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The ability to recognize humans by computer vision is a very important task, with many 
potential applications. In this thesis, we present a new method for an automated marker-
less system to describe, analyze and recognize the human gait motion. The automated 
system consists of four stages: i) detection and extraction of the moving human body and 
its contour from image sequences; ii) extraction of human gait signatures based on 
topological analysis guided by known anatomical knowledge; iii) description of gait 
parameters by statistical analysis of the gait signatures; and iv) feature extraction and 
recognition of human gait. The gait signature is represented by a sequential set of 2D 
stick figures during one gait cycle. A grammatical structure with constraints of the gait 
sequences has been developed to improve the robustness of the gait signature, together 
with a new method of step symmetry. In the gait signature, the motion parameters based 
on biomechanical studies are calculated for characterizing the human gait. The inherent 
periodicity in gait motion is detected by graphical methods and analyzed by statistical 
approaches. Also, the periodic gait motion is modelled by interpolation of trigonometric-
polynomials. In addition, the features based on motion parameters are extracted from the 
sequence of gait signatures. Then, a A:-nearest neighbour classifier and an enhanced back-
propagation algorithm is employed to recognize the gait. In experiments, the proposed 
methods have been successfully demonstrated on the largest available database. The gait 
signature is a very effective and well-defined representation method for analyzing the gait 
motion. It can be applied to other areas such as biomechanical and clinical applications, 
and we have estimated biomechanical parameters on a considerably larger population of 
subjects, showing that the estimate of variance by marker based techniques appeared 
generous. Moreover, the features extracted from the gait signatures are useful patterns for 
identifying human gait. As such, the marker-less approach confirms uniqueness of the 
gait as in biomechanical studies. In future, we will concentrate on improving the gait 
signature and on developing more efficient features to deal with the human gait 
identification with non-studio data. 
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Chapter 1 

Introduction 

1.1 Motivation 

Recent interest in computer vision has emerged which deals with the analysis of image 

sequences involving humans. This interest is motivated by the various application 

domains [39]: visual surveillance, clinical analysis, athletic performance analysis, 

computer animation, robotics, and biometrics. Moreover, human motion analysis has 

many challenging issues, because the highly flexible structure and self-occlusion of the 

human body mandates complicated processes for the measurement and analysis of the 

motion [71]. The motion of the human body may be defined by the movement of various 

body parts such as hand or limb segments, and it is known as a form of non-rigid and 

articulated motion [1][17]. Also, one of the most universal and complex of all human 

activities is gait motion. Gait is a pattern of human locomotion in which the body moves 

step by step in the desired direction [57] [119], It has been studied in medical science, 

psychology, and biomechanics for decades. 

In addition, each person appears to have his or her own characteristic gait pattern. 

There is much evidence from psychophysical experiments [63][109] and medical analysis 

[57][79] that gait patterns have characteristics of uniqueness for each individual. In 

computer vision, recognition of humans by their gait has recently become a challenging 

area [86][95]. As a biometric [61], human gait is defined as a means of identifying 

individuals by the way they walk. Using gait has many advantages over other biometrics 

such as fingerprints, iris, and face recognition. Notably, it is available at a distance or at 
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Chapter 1 Introduction 

low resolution, when other biometrics might not be perceivable [83]. It is also a non-

invasive biometric technique, which can verify identity without contact and without a 

subject's cooperation. Although, several biometric techniques have now become 

practicable alternatives to traditional identification systems [61], human gait 

identification is still a difficult task. 

On the other hand, human gait measurement is crucial in clinical applications, 

biomechanical analysis, and human identification. At the present, most available 

measurement systems are generally based on external markers which are attached to key 

anatomical positions of the human body [41] [110]. Accordingly, trajectories of the gait 

motion are observed by each marker's 3D position [66], and the trajectories translate into 

kinematic variables such as body movements and joint angles [28][66]. The use of 

markers however needs intrusive and expensive specialized hardware and requires 

contact with a subject and concerns overt rather than covert use. In computer vision, 

marker-less human motion analysis and recognition methods have recently been 

investigated. However, many motion analysis systems have been studied for tracking and 

extracting objects, though not for recognition purposes [2] [39][77]. To enable greater 

application capability, a marker-less system is an essential requirement. 

To summarize, the ability to recognize humans and their activities through visual gait 

measurements is not only a very important task with many potential applications but also 

a new study area with just a few studied methods. Here we are primarily considering 

using gait as a biometric. However, current approaches for automated gait recognition 

have several limitations. Even though higher classification rates have been achieved, a 

very small number of subjects were used in most experiments. Also, the essence of most 

approaches is based on visual template matching that does not depend on fundamental 

properties of the gait model or human body. Thus, our objective in this study is to 

develop an automated marker-less system for describing, analyzing, and recognizing the 

human gait motion from image sequences. To achieve this, we will need to extract the 

gait motion in an image sequence and to model the human body in order to observe how 

the body parts move in relation to each other. In addition, we may have to show the 

classification capability on the larger database in order to use gait as a biometric. 
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1.2 Related Work 

There is much evidence to support the notion of using gait to recognize people. 

Psychological study [109] suggested that humans have a remarkable ability to recognize 

and distinguish between different types of motion. Also, medical studies [57][79][80] 

suggested that gait appeared unique to subjects, but involved components that can only be 

derived from an overhead view. In recent years, with advances in computing hardware, 

gait has become a potential practical biometric, and techniques have been developed [86]. 

Roughly, these techniques can be divided into model-free (or holistic) and model-based 

approaches [2][14][85]. The model-based approaches [9][23][81][121] use models of 

human motion such as a stick figure to represent the human body, whereas the model-free 

approaches [48] [5 5] [72] [78] [ 106] only use the shape and/or motion features by the 

statistics of the spatial-temporal patterns based on the image sequences. Here we will 

review human gait in medical and psychological studies and automatic approaches to 

recognize humans by their gait in computer vision. 

1.2.1 Human Gait Studies 

The potential of gait as a biometric has further been encouraged by the considerable 

amount of evidence available, especially in medical and psychological studies. The 

studies of biological motion perception in psychology have progressed from establishing 

how humans can recognize subjects' motion, to recognizing people [86][109]. Studies 

using moving light displays (MLDs) [63] have indicated that subjects can be recognized 

solely by the manner in which they walk, rather than recognition by silhouette shape. 

Medical studies also support the notion of gait as a biomefric. Indeed, gait can be used to 

diagnose a wide variety of medical conditions [92] from muscular disorders to congenital 

joint defects. Here we will introduce first the psychological evidence for gait recognition, 

followed by a review of medical studies for gait recognition in details. 

The earliest psychological study of human perception of gait was performed by 

Johansson [63] using MLDs. Such displays were obtained by filming moving subjects 

with reflectors attached to their body joints, and filmed them walking in almost dark 

conditions. Thus, a moving light display contains only information about specific points 
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of an object undergoing motion. However, Johansson's initial experiments showed that 

humans are remarkably good at perceiving the human motion from MLDs. Given 

Johansson's early success. Cutting and Kozlowski [25] showed human perception of gait 

and their ability to recognize individuals using a dynamic light display of the walking 

pattern without familiarity cues. They used six subjects filmed walking normal to the 

plane view of camera. When asked how they recognized subjects, humans tended to 

mention as clues certain critical features of the displays, such as the speed, bounciness, 

rhythm of the walker, amount of arm swing or the length of steps. 

hi another study by Kozlowski and Cutting [68], they examined recognizing the 

gender of walker from MLDs involving 3 male subjects and 3 female subjects all about 

the same height. Their results showed that humans were able to correctly identify gender 

using full body joint markers at 63% correct on average, which is just better than chance 

(50%). hi a later study, Mather and Murdoch [75] showed that frontal or oblique views 

are much more effective than a side view for gender discrimination, and emphasized that 

male subjects trend to swing their shoulders more while female subjects tend to swing 

their hips, the results improved to an accuracy of 79%. In a more recent study by 

Stevenage [109], she confirmed that gait could be used as a reliable means of recognizing 

individuals, and can leam their gait for recognition purposes from their video imagery. 

She also observed that even under adverse conditions, humans can still perceive gait as a 

cue to identity. 

On the other hand, medical studies have been aimed to classify the components of 

gait for the treatment of pathologically abnormal gait. Murray [79] analyzed the walking 

patterns of sixty pathologically normal men aged between 20 to 65 years old. The data 

collection system used markers to be attached to subject. This form of data collection is 

typical within the medical field, and although practical in that domain, it is not suitable 

for gait recognition. Each subject was filmed walking for a repeated number of trials. 

Also, twenty simultaneous gait components were measured, and a mirror was used to note 

aspects of the overhead view and this was recorded onto film. Murray observed that each 

movement pattern was strikingly similar for repeated trials of the same subject. They also 

suggest that if all gait movements are considered then gait is unique. This makes gait an 

ideal candidate for use as a biometric. 
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1.2.2 Automatic Gait Recognition 

There are two major approaches to gait recognition in computer vision. The first is 

model-based where the subject's movement is described by a body model. In this 

approach, a body model is fitted to the human in every frame of the walking sequence, 

and kinematic parameters are generally measured on the body model as the model 

deforms over the walking sequence [23] [64], This approach was used by Niyogi [87] 

where a walking subject was detected by looking at an XT-slice (where X is a slice along 

the x-axis through a stacked image sequence and T is time). The information obtained 

from multiple XT-slices was then used to create a stick model of the subject for 

recognition. Bhanu [9] also adopted a body model based on the geometric representation 

of each part of the human body. The approach estimates 3D human walking parameters 

by performing a least squares fit of the 3D model to the 2D silhouette. The main 

advantage of this approach is that it does not rely on subjects walking normal to the plane 

view of camera. 

In addition, Nash [81] used a simple pendulum model as a basis for searching a scene 

to locate a moving person using the Velocity Hough Transform (VHT). Cunado [23] built 

on this by using the VHT with double pendulum model to characterize the hip and thigh 

motion within a gait cycle. The gait features were derived from the Fourier weighted 

magnitude spectrum. The approach achieved a recognition rate of 90% on a database of 

10 subjects. The idea of Cunado was later extended by Yam [121] to include the motion 

of the lower leg. The gait was modelled as a dynamic coupled oscillator that can be 

applied to database of running and walking gait sequences. Leg motion during walking 

and running was extracted using temporal template matching with a model defined by 

forced coupled oscillators. Fourier analysis of the variations in the motion of thigh and 

lower leg was used to generate gait features. The approach achieved recognition rates of 

over 90% on a database of 25 subjects with five image sequences for each subject. 

An alternative method is to apply a model-free (or holistic) description to the set of 

images. Model-free approaches used features based on the motion or shape of subjects. 

This approach was used by Little and Boyd [72] where the motion of a moving human 

was described in order to recognize people by variation in the characteristics of the 

motion description. Murase [78] used eigenvectors for gait recognition where the 
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silhouettes of subjects were projected into the eigenspace for eignevalue decomposition. 

The eigenspace approach was extended by Huang [54][55] to use a combination of 

canonical space transformation, based on the canonical analysis, with the eigenspace 

transform. Another study also used eigen analysis to characterize gait. BenAbdelkader [7] 

proposed an approach based on self-similarity plots, and principal component analysis 

(PCA) is used to reduce the dimensionality of the feature space. A recognition rate of 

72% was achieved on a database of 25 subjects with two image sequences for each 

subject. 

Recently, Shutler [106] used the Zemike velocity moments to describe gait motion 

for recognition. The features were selected using an ANOVA technique, and a 

recognition rate of 100% was achieved on a database of 6 subjects with seven sequences 

for each subject. The approach to gait recognition by Foster [35] involves the area masks 

to measure dynamics of area change within specific regions of the image. As it is a 

measure of area, not only is it fast in implementation, but it also allows for specificity to 

gait by choice of the masks used. Also, Hayfron-Acquah [48] has used symmetry of 

human motion using generalized symmetry operators. This operator locates features by 

their symmetrical properties rather than relying on the borders of a shape or general 

appearance. The approach achieved high recognition rates of over 90% on various 

databases including 100 subjects. In addition, the potential of baseline approach matching 

silhouette [97], data derivation of stride pattern [64], key firame analysis for sequence 

matching [22], and ellipsoidal fits [70] have been used to generate gait features for 

recognition. 

The model-based approaches and model-free approaches have their own advantages. 

Some of the model-free approaches have improved capability over application problems 

such as noise, because they use more subject information by using the complete silhouette 

of subject and can be viewpoint invariant. However, one of the main advantages of the 

model-based approaches is their handling of occlusion, which is of importance in gait as 

the human body is self-occluding when walking. Also, they can be used to other 

applications such as clinical analysis. Nevertheless, the use of a silhouette is clothing 

invariant, but this is more a recognition issue. 
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1.3 Contributions 

Several new methods for describing, analyzing and recognizing the human gait motion 

are developed in this study. The major contributions of this thesis will be made in the 

following aspects: 

• We propose a new method for extracting the gait signature based on topological 

analysis guided by anatomical knowledge. The gait signature is a sequential set of 

the 2D stick figures during one gait cycle. It appears to be a very effective and 

well-defined method for analyzing human gait motion. The gait signature can be 

used to estimate the gait parameters in biomechanical or medical applications. 

• We propose a new method for interpreting the structure of the gait sequence by 

using grammatical rules with physical constrains. As a constraint, step symmetry is 

newly defined by the relationship of the joint angles. The structure of human gait 

motion is also described by regular grammar. These methods are used to improve 

the robustness of the gait signatures, especially at crossover of the legs. 

• We propose a new method for modelling the periodic gait motion via interpolation 

by trigonometric polynomials. The pattern of rotation angles around the joints is the 

most important kinematic parameter and defined as a gait time series. The gait time 

series can be characterized as having a periodic component. This method is 

efficient for describing the periodic motion and to handle poor quality data. 

• We propose a new method for automated gait recognition by a neural network 

using the features based on motion parameters. The motion parameters can be 

extracted by analyzing the sequence of gait signatures. A A:-NN classifier will be 

used to reveal the discriminatory capability of the feature vector confirming its 

validity. As a biometric, an enhanced back-propagation algorithm will be employed 

to recognize the gait. 

In addition, early experiments fi-om other approaches were often carried out on small 

number of subjects, usually up to 10 persons. In this study, the usefulness of the proposed 

methods will be demonstrated using a much larger database which is currently the largest 

gait database of its kind consisting of over 100 different subjects. 
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1.4 Thesis Overview 

The thesis is divided into six chapters. The remaining chapters will be organized as 

follows (also see Figure 1.1): 
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• Chapter 2 presents a pre-processing method of image sequence for extracting the 

moving human body and its body contour. The various motion capture methods and 

human body models are reviewed, and our gait database (which is called the 

SOTON database) based on image sequences is described. The SOTON database is 

currently the largest gait database filmed under laboratory conditions. Here, the 

moving human body in an image sequence is detected by a background subtraction 

method, and the body contour is extracted by thresholding and morphology. 

• Chapter 3 describes a new extraction method of the human gait signature by 

combining a statistical approach and motion tracking with topological analysis 

guided by anatomical knowledge. The period of the gait cycle is detected by 

analyzing symmetry of the horizontal centre of mass, and a 2D stick figure is used 

to represent the body model in a gait signature. To improve robustness of the gait 

signatures, the structure of the gait sequences is interpreted by grammatical rules of 

human walking, with physical constraints such as step symmetry. 

• Chapter 4 presents the motion analysis methods for detecting and describing the 

periodic gait motion. The motion parameters of gait signatures are calculated for 

characterizing the human gait. The periodicity is detected by the phase-space 

portrait and the cyclogram, and analyzed by using an autocorrelation function and 

by Fourier analysis. Also, the gait motion around the joint angles is modelled by 

interpolation of trigonometric-polynomials. A delay-coordinate system is employed 

to analyze the dynamics of gait motion, and statistical moments are also used to 

describe the scale of the gait motion. In experiments, the kinematic parameters are 

measured from a much large number of subjects by non-invasive technique. 

• Chapter 5 provides the gait features based on statistical motion analysis and an 

automatic gait recognition system. The features are extracted by analyzing the 

motion sequence of gait signatures and selected by statistical analysis. A simple k-

nearest neighbour classifier is used to derive introductory classification results. As 

a biometric, automated gait identification system based on an enhanced back-

propagation algorithm is described for recognizing the human gait. The system is 

successfully tested with the SOTON database, which contains 100 different 

subjects with seven image sequences of each subject. 
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Finally conclusions and future work of this study are discussed in Chapter 6. 

1.5 List of Publications 

Six papers relating to this study have been published. They are: 

• Extracting Gait Signatures based on Anatomical Knowledge, BMVA Symposium on 

Advancing Biometric Technologies, http://www.bmva.ac.uk/meetings/meetings/02/ 

6March02/soton2.pdf, London, UK, March 2002. 

• Extraction and Description of Moving Human Body by Periodic Motion Analysis, 

in Proceedings of the ISCA 1 International Conference on Computers and Their 

Applications, pp.110-113, San Francisco, USA, April 2002. 

• Extracting Human Gait Signatures by Body Segment Properties, in Proceedings of 

the 5"" IEEE Southwest Symposium on Image Analysis and Interpretation, pp.35-39, 

Santa Fe, USA, April 2002. 

• Model-Driven Statistical Analysis of Human Gait Motion, in Proceeding of the 

IEEE 2002 International Conference on Image Processing, pp.285-288, Rochester, 

USA, September 2002. 

• On Laboratory Gait Analysis via Computer Vision, in Proceedings of AISB '03 

Symposium on Biological-Inspired Machine Vision, Theory and Application, 

pp.109-113, University of Wales, Aberystwyth, UK, April 2003. 

• Markerless Human Gait Analysis via Image Sequences, in Proceedings of the 
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Chapter 2 

Video-Based Gait Silhouette Data 

2.1 Representing the Human Motion 

The human body's motion may be defined by the movement of various body segments 

such as the hand or hmb [2] [17]. A wide range of methodologies and systems are 

available for human motion capture and analysis in laboratory environments, and 

commercially available systems are usually based on markers which are attached to the 

human body [41][66][110]. Using markers can acquire precise motion information, but 

requires specialized hardware and subject contact. Therefore, with advances in computing 

power, marker-less methods have recently been investigated in computer vision, and 

many human body models have also been developed to describe the human movement 

from a non-invasive video sequence [77]. In computer vision, the ultimate goal of human 

motion analysis is to recognize the human body and its activities. However, most of the 

current body models are mainly developed for tracking humans, and hence the human 

body and its motion model should be considered with a view to recognition purposes. 

2.1.1 Human Motion Capture 

Human motion capture is the process of recording human movement and translating it 

into usable mathematical terms by tracking position relative to a fixed point in the 

physical space over time [91] [110]. In general, a motion capture system consists of 

subsystems for sensing and processing, respectively. The operational complexity of these 

subsystems is typically related to the use of active (marker-based) or passive (marker-

11 
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less) sensing [77]. In the sensing stage, a group of sensors simultaneously send position 

and orientation data to a processing subsystem (or computer), and the processing 

subsystem can represent the observed movement in the form of data-files which describe 

the three-dimensional (3D) trajectories of the sensors [66]. Accordingly, the human's 

movements can be recorded by sensors, and the recorded data can be played back by 

mapping the motion onto a computer model. Several methods have been used 

successfully to capture human motion. Some methods use cameras that digitize different 

views of the movement, which are then used to determine the position and orientation of 

key points or normally reflective markers. Others use magnetic fields or ultrasound to 

track a group of sensors. Also, mechanical systems based on linked structures use 

potentiometers to measure the angle of a joint [91][110]. 

