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This thesis concerns the control of bending waves in beams using a self-tuning 
vibration absorber. An adaptive-passive vibration absorber, whose natural frequency 
is tuned automatically by adjusting the stiffness of the absorber, is developed and 
implemented. 

The transmission and reflection of waves at an absorber attached to a beam are 
considered. The absorber may be located in the farfield or the near'field of a point 
force and it can be positioned to control both the downstream-transmitted power and 
that reflected upstream. Analytical and numerical investigations are presented. If the 
absorber is located in the nearfield of the point force, the power transmitted past the 
absorber depends on four independent tuning parameters: the natural frequency of the 
absorber, the mass ratio, the damping of the absorber and the distance between the 
absorber and the point force. If the incident nearfield wave is insignificant, then this 
distance becomes unimportant in determining the optimal characteristics of the 
absorber for the control of vibration transmission. It is found that the absorber 
typically acts as a notch filter, controlling transmission over a narrow range of 
frequencies. 

The case of a tunable absorber is then considered. The stiffness of such an absorber 
can be changed, thus affecting the tuned frequency. Two variable stiffness absorbers 
are designed. The stiffnesses of both change with temperature and electrical heating is 
used to change the absorber characteristics. The first absorber uses shape memory 
alloy as the variable stiffness element, while the second absorber employs thermoset 
plastics. 

A closed-loop control system is developed using an appropriate error function to 
control the transmitted waves in real-time. The error function is found by combining 
the outputs of two sensors attached to the beam, one on each side of the absorber. The 
error function indicates the degree of mistune and whether the absorber's stiffness 
needs to increase or decrease to minimise the magnitude of the transmitted power. 
Numerical simulations are presented. These show the effectiveness of the control 
system, employing the error function and an adaptive absorber, in varying the 
stiffness of the absorber towards the optimum value. 

Experimental implementation of real-time control of the adaptive-passive absorber 
which implements thermoset plastics as the variable stiffness element is shown to be 
effective in reducing the transmitted power on a beam. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

There is a strong need for effective vibration control techniques in nearly every 

branch of engineering. These techniques are required to reduce the levels of vibration 

caused by disturbances to an acceptable level. In most vibrating systems, there are 

three possible transmission paths for vibration transmission and noise radiation to 

sensitive positions remote from a vibrating device (e.g. engines, pump etc). These are 

the acoustic radiation via the surrounding medium; the transmission of structural 

vibration through the system mounts; and the transmission of structural vibration 

through connecting structures to the receiver. In many cases, these linking structures 

are represented by one-dimensional elements, of which beams are among the most 

commonly used in engineering systems (e.g. space structures, automotive industries, 

building structure etc). These elements act as paths of structure-borne vibration where 

vibration transmits from one part of the structure to another. 

The vibration transmission on a beam structure is controlled in this thesis using a self­

tuning adaptive-passive vibration absorber. 

1.1.1 Tuned vibration absorber 

One well established device used to reduce the vibration amplitUde of a vibrating 

machine or structure over a specific frequency range is the tuned vibration absorber 

(TV A). The vibration absorber comprises a tuned, secondary, resonant subsystem. In 

its conventional form it comprises a spring-mass-damper system used to control the 

vibration at the point to which it is attached [I, 2]. The system needs to be tuned 

accurately to reduce the vibrations effectively. 

There are two classical uses for the absorber, and the tuning rules differ for each [3, 

4]. In both cases the bandwidth and the effects of mistune depend on the absorber 

mass. The first case is where the disturbance is narrowband with a known fixed 



frequency. Optimal performance is provided by an undamped tuned absorber, also 

called a dynamic absorber, or vibration neutraliser. The natural frequency of the 

absorber is tuned to a troublesome excitation frequency offering very large 

mechanical impedance. The presence of damping deteriorates the performance 

somewhat. In the second case the absorber acts as a tuned damper and it is appropriate 

for broadband disturbances. The absorber is tuned to a problematic resonance of the 

host structure and an optimum amount of damping is included to reduce the motion of 

the vibrating structure at frequencies close to the resonance frequency. 

The traditional absorbers with their fixed characteristics are called passi ve absorbers 

and can be very effective in suppressing the vibrations induced in a structure excited 

by a harmonic disturbance such as a machine running at a constant speed. Under these 

steady operating conditions, passive absorbers provide stability and robustness. 

However, even small amounts of mistune, or small changes in the operating frequency 

of the harmonic disturbance, can severely deteriorate the performance of the absorber 

[3, 5]. One way to overcome these problems is to implement fully active or semi­

active control techniques. 

1.1.2 Adaptive-passive vibration absorbers 

Fully active vibration control systems involve the application of additional control 

forces to the vibrating system in order to cancel the vibrations produced by the 

original disturbance [4, 6]. Active systems can, in principle, offer much improved 

performance and higher control authority. Nevertheless, they are more complex, can 

potentially cause instability and require external power input. Furthermore, the failure 

of this control technique can expose the structure to high levels of vibration. 

An alternative to active control is the adaptive-passive technique, also called semi­

active, which is the control method adopted in this thesis. In this method, secondary 

forces are generated passively by a device whose characteristics can be adapted with 

time so that the passive system is at its most effective. In contrast to active methods, 

adaptive-passive strategies add no energy to the system, and require minimal power 

for activation. Therefore, this technique has no potential for instability. In addition, 

the adaptive-passive technique overcomes the disadvantages of many passive control 
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solutions which must be precisely tuned, and cannot re-tune, and thus are only 

effective over a fixed, narrow frequency band [4-8]. 

Many designs for adaptive-tuned vibration absorbers (ATV As) have been developed 

in the past to suppress the vibration of structures subjected to a variable troublesome 

forcing frequency. The stiffness element of the ATV A is adjustable so that the device 

can be retuned over a reasonable range of frequencies. Methods previously used for 

varying the stiffness element of the A TV As can probably be summarised in two 

categories. 

The first group concerns utilising smart materials in the A TV A. These materials are 

capable of changing their stiffness with an appropriate actuation. For instance, 

piezoelectric ceramic elements have been used as part of the ATV A's stiffness in 

many applications [9-11]. The effective stiffness of these elements was adjusted 

electrically to tune the resonance frequency of the device. Shape memory alloys 

(SMA) with their variable material properties have been recently implemented in 

designing A TV As [12, 13]. The SMAs undergo a crystalline phase change when 

heated or cooled above certain temperatures, and this phase change is accompanied by 

a change in the elastic properties. 

The second group concerns designing ATV As with smart structures. Walsh and 

Lamancusa [14] have established an ATV A by controlling the separation between two 

leaf springs using a stepper motor to tune the resonance frequency. Further 

developments on that design have been introduced by Brennan [IS] and Kidner and 

Brennan [16]. Changing the length of a beam absorber with a mass supported at its 

centre has effectively varied the tuned frequency as described by Hong and Ryu [17] 

where the beam stiffness is inversely proportional to the cube of the length. Franchek 

et al [18] proposed a variable stiffness absorber by simply adjusting the effective 

length of a coil spring by means of a D.C. motor. A recent design by Carneal et al 

[19] called the "V" type ATV A proposes an ATV A with a stepper motor to act as its 

active mass. The motor moves the supporting ends to change the t1exural stiffness of 

the supporting shafts of the V A TV A. Bonello et al [20] proposed an A TV A that LlSCS 

two variable curvature beams as stiffness elements. Each curved beam consists of a 

piezoceramic layer sandwiched between an aluminium layer and a steel plate. The 
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beams are supported on ball bearings at their ends, allowing freedom of rotation. The 

absorber mass is supported on bearings and guided vertically by a linear bearing 

running on the central column that is fixed to the base. The curvature of the beams is 

changed by adjusting the level of dc voltage applied to the piezoelectric layers. 

Another recent model is proposed by Cronje et (If [21] and utilised paraffin wax to 

control the separation of two leaf springs. The wax is contained in a small copper cup. 

When the wax is heated by means of a hot-air gun, it changes from solid to liquid 

state with an associated volume change. 

Other tuning mechanisms are also reviewed by Sun et (If [4] and Von Flotow et af [7]. 

1.1.3 Applications of vibration suppression using adaptive absorbers 

Details noted by Von Flotow et af [7] refer to the use of three cantilever-type adaptive 

self-tuning absorbers installed under the cockpit floor of the Boeing CH-47C. The 

absorbers are adaptively tuned to the blade passage frequency by repositioning the 

counterweights on the beam. An open loop control strategy was implemented where 

the phase relationship between the vibrations of the helicopter and the mass was 

evaluated and compared to the predetermined relationship for proper tune. 

Long et af [22] implemented a two-tier approach to adaptively control a vibration 

absorber by adjusting the pressure in a pneumatic spring. An open-loop control was 

used to tune the absorber roughly, such that its working frequency was within its 3 dB 

bandwidth, then a closed-loop algorithm was implemented to tune the absorber 

precisely by forcing the main system mass and the absorber mass to vibrate in 

quadrature. The closed-loop algorithm utilised the steepest descent method and 

successful results were obtained. 

A controller with a multi-objective fuzzy logic algorithm was proposed by Lai and 

Wang [23] for dynamic absorbers with variable stiffness to suppress structural 

vibrations, but only numehcal simulations are presented and no means for adjusting 

the stiffness are described. However, Kidner and Brennan [24] designed a fuzzy 

controller to adjust the resonance frequency of a beam-like absorber by changing its 

geometry, and to adjust the gain in a velocity feedback loop to reduce the damping in 
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the device. Reducing the damping at the tuned frequency was found to improve the 

accuracy of the tuning algorithm. 

In recent years smart materials have been used extensively in vibration absorbers. 

Rustighi et al [12] designed a beam-like absorber made of Nitinol wires. This type of 

shape memory alloy is the most widely used due to its effective performance. The 

adaptive absorber has been tested experimentally and controlled in real-time to 

suppress the vibrations at the point of application. Various control algorithms were 

used, with proportional derivative (PD) method being the most effective. The error 

function chosen to be minimised was the phase between velocities of the machine and 

the absorber masses. 

Self-tuning implementations of adaptive absorbers are still few in number and the 

majority concerns the suppression of vibration at a single point. In this thesis the 

emphasis is on the control of structure borne vibrations induced in beams usmg a 

single adaptive-passive vibration absorber. 

1.1.4 Control of flexural waves on beam structures 

The control of flexural waves has been discussed by many researchers over the past 

ten years, most of them concerned with the implementation of active control 

strategies. Elliot and Billet [25] introduced an active control system to suppress an 

incident flexural wave propagating on a beam. The control system consists of a 

number of elements: detection sensor, feedforward controller, secondary actuator and 

an error sensor. The aim of the controller was to drive the total acceleration at the 

error sensor position to zero. An analytical expression for the ideal controller was 

found. Practical results showed significant reduction in acceleration at the error 

sensor. Both primary and secondary excitations were generated by a coil suspended in 

a fixed magnetic field. An improved feedforward active control of an incident flexural 

wave on a beam was proposed by Halkyard and Mace [26]. Here the propagating 

wave amplitude in the farfield was estimated in real-time by combining and filtering 

the output of two velocity sensors. This avoids the problem of sensitivity and the 

errors introduced by using the conventional sensor-based measurement when nearfield 

components and noise are present. 
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Smart materials and structures have also been used in controlling the flexural waves 

propagating on beam structures. Harland et al [27] introduced a system comprising a 

tunable structural insert in a one-dimensional waveguide to control the transmission 

of bending waves. An auto-tuning scheme was described. The system uses a sensor to 

provide a measure of the vibration level downstream of the insert, and an adapti ve 

algorithm in the feedback loop which changes the field applied to the tunable insert. A 

very simple algorithm was used to demonstrate the applicability of the technique. 

Numerical examples were presented for electro-rheological (ER) fluid-filled inserts. 

The tunability of these inserts is not very large due the physical properties of the fluid 

[28]. 

Clark [29] and Brennan [30] presented analytical and experimental work showing that 

significant suppression of a flexural wave propagating on a beam can be achieved by 

attaching a single tuned vibration absorber. The absorber was modelled as a point 

translational impedance in the farfield of a disturbance. 

The disadvantages of the active control techniques and the use of smart structural 

inserts to control the flexural waves propagating on beams have encouraged the use of 

self-tuning vibration absorbers. 

1.2 Aim and Objectives 

The aim of the research reported in this thesis is to develop a self-tuning adapti ve­

passive vibration absorber to control the structure-borne vibration in beam-like 

structural members. Such vibrations arise from some source such as a machine, pump 

or engine, and the vibrational energy travels through the structure as waves, 

eventually reaching some remote vibration-sensitive region. The system as a whole is 

a smart structure, involving sensors (to detect the appropriate error function which 

needs to be minimised), control (to determine the optimal characteristics of the 

absorber based on the detected error function) and means for adapting the physical 

properties of the device using smart materials. 
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Accordingly the main objectives of this work were to: 

Model a vibration absorber attached as a point translational impedance to an 

infinite beam at a distance from a point disturbance. 

Investigate the absorber's tuning parameters that would satisfy the minimum 

power transmission or maximum absorption taking into consideration the 

effect of nearfield waves. 

Design and construct a tunable vibration absorber that would effectively 

control the transmitted power over a range of frequencies. 

Find an appropriate error function that would indicate the tuning direction of 

the absorber stiffness to satisfy the minimum power transmission. 

Implement the self-tuning absorber to control the vibration transmission m 

real-time using a simple algorithm that utilises the error function in an 

application in which the disturbance is tonal, but with a frequency that may 

vary with time. 

1.3 Novel Contributions 

It should be noted that neither the concept of the self-tuning vibration absorber nor the 

concept of controlling the vibration transmission in beam structures is novel. 

However, the application of these two ideas in conjunction with one another has 

resulted in a novel approach to this vibration engineering problem. The original 

contributions achieved in this thesis are briefly listed below: 

Modelling a tuned vibration absorber located in either the nearfield or the 

farfield of a harmonic point force and its effect on the control of transmitted 

flexural waves. 

Controlling both the downstream transmitted power and that reflected 

upstream of a point force by positioning the tuned absorber at optimum 

locations along a beam structure. 

Designing a simple adaptive-passive vibration absorber using smart materials 

to control the flexural waves on a beam. 
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Determining an appropriate error function that indicates both the performance 

of the adaptive-passive vibration absorber and the direction of required tuning. 

Implementing a self-tuning adaptive-passive vibration absorber to control the 

power transmission in a beam structure. 

1.4 Overview of the Thesis 

Wave propagation in rods and beams is reviewed in Chapter 2. The principle types of 

wave motion are discussed and the equations of motion are stated with emphasis on 

the understanding of t1exural waves which need to be controlled. Methods for 

meaSUrIng the amplitude of propagating waves and the t1exural wavenumber are 

described. An example of the experimental measurement of the wavenumber is 

presented. This wavenumber will be used in the following chapters in the design of 

the devices to suppress the t1exural waves. The ret1ection and transmission of flexural 

waves due to point discontinuities are discussed. 

Chapter 3 provides a wave model of a tuned vibration absorber attached to a beam. 

Analytical expressions for the power transmitted and reflected are derived as 

functions of independent tuning parameters. The optimal tuning parameters of the 

absorber are investigated analytically and numerically. Experimental validation of the 

theoretical predictions is reported using a passi ve vibration absorber. 

The effect of varying the ·absorber stiffness on the control of the flexural waves is 

discussed in Chapter 4. A simple design of an adaptive-tuned vibration absorber that 

implements wires of Nitinol (SMA) is proposed and constructed. The Nitinol wires 

are held together at the centre using epoxy-resins. Following the experimental 

validation of the performance of the SMA A TV A, another variable stiffness absorber 

is constructed and proved effective. This adaptive absorber only implements epoxy­

resins as the variable stiffness elements. The properties of the materials chosen to be 

implemented in the absorbers are investigated. Experimental results validating the 

tunability of the absorbers are presented showing the effectiveness of the A TV A that 

only implements epoxy-resins compared with the performance of the SMA ATV A. 
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Chapter 5 describes some possible control strategies that can be implemented to 

achieve a self-tuning control system to suppress the flexural propagating waves. One 

optimisation method is considered; this is the gradient descent algorithm. An 

appropriate error function that indicates the degree of mistune and the direction 

towards the optimum tuning, at which the transmitted power is minimum, is 

presented. Numerical simulations showing the effectiveness of the control algorithm 

which employs the error function, in varying the stiffness of an ATV A towards the 

optimum value, is presented. 

Following on from the work introduced in prevIOUS chapters, Chapter 6 presents 

experimental implementation of real-time control of the adaptive-passive absorber, 

which implements epoxy-resins as the variable stiffness elements, to suppress the 

transmitted vibration. Prior to the experimental control, the effectiveness of the error 

function in indicating the optimum direction for tuning is validated . 

. Finally, Chapter 7 includes a summary of the main conclusions from this work and 

recommendations for further study. 
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CHAPTER 2: WAVE MOTION IN ONE­

DIMENSIONAL STRUCTURAL ELEMENTS 

2.1 Introduction 

In Chapter 1 propagating waves on a beam and possible methods that could be used to 

control these waves were discussed. The design of efficient control methods requires 

understanding of the behaviour of waves in one-dimensional structures. This is 

considered in this chapter. 

From the fundamental knowledge describing the motion In beam-like structures, 

expressions for the transmitted power in one-dimensional structural elements can be 

determined. In this chapter, elastic wave motion in these elements is addressed. Such 

elements are represented by rods, beams and pipes vibrating at low frequency. The 

principle types of wave motion through which energy may propagate in this class of 

structure are longitudinal motion, torsional motion and flexural motion. 

The chapter is organised in 6 sections. Following this introduction, section 2.2 

discusses the principle types of wave motion in one-dimensional structural elements. 

Particular attention is focused on flexural wave motion in beam structures for reasons 

which will be discussed. The energy flow in beams is discussed in section 2.3. 

Methods for measuring the beam wavenumber and estimating the propagating wave 

amplitudes are illustrated in section 2.4. An experimental example of measuring a 

beam wavenumber is also included. The reflection and transmission of flexural waves 

due to point discontinuities are discussed in Section 2.5. Finally, in section 2.6 some 

conclusions are drawn. 

2.2 Wave Propagation 

Vibrations propagate through structures as waves. A wave can be described as a 

disturbance that travels through the medium from one location to another. To 
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understand fully the nature of a wave, one can consider the medium as a senes of 

interconnected elements or particles. The interaction of one element in the medium 

with the next adjacent one allows the disturbance to travel through the medium. 

Therefore, a mechanical wave can be defined as a phenomenon in which a physical 

quantity (e.g. energy or strain) propagates in a medium without net transport of the 

medium [31, 32]. Accordingly, a wave is a means of transmitting energy from one 

point to another. The principle types of structural wave motion are introduced in this 

section. 

