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by Petros Oikonomakos 

On-line testing increases hardware reliability, which is essential in safety-critical 
applications, particularly in hostile operating conditions. High-level synthesis, on the other 
hand, offers fast time-to-market and allows quick and painless design space exploration. 
This thesis details the realisation of on-line testability, in the form of self-checking design, 
within a high-level synthesis environment. The MOODS (Multiple Objective Optimisation 
in Data and control path Synthesis) high-level synthesis suite is used for the 
implementation of this concept. 

A high-level synthesis tool typically outputs controller / datapath hardware architectures. 
These two parts pose different self^checking problems that require different solutions. 
Datapath self-checking is realised using duplication and inversion testing schemes within 
the circuit data-flow graph. The challenge therein is to identify and implement suitable 
high-level transformations and algorithms to enable the automatic addition of self-
checking properties to the system functionality. This further involves the introduction of an 
expression quantifying on-line testability and including it in the standard high-level 
synthesis cost function, thus materialising a three-dimensional design space, to be explored 
by the designer feeding the synthesis tool with the problem specifications and constraints. 

In contrast, controller self-checking is not implemented within the synthesis process, but is 
rather the result of a post-processing synthesis step, directly applying an appropriate 
checker to the system control signals. Nevertheless, challenges include choosing suitable 
self-checking techniques, achieving the Totally Self-Checking (TSC) goal, and 
investigating ways to reuse any existing datapath self-checking resources for controller on-
line testabUity. Solutions based both on parity-checking and on straightforward 1-hot 
checking are given, again providing the designer with enhanced opportunities for time-
efficient experimentation in search for the best solution in every given synthesis project. 

The self-checking structures are finally verified theoretically and experimentally, through 
fault simulation. Overall, the enhanced version of the MOODS system, produced as a 
result of this research work, enables the implementation of reliable electronics efficiently, 
so that rehability-critical applications can be accommodated in a mass production context. 
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Chapter 1 

Introduction 

Hardware reliability is an area of electronic design, attaining more and more importance in 

recent years. The typical solution for the increase of the on-field reliabUity of digital elec-

tronic components is As the term suggests, on-line testing targets and de-

tects chip failures that occur while the system is operating, as opposed to fabrication errors 

or defects [1] that are detected during manufacturing tests. Typically, on-line detection is 

followed by corrective action, thus implementing/aw/f On-line testing should 

essentially be viewed as the first step towards fault tolerance. 

In earlier days of computing [2], on-line testing solutions were devised primarily for pro-

tection against failures that were attributed to initially minor manufacturing imperfections 

in chips. Over time, aging, corrosion, electrical, thermal and mechanical stress exacerbated 

the effects of such imperfections, thus eventually developing permanent logic faults. 

Clearly, when such faults were anticipated in safety-critical applications during the ex-

pected lifetime of an electronic component, it was imperative that a detection and recovery 

mechanism be conGgured. As fabrication quality improved, the rehability risk associated 

with such phenomena decreased rapidly and on-line testing lost a lot of its significance in 

the 1980s; indeed, the testing literature is particularly poor in on-line testing techniques 

during that decade. 

This situation began to change in the beginning of the 1990s and changed fimdamentally 

aiound and after 1995, with the continuous shrinking in transistor sizes and the decrease in 

operating voltage levels (low-power computing). The push for ever-reducing geometries 

in order to meet the requiiements of Moore's law [3] prompted engineers to look for reli-

ability "workarounds", driven by the need to produce opgrafz've electronics out of 
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yecf fabrication lines. Fault tolerance was identified as such a workaround [4]. Putting 

aside this re-surfacing of fault tolerance for permanent faults, the real driving force for re-

liability in the last ten years has been the increasing number of problems with 

in modem electronics. A SEU is a transient fault that cormpts a logic value 

either in a memory or in functional logic only oMce; however, this one-off failure, or the 

superposition of multiple such failures, is enough to disturb the correct operation of the 

system. SEUs (also termed errors) are primarily attributed to environmental radiation 

effects, in principle alpha particle cosmic radiation or atmospheric neutrons. Such radia-

tion can induce electrical charges at particular capacidve parts of a circuit; given the re-

duced voltage levels of modem low-power electronics, this charge is often comparable to 

the charge stored in the said parts during normal operation. As a result, the logic value de-

termined by the amount of charge stored in the particular location is likely to change. An-

other explanation of radiation upsets is that particles that hit the body of transistors in the 

OFF state can induce enough energy to create a channel, thus unexpectedly turning the 

tiansistor ON and potentially cormpting the logic value at its drain. 

In the light of this situation, on-line testing and fault tolerance have gained significant im-

portance in modem electronics. Safety-critical or even hfe-critical applications cannot risk 

failures and thus require constant testing. These applications include space and aviation, 

automotive and medical electronics. The situation is particularly severe in high altitudes 

and in space, where the density of cosmic particles is higher than on sea level. Further, it is 

predicted that technology rapidly approaches the point where even everyday commodity 

applications will need some sort of protection against radiation upsets [5]. Interestingly, 

for all these reasons the industry experts of the consortium publishing the Intemational 

Technology Roadmap for Semiconductors [4] have identified fault tolerance as one of the 

five m^or "crosscutting" challenges in semiconductor design. Moreover, on-line testing 

and its extension fault tolerance have been proved useful to straightforwardly enhance 

manufacturing yield, by providing protection even against manufacturing defects [6]. Fi-

nally, on-line testing in the form of self-checking has also been proposed as a counter-

measure against optical tampering in security applications [7]. 

In this era of digital electronics that require more and more functions on a single chip, 

electronic design automation (EDA) tools are used thioughout the whole process of chip 

design. Naturally, significant efforts are also invested in tool development, both in indus-
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trial environments and in academic research groups. High-level synthesis is a particular 

trend within the EDA context, whereby electronic systems are produced automatically by 

a synthesis tool when the tool is fed merely by an algorithmic description of the desired 

AeAavzowf, and extracts all structural and timing information. The benefits 

are fast time-to-market, fast and efficient design space exploration, and optimisation at the 

highest level of abstraction. Clearly, mass production industrial environments can greatly 

benefit from such characteristics. 

The Multiple Objective Optimisation in Data and control path Synthesis (MOODS) tool is 

a high-level synthesis suite, developed in the University of Southampton [8]. It is an ex-

ample of academic research in the field of high-level synthesis, and its particular charac-

teristic is automatically trading-off different system parameters (area, delay), in its attempt 

to simultaneously satisfy all (typically contradicting) designer requirements. 

1.1 Objectives and thesis organisation 

As on-hne testing becomes more and more relevant to industry sectors that require high 

volumes of production, it becomes obvious that it would be beneficial to develop a high-

level synthesis tool, capable of automatically producing on-line testable systems, while 

simultaneously optimising for the traditional synthesis goal of area and delay. No present 

synthesis tool offers this. It is this gap in the art of semiconductor electronic design that 

this work fills. The fundamentals of ybr OM-Zme are pro-

vided. The development part of the work enhances the existing MOODS system to provide 

on-line testability. The whole foundation and implementation are tested through numerous 

experiments, and the reliability of the overall produced solutions is assessed. 

This thesis comprises eight chapters. Chapters 2 - 4 cover background material, as in the 

following. 

Chapter 2 provides a thorough overview of electionic testing. Conventional off-line testing 

is briefly covered; however, overwhehning emphasis is naturally given to digital on-line 

testing techniques. 
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Chapter 3 describes high-level synthesis. The basic terminology and definitions are ini-

tially given, followed by a more detailed overview of the MOODS High-Level Synthesis 

Suite. 

Chapter 4 gives elements of fault simulation. In this thesis, fault simulation is used for re-

liability evaluation purposes; therefore, the basics are given and a few recent representa-

tive techniques demonstrating the state-of-the-art are presented. 

Chapter 5 - 7 describe original work, along the following lines. 

Chapter 5 presents the work carried out in the direction of providing self-

checking design for controller / datapath pairs produced by high-level synthesis processes. 

The most appropriate on-line testing technique is identified, and details of the implementa-

tion with the MOODS system are given. Extensive experimental results are shown and 

commented on. 

Chapter 6 focuses on the controller part of a controller / datapath architecture, and pro-

vides six alternative self-checking solutions for it, taking into account multiple communi-

cating control units, and utilising existing datapath self-checking resources. These tech-

niques are all implemented into MOODS, and more experimental results are presented. 

Chapter 7 provides a theoretical and experimental evaluation of the reliability of the on-

line testable system under the presence of single or multiple physical failures. 

Finally, chapter 8 presents ideas for future research based on this thesis and concludes it 

by summarizing its most important contributions. 

Three appendices are also included in this thesis. Appendix A is a brief "User's Guide" of 

the produced high-level synthesis for on-line testability variation of MOODS. Appendix B 

shows the benchmark designs used in the experiments of chapters 5 and 6. Finally, Ap-

pendix C shows the research papers written and unofficial presentations given as part of 

the work that lead to the production of this thesis. 



Chapter 2 

An Overview of Electronic Testing 

This chapter provides background information on electronic testing theory and various 

practical testing techniques, most of them developed in the 1990s. The presentation herein 

begins with a very brief overview of off-line and^wzVf-

(375'?]) in section 2.1, while section 2.2 describes various on-hne testing tech-

niques in detail. Finally, section 2.3 summarizes the chapter. 

The behaviour of an electronic system under the presence of a logical fault can be evalu-

ated using the fault model assumption [1], under which a wire in a sys-

tem is considered to retain a logical value ("0" or "1"), regardless of the value driving it, 

tl:us producing a logical error whenever the driving line assumes the opposite ("1" or "0" 

respectively) value. An alternative structural model is the [1], 

whereby an erroneous short circuit between two wires effectively gives rise to a new ele-

mentaiy logic function (AND or OR). Higher-level fimctional models also exist. For in-

stance, given the functional Zangwage (.HDZ) code of an electronic 

system, a whole multi-bit variable can be modelled as being stuck at a particular arithme-

tic value. Another example of fimctional fault modelling are the 

faults, conceivable whenever a functional description contains conditional state-

ments. Generally speaking, the stnictural bit-wise stuck-at fault model has most often been 

favoured over other models in the research hterature, for its simplicity, representative 

power, and ease of use. It is also fuUy adopted in this chapter and generally throughout the 

whole of this thesis. By convention, a stuck-at-0 wire that fails to take the "1" value of the 

line driving it, is said to assume the 7/0 or D value. Likewise, a stuck-at-1 wire that fails to 

take the "0" value of its driving line, is said to assume the 0/7 or Z) value. These conven-

tional notations, taken from [1], will be used hereafter. 



p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 23 

2.1 Off-line testing 

Test 
Vectors 

1 
V ' 

CUT 

Test 
Responses 

F/gure 2. Y. Of-//'ne e/ecfmn/c fesf/ng 

CUT 

The general off-line testing scheme is depicted 

in Figure 2.1. The Czrcwzf is 

taken off-line (that is, its normal operation is 

suspended), f vgc^OM / ( g j ^ a r e ap-

plied to its inputs, and ^gjf rgjpoMjgj are read at 

the output(s). The test responses are compared 

against the expected fault-free responses, and 

mismatches signify faulty situations. Test vec-

tors are provided either externally, by 
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(WZE), or inter-

nally by dedicated 

hardware embed-

ded in the system 

(chip or board). A 

comprehensive 

account of early 

electronic testing 

approaches can be 

found in [1]. Some 

elementary con-

cepts are provided 

here, since they 

are needed for the 

foundation of this 

work; fui-ther and 

more recent ad-

vances are not 

covered because 

they exceed its 

scope. 
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2.1.1 Scan-based Design-For-Testability 

This subsection deals with testing using externally applied vectors. Consider Figure 2.2a. 

The CUT is assumed to comprise subcircuits CI and C2, communicating through a single 

line A. The abbreviations fVj and f 0^ refer to the system f rz/Ma/y and f rz/Mayy 

respectively. In order for a stuck-at-x, {0,1} type fault at line A to be tested 

against, the test vector at the Pis and the initial conditions in CI must be such that A is 

driven to the jc value under fault-&ee operation. If such a vector can be found and such 

conditions reached, then line A is said to bex-coMfro/ZaAZe. Further, in order for the effect 

of the considered fault to be observed, the test vector and conditions in C2 must be such 

that the erroneous value in line A corrupts one or more of the POs. Once again, if this is 

possible, then line A is The term (Df 7]) refers to the 

family of design techniques that aim at increasing system controUabihty and observability, 

often trading-off chip area and / or performance. 

Figure 2.2b shows a first approach towards DFT, namely coMA'o/ oMof okervaZzoM (collec-

tively /PozMf /mgrfzoM. Line A is made directly 0-controllable through the insertion of 

an additional AND gate (shown in bold), controlled by an additional PI. It is also directly 

connected to an additional PO, thus made observable. 1-controllability can also be 

achieved using an OR gate, while simultaneous 0- and 1- controllability require a multi-

plexer. This approach can be very expensive in terms of additional I/O pins when several 

test points need to be inserted, which is typically the case. 

An alternative approach commonly apphed is based on j'coM regzjfgrj. A scan register is a 

register that has both shift and parallel-load capabilities. An n-bit scan register is shown in 

Figure 2.3. Scan register cells in the figure are normal flip-flops, augmented with a control 

Qi D2 

CK 

Scan 
register 

cell 

Scan 
register 

cell 

Scan 
register 

cell 

A'gu/ie 2.3. scan reg/sfer 
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input T, determining normal or test mode operation. In normal mode (T=0), the register is 

loaded with functional inputs through the parallel-load input ports D, - Dn. In test mode, 

data are shifted into the register through the Sin primary input port, and / or shifted out 

through the Sout primary output port. 

Figure 2.2c depicts how a scan register cell can be utilised for D F T purposes in the exam-

ple of 2.2a. It is assumed that the cell shown is actually part of an overall scan register, or 

chain of registers, providing test point functionality for the whole design. In normal mode 

operation, the multiplexer (MUX) propagates the fiinctional value produced by CI. In con-

trast, in test mode, the value provided by the scan flip-flop is f ed to C2 instead. Therefore 

all that is needed to directly control point A is to feed the scan chain with the appropriate 

bit value, and apply the appropriate number of clock pulses, so that this value reaches the 

relevant scan cell. Further, in normal mode, the value of A is always registered at the scan 

cell through port D. Therefore, in order to directly observe it, the scan chain can be 

clocked as many times as needed for the appropriate value to reach the scan output port 

Sou, (Figure 2.3). This way, testability improvements are achieved using 2 or 3 primary 

input ports (Sin, T, and perhaps a dedicated scan clock, which can be different from the 

functional circuit clock), and only 1 primary output port (Sout). Scan registers can be pre-

existing functional system registers, augmented to accommodate test mode shifting. If this 

is not possible for a particular system (e.g. due to the absence of enough functional regis-

ters), then dedicated scan registers can be added. 

M 
U 
X 

Figure 2.4. Boundary Scan 

Using the scan-based DFT ap-

proach, systematic JCOM 

architectures can be formulated, as 

Figure 2.4 shows. In the figure, 

block C represents a segment of the 

considered system, while R| and R2 

are scan registers. R] is used to ob-

serve the Pis of C (effectively the 

outputs of the previous segment), while R2 controls the POs of C, through the multiplexer 

(in effect controlling the inputs to the next segment). 
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2.1.2 Built-in Self-Test 

CUT 

SR 

TPG 
(STiS'Z) deals with the situation when 

test vectors are provided to the CUT by dedicated 

hardware, embedded into the system itself, while re-

sponses are also analysed and the decision characteris-

ing the system as fault-firee or faulty is reached once 

more by hardware in the circuit. A typical BIST con-

figuration employing a f 

and a S'lgMofure is shown in Figure 2.5. In 

the following, properties of TPGs and SRs, and their 
F/'gure 2.5. Se/f-7esf 

reahsation using .Lmear .Regwferj' will be briefly discussed. 

An n-bit LFSR is presented in Figure 2.6. It is composed of normal flip-flops connected as 

the figure shows, while for the blocks denoted as Cj it is Cje {0,1}, l ^ S a . Effectively, the 

Ci blocks signify the presence or absence of a feedback coimection at the relevant point. Cn 

is always 1. Associated with an n-bit LFSR is its P(x)=l+Cix+ 

+C2X^+.. .+Cnx". The LFSR of Figure 2.6 is meaning that it has no inputs but 

the required clock signal. 
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It can be shown that when P(x) is jprz'mzn've [1], then all n-bit vectors except the aU-zeros 

vector successively appear in the outputs Qi of the LFSR, provided that it is initialised 

with a non-zero vector. This property can be exploited when eArAawĵ z've testing is desired 

for an n-input CUT, by feeding the CUT input ports through the LFSR Qi outputs, thus 

applying all 2""' non-zero vectors to the CUT, effectively utilising the LFSR for TPG pur-
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poses. Alternatively, non-exhaustive, deterministic test pattern sequences can be produced, 

by designing appropriate autonomous LFSRs with non-primitive characteristic polynomi-

als and initialising them with appropriate vectors. 

A slightly different LFSR structure that is used as a 

is shown in Figure 2.7, where the clock signal is implied but not explicitly shown. 

This structure is not autonomous; rather, it is fed by the CUT outputs Xj, corresponding to 

Xi 

(D ^ D Q 

CK 

Q 

X2 

, 1 

t 
Cn-1 

D Q 

CK 

Q2. 

Xn 

Ci 

D Q 

CK 

Qn 

Figure 2.7. An n-bit LFSR configured as an MISR 

responses of the circuit to TPG vectors. When all test vectors have been applied and the 

MISR has processed all test responses, then a unique pattern called a resides in 

the MISR. This pattern is then compared against a pre-computed fault-free signature, and 

any mismatch signifies a faulty situation. In the prevailing terminology, the test responses 

are often said to be by the MISR. 

R2 

R3 

C2 

In practice, when circuits of realistic sizes 

are considered, it is often possible and eco-

nomical to configure functional registers 

into LFSRs and use them as TPGs or MISRs 

in test mode, while maintaining their normal 

functionality during functional mode. This 

often leads to situations when segments of 

large circuits are fed by the same TPG or 

have their test responses compacted by the 

same MISR. In such cases, BIST has to 

work in more than one by par-

titioning the circuit in groups of segments 

that do not share BIST resources, and can 
F/gure 2.8. 8 /57 /n separate fesf 

sess/ons ; need /or 8//_80 reg/sfers therefore be tested concurrently. A moie 
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complicated situation is depicted in Figure 2.8. CI and C2 refer to segments of a large 

CUT, communicating with functional registers Rl, R2 and R3 as shown. Clearly, R1 can 

be configured as a TPG for CI, while R3 can be an MISR for C2. R2 can be either a TPG 

for C2 or an MISR for CI. In either case, an additional LFSR needs to be introduced, to 

act as an MISR for CI or a TPG for C2 respectively. Alternatively, it would be desirable 

to transform R2 into an architecture that would be able to provide TPG one/ MISR 

functionality, so that no additional LFSR would be needed. A 

vofzoM register provides such dual functionality. A BILBO structure is given in 

[1] and not repeated here; for the purposes of the present work, it is enough to mention 

that a BILBO is an LFSR-based structure that can function as either a normal register, a 

shift register (§2.1.1), an LFSR-based TPG, or an LFSR-based MISR, depending on the 

values of two control inputs. 

2.2 On-line testing 

In this section, the state-of-the-art of on-line testing is presented. The discussion is much 

more thorough than in the off-line case of §2.1, since on-line testing is essentially the fo-

cus of this work. Generally speaking, on-line testing techniques can be classified into three 

main categories, namely : 

- self-checking design 

- on-line BIST or on-line scan-based DFT 

monitoring analogue electronic parameters (such as current) 

Self-checking design consists of encoding module outputs using some error detecting code 

and then checking some code-specific invariant property (e.g. parity). On-line BIST and 

on-line scan-based DFT, on the other hand, attempt to use the concepts and structures of 

§2.1, in the on-line context. Usually existing (off-line) BIST or scan constructs are ex-

ploited to perform tests during certain time windows when normal operation is temporarily 

suspended, either globally for the whole system (perzo /̂z'c .BZS'Z), or locally (during subsys-

tems' zW/g periods). Monitoring analogue characteristics is useful to detect errors in elec-

trical properties of information signals that either manifest faults that are hard to detect 

otherwise, or wiU result in logical faults in the future. 
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It has to be noted that the above classification is by no means exhaustive. Ih fact, there are 

techniques that combine elements of the categories mentioned above. Moreover, there also 

exist some unique techniques that do not really faU into any of these categories. 

2.2.1 Self-checking design 

Functional 
Circuit 

I 
Checker 

The basic self-checking design scheme is depicted in Figure 2 .9 [9]. The functional circuit 

is such that the output signals it produces are 

eMCOt/eof. This can be a natural property of the 

considered circuit; otherwise, the system has 

to be augmented and redesigned appropriately, 

according to the chosen a/zcf / 

or ( Z D C / A n y circuit 

fault that corrupts the output bits, such that the 

output word does not belong to the given code, 

is detected by the checker. If the output bits 

are corrupted, but the output is still a code word, then the fault detection, and it is 

said to exceed the of the particular code. 

Error 

F/gure 2.9. Se/f-c/^eck/ng des/gn. 

Before presenting the most important error detecting codes, some fimdamental definitions 

are given. These constitute the theoretical foundation of self-checking design, and theo-

retically determine the efGciency of practical self-checking schemes. They first appeared 

in [10], and are repeated in practically every modem publication addressing the issue (for 

example [11]). 

L e t / b e the Boolean function corresponding to a circuit C. Let v^be the set of inputs that C 

receives and 7be the set of (encoded) outputs that it produces. Furthermore, let $ be a set 

of modelled physical faults and p a fault in The function of C in the presence of fault (P 

is denoted b y % ) , while the fault-free function is denoted b y 0 ) . 

2. / : A circuit is with respect to $ if and only if : 

In other words, the circuit is self-testing, if for every fault in the specified set, there is at 

least one functional input that produces a non-code output. 
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2.2: A circuit i s w i t h respect to $ if and only if V^E (p : 

y p c , y or/i^,%) 

In fault-secure circuits, an output in the presence of a single fault is either correct, or a 

non-code word. That is, it cannot be an incorrect code word. 

2. j : A circuit is (TSC) with respect to $ if and only if it is 

both self-testing and fault-secure with respect to (P. 

The totally self-checking property is the usual goal when designing the functional circuit. 

It guarantees that erroneous outputs produced by faults will not be mistaken for correct 

ones (fault-secure), and that all modelled faults are detectable b y the given set of input 

vectors (self-testing). The fault-secure property is relevant to the structure of the circuit, 

while the self-testing one is concerned both with the structure and with the set of inputs 

the circuit receives, and whether or not they are enough to detect all faults in the particular 

structural reahsation of the circuit. 

2.̂ :̂ A circuit is called if and only if V x e ^ : /(Cc.Ojeyand V.x;g%: 

y. 

That is, in the fault-free case, a code-disjoint circuit maps code inputs to code outputs and 

non-code inputs to non-code outputs. 

2. J: A circuit is called a (oW/y if and only if it is both 

totally self-checking and code-disjoint. 

In the case of a checker, a produced code word output corresponds to the fault-&ee indica-

tion, while a non-code word output is the error indication. Thus, a totally self-checking 

checker produces code or non-code outputs according to its inputs (fiinctional circuit out-

puts) in a fault-free case, while under the presence of a fault it produces either the correct 

code output or a non-code output. In addition, there is at least one code input that leads to 

a non-code output under the presence of a fault. 

Allied to the above definitions is the following hypothesis [12, 13] : 

2.7: Faults occur one at a time, and the time distance between the occurrences 

of two consecutive faults is long enough for all the input code words to be ap-

plied to the circuit. 
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It is important to differentiate between the code words, and a// code 

words. The available code words are all the input code words applied during normal op-

eration, i.e. the members of set jTas defined above. However, there can be vectors that are 

code words, in the sense that they satisfy the characteristic invariant property of the EDC 

at hand, but do not appear at the circuit input ports during normal operation. In this case, 

the set of inputs is said to be In the rest of this work, Hypothesis 2.1 will be 

assumed, unless explicitly stated otherwise. 

In practice, when designing checkers, it is clearly desirable that they be totally self-

checking with respect to the targeted set of faults. In principle, the three properties that the 

checker must possess are considered separately, in each given situation. A general com-

ment that can be made at this point though, is that the fault-secure condition cannot be ful-

filled by a checker whose output is a single bit. Indeed, if xe (0,1} is the fault-firee indica-

tion value of such a checker, and Z the single-bit output, then for the fault {cp : Z stuck-at-

x}, any erroneous (i.e. MOM-coc/g word) checker input wiU produce the codis single-bit 

word X [9]. For this purpose, double-output fault-secure checkers are typically used, where 

by convention the complementary values {01,10} correspond to the fault firee operation, 

while any of the remaining {00,11} values indicates the presence of a fault. 

Further, the code-disjoint property may not always be achievable (an example is consid-

ered in chapter 6). In such cases, the checker must be at least designed to achieve the self-

testing goal with as few code words as possible, and it must receive as many code inputs 

as possible. Still, if the code inputs provided are not enough for the self-testing condition 

to be satisfied, the last resort is checker design [9]. In such a configuration, 

the checker is armed with an internal TPG (§2.1.2) that provides the necessary code 

words. These designs tend to be expensive in hardware overhead; therefore, it can some-

times be tempting to trade-off strict coherence with self-checking design theory for a more 

hardware-efficient solution, also depending on the size and nature of the design and an 

analysis of the realistic possibilities of a failure. An example of such a situation is shown 

in chapter 5. 

The most important EDCs and relevant self-checking design considerations are presented 

in the following subsections §2.2.1.1 - §2.2.1.7. Before that, tvyo classes of EDCs are de-

fined here [1, 9]. 
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2.1 :̂ Given two n-bit words %:=;cM_/Xn_2...X/a;o and}':=yn-y}'/,-2. ^ coverj')/, IF 

and only if Vz, : if_yy=l =>:ci=l. 

For example, if;c=10111,y=10100, then % covers}:, because % has a ' T ' in every bit posi-

tion that)/has a "1". 

2.7: An EDC is wMorc/erê y, if and only if there are no two different code words 

% and};, such that ;c covers 

Obviously, the above z=10111 and_y=10100 words cannot be code words of the same un-

ordered code. 

2.(9: In a EDC, each bit in a given code word is either an 

6zY, or a c/zec/: If the characteristic invariant property of the code is embedded within a 

code word, so that such a classification is not possible, then the EDC is a 

code. 

Typically, when a separable code is used, the functional circuit (Figure 2.9) is partitioned 

into two parts, both fed by the functional input. These are the/wMcr/oMaZ part, producing 

the normal functional output, and the coc/e part, independently producing a 

number of additional bits, ensuring adherence to a code-specific invariant property. By 

contrast, when a nonseparable code is used, no such partitioning can be conceived. Rather, 

the produced fiinctional output adheres to the code-specific property by nature or by de-

sign. 

The theory and definitions of this section are further demonstrated and clarified in the sub-

sequent §2.2.1.1 - §2.2.1.7 through specific examples. 

2.2.1.1 Parity codes 

When a code is used, a single check bit is added to the information bits, and it is 

calculated such that the parity of each code word is constant (odd or even). Parity codes 

can detect all single or odd multiplicity errors. They are the cheapest possible EDCs, since 

the check bit is only one and parity checkers are relatively simple [9, 14]. 

The parity bit of a parity-encoded word is clearly separable firom the information bits; 

therefore, parity codes are separable codes, and normal combinational circuits need to be 

augmented by a part, in order to implement a parity self-checking 

scheme. In the case of an arithmetic functional block, the parity bit can be calculated as 
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Figure 2.10. Fault-secure full-adder cell 
with a redundant carry used for parity prediction 

the XOR function of the 

input operands, and of 

the internal "carry" sig-

nal bits of the sub-

blocks that constitute the 

overall circuit [15]. 

However, in order for 

the fault-secure property 

to be achieved and 

maintained, it is essen-

tial that internal bit 

faults affect an otfc/ 

number of primary out-

put bits. Nicolaidis et al. [15, 16] considered this problem for ripple-cany adders, and for a 

collection of multipher and divider structures and proved that faul t security is in danger if 

the functional internal "carry" bits are used for parity prediction. They further came up 

with the fuU-adder logic cell with a redundant carry of Figure 2.10 [15], and used it as the 

basic buHding block for their designs. A, B and Cin in the figure, are the usual addition in-

puts and input carry, whUe S, C and Cp are the sum, the output carry and a redundant carry 

respectively. In a complex multi-bit arithmetic circuit, the redundant carries of internal full 

adders and the parity bits of input operands are all XORed together; the result of this XOR 

operation is the predicted parity bit of the circuit output. The authors of [15] analytically 

prove tliat this way any single fault in any internal fuU adder cell may corrupt either noMg, 

a j'ZMg/e or an of the circuit out-

puts. Therefore, under the presence of a fault 

the circuit either produces the correct output, 

or reverses its parity, hence producing a non-

code output. Fault-security is thus achieved. 

stuck-at-0 

F/gure 2. f f 5 - 6 / Y odd panYy 
c/^ec/cer 

Parity checkers are easily designed as "parity 

trees" composed of 2-input XOR gates. As 

stated in [9], splitting the code word in two 

groups and using two separate parity tiees re-

sults in a two-output fault secure parity 
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checker. An example 5-bit odd parity checker is shown in Figure 2.11, fed by the 5-bit 

odd-parity encoded input word ABCDE, and consisting of two parity trees, composed of 

two (labelled 1,2) and one (labelled 3) XOR gate(s) respectively. 

The simple example of Figure 2.11 is used here to clarify the importance of the self-testing 

property of §2.2.1. Let us fiist assume that under fault Gree operation, the circuit input 

word ABCDE can only take one of the three values in the following setj^{01110,01000, 

00111}. As explained in §2.1.1, a value in the set y={01,10} signifies correct operation; in 

the terminology of §2.1.1, 7 is the set of code word outputs. Clearly the input words are all 

odd-parity encoded, and it can easily be confirmed that all three of them produce code 

word outputs. However, the checker receives only a small subset of aU possible 5-bit odd-

parity code words. It is not totally self-checking with respect to the set (Z) of all stuck-at 

faults at its constituent gates, since it does not satisfy the self-testing property when fed by 

these three inputs only. This can easily be confirmed, since for the fault p shown in Figure 

2.11 representing an input of gate 1 to be stuck-at-0, there is no code word e %that pro-

duces a non-code word. (9 is therefore undetectable by the particular set of functional in-

puts, and this potentially hinders the detecting capabilities of the checker. The significance 

of this can be appreciated if one takes into account that the input word ABCDE is nor-

mally the encoded output of a functional circuit, according to Figure 2.9. If the checker 

has already been hit by fault p, and at a future point of time an additional fault in the func-

tional circuit causes, for example, the non-code word ABCDE=11110 to appear in the 

checker input, it is easy to verify that the checker response will be the code word output 

01, meaning that the fimctional circuit fault escapes detection. 

