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The ability to recognize humans by computer vision is a very important task, with many
potential applications. In this thesis, we present a new method for an automated marker-
less system to describe, analyze and recognize the human gait motion. The automated
system consists of four stages: /) detection and extraction of the moving human body and
its contour from image sequences; if) extraction of human gait signatures based on
topological analysis guided by known anatomical knowledge; iii) description of gait
parameters by statistical analysis of the gait signatures; and 7v) feature extraction and
recognition of human gait. The gait signature is represented by a sequential set of 2D
stick figures during one gait cycle. A grammatical structure with constraints of the gait
sequences has been developed to improve the robustness of the gait signature, together
with a new method of step symmetry. In the gait signature, the motion parameters based
on biomechanical studies are calculated for characterizing the human gait. The inherent
periodicity in gait motion is detected by graphical methods and analyzed by statistical
approaches. Also, the periodic gait motion is modelled by interpolation of trigonometric-
polynomials. In addition, the features based on motion parameters are extracted from the
sequence of gait signatures. Then, a k-nearest neighbour classifier and an enhanced back-
propagation algorithm is employed to recognize the gait. In experiments, the proposed
methods have been successfully demonstrated on the largest available database. The gait
signature is a very effective and well-defined representation method for analyzing the gait
motion. It can be applied to other areas such as biomechanical and clinical applications,
and we have estimated biomechanical parameters on a considerably larger population of
subjects, showing that the estimate of variance by marker based techniques appeared
generous. Moreover, the features extracted from the gait signatures are useful patterns for
identifying human gait. As such, the marker-less approach confirms uniqueness of the
gait as in biomechanical studies. In future, we will concentrate on improving the gait
signature and on developing more efficient features to deal with the human gait
identification with non-studio data.
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Chapter 1

Introduction

1.1 Motivation

Recent interest in computer vision has emerged which deals with the analysis of image
sequences involving humans. This interest is motivated by the various application
domains [39]: wvisual surveillance, clinical analysis, athletic performance analysis,
computer animation, robotics, and biometrics. Moreover, human motion analysis has
many challenging issues, because the highly flexible structure and self-occlusion of the
human body mandates complicated processes for the measurement and analysis of the
motion [71]. The motion of the human body may be defined by the movement of various
body parts such as hand or limb segments, and it is known as a form of non-rigid and
articulated motion [1][17]. Also, one of the most universal and complex of all human
activities is gait motion. Gait is a pattern of human locomotion in which the body moves
step by step in the desired direction [57][119]. It has been studied in medical science,

psychology, and biomechanics for decades.

In addition, each person appears to have his or her own characteristic gait pattern.
There is much evidence from psychophysical experiments [63][109] and medical analysis
[S7][79] that gait patterns have characteristics of uniqueness for each individual. In
computer vision, recognition of humans by their gait has recently become a challenging
area [86][95]. As a biometric [61], human gait is defined as a means of identifying
individuals by the way they walk. Using gait has many advantages over other biometrics

such as fingerprints, iris, and face recognition. Notably, it is available at a distance or at
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Chapter 1 Introduction 2

low resolution, when other biometrics might not be perceivable [83]. It is also a non-
invasive biometric technique, which can verify identity without contact and without a
subject’s cooperation. Although, several biometric techniques have now become
practicable alternatives to traditional identification systems [61], human gait

identification is still a difficult task.

On the other hand, human gait measurement is crucial in clinical applications,
biomechanical analysis, and human identification. At the present, most available
measurement systems are generally based on external markers which are attached to key
anatomical positions of the human body [41] [110]. Accordingly, trajectories of the gait
motion are observed by each marker’s 3D position [66], and the trajectories translate into
kinematic variables such as body movements and joint angles [28][66]. The use of
markers however needs intrusive and expensive specialized hardware and requires
contact with a subject and concerns overt rather than covert use. In computer vision,
marker-less human motion analysis and recognition methods have recently been
investigated. However, many motion analysis systems have been studied for tracking and
extracting objects, though not for recognition purposes [2][39][77]. To enable greater

application capability, a marker-less system is an essential requirement.

To summarize, the ability to recognize humans and their activities through visual gait
measurements is not only a very important task with many potential applications but also
a new study area with just a few studied methods. Here we are primarily considering
using gait as a biometric. However, current approaches for automated gait recognition
have several limitations. Even though higher classification rates have been achieved, a
very small number of subjects were used in most experiments. Also, the essence of most
approaches is based on visual template matching that does not depend on fundamental
properties of the gait model or human body. Thus, our objective in this study is to
develop an automated marker-less system for describing, analyzing, and recognizing the
human gait motion from image sequences. To achieve this, we will need to extract the
gait motion in an image sequence and to model the human body in order to observe how
the body parts move in relation to each other. In addition, we may have to show the

classification capability on the larger database in order to use gait as a biometric.
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1.2 Related Work

There is much evidence to support the notion of using gait to recognize people.
Psychological study [109] suggested that humans have a remarkable ability to recognize
and distinguish between different types of motion. Also, medical studies [57][79][80]
suggested that gait appeared unique to subjects, but involved components that can only be
derived from an overhead view. In recent years, with advances in computing hardware,
gait has become a potential practical biometric, and techniques have been developed [86].
Roughly, these techniques can be divided into model-free (or holistic) and model-based
approaches [2][14]{85]. The model-based approaches [9][23]{81]{121] use models of
human motion such as a stick figure to represent the human body, whereas the model-free
approaches [48][55][72][78][106] only use the shape and/or motion features by the
statistics of the spatial-temporal patterns based on the image sequences. Here we will
review human gait in medical and psychological studies and automatic approaches to

recognize humans by their gait in computer vision.

1.2.1 Human Gait Studies

The potential of gait as a biometric has further been encouraged by the considerable
amount of evidence available, especially in medical and psychological studies. The
studies of biological motion perception in psychology have progressed from establishing
how humans can recognize subjects’ motion, to recognizing people [86][109]. Studies
using moving light displays (MLDs) [63] have indicated that subjects can be recognized
solely by the manner in which they walk, rather than recognition by silhouette shape.
Medical studies also support the notion of gait as a biometric. Indeed, gait can be used to
diagnose a wide variety of medical conditions [92] from muscular disorders to congenital
joint defects. Here we will introduce first the psychological evidence for gait recognition,

followed by a review of medical studies for gait recognition in details.

The earliest psychological study of human perception of gait was performed by
Johansson [63] using MLDs. Such displays were obtained by filming moving subjects
with reflectors attached to their body joints, and filmed them walking in almost dark

conditions. Thus, a moving light display contains only information about specific points
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of an object undergoing motion. However, Johansson’s initial experiments showed that
humans are remarkably good at perceiving the human motion from MLDs. Given
Johansson’s early success, Cutting and Kozlowski [25] showed human perception of gait
and their ability to recognize individuals using a dynamic light display of the walking
pattern without familiarity cues. They used six subjects filmed walking normal to the
plane view of camera. When asked how they recognized subjects, humans tended to
mention as clues certain critical features of the displays, such as the speed, bounciness,

rhythm of the walker, amount of arm swing or the length of steps.

In another study by Kozlowski and Cutting [68], they examined recognizing the
gender of walker from MLDs involving 3 male subjects and 3 female subjects all about
the same height. Their results showed that humans were able to correctly identify gender
using full body joint markers at 63% correct on average, which is just better than chance
(50%). In a later study, Mather and Murdoch [75] showed that frontal or oblique views
are much more effective than a side view for gender discrimination, and emphasized that
male subjects trend to swing their shoulders more while female subjects tend to swing
their hips, the results improved to an accuracy of 79%. In a more recent study by
Stevenage [109], she confirmed that gait could be used as a reliable means of recognizing
individuals, and can learn their gait for recognition purposes from their video imagery.
She also observed that even under adverse conditions, humans can still perceive gait as a

cue to identity.

On the other hand, medical studies have been aimed to classify the components of
gait for the treatment of pathologically abnormal gait. Murray [79] analyzed the walking
patterns of sixty pathologically normal men aged between 20 to 65 years old. The data
collection system used markers to be attached to subject. This form of data collection is
typical within the medical field, and although practical in that domain, it is not suitable
for gait recognition. Each subject was filmed walking for a repeated number of trials.
Also, twenty simultaneous gait components were measured, and a mirror was used to note
aspects of the overhead view and this was recorded onto film. Murray observed that each
movement pattern was strikingly similar for repeated trials of the same subject. They also
suggest that if all gait movements are considered then gait is unique. This makes gait an

ideal candidate for use as a biometric.
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1.2.2 Automatic Gait Recognition

There are two major approaches to gait recognition in computer vision. The first is
model-based where the subject’s movement is described by a body model. In this
approach, a body model is fitted to the human in every frame of the walking sequence,
and kinematic parameters are generally measured on the body model as the model
deforms over the walking sequence [23][64]. This approach was used by Niyogi [87]
where a walking subject was detected by looking at an XT-slice (where X is a slice along
the x-axis through a stacked image sequence and T is time). The information obtained
from multiple XT-slices was then used to create a stick model of the subject for
recognition. Bhanu [9] also adopted a body model based on the geometric representation
of each part of the human body. The approach estimates 3D human walking parameters
by performing a least squares fit of the 3D model to the 2D silhouette. The main
advantage of this approach is that it does not rely on subjects walking normal to the plane

view of camera.

In addition, Nash [81] used a simple pendulum model as a basis for searching a scene
to locate a moving person using the Velocity Hough Transform (VHT). Cunado [23] built
on this by using the VHT with double pendulum model to characterize the hip and thigh
motion within a gait cycle. The gait features were derived from the Fourier weighted
magnitude spectrum. The approach achieved a recognition rate of 90% on a database of
10 subjects. The idea of Cunado was later extended by Yam [121] to include the motion
of the lower leg. The gait was modelled as a dynamic coupled oscillator that can be
applied to database of running and walking gait sequences. Leg motion during walking
and running was extracted using temporal template matching with a model defined by
forced coupled oscillators. Fourier analysis of the variations in the motion of thigh and
lower leg was used to generate gait features. The approach achieved recognition rates of

over 90% on a database of 25 subjects with five image sequences for each subject.

An alternative method is to apply a model-free (or holistic) description to the set of
images. Model-free approaches used features based on the motion or shape of subjects.
This approach was used by Little and Boyd [72] where the motion of a moving human
was described in order to recognize people by variation in the characteristics of the

motion description. Murase [78] used eigenvectors for gait recognition where the
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silhouettes of subjects were projected into the eigenspace for eignevalue decomposition.
The eigenspace approach was extended by Huang [54][55] to use a combination of
canonical space transformation, based on the canonical analysis, with the eigenspace
transform. Another study also used eigen analysis to characterize gait. BenAbdelkader [7]
proposed an approach based on self-similarity plots, and principal component analysis
(PCA) is used to reduce the dimensionality of the feature space. A recognition rate of
72% was achieved on a database of 25 subjects with two image sequences for each

subject.

Recently, Shutler [106] used the Zemike velocity moments to describe gait motion
for recognition. The features were selected using an ANOVA technique, and a
recognition rate of 100% was achieved on a database of 6 subjects with seven sequences
for each subject. The approach to gait recognition by Foster [35] involves the area masks
to measure dynamics of area change within specific regions of the image. As it is a
measure of area, not only is it fast in implementation, but it also allows for specificity to
gait by choice of the masks used. Also, Hayfron-Acquah [48] has used symmetry of
human motion using generalized symmetry operators. This operator locates features by
their symmetrical properties rather than relying on the borders of a shape or general
appearance. The approach achieved high recognition rates of over 90% on various
databases including 100 subjects. In addition, the potential of baseline approach matching
silhouette [97], data derivation of stride pattern [64], key frame analysis for sequence
matching [22], and ellipsoidal fits [70] have been used to generate gait features for

recognition.

The model-based approaches and model-free approaches have their own advantages.
Some of the model-free approaches have improved capability over application problems
such as noise, because they use more subject information by using the complete silhouette
of subject and can be viewpoint invariant. However, one of the main advantages of the
model-based approaches is their handling of occlusion, which is of importance in gait as
the human body is self-occluding when walking. Also, they can be used to other
applications such as clinical analysis. Nevertheless, the use of a silhouette is clothing

invariant, but this is more a recognition issue.
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1.3 Contributions

Several new methods for describing, analyzing and recognizing the human gait motion
are developed in this study. The major contributions of this thesis will be made in the

following aspects:

e We propose a new method for extracting the gait signature based on topological
analysis guided by anatomical knowledge. The gait signature is a sequential set of
the 2D stick figures during one gait cycle. It appears to be a very effective and
well-defined method for analyzing human gait motion. The gait signature can be

used to estimate the gait parameters in biomechanical or medical applications.

o We propose a new method for interpreting the structure of the gait sequence by
using grammatical rules with physical constrains. As a constraint, step symmetry is
newly defined by the relationship of the joint angles. The structure of human gait
motion is also described by regular grammar. These methods are used to improve

the robustness of the gait signatures, especially at crossover of the legs.

e We propose a new method for modelling the periodic gait motion via interpolation
by trigonometric polynomials. The pattern of rotation angles around the joints is the
most important kinematic parameter and defined as a gait time series. The gait time
series can be characterized as having a periodic component. This method is

efficient for describing the periodic motion and to handle poor quality data.

o We propose a new method for automated gait recognition by a neural network
using the features based on motion parameters. The motion parameters can be
extracted by analyzing the sequence of gait signatures. A A-NN classifier will be
used to reveal the discriminatory capability of the feature vector confirming its
validity. As a biometric, an enhanced back-propagation algorithm will be employed

to recognize the gait.

In addition, early experiments from other approaches were often carried out on small
number of subjects, usually up to 10 persons. In this study, the usefulness of the proposed
methods will be demonstrated using a much larger database which is currently the largest

gait database of its kind consisting of over 100 different subjects.
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1.4 Thesis Overview

The thesis is divided into six chapters. The remaining chapters will be organized as

follows (also see Figure 1.1):
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Figure 1.1: System Architecture Used Within this Thesis
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e Chapter 2 presents a pre-processing method of image sequence for extracting the
moving human body and its body contour. The various motion capture methods and
human body models are reviewed, and our gait database (which is called the
SOTON database) based on image sequences is described. The SOTON database is
currently the largest gait database filmed under laboratory conditions. Here, the
moving human body in an image sequence is detected by a background subtraction

method, and the body contour is extracted by thresholding and morphology.

e Chapter 3 describes a new extraction method of the human gait signature by
combining a statistical approach and motion tracking with topological analysis
guided by anatomical knowledge. The period of the gait cycle is detected by
analyzing symmetry of the horizontal centre of mass, and a 2D stick figure is used
to represent the body model in a gait signature. To improve robustness of the gait
signatures, the structure of the gait sequences is interpreted by grammatical rules of

human walking, with physical constraints such as step symmetry.

e Chapter 4 presents the motion analysis methods for detecting and describing the
periodic gait motion. The motion parameters of gait signatures are calculated for
characterizing the human gait. The periodicity is detected by the phase-space
portrait and the cyclogram, and analyzed by using an autocorrelation function and
by Fourier analysis. Also, the gait motion around the joint angles is modelled by
interpolation of trigonometric-polynomials. A delay-coordinate system is employed
to analyze the dynamics of gait motion, and statistical moments are also used to
describe the scale of the gait motion. In experiments, the kinematic parameters are

measured from a much large number of subjects by non-invasive technique.

¢ Chapter 5 provides the gait features based on statistical motion analysis and an
automatic gait recognition system. The features are extracted by analyzing the
motion sequence of gait signatures and selected by statistical analysis. A simple k-
nearest neighbour classifier is used to derive introductory classification results. As
a biometric, automated gait identification system based on an enhanced back-
propagation algorithm is described for recognizing the human gait. The system is
successfully tested with the SOTON database, which contains 100 different

subjects with seven image sequences of each subject.
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Finally conclusions and future work of this study are discussed in Chapter 6.

1.5 List of Publications

Six papers relating to this study have been published. They are:

Extracting Gait Signatures based on Anatomical Knowledge, BMVA Symposium on
Advancing Biometric Technologies, http://www.bmva.ac.uk/meetings/meetings/02/

6March02/soton2.pdf, London, UK, March 2002.

Extraction and Description of Moving Human Body by Periodic Motion Analysis,
in Proceedings of the ISCA 17" International Conference on Computers and Their
Applications, pp.110-113, San Francisco, USA, April 2002.

Extracting Human Gait Signatures by Body Segment Properties, in Proceedings of
the 5" IEEE Southwest Symposium on Image Analysis and Interpretation, pp.35-39,
Santa Fe, USA, April 2002.

Model-Driven Statistical Analysis of Human Gait Motion, in Proceeding of the
IEEE 2002 International Conference on Image Processing, pp.285-288, Rochester,
USA, September 2002.

On Laboratory Gait Analysis via Computer Vision, in Proceedings of AISB03
Symposium on Biological-Inspired Machine Vision, Theory and Application,
pp-109-113, University of Wales, Aberystwyth, UK, April 2003.

Markerless Human Gait Analysis via Image Sequences, in Proceedings of the
International Society of Biomechanics XIX" Congress, Dunedin, New Zealand, July
2003.

In addition, two awards are associated with the last paper:

i) NAC/Miyashita Award for Best Paper on Film/VTR Analysis
ii) NDI Student Award

both at the International Society of Biomechanics XIX™ Congress, July 2003.
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Chapter 2

Video-Based Gait Silhouette Data

2.1 Representing the Human Motion

The human body’s motion may be defined by the movement of various body segments
such as the hand or limb [2][17]. A wide range of methodologies and systems are
available for human motion capture and analysis in laboratory environments, and
commercially available systems are usually based on markers which are attached to the
human body [41][66][110]. Using markers can acquire precise motion information, but
requires specialized hardware and subject contact. Therefore, with advances in computing
power, marker-less methods have recently been investigated in computer vision, and
many human body models have also been developed to describe the human movement
from a non-invasive video sequence [77]. In computer vision, the ultimate goal of human
motion analysis is to recognize the human body and its activities. However, most of the
current body models are mainly developed for tracking humans, and hence the human

body and its motion model should be considered with a view to recognition purposes.

