxel Case

Given data set x;,7 = 1,2, ,7;

1. Data preprocessing;

2. Set the number of Gaussian distributions, K;

3. Initialise the parameter ®;

4. Apply K-means until & maximum iteration number is reached;

5. Apply EM iteration until convergence or a maximum iteration number is reached:

5a. Calculate each probability p(x;) using Equation (5.13), (5.23);
5b. Update the prior using Equation (5.24); Update parameter ® using
Equation (5.21), (5.22);
6. Segment the image: z; = arg m]?Xp(zi = k|x;).
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TABLE 5.2: Segmentation Algorithm for Dependent Voxel Case

Given data set x;,7 = 1,2,--- ,n;

. Data preprocessing;

Set the number of Gaussian distribution, K;

Initialise the parameter ®;

Apply K-means until a maximum iteration number is reached;

Set parameter g;

Iterate until convergence or the maximum iteration number is reached:

6a. Calculate each probability p(x;) using Equation (5.13), (5.23);

6b. Update prior using Equation (5.41); Update parameter ® using
Equation (5.21), (5.22);

7. Segment the image: z; = arg mgxp(zi = k|x;).

e N

5.3.1.2 Mean Field Theory and Mean Field Annealing

If the random variable set z = {z;,7 € S} is a Markov random field, then it has a Gibbs
distribution: p(z) = Qe V(®) where Q is the partition function, U(z) is the energy

function. The energy U(z) = ) V(z) is the sum of clique potentials V.(z) over all
ceC
possible cliques C. Mean field theory (Chandler 1987) concerns the following problem:

How to find the mean of the above field?

The mean value at site i is given by

() = Y zp(z)
= Q') zeVO, (5.27)

However, due to the interaction between the z;’s, the sum in Equation (5.27) involves
all the possible realisations of the MRF and the precise calculation of (z;) is not com-

putational feasible (Chandler 1987).

The mean field assumption maintains that the influence of zy,4’ # ¢ in the calculation of
(z;) can be approximated by the influence of (z;). For the sake of simplicity, here only

the second-order cliques are considered. That is the energy function can be written as
1
Uz) = Z Ve(us) + 3 ;, Velzi, z0) | - (5.28)
% i EN;

where V() and V.(-,-) represent clique potentials for a single site and a pair of neigh-

bouring sites respectively. The mean field local energy at site 7 is

U™ = Vi(z) + D Velzi (). (5.29)
i'EN;
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Define:

Usz(zl) = U(Z)Izi/:(zi/),i’#i
= U™ + R ((25.0)).

Similarly, define
QM = Y e [-pUl ()]
2
= Q' exp [-BRM ((25-0)]
where Q;ﬂf " is called the mean field local partition function, given by

anfl = Z €Xp {"ﬂUimf/(Zi)}

Then, by the mean field approximation

(z) = # S exp [0 (20)]
_ a%?Zexp U ()]

(5.30)

(5.31)

(5.32)

(5.33)

Mean field theory suggests that when estimating the mean field at 4, the influence of the
field at other sites can be approximated by that of their mean. Therefore, the fluctuations
on these sites are neglected. The ability to calculate the mean field component at site

in terms of its neighbours allows the complete mean field to be found using an iterative

update procedure. If the inverse temperature parameter 3 is increased so that 5 — oo,

then the system undergoes an annealing process, converging to the MAP estimate, and

is known as mean field annealing.

Zhang (1992) and Greiger and Firosi (1991) propose a further approximation, neglecting

the fluctuations at neighbouring sites in the partition function Q.

Uz) = > Vi)

(5.34)
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and

Q = UM(z) =Y exw[-pU™ (2)]

Il

[T e |8 Vel + 5 3 Veles, dz) (5.35)

i€S 2 V' EN;

This is very similar to Besag’s pseudo-likelihood approximation. The only difference is it
is conditioned on the mean values instead of current state. While pseudo-likelihood ap-
proximation is an ad-hoc method, the mean field approximation has a plausible physical

meaning.

5.3.1.3 Simulated Annealing

Simulated annealing is a numerical optimisation technique based on the principles of
thermodynamics. Annealing refers to the process in which a solid material is first melted
and then allowed to cool by slowly reducing the temperature. The primary advantage
of simulated annealing is the ability to move from local optima. Thus the ability to find

the global optimum is not dependent upon the starting point.

The temperature T in Equation (5.5) is set to a constant. If we allow the value of T'
to be varied, then it will alter the kurtosis of the distribution and is therefore known as
the “temperature” by analogy with physical systems governed by Gibbs distributions.
Simulated annealing uses this as a control parameter to enable the MAP configuration
of the field to be found. For large values of T the distribution in Equation (5.5) is
relatively flat. The temperature is then steadily lowered, making the local and global
minima become further pronounced. Then as the temperature tends to zero, the surface

moves towards a set of inverted peaks, the deepest at the global minimum.

Geman and Geman (1984) provide a Gibbs sampler to perform the simulated annealing,
called Markov chain Monte Carlo. First a cooling schedule is designated for the Gibbs
distribution temperature parameter. The temperature begins in a hot state, causing the
energy surface to be relatively flat, since the system is relatively excited. The Gibbs
sampler can be used to draw samples from the distribution of Equation (5.5) at any
temperature. However as the temperature of the distribution is altered the transition
probabilities will change, causing the Gibbs sampler to sample from an inhomogeneous
Markov chain. Geman and Geman (1984) proved that if the temperature is reduced

according to

C
T =i ® (5.36)

where k denotes the number of full scans of the lattice and C' is a fixed constant, then

the Gibbs sampler will converge to the uniform distribution over all the configurations
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with maximum probability.