From the above example, it is clear that the self-testing property for a checker is not a 

property of the checker alone; rather it is a property of the checker in the context of the 

overall system it is part of, since it is the system that provides the code words. Further-

more, it is a property that is strongly related to the actual internal structuie of the checker 

(in this case, the particular arrangement of the 2-input XOR gates), since the set of mod-

elled faults $ is defined with respect to the structure [17]. Therefore, two behaviourally 

equivalent (in the fault-&ee case) parity checkers in the same context, receiving the same 

code words may not be both self-testing. Two converse problems can be formulated in this 

context: 
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« given a parity checker of known structure, it is desirable to identify the minimum 

number of code word inputs that ensure the self-testing property. 

* given a set of parity code word inputs, it is desirable to determine whether or not they 

can ensure the self-testing property, for some checker stmcture(s), and, having secured 

that, to design the corresponding optimally-structured checker. 

Regarding the first problem, all XOR gates in the checker should receive all four possible 

input combinations 00, 01, 10, 11 [18]. This guarantees that the checker will be self-

testing, regardless of the actual XOR gate implementation. Khakbaz and McCluskey [17] 

propose a way to identify a set of code words ensuring this property. They show that it is 

enough for the two XOR gates that produce the final checker outputs (e.g. gates 1 and 3 in 

Figure 2.11) to receive these four combinations. These values can be traced back to the 

checker primary inputs, and thus determine the required code words. For the checker of 

Figure 2.11, it can easily be verified that (11100, 00010, 10101, 01011} is such a set, and 

it can also be seen that the remaining XOR gate 2 also receives all possible inputs. Inter-

estingly, this limits the number of necessary code words to for every given 

checker structure, of bit-width. 

As far as the second issue is concerned, the following two lemmas apply (taken from [17, 

18], where proofs can also be found) : 

ZgyMfMo 2.7: Any M-bit parity checker reahsation that receives more than 75% of its possi-

ble codeword inputs is self-testing. 

Zemma 2.2: Consider a 4xM Boolean matrix M, whose rows constitute a test set for an «-

bit even (odd) parity checker realised with 2-iaput XOR gates only. Then M has distinct 

rows, all rows have even (odd) parity, and each column has exactly two Os and two Is. 

In the light of these two lemmas, it can now be stated that, given a set of n-bit parity code 

word inputs, and taking into account that the total number of such possible code words is 

2""', if the number of code inputs is large enough (more than 3x2"'"), then any 2-input 

XOR gate realisation of the checker is a self-testing one. Otherwise, if four code words 

can be found within the given set that satisfy the conditions of Lemma 2.2, then there ex-

ists ar /ecTAf one 2-iaput XOR gate realisation of a parity checker that is self-testing. Ana-

lytical algorithms to design such checkers, and to optimise them for speed (by minimising 
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the number of logic gate levels within the checker), can be found in [17, 18], but exceed 

the purposes of this presentation. 

There can be situations when the input set is so incomplete that neither the conditions of 

Lemma 2.1 nor those of Lemma 2.2 can be satisfied by the available code words. As men-

tioned in §2.2.1, self-exercising checker design provides a theoretically robust solution for 
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this problem. The jgarzYy cAecAer wzYA copaAzVzYy of Fig-

ure 2.12 was presented in [12, 19, 20] for this purpose. In the figure, X]...Xn is the even-

parity encoded checker input. The conventional even parity checker is supplemented by an 

LFSR structure (similar to the MISR of Figure 2.7). As usual in LFSR designs, it is 

CjE {0,1}, l<i<n, and c; signify the presence or absence of feedback at the particular point. 

The design is based on the observation that the even parity code is a //Mear code, that is 

when two even-parity encoded words are added modulo-2 (XORed), the parity of the re-

sulting word is still even. Therefore, if the LFSR is designed so as to provide aU even par-

ity words, then the set of code words that the conventional checker receives is greatly en-

hanced. The technique apphes equally to odd-parity encoding, by simply inverting an arbi-

trary bit of the input word. The problem of designing a proper LFSR (choosing suitable C; 

values) is addressed by the following theory [12, 19, 20]. 

29 : An EDC is called cycZzc if, for every given code word, a "rotate" (cyclic 

shift) operation always results in another code word. 
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Obsei-ve that both even and odd parity codes are cyclic. For example, if the word 

10001111 (which is an odd-parity 8-bit code word) is rotated lef t once, the resulting word 

00011111 is still odd-parity encoded. 

2.70: Given an n-bit code word c=coc,...Cn_i, the polynomial 

C(X)=C0X"'' +C ] x"'-+... +Cn.2X+Cn. t (2.1) 

is caUed the 

2.77: Given an n-bit cychc code and a polynomial g(x) of degree n-k, g(x) is a 

ggMgrafor of the code, if all code polynomials corresponding to aU code words 

are divisible by g(x). The code is then particularly caUed an (n, A;) cyclic code. 

It can be shown [12, 19, 20] that g(x)=x+l is a generator polynomial of the even parity 

code irrespective of the bit width, thus making it an (n,l) cyclic code. 

TTzeorefM 2.7: Let g(x) be a generator polynomial of an (n,k) cyclic code, and d(x) a primi-

tive polynomial of degree k. Then the LFSR with the characteristic polynomial 

p(x)=g(x)d(x) generates all code words of the cyclic code, except for the all-zeros pattern. 

Theorem 2.1 was initially introduced and proved by Hsiao et al [21]. 

It is now clear how the LFSR in Figure 2.12 can be designed. One simply needs to choose 

a piimitive polynomial of degree n-1 and multiply it by the generator polynomial (x+1), to 

obtain the characteristic polynomial of an LFSR that produces all even parity code words, 

when seeded with any non-zero even parity encoded word. Tamick has shown [12, 19, 20] 

that in order for the overall checker of Figure 2.12 to be totally self-checking, the func-

tional circuit only needs to provide fwo different non-zero code words. The disadvantage 

of this technique is the hardware penalty that the introduction of the LFSR imposes, but it 

is the only available solution if normal operation provides only very few code words, and 

if strict adherence to self-checking theory is desirable. 

An interesting application of parity error detecting codes is self-checking state machines. 

Zeng et al. [22] propose a state encoding and parity prediction technique to check the pre-

sent state and primary output signals of state machines. The present state signals are 

checked using a single parity bit. The primary outputs either have a parity bit computed 

and attached to them, or are partitioned into groups, with a parity prediction scheme ap-

plied to each one of the groups. Hardware savings are achieved in the latter case, by allow-

ing logic sharing between different groups. Lakshminarayana et al [23] mention parity 

prediction as a means to design self-checking controllers of controller / datapath designs. 
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but do not elaborate on their technique with respect to self-checking theory. This issue is 

revisited in chapter 6, with a theoretical evaluation, practical considerations, specific im-

plementation examples, and the particular contribution of this thesis. 

2.2.1.2 m-out-of-n codes 

An code word has exactly m i s out of n total bits, m-out-of-n (also signified by 

m/)?) codes are an example of unordered and nonseparable codes. They detect aU single 

and multiple errors (that is, errors resulting in corrupted signals where all 

erroneous bits have the .ramg value, either D or D ). The fault-secure property using unor-

dered codes in general, and nVn codes in particular can be achieved for a hmited number 

of functions, and it is practically considered only when the function outputs are already 

encoded using such a code, by nature. Some attempts to design fault-secure arithmetic 

units using unordered codes have been reported, but they are not widely adopted, since 

they are much more expensive to implement than parity prediction schemes [15]. 

It can easily be verified that an m/n code has exactly = «!//»!(« - cqje words. For 

any given n, this value is maximum for m=[n/2] [10]. Therefore, [n/2]-out-of-n codes, of-

ten considered for n=2k and referred to as k-out-of-2k, are of particular interest, since they 

have the maximum (in code words) of all other m-out-of-n codes. 1-out-of^n (1/n, 

also referred to as 7-Aof) codes are another special case of particular interest. They have 

the minimum code word capacity (only n words), but they 6equently appear in computer 

systems by nature, e.g. in memory address "select" lines. 

A lot of work has been presented in the direction of designing totally self-checking check-

ers for k/2k, 1-hot, as well as generic m/n codes. Historically, the first attempt was re-

ported in [10], also mentioned in [2]. Anderson and Metze [10] used T M o / ' o r z Y y f o r 

this purpose. 

2.72: Consider the Mg-bit signal 4̂, and let tg be the number of bits of that take 

the 1 value at a given point of time. Let z be an integer value. The zM^̂ 'orzfŷ uMĈ zoM 

is defined as follows : 

(2.2a) 

%>z)=0 , if ^,<z (2.2b) 
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A circwzY is a circuit implementing a majority function, and is typically 

realised in a 2-level AND-OR form, by using all possible z'-bit combinations of all bits 

ofy4 as inputs to respective AND gates, and ORing the AND gate outputs. 

In [10], the realisation of TSC k/2k checkers is described, through either sum-of-products 

or product-of-sums combinations of the outputs of suitable majority detection circuits. The 

k/2k encoded signal that feeds the checker is partitioned into two signals A and B of bit 

widths % and % respectively, where na=nb=k. Let ka and ky b e the number of Is in each 

signal. Then the logic functions F and G that produce the primary outputs of the checker 

are described (for example in sum-of-products form) by the following equations : 

F= ^ I(ka>z) X r(kb>k-0, / odd 

G= ^ 7(ka>/) X r(kb>k-/), ; even 

(2.3a) 

(2.3b) 

Functions reahsing checkers for generic m/n codes are also provided, but it is shown that 

the designs are TSC in the k/2k case only. However, TSC m/n checkers can be imple-

mented based on the k/2k ones, if the scheme of Figure 2.13 is applied. In this scheme, the 

generic m/n code is first decoded into an (1-hot) code (using a simple conventional 

decoder composed of AND gates only), and then a suitable totally self-checking code 

translator is used, to formulate a k/2k code, where k is selected such that ^ -

The code translator is shown in [10, 2] to be easily implementable using a single level of 

OR gates only. It is to be noted that this modular technique is not proved to be apphcable 

for every given m/n code; in fact, some problematic codes for which the TSC goal is not 

achieved are already admitted in [10]. 

m/n 

LU <c 
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This early work, however in-

complete, clearly showed the 

importance of k/2k and 1-hot 

checkers, not only for the pur-

pose of checking corresponding 

codes , but also in order to be 

used as building blocks for ge-

neric m/n checkers. Paschalis et 

al [24] presented an alternative 

modular design for a TSC k/2k checker, shown in Figure 2.14. The input signal is once 

again divided into two signals of equal widths; this time, however, subcircuits Na and Ny 

are used instead of majority functions. These subcircuits produce m-bit wide outputs, 

where m= [logA: -Hi], that correspond to the binary representation of the number of 1 s in 

their inputs, augmented by suitably calculated constants, so as to be complementary. 

These complementary signals are subsequently checked by an m-bit cAecAer. 

Dual-rail checkers are covered together with the dual-rail code in §2.2.2.2; for the time 

being, it is enough to mention that such a checker provides the fault-free indication if its 

input vectors are complementary, and signals an error otherwise. Further, the implementa-

tion of Na and Ny, and the proper calculation of the mentioned constants, are discussed in 

detail in [24]; interestingly, the subcircuits are composed of full-adder and half-adder cells 

only. Tables comparing the implementations of [24] to these of [10] are also available in 

[24]; from them, it is obvious that the most efficient implementation strongly relies on the 

value of k. In principle, however, the adder-based approach becomes more and more 

hardware-efficient as k grows [25]. The work of [24] is further continued in [26], [27] and 

[25], where it is shown that the same or a similar technique can be used to design some 

(but still a//) m/n checkers with n:^2m, and sufficient conditions that m and n have to 

satisfy in order for this to be possible are derived. In principle, m always needs to be 

within a narrow range around n/2, in order for the checker design to be TSC. 

The above presented works cover the issue (and reveal the limitations) of m/n checkers 

using logic gates as building blocks. Kavousianos et al [28] investigate the design of m/n 

checkers based on CMOS transistors. They ultimately propose the design shown in Figure 

2.15. This design consists of two almost identical /M/m+7 

czV'cwzfj' Lo and Li, producing the checker primary output 2-bit word QoQ]. Each one of 
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these subcircuits comprises a pull-up part of two PMOS transistors pm^ and pmm+i, and a 

pull-down part of n NMOS transistors, mni-nmn. X=Xi-Xn is the checker input, while I is 

a control input signal. [28] shows that for suitable values of transistor sizes (given as func-

tions of m), and for 1=0, the pull-down part of Li drives Qi to a "strong 0", that prevails 

over the 1 that the pull-up part attempts to drive Q, to, if the number of Is in X is 

greater than m. Due to the inverter, pm n̂+i has no effect in Lo, and Qo is driven to 0 only if 

the number of Is in X is greater than or ggwaZ /o m. Qi and Qo are therefore complemen-

tary OM/y if the number of Is in X is eucacr/y equal to m, thus providing the fault-free indi-

cation. The operation can be analysed similarly and similar conclusions can be drawn 

when 1=1. The authors further prove the TSC property of their checker, which is notably 

utilisable for arbitrary practical values of n and m, but has the limitation that it is totally 

technology-specific, therefore unsuitable when a high-level of abstraction design flow is 

adopted, or when independence of technology is desired. 
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Let us now focus exclusively on the design of TSC checkers for 1-hot codes. Such check-

ers can be used as building blocks for the design of generic m/n checkers (according to 

Figure 2.13). Further, as already mentioned, 1-hot codes often appear naturally in com-

puter systems, and are therefore of particular importance. 

rai 

< LU 

§5 

< UJ 

F/gure 2.^6. f/h c/7ec/(erbyK/)a/(baz 

A couple of choices for 1-hot code checkers have already been covered in this section. 

Firstly, Anderson and Metze's 

"l/n dual scheme (Figure 2.13, [10]) suggests 

that a code translator followed by a 

k/2k checker, implemented in any of 

the ways proposed in [10, 2, 24, 26, 

27, 25] and mentioned here earlier, 

can serve this purpose. Secondly, 

the n/m CMOS checker of [28] is 

also utilisable for n=l. A third alter-

native is presented in [29] by Khak-

baz, covered in [2] by Lala, and depicted here in Figure 2,16. The n-bit wide 1-hot code is 

first translated to a dual-rail code, consisting of p=[log2 pairs of complementary bits. 

Subsequently a dual-rail checker (§2.2.2.2) produces the fault-detection or fault-free indi-

cation. The code translator is systematically implemented as follows : 

« Let xi-x„ be the 1-hot encoded inputs to the checker. Further, let (J,,Ki)-(Jp,Kp) be the 

p pairs of complementary code translator outputs. 

» Consider the p-bit binary representation of all integers between 1 and n (inclusive). 

The translator output pairs are produced by NOR gates, where input xi is connected to the 

gate producing output Jj, if the binary representation of integer i has a "1" in bit position 

(p-j). Conversely, input Xj is connected to the gate producing output Kj, if the binary repre-

sentation of integer i has a "0" in bit position (p-j). If l(k) denotes the k-position bit of the 

binary representation of integer i, the above idea can be formulated as in the following 

equations : 
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X1 X2 X3 X4 X5 Xe X7 Xg 

Figure 2.17. 1/8 to 3-pair dual-rail code translator 

Jy = , for all i : / ( p - y) - 1 (2.4a) 

, for all i : - j ) = 0 (2.4b) 

The translator construction process is further clarified through the illustrative simple ex-

ample of Figure 2.17, taken from [2]. The example deals with the translation of a 1/8 code 

into a (["logo S]) 3-pair dual raU code. Vertical lines represent the x, inputs, while horizon-

tal lines signify the NOR gate inputs. A bubble where a vertical line meets a horizontal 
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one signifies a physical connection, i.e. the input corresponding to the vertical line is an 

input to the gate corresponding to the horizontal hne. For example : 

Jg = (Z; + + %; + ) (2.5) 

Figure 2.17 is an elegant visuahsation of equations (2.4a) and (2.4b). Indeed, consider e.g. 

input X]. It is 3<io>=011<2>, so there are Is in bit positions "0" and "1". According to the 

above rule, this means that X3 will be an input to gates producing J3 and J2, and the corre-

sponding connections can be observed in the figure. There is a 0 only in bit position "2", 

so X3 contributes to Ki and again the cormection appears in the figure. 

In [29], Khakbaz further proves the TSC property for his design of Figure 2.16. This is 

achieved automatically if the bit width of the 1-hot code is a power of 2, since in this case 

the dual-rail checker of Figure 2.16 receives all possible code words. Otherwise, an im-

plementation of the p-pair dual-rail checker using a combination of two 2-pair dual-rail 

2-PAIR 
DUAL-RAIL 
CHECKER 

2-PAIR 
DUAL-RAIL 
CHECKER 

(P-2)-PAIR DUAL-RAIL CHECKER 

F/gure 2.78. fSC dua/-ra// c/^ec/cer/br des/'gn ofF/gure 2. f6, n<>2'', n<>3 
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checkers and a (p-2)-pair dual-rail checker is proposed. This implementation is depicted in 

Figure 2.18 and achieves the TSC goal for any 1/n checker wi th n>3. (J,K)i pairs in the 

figure correspond to the outputs of the translator of Figure 2.17. When the code bit-width 

is not a power of 2 the dual-rail code is incomplete, and therefore the TSC property for the 

overall checker is not guaranteed by nature; it is, however, achieved by construction, since 

as shown in [29] all three constituent checkers of Figure 2.18 separately receive all possi-

ble code words during normal operation. 

Khakbaz's 1-hot checker design was initially developed to target Programmable Logic Ar-

ray (PLA) implementations. It is, however, based on elementary logic functions; it can, 

therefore, be realised in any technology. It is extensively used in this work (chapter 6) for 

alternative technologies, and that is why particular emphasis has been given to it here. 

As the 1-hot bit width grows, equations (2.4) can become significantly long. Depending on 

the design flow and target technology, that can have serious impacts on the performance 

of the checker. Tao et al [30] propose yet another choice for the 1-hot checker. They re-

visit the classical approach of Figure 2.13 (l/n-to-k/2k code translator, followed by a k/2k 

checker), and propose NOR gate-based design solutions both for the translator and for the 

checker. Once more, the implementation targets a PLA device, but it can be utHised for 

other technologies. This technique is reported to expehence minimum gate delay; it does 

not, however, yield totally self-checking solutions for all n. Unfortunately, some practi-

cally important values of n are among those not served by it (e.g. 7, 9, 11). Depending on 

the apphcation at hand, this can be a prohibitive drawback. 

Curiously, none of the techniques presented so far can be used to construct a TSC 1-out-

of-3 checker. The most generic of them [29], is utilisable for all values of n, n=3. 

The reason for this, is that the code translator (Figures 2.16, 2.17) in the 1/3 case, produces 

an incomplete dual-rail code (3 dual-rail code words, 1 missing), which is not enough to 

guarantee the TSC property for the subsequent dual-rail checker. In fact, it has been 

proved mathematically that no stand-alone TSC 1/3 checker composed of logic gates can 

be constructed [14]. This prompted the research community to look for alternative solu-

tions. One such solution [31] considers the 1/3 code in the context of a full-scale self-

checking system; it assumes that at least one totally self-checking checker (of any arbitrary 

code) exists in the system, and combines it with the output of the translator of Figure 2.17, 
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as shown in Figure 2.19. As the Sgure shows, the 2-pair output of the code translator is 

broken in two. The first pair is combined with the (2-bit, §2.2.1) output of the arbitrary 

code checker through a 2-pair dual-rail checker. The output of this checker is further com-

bined with the second pair tlirough another dual-rail checker, to give the overall error or 

error-free indication. Both 2-pair dual-rail checkers now receive all possible 4 input code 

words, so the overall scheme is totally self-checking. 
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TSC CHECKER 

(INCOIVIPLETE) 
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Another family of techniques look for transistor-level TSC implementations for the prob-

lematic 1/3 code checker. Lo and Thanawastien [32] propose a very compact checker, 

consisting of 11 NMOS transistors only. The design is only self-checking (that is, 

totally self-checking for only a subset of the faults of interest). Metra et al [33] present a 

generic 1/n TSC checker, utilisable for the 1/3 case, and, like [28], based on threshold cir-

cuits (Figure 2.15). Of course, the m/n checker of [28] can in itself be used in the 1/n case, 

including 1/3. 
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As a final note on the in/n checker issue, Figure 2.20 shows an "out of the mainstream" 

sequential configuration that can provide checker functionality for m/n codes. It is based 
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on the combination of an n-bit ripple-carry adder with an n-bit register, with the register 

output being fed to one of the adder inputs. Such a configuration is often referred to as an 

accwTMw/afor. The m/n encoded signal X is fed to the other input. Two D flip-flops are also 

used, connected to the adder carry-in and carry-out ports as the figure depicts. The error 

indication is produced at the carry-out end of the adder as shown. Stroele and Tamick pro-

pose this design in [34], and provide an analytical proof and explanation of its fault detec-

tion capabilities, and a description of its properties, hiterestingly, the same n-bit design 

can be used for any given m/n code, provided that the register is initialised with a code 

word belonging to the code at hand. This property makes it Its main ad-

vantage is that it is self-testing by construction as proved in [34]. On the other hand, it 

sometimes experiences error latency of a few clock cycles (i.e. errors are sometimes de-

tected a few clock cycles after they occur). It is, therefore, not code-disjoint in the strict 

sense of the term. Unfortunately, error latency increases as the value of n increases; its 

usefulness is thus restricted to rather low bit-widths. It is also repoited [34] that faults can 

totally escape detection, albeit with a low probability. 
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The extensive discussion of this section reflects the variety of choices available for 

checker designs for m/n codes, including the special cases of k/2k, 1/n, and even dedicated 

pieces of work to address the 1/3 case. Chapter 6 of this thesis provides a critical evalua-

tion of these choices in the context of this present work, and describes the associated im-

plementation and experimental results. As a final remark, further more options for n/m 

checkers have notably been presented, most of them historical and / or out of the scope of 

this thesis. These are further covered in [2] and [9]. 

2.2.1.3 Berger codes 

An n-bit word encoded according to a Berger code scheme consists of a k-bit information 

part I and an r-bit check part Ic, the latter being the binary representation of the number of 

Is in the information part (clearly n=k4-r). Variations exist, wherein Ic is either the I 's 

complement of the number of Is in I, or the number of Os in I. Without loss of generality 

these variations are ignored in this discussion. In any case, a Berger code is a separable as 

well as an unordered code [9]. As already mentioned in §2.2.1.2, it is not always possible 

to achieve the fault-secure property using unordered codes; Berger codes are no exception 

to this rule. 

k CHECK-BIT 
GENERATOR/ 
1's COUNTER 

r 

1 

CHECK-BIT 
GENERATOR/ 
1's COUNTER / ^ d a: 

< LU p, 
o: hd 

' / 

Ic / 

A generic implementation 

of a Berger code checker 

is shown in Figure 2.21. 

As is clear 6om the figure, 

the information part is fed 

to a check-bit generator, 

F/gure 2.2f. genera/ Berger code c/^ec/cer effectively reproduces 

the check part - or typically the complement of the check part, so that a dual-rail checker 

can subsequently be applied to produce the erroneous or error-firee indication. In practice, 

the check-bit generator is a Is counter with inverted outputs, composed of fiiD- and half-

adder cells only. Issues related to the totally self-checking goal arise here as well, resulting 

in modified versions of the general scheme of Figure 2.21, often Involving suitable con-

stants added both to the output of the check-bit generator and to the check part (analogous 

to the k/2k checker design of Figure 2.14), or using potentially existing checker outputs (in 

line with the scheme of Figure 2.19). A recent account of such approaches can be found in 
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[35], but will not concern this thesis any further. It can also be noted that accumulator-

based designs (similar to that of Figure 2.20) have been configured in [34] for Berger 

codes. 

2.2.1.4 Codes based on Hamming distance 

The of any two n-bit words is the number of bits in which they differ. 

The Hamming distance concept has been used for error detecting and correcting purposes. 

In particular, if a code is defined such that any two code words have a Hamming 

distance of then it can be shown that this code has the capability to detect cf-1 errors, 

and to correct|_(i^ - l ) / 2 j errors [1]. Note that both even and odd parity codes (§2.2.1.1) 

are special cases of such codes, with (f=2, therefore 1-error detecting and 0-error correct-

ing capabihty. 

When c/=3, the widely used, single-error-correcting / double-error-detecting code, often 

simply called the (conventional) Hamming code can be defined analytically as follows [1]. 

If there are ^ information bits, c check bits are needed, where 2'^^-l-c-t-l. The resulting 

word consists of (g+c) bits and can be represented as byfc-. .bzbi. Bits bi', 0 < i ^ - l are the 

check bits. Let n be an integer and bj(n) the value of the j-th bit of n (represented in bi-

nary). Let pj={(integer) I / bj(l)=l}, that is pj is the set of integers whose binary representa-

tion has a 1 in position j. Then consider the following c parity-check equations 

^ 6 ^ = 0 , F l , . . . , c (2.6) 

where the summation is modulo 2 (effectively XOR). From these equations, check bits can 

be determined. For example, consider 4 information bits. It should be c=3. Then equations 

(2.6) become 

6, @ @ 6; @ 6̂  = 0 (2.7a) 

6 2 0 6 3 0 6 ( 8 6 , = 0 (2.7b) 

6 , @ 6 ; e 6 g e 6 , = 0 (2.7c) 

enabling the calculation of tbe check bits 6/, 62 and 6/̂  from the information bits 63, 6j, 6^ 

and 67. This example conveniently demonstrates how error correction works. Indeed, con-

sider a single erroneous bit, e.g. 6 .̂ Equations (2.7b) and (2.7c) will now necessarily yield 

logic Is. Observe that the outputs of equations (2.7), from (2.7c) to (2.7a), now form the 
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binary number 110, which corresponds to the decimal number 6, which is the subscript of 

the erroneous bit &&. The block diagram of Figure 2.22 shows how error correction is real-

ised. The encoder block effectively realises equations (2.7) and produces the input check 

bits, while the functional circuit is supplemented by an output check bit predictor block, 

similar to the parity prediction schemes discussed in §2.2.1.1. The checker effectively 

again just implements equations (2.7), while the corrector interprets the checker informa-

tion to determine and invert the faulty bit. The checker also produces an error indication. 

The only complicated block in the figure is the check bit predictor, which is realisable 

only when the check bits of the functional result can be calculated &om the check bits of 

the function operands. This is not always achievable; in practice, the code is particularly 

useful when the "fimctional circuit" is a system bus or a memory array. 

In [36], the Hamming code is used to check a memory (SRAM) block. When a write op-

eration is performed, check bits are also computed and stored together with usefiil data. 

When a read operation is performed, the stored word is first checked and then the informa-

tion part is isolated and used. The overall testing scheme is further armed with BIST re-

sources (§2.1.2) that test memory cells by performing read and write operations to cells 

when they are not accessed for functional purposes. 

Another application of Hamming encoding is found in [37]. The next state logic block of a 

finite state machine is implemented such that the next state signals are encoded according 

to the Hamming single ECC, and the scheme of Figure 2.22 is subsequently applied to 

achieve fault tolerance by means of error correction. Interestingly, the whole process has 

been coded as a pre-processing step in the synthesis process, therefore producing on-line 

testable designs by automatically modifying the VHDL descriptions, and is reported to be 

compatible with commercial synthesis tools. 
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As opposed to the conventional Hamming code referring to minimum Hamming distance 

between code words, Bolchini et al [38] propose a Hamming distance code, and 

use it once more for the purposes of encoding the states of a finite state machine. The con-

stant Hamming distance property is not required of any two random code words, but rather 

of two code words that correspond to consecutive states. That is, the encodings of any two 

consecutive states differ by a constant distance (/, two non-consecutive states do not 

differ by cf, but by a multiple of cf, depending on the number of states that are in between 

the two states. It is a scheme that does not strictly conform to the usual self-checking de-

sign paradigm, in that the sequence of code words is relevant to the encoding. The authors 

of [38] propose a graph theory-based algorithm to map states to code words, and also use 

Berger encoding and checking (§2.2.1.3) for the combinational finite state machine output 

function. Moreover, in [39] the same authors introduce a suitable TSC checker to verify 

the constant distance between consecutive states. Further details exceed the scope of this 

thesis; it has to be noted, however, that in contrast to conventional Hamming code, this 

encoding does not provide error correction. Nevertheless, it detects faults resulting not 

only in non-code words, but also in incorrect code words, that is, /Mcorrec^ transitions to 

/ggaZ states. 

The schemes of [38, 37] are efficient for conventional Anite state machines, but do not 

give a satisfactory solution to the controller self-checking problem where the datapath in-

cludes storage elements. This issue is revisited and clarified in §6.1.1. 

2.2.1.5 Arithmetic codes 

The term "arithmetic codes" loosely corresponds to the family of codes whose words pre-

serve the characteristic code invariant property under arithmetic operations. These codes 

are typically characterised by their integer A. Let the non-coded word be W. Depend-

ing on how W and A are combined to produce the encoded word, three categories of such 

codes are most often reported in the literature [5, 40] : 

- codej 

They are separable codes. The information part is the word W itself, while the check part 

is calculated as (W mod A). 

- zMverjg rgjzWwe 
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They are separable codes too. Again tbe non-coded word forms the information part, but 

this time the check part is [A - (W mod A)]. 

-

They are non-separable. The code words are the products of non-coded words by the base 

A (WxA). 

Clearly different choices of the base A lead to different incarnations of the above classes 

of codes. As an example. Figure 2.23 shows a self-checking multiplier configuration based 

on a base A residue code. Of practical interest are the residue codes with A=2'^-l, typically 

referred to as residue codes. In this case, the modulo generators can be imple-

mented relatively cheaply, as trees of carfy acWgfj (i.e., adders whose "carry-

out" signals are connected back to the "carry-in" ports) [5]. The comparator module is im-

plemented based on a dual-rail checker (see §2.2.2). 

It is not within the scope of this presentation to give extensive details on arithmetic codes; 

an interesting application of such codes can however be found in reference [41]. Its au-

thors show that self-checking schemes similar to Figure 2.23 for large multipliers can be 

cheaper than the corresponding parity prediction schemes of [16, 15], presented here in 

§2.2.1.1. They further present techniques to choose the most suitable base for various 

kinds of multipliers and include these techniques and the resulting multipher designs in a 

error 
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output 

indication 

c h e c k e r 

m o d A 
genera to r 

m o d A 
genera tor 

mod A 
genera tor 

m o d A 

generator 

compara to r 

F/gure 2.23. muAp/ ;e f se/f-cAecWng sc/?eme b a s e d o n a b a s e A res/due code. 

unified CAD tool, which includes the work of [16, 15]. The tool produces HDL descrip-

tions of self-checking data-path modules, which can subsequently be used as building 

blocks by standard synthesis tools. 