2.1.1 Human Motion Capture

Human motion capture is the process of recording human movement and translating it
into usable mathematical terms by tracking position relative to a fixed point in the
physical space over time [91][110]. In general, a motion capture system consists of
subsystems for sensing and processing, respectively. The operational complexity of these

subsystems is typically related to the use of active (marker-based) or passive (marker-

11
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less) sensing [77]. In the sensing stage, a group of sensors simultaneously send position
and orientation data to a processing subsystem (or computer), and the processing
subsystem can represent the observed movement in the form of data-files which describe
the three-dimensional (3D) trajectories of the sensors [66]. Accordingly, the human’s
movements can be recorded by sensors, and the recorded data can be played back by
mapping the motion onto a computer model. Several methods have been used
successfully to capture human motion. Some methods use cameras that digitize different
views of the movement, which are then used to determine the position and orientation of
key points or normally reflective markers. Others use magnetic fields or ultrasound to
track a group of sensors. Also, mechanical systems based on linked structures use

potentiometers to measure the angle of a joint [91][110].

Marker-based technology is the most commonly used motion capture method in
commercially available systems, due to accuracy in representation. Figure 2.1 shows
examples of motion capture methods based on markers. An electrogoniometer is a device
for converting continuous measurements of joint motion into an electrical signal, and the
measured output is usually plotted as a graph of joint angle against time [110][117].
Magnetic motion capture uses 6 to 12 or more sensors to measure the magnetic field
generated by a transmitter source. The sensors and source are connected to an electronic
control unit that is networked with a host computer, and can determine their position and
orientation within the space [11]. Also, optical motion capture uses reflective markers (or

pulsed-LEDs) attached to the body and a number of special cameras to track the 3D

(a) Electrogoniometer  (b) Magnetic-Sensor (c) Optical-Marker (d) Electromechanical

Figure 2.1: Marker-based Motion Capture Methods
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location of the markers [41]. The movement of the body segments from the marker data
can be represented as a body skeleton with 3D XYZ position [49]. More recently, a
mechanical motion capture method uses an exoskeleton incorporating electromechanical
sensors for measuring joint angles. The joint angles are then tracked as a human figure

motion whilst wearing the exoskeleton [41][91].

Alternatively, marker-less human motion capture can be achieved by a vision-based
method in complex video sequences. This method normally does not require any markers
or specialized hardware attached to the human body. The only input needed is an ordinary
video recording of the subject [12]. Therefore, the vision-based method is more
accessible, more cost-effective, less encumbering of the humans, and works in a wider
variety of environments than current marker-based capture methods [41]. The vision-
based method however involves segmenting the body parts, tracking the movement of
joints, and recovering the body structure in an image sequence [2]. Also, this low-level
processing requires complicated vision computing on a high-performance computer
system. Recently, a number of methods concerning the motion capture and analysis have
been proposed in the computer graphics and vision studies [11][12][77]. To analyze the
human motion, a variety of human body models using 3D structure of rigid segments,
joints, and constraints have developed [2]{39][77][115]. The human body model
determined by a vision based approach is a very important component for recovering and

interpreting the human movement from a non-invasive image sequence.

2.1.2 Modelling Human Body Motion

Many studies have considered extracting and tracking the human body’s motion, though
rarely for recognition. The human body motion is usually represented by different body
models. The selection of an appropriate body model is important to efficiently recognize
human shapes from an image and analyze human motion properly [83]. The human body
consists of several rigid parts connected by the joints, but the motion of a full human-
body is non-rigid and articulated [1][5]. Human body models are basically based on body
segments and joints, because they can be recovered by the segments and joints. A variety
of body models, such as stick figures, 2D contours, and volumetric models have been

used to represent the human body and its motion. Figure 2.2 shows examples of these.
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(a) Stick Figure Model (b) 2D Contour Model (c) Volumetric Model

Figure 2.2: Human Body Models [1][71]

Stick figure models consist of line segments that are connected at joints to represent
the human body. The stick figure is obtained by various methods such as the statistical
means of the output of the median axis or distance transforms [59]. Lee and Chen’s
model [21][69] uses 14 joints and 17 segments for the head, torso, hip, arms, and legs.
The length of each segment and the coordinates of the joints are the model parameters
which are used for tracking. This model is based on the observation that human motion is
essentially the movement of the human skeleton brought about by the attached muscles.
2D contour models are another method to describe the human body. This representation is
directly relevant to the human body projection in the image plane [115]. Leung and
Yang’s model [71] consists of five ribbons and a body torso, various joint and mid points,
and a number of structural constraints, such as support. The 2D contour model was used

to guide the labelling of the image data.

~ In addition to the basic 2D model, view-based knowledge is defined for a number of
generic human postures, to aid the interpretation process. Volumetric models [51][100]
are intended to better represent the complexity of the human body, but require more
parameters for computation. Rohr’s model [100] uses 14 elliptical cylinders to represent
the human body as 3D volumes, and the origin of the coordinate system is fixed at the
centre of torso. Generalized cylinders, i.e. cylinders with an elliptical cross-section of
constant size and shape, are simplified examples of generalized cones. This model can be
as refined as necessary, by using a collection of component cylinders representing the

different body segments, giving more detailed information about the spatial organization
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of the human shape [15]. However, the volumetric model is restricted to impractical

assumptions of simplicity regardless of the body kinematics constraints [115].

On the other hand, human body motion can be described in terms of kinetics or
kinematics. Kinetic methods involve the study of the forces and torques which are
involved in generating movement [1]. These models are computationally expensive, and
specifying the forces and torques can be difficult. In contrast to kinetic methods,
kinematic methods concern the geometry of the object, such as its linear and angular
positions, orientation, and deformation. If movement is explicitly given by time-
dependent functions then it is very easy to simulate motion. Most of the model-based
tracking approaches in computer vision are concermed with studies of the kinematic
patterns [1][100]. Also, human body motion in kinematic methods is usually

characterized by joint angles, as extensively studied in medical studies [80].

The movement of human walking can be modelled by using ideas from human
motion studies [83]. Hogg [51] and Rohr [100] use flexion and extension curves for the
hip, knee, shoulder and elbow joints in their walking person models. Joint angles are also
used by Bharatkumar et al [10] to represent the walking cycle of the lower limbs in
human walking and compare it with the kinematic model. Another approach to modelling
the body’s motion is to use a sequence of stick figures, called a key frame sequence [3],
to model rough movements of the body. This key frame sequence of stick figures is used
to indicate the approximate order of the motion and spatial relationships between the
body parts. Hence, each figure represents a different phase of the body movement, and

the key frame sequence is determined in advance and referred to in the prediction process.

The human body motion is well represented by its joints or skeletal structure (the
“stick figure”) since it reflects anatomical features of the human [77]. Also, the motion of
joints gives the key to motion estimation and analysis. Namely, the stick figure model is
closely related to the observation that human motion is essentially the movement of the
human skeleton, thus the stick figure can be described as a collection of body segments
and joint angles with various degrees of freedom [1][39]. Here, we consider a simplified
stick figure model for representing the body structure and describing the body motion.
The stick figure model can effectively represent structures and kinematics of the human

body motion.
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2.2 Human Gait Databases

A human gait database is one of the most important components for performance
evaluation in the gait analysis and biometric systems. The construction of the gait
database can require much time and resources. In clinical or biomechanical applications,
the gait data have been collected by using marker-based motion capture systems in the
form of data-files, but the gait databases in vision applications are usually constructed by
using video camera systems to derive image sequences. The image sequences require a
large amount of storage and computational time for processing and analysis. Therefore,
early gait databases were collected under very limited conditions and consisted of a
relatively small number of subjects. Here we describe the early gait data sets and the
recently developed large databases. The main sources of the earliest databases were
University of Southampton (SOTON), hereafter referred to as the early SOTON data and
University of California at San Diego (UCSD), and the new SOTON database is mainly
used in this study.

2.2.1 Early Gait Data Sets

Early approaches to automatic recognition by gait have been evaluated on small data sets,

with many researches reporting experimentations using their own data, because there are

t+1 t+4 t+7

t+10
t+13 t+16 t+19 122

1125 t+28 t+31 t+34

Figure 2.3: Sample Image Sequence from the UCSD Data
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as yet no available large databases for vision based systems. There are two available and
well-known small data sets: the UCSD data and the early SOTON data. The UCSD data
was collected by the Visual Computing Group, University of California at San Diego [72],
and the early SOTON data was collected by the ISIS (Image, Speech, and Intelligent
Systems) Research Group, University of Southampton. The UCSD data was taken
outdoors without lighting control and with complex background, conversely the early
SOTON data was taken indoors with lighting control and a plain background. The UCSD
data was acquired at 30 fps (frames per second) with 320x160 greyscale pixels, and the
data set consists of 6 subjects and 7 sequences for each. The early SOTON data was
acquired at 25 fps with 384x288 greyscale pixels, and data set contains 4 subjects and 4
sequences for each. Sample sequences of the original images in the UCSD data are shown

Figure 2.3, and the early SOTON data are shown in Figure 2.4.

Those two data sets have been used in most early studies for automatic gait

recognition, and several different publications have shown close to 100 percent

t+1 t+4 t+10

t+13 t+16 t+19 t+22

t+25 t+28 t+31 t+34

Figure 2.4: Sample Image Sequence from the early SOTON Data
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classification capability [23][54][72]. It has been very encouraging to note that similar
levels of classification can be achieved on the much larger data sets. As gait is a
behavioural biometric, there is much potential for within subject variation such as
footwear, clothing and apparel. None of these factors were considered in the early data
sets [85]. Application factors concern deployment via computer vision though none of the
early data sets allowed facility for such consideration, save for striped trousers in an early
SOTON data set (aiming to allow for assessment of validity of a model-based approach).
The new SOTON database sought to include more subjects in order to allow for an
estimate of inter-subject variation, together with a limited estimate of intra-subject

variation thus allowing for better assessment of the potential for gait as a biometric [86].

2.2.2 Large Databases: SOTON Database

Several larger gait databases have recently been developed within the DARPA Human ID
at a Distance program [95]. This program includes: University of Maryland [65], Georgia
Institute of Technology (GaTech) [64], Carnegie Mellon University (CMU) [45],
Massachusetts Institute of Technology (MIT) [70], and University of Southampton [105].
Each site has developed a database and has evaluated techniques on their own database
and on other databases. The main difference in database design are: CMU consider multi-
view indoor treadmill data; Maryland’s footage simulates derivation by security
surveillance cameras; GaTech couple indoor video data with that derived by a motion

capture system; and Southampton concerns multi-view indoor and outdoor data on

Green Iiackdrop
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& Lighting ---»: Camera View

(a) Front View (b) Layout and Views (c) Far View

Figure 2.5: Indoor Walking Track used in the SOTON Database
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treadmill, and on tracks [85].

The SOTON database [105] by the ISIS Research Group captures the subjects using
good quality progressive scan and interlaced DV (digital video) camcorders. The
progressive scan technology provides high-resolution imagery whilst security video often
uses interlaced data. In order to provide an approximation to ground truth and to acquire
imagery for application analysis, the subjects were filmed indoors (under controlled
lighting with a special background) and outdoors (without lighting or background
control), respectively. The first form of indoor data is a subject constantly walking on a
treadmill, and the second form is subject walking along a specially designed track shown
in Figure 2.5. As can be seen in the figure, the track was prepared with chroma-key cloth
(bright green, as this is an unusual clothes’ colour), and the background was illuminated
by photoflood lamps. The same camera view and chroma-key arrangements were used for

the treadmill, but subjects were highlighted with diffuse spotlights. The outdoor data used

(c) Outdoor Track Data

Figure 2.6: Sample Images from the SOTON Database
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a similar track layout with a greater distance between subject and camera. The
background of the outdoor data contained a selection of objects such as foliage,
pedestrian and vehicular traffic, buildings as well as occlusion by bicycles, cars and other

subjects.

In addition, each subject was filmed walking in both directions, and the database
contains more than 100 subjects. All subjects in the database are filmed in fronto-parallel
and obliquely viewed imagery (allowing orientation independent analysis), and there is
ancillary data which includes subject specific information, camera setups and extraction
parameters [105]. Each subject has at least four image sequences and each image
sequence contains at least one gait cycle, together with background and other supporting
data. Also, an image sequence contains only a single subject walking at normal speed and
was acquired at 25 fps with 720x576 colour pixels. The imagery for the SOTON database
was completed with a high-resolution still image of each subject in frontal and profile
view, allowing for comparison with face recognition and good estimates of body shape

and size. Figure 2.6 shows the sample images from the SOTON gait database.

2.2.3 Analyzing the Experimental Database

The most recent version of the SOTON database contains 114 different subjects, and each
subject was filmed indoors and outdoors. In addition, the SOTON data were mostly
acquired from young and healthy university students during the summer season.
However, the SOTON indoor track database is mainly used as an experimental database
in this study due to time constraints, and the early SOTON and UCSD data sets are used
in the experiment for detecting a human body in greyscale images (see Section 2.3.1). In
addition, the early SOTON data is also used in the classification experiment for
comparing with other studies. For all experiments, seven image sequences of each of 100
different subjects (16 females and 84 males) are selected from the indoor track database.
This selection is based on number of sequences of each subject, because some subjects do
not have enough image sequences. From now on, we will refer to this large experimental
database as the SOTON database. Table 2.1 shows summary of the subjects’ information,
which is obtained from the SOTON database. In the table, the height and weight data

were as stated by each subject without measurement.
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Table 2.1: Summary of the Subject Information from the SOTON Database

Gender Age Level #. Of Subject | Ave. Height (Cm) | Ave. Weight (Kg)
Adults 82 176.8 + 6.7 70.2+8.0
Male Children 2 1250+ 7.1 43.0+5.7
All 84 1755+ 104 69.9 £ 8.4
Adults 16 1618+ 6.9 56.4+9.6

Female Children 0 - -

All 16 161.8+ 6.9 564+ 9.6
Total 100 1733+ 11.1 67.8+ 9.9

On the other hand, the physical dimension in an image plane can be estimated by

analyzing the geometric aspect of image formation in camera models. The most common

geometric model is the perspective or pinhole model [34]{113]. Also, the 2D intensity

image is the result of a perspective projection of the 3D scene. In practice, the real-world

and camera coordinate systems are related by a set of physical parameters, such as the

focal length of the lens, the size of the pixels, the position of the principal point, and the

position and orientation of the camera [113]. However, the set of physical (geometry)

parameters is not included with the SOTON database. Therefore, neglecting any

geometric distortions, the physical dimension can be simply approximated by linking the

position of scene points with that of their corresponding image points.
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Figure 2.7: Physical Mapping between Image Plane and Walking Track
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Figure 2.7 shows the physical mapping between the image plane of Figure 2.6(b) and
the walking track shown in Figure 2.5(b). As can be seen in the figure, the DV camera is
located at the centre position normal to the subject walking track, and the physical
dimensions WpxHp are roughly covered by the image plane WixH; of camera view.
Accordingly, one pixel of the image plane can be approximated by the physical
dimension 0.5¢mx0.5¢m. By using this relation, we can estimate the stride and height
parameters of gait motion. In future, we aim to calibrate the camera so that recovered
tmage positions can be translated to physical laboratory position. The relative dynamics

remain unchanged.

2.3 Extracting the Body Silhouette

The detection of moving objects from image sequences is a fundamental and important
problem in many vision systems. There are two basic methods for detecting moving
objects: temporal differencing and background subtraction. Temporal differencing [67]
can adapt to dynamic environments, but cannot robustly extract all relevant object pixels.
Thus, the method has been mainly used for tracking moving objects. Conversely,
background subtraction [47][52] extracts the most complete representation of an object,
but this method is very sensitive to dynamic scene changes due to illumination [37].
However, background subtraction has been successfully applied to many vision systems
as a pre-processing phase for object detection and extraction in an image sequence
[47][52][82][120]. Here, the moving human body is detected by background subtraction
methods. The body region is then determined by analyzing histogram projection profiles,
and its location is verified by prior knowledge such as size and shape. Also, thresholding

and morphology is employed to extract the body contour of a detected human body.

2.3.1 Detecting a Body in Greyscale Images

To detect a moving object in an image sequence, the region of interest is typically
obtained by background subtraction. The basic idea of background subtraction is to
subtract the object image from a reference image, which is acquired from a static

background during a period of time. In mathematical terms, a background image Iy is
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denoted by Iy = {is,, ..., is,} and the current object image Io is denoted by Ip = {i,,, ...,
io,ny Where n is the number of pixels in an image. Then, the difference image Ip = {iy, ...,
ign} 1s defined as Ip = [Iy — Io|. In the ideal case, the difference image Iy, is described by

following characteristic:

k=1"n (2.1)

- =i | i (pac N)
& 0 otherwise

where py is position of a pixel, and N denotes an object region. Though, many background
subtraction methods have been proposed, most are very sensitive to both global and local

illumination changes such as shadows and highlights [47][52][120].

To detect the human body in an image of a real scene, background subtraction using
an edge difference image is employed to handle changes in illumination. The background
image is modelled by taking the median of an image sequence that belongs to the
background [84]. The Sobel operator is then applied to each image to obtain the edge
image. After that, the edge difference image between the background and the object edge
image is obtained by the background subtraction. That is, let /,,(x, ) and L,.(x, y) be the
background and object edge images with coordinates (x, y) respectively. Then, the edge

(a) Greyscale Image (Ig)

[

(e) Sobel Edge Image (/,.) (f) Noise Filtered 7.,

(d) Greyscale Image (Io)

Figure 2.8: Edge Difference Image
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difference image I4(x, y) is given by

[ed(xay)z Ibe(x’y)_Iae(x3y)|' (22)

Figure 2.8(c) shows the edge difference image obtained by the Equation 2.2. As can be
seen in Figure 2.8, the edge difference image is extracted from real scene images with
384x288 greyscale pixels acquired from an indoor scene of the early SOTON data. In
Figure 2.8(c), the edge difference image still has many small isolated areas that are
caused by change in illumination. These isolated areas require a more sophisticated

algorithm for object detection and segmentation.

By considering these isolated areas as noise, a 3%3 mask operation can remove the

noise areas by suppressing small areas of fixed size as

1 1
g(x, ). 2if Tx= =k D
g(x,y)= (kzl,zl |"’k’( ) (2.3)
0 otherwise

where f{x, y) is set to I if it is greater than a threshold value 7, otherwise it is set to 0.
Figure 2.9(a) shows the distribution for greyscale of the edge difference image of Figure
2.8(c), and Figure 2.9(b) is a result of performing the mask operation of Equation 2.3. As
can be seen in Figures 2.8(f) and 2.9(b), the mask operation can remove most small

isolated areas.