Two important factors governing the cooling schedule is the temperature and the step
size for perturbation. Geman also showed that the constant C = N A U, where N is
the number of sites in the lattice and AU is the maximum difference in energy function
for two configurations which differ at only one site. This is a huge number, making
simulated annealing computationally expensive. Many authors have carried out research
in an attempt to find an optimal annealing schedule or an adaptive annealing schedule.
Much of these are reviewed in Ruanaidh and Fitzgerald (1996) and Neal (1993).

Barker and Rayner (2000) proposed a reversible jump Markov chain Monte Carlo method
for image segmentation, enabling the sampling to include the cluster number. The re-
versible jump was developed by Green (1995) to allow a Metropolis-Hastings based
algorithm to sample the model order - the number of clusters from the posterior distri-

bution.

5.3.2 Multi-resolution Segmentation

In recent years, substantial interest has been devoted to developing multi-resolution
algorithms to the image and signal processing problems. One reason for this is that
the multi-resolution methods mimic the human vision system. Multi-resolution enables
combination of local and global information in images. In Bouman and Shapiro (1994),
a multi-resolution random field model replaced the Markov random field model in image

segmentation and a sequential maximum a posterior optimisation was proposed.

Founded in re-normalisation group theory (Chandler 1987), the multi-resolution ap-
proach to image segmentation usually begins by establishing the model parameters a
priori at the highest resolution of interest in the original image. The image is then
repeatedly down-sampled, while fresh model parameters are estimated at each of these
ensuing resolutions. Segmentation is first carried out at the coarsest resolution through
the use of a standard segmentation algorithm. The resulting segmentation is then used
to initialise or constrain the segmentation process at the next coarsest level. The scheme

is repeated at each resolution until the segmentation is carried out at the highest one.

5.3.3 Summary

In terms of learning, the above image segmentation methods (with specified or unspec-
ified model parameters) are unsupervised methods, as no image data are labelled. The
Markov random field model is one of the most efficient statistical models for image seg-
mentation. However, most works related to its application belong to the unsupervised
learning category and cannot include labelled data. Consequently, unsupervised learning

suffers from two problems: choosing and validating the correct number of clusters and
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FIGURE 5.2: Multi-resolution image segmentation

ensuring that algorithmic cluster labels correspond to meaningful physical labels. This
is why supervised classifiers such as Bayesian networks, support vector machines etc.
can be preferred for data classification. However, these traditional supervised learning

methods provide no way to incorporate either image models or unlabelled data.

In the following, two new methods for incorporating labelled samples in image segmen-
tation will be presented, termed supervised and semi-supervised image segmentation
respectively. The first one is a baseline method, hierarchically applying a neural net-
work to the image models in the learning process, details of which will be shown in
Section 5.4. In Section 5.5, a new semi-supervised image segmentation scheme is pro-
posed by using both labelled and unlabelled data as well as imposing local constraints

on image voxels in the learning process.

5.4 Supervised Image Segmentation - A Hierarchical Method

In the following, the image to be segmented will be denoted x = {x1,X2, - ,Xn}
with mixture (cluster) labels z = {z1,22, '+ ,2n}, z € {1,2,--- ,K} and class la-
bels ¢ = {c1,¢0, " ,en}, ¢ € {1,2,--+,J} to be decided. x; (i = 1,2,---,n) is
an m-dimensional feature vector for voxel i. Note that the class label ¢ is distin-
guished from mixture label z, as z is not necessarily the meaningful physical class
labels ¢. The image is often either under-segmented or over-segmented. In addition,
(xt, ) = {(x}, &), (xb,cb), -+, (xf1 » cﬁt 1)} are the labelled samples and their associated

class labels.

Supervised classification learns the mapping from the input feature to an output class
label from labelled examples. Thus the classifier can be used to determine the class label
c of the feature for image voxels x (Fig. 5.3). Because of the success of supervised learn-
ing methods (such as neural networks) in pattern recognition, they have been applied to
image segmentation such as texture and within MPEG4 (Jain and Karu 1996; Doulamis



Chapter 5 Image Segmentation 86

& ®
observed image @ @

@ @
© ©

FI1GURE 5.3: Image segmentation by supervised learning

‘class label” image

et al. 2000). However, supervised techniques has not been widely used in medical image
segmentation. One likely reason is that it is sometimes very expensive to obtain labelled
examples. This may also be because the standard supervised learning techniques such
as error back-propagation often assume the data are generated independently and pro-
vide no way to incorporate either unlabelled data or image models. Here a hierarchical
method is proposed. Given labelled data (x!, "), first a Bayesian multi-layer perceptron
(MLP) network is trained with a regularized cost function according to the evidence
framework (Mackay 1992b). As this neural network considers no spatial continuity, the
output of the neural network was further modelled as a Markov random field, using
Besag’s ad hoc iterated conditional modes (ICM) (Besag 1986) method.