Marker-based technology is the most commonly used motion capture method in 

commercially available systems, due to accuracy in representation. Figure 2.1 shows 

examples of motion capture methods based on markers. An electrogoniometer is a device 

for converting continuous measurements of joint motion into an electrical signal, and the 

measured output is usually plotted as a graph of joint angle against time [110][117]. 

Magnetic motion capture uses 6 to 12 or more sensors to measure the magnetic field 

generated by a transmitter source. The sensors and source are connected to an electronic 

control unit that is networked with a host computer, and can determine their position and 

orientation within the space [11]. Also, optical motion capture uses reflective markers (or 

pulsed-LEDs) attached to the body and a number of special cameras to track the 3D 

(a) Electrogoniometer (b) Magnetic-Sensor (c) Optical-Marker (d) Electromechanical 

Figure 2.1: Marker-based Motion Capture Methods 
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location of the markers [41]. The movement of the body segments from the marker data 

can be represented as a body skeleton with 3D XYZ position [49]. More recently, a 

mechanical motion capture method uses an exoskeleton incorporating electromechanical 

sensors for measuring joint angles. The joint angles are then tracked as a human figure 

motion whilst wearing the exoskeleton [41] [91]. 

Alternatively, marker-less human motion capture can be achieved by a vision-based 

method in complex video sequences. This method normally does not require any markers 

or specialized hardware attached to the human body. The only input needed is an ordinary 

video recording of the subject [12]. Therefore, the vision-based method is more 

accessible, more cost-effective, less encumbering of the humans, and works in a wider 

variety of environments than current marker-based capture methods [41]. The vision-

based method however involves segmenting the body parts, tracking the movement of 

joints, and recovering the body structure in an image sequence [2]. Also, this low-level 

processing requires complicated vision computing on a high-performance computer 

system. Recently, a number of methods concerning the motion capture and analysis have 

been proposed in the computer graphics and vision studies [11][12][77]. To analyze the 

human motion, a variety of human body models using 3D structure of rigid segments, 

joints, and constraints have developed [2][39][77][115]. The human body model 

determined by a vision based approach is a very important component for recovering and 

interpreting the human movement from a non-invasive image sequence. 

2.1.2 Modelling Human Body Motion 

Many studies have considered extracting and tracking the human body's motion, though 

rarely for recognition. The human body motion is usually represented by different body 

models. The selection of an appropriate body model is important to efficiently recognize 

human shapes from an image and analyze human motion properly [83]. The human body 

consists of several rigid parts connected by the joints, but the motion of a full human-

body is non-rigid and articulated [1][5]. Human body models are basically based on body 

segments and joints, because they can be recovered by the segments and joints. A variety 

of body models, such as stick figures, 2D contours, and volumetric models have been 

used to represent the human body and its motion. Figure 2.2 shows examples of these. 
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(a) Stick Figure Model (b) 2D Contour Model (c) Volumetric Model 

Figure 2.2: Human Body Models [1][71] 

Stick figure models consist of line segments that are connected at joints to represent 

the human body. The stick figure is obtained by various methods such as the statistical 

means of the output of the median axis or distance transforms [59]. Lee and Chen's 

model [21][69] uses 14 joints and 17 segments for the head, torso, hip, arms, and legs. 

The length of each segment and the coordinates of the joints are the model parameters 

which are used for tracking. This model is based on the observation that human motion is 

essentially the movement of the human skeleton brought about by the attached muscles. 

2D contour models are another method to describe the human body. This representation is 

directly relevant to the human body projection in the image plane [115]. Leung and 

Yang's model [71] consists of five ribbons and a body torso, various joint and mid points, 

and a number of structural constraints, such as support. The 2D contour model was used 

to guide the labelling of the image data. 

In addition to the basic 2D model, view-based knowledge is defined for a number of 

generic human postures, to aid the interpretation process. Volumetric models [51] [100] 

are intended to better represent the complexity of the human body, but require more 

parameters for computation. Rohr's model [100] uses 14 elliptical cylinders to represent 

the human body as 3D volumes, and the origin of the coordinate system is fixed at the 

centre of torso. Generalized cylinders, i.e. cylinders with an elliptical cross-section of 

constant size and shape, are simplified examples of generalized cones. This model can be 

as refined as necessary, by using a collection of component cylinders representing the 

different body segments, giving more detailed information about the spatial organization 
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of the human shape [15]. However, the volumetric model is restricted to impractical 

assumptions of simplicity regardless of the body kinematics constraints [115]. 

On the other hand, human body motion can be described in terms of kinetics or 

kinematics. Kinetic methods involve the study of the forces and torques which are 

involved in generating movement [1], These models are computationally expensive, and 

specifying the forces and torques can be difficult. In contrast to kinetic methods, 

kinematic methods concern the geometry of the object, such as its linear and angular 

positions, orientation, and deformation. If movement is explicitly given by time-

dependent functions then it is very easy to simulate motion. Most of the model-based 

tracking approaches in computer vision are concerned with studies of the kinematic 

patterns [1][100]. Also, human body motion in kinematic methods is usually 

characterized by joint angles, as extensively studied in medical studies [80]. 

The movement of human walking can be modelled by using ideas from human 

motion studies [83]. Hogg [51] and Rohr [100] use flexion and extension curves for the 

hip, knee, shoulder and elbow joints in their walking person models. Joint angles are also 

used by Bharatkumar et al [10] to represent the walking cycle of the lower limbs in 

human walking and compare it with the kinematic model. Another approach to modelling 

the body's motion is to use a sequence of stick figures, called a key frame sequence [3], 

to model rough movements of the body. This key frame sequence of stick figures is used 

to indicate the approximate order of the motion and spatial relationships between the 

body parts. Hence, each figure represents a different phase of the body movement, and 

the key frame sequence is determined in advance and referred to in the prediction process. 

The human body motion is well represented by its joints or skeletal structure (the 

"stick figure") since it reflects anatomical features of the human [77]. Also, the motion of 

joints gives the key to motion estimation and analysis. Namely, the stick figure model is 

closely related to the observation that human motion is essentially the movement of the 

human skeleton, thus the stick figure can be described as a collection of body segments 

and joint angles with various degrees of freedom [1][39]. Here, we consider a simplified 

stick figure model for representing the body structure and describing the body motion. 

The stick figure model can effectively represent structures and kinematics of the human 

body motion. 
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2.2 Human Gait Databases 

A human gait database is one of the most important components for performance 

evaluation in the gait analysis and biometric systems. The construction of the gait 

database can require much time and resources. In clinical or biomechanical applications, 

the gait data have been collected by using marker-based motion capture systems in the 

form of data-files, but the gait databases in vision applications are usually constructed by 

using video camera systems to derive image sequences. The image sequences require a 

large amount of storage and computational time for processing and analysis. Therefore, 

early gait databases were collected under very limited conditions and consisted of a 

relatively small number of subjects. Here we describe the early gait data sets and the 

recently developed large databases. The main sources of the earliest databases were 

University of Southampton (SOTON), hereafter referred to as the early SOTON data and 

University of California at San Diego (UCSD), and the new SOTON database is mainly 

used in this study. 

2.2.1 Early Gait Data Sets 

Early approaches to automatic recognition by gait have been evaluated on small data sets, 

with many researches reporting experimentations using their own data, because there are 

I ULfw; 

t+13 t+16 f+22 

t+25 t+28 t+31 t+34 

Figure 2.3: Sample Image Sequence from the UCSD Data 
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as yet no available large databases for vision based systems. There are two available and 

well-known small data sets: the UCSD data and the early SOTON data. The UCSD data 

was collected by the Visual Computing Group, University of California at San Diego [72], 

and the early SOTON data was collected by the ISIS (Image, Speech, and Intelligent 

Systems) Research Group, University of Southampton. The UCSD data was taken 

outdoors without hghting control and with complex background, conversely the early 

SOTON data was taken indoors with lighting control and a plain background. The UCSD 

data was acquired at 30 fps (frames per second) with 320x160 greyscale pixels, and the 

data set consists of 6 subjects and 7 sequences for each. The early SOTON data was 

acquired at 25 Q)s with 384x288 greyscale pixels, and data set contains 4 subjects and 4 

sequences for each. Sample sequences of the original images in the UCSD data are shown 

Figure 2.3, and the early SOTON data are shown in Figure 2.4. 

Those two data sets have been used in most early studies for automatic gait 

recognition, and several different pubKcations have shown close to 100 percent 

t+i t+4 

t+13 t+16 

t+7 

t+19 

t+10 

t+22 

t+25 t+28 t+31 t+34 

Figure 2.4: Sample Image Sequence from the early SOTON Data 
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classification capability [23][54][72]. It has been very encouraging to note that similar 

levels of classification can be achieved on the much larger data sets. As gait is a 

behavioural biometric, there is much potential for within subject variation such as 

footwear, clothing and apparel. None of these factors were considered in the early data 

sets [85]. Application factors concern deployment via computer vision though none of the 

early data sets allowed facility for such consideration, save for striped trousers in an early 

SOTON data set (aiming to allow for assessment of validity of a model-based approach). 

The new SOTON database sought to include more subjects in order to allow for an 

estimate of inter-subject variation, together with a limited estimate of intra-subject 

variation thus allowing for better assessment of the potential for gait as a biometric [86]. 

2.2.2 Large Databases: SOTON Database 

Several larger gait databases have recently been developed within the DARPA Human ID 

at a Distance program [95]. This program includes: University of Maiyland [65], Georgia 

Institute of Technology (GaTech) [64], Carnegie Mellon University (CMU) [45], 

Massachusetts Institute of Technology (MIT) [70], and University of Southampton [105]. 

Each site has developed a database and has evaluated techniques on their own database 

and on other databases. The main difference in database design are: CMU consider multi-

view indoor treadmill data; Maryland's footage simulates derivation by security 

surveillance cameras; GaTech couple indoor video data with that derived by a motion 

capture system; and Southampton concerns multi-view indoor and outdoor data on 

if * 

Green Backdrop 

Normal 

Lighting Camera View 

(a) Front View (b) Layout and Views (c) Far View 

Figure 2.5: Indoor Walking Track used in the SOTON Database 
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treadmill, and on tracks [85]. 

The SOTON database [105] by the ISIS Research Group captures the subjects using 

good quality progressive scan and interlaced DV (digital video) camcorders. The 

progressive scan technology provides high-resolution imagery whilst security video often 

uses interlaced data. In order to provide an approximation to ground truth and to acquire 

imagery for application analysis, the subjects were filmed indoors (under controlled 

lighting with a special background) and outdoors (without lighting or background 

control), respectively. The first form of indoor data is a subject constantly walking on a 

treadmill, and the second form is subject walking along a specially designed track shown 

in Figure 2.5. As can be seen in the figure, the track was prepared with chroma-key cloth 

(bright green, as this is an unusual clothes' colour), and the background was illuminated 

by photoflood lamps. The same camera view and chroma-key arrangements were used for 

the treadmill, but subjects were highlighted with diffuse spothghts. The outdoor data used 

(a) Indoor Treadmill Data 

(b) Indoor Track Data 

(c) Outdoor Track Data 

Figure 2.6: Sample Images from the SOTON Database 
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a similar track layout with a greater distance between subject and camera. The 

background of the outdoor data contained a selection of objects such as foliage, 

pedestrian and vehicular traffic, buildings as well as occlusion by bicycles, cars and other 

subjects. 

In addition, each subject was filmed walking in both directions, and the database 

contains more than 100 subjects. All subjects in the database are filmed in fironto-parallel 

and obliquely viewed imagery (allowing orientation independent analysis), and there is 

ancillary data which includes subject specific information, camera setups and extraction 

parameters [105]. Each subject has at least four image sequences and each image 

sequence contains at least one gait cycle, together with background and other supporting 

data. Also, an image sequence contains only a single subject walking at normal speed and 

was acquired at 25 fps with 720x576 colour pixels. The imagery for the SOTON database 

was completed with a high-resolution still image of each subject in frontal and profile 

view, allowing for comparison with face recognition and good estimates of body shape 

and size. Figure 2.6 shows the sample images fi-om the SOTON gait database. 

2.2.3 Analyzing the Experimental Database 

The most recent version of the SOTON database contains 114 different subjects, and each 

subject was filmed indoors and outdoors. In addition, the SOTON data were mostly 

acquired from young and healthy university students during the summer season. 

However, the SOTON indoor track database is mainly used as an experimental database 

in this study due to time constraints, and the early SOTON and UCSD data sets are used 

in the experiment for detecting a human body in greyscale images {see Section 2.3.1). In 

addition, the early SOTON data is also used in the classification experiment for 

comparing with other studies. For all experiments, seven image sequences of each of 100 

different subjects (16 females and 84 males) are selected from the indoor track database. 

This selection is based on number of sequences of each subject, because some subjects do 

not have enough image sequences. From now on, we will refer to this large experimental 

database as the SOTON database. Table 2.1 shows summary of the subjects' information, 

which is obtained from the SOTON database. In the table, the height and weight data 

were as stated by each subject without measurement. 



Chapter 2 Video-Based Gait Silhouette Data 21 

Table 2.1: Summary of the Subject Information from the SOTON Database 

Gender Age Level #. Of Subject Ave. Height (Cm) Ave. Weight (Kg) 

Male 

Adults 82 176.8 ± 6.7 70.2 ±8.0 

Male Children 2 125.0+ 7.1 43.0 + 5.7 Male 

All 84 175.5 ± 10.4 69.9 + 8.4 

Female 

Adults 16 161.8+ 6.9 56.4 + 9.6 

Female Children 0 - -Female 

All 16 161.8 ± 6.9 56.4+ 9.6 

Total 100 173.3 + 11.1 67.8 ± 9.9 

On the other hand, the physical dimension in an image plane can be estimated by 

analyzing the geometric aspect of image formation in camera models. The most common 

geometric model is the perspective or pinhole model [34][113]. Also, the 2D intensity 

image is the result of a perspective projection of the 3D scene. In practice, the real-world 

and camera coordinate systems are related by a set of physical parameters, such as the 

focal length of the lens, the size of the pixels, the position of the principal point, and the 

position and orientation of the camera [113]. However, the set of physical (geometry) 

parameters is not included with the SOTON database. Therefore, neglecting any 

geometric distortions, the physical dimension can be simply approximated by linking the 

position of scene points with that of their corresponding image points. 

700 cm (track length) 

200 cm 

\ ^1-720 pixels 

Walking Track 

Camera Centre \ 

140 cm 
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• : Camera View 

Camera 
Centre 

: Camera View 

(a) Plane View 

Figure 2.7: Physical Mapping between Image Plane and Walking Track 

(b) Vertical View 
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Figure 2.7 shows the physical mapping between the image plane of Figure 2.6(b) and 

the walking track shown in Figure 2.5(b). As can be seen in the figure, the DV camera is 

located at the centre position normal to the subject walking track, and the physical 

dimensions WpxHp are roughly covered by the image plane W/xH; of camera view. 

Accordingly, one pixel of the image plane can be approximated by the physical 

dimension 0.5cmx0.5cm. By using this relation, we can estimate the stride and height 

parameters of gait motion. In future, we aim to calibrate the camera so that recovered 

image positions can be translated to physical laboratory position. The relative dynamics 

remain unchanged. 

2.3 Extracting the Body Silhouette 

The detection of moving objects from image sequences is a fundamental and important 

problem in many vision systems. There are two basic methods for detecting moving 

objects: temporal differencing and background subtraction. Temporal differencing [67] 

can adapt to dynamic environments, but cannot robustly extract all relevant object pixels. 

Thus, the method has been mainly used for tracking moving objects. Conversely, 

background subtraction [47][52] extracts the most complete representation of an object, 

but this method is very sensitive to dynamic scene changes due to illumination [37]. 

However, background subtraction has been successfully applied to many vision systems 

as a pre-processing phase for object detection and extraction in an image sequence 

[47][52][82][120]. Here, the moving human body is detected by background subtraction 

methods. The body region is then determined by analyzing histogram projection profiles, 

and its location is verified by prior knowledge such as size and shape. Also, thresholding 

and morphology is employed to extract the body contour of a detected human body. 

2.3.1 Detecting a Body in Grey scale Images 

To detect a moving object in an image sequence, the region of interest is typically 

obtained by background subtraction. The basic idea of background subtraction is to 

subtract the object image from a reference image, which is acquired from a static 

background during a period of time. In mathematical terms, a background image Ig is 
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denoted by Ig = {ibi, •••, and the current object image Iq is denoted by Iq = {ioi, •••, 

ion} where n is the number of pixels in an image. Then, the difference image ID = {idi, •••, 

idn} is defined as ID = |IB ~ IO|- HI the ideal case, the difference image ID is described by 

following characteristic: 

if {p^ c N) 

otherwise 
k = \, ..., n (2 1) 

wherepk is position of a pixel, and # denotes an object region. Though, many background 

subtraction methods have been proposed, most are very sensitive to both global and local 

illumination changes such as shadows and highlights [47] [52] [120]. 

To detect the human body in an image of a real scene, background subtraction using 

an edge difference image is employed to handle changes in illumination. The background 

image is modelled by taking the median of an image sequence that belongs to the 

background [84]. The Sobel operator is then applied to each image to obtain the edge 

image. After that, the edge difference image between the background and the object edge 

image is obtained by the background subtraction. That is, let Ibe(x, y) and Ioe(x, y) be the 

background and object edge images with coordinates (x, y) respectively. Then, the edge 

(a) Greyscale Image (Ig) (b) Sobel Edge Image (c) Edge Difference Image (7^,) 

Jt 
(d) Greyscale Image (Iq) (e) Sobel Edge Image (/,,) 

Figure 2.8: Edge Difference Image 

(f) Noise Filtered a/ 
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difference image Ied(x, y) is given by 

(;(, ( ; c , ( % , )')|. (2.2) 

Figure 2.8(c) shows the edge difference image obtained by the Equation 2.2. As can be 

seen in Figure 2.8, the edge difference image is extracted from real scene images with 

384x288 greyscale pixels acquired from an indoor scene of the early SOTON data. In 

Figure 2.8(c), the edge difference image still has many small isolated areas that are 

caused by change in illumination. These isolated areas require a more sophisticated 

algorithm for object detection and segmentation. 

By considering these isolated areas as noise, a 3x3 mask operation can remove the 

noise areas by suppressing small areas of fixed size as 

0 otherwise 

(2 3) 

where f(x, y) is set to 1 if it is greater than a threshold value T„, otherwise it is set to 0. 

Figure 2.9(a) shows the distribution for greyscale of the edge difference image of Figure 

2.8(c), and Figure 2.9(b) is a result of performing the mask operation of Equation 2.3. As 

can be seen in Figures 2.8(f) and 2.9(b), the mask operation can remove most small 

isolated areas. 