2.2.1 Longitudinal waves 

The wave in which the direction of motion of the particles coincides with the direction 

of wave propagation is defined as the longitudinal wave or the axial wave. Figure 2.1 

shows an element of an elastic uniform beam or rod, of length i5x, undergoing 

longitudinal motion. It should be noted that pure longitudinal motion could only occur 

in solids whose dimensions in all directions are much greater than a wavelength [33]. 

However, for a bar undergoing low frequency in-plane motion, the dimensions of the 

cross-section of the bar will be very much less than the resulting wavelength. For this 

case, contraction in the cross-section of the bar occurs in addition to the axial 

extension. Because of the cross-contraction phenomenon, lateral displacements occur 

in addition to the longitudinal displacement, and therefore a wave travelling along the 

bar cannot be a pure longitudinal one. The motion for this case can be described as 

quasi-longitudinal wave motion [33]. 

Assuming the longitudinal displacement u(x) is uniform over the normal cross-

sectional area A and the lateral deflection is insignificant then consideration of the 

conditions for the dynamic equilibrium of the beam element, under axial stress ax' 

and shown in Figure 2.1 yields the equation of motion in the x -direction [34] 

(2.1 ) 
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where E and p are respectively the Young's modulus and the density of the rod 

material. The solution to this second order differential equation is, for a time harmonic 

motion, of the form exp (iO)t) e.g. [33-35] 

( _ t) - + i(wl-k,x) + - i(wl+k,x) 
U X, - a e a e , (2.2) 

where k[ = O)~ p / E is the longitudinal wavenumber and 0) is the circular frequency. 

The wavenumber indicates the phase change per unit length. A phase change of 2n 

occurs over a distance of one wavelength Ie (the distance over which a complete cycle 

occurs [36]). Thus k = 2n / Ie. Hereafter, the harmonic time dependence eioll will be 

suppressed. The solution consists of two waves harmonic in space and time: a+ is a 

wave travelling in the positive x -direction and is called a positive-going propagating 

wave, while the wave a-is travelling in the negative direction and is called a 

negati ve-going propagating wave. 

It is worthy of note that the longitudinal waves are non-dispersive, in that the phase 

velocity (the speed at which a wave propagates in a structure) of the longitudinal 

waves c[ = 0) / k[ does not vary with frequency (all harmonic waves travel at the same 

velocity). 

Torsional waves may also propagate in one-dimensional structures. The governmg 

equation for torsional motion is identical in form to that of longitudinal motion, see 

for example [37]. Similar to longitudinal waves, the torsional waves are also non­

dispersive. 

2.2.2 Flexural waves 

When a beam is excited transversely, it gIves nse to flexural wave motion m the 

structure. If the excitation frequency is low (the resulting wavelength is large 

compared to the beam dimensions) then the high frequency effects associated with the 

shear deformation and rotary inertia of the cross-section can be assumed to be 

negligible. For this case, the motion is described by the simple "Euler-Bernoulli" 
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beam theory [33, 37]. The theory assumes that plane sections remam plane and 

perpendicular to the neutral axis of bending. This beam theory is only considered in 

this thesis for simplicity and its suitability to the design issues discussed in the coming 

chapters. Note that at high frequencies the Euler-Bernoulli beam assumptions are no 

longer valid and shear deformation and rotational inertia need to be considered (e.g. 

Timoshenko beam theory). 

The sIgn convention adopted for an element of a beam, 8x, vibrating with a 

transverse displacement w(x) is shown in Figure 2.2 together with the shear forces 

and bending moments acting on the element. 

The shear force Q and bending moment M shown in Figure 2.2 are given by [37] 

(2.3a, b) 

where El is the flexural rigidity of the beam. 

Consideration of the dynamic equilibrium of the beam element results in the Euler 

Bernoulli flexural wave equation [37] 

(2.4 ) 

where A is the cross-sectional area of the beam. 

For simple harmonic motion w(x, t) = W (x)e iW
' , and the equation of motion becomes 

(2.5) 

The solution to this fourth order equation is 
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We) + -ikx - ikx + -kx - kx 
X = a e + a e + aNe + aNe , (2.6) 

where 

(2.7) 

is the flexural wavenumber. Hence, the displacement of the beam structural element is 

considered as the sum of four wave components: two propagating waves - a positive 

gomg wave a+ and a negative going one a- - and two nearfield or non-propagating 

waves - a~ in the positive direction and a~ in the negative direction. The nearfield 

waves are also called evanescent waves and the presence of these waves is a result of 

the wave equation being of fourth order and the fact that a beam in flexure supports 

both bending and shear forces [35]. The amplitudes of these waves decrease 

exponentially with distance, by a factor of over 500 in one wavelength [38], and can 

therefore be ignored at large distances. However, in the nearfield of a disturbance 

source, an attachment such as a TVA or a boundary, these waves are important. It is 

generally accepted that propagating waves can transmit energy and nearfield waves 

hold energy, but they cannot transmit it through the structure. However, the energy 

flow in a solitary evanescent wave is zero, two such waves of opposite directions can 

produce non-zero flow of energy as discussed in the next section [39, 40]. 

From equation (2.7) the phase velocity of the flexural wave cf = wi k = .j:;;~ Ef I pA 

is frequency dependent. Hence flexural waves are dispersive. Thus waves at different 

frequencies propagate at different speeds; these differences in speed cause spreading 

or dispersion of wave packets [37]. 

Flexural waves are the easiest to excite 111 beams, however axial and torsional 

vibrational motions may also exist. In this project, only the control of flexural waves 

will be considered for a number or reasons. Firstly, because they are often the most 

important wave type in many kinds of structure, where they have large lateral 

displacements and can readily cause the radiation of sound. Secondly, flexural waves 

are dispersive, and have nearfield components associated with their generation which 
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10 turn complicates their behaviour. Lastly, if the detection of flexural waves is 

understood then the behaviour of other wave types can be deduced by cancelling the 

nearfield terms in the general expression [35]. 

2.3 Energy Flow in Flexural Waves 

The flow of vibrational energy through a beam structure due to the propagation of 

flexural waves and the interaction of two nearfields is discussed in this section. The 

flow of energy along the beam, which is also called the structural intensity, is given in 

terms of the beam deformation and internal forces by [41] 

Ow 02W 
i(x,t) = -Q--M-, 

at ax at 
(2.8) 

where ow / at and o\·v / oxot are the transverse and rotational velocities of the beam 

respectively. The shear force Q and bending moment M are given in equations 

(2.3a) and (2.3b) respectively. 

Consider a positive-going propagating flexural wave with a complex amplitude 

so that 

+ a , 

(2.9) 

where ~l is the argument of the complex amplitude. The structural intensity of the 

positive propagating wave, from equations (2.3) and (2.8), is 

It is clear that the energy flow is proportional to the square of the wave amplitude 

[38] . 
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Consider an evanescent wave with amplitude a~ . Therefore 

(2.11 ) 

where ~2 is the argument of a~ . Subsequently, one can find that the energy flow in a 

beam due to single evanescent wave, is given by 

i(x, t) = Elk'(D la~ 12 {cos( (Dt + ~) sine (Dt + ~) - cos((Dt + ~) sine (Dt + ~)} 
(2.12) 

=0. 

Hence a single evanescent wave transmits no energy. 

Two evanescent waves decaying in opposite directions with amplitudes a~ and aN 

would give the following displacement: 

(2.13) 

where ~2 and ~ are the arguments of a~ and a~, respectively. Therefore, one can 

find that two evanescent waves decaying in opposite directions would give rise to the 

energy flow 

(2.14) 

This energy flow depends on the amplitudes of the evanescent waves and on the 

arguments of the complex amplitudes. When the displacements in the two opposite 

evanescent waves are not in phase, and not in counter-phase, the work done by the 

stresses in one wave through the displacements in the other wave is not zero, and that 

leads to a uniform flow of energy along the structure [39]. 

16 



2.4 Measurement of Wavenumber and Wave Amplitudes 

This section discusses methods that can be implemented experimentally to estimate 

the wavenumber of a beam structure and the wave amplitudes of flexural waves 

propagating on a beam from measured physical variables. 

2.4.1 Measuring wavenumber 

From equation (2.7), the flexural wavenumber k is a function of the beam properties 

and the frequency of excitation. However, k can be estimated experimentally by 

considering the motion of the beam at three different locations with spacing 6., in the 

fatfield of any point disturbance (see Figure 2.3). The beam motion at the different 

locations can be written as sums of positive and negative propagating wave 

amplitudes as 

+ ike. - -ik6 wl=ae +ae , 
+ -

w2 = a +a (2.15) 
+ -lk6 - Ik6 

W3 = a e +a e 

In the presence of damping, k has a (usually small) negative imaginary part so that 

the amplitude of a propagating wave component decays gradually in the direction of 

propagation. In this thesis, it will be assumed that this decay is negligible over 

distances of the order of the sensor separation. 

One can find the following relation by summing equations (2.15a) and (2. 15c) and 

dividing the resultant by equation (2.15b): 

[
w W J cos(k6.) = 0.5 _I + --1.. . 
w2 w2 

(2.16) 

The above relation can be used to estimate k as a function of frequency. 
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2.4.2 Measuring wave amplitudes 

The motion of a beam under flexural vibration can be decomposed into wave 

components which can then be used to evaluate reflection and transmission 

coefficients. These are used in the next chapters to indicate the performance of the 

TV A's in attenuating incident waves. The output of an array of sensors is decomposed 

into a set of constituent flexural wave amplitudes [35,42]. 

Consider two flexural waves propagating on a beam in opposite directions. An array 

of two sensors is required to measure these two components independently. The 

sensors are spaced along the beam as indicated in Figure 2.4. It is assumed that the 

sensors have negligible mass and rotary inertia (i.e. the perturbation induced by the 

sensors to the dynamics of the vibrating system is insignificant), a condition 

discussed, for example, by Mace [43]. The general expression for the transverse 

displacement of the beam is given by 

() 
+ -i/u; - i/U; wx=ae +ae. (2.17) 

The vector of displacements measured at two sensor locations symmetrically 

positioned about the origin (x = 0), at x =,0. and -,0., may be written in terms of the 

propagating wave amplitudes, a+ and a- , as 

(2.18) 

The vector of propagating wave amplitudes may be obtained in this case, by inversion 

of the 2x 2 matrix in equation (2.18), which gives 

[ 

+ 1 1 [iktl 
:- = 2isin2,0.k _:-iktl (2.19) 

The matrix is singular when the spacing between the sensors 2,0. is zero or an integer 

number of half-wavelengths. At spacings close to those which result in singularity, ill-

18 



conditioning occurs, making calculations prone' to large errors. Ill-conditioning refers 

to instances when typical levels of error, e.g. in sensor spacing or measurement noise, 

cause unacceptable errors in the calculated wave amplitudes [42]. 

It is worthy of note that the wave amplitudes are referred to as displacement wave 

amplitudes. However, all response quantities (velocity, acceleration, etc) vary time 

harmonically under the passage of a wave. Thus, one could equally define the 

amplitudes of the wave components in terms of the amplitude of any such response 

quantity. For example, one may equally refer to velocity waves, which have 

amplitudes a~ = iwa+ , or acceleration waves which have amplitudes a; = -w"a+ . The 

superposition of these waves then gives the velocity or acceleration of the waveguide 

respecti vel y. 

2.4.3 Experimental measurement of the wavenumber of a beam 

The flexural wavenumber of a beam structure is required for estimating the wave 

amplitudes, which in turn will be used to indicate the performance of a point 

discontinuity (i.e. TV A) in controlling the transmitted waves. The wave amplitudes 

are used to find the reflection and transmission coefficients of a TV A as discussed in 

the nex t chapter. 

The wavenumber k of a thin steel beam 6.4mm x 50.6mm x 5630mm was determined 

experimentally using three PCB accelerometers type 3S2C22 and an HP frequency 

analyser type 3566A. The beam was suspended at four points along its length and the 

ends of the beam were embedded in sandboxes. The presence of the sandboxes 

reduces any resonant effects, so that the spectra of the wave amplitudes incident on 

the sensors become more uniform. The experimental set-up is shown in Figure 2.5. 

The accelerometers were equally spaced such that the spacing between each two 

accelerometers was 6 = 0.5m. From equation (2.16), there is no restriction on the 

choice of 6, however the spacing between the accelerometers has to be identical and 

the accelerometers should be far enough away from any point discontinuity or 

boundaty so that the amplitudes of nearfield waves are negligible. The accelerometers 
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were calibrated relative to one another and the reI ati ve calibration factors were found 

to be very close to 1 (see Appendix 1). 

The beam was excited with band-limited random noise over a frequency range 50 to 

1600 Hz using a Ling V201 shaker, and the frequency response functions between the 

acceleration ~ at x = 0 (see Figure 2.5) and the accelerations AI and A, were 

measured. The measured frequency response functions AI / ~ and A, / A2 were 

implemented in equation (2.16) to estimate cos(kt-.) as a function of frequency as 

shown in Figure 2.6. The wavenumber was found to equal 0.83.fj using the best fit 

by eye to the measured cos(kt-.). One can find the best fit by taking the cosine of the 

product of t-. and k that is given by equation (2.7) and comparing it to the measured 

cos(kt-.) as shown in Figure 2.6. The best fit was found by taking the cosine of 

kt-. = 0.42.fj . 

2.5 Ref1ection and Transmission of Flexural Waves 

A wave propagates unchanged along a uniform member. If incident on a boundary or 

point discontinuity, then it will give rise to reflected and transmitted waves [32]. This 

section briefly introduces the reflection and the transmission of waves at a point 

attachment with a translational impedance. 

Suppose a propagating and/or a nearfield wave (a+ and/or a~) is incident on a 

discontinuity. It gives rise to reflected (a-,a~) and transmitted waves (b',b~) of 

both kinds (nearfield and propagating waves) as shown in Figure 2.7. The amplitudes 

of the reflected and transmitted waves can be found from the reflection and 

transmission coefficients described by Cremer et af [33], thus 

a a- b+ 
r=-'r =---"!....·I=-·t 

+'N +' +'N a a a + ' a 
(2.20) 
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where rand t are the reflection and transmission coefficients respectively. The 

subscript N refers to reflected (IN) or transmitted (tN ) nearfield waves. The 

reflection and transmission coefficients can be found by systematically applying 

equilibrium and continuity conditions. The case of an incident propagating wave has 

been considered frequently (e.g. [33]) while [32] considered the general case of 

incident propagating and nearfield waves. 

As an example, consider a propagating wave (a+) incident upon a point impedance 

Z. It will give rise to propagating and evanescent waves as shown in Figure 2.7. The 

beam displacement is given by 

(2.21 ) 

where w+ and w_ are the displacements of the beam in the regions x;:::: 0 and x:S; 0 , 

respectively. The reflection and transmission coefficients can be found by considering 

the continuity and equilibrium equations of the system. Continuity of displacement 

(w+ (0) = w_ (0)) gives, from equation (2.21) 

+ - + b+ b+ a +a +aN = + N' (2.22) 

Continuity of rotation (aw+ (0) / ax = aw_ (0) / ax) gives 

(2.23) 

From the equilibrium of bending moments at cross-sections of the beam at either side 

of the point impedance Z , then one can derive the following relation 

(2.24) 

and from the force equilibrium 

21 



(2.25) 

where Z = iZw / Elk' IS the dimensionless impedance. After solving the above 

equations, the reflection and transmission coefficients are given by 

iZ 
r=----

4-Z(1 +i) 

4-Z 
t=----

4-Z(l+i) 

Z 
r =t =----
N N 4-ZCl+i)' 

(2.26a, b, c) 

-

For the special cases of a mass m, damper with constant c
1 

or a spnng kl the 

-
impedance is iwm, c

1 
or kl / iw respectively. 

If the point impedance is assumed to be infinite, then it is in effect a pinned support 

and equations (2.26) become 

(1 + i) 
r=---

2 

(1- i) 
t=--

2 

(i -1) 
rN =tN =--. 

2 
(2.27a, b, c) 

For a uniform beam the transmitted and reflected powers are therefore equal to 

"I = It l2 
and ", = Irl2 times the power in the incident wave. If there is no energy loss at 

the discontinuity then Itl2 + 1r12 = 1. 
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2.6 Discussion and Conclusions 

In this chapter, the theory of waves in beam-like or one dimension structural elements 

has been discussed. 

Three main wave types, i.e. longitudinal, torsional and flexural waves, can be excited 

in a beam structure. The importance of controlling the flexural waves was highlighted. 

The displacement of a beam element is considered as the sum of four wave 

components: two farfield propagating waves and two nearfield non-propagating 

waves. The effect of propagating waves in the transmission of energy has been 

discussed. In addition, evanescent waves may cause energy to flow via the interaction 

of two nearfields. This feature becomes of practical significance in structures with 

discontinuities or constraints from which evanescent waves of various directions are 

generated. 

Experimental work in this chapter included the estimation of the flexural wavenumber 

for a thin beam as a function of frequency. 

Reflection and transmission coefficients of a general point discontinuity have been 

discussed in this chapter. However, these coefficients will be developed in the next 

chapter for a more complicated discontinuity (i.e. tuned vibration absorber) with the 

aim of controlling the transmitted propagating waves. 
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FIGURES FOR CHAPTER 2 

Rod element rU(X) / 
i------.-----.r-+-----i.- - - - - --: 

u(x) + 8u 

'--------'-----------"- - - - - - --' 

I· 8x 
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Figure 2.2. Beam element vibrating in flexure. 
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Figure 2.4. A two sensor array used to decompose the flexural wave field into two 
propagating wave amplitudes. 
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Figure 2.5. Experimental set-up used to measure the wavenumber of a beam 
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Figure 2.7. Reflected and transmitted waves around point impedance. 
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CHAPTER 3: PASSIVE CONTROL USING A 

TUNED VIBRATION ABSORBER 

3.1 Introduction 

It was seen in Chapter 2 that a wave propagates unchanged along a uniform beam 

unless it is incident on a discontinuity, where part of it is reflected and part is 

transmitted. This chapter is concerned with how the transmission of flexural waves in 

a beam can be controlled using a single tuned vibration absorber (TV A) located in 

either the nearfield or the farfield of a point disturbance. 

Tuned vibration absorbers have been used in many applications since their inception 

nearly a century ago by Frahm in 1911. These devices can be considered as spring­

mass systems which are either tuned to a problematic natural frequency of the host 

structure or to a troublesome excitation frequency. 