(a) Edge Difference Image (b) Noise Filtered 7,4 (c) Noise Removed from (a)

Figure 2.9: Distribution for Greyscale of the Edge Difference Image

Also, histogram projection profiles are analyzed to estimate the position of a human
body in the edge difference image. The horizontal projection H(x) and vertical projection

V(y) in the nxm image are given by the Equations 2.4 and 2.5
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(a) Preliminary Line Segments  (b) Candidate Body Regions (c) Body Detection

Figure 2.10: Block Segmentation for Human Body Detection

Hx)=Y 0(x,y) 2.4)
V()= 0(x,) @.5)

where O(x, y) is a pixel value of image with coordinate (x, y). For block segmentation,
preliminary lines are defined by a vertical projection profile. After that, to decide if
multiple object lines exist in a preliminary line, a horizontal projection profile for each
preliminary line is generated. Figure 2.10(a) shows the preliminary segmentation result,
and Figure 2.10(b) shows the several candidate body regions that are segmented by
connected components included in the horizontal projection on the preliminary lines
which means H(x)UV(y). Figure 2.10(c) shows the detected human body region that is

verified by prior knowledge such as size and shape.

In addition, the algorithm for block segmentation and body detection adopts a
clustering procedure done from the single object to the final cluster by merging small
clusters. That is, the two closest regions among all possible pairs of regions are found by

the distance between any two points in two regions P and Q, as evaluated by

(a) Edge Difference Image (b) Fragmented Body Region (c) Merging the Clusters

Figure 2.11: Block Segmentation by Merging the Clusters
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Dy, = min (d (2.6)

pePge0” P q)

where p and g are elements of regions, and d,, is the distance between them. The two
regions are merged, if Dpg is less than pre-determined value 7,. Region size does not
affect the distances in this method, and block segmentation is completed by repeated
clustering of two closest clusters. Figure 2.11 shows the block segmentation by merging
small fragments in the UCSD data. This method can lead to improvement in object

segmentation in a low-quality image [114].

2.3.2 Detecting a Body in Colour Images

On the SOTON database, the chroma-key laboratory was used to allow controlled
lighting conditions for the indoor data. Due to the nature of both the capture and colour
data of the gait database, the use of a colour specific extraction was possible. With the
SOTON database, bright green was used as the backdrop colour, and video cameras are
generally more sensitive in the green channel. Thus, human body extraction from the
image sequences can be easily achieved through background subtraction [105]. The
background subtraction based on colour or intensity is a commonly used technique to
promptly identify foreground elements. Typical problems in background subtraction
include foreground objects with similar colours to the background, and shadows or other
variable lighting conditions [42]. Especially, background luminance variations are mainly
due to noise and illumination change in indoor sequences. Here, we describe a human
body segmentation method based on background estimation using colour information in

modified HLS space.

In computer vision and graphics, many different colour models exist, and each model
uses its own 3D coordinate system to identify uniquely individual colours [98]. The RGB
(Red, Green, and Blue) space is the most commonly used colour space, because it is
directly supported by most colour displays and scanners. The HSV (Hue, Saturation, and
Value) and HLS (Hue, Lightness, and Saturation) colour models are transformations of
RGB space that can describe colours in terms more natural to an artist [33]. To estimate
the background of a gait image, the H component is defined as hue value in HSV space,

and L and S components are defined as Lightness and Saturation values in modified HLS
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space. The conversion method from RGB colour space to modified HLS space is given by

m =min(g,b)

—1 (undefined) ifr=m
60x(b—r)/(m—r) if g=m

H=
60x(r—g)/(m—r) if b=m
H +360 if H<O0
2.7
L=(m+r)/2
0 if m=r

S={(m-r)/(m+r)  if L<0S5

(m—r)/(2—m—r) otherwise
where 7, g, and b are defined as normalized RGB ranges from 0 to /. The modified HLS
space is very similar to original HLS space but slightly more robust to noise.

In the chroma-key laboratory, subject is captured against a uniform background. To
estimate the background, RGB colour space is converted to HSV space, and hue
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Figure 2.12: Colour Components for Background Estimation
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component of gait images is shown in Figures 2.12(b) and (e). As can be seen in the
figures, hue component in the background is very uniform, thus the mode of hue

component is simply calculated by

¢ =mode(h, ) (2.8)

xem,yen

where h,,, is the hue value at coordinate (x, y) in mxn image region. In this data, HSV
space offered a better estimation of hue component i. The RGB colour space is also
converted to the modified HLS space. The range of lightness and saturation components

in the HLS space is defined as
y =[oL(@), oS@)] 2.9)

where o is a variance of each colour component. The background feature () can be
calculated by colour clustering method [20] using lightness (L) and saturation (S)
components. Figures 2.12(c) and (f) show the features of background and object images

in rectangular coordinate system.

Now, the background features can be removed by using Equations 2.8 and 2.9,

namely, the pixel values in HLS space can be re-defined by background estimation as

0 f(p wOAND sSYW)

2.10
D; otherwise @10

H,L.S= {
where py y is H component of pixel k£ in HSV space, and py 15 is L and S components of
pixel k in modified HLS space. Figures 2.13(a) and (b) show the results of background

components subtraction by using Equation 2.10. As can be seen in the figures, the object

(a) Background Image (b) Object Image (c) Object Detection

Figure 2.13: Background Subtraction and Object Detection
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image still has some noise (background components), and the object has also lost some
foreground components. Here, to remove this noise and to recover the lost components,
noise filtering and histogram logarithm methods are applied to the background subtracted

image. The noise filter is defined by Equation 2.3, and histogram logarithm is defined as
p'. =cxlog(l+p,) 2.1

where p is pixel value at index £, and c is constant. The histogram logarithm increases
the dynamic range of greyscale via contrast stretching and is useful to enhance detail in
the darker region of the image. However, the object can be detected by the histogram
projection method described in the previous section for greyscale images. Figure 2.13(c)
shows the detected object by using projection profile in the noise filtered and contrast

enhanced object image.

2.3.3 Extracting the Body Contour

To extract the contour of a detected human body, a thresholding and morphological
method is used here. Figure 2.14 shows the procedure of thresholding and extracting a
human body contour. Thresholding is one of the most important approaches in the field of
image segmentation, and choosing a correct threshold is difficult under irregular
illumination. However, using the background information in an image can lead to
improvement. Accordingly, a thresholding method based on similarity (or dissimilarity)
measures between the background and the object image is used. Let Iy(x, y) and I,(x, y) be
the feature (or brightness in greyscale image) of a pixel with coordinate (x, y) in the
background image (/) and the object image (/,). Then, the similarity ®(x, y) at coordinate
(%, y) is computed by

O(x,y) =|1,(x, ») - I(x,y)|. (2.12)

Similarity values close to zero imply a high probability of being background; conversely,
large values of similarity imply high probability as an object. Therefore, the binary image
Lyi(x, y) is thresholded as

1 i@, y)>t)AU,(x,y)>A)

) (2.13)
0 otherwise

Ibi(x’y) :{
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Figure 2.14: Extraction of Human Body Contour

where 7 is the tolerance value, and \ denotes the global threshold value. Theoretically,
thresholding is a simple image segmentation method, which is very effective and useful
for small and low-resolution images, but suffers from difficulty with change in
illumination. To improve this method, a more effective algorithm using the probability

density of the similarity for determining appropriate values of 7and \is required.

On the other hand, the binary image can have some noise inside the object which is
actually a human body part and some noise outside the object. So, morphological filtering
is used to remove the noise and to extract the human body contour, by the dilation and
erosion. In mathematical terms, the dilation of a set 4 by a structuring element B is

denoted by 4 @ B and is defined as
A(—BB={x|BIﬂA¢¢} (2.14)

where A represents the image being operated on, and B is a second set of pixels, a shape
that operates on the pixels of 4 to produce the result. The erosion of image 4 by a

structuring element B can be defined as
A©B={x(B), c 4}. (2.15)

Finally, the human body contour is determined by arithmetic subtraction between the
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dilation and erosion images as
C=(4®B)-(40B). (2.16)

If dilation can be said to add pixels to an object or to make it bigger (thickening), then
erosion will make an image smaller (thinning). In the simplest case, binary erosion will
remove the outer layer of pixels from an object. Therefore, we can obtain an object

contour easily just by using the subtraction operation of the dilation and erosion image.

2.4 Results and Conclusions

The recent technical improvements of computer hardware and video processing make
possible marker-less motion analysis system based on computer vision. Human motion
can be detected and measured from video cameras at a distance, and the marker-less
analysis is essential to enable greater application capability. The study of human motion
analysis is related to several research areas of computer vision such as the motion capture,
detection, tracking and segmentation of people, and more generally, the understanding of
human activity, from image sequences involving humans. Here, the large amount of
human gait data, which was collected from DV cameras, is pre-processed, and the human
body and its contour is extracted from the image sequences of the SOTON gait database.
The success and potential of a new application relies largely on the database used for

evaluating the application systems.

2.4.1 Experimental Results

As described in Section 2.2.3, seven indoor image sequences of each of the 100 different
subjects are used in the experiments. The detection and extraction of the human body is
accomplished by background subtraction and by histogram projection analysis, and
thresholding and morphology is then used to extract the contour of a detected human
body. The size of the human body in the image sequences is approximately 160x360
pixels in 720x576 image. Figures 2.15 and 2.16 show extracted human body contours
during one full stride (or two steps) from an image sequence of the SOTON database. The
human body contour is extracted with origin of the segmented body region, and the

extracted body contours are visually inspected and graded. The average quality levels of
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Figure 2.15: Extracted Human Body Contours (Male, Grade A)
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the contour data of each subject can be evaluated by comparison with the subject in
original images. Here, the quality level is graded as 4 (good), B (fair), and C (bad) to be
30%, 40%, and 30% of subjects, respectively, and the noise in Figure 2.16 is caused by
clothing and apparel. The noise, which is related to quality of the contour data, is mostly
caused by the shadow and colour of shoes at ground. The shoes can appear to change in
colour due to their reflectance of the walking surface. However, our approach appears to
extract the human body contours from image sequences of the SOTON database
successfully. Here, there is no ground truth assessment available in this scenario.
Meanwhile, the video image analysis software, which is developed for gait motion
analysis, has been implemented in Java on a Pentium III 800MHz system. The video
image analysis software includes many image processing and motion analysis functions

with a GUI environment.

2.4.2 Conclusions

The SOTON database is currently the largest gait database filmed under laboratory
conditions. The subjects are filmed in front of a green background, thus human body
extraction from the image sequences is easily achieved through background subtraction.
To estimate the position of a human body, the histogram projection profiles are analyzed,
and the body region is verified by prior knowledge such as size and shape. Also,
thresholding method based on similarity measures between the background and the object
image is used. The body contour is extracted by subtraction followed by dilation and
erosion. However, only the indoor database is used in this work, although the subjects of
the SOTON databases were filmed indoors and outdoors. Therefore, the usefulness of the
pre-processing methods, which are developed in this study, is not demonstrated in
outdoor applications. The quality of pre-processed data filmed under the special
laboratory should be better than that of the outdoors, moreover it can be well influenced
to results of motion analysis and recognition. Notwithstanding this, the capability of

marker-less gait analysis and recognition must be still very attractive technique.
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Extracting Human Gait Motion

3.1 Describing Human Gait Motion

Human gait (walking and running) is the most common and complex form of all human
activities [117][119]. It has been studied by the scientists and artists for a very long time.
However, gait has only been quantified very recently, and has been described and
analyzed more than any other total movement. The gait motion can be defined as a form
of locomotion in which the body’s centre of gravity moves alternately on the right side
and left side [57][88][118]. It requires the simultaneous involvement of all lower limb
joints in a complex pattern of movement. Also, human gait has common patterns of
movements and describes a rhythmic and periodic motion by which the body moves step
by step in the required direction. A period of the gait cycle exists between the successive
heel-strikes, and the gait motion in space and time satisfies spatial and temporal
symmetry. Here, gait is described as periodic motion, and the gait cycle is detected by

symmetry analysis of human gait.

3.1.1 Human Gait as a Periodic Motion

Human gait is a complex integrated activity with various factors interacting at the same
time. It is described by a process of locomotion in which the moving body is supported by
first one leg and then other. As the moving body passes over the supporting leg, the other
leg is swung forward in preparation for its next stance phase [57][88]. The time interval

between two successive occurrences of one of the repetitive events of gait motion is

35
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Figure 3.1: Division of the Human Gait Cycle [57]

defined as the gait cycle [117]. Each gait cycle is separated into two distinct periods: the
stance and the swing phase. The stance phase is the entire period during which the foot is
on the ground, and the swing phase begins as the foot is lifted from floor (toe-off). The
usual distribution of the floor contact period is about 60% for stance and about 40% for
swing [92]. This phase varies with the speed of gait motion, the swing phase becoming
proportionately longer, and the stance phase and double support phases shorter, as the

speed increases [80]. The phases of a human gait cycle are described in Figure 3.1.

Early in the studies of gait analysis, researchers recognized that each pattern of
motion related to a different functional demand and designated them as the phases of gait
[92]. The phases of gait provide a means for correlating the simultaneous action of the
individual joints into patterns of total limb function. In general, the stance and swing
phases have been divided into eight sub-phases: initial contact, loading response, mid-
stance, terminal stance, pre-swing, initial swing, mid-swing, and terminal swing
[92][117]. Each of the eight gait phases has a functional objective and a different length

time interval in gait cycle. Also, the changes in joint motion that occur during each phase
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are described by the joint ranges of motion at each segment of gait. Time and distance are
basic parameters of motion, and measurements of these variables provide a basic
description of gait. These variables provide essential quantitative information about a

person’s gait [88].

On the other hand, the human body functionally divides into the passenger and
locomotor units during walking. The upper body is a relatively passive passenger unit that
rides on a locomotor unit. The two lower limbs and pelvis are the anatomical segments
that form the locomotor unit. The upper body part above the lower limbs is usually
represented by the Head, Arms and Trunk (HAT), and it has a large and heavy mass that
represents about 70% of body weight. The aspects of the HAT trajectory have two cycles
of upward and downward displacement in each stride [88][92]. The lowest position is
reached during the middle of each double support phase, and peak upward deviation
occurs in mid-stance of each limb. The amount of displacement varies with the subject’s

walking speed [119].

3.1.2 Detecting Human Gait Cycle

Detecting the period for motions that repeat regularly can produce important information
about underlying object or scene properties. In general, human gait decomposes into a
repetitive motion and a net translatable component [103]. Several vision based methods
have been developed from this to compute the period of human gait from image features
[24][73][96][103]. To detect the period of gait cycle, the width of the block segmentation
of the corresponding body region, w(z), can be used as a simple method. That is, in each
gait cycle there are two periods of double support and two periods of single support.
When the person walks parallel to the camera, gait appears bilateral-symmetric and two
peaks in w(?) for each gait period are observed. This method is computationally efficient
and has proven to work well with background subtraction [7][114]. However, as the
camera view point departs from fronto-parallel, one of these two peaks decreases in

amplitude with respect to the other, and eventually becomes indistinguishable from noise.

According to biomechanical analysis, large segments such as the HAT must not be
only balanced on a joint that is moving in space but also transferred from one leg to other

[88]. Namely, the passenger unit is moving in both the plane of progression and the
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frontal plane as an inverted pendulum which rotates about the hip joint [119]. Therefore,
the upper body’s speed varies a little, being fastest during the double support phases and
slowest in the middle of the stance and swing phases [117]. Also, the centre of mass of
the passenger unit will keep the maximum distance from front foot at initial contact (IC),
end of terminal stance (TS) or terminal swing (TW), and it has minimum distance from
the front foot at end of mid-stance (MS) or mid-swing (MW). Figure 3.2(a) shows a
horizontal centre of mass at the chest region which is guided by anatomical data [29]. To
detect the gait cycle, the horizontal centre of mass in the passenger unit is considered as a

gait symmetry point. This gait symmetry point at image frame i can be defined as
s, =d, /(d + o) (3.1)

where d is the mean value and s the standard deviation of d; during a gait cycle. Figure
3.2(b) shows the curves of gait symmetry interpolated by trigonometric-polynomials
during a gait cycle. As can be seen in the figure, important gait phases (IC, MS, TS, MW,
TW) can be detected from the peaks and troughs.
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Figure 3.2: Detecting Human Gait Cycle

Also, Figure 3.3(a) shows the average of the detected gait periods derived either by
manual labelling or by the automatic method by the symmetry point analysis, from 100
different subjects of the SOTON database. In the figure, the average gait period by
manual labelling exceeds the automatically detected periods by 0.74 frames (2.7%). In
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Figure 3.3: Detected Gait Periods and Phases of the 100 Subjects

fact, the gait periods by manual labelling include just over one gait cycle in order to
contain certainly one gait cycle. The detected gait phases from the 100 different subjects
during one gait cycle are shown in Figure 3.3(b). The average finishing points of mid-
stance, terminal stance and mid-swing are observed at the 28.7, 53.3 and 78.7 percentages
of gait cycle, respectively. The result has a slight difference (3.1%) compare with medical
data [88][92]. Here, some gait features such as gait frequency (f;), amplitude (4), and
walking velocity (v) can be also calculated. Gait cycle analysis determines the frequency
and phase of each observed gait sequence, allowing us to perform dynamic time warping
to align sequences before matching. Moreover, it provides data reduction by summarizing

the sequence with a small number of ideal key-frames [22].

3.2 Extracting Human Gait Signatures

Human gait motion is usually described by kinematic motion analysis, and most of the
model-based approaches in computer vision are concerned with studies of the kinematic
patterns [1][119]. Therefore, a very important aspect in the fundamental study of human
gait is the investigation of the kinematics of human body segments [122]. As described in
Section 2.1.2, the stick figure model is the most effective and well-defined representation
method for kinematic gait analysis, and can be extracted by motion information from

human gait. Also, the stick figure is closely related to a joint representation, and the
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motion of joints provides a key to motion estimation and recognition of the whole figure
[77]. The gait signature can be defined as a sequence of the stick figures obtained from
gait silhouette data. Here, the gait signature is extracted from the body contours by
determining the body points using the linear regression of body skeleton and motion

tracking with topological analysis guide by anatomical knowledge.