Finally, [40] gives the self-exercising checker design solution for low-cost arithmetic 

codes. Just as in the parity code case [12, 19, 20] presented in §2.2.1.1 (Figure 2.12), a 

code words generator design (again resembling an LFSR in structure and hardware cost) is 
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used to provide additional code words to the conventional arithmetic code checker. Alter-

natively, an accumulator (§2.2.1.2) can be used for code word generation purposes. 

2.2.1.6 Sharing on- and off-line testing resources 

This subsection focuses on a few approaches that aim at reusing test resources normally 

employed for off-line BIST (§2.1.2), to provide on-line self-checking functionality as 

well. The motivation behind such combined approaches is that both of the above famihes 

of techniques impose significant hardware overheads to the original designs; having both 

on a chip can result in prohibitively large cost. Reusing resources in the mentioned manner 

is an attempt to keep the cost within acceptable limits. 

The first successful attempt in this direction has been [/Mz/zetf (L@Z$'2) 

[42]. The self-exercising checker design and the overall UBIST scheme proposed therein, 

are shown in Figures 2.24 and 2.25 respectively. 

In Figure 2.24, FIs are fimctional circuit inputs received by the checker during normal op-

eration (when the control signal T=0). In contrast, when T=1 (test mode), the checker re-

ceives inputs from the BILBO register (§2.1.2). The code / non-code indicator specifies if 

UBILBO 

UBIST checker 

F/gure 2.24. L/8//.80 and a L/8/STc/vec/(e/-

code / 
non-code 
indicator 

Checker 

BILBO 

the input word pro-

vided by the BILBO is 

a code or a non-code 

word. Testing the 

checker with non-code 

as well as code words 

is reported to enhance 

its self-exercising ca-

pabilities. In both the 

code and the non-code 

word case, additional 

logic in Figure 2.24 

ensures that the 

checker outputs fo and 

ft will respectively 
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provide a fault-free (fo=-f]) or faulty (fo=f,) indication. Dashed lines in the figure define 

the [/Mz/zgaf (UBTLBO) block, as the combination of a usual BILBO register with 

the code / non-code indicator and a few controlling transistors, and the UEZSTcAecArgr as 

the combination of a normal checker with the additional logic shown. 

In Figure 2.25, a part of a circuit configured according to an overall UBIST scheme is 

shown. Consider the off-line test mode and assume two test sessions, Tl and T2. During 

Tl, odd UBILBOs operate in TPG mode and provide test vectors to odd functional blocks. 

12 
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UBILBO 
1 

T1 
T2 

UBILBO 
2 
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Figure 2.25. The overall UBISTscherrB 

The responses are compressed by even UBILBOs (in MISR. mode), as weU as directly 

verified by odd UBIST checkers. During T2, odd and even blocks mutually exchange 

roles. During normal operation, BILBOs are isolated fi-om the rest of the circuit (T=0 in 

Figure 2.24), and functional block ouq)uts are normally checked by the corresponding 

checker modules, as in conventional self-checking design. It should be noted that the UB-

IST technique does not assume a particular error detection code. The designer is free to 

choose the one that best accommodates his or her needs. BILBO designs that produce 

code and non-code words for various codes are fiirther included in [42]. 

A more recent combined off- / on-line testing approach is presented in [43]. The overall 
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testing scheme is shown in Figure 2.26. The TPG and signature register of the Sgure can 

also operate as scan registers, so that the off-line test mode can be reahsed as either BIST 

or shift-based testing. In either case, inputs &om the TPG / scan register are fed to the 

augmented CUT and the normal outputs are either compressed in the SR or shifted out. In 

this off-line mode, the check bits shown in the figure are ignored. During normal opera-

tion, clearly normal functional inputs are fed to the circuit. This time, a cAecA gengra-

ror residing within the augmented CUT is taken into account. Effectively, the generator is 

designed such that the check bits it produces, in the fault-free case, equal to the bits resid-

ing in the signature register when fed by the given normal output. Tlieir equivalence is 

then checked using a nonnal comparator, fed by the check bits and the contents of the SR. 

The checker is thus composed of the SR, the comparator and some auxiliary logic. Hence, 

the block labelled "checker / SR / scan register" is a resource shared by off- and on-hne 

testing strategies. The authors of [43] also report a logic synthesis tool that synthesizes the 

check bit generator, to produce the desired output. As reported in [43], a m^or disadvan-

tage is high fault latency, i.e. faults are detected on-line a number of clock cycles after 

they occur. Proposed modifications reduce the latency, but increase hardware overhead, 

thus cancelling out the benefits of hardware resource reuse. 

In another approach [44, 45], the fMZiSR (f arzYy-prayervmg is introduced. It re-

ceives (n+l)-bit wide even-parity encoded inputs and produces two output signals, ri and 

ri. In contrast to the usual convention, here it is r]=r2 if the checker input (CUT output) is 

fault-free, and ri—r2 if it is faulty. The structure is a normal MISR with its state bits suita-

bly XORed. With some modifications, it can also be used as a test pattern generator or as a 

scan register. Thus, BIST or scan-based testing can be configured within an overall design 

utilising PMISRs, while during normal operation signals ri and rz from all PMISR struc-

tuies provide the on-line error indication. This work is extended in [46], to include a ge-

neric design methodology for other linear separable codes, (bus resulting in a linear Code-

This time, the state bits are not XORed. Rather, they are 

input to a more complex code-specific linear combinational circuit. 

2.2.1.7 Other related work 

In this subsection, two other interesting pieces of self-checking design related work are 

presented, that do not fit into any of the above subsections. 
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In [47], an attempt to automate self-checking design is proposed. Simulatable and synthe-

sizable VHDL [48, 49] descriptions of self-checking design building blocks are presented. 

These include code word generators and checkers for various error detecting codes. Parity, 

Hamming and Berger codes are among them. The VHDL feature of parameterised compo-

nent descriptions, using generic values, is exploited, thus making the descriptions useful 

for several data-path bit-widths. Two component versions are given for each code, sup-

porting both serial and parallel application of information parts to the code bit generator. 

The overall system is considered to be supervised by a controlling unit, which receives 

and handles the error indications. Auxiliary blocks (e.g. special purpose registers) are also 

presented, to facihtate communication between the controlling unit, the error detection cir-

cuits, and the outside world. 

Finally, as a supplement to self-checking design, [50] proposes a transient fault tolerance 

technique, based on Coc/g f raygrvmg. This technique augments the functional-

ity of logic blocks receiving encoded inputs, such that the blocks implement their usual 

operation when fed by a code word, but preserve their previous outputs when fed by non-

code words. Clearly the logic blocks have to be augmented to integrate checkers and auxil-

iary logic within them. They are then said to incoi-porate f rgjervmg 

Implementations and applications of such elements and resulting logic blocks 

are discussed in [50]. The technique is effective against transients of short durations, but 

clearly cannot provide satisfactory fault recovery against permanent faults. 

2.2.2 Duplication testing and related schemes 

In this subsection, duplication and duplication-related techniques are discussed. Techni-

cally, these techniques adhere to the general self-checking scheme of Figure 2.9, and thus 

fall into the broad category of self-checking design. Therefore the self-checking theory 

definitions and terminology (§2.2.1) will be used throughout this subsection. However, 

duplication schemes are addressed separately due to their extensive development and spe-

cial significance for the purposes of this thesis (chapter 5). 

Broadly speaking, duplication techniques adhere to the paradigm of Figure 2.27. The simi-

larities with the general self-checking scheme of Figure 2.9 are evident. Indeed, the func-
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tional circuit is augmented through 

the addition of a redundant circuit, 

which can be viewed as a check bit 

generator. This redundant circuit is 

fed by the functional input, and may 

produce either an identical copy of 

the functional output, or some varia-

tion (e.g. the complement of the 

functional output). In that context, 

the fimctional / redundant output pair 

can be viewed as an "encoded word" 

in the sense of §2.2.1. A checker 

module is further used to produce a 

2-bit error indication (often simply 

by comparing the functional and redundant outputs). The totally self-checking properties 

of Definitions 2.3 and 2.5 are once more desired for the augmented Circuit Under Check 

(CUC) and the checker respectively. Variations of duplication testing are defined with re-

spect to what exactly the structure and functionality of the redundant circuit are, and 

whether it is physically introduced or its operation implemented by pre-existing idle fimc-

tional resources. Other variations do not fully follow the paradigm of Figure 2.27. Indeed, 

there can be cases where the flow of data through the functional and redundant circuits 

follows different paths, or where the fimctional input is first somehow processed (e.g. 

shifted) before being fed to the redundant circuit. All these techniques share the common 

property that the size of the redundant circuit is of the same order as the fiinctional circuit 

(as opposed, e.g. to parity prediction normally using much less hardware than most func-

tional circuits), and the redundant output is typically of the same bit width as the func-

tional output (once more, as opposed for instance to a parity scheme always needing a sin-

gle additional bit regardless of the functional output bit width). These common character-

istics loosely outline the family of duplication-related techniques addressed herein. 

2.2.2.1 Physical duplication 

In the basic physical duplication checking scheme, the redundant circuit of Figure 2.27 is a 

replica of the functional circuit, and it is physically introduced together with a comparator. 
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The scheme is fault secure by nature [9]. Indeed, a fault in the augmented CUC may affect 

either the functional or the redundant circuit, thus potentially corrupting bits in either the 

fumctional or the redundant part of the "encoded" output (ngver both). Any fault that 

reaches the encoded output will thus create a non-code word (i.e., an output word whose 

functional and redundant parts are unequal). The comparator module also has to be fault-

secure; as a matter of fact, fault-secure comparators are implemented by inverting all bits 

of one of the inputs, and then introducing a dual-rail checker (to be presented in detail in 

§2.2.2.2). Further, the hardware overhead associated with physical duplication clearly ex-

ceeds 100%. 

Physical duplication as explained above is also referred to as duplication, assum-

ing that the functional and redundant circuit are structurally equivalent. Although very ro-

bust against single faults, identical duplication can be problematic in cases where double 

faults are expected to develop in the system, such that the functional and redundant cir-

cuits demonstrate the jame faulty behaviour (commoM-mode faults). An alternative to 

identical physical duplication, is to introduce a redundant circuit that is 

equivalent, but diverse to the fimctional circuit, thus implementing 

duplication [51, 52, 53]. 

In [51], Mitra and McCluskey perform fault simulations on a number of benchmark logic 

circuits, to compare various self-checking techniques, including diverse and identical du-

plication, parity prediction (§2.2.1.1) and Berger codes (§2.2.1.3) against multiple faults, 

and against double common mode faults. Their results are strongly in favour of divei-se 

duplication. The work also includes comparisons in terms of hardware overhead. Interest-

ingly, in many considered examples, Berger code self-checking is more expensive than 

duplication, due to the complexity of Berger code prediction logic and Berger code check-

ers. 

In [52], Mitra et al once more compare identical and diverse duplication with respect to 

their vulnerability to double faults and once more establish the increased detection prop-

erty of diverse duplication through fault simulations. They also provide a theoretical ap-

proach to the issue, through the introduction of fault pairs : 

2.7 j : A duplication scheme is with respect to a fault pair 

where/i affects the functional a n d ^ affects the redundant circuit, if there exists a ftmc-
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tional input for which the two circuits produce different outputs under the presence of the 

faults. is then called a fault pair. 

Notice the analogy between the self-testing property considering f/ng/g faults, for on}' self-

checking technique (Definition 2.1), and the self-testing property considering 

faults, as defined above for duplication schemes. In [52], Mitra et al further pre-

sent a simulation-based algorithm to identify non self-testable fault pairs in any given du-

plex system, and propose test point insertion (§2.1.1) to detect such faults, by periodically 

applying suitable test vectors to the circuit, when it is idle or temporarily taken off-line. 

In [53], Mitra and McCluskey flirther support their work of [51, 52], by presenting a logic 

synthesis for diversity technique. The technique is fed by a truth table describing the de-

sired functionality, together with a given implementation, and produces the redundant im-

plementation that demonstrates the maximum diversity with respect to the given one, also 

trying to minimise the area overhead. For this purpose, they quantify diversity as foUows : 

: Given two combinational realisations of the same functionality, the c/z-

verjzYy c/,,, with respect to the fault pair is the probabihty that the two realisations do 

Mor produce identical faulty outputs under the presence of the fault pair. 

Assuming that aU system input vectors are equally probable, Definition 2.14 effectively 

suggests that the more the inputs that expose a given fault pair, the more diverse the two 

realisations are, with respect to the particular pair. A unique value for the diversity of the 

two implementations is computed by calculating the diversity of the implementations with 

respect to aU modelled fault pairs and averaging over the number of pairs. Diversity to-

gether with area overhead then define a 2-dimentional design space, which is explored by 

logic synthesis algorithms also proposed in [53]. 

An alternative to full hardware duplication is presented in [11]. Only a "sufficiently big" 

subset of possible faults are targeted, and the redundant circuit this time is a reduced ver-

sion of the functional circuit, designed such that on/y the targeted faults in the functional 

circuit can be detected. Input patterns exposing only non-targeted faults are treated as 

"don't cares" when synthesizing the redundant circuit, thus leading to logic minimisation. 

Further, the comparator / checker is fed by one or two additional control bits, and 

equipped with a simple control unit that receives the bits and determines if the checker 

must check or not, depending on the input word. It thus becomes a compara-

tor / checker. Clearly, testability is traded-off for cheaper hardware implementation. The 
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efficiency of this technique strongly depends on knowing ZM the input patterns 

functional modules are likely to receive, as well as the input patterns fiinctional modules 

will MOf receive, so that the set of faults that cannot harm the functional output (and there-

fore do not need to be targeted) can be determined. 

2.2.2.2 Dual-rail checking 

A variety of diverse duplication is cAgctmg [9]. In a dual-rail design, the redun-

dant circuit of Figure 2.27 does not produce the same output as the fimctional circuit, but 

its logic complement (in the fault-free case). A "code word" comprising the fimctional in-

formation paii, and a check part of the same size, where every check bit is the complement 

of the respective information bit, is genericaUy called a encoded word. 
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Figure 2.28. The IF IS technique 

Dual-rail testing following the paradigm of Figure 

2.27 is fault-secure by nature, but not widely 

adopted, since it does not offer any real benefit 

over physical duplication. Nevertheless, techniques 

employing dual-rail encoded datapaths have been 

presented. An example is the 7F/5' (if It Fails It 

Stops) scheme [54, 55, 56, 57]. Figure 2.28 repre-

sents a portion of a system designed using this 

technique. The system is partitioned into /FAS' e/e-

Each element corresponds to a fraction of the overall functionality, implemented 

using dual-rail encoding, comprising both functional and redundant circuits. Each element 

is thus an augmented version of a normal functional circuit, whose output is twice as wide 

as the normal output. The elements further include suitable control logic, so that eveiy pair 

of functional and respective redundant bits experience oMg change in their logic 

F/'gure 2.29. Perm/ffed /F/S 
state transitions 
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values every clock cycle. In particular, if the information bit changes due to the circuit 

functionahty, then the redundant bit remains stable and vice versa. Thus, an IFIS element 

output pair is only allowed to experience any of the transitions shown in Figure 2.29. As 

also depicted in Figure 2.28, each element receives feedback Arom its successor and input 

from its predecessor. If an element demonstrates an illegal transition due to the presence of 

a fault, then suitable checkers in its successor and predecessor detect the failure and cause 

the corresponding elements to stabilize their outputs. Thus, the effect of the fault soon 

propagates and the system operation stops. Apart firom the usual input and output ports, a 

system implementing the IFIS technique also features input and output feedback ports 

(FB IN, FB OUT), to communicate with a master controller. A n important contribution 

of this work is the implementation of an on-line testable UAR.T — the first on-line testable 

design of some realistic complexity to be presented in the literature. Note that this tech-

nique is proposed at the system level, that is, at a higher level of abstraction than the be-

havioural level that this thesis is particularly concerned with. This means, for example, 

that every IFIS element of Figure 2.28 is a full, complex, typically sequential circuit (e.g., 

the receiver and transmitter are both IFIS elements in the mentioned UART implementa-

tion). 

Figure 2.30. The dual-rail checker cell 

Although the scheme of Figure 2.27 is not 

widely used for dual-rail checking, suit-

able checkers that verify the dual-rail 

property of their input signals are conven-

iently applicable in a variety of situations. 

These checkers are commonly known as 

cAecArerj and implemented using 

the c/uaZ-ra;/ eg// of Figure 2.30 

[2, 9]. It can easily be confirmed that when 

the 2-bit input words are com-

plementary (xTg = 70: )' then the 

output pair zozy is complementary too, thus providing the fault &ee indication, according to 

tlie usual self-checking convention (§2.2.1), ensuring fault-security. The cell thus effec-

tively acts as a 2-pair dual-rail checker. An n-pair dual-rail checker can now easily be con-

structed as a tree of n-1 such cells, as Figure 2.31 exemplifies for the 5-pair case. The de-

sign of the figure checks the dual-rail property of two 5-bit inpnt signals (5 pairs of com-
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plementary bits), and the 2-pair constituent blocks are simply dual-rail cells as of Figure 

2.30. Observe how the ceU outputs are combined together, exploiting their fault-firee com-

plementary property, ultimately leading to the typical 2-bit checker output. Clearly, a dual-

rail checker is desired to be totally setf-checking (§2.2.1). The analysis of the TSC prop-

erty of dual-rail checkers is analogous to the analysis followed in the case of parity check-

ers (§2.2.1.1). This is expected, since parity checking Ainctionality is also provided by tree 

structures (specifically 

XOR trees). Once more, 

the code-disjoint and fault-

secure properties are en-

sured by construction (2-

bit output). For the re-

maining self-testing prop-

erty, every cell has to re-

ceive aU four possible 2-

pair dual-rail code words 

(0011,0110, 1001, 1100), 

and once again a minimum 

set of words achieving this 

can be determined by con-

sidering all possible code 

inputs to the final cell pro-

ducing the ultimate 

checker output, and trac-

ing back to the overall 

checker primary inputs. 

The number of required 

code words is, again, OM/y 

four, of bit 

Agure 2.3f. 5-pa/r dua/-ra/7 c/iecker width. 

2-PAIR 
DUAL-RAIL 
CHECKER 

2-PAIR 
DUAL-RAIL 
CHECKER 

2-PAIR 
DUAL-RAIL 
CHECKER 

2-PAIR 
DUAL-RAIL 
CHECKER 

Further, the following lemma applies [58] : 

Zgmma 2. J : Consider a 4x(2xn) Boolean matrix M, whose distinct rows constitute a test 

set for an n-pair dual-rail checker, composed of 2-pair dual-rail checker cells (Figure 2.30) 
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only. TbenVke [1, n], the kth and (k+n)th columns of the matrix are bitwise complemen-

tary. Moreover, if only the Arst half of the matrix is considered, by ignoring the (n+l)th, 

(n+2)tb, ..., (2xn)th columns, then two of the four distinct rows of the resulting matrix 

have even and the other two odd parity, while each column has exactly two Is and two Os. 

The similarities to the parity-related Lemma 2.2 are evident. Lemma 2.3 implies that if a 

given configuration requires a dual-rail checker that will receive the rows of a matrix M 

during normal operation, then there exists /gay^ owe arrangement of dual-rail checker 

cells within the overall checker that leads to a TSC realisation. An analytical algorithmic 

procedure for the extraction of the fastest such realisation (given the matrix M) can be 

found in [58]. 

Z2 

@ - r - ^ D Q 

CK 

Qi 

Cn-1 

D U 

CK 

02 

C1 

D U 

CK 

Qn 

C o n v e n t i o n a l n /2 -pa i r Dua l - ra i l C h e c k e r 

F/gure 2.32. wS-pa/r embedded 7SC duaZ-ra// cAec/cerw/fA error memon'z/ng capa6//f<y 

The analogies with parity checkers are further extended in [12, 19, 20], proposing the em-

(/waZ-razV 73'C wzYA to be used whenever the 

environment is unable to provide the required inputs to the conventional dual-rail checker 

(Figure 2.32). The design is based on the same tlieory as its parity-checking counterpart 

(§2.2.1.1). Consider two n-bit words W=X,.. .Xn/2Y].. .Yn/z and W - X ' , . . .X'n/zY'i.. .Y'n/i-

If both words are dual-rail encoded (i.e. Xj—Yj and X';—Y', for all i), then elementary 

Boolean calculus can show that the modulo 2 sum W @ W is dual-rail encoded. Thus, 

the dual-rail code is not linear. However, if W is such that X'j=Y'i for all i (duphcation 

encoded), then the result of W@ W can be shown to be a dual-rail word. Therefore, if the 
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LFSR of Figure 2.32 produces duplication encoded words of bit width n and the n-bit in-

put Z|. . .Zn is dual-rail encoded, then the conventional dual-rail checker will receive dual-

rail words. Further, the n-bit duplication code is cyclic, and g(x)=x'^+l is a generator 

polynomial [12]. According to Theorem 2.1, one can construct an LFSR producing all du-

plication code words of degree n, by choosing a primitive polynomial d(x) of degree n/2 

and using g(x)d(x) as the LFSR characteristic polynomial. The resulting checker will be 

totally self-checking under the sole assumption that the environment provides at least two 

different dual-rail encoded words [12]. 

A few applications of dual-rail checkers have been presented in previous subsections, 

where such checkers were used as building blocks for broader checking schemes. More 

specifically, a class of m/n checkers (§2.2.1.2), specialised 1/n checkers (§2.2.1.2), Berger 

code checkers (§2.2.1.3), as well as fault-secure duplication checkers (comparators, 

§2.2.2.1) all include dual-rail checker blocks. Further, observe that, under the typical con-

vention of §2.2.1, the fault-firee response of a checker of any kind constitutes a dual-rail 

pair (01 or 10). Assuming a complete system with self-checking capabilities attached to 

several hardware blocks realising the system functionality, the responses from all self-

checking blocks should, in the fault-fi-ee case, constitute several dual-rail pairs. By com-

bining all these responses and leading the constructed dual-rail word to an appropriate 

dual-rail checker, a designer can produce a single 2-bit primary output, providing a con-

cise indication of the health of the system [9]. This technique is very popular in self-

checking systems, and is often referred to as r&ypoMjg A dual-

rail checker employed in that manner is consequently called a rejpoMje 

Another example application of dual-rail checking is presented in [59]. With reference to 

the paradigm of Figure 2.27, the authors of [59] selectively XOR groups of combinational 

functional circuit output lines, so that the bit-width of the compacted word reaching the 

checker is reduced to no more than 5 in all practical cases considered. The redundant cir-

cuit is then effectively a always producing the complement of the compacted word, 

and correct operation is verified by a suitable dual-rail checker. Hardware savings are due 

to the simple structure of the coder, when compared to a redundant circuit that would 

demonstrate exactly the "complementary" behaviour to the fiill fimctional circuit. The re-

duced bit width of the checker is another source of savings. The authors analyse the func-

tional circuit structure and identify groupings of circuit output lines that minimise the pos-
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sibility of fault escapes associated with compaction. On an interesting word of note, this 

output partition and compaction technique is also shown to be utihsable in an off-line 

BIST mode, where a MISR structure (§2.1.2) substitutes the dual-rail checker. Overall, 

this technique demonstrates snnilarities to the controllable self-checking of [11], in that it 

trades off testability for hardware savings (by accepting a possibility of fault escapes) and 

it requires that the functional circuit gate-level stmcture be known. 

2.2.2.3 Algorithmic duplication 

+3 ^ A2 

F/gure 2.33. /̂ /gonY/?m/c 
cfup/Zcaf/on mof/Vaf/ona/ examp/e 

Straightforward physical duplication and dual-rail self-checking are primarily defined for 

isolated, usually combinational circuits. Of more 

interest is the situation of an overall, complex 

sequential system, typically described by a con-

ceptual algorithm, synthesized using a CAD tool, 

and composed of several functional building 

blocks and storage elements, implementing the 

algorithm. Clearly, such systems can be fully du-

plicated and their outputs verified according to 

Figure 2.27; however, this leads to a significant 

overhead. Alternative approaches try to analyse 

the system datapath and identify ways to dupli-

cate and check the system (functionality), without necessarily duplicating all of 

the system (hardware modules). This concept outlines a/gonV/zTM/c 

(also called a/gorzYA/Mzc /eveZ re-coTMpufmg). The family of algorithmic duplication vari-

ants are considered in this subsection. The presentation assumes famiharity with the con-

cept of a grapA (Z)f (7) and will hereafter use such graphs to describe example 

system functionality. This assumption is reasonable, since the DFG is a well-established 

and extensively used scheme ui the area of hardware design. In any case, a fomial defini-

tion of the DFG is provided in this thesis in §3.1.1 (Definition 3.2), as part of the presenta-

tion of high-level synthesis. Another idea which is important for the purposes of this sub-

section, is that of modules' /WZe n'mg. At any given time point, a (typically combinational) 

hardware module, forming a part of a complex system, is said to be icfZe, if it is not fed by 

usefiil functional inputs and does not produce any useful output at this particular point. 

The concepts of idle time and algorithmic duplication, and considerations, benefits and 
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trade-oHs associated with their application are demonstrated in the following, through a 

motivating example. 

Consider the simple but instructive data flow graph of Figure 2.33, defining the function-

ality of a hypothetical elementary arithmetic chip or part thereof. Operations (additions) 

+1 and +2 are implemented by module (adder) Al, +3 is implemented by A2 and multipli-

cation * 1 is realised by multiplier M1. 1, 2 and 3 define the temporal rela-

tionship of these operations. Indeed, in the example, operation +1 is executed a clock cy-

cle before +2 and +3, while the latter are followed by multiplication *1. Arrows in the 

graph further show data dependencies between operations (e.g., the output o f+1 feeds +2). 

Overall, the realisation of the system functionality requires 2 adders (Al, A2) and 1 multi-

plier (Ml). In line with the introductory comments in the previous paragraph, two copies 

of the same datapath could be constructed, and the pruTiary outputs of the two copies (i.e. 

the outputs of multiphcation * 1 in both cases) could be compared to verify the correct op-

eration. However, in large systems it is often desirable to give a pre-emptive indication of 

the health of the chip, in this context by duplicating and separately comparing all (or a 

number of) the constituent elementary operations, rather than the overall design. To this 

end, a feasible option would be to physically duplicate modules A l , A2 and Ml, so that 

whenever an operation is executed by a module, its duplicate is fed by the same inputs and 

produces (in the fault free case) the same output; this would clearly result in 4 adders, 2 

multipliers and 2 comparators. Observe, though, that adder A2 is idle during control steps 

1 and 3, while adder Al is also idle during control step 3. A2 can therefore be employed 

during control step 1 to duphcate operation +1. Similarly, operations +2 and +3 can be du-

plicated during control step 3, mapping the duplicates on modules A2 and Al respectively. 

This introduces 1 clock cycle e fmr (a possible error is detected 1 clock cycle after 

it occurs), but saves hardware, since the duphcation of additions does not require the in-

troduction of any new adder. In order to verify operation *1, the only option is to intro-

duce a new multiplier. So, pre-emptive elementary result verification is achieved with only 

2 adders, 2 multipliers and the implied 2 comparators, together with some additional mul-

tiplexers, registers and interconnect, while 1 clock cycle error latency is introduced to two 

of the self-checking operations. Also note that, implementing algorithmic duplication as 

described above leads to fault-secure schemes (provided that fault-secure comparators are 

used), since the hardware modules realising duplicate operations of+1 , +2,4-3 and *1 are 

all different from the modules realising the corresponding functional operations. An addi-
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tional advantage would be to map the duplicates to diverse hardware as well (if possible), 

tlius providing protection against common mode fault pairs (§2.2.2.1). In the rest of this 

subsection, the presentation overviews works that address the concept of applying algo-

rithmic duplication within complex datapaths. 

In [60], OraHoglu and Karri combine fault detection based on algorithmic duphcation with 

self-recovery from transient faults. Their approach shghtly differs &om the paradigm 

given in the previous paragraph, in that they do not compare the results of every single 

pair of a functional and a duplicate elementary operation. Rather, they define control steps 

during which comparison has to take place (cAecXyomf^), and at these checkpoints they 

compare outputs of cAamj' of functional operations, with outputs of chains of duplicate 

operations. A chain of operations in this context refers to aU operations that are executed 

between two consecutive checkpoints and have data dependencies among them (i.e. di-

rectly or indirectly connected by arcs in the DFG). Of course, a chain of duplicate opera-

tions cannot use any hardware modules already used by the corresponding chain of func-

tional operations. When an error is detected at a checkpoint, the system to the 

previous checkpoint control step, so that the faulty chains wiU be recomputed, hoping that 

the transient fault will have vanished. Of course, the technique is unsuitable for permanent 

faults. All chains of duplicate operations effectively constitute a DFG. To this 

end, tasks addressed in [60] include an algorithmic approach to determine the checkpoints, 

an analytical and ultimately automated way to construct the duplicate DFG and assign 

hardware modules to operations, as well as the application of arithmetic properties (dis-

tributivity, associativity) on the duplicate DFG, demonstrated to lead to hardware savings 

in appropriate designs. On the same theme, Narasiinhan et al [61] particularly focus on 

evaluating the placement of checkpoints in a design, taking into account resource con-

straints (i.e. number of available comparators) and timing specifications (i.e. maximimi 

allowed speed degradation due to rollback and recomputation, given the expected duration 

of tr ansient faults). 

Hamilton and Orailoglu [62] present an algorithmic duplication technique to provide on-

line /Wenfi/zcafzoM, together with fault detection and recovery. Fault identification re-

fers to identifying the faulty functional module in a datapath producing erroneous results. 

In line with [60, 61], they also consider chains of operations. Further, a chain and its du-

plicate are defined to constitute a A-ocA. Fault detection is provided by comparing the two 
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outputs fiom the two chains of a given track, while fault identification is based on func-

tional unit Given two functional units A and B, unit A is said to be differ-

entiated from unit B if a track exists that utilizes A but not B. Fault identification is 

achieved when every unit in the system is differentiated &om all other units. For instance, 

consider three addition operations, +1, +2 and +3, and their duplicates +1% +2' and +3'. 