The use of a TVA to control a flexural wave on an infinite Euler-Bernoulli beam has 

been discussed previously. Mead [44] described how tuning the resonance frequency 

of an undamped absorber to the excitation frequency could pin the beam at the 

excitation position. Complete suppression of a flexural wave can be achieved by 

attaching a single undamped TV A and has been discussed by Clark [29] and Brennan 

[30] who modelled the TV A as a point translational impedance in the farfield of a 

disturbance. 

The purpose of this chapter is to expand on previous work, which assumed the farfield 

condition, by discussing the behaviour of the TVA located in either the nearfield or 

the farfield of a harmonic point force. New tuning parameters are determined and 

expressions derived for the tuned frequency and the bandwidth of attenuation. The 

cases of optimal energy absorption by the device or minimisation of the transmission 

of a propagating wave are considered. The presence of an incident evanescent wave, 

together with the incident propagating wave, affects the optimal characteristics of the 
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TVA. The net upstream propagating wave is also considered. This is gIven by the 

superposition of the wave reflected by the TV A and the upstream wave generated by 

the point force, and depends on the location of the TV A together with its parameters. 

The concept of vibrational power transmission has been considered for the numerical 

predictions and the experimental measurements in preference to other methods for a 

number of reasons. The measurement of vibration amplitude at various points around 

the structure will reveal little detail of the dominant paths of energy transfer. The 

measurement of vibration amplitude in the presence of standing waves in the structure 

will result in high levels of vibration being detected while the net power transmitted to 

adjacent points will be small. Furthermore, it makes little sense for future work to 

compare the amplitudes of vibration associated with different transmission paths (i.e. 

linear displacement in flexural motion and angular displacement in torsion). 

The chapter is set out as follows. The next section concerns the dynamic behaviour of 

the TV A and the way in which it affects wave transmission. The reflection and 

transmission matrices are found. The power transmitted downstream of the TV A is 

found in terms of four independent parameters: the ratio of the tuned frequency to the 

TV A frequency, the loss factor of the TV A, the mass of the TV A and the distance 

between the TVA and the source of disturbance. The net power propagating upstream 

is also investigated. Non-dimensional parameters are then introduced. The optimum 

tuning parameters of the TVA are discussed in section 3.3. This includes the tuned 

frequency, bandwidth of attenuation, location of the TV A and the optimum damping 

for the maximum power absorption. Section 3.4 is devoted to numerical examples, 

investigating the performance of the TV A and the optimum tuning parameters of the 

absorber for both nearfield and farfield cases. Experimental validation of the 

theoretical predictions is reported in section 3.5. Finally, conclusions are presented. 

3.2 Wave Model of a Tuned Vibration Absorber on a Beam 

The aim of this section is to investigate the reflection and transmission of waves at a 

TV A on an infinite beam when the TV A is in either the nearfield or the farfield of a 

point force disturbance. 
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3.2.1 Reflection and transmission coefficients 

Consider the TVA modelled as a single degree of freedom (SDOF) system and 

mounted on a beam at x = 0 and at a distance I from an applied force F exp (iCDt) as 

shown in Figure 3.1. Here 111 ,k and 11 are the mass, stiffness and the loss factor of 
l/ a I I 

the TVA respectively. The force generates waves, which are incident on the TV A and 

are partly reflected and partly transmitted. The ratios of the reflected and transmitted 

wave amplitudes to those of the incident waves depend on the characteristics of the 

TVA. The wave components shown in Figure 3.1 represent positive- and negative-

going propagating waves generated by the point force (a+, a-), positive- and 

negative-going propagating waves at a distance I from the point force (b+ ,b-) and 

the transmitted propagating wave (c+ ). The amplitudes a, band c are complex; the 

subscript N refers to evanescent waves. The net upstream propagating wave 

(a- +b-e-ikl
) is the superposition of the wave reflected from the TVA and the 

upstream wave generated by the point force. 

Suppressing the eiw1 time dependence for clarity, the beam displacement is given by 

(3.1a,b) 

where w+ and w_ are the displacements of the beam in the regIOns x ~ 0 and 

-1:s;x:S;O respectively. Here k=~pA/EI;:;; is the flexural wavenumber of the 

beam and p, A and EI are the density, cross-sectional area and flexural rigidity of 

the beam respectively. 

The force generates waves of amplitudes [33] 

(3.2) 

30 



the waves incident on the TVA are 

(3.3) 

while the amplitudes of the reflected and transmitted waves are given by 

(3.4a, b) 

Here rand t are the reflection and transmission matrices for the TV A. 

The reflection and transmission matrices can be found by considering the continuity 

and equilibrium conditions. Continuity of displacement (w+ (0) = w_ (0)) gives, from 

equations (3.1a) and (3.1b) 

+ + b+ b+ b- b-
C +cN = + N + + N' (3.5) 

Continuity of rotation (aw+ (0) / ax = aw_ (0) / ax) gives 

. + + 'b+ b+ 'b- b--IC -CN =-1 - N+ I + N' (3.6) 

From equilibrium of shear forces 

(3.7) 

The term on the right is the force on the beam from the absorber, whose mass has a 

displacement y . Equilibrium of bending moments gives 
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+ + b+ b+ b- b--c + CN = - + N - + N' (3.8) 

The equation of motion of the absorber's mass is given by 

(3.9) 

Finally, the displacement of the absorber's mass is given by 

(3.10) 

Equations (3.1), (3.5-3.8) and (3.10) can be solved for the reflection and transmission 

matrices rand t, which are 

r = ~ [i ij. t = I + r 
1 l' , (3.11a,b) 

where I is the identity matrix and 

~ = yQl!2 (1 + iYJ) . 
Q2 _ (1 + iYJ)(1 + yQlI2 (l + i)) 

(3.12) 

The dimensionless parameters 

(3.13a, b) 

represent, respectively, the mass ratio y at the absorber frequency CD II = ~kll / m" ' i.e. 

the ratio of the mass of the absorber to the mass in a length 2AII / 'IT of the beam 

(where A" is the wavelength at CD,,) and the frequency ratio Q, which is the ratio of 

the excitation frequency CD to the absorber frequency CD
II

• The variable kl that 
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appears In equation (3.3) can now be re-written In terms of the non-dimensional 

parameters as 

(3.14) 

The wave amplitudes can thus be found by solving equations (3.2-3.4) and (3.11). In 

the following subsections attention is focused on the transmitted propagating waves 

c+ and the net reflected propagating wave a - + b -e -ikl . 

3.2.2 Transmitted power 

The transmitted propagating wave c , which carnes energy to the farfield 

downstream of the TV A, has components arising from both the propagating and 

nearfield incident waves b and b~. It is given by 

(3.15) 

It can be seen that c+ depends on the location of the TVA with respect to the 

disturbance through the terms involving kl. 

The transmission ratio L{ of the absorber is now defined as the ratio of the power 

transmitted to that which would be transmitted if the absorber were absent, i.e. 

L = { 

[i - (1 + ill) (1 + y~;iI2 (1- e -kl(1-i))) 

0 2 
- (1 + ill) ( 1 + yO 1/2 (1 + i) ) 

2 

Therefore, the transmitted power also depends on the distance I. 
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If the TV A is attached at the source of disturbance, then l = 0 and the transmission 

ratio becomes 

(3.17) 

If the TVA is attached in the farfield of the disturbance, then kl is large and the 

transmitted power becomes 

(3.18) 

The transmission ratio depends on the absorber parameters and the frequency ratio in 

a somewhat complicated manner. 

3.2.3 Upstream power 

The net wave propagating upstream of the point force (a- + b-e- ikl
) is given by 

l l 1\1/2 (1 .) (1 . -kl(l-i)) j1 -F y~t. +111 -ze - b- -ikl I l' -2ikl a + e =-- +le . 
(. ) 4Ele Q2-(1+ill)(1+yQI/2(1+i)) 

(3.19) 

The reflection ratio Tr is defined as the ratio of the power reflected upstream to that 

which would propagate upstream if the absorber were absent, I.e. 

T
r 

= I(a- + b-e- ikl
) / a-1 2 

and is given by 

(3.20) 
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If the TV A is attached at the source of disturbance then the reflection ratio is equal to 

the transmission ratio given by equation (3.l7), while if the TVA is attached in the 

farfield of the disturbance, then "r reduces to 

. -2ikl yQ
I/2 (1 + ill) 

l = 1 + le 
, [Q'-(l+i~)(l+yn'''(l+i)) ]

2 

(3.21) 

3.3 Optimum Tuning of the TVA 

In this section some comments are made concerning the optimum tuning parameters 

of the TVA. It is possible to either minimise the power transmitted both downstream 

and upstream or to maximise the power absorbed by the TVA. For a time harmonic 

disturbance, in the first case ideally 11 = 0 while in the second case there is an 

optimum value of structural damping in the TV A. If the incident evanescent wave is 

significant, then the distance I between the force and the position of the TV A also 

affects the optimum tuning parameters. In general, numerical solutions are required to 

determine the optimum tuning parameters. However, for the case of an undamped 

TVA, analytical expressions exist for various special cases and some are given in this 

section, together with certain approximations valid for small values of the absorber 

parameters. 

3.3.1 Tuned frequency and bandwidth of attenuation 

If the TV A is undamped 11 = 0 then the transmission and reflection ratios become 

(3.22a, b) 
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The tuned frequency 0./ is now defined to be the frequency ratio at which the 

transmitted power is minimum. If the TVA is attached to the source of disturbance 

(i.e. kl = 0), then 0., = 1, so that minimum transmission occurs at the absorber 

frequency, where the impedance of the absorber is infinite. At this frequency the 

transmission and reflection ratios are both zero. 

If the TV A is located in the farfield (i.e. kl -* w), then the tuned frequency ratio 

satisfies 

,,2 _ ,,1/2 -1 = 0 
::,.!,/ "1::"/ . (3.23) 

Increasing the mass ratio increases 0./. At this frequency the transmitted power is 

zero. There is no analytical solution for 0./ ' but approximate solutions can be found 

for small and large "I, namely 

"I «1 

"I» 1. 

This case is discussed in detail by Brennan [30]. 

(3.24a, b) 

The tuned frequency ratio 0./ ;:::: 1 depends on the mass ratio as well as the location or 

the absorber. If kl« 1 for an undamped absorber, then the tuned frequency can be 

approximated as the solution to 

Re {o.~ -"10.: 12 (1- e -kl(l-i) ) -I} = 0 . (3.25) 

This can be simplified by using a Taylor's series (e -kl ::::: 1- kl + ... ) to give 

0. ::::: 1 + ykl . 
/ 2 

(3.26) 

36 



The small and large kl asymptotes of equations (3.24a) and (3.26) intersect when 

kl = 1. 

The transmission ratio varies with £1 and its maximum value is greater than 1 and 

occurs at a frequency ratio £1/IJ > £1r which also depends on the TV A location. If the 

TV A is attached at the disturbance location then 

(3.27) 

and the maximum power transmitted is '"C r ,. x = 2. For small y, £1 :::; 1 + y. Hence 
,lld 1/1 

increasing the mass ratio increases the frequency ratio £1
111 

at which the maximum 

transmission occurs. The maximum transmission arises due to matching of the 

impedance of the undamped absorber to the reactive part of the impedance of the 

beam at this frequency. The maximum power transmitted decreases as kl ll1creases, 

reaching 1 as kl ~ 00 . 

The TVA is effective over a narrow bandwidth £-.£1 as discussed by Brennan [30]. 

The bandwidth of attenuation here is defined as the width of the stop-band in which 

less than half the incident power is transmitted. The lower and the upper half-power 

points, for an undamped TV A located in the farfield, can be found by equating the 

transmission ratio in equation (3.18) when to 0.5. The lower half-power point is 

£1J = 1 ; this is independent of y. At this frequency, the beam is effectively pinned and 

'"C r = 0.5 . The upper half-power point £12 depends on 11 = 0 . For kl ~ 00 and small y, 

this is given approximately by 

(3.28) 

Hence the bandwidth of attenuation £-.£1:::; y . 
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3.3.2 Optimum damping for power absorption 

The maXllllum power that can be absorbed by the TV A cannot exceed half the 

incident power, since the beam is only restrained translationally, and the TVA cannot 

affect energy flow due to rotational (bending moment) components [45]. 

An approximation for the optimum mass ratio, which achieves the maximum power 

absorption, can be attained by taking the impedance of the TV A and that of the beam 

into consideration. The translational impedance of an infinite beam excited by a point 

force (i.e. the ratio of applied force to the velocity it produces) is given by Mead [44] 

2 Elk 3 

Z =--(I+i) he am . 
()) 

(3.29) 

The impedance of the TV A that ensures that it absorbs the maximum power Z"PI is 

the complex conjugate of the impedance of the beam as stated in the "maximum­

power-transfer theorem" [46] between two devices in a network, and is given by 

Z = 2Elk
3 

(I-i) 
"pi ()) 

(3.30) 

The impedance of a TVA, ZTVA' given by Brennan [30,47] is 

(3.31 ) 

Equation (3.31) can be reformulated using the parameters given in equations (3.13a) 

and (3.13b) and written in non-dimensional form as 

(3.32) 
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Now consider the behaviour of the absorber at the tuned frequency when 11« 1 (i.e. 

iroZTVA _yn:12 (1 + ill) 
4Elk' _yn:12 + ill . 

(3.33) 

Assuming y« 1 and n:12 ~ 1 , which are often the case in practice, then 

(3.34) 

The value of the TVA impedance which is optimal can be found by substituting 

equation (3.30) into equation (3.34) resulting in the relationship 11/Y = 1. This means 

that for maximum power absorption by the TV A the loss factor should be 

approximately equal to the mass ratio. 

3.3.3 Optimum location of the absorber 

The net wave propagating upstream for a TVA attached in the farfield can be written 

as 

( - b- -ikl) - - (1 I I -i(2kl+~)) a + e - a + '11 e , (3.35) 

where Iri II and ~ are the magnitude and phase of the (1,1) element of the reflection 

matrix. If the absorber is undamped and optimally tuned, then the transmission 

coefficient tIl = 0 and the reflection coefficient '1 I = -1. Therefore equation (3.35) 

becomes 

( - b- -ikl) - (1 -i2kl) a + e = a -e . (3.36) 
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If the total phase shift 2kl = (2n -1) rc, where n is any integer, then the amplitude of 

the upstream wave in the farfield is 2a - : the reflected wave interferes constructi vel y 

with the upstream wave injected by the disturbance. On the other hand, if 2kl = 2nrc, 

then the amplitude of the upstream-going wave is zero: the two wave components 

interfere destructively. Thus the location l of the undamped absorber can be chosen in 

order to obtain zero transmission upstream if the absorber is located in the farfield. 

Therefore, the transmitted and reflected power can be completely suppressed at a 

single frequency using a single undamped TV A located in the correct position in the 

farfield. If the TVA is not in the farfield then the phase of 'II is somewhat different 

from -n, while its magnitude is somewhat less than 1, so that total cancellation of the 

upstream going wave does not occur. 

3.4 Numerical Examples 

The dependence of the power transmitted and absorbed on the TV A parameters is 

illustrated numerically in this section. 

3.4.1 Effect of TV A location 

Figure 3.2 shows the transmission ratio 1:, as a function of the frequency ratio D for 

two different mass ratios y and various locations of the TV A, l / A", where 

Au = 2rc/k is the flexural wavelength at the absorber frequency. The TVA is assumed 

to be undamped. Generally, in each case the transmission has a minimum at a certain 

frequency D,. However, in all cases Dr = 1 when I = 0 and the transmission ratio 

asymptotes to 1 as D --+ 00. It can be seen that 1:r > 1 for some D> Dr and increasing 

1/ A reduces the maximum transmission ratio. Also, increasing 1/ A increases the 
£1 a 

tuned frequency. When the nearfield wave is significant, the transmission ratio of the 

undamped absorber is no longer zero at Dr' Moreover, increasing the mass ratio 

increases Dr . 
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3.4.2 TVA located in the farfield 

If the TV A is positioned in the farfield of the point disturbance then evanescent waves 

incident on the TV A are negligibly small. The effect of the mass ratio on the power 

transmitted for an undamped TVA is shown in Figure 3.3a. Increasing the mass ratio 

increases the tuned frequency ratio Or . 

Figure 3.3b illustrates the effect of damping on the performance of the TVA. 

Although damping reduces the attenuation of the power transmitted at Or' it also 

increases the proportion of the incident power absorbed by the TV A as shown in 

Figure 3.4. Increasing the damping gradually increases the maximum power absorbed 

P" (the power absorbed per input power) for a constant mass ratio until the damping 

reaches a particular limit. This is approximately when 11 ~ y, as discussed in the 

previous section, when half of the incident power is absorbed, while the other half is 

equally transmitted and reflected. When 11 > y, then the maximum power absorbed 

decreases as shown in Figure 3.4a, while the frequency 0" at which the maximum 

absorption occurs increases with 11. The effect of y on the proportion of incident 

power absorbed by the TV A is shown in Figure 3.4b. Increasing y increases P" as 

well as 0" for a fixed level of damping as long as y < 11. This latter effect is 

insignificant if the TV A is lightly damped. 

3.4.3 Optimum tuning 

It was seen that the location of the TV A affects the power reflected upstream of the 

point force. Figure 3.Sa shows the effect of 1/ Ail on the reflection ratio for different 

mass ratios. Changing the mass ratio changes the value of 1", at certain locations of 

the TV A. This effect becomes insignificant as 11 -+ 0 as shown in Figure 3.Sb. 

The optimum location of the absorber at which the minimum power flows up- and 

down-stream can be chosen by taking both 1"r and 1", into consideration as shown in 

Figure 3.6. The optimum location of the TVA is at one of the normalised distances 
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(1/ A,,) that gIVe the maXImum attenuation of ", (approximately at multiples of 

0.5/\..,,). The minimum values of ", and the value of "r for a farfield location depend 

on 11, and tend to zero as 11 ~ O. 

Figure 3.7 shows the tuned frequency ratio Q r as a function of 1/ Au for various y. 

Generally, Q r increases with l / A" and asymptotes to the values given by equations 

(3.24a) and (3.26) when the TVA is in the farfield and nearfield respectively. These 

asymptotes are shown in Figure 3.7 for y:::: 0.05 . Increasing the mass ratio increases 

Q r for a given location of the TV A. The minimum power transmitted generally 

occurs at higher tuned frequency ratios if the TV A is located further away from the 

point disturbance. This is not the case in the farfield, when the position of the TV A no 

longer affects Q r for a given y. 

The optimum tuning parameters of an absorber attached in the farfield can be found 

from equations (3.18) and (3.21). Figure 3.8 shows the relation between q and the 

damping of the absorber for various y. Increasing 11 and/or y increases Qr' 

However, when 11 «1 then damping slightly affects Q r • A trade off should combine 

the beneficial effects of both 11 and y for the best exploitation of the absorber, where 

increasing 11 would reduce the attenuation of the transmitted power. 