(a) Edge Difference Image (b) Noise Filtered (c) Noise Removed from (a) 

Figure 2.9: Distribution for Greyscale of the Edge Difference Image 

Also, histogram projection profiles are analyzed to estimate the position of a human 

body in the edge difference image. The horizontal projection H(x) and vertical projection 

V(y) in the n xm image are given by the Equations 2.4 and 2.5 
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(a) Preliminary Line Segments (b) Candidate Body Regions (c) Body Detection 

Figure 2.10: Block Segmentation for Human Body Detection 

(2.4) 

y=0 
(2 5) 

where 0(x, y) is a pixel value of image with coordinate {x, y). For block segmentation, 

preliminary lines are defined by a vertical projection profile. After that, to decide if 

multiple object lines exist in a preliminary line, a horizontal projection profile for each 

preliminary line is generated. Figure 2.10(a) shows the preliminary segmentation result, 

and Figure 2.10(b) shows the several candidate body regions that are segmented by 

connected components included in the horizontal projection on the preliminary lines 

which means H(x)\jV(y). Figure 2.10(c) shows the detected human body region that is 

verified by prior knowledge such as size and shape. 

hi addition, the algorithm for block segmentation and body detection adopts a 

clustering procedure done from the single object to the final cluster by merging small 

clusters. That is, the two closest regions among all possible pairs of regions are found by 

the distance between any two points in two regions P and Q, as evaluated by 

(a) Edge Difference Image (b) Fragmented Body Region (c) Merging the Clusters 

Figure 2.11: Block Segmentation by Merging the Clusters 
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peP,qeQ 

where p and q are elements of regions, and dpg is the distance between them. The two 

regions are merged, if DpQ is less than pre-determined value Tc. Region size does not 

affect the distances in this method, and block segmentation is completed by repeated 

clustering of two closest clusters. Figure 2.11 shows the block segmentation by merging 

small fragments in the UCSD data. This method can lead to improvement in object 

segmentation in a low-quality image [114], 

23.2 Detecting a Body in Colour Images 

On the SOTON database, the chroma-key laboratory was used to allow controlled 

lighting conditions for the indoor data. Due to the nature of both the capture and colour 

data of the gait database, the use of a colour specific extraction was possible. With the 

SOTON database, bright green was used as the backdrop colour, and video cameras are 

generally more sensitive in the green channel. Thus, human body extraction from the 

image sequences can be easily achieved through background subtraction [105]. The 

background subtraction based on colour or intensity is a commonly used technique to 

promptly identify foreground elements. Typical problems in background subtraction 

include foreground objects with similar colours to the background, and shadows or other 

variable lighting conditions [42]. Especially, background luminance variations are mainly 

due to noise and illumination change in indoor sequences. Here, we describe a human 

body segmentation method based on background estimation using colour information in 

modified HLS space. 

In computer vision and graphics, many different colour models exist, and each model 

uses its own 3D coordinate system to identify uniquely individual colours [98], The RGB 

(Red, Green, and Blue) space is the most commonly used colour space, because it is 

directly supported by most colour displays and scanners. The HSV (Hue, Saturation, and 

Value) and HLS (Hue, Lightness, and Saturation) colour models are transformations of 

RGB space that can describe colours in terms more natural to an artist [33]. To estimate 

the background of a gait image, the H component is defined as hue value in HSV space, 

and L and S components are defined as Lightness and Saturation values in modified HLS 
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space. The conversion method from RGB colour space to modified HLS space is given by 

m = rmn{g,b) 

H = 

-1 {undefined) if r-m 

6 0 x ( 6 - r ) / ( m - r ) if g = m 

60 X (r - g) l(m -r) if b = m 

77 + 360 ifH<0 
(2 7) 

L = {m + r)/2 

S = 

0 if m = r 

if L< 0.5 

(m-r)/{2-m-r) otherwise 

where r, g, and b are defined as normalized RGB ranges fî om 0 to 1. The modified HLS 

space is very similar to original HLS space but slightly more robust to noise. 

In the chroma-key laboratory, subject is captured against a uniform background. To 

estimate the background, RGB colour space is converted to HSV space, and hue 

D 0.1 0.3 03 0.4 0 5 0.6 0.7 
L (Lightness) 

(a) Background Image (b) Hue Components (c) Lightness vs. Saturation 

(d) Object Image (e) Hue Components 

0 01 02 0.3 04 0.5 06 0.7 08 09 ( 
L (Lî ess) 

(f) Lightness vs. Saturation 

Figure 2.12: Colour Components for Background Estimation 
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component of gait images is shown in Figures 2.12(b) and (e). As can be seen in the 

figures, hue component in the background is very uniform, thus the mode of hue 

component is simply calculated by 

^ = mode (A, (2 8) 

where is the hue value at coordinate (x, y) in mxn image region. In this data, HSV 

space offered a better estimation of hue component z. The RGB colour space is also 

converted to the modified HLS space. The range of lightness and saturation components 

in the HLS space is defined as 

\]/ = [aL{i), cr̂ SO)] (2.9) 

where cr is a variance of each colour component. The background feature {y/) can be 

calculated by colour clustering method [20] using lightness (i) and saturation {S) 

components. Figures 2.12(c) and (f) show the features of background and object images 

in rectangular coordinate system. 

Now, the background features can be removed by using Equations 2.8 and 2.9, 

namely, the pixel values in HLS space can be re-defined by background estimation as 

0 

[Pk otherwise 
(2.10) 

where pk ^ is H component of pixel k in HSV space, and Pk_Ls is L and S components of 

pixel k in modified HLS space. Figures 2.13(a) and (b) show the results of background 

components subtraction by using Equation 2.10. As can be seen in the figures, the object 

(a) Background Image (b) Object Image (c) Object Detection 

Figure 2.13: Background Subtraction and Object Detection 
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image still has some noise (background components), and the object has also lost some 

foreground components. Here, to remove this noise and to recover the lost components, 

noise filtering and histogram logarithm methods are applied to the background subtracted 

image. The noise filter is defined by Equation 2.3, and histogram logarithm is defined as 

p\=cx\og{\ + p^) (2.11) 

where is pixel value at index k, and c is constant. The histogram logarithm increases 

the dynamic range of greyscale via contrast stretching and is useful to enhance detail in 

the darker region of the image. However, the object can be detected by the histogram 

projection method described in the previous section for greyscale images. Figure 2.13(c) 

shows the detected object by using projection profile in the noise filtered and contrast 

enhanced object image. 

2.3.3 Extracting the Body Contour 

To extract the contour of a detected human body, a thresholding and morphological 

method is used here. Figure 2.14 shows the procedure of thresholding and extracting a 

human body contour. Thresholding is one of the most important approaches in the field of 

image segmentation, and choosing a correct threshold is difficult under irregular 

illumination. However, using the background information in an image can lead to 

improvement. Accordingly, a thresholding method based on similarity (or dissimilarity) 

measures between the background and the object image is used. Let Ib(x, y) and Io(x, y) be 

the feature (or brightness in greyscale image) of a pixel with coordinate (x, y) in the 

background image (/j) and the object image (/q). Then, the similarity ©fx, y) at coordinate 

{x, y) is computed by 

@{x,y) = \li,(x,y)-I^(x,y)\. (2.12) 

Similarity values close to zero imply a high probability of being background; conversely, 

large values of similarity imply high probability as an object. Therefore, the binary image 

Ibi(x, y) is thresholded as 

1 if (e(x, y) > r) A (/, (;t, jy) > A) 

10 otherwise 
(2.13) 
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Figure 2.14: Extraction of Human Body Contour 

where T is the tolerance value, and X denotes the global threshold value. Theoretically, 

thresholding is a simple image segmentation method, which is very effective and useful 

for small and low-resolution images, but suffers from difficulty with change in 

illumination. To improve this method, a more effective algorithm using the probability 

density of the similarity for determining appropriate values of T and Xis required. 

On the other hand, the binary image can have some noise inside the object which is 

actually a human body part and some noise outside the object. So, morphological filtering 

is used to remove the noise and to extract the human body contour, by the dilation and 

erosion. In mathematical terms, the dilation of a set 4̂ by a structuring element B is 

denoted by ^ © 5 and is defined as 

(2.14) 

where A represents the image being operated on, and 5 is a second set of pixels, a shape 

that operates on the pixels of A to produce the result. The erosion of image A hy a 

structuring element B can be defined as 

^G.8 = {x (%cy(} . (2.15) 

Finally, the human body contour is determined by arithmetic subtraction between the 
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dilation and erosion images as 

C = ( y 4 @ ^ ) - W 8 a ) . (2.16) 

If dilation can be said to add pixels to an object or to make it bigger (thickening), then 

erosion will make an image smaller (thinning). In the simplest case, binary erosion will 

remove the outer layer of pixels from an object. Therefore, we can obtain an object 

contour easily just by using the subtraction operation of the dilation and erosion image. 

2.4 Results and Conclusions 

The recent technical improvements of computer hardware and video processing make 

possible marker-less motion analysis system based on computer vision. Human motion 

can be detected and measured from video cameras at a distance, and the marker-less 

analysis is essential to enable greater application capability. The study of human motion 

analysis is related to several research areas of computer vision such as the motion capture, 

detection, tracking and segmentation of people, and more generally, the understanding of 

human activity, from image sequences involving humans. Here, the large amount of 

human gait data, which was collected from DV cameras, is pre-processed, and the human 

body and its contour is extracted from the image sequences of the SOTON gait database. 

The success and potential of a new application relies largely on the database used for 

evaluating the apphcation systems. 

2.4.1 Experim ental Results 

As described in Section 2.2.3, seven indoor image sequences of each of the 100 different 

subjects are used in the experiments. The detection and extraction of the human body is 

accomplished by background subtraction and by histogram projection analysis, and 

thresholding and morphology is then used to exfract the contour of a detected human 

body. The size of the human body in the image sequences is approximately 160x360 

pixels in 720x576 image. Figures 2.15 and 2.16 show extracted human body contours 

during one full stride (or two steps) from an image sequence of the SOTON database. The 

human body contour is exfracted with origin of the segmented body region, and the 

extracted body contours are visually inspected and graded. The average quality levels of 
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Figure 2.15: Extracted Human Body Contours (Male, Grade A) 
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Figure 2.16: Extracted Human Body Contours (Female, Grade C) 
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the contour data of each subject can be evaluated by comparison with the subject in 

original images. Here, the quality level is graded as A (good), B (fair), and C (bad) to be 

30%, 40%, and 30% of subjects, respectively, and the noise in Figure 2.16 is caused by 

clothing and apparel. The noise, which is related to quality of the contour data, is mostly 

caused by the shadow and colour of shoes at ground. The shoes can appear to change in 

colour due to their reflectance of the walking surface. However, our approach appears to 

extract the human body contours from image sequences of the SOTON database 

successfully. Here, there is no ground truth assessment available in this scenario. 

Meanwhile, the video image analysis software, which is developed for gait motion 

analysis, has been implemented in Java on a Pentium HI 800MHz system. The video 

image analysis software includes many image processing and motion analysis functions 

with a GUI environment. 

2.4.2 Conclusions 

The SOTON database is currently the largest gait database filmed under laboratory 

conditions. The subjects are filmed in front of a green background, thus human body 

extraction from the image sequences is easily achieved through background subtraction. 

To estimate the position of a human body, the histogram projection profiles are analyzed, 

and the body region is verified by prior knowledge such as size and shape. Also, 

thresholding method based on similarity measures between the background and the object 

image is used. The body contour is extracted by subtraction followed by dilation and 

erosion. However, only the indoor database is used in this work, although the subjects of 

the SOTON databases were filmed indoors and outdoors. Therefore, the usefulness of the 

pre-processing methods, which are developed in this study, is not demonstrated in 

outdoor applications. The quality of pre-processed data filmed under the special 

laboratory should be better than that of the outdoors, moreover it can be well influenced 

to results of motion analysis and recognition. Notwithstanding this, the capability of 

marker-less gait analysis and recognition must be still very attractive technique. 



Chapter 3 

Extracting Human Gait Motion 

3.1 Describing Human Gait Motion 

Human gait (walking and running) is the most common and complex form of all human 

activities [117][119]. It has been studied by the scientists and artists for a very long time. 

However, gait has only been quantified very recently, and has been described and 

analyzed more than any other total movement. The gait motion can be defined as a form 

of locomotion in which the body's centre of gravity moves alternately on the right side 

and left side [57][88][118]. It requires the simultaneous involvement of all lower limb 

joints in a complex pattern of movement. Also, human gait has common patterns of 

movements and describes a rhythmic and periodic motion by which the body moves step 

by step in the required direction. A period of the gait cycle exists between the successive 

heel-strikes, and the gait motion in space and time satisfies spatial and temporal 

symmetry. Here, gait is described as periodic motion, and the gait cycle is detected by 

symmetry analysis of human gait. 

3.1.1 Human Gait as a Periodic Motion 

Human gait is a complex integrated activity with various factors interacting at the same 

time. It is described by a process of locomotion in which the moving body is supported by 

first one leg and then other. As the moving body passes over the supporting leg, the other 

leg is swung forward in preparation for its next stance phase [5 7] [88]. The time interval 

between two successive occurrences of one of the repetitive events of gait motion is 

35 
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Figure 3.1: Division of the Human Gait Cycle [57] 

defined as the gait cycle [117]. Each gait cycle is separated into two distinct periods: the 

stance and the swing phase. The stance phase is the entire period during which the foot is 

on the ground, and the swing phase begins as the foot is lifted from floor (toe-off). The 

usual distribution of the floor contact period is about 60% for stance and about 40% for 

swing [92]. This phase varies with the speed of gait motion, the swing phase becoming 

proportionately longer, and the stance phase and double support phases shorter, as the 

speed increases [80]. The phases of a human gait cycle are described in Figure 3.1. 

Early in the studies of gait analysis, researchers recognized that each pattern of 

motion related to a different functional demand and designated them as the phases of gait 

[92]. The phases of gait provide a means for correlating the simultaneous action of the 

individual joints into patterns of total limb function. In general, the stance and swing 

phases have been divided into eight sub-phases: initial contact, loading response, mid-

stance, terminal stance, pre-swing, initial swing, mid-swing, and terminal swing 

[92][117]. Each of the eight gait phases has a functional objective and a different length 

time interval in gait cycle. Also, the changes in joint motion that occur during each phase 
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are described by the joint ranges of motion at each segment of gait. Time and distance are 

basic parameters of motion, and measurements of these variables provide a basic 

description of gait. These variables provide essential quantitative information about a 

person's gait [88]. 

On the other hand, the human body functionally divides into the passenger and 

locomotor units during walking. The upper body is a relatively passive passenger unit that 

rides on a locomotor unit. The two lower limbs and pelvis are the anatomical segments 

that form the locomotor unit. The upper body part above the lower limbs is usually 

represented by the Head, Arms and Trunk (HAT), and it has a large and heavy mass that 

represents about 70% of body weight. The aspects of the HAT trajectory have two cycles 

of upward and downward displacement in each stride [88][92]. The lowest position is 

reached during the middle of each double support phase, and peak upward deviation 

occurs in mid-stance of each limb. The amount of displacement varies with the subject's 

walking speed [119]. 

3.1,2 Detecting Human Gait Cycle 

Detecting the period for motions that repeat regularly can produce important information 

about underlying object or scene properties. In general, human gait decomposes into a 

repetitive motion and a net translatable component [103]. Several vision based methods 

have been developed from this to compute the period of human gait from image features 

[24][73][96][103]. To detect the period of gait cycle, the width of the block segmentation 

of the corresponding body region, w(t), can be used as a simple method. That is, in each 

gait cycle there are two periods of double support and two periods of single support. 

When the person walks parallel to the camera, gait appears bilateral-symmetric and two 

peaks in w(t) for each gait period are observed. This method is computationally efficient 

and has proven to work well with background subtraction [7] [114]. However, as the 

camera view point departs from fronto-parallel, one of these two peaks decreases in 

amplitude with respect to the other, and eventually becomes indistinguishable from noise. 

According to biomechanical analysis, large segments such as the HAT must not be 

only balanced on a joint that is moving in space but also transferred from one leg to other 

[88]. Namely, the passenger unit is moving in both the plane of progression and the 
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frontal plane as an inverted pendulum which rotates about the hip joint [119]. Therefore, 

the upper body's speed varies a little, being fastest during the double support phases and 

slowest in the middle of the stance and swing phases [117]. Also, the centre of mass of 

the passenger unit will keep the maximum distance from front foot at initial contact (IC), 

end of terminal stance (TS) or terminal swing (TW), and it has minimum distance from 

the front foot at end of mid-stance (MS) or mid-swing (MW). Figure 3.2(a) shows a 

horizontal centre of mass at the chest region which is guided by anatomical data [29]. To 

detect the gait cycle, the horizontal centre of mass in the passenger unit is considered as a 

gait symmetry point. This gait symmetry point at image frame i can be defined as 

s. = d. I{d +a) CLI) 

where d is the mean value and cris the standard deviation of di during a gait cycle. Figure 

3.2(b) shows the curves of gait symmetry interpolated by trigonometric-polynomials 

during a gait cycle. As can be seen in the figure, important gait phases (IC, MS, TS, MW, 

TW) can be detected from the peaks and troughs. 
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Figure 3.2: Detecting Human Gait Cycle 

Also, Figure 3.3(a) shows the average of the detected gait periods derived either by 

manual labelling or by the automatic method by the symmetry point analysis, from 100 

different subjects of the SOTON database. In the figure, the average gait period by 

manual labelling exceeds the automatically detected periods by 0.74 frames (2.7%). In 
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Figure 3.3: Detected Gait Periods and Phases of the 100 Subjects 

fact, the gait periods by manual labelling include just over one gait cycle in order to 

contain certainly one gait cycle. The detected gait phases from the 100 different subjects 

during one gait cycle are shown in Figure 3.3(b). The average finishing points of mid-

stance, terminal stance and mid-swing are observed at the 28.7, 53.3 and 78.7 percentages 

of gait cycle, respectively. The result has a slight difference (3.1%) compare with medical 

data [8 8] [92]. Here, some gait features such as gait frequency (/o), amplitude (A), and 

walking velocity (v) can be also calculated. Gait cycle analysis determines the frequency 

and phase of each observed gait sequence, allowing us to perform dynamic time warping 

to align sequences before matching. Moreover, it provides data reduction by summarizing 

the sequence with a small number of ideal key-frames [22]. 

3.2 Extracting Human Gait Signatures 

Human gait motion is usually described by kinematic motion analysis, and most of the 

model-based approaches in computer vision are concerned with studies of the kinematic 

patterns [1][119]. Therefore, a very important aspect in the fundamental study of human 

gait is the investigation of the kinematics of human body segments [122]. As described in 

Section 2.1.2, the stick figure model is the most effective and well-defined representation 

method for kinematic gait analysis, and can be extracted by motion information from 

human gait. Also, the stick figure is closely related to a joint representation, and the 
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motion of joints provides a key to motion estimation and recognition of the whole figure 

[11]. The gait signature can be defined as a sequence of the stick figures obtained firom 

gait silhouette data. Here, the gait signature is extracted from the body contours by 

determining the body points using the linear regression of body skeleton and motion 

tracking with topological analysis guide by anatomical knowledge. 