3.2.1 Body Segment Properties

The analysis of human motion often requires knowledge of the properties of body
segments. The initial interests in the proportions of human beings were presumably
motivated by sculptors and prosthesis designers. More recently, interest has arisen from
the needs of technological developments such as man-machine interface, computer
animation, and motion analysis [94][118]. The dimensions of various body segment-links
callipered from cadavers have been extensively studied [27], and an average set of

segment lengths represented as a percentage of body height [29]. These proportions of

Table 3.1: Average Link Lengths as Percentage of Stature

LinkagesofBody | Demmster [27]| Dullis[29] MI:fly“"lds égi‘znen
1. Upper arm 17:35+0.99 18.6 17.4 1:7.2
2. Forearm 1572052 14.6 15.6 14.9
3. Hand 10.54 £ 0.63 10.8 10.9 10.8
4. Hip-shoulder joint 27.98 £1.95 28.8 28.8 304
5. Thigh 23.99+1.43 24.6 243 242
6. Shin 25.054:1i22 24.5 23.6 23.0
7. Ankle above sole 3.69+£0.72 3.9 4.2 4.1
8. Hip-neck joint 32.85 34.0 334 34.0
9. Hip-vertex 47.27 47.0 47.9 48.7
10. Head 15.46 +1.01 13.0 14.5 14.7
11. Hip above the SRP 2 5.0 43 43
12. Transverse shoulder | 18.34 +1.05 " 21.9 21.2
13. Transverse hips 98241117 1 9.9 10.9
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body segments are suitable for purposes of a good approximation in the absence of better
data [94][118]. Table 3.1 shows the average length of the important linkages of the body
expressed as a percentage of stature. In the table, Dempster’s work was based on only 8

subjects, and this number was increased to 65 by Reynolds [94].
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Figure 3.4: Body Segment Properties [118§]

In addition, Figure 3.4 shows body segment properties represented as fractions of
body height, H by Drillis and Contini [29][118]. Their anatomical studies developed a
stick figure in which the lengths are shown as a percentage of body height. Most of the
results were obtained from only 12 (or less) subjects. The average age of the 12 subjects
was approximately 27 years and the average height was approximately 176 cm [29]. The
mean dimensions of body height can be used to determine topological position of each
body part in human figures as such to guide search for the human head and toe, given that
humans have a head, neck, shoulder, chest, waist, pelvis, knees, and ankles in known
topology. Here, we describe the method for extracting the gait signature by using these
body segment properties. The results of their studies have also been used in dynamic

models for animating human motion [50].
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3.2.2 Extracting the Body Angles

In the previous chapter, the human body and its contour was extracted from the image
sequences. To extract body points in a contour image, the skeleton data with body
segment properties is used. For a body height H, an initial estimate of the vertical position
of the neck, shoulder, waist, pelvis, knee and ankle was set by study of anatomical data to
be 0.870H, 0.818H, 0.530H, 0.480H, 0.285H, and 0.039H, respectively. The gait skeleton
can be simply obtained by two border points of each body segment p with a range

constraint as
X, =(xb,p+xe,p)/2 (3.2)

where x; and x, represent the horizontal position of the begin and the end pixels on the

horizontal line respectively. For example, the range constraint for trunk # can be given by

mean value of neck’s border points (or not labelled, &) as

(3.3)

. xs,l lf (xb,neck <xs,r <xe,neck)
RN otherwise

In images, estimation of a primary gait skeleton is highly susceptible to difficulty by the
movement of the arm and foot. Therefore, a noise (outlier) removal method, using mean
value and standard deviation in each body segment, is employed to select a skeleton point

as

&) otherwise

xls,p:{x&p if (chfia-a) (3.4)

where o is standard deviation of x;, and « is a parameter (/< « < 3) which depends on
the body segments. Figures 3.5(a) and (b) show the gait skeleton and the noise (outliers)

removed skeleton data.

Now we can calculate the body angles from the skeleton data by using linear
regression. That is, the angle 6, of body segment p is approximated by using the slope of

the lines in linear regression equation as

61; =tan™ (i(xi _f)z i(yi _y)('xi _f)j (3~5)
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Figure 3.5: Exfracting Body Angles at a Key-frame

where # is the number of the skeleton points. Figure 3.5(c) shows the extracted skeleton
data with the lines fitted by Equation 3.5. As a certainty factor (CF), the reliability y, of

the angle 6, can be also determined by the correlation coefficient as

y, = . (3.6)

i(yi—?)(xi—f)/ Zn:(y,.—y)zznl(xi—f)z

In practice, linear regression method involves squared error terms, thus it is very sensitive
to outliers both in x and y coordinates [34]. The primary outliers can be removed by
Equation 3.4, but the substantial errors are still dominated by outliers or misplaced data
points. Therefore, the joint angles 6,(k) at image frame k are affected by noise in the
contour data with outliers. Accordingly, a weighted moving average can be used to

reduce the influence of noise as

0,0= 3, 0,06, Y. 7,0 (.7

where ¢ is a size of moving window, here set to 2. The weighted moving average is an

effective method to smooth time series data.

On the other hand, the key-frames (single and double support phases) are determined
by gait symmetry analysis during a gait cycle as described in Section 3.1.2. The body
angles around double support phases (initial contact, terminal stance, and terminal swing)

are clearly extracted, but the angles around single support phases are not as accurate as
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those estimated for the double supports. Therefore, a motion tracking method between
double supports is used to extract body angles at the lower limbs as well. To track knees
and ankles, the left-most skeleton points around the knee region and the right-most
skeleton points around the ankle region are considered. Namely, the skeleton points by a

size of each body segment are sorted as

Xpoo =X X <x,} and x,,, ={x|x >x,,} (3.8)

ankle

The proper size of body segments is also guided by anatomical knowledge. The knee and
ankle have the largest movement of all parts of body. Accordingly, the knee and ankle

points for tracking are given by mean value as

x, ={x,|i=m,..,n} and X, =mean(x,) 3.9

5

where m and n are index of the data, here set to 3 and 5 respectively. In a left walking
direction, the knee position around single support can be determined by the minimum
distance from x-axis, and the ankle position can be determined by the maximum distance

from x-axis.

In normal walking, the knee and ankle positions are moving to the walking direction,
hence the forward displacement should be measured as positive value. Finally, the body

angles can be calculated by

Hp =tan™ ((xi _)—C:)/(yi _ys)) (3.10)
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Figure 3.6: Extracting Body Angles at a Inter-frame
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where x; and y; are the coordinates of a previously established position such as pelvis and
knee. Figures 3.6(a) and (b) show the noise removed skeleton data by Equation 3.4 and
the tracking points determined by Equations 3.8 and 3.9, and Figure 3.6(c) shows slope of
the lines for computing body angles. As can be seen in the figures, outliers still remain

around the rear ankle, but the tracking point is extracted successfully.

3.2.3 Gait Signature by Body Points

The human gait is typically represented by the movements of the torso and legs, so a stick
figure can be used to estimate a human body as a combination of line segments linked by
joints. Therefore, the stick figure is obtained from the body points, which are defined by
joint angles and body segments. As described in Section 3.2.2, the joint angles are
extracted by linear regression analysis and tracking moving points with topological
analysis. Also, the length of body segments is determined by the fraction of the body
height based on anatomical data. Accordingly, each body point (joint position) can be

calculated by using the joint angle and the size of body segments as
XY, =[xl.+Lp cos(¢+6,) ¥ +L, sin(¢—0p):] (3.11)

where ¢ is the phase shift, x; and y; are the coordinates of a previously established
position, and L, is the length of body segments guided by anatomical knowledge. Figure
3.7(a) shows the leg points (knee and ankle) by the joint angles with the segments.

(a) Leg Points by Joints (b) Stick Figure for Figure 3.5 (c) Stick Figure for Figure 3.6

Figure 3.7: Body Points and Stick Figure
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There are nine joint coordinates (body points) determined by Equation 3.11 in human
b0dyY: (Xicads Yhead)s (Xnects Yneck)s (Xshoutders Yshoutder), (waists Ywaist)s (Xpetvis: Ypetvis), (Xtncess Vimeer)s
(Xkneez» Vineez)» Kantiels Vankier)y @04 (Xanktez, Vankiez)- The 2D stick figures with the nine body
points are shown in Figures 3.7(b) and (c). As can be seen in Figure 3.7, the body points
(coordinates) are derived from the joint angles and body segments, and the stick figure is
simply obtained by connecting the nine body points. In the figure, the estimate of the joint
angle and segment of neck is not very accurate, because the neck position highly depends
on head and shoulder position. On the other hand, the legs’ motion is extracted very
successfully. However, the gait signature is represented by a sequence of the simplified
stick figure with 8 sticks and 6 joint angles, and gait motion can be describing the motion
in a compact form as sequence of the joint parameters. Namely, each gait signature can be

characterized by the body segments (the sticks) and joint angles.

Stick # | Body Segments Stick# | Body Segments

Stick 1 head Stick 5 left thigh

Stick 2 neck Stick 6 left shin

Stick 3 trunk Stick 7 right thigh

Stick 4 pelvis Stick 8 right shin
(a) Stick Figure (b) Sticks vs. Body Segments

Figure 3.8: Simplified Stick Figure Model

The mathematical description of the stick figure requires only a gait direction and
nine (x, y) coordinates for body points. That is, the stick figure model at image frame k

can be defined by a vector S, as
S, = {d 22XV, ! p € head ,neck,shid,waist, pelvis, kneeL,kneeR,ankL,ankR} (3.12)

where d, is the gait direction, and is set to 0 or I for left or right direction, respectively.
Figure 3.8 shows the stick figure model for representing the human body structure by gait
signature. A sequence of the stick figures is analyzed as a gait sequence, and this result

can be used to enhance the gait signatures.
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3.3 Structure of the Gait Sequences

Human activities and behaviours may be considered as a stochastically predictable
sequence of states [58], and they can be interpreted as a grammatical structure [4]. Thus,
the structure of the motion sequences is generally described by a context-free grammar.
The grammar and parsing mechanisms provide longer range temporal constraints and
allow the inclusion of prior knowledge about structure of temporal events in human
motion [58]. However, human gait is an example of highly constrained motion, and
physical constraints induce a rhythmic and repetitive pattern of motion [79]. Accordingly,
human gait motion can be described as patterns with constrained structural relations.
Here, the structure of human gait motion is analyzed grammatically, with physical
constraints. The practical reason for analyzing the constraints and grammatical structure

of the gait sequences is to improve the robustness of the gait signatures.

3.3.1 Concept of Gait Constraints

Human gait motion has many constraints, which are based on the laws of physics and the
functional rules. Some of the constraints are low level, such as the limited range of
motion, and the high level are contextual constraints such as that one foot is always on the
ground during walking or the body should be in dynamic balance [57][119]. Basically,
the constraints represent assumptions about the motion of model, thus the gait motion
needs to satisfy the constraints on a movement’s trajectory, speed, and energy
expenditure. As a low level constraint, human gait has been approximated as the normal
range of motion in the joints, and it can be directly detected in the gait signatures if a joint
is moved out of the normal range. The Ranges Of Motion (ROM) of the joints are
presented in Table 3.2, and the degrees of motion are the values achieved at the end of
each phase [88][92]. The approximate total ROM needed for normal gait at the value of
the joint angle at each joint throughout the gait cycle.

In addition, one of the unique characteristics of the gait motion is bilateral symmetry,
which means that the left and right legs perform the same movements, just shifted in time,
or if there exists some reflection that is invariant. That is, when a person walks the left

arm and right leg interchange direction of swing with the right arm and left leg, and vice
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Table 3.2: Range of Gait Motion (RLA*)

Gait Cycle (GC) % of Gait Cycle Thigh. = - Kmec
Initial Contact (IC) 0% 30° of flexion 0°
Loading Response (LR) 12 % 25° of flexion 15° of flexion
Mid Stance (MS) 31 % 0° 5° of flexion
Terminal Stance (TS) 50 % hg)(:;;)jg;s(i)(fn 0°
Pre Swing (PW) 62 % 0° > é;:ﬁ)g of
Initial Swing (IW) 75 % 20° of flexion 60° of flexion
Mid Swing (MW) 82 % 30° of flexion 30° of flexion
Terminal Swing (TW) 100 % 30° of flexion 0°

*. Terminology and Data from Gait Laboratory at Rancho Los Amigos (RLA) Medical Centre,
California, USA

versa, with half a period phase shift. Figure 3.9 shows an example of the bilateral
symmetry in gait motion. In the figure, the second half of the gait cycle shows a reflection
of the first half of the gait cycle. This is only a generalization for normal gait, and could
be important to a clinical analysis [101]. However, the bilateral symmetry in normal
human gait motion satisfies geometrical symmetry but also dynamic symmetry, namely

the frequency content of both lower limbs’ motion is also similar.

t+2 t+6 t+15 t+20

Figure 3.9: Bilateral Symmetry of Gait Motion
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Figure 3.10: Forward Displacement at Hip, Knee, and Ankle [57]

On the other hand, a normal gait motion requires continuing ground reaction forces at
each step and propelling the body forward in the direction of progression. In normal gait,
the horizontal displacement tends to be the same for all parts of the body. Figure 3.10
shows a typical example of the horizontal displacement at the hip, knee and ankle. If there
were no variations in velocity, a plot of the horizontal displacement against time would be
a straight line as shown by the average displacement line in Figure 3.10 [57]. When the
displacement curve of a point is steeper than the average line, that point is moving ahead
faster than the average velocity. Conversely, as the velocity of the point becomes less
than the average velocity, the slope of the displacement curve becomes less than that of
the constant velocity line [57]. These characteristics of the forward displacement can be

used as a constraint to reduce noise in gait motion tracking.

3.3.2 Step Symmetry of Gait Motion

Both symmetry and asymmetry of gait have been used to analyze human behaviour
[48][101]. Asymmetric gait is frequently considered to indicate gait pathology, and
symmetric gait is usually used to analyze normal gait. However, the legs in a compass
gait [43] remain straight at a double support, and the step length is similar for both heel
strikes. That is, geometrical symmetry exists in a compass gait for different step lengths

as shown in Figure 3.11. The angles of the legs measured from the vertical are identical,

namely 6, = 6,, 8,=¢,, and 6,=@;, at times ¢,, ¢, and #;. Further, leg angle 6,, &, ¢;, and @,
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-+ LL = Left Leg RL = Right Leg

Figure 3.11: Symmetry of Compass Gait for Different Step Lengths [13]

depend only on the step length s/. Most importantly, this remains true when the body is
accelerating or decelerating, depicted in Figure 3.11 by decelerated step length at time ¢,

(i.e. the body decelerated from ¢, to £,) [13].
However, the step symmetry at double supports ¢,, ¢, and ¢; can be described in terms
of leg angle 6,, 8,, ¢,;, and @, as

m=b A _b, /- (3.13)

As described in the previous section, an invariant reflection exists in human gait cycle.
Thus, the summation or average of each leg’s joint angles during a complete gait cycle
should be had equal value to both legs. Accordingly, Equation 3.13 can be extended as
Equation 3.14 and can be implemented by Equation 3.15.

M :’91,1_9—1‘_’92,:_9—2
r ‘(Dl,r—_ali ‘(Pz,r_az‘

(3.14)

M’ zjel” —e_llx)¢2,/ _(52]_)02,: —@]qu)],f _@1] (315)

The values of M, are equal to 0 around double supports. Now the step asymmetry can be
measured by this equation, and symmetry values close to zero imply a high degree of
symmetry. Also, the step symmetry shows the degree of weight balance between left and
right body parts. Moreover, it is affected by ground slope, because the ground slope

modifies the inference of gravity on human body. This equation is also an important
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Figure 3.12: Analysis of Step Symmetry

condition for a locomotion step, thus we can use it as the step constraints.

To evaluate the step symmetry, the gait sequences are normalized by 50 frames per
sequence, and the step symmetry is calculated by Equation 3.15. After that an average
sequence of the step symmetry of each subject is obtained. Figures 3.12(a) and (b) show
the sequence data of the step symmetry, and the mean and variation of the data,
respectively. These results concern 100 different subjects with seven sequences of each
subject, a total of 700 sequences. As can be seen in the figures, the step symmetry values
have significantly shown values close to zero around double supports, but the values have
high variation around single supports. In addition, the autocorrelation of the sequence

data of step symmetry is shown in Figure 3.12(c), and the periodogram of the Fourier
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transform of the same sequences is shown in Figure 3.12(d). Here, the both results clearly
show that the sequences of the step symmetry are cyclic and, its cycle is exactly same as
the normalized cycle. However, using such an equation for evaluating the step symmetry

may have a limitation, because the step symmetry is evaluated against average values.

3.3.3 Grammatical Analysis of Gait Cycle

Human gait motion has many modes, among which walking, running and standing are
the three most often seen in daily life. These modes are the states of action in human
motion, and a human can change between these states. Thus, the relationship of the states
is naturally represented as a finite state machine as shown in Figure 3.13(a). By
biomechanics definitions, standing, walking and running are distinguished firstly by the
stride duration, stride length, velocities and the range of motion made by the limbs. That
is, the speed of the gait motion is the most important feature to distinguish among these
three states. A second difference concerns the existence of periods of double support or

double float, and this is determined by the duration of the stance phase.

(a) Walking, Running and Standing (b) Normal Walking

Figure 3.13: Transition Diagram for Human Gait Model

In general, normal walking is translated to the double support (DS/IC) states through
the single support (ss). A single support in the stance and swing phases contains
backward (bw), loading response (/r), mid-stance (MS), terminal stance (ts), pre and
initial swing (pw), mid-swing (MW), and terminal swing (tw). Figure 3.13(b) shows the
finite state diagram within walking mode expanded into their lower level state. This finite

state diagram can be represented as context-free grammar parsing mechanism. Figure
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Figure 3.14: Grammar and Stochastic for Human Gait Motion

3.14(a) shows the regular grammar for the state diagram in normal walking. The regular
grammar is a simple method to describe the human activity by using symbols. However,
human movement has been also described by stochastic grammar for understanding
human action [58]. In a stochastic grammar, the notion of a production is generalized by

the addition of a corresponding probability.