The effects of the mass ratio and damping on QiJ are similar to their effects on Q r as 

shown in Figure 3.9. It is also worthy of note that 0." is greater than Qr' 

The optimum parameters of the TV A at which the maximum power is absorbed are 

found numerically and are illustrated in Figure 3.10. Designing a TV A with a higher 

value of structural damping than the optimum value indicated in Figure 3.10 for a 

given mass ratio will reduce the maximum power absorbed by the TV A. 

The variation of the frequency bandwidth 6.0. as function of 1/ A" is shown in Figure 

3.11. In general, the maximum bandwidth is achieved in the nearfield. Increasing 
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l / A" decreases 60. for a gIven 11 and/or y. However, this effect becomes 

insignificant in the farfield. The effect of the mass ratio on the frequency bandwidth is 

shown in Figure 3.11 a. It is clear that increasing y increases 60. and 60. ~ Y when 

the nearfield waves are insignificant. Also increasing 11 increases 60. as shown in 

Figure 3.11b. 

3.5 Experimental Validation 

A design for a passive vibration absorber is introduced in this section. The absorber is 

characterised experimentally then attached to a beam to control the power 

transmission. The experimental results are compared with the theoretical and 

numerical predictions presented in the previous sections. 

3.5.1 The passive beam-like absorber 

A TV A was implemented using a beam with masses attached at its ends as shown in 

Figure 3.12a. The centre of the beam is attached to the host structure. The stiffness of 

the TV A is provided by the beam vibrating in bending while the mass comes mostly 

from the tip masses and partly from the mass of the beam. The first mode of the TV A 

occurs at the absorber frequency CD", where the absorber is in effect clamped at the 

centre [48]. 

The absorber can be modelled as two symmetric cantilevers with masses at the end 

(see Figure 3.12b for a single cantilever). The natural frequency of the cantilever (the 

absorber frequency. CD" ) can be derived using Dunkerley's equation [48, 49] such that 

(3.37) 

where 

2 3El 
CD I =--, , 

ML e 

(3.38) 
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is the natural frequency of the massless cantilever with a tip mass Me' El IS the 

flexural rigidity and L is the length of the cantilever, while 

? 12.4El 
co- =---

2 M L' ' 
" 

(3.39) 

is the natural frequency of a cantilever of mass M" without the tip mass. Thus 

2 3El 

co" ;::; L' (0.243M" + Me)' 
(3.40) 

The characteristics of the absorber can be predicted by modelling the absorber as a 

simple two degree of freedom system (see Figure 3.12c). Thus, the impedance of the 

model introduced by Hixon [50] can be implemented. This is given by 

(3.41 ) 

where rn" is the effective mass of the absorber while rn" is the mass of the absorber 

that is effectively attached to the host structure. 

3.5.2 Characterisation of the absorber 

A beam-like absorber was made of a steel beam (1.7mmx20.Smmx80.4mm) with 

blocks of brass (l0.3mmx10.2mmx20.Smm) attached at each end as shown in 

Figure 3.13. The theoretical prediction of the absorber frequency is 1;, = 314.2 Hz. 

This was obtained using equation (3.40) with the dimensions shown in Figure 3.13 

and the data provided in Table 3.1. 

The absorber was attached to a PCB impedance head type 288DOI fitted to a Ling 

V201 shaker which excited the absorber with band-limited random noise over a 
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frequency range of 0 to 800 Hz. The measured impedance of the absorber is plotted in 

Figure 3.14. The absorber frequency was obtained experimentally as h, =343Hz. In 

addition, the resonance frequency f; (i.e. the frequency at which the impedance is 

minimum) was also obtained and equals 603 Hz. The loss factor of the absorber was 

estimated to be 11 = 0.01 using the circle fit method [51]. 

The effechve masses 111" and 111" of the absorber were estimated using knowledge of 

the experimental absorber frequency f' and resonance f'· Also 0) = J kim and 
II I 1I a (j 

(Dr = k"(111,, +mJ,)lm"ln" which are given in [50). The total mass of the absorber 

(m,,, + iTl" = 67.6 g) was found experimentally from the point accelerance at low 

frequencies. Therefore, In" = 45.7 g and m" = 21.9 g. The stiffness of the model was 

thus found to be k" = 212.6kN/m. The absorber parameters found experimentally 

were used in equation (3.41) and the comparison between the theoretical and the 

measured point impedance of the absorber is shown in Figure 3.14. It is seen that the 

numerical prediction of the absorber's point impedance, from equation (3.41), agrees 

well with the experimental measurement. 

3.5.3 Implementation of the TVA for vibration control on a beam 

The absorber was attached at its centre to a 6.4mm x 50.6mm x 5630mm straight steel 

beam suspended at four points along its length. The ends of the beam were embedded 

in sand boxes to reduce reflections. The measured wavenumber of the beam was such 

that k = 0.83fj as discussed in Chapter 2. The ratio of the mass of the beam in a 

length 21e" I n to 111" is about 30: 1, and therefore 1711> is negligible. The mass ratio of 

the TVA was predicted to be y = 0.07 using equation (3.12a). 

The beam was excited by a Ling V201 shaker with band limited random noise over a 

frequency range of 50 - 800 Hz. The propagating wave amplitudes were estimated 

using the frequency domain wave decomposition approach described in the previous 

chapter. This requires measuring the acceleration along the beam at four different 

points. Four PCB type 352C22 accelerometers were employed to measure the 
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required accelerations. Other equipment included an 8 channel HP 3566A spectrum 

analyser, Ariston 910 power amplifier and a PCB 44 1 A42 signal conditioner. 

The accelerometers were divided into two pairs as shown in Figure 3.15. The first pair 

(A
J 

and ~) was used to estimate the amplitude of the upstream propagating wave, 

while the second pair (Ai and A4) was used to estimate the amplitude of the 

downstream propagating wave. This allows measurement of wave amplitudes with or 

without the absorber attached to the beam, and hence estimation of the transmission 

and reflection ratios. 

The distance between the two accelerometers in each array was chosen to be 40mm 

(less than half the shortest wavelength as discussed in Chapter 2). In order to avoid 

the effects of nearfield waves above 150 Hz, the distance between each of the sand 

boxes, the absorber, the source of disturbance and the accelerometer arrays was 

chosen to be greater than a wavelength at 150 Hz (0.62m). Nevertheless, the distance 

between the point disturbance and the TV A took one of five different values 

(1/ Aa = 0, 0.34, 0.49, 0.73 and 0.98, where Au = 0.41 m) to examine the effects of 

the location of the TV A. 

Figure 3.16 shows the numerical predictions of equation (3.16) and the experimental 

measurements when the TVA is attached to the point where the disturbance acts 

(lIA" = 0). For this case 1', and "1 should be equal. Control at the absorber 

frequency of 343 Hz can be clearly seen. The measured powers transmitted 

downstream and upstream are nearly equal. Moreover, the tuned frequency is seen to 

be the same as the absorber frequency as predicted. The maximum attenuation 

achieved was approximately 34dB in the transmitted power as shown in Figure 3. J 6a 

and 25dB in the upstream power as shown in Figure 3. J 6b. These values are very 

sensitive to the level of damping in the TV A. 

The effects of the location of the TV A were investigated experimentally by choosing 

four different locations of the TV A. Results are shown in Figure 3.17. Agreement is 

generally good. A clear notch in LI is seen around the tuned frequency, while ", 
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depends strongly on the location of the TV A. In Figure 3.17a I / \, = 0.34, so that the 

TVA is well within the nearfield of the disturbance. However, in Figure 3.17b 

I / Ail = 0.49, so that there are still significant nearfield effects. Now there is also a 

clear notch in '" due to the interference of the two wave components a- and b -e- ikl 
. 

Locating the TV A at I / Au = 0.73 has increased the reflection ratio by approximately 

5dB as shown in Figure 3.l7c. The tuned frequency here has slightly increased to 356 

Hz. Figure 3.17d shows the case where choosing an optimum location for the TV A 

achieves attenuation in both '{ and ',. The tuned frequency here was found to be 

approximately 356 Hz as predicted (the tuned frequency is independent of position in 

the farfield for a gi ven mass ratio). 

The disagreement at low and high frequencies is due to measurement errors and 

sensor miscalibration. Moreover, it is difficult to estimate the structural damping 

accurately which affects the response around the tuned frequency. 

3.6 Discussion and Conclusions 

This chapter has presented theoretical and experimental investigations of the 

behaviour and the optimum tuning parameters of a TV A which suppresses flexural 

waves in thin beams. The location of the TV A with respect to a point disturbance has 

been taken into account. 

The reflection and transmission ratios for the TVA were derived and depend on four 

independent tuning parameters: the absorber frequency 0\, the mass ratio y, the 

damping 11, and the non-dimensional distance I / Au between the TV A and the 

disturbance. Emphasis was placed on finding the tuning parameters, which ensure the 

minimum power transmitted and reflected or the maximum power absorbed. 

Analytical expressions for the transmitted and reflected powers were found to have 

components arising from both the propagating and evanescent incident waves. The 

location of the TVA only affects the tuned frequency if the incident evanescent waves 

are significant. In general, increasing the distance between the TV A and the source of 
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disturbance would achieve the maXImum attenuation In the transmitted power at a 

higher frequency ratio regardless of the power reflected upstream. Attenuation in the 

power flow in both directions can be achieved at the tuned frequency if the absorber is 

attached at certain distances from the point disturbance. These locations are 

approximately multiples of half the wavelength at the absorber frequency. 

Numerical investigations have shown how increasing the mass ratio mcreases the 

tuned frequency, i.e. the frequency at which the maximum power is absorbed, and the 

bandwidth of attenuation. Conversely, damping was found to reduce the attenuation 

of the transmitted power but it increases the tuned frequency. 

Damping was also found to reduce the maximum transmission ratio which occurs 

when the TV A is attached in the nearfield of the disturbance. It was shown that the 

frequency at which the maximum power transmission occurs is greater than the tuned 

frequency. 

The theoretical predictions have been successfully validated by experimental 

measurements. 

The effects of the TV A on wave transmission and reflection depend on the TV A 

parameters. The net effect is similar to that of a notch filter. The effectiveness of a 

TV A for narrow band disturbances thus depends crucially on how accurately the 

properties of the TVA are tuned. This raises the possibility of adaptive-passive 

control, in which the passive properties of the TV A can be adjusted to be optimal 

under changing conditions. Simplicity in design and a lower cost than active control 

are advantages of such an approach. The design of adaptive tuned vibration absorbers 

to control the flexural waves transmitting on a beam is discussed in the next chapter. 
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~ 
Young's Modulus Density 

Material E (OPa) p (kg/mJ) 

Steel 210 7850 

Brass 105 8450 

Table 3.l. Mechanical properties of the tuned vibration absorber. 
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CHAPTER 4: CONTROL OF VIBRATIONS WITH 

A VARIABLE STIFFNESS ABSORBER 

4.1 Introduction 

In Chapter 3 it was seen how flexural waves propagating on a beam structure can be 

significantly controlled at a specific frequency using a passive TV A. However, the 

passive absorber may become mistuned and lose its effectiveness if the disturbance 

frequency lies away from the narrow frequency band in which significant attenuation 

can be achieved. 

Controlling the transmitted propagating wave at the tuned frequency requires that the 

TVA presents a spring-like impedance to the beam [30]. This fact can be used to 

overcome the limited effectiveness of the TVA, by changing the TVA's stiffness 

adaptively to suppress the flexural waves over a range of possible excitation 

frequencies. The adaptive change of the TVA's stiffness during operation is an 

example of adaptive-passive control discussed in Chapter 1. The device is therefore 

called an adaptive tuned vibration absorber (ATV A). 

The aim of this chapter is to present the design and characterisation of an A TV A. The 

A TV A is then used to control the flexural waves propagating on a beam structure 

when the ATV A is located in the farfield of a point disturbance. Two different designs 

of ATV A are considered, both being thermal devices whose stiffness changes with 

temperature. One involves shape memory alloy (SMA) wires together with elastic 

elements for mounting purposes, while the other involves the same elastic elements 

with stainless steel wires. This absorber is designed to examine the performance of the 

elastic elements on changing the tuned frequency. 

Originally the SMA ATV A was designed to control the transmitted waves on a beam. 

Following initial experimental work, the absorber that includes the elastic elements as 
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the only elements whose stiffness varies with temperature, was used to control the 

transmitted waves. 

Following this introduction, section 4.2 emphasises the influence of the TV A's 

stiffness on the tuned frequency. Section 4.3 investigates the adaptive properties of 

the materials chosen to be implemented in designing the A TV A. The geometric 

design of the A TV A is discussed in section 4.4. Experimental results validating the 

tunability of the A TV A are presented in section 4.5. Finally, section 4.6 contains the 

conclusion of the chapter. 

4.2 The Influence of the Absorber Stiffness 

The flexural waves propagating on all infinite beam can be completely suppressed at a 

single frequency if an undamped spring is fitted between a rigid foundation and the 

beam as discussed by Brennan [30]. The existence of damping in the spring permits 

some transmission of the propagating incident waves. However, fixing a spring to a 

rigid foundation might not be possible in practice. Therefore, the resultant TV A 

(spring-mass system) has to present a spring-like impedance to the beam at the tuned 

frequency. 

For an undamped TV A (11 = 0), the absorber impedance 21'11/\ gIven by equation 

(3.31) is infinite when 0. = 1. However, tuning a TV A attached to a beam to this 

frequency would pin the beam and only 3dB attenuation in the transmitted wave 

would be achieved. Furthermore, the TV A has a mass-like impedance for 0. < 1, 

while for 0. > 1 the TVA has a spring-like impedance. Consequently the tuned 

frequency o.{ > 1. This supports the analytical results derived in Chapter 3 for o.{ . 

4.3 Variable Stiffness Materials 

Materials with variable elastic properties when simply actuated have been an interest 

of many researchers in the field of vibration control. One possibility is shape memory 

alloys (SMAs). Rustighi et al [12] and Williams et (II [13] have shown that significant 

attenuation in the vibrations of a host structure can be achieved using an SMA ATV A. 

67 



Approximately 15% change in the tuned frequency was obtained. Other smart 

materials such as electro- and magneto-rheological fluids [52-54] can also be used. 

Nevertheless, the range of the elastic modulus of rheological fluids would seem to be 

much less than that of the SMAs, while the structural damping is much greater. This 

has a significant effect on the attenuation of the transmitted waves as discussed in 

Chapter 3 (i.e. increasing damping in the absorber reduces the transmission ratio). 

Due to the proven effectiveness of SMA ATVAs in attenuating the vibrations of a 

host structure over a reasonable frequency range (i.e. approximately 15% change in 

tuned frequency), SMA wires were used in an ATV A to control the transmitted waves 

on a beam. These wires were used to construct a beam-like absorber. Non-metallic 

stiff materials, epoxy-resins and jelutong (i.e. type of wood) were used to mount the 

SMA wires and to form the centre of the absorber which is then attached to the beam. 

The elastic properties of the non-metallic materials are discussed in this section 

together with a brief description of SMAs. Another absorber identical to the SMA 

A TV A but with stainless steel wires replacing the SMA wires, was built to examine 

the effectiveness of the non-metallic materials in varying the tuned frequency. This 

absorber is called the thermo-elastic absorber. 

4.3.1 Shape memory alloys 

In 1932, Olander discovered an interesting phenomenon when working with an alloy 

of gold (Au) and cadmium (Cd). The Au-Cd alloy could be plastically deformed when 

cool and then heated to return to, or "remember", the original shape [55]. The 

phenomenon is known as the Shape Memory Effect (SME). Further research revealed 

other materials that demonstrate this phenomenon. In 1962, a group of researchers 

from the U.S. Naval Ordnance Laboratory lead by Buehler et al [56] discovered a 

nickel-titanium (Ni-Ti) alloy, Nitinol, which demonstrated this shape memory effect. 

The Nitinol shape memory alloy proved to be significantly less expensive, easier to 

work with, and less dangerous than previously discovered alloys. The term shape 

memory alloy (SMA) is applied to the group of metallic materials that has the ability 

to return to some previously defined shape or size when subjected to appropriate 

thermal and/or mechanical changes [57]. 
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The unique behaviour shown by the SMAs is because they undergo a phase change in 

the solid state. The phases are called martensite and austenite. The martensitic phase 

exists at low temperatures and has a relatively soft and easily deformed phase. The 

molecular structure in this phase is twinned. The austenitic phase is the stiffer phase 

of shape memory alloys and exists at elevated temperatures. The molecular structure 

in this phase is body-centred cubic. In most SMAs, a temperature change of only 

lODC is necessary to initiate this phase change. A mixture of both martensite and 

austenite phases may be exhibited by the SMA. The amount of the material that exists 

in the martensite phase is measured by the martensitic fraction (C;) where 0:::; C; :::; 1 

[57]. When C; = 0, then the only phase that exists in the molecular structure is the 

austenitic phase. On the other hand, C; = 1 indicates that only the martensitic phase 

forms the molecular structure. 

The characteristic temperatures at which the phase transformations take place are 

identified as M.
" 

M" A" and Af , which represent the temperatures at the start and 

finish of the martensite transformation and, start and finish of the austenite 

transformation. A sketch of the temperature cycle with an illustration of the 

characteristic temperatures is shown Figure 4.1. At A, and M s ' the martensitic 

fraction C; = 0 while at M f and A" C; = 1 [52]. In this context, the shape memory 

effect is observed when the temperature of the shape memory alloy is cooled to below 

the temperature M j where the alloy is completely composed of martensite. When the 

Nitinol SMA is below its transformation temperature, it can be deformed into any new 

shape. However, when the material is heated above its transformation temperature it 

undergoes the above described change in the crystal structure. 

Cross et (II [58] presented experimental results showing the variation of modulus of 

elasticity of an SMA rod with temperature. The elastic modulus of the Nitinol SMA is 

significantly increased by approximately 65% when the austenitic phase is reached. 

This change was found to be reversible upon cooling. Further experimental work that 

validated the significant variation of elastic modulus with temperature was presented 

by Rustighi et al [12]. About 47% change in the elastic modulus was achieved by 

changing the temperature of an SMA wire (i.e. changing the phase). The difference 
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between the changes in the elastic modulus obtained by Cross et al [58] and Rustighi 

et al [12] can be due to using SMA specimens with different material composition, or 

due to the fact that Rustighi measured changes in the dynamic elastic modulus. 