3.2.1 Body Segm ent Properties 

The analysis of human motion often requires knowledge of the properties of body 

segments. The initial interests in the proportions of human beings were presumably 

motivated by sculptors and prosthesis designers. More recently, interest has arisen from 

the needs of technological developments such as man-machine interface, computer 

animation, and motion analysis [94] [118]. The dimensions of various body segment-links 

callipered from cadavers have been extensively studied [27], and an average set of 

segment lengths represented as a percentage of body height [29]. These proportions of 

Table 3.1: Average Link Lengths as Percentage of Stature 

Linkages of Body Dempster [27] Drillis [29] 
Reyno ds [94] 

Linkages of Body Dempster [27] Drillis [29] 
Men Women 

1. Upper arm 17.35 ±0.99 1&6 17.4 17.2 

2. Forearm 15.72 ±0.52 14.6 15.6 14.9 

3. Hand 10.54 + 0.63 10.8 10.9 10.8 

4. Hip-shoulder joint 27.98+ 1.95 2&8 2&8 3&4 

5. Thigh 23.99±1JW 24^ 243 242 

6. Shin 25.05 + 1.22 24.5 23^ 23^ 

7. Ankle above sole 3.69 ±0.72 3.9 4.2 4.1 

8. Hip-neck joint 32^5 34^ 334 34.0 

9. Hip-vertex 47.27 47.0 474 4&7 

10, Head 15.46 ± 1.01 13.0 14.5 14.7 

11. Hip above the SRP 5.0 4.3 4.3 

12. Transverse shoulder 18.34 ± 1.05 21.9 2L2 

13. Transverse hips 9.82 ± 1.17 9.9 10.9 
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body segments are suitable for purposes of a good approximation in the absence of better 

data [94] [118], Table 3.1 shows the average length of the important linkages of the body 

expressed as a percentage of stature. In the table, Dempster's work was based on only 8 

subjects, and this number was increased to 65 by Reynolds [94]. 
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Figure 3.4: Body Segment Properties [118] 
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In addition, Figure 3.4 shows body segment properties represented as fractions of 

body height, Hhy Drillis and Contini [29] [118]. Their anatomical studies developed a 

stick figure in which the lengths are shown as a percentage of body height. Most of the 

results were obtained &om only 12 (or less) subjects. The average age of the 12 subjects 

was approximately 27 years and the average height was approximately 176 cm [29]. The 

mean dimensions of body height can be used to determine topological position of each 

body part in human figures as such to guide search for the human head and toe, given that 

humans have a head, neck, shoulder, chest, waist, pelvis, knees, and ankles in known 

topology. Here, we describe the method for extracting the gait signature by using these 

body segment properties. The results of their studies have also been used in dynamic 

models for animating human motion [50]. 
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3.2.2 Extracting the Body Angles 

In the previous chapter, the human body and its contour was extracted from the image 

sequences. To extract body points in a contour image, the skeleton data with body 

segment properties is used. For a body height H, an initial estimate of the vertical position 

of the neck, shoulder, waist, pelvis, knee and ankle was set by study of anatomical data to 

be 0.870//, 0.818//, 0.530//, 0.480//, 0.285//, and 0.039//, respectively. The gait skeleton 

can be simply obtained by two border points of each body segment p with a range 

constraint as 

(3-2) 

where and represent the horizontal position of the begin and the end pixels on the 

horizontal line respectively. For example, the range constraint for trunk t can be given by 

mean value of neck's border points (or not labelled, 0 ) as 

J. j* , , of (3 3) 
\ 0 otherwise 

In images, estimation of a primary gait skeleton is highly susceptible to difficulty by the 

movement of the arm and foot. Therefore, a noise (outlier) removal method, using mean 

value and standard deviation in each body segment, is employed to select a skeleton point 

as 

(3,4) 
otherwise 

where cr is standard deviation of Xs,p and a is a parameter ( / < a < 3) which depends on 

the body segments. Figures 3.5(a) and (b) show the gait skeleton and the noise (outliers) 

removed skeleton data. 

Now we can calculate the body angles from the skeleton data by using linear 

regression. That is, the angle 9p of body segment p is approximated by using the slope of 

the lines in linear regression equation as 

= tan ' 
Vf-1 / f"i 
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Figure 3.5: Extracting Body Angles at a Key-frame 

where n is the number of the skeleton points. Figure 3.5(c) shows the extracted skeleton 

data with the lines fitted by Equation 3.5. As a certainty factor (CF), the reliability ^ of 

the angle Bp can be also determined by the correlation coefficient as 

rp = (3X)) 

In practice, linear regression method involves squared error terms, thus it is very sensitive 

to outliers both in x and y coordinates [34]. The primary outliers can be removed by 

Equation 3.4, but the substantial errors are still dominated by outliers or misplaced data 

points. Therefore, the joint angles 6p(k) at image frame k are affected by noise in the 

contour data with outliers. Accordingly, a weighted moving average can be used to 

reduce the influence of noise as 

k+q j k+q 

/=*-g / f=*-g 
(3.7) 

where g is a size of moving window, here set to 2. The weighted moving average is an 

effective method to smooth time series data. 

On the other hand, the key-frames (single and double support phases) are determined 

by gait symmetry analysis during a gait cycle as described in Section 3.1.2. The body 

angles around double support phases (initial contact, terminal stance, and terminal swing) 

are clearly extracted, but the angles around single support phases are not as accurate as 
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those estimated for the double supports. Therefore, a motion tracking method between 

double supports is used to extract body angles at the lower limbs as well. To track knees 

and ankles, the left-most skeleton points around the knee region and the right-most 

skeleton points around the ankle region are considered. Namely, the skeleton points by a 

size of each body segment are sorted as 

(3.8) 

The proper size of body segments is also guided by anatomical knowledge. The knee and 

ankle have the largest movement of all parts of body. Accordingly, the knee and ankle 

points for tracking are given by mean value as 

= {x,. I i = and = mean{xj (3.9) 

where m and n are index of the data, here set to 5 and 5 respectively. In a left walking 

direction, the knee position around single support can be determined by the minimum 

distance from x-axis, and the ankle position can be determined by the maximum distance 

fromx-axis. 

In normal walking, the knee and ankle positions are moving to the walking direction, 

hence the forward displacement should be measured as positive value. Finally, the body 

angles can be calculated by 

dp = tan"' ((x, -xj/(:v,. - y j ) (3.10) 
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Figure 3.6; Extracting Body Angles at a Inter-frame 
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where x,- and yi are the coordinates of a previously established position such as pelvis and 

knee. Figures 3.6(a) and (b) show the noise removed skeleton data by Equation 3.4 and 

the tracking points determined by Equations 3.8 and 3.9, and Figure 3.6(c) shows slope of 

the lines for computing body angles. As can be seen in the figures, outliers still remain 

around the rear ankle, but the tracking point is extracted successfully. 

3.2.3 Gait Signature by Body Points 

The human gait is typically represented by the movements of the torso and legs, so a stick 

figure can be used to estimate a human body as a combination of line segments linked by 

joints. Therefore, the stick figure is obtained from the body points, which are defined by 

joint angles and body segments. As described in Section 3.2.2, the joint angles are 

extracted by linear regression analysis and tracking moving points with topological 

analysis. Also, the length of body segments is determined by the fraction of the body 

height based on anatomical data. Accordingly, each body point (joint position) can be 

calculated by using the joint angle and the size of body segments as 

[ 4 + 4 cos(^ + dp ) Vi + Lp siii(^ - )] (3 11) 

where (j) is the phase shift, x,- and yi are the coordinates of a previously established 

position, and Lp is the length of body segments guided by anatomical knowledge. Figure 

3.7(a) shows the leg points (knee and ankle) by the joint angles with the segments. 

(a) Leg Points by Joints (b) Stick Figure for Figure 3.5 (c) Stick Figure for Figure 3.6 

Figure 3.7: Body Points and Stick Figure 
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There are nine joint coordinates (body points) determined by Equation 3.11 in human 

body. (Xfieadi yhea^t (Xnech ynecOr (Xshoulden yshoulder)t (X-waistr ywaist)) (Xpelvist ypelvis)) O^kneeJ) ykneel)) 

(Xknee2) yhiee2)) (Xankieb yankiei), and (Xa„kie2) yankiei)- The 2D stick figures with the nuie body 

points are shown in Figures 3.7(b) and (c). As can be seen in Figure 3.7, the body points 

(coordinates) are derived from the joint angles and body segments, and the stick figure is 

simply obtained by connecting the nine body points. In the figure, the estimate of the joint 

angle and segment of neck is not very accurate, because the neck position highly depends 

on head and shoulder position. On the other hand, the legs' motion is extracted very 

successfully. However, the gait signature is represented by a sequence of the simplified 

stick figure with 8 sticks and 6 joint angles, and gait motion can be describing the motion 

in a compact form as sequence of the joint parameters. Namely, each gait signature can be 

characterized by the body segments (the sticks) and joint angles. 

(a) Stick Figiire 

Stick # Body Segments Stick # Body Segments 

Stick 1 head Stick 5 left thigh 

Stick 2 neck Stick 6 left shin 

Stick 3 trunk Stick 7 right thigh 

Stick 4 pelvis Stick 8 right shin 

(b) Sticks vs. Body Segments 

Figure 3.8: Simplified Stick Figure Model 

The mathematical description of the stick figure requires only a gait direction and 

nine (x, y) coordinates for body points. That is, the stick figure model at image frame k 

can be defined by a vector as 

~ 1^ ^ head,neck,shld, waist,pelvis,kneeL,kneeR,ankL,ankR}^ (3.12) 

where dg is the gait direction, and is set to 0 or / for left or right direction, respectively. 

Figure 3.8 shows the stick figure model for representing the human body structure by gait 

signature. A sequence of the stick figures is analyzed as a gait sequence, and this result 

can be used to enhance the gait signatures. 
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3.3 Structure of the Gait Sequences 

Human activities and behaviours may be considered as a stochastically predictable 

sequence of states [58], and they can be interpreted as a grammatical structure [4]. Thus, 

the structure of the motion sequences is generally described by a context-free grammar. 

The grammar and parsing mechanisms provide longer range temporal constraints and 

allow the inclusion of prior knowledge about structure of temporal events in human 

motion [58]. However, human gait is an example of highly constrained motion, and 

physical constraints induce a rhythmic and repetitive pattern of motion [79]. Accordingly, 

human gait motion can be described as patterns with constrained structural relations. 

Here, the structure of human gait motion is analyzed grammatically, with physical 

constraints. The practical reason for analyzing the constraints and grammatical structure 

of the gait sequences is to improve the robustness of the gait signatures. 

3.3.1 Concept of Gait Constraints 

Human gait motion has many constraints, which are based on the laws of physics and the 

functional rules. Some of the constraints are low level, such as the limited range of 

motion, and the high level are contextual constraints such as that one foot is always on the 

ground during walking or the body should be in dynamic balance [5 7] [119]. Basically, 

the constraints represent assumptions about the motion of model, thus the gait motion 

needs to satisfy the constraints on a movement's trajectory, speed, and energy 

expenditure. As a low level constraint, human gait has been approximated as the normal 

range of motion in the joints, and it can be directly detected in the gait signatures if a joint 

is moved out of the normal range. The Ranges Of Motion (ROM) of the joints are 

presented in Table 3.2, and the degrees of motion are the values achieved at the end of 

each phase [88] [92]. The approximate total ROM needed for normal gait at the value of 

the joint angle at each joint throughout the gait cycle. 

In addition, one of the unique characteristics of the gait motion is bilateral symmetry, 

which means that the left and right legs perform the same movements, just shifted in time, 

or if there exists some reflection that is invariant. That is, when a person walks the left 

arm and right leg interchange direction of swing with the right arm and left leg, and vice 
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Table 3.2: Range of Gait Motion (RLA*) 

Gait Cycle (GC) % of Gait Cycle Thigh Knee 

Initial Contact (IC) 0% 30° of flexion 0° 

Loading Response (LR) 12% 25° of flexion 15° of flexion 

Mid Stance (MS) 31 % 0° 5° of flexion 

Terminal Stance (TS) 50% (10°~)20° of 
hyperextension 

0° 

Pre Swing (PW) 62% 0° 
35°(-40°) of 

flexion 

Initial Swing (IW) 75% 20° of flexion 60° of flexion 

Mid Swing (MW) 82% 30° of flexion 30° of flexion 

Terminal Swing (TW) 100 94 30° of flexion 0° 

*. Terminology and Data from Gait Laboratory at Rancho Los Amigos (RLA) Medical Centre, 
California, USA 

versa, with half a period phase shift. Figure 3.9 shows an example of the bilateral 

symmetry in gait motion. In the figure, the second half of the gait cycle shows a reflection 

of the first half of the gait cycle. This is only a generalization for normal gait, and could 

be important to a clinical analysis [101]. However, the bilateral symmetry in normal 

human gait motion satisfies geometrical symmetry but also dynamic symmetry, namely 

the fi-equency content of both lower limbs' motion is also similar. 

r+2 

3 

t+6 t+15 

Figure 3.9: Bilateral Symmetry of Gait Motion 

t+20 
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(a) Actual Displacements 
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Figure 3.10: Forward Displacement at Hip, Knee, and Ankle [57] 

On the other hand, a normal gait motion requires continuing ground reaction forces at 

each step and propelling the body forward in the direction of progression. In normal gait, 

the horizontal displacement tends to be the same for all parts of the body. Figure 3.10 

shows a typical example of the horizontal displacement at the hip, knee and ankle. If there 

were no variations in velocity, a plot of the horizontal displacement against time would be 

a straight line as shown by the average displacement line in Figure 3.10 [57]. When the 

displacement curve of a point is steeper than the average line, that point is moving ahead 

faster than the average velocity. Conversely, as the velocity of the point becomes less 

than the average velocity, the slope of the displacement curve becomes less than that of 

the constant velocity line [57]. These characteristics of the forward displacement can be 

used as a constraint to reduce noise in gait motion tracking. 

3.3.2 Step Symmetry of Gait Motion 

Both symmetry and asymmetry of gait have been used to analyze human behaviour 

[48][101]. Asymmetric gait is frequently considered to indicate gait pathology, and 

symmetric gait is usually used to analyze normal gait. However, the legs in a compass 

gait [43] remain straight at a double support, and the step length is similar for both heel 

strikes. That is, geometrical symmetry exists in a compass gait for different step lengths 

as shown in Figure 3.11. The angles of the legs measured from the vertical are identical, 

namely 9, = 02, 9i=(pi, and 6^=^ at times //, and t}. Further, leg angle 6,, 62, (pi, and % 
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LL = Left Leg RL = Right Leg 

Figure 3.11: Symmetry of Compass Gait for Different Step Lengths [13] 

depend only on the step length si. Most importantly, this remains true when the body is 

accelerating or decelerating, depicted in Figure 3.11 by decelerated step length at time 

(i.e. the body decelerated from ti to [13]. 

However, the step symmetry at double supports t;, t2, and ts can be described in terms 

of leg angle Oj, 62, <pi, and %as 

M=^V e. 
(P, (Pi 

(3.13) 

As described in the previous section, an invariant reflection exists in human gait cycle. 

Thus, the summation or average of each leg's joint angles during a complete gait cycle 

should be had equal value to both legs. Accordingly, Equation 3.13 can be extended as 

Equation 3.14 and can be implemented by Equation 3.15. 

M, = ^2., -^2 (3.14) 

(3 15) 

The values o f M / are equal to 0 around double supports. Now the step asymmetry can be 

measured by this equation, and symmetry values close to zero imply a high degree of 

symmetry. Also, the step symmetry shows the degree of weight balance between left and 

right body parts. Moreover, it is affected by ground slope, because the ground slope 

modifies the inference of gravity on human body. This equation is also an important 
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Figure 3.12: Analysis of Step Symmetry 

condition for a locomotion step, thus we can use it as the step constraints. 

To evaluate the step symmetry, the gait sequences are normalized by 50 frames per 

sequence, and the step symmetry is calculated by Equation 3.15. After that an average 

sequence of the step symmetry of each subject is obtained. Figures 3.12(a) and (b) show 

the sequence data of the step symmetry, and the mean and variation of the data, 

respectively. These results concern 100 different subjects with seven sequences of each 

subject, a total of 700 sequences. As can be seen in the figures, the step symmetry values 

have significantly shown values close to zero around double supports, but the values have 

high variation around single supports. In addition, the autocorrelation of the sequence 

data of step symmetry is shown in Figure 3.12(c), and the periodogram of the Fourier 

LIBRARY 
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transform of the same sequences is shown in Figure 3.12(d). Here, the both results clearly 

show that the sequences of the step symmetry are cyclic and, its cycle is exactly same as 

the normalized cycle. However, using such an equation for evaluating the step symmetry 

may have a limitation, because the step symmetry is evaluated against average values. 

3.3.3 Grammatical Analysis of Gait Cycle 

Human gait motion has many modes, among which walking, running and standing are 

the three most often seen in daily life. These modes are the states of action in human 

motion, and a human can change between these states. Thus, the relationship of the states 

is naturally represented as a finite state machine as shown in Figure 3.13(a). By 

biomechanics definitions, standing, walking and running are distinguished firstly by the 

stride duration, stride length, velocities and the range of motion made by the limbs. That 

is, the speed of the gait motion is the most important feature to distinguish among these 

three states. A second difference concerns the existence of periods of double support or 

double float, and this is determined by the duration of the stance phase. 

Run MW 

•ss-
Speed Stand DS 

-ss-

Walk MS 

(a) Walking, Running and Standing (b) Normal Walking 

Figure 3.13: Transition Diagram for Human Gait Model 

In general, normal walking is translated to the double support (DS/IC) states through 

the single support (ss). A single support in the stance and swing phases contains 

backward (bw), loading response (Ir), mid-stance (MS), terminal stance (ts), pre and 

initial swing (pw), mid-swing (MW), and terminal swing (tw). Figure 3.13(b) shows the 

finite state diagram within walking mode expanded into their lower level state. This finite 

state diagram can be represented as context-fi-ee grammar parsing mechanism. Figure 
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G=(Z, V, S,P) 

S={IC} 

Z={lr, ts,pw, tw, ss, bw} 

V={IC, DS, MS, MW} 

P={IC-^ I IrUS 1 iwMW, 

DS->s5lC l/>wMW I 6wMS, 

MS^teDS I bwlC, 

MW-^AvIC I bwDS} 

(a) Regular Grammar for Gait Motion 

20 30 40 50 60 70 80 90 100 

time (percent of phase) 

(b) Probabilistic Position of Stationary Foot 

Figure 3.14: Grammar and Stochastic for Human Gait Motion 

3.14(a) shows the regular grammar for the state diagram in normal walking. The regular 

grammar is a simple method to describe the human activity by using symbols. However, 

human movement has been also described by stochastic grammar for understanding 

human action [58]. In a stochastic grammar, the notion of a production is generalized by 

the addition of a corresponding probability. 