On the other hand, at any point in a gait, the other foot is in contact with the floor
(and does not move forwards) during the gait cycle. Thus the shape-of-motion does not
look at the full period of motion for a limb, only the forward portion. The cycle of motion
analyzed is left foot forward, right foot forward, left foot forward, and so on. This results

in a doubling of frequency akin to a full-wave rectifier. Accordingly, we can approximate

(a) t-1 (b) t (MT/MW) (c) t+1

Figure 3.15: Body Points at Crossover of the Legs
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the motion of the other foot, which is stationary, as
¥(t) =] x-sinh(x*)|, t=1..,n, -1<x<I1 (3.16)

where the x is increasing //n value. The characteristics of Equation 3.16 are shown in
Figure 3.14(b). During the gait cycle, the positions of the stationary foot can be estimated
by this equation. In addition, the crossover of the two legs is performed on two single

support points during one gait cycle. Figure 3.15 shows an example of the body point

150 T —— 150 T
~&-- hip & hip
o~ knee ! ! ! oo o o knee i1 oo

2001 o= ankle [i-----beooodoosoefooooobocodon oo _"1 200({ e~ ankle fi-----bmcdenonodeosochononde
o R R e R aRRnE EEELE SRR PGl S P SRR - R e e e t h A0 2 ROEE
@ @
E E
8 701 ) OO S . e S S . 8 3004 cammdoem b AT S
B ©
o [=%
o 0o
g 350 _____________________________ g 350 ___________
5 g
g g
£ 400 oo i ae— £ 4004~0=0g-2~g<5-Bieo~d-0 R SRLEL LCES

450 s S B et St S Rt S 450{_ s

:
500 - H H H H H H H H 500 H H H H H H I -
0 10 20 30 40 5 60 70 80 90 100 0 10 20 30 40 5 60 70 80 90 100
time (percent of gait cycle) time (percent of gait cycle)

(a) Without Grammatical Parsing Method (b) With Grammatical Parsing Method

Figure 3.16: Quality of Gait Signatures in the Forward Displacements

extraction by using the gait constraints with the grammar parsing method. In the figure,
the crossover of knee is detected during the three frames of a single support, and ankle
crossover is started after a single support. As a result, the forward displacements of the
gait signature at hip, knee, and ankle are shown in Figure 3.16. It is an important
component for showing quality of the extracted gait signatures. As can be seen in Figure
3.16(a), the quality of the gait signature without the grammatical rules and constraints
shows poor result, but this result can be improved by using the grammatical rules as
shown in Figure 3.16(b). Using grammatical rules with gait constraints can improve the

robustness of the gait signature, and it is especially effective in poor quality data.

3.4 Results and Conclusions

In the previous chapter, a large amount of the image sequences (the SOTON gait

database) was pre-processed, and the body contours were extracted from the pre-
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processed image sequences. In computer vision, the human gait is usually described by
kinematic characteristics such as linear and angular positions with time derivatives. The
gait signature based on 2D stick figure is the most effective and well defined
representation method for kinematic gait analysis. Here, the gait motion is described as
rhythmic and periodic motion, and the gait signature is extracted from body contours by
motion information with topological analysis guided by anatomical knowledge. Also, the
constraints in gait motion and the grammatical structure of the motion sequences are

analyzed to improve the robustness of the gait signature.

3.4.1 Experimental Results

In the experiments, the body contours extracted from seven indoor image sequences of
each of the 100 different subjects are used. As described in the section 3.1, human gait is
a form of periodic motion. To detect the period of a gait cycle, the symmetry property of
the horizontal centre of mass in the HAT is analyzed, and the key-frames (double
supports) are also determined by the obvious peaks in the symmetry property. The
extracted phases of double supports show very similar result to medical analysis. The
average of the detected gait period is 27.16+1.72 frames and 0.74 frames (2.7%) shorter
than the average of the manually extracted gait period as shown in Figure 3.3(a). The
period of gait cycle is an essential parameter to calculate the various kinematic

parameters such as cadence, cycle time, velocity, and frequency.

On the other hand, a simplified 2D stick figure model with six joint angles is used to
represent the human body structure in the gait signature. Figures 3.17(a) and (b) show the
extracted gait signatures from image sequences during one gait cycle. These figures are
enhanced result by the grammatical rules with gait constraints, which is described in
Section 3.3. As a gait constraint, the step symmetry is used to verify the double supports
and to detect an unstable status of the double supports. The variation (standard deviation),
in seven sequences of the same subject, at joint angles is decreased by on average 17%
for 100 subjects by using the gait grammar with physical constraints. By these figures,
human gait motion can be described in a compact form, as a sequence of the kinematic
parameters. In addition, the forward displacements of the extracted gait signatures at hip,

knee, and ankle are shown in Figures 3.17(c) and (d). The forward displacements of joints
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Figure 3.17: Gait Signatures during One Gait Cycle

are consistent with medical data by Inman’s [57] analysis as shown in Figure 3.10.

In section 2.2.3, one pixel in the image plane of the SOTON database was
approximated by the physical dimension 0.5¢mx0.5¢m, thus the dimension of human
body and its motion parameters can be simply estimated by the body points and forward
displacements in the gait signature. The relationship between stated body heights by
subjects and estimated body heights in the image plane is shown in Figure 3.18(a). As can
be seen in the figure, the correlation coefficient for the relationship between two data sets
has a high value (=0.89), and only 2.60 percentage shorter than the stated heights in
average. Thus, the physical dimension of the human body by this estimation seems to be

very reliable. Figure 3.18(b) shows the estimated body heights and step lengths. The step
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Figure 3.18: Physical Dimension of the Gait Signatures

length is a very important parameter for estimating the gait speed [57][117][119]. In the

next chapter, these gait parameters will be described in detail.

3.4.2 Conclusions

Human gait is a pattern of locomotion, and most human locomotion can be characterized
as having a periodic component. The period of the gait cycle is detected by symmetry
property of horizontal centre of mass in the HAT. A 2D stick figure is used to represent
the human body structure, and it is extracted from body contour by determining the body
points. To extract the body points, joint angles of each segment are extracted from gait
skeleton data by linear regression analysis, and gait motion between key-frames is
described by tracking the moving points of locomotion. The body segments and moving
points are basically guided by topological analysis with anatomical knowledge. A gait
signature consists of a sequence of the stick figures and improved by the gait constraints
and grammatical analysis. Also, forward displacement of the gait signature is analyzed to
show the characteristics of the gait motion. However, the gait signature includes much
information for describing the gait motion and is a very effective representation method
for analyzing human gait motion. In future, human gait can be analyzed and classified by

kinematic features of the gait signatures.
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Human Gait by Statistical Analysis

4.1 Kinematics of the Gait Motion

Human walking is the most common means of gait motion, and all normal people follow
the same basic bipedal pattern, namely all humans walk in the same basic way [92][119].
Also, the normal people will consistently return to the same pattern when tested
repeatedly, unless changes in footwear or the walking surface [57]. In addition, gait
motion can be decomposed into temporal and spatial components, and these components
should be included in gait description. A very important aspect in the fundamental study
of gait motion is the analysis of the kinematics of human body segments [122].
Kinematics is the study of movements, or more specifically the geometric description of
motion, in terms of displacements, velocities and accelerations [1][117]. Here, gait
motion is analyzed by measurement of temporal parameters such as stride, cadence and

walking velocity, and kinematics dealing with the analysis of joint movements.

4.1.1 Analyzing the Gait Parameters

Human gait contains numerous parameters, and these parameters can be categorized into
general and kinematic parameters. The general gait parameters (also known as the
temporal and spatial parameters) are the stride length, cycle time (or cadence) and speed
and provide a basic description of the gait motion [117]. These parameters present
essential quantitative information about a human gait and give a guide to the walking

ability of subject [88]. In addition, the general parameters tend to change together in most

58
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locomotor disabilities, so that a subject with a long cycle time will usually have a short
stride length and a low speed. Each parameter may be affected by such factors as age,
sex, height, muscle strength, etc. Therefore, they should always be interpreted in terms of

the expected values for the subject’s age and sex, such as shown in Table 4.1.

Table 4.1: Normal Ranges for General Gait Parameters [117]

Age Gl Cadenc.e Cycle Time Stride Speed
(years) (steps/min) (sec) Length (m) (m/sec)
Male 100-149 0.81-1.20 1.06-1.64 0.95-1.67
. Female 103-150 0.80-1.17 0.99-1.55 0.90-1.62
Male 96-142 0.85-1.25 1:15-1.75 1.03-1.75
o Female 100-144 0.83-1.20 1.03-1.57 0.92-1.64
Male 91-135 0.89-1.32 1.25-1.85 1.10-1.82
e Female 98-138 0.87-1.22 1.06-1.58 0.94-1.66
Male 82-126 0.95-1.46 1.22-1.82 0.96-1.68
o Female 97-137 0.88-1.24 1.04-1.56 0.91-1.63
Male 81-125 0.96-1.48 11571 0.81-1.61
o Female 96-136 0.88-1.25 0.94-1.46 0.80-1.52

In the previous chapter, the gait signatures during one gait cycle were extracted from
the SOTON database. The trajectories of gait signatures contain the general gait
parameters on human movement. In Section 3.1.2, period of the gait is determined by
number of frames during one gait cycle in image sequence, and frame rate of the SOTON

database was 1/25 seconds. Accordingly, the cycle time can be calculated by
cycle _time(sec) = gait _ period (frames)/ frame _rate(frames/sec). 4.1

The cadence is the number of steps taken in a given time, the usual units being steps per

minute. One gait cycle consists of two steps, so the cadence is given by
cadence(steps/min) =120/cycle _time(sec). 4.2)

The gait speed is the rate of linear forward motion of the body, which can be measured in
metres per second. The speed serves as one of the most important factors in determining

gait characteristics, and it can be calculated from the cycle time and stride length as
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speed(m/sec) = stride _length(m)/cycle _time(sec). “4.3)

The stride length is the distance between two successive placements of the same foot, and
the length of one stride is moved during one gait cycle and includes all of the events of
one gait cycle [88][117]. If both the cycle time and the speed have been measured
separately, the stride length can be calculated by

stride _length(m) = speed (m/sec) x cycle _time(sec). 4.4)

Also, the stride duration or frequency defines the amount of time in which these motions
occur. A stride consists of two steps, a right and a left. The stride length is not always

twice the length of a single step because right and left steps may be unequal [88].
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(a) Stride Length vs. Speed (b) Stride Length vs. Body Height

Figure 4.1: Relationship between the Gait Parameters

On the other hand, the stride length can be determined by direct measurement. In the
previous chapter, the body height and step length in a gait signature were estimated from
the physical dimensions of the image plane. The step length is determined by the average
distance between two feet at double supports (initial contact and terminal swing), hence
the stride length is given by two step lengths. The stride length can be also approximated
by the forward displacements in the gait signature during one gait cycle. By medical and
biomechanical studies, stride length is not independent of body height and speed
[57][119]. Figure 4.1 shows the relationship between stride length and other gait
parameters, for 100 different subjects. As can be seen in the figure, the stride length

versus gait speed appears linearly related, and stride length versus body height has a
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Table 4.2: General Gait Parameters from the SOTON Database

Age Condl Cadence Cycle Time Stride Speed
Level (steps/min) (sec) Length (m) (m/sec)
Male 109-130 0.92-1.10 1.36-1.52 1.23-1.65
Children
Female - - - _
Male 103-116 1.03-1.17 1.57-1.76 1.42-1.62
Adults
Female 110-122 0.98-1.10 1.43-1.62 1.38-1.56

linear relationship and is more highly correlated. The relationships of stride length have
been used for recognizing human [7]. Table 4.2 shows variation of the general gait
parameters, which are obtained from the SOTON database in the experiments. In the table,
the speed is based on estimated stride length, and all parameters belong to the range of the
expected value shown in Table 4.1. In practice, the speed is near the upper limit, because
the SOTON database might have relatively much youth in the subject population. Also,
the marker-less measurement is a natural method, thus a person may achieve a greater

stride length than with a marker-based approach.

4.1.2 Gait Analysis in Angular Kinematics

Kinematics is the geometric description of motion and does not consider the forces that
cause the actions. Kinematic analysis of human gait usually characterizes the joint angles
between body segments and their relationships to the events of the gait cycle
[80][117][119]. The joint angles are more commonly expressed as flexion and extension
[15][89][92]. Flexion occurs when two body segments change their relative position and
decrease the angle between them. Similarly, extension is the return from flexion. The
joint angles of the hip, knee and ankle have been considered as the most important
kinematics of the lower limbs. The hip angle is defined by the relationship between the
thigh and trunk or pelvis, and the pattern of the rotation is nearly the same as that of thigh
rotation. The angle between the thigh and shin is the knee angle, and the ankle angle is
the angle between the shin and foot.

Figures 4.2(a), (c) and (e) show the mean and standard deviations, by medical data of

a small number of the subjects (less than 15) from anatomical markers in limb segment,
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for joint angles of the hip, knee and ankle motion during one gait cycle [119]. Figures
4.2(b), (d) and (f) show comparison results of the mean hip, knee and ankle curves across
the cadences. The natural cadence was 105+6 steps/min, slow cadence was approximately
20 steps less than natural, and fast cadence was about 20 steps greater than natural [119].
As can be seen in the figures, the plots of these joint angles differ little between the
cadence groups. The only minor difference shows up in knee flexion during early stance.
At 15% of the gait cycle, the knee reaches maximum flexion and this increases from 15°
for slow walkers to 25° for the fast cadence group. The ankle curve also shows very small
differences. The ranges of joint angles in normal walking have been shown previously in

Table 3.2.

However, the joint angles of a stick figure in the gait signature can be determined by
the coordinates of the body segments. Also, kinematics explicitly defines the state vector

of a stick figure at a specific time. The state vector is defined by

®, =(6,,-,8,). 4.5)

n

The state vector is the set of joint angles including independent parameters defining the
positions and orientations of all joints belonging to the figure. In the gait signature, a
sequence of the state vectors contains all the geometrical and time-related properties of
the gait motion. Therefore, the time series of the joint angles provide much kinematic
information such as linear and angular velocities, and accelerations, which are derived
from the displacements with time interval. Moreover, they have basically the same

characteristic with respect to the gait cycle.

4.2 Periodicity Detection and Analysis

In the previous chapters, the human body and its contour have been extracted, and the gait
signature was also extracted from the body contour by determining the body points. The
gait signature represents the movements of human gait with the body structure by a 2D
stick figure model. A set of the gait data extracted from the gait signatures provides
potentially valuable time-dependent patterns as a gait time series. It has a quasi-periodic

temporal dependence, because the data collected during walking or running is at the
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subjects’ own speed [18]. In addition, human gait is a form of periodic motion, especially
when walking laterally; hence we can predict human movement in a gait cycle. Here, the
gait signatures are analyzed to derive the trajectory-based kinematic characteristics. The
inherent periodicity in gait motion is also analyzed by the graphical representations and

statistical methods such as autocorrelation and Fourier analysis.

4.2.1 Sequence of the Gait Signatures

Gait motion is the repetitive and well-organized movements generated by a person during
actions such as walking. Accordingly, the usual input to analysis is a temporal image
sequence. An image sequence is a much richer source of information than a single image.
Motion in image sequences refers to the 2D displacement or velocity of the projection of
scene. The trajectory of points in each image frame follows a curve in the (x, y, ) space of
an image sequence, and the simplest trajectory is linear. Let x = (x, )" be the spatial
position of a pixel in continuous coordinates, i.e., xeR? within image limits. Then, a

linear trajectory can be described as

x(t)=x@)+v,(x)(t—1) (4.6)
where the velocity v(x) is constant between ¢ = #,; and 7 (7 > £). In an image sequence,
each coordinate can be represented by a linear trajectory.

In the previous chapter, the gait signatures were extracted from the image sequences,
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which are acquired at discrete time instants. Thus, the motion vectors associated with the
positions of body joints can be also represented by a linear trajectory. The trajectory plots
of one or more coordinates are useful in describing detailed changes of particular motion
pointer. A sequence of this plot at equal intervals of time gives a pictorial and anatomical
description of the dynamics of the movement [118]. Figure 4.3 shows the trajectories of
gait motion during one gait cycle. Figure 4.3(a) shows the result by moving light displays
from a medical study [57], and Figure 4.3(b) is extracted from the gait signature shown in
Figure 3.17(a). As can be seen in the figures, both results are very similar. Also, a total
description in the plane of the movement is defined by the gait signature, and trajectories,

velocities, and accelerations can be visualized.

However, we can calculate the six angles which are associated with joint positions
(here, the pelvis angle is not considered): Onect Qoack Onips, Onipzs Oineer, ANA Opeez. Figure
4.4(a) shows the graphical demonstration of the joint angles, and Figure 4.4(b) shows the
definition of the angle 8, at position (I, /,). In general, the angle 6, of location (L, /,) at

frame k can be calculated by
0, =tan™ ((,~x.)/C, - y.)). (4.7)

The leg angles are relative [119], so the relative joint angles in each leg are computed
from the extracted angle values by Equation 4.7. Figure 4.4(c) shows the definition of the
relative joint angles. In normal walking, the trunk of human body in the SOTON database
can be considered to be almost vertical. Accordingly, the relative hip angle (6,;,) is the

same as that of the extracted value (&), and the knee angle (G,..) can be calculated from

X
7
y
%, ¥,) é
91 Oimee=1 O Od
(.._4_40_4_.-) (lx’ ly)
a) Joint Angles b) 6, at(l,l (c) Relative Joint Angles
( (4 X y)

Figure 4.4: Joint Angles in the Gait Signature
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Figure 4.5: Angular Kinematics of Gait Signature

the extracted hip angle (6y) and knee angle (6x).

Now we can extract the trajectory-based kinematic characteristics of the gait
signatures such as linear and angular position, their displacement and the velocities.
Figures 4.5(a) and (b) show the time series of the relative joint angles obtained from the
gait signature in Figure 3.17(a), by our new approach. The points in Figures 4.5(a) and (b)
are the extracted angle values from the gait signature that were calculated by using
Equations 3.5 and 3.7, and these are very similar to the medical data of Figures 4.2(a) and
(c). Figures 4.5(c) and (d) show the angular velocities given by angular displacement per
inter-frame time 1/25 seconds. In the figures, the lines are interpolated by trigonometric

polynomials.
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4.2.2 Periodicity in the Gait Motion

Several methods of detecting periodicity in image sequences have been studied
[24]]73][96][103][104]. Periodicity is a very strong cue in human motion perception, and
the periodicity of motion can be used to recognize individuals [72]. In a motion analysis
system, the usual data source is a temporal image sequence. An image sequence is

defined as a series of NV images or frames, acquired at discrete time instants
t, =ty +kAt, k=0,1,.,N-1 4.8)

where At is a fixed time interval and typically defined by frame rate in an image
sequence. In general, a motion f{2?) can be defined as a function at time ¢. If it repeats itself

with a period T, then a periodic motion can be described as
f@+T)y=f@®), T>0. 4.9)

In the image sequences of gait motion, the period and frequency are respectively the time
taken by a step and the number of steps taken per second. Accordingly, gait describes
periodic motion if all the spatial-temporal parameters are repeated after T steps, where T

is the gait period.

In Section 3.1, gait was described as the periodic motion between the successive
heel-strikes, and the period of the gait cycle was detected. Also, Murray [79] considered
human gait as “a total walking cycle” — the action of walking can be thought of as a
periodic signal. Therefore, the pattern of rotation angles around the joints has been
modelled as a pendulum, the motion of which is characterized by simple harmonic
motion. This assumes that the pattern of the motion is approximately sinusoidal in nature
[14][23][111]. Accordingly, gait motion can be characterized as having a periodic
component. Moreover, Bertenthal and Pinto [8] consider three specific dynamic
properties in the perception of human gait. First, a frequency entrainment property is
observed when two or more components of the gait cycle share the same frequency.
Second, phase-lock is observed when phase relationships among the components of the
gait cycle are stably related in their position or phases. Third, a periodic attractor property

is defined as a stable solution to an equation of motion.