In addition to the change in material properties, there is some hysteresis which is an 

indicator of energy dissipation during the austenite to martensite and martensite to 

austenite transformations [59, 60]. An appropriate heat treatment to SMA would 

eliminate the hysteresis effect as discussed by Williams et al [61]. In addition to the 

two phases discussed earlier, an intermediate phase known as the rhombohedral phase 

(R-phase) can be achieved in the material without significant hysteresis. In addition, 

the R-phase has some attractive properties such as stability to thermal cycling and 

ageing. The existence of the R-phase depends on a number of factors like thermal 

history, cold work and solution treatment of the sample. Uchil et al [62] investigated 

the effect of the heat-treatment temperature on the R-phase transformation and 

associated hysteresis in prior cold-worked Nitinol by means of thermal analysis and 

electrical resistivity measurement. The width of thermal hysteresis associated with the 

R-phase transformation is small and decreases with increasing heat-treatment 

temperature. 

The structural damping of SMA is important for this research as damping has a direct 

effect on the attenuation as pointed out previously in Chapter 3. Liang and Rogers 

[60] discussed the damping variation in SMA with temperature. The martensitic phase 

has a high damping capacity compared to the higher temperature phase (austenite). 

The high damping capacity in the martensitic phase is due to the stress-induced 

movement of the twin boundaries. This also occurs in the intermediate R-phase as 

discussed by Wu and Lin [63], though, as with other alloys, the interfacial mobility of 

crystals, transformation hysteresis, stress and strain amplitude, and excitation affect 

the damping characteristics of SMA. Piedboeuf and Gauvin [64] presented 

experimental results showing the effects of frequency and strain amplitudes on 

damping behaviour of Nitinol SMA. The structural damping increases when the strain 

amplitude increases. In contrast, increasing the frequency decreases the damping. 
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4.3.2 Non-metallic materials 

The effect of temperature on the elastic modulus of the epoxy-resins and jelutong 

which are chosen for mounting the SMA wires is discussed in this section. 

Epoxy-resins are man-made thermoset polymers and are used as adhesives, high 

performance coating and encapsulating materials. These polymers are formed from a 

chemical reaction where resin and hardener are mixed and then undergo a non­

reversible chemical reaction to form a hard infusible product [65, 66]. This chemical 

reaction is called the curing process. Once cured, thermosets will not become liquid 

again if heated. In general, epoxy resins cure quickly and easily at practically any 

temperature from 5-150 DC depending on the choice of curing agent (hardener). The 

choice of resin and hardeners depend on the application and the properties desired. 

Above a certain temperature, the mechanical properties of epoxy-resins will change 

significantly. This temperature is known as the "glass transition temperature (Tg )" 

and varies widely according to the particular resin system used, its degree of cure and 

whether it was mixed correctly. At temperatures above Tg , the molecular structure of 

the thermoset changes from that of a rigid crystalline polymer to a more flexible 

amorphous polymer. This change is reversible on cooling back below Tg . It is worthy 

of note that above Tg , properties such as modulus of elasticity drop sharply, and as a 

result the compressive and shear strength of the system do too. Other properties such 

as water resistance and colour stability also reduce markedly above Tg . 

Jelutong CDyera cosulata) is the other material that is chosen to mount the SMA wires 

at the centre of the absorber by containing the epoxy resins. Jelutong is classified as a 

hardwood type; however, the term has no reference to the actual hardness of the wood 

and is related to the porosity of the wood cells. In general, the mechanical properties 

(i.e. elastic modulus and density) of wood decrease when heated and increase when 

cooled [67]. This property is related to the moisture content. Nevertheless, at a 

constant moisture content and below ;::;; I50 D C, the mechanical properties are 

approximately linearly related to temperature. The change in properties that occurs 

when wood is quickly heated or cooled at that condition is termed an immediate 
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effect. This effect is reversible at temperatures below 1 OODC; that is the property will 

return to the value at the original temperature if the temperature change is rapid. 

Figure 4.2 shows the effect of temperature on the modulus of elasticity parallel to the 

grain. It is clear that increasing the temperature above the room temperature up to 

100DC decreases the modulus of elasticity by about 30%. This effect slightly 

increases with moisture. The results are obtained from several investigations [67]. In 

addition to the reversible effect of temperature on wood, there is an irreversible effect 

at elevated temperature. This permanent effect indicates the degradation of the wood 

substance as the net weight and strength decrease. 

4.4 Design of the Adaptive Absorber 

In this section, the Nitinol material discussed previously is employed for designing an 

SMA ATV A. This is achieved with the aid of some mounting materials (i.e. epoxy­

resins and jelutong). The design technique and the geometrical dimensions of the 

absorber are described. The effect of varying the A TV A dimensions on the overall 

stiffness and in turn on the tuned frequency is also discussed. In order to investigate 

the tunable range the mounting materials would exhibit, a typical design to the SMA 

ATV A is established using the same mounting system with an alloy whose 

mechanical properties do not change with temperature up to 700DC and which has the 

same electrical resistivity (i.e. stainless steel). 

4.4.1 Design and construction 

The principal of operation of the ATV A is the same as that of the passive beam-like 

absorber implemented in Chapter 3. Thus, the ATV A is realised as two symmetric 

cantilevers with masses at the ends. However, each cantilever is represented by n 

SMA wires where n is an integer. Each wire has a diameter d and a second moment 

of area 1 = (7r / 64) d 4 
• Consequently, the absorber frequency 0)" given by equation 

(3.40) can be rewritten as 

2 311E1 
0),,;:'; L'(0.243nMj,+M

e
)' 

(4.1 ) 
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The other variables are the same as those in equation (3.40). 

The design of the absorber can be manipulated to target a specific frequency. This will 

be the default frequency of the absorber CD" . Increasing the number and the diameter 

of the wires nand d respectively, increases the absorber frequency since the 

stiffness of each cantilever k = 3E1 / L' increases. On the other hand, increasing the 

length of the wires L and/or the concentrated tip mass Me decreases CD" (i.e. 

CD ex D3!2 ). 

" 

Attaching a concentrated mass at the end of each cantilever would increase the mass 

ratio y. In addition, changing the position of the concentrated mass on the cantilever 

would vary the effective length of the absorber. This in turn would allow the absorber 

frequency to be adjusted. 

4.4.2 Shape memory alloy absorber 

An SMA ATV A was constructed using 4 pairs of Nitinol SMA wires (2 mm diameter 

and 45 mm long each). The wires are connected in parallel such that the DC current 

passes from one wire to another to increase their temperature. Figure 4.3a shows a 

sketch of the electrical circuit of the SMA A TV A. The relevant properties of the 

Nitinol wires are tabulated in Table 4.1. A block of brass of dimension 

3mm x 6mm x 25.5mm was attached on each side and a block of jelutong was fitted at 

the centre and filled with epoxy-resins to mount the SMA wires and form a stiff 

compound. Nevertheless, the compound has a relatively very low density to ensure 

that there is little influence on the dynamics of the system. This construction should 

simulate a beam-like absorber (two identical cantilevers). The total mass of the SMA 

ATV A is about 40.7g. Table 4.2 shows the mechanical properties of the mounting 

materials (i.e. epoxy-resins and jelutong). The brass blocks are designed such that the 

effective length of the cantilevers can be altered as required (see Figure 4.3b). In 

addition, an electrical/thermal insulator is used to prevent the brass blocks from 

causing a short circuit. Table 4.3 shows the physical properties of brass. 
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4.4.3 Thermo-elastic absorber 

In order to investigate any effect the mounting materials may exhibit, 4 paIrS of 

stainless steel wires (grade 316) were used in a design and with dimensions similar to 

those of the SMA ATVA shown in Figure 4.3. This absorber is called the Thermo­

elastic absorber. The net mass of this absorber is about 45.7g. 

Stainless steel has electrical resistivity similar to that of the Nitinol material. 

Therefore, the stainless steel wires heat up in a similar way to the Nitinol wires. 

However, the crystalline structure of stainless steel does not change with temperature 

up to 700°C [68]. Table 4.4 includes the physical properties of the stainless steel 

wIres. 

4.5 Experimental Work 

In order to assess the effectiveness of the adaptive absorbers in controlling the flexural 

waves at various tuned frequencies, a series of experiments was carried out. First, the 

tuning range of the absorbers was investigated. Next, the absorbers were attached to a 

beam to control the flexural waves at various tuned frequencies. 

4.5.1 Tuning range of the adaptive absorbers 

Initially, the characteristics of the SMA ATV A were estimated at the ambient 

temperature which was about 16°C (i.e. no DC current input), by following the same 

techniques and using the same equipment utilised for the TV A that was described in 

section 3.5.2. Therefore, the following characteristics were estimated experimentally: 

I, = 140 Hz, Y = 0.024 and 11 = 0.02 where the effective mass of the absorber 

mil = 24.7 g. Note that the theoretical prediction of the absorber frequency is 

f, ~ 120 Hz. This was estimated from the data provided in Tables 4.1 and 4.3 and 

using equation (4.1). 
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Increasing the absorber frequency above 150 Hz would avoid the significant effects of 

the nearfield waves around that frequency when the absorber is attached to the steel 

beam discussed in the previous chapter to control the transmitted waves. 

The effective length of each cantilever was reduced to 30 mm by sliding the tip 

masses (i.e. brass blocks) at each cantilever towards the centre of the absorber. The 

net mass of the concentrated blocks at the end of each cantilever is now represented 

by the mass of the brass blocks plus the mass of the SMA wires outstanding from the 

effective length. Note that the mass ratio of brass blocks to that of the outstanding 

SMA wires is approximately 6: 1. The reduction in the effective length has increased 

the stiffness of the absorber and in turn the absorber frequency to 217 Hz which was 

obtained experimentally. In addition, y slightly increased to 0.028. For the new 

effective length, the theoretical prediction of the absorber frequency 1;, = 223 Hz. 

This was predicted by taking into consideration the outstanding mass of the SMA 

wires. However, ignoring the mass of the outstanding SMA wires would increase the 

difference between estimated and measured absorber frequencies by ~ 6.5% . 

The performance of the SMA ATV A in changing the absorber frequency was 

manually tested using a power supply Lambda ZUPlO-20 to heat up the SMA wires. 

This power supply could generate a current I of 21 A. The surface temperature of the 

wires was measured using a Fluke 52 thermocouple. A constant current was input to 

the SMA ATVA and the characteristics of the SMA ATVA were measured when the 

steady-state was reached for each current (i.e. temperature). This was obtained by 

implementing the same techniques and equipment described in section 3.5.2. The time 

required to reach the steady-state was found experimentally to be about 15 minutes. 

Heating the ATV A for a time longer than 15 minutes did not significantly change the 

surface temperature of the A TV A. 

The variation of the absorber frequency 1;, and the resonance frequency .t: of the 

ATV A with temperature is shown in Figure 4.4. The frequencies were obtained 

experimentally, as discussed in section 3.5.2 for a beam-like absorber, when the 

steady-state is reached for each temperature. Increasing the temperature below 

A, ~ 45°C decreases both 1;, and f,. This was unexpected behaviour. In addition, 
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increasing the temperature should increase the stiffness of the SMA wires and in turn 

the absorber frequency. However, heating the SMA wires at temperatures above A, 

and below At ~ 60 0 e increased both 1:, and 1:. Reduction in stiffness of the ATV A 

was also observed for temperatures above AI where the phase of the SMA has 

completely transformed to austenite. It was thought that, the reduction in the ATVA's 

stiffness at temperatures T < A, and T > Aj can be due to significant softening that 

could have arisen in the centre (mounting materials) of the SMA ATV A. Increasing 

the temperature of the SMA wires above A, activated the phase transformation from 

the martensitic phase to the austenitic phase and the increase in the stiffness of the 

SMA wires is counteracted by the softening effect of the material in the mounting 

block of the absorber. When the phase of the SMA is fully austenitic, i.e. at 

temperatures above AI' then any increase in temperature will no longer increase the 

stiffness of the SMA wires, and further softening occurs in the materials in the 

mounting block of the absorber. The maximum change achieved in the absorber 

frequency was about 20%. 

Jt is noted that the hysteresis caused upon heating and cooling is less than lOoe. The 

behaviour of the SMA ATV A with temperature was verified by repeating the test and 

the results are shown in Appendix 2. 

Figure 4.5 shows the variation of the absorber's stiffness k" with temperature. The 

absorber's stiffness was calculated in the same way to the stiffness of the TVA 

discussed in section 3.5.2, using the characteristics of the ATV A obtained 

experimentally, when the steady-state is reached for each temperature. The softening 

effect is noticeable at temperatures T < A, and T > AI . 

The variation of structural damping of the SMA ATVA with temperature is shown in 

Figure 4.6. This was estimated experimentally using the circle fit method when the 

steady-state was reached for each temperature. It is clear that the damping increases 

rapidly for temperatures between 500 e and 70oe. This contradicts the damping 

behaviour of SMAs on phase transformation as observed by Liang and Rogers [60]. 
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However, the glass transition temperature of the epoxy-resins is Tg ;:::0 40°C. Above 

this temperature the crystalline structure of the epoxy-resins becomes amorphous 

(rubbery structure); this is accompanied by a high level of damping. Moreover, when 

~ ;:::0 0 (martensitic phase is completely transformed above AI)' the structural damping 

of the SMA wires reduces significantly and in turn the overall damping of the SMA 

ATV A as shown at temperatures above At ;:::0 60°C. 

The temperature distribution along the SMA wires was investigated by performing a 

series of tests. A DC current of 9A was applied to the SMA ATVA for up to 15 

minutes in each test and the surface temperature was measured at two different points 

along the absorber. The maximum difference in temperature measured along the SMA 

wires and the brass blocks was less than 10°C. Appendix 3 includes the results 

obtained from the experimental tests, showing the temperature difference with time at 

various points along the absorber. 

The experimental tests described above for the SMA ATV A indicated that the change 

in elastic properties of the mounting block could be larger than those of the SMA. 

Hence the experiments were repeated for the thermo-elastic absorber to investigate the 

effect of temperature on the characteristics of the mounting materials. The effective 

length of the absorber was reduced to 30 mm similar to the SMA A TV A, in order to 

increase the absorber frequency and the mass ratio. The following parameters were 

measured at the ambient temperature; I, = 387.5Hz, y = 0.04 and 11 = 0.018. The 

estimated absorber frequency is f~ ;:::0 485 Hz. 

Figure 4.7 shows the effect of temperature on the frequencies I, and f; of the 

thermo-elastic absorber. It is clear that increasing the temperature of the absorber 

decreases both I, and f;. Heating the stainless steel wires heats up the mounting 

materials fitted at the centre of the absorber. It was found that the maximum change in 

the absorber frequency is about 27%. Therefore, the tuning range obtained by the 

thermo-elastic A TV A is greater than that obtained by the SMA A TV A. 
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The behaviour of the thermo-elastic A TV A with temperature was repeated and the 

results are shown in Appendix 4. The maximum hysteresis recorded was about 12°C. 

The significant reduction in the absorber frequency with temperature is directly 

related to the softening that has arisen in the material in the centre of the absorber. 

Figure 4.8 shows the variation of the stiffness of the thermo-elastic A TV A with 

temperature. It is clear that the stiffness of the absorber decreases significantly with 

temperature. 

Figure 4.9 shows the variation of structural damping of the thermo-elastic ATV A with 

temperature. It is clear that increasing the temperature of the ATV A up to 65°C 

increases the damping. However, at temperature greater than 65°C the structural 

damping decreases significantly. This can be related to the stress changes in the 

mounting materials as the temperature changes. 

4.5.2 Implementation of the adaptive absorbers 

In this section, the control of the transmission of propagating flexural waves on a 

beam structure using the ATV As discussed in the previous section is described. The 

tuned frequency of the ATVAs was manually changed using a power supply (Lambda 

ZUP10-20) and the surface temperature was monitored using a thermocouple (Fluke 

52). 

The effectiveness of the A TV As for controlling the transmitted waves was examined 

at a steady temperature. Each ATV A was attached to the steel beam discussed in 

Chapter 3. The beam was excited by a Ling V201 shaker with band limited random 

noise over a frequency range 50 - 800 Hz. The experimental set-up is shown in Figure 

4.10. The propagating wave amplitudes were estimated using the frequency domain 

wave decomposition approach discussed in Chapter 2. The transmission and reflection 

ratios were predicted from the estimated wave amplitudes as discussed in Chapter 3. 

The experimental results, reported in this section, validate the control of the 

transmitted waves for an ATV A attached in the farfield of the point disturbance 

(lIA,,>1). 
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Figure 4.11 a compares the numerical prediction of the transmission ratio LI given by 

equation (3.18) to the experimental result for the SMA ATV A attached to the beam 

with no current input (i.e. at the ambient temperature ~ 18°C). The maximum 

attenuation achieved at the tuned frequency, f; ~ 219 Hz, was approximately 9dB. 

However, the thermo-elastic ATV A has a maximum attenuation of 11 dB with a larger 

bandwidth ~Q as shown in Figure 4.11 b. Note that the mass ratio y for the thermo-

elastic A TV A is greater than that of the SMA ATV A. In general, there is good 

agreement between the theoretical and experimental results. 

The ability of the A TV As to control the transmission at various tuned frequencies was 

examined by manual adjustment of the ATVAs temperature. Results are shown in 

Figure 4.12 for the SMA A TV A. Heating up the SMA wires at various temperatures 

achieves a clear attenuation (notch) in LI around the tuned frequency for each 

temperature when the steady-state is reached (see Figure 4.12a). The attenuation 

attained at each temperature is directly related to the structural damping as discussed 

in Chapter 3 (i.e. increasing the loss factor reduces the attention in the transmission 

ratio). The ultimate change achieved in the tuned frequency was about 20% , with the 

minimum tuned frequency being 202.2 Hz and the maximum tuned frequency being 

252.7 Hz. Figure 4.12b shows the attenuation of the transmission ratio at various 

temperatures during cooling. The tuned frequencies obtained upon heating (Figure 

4.12£.1) are not exactly the same as those obtained upon cooling (Figure 4.12b). This is 

due to hysteresis. 