Let A, B and C be functional units capable of realising them (adders). Assume that +1 is 

implemented by A, +2 by C, +3 by B, +1' by B, +2' by A and +3 ' by C. Thus, three tiacks 

are forrned, namely track 1 corresponding to +1 and +1' and utilizing units A and B, track 

2 corresponding to +2 and +2' and utilizing A and C, and track 3 corresponding to +3 and 

+3' and utilizing B and C. Clearly all three units aie differentiated from one another. If 

track 1 detects a fault then either A or B is faulty. Additionally, if track 2 also signals a 

fault, then A is identified as faulty. Alternatively, if track 3 fails, then C is determined 

faulty. The authors of [62] consequently analyse given design DFGs and assign functional 

and duplicate operations to hardware modules, such that module differentiation is maxi-

mized, while hardware and timing constraints are not violated. Track module utilisation 

information is stored in appropriately inserted storage elements, while additional control 

logic exploits all track comparison responses to identify any faulty module. When an error 

occurs and a faulty module is identified, control rolls back to the previous checkpoint (ex-

actly as in [60, 61]) and recomputation takes place; this time, however, all chains utilising 

the faulty module are disabled. Thus, the technique provides some limited tolerance to 

permanent faults as well as transient ones. The same work is carried forward in [63], 

where redundant logic is added, in order to achieve fault-security (Definition 2.2, §2.2.1) 

and recovery for a greater set of faults in the overall design (i.e. for faults affecting not 

only the datapath modules implementing the above mentioned tracks, but also the control 

logic, and the fault identification and recovery units). 

In [64], Karri and Iyer present their technique. Similarly to [60, 62, 61], In-

trospection fully utilises modules' idle times for algorithmic duplication purposes; how-

ever, no additional functional modules are introduced in case the idle time is not enough. 

Instead, the authors of [64] prefer to produce designs with a number of "unchecked" op-

erations. As an illustrative example, let us refer back to Figure 2.33. As explained above, 

adder A2 can be used to duplicate operation +1, while A1 and A2 can duplicate +3 and 4-2 

respectively, during control step 3. Under Introspection, no new multiplier is introduced, 

therefore no duplication testing is applied to operation * 1 and the resulting design demon-
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strates degraded fault detection capabilities. The Introspection hardware overhead is 

minimal (simply the result of introduced comparators and registers), but the technique can 

be very inefficient as far as fault detection is concerned in designs where there is too little 

idle time. On the other hand, when foo mwcA idle time is available, the authors of [64] pro-

pose exploiting it to implement fault identiGcation, effectively b y assigning the same 

computation to three different modules. Indeed, a pair-wise comparison of module outputs 

is then enough to identify the faulty one. Clearly the usefulness of this technique for either 

fault detection or identification very much depends on the considered design. 

Lakshminarayana et al [23] revisit the problem of defining and synthesizing a duplicate 

DFG. In previous approaches [60, 62, 61], pairs of functional and duplicate operations or 

chains of operations were not allowed to share any hardware modules. The particular nov-

elty of [23] is an analysis of the probability of fault escapes if some limited de-

gree of such hardware sharing is allowed, in any given functional and duplicate DFG, for 

any candidate sharing scenario. Based on this analysis, its authors accept the sharing if the 

said probabihty is below a defined threshold. Their starting point is a purely physically 

duplicated system, where checking takes place at the primary outputs only. However, they 

perform judicious intemiediate result checking, having observed that such checking can 

minimise the fault escape probability and promote hardware sharing. They fiirther propose 

parity checking (§2.2.1.1) as a solution to the control path self-checking problem, without, 

however, paying any attention to the self-testing property (Definition 2.1). 

Another alternative is provided in [65], in the form of jgmzcoMcwrreMf error detection. In 

this technique, no intermediate operations (e.g. "+2" in Figure 2.33) are checked. Primary 

outputs are not a/wayj checked either; rather, primary outputs are only checked once every 

f executions of the functional circuit, where f is an integer value (cAgcA:mg /pgnocfzc/Yk). If 

the fimctional DFG takes A: clock cycles, then the duplicate needs to be constrained within 

f clock cycles. Typically f > l , which leads to a very relaxed time constraint for the du-

phcate DFG, effectively allowing for area savings through hardware sharing between the 

original and the duplicate operations (as in [23]). The area / checking periodicity trade-offs 

are investigated, through the implementation of alternative design solutions, for different 

values of f . Increased error latency is an obvious disadvantage of this approach. 
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In [66, 67, 68], Wu and Karri once more address the problem of minimising area over-

heads and time penalties when employing a dnphcate DFG. They partition the functional 

and duplicate DFGs into several sub-DFGs and compare the sub-DFG outputs / intermedi-

ate computation results, together with the primary DFG outputs (an idea already seen in 

[23]). A novelty in their approach is that they feed selected orzgma/ DFG values to the 

corresponding DFG operations, having observed that such a rearrangement al-

lows for hardware and clock cycle savings, by breaking data dependencies within the du-

plicate DFG. hi another two publications [69, 70], the same authors reject the idea of a 

duplicate DFG that is executed in parallel with the functional one; rather, they propose an 

arrangement in which the original DFG is executed f times, the f t h result is preserved, 

then recomputation using the duplicate DFG is executed and the resulting outputs are 

compared against the stored ones to confirm correct operation or produce an error indica-

tion. This is reminiscent of the semiconcurrent error detection of [65], in that once again 

only one every f obtained results is checked; however, in the semiconcurrent case the du-

plicate DFG is executed m para/Zg/ to the original, rather than temporarily suspending use-

flil operation, hi that sense, [69] and [70] can be classified as error detec-

tion approaches. Naturally, all previously mentioned works where every primary output 

was always checked in parallel to the useful operation [62, 60, 61, 63, 64, 23] offer coM-

cwrrgMf error detection. Returning to [69], one can note that the emphasis is on assigning 

duphcate operations to different hardware modules from the respective original ones (a/Zo-

can'oM c/zvgfj'fYy), so as to minimise the possibility of fault escapes (in that sense, it is 

reminiscent of [23], although the fault analysis is not as thoroug;h). In [70], (fzverjzVy 

is also investigated, through wzYA qperoMck. The idea is to keep the 

same operation-to-operator correspondence between the original and duplicate DFGs, but 

to do the recomputation having shiAed the original input by two bits. The recomputa-

tion output is then shifted by two bits, and the result compared against the stored 

output of the f t h functional computation, as mentioned above. Hardware overheads and 

fault escape probabilities are also calculated for this technique. 

Chapter 5 of this thesis revisits the algorithmic duplication variants presented in the above, 

evaluates them with respect to their testabihty characteristics, overheads and synthesis ap-

proaches, presents the contribution of this work and outhnes comparisons. 
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2.2.3 On-line BIST and DFT 

Having completed the detailed overview of self-checking design, both based on error-

detecting codes (§2.2.1) and on duplication-related techniques (§2.2.2), this presentation 

moves on to on-Zme BuUt-In Self-Test and Design For Testability. The difference between 

(externally applied or built-in) and is that the former builds up the 

designer's confidence on the health of a fabricated system through the application of test 

vectors and collection of test responses, as shown in §2.1, while the latter provides an OM-

gozMg verification of obtained results. It should be made clear that in that sense they are 

fundamentally different reliability approaches. Testing is typically an off-line operation, as 

§2.1 showed; the application of test vectors is either done once (^rocfwcfz'on or by pe-

riodically taking the system off-line for testing purposes (pgrzo<5̂ zc .STST). The topic of this 

subsection then, is a presentation of "test vector-based" testing, that, in contrast to what 

applies typically, require the system to be taken off-line. Moreover, the following 

material should not be confused with the works presented in §2.2.1.6, regarding shared 

resources for self-checking and off-line testing. In the schemes of §2.2.1.6, the system was 

purely self-checking when on-line - in contrast to the approaches of this subsection that 

apply test vectors when on-line. 

2.2.3.1 Concurrent testing 

C o m p a r a t o r 

/Outputs 

Ffgure 2.34. CB/ST 

A historical approach to on-line BIST was 

proposed by Saluja et al [71]. The CoMcwr-

(CBIST) configuration 

which they presented is shown in Figure 

2.34, consisting of the circuit under test 

CUT, a comparator, a multiplexer MUX, and 

two typical BIST resources (a TPG and an 

MISR, see §2.1). In off-line test mode (when 

signal Test=l), the CUT receives inputs from 

the TPG and feeds them to the MISR., just as 

in any normal BIST configuration. In on-line 

mode, the TPG contents and the functional 
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inputs are compared. In case they are equal, the MISR compresses the CUT outputs and 

the TPG advances to the next test pattern. Otherwise, test resources remain idle. Therefore, 

when the system is on-hne, the test resources are active whenever "convenient", depend-

ing on the inputs the CUT receives during normal operation. On-line BIST in this context 

can be conceived as an "extra" feature of the normal operation mode. Obviously, the time 

required for the TPG to cycle through all states ZafeMC}') depends on the functional 

input data and can be unacceptably high. Still, CBIST is considered a classic approach and 

it is referenced by several other researchers as probably the very first attempt in this field. 

More recently, Santos [72] proposed a similar idea, based on the boundary scan architec-

ture (Figure 2.4). Input test vectors are shifted into input boundary scan cells and func-

tional inputs are compared against them. If they coincide, outputs are collected in bound-

ary scan output cells and shifted out, compacted in a signature register or compared with 

pre-computed expected outputs. Consequently, the next test vector can be shifted into the 

boundary scan cells. In order to reduce test latency, not only input test vectors are consid-

ered for comparison with functional inputs, but also their complements and vectors result-

ing by dividing test vectors and complements into two parts, searching for each part indi-

vidually and considering all possible combinations. For example, if the 4-bit vector 1001 

is shifted in, then 0110, 1010 and 0101 are also considered. 

2.2.3.2 On-line BIST exploiting idle time 

Applying BIST while the system is on-line as presented ui §2.2.3.1 has the major disad-

vantage that the application of a complete test to the CUT can take an unpredictably - and 

probably unacceptably - long time. Recall the observation of §2.2.2.3, that in realistic sys-

tems, combinational modules experience clock cycles during which they do not implement 

any useful operation (idle time). While §2.2.2.3 showed how such idle cycles can be used 

for self-checking purposes, the works presented herein investigate the possibihty of ex-

ploiting these idle cycles to apply test vectors to the idle modules. For example, referring 

back to Figure 2.33, a test vector can be applied to adder A2 during CS 1. The test re-

sponse information has to be preserved (using an MISR) or shifted out (assuming a test 

clock significantly faster than the functional clock), so that the adder can perform its func-

tional operation (addition +3) during CS 2. Afterwards, the test process can resume at the 

idle CS 3, by the application of the next test vector. When the system primary output is 
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produced, control normally returns to the first control step; if the idle cycles of a single 

execution of the DFG are not enough for a whole test set to be applied to the functional 

modules, then the test is not reset but it is carried on at the next execution of the DFG, ef-

fectively spanning multiple repetitions of the normal functionality [73]. When aU test vec-

tors have been applied, a fault-free response confirms the results of all the previous func-

tional executions. This idea of applying test vectors to hardware resources when they are 

not functionally used is exploited in [36] to test memory cells, in combination with a 

Hamming distance-based ECC (§2.2.1.4). The focus of the present subsection is on 

datapaths. 

From the above description of on-line BIST, it is evident that the more the idle time avail-

able in a particular datapath the more efficient the test process. This highlights a difference 

between exploiting idle cycles for self^checking and exploiting them for BIST. In the for-

mer, idle time is only a since it can reduce hardware overheads (§2.2.2.3). In the 

latter, idle time availability actually of applying the technique in 

a given design, since too little idle time may result in unacceptably high test latency. 

Therefore, a major task in on-line BIST is to fit a full test set within as few functional exe-

cutions as possible. This can be done either by favouring idle t ime when designing the sys-

tem of interest, or by reducing the number of required test vectors (fear Ze/igfA), by using 

suitable functional modules. Finally, one needs to define a for his or her de-

sign, i.e. define the flow of test data through the design, together with the flow of func-

tional data. These crucial issues (idle time availability, test length minimization, test 

scheduling) are discussed in the following three subsections. 

2.2.3.2.1 Idle time availability 

The most notable systematic approaches to the analysis of datapaths in search of idle cy-

cles have been presented by Baker et al [74], Brown et al [73] and Williams et al [75]. In 

[74], all combinational flmctional blocks in a given design are considered separately, and a 

is generated for each one of them. A latent profile is a data structure that 

contains detailed information about the utilisation of modules in clock cycles, i.e. denoting 

if a functional module is "busy" or idle during a given clock cycle. [73] provides an exten-

sion, wherein example designs of substantial size are considered, module latent profiles 

are extracted, and it is illustrated that idle periods are enough for the application of full 
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sets of test vectors in many practical cases, of realistically long data-flow graphs. Further, 

the availability of idle time is identified as a possible goa / (as opposed to a design 

natural property). Loop structures and conditional execution of operations are also briefly 

discussed, by considering "best" and "worst" case scenarios, corresponding to "as much as 

possible" and "as little as possible" available idle time. In [75], data-dependent conditional 

execution is further investigated. Operations that are executed conditionally are assigned 

execution probabilities; these probabilities are subsequently combined with latent profile 

information to calculate fgj'/ for fiinctional blocks. Effectively, 

for every given fimctional block in an overall design, the work in [75] calculates a prob-

abihty that a full test can be applied to it, in the potentially available idle time. 

2.2.3.2.2 Test length 

The term "test length" refers to the number of test vectors that need to be applied to a 

CUT, so that all modelled CUT internal faults can be detected. Minimising the test length 

is clearly of particular importance in the context of idle cycles-based on-line BIST. In fact, 

it is the combination of idle time availability and a test sequence short enough to fit in that 

idle time, that determine the feasibihty of on-line BIST. 

Once again, consider the generic testing scheme of Figure 2.1. Assume that ± e CUT is fed 

by M inputs. An exhaustive test set for this circuit consists of 2"'^ non-zero test patterns 

(§2.1.2). For large values of M, the exhaustive test length can be prohibitively long. How-

ever, the test length can be significantly reduced if testing techniques are 

applied. This involves some form of segmentation of the CUT, through the insertion of 

redundant logic. A typical approach is to partition the CUT into A segments, where the 

output of each segment; depends on M, primary inputs only. Each segment can then be ex-

haustively tested separately from the rest of the CUT, by 2"' test vectors. It is often possi-

A 
ble to define such a partitioning that ^ 2 " ' « 2", thus greatly reducing the overall test 

1=1 

length. Moreover, it is also possible that different segments can be tested in parallel, lead-

ing to further test time reductions. Several segmentation techniques and associated TPG 

designs for pseudoexhaustive testing can be found in [1]. 
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Furthermore, it is sometimes worth examining circuit functional blocks to check if pseu-

doexhaustive testing can be applied to them by nature. The following definitions are rele-

vant [1]. 

2 7 J." An /og/c is a circuit composed of identical cells in-

terconnected in a regular pattern (Figure 2.35). 

An ILA is if it cam be pseudoexhaustively tested with a test set 

whose length does not depend on the number of cells. 

Clearly C-testability is a 

very useful property for 

-M- data path modules, 

since it limits the test 

set regardless of the bit-

width.Agoodexample 

of a C-testable ILA of special practicality is the ripple carry adder. This adder consists of a 

number of full adder cells, coimected through their cany-in and carry-out ports, in a fash-

ion that closely resembles the generic ILA structure of Figure 2.35. C-testability then im-

plies that each full adder can separately be tested by its own test set, and also that adder 

cells can be tested concurrently, thus resulting in a test set whose length is truly independ-

ent of the bit-width (i.e. independent of the number of fuH adder cells). 

cell 0 ce 1 1 cell N-1 

An alternative concept is presented in [76]. Let us consider the circuit model of Figure 

2.36. 

2.77: A circuit C, as of Figure 2.36, is defined as if its output function 

Z(n) is independent of the number n of its input data buses. 

Most data path modules normally implement a function of the form Z(A(n),B(n)), where 

A(n)=An-i • •. Ai Aq and B ( n ) = B n -

Dn-1 I.. .B]Bo. In the formulation of 

Figure 2.36, Dj=(Ai,Bi), 

i=0,... ,n-1 and w=2, u=n and a 

control bus K. of bit-width v 

may or may not be present. In 

the sense of Definition 2.17, 

such modules can be considered 

scalable, since their function 

D 
a 
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a 

Dz 
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Z(n) (e.g. addition, multiplication, shift) is independent of n. It is interesting that scalabil-

ity is a broader concept than C-testability. Indeed, the authors of [76] prove that a ripple 

carry adder is both C-testable and scalable, while a carry look-ahead adder is scalable but 

not C-testable. They further demonstrate that scalable circuits can be tested by very com-

pact test sets, and they derive analytical test sets and test generator structures for a number 

of example scalable circuits. 

Reductions in the length of test sets are also reported w h e n a s opposed to struc-

tural, fault models are used. An example is the TMwfafzoM technique of [77]. Muta-

tion testing originates from the software testing domain; the authors of [77] apply it to de-

rive functional tests for hardware, having observed the obvious similarities between a 

piece of software and an HDL-described hardware design. In mutation testing, HDL de-

scriptions are repeated several times, and in every repetition a single fimctional error is 

iryected (for instance, a "-t-" operator is substituted by a These corrupted descriptions 

are called and their erroneous behaviour represents functional faults. Conse-

quently, test vectors are applied (by a simulator) to the correct description and to mutants. 

When a mutant output differs from the correct output, that mutant is considered to be 

"kiUed", in the sense that a vector that detects the modelled fault has been identified. Re-

sults presented in [77] show that fault coverage is sufficient, while the time required to 

determine the test set is much less than that required by exhaustive fault simulation ap-

plied to synthesized low-level hardware descriptions. 

A technique similar to mutation testing can be found in [78]. This time, HDL specifica-

tions are translated into binary decision diagrams (BDDs). Faults are injected in the BDD 

constructs, rather than in the specification itself Again, inconsistency between the fault-

fiee and the faulty case determines test vectors. Some additional post-synthesis gate-level 

simulation is employed here, to uncover faults not detected by the faults injected in the 

BDD representations. 

2.2.3.2.3 Test scheduling for on-line BIST 

Having discussed the issues of idle time analysis (§2.2.3.2.1) and techniques for the reduc-

tion of the test set length (§2.2.3.2.2), this presentation now focuses on test scheduling for 

on-line BIST. In other words, assuming that the maximum possible availabihty of idle 
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time has been achieved, and that test length reduction techniques have been apphed, it is 

now desirable to identify wAen and Aow test vectors can be applied to the functional mod-

ules constituting the overall design, as well as how this can be done concurrently with the 

functional operation. 

DFG TDFG 

R1#m R2 

MISR 

F/gure 2.37. Examp/e OFG and 70FG 

For this purpose, Singh and Knight [79] propose the gropA (TDf G). In Fig-

ure 2.37, a DFG and a corresponding TDFG are shown. In both graphs, circles represent 

operations (exactly as in Figure 2.33), while solid rectangles correspond to registers. The 

graphs are also annotated with the symbolic names of the hardvyare units that implement 

coiTesponding operations or register loads (e.g. multiplier Ml , register RX etc.). It is as-

sumed that control returns to control step 1, after step 4 is finished. From the figure, it is 

obvious that hardware resources are used in the TDFG during a CS only if they are idle 

during that CS in the DFG. A dedicated TPG and a dedicated MISR are further intro-

duced. The TPG provides test patterns at CS 3, while the MISR compacts the response of 

a chain of operations during CS 2 of the subsequent execution. Observe that test data pro-

duced by the TPG goes through all system functional blocks and registers before reaching 

the MISR, thus providing a degree of testing for all system hardware resources. According 

to the test schedule of Figure 2.37, one test vector is applied to the system for every func-
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tional execution. Longer DFGs would allow for more tests per execution. Flottes et al [80] 

extend this work, by considering data dependent conditional branches in the system. Ef-

fectively, each conditional branch is considered separately and small TDFGs are derived 

for each one of them. In [81], a practical case study of the ideas presented in [79] is given, 

through the construction of a TDFG for a discrete PID regulator, while in [82] the muta-

tion testing idea (§2.2.3.2.2) is proposed to determine the test set the TPG will provide. A 

problem with all these TDFG-based techniques is that the quality of test vectors applied to 

modules can be rather poor. For example, in Figure 2.37 most multiplications in the TDFG 

are either squarings of the input operand or multiplications by a constant; it can easily be 

shown that both of these operations cancel out the pseudorandom properties of the vectors 

the TPG is providing, thus leading to reduced detection capabilities ( l o w e r c o v e r a g e 

[1]). The insertion of more than one TPG in the TDFG is mentioned in [80] to partially 

remedy this weakness. 

2.2,3.3 On-line shift-based DFT 

As well as BIST, shift-based design for testability has also been proposed in the on-line 

context. Most of the work done in this field has been carried out by Ismaeel et al [83, 84, 

85]. Naal and Simeu [86] presented their own contribution. The underlying principle in aU 

these works is that selected DFG operations are targeted; both their input and output sig-

nals are shifted out at "convenient" moments, and the partial result produced by the chip 

under test is compared against the expected result, produced b y external test equipment 

using the above mentioned shiAed-out input signal values. The goal is to test each hard-

ware module using this shiA-based technique at least once in a time &ame called "pass". 

The first obvious restriction of this approach is that the chip needs to be constantly moni-

tored by off-chip testing devices on the field. 

In [84], idle-time operations are inserted in the DFG and targeted instead of the functional 

ones implemented by the same hardware modules. This is shovm to promote register shar-

ing, thus minimizing the number of signals to be shifted out. In [86], factorisation of com-

plex arithmetic calculations is proposed, in an attempt to miaimize the number of hard-

ware modules required and increase idle time, which can in turn be used for redundant op-

erations, again providing opportunities for more efficient signal shifting. In [85], multi-

type units (ALUs) and multi-cycled operations are included in the discussion. ALUs are 
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tested at least once in a pass, for every operation they implement. Finally, [83] is the most 

comprehensive presentation of this family of techniques. Signal shifting is explained in 

detail and the use of concurrent testing registers (CTRs) is shown. CTRs are shift registers, 

where copies of the values to be shiAed out are loaded at suitable moments, so that the 

functional signal registers can be fully devoted to the functional operation, which is thus 

not disturbed. Additional dedicated control logic provides the interface between the nor-

mal operation and the CTRs. The "pass" is formally deSned as max(NC,Ntest), where NC 

is the total number of steps in the DFG, and Ntes, is the number of steps required to test 

each module in the design exactly once. 

2.2.3.4 Other approaches 

The matehal presented herein concludes the background presentation of digital design for 

on-line testability. The following two subsections cover generic techniques based on 

.BTiST (§2.2.3.4.1), as well as schemes that are based on the analytical algebraic 

description of the system functionality (§2.2.3.4.2). 

2.2.3.4.1 Arithmetic on-line BIST 

Arithmetic BIST is based on the observation that the combination of an arithmetic unit 

(e.g. an adder) and a register can be used either as a TPG (by adding a constant value to 

the contents of the register) or as a response compactor (by adding the test response to the 

contents of the register). The arithmetic unit - register combination is defined as an arzYA-

The accumulator concept has already been encountered earlier in this 

thesis (§2.2.1.2), where such a structure was used as a building block for a programmable 

m/n checker (Figure 2.20). Originally exploited in off-line mode, arithmetic accumulators 

are alternatives to the traditional LFSR-based BIST resources, since their outputs exhibit 

similar properties to the LFSR outputs. Given enough functional resources that can be 

combined into accumulators, the hardware overhead introduced by LFSRs can be avoided 

[87]. Tliere have been several off-line arithmetic BIST techniques in the literature. For the 

sake of completeness, a few recent ones are briefed here. In [87], the CUT is partitioned 

into test blocks (consisting of one or more hardware modules) and accumulators are con-

figured around the boundaries of the blocks. LFSRs are introduced only when not enough 

accumulators can be configured by the hardware resources available. Partitioning is driven 
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by a cost function integrating hardware overhead and performance penalty introduced by 

test resources and the problem is formulated into an integer linear programming task. In 

[88, 89], once more accumulator-based test conGgurations are presented and the module 

assignment and module sharing problems are dealt with by a cost function driven heuris-

tic. The cost function incorporates area savings and testability gain, where the testability 

gain is expressed by the accumulator-forming potential of any hardware assignment or 

sharing decision. 

On another note, Mukheqee et al [90] consider fixed-width multipliers fed by test patterns, 

and observe that their outputs experience reduced pseudorandom properties, due to the 

truncation of the least significant part. Reduced randomness results in inadequate testing 

of modules driven by multiphers (a concept already encountered in this thesis in 

§2.2.3.2.3). The authors of [90] propose adding the (normally truncated / wasted) least sig-

nificant part of the multiplier output to the most significant part, when in test mode. 

Simulations estabhsh the improvement in pseudorandomness of the patterns produced at 

the multiplier output. Motivated by this work, Gizopoulos et al [91] subsequently propose 

partitioning a substantially sized circuit into chains comprising one multiplier and one or 

two adders or subtractors. LFSRs are later inserted to provide BIST functionality to each 

chain separetely, thus providing acceptable test coverage for the arithmetic modules of the 

overall circuit. 

The previously presented works form the foundation of an arithmetic BIST-based tech-

nique particularly named .gTiST (KBTiS'T), introduced b y Karri and Mukheqee 

[92]. In VBIST, adders are used for test pattern generation (as in arithmetic BIST) instead 

of the LFSRs used in [91]. The multiplier - adder chains of [91] are formed, and multiplier 

outputs have their two halves added together for increased randomness as in [90]. Re-

sponse compaction finally takes place, again in the arithmetic BIST fashion, using adder-

based accumulators. In addition to that, the whole problem is addressed at the HDL level, 

by modifying the functional descriptions of synthesizable circuits to include VBIST opera-

tions. Moreover, testing can be performed either off-line (as in [91, 87, 90, 88, 89]) or OM-

ZzMg, during the widely mentioned and in many ways exploited module idle time (hence 

the versatile property). The technique is suitable for a rather restricted number of designs, 

namely only those that can be partitioned into the multiplier - adder(s) chains of [91]. 
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2.2.3.4.2 Analytical approaches 

This subsection briefs a couple of techniques that especially focus on linear digital sys-

tems, manipulate their analytical equations, and derive suitable invariants that are moni-

tored to ensure correct operation. 

Bayraktaroglu and Orailoglu [93, 94] deal with digital filters. They start from the digital 

filter equation 

(2.8) 

M in equation (2.8) is a point of (discrete) time, while vectors and %[A:] are the output 

and input vectors of the filter respectively, At is the coefficient matrix denoting the filter 

flmctionality, and Mis the order of the filter. 

After a few steps of algebraic manipulation [94], equation (2.9) is reached 

A/ 
(2.9) 

n = 0 /7=0 

where / is an invariant property depending on only, and rm&t depends on filter coeffi-

cients and maximum (expected) input magnitude. Equation (2.9) is the invariant relation 

that should always hold in the fault-free case, and it is this relation that the filter is con-

stantly monitored against. Two adders and two registers are introduced in the Glter realisa-

tion to calculate the sun:is of input and output signals and a checker determines if their dif-

ference is within the specified tolerance A fault or the accumulation of minor fault 

effects is detected when it is not. With the addition of two multiplexers, a designer may 

reuse the adder - register pairs in the input and output of the filter as arithmetic accumula-

tor-based TPG and MISR for off-line testing purposes. 

Another analytical approach can be found in [95]. The authors address linear digital sys-

tems in general. Such a system can be described in matrix form as in the following. 

%(f +1) = - %(/) + B «(/) ^ 

y(f) = C - %(r) 4- D - w(f) 

where %(̂ ), y(r) and w(f) are state, output and input vectors respectively, while 4̂, .8, C and 

Z) are system parameter matrices. 
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Manipulating the above the authors come up with the equation 

r(f) = v'' (f)] (2.11) 

/-(f) is defined as the system jganYy cAecA;. }̂ *̂ (f) and [/^^(f) are vectors comprising the pre-

sent and delayed values of the output and input signals respectively. Matrix is a 

time-invariant function of C and Z), while vector depends on and C only. 

In the fault free case, the invariant property is f(f)=0. On-line testing is performed by syn-

thesizing the system defined by equation (2.11), including it in the overall implementation 

and monitoring its output /^/). 

2.2.4 Analogue electronics related techniques 

A few representative analogue electronics-related techniques are briefly mentioned here. 

The goal of such techniques is to detect a fault by means of its impact on analogue charac-

teristics rather than on logic values. Sometimes faults are detected because analogue char-

acteristics are corrupted at the same time as logic values (e.g. current monitoring, crosstalk 

effects), while sometimes the effect of a fault on some analogue characteristic enables de-

tection the logic value is corrupted (e.g. delay testing). As chapter 5 wiU argue, 

these approaches are not particularly useful for the purposes of the present thesis; the pres-

entation herein is, therefore, very brief^ and truly representative rather than exhaustive. 

CwrreMf moMzVormg is the most developed of all the techniques in this family. It is based 

on the concept that most physical defects in VLSI systems result in abnormal current con-

sumption. It can be performed either externally or by embedded A-m cwrrgMf 

(^7Cj) [9]. An application of current monitoring is presented by Bogliolo et al [96]. Fault-

tolerant circuits based on (rzpZe moJwZar (ZMR) are considered. Such circuits 

consist of three copies of the same hardware, followed by mq/orfYy voferj, and they offer 

tolerance against single faults in any of the three rephcas, simply by fault masking within 

the voting hardware. It is, however, desirable not only to mask a single fault, but also to 

acknowledge its presence, since any faulty situation that leads to permanent damage in any 

of the three copies will necessarily result in a circuit that is defenceless against any subse-

quent additional fault. The authors of [96] therefore design a novel m^ority voter, utilis-

ing an embedded current sensor for this purpose. When the sensor detects abnormal cur-

rent flow, the environment is informed that the circuit has lost its fault tolerant property. 
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Paschalis et al [97] address (fg/qy A delay fault refers to a circuit wire 

that does eventually take the value of the port driving it, albeit with an unacceptably long 

delay. Delay faults are regarded as forerunners to logic faults; it is therefore desirable that 

they be detected as soon as they appear. [97] defines a maximum delay that a wire can ex-

perience in order for the situation to be regarded as fault-free A 

TSC (Definition 2.3) grro/- mcfzcaror is then shown, receiving a two-bit input and produc-

ing a two-bit output. This indicator consists of two 2-pair dual-rail checkers (§2.2.2.2), 

suitable delay elements and some elementary control logic. It stabilises its output at the 

fault-free indication whenever a fault-free value ("01" or "10") appears at its inputs. It also 

does so when the input is fed by a faulty indication ("00" or "11") of duration less than the 

discrimination time. In contrast, if the faulty input persists, then the error indicator locks 

its output at the "00" or "11" state, and ignores any subsequent transition of its inputs, un-

til it receives a special "reset" control signal. The structure can be appended to the output 

of a TSC checker (§2.2, §2.3) of any arbitrary code, enhancing it with concurrent delay 

testing capabilities. 

Favalli and Metra [98] consider c r o i ' j W A : i . e . logic faults that are due to the capaci-

tive coupling between two parallel lines in a system bus. Such faults are sometimes multi-

ple; therefore they are likely not to fall within the detection capabilities of a particular 

EDC (§2.2). In [98], electrical simulations are conducted for buses encoded according to a 

number of typical EDCs. The results of these simulations are used to establish analytical 

expressions for the probability that a crosstalk fault will be detected by the EDC at hand. 