The image segmentation can be carried out by hierarchically training a supervised neu-
ral network and modelling the test image’s spatial continuity as a Markov random field.
This hierarchical fusion method provides a way to use labelled data in the image seg-
mentation process. However, the two different steps of this fusion process are based
on two contradictory assumptions: the setup of the neural network in the first stage
assumes that the data are independent upon each other while the second step using a
Markov random field to model data’s inter-connections. This problem comes from the
neural networks being based on the data-independence assumptions and provide no way

to incorporate spatial dependence within the data.

5.5 Semi-supervised Image Segmentation - A New Com-

bined Learning Framework

5.5.1 The Advantage of Using Labelled and Unlabelled Data in Image
Segmentation

The importance of combining labelled data and unlabelled data in learning has been
illustrated by an example in Section 3.5.1. In image segmentation, the combination of
labelled and unlabelled samples is necessary to achieve ideal performance, as the images
obtained at different times may be subject to various changes, and expert knowledge
embedded in the labelled samples is critical in understanding the images. This section

presents a combined framework for image segmentation.
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5.5.2 Image at Three Levels: Observed Image; “Mixture Label” Im-
age; “Class Label” Image

In the new framework, the image to be segmented is modelled at three different levels:
the observed image; the “mixture label” image; the “class label” image, as shown in

Fig. 5.4. Probability distributions are used to model the connections between different

levels, enabling more accurate estimation to be made.

observed image

‘mixture label’ image

‘class label” image

FIGURE 5.4: Image modelled at three levels

5.5.3 Incorporate Labelled Data In Image Segmentation

An image segmentation scheme is proposed here for the case that the image to be seg-
mented x and labelled examples (x!,c!). We call this learning scheme “semisupervised”
as it involves both labelled and unlabelled examples. As shown in Fig. 5.4, the image
to be segmented is modelled at three different levels: the observed image x, the mix-
ture label image z and the class label image ¢. The model assumptions for x and z
are the same as the unsupervised case introduced in Section 5.2: an MRF model (see
Equation (5.5)) for z and the conditional independence assumption (Equation (5.12)) for
x. Additionally, the connections between different levels are modelled by a probability

distribution determined from the labelled examples.

Labelled samples are incorporated into image segmentation by maximising

logL = logp(x,z)+logp(x’,c)

nt

= logp(x,2) + Y _ logp(xi, ). (5.37)
i=1

This expression differs from both the unsupervised segmentation function (Equation
(5.10)) and the supervised segmentation function. The framework integrates three parts
of information from different sources: the image data and their spatial continuity em-

bedded in p(x, z); further knowledge in the labelled samples given in p(x!, ). The last
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term in Equation (5.37) can be expanded as
K
p(xi,cl) = Y pleilxt, 2 = k)p(xilz = k(= = k). (5.38)
k=1

The labelled examples enable the establishment of a probabilistic distribution p(¢; =
jlzi = k) to describe the connection between the “mixture label” z; and the “class
label” ¢;. Here the “generalized mixture” (GM) model proposed in (Miller and Uyar
1996) is used:

Z p(zf = klx}, cl)

) Lel=j
Vi = plei = jlzi = k) = ZP(Z ) (5.39)

xz

(v is used as p(c; = jlzi = k) is independent of the voxel 7). Finally, the class
membership of each data is decided by

i —jlxz Z’Y]]kp = kin) (540)

5.5.4 Model the Image’s Spatial Distribution in “Mixture Label” Im-

age

The modelling of spatial continuity within images is important as the contextual infor-
mation is vital in understanding images. A Markov random field model is used in the
second level of the three level framework, i.e. “mixture label” image z is modelled as a

Markov random field, i.e., p(z) > 0 and p(zi|zs_g33) = p(zil2n;)-

Thus p(z) obeys Gibbs distribution. To incorporate neighbourhood interactions into the
model, a pseudo-likelihood approximate technique proposed in (Zhang et al. 1994) will
be used to approximate the mixture label’s prior
N P (k)
p(zi = k) = p(z; = k|zm, m € N;) = —, (5.41)

Z 6551'("7)

k=1
where 6;(k) is the number of neighbours of ¢ whose mixture label is & and 8 > 0
is a parameter controlling the influence of neighbouring voxels. This approximation

technique is chosen for computational convenience.

5.5.5 Optimisation

An algorithm is needed to solve the optimisation problem in Equation (5.37). It is noted

that the EM algorithm is an efficient method to solve an optimisation problem where
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there is hidden data. For supervised learning, a gradient-based method can be used
for optimisation. In recent years some EM-based optimisation algorithms have been
proposed. (Jordan and Jacobs 1994) uses an EM algorithm to maximise conditional
likelihood in a mixture of experts framework. The mathematical connections between
the EM algorithm and the gradient-based approaches for maximum likelihood learning
of finite Gaussian mixtures were developed in (Xu and Jordan 1996). These make the
EM algorithm a natural method for solving optimisation problems that involve both
unlabelled and labelled data.

Starting with an initial estimate of model parameters '/13(0), the algorithm iterates:
o [-step: Estimate
Q(2]81) = Ellog p(x, z) + log p(x!, ") |x, ]
e M-step: Find 3+ = arg max Q(®|2®).