On the other hand, at any point in a gait, the other foot is in contact with the floor 

(and does not move forwards) during the gait cycle. Thus the shape-of-motion does not 

look at the full period of motion for a limb, only the forward portion. The cycle of motion 

analyzed is left foot forward, right foot forward, left foot forward, and so on. This results 

in a doubling of fi-equency akin to a full-wave rectifier. Accordingly, we can approximate 

(a) t-1 (b) t (MT/MW) (c) t+1 

Figure 3.15: Body Points at Crossover of the Legs 
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the motion of the other foot, which is stationary, as 

=1 •^•sinh(x^)|, t = \,...,n, - l < x < l (3.160 

where the x is increasing 1/n value. The characteristics of Equation 3.16 are shown in 

Figure 3.14(b). During the gait cycle, the positions of the stationary foot can be estimated 

by this equation. In addition, the crossover of the two legs is performed on two single 

support points during one gait cycle. Figure 3.15 shows an example of the body point 
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(a) Without Grammatical Parsing Method (b) With Grammatical Parsing Method 

Figure 3.16: Quality of Gait Signatures in the Forward Displacements 

extraction by using the gait constraints with the grammar parsing method. In the figure, 

the crossover of knee is detected during the three frames of a single support, and ankle 

crossover is started after a single support. As a result, the forward displacements of the 

gait signature at hip, knee, and ankle are shown in Figure 3.16. It is an important 

component for showing quality of the extracted gait signatures. As can be seen in Figure 

3.16(a), the quality of the gait signature without the grammatical rules and constraints 

shows poor result, but this result can be improved by using the grammatical rules as 

shown in Figure 3.16(b). Using grammatical rules with gait constraints can improve the 

robustness of the gait signature, and it is especially effective in poor quality data. 

3.4 Results and Conclusions 

In the previous chapter, a large amount of the image sequences (the SOTON gait 

database) was pre-processed, and the body contours were extracted from the pre-
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processed image sequences. In computer vision, the human gait is usually described by 

kinematic characteristics such as linear and angular positions with time derivatives. The 

gait signature based on 2D stick figure is the most effective and well defined 

representation method for kinematic gait analysis. Here, the gait motion is described as 

rhythmic and periodic motion, and the gait signature is extracted from body contours by 

motion information with topological analysis guided by anatomical knowledge. Also, the 

constraints in gait motion and the grammatical structure of the motion sequences are 

analyzed to improve the robustness of the gait signature. 

3.4.1 Experimental Results 

In the experiments, the body contours extracted from seven indoor image sequences of 

each of the 100 different subjects are used. As described in the section 3.1, human gait is 

a form of periodic motion. To detect the period of a gait cycle, the symmetry property of 

the horizontal centre of mass in the HAT is analyzed, and the key-frames (double 

supports) are also determined by the obvious peaks in the symmetry property. The 

extracted phases of double supports show very similar result to medical analysis. The 

average of the detected gait period is 27.16+1.72 frames and 0.74 frames (2.7%) shorter 

than the average of the manually exfracted gait period as shown in Figure 3.3(a). The 

period of gait cycle is an essential parameter to calculate the various kinematic 

parameters such as cadence, cycle time, velocity, and frequency. 

On the other hand, a simplified 2D stick figure model with six joint angles is used to 

represent the human body structure in the gait signature. Figures 3.17(a) and (b) show the 

exfracted gait signatures from image sequences during one gait cycle. These figures are 

enhanced result by the grammatical rules with gait consfraints, which is described in 

Section 3.3. As a gait consfraint, the step symmetry is used to verify the double supports 

and to detect an unstable status of the double supports. The variation (standard deviation), 

in seven sequences of the same subject, at joint angles is decreased by on average 17% 

for 100 subjects by using the gait grammar with physical consfraints. By these figures, 

human gait motion can be described in a compact form, as a sequence of the kinematic 

parameters. In addition, the forward displacements of the exfracted gait signatures at hip, 

knee, and ankle are shown in Figures 3.17(c) and (d). The forward displacements of joints 
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Figure 3.17: Gait Signatures during One Gait Cycle 

are consistent with medical data by Inman's [57] analysis as shown in Figure 3.10. 

In section 2.2.3, one pixel in the image plane of the SOTON database was 

approximated by the physical dimension 0.5cmx0.5cm, thus the dimension of human 

body and its motion parameters can be simply estimated by the body points and forward 

displacements in the gait signature. The relationship between stated body heights by 

subjects and estimated body heights in the image plane is shown in Figure 3.18(a). As can 

be seen in the figure, the correlation coefficient for the relationship between two data sets 

has a high value (=0.89), and only 2.60 percentage shorter than the stated heights in 

average. Thus, the physical dimension of the human body by this estimation seems to be 

very reliable. Figure 3.18(b) shows the estimated body heights and step lengths. The step 
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Figure 3.18: Physical Dimension of the Gait Signatures 

length is a very important parameter for estimating the gait speed [57][117][119]. In the 

next chapter, these gait parameters will be described in detail. 

3.4.2 Conclusions 

Human gait is a pattern of locomotion, and most human locomotion can be characterized 

as having a periodic component. The period of the gait cycle is detected by symmetry 

property of horizontal centre of mass in the HAT. A 2D stick figure is used to represent 

the human body structure, and it is extracted from body contour by determining the body 

points. To extract the body points, joint angles of each segment are exfracted from gait 

skeleton data by linear regression analysis, and gait motion between key-frames is 

described by fracking the moving points of locomotion. The body segments and moving 

points are basically guided by topological analysis with anatomical knowledge. A gait 

signature consists of a sequence of the stick figures and improved by the gait constraints 

and grammatical analysis. Also, forward displacement of the gait signature is analyzed to 

show the characteristics of the gait motion. However, the gait signature includes much 

information for describing the gait motion and is a very effective representation method 

for analyzing human gait motion. M future, human gait can be analyzed and classified by 

kinematic features of the gait signatures. 



Chapter 4 

Human Gait by Statistical Analysis 

4.1 Kinematics of the Gait Motion 

Human walking is the most common means of gait motion, and all normal people follow 

the same basic bipedal pattern, namely all humans walk in the same basic way [92] [119]. 

Also, the normal people will consistently return to the same pattern when tested 

repeatedly, unless changes in footwear or the walking surface [57]. In addition, gait 

motion can be decomposed into temporal and spatial components, and these components 

should be included in gait description. A very important aspect in the fundamental study 

of gait motion is the analysis of the kinematics of human body segments [122]. 

Kinematics is the study of movements, or more specifically the geometric description of 

motion, in terms of displacements, velocities and accelerations [1][117]. Here, gait 

motion is analyzed by measurement of temporal parameters such as stride, cadence and 

walking velocity, and kinematics dealing with the analysis of joint movements. 

4.1.1 Analyzing the Gait Parameters 

Human gait contains numerous parameters, and these parameters can be categorized into 

general and kinematic parameters. The general gait parameters (also known as the 

temporal and spatial parameters) are the stride length, cycle time (or cadence) and speed 

and provide a basic description of the gait motion [117]. These parameters present 

essential quantitative information about a human gait and give a guide to the walking 

ability of subject [88]. In addition, the general parameters tend to change together in most 

58 
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locomotor disabilities, so that a subject with a long cycle time will usually have a short 

stride length and a low speed. Each parameter may be affected by such factors as age, 

sex, height, muscle strength, etc. Therefore, they should always be interpreted in terms of 

the expected values for the subject's age and sex, such as shown in Table 4.1. 

Table 4.1; Normal Ranges for General Gait Parameters [117] 

Age 
(years) Gender Cadence 

(steps/min) 
Cycle Time 

(sec) 
Stride 

Length (m) 
Speed 

(m/sec) 

13-14 
Male 100-149 0.81-1.20 1.06-1.64 0.95-1.67 

13-14 
Female 103-150 0.80-1.17 0.99-1.55 0.90-1.62 

15-17 
Male 96-142 0.85-1.25 1.15-1.75 1.03-1.75 

15-17 
Female 100-144 0.83-1.20 1.03-1.57 0.92-1.64 

18-49 
Male 91-135 0.89-1.32 1.25-1.85 1.10-1.82 

18-49 
Female 98-138 0.87-1.22 1.06-1.58 0.94-1.66 

50-64 
Male 82-126 0.95-1.46 1.22-1.82 0.96-1.68 

50-64 
Female 97-137 0.88-1.24 1.04-1.56 0.91-1.63 

65-80 
Male 81-125 0.96-1.48 1.11-1.71 0.81-1.61 

65-80 
Female 96-136 0.88-1.25 0.94-1.46 0.80-1.52 

In the previous chapter, the gait signatures during one gait cycle were extracted from 

the SOTON database. The frajectories of gait signatures contain the general gait 

parameters on human movement. In Section 3.1.2, period of the gait is determined by 

number of frames during one gait cycle in image sequence, and frame rate of the SOTON 

database was 1/25 seconds. Accordingly, the cycle time can be calculated by 

cycle _time{sec) - gait _ period (frames)/ frame _rate{frames/sec). (4T) 

The cadence is the number of steps taken in a given time, the usual units being steps per 

minute. One gait cycle consists of two steps, so the cadence is given by 

caJe«ce(steps/min) = 120/ cycle _time(sec). (4 2) 

The gait speed is the rate of linear forward motion of the body, which can be measured in 

metres per second. The speed serves as one of the most important factors in determining 

gait characteristics, and it can be calculated from the cycle time and stride length as 
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speed (jdsQc) = stride _length{m) / cycle _time{sec). (4J) 

The stride length is the distance between two successive placements of the same foot, and 

the length of one stride is moved during one gait cycle and includes all of the events of 

one gait cycle [8 8] [117], If both the cycle time and the speed have been measured 

separately, the stride length can be calculated by 

stride _length(m) = speed{m/sec) x cycle _time{sec). (4.4) 

Also, the stride duration or frequency defines the amount of time in which these motions 

occur. A stride consists of two steps, a right and a left. The stride length is not always 

twice the length of a single step because right and left steps may be unequal [88]. 
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Figure 4.1: Relationship between the Gait Parameters 

On the other hand, the stride length can be determined by direct measurement. In the 

previous chapter, the body height and step length in a gait signature were estimated from 

the physical dimensions of the image plane. The step length is determined by the average 

distance between two feet at double supports (initial contact and terminal swing), hence 

the stride length is given by two step lengths. The stride length can be also approximated 

by the forward displacements in the gait signature during one gait cycle. By medical and 

biomechanical studies, stride length is not independent of body height and speed 

[5 7] [119]. Figure 4.1 shows the relationship between stride length and other gait 

parameters, for 100 different subjects. As can be seen in the figure, the stride length 

versus gait speed appears linearly related, and stride length versus body height has a 
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Table 4.2: General Gait Parameters from the SOTON Database 

Age 
Level 

Gender 
Cadence 

(steps/min) 
Cycle Time 

(sec) 
Stride 

Length (m) 
Speed 

(m/sec) 

Children 
Male 109-130 0.92-1.10 1.36-1.52 1.23-1.65 

Children 
Female - - - -

Adults 
Male 103-116 1.03-1.17 1.57-1.76 1.42-1.62 

Adults 
Female 110-122 0.98-1.10 1.43-1.62 L38-1.56 

linear relationship and is more highly correlated. The relationships of stride length have 

been used for recognizing human [7]. Table 4.2 shows variation of the general gait 

parameters, which are obtained from the SOTON database in the experiments. In the table, 

the speed is based on estimated stride length, and all parameters belong to the range of the 

expected value shown in Table 4.1. In practice, the speed is near the upper limit, because 

the SOTON database might have relatively much youth in the subject population. Also, 

the marker-less measurement is a natural method, thus a person may achieve a greater 

stride length than with a marker-based approach. 

4.1.2 Gait Analysis in Angular Kinematics 

Kinematics is the geometric description of motion and does not consider the forces that 

cause the actions. Kinematic analysis of human gait usually characterizes the joint angles 

between body segments and their relationships to the events of the gait cycle 

[80][117][119], The joint angles are more commonly expressed as flexion and extension 

[15][89][92]. Flexion occurs when two body segments change their relative position and 

decrease the angle between them. Similarly, extension is the return from flexion. The 

joint angles of the hip, knee and ankle have been considered as the most important 

kinematics of the lower limbs. The hip angle is defined by the relationship between the 

thigh and trunk or pelvis, and the pattern of the rotation is nearly the same as that of thigh 

rotation. The angle between the thigh and shin is the knee angle, and the ankle angle is 

the angle between the shin and foot. 

Figures 4.2(a), (c) and (e) show the mean and standard deviations, by medical data of 

a small number of the subjects (less than 15) from anatomical markers in limb segment. 
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for joint angles of the hip, knee and ankle motion during one gait cycle [119]. Figures 

4.2(b), (d) and (f) show comparison results of the mean hip, knee and ankle curves across 

the cadences. The natural cadence was 105±6 steps/min, slow cadence was approximately 

20 steps less than natural, and fast cadence was about 20 steps greater than natural [119]. 

As can be seen in the figures, the plots of these joint angles differ little between the 

cadence groups. The only minor difference shows up in knee flexion during early stance. 

At 15% of the gait cycle, the knee reaches maximum flexion and this increases from 15° 

for slow walkers to 25° for the fast cadence group. The ankle curve also shows very small 

differences. The ranges of joint angles in normal walking have been shown previously in 

Table 3.2. 

However, the joint angles of a stick figure in the gait signature can be determined by 

the coordinates of the body segments. Also, kinematics explicitly defines the state vector 

of a stick figure at a specific time. The state vector is defined by 

(4.5) 

The state vector is the set of joint angles including independent parameters defining the 

positions and orientations of all joints belonging to the figure. In the gait signature, a 

sequence of the state vectors contains all the geometrical and time-related properties of 

the gait motion. Therefore, the time series of the joint angles provide much kinematic 

information such as linear and angular velocities, and accelerations, which are derived 

from the displacements with time interval. Moreover, they have basically the same 

characteristic with respect to the gait cycle. 

4.2 Periodicity Detection and Analysis 

In the previous chapters, the human body and its contour have been extracted, and the gait 

signature was also extracted from the body contour by determining the body points. The 

gait signature represents the movements of human gait with the body structure by a 2D 

stick figure model. A set of the gait data extracted from the gait signatures provides 

potentially valuable time-dependent patterns as a gait time series. It has a quasi-periodic 

temporal dependence, because the data collected during walking or running is at the 
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subjects' own speed [18]. In addition, human gait is a form of periodic motion, especially 

when walking laterally; hence we can predict human movement in a gait cycle. Here, the 

gait signatures are analyzed to derive the trajectory-based kinematic characteristics. The 

inherent periodicity in gait motion is also analyzed by the graphical representations and 

statistical methods such as autocorrelation and Fourier analysis. 

4.2.1 Sequence of the Gait Signatures 

Gait motion is the repetitive and well-organized movements generated by a person during 

actions such as walking. Accordingly, the usual input to analysis is a temporal image 

sequence. An image sequence is a much richer source of information than a single image. 

Motion in image sequences refers to the 2D displacement or velocity of the projection of 

scene. The trajectory of points in each image frame follows a curve in the {x, y, t) space of 

an image sequence, and the simplest trajectory is linear. Let x = {x, 7)^ be the spatial 

position of a pixel in continuous coordinates, i.e., JceR^ within image limits. Then, a 

linear trajectory can be described as 

jc(r) = x(/) + V, (x)(r - 0 (4.6) 

where the velocity v,(jc) is constant between t = and r (r > t). In an image sequence, 

each coordinate can be represented by a linear trajectory. 

In the previous chapter, the gait signatures were extracted from the image sequences, 

u 100 

100 150 200 2 5 0 300 350 400 4 5 0 500 

hoMzontal position in image plane 

(a) Trajectories by Light Displays [57] (b) Trajectories of Gait Signature 

Figure 4.3: Trajectories of Gait Motion Corresponding to the Joints 
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which are acquired at discrete time instants. Thus, the motion vectors associated with the 

positions of body joints can be also represented by a linear trajectory. The trajectory plots 

of one or more coordinates are useful in describing detailed changes of particular motion 

pointer. A sequence of this plot at equal intervals of time gives a pictorial and anatomical 

description of the dynamics of the movement [118]. Figure 4.3 shows the trajectories of 

gait motion during one gait cycle. Figure 4.3(a) shows the result by moving light displays 

from a medical study [57], and Figure 4.3(b) is extracted from the gait signature shown in 

Figure 3.17(a). As can be seen in the figures, both results are very similar. Also, a total 

description in the plane of the movement is defined by the gait signature, and trajectories, 

velocities, and accelerations can be visualized. 

However, we can calculate the six angles which are associated with joint positions 

(here, the pelvis angle is not considered): d„ech Sbacb Smpi, &hip2, ^hteei, and 6 * ^ . Figure 

4.4(a) shows the graphical demonstration of the joint angles, and Figure 4.4(b) shows the 

definition of the angle at position (4, ^). In general, the angle of location (4 ly) at 

frame k can be calculated by 

= tan-' ((/, - (4 7) 

The leg angles are relative [119], so the relative joint angles in each leg are computed 

from the extracted angle values by Equation 4.7. Figure 4.4(c) shows the definition of the 

relative joint angles. In normal walking, the trunk of human body in the SOTON database 

can be considered to be almost vertical. Accordingly, the relative hip angle {6^^ is the 

same as that of the extracted value {6h), and the knee angle {Okm̂  can be calculated from 

(a) Joint Angles (b) e, at {IJy) 

6^, =6 hip H 

•Sf 

(c) Relative Joint Angles 

Figure 4.4; Joint Angles in the Gait Signature 
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Figure 4.5: Angular Kinematics of Gait Signature 

the extracted hip angle ( ^ ) and knee angle {6^}. 

Now we can extract the trajectory-based kinematic characteristics of the gait 

signatures such as linear and angular position, their displacement and the velocities. 

Figures 4.5(a) and (b) show the time series of the relative joint angles obtained from the 

gait signature in Figure 3.17(a), by our new approach. The points in Figures 4.5(a) and (b) 

are the extracted angle values from the gait signature that were calculated by using 

Equations 3.5 and 3.7, and these are very similar to the medical data of Figures 4.2(a) and 

(c). Figures 4.5(c) and (d) show the angular velocities given by angular displacement per 

inter-frame time 1/25 seconds. In the figures, the lines are interpolated by trigonomefric 

polynomials. 
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4.2.2 Periodicity in the Gait Motion 

Several methods of detecting periodicity in image sequences have been studied 

[24][73][96][103][104]. Periodicity is a very strong cue in human motion perception, and 

the periodicity of motion can be used to recognize individuals [72]. In a motion analysis 

system, the usual data source is a temporal image sequence. An image sequence is 

defined as a series of # images or frames, acquired at discrete time instants 

tf.=t^+kAt, /t = 0,l,...,7V-l (4.8) 

where J M s a fixed time interval and typically defined by frame rate in an image 

sequence. In general, a motion f(t) can be defined as a function at time t. If it repeats itself 

with a period T, then a periodic motion can be described as 

:r>o. (44) 

In the image sequences of gait motion, the period and frequency are respectively the time 

taken by a step and the number of steps taken per second. Accordingly, gait describes 

periodic motion if all the spatial-temporal parameters are repeated after T steps, where T 

is the gait period. 