On the other hand, the phase-space portrait is a useful method to represent periodic
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Figure 4.6: Periodicity Detection of Gait Signature

motion. The phase space is described as the space of all possible states of dynamic system,
in which the first derivative, or the velocity of movement (v), is plotted against its
position (s). As time varies, the point P(s, v) describing the motion of the system moves
along a certain trajectory on the phase space [8]. The curves plotted by these points
represent periodic motion because the velocity and position return repeatedly to the same
points. Figure 4.6(a) is a phase-space portrait of angular displacement () versus angular
velocity (w) for the hip and knee motion of Figure 4.5. As expected, a periodic phase
trajectory is observed in the figure. In addition, a cyclogram [44] is demonstrated by
ignoring the time axis of each curve and directly plotting knee angle versus hip angle as
shown in Figure 4.6(b). The cyclogram provides information about the posture of the leg
and the coordination of two joints but no information about the velocities involved.
However, using angle versus angle plots rather than angle versus time curves can improve
understanding of gait. The main reason for this is the fact that the shape of the loops is

easily recognizable, especially by eye.

4.2.3 Analyzing the Gait Periodicity

In the previous section, periodicity of the joint angles in the gait signature was detected
by graphical analysis. The angles obtained from a gait signature are a form of time series
data. A time series consists of values sampled at constant intervals over time, and any

quantity that can be measured over time can be analyzed as a time series. Figures 4.7(a)
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and (b) show the time series of the joint angles, which are extracted from the sequences of
the gait signatures. As a sequence of trajectory points, the angle data are ordered by an
implicit time dimension. In time series modelling, this kind of data can be understood as a

trigonometric model. The trigonometric mode! is described by
X(@t)y=acosQrft+¢)+¢, (4.10)

where the amplitude ¢, frequency f, and phase ¢ are parameters and ¢, is a white noise
series. As the deterministic part of trigonometric, this model is periodic and will be

appropriate only for the cyclic data.

On the other hand, periodic motion description requires long sequences of image
frames. As can be seen in Figures 4.7(a) and (b), the gait signatures during seven gait
cycles are used to describe the sequence data of the joint angles. If the joint motion of
human gait is periodic, then there will be some self-similarity within the curvature
function which becomes more evident in the autocorrelation function. The autocorrelation
function of a periodic waveform is itself periodic, and the periodic waveform f{?) of
period T satisfies Equation 4.9. If the waveform is completely random, then the
autocorrelation function will have its peak value at zero lag and will reduce to a random
fluctuation of small magnitude about zero for lags greater than about unity [56]. Figures
4.7(c) and (d) show the autocorrelations of the time series of the joint angles, which are
described in Figures 4.7(a) and (b). Here, the results show that the joint motion of human
gait is completely periodic. The autocorrelation describes the general dependence of the

values of the samples at one time on the values of the samples at another time.

Fourier analysis has also been used to determine periodicity in an image sequence. In
the Fourier analysis, any periodic waveform can be decomposed into a fundamental and
harmonics. That is, the energy of a periodic waveform can be concentrated at frequencies
which are integral multiples of some fundamental frequency [96]. This implies that peaks
at the fundamental frequency and its harmonics can be observed by the Fourier transform
of a sampled periodic waveform. Hence, the periodicity of the sequence data of gait
motion can be detected by obtaining its Fourier transform and checking whether all the
energy in the spectrum is contained in a fundamental frequency and its integral multiples.

The time series of gait motion in Figures 4.7(a) and (b) show a periodic oscillation. The
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corresponding power spectrums, which are shown in Figures 4.7(e) and (f), exhibit a
strong peak at the drive frequency together with some higher frequency harmonics.
Consequently, the result shows that the sequence data of gait motion is a periodic signal

and has same fundamental frequency.

4.3 Time Series Analysis and Prediction Model

The gait signature is a sequential set of the stick figures obtained over time, thus the joint
angles extracted from the gait signature are time series data. In the previous section, the
time series of gait motion was analyzed and characterized as a form of periodic motion.
The time series analysis has three goals: modelling, prediction, and characterization [40].
The goal of modelling is to find a description that accurately captures features of the
long-term behaviour. The aim of prediction is to accurately predict the short-term
progression. The third goal, characterization, attempts to determine fundamental
properties. Here, the time series for periodic gait motion is modelled by interpolation
functions of trigonometric polynomials. Prediction method of the gait time series based
on delay coordinate embedding is analyzed. In addition, a scale of the gait motion is

described by statistical moments.

4.3.1 Gait Motion by Interpolated Model

In many statistical analyses, the main goal is to establish functional relationships which
make it possible to predict one or more variables in terms of others. Regression methods
are among some of the most widely used methods in statistical approaches. Consider the

basic regression model with bivariate observations (x;, y),...,(x, y.) satisfying [31]
v, =ulx)+e, i=l.,n 4.1
where & are zero mean random errors and p is an unknown regression function, and x; are

assumed to fall in finite interval [a, b]. There are many effective methods of estimating p

including kernel, nearest neighbour, polynomial, Bayesian, and spline estimators.

However, statistical analyses of the gait relationships typically use continuous curves

of the time series data measured over the gait cycle. Medical research [79] has shown that
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the pattern of gait motion is approximately sinusoidal in nature. The basic trigonometric
functions sine and cosine describe sinusoidal functions. Moreover, the trigonometric basis
functions ¢ are all periodic over 2. The basis functions for trigonometric polynomials on

[-m, 7] are described as

@y (x) = ﬁ, @y (x) = %sin(lx), ¢y (x) = %cos(lx), forl= 1,...,—;— (4.12)
where #n is assumed even, and the basis is orthogonal. The trigonometric functions with
period 2 are naturally suited to estimating a gait curve by time series data. An assumed
functional relationship between periodic gait motion and time can be modelled by
interpolation of trigonometric polynomials. By the basic regression model of Equation
4.11, an n™-order trigonometric polynomial interpolation by least squares approximation

can be described as
n-1
y,(x)=a,+a,cos(2rnx) + Z[ak cos(2rhkx) + b, sin(27wkx)] 4.13)
k=1

where the aq, a,, a; and b, are unknown curve-specific coefficients. As n—o0, y,(x) tends

to the Fourier series.

The interpolation of much (equally-spaced) data by trigonometric polynomials can
make for very accurate results. Figure 4.8 shows the curves for joint angles of the hip and

knee motion during one gait cycle. Here, the points are the medical data from anatomical
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markers in a limb segment [118], and the lines are the curves that result from using 4"
order trigonometric polynomial interpolation. In the figure, the interpolation function is
seen to work very well for modelling the gait motion in that the fit over the whole cycle
appears close. In addition, future gait motion can be predicted by the periodicity of this
interpolation model. To represent or correct measured gait angle, Fourier series and a

perspective transformation techniques have also been used in gait studies [14][23].

4.3.2 Time-Delay Coordinate Embedding

The time evaluation of a dynamical system is represented by a function of the time
variation or (when sampled at regular intervals) time series of its dynamical variables.
The state of many dynamic systems can be accurately reconstructed by a finite window of
the time series. Let A4 denote a compact n-dimensional set of states of the system, and
h:A— R be an observation function which is a measurement of sum quantity of system,
i.e., x=h(a), and let 7 be a real number greater than zero. For each state a eR", one can

define the m-dimensional vector X [102]
X =[h(a),h(F_,(@)),.... h(F_, . (@))] (4.14)

where the function Fy(a) is defined through a(tr+t) = Fya(ty)). This vector is called a
delay coordinate vector because its components consist of time delayed version of the
observable of the system. The vector X is a segment of a time series with equal spaced
data produced by measurement function 4. This is called a time delay embedding, and it

can be obtained as

X =[x,%_ses Xy ) 4.15)

where x,=h(a) is the value of the time series at time ¢ and a is the state. Time delay
embeddings are widely used as the input vector to dynamic models, both linear and

nonlinear [76].

In the previous section, Figures 4.7(a) and (b) show the time series of angle data of
human gait. A useful method to plot the time series is to use delay coordinates. Figure 4.9
shows each value of the time series of angles (6) versus a time delayed version, by

plotting (6, 0.r) for fixed delay 7=0.08. Using delay-coordinates for periodic dynamics
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can reproduce the periodic orbit of the true system state space. Namely, the state space
defined by k coupled autonomous differential equations is R, however, the dimension &
would be very large. In contrast to the complicated differential equations of motion, the
behaviour in Figure 4.9 is fairly simple. This graph also represents periodic motion
because the same orbit is described, and the graph exhibits symmetry. These trajectories
exhibit a tendency to maintain a fixed orbital shape (or limit-cycle attractor). For time
series prediction, we need try to identify what state the system is in, look to the past for
similar states, and see what ensued at those times. In practice, we can average the
predictions to improve the statistical quality of the final prediction and accurately predict

where on the curve the system will be in one addition second [8][102].

S(T)

(a) Delay Plot from Figure 4.7(a) (b) Delay Plot from Figure 4.7(b)

Figure 4.9: Delay-Coordinate Reconstruction for Gait Analysis

Many available methods for time series analysis assume linear relationships among
variables. But in the real world, temporal variations in data do not exhibit simple
regularities and are difficult to analyze and predict accurately [16]. The motion of human
gait is also described by using data of several contemporaneous variables changing with
time. For example, the vertical change in head position has two cycles of downward and
upward displacement in each stride. These reflect the mechanics of the right and left
steps. Namely, there is a strong correlation between the behaviours of entire body motion.
To improve prediction accuracy, more sophisticated analyzing methods for non-linear
relationships, such as multivariate time series analysis, chaotic time series analysis, or

neural networks, will have to be used.
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4.3.3 Gait Description by Statistical Moments

In Section 4.2.2, the phase-space portraits and hip-knee cyclograms for detecting the
periodicity of human gait motion have been described by analyzing the joint angles, and
the periodicity is observed by a two-dimensional closed figure. Both phase-space portraits
and hip-knee cyclograms are important signatures of human gait motion, and a typical
angle-angle cyclogram has more important features with the characteristics of the gait
motion [44]. In gait analysis, hip-knee cyclograms describe the changes in the knee joint
as a function of the hip joint. These graphical representations combine the temporal
changes of two joint angles, which allow interpretation of the relationships between the
two angles. In addition, the hip-knee cyclograms represent the movements of nearly the

entire body, thus they can be representative of the subject’s gait pattern [6].

The hip-knee cyclograms provide a basis for separating different gait patterns, and
they are represented as kinds of plane closed curves. There are several methods for
quantifying planar shapes [108]. Here, we consider statistical moments [44][53] as a
descriptor for characterizing the gait motion. In general, the statistical moments of order

(p+q) in the x-y plane are defined by

M(p.g)= [ [ x7y"f (x, y)dxdy (4.16)

where f{x, y) is the membership function of the curve. This function takes the value 1 if
the point (x, y) is on the shape boundary, and otherwise its value is 0. For discrete data,

the moments can be given by

n m

M(p,q)=).> x"y" f(x,y) (4.17)

x=1 y=1

where m and n are the finite region of the x-y plane. By Equation 4.17, M(0, 0) represents
the region of a closed curve. The centre coordinates of the region is given by

_ M(1,0) _ M(©,)

0,00 T M©,0) “18)

Translation invariance can be achieved if we use centralized moments. The centralized

moments are computed with respect to the centre of gravity by
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1) =33 - 11 = 1, Y7 F(6,9). 4.19)

x=1 y=1
To enable invariance to scale, normalized central moments are given by

(p,q) (4.20)

U(p,Q)=W-

The first seven scale-normalized central moments are described by 1(1,1), 1(2,0), 7(0,2),
n2,1),1(1,2),n(3,0), n(0,3).

However, the lower order moments can be used in shape description even if the
region is represented by its boundary [108]. Moments are an alternative approach for
describing a shape, and they can provide much more information than a single measure of
area. Many aspects of moment properties, normalization, descriptive power, sensitivity to
noise, and computational cost have been studied. Hu [53] has derived moment
expressions that are invariant to translation, rotation and scaling of shapes. They consist

of groups of normalized central moment expressions. Some examples are shown below

Oy =Tl + 1, 4.21)
©, = (7720 M )2 + 477121 (4.22)
@ = (7730 —3n, )2 + (37721 — o3 )2 . (4.23)

20 -10 0 10 20 30

hip angle (deg)
(a) State Diagram of Gait Cycle (b) Gait State in the Cyclogram

Figure 4.10: Representation of Gait State by Periodic Gait Pattern
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These moments are of finite order, thus unlike the centralized moments they do not
comprise a complete set of shape descriptors. However, the normalized central moments
in a cyclogram can be calculated by assigning x=6,;, and y=0},.... Figures 4.10(a) and (b)
show the state diagram of gait cycle and the cyclogram with gait state by the data from
Figure 4.8. As can be seen in the figures, the gait cycle is divided into seven temporal
segments [88][92], and the finish points of each phase are marked by ‘*’ on the
cyclogram. As descriptors, the moments are simply calculated by using these finish points
or x-y coordinates in the angle-angle cyclogram. The descriptors are obviously invariant

with respect to translation and scale.
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(a} Centre Coordinates of the Cyclograms (b) Normalized Central Moments (2™ Order)

Figure 4.11: Gait Descriptors based on Moments of Cyclograms

The normalized gait descriptors based on Hu moments of the cyclogram are shown in
Figure 4.11. For visualization purposes, the central coordinates and only 3 of the
moments of the 4 subjects with seven gait signatures of each subject are separately
shown. As can be seen in the figure, the centre coordinates appear to have better inter-
class variability, but 3 of moments have higher variance. Recently, temporal and Zernike

velocity moments have been used to describe motion for recognition [106].

4.4 Results and Conclusions

The human gait is a pattern of locomotion and can be described by the general and

kinematic parameters. The measured parameters in the gait signatures are stride length,
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cycle time (or cadence), speed, and joint angles. The joint angles are the most important
kinematic parameters and defined as a gait time series. The time series of gait angles can
be characterized as having a periodic component, and hidden periodicity of the gait time
series can be detected by the autocorrelation function or by Fourier analysis. In addition,
the time series for periodic gait motion is often modelled as harmonic motion such as a
pendulum. Here, the gait signatures are analyzed to extract the gait parameters and
periodic components. The periodic motion of human gait is modelled by interpolation of
trigonometric polynomials. Also, delay coordinates embedding and statistical moments

are employed to describe the human gait motion.

4.4.1 Experimental Results

In the experiments, the gait signatures extracted from seven (body contour) image
sequences of each of the 100 subjects are used. The gait parameters are extracted from the
gait signatures and the relationship between the parameters is analyzed in Section 4.1.1.
Figures 4.12(a) and (b) show the results of measuring relative joint angles obtained from
100 different subjects during one gait cycle. In the figures, the lines are the curves that
result from using 4”-order trigonometric-polynomial interpolants. Also, Figures 4.12(c)
and (d) show the mean and standard deviation of the relative joint angles obtained from
Figures 4.12(a) and (b). As in medical studies [79][92], the hip and knee at initial contact
are flexed by about 25° and 5° from the vertical, respectively. During the loading
response, the hip position is relatively stable, possibly losing 2°~3° of flexion, and the hip
progressively extends at the same rate after mid stance. Also, peak extension of the knee

is attained slightly before the end of the swing phase.

In Figures 4.12(e) and (f), we can observe a periodicity of the gait motion and also
predict a gait movement by using the phase-space portrait and delay coordinate
embedding. In the figures, the small curves on the left region show the hip motion, whilst
the large curves on the right show the knee motion. Clearly, the knee motion is
characterized by a large range of motion. However, the results of Figure 4.12 show that
the new approach works successfully, comparing well with biomechanical data (see
Figure 4.2) acquired by a marker-based system. The variance in Figures 4.12(c) and (d)

would appear to be smaller than for Winter’s [119] analysis. These results concern 100
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Figure 4.12: Extracted Gait Motion from the SOTON Database
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subjects with seven sequences of each subject, a total of 700 sequences, i.e. 2 much larger
volume of data than in that analysis. Further, in this analysis, subjects were not
supervised, and carried no markers, allowing for relaxed walking patterns. This is also
reflected in the small number of traces that lie outside of the general trend. However, it
can clearly be seen that the general trend is followed by most of the traces, suggesting

that earlier analyses could be revised by this new approach.

4.4.2 Conclusions

In the previous chapter, the gait signatures are extracted from the SOTON database. The
sequence of the gait signatures contains the general and kinematic parameters on human
movement. The kinematic parameters are described by rotation angles around the joints
over time. To detect the periodicity of the gait time series, phase-space portrait and
cyclogram are used, and the periodic components of gait motion are analyzed by the
autocorrelation function and Fourier analysis. Also, the gait motion is modelled by
trigonometric-polynomial interpolant functions. The prediction of the gait motion is
performed by delay coordinates embedding, and statistical moments are used to describe
a scale of the gait motion. However, the gait signature has much information for
describing the gait motion. In future, the parameters and descriptors extracted from the

gait signatures can be used as the features for classifying and recognizing humans by gait.



Chapter 5

Recognizing Humans by Their Gait

5.1 Feature Extraction of Human Gait

The functionality of a pattern recognition system can be divided into two fundamental
tasks: description and classification. The description task extracts features of an object,
and the classification task uses a classifier to map the features to a group. Thus, features
which truly discriminate among groups will assist in identification, while the lack of such
features can impede the classification task from arriving at an accurate identification [90].
Feature extraction may be defined as a process to determine how to explicitly describe the
object attributes, generally by constructing a set of features representing objects [62].
There is no general solution for extracting features from object data, so various methods
can be used to extract the features for a particular domain and application. Here, the
features are extracted by analyzing the sequence of gait signatures in the image sequence

during a time period, and the features based on motion parameters are mainly considered.

5.1.1 Extraction of'the Motion Information

Extracting motion information from an image sequence is an important step in the
identification or recognition of humans. In general, there are two methods for extracting
planar motions: motion correspondence and optical flow [15]. The motion
correspondence method deals with extracting particular points or characteristic features
from an image sequence, and that is concerned with motion trajectory. The motion

trajectories can be parameterized using several methods such as position and direction,

81
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velocities, acceleration, and spatial-temporal curvature. The generation of motion
trajectories from an image sequence is usually related to the feature points in each frame
and correspondence of such feature points from one frame to another. The feature points
need to be distinctive enough for robust detection, and stable through time so they can be
tracked. Many model-based approaches for the analysis of human motion have been

developed by using this method [2][39][77].