Figure 4.13 shows the transmission ratio at various temperatures using the thermo­

elastic ATV A. Using this ATV A increased the ultimate change achieved in the tuned 

frequency (~ 28%). The minimum tuned frequency f,111il1 ~ 282.76 Hz was achieved 

at the highest temperature reached T,,,,,, = 95°C, while the maximum tuned frequency 

.I; 111"X ~ 392.5 Hz was achieved at the ambient temperature I;""hielll ~ 18°C. The 

maximum attenuation achieved was about 12 dB. Note that the degree of attenuation 

at the tuned frequency is related to the damping of the thermo-elastic A TV A 

discussed in the characterisation of the ATV A and shown in Figure 4.9. 
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Another steel beam with a smaller cross-sectional area (3.2mm x 24.6mm x 5630mm) 

was used to highlight the effect of the mass ratio on It' 1-,.Q and the maXl11lUm 

attenuation in Lt' The measured wavelength of the new beam was such that 

k = 1.17 jj. The mass ratio of the thermo-elastic A TV A was predicted to be 

y = 0.22 (i.e. at the ambient temperature). Note that the absorber frequency 

(I, = 387.5 Hz) only depends on the characteristics of the absorber. Figure 4.14 

compares the experimental results obtained for the attenuation achieved in L
t 

for both 

beams when no current is input to the thermo-elastic A TV A. The theoretical 

prediction for the different mass ratios is also plotted. The maximum attenuation 

achieved for the smaller cross-section beam is about 20 dB. This is approximately 

twice the attenuation achieved for the larger cross-section beam. There is about 

2% difference in the tuned frequency obtained by the numerical prediction and the 

experimental results; this might be due to the variation in the ambient temperature 

which affects the stiffness of the ATV A and in turn I,. 

Figure 4.15 shows the transmission ratio at various temperatures using the thermo­

elastic A TV A attached to the beam with the smaller cross-section area (y = 0.22 at 

the ambient temperature). The change achieved for the tuned frequency was about 

27%. The tuned frequency at the ambient temperature was about 420 Hz, while that at 

the maximum temperature reached, ~l1ax = 81 DC , was about 310Hz. 

4.6 Discussion and Conclusions 

Two variable stiffness beam-like absorbers have been introduced in this chapter. The 

first absorber is called the SMA ATV A and it employs shape memory alloys, epoxy­

resins and jelutong as the variable stiffness elements, while the second absorber is 

called the thermo-elastic ATV A and it only employs epoxy-resins and jelutong as the 

variable stiffness elements. The stimulus of both designs is varying the temperature of 

the elements by means of a DC current. 
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The two ATV As were implemented and manually tuned to control the transmitted 

propagating waves at various tuned frequencies. Experimental results have proven the 

effectiveness of both absorbers. The ultimate change achieved in the tuned frequency 

using the SMA ATV A was about 20%. Part of this was a result of the softening of the 

epoxy-resins and jelutong in the centre of the SMA A TV A. A higher tunable range, 

about 27%, was obtained using the thermo-elastic ATV A which only includes the 

epoxy-resins and jelutong materials as the variable stiffness elements. In addition, 

greater attenuation was also obtained. However, heating-up the thermo-elastic A TV A 

would increase the structural damping which in turn would limit the attenuation of the 

transmitting power. 

Self-tuning control of transmitted power on a beam structure USll1g these variable 

stiffness vibration absorbers will be discussed in the next chapter. The thermo-elastic 

ATV A is implemented due to the proven effectiveness described in this chapter. 
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FIGURES FOR CHAPTER 4 
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Figure 4.2. Effect of rapid temperature change on modulus of elast icity of wood at 
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Figure 4.3. SMA ATVA: (a) sketch of the electric circuit; (b) The SMA ATV A. 
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Nickel (nominal) 54.5 wt.% 

Titanium Balance 
Alloy Composition 

Oxygen (max) 0.05 wt.% 

Carbon (max) 0.05 wt.% 

Ultimate Tensile min. 1100 MPa 
Strength (UTS) 

Mechanical Properties 
Total Elongation min. 10% 

Melting Point l3IO D C 

Density P 6450 kg/m3 

Physical Properties 
Electrical Resistivity 760x 10-0 Om 

Pe 
Modulus of Elasticity 28 - 41 x 10' MPa 

E 

Shape Memory Strain 8% 
(max) 

Austenite Start A, =45 D C 
Shape Memory Properties Temperature 

Austenite Finish AI = 60D C 
Temperature 

Martensite Start M, =50°C 
Temperature 

Martensite Finish M j = 35°C 
Temperature 

Table 4.1. Typical properties of Nitinol SM 495 wire. 

~ Young's Modulus (MPa) 

I 

Density (kg/mJ) 

I Materials 
Jelutong 10.04 xl 03 450 

Epoxy-resins 2l.6 (at room temperature) 1150 
Araldite 2011/A ,1.62 (at 150°C) 

(T
K 
~ 40°C) 

Table 4.2. Mechanical properties of the mountmg materIals. 
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Young's Modulus (GPa) 101 
E 

Density (kg/m3
) 8550 

P 
Electrical Resistivity (Q.m ) 62 x 10-9 

Pc 
Table 4.3. Physical properties of brass. 

Young's Modulus (GPa) 201 
E 

Density (kg/m::l) 7970 
P 

Electrical Resistivity (Q.m) 760x 10-9 

Pc 
Table 4.4. Physical properties of stainless steel. 
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CHAPTERS: CONTROL 

5.1 Introduction 

Chapter 4 described two variable stiffness adaptive tuned vibration absorbers. These 

were able to control the transmitted waves at various frequencies when tuned 

manually by adjusting the temperature of the absorbers via the use of an electric 

current. 

The aim of this chapter is to discuss automatic online tuning of the absorber to adjust 

the absorber stiffness to keep the power transmitted downstream to a minimum in the 

face of a varying disturbance frequency. One optimisation method is considered in 

detail. This implements the gradient descent algorithm that utilises an error function 

which indicates optimum tuning when it is zero. The sign of the error function 

indicates the tuning direction when the absorber is not tuned, i.e. a positive (or 

negative) value indicates that the stiffness needs to be increased (or decreased). 

This chapter is arranged in 5 sections as follows. Following the introduction, section 

5.2 reviews some possible control strategies that would achieve a self-tuning control 

system. The rest of the chapter concerns the gradient descent approach. An analytical 

investigation for an appropriate error function is presented in section 5.3. This is 

employed in a gradient descent algorithm in section 5.4. Finally, the discussion and 

brief conclusions of this stage of the work are presented in section 5.5. 

5.2 Control Strategies 

The conventional procedures for control involve systems with fixed coefficients 

(constant parameters) and the design methods are based upon a linear, time-invariant 

assumption. In practical situations, system parameters often vary with time. Self­

tuning control IS one design philosophy for monitoring time variations and 

incorporating them into the design process. Therefore, a self-tuning controller is 
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required to ensure that the variable stiffness absorber described II1 the prevIOus 

chapter is continuously tuned to the disturbance frequency. 

The basic idea of self-tuning systems is to construct an algorithm that will 

automatically change the parameters of the system to meet a specific condition. This 

is done by the addition of an adjustment mechanism to the standard feedback system 

as illustrated in Figure 5.1 [69, 70]. This mechanism monitors the system and adjusts 

the coefficients of the corresponding controller to maintain a required performance. 

For the ATV As discussed in the previous chapter this involves changing the current in 

the variable stiffness elements towards the optimum value, hence changing the tuned 

frequency. Generally, the frequency range, within which the ATVA is active, is 

dependent upon the adaptive properties of the absorber material and the limitation 

introduced by the controller. 

The fact that the TVA is optimally tuned when 1/ IS mlI1llTIum, can directly be 

employed as an objective function in a trial-error iteration process such as the 

"gradient search algorithm" [71]. This is an optimisation algorithm to find a minimum 

value of a function. The basic idea is to change one control variable while observing 

the effect on the objective function. If the new adjustment has decreased the objective 

function then the adjustment process is repeated in the same direction, while if the 

objecti ve function has increased then the adjustment process is reversed to the 

opposite direction. The algorithm iterates until a minimum value of the objective 

function is reached [72]. In practice, for the ATVAs designed in the previous chapter, 

the current is changed slightly and the new value of 1/ estimated and compared to the 

previous value. If 1/ has decreased the current is changed in the same direction, while 

if 1/ has increased the current is changed in the other direction. The process is then 

repeated. However, the process would need to be repeated many times to find the 

tuning direction. This would cause a major problem due to the large thermal time 

constant associated with the A TV As, where the response to changing the current is 

slow. In addition, the existence of any local minimum that occurs at frequencies near 

to the tuned frequency would not give the optimum result from the ATV A. Therefore, 

implementing this algorithm with the designed ATVAs would form an inefficient 

self-tuning system. 
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The problems associated with the determination of the direction of tuning can be 

avoided by utilising an error function that should be zero to realise optimum tuning. 

Furthermore, this error function is positive (or negative) if the system is overtuned (or 

undertuned) so that it indicates both the degree of mistune and the direction towards 

the optimum tuning. The gradient here points in the direction of a zero value and has 

different signs at the neighbouring points of the optimum value (i.e. zero). Following 

the gradient in iterated steps may achieve a precise tuning as it provides a direction 

scheme towards the optimal tuning. This error function can be employed in a 

feedback control algorithm such as the gradient decent algorithm, the fuzzy control 

and the proportional-integral-derivative (PID) control [73]. The implementation of the 

error function in one of these algorithms would avoid the problems of slow 

convergence at local minimums, which might exist at frequencies near the tuned 

frequency (i.e. avoiding the problems associated with the gradient search algorithm). 

An alternative method to self-tuning control systems can be the use of the look-up 

table (gain scheduling) method [69, 74]; this can achieve a simple automatic system. 

The method maps an input to an output using interpolation of stored values. A series 

of preliminary tests should be carried on a specific ATV A attached to a specific beam 

structure prior to applying the control system. The results of the test are stored in two 

vectors. The input vector represents the measured tonal excitation frequencies while 

the output vector represents the corresponding control decisions i.e. current, which 

actuates the A TV A to reach the optimum stiffness. If the measured input does not 

match any element in the stored input vector, the system interpolates between the two 

appropriate elements of the table to determine an output value. However, if the 

measured input is less than the first or greater than the last input vector element, an 

extrapolation takes place using the first two or the last two points. This method is 

limited to a particular ATV A/beam system and requires a large number of 

experimental tests to acquire the data necessary to give an accurate control decision. 

Otherwise, only a rough tuning is satisfied. 

Only one algorithm will be implemented in this project. This is the gradient descent 

algorithm for the advantages described above. 
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5.3 Error Functions 

Three possible error functions are described in this section. The performance of these 

error functions in indicating the optimum tuning is investigated. The most effective 

one will be implemented in the gradient descent algorithm introduced in the next 

section. 

5.3.1 Phase between motions of absorber and primary system 

The first suggested error function e] is the phase between motions of absorber and 

primary system. This has been used for tuning a vibration absorber mounted on a 

primary system and it was implemented in the past in many applications [12, 18,20, 

22, 75-77]. For an undamped absorber, the optimum tuning is satisfied when the 

relative phase between the absorber vibration and the primary system vibration (~]) is 

90° . This suggestion provides direction and quality of tuning by utilising el = cos (PI 

as an error function, where cos ~I = 0 when the A TV A is tuned. The optimum tuning 

condition for this system corresponds to exact matching between the absorber's 

frequency and the excitation frequency (Q{ = 1). Thus for an absorber tuned to a 

frequency 0. > 1, the two masses respond in phase such that el is positive. In contrast 

for an absorber tuned to a frequency 0. < 1, the two masses respond out of phase such 

that el is negative. 

The existence of damping in the absorber means that this error function does not give 

the exact indication for the optimal tuning. The differences are small, unless the 

damping is large. A detailed investigation of the effect of damping on the 

performance of el as an exact indicator is given in Williams et al [61]. 

The error function e] does not indicate proper tuning for controlling the power 

transmission in beam structures. The reason is that the tuning condition of an absorber 

attached to a beam structure at l/ Ie *- 0 is different as discussed in ChalJter 3; i.e. 
II 

Q{ *- I . Therefore, an alternative function is required to indicate the tuning of the 
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TV A. This can be found by exploring the optimum phase difference between any two 

reference motions that indicates the status of the TVA when tuned. 

5.3.2 Phase between velocity and angular acceleration at the absorber location on a 

beam 

Consider an undamped absorber (11 = 0) attached to an infinite beam (c- = 0) as 

shown in Figure 3.l. Assuming the absorber is mounted in the farfield of the point 

disturbance (b~ = 0), the displacement of the beam w in the downstream region 

x:::: 0 is therefore given by 

(5.1 ) 

The transmission coefficients t and tN of the propagating and the evanescent waves 

respectively are discussed in Chapter 3 and are given by 

[22 _ (1 + y[2112 ) 
t = ----:------'---------'-----:-

[22-(1+y[2112(1+i)) 
(5.2) 

Both transmission coefficients share a common denominator 

de = [22 - (1 + y[21/2 (1 + i) ) . Therefore, equation (5.1) can be rewritten, such that 

(5.3) 

where T = [22 _y[2112 -1 and TN = y[2112 are the numerators of t and tN respectively, 

and a = b+ / de' Figure 5.2 shows the feasibility of instigating a direction scheme to 

tune an ATV A for various mass ratios y. It is shown that T = 0 at the tuned 
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frequency ratio 01 for each y, and has a different sign if either the absorber is over-

tuned 0<°1 (negative value) or under-tuned 0> 01 (positive value). 

From equation (5.3) the angular displacement w' = ow / ox and translational 

acceleration }V = 02W / ot2 at x = 0 are found to be 

v/ (O,t) = -ak (iT + TN )e IW1
; l1i(O, t) = -au} (T + TN )e IWI

• (5.4) 

Plotting w' and }V in the complex plane shows that the TV A is optimally tuned 

(T = 0) when both signals are in phase (8 = 0 0
) as illustrated in Figure 5.3. Taking 

the cosine of the phase between w' and W, cos 8, as the error function would not 

present an appropriate direction for the optimum tuning since cos 8 = 1 when the 

ATV A is optimally tuned. Furthermore, in practical situations, i.e. accelerometers are 

used, w' and }V requires to apply a number of mathematical manipulations to the 

measured signals (accelerations). A solution can be obtained by taking the error 

function e2 = cos ~2' where ~2 is the phase between the velocity vi; and the angular 

acceleration w' in cos ~2 instead. This phase angle equals 900 when the A TV A is 

optimally tuned, hence the error function e2 would have a different sign if the A TV A 

is over- or under-tuned. Table 5.1 includes a list of other possible reference signals 

that gives a 90 0 phase shift when the ATV A is optimally tuned. 

The error function e? can be calculated numerically by time averaging the product of 

the two reference signals 

(5.5) 

where Wand W' represent the amplitudes of the velocity and the angular 

acceleration respectively while vvw' is the time average of .1; and }V' . Therefore, the 

error function can be represented by 
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(5.6) 

This solution is independent of the amplitudes of motion, and it only presents the 

optimum tuning (~2 = 900
) if 11 = o. 

The effect of damping on the performance of the error function IS investigated 

numerically and the result is shown in Figure 5.4. If there is no damping, then 

cos ~2 = 0 when the TVA is properly tuned. For y = 0.2, this occurs when O{;::; 1.1. 

The effectiveness of e2 in the region 0 < 0, is limited to a certain frequency range as 

the beam is pinned (vi; = 0) when 0 = 1 and a 1800 phase shift occurs. As a 

consequence, e2 turns from negative to positive at this specific frequency ratio. For a 

small amount of damping (e.g. 11 = 0.01) the error function approximates the ideal. 

However, the frequency range in which e2 < 0 becomes smaller as damping increases 

since e2 = 0 at 0 < 0, ' and the phase shift occurs at 0 > 1 . Furthermore, for large 

enough damping (e.g. 11 = 0.1) e2 is always positive. Consequently, the error function 

will no longer be an exact indicator of optimal tuning if a high level of damping exists 

in the TV A. This can be related to the significant effect of damping on the attenuation 

of the power transmitted. Thus ~2 oj::. 900 when the absorber is optimally tuned. 

Figure 5.5 shows the variation of e2 with 0 when 11 = 0 for various mass ratios y. 

For any given y, the frequency ratio 0> O{ gives a positive value for e2 . On the 

other hand, for the frequency range 1 < 0 < 0" e2 has a negative value. Increasing 

the mass ratio increases 0" and this in turn increases the effectiveness of e2 in the 

frequency range 1 < 0 < O{. Note that the frequency range in which e2 indicates the 

direction of mistune accurately is for 0> 1 , and that range can be quite narrow if y IS 

small. 
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5.3.3 The two-sensor approach 

It has been seen that even a small level of damping significantly reduces the 

effectiveness of the error function e2 . Therefore, a third error function e, is required. 

Consider an absorber attached to a beam at x = 0, with a general impedance Z . The 

reflection and transmission coefficients are found in Chapter 2 to be t = 1 + i~L, r = i~l 

and tN = rN = ~, where ~l = Z / (4 - Z (1 + i)) represents the effect of the translational 

constraint and where Z = iZw / Elk' is the dimensionless impedance. Consequently, 

the outputs of two sensors (e.g. accelerometers) AI and ~ attached at a distance 11 

from each side of the point discontinuity (see Figure 5.6) are given by 

AI = b+ (e ik6 + i~e-ik6 + ~e-k6) 

~ = b+ ((1 + i~) e- ik6 + ~e-k6) 

Evaluating AI and ~, for a distances 11 = A" /4 = n / 2k , gives 

AI =b+ (i+~+~e-"/2) 

~ = b+ (~- i + W-1ti2
) 

(5.7) 

(5.8) 

Performing the sum and difference of these signals and integrating the former gives 

two signals 

(5.9) 

Substituting equation (5.8) into equation (5.9) yields 
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(5.10) 

therefore, the ratio of S2 to s] is given by 

(5.11) 

It is clear that the phase between s] and S2 is only dependent on the phase of ~l. Since 

the absorber is optimally tuned when t = 0 so that ~ = -i then ~l has a phase 

~3 = -900 
• Thus s] and S2 are in quadrature and their product can be utilised as an 

error function. 

The third error function e3 is thus taken to be the cosine of the phase between s] and 

S2 when they are obtained using two sensors located at a distance kf." = 'ITKo /2 from 

each side of the absorber. Ko is an odd integer. The error function e3 can then be 

estimated by 

(5.12) 

where S] and S2 represent the amplitudes of the signals while s] S2 IS the time 

average of their product. 

Figure 5.7 shows the variation of e3 with the normalised spacing (f." / Ail) at Qt ;::; 1.1 

for various ll. When II = 0, the error function e3 = 0 for all f." / Ail' However, for 

11 "* 0 then e3 = 0 only at certain points which are close to f." / \, ;::; 0.25Ko' These are 

called the optimum spacings f."opt' On the other hand, at spacings approximately 

f." / A" ;::; 0.5Ke' where Ke is an even integer, the phase angle between ..1'] and S2 
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changes by 1800
. These spacings are defined as the critical spacings 6.c' Moreover, 

for each 6.()l'f I A", e3 is positive when 6. I A" < 6.()l'f I A", while it is negative when 

6. I A > 6. f Ilc . Note that eo = 0 when 6. = 6. f irrespective of the level of damping: 
1I up {/ _1 OJ> 

thus, if the sensors are optimally positioned and the absorber is optimally tuned, 

e3 = 0 , independent of the level of damping. 