Motivated by the significantly high fault escape probability of this study, the same authors 

[99] present a novel, transistor-level detector design, especially tailored to target crosstalk, 

delay as well as short-lived transient faults. This detector signals an error indication if a 

transition occurs during the m^grvaZ, i.e. during a specified interval following 

the rising edge of the system clock. 

A few more reliability indicators are briefly mentioned in [9]. These include temperature, 

voltage, output activity and radiation. None of them is reported to have been widely ex-

ploited though. 
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2.3 Summary 

This chapter has given a full and comprehensive presentation of on-hne testing theoretical 

concepts and practical approaches. In the area of self-checking design, varions error-

detecting codes were reviewed. Such codes provide excellent solutions for the reliability 

of small-scale, mostly combinational circuits. Regarding large-scale systems, reliability 

improvements have been attempted through the setting up of on-line BIST, scan-based 

DFT, and, most usually, algorithmic duplication schemes. Some of the works proposing 

such schemes included elements of synthesis-related considerations. However, none of 

them comprehensively addressed all the aspects of automatic large-scale system synthesis 

within the context of existing synthesis tools. Detailed critical evaluations of these tech-

niques in the synthesis context are needed; these are carried out in chapters 5 and 6 of this 

thesis, followed by the specific contributions of this research work. 

While the overall discussion in this chapter was very broad, particular emphasis was given 

to elements of on-line testing that are actively exploited in the rest of this research work 

and are therefore of particular importance for the purposes of the presentation herein. 

These include : 

» self-checking design theory 

» parity, m/n and dual-rail checker designs 

« algorithmic duplication-based self-checking, for substantially-sized sequential circuits 



Chapter 3 

High-Level Synthesis 

High-level synthesis is addressed in this chapter. The fiindamental definitions and con-

cepts are given in section 3.1, while section 3.2 focuses particularly on the specifics of the 

c o M f r o / ( M D 0 D 6 ) High-Level 

Synthesis Suite, which is used in chapters 5 and 6 for all the implementation and experi-

mental results of this thesis. Section 3.3 summarizes the chapter. Only synchronous sys-

tems with a single clock are considered in this work, and this will be implied throughout 

this thesis. 

Emphasis throughout this chapter is given to these high-level synthesis elements that are 

most significant for the purposes of the present thesis. More detailed presentations can be 

found in two recent dedicated PhD theses, by Wilhams [8] and KoUig [100]. 

3.1 Fundamentals 

j . y : (or synthesis (also referred to as of digital 

systems is the process of automatically extracting a^rrwcA^m/ realisation of the system 

fiom the description of its [8, 100]. 

Typically, a high-level synthesis system is fed by a behavioural description written in a 

/zarcfwarg ZoMguagg (HDL), most commonly the AzgA jpeecf 

cz'rcuz'Ay //arafwarg Dgjcn)7^zoM 2aMgwagg ()/HDZ,) [48], although attempts at using other 

languages such as 6)/j^g7MChave also been reported [101]. Note that this behaviouial de-

scription is limited to an abstract, purely algorithmic representation of the relationship be-

tween system inputs and outputs, with no exphcit timing or structure information. In fact. 
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Primary Conditiona 
Inputs Signals 

Glue' 
logic 

Primary Control 
Outputs Signals 

Controller Data path-

it is within the synthesis 

process itself that such in-

formation is derived, and it is 

included in the high-level 

synthesis output, which is 

again in the form of an HDL, 

albeit at a lower level of ab-

straction, corresponding to a 

netlist of components, storage 

units and interconnect, typi-

cally referred to as a 

/gvg/ (RTL) descrip-

tion, suitable for subsequent 

synthesis by commercially 

available low-level synthesis tools. This output is graphically depicted in the coMrro/Zer/ 

target architecture of Figure 3.1. From the figure, it is evident that the structure 

of the resulting system consists of units, implementing the primary input / out-

put behaviour of the system, and a coMfro/Zer (or coM/roZ part, determining timing 

issues. These two constituent parts communicate by means of the elementary, gate-level 

' g/wg " logic. In essence, the controller realises a finite-state machine (FSM), thus provid-

ing timing information in the form of j'zgna/j to the data path. In addition, when 

the initial behavioural description of the system includes conditional or loop statements, 

then some of the signals produced by the data path need to be f e d to the controller in the 

form of j ignak, in order for the FSM to con-ectly produce suitable next-state 

information. 

Signals 

Figure 3.2 (taken from [8]) captures the typical HLS-based digital system design flow, 

where the dashed rectangle defines the areas that a generic high-level synthesis tool oper-

ates on. The initial behavioural description is compiled, and an intennediate internal repre-

sentation of the system functionality and structure is formulated. It is on the data structures 

corresponding to this representation that the system a/gorzY/zTTW are applied, 

taking into account the designer parameter specifications (typically area and delay goals), 

together with a /z'6ra/}'. This libraiy contains parameter information regarding 

the data and control path units, storage elements and interconnect modules that are used as 
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Figure 3.2. HLS-based design flow 

building blocks for the realisation of the system. That way, the tool is able to determine 

the quahty of a given realisation of the system at any time, thus providing feedback to the 

optimisation algorithm. Typically, this feedback greatly influences automatic optimisation 

decisions. After all optimisation, a back-end netlister produces the HLS RTL output. A 

ceZZ file (not appearing in the figure) is associated with this output. This file com-

prises synthesisable RTL HDL descriptions for all the above-mentioned system building 

blocks. Note the relationship between this cell library and the technology library of Figure 

3.2 : the latter comprises characteristics and properties (in a non-

standard, non-HDL format) for the HDL cells of the former. Fi-

nally, it is good design practice to simulate both the behavioural and the RTL descriptions, 
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in order to verify their equivalence, before feeding the latter to commercial, technology-

specific RTL synthesis tools for the actual implementation. 

From the above brief presentation, it is obvious that in HLS-based design, the designer's 

role is limited to providing the algorithmic description of the system fimctionality, along 

with his or her specifications; the tool is responsible for the hardware realisation. Clearly, 

this speeds up the design process tremendously, and minimises the possibilities of a de-

signer error, since describing the functionality of a system is m u c h easier, less time-

consuming and less error-prone than designing the actual structure. This highlights fast 

as the big advantage of adopting an HLS-based design flow. It is also in-

teresting to observe that the only place in the design flow where target technology is con-

sidered, is the technology library. Given that a technology library file is normally a simple 

add-on to the synthesis system, it can be deduced that the behavioural synthesis process is, 

in essence, independent of target technology, and it can easily be modified to target alter-

native technologies, thus offering enhanced opportunities for experimentation. 

Clearly, the heart of a high-level synthesis tool is the internal representation of the circuit, 

and the synthesis algorithms that operate on it. The rest of this section is therefore dedi-

cated to these two elements. 

3.1.1 Internal Representation 

The internal intermediate form of a given digital system is the product of the behavioural 

description compilation, sometimes including some source-code level trivial optimisa-

tions, and it should be chosen such that it can consistently represent the behaviour and 

stmcture of the design. A widely adopted choice for this representation is the fZow 

GropA (DFC). According to De Micheli [102], this giaph is formally defined as follows. 

Consider a digital system whose overall functionality can be broken down to elemen-

tary tasks. These tasks can be logical (e.g. AND, OR), arithmetic (e.g. addition, multipli-

cation), comparisons, or data transfers. These operations are assumed to be fed by one or 

more inputs, and to produce one or more elementaiy results. 

j .2 : A data-flow graph of a given digital system is a directed graph 

whose vertex set F={v,; z = l , 2 , . . c o r r e s p o n d s to the set of elementary tasks of the 
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Primary inputs 

CS1 

CS2 

CSS 

+3 A3 

1 M1 

system, while the directed edge set 

v = l , 2 , . . . , coiresponds 

to the transfer of data &om one opera-

tion to another. 

An example DFG with only four opera-

tions is shown in Figure 3.3. The verti-

Primary output 

F/'gi/re 3.3. examp/e cfafa-/7owgrap/7 

ces and edges of definition 3.2 can be 

observed in the figure. In addition, 

some common conventional notations 

and terms can also be defined. In par-

ticular, observe that every vertex / op-

eration is assigned a unique symbolic 

name (conveniently indicating the type 

of operation the vertex is representing), and annotated with the symbolic name of the data 

path unit that implements the task. For example, in Figure 3.3, operation (addition) +1 is 

shown to be implemented by data path unit (adder) A l , multiplication *1 is implemented 

by multiplier M l etc. In the prevailing terminology, +1 is to Al , *1 to M l etc. 

Related to allocation is the concept of fimctional modules to particular hardware 

instantiations, taken from the cell library (§3.2). In the example at hand, +1 is allocated to 

Al , and then a suitable (adder or ALU) cell is chosen from the cell library and bound to 

Al , taking its parameters (area, delay etc.) into account. Further, in Figure 3.3 data de-

pendencies between operations can also be observed. For example, +2 has to be executed 

after +1, since it is fed by its output. Recalling that only synchronous systems are consid-

ered, this practically means that 4-1 needs to be executed one clock cycle before +2, and its 

result stored in an appropriate storage unit (register). +1 is then said to be one 

coMfro/ (CiS^ before 4-2. Figure 3.3 clearly exemplifies the concept of control steps, by 

representing their boundaries with dashed lines, and assigning a unique name to each one 

of them (CSl, CS2, CS3). The total number of control steps in the DFG determines the 

overall delay of the circuit, and is defined as the c n f / c a Z A DFG annotated with such 

scheduling information is sometimes referred to as a (.WFG) 

[103]. 
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While a DFG representation 

is widely accepted as a con-

venient notation to represent 

sequential circuits, it is not 

suitable for representing de-

signs that include condi-

tional branches or iterative 

loops. It has, however, been 

extended to include such 

constructs, thus giving rise 

to the coM/roZ 

(COf'G), loosely de-

fined iu the following [8, 
F/gure 3.4. /In examp/e c o n W and dafa-/7ow grap/? 

j. j : A control and data-flow graph is a hierarchical structure, which at the top 

level describes the flow of contiol through the system as a directed graph, where each ver-

tex either corresponds to a separate DFG segment, or is a special "branching" vertex. 

Figure 3.4 exemplifies the concept of a "branching" vertex, to represent a conditional exe-

cution situation. The rectangles annotated DFGl, DFG2, DFG3 correspond to normal 

DFGs, like the one of Figure 3.3, while triangles signify branching nodes. Note that the 

delay through branch DFG2 is not necessarily the same as that through DFG3; in such 

cases, the critical path is defined as the longest among all paths that lead from the initial 

control state to the final one. Once again, the critical path determines the overall delay 

value of the system. 

END F 

Alternatively to the DFG / CDFG representations, fg^z-Mg/'j' (ETfTViy) [8] 

can be formed. In contrast to the former, the latter require two different graph structures 

for the control and data path parts of each design. In ETPN representation, the control path 

is represented by a directed graph whose veitices correspond to the control states of the 

design, and whose edges signify the flow of control. The graph representing the data path 

is composed of nodes naturally corresponding to functional units storage elements, 

with edges connecting nodes when there is flow of data between them. Edges in the data 

path graph are annotated with the symbolic name of the control state during which flow of 
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data occurs; conditional edges in the control path graph are annotated with the symbolic 

name of the data path signal that determines which branch will be followed. As an illustra-

tive example, Figure 3.5 shows a Petri-net equivalent of Figure 3.3. In contrast to the DFG 

case, storage units are explicitly shown in the data path graph, and in Figure 3.5b they are 

signified by the symbols a, b, c, d, t l , t2 and t3. Simple comparison of Figures 3.3 and 3.5 

is enough to show the increased memory storage requirements that a Petri-net based inter-

nal implementation requires. It is also obvious, however, that such a representation makes 

more information readily available; it is therefore more beneficial in terms of performance 

if Sequent access to the data structures is needed. 

In the rest of this thesis, both DFG and ETPN-based representations will be used for illus-

tration purposes, as applicable per situation. 

p r i m a r y i n p u t s 
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CS2 
r 

t 2 

CS2 

A3 

1 
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tVII 

CS3 
y 
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confro/ paf/i (bj dafa paf/i 

A'gure 3.5. Extended r/med Pefn-nef based represenfaf/on of an examp/e d/g/fa/ sysfem 
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3.1.2 Optimisation and Design Space Exploration 

Bearing in mind the concepts of scheduling, allocation, and binding explained through 

Figure 3.3, it is now possible to provide a definition for the optimisation task. 

: The design is the process of determining the optimal schedul-

ing, allocation, and binding for a design, such that the user specifications are satisfied. 

The design optimisation problem has been shown not to have an analytical solution in fi-

nite time. Several heuristic algorithms have therefore been proposed, that aim at providing 

as good approximate solutions as possible, in as little time as possible. Algorithms exist 

that address the scheduling, allocation, and binding problems separately, or simultane-

ously [8, 100]. In brief, scheduling algorithms can be : 

» : operations are scheduled in turns, one at a time, based on algorithm-

specific criteria 

* : a default schedule is initially formulated, and suitable transfor-

mations are subsequently apphed to it. They can fiirther be distinguished into de-

rgrmm/jrn'c (e.g. integer linear programming-based), and (e.g. simulated 

annealing) 

Similarly, allocation is typically done using either : 

» /(eraffvg /conafrwcfivg techniques : similarly to their scheduhng counterparts, op-

erations are allocated one at a time in turns, or 

» techniques : these techniques rely on analysing the data path as a whole, and 

then trying to simultaneously allocate all (or a significant number of) operations. 

They are normally based either on grapA or on zMaz'/zeman'ca/ 

(e.g. once again, integer hnear programming). 

Any fiirther presentation of generic optimisation algorithms exceeds the scope of this 

work. The algorithms employed by the MOODS system are, however, explained in detail 

in §3.2. For the time being, the concept of jpacg g.^ZorarzoM is introduced [8, 102]. 

j . J : Let n be the number of design parameters / user specifications. The ô ĝ y/gM 

j'/pocg is an n-dimensional space spanned by these parameters, whose points include aU 

possible alternative realisations of a single given design behaviour. 
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The two parameters always considered first in HLS are the design area (related to the ac-

tual production cost of the circuit), and the design delay (corresponding to the system per-

formance). This gives rise to a typical 2-dimensional design space, depicted in Figure 3.6. 

Clearly, not all points in the design space are achievable, since there are physical limits as 

to how fast and / or small a circuit implementing a given behaviour can be. The 

/-ggzoM of tlie design space is thus shown in the figure. However, not all achievable designs 

are acceptable. The regzoM is the part of the achievable region that comprises 

designs that satisfy the designer constraints. The process of considering alternative designs 

within the design space achievable region until a design in the acceptable region is 

reached, is commonly refenred to as jpczcg exp/orafzon. Since the designer require-

ments cannot be known a priori, it is important that a high-level synthesis tool be able to 

explore as much of 

the design space as 

possible, as fast as 

possible, so as to be 

more likely to sat-

isfy strict con-

straints, in as many 

design scenarios as 

possible. 
a c c e p ^ a b ^ 

reg/c 

A 
"c 

'2 
% 

2 
c 

(0 8 

achievable 
region \ delay 

1 constraint 
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F/gure 3.6. Typ/ca/ 2-d/mens/ona/ des/gn space 

Three-dimensional 

design spaces have 

been proposed re-

cently, the third di-

mension most commonly being power consumption [104], or testabihty [103]. As will be 

made evident in chapter 5 (§5.3.3.1), this present work also considers a three-dimensional 

design space, where testability is the third dimension. Of course, in theory the de-

sign space can have more than the physically representable three dimensions. 

In principle, transformational optimisation approaches are more abstract, take more com-

putational time and are capable of escaping local minima in the design space. Suitable 

constructive approaches have sometimes been quoted to give better solutions [100], but in 

theory they may not always reach the global minimimi. 
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3.2 The MOODS High-level Synthesis System 

In this section, elements of the way MOODS performs the design space exploration proc-

ess and comes up with design implementations are provided. In brief^ when MOODS is 

Arst invoked, the behavioural VHDL description is parsed and analysed, and an initial, 

naive, maximally serial implementation of the design is formulated and stored in its inter-

nal data structures (internal representation). In this implementation, every operation is 

scheduled on a separate control step and allocated to a separate data path unit. Clearly, it is 

the biggest and slowest possible realisation of the design and it serves only as a starting 

point. This initial design is consequently optimised by applying local, semantic-preserving 

scheduling, allocation and binding to it, in an iterative manner, through 

multiple repetitions of an Zooji?. The selection and targeting of transformations 

to be applied is supervised by a suitable o/gorzYAm, and guided by a c o j f A f t e r 

optimisation, and in hne with the paradigm of Figure 3.2, an R T L VHDL netlist is output. 

This netlist is effectively an interconnection of instances of cells firom a suitably provided 

MOODS cell library. 

Topics covered in the following subsections are : the design internal representation within 

MOODS (§3.2.1), the optimisation loop (§3.2.2), the set of available transformations 

(§3.2.3), the cost function (§3.2.4), the algorithms currently available (§3.2.5), details 

about the hardware model assumed for the control path (§3.2.6), and finally a list of the 

MOODS cell library components (§3.2.7). Emphasis is naturally given to these elements 

that are essential for this thesis, while further details can be found in the literature [74, 73, 

8, 75, 104]. 

3.2.1 The l\/100DS Internal Representation 

From the brief description in §3.2, it is clear that optimisation within MOODS is an itera-

tive process. This applies to both the scheduling and allocation tasks, since they are actu-

ally considered simultaneously, within the same optimisation process (§3.2.2). Therefore, 

the data structures that form the internal representation are expected to be accessed very 

frequently. As explained in §3.1.1, this makes Petri nets a tempting option for the internal 

representation. Indeed, the representation fonned within MOODS closely resembles 
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ETPNs in that separate structures are stored for the control and the data path, in principle 

formulated following the ETPN rules. However, it also features some non-ETPN ele-

ments. To name just a few, these include : 

# the control path node data structures include information about operations scheduled 

for execution in them 

# there exist software pointers called connecting operation nodes 

in the control path with datapath functional units 

» a comprehensive set of control path node types is used, enabling the efficient represen-

tation of a substantial subset of behavioural VHDL constructs 

« an additional concfzYzoM data structure encompasses information about instructions 

executed only on a certain condition 

All these additions (plus others not mentioned here) significantly enhance the semantic 

power of the representation, and are presented in detail in [8]. 

3.2.2 The Optimisation Loop 

The optimisation loop of Figure 3.7 is the heart of the optimisation process. It defines the 

stages through which the system routinely cycles whenever an optimisation transformation 

is considered, regardless of the actual nature of the transformation. The whole iterative 

optimisation process is thus nothing but several repetitions of this loop. The different 

phases of the optimisation loop are explained in the following. 

During the jg/ecfioM phase, a transformation is picked firom the set of available transfor-

mations (§3.2.3) and the data which it wiU target are also selected. The optimisation algo-

rithm (§3.2.5) determines which transformation and data will be selected. Alternatively, 

MOODS can run in an interactive mode, during which the designer goes through the op-

timisation loop "manually". It is to be noted, however, that irrespective of the applied al-

gorithm or interactive mode option, optimisation always proceeds according to the scheme 

of Figure 3.7. 

As is further clarified in §3.2.3, any given transformation can only target specific kinds of 

data. For example, if a unit sharing transformation is selected, appropriate data are two 

distinct datapath units of the same type (or compatible types). In addition to that, the de-

sign characteristics at a given time may (and often do) prevent a particular transformation 
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6-om being applied to a given set of data. In the example at hand, unit sharing is prevented 

if, for instance, the two datapath units are both active during the same given control step. 

Such design characteristics are checked during the stage. 

If the given transformation on the given data is determined to be valid, the system pro-

ceeds to the stage. It is during this stage that tiansfoi-mations are actually 

evaluated and it is determined if they are beneficial or degrading. This is done through the 

c o j f ( § 3 . 2 . 4 ) . Note 

that the same transformation 

on the same data in a given 

design may be either beneficial 

or degiading, depending on the 

designer specifications, re-

flected on the cost function. 

Whether or not the transforma-

tion will actually be applied is 

finally determined, once more 

by the algorithm currently in 

use (or by the designer, if in 

interactive mode). Indeed, 

there are optimisation algo-

rithms that occasionally accept 

degrading transformations. 

The execution stage of the loop 

is self-explanatory : the trans-

formation is finally applied, 

that is, the internal system data 

structures are modified so as to 

reflect the change in the con-

ceptual design realisation. 

(rans/bfTn 
and data 
ge/echon 

esffmabon 

pemifTn 
fransformaf/onZ 

yes 

1 

execuf/on 

pe/form 
anof/ier \ 

(ransAormaBonZ 

After execution, or if either the F/gure 3.7.' MOODS opf/m/saf/on /oop 
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validation or the execution stage fails, there is the option to either proceed to another 

transformation or finish optimisation. The point at which optimisation actually finishes is 

once again determined either by the algorithm in use or by the designer interacting with 

the system. 

3.2.3 Transformations 

symbolic 
name 

description type of 
transform 

TF2 sequential merge scheduling 
TF3 group instructions on register scheduling 
TF6 ungroup to time scheduling 
TF7 ungroup on group scheduling 
TF8 merge fork and successor scheduling 
TF9 parallel merge scheduling 

TF10 share functional unit allocation 
TF12 unshare functional unit fully allocation 
TF13 unshare single instruction from 

functional unit 
allocation 

TF21 unshare single instruction from 
control state 

scheduling 

7a6/e 3.7. T/ve sef of at/a/Vab/e frans/bmis 

Table 3.1 presents 

the set of transfor-

mations available 

within MOODS. 

Each transformation 

is uniquely identi-

fied by a symbolic 

name appearing in 

the first row; a brief 

description is also 

provided in the sec-

ond row. Finally, 

the third row gives the type of the respective transformation, that is, classifies it as either a 

scheduling or an allocation transformation. These transformations are explained in more 

detail in the following [8]. 

The jggwg/in'aZ merge transformation (TF2) targets two sequential control nodes, as are, 

for example, nodes CSl and CS3 of Figure 3.5. It results in a single control step, encom-

passing all operations of the targeted steps. Practically, ail operations of the temporally 

preceding step (CSl in the example) are moved to the temporally succeeding (CS3), and 

the former is optimised out, thus saving one control step in the overall critical path. If the 

merged control nodes include any two operations that feed one another, then the register 

that originally stored the intermediate result across the CS boundary is also optimised out, 

and the two operations are c/zamecf within the resulting control step. One single operation, 

or two or more operations scheduled for serial (chained) operation within the same control 

step wiU hereby be referred to as an operation (or instruction) growf. In order for trans-

formation TF2 to be applied, the test phase of the optimisation loop checks that : a) no in-
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structions in any of the merged control steps share any hardware, unless they are mutually 

exclusive, b) any possible chaining does not violate the designer clock period specifica-

tion, and c) there are no data dependencies between the top state instructions and any in-

structions in the states between the targeted ones. For example, referring back to Figure 

3.5, this last check ensures that no output of any operation in C S l is needed in CS2; there-

fore, the operations of CSl can be moved to CSS. 

Transformation TF3 (growj:) OM rgg/jfer) targets a given register, and aims ex-

clusively at optimising it out, by chaining the two instructions writing to and reading &om 

it. Once more, the corresponding control states are merged, and the instructions form a 

group. Clearly, TF2 and TF3 can often have exactly the same effect; however, their start-

ing points (targets) are different, and are therefore considered separately. The tests re-

quired to ensure validity of this transformation are the same as for TF2, plus an additional 

check that no other instruction writes to the given register, or reads &om it, so it can safely 

be removed. 

Transformation TF6 fo fme) is the first "undo" transformation presented here. It 

targets a single control node, and it is only meaningful if the targeted node is the result of 

any of the merging transformations (TF2, TF3, TF8, or TF9, the last two presented later in 

this section). It also takes a maximum execution time value as input, and checks whether 

the given node requires more than this time for all its operations to be fully executed. If it 

does, then the transformation tries to locate any groups of chained instructions, and tm-

group them, by introducing new control steps and new registers to carry intermediate val-

ues across their boundaries. Although new control steps are introduced, possibly lengthen-

ing the critical path, the transformation can result in actual improvements in system per-

formance, since breaking long chains of operations is often expected to enable higher 

clock frequency values to be achieved. Further, "undo" transformations are useful in algo-

rithms that accept temporary degradation in system quality within the optimisation proc-

ess, such as the simulated annealing algorithm (§3.2.5). In practice, TF6 can rarely be in-

valid, mostly in situations resulting from the sharing of registers among several system 

variables. Such sharing is, however, not permitted in this work. 

TF7 (wMgrowj) OM group) is another "undo" transformation. Once more, it targets a single 

CS, and it is meaningful only when the given CS encompasses more than one gi oup of in-
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structions. This can be two or more single (or chains of) instructions executed in parallel 

within the same step. It simply creates a new dedicated control step and schedules a cho-

sen group in this step. 

TF8 (/MergeybrA: oMt/ j'wcce^j'or) is a control step merging transformation, allied to TF2 

and TF3. It involves ybrX: nodes in the control path, that is, nodes with multiple output 

edges, resulting 6om conditional or loop behavioural VHDL statements. It merges a given 

fork node, with its immediate successor, practically by moving the operations executed in 

the successor node up to the top one, in the form of operations executed A 

simple example is considered in Figure 3.8. 3.8a depicts the original situation. CSl is the 

fork node, while CS2 and CS3 are the two successors. The CSs are also annotated with the 

instructions that are scheduled in them, and z'j respectively. When condition "sel" is 

true, then CS2 is visited and executed; otherwise CSS is visited and ; j executed instead. 

Both cases are followed by CS4 and the execution of its respective instruction zV. In Fig-

ure 3.8b, TF8 targets steps CSl and CS2. As the figure shows, CS2 is dropped and is 

moved to CSl, together with its execution condition "sel". A second immediate execution 

of TF8, this time targeting CSl and CS3, results in the simple situation of 3.8c, where the 

fork node and both of its successors have been substituted by a single node, featuring the 

original zV and two mutually exclusive instructions. Having abolished the fork construct, 

the system now has enhanced potential for scheduling optimisation, by further applying 

sequential merge transformations. Interestingly, TF8 can be considered as a generalised 

version of TF2, since any normal control state within a sequential branch (Figure 3.5), can 

be considered as a "fork" with a single successor. This is why it is often used within 

MOODS instead of TF2. Naturally, the validity check for TF8 consists of the usual hard-

ware sharing and clock period tests. 

C S 1 j / Y , / 2 ( s e l ) 

C S 3 /3 

C S 4 

( C ^ — 
/2 (sel), (sel) 

( c ^ / 4 

(a) on'g/na/ sfafe (6) app/y/ng 7F8 on CSt CS2 ('c) app/y/ng 7F8 on CSY, CS3 

Figure 3.8. TF8 example 
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The last control step merging transformation available in MOODS, is the poroZ/e/ mergmg 

one (TF9). This transformation targets two parallel control nodes, that is two nodes that 

are unconditionally visited concurrently. Clearly, there is no reason why the control path 

cannot be simplified by merging the two into one, encompassing all concurrently executed 

instructions of both. When TF9 is considered, the check phase of the optimisation loop 

simply needs to verify that the given states are truly parallel. 

Three allocation transformations are presented next. TFIO uMif j/ian'Mg) natu-

rally targets two functional units and attempts to create a combined one, and allocate to it 

all the instructions originally allocated to the targeted units, by introducing suitable multi-

plexers to implement time-sharing. Clearly, the validity check phase should ensure that the 

units are not concurrently active (no concurrently executed operations have been allocated 

to them, except mutually exclusive ones). Of course, the two units must be either of the 

same type (e.g. two multipliers), or of such types that can be combined into a single arith-

metic and logic unit (ALU). The latter case will not be fiirther considered here. 

TF12 (uMgAarg)̂ Mcf;oMaZ wnif targets a single functional unit that has been the result 

of one or more executions of the previously presented TFIO. The result of TF12 is a num-

ber of new, suitable, non time-shared units, each one of them implementing only one of 

the operations previously allocated to the targeted unit. This transformation is always 

valid, although it is meaningless if a unit implementing a single instruction is targeted. 

TF13 (wM.yAarg jmg/g w«zV) is a low-level version of unit un-

sharing. Just like TF12, a previously combined fimctional unit is targeted; this time, 

though, one of the instructions it implements is also given. It results in a single unit im-

plementing the given instruction, and an additional unit implementing aU the instructions 

previously assigned to the targeted unit, except the extracted one. TF13 is naturally also 

always valid, provided that it is meaningful. 

The last transformation presented here is TF21 (z/M ŷ/zare 

It targets a particular instruction, and creates a dedicated control state for it, either 

before or after its original control state. Any other instructions originally scheduled for the 

original control state are either unaffected, or have a new control state created for them, if 

data dependencies suggest so. This transformation can always be apphed, and it does not 
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greatly contribute to the tool optimisation potential. It is, however, a powerful tool in cer-

tain situations (e.g. in the expanded module experiments described by Williams [8], as 

well as in §6.4.3 of this thesis). 

Note that no binding transformation has been described in this subsection; indeed, in the 

version of MOODS used for the purposes of this work, there only exists one hardware cell 

for every functional module type (§3.2.7). Binding is therefore restricted to a one-on-one 

mapping of modules to cells, and does not provide scope for iterative optimisation deci-

sions. However, an "alternative binding" transformation exists within MOODS [8]; this 

transformation could accommodate a more evolved version of the cell library, thus con-

sidering the binding problem within the optimisation loop. Finally, a few additional trans-

formations are mentioned in [8], such as register sharing, and clock period scaling, but are 

mostly implemented for experimental purposes, they are not shown to be critical for the 

optimisation process, and are not explicitly considered here. 

3.2.4 Designer specifications and ttie cost function 

As a first step towards setting up a synthesis session, the designer specifies his or her con-

straints in terms of the design characteristics, namely : 

« area (in a technology-specific unit, e.g. logic gates or FPGA slices for ASIC or FPGA 

technology respectively) 

* delay (typically in nanoseconds) 

» clock period (also in nanoseconds) 

Other characteristics also mentioned in [8] (total number of nets, static power consump-

tion) are not considered here. 

The clock period value is used during the test phase of several state merging transforma-

tions (as mentioned in §3.2.2), to determine the feasibihty of the given transformation. 

Typically, a low period value prevents excessive state merging and operation chaining, but 

of course leads to a higli frequency Gnal implementation. If the designer specifies no clock 

period value, the system calculates a default one based on the current implementation de-

tails [8]. This is not further considered in this thesis, and a designer-specified period is im-

plied hereafter. 
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Regarding the other two design parameters, the designer also gives corresponding priority 

(first or second) preferences. Using these priorities, MOODS implements a 

quantifying the quality of any given instance of the system under optimisation. This func-

tion is invoked in the optimisation loop during the cost estimation phase (§3.2.2, Figure 

3.7), and is used to forecast the effectiveness of the considered transformation, with close 

respect to user requirements, as these are reflected in both the desired values and the speci-

fied priorities. 