Here t represents the tth iteration. When the unlabelled data are independent of each

other, the mixture label’s prior is updated by,

n TLl
oy 2 pE” = E) + Ep(a = Eixi, el
N - K} = = = . 42
p(e =) e (5.42)

When using a Gaussian distribution to model the conditional distribution p(x;|2; = &, @),

1 Tsa—1
exp { —5(xi — pi) B (ki — ) }
Xz =k, ®) = , 5.43
p(xilz; ) (2m)m/2| 5, [1/2 ( )
the mean vector and the covariance matrix of component k, ¢ = (p, Xk), are re-

estimated using:

() 2w I ol
Yooz = klxi)xi + ) plz 7 = klxg, c)x;
=

M](:H) _ z‘:ln = , (5.44)
2. (e = ki) + 2 p(a(? = kil )
== 1=
e ORI
r41) E Pz = klx:)Sik + Z pz;” = k|xj, ;)5
(2%)( _ i=1 Z:ll , (5.45)
7 7
2 p(a)” = kixi) + L pla? = ki)
where Sy, = (x; — ,u,(:))(xz— ,u(t))T,
: (t) - K (t) -
(2 = kfx;) = If(x’{z" K)PGE = k) (5.46)

S p(xil 2 = k)P = k)
k=1
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and O _ 11, ® p,®
p(xilz; =k)v. Pz, =k
(] Mjik ) (5.47)

K
kE p(xi|2l = k)vﬁ,?(%” =k)
=1

p(z) = k|xd, ) =

with 'yj(r: D updated by Equation (5.39). This EM re-estimation continues until the
updates fall below a specified threshold or the maximum number of iteration reaches.

Finally, the class label is determined using Equation (5.40).

5.5.6 Summary

A new semi-supervised image segmentation framework is proposed with the view to en-
abling the labelled examples and the image to be considered in the learning process.
Thus the generalisation performance can be improved. The learning scheme proposed
here is a three-level image model with probability distributions describing the connec-
tion. The image voxel’s connection is modelled as a Markov random field model in the
second level. An EM based optimisation algorithm is also proposed to solve this difficult

combined learning problem.

The proposed approach is superior in that:

e Both the labelled data and unlabelled data are used in the learning phase, so that
the classifier uses knowledge in the labelled samples as well as additional knowledge
of the data distribution from the unlabelled data, which is very important when

labelled data are sparse.

e Each image is modelled at three different levels: the observed image, the “mixture
label” image and the “class label” image, where connections between different
levels being described by probability distributions, enabling a posterior probability

distribution of the data to be recovered.

o A Markov random field model is used to incorporate neighbourhood interaction

into the learning process.

o All information is considered within an integrated framework instead of in a hier-

archical way.

5.6 Conclusions

Low-level image segmentation is a fundamental and yet difficult task in machine vision.
Markov random field (MRF) models are one of the widely used model-based methods

for image segmentation. The main theory of Markov random field model-based image
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segmentation has been presented in this chapter. The local interactions between image
voxels, Markov random fields models are introduced. The Markov random field model
enables consideration of contextual dependence which is indispensable in image analysis.
By modelling interactions between image voxels, regularisation in image segmentation
is realised, thus maximum a posterior (MAP) image segmentation can be achieved.
However, the inclusion of MRF models makes the optimisation process difficult. The
computationally expensive MCMC method can be used with the potential to find the
global minimum. Further more if the cluster number is unknown, reversible jump MCMC
can be used. If the model parameters are known, ICM is an efficient approximation
optimisation method to find a local solution. Mean field annealing is a method to
find the minimum variance approximation. Both ICM and mean field annealing can to
used in Expectation-Maximisation algorithm to do joint model parameter and image

segmentation.

As Markov random field models express global relationships in terms of local statistics,
with the expense of heavy computation burden. Multi-resolution techniques attempt to
circumvent this problem by providing a mechanism by which longer range interactions

can quickly propagate the image model.

Following the introduction of general image segmentation issues and the unsupervised
image segmentation techniques, a new hierarchical supervised method for image segmen-
tation was proposed in Section 5.4 and a new combined image segmentation framework
and the optimisation algorithm in Section 5.5. It can be seen that the new combined
image segmentation framework has an integrated learning process without any contra-

dictory assumptions as exists in the hierarchical supervised image segmentation process.

As the combination of labelled and unlabelled data are a developing research field in
machine learning, there may be other ways to combine labelled samples in the image seg-
mentation as well. However, the combined framework proposed in this chapter provides
a natural way to incorporate the Markov random field data model into the combined
learning process. The use of this combined image segmentation scheme and other unsu-

pervised and supervised segmentation schemes will be compared in the next chapter.



Chapter 6

Spatio-temporal PET Reference

Region Extraction

The methods presented in chapter 5 enable labelled data, image models and unlabelled
data to be used in the image segmentation process. In this chapter, these methods
will be used in simulated and real PET images for reference region extraction. This is
referred as spatio-temporal PET reference region extraction as both spatial information

(voxel location) and the temporal information (time activity curves) are used.

6.1 Simulation Studies

6.1.1 Description of Experiments

The synthetic data used here is the same as described in Section 4.5.1. Three different
methods are compared to extract the region with BP = 0 from the regions with BP =

1,2,3:

e Unsupervised image segmentation using EM with a pseudo-likelihood prior ap-

proximation in Section 5.3.1.1;

e Supervised segmentation by hierarchically using trained neural networks and ICM

as described in Section 5.4;

e Semi-supervised method proposed in Section 5.5.