Figure 5.8 shows the variation of e, as a function of 0 for the sensors located at two 

different spacings and for various 11. Generally, for 6./lc ::::; 0.25, eo = 0 at 0 = 0 
(I .1 I 

for all 11 as shown in Figure 5.8a. Furthermore, e3 is positive for 0> Of and 

negative for 0 < Of . However, it was found that, the spacing which is optimum at Of 

becomes critical 6.c IA" at two other frequencies limiting the effectiveness of e, as 

shown in Figure 5.8a to between about 0 = 0.7 and 0 = 1.6. Nevertheless, the range 

of frequencies within which e, is effective is very much greater than the range for e2 

(see Figure 5.4) and the cost function is very much less sensitive to damping (i.e. for 

11 = 0.1, e, is still an accurate indicator of mistune operative over a reasonably wide 

frequency range). For the sensors attached at 6. I A" :;t: 6.()l'f 1\, ,e.g. 6. I A" ::::; 0.15 , then 

e3 > 0 at Of for 11 = 0.1 (i.e. the error function becomes more sensitive to damping) 

as shown in Figure 5.8b. In addition, the frequency range within which e3 accurately 

indicates mistune is smaller than that when 6. I A" ::::; 0.25 . 

5.4 Control Using the Gradient Descent Algorithm 

This section discusses the application of the gradient descent algorithm in a self­

tuning control system to maintain the optimum tuning of the variable stiffness A TV A 

in the face of a disturbance of varying frequency. This involves the use of the error 

function e" which indicates optimum tuning when it is zero. A flow chart of the 

control strategy is introduced. The performance of the gradient descent algorithm and 

the error function is investigated numerically when the disturbance is tonal. The 

ATV A dynamics are not considered, with the simulations assuming that the ATV A 

stiffness can be controlled directly. 
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5.4.1 Gradient descent algorithm 

This is an optimisation method that approaches the location of the zero of a function 

by taking steps proportional to the gradient of that function at the current point. The 

gradient here points in the direction of a zero value and has different signs at the 

neighbouring points of the optimum value (i.e. e3 = 0). 

The gradient descent algorithm can be employed for the self-tuning control system, 

such that the algorithm utilises e3 . This can be represented as follows. At the nth time 

step, the ATVA's stiffness is changed according to the estimate of the error function 

at the nth time step e3 so that 
.,11 

k = k +Pe, 
a,1I 1l,1l-1 3,11 

(5.13) 

where Pel is the update in the parameter. Here only a linear update is considered so _ ,It 

that P is some constant. Therefore, when el =;t:. 0, the controller will be active, and 
.,I! 

continues to update the stiffness of the ATV A until e3 ,11 = O. The sign of the error 

function will guide the controller in the optimum direction. 

In order to illustrate the control mechanism, the variation of e3,11 with the A TV A 

stiffness k" is considered. When the frequency ratio is less than the tuned value 

(0 < 0, ), the sign of e3,11 will be negative and the controller will need to decrease the 

stiffness of the ATVA to reach the optimum value. On the contrary, when 0> 0" the 

sign of e'l will be positive and the controller will need to increase the stiffness of the 
.,Il 

ATVA (see Figure 5.9). 

5.4.2 Flow chart of the control strategy 

A flow chart of the control strategy is shown in Figure 5.10. At the nth time step, the 

measured signals of the two sensors (i.e. accelerometers), located at kl'::,. = 1(1(0/2 from 
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each side of the ATV A, are mathematically processed to obtain Sl and S2' The error 

function e, is then calculated and a proportional control action is taken when 
.,11 

e},11 =F- 0 to change the stiffness of the ATV A in the direction towards the optimum 

tuning. 

A control system other than the linear proportional method utilised in this thesis can 

also be used to give a different response and maybe a better performance. 

5.4,3 Numerical simulations 

In this section simulations of a self-tuning control system applied to a variable 

stiffness ATV A mounted on a beam are described. This is achieved by solving the 

mathematical model of the ATV Albeam system described previously assuming quasi­

steady state and time harmonic behaviour. The dynamics of the ATV A are not 

considered in the numerical simulations where the response of the modelled A TV A is 

instant (i.e, In practice, the electric current input to the A TV A is changed which in 

turn changes the stiffness). The system is run over a number of time steps. The 

frequency of the tonal disturbance may change and the response of the control system, 

in tuning the ATVA, is monitored. This was achieved using Simulink and Matlab 

toolboxes ©, which enable block diagrams to represent the mathematical model of the 

system and the control algorithms to be built. In general, Simulink simulates a 

dynamic system by computing its state at successive time steps over a specified time 

span using information provided by the model [74]. 

Generally, the system including the controller is considered to be in the quasi-steady 

state, where the excitation frequency is discrete, the response at that frequency is in 

the steady state and the controller retunes the system at a rate that is slow compared to 

the excitation frequency. 

At the outset, a Simulink model of an incident wave propagating on an infinite thin 

beam with a variable stiffness ATVA mounted as a discontinuity at x = 0 is designed. 

The Simulink model is shown in Appendix 5. The data provided for the numerical 

simulations are for the thermo-elastic A TV A attached to the thin steel beam and they 
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are tabulated in Table 5.2. The disturbance is modelled by a sinusoidal wave block. 

This generates an incident wave at a frequency f which can change with time. Both 

the incident wave amplitude and the value of the excitation frequency at each time 

step are input to a block (A TV AJBeam) that represents the ATV A attached to the 

beam described in Chapter 4. The disturbance frequency is input to a block to 

calculate the frequency ratio Q. The damping ratio 11 and the initial value of the mass 

ratio y are also found numerically in this block using the data of the absorber and the 

beam. These values are stored in other subsystem blocks. The calculated parameters 

are then used to find the reflection and transmission coefficients as discussed in 

Chapter 3. These coefficients are then multiplied with the amplitude of the incident 

sinusoidal wave, to produce numerical values for the transmitted and reflected waves, 

including the evanescent components. The phase change l:I.cD = kl:l. experienced by a 

wave as it propagates over a distance l:I. is then included by time delaying the wave by 

an amount l:I.t = l:I.cD / CD. The evanescent waves are represented by multiplying the 

wave amplitudes influenced by the nearfield reflection and transmission coefficients 

with an exponential term e-kl:l. The motion of the beam due to the propagating and 

nearfield waves at points l:I. on either side of the ATV A can then be calculated to 

simulate the signals Al and A,. These signals are then input to another block (Signal 

manipulation) to find the reference signals SI and S2 using equation (5.9). These 

signals are input to another block (Control system) to estimate e'.11 which is evaluated 

using equation (5.12). 

Hence, the error function e1 can be estimated numerically at the nth time step. A 
_,II 

similar control system was previously developed by Rustighi et al [12] to tune an 

A TV A attached to a primary structure. 

The motion at three points on the beam (AI' A2 and A3 ) caused by the transmitted and 

the reflected waves are estimated. The points are illustrated in Figure 5.6: distances l:I. 

upstream and downstream of the ATV A and in the downstream farfield. The latter is 

used to monitor the effecti veness of the control. 
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The performance of both the gradient descent algorithm and the error function is 

investigated by running the Simulink model, shown in Appendix 5, for 500 time steps. 

The disturbance frequency f is varied over fixed periods of the simulation steps as 

shown in Figure 5.11. The controller was set to update at each step, with P = 1.5 X 10'. 

At the start of the simulation f = 420 Hz, the initial stiffness was chosen to be close 

to optimal, hence '/ ~ 0 and e,,11 ~ 0 . The frequency dropped to 380 Hz (.0 < .0/ ), for 

the simulation steps between 100 and 250 steps. The estimated cost function e, < 0 
.,11 

and the controller decision was to decrease the stiffness, hence reducing the absorber 

frequency and bringing '/ to a minimum. A smaller drop in excitation frequency to 

f = 360 Hz took place for simulation steps between 250 and 350 steps, therefore the 

number of steps taken for the ATV A to adapt was less than the number taken in the 

previous excitation period. The performance of e, in guiding the controller towards 
.,11 , 

the optimum stiffness was validated by increasing the frequency to f = 400 Hz for 

the last period of the simulation steps (350 and 500 steps). The stiffness of the ATV A 

increases to bring '/ to a minimum. 

The effect of the controller on the beam motions Aj' ~ and A" predicted at the three 

points discussed previously, for 11 = 0 is shown in Figure 5.12a. For the first 100 steps 

f = 420 Hz, then the disturbance frequency decreases to 380 Hz. In the first period 

of the simulation, the A TV A is tuned. The upstream nearfield acceleration Aj was 

large due to the fact that the incident wave is reflected with IrI = 1 , together with the 

small effect of the nearfield wave at that point. In addition, the downstream nearfield 

acceleration ~ is not totally suppressed, because of the small effect of the 

transmitted nearfield wave. However, the downstream farfield acceleration A, ~ 0, as 

the nearfield waves are insignificant in the farfield. There is noticeable transmission 

for those time steps during which the ATV A is self-tuning. For the same reason Aj is 

somewhat smaller during this time period as the ATV A adapts to the optimum 

stiffness of the new disturbance frequency. In contrast, A2 and A, increase abruptly 

(see Figures 5.12b and c), then decrease gradually until A, ~ O. 
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For a damped ATV A (11 = 0.05), the effect of the controller on the beam motion is 

illustrated in Figure 5.13. The excitation is the same as that applied for the example 

above. Not all of the incident wave is reflected back to the upstream when the ATV A 

is optimally tuned in this situation. Some of the power is absorbed by the ATV A, and 

some is transmitted downstream as shown in Figures 5.13a-c. 

5.5 Discussion and Conclusions 

In this chapter, methods for a self-tuning control system that optimally tunes the 

adapti ve vibration absorber were introduced. These were designed to control the 

transmitted power along a beam structure at various tonal frequencies. Only one 

control strategy was investigated in detail. 

One algorithm was proposed for varying the absorber stiffness; the gradient descent 

algorithm. This algorithm employs an error function that should be zero to realise 

optimum tuning. Furthermore, the error function indicates both the degree of mistune 

and the direction towards the optimum tuning. Three error functions were considered. 

The first one has been used previously to tune an ATV A attached to a vibrating host 

structure. This error function represents the cosine of the phase difference between the 

motions of the ATV A and the primary structure. The tuning condition for this error 

function is different than the optimum tuning for an ATV A to control power 

transmission in a beam. The second error function gives an exact indication of the 

optimal tuning. This equals the cosine of the phase between the velocity and the 

angular acceleration at the position where the ATV A is attached to the beam (other 

possible reference signals were also listed). However it was found to be very sensitive 

to damping. In addition, it is only effective over a limited range of frequencies. The 

third error function does not suffer from these disadvantages. It is found by locating 

two accelerometers at half a wave length apart; one at each side of the A TV A. Their 

outputs are summed and differenced, with one time integration of the former. The 

phase between these two signals is 90° when the ATV A is tuned. 

Numerical simulations illustrated the effectiveness of the control algorithm and the 

error function in varying the stiffness of an ATV A towards the optimum value. 
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Increasing the value of the proportional constant would reduce the time taken to reach 

the optimal value. However, this could only achieve rough tuning. Control systems 

other than the proportional method can also be used to enhance the performance of the 

self-tuning system. 

The next chapter discusses the experimental validation of the error function discussed 

in this chapter and the experimental implementation of the gradient descent algorithm 

in a self-tuning control system that integrates the thermo-elastic ATV A. 
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Table 5.1. Possible reference signals for optimum tuning 

Parameter Value 

11 0 

Initial y 0.2 

k (m- I ) l.17fi 

Initial Au (m) 0.26 

Initial ku (N/m) 150x 103 

Table 5.2. Properties of an ATVA attached on a thin beam 
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CHAPTER 6: EXPERIMENTAL 

IMPLEMENTATION OF REAL-TIME CONTROL 

6.1 Introduction 

In Chapters 4 and 5 it was shown that the flexural waves propagating along a beam 

structure can be effectively reduced using a single adaptive tuned vibration absorber. 

With an ATVA the tuned frequency can be changed to match the current frequency of 

the disturbance. The variable stiffness absorber was manually re-tuned to control the 

flexural waves for various excitation frequencies and numerical simulations of self­

tuning control were presented. An error function was developed in the previous 

chapter and utilised in numerical simulations involving a gradient descent algorithm. 

This error function indicates both the degree of mistune and the direction towards the 

optimum tuning, at which the transmitted power is minimum. 

One objective of this research is to implement a self-tuning adaptive absorber on a 

beam such that the vibration absorber should tune automatically under computer 

control. In this chapter the effectiveness of the error function e, is examined 

experimentally and the control of the power transmission in real-time is presented. 

Following the introduction, section 6.2 describes the experimental work undertaken to 

automate the control of the vibration absorber. In section 6.3 a discussion and some 

conclusions are drawn. 

6.2 Experimental Work 

The self tuning control of transmitted waves, uSll1g a variable stiffness A TV A 

discLlssed in the previous chapter, is applied experimentally in this section. The 

control system implements the developed error function e3 in a gradient descent 

algorithm. Initially, a series of experiments are conducted in the frequency domain to 

test the effectiveness of the error function and the validation of the two sensor 
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approach over a wide frequency range. Then the control algorithm is applied to 

change the stiffness of the thermo-elastic ATV A when the tonal frequency, exciting a 

thin steel beam, is varied within the tunable range of the ATV A. 

6.2.1 Experimental testing of the error function e3 

The system compnsmg the thermo-elastic ATV A mounted to the thin steel beam 

described in Chapter 4 is used to validate the two sensor approach. The beam was 

excited by a Ling V20 I shaker with band limited random noise from 50 to 800 Hz 

generated by an 8 channel HP 3566A analyser. Six PCB type 352C22 accelerometers 

were employed to measure the required signals. The accelerometers were divided into 

three pairs as shown in Figure 6.1. The purpose of the two pairs located away from 

the ATV A is to measure the powers incident, reflected and transmitted, whilst the pair 

located at distances 11 from the A TV A is used for measuring the required signals to 

calculate the error function e3 . Other equipment included a power amplifier and two 

PCB type 441A42 signal conditioners. 

Figure 6.2 compares the numerical prediction of the error function e3 to the 

experimental measurement for two different spacmgs; 11(}1'1 I A" ~ 0.25 and 

11 I A" ~ 0.13. The thermo-elastic A TV A IS attached in the farfield of the point 

disturbance with zero current input (ambient temperature). The error function e3 was 

lxedicted using equation (5.12). Locating the accelerometers at 11 IA ~ 0.25 each 
OP' (J 

side of the ATV A is shown to be effective over a substantial frequency range. It is 

zero at the tuned frequency and its sign indicates over- or under-tuned. On the other 

hand, the effectiveness of the error function becomes limited when the accelerometers 

are located at a spacing (11 I }\,(/ ~ 0.13) other than the optimum spacing. For example, 

for frequencies less than about 350 Hz e, indicates an incorrect amount of mistune. 

The performance of the error function at different stiffness values was validated 

experimentally as shown in Figure 6.3. The thermo-elastic ATVA was heated to fOllr 

different temperatures and e, was measured for each temperature when the steady 
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state was reached. The measured transmission ratio IS also plotted for each 

temperature to demonstrate the validity of the error function, for different stiffness 

values, in indicating that minimum transmission occurs when e3 = O. At the tuned 

frequency (i.e. the frequency at which "I is minimum) for each temperature, shown in 

Figure 6.3a, the corresponding error functions e3 :::::; 0 (see Figure 6.3b). Furthermore, 

the 1800 phase shift that occurs between the reference signals (SI and S2) and 

discussed in the previous chapter tends to occur at lower frequencies when the 

stiffness of the absorber is decreased. The range of frequencies within which e, is 

operative (i.e. within which the sign of e, indicates the direction of miss-tune) 

becomes less with respect to temperature because of the reduction that occurs in the 

bandwidth 11Q (y decreases by decreasing k(/) and the fact that the value of 11111'1 / All 

(i.e. 11 111'1:::::; 0.06 m) was initially set for the characteristics (absorber frequency) of the 

thermo-elastic ATV A at the ambient temperature. Nevertheless, the error function is 

effective over a reasonably wide frequency range for the cases where the absorber was 

operating at elevated temperatures. 

The transmission ratios and the corresponding error functions obtained when cooling 

down the absorber are shown in Appendix 6. The measurements approximately agree 

with those shown in Figure 6.3 which was obtained when the absorber was being 

heated. 

6.2.2 Experimental implementation of real-time control 

The simulations presented in the prevIOus chapter for self-tuning control usmg a 

variable stiffness ATV A are demonstrated experimentally in this section. This utilises 

the gradient descent algorithm and the error function e3 discussed previously. The 

controller is applied to a thin steel beam with the thermo-elastic ATV A described in 

Chapter 4. Three PCB accelerometers are used. Two of the accelerometers are located 

at the optimum spacing 11 :::::; 0.06m (11 / A :::::; 0.25) each side of the A TV A while 
opt ()/J/ ([ 

the third is mounted in the farfield of the point disturbance Lo monitor Lhe 

performance of the self-tuning approach as illustrated in Figure 6.4. The control 
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system was implemented using Simulink® including the Real Time Workshop and 

the Real Time Windows Target toolboxes. The use of such software enables the 

control system, which was used in the numerical simulation discussed in the previous 

chapter to be implemented. Parts of the Simulink model, including the estimation of 

the error function and the control algorithm blocks, were used previously by Rustighi 

et al [12] for the self-tuning control of an SMA ATVA attached on a vibrating host 

structure. 

The disturbance and control signals were generated by a Pentium III 1 GHz PC, 

equipped with a National Instruments PCI-MIO-16E-4, I/O board for analogue and 

digital data acquisition. All real-time processing was performed using Matlab and 

Simulink software incorporating the real-time toolboxes. The disturbance generated 

by the computer was used to drive a Ling V201 shaker while the control signal 

generated by the controlleriSimulink was used to drive a Lambda ZUP 10-20 current 

supply. The electric current generated by the power supply could generate a maximum 

voltage of 10 V or a maximum current of 21 A. The measured accelerations were feci 

into a signal conditioner then to the PC to estimate the cost function e3 . Then the 

consequent control signal was generated. A thermocouple was used to monitor the 

surface temperature of the stainless steel wires during the experiments. In order to 

avoid any high frequency noise that might contaminate the signal sent to the shaker, a 

low pass filter (Kemo® BenchMaster VBF 8) was used with a cut-off frequency of 

500 Hz, well above the adaptive rate of the thermo-elastic ATV A. 

The Simulink model used for the self-tuning control and is described in Appendix 7. 