Optical flow [32] is very common for evaluating motion from an image sequence.
The optical flow can be computed from a sequence by considering the displacement of
each pixel between two consecutive images. Optical flow was used to derive a gait
signature by analyzing the shape of gait motion [72], and features of the motion were
derived as the variation of the first and second-order moments of dense optical flow.
Several methods [54][72][83] have been used for recognizing human gait motion. In the
optical flow method, accurate and dense measurements are difficult to achieve. Figure 5.1
shows an overview of the extraction of motion information from image sequences.
Extracting motion information over a region or a whole image is called a region-based
feature. However, most features used in motion and object representation are derived

from trajectory-based features and optical flow.

Image Sequence
Trajectory-Based Features Region-Based Features
(Motion Trajectory, Spatiotemporal Optical Flow
Curves, Reference Curves)
Normal Flow Statistics Binary Image Greyscale
Correlation Features Image Features

Average Flow of a region

Velocity Speed &  Joint Angles  Spatiotemporal
Direction Curvature

Mesh feature  Model Views
Codebook Eigen Images

Relative Motion
Motion Events
Motion Events

Motion Events

Figure 5.1: Extracting Motion Information from Image Sequences [15]
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Human gait data have generally persistent characteristics: high-dimensionality,
temporal dependence, curve correlations and non-linear relationships. A set of human gait
data may consist of kinematic, kinetic, electromyography (EMG), metabolic and
anthropometric variables [18]. The gait variables interact in a complex non-linear form,
an observation attributable to the intrinsic non-linear dynamics of human movement
[18][19]. However, the vision based approaches have some limitations in the data
collection, and hence human gait is usually described by kinematic motion analysis only.
In motion analysis of human gait, kinematic characteristics include linear and angular
positions, their displacements and the time derivatives, notably the linear and angular
velocities and accelerations [89]. These kinematic characteristics can be well represented

by trajectory-based features.

5.1.2 Extraction of the Gait Features

In the previous chapters, the sequence of gait signatures has been extracted from an image
sequence, and its motion parameters were calculated. Also, the periodic gait motion was
modelled by interpolation of trigonometric polynomials. The sequence of gait signatures
is assumed to contain the periodic time-dependent information. Therefore, we can extract
trajectory-based features from the sequence of gait signatures. The trajectories are
basically vector valued functions at each frame of a sequence of gait signatures, and they
can be parameterized by topological and parametric feature vectors. The topological
feature vector consists of geometry data of human gait motion such as height, width, and
position. The parametric feature vector such as cycle time, stride length, linear and
angular velocities has variable length since not every component is always visible [17]. In

addition, the trajectory-based features have less dimensionality than optical flow.

The nine coordinates that construct the gait signature are the most important
topological features, because other parametric features such as the joint angles are
calculated based on these coordinates. Therefore, the nine coordinates of a gait signature
can be considered as an original feature space. Figure 5.2 shows a graphical
demonstration of the spatial-temporal features, such as coordinates of the body points, the
joint angles, and the angular velocities. The gait features are basically based on sequences

of these spatial-temporal data, and they are extracted by determining an appropriate
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Figure 5.2: Graphical Demonstration of Spatial-Temporal Features at Frame i

subspace of dimensionality m in the original feature space of dimensionality d (m < d).
Table 5.1 shows the gait features based on motion parameters of the sequence of gait
signatures. The general parameters are a basic description of gait motion and can be
calculated from each of the gait signatures. Also, the kinematic parameters are obtained
from the joint angles, which are interpolated by 4”-order trigonometric polynomials,
during one gait cycle. In general, the kinematic parameters are time series data during the
gait cycle, thus mean and standard deviation values of the time series can be used as gait
features. Moreover, moments are also used to generate the features, which are invariant to

translation and scaling of the hip and knee angles.

Table 5.1: Gait Features based on the Motion Parameters

Type Features Described
amplitude in Section 3.1.2
General ; : :
Pttt body height in Section 3.4.1
cycle time (or cadence), stride length, speed in Section 4.1.1

mean(|Greci|), mean(|Gpaci]), mean(|6,p|), mean(|Geee|) | in Section 4.2.1

Kinematic

Parameters mean(lwhipl)’ mean(l‘*’knee'): O(Iwhipl)’ O-(lw_kneel) in Section 5.1.2
O-(leneck[): O(|6back|); o(lgllipl)! o(lgereel): Yinee in Section 5.1.2
s in Section 4.3.3
Moments iy

1(2,0), 7(1,1), 1(0,2), 1(3,0), n(2,1), 7(1,2), 1(0,3) in Section 4.3.3
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In addition, the standard deviations (o) in the kinematic parameters are calculated by
a general statistical method, and the angular velocities @; at frame i, given an inter-frame

time At (1/25 sec), are calculated by
w,=(0,-6,_)/At. 5.1

To determine temporal dependence, we generally need periodic data, a sequence of
images of human gait covering a whole gait cycle. As a feature, the correlation ¥pe.

between Gpee; and G2 1s given by

R 9 -—‘5 ee 0 i _5 nee
]/,mee - z,( kneel i kn 1)( kmee2 i ko 2) (52)

\/i(glmeel,i —‘gkneel)2 \/i,'(ekneeZ,i —éhee2 )2 ‘

Symmetry is one of the characteristics of a walking gait [101], so the correlation between

the leading and the following leg is an important factor in gait. Changes in height reflect
the magnitude of the right and left steps. Namely, large angles suggest a smaller height

than normal, and the characteristics of this relationship need to be verified.

On the other hand, the features contain body height, cycle time, stride length, speed,
average angles of the hip and knee, variation of the angles, and moments. Their features
vary in dynamic range and units. Thus, features with large values may have a larger
influence in the classifier than features with small values [112]. This problem can be
overcome by normalizing the features so that their values lie within similar ranges. A
straightforward method is linear normalization via the respective estimates of the

minimum and maximum of the feature values and can be given by

v -V
v, =T + (ﬁ (T — Tmin)} (5.3)
where T,.{1.0) and T,;,(0.0) are the maximum and minimum scaled target values, and
Vmae and ¥V, are the maximum and minimum of the original feature values (v,). In
general, a number of classifiers such as k-nearest neighbours and back-propagation neural
network require normalized input vectors of some standard range, such as 0 to 1 or -1 to
1. Also, the performance of classification or identification systems depends largely on

extracting efficacious features to represent object characteristics.
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5.2 Feature Selection and Classification

In the previous section, several kinds of gait features are extracted from the motion
parameters of the sequence of gait signatures. The gait features may contain information
that is redundant or superfluous, in which case it is usually required to select a subset to
reduce extraneous noise. This process of removing irrelevant and redundant features is
known as feature selection. Using feature selection often improves the accuracy and
reduces the computational effort involved in classification. Thus, feature selection is an
essential step to enhance correct classification in the presence of many irrelevant features
and a small number of samples. In addition, many classification methods are available
[61], ranging from basic approaches such as £-NN (k-Nearest Neighbour) algorithm, to a
complicated approach such as hidden Markov models or support vector machines. Here,
the gait features are selected by statistical analysis, and the selected features are classified

by using a k-NN classifier.

5.2.1 k-NN Classification Algorithm

The k-Nearest Neighbour (k-NN) rule is a well-established and nonparametric pattern
classification technique [30], and it provides a basic classification method that is fast to
compute and produces easily comprehensible results. Suppose that a sample of N feature
vectors S = {x;: j = I, ..., N} has been grouped into P classes Cj, ..., Cp. For any new
feature vector x;, the task is to assign x; to a class, and thus recognize it as belonging to
that class [74]. The k-NN method is to find the distance from X; to each ofiits k£ nearest
neighbours, say Xj), ..., Xj@, for some fixed £ > 0. The Euclidean distance between x; and

Xjm), for eachm = 1, .., k, is defined as

Q

dm = d(xiaxj(m)) :\/Z (xi,q _xj(m),q )2 (54)

g=1

where Q is the dimensionality of the feature vector, and x;, and x;, are the values of the
q" feature of the samples x; and x; respectively. This method allows each d,, to vote for
the class p to which x;4,) belongs. By this means, a sample can be associated to the nearest
or statistically correct class. Sometimes, the £-NN rule 1s referred to as a lazy classifier,

because there is no training phase in the classification process.
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Essentially, a £&-NN algorithm measures the Euclidean distance between a test sample
and the training samples in feature space and finds the k& closest neighbours based on
some distance metric [30]. That is, training samples can be used to determine the class of
a previously ungrouped sample §. A Euclidean distance metric is used to find the &
training samples closest to the unknown sample. Of these & closest samples, whichever
occurs most frequently is used to label the ungrouped sample. In practice, a k-NN
algorithm can be difficult to beat, even with sophisticated techniques. Unlike other
common classifiers, a £-NN algorithm does not build a classifier in advance. When a new
sample arrives, a A&-NN classifier finds the k closest neighbours to the new sample in the
training space based on the Euclidean distance [30][38][74]. However, one of the primary
advantages of a k-NN algorithm is that it is very fast to compute. By using a 4NN
algorithm and a simple Euclidian distance metric, we can obtain insight into the baseline

performance of the new gait classification system.

5.2.2 Feature Selection and Evaluation

Feature selection has many definitions [26], however it usually attempts to reduce the
number of features provided to the classification task. There is more than one reason for
the necessity to reduce the features to a sufficient minimum. Computational complexity is
the obvious one. A related reason is that although two features may carry good
classification results when treated separately, there is little gain if they are combined
together in a feature vector, because of a high mutual correlation [112]. Therefore, the
goals for feature selection are to retain as much of the original information as possible,
remove as much as possible of the redundant and irrelevant information that could
degrade the classification performance, and reduce the measurement data to variables that
are more suitable for discrimination [74]. Consequently, the task of feature selection is to
improve the classification rate, so a natural selection rule seems to be to choose the

features with lowest individual classification error values.

However, feature selection is often relegated to classification so that usefulness of
each feature can be evaluated using an evaluation function in order to select the optimal
subset. An evaluation function typically tries to measure the discriminatory ability of a

feature or a subset to distinguish the different class labels [26]. Here, a statistical distance
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measure that describes the distribution of subjects or classes in the feature space is
employed. That is, inter-class separation due to mean-difference with respect to the class
covariances is measured by a variation of the Bhattacharyya distance [38][46]. The

separation between the two classes / and j, for a given feature, is given by

S, =m, —mj]r{z,;zj } (m,~m,] (5.5)

where m; is the class mean and }; is the covariance matrix of class i, with equivalent
terms for class j. To measure a class separability of the given feature, a mean and
standard deviation value of §;; for each feature is calculated, and the larger values of the

ratio of mean to standard deviation ($*/6) imply a good class separability.

However, treating features individually as scalars has the advantage of computational
simplicity but may not be effective for complex problems and for features with high
mutual correlation [112]. Therefore, the discrimination effectiveness of feature vectors is
evaluated by a classification error rate for each combination of features, although the best
features are selected by the class separability measures. In practice, the relationship
between feature vector and classification error rate in a classifier can be analyzed by
removing relevant input features. In addition, the classification probability for the feature
vector combinations may increase the complexity requirements depending on the
classifiers. In order to reduce complexity, a number of efficient searching methods have
been suggested [26][62], and the sequential forward selection method [112] is used here
with &-NN classifier. As a result, 17 features are removed from 27 gait features shown in
Table 5.1, and 10 features such as body height, cycle time, stride length, speed,
mean(|Becrl), mean(|Gsact)), 0(|Ghip)), Vienees I 1y are selected as gait features.

Correlation and covariance matrices provide the basis for all classical multivariate
techniques, because they provide sufficient statistics under multivariate normal linear
models [36]. Thus, the relationships among the variables may be more readily
understood. Figure 5.3 shows the correlation maps for feature vectors of 100 subjects.
The correlation map of the correlation matrix R is drawn using Corrgrams [36] and re-
ordered by magnitudes of correlation in the correlation map. In the figure, each cell is

shaded with the intensity of colour scaled 0 to 100, in proportion to the magnitude of the
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correlation. Thus, a darker cell shows better discriminatory capability, and the diagonal is
the brighter cell reflecting the zero distance between the same feature sets. As shown in
Figure 5.3(b), the inter-class correlation decreased when the selected features are used,
hence selected feature vectors can lead to performance improvement of the classification

system.

5.2.3 Gait Classification and Analysis

In gait classification, 100 different subjects with seven gait signatures of each subject, a
total of 700 gait signatures (=19,534 images), are used. A total of the 500 feature vectors
extracted from the front four of the seven signatures and their means for each of 100
different subjects are used as the training samples. Also, a total of the 100 feature vectors
extracted from the means of the remaining three of the seven signatures for each of 100
different subjects are used as the test samples. To classify the gait features, a simple k~-NN
algorithm described in the section 5.2.1 is employed as a classifier. This method uses the
Euclidean distance between the position of a test feature vector and the position of the
surrounding training feature vectors to find the & nearest neighbour in the feature space.
Undoubtedly, a more sophisticated classifier would be prudent, but the interest here is to

examine the genuine discriminatory ability of the features.

In the £-NN with values of k=1, 3, and 3, the results of CCR (Correct Classification
Rate) for using different kinds of the feature vectors are shown in Table 5.2. When not
considering the number of features, the features based on kinematic parameters show the
best performance in discriminatory capability. By combining two feature vectors, the
performance improves to nearly 78% CCR which is similar to the result by using all 27
features. Also, the best performance comes from only 10 selected features, and the result
shows an 84% CCR which is 7 percentage points higher then the result by 27 features as
shown in Table 5.2. As can be seen in the table, a CCR offer declines only slightly when
the value of k increases, so the selected feature vector shows a very good performance.
However, four of the five general parameters (80%), four of the thirteen kinematic
parameters (31%), and two of the nine moments (22%) are selected as important gait
features. This result confirms that individuality by gait concerns a variety of components.

Intuitively, classification by gait concerns the human body shape and its motion. That is



Chapter 5 Recognizing Humans by Their Gait 91

Table 5.2: Classification Rate by Selected Feature Vectors

Feature Vector (Number of Features) kC=o]rrect Clasmﬁ]:ilt;on Rate (C?:%
General Parameters (5) 19.0% 23.0% 24.0%
Kinematic Parameters (13) 53.0% 49.0% 52.0%
Moments (9) 36.0% 28.0% 29.0%
General + Kinematic Parameters (18) 78.0% 71.0% 75.0%
Kinematic Parameters + Moments (22) 60.0% 50.0% 51.0%
Moments + General Parameters (14) 58.0% 54.0% 53.0%
All Parameters (27) 77.0% 75.0% 73.0%
Selected Features A (18) 83.0% 79.0% 76.0%
Selected Features B (10) 84.0% 80.0% 82.0%

confirmed here by selections of the parameters body height, ., 11, that describe shape and
cycle time, stride length, speed, mean(|Gyec|), mean(|Gyacrl), o(|Ghipl)s Yienee» Which describe
motion factors. Other studies have clearly confirmed classification capability on this
database, using more features than given here to achieve a higher classification rate than
our approach gives. However, their approaches are driven purely by biometric capability
whereas here we sought to derive confidence in our biomechanical measure indirectly by
classification assessment. Since we derive classification capability by these
biomechanical measures this gives further confidence in the validity of these marker-less

derived measures.

In Section 2.4.1, the quality levels of the pre-processed image sequences, which are
body contour data of the SOTON database, were graded as 4 (good), B (fair), and C (bad)
to be 30%, 40%, and 30% of subjects, respectively. To analyze the relationship between
the quality level and a CCR, 30 subjects are selected from each of the quality levels and
classified separately by using the A-NN algorithm. Table 5.3 shows the classification
results for each of the quality levels. In the experiments, seven image sequences for each
subject with the 10 best features are also used. As can be seen in the table, a CCR is

considerably affected by the quality level of the pre-processed image sequences, namely



Chapter 5 Recognizing Humans by Their Gait 92

Table 5.3: Classification Results by Pre-processed Image Quality

Body Contour ; Correct Classification Rate (CCR)
Quality e e k=3 k=5
Class A (good) 30 96.7% 93.3% 96.7%
Class B (fair) 30 93.3% 90.0% 86.7%
Class C (bad) 30 90.0% 80.0% 90.0%
Class A+B 60 91.7% 86.7% 85.0%
Class A+ C 60 90.0% 83.3% 90.0%
Class B+ C 60 83.3% 80.0% 80.0%
All Subjects 90 85.6% 81.1% 84.4%

the better performance of a CCR comes from the better quality level of pre-processed
images. Note also, that the poorly extracted silhouettes appear to reduce recognition
capability (rather than the good extraction can improve that by poor extraction) since the
recognition rate of the well and the poorly extracted silhouettes follows that of the poorly
extracted silhouettes more closely. Consequently, our new methods are achieved the
classification rates of up to 96.7% for 30 subjects and 84.0% for 100 subjects which are
very good performance compared with other studies [22][48][64][65][70][72][86][106].

5.3 Automatic Human Recognition by Gait

Automated person identification is an important task in many security systems such as
video surveillance and access control. It is well-known that biometrics are a powerful tool
for reliable automated person identification [39][65]. Automatic gait recognition is one of
the newest of the emergent biometrics and has many advantages over other biometrics.
The most notable advantage is that it does not require contact with the subjects nor does it
require the subject to be near a camera. Various approaches [22][64][65][70][72][86] for
the classification and recognition of human gait have been studied, but human gait
identification is still a difficult task. Here, the gait feature vectors extracted from the gait
signatures of the SOTON database are used for the recognition experiments. Also, an

enhanced back-propagation algorithm for training multi-layered neural network, based on
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selective retraining and a dynamic adaptation of learning rate and momentum, is

employed to recognize the gait.

5.3.1 Human Gait Identification System

In general, a biometric system operates either as a verification system or as an
identification system. A verification system authenticates a person’s identity by
comparing the input biometric characteristic with a person’s own biometric data pre-
stored in the system, so the system either rejects or accepts the submitted claim for
authentication. An identification system recognizes an individual by searching the
template database for a match [61]. However, a typical human gait identification system
can be divided into training and recognition modules. The training module is responsible

for making a trained database to identify a person. During the training phase, the gait
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Figure 5.4: Block Diagram of Gait Identification System
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motion is captured by a video camera for acquiring a digital representation of the
characteristic such as the gait signatures. A feature extractor processes this representation
to generate a more compact and expressive representation such as gait feature vector. The
feature vectors for each person are then trained by a pattern recognition algorithm, and

the trained results will be stored in a gait identification system’s database.