In Section 3.1, gait was described as the periodic motion between the successive 

heel-strikes, and the period of the gait cycle was detected. Also, Murray [79] considered 

human gait as "a total walking cycle" - the action of walking can be thought of as a 

periodic signal. Therefore, the pattern of rotation angles around the joints has been 

modelled as a pendulum, the motion of which is characterized by simple harmonic 

motion. This assumes that the pattern of the motion is approximately sinusoidal in nature 

[14][23][111]. Accordingly, gait motion can be characterized as having a periodic 

component. Moreover, Bertenthal and Pinto [8] consider three specific dynamic 

properties in the perception of human gait. First, a frequency entrainment property is 

observed when two or more components of the gait cycle share the same fi-equency. 

Second, phase-lock is observed when phase relationships among the components of the 

gait cycle are stably related in their position or phases. Third, a periodic attractor property 

is defined as a stable solution to an equation of motion. 

On the other hand, the phase-space portrait is a useful method to represent periodic 
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Figure 4.6; Periodicity Detection of Gait Signature 

motion. The phase space is described as the space of all possible states of dynamic system, 

in which the first derivative, or the velocity of movement iy), is plotted against its 

position {s). As time varies, the point P{s, v) describing the motion of the system moves 

along a certain trajectory on the phase space [8]. The curves plotted by these points 

represent periodic motion because the velocity and position return repeatedly to the same 

points. Figure 4.6(a) is a phase-space portrait of angular displacement {0) versus angular 

velocity («) for the hip and knee motion of Figure 4.5. As expected, a periodic phase 

trajectory is observed in the figure. In addition, a cyclogram [44] is demonstrated by 

ignoring the time axis of each curve and directly plotting knee angle versus hip angle as 

shown in Figure 4.6(b). The cyclogram provides information about the posture of the leg 

and the coordination of two joints but no information about the velocities involved. 

However, using angle versus angle plots rather than angle versus time curves can improve 

understanding of gait. The main reason for this is the fact that the shape of the loops is 

easily recognizable, especially by eye. 

4.2.3 Analyzing the Gait Periodicity 

In the previous section, periodicity of the joint angles in the gait signature was detected 

by graphical analysis. The angles obtained from a gait signature are a form of time series 

data. A time series consists of values sampled at constant intervals over time, and any 

quantity that can be measured over time can be analyzed as a time series. Figures 4.7(a) 
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Figure 4.7: Periodicity Analysis of Gait Motion 
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and (b) show the time series of the joint angles, which are extracted from the sequences of 

the gait signatures. As a sequence of trajectory points, the angle data are ordered by an 

implicit time dimension. In time series modelling, this kind of data can be understood as a 

trigonometric model. The trigonometric model is described by 

X it) = a cos,{2k f t + (I)) + Ei (4.10) 

where the amplitude a, frequency f , and phase ^ are parameters and e, is a white noise 

series. As the deterministic part of trigonometric, this model is periodic and will be 

appropriate only for the cyclic data. 

On the other hand, periodic motion description requires long sequences of image 

frames. As can be seen in Figures 4.7(a) and (b), the gait signatures during seven gait 

cycles are used to describe the sequence data of the joint angles. If the joint motion of 

human gait is periodic, then there will be some self-similarity within the curvature 

function which becomes more evident in the autocorrelation function. The autocorrelation 

function of a periodic waveform is itself periodic, and the periodic waveform of 

period T satisfies Equation 4.9. If the waveform is completely random, then the 

autocorrelation function will have its peak value at zero lag and will reduce to a random 

fluctuation of small magnitude about zero for lags greater than about unity [56]. Figures 

4.7(c) and (d) show the autocorrelations of the time series of the joint angles, which are 

described in Figures 4.7(a) and (b). Here, the results show that the joint motion of human 

gait is completely periodic. The autocorrelation describes the general dependence of the 

values of the samples at one time on the values of the samples at another time. 

Fourier analysis has also been used to determine periodicity in an image sequence. In 

the Fourier analysis, any periodic waveform can be decomposed into a fundamental and 

harmonics. That is, the energy of a periodic waveform can be concentrated at frequencies 

which are integral multiples of some fundamental frequency [96]. This implies that peaks 

at the fundamental frequency and its harmonics can be observed by the Fourier transform 

of a sampled periodic waveform. Hence, the periodicity of the sequence data of gait 

motion can be detected by obtaining its Fourier transform and checking whether all the 

energy in the spectrum is contained in a fundamental frequency and its integral multiples. 

The time series of gait motion in Figures 4.7(a) and (b) show a periodic oscillation. The 
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corresponding power spectrums, which are shown in Figures 4.7(e) and (f), exhibit a 

strong peak at the drive frequency together with some higher frequency harmonics. 

Consequently, the result shows that the sequence data of gait motion is a periodic signal 

and has same fundamental frequency. 

4.3 Time Series Analysis and Prediction Model 

The gait signature is a sequential set of the stick figures obtained over time, thus the joint 

angles extracted from the gait signature are time series data. In the previous section, the 

time series of gait motion was analyzed and characterized as a form of periodic motion. 

The time series analysis has three goals: modelling, prediction, and characterization [40]. 

The goal of modelling is to find a description that accurately captures features of the 

long-term behaviour. The aim of prediction is to accurately predict the short-term 

progression. The third goal, characterization, attempts to determine frmdamental 

properties. Here, the time series for periodic gait motion is modelled by interpolation 

functions of trigonometric polynomials. Prediction method of the gait time series based 

on delay coordinate embedding is analyzed. In addition, a scale of the gait motion is 

described by statistical moments. 

4.3.1 Gait Motion by Interpolated Model 

In many statistical analyses, the main goal is to establish frmctional relationships which 

make it possible to predict one or more variables in terms of others. Regression methods 

are among some of the most widely used methods in statistical approaches. Consider the 

basic regression model with bivariate observations {xj, yj),. y„) satisfying [31] 

/ j ( x . ) + s., z = l,...,« (4.11) 

where g) are zero mean random errors and ji. is an unknown regression function, and x,- are 

assumed to fall in finite interval [a, b\. There are many effective methods of estimating ii 

including kernel, nearest neighbour, polynomial, Bayesian, and spline estimators. 

However, statistical analyses of the gait relationships typically use continuous curves 

of the time series data measured over the gait cycle. Medical research [79] has shown that 
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the pattern of gait motion is approximately sinusoidal in nature. The basic trigonometric 

functions sine and cosine describe sinusoidal functions. Moreover, the trigonometric basis 

functions ^ are all periodic over 2x The basis functions for trigonometric polynomials on 

[-% tt] are described as 

4 W = -7=> A;-iW = -^sin(Z%), A,W = -^cos(/%), for/ = l,...,^ (4.12) 
\!27r yjn yjTZ 2 

where n is assumed even, and the basis is orthogonal. The trigonometric functions with 

period In are naturally suited to estimating a gait curve by time series data. An assumed 

functional relationship between periodic gait motion and time can be modelled by 

interpolation of trigonometric polynomials. By the basic regression model of Equation 

4.11, an n"'-order trigonometric polynomial interpolation by least squares approximation 

can be described as 

(x) = ag+a„ cos(27rnx) + cos(27zkx) + b^. sinilnkx)] (4 13) 
k=\ 

where the Ug, a„, Uk and bk are unknown curve-specific coefficients. As n—>oo, y„(x) tends 

to the Fourier series. 

The interpolation of much (equally-spaced) data by trigonometric polynomials can 

make for very accurate results. Figure 4.8 shows the curves for joint angles of the hip and 

knee motion during one gait cycle. Here, the points are the medical data from anatomical 

20 40 60 80 
time (pwcent of gait cyde) 

(a) Hip Angles vs. Time 

20 40 60 80 
time (percent of gait cycle) 

(b) Knee Angles vs. Time 

Figure 4.8: Interpolation by Trigonometric Polynomials 
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markers in a limb segment [118], and the lines are the curves that result from using 4"'-

order trigonometric polynomial interpolation. In the figure, the interpolation function is 

seen to work very well for modelling the gait motion in that the fit over the whole cycle 

appears close. In addition, future gait motion can be predicted by the periodicity of this 

interpolation model. To represent or correct measured gait angle, Fourier series and a 

perspective transformation techniques have also been used in gait studies [14][23]. 

4.3.2 Time-Delay Coordinate Embedding 

The time evaluation of a dynamical system is represented by a function of the time 

variation or (when sampled at regular intervals) time series of its dynamical variables. 

The state of many dynamic systems can be accurately reconstructed by a finite window of 

the time series. Let A denote a compact n-dimensional set of states of the system, and 

h:A—^ R be an observation function which is a measurement of sum quantity of system, 

i.e., x=h(a), and let rbe a real number greater than zero. For each state aeR", one can 

define the /w-dimensional vector X [102] 

where the function Ft(a) is defined through aftr+t) = F,(a(tT)). This vector is called a 

delay coordinate vector because its components consist of time delayed version of the 

observable of the system. The vector X is a segment of a time series with equal spaced 

data produced by measurement function h. This is called a time delay embedding, and it 

can be obtained as 

^ ~ (4.15) 

where x,=h(a) is the value of the time series at time t and a is the state. Time delay 

embeddings are widely used as the input vector to dynamic models, both linear and 

nonlinear [76]. 

In the previous section. Figures 4.7(a) and (b) show the time series of angle data of 

human gait. A useful method to plot the time series is to use delay coordinates. Figure 4.9 

shows each value of the time series of angles (0,) versus a time delayed version, by 

plotting (6*,, Oi.t) for fixed delay r=0.08. Using delay-coordinates for periodic dynamics 
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can reproduce the periodic orbit of the true system state space. Namely, the state space 

defined by k coupled autonomous differential equations is 91* however, the dimension k 

would be very large. In contrast to the complicated differential equations of motion, the 

behaviour in Figure 4.9 is fairly simple. This graph also represents periodic motion 

because the same orbit is described, and the graph exhibits symmetry. These trajectories 

exhibit a tendency to maintain a fixed orbital shape (or limit-cycle attractor). For time 

series prediction, we need try to identify what state the system is in, look to the past for 

similar states, and see what ensued at those times, hi practice, we can average the 

predictions to improve the statistical quality of the final prediction and accurately predict 

where on the curve the system will be in one addition second [8] [102]. 
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Figure 4.9: Delay-Coordinate Reconstruction for Gait Analysis 

Many available methods for time series analysis assume linear relationships among 

variables. But in the real world, temporal variations in data do not exhibit simple 

regularities and are difficult to analyze and predict accurately [16]. The motion of human 

gait is also described by using data of several contemporaneous variables changing with 

time. For example, the vertical change in head position has two cycles of downward and 

upward displacement in each stride. These reflect the mechanics of the right and left 

steps. Namely, there is a strong correlation between the behaviours of entire body motion. 

To improve prediction accuracy, more sophisticated analyzing methods for non-linear 

relationships, such as multivariate time series analysis, chaotic time series analysis, or 

neural networks, will have to be used. 
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4.3.3 Gait Description by Statistical Mom ents 

In Section 4.2.2, the phase-space portraits and hip-knee cyclograms for detecting the 

periodicity of human gait motion have been described by analyzing the joint angles, and 

the periodicity is observed by a two-dimensional closed figure. Both phase-space portraits 

and hip-knee cyclograms are important signatures of human gait motion, and a typical 

angle-angle cyclogram has more important features with the characteristics of the gait 

motion [44]. In gait analysis, hip-knee cyclograms describe the changes in the knee joint 

as a function of the hip joint. These graphical representations combine the temporal 

changes of two joint angles, which allow interpretation of the relationships between the 

two angles. In addition, the hip-knee cyclograms represent the movements of nearly the 

entire body, thus they can be representative of the subject's gait pattern [6]. 

The hip-knee cyclograms provide a basis for separating different gait patterns, and 

they are represented as kinds of plane closed curves. There are several methods for 

quantifying planar shapes [108]. Here, we consider statistical moments [44][53] as a 

descriptor for characterizing the gait motion. In general, the statistical moments of order 

ip+q) in the x-y plane are defined by 

Mip,q) = £ ^x''y''f(x,y)dxdy (4.16) 

where f(x, y) is the membership function of the curve. This function takes the value 1 if 

the point (x, y) is on the shape boundary, and otherwise its value is 0. For discrete data, 

the moments can be given by 

= (4.17) 
. r = l y = I 

where m and n are the finite region of the x-y plane. By Equation 4.17, M(0, 0) represents 

the region of a closed curve. The centre coordinates of the region is given by 

- i S ' ' - - m 

Translation invariance can be achieved if we use centralized moments. The centralized 

moments are computed with respect to the centre of gravity by 
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= iy - fi^> y)-
x=\ y=l 

To enable invariance to scale, normalized central moments are given by 

(4.19) 

v{p^q) = 
/u(0,0)' [(P+9)/2]+1 • 

(4.20) 

The first seven scale-normalized central moments are described by '(](2,0), ri(0,2). 

However, the lower order moments can be used in shape description even if the 

region is represented by its boundary [108]. Moments are an alternative approach for 

describing a shape, and they can provide much more information than a single measure of 

area. Many aspects of moment properties, normalization, descriptive power, sensitivity to 

noise, and computational cost have been studied. Hu [53] has derived moment 

expressions that are invariant to translation, rotation and scaling of shapes. They consist 

of groups of normalized central moment expressions. Some examples are shown below 
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These moments are of finite order, thus unlike the centralized moments they do not 

comprise a complete set of shape descriptors. However, the normalized central moments 

in a cyclogram can be calculated by assigning x=d/,ip and y=6k„ee. Figures 4.10(a) and (b) 

show the state diagram of gait cycle and the cyclogram with gait state by the data from 

Figure 4.8. As can be seen in the figures, the gait cycle is divided into seven temporal 

segments [88][92], and the finish points of each phase are marked by on the 

cyclogram. As descriptors, the moments are simply calculated by using these finish points 

or x-y coordinates in the angle-angle cyclogram. The descriptors are obviously invariant 

with respect to translation and scale. 
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Figure 4.11: Gait Descriptors based on Moments of Cyclograms 

The normalized gait descriptors based on Hu moments of the cyclogram are shown in 

Figure 4.11. For visualization purposes, the central coordinates and only 3 of the 

moments of the 4 subjects with seven gait signatures of each subject are separately 

shown. As can be seen in the figure, the centre coordinates appear to have better inter-

class variability, but 3 of moments have higher variance. Recently, temporal and Zemike 

velocity moments have been used to describe motion for recognition [106]. 

4.4 Results and Conclusions 

The human gait is a pattern of locomotion and can be described by the general and 

kinematic parameters. The measured parameters in the gait signatures are stride length, 
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cycle time (or cadence), speed, and joint angles. The joint angles are the most important 

kinematic parameters and defined as a gait time series. The time series of gait angles can 

be characterized as having a periodic component, and hidden periodicity of the gait time 

series can be detected by the autocorrelation function or by Fourier analysis. In addition, 

the time series for periodic gait motion is often modelled as harmonic motion such as a 

pendulum. Here, the gait signatures are analyzed to extract the gait parameters and 

periodic components. The periodic motion of human gait is modelled by interpolation of 

trigonometric polynomials. Also, delay coordinates embedding and statistical moments 

are employed to describe the human gait motion. 

4.4.1 Experimental Results 

In the experiments, the gait signatures extracted from seven (body contour) image 

sequences of each of the 100 subjects are used. The gait parameters are extracted from the 

gait signatures and the relationship between the parameters is analyzed in Section 4.1.1. 

Figures 4.12(a) and (b) show the results of measuring relative joint angles obtained from 

100 different subjects during one gait cycle. In the figures, the lines are the curves that 

result from using 4'^-order trigonometric-polynomial interpolants. Also, Figures 4.12(c) 

and (d) show the mean and standard deviation of the relative joint angles obtained from 

Figures 4.12(a) and (b). As in medical studies [79][92], the hip and knee at initial contact 

are flexed by about 25° and 5° from the vertical, respectively. During the loading 

response, the hip position is relatively stable, possibly losing 2°~3° of flexion, and the hip 

progressively extends at the same rate after mid stance. Also, peak extension of the knee 

is attained slightly before the end of the swing phase. 

In Figures 4.12(e) and (f), we can observe a periodicity of the gait motion and also 

predict a gait movement by using the phase-space portrait and delay coordinate 

embedding. In the figures, the small curves on the left region show the hip motion, whilst 

the large curves on the right show the knee motion. Clearly, the knee motion is 

characterized by a large range of motion. However, the results of Figure 4.12 show that 

the new approach works successfully, comparing well with biomechanical data {see 

Figure 4.2) acquired by a marker-based system. The variance in Figures 4.12(c) and (d) 

would appear to be smaller than for Winter's [119] analysis. These results concern 100 
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Figure 4.12: Extracted Gait Motion from the SOTON Database 
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subjects with seven sequences of each subject, a total of 700 sequences, i.e. a much larger 

volume of data than in that analysis. Further, in this analysis, subjects were not 

supervised, and carried no markers, allowing for relaxed walking patterns. This is also 

reflected in the small number of traces that lie outside of the general trend. However, it 

can clearly be seen that the general trend is followed by most of the traces, suggesting 

that earlier analyses could be revised by this new approach. 

4.4.2 Conclusions 

In the previous chapter, the gait signatures are extracted from the SOTON database. The 

sequence of the gait signatures contains the general and kinematic parameters on human 

movement. The kinematic parameters are described by rotation angles around the joints 

over time. To detect the periodicity of the gait time series, phase-space portrait and 

cyclogram are used, and the periodic components of gait motion are analyzed by the 

autocorrelation function and Fourier analysis. Also, the gait motion is modelled by 

trigonometric-polynomial interpolant functions. The prediction of the gait motion is 

performed by delay coordinates embedding, and statistical moments are used to describe 

a scale of the gait motion. However, the gait signature has much information for 

describing the gait motion. In future, the parameters and descriptors extracted from the 

gait signatures can be used as the features for classifying and recognizing humans by gait. 



Chapter 5 

Recognizing Humans by Their Gait 

5.1 Feature Extraction of Human Gait 

The functionahty of a pattern recognition system can be divided into two fundamental 

tasks: description and classification. The description task extracts features of an object, 

and the classification task uses a classifier to map the features to a group. Thus, features 

which truly discriminate among groups will assist in identification, while the lack of such 

features can impede the classification task from arriving at an accurate identification [90]. 

Feature extraction may be defined as a process to determine how to explicitly describe the 

object attributes, generally by constructing a set of features representing objects [62]. 

There is no general solution for extracting features from object data, so various methods 

can be used to extract the features for a particular domain and application. Here, the 

features are extracted by analyzing the sequence of gait signatures in the image sequence 

during a time period, and the features based on motion parameters are mainly considered. 

5.1.1 Extraction of the Motion Information 

Extracting motion information from an image sequence is an important step in the 

identification or recognition of humans. In general, there are two methods for extracting 

planar motions: motion correspondence and optical flow [15]. The motion 

correspondence method deals with extracting particular points or characteristic features 

from an image sequence, and that is concerned with motion frajectory. The motion 

frajectories can be parameterized using several methods such as position and direction, 

81 
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velocities, acceleration, and spatial-temporal curvature. The generation of motion 

trajectories from an image sequence is usually related to the feature points in each frame 

and correspondence of such feature points from one frame to another. The feature points 

need to be distinctive enough for robust detection, and stable through time so they can be 

tracked. Many model-based approaches for the analysis of human motion have been 

developed by using this method [2] [3 9] [77]. 