A 3 x 3 pixel neighbourhood is used in the Gaussian Markov random field model,
in Equation (5.41) is set to 1. In supervised and semi-supervised algorithms, the final
classification is carried out automatically by assigning every pixel to the class that it

has the highest posterior probability. In the unsupervised segmentation, the cluster

92
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number is set to 4. As there is no information about cluster identification available, the
classification is carried out by choosing the cluster whose centre has the lowest BP value

as the reference class, while the rest are treated as the other class.

6.1.2 Segmentation Results

The image segmentation results using these three methods, with 500 labelled data and
noise standard deviation ¢ = 2.1, are displayed in Fig. 6.1. The unsupervised segmen-
tation result (Fig. 6.1(a)) fails to localise the reference region, although the mixture
number is set as 4, which is the real cluster number. The semi-supervised segmentation
result in Fig. 6.1(c) gives the best classification accuracy as it captures the edges of

different classes better than the supervised segmentation result in Fig. 6.1(b).

20 40 60 80 100 120 20 40 60 80 100 120

(b) Supervised segmentation (c¢) Semi-supervised segmentation

FIGURE 6.1: Image segmentation results with 500 labelled examples, noise standard
deviation o = 0.8

To further compare the algorithms’ performance, the influence of the number of labelled
examples and the noise level in the data is examined. Although the unsupervised seg-

mentation results are not affected by the change in the number of labelled examples, for
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the sake of comparison, they are displayed in the same way as the other two methods.
Fig. 6.2 shows the mean and standard deviation for the voxel classification accuracy,
the non-reference region classification error and the BP value of the extracted TAC.
The four rows correspond to the labelled examples’s number 100, 200, 500 and 1000
respectively. The error bars are generated by running every method for ten times with
different initial values for model parameters. The number of clusters is set to 4 in both
the unsupervised and semi-supervised classification. The three types of error are defined
as follows:

e The total classification error is calculated by N“mﬁszalo{lyéi‘zfi?{) nge}’;x els 4 100%;

e The non-reference region classification error is

Number of misclassified non—reference region vozels % 100%:
Total number of non—reference region vozxels 0

e The BP value of the extracted reference TAC is calculated using the simplified
reference region model (Equation (2.3)) and the basis function method (Equation
(2.6),(2.7),(2.8)).

Each sub-figure shows the change of one of these three types of error with a different

noise level. The noise level runs from 0.2 to 2.6.

Fig. 6.5 shows the results with the number of clusters in the unsupervised and semi-

supervised classification changed to 10.

Fig. 6.2 and Fig. 6.5 shows the total classification error. In both figures, the semi-
supervised segmentation achieves best classification performance while the unsupervised
segmentation result gives the worst classification error. As each optimisation process in-
volved in this simulation can only find a local minimum, the classification results vary
with different initial values for model parameters. With smallest standard deviation, the
semi-supervised method shows its robustness with different starting points. Unsuper-
vised classification performance is also unstable as it gives a highest standard deviation.
Similar to the independent data case in Chapter 3, when the noise level increases, the
classification error for supervised and semi-supervised classification increases as expected
while the unsupervised classification error decreases slightly in the four-cluster case. One
possible explanation is that when the noise level is low, the algorithm tends to split the
true reference region data into more than one clusters, as only one cluster will be picked,
the total classification error is large. When the noise level increases, the chosen cluster
contains more true reference region data. This downtrend is less severe when the cluster

number increases to 10, as shown in Fig. 6.5.

Fig. 6.3 and Fig. 6.6 give the non-reference region mis-classification error. The unsu-
pervised classification achieves best accuracy. The result for the 10-cluster case achieves
more accuracy than the 4-cluster case. However, semi-supervised classification has the

lowest standard deviation, showing that its performance is very stable.
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FiGure 6.2: Simulation results on classification accuracy, with 4 clusters in unsuper-

vised classification (Red solid : Error bar for semi-supervised classification; Blue dotted:

Error bar for supervised classification; Black dashdot: Error bar for unsupervised clas-
sification.)

Fig. 6.4 and Fig. 6.7 show the binding potential error of the classified reference region
voxels. Minimising the binding potential error is very important in PET segmentation
as binding potential describes the characteristics of PET images. The semi-supervised
method achieves the best performance with excellent stability reflected by the low stan-
dard deviation. The unsupervised method also achieves competitive performance but it

is less stable.

6.1.3 Comparison of the Results Based on Markov Random Field
Models and the Independence Assumptions

Fig. 6.8, 6.9, 6.10 give the differences between independent assumption results and MRF-

model assumption results, for all three learning methods with 4 clusters in unsupervised
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FIGURE 6.3: Simulation results on non-reference region classification accuracy, with

4 clusters in unsupervised classification (Red solid : Error bar for semi-supervised

classification; Blue dotted: Error bar for supervised classification; Black dashdot: Error
bar for unsupervised classification.)

and semi-supervised segmentation.

Fig. 6.8 shows the difference of the total classification error, generated by the mean value
of each variable from error bars in Fig. 4.7 minus the corresponding mean value from
error bars in Fig. 6.2. Thus positive value in the figures indicates the MRF model-based
segmentation improves the image segmentation accuracy compared to the independent
segmentation. For supervised segmentation, the MRF model-baged segmentation im-
proves the classification accuracy significantly. No obvious improvement or deterioration
for the semi-supervised segmentation while the unsupervised segmentation with a MRF

model has more classification error.