More specifically, MOODS constantly keeps track of the circuit area calculated using the 

following formula : 

area = ^ areajp + ^ area^p + ^ areoj ( 3 . 1 ) 

where the three factors represent the sum of the area of all data path units, the sum of the 

area of all hardware modules constituting the controller, and the sum of all interconnect 

modules (multiplexers) respectively. It should be recalled that the module area values used 

to calculate (3.1) are known to the system through the technology library. 

The total delay is simply calculated as the product of the critical path by the clock period : 

(/e/oy = (criVzca/ _ )x ) (3.2) 

The cost fiinction characterising tbe system can now be expressed as : 

X <̂3 + CoTe/ay X (/e/oy (3.3) 

Coreo and are priority-related (therefore weighting constants. In 

essence, the goal of the whole optimisation process is the minimization of equation (3.3). 

Practically, during the estimation phase, the synthesis system calculates the change in "en-

ergy" of the circuit that is expected to occur if the transformation under consideration is 

applied. The change in energy for a given parameter f is given by : 

P — P 

^ m/Zza/ arg e/ 

where 

is the current value for parameter f (calculated by either equation (3.1) or 

(3.2), depending o n f ) 
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is a rough estiomtion of the efE'ect tlie transform wiU have on the value of f 

if it is apphed 

f is the value of f in the initial, totally unoptimised design (§3.2) 

f/orge/ is tlie user specification itself 

Very often is assumed to be assigned the zero value, both for area and for delay. 

While neither of them is feasible, such a set of specifications can be used by a designer to 

demand a circuit that would be "as hardware-efficient as possible, and as fast as possible". 

For the rest of this thesis, this assumption wiU be implied, unless otherwise stated. Under 

this assumption, f(a;^g,can be omitted &om equation (3.4), and the equation then expresses 

the estimated change in the value of the parameter, normalised over its initial value. Re-

garding the f valuB, this is calculated separately for every transfoimation, by spe-

cially written software functions within the synthesis system, giving emphasis on speed of 

calculations, rather than on accuracy. 

The overall energy change of the design is nominally calculated by averaging the energy 

changes of a l l p r i o r i t y requirements OM/y. Given that only two parameters have been 

mentioned up to now, this practically means that if area optimisation is the first priority 

and delay the second, then only the change in area energy is considered, and vice versa. 

Averaging occurs when the designer specifies equal priorities. 

Ultimately, if the energy change of the design is negative, then the transformation is con-

sidered to be beneficial; otherwise, it is regarded as degrading. 

3.2.5 Available algorithms 

As regards the algorithm that supervises the optimisation process, in the current version of 

MOODS there is a choice of either the general-purpose simulated anneahng algorithm, or 

goal-oriented tailored heuristics. These choices are described in the following subsections. 

3.2.5.1 Simulated annealing 

Simulated annealing [8] is a generic optimisation algorithm for minimising functions of 

many variables (in our case, the cost function). Its name is derived from the statistical me-
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chanics method of annealing in solids. In the synthesis context, the designer specifies an 

"initial temperature", a "terminating temperature" and parameters to determine how 

slowly "temperature" will decrease. Random transformations are chosen and evaluated. At 

any given point of time, the current temperature value 7 and the estimated energy change 

associated to the transformation at hand (§3.2.4), are used to calculate a fArgjAo/af value fA, 

as in the following : 

(3.5) 

If a transformation is improving, it is applied; otherwise, a random number is generated, 

and if it is greater than the threshold, then the transformation is rejected. If the random 

number is lower than the threshold, then the transformation is applied o/fAowgA it is de-

grading. The temperature is decreased in every optimisation loop step, and at the same 

time the threshold is reduced, as can easily be confirmed from equation (3.5). Therefore, 

the more time passes (and the lower the temperature gets), the more the probability that 

degrading transformations will be accepted decreases. Accepting degrading transforma-

tions in early stages of the design process can be usefiil to avoid cost function local min-

ima, therefore exploring the design space better, in the search for the global minimum. As 

the design "cools down", only upgrading tiansformations are accepted, so that the global 

minimum is reached. Despite its randomness, this algorithm asymptotically converges to 

the global minimum of the function under minimisation. 

The main advantage of simulated annealing is its abstractness and its ignorance of any 

physical significance of the variables that the cost function under minimisation depends 

on. Effectively, using simulated anneahng, whatever can be quantified and included in the 

cost function, can also be optimised. The main problem is its very slow speed, especially 

for large designs. In essence, while an optimum solution is theoretically guaranteed, the 

algoritlim is so slow that it can be impractical for the designer to wait for it. 

3.2.5.2 Tailored heuristics 

In order to speed up the design process, goal-oriented tailored heuiistics are also available. 

There are three versions : oriented towards minimising area, delay or both. The basic idea 

behind these heuristics is reflected in Figure 3.9. In the DFG of 3.9a, the original state of 

two control steps, featuring a single addition each, is shown. In 3.9b, transformation TFIO 
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(unit sharing, §3.2.3) is applied, and the adders implementing the two operations are com-

bined. The design is clearly optimised for area, control steps CS1 and CS2 can no 

longer be merged unless the algorithm allows a degrading "undo" transformation. In the 

alternative 3.9c, the design is optimised for speed, by merging control steps CSl and CS2 

through TF2 (sequential merge, §3.2.3); Aowever, the adders cannot be combined any-

CS1 

CS2 

+1 A1 

+2 A2 

CS1 

CS2 

+1 A1 

+2 A1 

CS1 +1 A1 / + 2 W 

(a) on'ginal state (b) optimising for area (c) optimising for delay 

F/guns 3.9. s/mp/e dafa-Aow grap/?opf /m/s;ng for conffad/cf /ng goa/s 

more, as they are active concurrently, therefore the design will be fast and comparatively 

expensive. This small example illustrates the well-known concept that area efficiency and 

speed are contradicting goals; fiirther, it shows that if either of them is first priority over 

the other, then as much optimising of the first priority as possible needs to be carried out, 

considering the second. Otherwise, optimising the second priority goal is likely to 

block the 6rst, and that would be a most undesirable effect. Moreover, if the topology and 

the operation of the circuit pennit it, it would be beneGcial to optimise the first goal in 

such a way, that situations like these of Figures 3.9b, 3.9c are avoided, in order that the 

optimisation potential of the second goal is not hindered unnecessarily. 

In order to serve these purposes, the tailored heuristics framework fuither associates a 

number of metrics and indicators with the MOODS internal data structures corresponding 

to a given design. These metrics and indicators are briefed in the following : 

« a .yAcrreaA/Zzi);yacfor is associated with each data path unit. In effect, this factor ex-

presses the area that will be saved if the unit at hand is combined with all other units of the 

same type, thus quantifying its hardware sharing potential. Clearly, when optimising for 

area, datapath units with high shareability factors should be preferred. 

« a j/acA value is also associated with each control node, suggesting how "far away" 

from the critical path the node is. A zero slack value signifies a node on the critical path, 

while positive values indicate non-critical path nodes; further, the shortest the path on 
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which the node is, the highest the slack value [105]. When optimising for delay, control 

nodes on the critical path should be targeted primarily. 

# a cnYfca/ yacfor is calculated for each datapath node [8], corresponding to the per-

centage of instructions implemented by the unit at hand, that ai'e scheduled for execution 

at control nodes on the critical path. If units with high critical path factors are shared, then 

situations like that of Figure 3.9b are hkely to arise and block subsequent critical path 

node merging / delay optimisation. It is therefore desirable that when optimising for area, 

preference be given to units with low critical path factors. 

» a yacfor is calculated for each control node; this corresponds to the percentage of 

operations scheduled for the particular node, that have been allocated to a unit with a posi-

tive shareability factor. Merging control nodes with high share factors is likely to produce 

situations like the one of Figure 3.9c, where no subsequent area optimisation is possible. It 

would therefore be preferable to choose control nodes with low share factors, if such 

nodes can be identified in the system. 

Based on the above indicators and metrics, two software routines have been deSned, that 

are later suitably combined to construct the heuristic optimisation algorithms. These rou-

tines aim at optimising the first priority objective, while minimising the negative effects 

on the secondary one. They are : 

» : it is used to minimise the critical path length, by successively applying 

transformations TF8 and TF9 (§3.2.3). It is fed by a threshold share factor value, and tar-

gets all nodes whose share factors are calculated below that threshold. 

« : performs hardware sharing between functional units, by repeating trans-

formation TFIO (§3.2.3). A threshold critical path factor value is given to it, and aU data 

path units with critical path factors below that threshold are considered. 

The flow charts for the tailored heuristic optimisation algorithms are now shown in Figure 

3.10, taken from [8]. From the flow charts, it is obvious that an initial zero value is first 

assumed by the threshold values, to be incremented in subsequent iterations. This way, the 

optimisation moves that are most effective as far as the first priority is concerned, and less 

impairing, as regards the second criterion, are given preference. A more complete version 

of the tailored algorithms is given in [8], taking into account the possibility to meet user 

constraints before the threshold value takes the 100% value; in this presentation, the flow 
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charts have been simphfied under the "as cheap as possible and as fast as possible" as-

sumption mentioned in §3.2.4. 

As is evident from the above description, only a small subset (TF8, TF9, TFIO) of aU the 

available transformations are considered in the tailored heuristics. The reason for this is 

that these three transformations have been shown to contribute the most towards the opti-

mum design solution. The heuristic approach has been proved to be much faster than 

simulated annealing. However, it is absolutely parameter-oriented and therefore not easily 

expandable to include additional criteria. Further, there is always a risk to end up in a local 

rninimiun instead of the global that is searched for, because only improving transforma-

tions are considered. 
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3.2.6 Hardware model 

This chapter continues with a presentation of the actual hardware model of the MOODS 

output designs. As already mentioned, the data path is simply an interconnection of func-

tional units, registers and multiplexers (a list of these building blocks is given in §3.2.7). 

Therefore, it conforms to the typical structural / RTL data path modelling. The MOODS 

controller architecture, though, has some interesting properties, and it is for that reason 

that it is presented here in detail, given also that it is greatly referred to in chapter 6, when 

controller self-checking design is considered. 

Figure 3.11 shows a conceptual model depicting the communication between the control-

ler and datapath in a system like the one of Figure 3.1. The datapath is shown on the right-

hand side of 3.11 in a form that resembles a data-flow graph, where storage elements are 

also shown (although this is not consistent with the formal definition 3.2). In the particular 

data path example, four operations (01 - 04) are scheduled over three control steps (N -

N+2), and the registers shown are used to store and preserve intermediate results across 

control state boundaries. The internal structure of the controller is not yet revealed; never-

theless, the figure shows how the controller outputs (hereafter coM/roZ ẑgMoZj) connect to 

the data path. Specifically, the control signals feed the storage registers' "load enable" 

ports, and this connection determines when the operation is actually executed. For in-

condit ional s ignals 

F/gure J.YY Commi/n/caf/on be tween cfafa paf/? a n d confro/Zer 
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Stance, operation 0 4 is assigned to a fiinctional module; assuming that the module is com-

binational, some logic value always appears at its output port. However, the value is stored 

in the appropriate register oM/y at CS N+2; in that sense, 04 is executed at N+2, and 

the corresponding functional unit is said to be acfzve only then. Clearly, in order for this to 

happen, the control signal corresponding to N+2 should assume the "true" value during CS 

N+2, while all other control signals should assume "false". If (without loss of generality) 

"active-high" encoding is assumed, then this example shows that the controller output 

should by definition be "one-hot" encoded (§2.2.1.2). While this is a general observation 

that applies to all controller / datapath architectures, the actual controller implementation 

can be quite different from system to system. 

For the sake of completeness, it should be noted that, together with register "load-

enables", the controller outputs also feed multiplexer "select" ports in the data path. This 

has no imphcation whatsoever as regards the purposes of the present thesis, and will there-

fore not be considered anv further. 

> o u t enab 

^— 

F/gure 3. Y2 .' TTie genera / confro/ ce/ / 

Within MOODS, the controller is implemented using a special hardware cell defined 

within the VHDL cell hbrary (§3.2.7), namely the ggrngm/ ce/Z. Being part of the 

library, this cell is described in RTL VHDL, and its actual structure is derived by RTL 

synthesis tools. Figure 3.12 shows the typical implementation for this cell, as synthesised 

by Mentor Graphics LeonardoSpectrum, version 2002e.l6. A cell of this type corresponds 

to a unique state in the control path. A D-type flip-flop is the basic building block for the 

cell. The D-input of the flip-flop is the OR function of a number of tokens, corresponding 

to the predecessor states in the control path. In the example of Figure 3.12, a 3-bit token 

input is shown, meaning that the given state is the successor of any of three different 
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states. If the control state implemented by the particular cell is visited conditionally, then 

the input tokens are the result of the AND function of the corresponding predecessor state 

signal(s) with suitable conditional signals, produced by the data path. Finally, the flip-flop 

Q-output (labelled out enable in 3.12) is essentially the control signal of the state at hand, 

which is fed to appropriate data path storage units, as well as to the successor state(s) gen-

eral control ceU input token(s). 

The whole controller is thus implemented as Figure 3.13 shows. The control signals are 

directly led to the datapath; they are also fed back to the general control cells, properly re-

arranged so that each control signal is input only to the cell(s) corresponding to its succes-

sor state(s). In addition, conditional control transitions are implemented where necessary 

by a block of AND gates, also fed by the appropriate conditional signals, as shown. In ef-

fect, the operations described above (ANDing, followed by rearrangement, followed by 

ORing within the control cells, as shown in Figure 3.12) correspond to the next state sig-

Condi t iona l 

s ignals 
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tokef 

tokens 

tokens 
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General Q 
Contro l 

^ Cell 
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Contro l 
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Genera l Q 

Control 
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F/'gure 3. ; 7/76 confroZ/er generated by MOODS 
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nal generation, thus making the MOODS controller model a proper FSM. Clearly, the 

number of flip-flops is equal to the total number of control states. This is considered to be 

an expensive but fast implementation in VLSI (ASIC) technology, while it appears much 

cheaper in FPGA technology, due to the existence of dedicated storage elements within 

FPGA slices [106]. 

3.2.7 The cell library 

This subsection concludes the presentation of MOODS by providing a list of the hardware 

cells made available to the system through the cell library. These cells include [105] : 

. logic gates : "NOT", "AND", "OR", 'TSTAND", "NOR", "XOR", "XNOR" 

« conventional, single-bit output equality comparators : "9^" 

» unsigned and signed integer arithmetic comparators : "<", ">", ">", ">/:^' (ALU) 

» left and right "shift" and "rotate" modules and ALUs 

« b o ± unsigned and signed integer arithmetic functional blocks : negator ("unary mi-

nus"), ripple-carry adder - subtractor - add/subtract ALU, incrementer, decrementer, mul-

tiplier, absolute value calculator 

» typical digital logic RTL blocks : register, up-counter, down-counter, multiplexers, 

decoder 

» control cells : general control (§3.2.6), call control 

» auxihary cells : concatenation, unsigned and signed bit extension 

The functionality of most of these cells is obvious from their names, as they correspond to 

the usual elementary operations found in VHDL or any other programming language. 

ALUs in this context are essentially combined cells capable of implementing alternative 

types of operations, depending on the value of suitable controlling signals. The "call con-

trol" cell is a special cell used to implement VHDL p r o c e d u r e and f u n c t i o n con-

structs. With such a rich collection of hardware modules, a very good subset of the VHDL 

language can be synthesised. This subset includes all common logic and integer arithmetic 

statements, loop and conditional statements, subprograms, as well as multiple concurrent 

communicating p r o c e s s blocks. 
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3.3 Summary 

The fundamental concepts of high-level synthesis have been covered in this chapter. Par-

ticular emphasis has been given to the incarnation of these concepts within the MOODS 

high-level synthesis system. As a concluding remark, it is important to once again stress 

that the whole performance of MOODS highly depends on the following three elements : 

» the set of transformations 

" the available algorithms 

» the cost function 

Clearly, this means that any attempt to alter, refine or enhance the MOODS fiinctionahty 

should focus on expressing the alterations, refinements or enhancements through the 

above elements. 



Chapter 4 

Fault Simulation Techniques 

When a fault testing or fault tolerance strategy is applied to a digital circuit, it is desirable 

to determine or demonstrate its effectiveness against the most commonly occurring faults, 

before putting the circuit into action. For this purpose, a number of controlled experiments 

are typically conducted, wherein the behaviour of the system is intentionally altered to 

imitate its predicted behaviour in the presence of the targeted faults. This is the topic of 

fjy'gcA'oM a n d T h e relevant material in the literature is extensive; 

practically, every research group concerned with testing, has to a ceitain extent also 

worked with fault simulation, in order to validate their work. Fault simulation experiments 

have been carried out in this work as well (§7.1.2.1). The present chapter briefly describes 

a small number of representative fault simulation techniques, thus providing the founda-

tion for the experiments of chapter 7. 

4.1 General 

In order to vahdate the reliability of a design, four alternative approaches have been ap-

phed[107, 108, 109] : 

* Aarc/warg zM/'ecfz'oM : this is done after fabrication, and it consists of 

iryecting faults in a sensitive fabricated chip, by disturbing critical factors of the environ-

ment. Most commonly either heavy ion radiation or electiomagnetic interference is used 

for this purpose. 

* /azz/f zVygcfzoM : the software of a microprocessor-based system is 

changed such that the processor behaves as if under the presence of a physical fault. 

* Zogzc (mp/emeM/gof/M/'ecfzon : the hardware system is initially pro-

totyped on a programmable logic part (FPGA). Faults are injected on the part either 
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through suitably added control lines or, in certain state-of-the-art FPGAs, through dy-

namic partial reconfiguration. 

» /awZr /yy'eĉ zoM : this is done at the pre-manufacturing design stage. 

Typically, at this stage the system is described in the form of some hardware description 

language code, and fault injection is done by suitably perturbing this description, so that 

the resulting system would emulate faulty behaviour. 

A survey of hardware- and software-implemented fault icyection methods can be found in 

[110], while [111] includes comprehensive information on radiation-based fault ir^ection 

in an industrial setting, followed by standardised certification of chip performance in hos-

tile enviroimients. Injecting faults on programmable logic parts is an interesting and rela-

tively new idea, constantly gaining ground as FPGAs themselves gain ground. It is pro-

posed as an alternative to HDL-simulated fault iryection, and the main motivation behind 

an FPGA approach is that programmable logic emulations of hardware parts are much 

faster than HDL simulations running on general-purpose computers. Therefore, an FPGA-

based fault injection experiment is due to finish faster than an equivalent experiment on a 

software simulator. In [112], Civera et al set up a fault iiyection configuration based on 

programmable logic, wherein bit-flips (i.e. bits that have their fault-free values comple-

mented) are injected on the storage elements of an FPGA prototype by a host computer. 

The injection is implemented by dedicated hardware added to the storage elements, while 

the information regarding which faults will be iiyected during a given experiment is com-

municated to the FPGA from the host PC through a suitable additional system primary in-

put and a chain of "mask^' flip-flops connected together in a scan register fashion similar 

to that of Figure 2.3. Alternatively, Antoni et al [109, 113] exploit the runtime partial re-

configuration capabilities of modem Xilinx Virtex FPGAs [106] to irject faults once more 

in memory elements, this time by partially substituting the original fault free FPGA con-

figuration with one that demonstrates selective faulty behaviour. The advantage is that no 

permanent additional hardware infrastructure or primary input needs to be inserted for 

fault injection purposes; the price is that frequent reconfiguration, even partial, slows 

down the experimentation, cancelling out the speed benefit of FPGA emulation. 

This chapter is hereafter concerned solely with simulation-based fault injection on HDL 

descriptions. 
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4.2 Representative simulation techniques 

Motivated by the extensive use of the VHDL language [48] in present-day CAD, several 

researchers have proposed approaches to faciUtate fault iryection and simulation in VHDL 

models of digital systems. A representative number of such approaches are covered in this 

section. 

A typical example of injecting faults at the logic gate level can be found in [114]. The first 

three tasks addressed therein are to analyse the fault behaviour of the basic logic gates, 

identify fault dominances and equivalences [1], and define corresponding gate 

VHDL descriptions. Mutant descriptions in this context are VHDL models that behave 

identically to the original gates in the fault free case, but imitate well-defined faulty behav-

iours when suitable values of added control signals dictate so. Armed with these mutant 

gate models, and given any complex system gate-level netlist, the authors of [114] substi-

tute the original gates with the mutants, thus providing fault iryection capabilities to the 

overall netlist. They subsequently specify an explicit list of targeted faults. A suitable test 

bench is further written, that uses the information of the fault list to suitably inject the de-

sired faults (typically one by one) into the modified netlist and observe the responses, with 

respect to the responses of a fault 6ee simulation run, thus evaluating the effectiveness of 

the fault detection or tolerance mechanism incorporated within the simulated circuit. No-

tably, gate substitution and test bench production are fully automated in a fault simulation 

tool presented in [114]. The designer only needs to provide the original circuit netlist and 

the fault list, while any commercial HDL simulator can be used for the fault experiments 

(e.g. ModelSim [115]). 

The work of [116] concentrates on the technology-specific lowest level of the design flow 

and provides a "bottom-up" perspective of fault injection. Its authors conduct analogue 

electrical simulations of the cells within a standard gate-level cell library. They simulate 

both the ideal fault-Gree situation with the cells operating properly, and all combinations of 

possible manufacturing defects in the semiconductor devices that constitute the standard 

cells. Comparison of electrical simulation results enables the "mapping" of fault effects 

from the analogue to the digital domain. Accurate "mutant" standard cells in VHDL are 

thus made possible. These cells can subsequently be used in any standard cell level fault 

simulation environment (typically as in [114]). 
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DeLong et al [117] conduct fault injection and simulation experiments at a high level in 

the design flow, namely at the architectural level of a microprocessor system. Faults are 

hijected in the internal processor buses, through VHDL ywMcfzoMJ. Effectively, 

each bus is driven firom two sources. The first source is the functional logic driving the bus 

under fault free operation, and the second is a constant logic signal, denoting a stuck-at-

0/1 type fault (if it assumes the logic 0/1 value), or no fault injection (if it holds the "un-

known" value x). Clearly, driving a signal &om two sources results in conflicts over which 

value will ultimately be assumed; typically in VHDL the conflict is resolved by a suitable 

function (rejoZw /̂onywMcfz'oM [48]). In this case, the resolution function consults the con-

stant fault injection signal to determine whether the target bus is to be driven to logic 0/1 

regardless of the functional driving source, or whether the fault-fi-ee scenario is in effect, 

wherein the bus is driven to the value dictated by the fimctional driving logic. 

An interesting study of different HDL fault simulation approaches has recently been pub-

hshed in [107, 108]. Its authors identify and implement three alternative simulation strate-

gies. In the first, they simply use j/mw/afor offered b y a commercial VHDL 

simulator [115] to force targeted signals to desired faulty values. In the second, they add 

suitable modules at desired locations in the original system description. These 

modules suitably corrupt signal values, in a manner similar to the resolution functions 

used in [117]. Finally, the third approach considered uses descriptions. This con-

cept has already been encountered in [114, 116]; the authors of [107, 108] configure mu-

tant descriptions using the (generally unpopular) gwnrcfecf VHDL construct. In 

brief, a VHDL guarded block is a block of statements that are only executed when a de-

fined Boolean condition (the is true; more details can be found in [48]. [107, 108] 

propose a different mutated architecture for every modelled fault in every component in 

the system nethst. One obvious disadvantage of this is the need of an enormous number of 

alternative VHDL architectures when a realistic number of faults is to be modelled. Ar-

guably there are ways to implement fault injection based on mutants that do not suffer 

from this problem (usiag control signals as in [114], or conceptual linked lists of faults as 

§4.2.1 will present). 

The presentation of this section has revealed that even when only HDL simulation-based 

fault experiments are considered, the designer of a fault testable or fault tolerant system is 
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presented with a number of options regarding exactly how to conduct such experiments. 

Firstly, a choice regarding the level at which the experiments will be carried out is re-

quired; secondly, one of three different perturbation philosophies needs to be favoured. 

4.2.1 Transparent fault injection and simulation 

This subsection gives a detailed presentation of a particular VHDL approach, namely the 

j'zmwWioM technique developed by Zwohnski in [49, 118]. 

In the terminology of §4.2, the technique at hand should be classified as a member of the 

mutant modules based family of fault simulation approaches, and its current form is ap-

phed at the gate level. The following presentation both exemplifies the generic fundamen-

tal concepts of fault simulation described in §4.2, and stresses the specific advantages of 

the technique at hand. Further, §7.1.2 of this thesis will constructively utilise and extend 

the following material, to implement an RTL variation of the particular technique. The 

presentation of this subsection at times uses VHDL and "pseudo"-VHDL code segments 

to better illustrate the 

approach. 
u s e s t i d . t e x t i o . a l l ; - - c o n t a i n s d e f i n i t i o n o f l i n e 

p a c k a g e f a u l t : _ i n j e c C i s 

t y p e f a u l [ _ m o d e l ; 

t y p e f a u l t _ p t : i r i s a c c e s s f a u l t _ m o d e l ; 

t y p e f a u l t _ p t r _ a r r a y i s a r r a y ( i n t e g e r r a n g e < > ) o f f a u l t p t r ; 

t y p e f a u l t _ m o d e l i s 

r e c o r d 

t a u l t _ n a m e 

s i m u l a t i n g 

d e t e c t e d 

n e x t f a u l t 

l i n e ; - - l i n e i s a c c e s s s t r i n g 

b o o l e a n ; 

b o o l e a n ; 

f a u l t p t r ; 

e n d r e c o r d f a u l t _ m o d e l ; 

s h a r e d v a r i a b l e f i r s t _ f a u l t 

e n d p a c k a g e f a u l t _ i n i e c t ; 

f a u l t _ p t r 

F/gure .' The f a u l t i n j e c t pac/cage 

The technique firstly 

involves de&ning the 

f a u l t _ i n j e c t 

package of Figure 4.1. 

As can be seen in the 

figure, the 

E a u l t _ m o d e l data type deSned in the package is a composite type (a similar to 

the record data structures found in programming languages). It contains the following four 

fields : 

« f a u l t name, effectively a pointer (occe.yj' in VHDL terminology) to a string holding 

a symbolic name for the fault 

« s i m u l a t i n g , a Boolean flag denoting if the fault represented by the record is iryected 

to the circuit at a given time point 

" d e t e c t e d , a second Boolean flag which should be set as soon as the fault of interest 

has been detected 
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« n e x t _ f a u l t , a pointer to the next f a i i l t _ m o d e l type record 

It is through this last pointer that a linked hst of f a u l t _ m o d e l type variables can be 

formed, exactly as in procedural programming languages such as C-H- [119]. To enable 

this, a jAareaf van'aAZe (equivalent to the global variable concept) named f i r s t _ f a u l t 

is also declared in the package. This variable is simply a pointer to a record of type 

f a u l t m o d e l and it is initialised to the n u l l value. 

As soon as simulation starts, the shared variable f i r s t _ f a u l t becomes the head of the 

linked list of faults. The pseudo-code of Figure 4.2 shows how this is achieved, and how 

i i o r a r y l e e e ; 

u s e i e e e . s L d _ l o g i c _ l l 6 4 . a l l ; 

u s e w o r k . f a u l c _ i n j e c t . a l l ; 

e n C i C y n a n d 2 i s 

p o r e ( z : o u t : s t d _ l o g i c ; a , b : i n s t d _ l o g i c ) ; 

e n d e n C i L y n a n d 2 ; 

a r c h i L e c b u r e i n i e c C _ f a u l t : o f n a n d 2 i s 

b e g i n 

n n : p r o c e s s ( a , b ) i s 

v a r i a b l e z _ s a l , a _ s a l f b _ s a l : f a u l C _ p i : r : = n u l l ; 

b e g i n 

- - f i r s t p a r t ( v a r i a b l e i n i t i a l i s a t i o n ) 

i f z _ s a l = n u l l t h e n 

z _ s a l n e w f a u l t _ m o d e l ' ( 

n e w s t r i n g ' ( i n j e c t _ f a u l t ' i n s t a n c e _ n a m e & " z _ s a l ' ' ) , 

f a l s e , f a l s e , f i r s t _ f a u l t ) ; 

f i r s t _ f a u l t : = z _ s a l ; 

- - s i m i l a r l y f o r o t h e r f a u l t s 

e n d i f ; 

- - s e c o n d p a r t ( f u n c t i o n a l i t y ) 

i f z _ s a l . s i m u l a t i n g t h e n - - z / 1 

z <= ' 1 ' ; 

e l s i f a _ s a l . s i m u l a t i n g t h e n - - a / 1 

z < = n o t b ; 

e l s i f b _ s a l . s i m u l a t i n g t h e n - - b / l 

z < = n o t a ; 

e l s e - - f a u l t - f r e e 

z <= a n a n d b ; 

e n d i f ; 

e n d p r o c e s s n n ; 

e n d a r c h i t e c t u r e i n j e c t _ f a u l t ; 

F/gure 4.2 . 2-/npuf A//\/VO gafe w/Y/7 /f^'ecf/on capab/VA'es 

faulty behaviour is 

imitated for the ex-

ample of a two-input 

NAND gate. Apply-

ing fault equivalence 

and fault dominance 

principles [1] on the 

NAND gate shows 

that only three dis-

crete faults need to be 

considered. These 

correspond to any of 

the inputs a, b or the 

output z of the gate to 

be stuck-at-1. Three 

local pointers to 

f a u l t _ m o d e l records are thus declared and initialised to n u l l , one for each of the 

faults. At the first execution of process nn, new record objects are created to represent the 

faults, and appended at the head of the fault list, using the shared variable 

f i r s t _ f a u l t . The first part of the code of Figure 4.2 shows how this is done for vari-

able z _ s a l (representing the fault according to which the gate output z is stuck-at-1). 

Variables a _ s a l and b s a l are handled similarly. The code clearly shows that this first 

part becomes ineffective as soon as non-null values have been assigned to z _ s a l , a _ s a l 

and b _ s a l , i.e. it is effective only in the first execution of the process, and its purpose is 
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purely the automatic formation and initialisation of a linked list of fault variables. The 

second part of the code corresponds to the NAM) gate model functionality. A chain of i f 

statements describes the alternative behaviours, depending on the experiment scenaiio 

(any of three possible fault icgections or fault free operation). 