Optical flow [32] is very common for evaluating motion from an image sequence. 

The optical flow can be computed from a sequence by considering the displacement of 

each pixel between two consecutive images. Optical flow was used to derive a gait 

signature by analyzing the shape of gait motion [72], and features of the motion were 

derived as the variation of the first and second-order moments of dense optical flow. 

Several methods [54][72][83] have been used for recognizing human gait motion. In the 

optical flow method, accurate and dense measurements are difficult to achieve. Figure 5.1 

shows an overview of the extraction of motion information from image sequences. 

Exfracting motion information over a region or a whole image is called a region-based 

feature. However, most features used in motion and object representation are derived 

from frajectory-based features and optical flow. 

Image Sequence 

Trajectory-Based Features 
(Motion Trajectory, Spatiotemporal 
Curves, Reference Curves) 

Optical Flow 

Normal Flow Statistics 
Correlation 
Average Flow of a region 

Velocity Speed & Joint Angles Spatiotemporal 
Direction Curvature 

Motion Events 
Relative Motion 
Motion Events 

Motion Events 

Region-Based Features 

Binary Image Greyscale 
Features Image Features 

Mesh feature Model Views 
Codebook Eigen Images 

Figure 5.1: Extracting Motion Information from Image Sequences [15] 
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Human gait data have generally persistent characteristics: high-dimensionality, 

temporal dependence, curve correlations and non-linear relationships. A set of human gait 

data may consist of kinematic, kinetic, electromyography (EMG), metabolic and 

anthropometric variables [18]. The gait variables interact in a complex non-linear form, 

an observation attributable to the intrinsic non-linear dynamics of human movement 

[18] [19]. However, the vision based approaches have some limitations in the data 

collection, and hence human gait is usually described by kinematic motion analysis only, 

hi motion analysis of human gait, kinematic characteristics include linear and angular 

positions, their displacements and the time derivatives, notably the linear and angular 

velocities and accelerations [89]. These kinematic characteristics can be well represented 

by trajectory-based features. 

5.1.2 Extraction of the Gait Features 

hi the previous chapters, the sequence of gait signatures has been extracted jfrom an image 

sequence, and its motion parameters were calculated. Also, the periodic gait motion was 

modelled by interpolation of trigonometric polynomials. The sequence of gait signatures 

is assumed to contain the periodic time-dependent information. Therefore, we can extract 

trajectory-based features from the sequence of gait signatures. The trajectories are 

basically vector valued functions at each frame of a sequence of gait signatures, and they 

can be parameterized by topological and parametric feature vectors. The topological 

feature vector consists of geometry data of human gait motion such as height, width, and 

position. The parametric feature vector such as cycle time, stride length, linear and 

angular velocities has variable length since not every component is always visible [17]. hi 

addition, the trajectory-based features have less dimensionality than optical flow. 

The nine coordinates that construct the gait signature are the most important 

topological features, because other parametric features such as the joint angles are 

calculated based on these coordinates. Therefore, the nine coordinates of a gait signature 

can be considered as an original feature space. Figure 5.2 shows a graphical 

demonstration of the spatial-temporal features, such as coordinates of the body points, the 

joint angles, and the angular velocities. The gait features are basically based on sequences 

of these spatial-temporal data, and they are extracted by determining an appropriate 
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Figure 5.2: Graphical Demonstration of Spatial-Temporal Features at Frame i 

subspace of dimensionality m in the original feature space of dimensionahty d (m <d). 

Table 5.1 shows the gait features based on motion parameters of the sequence of gait 

signatures. The general parameters are a basic description of gait motion and can be 

calculated from each of the gait signatures. Also, the kinematic parameters are obtained 

from the joint angles, which are interpolated by ^"'-order trigonometric polynomials, 

during one gait cycle. In general, the kinematic parameters are time series data during the 

gait cycle, thus mean and standard deviation values of the time series can be used as gait 

features. Moreover, moments are also used to generate the features, which are invariant to 

translation and scaling of the hip and knee angles. 

Table 5.1: Gait Features based on the Motion Parameters 

Type Features Described 

General 
Parameters 

amplitude in Section 3.1.2 
General 
Parameters body height in Section 3.4.1 
General 
Parameters 

cycle time (or cadence), stride length, speed in Section 4.1.1 

Kinematic 
Parameters 

mean{\9„eck\), mean{\eback\), mean{\euip\), mean{\6k„ee\) in Section 4.2.1 
Kinematic 
Parameters mean{\(JMp\). mean{\w knee\), o{\<^hip\), o(\(^jnee\) in Section 5.1.2 Kinematic 
Parameters 

^knee in Section 5.1.2 

Moments 
Mt' AV in Section 4.3.3 

Moments 
in Section 4.3.3 
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In addition, the standard deviations (cr) in the kinematic parameters are calculated by 

a general statistical method, and the angular velocities cOi at frame i, given an inter-frame 

time (1/25 sec), are calculated by 

=(0,.-6i,_,)/A?. (5.1) 

To determine temporal dependence, we generally need periodic data, a sequence of 

images of human gait covering a whole gait cycle. As a feature, the correlation 

between 0k„eei and dic„ee2 is given by 

_ X i ̂ ^kneelj ~ kneel,i ~ ^kneel) 
yimee ~ [= = T = T" 

V S / ) 

Symmetry is one of the characteristics of a walking gait [101], so the correlation between 

the leading and the following leg is an important factor in gait. Changes in height reflect 

the magnitude of the right and left steps. Namely, large angles suggest a smaller height 

than normal, and the characteristics of this relationship need to be verified. 

On the other hand, the features contain body height, cycle time, stride length, speed, 

average angles of the hip and knee, variation of the angles, and moments. Their features 

vary in dynamic range and units. Thus, features with large values may have a larger 

influence in the classifier than features with small values [112]. This problem can be 

overcome by normalizing the features so that their values lie within similar ranges. A 

straightforward method is linear normalization via the respective estimates of the 

minimum and maximum of the feature values and can be given by 

'̂ min + 
^ o ^ 

o min /y _T \ jT jr V max min / 
max min / 

(5 j ) 

where TmaxO-.^) and T„i„(0.0) are the maximum and minimum scaled target values, and 

V„ax and are the maximum and minimum of the original feature values (Ug). In 

general, a number of classifiers such as Wearest neighbours and back-propagation neural 

network require normalized input vectors of some standard range, such as 0 to 1 or -1 to 

1. Also, the performance of classification or identification systems depends largely on 

extracting efficacious features to represent object characteristics. 
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5.2 Feature Selection and Classification 

In the previous section, several kinds of gait features are extracted fi-om the motion 

parameters of the sequence of gait signatures. The gait features may contain information 

that is redundant or superfluous, in which case it is usually required to select a subset to 

reduce extraneous noise. This process of removing irrelevant and redundant features is 

known as feature selection. Using feature selection often improves the accuracy and 

reduces the computational effort involved in classification. Thus, feature selection is an 

essential step to enhance correct classification in the presence of many irrelevant features 

and a small number of samples. In addition, many classification methods are available 

[61], ranging from basic approaches such as A;-NN (A:-Nearest Neighbour) algorithm, to a 

complicated approach such as hidden Markov models or support vector machines. Here, 

the gait features are selected by statistical analysis, and the selected features are classified 

by using a A-NN classifier. 

5.2.1 k-NN Classification Algorithm 

The A:-Nearest Neighbour (A:-NN) rule is a well-established and nonparametric pattern 

classification technique [30], and it provides a basic classification method that is fast to 

compute and produces easily comprehensible results. Suppose that a sample of N feature 

vectors S = {x/. j = 1, N} has been grouped into P classes Cj, ..., Cp. For any new 

feature vector x,-, the task is to assign jc,- to a class, and thus recognize it as belonging to 

that class [74]. The A:-NN method is to find the distance from jc,- to each of its k nearest 

neighbours, say ..., for some fixed&>0. The Euclidean distance between jc,- and 

for each m = 1, k,\s defined as 

(x,, ) = JZ (4 . , - )' (5.4) 
f=l 

where Q is the dimensionality of the feature vector, and and Xj g are the values of the 

q ' feature of the samples x,- and Xj respectively. This method allows each d„ to vote for 

the classp to which Xj(m) belongs. By this means, a sample can be associated to the nearest 

or statistically correct class. Sometimes, the A:-NN rule is referred to as a lazy classifier, 

because there is no training phase in the classification process. 
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Essentially, a A:-NN algorithm measures the Euclidean distance between a test sample 

and the training samples in feature space and finds the k closest neighbours based on 

some distance metric [30]. That is, training samples can be used to determine the class of 

a previously ungrouped sample S. A Euclidean distance metric is used to find the k 

training samples closest to the unknown sample. Of these k closest samples, whichever 

occurs most frequently is used to label the ungrouped sample. In practice, a A-NN 

algorithm can be difficult to beat, even with sophisticated techniques. Unlike other 

common classifiers, a A:-NN algorithm does not build a classifier in advance. When a new 

sample arrives, a A:-NN classifier finds the k closest neighbours to the new sample in the 

training space based on the Euclidean distance [30] [3 8] [74]. However, one of the primary 

advantages of a Ar-NN algorithm is that it is very fast to compute. By using a A:-NN 

algorithm and a simple Euclidian distance metric, we can obtain insight into the baseline 

performance of the new gait classification system. 

5.2.2 Feature Selection and Evaluation 

Feature selection has many definitions [26], however it usually attempts to reduce the 

number of features provided to the classification task. There is more than one reason for 

the necessity to reduce the features to a sufficient minimum. Computational complexity is 

the obvious one. A related reason is that although two features may carry good 

classification results when treated separately, there is little gain if they are combined 

together in a feature vector, because of a high mutual correlation [112]. Therefore, the 

goals for feature selection are to retain as much of the original information as possible, 

remove as much as possible of the redundant and irrelevant information that could 

degrade the classification performance, and reduce the measurement data to variables that 

are more suitable for discrimination [74]. Consequently, the task of feature selection is to 

improve the classification rate, so a natural selection rule seems to be to choose the 

features with lowest individual classification error values. 

However, feature selection is often relegated to classification so that usefulness of 

each feature can be evaluated using an evaluation function in order to select the optimal 

subset. An evaluation function typically tries to measure the discriminatory ability of a 

feature or a subset to distinguish the different class labels [26]. Here, a statistical distance 
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measure that describes the distribution of subjects or classes in the feature space is 

employed. That is, inter-class separation due to mean-difference with respect to the class 

covariances is measured by a variation of the Bhattacharyya distance [3 8] [46]. The 

separation between the two classes i and j, for a given feature, is given by 

S,j=[m.-m.'^ ' ^ ( 5 . 5 ) 

where is the class mean and D is the covariance matrix of class i, with equivalent 

terms for class j. To measure a class separability of the given feature, a mean and 

standard deviation value oiSy for each feature is calculated, and the larger values of the 

ratio of mean to standard deviation (^/cr) imply a good class separability. 

However, treating features individually as scalars has the advantage of computational 

simplicity but may not be effective for complex problems and for features with high 

mutual correlation [112]. Therefore, the discrimination effectiveness of feature vectors is 

evaluated by a classification error rate for each combination of features, although the best 

features are selected by the class separability measures. In practice, the relationship 

between feature vector and classification error rate in a classifier can be analyzed by 

removing relevant input features. In addition, the classification probability for the feature 

vector combinations may increase the complexity requirements depending on the 

classifiers. In order to reduce complexity, a number of efficient searching methods have 

been suggested [26] [62], and the sequential forward selection method [112] is used here 

with A:-NN classifier. As a result, 17 features are removed fi-om 27 gait features shown in 

Table 5.1, and 10 features such as body height, cycle time, stride length, speed, 

mean(\e„eck\), mean{\Oback\), o(\Oinp\), Ikme, fe i^y are selected as gait featiores. 

Correlation and covariance matrices provide the basis for all classical multivariate 

techniques, because they provide sufficient statistics under multivariate normal linear 

models [36]. Thus, the relationships among the variables may be more readily 

understood. Figure 5.3 shows the correlation maps for feature vectors of 100 subjects. 

The correlation map of the correlation matrix R is drawn using Corrgrams [36] and re-

ordered by magnitudes of correlation in the correlation map. In the figure, each cell is 

shaded with the intensity of colour scaled 0 to 100, in proportion to the magnitude of the 
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(b) Correlation Map using 10 Selected Features 

Figure 5.3: Correlation Maps for Feature Vectors of 100 Subjects 

1 

0.8 

0,6 

0.4 

0.2 

0 

- 0 . 2 

-0.4 

- 0 . 6 

- 0 . 8 

- 1 



Chapter 5 Recognizing Humans by Their Gait 90 

correlation. Thus, a darker cell shows better discriminatory capability, and the diagonal is 

the brighter cell reflecting the zero distance between the same feature sets. As shown in 

Figure 5.3(b), the inter-class correlation decreased when the selected features are used, 

hence selected feature vectors can lead to performance improvement of the classification 

system. 

5.2.3 Gait Classification and Analysis 

hi gait classification, 100 different subjects with seven gait signatures of each subject, a 

total of 700 gait signatures (=19,534 images), are used. A total of the 500 feature vectors 

extracted from the front four of the seven signatures and their means for each of 100 

different subjects are used as the training samples. Also, a total of the 100 feature vectors 

extracted fi-om the means of the remaining three of the seven signatures for each of 100 

different subjects are used as the test samples. To classify the gait features, a simple A:-NN 

algorithm described in the section 5.2.1 is employed as a classifier. This method uses the 

Euclidean distance between the position of a test feature vector and the position of the 

surrounding training feature vectors to find the k nearest neighbour in the feature space. 

Undoubtedly, a more sophisticated classifier would be prudent, but the interest here is to 

examine the genuine discriminatory ability of the features. 

In the A;-NN with values of ^ = 1, 3, and 5, the results of CCR (Correct Classification 

Rate) for using different kinds of the feature vectors are shown in Table 5.2. When not 

considering the number of features, the features based on kinematic parameters show the 

best performance in discriminatory capability. By combining two feature vectors, the 

performance improves to nearly 78% CCR which is similar to the result by using all 27 

features. Also, the best performance comes from only 10 selected features, and the result 

shows an 84% CCR which is 7 percentage points higher then the result by 27 features as 

shown in Table 5.2. As can be seen in the table, a CCR offer declines only slightly when 

the value of k increases, so the selected feature vector shows a very good performance. 

However, four of the five general parameters (80%), four of the thirteen kinematic 

parameters (31%), and two of the nine moments (22%) are selected as important gait 

features. This result confirms that individuality by gait concerns a variety of components. 

Intuitively, classification by gait concerns the human body shape and its motion. That is 
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Table 5.2: Classification Rate by Selected Feature Vectors 

Feature Vector (Number of Features) 
Correct Classification Rate (CCR) 

Feature Vector (Number of Features) 
k=l k=3 k=5 

Genera] Parameters (5) 19.0% 23.0% 240% 

Kinematic Parameters (13) 53.0% 49.0% 52.0% 

Moments (9) 36.0% 28.0% 29.0% 

General + Kinematic Parameters (18) 78.0% 71.0% 7^0% 

Kinematic Parameters + Moments (22) 60.0% 50.0% 51.0% 

Moments + General Parameters (14) 58.0% 54.0% 53.0% 

All Parameters (27) 77.0% 75.0% 73.0% 

Selected Features A (18) 8^0% 79^% 7&0% 

Selected Features B (10) 84.0% 80.0% 82.0% 

confirmed here by selections of the parameters body height, fiy that describe shape and 

cyc/e time, stride length, speed, mean{\9„eck\), mean{\6taci^, o(|^;p|), ikee, which describe 

motion factors. Other studies have clearly confirmed classification capability on this 

database, using more features than given here to achieve a higher classification rate than 

our approach gives. However, their approaches are driven purely by biometric capability 

whereas here we sought to derive confidence in our biomechanical measure indirectly by 

classification assessment. Since we derive classification capability by these 

biomechanical measures this gives further confidence in the validity of these marker-less 

derived measures. 

In Section 2.4.1, the quality levels of the pre-processed image sequences, which are 

body contour data of the SOTON database, were graded as A (good), B (fair), and C (bad) 

to be 30%, 40%, and 30% of subjects, respectively. To analyze the relationship between 

the quality level and a CCR, 30 subjects are selected fi"om each of the quality levels and 

classified separately by using the A:-NN algorithm. Table 5.3 shows the classification 

results for each of the quality levels. In the experiments, seven image sequences for each 

subject with the 10 best features are also used. As can be seen in the table, a CCR is 

considerably affected by the quality level of the pre-processed image sequences, namely 
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Table 5.3: Classification Results by Pre-processed Image Quality 

Body Contour 
Quality # of Subjects 

Correct Classification Rate (CCR) Body Contour 
Quality # of Subjects 

k=l k=3 k=5 

Class A (good) 30 9&7% 93394 96.7% 

Class B (fair) 30 93394 90.0% 86.7% 

Class C (bad) 30 90.0% 80.0% 90.0% 

Class A + B 60 9L7% 8&7% 8^0% 

Class A + C 60 9ao% 83394 90.0% 

Class B + C 60 83394 80.0% 8&0% 

All Subjects 90 8^6% 8L194 84.4% 

the better performance of a CCR comes from the better quality level of pre-processed 

images. Note also, that the poorly extracted silhouettes appear to reduce recognition 

capability (rather than the good extraction can improve that by poor extraction) since the 

recognition rate of the well and the poorly extracted silhouettes follows that of the poorly 

extracted silhouettes more closely. Consequently, our new methods are achieved the 

classification rates of up to 96.7% for 30 subjects and 84.0% for 100 subjects which are 

very good performance compared with other studies [22][48][64][65][70][72][86][106]. 

5.3 Automatic Human Recognition by Gait 

Automated person identification is an important task in many security systems such as 

video surveillance and access control. It is well-known that biometrics are a powerful tool 

for reliable automated person identification [3 9] [65]. Automatic gait recognition is one of 

the newest of the emergent biometrics and has many advantages over other biometrics. 

The most notable advantage is that it does not require contact with the subjects nor does it 

require the subject to be near a camera. Various approaches [22][64][65][70][72][86] for 

the classification and recognition of human gait have been studied, but human gait 

identification is still a difficult task. Here, the gait feature vectors extracted from the gait 

signatures of the SOTON database are used for the recognition experiments. Also, an 

enhanced back-propagation algorithm for training multi-layered neural network, based on 
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selective retraining and a dynamic adaptation of learning rate and momentum, is 

employed to recognize the gait. 

5.3.1 Human Gait Identification System 

In general, a biometric system operates either as a verification system or as an 

identification system. A verification system authenticates a person's identity by 

comparing the input biometric characteristic with a person's own biometric data pre-

stored in the system, so the system either rejects or accepts the submitted claim for 

authentication. An identification system recognizes an individual by searching the 

template database for a match [61]. However, a typical human gait identification system 

can be divided into training and recognition modules. The training module is responsible 

for making a trained database to identify a person. During the training phase, the gait 
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Figure 5.4: Block Diagram of Gait Identification System 
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motion is captured by a video camera for acquiring a digital representation of the 

characteristic such as the gait signatures. A feature extractor processes this representation 

to generate a more compact and expressive representation such as gait feature vector. The 

feature vectors for each person are then trained by a pattern recognition algorithm, and 

the trained results will be stored in a gait identification system's database. 