Fig. 6.9 shows the difference of the non-reference region classification error, generated

by the mean value of each variable from error bars in Fig. 4.8 minus the corresponding
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FIGURE 6.4: Simulation results on binding potential accuracy, with 4 clusters in un-

supervised classification (Red solid : Error bar for semi-supervised classification; Blue

dotted: Error bar for supervised classification; Black dashdot: Error bar for unsuper-
vised classification.)

mean value from error bars in Fig. 6.3. Both supervised and unsupervised segmentation
using a MRF model has improved non-reference region classification error, while the

performance is slightly worse in the semi-supervised case.

Fig. 6.10 shows the difference of the BP value of the extracted reference TAC, generated
by the mean value of each variable from error bars in Fig. 4.9 minus the corresponding
mean value from error bars in Fig. 6.4. The BP is the main interest. The semi-
supervised segmentation using a MRF model achieves improved results compared to
the independent case. The BP value difference for both supervised and unsupervised
segmentation are not very stable, although better BP accuracy is obtained in the MRF
model-based supervised segmentation with high noise level in the 500 and 1000 training

data case.

Fig. 6.11, 6.12, 6.13 show the corresponding results with 10 clusters in unsupervised and
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semi-supervised segmentation. Similarly, Fig. 6.11 is generated by the mean value of
each variable from error bars in Fig. 4.10 minus the corresponding mean value from error
bars in Fig. 6.5. Fig. 6.12 is generated by the mean value of each variable from error bars
in Fig. 4.11 minus the corresponding mean value from error bars in Fig. 6.6. Fig. 6.13
is generated by the mean value of each variable from error bars in Fig. 4.12 minus the
corresponding mean value from error bars in Fig. 6.4. The performance difference in the
10-cluster segmentation case follows the similar pattern as the performance difference in

the above 4-cluster segmentation case.
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6.2 PET Data Studies

6.2.1 Experiment Description

The developed algorithms are also applied to eighteen [C](R)-PK11195 PET data,
which has been used in the experiments in Chapter 4. Same pre-processing and data
normalisation are used. As in the previous simulation, three different spatio-temporal
segmentation methods are compared to extract the reference region from the binding

region:

e Unsupervised image segmentation using EM with a pseudo-likelihood prior ap-

proximation (Equation (5.41));
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e Supervised segmentation by hierarchically using trained neural networks and ICM

as described in Section 5.4;

¢ Semi-supervised method proposed in Section 5.5.

In the unsupervised and semi-supervised segmentation, the cluster number is set as 10.
In supervised classification, four hidden nodes were found to be suitable for this segmen-

tation problem. In supervised and semi-supervised algorithms, the final classification

is carried out automatically by assigning every voxel to the class that has the highest

posterior probability. In unsupervised segmentation, the final classification is carried

out by choosing the cluster whose centre has lowest BP as the reference class, while the

rest are treated as the other class.
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FIGURE 6.8: Simulation results difference between temporal and spatial-temporal mod-
elling on classification accuracy, with 4 clusters in unsupervised and semi-supervised
classification

The labelled data are needed for supervised and semi-supervised segmentation. The
labelling data are the same as the experiments in Chapter 4, 2800 TACs from the cortex
region and 2100 TACs from the scalp, thalamus and cerebellum regions were randomly
sampled from seven scans as the labelled data. For comparison convenience, they are
exactly the same as in Chapter 4. The same pre-processing and input normalisation is

also used.

6.2.2 Results
6.2.2.1 Extracted Reference Region TAC

Fig. 6.14 shows the extracted reference TACs in the 7 scans where part of data are used

in training supervised and semi-supervised classifiers. Three curves are shown in each
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FIGURE 6.9: Simulation results difference between temporal and spatial-temporal mod-
elling on non-reference region classification accuracy, with 4 clusters in unsupervised
and semi-supervised classification

figure: the curve extracted from the semi-supervised classification; the curve extracted
from the supervised neural network and the curve extracted from the unsupervised
clustering. In unsupervised classification, the mean curve is obtained by choosing the

largest cluster, which is the current method used at Hammersmith hospital.

The performance across PET scans is assessed by testing the performance in the other
11 independent PET scans, shown in Fig. 6.15. In both Fig. 6.14 and Fig. 6.15, the
curves extracted from supervised and semi-supervised classification catch the shape of
the reference region curves very well. However, the unsupervised classification performs
inconsistently. It fails to capture the features of reference region curve in most scans. It
fails to capture the features of reference region in Fig. 6.14(c) for scan n02816. It also
fails to capture the shape and magnitude of the refernce region TAC in most scans with

an exception of scan n03694 in Fig. 6.15(g).
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FIGURE 6.10: Simulation results difference between temporal and spatial-temporal
modelling on binding potential accuracy, with 4 clusters in unsupervised and semi-
supervised classification

The supervised and semi-supervised classification have successfully learnt the informa-
tion to discriminate the reference region from the other regions based on the shape of
their TACs. Their performances are consistent across subjects. In the figure for each
scan, the curve extracted from the semi-supervised method has lower tracer concen-
tration value in the last several time instants, compared to the curve extracted from
the supervised method, indicating the semi-supervised methods extracted reference re-
gion TACs have a lower binding potential value than the supervised method extracted

reference region TACs.
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FIGURE 6.11: Simulation results difference between temporal and spatial-temporal
modelling on classification accuracy, with 10 clusters in unsupervised and semi-
supervised classification