Note that the VHDL model of Figure 4.2 

can be considered a "mutant" NAND 

gate, since it demonstrates normal fimc-

tionahty in the fault free scenario and the 

appropriate faulty behaviour under the 

presence of a fault. Similar mutants can 

be written for any other elementary logic 

gate functionality along the lines of Fig-

F/gure 4.3; Examp/e nef//sf 4 2, using the framework of package 

f a u l t : _ i n i e c t . Thus a library of "fault icyectable" logic gates can be developed. More 

complex nethsts can subsequently be configured using this library. Figure 4.3 shows a 

simple example netlist 

s o c i a C i o n i i s C ) ; 

l i b r a r y i e e e ; 

u s e i e e e . s c d _ l o g i c _ 1 1 6 4 . a l l , s L d . t e x t i o . a l l , 

w o r k . f a u l t _ i n i e c t . a l l ; 

e n t i t y t b i s e n d e n t i t y t b ; 

a r c h i t e c t u r e f i l e i o o f t b i s 

s i g n a l d e c l a r a t i o j i s 

b e g i n 

a l : e n t i t y w o r k . T o p _ l e v e l _ n e t l i s t p o r t m a p ( a 

p i : p r o c e s s i s 

v a r i a b l e h e a d _ p t r : f a u l t _ p t r : = n u l l ; 

v a r i a b l e f a u l t _ c o u n t , f a u l t B _ d e t e c t e d : n a t u r a l : = 0 ; 

o t h e r a u x i l i a r y v a r i a b l e s 

b e g i n 

e x e c u t e f a u l t f r e e s i m u l a t i o n f o r e v e r y i n p u t i n v e c t o r s . t x t 

a n d w r i t e r e s u l t s y i t A c o r r e s p o n d i n g i n p u t s i n r e s u l t s . t x t 

w a i t f o r 1 0 0 n s ; 

h e a d _ p t r : = f i r s t _ f a u l t ; 

w h i l e h e a d _ p t r / = n u l l l o o p 

f a u l t _ c o u n t : = f a u l t _ c o u n t + 1 ; 

h e a d _ p t r . s i m u l a t i n g : = t r u e ; 

w h i l e n o t e n d f i l e ( r e s u l t s ) l o o p 

r e a d r e s u l t s . t x t a n d a p p l y i n p u t v e c t o r 

w a i t f o r 1 0 0 n s ; 

i f ( o u t p u t d i f f e r s f r o m t A a t h ^ r i t t e n i n r e s u l t s . t x t ) t h e n 

h e a d _ p t r . d e t e c t e d : = t r u e ; - - f a u l t d e t e c t e d 

h f r i t e d e t e c t i o n i n f o r m a t i o n i n f a u l t s . t x t 

e n d i f ; 

e n d l o o p ; 

h e a d _ p t r . s i m u l a t i n g : = f a l s e ; 

w a i t f o r 1 0 0 n s ; 

h e a d _ p t r : = h e a d _ p t r . n e x t _ f a u l t ; 

e n d l o o p ; 

s u m m a r i z e r e s u l t s 

o u t p u t f a u l t c o v e r a g e i n f o r m a t i o n i n f a u l t s . t x t 

i . e . f a u l t s d e t e c t e d / f a u l t s i n j e c t e d 

w a i t ; - - h a l t 

e n d p r o c e s s p i ; 

e n d a r c h i t e c t u r e f i l e i o ; 

F/gure 4.4 .- Examp/e fesfbenc/? 

comprising three 

NAND gates. Solid 

lines in the figure de-

pict physical coimec-

tions; in contrast, 

dashed lines corre-

spond to conceptual 

software hnks, thus 

niustrating the fault 

list. All three 

f a u l t _ m o d e l o b -

jects within each gate 

are linked together as 

explained through the 

code of Figure 4.2; 

moreover, conceptual 

links between objects 
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in different gates are also formed as Figure 4.3 graphically shows. This is achieved auto-

matically, since there is only one f a u l t pointer variable, shared by all processes 

in aU entities in the overall netlist. Automatically including all faults in the list is an ad-

vantage over the techniques described in §4.2, since no explicit list of faults needs to be 

provided by the designer. Another interesting observation on Figures 4.2 and 4.3 is that 

the physical gate interface and the connections between gate inputs and outputs are not 

affected by the inclusion of fault iryection capabilities in the VHDL model. Indeed, the 

mutant model of Figure 4.2 has only two input ports a and b, and an output port z, exactly 

as if it was a normal NAND gate. Further, in Figure 4.3 the outputs of the first logic level 

are fed to the inputs of the second, exactly as if the NAND gates did not have fault injec-

tion capabUities. In essence, the structural properties of the original netlist are fuUy pre-

served when mutants replace the usual logic gates. This means that a normal nethst can 

readily be used for fault experiments as soon as the mutant gate library has been formed, 

simply by instructing the VHDL simulator to use the mutant descriptions in place of the 

normal ones. This is typically done in VHDL in a single line of code jpecz-

[48]). It follows that the technique is particularly easy to instrument and leaves 

large parts of the original structural VHDL netlist descriptions unaffected; this justifies the 

ZraMjpareMf property attributed to it. 

Figiure 4.4 shows a possible testbench template (in pseudo-VHDL) required to orchestrate 

the overall fault simulation experiment. In this particular testbench, a set of input test vec-

tors is provided by the designer in the v e c t o r s . t x t file. A round of fault-free simula-

tions is initially conducted for the top-level design ( T o p _ l e v e l _ n e t l i s t in the fig-

ure), and the results together with the corresponding inputs 6 o m v e c t o r s . t x t are 

stored in r e s u l t s . t x t . Subsequently, elements in the fault list are accessed one by 

one, using pointer variable h e a d _ p t r ) . Each fault is simulated by having its correspond-

ing s i m u l a t e d flag set. All test vectors are apphed to the design and the responses are 

compared against those written in r e s u l t s . t x t during fault free simulation. Whenever 

a mismatch is found, the fault is marked as detected and relevant detection information is 

output to f a u l t s . t x t . Such information may include the symbolic name of the fault, 

shmlation time at which it was detected, the input vector that detected it, or indeed any-

thing else the design requires. After all faults have been simulated, some kind of summa-

rizing information can conclude file f a u l t s . t x t . For example, the total number of de-

tected faults can be calculated and reported. 
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4.3 Summary 

The fundamental concepts of fault simulation and related reliability evaluation techniques 

were given in this chapter. Most importantly, Zwolinski's transparent fault simulation 

technique was detailed. This technique will be constructively used in chapter 7 for the re-

liability evaluation experiments of this thesis. 



Chapter 5 

Datapath Self-checking Design 

This chapter focuses on the on-hne testing of the datapath part of controller / datapath de-

signs. In the context of this thesis, such designs are considered in the form of RTL netlists, 

automatically generated by high-level synthesis. When such a netlist is ultimately imple-

mented on silicon or downloaded onto an FPGA, it can normally be observed that most of 

the silicon area / FPGA resources are occupied by data rather than by control operations. It 

is therefore sensible that datapath on-line testability is the first issue to be addressed to-

wards implementing high-level synthesis for on-line testability. 

This chapter is organised as follows. Section 5.1 specifies the requirements of datapath on-

line testabihty, revisits the families of on-line testing techniques presented in §2.2 and 

evaluates them in the light of the specifications of the problem at hand. Ultimately, the 

family of algorithmic duplication and related self-checking design techniques are chosen 

as the most appropriate solution. Section 5.2 elaborates more on the chosen technique in 

relation to background material (§2.2.2.3) and presents the testing idea. Section 

5.3 details the implementation of datapath self-checking design within the MOODS (§3.2) 

high-level synthesis system and presents experimental results and comparative comments. 

Finally, section 5.4 draws the concluding remarks of this chapter. 

5.1 Problem statement and discussion of potent ial solut ions 

This section presents a discussion of requirements and potential solutions to the datapath 

on-line testing problem. Throughout the whole chapter, the datapath is shown either using 

the DFG representation (Definition 3.2) or thiough the actual hardware used to implement 

the DFG fimctionahty, as appropriate per situation. Figure 5.1a shows a familiar simple 
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DFG example (also used in Figures 2.33 and 3.3), while the datapath netlist realising the 

DFG is depicted in Figure 5.1b. A comparative inspection of 5.1a and 5.1b establishes the 

conespondence between the DFG and the hardware implementing it. Indeed, adder A1 is 

used twice in the DFG; therefore, two multiplexers (MUXES) are used in the implementa-

tion to choose between the two possible inputs. Registers (REGs) are also employed to 

preserve values across DFG boundaries. Both multiplexers and registers receive control 

+3 A2 

MUXES 

A 1 A2 

REG 
REG 

REG 

(aj grap/7 /-/ardw/are nef//sf 

F/gi/re 5. Y. /\#emaf/Ve v/en/s of f/ve (/afapaf/7 

signals from the controller part of the design; these signals act as "select" and "load en-

able" inputs respectively (§3.2.6); thus the correct timing is in effect ensured. The control-

ler and the mentioned signals are omitted in the figure, for clarity. The problem addressed 

in this chapter is to augment datapaths of the form of Figure 5.1, in such a way as to en-

able the user to have an on-line indication of the health of the system and a timely report 

of any hardware failui e. Further, the insertion of the resources necessary for this additional 

fumctionality has to be done within the high-level synthesis process, concurrently with the 

rest of the synthesis tasks (§3.1.2), and as transparently to the designer as possible. This 

last proposition primarily means that the synthesis tool should be able to generate on-line 

testable systems at the designer's request, without requiring an}" modification of the origi-

nal HDL description of the system behaviour (along the lines of Figure 3.2). 
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5.1.1 Problem requirements 

In order to choose an OM-Zme testing solution for the datapath of a complex design, to be 

realised by a Ag/zovzouraZ one naturally has to take into account precisely 

the particular characteristics of these two concepts, in addition to the usual performance 

and cost specifications. 

More specifically, when a system is on-line, it is desirable that any fault corrupting its op-

eration be detected as soon as possible, so that any existing recovery mechanism can be 

triggered (low error latency). At times, short-lived faults develop into the system but do 

not manifest themselves at the outputs of the system, because they happen not to be sensi-

tised by the functional input vector applied to the system throughout their hfetime. These 

fault are termed An OM-Zme testing solution need not target latent faults. In 

fact, detecting a latent fault and taking corrective action typically involves performance 

degradation; since the system is on-line and producing useful output, it is preferable to 

avoid such degradation unless absolutely necessary (i.e. unless a fault manifests itself by 

corrupting logic values). Therefore, the approach taken in this thesis is that latent faults 

jAozf/o' be detected in the on-line context, so that undesirable "false alarms" will be 

avoided. 

Addressing the whole problem at the behavioural synthesis level has its own implications. 

Firstly, just as a behavioural synthesis tool should understand and synthesize as broad a 

range of HDL descriptions and design styles as possible, so should a "behavioural synthe-

sis for on-line testability" tool be able to generate acceptable testing solutions for as wide 

a class of designs as possible. This suggests that the adopted testing technique should be 

generically applicable rather than application-specific. Further, recall that the high-level 

synthesis process as such is largely independent of the target technology, while its output, 

being an RTL netlist, is still relatively high in the design flow and does not necessarily re-

strict the lower-level tools to a particular gate level stnicture of the RTL building blocks 

(§3.1). A testing strategy maintaining these benefits should therefore not depend on the 

target technology or gate level structure. Another important benefit of high-level synthesis 

is the interaction between the designer and the tool, through the cost requirements of a 

given project. Recall, for example, that the MOODS cost function of §3.2.4 affects the 

choice of optimisation algorithm, by determining the particular incarnation of the tailored 
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heuristic to be used (§3.2.5.2). Any testing technique considered in this context should be 

able to take advantage of this versatility. 

In summary, before choosing any of the techniques presented in chapter 2 for implementa-

tion within synthesis, the said techniques need to be evaluated based on the following cri-

teria. 

(a) error latency 

(b) avoidance of "false alarms" 

(c) general applicability, including independence of low-level structure and target tech-

nology 

(d) ability to take advantage of high-level synthesis versatile design space exploration 

Efficiency in terms of area overhead and time penalty is, of course, an important issue not 

included In the above points. The approach of this thesis is to pursue efficiency by exploit-

ing any area and performance optimisation techniques already existing in the high-level 

synthesis tool of interest (as will be seen in §5.3.3.2), rather than addressing efficiency 

through an appropriate choice of technique. It should be borne in mind that this work ad-

dresses (oo/ rather than design cojg It is therefore important for a 

tool to be generic (requirement (c) above), even if some of the solutions it provides may 

be less efficient than manually derived, application-specific ones. 

5.1.2 Evaluation 

The general families of on-line testing approaches of chapter 2 are considered here, as po-

tential datapath on-line testing solutions. Self-checking design, based both on general 

EDCs (§2.2.1) and on duplication-related techniques (§2.2.2), on-line BIST (§2.2.3.2), 

shift-based on-line DFT (§2.2.3.3), and analogue characteristic monitoring (§2.2.4) are all 

included in tlie discussion. Special attention is paid to requirements (a) - (d) of §5.1.1. 

Error-detecting codes (§2.2.1) could be utilised in a high-level synthesis design flow, by 

analysing all R.TL cells that consist the tool cell library (§3.1, §3.2.7), and defining self-

checking versions of them, that can be furtlier included in tbe cell library, together with 

appropriate checkers. Referring back to Figure 5.1, the self-checking design of a datapath 

would then involve the utihsation of the self-checking versions of aU datapath modules. 
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e.g. adder A1 in the figure would be realised by a self-checking adder incorporating an 

appropriate checker, multiplier Ml would also need to be a self-checking multiplier etc. 

Such an approach could easily use data from the literature. For instance, recall that [16, 15, 

41] presented self-checking ripple-carry addition based on parity checking, as well as self-

checking multiplication based both on parity and on arithmetic codes (§2.2.1.1, §2.2.1.5). 

Registers could also employ parity checking or even support error correction (§2.2.1.4, 

[36]). It can be observed that tliis solution has no "active" interaction with the high-level 

synthesis process, in the sense that it only deals with the cell library and final operation 

binding, but does not interfere with the scheduling and allocation phases. In other words, it 

cannot take fuU advantage of the versatile high-level synthesis optimisation. Further, it 

necessarily requires some degradation ui the maximum achievable clock speed; indeed, all 

operations in Figure 5.1 would include a certain invariant property checking, thus made 

slower. On the other hand, no false alarms could normally be produced by a self-checking 

system, while error latency would be minimal, since any logic error would be detected in 

the clock cycle it manifested itself. However, a property of self-checking design that is 

actually a disadvantage in the context of high-level synthesis is its total dependence on and 

+3' A1 

1' )I\/I2 

=1 CI 

F/gure 5.2. Se/f-c/?ec/(/ngf des/gn based on a/gor/f/vm/c dup//caf/bn 
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intervention with the gate-level structure of the circuit under check (see for example Fig-

ure 2.10). In short, with respect to points (a) - (d), EDC-based self-checking satisfies (a) 

and (h), but lacks (c) and (d). 

Self-checking design based on algorithmic duplication and related techniques can provide 

an interesting alternative. Figure 5.2 shows how it can be applied to the simple DFG ex-

ample of Figure 5.1a. Operations +1% +2', +3', and * r in the figure denote the duplicates 

of the respective fimctional operations, while !=1 is a comparison operation, implemented 

by the newly introduced fault secure comparator module CI. In line with §2.2.2.3, a func-

tional and a duplicate operation are never implemented by the same hardware module. The 

scheme as presented in Figure 5.2 experiences a delay degradation of a clock cycle, and it 

may also experience an error latency of a few clock cycles. For instance, if adder A1 is 

faulty and produces a failure in addition +1 during CS 1, the failure will not be detected 

before CS 4. Further, the chaining (§3.2.3) of comparison !=1 after multiplication *! ' 

within CS 4 will probably lead to clock speed degradation. A remedy to the fault latency 

problem could be the introduction, scheduling and allocation of multiple comparison op-

erations at intermediate points in the DFG (§2.2.2.3), while better clock speed could be 

achieved by further accepting an additional fifth control step and scheduling the final 

comparison there. From the above it is evident that the considerations and trade-offs asso-

ciated with algorithmic duplication have direct relevance to the high-level synthesis design 

space exploration tasks (allocation, scheduling). The whole problem can therefore ideally 

be formulated within the core of the synthesis process. An additional strong point is that 

the scheme of Figure 5.2 is purely generic and behavioural, in that it makes no assumption 

about either the gate-level structure of the modules realising the system fimctionality, or 

about the overall functionahty as such, or even about the target technology. It can there-

fore be stated that algorithmic duplication and related schemes retain the benefits of 

EDC-based self-checking design ancf fit well into the behavioural synthesis context. 

An additional benefit of a "behavioural" self-checking scheme such as algorithmic duph-

cation, in the context of CAD tool development, is its natural j'wppof fybrywfwre 

Consider a given synthesis tool, and an associated cell library. Assume that only one 

cell of a particular functionahty is available in the hbrary, for instance only one type of 

adder such as a ripple-carry adder. If EDC-based self-checking is desired, then the library 

will also include a self-checking version of the adder, as explained above. If a structurally 
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alternative cell implementing the behaviour is added to the library during a subse-

quent development phase, then clearly the new cell will need to be analysed, for instance 

along the lines of [15], and its self-checking version developed from the beginning. In the 

adder example mentioned above, such a new cell could be a carry look-ahead adder. As 

[16, 15, 41] have shown, the development of a self-checking version will require a consid-

erable amount of analysis and logic level design work. In contrast, algorithmic duplica-

tion, being a naturally behavioural technique, will readily lend itself to future tool expan-

sions. In the running adder scenario and referring to Figure 5.2, either of adders A1 and 

A2 could be of any structure. The structure itself is chosen during the binding phase 

(§3.1.1) of high-level synthesis, and the self-checking scheme is valid in any case. 

On-line BIST during idle cycles, as explained in §2.2.3.2, is another potential solution. 

The concept of a TDFG (Figure 2.37) associated with a given DFG initially gives the im-

pression that the approach is very relevant to synthesis. However, as §2.2.3.2.3 aheady 

pointed out, low test quahty can be a real problem with TDFGs. Further, test quality as 

well as test length highly depend on the gate-level structure of the circuit constituent 

blocks (§2.2.3.2.2); therefore, the approach is not generic enough. Finally, the error indi-

cation itself that BIST provides is of doubtful usefulness in the on-line testing context. To 

understand this, refer back to the example TDFG configuration of Figure 2.37. Putting 

aside the test quality considerations, assume that the TPG provides all of its test vectors in 

X: executions of the functional circuit. An erroneous signature in the MISR after the A: exe-

cutions provides the error indication. However, this indication does not specify of 

the A functional results produced by the circuit was corrupted. In fact, it is likely that by 

the time the MISR detects the fault, the fault will have propagated to other parts of the 

overall system, probably with catastrophic effects. In other words, on-line BIST experi-

ences error latency. It is also possible that the MISR has detected a latent 

fault, thus leading to a false alarm. In summary, none of requirements (a) - (c) is satisfied. 

At this point, it can be mentioned that the on-line BIST evaluation of the previous para-

graph is equally applicable to on-line arithmetic BIST (§2.2.3.4.1), the latter in essence 

being a form of BIST with a ceitain non-standard implementation (i.e. using accumulators 

instead of LFSRs). In fact, it can be expected that arithmetic BIST will have even more 

restricted applicability, since it cannot accommodate designs in which too few adder - reg-

ister pairs can be configured. 
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On-line shiA-based DFT (§2.2.3.3) is discussed in the following. In this family of tech-

niques, the inputs and outputs of selected operations are shifted out of the chip and tested 

by an external testing unit, which effectively repeats the operation. A mismatch between a 

shifted output and an output produced by the testing unit signifies the presence of a fault. 

On one hand, the scheduling and choice of operations that will have their inputs and out-

puts shifted out can be formulated as a synthesis task. Further, there is no obvious danger 

of a false alarm. On the other hand, however, error latency is unpredictable and uncontrol-

lable. Even fiirther, there are serious concerns regarding the practicality of implementing 

concurrent shift-based testing. In particular, shifting out a number of variables while the 

system is operating would involve an additional shift clock. If realistic bit-width values are 

considered, this clock would need to be tens of times faster than the functional clock, so 

that a number of variables can be shiAed out during a single cycle of the fimctional clock 

[83]. This will limit the scope of the technique to very low speed applications. Moreover, 

the idea itself of utilising an external testing unit for concurrent testing is of doubtful prac-

ticality, since such a unit will need to be compact enough to accompany the chip on the 

field. Furthermore, if rehable testing is desired, then the testing unit as such will need to 

be designed using some on-line testability strategy, further complicating the problem. The 

above critical remarks are backed by the absence of convincing experimental results in the 

relevant publications [83, 84, 85, 86]. In summary, while the idea of shift-based on-line 

DFT is likely to satisfy requirements (b) and (d), it is also likely to experience high error 

latency (requirement (a)). Most importantly, general applicabihty (requirement (c)) is not 

guaranteed; as a matter of fact, there is not enough evidence that even partial applicability 

is feasible. 

Let us now focus on the family of techniques labelled as monitoring analogue characteris-

tics (§2.2.4). Such solutions detect faults through abnormalities in their electrical proper-

ties, sometimes even before the corruption of logic values. This is an interesting advantage 

as regards en or latency, although it can be stated that alarms will rise even if logic values 

are not corrupted. The strongest argument against them, however, is that they are only 

relevant to the target technology (e.g. abnonnal flow of current can onZy be defined with 

respect to the technology), and by nature address the on-line testing problem at a very low 

level in the design flow. Therefore they are neither generally applicable nor related to the 

behavioural HDL level of abstraction, thus not fitting the perspective of the present thesis. 
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The background presentation of chapter 2 also includes analytical techniques (§2.2.3.4.2). 

These are purely apphcation-specific, thus not satisfying the critical general applicability 

requirement (c) of §5.1.1. 

The detailed evaluation of this section establishes that algorithmic duplication related, 

"behavioural self-checking" techniques are the most suitable for implementation within a 

high-level synthesis environment. 

5.2 Detailed presentation of proposed technique 

Section 5.1 justified why algorithmic duplication related techniques should form the basis 

of a datapath self-checking solution in the context of this thesis. However, subsection 

2.2.2.3 has presented a significant number of algorithmic duplication choices. These 

choices vary both as regards their self-checking related properties (e.g. error latency, po-

tential fault escapes etc.) and as regards their implementation details (e.g. at which level of 

abstraction testing resources are inserted and exactly how this is done). The following sub-

section 5.2.1 critically evaluates the techniques of §2.2.2.3, identifies strengths and weak-

nesses, and defines concepts not adequately covered by them. Subsection 5.2.2 proposes a 

valiant of duplication testing (namely inversion testing) and shows its potential usefulness 

within DFGs. Subsection 5.2.3 summarises the conclusions of §5.2.1 and §5.2.2, and de-

fines the goals of the algorithmic duplication-based datapath self^checking implementa-

tion, to be presented later in §5.3. 

5.2.1 Algorithmic duplication revisited 

The first pieces of published research work with reference to a variant of algorithmic du-

plication were the ones advocating checkpointing, rollback and recomputation as means of 

recovery from transient faults [60, 61]. Regarding its fault handling characteristics, the 

idea of rollback and recomputation can lead to deadlocks if a permanent fault appears ki 

the system. Further, error latency is not considered and not identified as a design goal. Re-

garding the duplicate DFG synthesis approach proposed in [60], it can be observed that the 

presented algorithm receives the fuUy scheduled oiiginal DFG as an input. From the opti-

misation point of view (§3.1.2), this is a disadvantage, since a significant area of the over-
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all system design space remains out of reach. Figure 5.3 illustrates and clarifies this idea. 

In Figure 5.3a, a synthesis process is applied to the original DFG, a total number of m dif-

ferent design space points Dl-Dm are visited, and the example point D2 is highlighted as 

the most favourable. The duplicate DFG is independently synthesised next, n candidate 

designs D2,l-D2,n are identified for the overall system and the example point D2,l is cho-

sen. Clearly, only n candidate choices are considered for the overall synthesis solution. 

Now focus on Figure 5.3b, where the two DFGs are optimised simultaneously. The dashed 

rectangle in the figure includes all possible overall design choices, corresponding to the 

combination of all choices for the original and duplicate DFGs (Dl,l-Dm,n). As the figure 

depicts, all n^m possible design space points are now considered for the overall design, by 
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synthesizing the two DFGs in the same optimisation process, effectively treating them as 

OMg DFG. This is a much preferable synthesis path, as illustrated by the fact that, although 

D2 in Figure 5.3a is the best choice for the original DFG m /jo/anoM, there is no reason 

why an initially suboptimal solution Di with 1̂ 62 cannot yield a n overall better solution for 

tlie final system. Indeed, Figure 5.3b exemplifies such a scenario, by highlighting design 

Dm,2 as the most favourable out of all nxm choices. Observe that point Dm,2 cannot even 

be reached by the process of Figure 5.3a. An alternative view of this concept is the design 

space graph of Figure 5.3c. The coloured area in the graph corresponds to the overall self-

checking system achievable region (§3.1.2). The region explored when the original DFG 

is fixed at the D2 design choice is marked as region 1, while the rest of the achievable de-

sign space area is called region 2. If the original DFG is synthesized first and fixed at D2 

in the manner of 5.3a, then only region 1 will be visited by the overall synthesis process. 

In contrast, if both the original and the duplicate DFG are optimised simultaneously as in 

5.3b, then all of the coloured area (regions 1 awcf 2) will be explored. 

An additional weakness of [60, 61] is that they do not address loop and conditional con-

structs in the designs they synthesise, thus restricting the usefulness of the technique. 

Computation Unit 
1 A 
r B 
2 C 
2' A 
3 B 
3' C 

The next family of techniques covered in §2.2.2.3 are [62, 63], proposing fault identifica-

tion through fimctional unit differentiation. 

An initial comment that can be given re-

garding tbe differentiation idea is that it is 

expected to work under the assumption that 

faulty units never or mask faults. 

Indeed, consider once more the simple dif-

Table 5.7, Example of unit differentiation example given in §2.2.2,3, 

summarized in Table 5.1. Units A, B and C are pair-wise differentiated. For example, con-

sider A and C. Track (1, T) utilises A but not C; while track (3,3 ') utihses C but not A. 

Tracks of functional and redundant computations with differentiation properties can also 

be noticed if one considers either of the remaining pairs of units (A,B and B,C). Theoreti-

cally, if A experiences a fault, track (3,3') will be fault-fi-ee, while both (1,1') and (2,2') 

will signal faults, thus identifying A as faulty. However, depending on the inputs that unit 

A is fed with, it is entirely possible that either (1,1') or (2,2 ) will experience a fault mask-

ing event. This will result in a single fault indication, making faul t identification impossi-
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ble. Fault simulation experiments would be needed in [62, 63] to estimate how serious this 

problem could be; such experiments are however missing, and the differentiation tech-

nique remains of unproven, questionable practicality. As regards the synthesis approach of 

[62], design space exploration is more complete than in [60], since both fimctional and 

redundant computations are considered as constituting one DFG. However, loops and 

conditional branches are still not accommodated. Further, the synthesis cost parameters 

are only given in terms of number of functional units used and clock cycles needed; thus, 

important information such as the relative area cost of particular units in certain technolo-

gies, and the clock speed are missing. In principle, omitting this information can lead the 

synthesis process towards wrong decisions; in [63], this concern is confirmed by the fact 

that the experimental results report a hardware overhead of 100% (equivalent to 

duplication). 

The Introspection technique of [64] fully utihses any existing module idle time, but is by 

nature unable to cope with cases where there is too little idle time, since it totally rejects 

redundant module insertion. In that sense, it is case-specific rather than generic. As cov-

ered in § 5.1.1, this is not consistent with the philosophy of the present thesis. From the 

synthesis point of view, an interesting binding algorithm is outlined in [64]; however, the 

algorithm input is a fully scheduled DFG (as in [60]). As a result, the design space is not 

explored efficiently (as illustrated previously in Figure 5.3). Finally, loops and condition-

als are not explicitly addressed here either. 

The next scheme presented in §2.2.2.3 is the behavioural synthesis of fault secure systems 

of [23]. It is probably the most complete of the algorithmic duplication approaches; how-

ever, a number of weaknesses can be spotted in it as well. The synthesis process starts 

with a scheduled DFG, followed by a full physical duplication and comparison of the pri-

mary output results of the cir cuit of interest. Comparisons of selected intermediate results 

(e.g. the results of additions +1 and +1' in Figure 5.2) are introduced under certain condi-

tions, particularly when the fault study in [23] suggests that such a comparison promotes 

hardware sharing between the original and the duplicate DFG, while keeping the probabil-

ity of fault escapes below a defined threshold. A weakness here is that all comparisons, 

including those of intermediate results, take place at a dedicated control step, after the 

execution of the functional circuit has finished (e.g. after CS 3 of Figure 5.2). One can 

then understand that designs with realistically long critical paths will experience high error 
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latency (possibly of the order of the critical path length). In that sense, this self-checking 

approach is efficient and suitable for an a validation of the obtained result, 

unsuitable for the pre-emptive indication needed in safety critical applications, so as to 

tiigger any existing recovery or self-repaiiing mechanism. Further, the authors of [23] are 

the first to mention that fault secure comparators (§2.2.2.1) are needed in algorithmic du-

plication applications, and therefore assume that their comparators are such. However, 

they do not elaborate on the actual comparator structure to ensure this property. As regards 

the synthesis approach they use, one can observe that they feed their algorithm with a 

scheduled and bound DFG. Their subsequent self-checking synthesis steps are in fact al-

lowed to make slight changes to the original DFG scheduling; this is an improvement in 

terms of design space exploration with respect to [60, 62, 64, 61, 63], but the allowed 

changes are indeed very limited, only apphcable under the strict condition that they lead to 

an immediate improvement. An additional improvement of [23] over [60, 62, 64, 61, 63] 

is the ability to handle loop constructs in designs. Conditional branches are, however, still, 

not accommodated; in fact, this author thinks that the approach of [23] is particularly un-

suitable for conditionals, since it very much relies on analytical calculations of fault es-

cape probabilities. Conditional branches would make the calculations very complicated 

because the probability of visiting or not visiting a particular DFG node would need to be 

taken into account when calculating the probabihty of fault escapes. 

Semiconcurrent error detection [65] is considered next. The evaluation is illustrated by the 

example of Figures 5.4 and 5.5. Figure 5.4a shows a simple DFG, comprising 1 multipli-

cation and 3 additions and having a critical path length of 3 control steps. In 5.4b, a possi-

ble algorithmic duplication solution is shown. Only the final primary output results are 

compared in the presented scenario. Further, the example solution has been configured 

such that no new hardware modules are added; a delay degradation of 2 clock cycles 

(66.6%) is accepted instead. Figure 5.5 shows a semiconcurrent error detection solution 

for the same example, with checking periodicity f = 2 (f has been defined in §2.2.2.3). The 

primary inputs and outputs in Figure 5.5 are exactly as in Figure 5.4 (e.g. addition +1 is 

fed by a primary input), but are not explicitly shown in order not to overload the figure. 