The model includes a block that generates a sinusoidal signal, which is sent to drive 

the shaker. The signals measured from the two accelerometers attached at the 

optimum locations were input to a block that deri ved the reference signals SI and S2 

from which the error function e1 was estimated. High pass digital filters are used to 

remove any DC offset. The error function is input to the control block and the control 

algorithm. The control signal that is updated in proportion to the error function is the 

electric current passed through the ATV A. Note that increasing the current decreases 

the stiffness of the ATV A. Thus, the control algorithm shown in equation (5.13) that 

uses stiffness as a control parameter becomes 
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I = I -Pe . Jl+I /I 3,11 (6.1 ) 

The current generator has an analogue voltage input which determines the output 

current, i.e. an input signal between 0 and 4 Volts can be used to produce a current 

between 0 and 21 A. In order to avoid the possibility of over-heating the variable 

stiffness elements of the A TV A, a saturation block was implemented to prevent the 

power supply from generating a current over 9 A (100 °C). 

Experimental tests were carried out to investigate the response of the control system 

including the performance of the thermo-elastic A TV A. The controller updates at the 

sampling frequency of 1 kHz, and the constant P was set to 1.5 xl 0-3 . 

For the first test, the disturbance frequency was initially set to approximately the 

lowest tuned frequency the absorber can reach 314 Hz, and the system run for 1000 

sec (~18 minutes) to allow the steady-state to be reached. The frequency then 

increased to 420 Hz (i.e. the tuned frequency at the ambient temperature) and the 

system continued to run for 2000 sec (~33 minutes). The results of this test are 

shown in Figure 6.5. For the first part of the test, when the excitation frequency is 314 

Hz, the estimated error function was negative (see Figure 6.5a), which in turn directed 

the controller to drive current through the ATV A to heat it. The current increased and 

reached the saturation limit of 9 A after 20 sec, then remained at that value for about 

350 sec (~6 minutes) after which optimal tuning was close to be achieved. This 

involved a 25% change in the tuned frequency. The attenuation achieved at that 

frequency was about 11 dB. This agrees with the attenuation achieved for the results 

obtained in the frequency domain at constant frequency (see Figure 4.15). The error 

function decreased and fluctuated around zero as the controller was trying to maintain 

the tuned stiffness at that excitation frequency, as shown in Figure 6.5b. The 

sensitivity of the stiffness elements used in the ATVA, towards heat transfer can 

elucidate the difficulty in continuously maintaining e3 = 0 with time. However, this 

did not affect the significant attenuation achieved. The reflected power has increased 

correspondingly as expected and shown in Figure 6.5c. It should be noted that Figure 

6.5c shows the envelope of the acceleration amplitudes, calculated by taking the 
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absolute value of the Hilbert transform of the data [78]. When the disturbance 

frequency decreased to 420 Hz the error function was positive, this in turn directed the 

controller to reduce the electric current. After about 1 minute from the time the 

disturbance frequency increased to 420 Hz the current reached 0 A allowing the 

A TV A to stiffen slow I y, as this process depends on the temperature of the A TV A, 

which in turn depends on the ambient temperature. The maximum attenuation 

achieved for the second stage was about 14 dB and this was achieved after about 1000 

sec (::::; 18 minutes). This was less than that measured using the steady-state frequency 

behaviour (20 dB). Note that there was a change in the ambient temperature when 

results are recorded. It is worthy of note that the thermal behaviour of the thermo­

elastic ATVA is slow. 

Another experimental test was conducted for 3000 sec (50 minutes) with the 

disturbance frequency changing from 420 Hz to 314 Hz after 500 sec. The results are 

shown in Figure 6.6. The first disturbance frequency was 420 Hz with the absorber 

close to being tuned and with I = O. The controller decision was to take no action. 

Decreasing the disturbance frequency to 314 Hz gives a negative value for the error 

function; hence the controller increases the current and this heat up the absorber. 

Optimum tuning is reached after about 350 sec (::::; 6). It should be noted that the time 

taken by the controller to tune the absorber optimally was the same as in the previous 

test. Afterwards, the error function fluctuated around zero as described previously. 

The control is seen to oscillate, with current being alternatively switched on and off. It 

is believed that this behaviour could be avoided with a different control strategy. 

6.3 Discussion and Conclusions 

The effectiveness of the error function has been validated experimentally, indicating 

the degree of tuning and the direction of re-tune towards the optimal tuning for the 

thermo-elastic A TV A. 

The error function was successfully implemented in an adaptive control system that 

automatically tunes the thermo-elastic ATV A at various tonal frequencies. This has 

been examined experimentally and the results show that it is quicker to tune the 
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absorber when the excitation frequency is less than the default tuned frequency due to 

the thermal time constants of the absorber materials. For a negative error function (i.e. 

the A TV A is at ambient temperature), the maximum shift in the tuned frequency of 

the thermo-elastic ATV A 25% was achieved after about 6 minutes by heating up the 

absorber. For a positive error function (i.e. the ATV A is too hot), the 25% shift in the 

tuned frequency is achieved after about 16 minutes in cooling down the absorber 

naturally. This depends on the ambient temperature. 

In general, the self-tuning control system including the adaptive thermo-elastic 

absorber has proved effective at reducing the level of vibration in the fm'field of a 

beam structure at different excitation frequencies. 
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CHAPTER 7: CONCLUSIONS AND 

RECOMMENDATIONS FOR FURTHER WORK 

7.1 Conclusions 

This thesis concerned a self-tuning adaptive-passive vibration absorber to control the 

flexural waves propagating on a beam structure. In this chapter general conclusions of 

this thesis are summarised. Since the detailed points are contained in each chapter, 

only the major points will be reviewed here. 

Following the introduction and literature review in Chapter 1, Chapter 2 discussed the 

principle types of wave motion in beam structures: longitudinal, flexural and torsional 

waves. The wave equations were stated with emphasis being placed on the importance 

of controlling flexural waves over longitudinal and torsional ones. However, the two 

latter waves may also exist in a beam exposed to vibration. The importance of 

nearfield waves was discussed. It was shown how these exponentially decaying waves 

are able to increase the power transmitted close to discontinuities and boundaries. 

Methods for measuring the wave amplitudes of the propagating waves and the 

wavenumber of a beam structure were described. These methods were implemented 

experimentally in the subsequent chapters. The reflection and transmission 

coefficients of a general point discontinuity subjected to an incident propagating wave 

were found. These coefficients were developed in Chapter 3 for a tuned vibration 

absorber mounted on a beam at a point. 

Chapter 3 concerned the theoretical analysis and experimental investigation of the 

effect of a passive vibration absorber on controlling the flexural waves propagating on 

a beam structure. The tuned vibration absorber was modelled as a spring-mass system 

attached to a beam as a point translational impedance. Analytical expressions for 

reflection and transmission ratios of the vibration absorber were derived and found to 

be functions of four independent tuning parameters: the absorber frequency, the mass 

ratio, the damping ratio and the non-dimensional distance between the absorber and 
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the disturbance. The effects of these parameters on the performance of the absorber in 

controlling the power transmission were investigated. It was shown how the location 

of the vibration absorber only affects the tuned frequency if the nearfield waves are 

significant. Attenuation in both waves, i.e. the power transmitted downstream of the 

vibration absorber and the total power reflected upstream of the point force, can be 

achieved at the tuned frequency. This is only the case if the absorber is attached at 

points whose distances from the absorber are approximately multiples of half the 

wavelength at the absorber frequency. It was found that the maximum power is 

dissipated by the vibration absorber when the mass ratio has approximately the same 

value as the damping ratio of the absorber. Experiments determining transmission and 

reflection ratios of a passive vibration absorber validated the theoretical predictions. 

The absorber was modelled as a beam-like absorber. Locating the absorber at the 

optimum locations gave attenuation in both power transmission and power reflection 

at the tuned frequency of up to 30 dB. 

Controlling the power transmission over a range of frequencies required the use of an 

adaptive-passive vibration absorber. Chapter 4 presented two designs of variable 

stiffness absorbers that implemented different materials. The stiffnesses of the 

absorbers can be changed by varying the temperature of the materials used: the first 

absorber utilised shape memory alloy wires held together at the centre using epoxy­

resins and was called the shape memory alloy absorber, while the second absorber 

utilised stainless steel wires with epoxy-resins at the centre and was called the thermo­

elastic absorber. It was discussed how increasing the temperature of the shape 

memory alloys increased the stiffness of the absorber. On the other hand, increasing 

the temperature of the epoxy-resins decreased the stiffness. In the experimental 

validation, the shape memory alloy absorber showed about a 20% change in the tuned 

frequency with a maximum attenuation of 11 dB at the ambient temperature while the 

thermo-elastic absorber exerted about 27% change in the tuned frequency with a 

maximum attenuation of 13 dB. Using the thermo-elastic vibration absorber to 

attenuate the transmission in a second beam with a smaller cross-section increased the 

maximum attenuation to 20 dB at the ambient temperature. In addition to the 

advantages offered by passive control, the advantages of the proposed adaptive 

absorbers can be summarised in the following: the simplicity of the design, the 

effectiveness in attenuating the power transmission over a range of frequencies, the 
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low cost of the materials used, the small size of the absorbers and the fail-safe nature 

of the system. The time required by the absorbers to reach the steady state is the main 

drawback of the absorbers introduced in this thesis. Another disadvantage is that the 

damping ratio of both absorbers varies significantly with temperature, which affects 

the maximum attenuation that can be achieved at the tuned frequency. 

Self-tuning control to change the stiffness of an adaptive absorber to suppress the 

power transmission at varying frequencies was discussed in Chapter 5. Only one 

control strategy was investigated; this implemented the gradient descent algorithm. 

The algorithm employs an error function that should be zero to realise optimum 

tuning where minimum power transmission is achieved. For this purpose, an 

appropriate error function was found by using two accelerometers. Each 

accelerometer is located a quarter of a wavelength from the absorber. The outputs of 

the accelerometers were summed and differenced, with one time integration of the 

summed value. The phase between these two signals is 90° when the absorber is 

tuned (i.e. the error function is the cosine of the phase between the two signals). The 

error function indicated both the degree of mistune and the direction towards the 

optimum tuning. This had the advantage of operating over a wide range of frequencies 

with damping having little effect on the accuracy of the error function. A series of 

numerical simulations validated the effect of the proposed control strategy on the 

attenuation of the power transmission, hence on the beam motion in the downstream 

region, for various tonal disturbances. 

A number of experiments were conducted and reported in Chapter 6. The 

effectiveness of the error function in determining the direction of tuning towards the 

optimum stiffness was validated using the thermo-elastic absorber. This absorber was 

tuned automatically using the gradient descent algorithm and the error function found 

in Chapter 5 to control the power transmission for varying tonal disturbances. The 

experimental results showed that that absorber attained considerable reductions (up to 

14 dB at the ambient temperature) in vibrations of the beam at the downstream 

position. This is slightly less than that obtained in the frequency domain which can be 

a result of the significant variation in the ambient temperature. Due to the thermal 

characteristics of the absorber, the time taken by the absorber to heat up was about 

one third the time taken when cooling down. 
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Overall the thesis demonstrates the ability to control the transmission of flexural 

waves on beam structures using a self-tuning adaptive-passive vibration absorber. The 

control system comprising a thermo-elastic vibration absorber, detection sensors and 

controller was capable of successfully attenuating the vibration transmission at single 

frequencies or over a narrow frequency band and tracking changes in this frequency. 

7.2 Recommendations for Further Work 

It was evident that, even if the amplitude of acceleration of the beam in the farfield 

region was significantly reduced, the electric current and the error function fluctuated 

and did not reach a steady value. Therefore, an alternative control algorithm could be 

developed and implemented to reduce the thermal effects of the thermo-elastic 

absorber which influences the time required to reach the steady state. The stability of 

the controller could be enhanced by adding a derivative action to the existing 

proportional control. 

It is recommended that further work be undertaken to investigate the operational 

mode of the thermo-elastic absorber. This should provide knowledge to enhance the 

design of the absorber to reduce the thermal inertia which in turn would reduce the 

time required to reach the steady state and present a more effecti ve absorber. 

The work could also be extended by investigating the effect of thermoset plastics 

other than epoxy-resins on varying the stiffness with temperature for the purpose of 

obtaining a quicker response in the face of varying excitation frequency and acquiring 

a wider range in the tuned frequency when the temperature varies. 
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Appendix 1: Relative Calibration of Accelerometers 

A set of preliminary experiments were undertaken pnor to any measurement that 

necessitates the use of two or more accelerometers. These initial experiments concern 

the relative calibration of the accelerometers to avoid the erroneous data that may 

originate from defective accelerometer(s). Ideal accelerometers should measure 

identical response from a single point at a structure; however, accelerometers may 

deviate from the original sensitivity tabulated by the manufacturer due a number of 

reasons. These could be excessive temperatures, excessive loading stresses and 

damage caused by accidental drop of sensors. Therefore, a constant calibration factor 

craclor can be found for each accelerometer relative to a chosen reference one. The 

calibration factor is found by 

1iCCw51 
cfacler = I I ' 

Are} (co) 
(A1.1) 

where All is the acceleration of any accelerometer needing a relative calibration while 

Are! is the acceleration of the reference accelerometer. 

The calibration factor of two PCB accelerometers type 352C22 (AI and A2 ) was 

inspected with respect to a reference accelerometer of the same type (Are! ). Each of 

the accelerometers AI and A2 were attached by means of wax one at a time to the 

reference accelerometer. Consequently, the accelerometers were excited by a Ling 

shaker V20I over a frequency span of 50-800 Hz. The calibration factor craclOi was 

found for each of the accelerometers using equation (A 1.1). Therefore, craclOi = 0.93 

for AI' while claclO! = 1.026 for A2 . Figure A1.Ia shows the relative accelerations as 

function of frequency without using the calibration factor. It is clear that both relative 

accelerations AI / Arel and A2 / Arel have values close to 1. Nevertheless, these values 

are closer to 1 by using the calibration factor found for each accelerometer as shown 

in Figure A l.1 b. 
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Appendix 2: Repeatability in the Response of the SMA 
Absorber with Temperature. 
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Appendix 3: Temperature Distribution along the SMA 
Wires 
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Appendix 4: Repeatability in the Response of the Thermo­
Elastic Absorber with Temperature. 
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Appendix 5: The Simulink Model of the Gradient Descent 

Algorithm 

The Simulink model implemented for the numerical simulations includes 4 mam 

blocks. These are, a block that generates an incident wave at a frequency f which 

can change with time, a block "A TV AlBeam" that simulates the behaviour of an 

absorber attached to a beam, a block "Signal Processing" which obtain the reference 

signals s] and S2 from the signals acquired from two sensors located at the optimum 

spacing form the A TV A and a block that finds the error function e3 and applies the 

gradient descent algorithm. 

Data Store 
Memory 
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5- Subsystem of the control decision 

Pulse 
Generator1 

x 

a' 

L-_~ IUIj---t:=-J 

Error function 

6- Subsystem of the error function 

[£] 
Trigger 
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Appendix 6: Transmission Ratios and Corresponding Error 

Functions 
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Appendix 7: The Simulink Model Implemented 

Experimen tally 

The model implemented experimentally is similar to that shown in Appendix 5 except 

that there is no excitation block or the ATV AlBeam block. Changes mainly applies to 

the Signal Processing block (high pass digita l filers) and to Control block (current is 

changed rather than stiffness). 

1- Subsystem of the signal processing block 

wnod 

a' I-----.CD 
a' 

2- Subsystem of the error function 

Gain3 

Cos 
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GLOSSARY OF TERMS 

A = cross sectional area 

A, = start of austenitic phase 

AI = finish of austenitic phase 

AI = point acceleration of the beam at the upstream nearfield position 

~ = point acceleration of the beam at the downstream nearfield position 

A3 = point acceleration of the beam at the downstream farfield position 

a = wave amplitude at point force 

b = wave amplitude at absorber location 

c = wave amplitude transmitted downstream 

c
j 

= phase velocity of flexural wave 

c{ = phase velocity of longitudinal wave 

C
1 

= damping constant 

d = diameter of wire 

E = young's modulus 

e = error function 

E1 = beam flexural rigidity 

F = amplitude of harmonic force 

f = frequency (Hz) 

II = absorber frequency 

1;. = anti-resonance frequency 

I = identity matrix 

1 = electric current; second moment of area 

= ~ complex operator; structural intensity 

k = wavenumber 

kll = stiffness of absorber 

-
kl = spring stiffness 

= distance along the beam 
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M 

M j 

1n 

Tn 
" 

1n 
" 

n 

p 

Q 

Re { } 

r 

r 

s 
s 

t 

= bending moment 

= mass of the cantilever beam 

= mass of the concentrated block at the end of the cantilever 

= finish of martensitic phase 

= start of martensitic phase 

= mass 

= effecti ve mass of absorber 

= mass of absorber that contributes to mass of the beam 

= any integer 

= control constant of the gradient descent algorithm 

= power absorbed by vibration absorber per input power 

= shear force 

= real part 

reflection matrix 

= reflection coefficient; radius of rod 

= slope; amplitude of the reference signal s 

= reference signal for the error function 

= glass transition temperature 

= transmission matrix 

= transmission coefficient; time 

u = longitudinal displacement 

w = transverse replacement 

tv' = angular displacement 

w = velocity amplitude 

w = velocity 

w = acceleration 

W' = angular acceleration amplitude 

}V' = angular acceleration 

x = longitudinal position 

Y = displacement of absorber mass 
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Z = dimensionless impedance 

Z = point impedance 

Z"e£llll = beam impedance 

ZTVA = absorber impedance 

~ = variable factor - equation (3.12) 

Y = absorber mass/beam mass in a length of 2Aa / n 

~ = spacing between two accelerometers 

~()I'( = optimum spacing 

~L = critical spacing 

(3 = uniform elastic element of one dimensional structure 

11 = absorber loss factor 

Ke = even integer 

K = odd integer 
() 

A = wavelength 

Aa = wavelength at absorber frequency 

~L = effect of translational constraint 

s = martensitic fraction 

P = density 

Ci x = axial stress 

T( = transmission ratio 

T,. = reflection ratio 

~cD = phase change 

~ = relative phase 

~Q = frequency bandwidth of attenuation 

.0 = ratio of excitation frequency to absorber frequency w/ wa 

.oJ = lower-half power point 

.0
2 

= upper-half power point 

.0" = frequency ratio at which maximum power absorption occurs 

.om = frequency ratio at which power transmission is maximum 
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Q{ = tuned frequency ratio 

co = circular frequency (rad/sec) 

co" = natural frequency of the absorber ~k" / m" 

Note that the subscripts used for propagating and nearfield waves are listed below: 

+ 

N 

= positive - going wave 

= negative - going wave 

= nem"field 
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