6.2.2.2 Parametric Images

Binding potential images can be generated by applying the learnt TAC to the reference
region model. Fig. 6.16 shows an example of binding potential image generated for
plane no.20 of scan n03578, a healthy subject. These three figures correspond to using
reference region TAC generated from the unsupervised, supervised and semi-supervised
Markov random field model based image segmentation methods respectively. They are
generated in the same way as in Section 4.6.3. First, voxels outside the scalp with low

TACs are filter out to avoid unnecessary computation, using:

18 18
if 3> @7 > 0.5 zl, calculate BP value;
j=1 j=1

18 18
if Y7 <05 > w6, BP =10.
j=1 j=1
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FIGURE 6.12: Simulation results difference between temporal and spatial-temporal
modelling on non-reference region classification accuracy, with 10 clusters in unsu-
pervised and semi-supervised classification

The calculation of BP value is realised by applying the simplified reference region model
(Equation (2.3)) and the basis function method.

The binding potential images for plane no. 20 of a patient scan n02904 using the
reference region model and the extracted reference region TAC for the three different
methods are shown in Fig. 6.17. The binding potential images are generated in the
same procedure as for the above scan n03578. The reference region TAC extracted by
the unsupervised segmentation has a large error and fails to extract the reference region
TAC. The binding potential image using the unsupervised extracted reference TAC is
dramatically different from the others, with the binding potential value in the range
[-15,45]. From the binding potential image, it can be seen that the scan contains a

strong binding area around the middle-right region.
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FIGURE 6.13: Simulation results difference between temporal and spatial-temporal
modelling on binding potential accuracy, with 10 clusters in unsupervised and semi-
supervised classification

6.2.2.3 Improved Test

The lack of ground truth for performance evaluation in real PET data experiment,
the test-retest scheme are used for performance evaluation. The four test-retest scan
pair from four healthy subjects (as shown in Table 4.2) are used here. The difference
between the segmentation results for each scan pair is measured and used as a criterion
for evaluating the performance of the segmentation method. The test-retest experiment

for the three reference region extraction techniques is illustrated in Fig. 6.18.

The test-retest results are shown in Fig. 6.19. Each sub-figure shows the test-retest
difference between a scan pair, where the binding potential differences for thalamus,
cerebellum and cortex are displayed. The binding potential of a region is calculated
by using the extracted reference region TAC and the simplified reference region model.
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(a) BP image using unsupervised extracted ref-
erence region

(b) BP image using supervised neural network
extracted reference region

¢ z;l" f”;m;?:;a:",

(c) BP image using semi-supervised extracted
reference region

FIGURE 6.16: Parametric image of binding potential (BP) for a healthy subject’s PET
scan n03578 plane 20
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(a) BP image using unsupervised extracted ref-
erence region

(b) BP image using supervised neural network
extracted reference region

(c) BP image using semi-supervised extracted
reference region

FIGURE 6.17: Parametric image of binding potential (BP) for patient PET scan n02904
plane 20
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Three bars for the same region correspond to three different classification methods.

Subject b: scan n03642, n03657

Subject a: scan n03578, n03689

BP difference in two scans

«

[isn

2 2
1: thalamus; 2; cerebelium; 3: corlex 1: thalamus; 2: carebellum; 3: corlex

Subject c: scan n03661, n04071 . Subject d: scan n03694, n04073
T T

BP difference in two scans
S

BP difference in two scans

2
1: thalamus; 2: cerebellum; 3 corlex

2
1: thalamus; 2: cerebellum; 3: cortex

FIGURE 6.19: Test-retest result

6.2.3 Cerebellum Binding’s Correlation with Age

To find possible connections between age and brain function, the age-associated varia-
tions in the receptor binding will to be examined using PET data from a group of heathy

human subjects at different ages.

The binding of the cerebellum in 17 healthy scans are examined. Fig. 4.23 shows the
estimation of cerebellum in these scans with extracted reference region TAC and the
simplified reference region model. Three sub-figures correspond to the results with three
different reference region extraction methods. Cerebellum binding’s correlation with age
is examined using the simplified reference region model. Fig. 6.20 shows the extracted
reference TACs via different methods. Table 6.1 shows the R? statistics analysis of
binding potential’s variation explained by age for the three methods. Again, no obvious
correlation of age with cerebellum binding potential value can be found in these 17 scans.
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[ Method f R? statistics }

Unsupervised 0.08%
Supervised 18.12%
SemiSupervised 9.67%

TABLE 6.1: R? statistics
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6.2.4 Summary

The spatio-temporal extraction of the reference region TAC for 18 [*!C](R)-PK11195
PET data has been described and analogised. The importance of using labelled data
(i.e. expert knowledge)in the segmentation process has been justified . The extracted
TAC using methods using labelled data, supervised and semi-supervised image segmen-
tation, leads to more stable and reliable results than using unsupervised image segmen-
tation, which justifies the two proposed image segmentation methods. Although the
performance evaluation is very difficult for real PET data, the test-retest scheme show

that the supervised and semi-supervised extracted reference region TACs are relatively

consistent.