In addition, the recognition module is responsible for identifying the person. During 

the recognition phase, the video camera captures the gait motion of the person to be 

identified, and it converts into the same sort of feature vector as in training. After that, the 

feature vector will be submitted to the recognizer, which automatically computes it 

against the trained database to determine the identity of the individual. Figure 5.4 shows 

the block diagram of our gait identification system. As described in the previous sections, 

the gait signatures are extracted from the image sequences of the SOTON database, and 

the feature vectors are extracted from the motion parameters of the sequence of gait 

signatures. To train and recognize the gait, a multi-layered neural network is used. The 

architecture of a typical biometric system also consists of same components. 

On the other hand, the pattern classifier (or recognizer) is one of the most important 

components of the gait identification system. Many approaches to analyze and recognize 

gait have been used [6][18][19][86]: A:-nearest neighbours, fuzzy clustering, principal 

component analysis (PCA), canonical analysis, neural networks, fractal dynamics, and 

wavelet methods. Recently, Chau [18] [19] has reviewed these approaches for analyzing 

and classifying gait data. He notes that neural network methods facihtate gait analysis 

because of their highly flexible, inductive, non-linear modelling ability, unlike any other 

approaches. The non-linear property of multi-layered neural networks is useful for 

analysis of complicated gait variable relationships which have traditionally been difficult 

to model analytically. Hence, an enhanced back-propagation neural network algorithm is 

employed as a classifier to recognize the gait. 

5.3.2 Enhanced Back-Propagation Algorithm 

The back-propagation algorithm is a gradient descent algorithm in which the MSE (mean 

square error) is employed [107][116] for minimizing the error in weight-error space. Let 

dpk be the value of k-th output node for p-th input pattern, and Opk be the actual output. 
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Then, an RMS (root-mean square) error measure is derived by normalizing the MSE as 

<5-6) 

where P is the number of training patterns, and K denotes the number of nodes in the 

output layer, hi general, Erms is more descriptive than the MSE for comparing the training 

results of the algorithms and thus is more effective in measuring the accuracy of mapping 

and association [60]. Consequently, Ems can be used as an error measure in the back-

propagation algorithm which continues the training processes until it becomes less than 

the predetermined tolerance. 

However, an algorithm that uses E^s and a predetermined tolerance has two serious 

problems. First, even though most input patterns are not responsible for the RMS error, 

we should continue the training processes because of the error caused by some patterns. 

Second, as Erms is used as an error measurement, the degree of learning obtained for each 

pattern is not accurately reflected. One of the solutions to the problem might be to 

calculate the average RMS for all training patterns and the individual RMS for each 

pattern, and then to train specific patterns which have a greater RMS than the average. In 

many cases, the weights incorrectly fit the actual output of specific patterns. Incorrect 

fitting can be detected by identifying the output node k which has the maximum error for 

pattern p, where can be defined as 

^5,4. -Of*!)' (5.7) 

In a conclusion, retraining which reflects the characteristic of each pattern can be 

achieved by detecting incorrect fittings and by using error measurements of -Epjtmai and 

E„„s- This method may not only reduce training time, but also increase recognition rate by 

selective retraining. 

On the other hand, weights in the back-propagation algorithm are recursively 

adjusted with a set of pairs (input values and corresponding output values) until the value 

of the difference between the desired output and the actual output is less than the 

predetermined tolerance. Weight adjustment is determined based on the generalized 

formula 
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(5.8) 

where 77 is the learning rate, and a denotes the momentum term [93][107]. As the 

learning rate becomes larger, the change in the weight becomes larger, and training with a 

larger learning rate might finish earlier. However, in that case convergence is not 

guaranteed, because oscillation can arise. Therefore, the learning rate should be 

maximized for speedy convergence within a range to prevent oscillations [99] [116]. The 

momentum term provides speedy training while preventing oscillation and indicates the 

size of weight adjustment based on previous changes of weight. Oscillation can be 

detected by analyzing error curves, namely, by irregular change in the error measurement 

term Erms- In addition, oscillation should be detected within a predetermined interval 

(number of epochs) to be applicable to dynamic adaptation of learning rate and 

momentum. This algorithm may be effective in training relatively complex patterns by 

detecting oscillations and quickly adapting to them. 

The usefulness of the proposed method is demonstrated in experiments with the XOR 

and Encode problems [74][99]. Table 5.4 shows comparison results of the standard 

algorithm and the proposed algorithm. In the test, after training 100 patterns, investigated 

was average RMS values when the training iterations reach 500, 1000, and 2000 epochs, 

average recognition rate measured after 2000 epochs, and recognition rate for 1000 new 

test patterns. Performance results such as the number of iterations and convergence speed 

are sensitive to the initial weights. Therefore, the same set of initial weights was used for 

comparing the two algorithms, and the performance tests were repeated multiple times for 

preventing statistical biases. As can be seen in the table, the proposed back-propagation 

Table 5.4: Performance Results for Enhanced BP Algorithm 

Neural Nets 
Algorithm 

Task 
Network 
Topology 

Average RMS Average 
Correct 

Gen. 
Test 

Neural Nets 
Algorithm 

Task 
Network 
Topology 500 1000 2000 

Average 
Correct 

Gen. 
Test 

Standard BP 
XOR 2x3x1 0.0174 0.0145 0.0133 99% 92.0% 

Standard BP 
Encode 8x3x8 0.0133 0.0100 0.0093 98% 72.4% 

Enhanced 
BP 

XOR 2x3x1 0.0083 0.0040 0.0024 100% 95.3% Enhanced 
BP Encode 8x3x8 0.0150 0.0138 0.0120 97% 74.3% 



Chapter 5 Recognizing Humans by Their Gait 97 

algorithm demonstrated better performance than the standard algorithm in solving the 

XOR problem which has only a single output node. In solving the Encode problem, 

convergence speed was a little slow, but the degree of generalization was increased. 

Modification of weights through selective retraining reduced computation complexity and 

eventually decreased training time. The back-propagation algorithm has been known to 

be useful in training multi-layered neural networks, and thus has been effectively applied 

to various fields. However, disadvantages of the algorithm are that it requires a large 

computational time for training and possibly converges into a local minimum in the 

training process [99][107][116]. 

5.3.3 Recognition of Human Gait 

An automated pattern recognition system minimally contains an input subsystem that 

accepts sample pattern vectors and a decision-maker subsystem that decides the classes to 

which an input pattern vector belongs [74]. If it also classifies, then it has a training phase 

in which it leams a set of classes of the population from a sample of pattern vectors, 

namely, it partitions the population into the subpopulations that are classes. As described 

Feature Vector Input Layer Hidden Layer Output Layer ID Decoding Identification 

"ID -( DB 

Matching 

Figure 5.5: A Two-Layer Neural Network for Gait Recognition 
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in Section 5.3.1, a multi-layered feed-forward neural network is employed here to train 

and recognize the human gait. Figure 5.5 shows the network architecture used within this 

study. In the figure, X is the input feature vector with N elements, and O is the output 

vector with M elements. The neural network has one hidden layer of sigmoid nodes 

followed by an output layer of linear nodes. To train the network, the enhanced back-

propagation algorithm described in the previous section is used. Also, the nodes of output 

layer are divided into two groups, and information about a maximum output node of each 

group is used to decode the output to an identification code of gait. 

In the experiments, 90 different subjects with seven gait signatures of each subject, a 

total of 630 gait signatures, are used. As described in Section 2.4.1, the subjects are 

categorized into three different groups according to the quality levels of the pre-processed 

body contour data, and each group contains 30 different subjects. To apply the neural 

network, four gait signatures of each of the 30 subjects for each group are used to 

generate the 150 training feature vectors, and the arithmetic means of the other three gait 

signatures of each of the 30 subjects for each group are used to generate the 30 test 

feature vectors as described in Section 5.2.3. Also, the 10 gait features for each subject 

are used as input data, and the numbers of hidden nodes and output nodes are set to 28 

and 13 respectively. To decode the output to identification code, the first digit of the code 

is determined by a maximum output node among the first three output nodes, and the 

second digit of the code is determined by the other output nodes. 

Table 5.5; Recognition Results by Pre-processing Quality 

Body Contour Quality 
(# of Subjects) 

# of Feature Vectors Recognition Rate Body Contour Quality 
(# of Subjects) Training Test Training Phase Recog. Phase 

Class A - Good (30) 150 30 100.0% 90.0% 

Class B - Fair (30) 150 30 100.0% 81394 

Class C - Bad (30) 150 30 100.0% 

To recognize humans by their gait, the neural networks are trained until recognition 

on the training data reached 100 percent, thus the classification rates for each group of the 

training sets were 100%. Table 5.5 shows the recognition results for each group of the 

different quality levels. As can be seen in the table, the better the quality of results of the 
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pre-processing stage, the better the performance of the recognition rate, and the neural 

network approach achieved a recognition rate of up to 90% for 30 subjects. Although the 

recognition rate does not reach 100%, this preliminary study does suggest the possibility 

of this gait biometric. Naturally we seek to improve the recognition rate in future. 

Notwithstanding this, the marker-less gait recognition can clearly handle a small number 

(30) of subjects successfully as shown in other studies, often for an even smaller 

population. By this, these approaches show that people are unique by their walking 

pattern, according with earlier biomechanical suggestions, and buttressing other similar 

results. 

5.4 Results and Conclusions 

Although there are extensive studies on the biomechanics of human gait motion, they 

have been mainly interested in analyzing movements for clinical application and athletic 

performance, and not for recognition purposes. However, one of the most distinctive 

characteristics of human gait is the fact that it is individualistic. As a biometric, human 

gait may be defined as a means of identifying individuals by the way they walk. For a gait 

biometric to be efficacious, the feature selection is a critical task, because improperly 

selected features frequently lead to low classification rate and require complex 

classification algorithms. In addition, there have been several attempts to automatically 

recognize a person's gait or diagnose a walking condition with neural networks. Here, a 

simple A-NN classifier is used in attempt to reveal the genuine discriminatory capability 

of the selected feature sets. The enhanced back-propagation algorithm is also employed 

for recognizing the gait. 

5.4.1 Experim ent Results 

As described in Section 5.2.3 and 5.3.3, the SOTON database, which equals in size the 

largest contemporaneous gait database, is used in the experiments. The database contains 

100 different subjects with seven image sequences of each subject, and the gait signatures 

are extracted from the image sequences of the database as described in Chapter 3. By 

analyzing the sequence of gait signatures, 27 gait features based on motion parameters are 
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considered first, and only 10 important features are selected by the feature selection 

method. The selected feature set includes most of general parameters, the neck and back 

angles, dynamic of the hip angles, the correlation coefficient between the left and right 

knee angles, and the centre coordinates of the hip-knee cyclogram. To apply the /t-NN 

classifier, the selected feature vector shows 84% CCR for 100 subjects, which is better 

performance than original 27 features in discriminatory capability as shown in Table 5.2. 

Table 5.6: Classification and Recognition Results 

# of 
Subjects 

# of Image Sequences # of Feature Vectors Classification Rate (%) # of 
Subjects Training Test Training Test k=l /c=3 /c=5 

30 120 90 150 30 9&7 9 3 3 9&7 

60 240 180 300 60 91.7 8&7 85J 

100 400 300 500 100 84.0 8&0 8 2 4 

30 120 90 150 30 100.0* 90.0* 

•, 4: classification rate (•) and recognition rate(A), both by neural network approach 

On the other hand, the classification and recognition results for each of the subject 

using the A:-NN and enhanced back-propagation algorithms described in the previous 

sections are summarized in Table 5.6. As can be seen in the table, our new approaches 

achieved the classification rates of up to 96.7% for 30 subjects by the A:-NN classifier. To 

apply the enhanced back-propagation algorithm, the classification rate of 100% in 

training phase and the recognition rate of 90% were achieved for 30 subjects. Also, the 

early SOTON data, which contains 4 subjects with four image sequences, is used here. In 

the experiments, three image sequences of each of the four subjects are used as the 

training set, and the fourth from each as the test data. To classify the gait by both the k-

NN and the enhanced back-propagation algorithm, the results show a 100% CCR and 

recognition rate. As such, a marker-less gait recognition system confirms uniqueness - as 

earlier suggested in biomechanical studies, thus confirming validity of the new methods. 

In future, we require more efficient features of gait motion for classifying and 

recognizing the gait activities, and a more sophisticated recognition algorithm. 
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5.4.2 Conclusions 

Gait is the most common human motion, and each person appears to have his or her own 

characteristic gait pattern. To recognize the human gait, three groups of motion 

parameters, a total of 27 parameters, are considered as gait features. These are including 

general (temporal and spatial) parameters, kinematic parameters, and moments. By 

measuring a class separability of the given feature, only 10 important features for 

classifying the gait are selected from these feature sets. To analyze the discriminatory 

capability of the selected features, a Ai-NN algorithm is employed as classifier. Here, 

higher gait classification performances, which are 97% CCR for 30 subjects and 84% 

CCR for 100 subjects, have been achieved on the larger SOTON database. In addition, 

the enhanced back-propagation neural network algorithm is applied to the SOTON 

database, and recognition rate of 90% for 30 subjects is accomplished. The results 

achieved give promising performance and higher recognition rates than those of an earlier 

gait recognition approach. 



Chapter 6 

Conclusions and Future Work 

6.1 Overall Conclusions 

In this thesis, we have presented a new approach to automated marker-less system for 

describing, analyzing and recognizing the periodic gait motion. Essentially, the marker-

less system was achieved by the gait signatures extracted from the image sequences 

involving human walking. To evaluate our approach, the SOTON database, which was 

constructed by using normal DV (Digital Video) camera to acquire image sequences, was 

used in this work. The SOTON database is currently the largest database of its kind, 

consisting of 114 subjects with at least eight image sequences of each subject. In addition, 

the subjects were not supervised, and carried no markers, allowing for relaxed walking 

patterns. From the indoor SOTON database, seven image sequences of each of 100 

different subjects (16 females and 84 males), a total of 700 image sequences, were 

selected, and they have been mainly used for the experiments. 

The gait signature has been extracted by combining a statistical approach and 

topological analysis guided by anatomical knowledge. As a pre-processing stage, 

background subtraction was used to detect moving human body in an image sequence, 

and thresholding and morphological filters were used to exfract the body contour. To 

extract the gait signature, a 2D stick figure model with 8 sticks and 6 joint angles was 

used to represent the human body structure. A stick figure was exfracted from the body 

contour by determining the body points using known anatomical data. The gait signature 

is a sequence of the stick figures during one period of the gait cycle which is detected by 

102 
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the symmetry property of the horizontal centre of mass. To improve the robustness of 

these gait signatures, the grammatical structure of the gait sequence was also analyzed 

with physical constraints. 

The gait signature had a small weakness when one leg occludes the other, and the 

ankle part in the body contour was affected by noise such as caused by shadows and 

colour of shoes at the ground. However, this weakness was somewhat overcome by the 

grammatical analysis of gait sequence, and the kinematic parameters were calculated in 

the gait signature. The trajectories of the joint angles followed with the earlier results of 

medical studies. Also, the periodicity of the gait motion was observed by using a phase-

space portrait, a cyclogram and delay-coordinates, and analyzed by the autocorrelation 

function and Fourier analysis. In addition, the periodic gait motion was efficiently 

modelled by trigonometric-polynomial interpolant functions. Consequently, the gait 

signature appears to be a very effective and well-defined representation method for 

describing the human gait, and includes much information for analyzing the gait motion. 

On the other hand, the gait features based on several kinds of motion parameters 

were extracted by analyzing the sequence of gait signature. By using feature selection 

methods, only 10 important features were selected from the 27 gait features. Then, the k-

NN classifier was used to analyze the discriminatory ability of the selected features. The 

results have produced very good classification rates which were 97% CCR for 30 subjects 

and 84% CCR for 100 subjects. In addition, the enhanced back-propagation algorithm 

was employed for recognizing the gait, and recognition rates of 90% for 30 subjects have 

achieved. Moreover, both classifiers have accomplished classification and recognition 

rates of 100% on the early SOTON data of 4 subjects. Consequently, our new approaches 

gave very promising and comparable analysis and recognition results, on both the smaller 

and the larger databases, to those achieved in other studies. 

Our main contribution in this thesis has been to present a new marker-less method 

for analyzing and recognizing the gait motion. The gait signature based on the human 

body model can describe gait motion in a compact form and can be used in biomechanical 

and medical applications. The usefulness of the proposed methods has been demonstrated 

successfully in experiments. Also, the results for the gait classification and recognition 

show that human gait can indeed be used to recognize people via image sequences. 
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6.2 Future Work 

Automatic gait recognition as a biometric is still a difficult task mainly because of the 

variability of image quality and illumination, complexity of the gait extraction task, 

occlusion and change of the human body, correlations and non-linear relationships of the 

gait motion, and high-dimensionality of gait data. The results presented in this work show 

that the gait signatures appear to have considerable potential in automatic gait recognition 

and marker-less gait analysis for biomechanical and medical applications. However, the 

performance evaluation for extracting the gait signatures has not been sufficiently 

demonstrated in real-world data such as the outdoor SOTON database. Therefore, a more 

complex vision algorithm has not used in pre-processing stage of image sequences. Also, 

a theoretical description of the grammatical structure of gait sequence is not enough to 

improve the gait signature. Furthermore, the kinematic characteristics, which are a very 

important aspect of gait motion, could be used more efficiently to describe the gait 

features. 

In future, we could improve the grammatical structure with the step symmetry of the 

gait sequence by using prior knowledge with uncertainty related to animated gait model 

and the behaviour of the human movements. The animated gait model might be 

developed by the normal range of human movement guided by the gait signatures. Also, 

we require a more efficient feature vector for classifying and recognizing the gait 

activities and humans. The probabilistic characteristics of the gait kinematics such as gait 

dynamics and their entropy could be considered in future as features fi^om the gait 

signature. To identify humans by their gait, a more sophisticated recognition algorithm 

such as hybrid classifier by fusion of multiple classification algorithms should be 

considered. For practical applications, we will need to consider subjects walking at 

different angles to the cameras plane of view. Furthermore, various classification and 

recognition experiments using a real-world database are essential for further performance 

evaluation in these studies. 

In addition, the marker-less approach should be extended to the technique in terms of 

medical and biomechanical application capability. In this thesis, the gait motion was 

mostly analyzed by the statistical methods rather than biomechanical approaches. Also, 
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the anatomical knowledge, which was used to extract the gait signature, is statistical data, 

thus it does not match to all persons. Alternatively, we can directly measure the body 

segments for each person, and then the measurement data can be used to extract a more 

accurate gait signature. The alternative approach can however be achieved by a non-

invasive marker-less system. Also, this approach might be applied to security system such 

as gait authentication system. The databases used in this work were mainly captured 

under controlled environment, so that the simple vision algorithms were employed here. 

However, sophisticated computer vision algorithms are very important components for 

further performance of applications. 

In summary, further work should concentrate both on improvement of the gait 

signatures and on development of the efficient feature vector with evaluation and 

experiments using real-world data to expose gait as a biometric. Also, we seek to extend 

the marker-less technique in practical applications of clinical and biomechanical areas. 
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