In addition, the recognition module is responsible for identifying the person. During
the recognition phase, the video camera captures the gait motion of the person to be
identified, and it converts into the same sort of feature vector as in training. After that, the
feature vector will be submitted to the recognizer, which automatically computes it
against the trained database to determine the identity of the individual. Figure 5.4 shows
the block diagram of our gait identification system. As described in the previous sections,
the gait signatures are extracted from the image sequences of the SOTON database, and
the feature vectors are extracted from the motion parameters of the sequence of gait
signatures. To train and recognize the gait, a multi-layered neural network is used. The

architecture of a typical biometric system also consists of same components.

On the other hand, the pattern classifier (or recognizer) is one of the most important
components of the gait identification system. Many approaches to analyze and recognize
gait have been used [6][18][19][86]: k-nearest neighbours, fuzzy clustering, principal
component analysis (PCA), canonical analysis, neural networks, fractal dynamics, and
wavelet methods. Recently, Chau [18][19] has reviewed these approaches for analyzing
and classifying gait data. He notes that neural network methods facilitate gait analysis
because of their highly flexible, inductive, non-linear modelling ability, unlike any other
approaches. The non-linear property of multi-layered neural networks is useful for
analysis of complicated gait variable relationships which have traditionally been difficult
to model analytically. Hence, an enhanced back-propagation neural network algorithm is

employed as a classifier to recognize the gait.

5.3.2 Enhanced Back-Propagation Algorithm

The back-propagation algorithm is a gradient descent algorithm in which the MSE (mean
square error) is employed [107][116] for minimizing the error in weight-error space. Let

d, be the value of k-th output node for p-th input pattern, and o, be the actual output.
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Then, an RMS (root-mean square) error measure is derived by normalizing the MSE as

_-_—1— P K B ,
Erms _PK \/ZZ(dpk Opk) (56)

p=l k=1

where P is the number of training patterns, and K denotes the number of nodes in the
output layer. In general, E,,; is more descriptive than the MSE for comparing the training
results of the algorithms and thus is more effective in measuring the accuracy of mapping
and association [60]. Consequently, £,,; can be used as an error measure in the back-
propagation algorithm which continues the training processes until it becomes less than

the predetermined tolerance.

However, an algorithm that uses E,,; and a predetermined tolerance has two serious
problems. First, even though most input patterns are not responsible for the RMS error,
we should continue the training processes because of the error caused by some patterns.
Second, as E,, is used as an error measurement, the degree of learning obtained for each
pattern is not accurately reflected. One of the solutions to the problem might be to
calculate the average RMS for all training patterns and the individual RMS for each
pattern, and then to train specific patterns which have a greater RMS than the average. In
many cases, the weights incorrectly fit the actual output of specific patterns. Incorrect
fitting can be detected by identifying the output node £ which has the maximum error for

pattern p, where can be defined as
By, =maxi_ (|d, —o,) (5.7)

In a conclusion, retraining which reflects the characteristic of each pattern can be
achieved by detecting incorrect fittings and by using error measurements of Epgyq.: and
E,,.s. This method may not only reduce training time, but also increase recognition rate by

selective retraining.

On the other hand, weights in the back-propagation algorithm are recursively
adjusted with a set of pairs (input values and corresponding output values) until the value
of the difference between the desired output and the actual output is less than the
predetermined tolerance. Weight adjustment is determined based on the generalized

formula
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AW, (t) =1(6,0,) + aAW (¢ —1) (5.8)

where 7 is the learning rate, and « denotes the momentum term [93][107]. As the
learning rate becomes larger, the change in the weight becomes larger, and training with a
larger learning rate might finish earlier. However, in that case convergence is not
guaranteed, because oscillation can arise. Therefore, the learning rate should be
maximized for speedy convergence within a range to prevent oscillations [99][116]. The
momentum term provides speedy training while preventing oscillation and indicates the
size of weight adjustment based on previous changes of weight. Oscillation can be
detected by analyzing error curves, namely, by irregular change in the error measurement
term E,,;. In addition, oscillation should be detected within a predetermined interval
(number of epochs) to be applicable to dynamic adaptation of learning rate and
momentum. This algorithm may be effective in training relatively complex patterns by

detecting oscillations and quickly adapting to them.

The usefulness of the proposed method is demonstrated in experiments with the XOR
and Encode problems [74][99]. Table 5.4 shows comparison results of the standard
algorithm and the proposed algorithm. In the test, after training 100 patterns, investigated
was average RMS values when the training iterations reach 500, 1000, and 2000 epochs,
average recognition rate measured after 2000 epochs, and recognition rate for 1000 new
test patterns. Performance results such as the number of iterations and convergence speed
are sensitive to the initial weights. Therefore, the same set of initial weights was used for
comparing the two algorithms, and the performance tests were repeated multiple times for

preventing statistical biases. As can be seen in the table, the proposed back-propagation

Table 5.4: Performance Results for Enhanced BP Algorithm

Neural Nets Task Network Average RMS Average | Gen.
Algorithm Topology | 500 1000 2000 | Correct | Test

XOR | 2x3x1 | 0.0174 | 0.0145 | 0.0133 | 99% | 92.0%
Encode | 8x3x8 | 0.0133 | 0.0100 | 0.0093 | 98% | 72.4%
Enhanced | XOR | 2x3x1 | 0.0083 | 0.0040 | 0.0024 | 100% | 95.3%

BP Encode | 8x3x8 | 0.0150 | 0.0138 | 0.0120 | 97% | 74.3%

Standard BP
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algorithm demonstrated better performance than the standard algorithm in solving the
XOR problem which has only a single output node. In solving the Encode problem,
convergence speed was a little slow, but the degree of generalization was increased.
Modification of weights through selective retraining reduced computation complexity and
eventually decreased training time. The back-propagation algorithm has been known to
be useful in training multi-layered neural networks, and thus has been effectively applied
to various fields. However, disadvantages of the algorithm are that it requires a large
computational time for training and possibly converges into a local minimum in the

training process [99][107][116].

5.3.3 Recognition of Human Gait

An automated pattern recognition system minimally contains an input subsystem that
accepts sample pattern vectors and a decision-maker subsystem that decides the classes to
which an input pattern vector belongs [74]. If it also classifies, then it has a training phase
in which it learns a set of classes of the population from a sample of pattern vectors,

namely, it partitions the population into the subpopulations that are classes. As described

Feature Vector  Input Layer Hidden Layer Output Layer ID Decoding  Identification

r

rID § DB

Matching

Figure 5.5: A Two-Layer Neural Network for Gait Recognition
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in Section 5.3.1, a multi-layered feed-forward neural network is employed here to train
and recognize the human gait. Figure 5.5 shows the network architecture used within this
study. In the figure, X is the input feature vector with N elements, and O is the output
vector with M elements. The neural network has one hidden layer of sigmoid nodes
followed by an output layer of linear nodes. To train the network, the enhanced back-
propagation algorithm described in the previous section is used. Also, the nodes of output
layer are divided into two groups, and information about a maximum output node of each

group is used to decode the output to an identification code of gait.

In the experiments, 90 different subjects with seven gait signatures of each subject, a
total of 630 gait signatures, are used. As described in Section 2.4.1, the subjects are
categorized into three different groups according to the quality levels of the pre-processed
body contour data, and each group contains 30 different subjects. To apply the neural
network, four gait signatures of each of the 30 subjects for each group are used to
generate the 150 training feature vectors, and the arithmetic means of the other three gait
signatures of each of the 30 subjects for each group are used to generate the 30 test
feature vectors as described in Section 5.2.3. Also, the 10 gait features for each subject
are used as input data, and the numbers of hidden nodes and output nodes are set to 28
and 13 respectively. To decode the output to identification code, the first digit of the code
is determined by a maximum output node among the first three output nodes, and the

second digit of the code is determined by the other output nodes.

Table 5.5: Recognition Results by Pre-processing Quality

Body Contour Quality | # of Feature Vectors Recognition Rate
(# of Subjects) Training Test Training Phase | Recog. Phase
Class A - Good (30) 150 30 100.0% 90.0%
Class B - Fair  (30) 150 30 100.0% 83.3%
Class C-Bad (30) 150 30 100.0% 83.3%

To recognize humans by their gait, the neural networks are trained until recognition
on the training data reached 100 percent, thus the classification rates for each group of the
training sets were 100%. Table 5.5 shows the recognition results for each group of the

different quality levels. As can be seen in the table, the better the quality of results of the
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pre-processing stage, the better the performance of the recognition rate, and the neural
network approach achieved a recognition rate of up to 90% for 30 subjects. Although the
recognition rate does not reach 100%, this preliminary study does suggest the possibility
of this gait biometric. Naturally we seek to improve the recognition rate in future.
Notwithstanding this, the marker-less gait recognition can clearly handle a small number
(30) of subjects successfully as shown in other studies, often for an even smaller
population. By this, these approaches show that people are unique by their walking
pattern, according with earlier biomechanical suggestions, and buttressing other similar

results.

5.4 Results and Conclusions

Although there are extensive studies on the biomechanics of human gait motion, they
have been mainly interested in analyzing movements for clinical application and athletic
performance, and not for recognition purposes. However, one of the most distinctive
characteristics of human gait is the fact that it is individualistic. As a biometric, human
gait may be defined as a means of identifying individuals by the way they walk. For a gait
biometric to be efficacious, the feature selection is a critical task, because improperly
selected features frequently lead to low classification rate and require complex
classification algorithms. In addition, there have been several attempts to automatically
recognize a person’s gait or diagnose a walking condition with neural networks. Here, a
simple A-NN classifier is used in attempt to reveal the genuine discriminatory capability
of the selected feature sets. The enhanced back-propagation algorithm is also employed

for recognizing the gait.

5.4.1 Experiment Results

As described in Section 5.2.3 and 5.3.3, the SOTON database, which equals in size the
largest contemporaneous gait database, is used in the experiments. The database contains
100 different subjects with seven image sequences of each subject, and the gait signatures
are extracted from the image sequences of the database as described in Chapter 3. By

analyzing the sequence of gait signatures, 27 gait features based on motion parameters are
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considered first, and only 10 important features are selected by the feature selection
method. The selected feature set includes most of general parameters, the neck and back
angles, dynamic of the hip angles, the correlation coefficient between the left and right
knee angles, and the centre coordinates of the hip-knee cyclogram. To apply the A-NN
classifier, the selected feature vector shows 84% CCR for 100 subjects, which is better

performance than original 27 features in discriminatory capability as shown in Table 5.2.

Table 5.6: Classification and Recognition Results

# of # of Image Sequences | # of Feature Vectors | Classification Rate (%)
Subjects | Training Test Training Test =1 k=3 k=5
30 120 90 150 30 96.7-717:93:3 96.7
60 240 180 300 60 9Nl 86t 70| 85T
100 400 300 500 100 84.0 | 80.0 | 82.0
30 120 90 150 30 100.0* 90.0*

¢, &: classification rate (4) and recognition rate(4), both by neural network approach

On the other hand, the classification and recognition results for each of the subject
using the A-NN and enhanced back-propagation algorithms described in the previous
sections are summarized in Table 5.6. As can be seen in the table, our new approaches
achieved the classification rates of up to 96.7% for 30 subjects by the £-NN classifier. To
apply the enhanced back-propagation algorithm, the classification rate of 100% in
training phase and the recognition rate of 90% were achieved for 30 subjects. Also, the
early SOTON data, which contains 4 subjects with four image sequences, is used here. In
the experiments, three image sequences of each of the four subjects are used as the
training set, and the fourth from each as the test data. To classify the gait by both the -
NN and the enhanced back-propagation algorithm, the results show a 100% CCR and
recognition rate. As such, a marker-less gait recognition system confirms uniqueness — as
earlier suggested in biomechanical studies, thus confirming validity of the new methods.
In future, we require more efficient features of gait motion for classifying and

recognizing the gait activities, and a more sophisticated recognition algorithm.
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5.4.2 Conclusions

Gait is the most common human motion, and each person appears to have his or her own
characteristic gait pattern. To recognize the human gait, three groups of motion
parameters, a total of 27 parameters, are considered as gait features. These are including
general (temporal and spatial) parameters, kinematic parameters, and moments. By
measuring a class separability of the given feature, only 10 important features for
classifying the gait are selected from these feature sets. To analyze the discriminatory
capability of the selected features, a k-NN algorithm is employed as classifier. Here,
higher gait classification performances, which are 97% CCR for 30 subjects and 84%
CCR for 100 subjects, have been achieved on the larger SOTON database. In addition,
the enhanced back-propagation neural network algorithm is applied to the SOTON
database, and recognition rate of 90% for 30 subjects is accomplished. The results
achieved give promising performance and higher recognition rates than those of an earlier

gait recognition approach.



Chapter 6

Conclusions and Future Work

6.1 Overall Conclusions

In this thesis, we have presented a new approach to automated marker-less system for
describing, analyzing and recognizing the periodic gait motion. Essentially, the marker-
less system was achieved by the gait signatures extracted from the image sequences
involving human walking. To evaluate our approach, the SOTON database, which was
constructed by using normal DV (Digital Video) camera to acquire image sequences, was
used in this work. The SOTON database is currently the largest database of its kind,
consisting of 114 subjects with at least eight image sequences of each subject. In addition,
the subjects were not supervised, and carried no markers, allowing for relaxed walking
patterns. From the indoor SOTON database, seven image sequences of each of 100
different subjects (16 females and 84 males), a total of 700 image sequences, were

selected, and they have been mainly used for the experiments.

The gait signature has been extracted by combining a statistical approach and
topological analysis guided by anatomical knowledge. As a pre-processing stage,
background subtraction was used to detect moving human body in an image sequence,
and thresholding and morphological filters were used to extract the body contour. To
extract the gait signature, a 2D stick figure model with 8 sticks and 6 joint angles was
used to represent the human body structure. A stick figure was extracted from the body
contour by determining the body points using known anatomical data. The gait signature

is a sequence of the stick figures during one period of the gait cycle which is detected by

102
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the symmetry property of the horizontal centre of mass. To improve the robustness of
these gait signatures, the grammatical structure of the gait sequence was also analyzed

with physical constraints.

The gait signature had a small weakness when one leg occludes the other, and the
ankle part in the body contour was affected by noise such as caused by shadows and
colour of shoes at the ground. However, this weakness was somewhat overcome by the
grammatical analysis of gait sequence, and the kinematic parameters were calculated in
the gait signature. The trajectories of the joint angles followed with the earlier results of
medical studies. Also, the periodicity of the gait motion was observed by using a phase-
space portrait, a cyclogram and delay-coordinates, and analyzed by the autocorrelation
function and Fourier analysis. In addition, the periodic gait motion was efficiently
modelled by trigonometric-polynomial interpolant functions. Consequently, the gait
signature appears to be a very effective and well-defined representation method for

describing the human gait, and includes much information for analyzing the gait motion.

On the other hand, the gait features based on several kinds of motion parameters
were extracted by analyzing the sequence of gait signature. By using feature selection
methods, only 10 important features were selected from the 27 gait features. Then, the -
NN classifier was used to analyze the discriminatory ability of the selected features. The
results have produced very good classification rates which were 97% CCR for 30 subjects
and 84% CCR for 100 subjects. In addition, the enhanced back-propagation algorithm
was employed for recognizing the gait, and recognition rates of 90% for 30 subjects have
achieved. Moreover, both classifiers have accomplished classification and recognition
rates of 100% on the early SOTON data of 4 subjects. Consequently, our new approaches
gave very promising and comparable analysis and recognition results, on both the smaller

and the larger databases, to those achieved in other studies.

Our main contribution in this thesis has been to present a new marker-less method
for analyzing and recognizing the gait motion. The gait signature based on the human
body model can describe gait motion in a compact form and can be used in biomechanical
and medical applications. The usefulness of the proposed methods has been demonstrated
successfully in experiments. Also, the results for the gait classification and recognition

show that human gait can indeed be used to recognize people via image sequences.
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6.2 Future Work

Automatic gait recognition as a biometric is still a difficult task mainly because of the
variability of image quality and illumination, complexity of the gait extraction task,
occlusion and change of the human body, correlations and non-linear relationships of the
gait motion, and high-dimensionality of gait data. The results presented in this work show
that the gait signatures appear to have considerable potential in automatic gait recognition
and marker-less gait analysis for biomechanical and medical applications. However, the
performance evaluation for extracting the gait signatures has not been sufficiently
demonstrated in real-world data such as the outdoor SOTON database. Therefore, a more
complex vision algorithm has not used in pre-processing stage of image sequences. Also,
a theoretical description of the grammatical structure of gait sequence is not enough to
improve the gait signature. Furthermore, the kinematic characteristics, which are a very
important aspect of gait motion, could be used more efficiently to describe the gait

features.

In future, we could improve the grammatical structure with the step symmetry of the
gait sequence by using prior knowledge with uncertainty related to animated gait model
and the behaviour of the human movements. The animated gait model might be
developed by the normal range of human movement guided by the gait signatures. Also,
we require a more efficient feature vector for classifying and recognizing the gait
activities and humans. The probabilistic characteristics of the gait kinematics such as gait
dynamics and their entropy could be considered in future as features from the gait
signature. To identify humans by their gait, a more sophisticated recognition algorithm
such as hybrid classifier by fusion of multiple classification algorithms should be
considered. For practical applications, we will need to consider subjects walking at
different angles to the cameras plane of view. Furthermore, various classification and
recognition experiments using a real-world database are essential for further performance

evaluation in these studies.

In addition, the marker-less approach should be extended to the technique in terms of
medical and biomechanical application capability. In this thesis, the gait motion was

mostly analyzed by the statistical methods rather than biomechanical approaches. Also,
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the anatomical knowledge, which was used to extract the gait signature, is statistical data,
thus it does not match to all persons. Alternatively, we can directly measure the body
segments for each person, and then the measurement data can be used to extract a more
accurate gait signature. The alternative approach can however be achieved by a non-
invasive marker-less system. Also, this approach might be applied to security system such
as gait authentication system. The databases used in this work were mainly captured
under controlled environment, so that the simple vision algorithms were employed here.
However, sophisticated computer vision algorithms are very important components for

further performance of applications.

In summary, further work should concentrate both on improvement of the gait
signatures and on development of the efficient feature vector with evaluation and
experiments using real-world data to expose gait as a biometric. Also, we seek to extend

the marker-less technique in practical applications of clinical and biomechanical areas.
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