6.3 Conclusions

Spatio-temporal reference region extraction with simulated and real PET data are per-
formed in this chapter, using MRF model-based image segmentation. The unsupervised
image segmentation and the two new methods developed in chapter 5 is used. It shows
that the inclusion of expert knowledge and image models greatly reduces the uncer-
tainty in the segmentation. The new semi-supervised framework achieves substantial

performance gains over the other methods.



Chapter 7

Conclusions and Future Work

7.1 Summary of the Thesis

This thesis has focused on modern data classification techniques for automatic positron
emission tomography image segmentation. The aim of this thesis is to explore reference
region localisation in PET with the unlabelled data and expert labelled data to achieve
higher accuracy. A hierarchical supervised image segmentation enables labelled data to
be used in image segmentation. A combined learning framework for model-based image
segmentation is proposed to tackle the general image segmentation problem with the
aid of both labelled and unlabelled data. The efficiency of these two methods are tested
on both simulated and real PET data.

The background knowledge of PET imaging is reviewed in Chapter 2. The process of the
PET experiment to obtain data in both spatial and time domain is introduced. With
the consideration of the quality of the data and the complexity of the noise sources,
the analysis of the PET data is very important. Different compartmental models have
been developed, while the simplified reference region model is our main interest in this
thesis. The simplified reference region model is superior to other models in that no blood
sampling is needed, based on the assumption that there is a region devoid of specific
binding. Finally the problem of efficiently and accurately extracting this PET reference

region is proposed.

Since the extraction of the reference region in PET is inherently a problem of learn-
ing, or more specifically, classification from data, the problem of pattern recognition is
formulated in chapter 3. Learning and generalisation is introduced. The mathematical
formulations of supervised classification, unsupervised classification and semi-supervised

classification are given, with a review of related methods and optimisation processes.

Chapter 4 shows the result of using different pattern recognition techniques to the PET
reference region exaction, for both synthetic and [1'C](R)-PK11195 PET data sets. The

115
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experimental comparison is also given. In simulations, the error bars generated by
semi-supervised method show less error and display more stability than those for un-
supervised and supervised method. In [*'C](R)-PK11195 PET data application, as no
ground truth is available, a test-retest scheme is used to estimate the performance. The
simplified reference region model is used for generating binding potential images, which

give important information on the scanned subject.

Various statistical models are widely applied in image segmentation since the paper of
Geman and Geman (1984). The models and techniques for low-level image segmentation
are reviewed in chapter 5. Markov random field models are discussed to model the spatial
correlation of image pixels or voxels, which is not considered in chapter 3 and 4. The
use of image models like MRFs in image segmentation is equivalent to regularisation
in the spatial domain, overcoming the data independence assumption in most data
classification techniques, which is more suitable for modelling images. However, the
introduction of MRF models in the image segmentation makes the optimisation difficult.
The unsupervised image segmentation problem is discussed. The problem of learning
in image segmentation with labelled data is also discussed. A new hierarchical image
segmentation with supervised learning is proposed. Additionally, a new framework of
learning from both labelled and unlabelled data as well as modelling the voxel’s spatial
correlations is proposed. An approximate EM algorithm is also proposed to solve the

related difficult optimisation problem.

Chapter 6 shows the application of the image segmentation with labelled data. The
unsupervised image segmentation, as well as the two proposed supervised and semi-
supervised image segmentation methods, are applied to the synthetic and [''C](R)-
PK11195 PET data set. Similar to chapter 4, error bars are displayed to compare
three segmentation results. Semi-supervised image segmentation achieves best accuracy
and has more stable performance than the rest. These spatio-temporal segmentation
results also show performance gains over the temporal segmentation results in chapter
4. In [ C](R)-PK11195 PET data application, the test-retest scheme is used to estimate
the performance. The simplified reference region model is used for generating binding

potential images.

In conclusion, this thesis shows that the inclusion of expert knowledge greatly reduces the
uncertainty in the PET segmentation. The new semi-supervised framework achieving

substantial performance gains over the other methods.

7.2 Suggestions for Future Work

As is often the case in research, a lot of problems remain unsolved and many new
problems arise as the result of the research conducted. Some possible avenues for future

research are outlined here.
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e Application of the combined learning image segmentation framework to other con-
texts, such as function MRI, sonar images, remote sensing images and text. In this
thesis, different image segmentation methods have been used for PET reference
region localisation and modelling. There are various medical imaging techniques
available, such as functional MRI, EEG, MEG etc. From the view of statistical
learning, the data generated from these imaging methodologies are in the similar
form as PET data, i.e. data are spatial-temporally connected. This enables the
image segmentation methods proposed in this thesis to be used in these wider med-
ical imaging fields. Apart from potential applications in various types of medical
images, these methods can also be applied to images from other sources such as
remote sensing. Text segmentation is another field where the segmentation result
depends heavily on context. The segmentation methods proposed in this thesis

may have application here.

e The development of new combined learning methods and the quantitative analy-
sis of the efficiency of the combined classification models. The combined learning
using both labelled data and unlabelled data lies between two well-founded areas:
supervised learning and unsupervised learning. Thus there are naturally two ways
to treat the combined learning problem: supervised learning methods based tech-
niques with the additional unlabelled data to provide extra prior knowledge or a
source of information to add more generalisation to the model; unsupervised learn-
ing category with the labelled data treated as the complete (or partially complete)
data set while the unlabelled data as the incomplete data set. Further research into
a more general combined framework, which sees these two avenues as particular

approaches would be elegant.
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