The configuration graphically depicts that semiconcurrent error detection sacrifices some 

testability for area and / or delay savings. Indeed, in Figure 5.5 two executions of the fimc-

tionality of 5.4a are conducted with a nominal latency of 3 control steps each; only one of 

them needs to be checked, because f=2 . This means that the duplicate DFG has a very 
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relaxed delay specification of 6 control steps. It is easily scheduled within these 6 steps, 

and it does not require any additional hardware modules. This way, a low-cost self-

checking solution is insti-umented; the quality of test, however, is highly degraded. Indeed, 

consider a DFG with a realistically long critical path, and / or P » 2 . An error indication at 

the output will simply signify that there is a cerfam malfunction in the chip; it will not de-

termine wAen the fault first appeared, or Aow maMy of the f executions have been affected 

by the fault. Clearly, there is both unpredictable error latency and uncertainty as to the 

magnitude of the effect of a given detected fault. In hne with [23], semiconcurrent error 

detection is suitable for a theoretically inexpensive but limited periodic checking of the 

health of the system, possibly to detect non-fatal malfunctions; it is imsuitable for pre-

emptive error checking in safety-critical applications. Regarding the synthesis characteris-

tics of [65], a set of constructive (§3.1.2) synthesis algorithms is given for the scheduling 

of the duplicate, relaxed-latency DFG, given the original, scheduled and bound, functional 

DFG. The approach suffers from the poor design space exploration problem explained in 

Figure 5.3. On a positive note, extended versions of the algorithms are also given, accom-
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modating both conditional branches and loop structures in the DFG, for the first time. The 

algorithms are said to be under inclusion in an experimental integral synthesis tool; how-

ever, no results from this tool are given. The experimental results of [65] have been ob-

tained by commercial synthesis tools. From the information provided in [65], one con-

cludes that this was done by modifying the original HDL descriptions of the considered 

designs, and implementing script-based scheduhng and binding of the duphcate DFGs on 

commercial CAD tools, in effect applying the presented constructive algorithms. 

From the point of view of this thesis, this requirement for substantial designer intervention 

is a serious disadvantage. 

The research of [69, 70] proposes two diverse realisations of the same DFG. The two ver-

sions are differentiated &om each other either because of different allocation of operations 

to operators or because of the recomputation with shifted operands applied in [70] 

(§2.2.2.3). The Arst realisation is executed f times; then the second is executed once, and 

thus the last functional result is verified by comparison. It is evident that once again only 1 

out o f f obtained results is verified; therefore the technique suffers from potentially high 

enor latency and uncertainty exactly as explained above for the semiconcurrent solution. It 

is therefore again unsuitable for safety critical systems. From the synthesis point of view, 

the approach of [69, 70] is fully manual and there is no mention of any design automation 

attempt. In that sense, these works are not relevant to the goal of the present thesis, since 

they address the whole problem at a lower level of abstraction. 

Finally, [66, 67, 68] propose constructive algorithms for the configuration of duplication 

and comparison schemes (as of Figure 5.2). They do not offer anything theoretically novel 

with respect e.g. to [23]; they only compare final results, thus being unsuitable for pre-

emptive self-checking; furthermore, they are also manual RT-level approaches, therefore 

concepts such as behavioural design space exploration are not applicable in them. 

5.2.2 Inversion testing 

Figure 5.6 depicts the mveMzon paradigm. The figure accurately follows the no-

menclature of Figure 2.27 (duplication testing). Indeed, a redundant circuit is again added 

to the functional one, and a checker / fault secure comparator (§2.2.2.1) is employed to 

signify the potential presence of a fault. The difference with duplication is that the redun-



p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1: 

dant circuit in the inversion case is no 

longer a replica of the functional one. 

Rather, it is a circuit that reproduces the 

original functional input, when suitably 

fed by the functional output. Clearly, this 

means that the flow of data throughout 

the scheme should be as Figure 5.6 

shows, i.e. the inverse operation should 

take place after the functional one, rather 

than in parallel (compare to Figure 2.27). 

Other than that, the redundant circuit has 

to be of approximately the same size as 

the functional one. This proposition is 

historically backed by the theoretical fault detection study of [120], analytically proving 

that for any given system under check, the "detection" logic added to it should be at least 

as complex as the system itself, if an unrestricted fault model is adopted (i.e. if all possible 

faults are targeted). In that sense, inversion testing can be considered a member of the 

family of duplication-related techniques, as loosely defined in §2.2.2. 
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Clearly, inversion cannot be applied to any arbitrary fimction. One can think of several 

examples where there can be no redundant circuit that uniquely reproduces the original 

inputs, when fed by the functional outputs. Logic functions (AND, OR) are such non-

invertible examples. An arithmetic example is the square - square root pair, which is not 

^ wMzgwg/y invertible for signed arithme-

tic. However, when a unique inverse 

for the functional output exists, then 

the scheme is fault secure. Figure 5.7 

exemplifies the inversion testing idea 

and demonstrates fault security, 

through the simple addition - subtrac-

tion pair. In the figure, let a and b be 

signals of bit-width n (e.g. n=8 or 

n=16), corresponding to arithmetic 

values. Signal c equals a4-b, while 
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likewise d is equal to c-b. Basic arithmetic suggests that in the fault free case, signal d wUl 

always be equal to input a, and the comparator wiU verify the correct operation. Any sin-

gle fault manifesting itself at the output of the adder will result in a corrupted value c' with 

c ' # + b . Due to the 1-to-l property of subtraction, the subtracter output will now be d'=c'-

b # and the comparator wiU detect the fault. Alternatively, if a hardware fault corrupts the 

operation of the subtractor when it is fed by correct inputs, changing the output to d " # - b , 

then the comparator will once more be fed by unequal values and detect the fault. Finally, 

any manifested single comparator fault will clearly result in an error indication, so long as 

the comparator has been designed to be 2-bit output fault-secure, on the principles of self-

checking design (§2.2.2.1). It is thus evident that the scheme is fault secure with respect to 

single faults, since any non-latent single fault in any part of the scheme will result in an 

error indication. It should again be stressed that this is clearly a result of the 1-to-l prop-

erty of the considered arithmetic functions. It is only under this condition that fault secu-

rity is guaranteed and only under this condition that inversion defines a valid alternative to 

duplication. 

Simple visual inspection of Figures 2.27 and 5.6 immediately gives rise to the issue of 

whether inversion can be a choice over duplication. An initial remark is that 

physically inverting a circuit is expected to be approximately as expensive as physically 

duplicating it, since the redundant inversion circuit is expected to be at least of the size of 

the functional one [120]. Further, inversion will be considerably slower, since in Figure 

5.6 the functional output is verified after both the redundant circuit and the comparator 

have performed their operation. In contrast, in the duphcation testing of Figure 2.27, the 

redundant circuit operation is performed concurrently with the functional operation. It can 

therefore be stated that, even when an inverse function exists and leads to a fault secure 

scheme, physical inversion of isolated circuits has MO advantage over physical duplication, 

and is therefore of no interest. 

Inversion becomes interesting only in the context of substantially-sized sequential sys-

tems. This is illustrated in the following example. Figure 5.8 depicts a possible DFG reali-

sation of the Tlyeng design. This design was introduced in [121] and has ever since been 

widely used in the high-level synthesis community for benchmarking purposes. Although 

not conesponding to any useful functionality, its form is regarded as highly representative 

of situations typically encountered in high-level synthesis. Hence it is an instructive and 
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useful example. Temporarily omit-

1 ting the two highlighted opera-

tions, one can observe that the de-

2 / ( -1 sign includes three additions (+1, 

+2, +3), one subtraction (-1), one 

multiplication (*1), one division 

(/I), as well as two logic flmc-

tions, a bit-wise AND (&1) and a 

bit-wise OR (|1). In the present 

realisation, these operations are 

scheduled in a total of 6 control 

steps as shown, and allocated to an 

adder A1, a subtracter SI, a multi-

plier M l , a divider Dl, an array of 

AND gates Gm,dl and an array of 

OR gates Ggrl. All operations 

have two fiinctional inputs; how-

ever, in line with the previous Figure 5.5, several inputs are omitted in Figure 5.8 for the 

sake of clarity. All inputs and outputs that define uitemal data dependencies are clearly 

depicted by arcs, as usual (Appendix B includes a complete VHDL description of the 

Tseng benchmark). Let us now focus on operation +2, and assume that a self-checking 

scheme is required for this addition alone. Since there is only one fiinctional adder in the 

design, applying duplication testing would necessarily result in the introduction of a new 

adder A2 together with a new comparator CI. If inversion is applied instead, then a self-

checking solution for +2 could be configiued as the figure shows, by introducing the two 

highlighted operations. Subtraction -2' inverts addition +2 using the existing subtracter 

SI, which is idle during CS 4. Further, the necessary comparison !=1 is conducted during 

CS 5, on the newly introduced comparator CI. This way, operation +2 is checked by 

means of a/gorzYA/M/c mverj'foM (inversion testing that does involve physi-

cal introduction of a new "redundant" module). With respect to duplication, it is evident 

that in this particular case algorithmic inversion saves the hardware cost of an adder mod-

ule. Referring back to Figure 5.8, one can observe that alternative inversion solutions 

could be considered by moving operations -2' and / or !=1 in time. For example, the com-

parison could be moved to control step 4 and chained (§3.2.3) after the subtraction. This 
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would reduce error latency to a single control step, while it might not require clock speed 

degradation, since the (probably slow) multiphcation *1 is already present in CS 4. Of 

course, this cannot be determined conceptually here; low-level implementations and the 

target technology need to be taken into account. In a high-level synthesis environment, 

such information is readily available in or can easily be calculated from the technology 

library (§3.1). 

In summary, the above example points out that, in DFGs of substantial sizes, there can be 

cases when algorithmic inversion provides an interesting and beneficial alternative to al-

gorithmic duplication. In that sense, it should be kept as an cfegreg 

when devising self-checking DFGs. The example also shows that the whole problem with 

all of its parameters and trade-offs is best addressed at the behavioural synthesis level of 

absti'action. 

Other than the historical theoretical study of [120] mentioned above, one can also find two 

recent pubhcations proposing schemes that remind of inversion self-checking as shown 

here. In [122], an encoder (compressor) - decoder (decompressor) pair is used for testing 

purposes in a dependable computing architecture, while in [123] decryption ("inverting") 

is applied to encrypted data, in order to detect faults in a certain hardware implementation 

of a cryptographic application. Still, properly defining, analysing and considering inver-

sion in the context of self-checking DFGs, within high-level synthesis, is a novelty and 

one of the contributions of the research presented in this thesis. 

5.2.3 Discussion 

Subsection 5.2.1 evaluated algorithmic duplication techniques found in the literature and 

identified concepts not adequately addiessed by them, not simultaneously addressed by 

them, or at times not addressed by them at all. Subsection 5.2.2 defined inversion and al-

gorithmic inversion. The datapath self-checking design work of this thesis covers the is-

sues left open by previous researchers, while exploiting algorithmic inversion, where it is 

beneficial. To this end, the goals and properties of the implementation presented in this 

tliesis can be categorized with respect to the following three criteria : 

« Fault recoveiy. Past attempts at fault recovery have yielded application-specific and 

unproven recovery mechanisms (§5.2.1). In principle, any adopted recovery mechanism 
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primary inputs 

4 C1 

error 
indications 

primary output 

Figure 5.9. Checking all intermediate results for the example of Figure 5.2 

will by nature rely on the target technology (e.g. targeting a dynamically reconfigurable 

FPGA part can reveal interesting opportunities for run-time self-repair). In order to keep 

this work generic and technology independent, this author makes no assumption regarding 

the fault recovery technique. This thesis is thus restricted to /zmeZy and repoiting of 

faulty circimistances, such that faults can be reported o j joon ow the sys-

tem primary outputs are corrupted, so that aw}' recovery mechanism can react in a timely 

manner. 

" Fault detection. The duplication-based fault detection mechanism applied in this thesis 

is effectively shaped by the requirement for timely reporting, as stated above. Previous 

research works overviewed in §5.2.1 mostly employed checking of primary outputs; at 

times not even all primary outputs were checked [65, 69, 70], while in certain cases se-

lected but limited intermediate results were also checked [60, 23, 61]. The strict error la-

tency requirements stated in this thesis mandate that jzMgZe intermediate result be 
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checked. Algorithmic duplication is applied to perform this checking; algorithmic inver-

sion is also used alternatively. 

« Synthesis. Addressing the whole self-checking problem at the high-level synthesis 

level has a number of challenges, implications, as well as inherent advantages over previ-

ous pieces of work. Insertion of self-checking resources should ultimately be done auto-

matically by the synthesis tool, without any HDL modification or other intervention of the 

user to the synthesis process, other than specifying the synthesis constraints. Even further, 

self-checking insertion and other design optimisation (for area or delay) should be done in 

a j'ZMg/e optunisation process, to facilitate efficient design space exploration (Figure 5.3). 

The choice between algorithmic duphcation or inversion in a given situation should also 

be automatic within this same process. Moreover, both duplication and inversion require 

fault secure comparators and such comparators do not normally exist in cell libraries by 

default. The design of fault secure comparator cells, utilisable by the core synthesis sys-

tem, is therefore an additional challenge. Once these goals have been reached, the result-

ing integral synthesis for on-line testability tool will be able to take full advantage of exist-

ing high-level synthesis benefits. To this end, loops and conditionals will be accommo-

dated painlessly (so long as the original tool supports them), chaining of operations will be 

a feasible design choice, while independence of technology and support for alternative 

technologies through existing libraries will also be available by default. 

Figure 5.9 shows how Figure 5.2 could be transformed to provide checking of aU interme-

diate operations. The original data flow graph stiU comprises operations +1, -^2, +3 and 

*1, dependent on each other and scheduled exactly as in Figure 5.2. The duplicate opera-

tions receive the same inputs as the respective original ones, and produce outputs that are 

compared against the original operation outputs through suitable comparison operations, 

implemented on introduced fault secure comparators. This can be confirmed on the figure, 

by focusing, for example, on additions +2 and +2', whose outputs feed comparison !=2, 

implemented on comparator CI. The original operation output is always also fed to its 

proper successor operation (e.g. the output of +2 feeds *1). ^4// internal arcs are thus veri-

fied concurrently with the useful operation. This ensures that all intermediate results are 

fault-free when they feed their successors, unless an error is indicated (at the right-hand 

side of the figure). This scheme clearly provides a monitoring of the health of the 

system, and detects faults literally as soon as they manifest themselves at the outputs of 

faulty functional units. For instance, if adder A2 is faulty and corrupts the output of opera-
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tion +1 % then the fault will be detected at CS 2 rather than at the end of the whole opera-

tion (CS 4). This may seem like a modest improvement for such a trivial example; one can 

however understand the importance of timely reporting in a realistic design with a critical 

path length of a few tens of cycles. On another note, the Ggure also depicts the chaining of 

operations mentioned earlier. Indeed, comparisons !=2, !=3 and !=4 are chained after re-

dundant operations within control steps 3 and 4. Clearly, this is a design option; dedicated 

control steps could alternatively have been introduced for the comparisons. In a realistic 

situation, the choice will be made within the optimisation process, taking designer priori-

ties and technology parameters into account. 

Now focus on the error indications on the right-hand side of the DFG of Figure 5.9. In this 

particular example, two 2-bit output comparators CI and C2 are used. Under the timely 

reporting assumption, the outputs of these comparators need to be combined and taken to a 

chip primary output port. This is done here by applying the standard practice of self-

checking response compaction, using a two-pair dual-rail checker (§2.2.2.2). Figure 5.10 

reminds us of the idea and illustrates its application in the particular context. Modules CI 

and C2 in Figure 5.10 represent the comparators found in Figure 5.9. Two fUp-flops (ef-

fectively constituting a 2-bit register) are attached to each of them. "Write enable" signals 

En2 En1 

out 

FF FF FF FF 

2-PAIR 
DUAL-RAIL 
CHECKER 

CI C2 

F/gure 5. fO. Compacf/on oWafapafA comparafor responses 
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Enl and En2 are such that the flip-flops register their input values only at the appropriate 

control steps, according to the DFG. For instance, C2 produces a value of interest only at 

control step 3 and it is only during that control step that the corresponding flip-flop is en-

abled to store a value. Naturally, there is also a clock input to the flip-flops, omitted in the 

figure for clarity. The values stored in the flip-flops asynchronously feed a dual-rail 

checker, here acting as a response compactor. The output of the response compactor drives 

the overall chip "health indication" primary output. The system designer can then handle 

this health indication to trigger any recovery mechanism as desired. 

A final observation on Figure 5.9 is that the data-flow graph is ovgrZoatfed with nodes (op-

erations) and especially arcs (operation input / outputs). Indeed, the introduction of several 

new comparisons and the associated data dependencies create a situation which may re-

quire a great many multiplexers, comparators and intercoimect to be implemented in 

hardware. One may think that this overloading will lead to an unacceptably high hardware 

overhead, possibly higher than physical duplication, characterizing the whole approach 

impractical. Section 5.3 will experimentally prove that this is not the case if the optimisa-

tion potential of high-level synthesis is properly exploited. 

5.3 Implementation and Experimental Results 

The presentation of this chapter now moves on to the implementation of the concepts out-

lined in §5.2.3. Implementation involves two interdependent tasks. Firstly, insertion of 

self-checking resources should be done automatically and transparently, at the designer's 

request. Secondly, the resulting self-checking system should be optimised for the tradi-

tional high-level synthesis objectives, i.e. area and delay. These tasks should ideally be 

addressed simultaneously. Ultimately this can best be achieved if the self-checking prob-

lem is formulated in a manner that a high-level synthesis tool can use. The rest of this 

chapter details how this is achieved using the MOODS high-level synthesis system (§3.2), 

and presents experimental results, comparisons and conclusions. It should be noted that 

the work is by no means restricted to the particular tool. The concepts presented hereafter 

are generic in their essence; if a different tool was given, then the low-level practical im-

plementation details could be ac^usted as applicable to match the idiosyncrasies of the tool 

at hand. As shown in §3.2 MOODS is a transformational tool; a tool based on constructive 
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algorithms could alternatively be written. All the theoretical foundation of §5.1 and §5.2 

would still be valid, but a different implementation strategy would need to be adopted. 

5.3.1 Preliminary experiments 

As a preliminary step towards implementing on-line testing within MOODS, a number of 

manual experiments targeting standard synthesis benchmarks were conducted using the 

original MOODS system of §3.2. These experiments essentially constituted a feasibihty 

investigation. The manual methodology followed, results obtained and lessons learned are 

given in the following. 

The first benchmark design used was the Tseng datapath, aheady presented in §5.2.2. 

With respect to Figure 5.8, the multiplication and the division have been substituted by left 

and right shifts respectively; this is permitted since their constant operands are powers of 2 

(Appendix B), and in fact it leads to particularly economical realizations, since shifters are 

much cheaper than multipliers. For the purposes of this subsection, self-checking func-

tionahty was manually inserted to the design by modifying the original VHDL description. 

Consider the following simple addition example in VHDL : 

v 8 i := v 3 i + v 5 i ; (5.1) 

where v8 i , v3 i and v 5 i are bit vectors representing unsigned integer values. Duphca-

tion testing is implemented as : 

v8i := v3i + v5i; 

scl := v3i + v5i; (5.2) 

failed <= scl /= v8i; 

scl is an additional bit vector of the same size as the already existing ones, while 

failed is a single-bit port, responsible for communicating the error indication informa-

tion. Inversion testing can alternatively be configured for the same example as follows : 

v8i := v3i + v5i; 

scl := v8i - v5i; (5-3) 

failed <= scl /= v3i; 

Both the original and the modified behavioural descriptions of the design were fed to 

MOODS and optimised using the existing tailored heuristics (§3.2.5.2), with equal priori-

ties for the area and delay criteria and a nominal value for the clock period. The MOODS 
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RTL output was subsequently further synthesized targeting a standard FPGA part (Xilinx 

Virtex XCV800) and using a commercial tool (Synplicity Synplify version Pro 6.2 [124]). 

The final implementation was carried out using the Xilinx Design Manager (version 3.1i 

[125]). Table 5.2 sums the results of this experimentation. The first column on the table 

defines the synthesized version of the design. The orzgma/ version refers to the untestable 

implementation (i.e. without any VHDL modification). The version is the result 

of applying the duplication modification exemplified in code segment (5.2) in aU eight op-

erations of the data-flow graph. The particular version also needed some further manual 
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gofe; ga/CL; Âi/i'Erf jAi/̂er.; 

1 / / / / / -

Di/pAcokiY 2 2 2 2 2 2 I 
/nverfeiV 7 I / 2 2 2 2 I 

7a6/e 5 . 3 T s e n g bencAma/* /uncAona/ modu/e usage 

Ker.f;'oM 

/4veruge 
Error 

lafency 
(tyc/a;,; 

Ker.f;'oM Wcej TrLTfa/e Cyc/e; 
Fre^uenQ' 

//art/wore 
OverAeoc/ 

/ "e^rmonce 
f)egra(/7/;on 

/4veruge 
Error 

lafency 
(tyc/a;,; 

Or/gma/ 23^ J7g 13 2Jy1#/z - - oo 
j22 15 2 jMHz j&2 0 

/nverfec/ / 15 4 Afffz i / . j 0 
/nverkiY 2 PP6 IS 2JM//Z o . j j 

Ta6/e 5.4 ' O/YTeg bencAmarfc pre//m/na/y synf/ies/s resu/fs (Targef fec/7no/ogy X;//nx W e x XC\/800 FPG/4^ 

Fer.;/on Tbrgef TecAno/ogt' 
7(&;o;frce C/;age 

Cyc/g; 
Taffrng f eno/fy 

Fer.;/on Tbrgef TecAno/ogt' 
<̂ /zcef Trufafg 

Cyc/g; /for^/yfore 
OverAeat/ 

faybrmonce 
Oegrac/afion 

|tyc/g^ 
Or(^/ncf/ A7/»u: Mr/ei^CMfOO 2P/0 33 - -

Or/gmo/ A7/fMx;rcpj2ggAy 2P/0 33 - -

7 JgP 4574 77 26.7 733.3 
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mtervention, on top of the tailored heuristics optimisation. The reason is that the automatic 

optimisation procedure naturally assigns additions v8i := -v3i + v 5 i ; a n d s c l : = 

v3 i + v5 i ; to the same functional unit, trying to minimise the overall hardware. Of 

course, in the case at hand this is not valid, because a fumctional and a redundant operation 

need to be executed by disjoint hardware for the self-checking scheme to be meaningful 

(§2.2.2). A number of manually selected applications of the "imshare" transformation 

TF13 (§3.2.3) were thus needed to produce valid self-checking output (see also [126] and 

Appendix A for information about running MOODS in a manual, "console" mode). Refer-

ring back to Table 5.2, the version is the product of modifying operations ac-

cording to the inversion paradigm of segment (5.3) wAere oppZicabZe (§5.2.2), while still 

retaining duplication where inversion is not apphcable. In addition, an version 

is given. The difference between this last version and is that in the 

pairs of functional and redundant operations are not allowed to be chained in the same 

control step. Chaining is prevented manually in the DFG, by forcibly inserting a control 

step boundary between the two operations. The MOODS VHDL Reference and Style 

Guides [127, 128] or Appendix A of this thesis can be consulted for practical details on 

how this is done. 

The rest of the columns in Table 5.2 give the actual numeric results of the synthesis ex-

periments. FPGA resource usage is given in terms of the number of occupied slices [125]. 

The number of tristate buffers used is also included, for the sake of completeness. These 

buffers are used for multiplexing. More specifically, this author's design experience, 

backed by previous research conducted in [100], suggests that multiplexers implemented 

in FPGAs using standard look-up table based logic are very costly in terms of area (in fact 

they occupy more area than functional modules, thus rendering hardware sharing a disad-

vantageous option). It was found that using tristate buffers to implement multiplexers 

solves this problem, as there is a plethora of normally unused such buffers in a typical 

FPGA device. The number of buffers used may appear excessive, but this has no negative 

implications on the design quality, since it is the number of occupied slices that signifies 

the FPGA area utihsation. Speed parameters of the synthesized designs are reported sub-

sequently; these are the critical path length (measured in number of clock cycles) and the 

maximum firequency achievable by a given realisation. The hardware and speed overheads 

are more clearly illustrated next, by means of the percentage of increase in slice usage and 

the percentage of performance degradation in number of cycles. Finally, for this small ex-
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ample (eight operations) it is easy to calculate the average error latency, in cycles; this is 

reported in the last column of Table 5.2. The error latency is given as infinite in the case of 

the offgma/ design, since there is no on-line testing applied to it (i.e. faults are never de-

tected). Note that the hardware usage and frequency statistics on the table are the ones re-

ported by the actual lowest-level implementer tool; therefore, they are as realistic as could 

be and fully reflect the optimisation contribution of RT-level synthesis. This note applies 

not only to Table 5.2 but to all tables hereafter. 

A simple comparison of the results in Table 5.2 for the and the ver-

sions reveals that has a smaller hardware overhead. This is consistent with the 

inversion testing intuition provided through Figure 5.8. Further, Table 5.2 shows that error 

latency in both cases is 0, since for all instructions in the DFG the functional, redundant 

and comparison operations are scheduled in the same control step, and thus faults are de-

tected at the same control step as they occur. Performance degradation (in terms of clock 

cycles) is also the same; however, chaining of functional / inverse operation pairs within 

the same control step results in the maximum achievable clock frequency being 7 times 

lower in the version. Focusing now on the version, it can be seen 

tliat it needs an additional 4 cycles, but the maximum achievable clock 6equency is not 

degraded with respect to the version. The hardware overhead is more than for 

the version but is still less than the version. Non-zero error latency 

is introduced; indeed, out of 8 operations, 4 are inverted and checked with an error latency 

of 1. Error latency is 0 for the other 4 (duplicated) ones, giving an average of 0.5. In an 

attempt to more clearly demonstrate the area savings for this simple but illustrative exam-

ple, Table 5.3 summarizes the functional module usage of the different Tseng versions. 

The (fupZ/cofecf version naturally features double the number of hardware components with 

respect to the original one; the version is shown to include an adder and a sub-

tractor less. In fact it is the absence of these two arithmetic modules that gives rise to a 

cheaper self-checking solution when using invertion testing. has exactly the 

same functional module usage as and is thus not included on Table 5.3. The 

three extra FPGA slices that the unchained version occupies are due to regis-

ters introduced to store the results of original computations across clock cycle boundaries, 

before being fed to the redundant ones. 

The next design tried was a differential equation solver (hereafter Diffeq). It is taken from 
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[129] and it has also seen extensive usage for benchmarking purposes, also considered 

representative of more complicated but typical HLS situations. The experiments con-

ducted with Diffeq are shown on Table 5.4. The version names have the same meaning as 

in the previous example. The self-checking versions were again produced manually and 

synthesized using equal priorities and targeting a Xilinx Virtex XCV800 FPGA part. The 

observations are along the same lines as before. The version is the most expen-

sive, but also the fastest both as regards clock cycles required and maximum achievable 

clock frequency. Chained is the cheapest with respect to hardware overhead, 

but suffers severe frequency degradation. Unchained is moderate in hardware 

usage and does not cause frequency degradation, but results in a few additional clock cy-

cles in the critical path. 

The question that naturally arises in both of the above examples, is which of the on-line 

testable versions one would choose. As is usually the case when working in high-level 

synthesis, there can be no definite answer, and the choice is always up to the designer. 

Considering the results of Table 5.2 as an illustrative example, it can be commented that if 

cost is the biggest restriction, then the designer may probably choose the (cheapest) 

chained version. If the clock frequency degradation imposed cannot be toler-

ated, maybe they will consider paying the extra price for the non-chained zMvg/Ygc(_2 reali-

zation. Still, if the additional clock cycles are unacceptable, maybe they will have to pay 

even more to have the c/wpZ/ca/gcf version. Finally, if the latter is too expensive and reli-

ability is not a first priority, the designer may decide to drop on-line testing completely 

and go for the orzgznaf untestable version. It is thus in practice demonstrated that the trade-

offs and dilemmas of traditional high-level synthesis apply equally to the problem at hand; 

this time, though, on-line testability acts as an parameter. 

The last experiments of this subsection were conducted on the QRS benchmark [130]. The 

particular design is actually of substantial size (-70 operations, mainly additions, subtrac-

tions, and divisions by powers of 2, implemented by "shift right" modules), and it corre-

sponds to a useful medical electronics application. Table 5.5 presents the obtained results. 

This table assumes a slightly different form from the previous Tables 5.2 and 5.4. Firstly, 

a dedicated column shows the particular FPGA targeted in each experiment. The maxi-

mmn frequency is not reported; this is because there were no significant degradations in its 

value, since the original untestable QR.S designs already feature considerable chaining. 
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Finally, the average error latency is not reported either, since the number of operations in 

this design make its manual calculation impractical. For this benchmark, initially a dupli-

cated and an inverted version were configured and synthesized. These are denoted on the 

table as y and Two different FPGAs were targeted in two different sets of ex-

periments. The interesting observation is that there are cases when inversion can be more 

expensive than duplication; indeed, is cheaper when a Viitex XCV800 is used, 

while is cheaper for the alternative part XC95288XV. This can be explained as an 

e f k c t of low-level refinement, or of the place and route algorithms utilized by the final 

hnplementation tool. Clearly a design which appears more expensive than another when 

considered at a high level in the design flow, may at times demonstrate enhanced optimi-

zation potential at lower levels, especially in FPGA technology. This observation gives 

rise to a strong argument for high-level synthesis : it is desirable that the time &om the 

conceptual design to the final solution be as little as possible, so that alternative solutions 

can be tried fast and efGciently. 

A second observation on the table is that and always experience severe delay 

degradation (more than 100%). This is a most undesirable effect and it can be explained as 

follows. Recall that self-checking functionality was added to the design by means of the 

VHDL modifications of (5.2) or (5.3). In both cases the one-bit signal f a i l e d was used 

to store fault indication information. Clearly only one "write" operation can target a signal 

at a given control step. This means that each of the comparison operations attempting to 

write to the f a i l e d signal will need a control step of its own. There are around 70 such 

comparisons (equal to the number of fimctional operations), so at least 70 discrete control 

steps will be needed for the self-checking design. This is indeed confirmed on the table 

(77 control steps). In effect, the implementation of self-checking as done here hinders the 

control step merging potential of the data-flow graph. This problem can partly be solved 

manually, by using multiple f a i l e d signals. For example, consider the following VHDL 

code segment describing a duplication-tested subtraction : 

ecg_dif := ecgl - ecgml; 

scl : = ecgl - ecgml; (5.4) 

failedl <= scl /= ecg_dif; 

A second self-checking operation immediately following should take the form : 
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ecg_dif256 := ecg_dif / 256; 

sc2 := e c g _ d i f / 256; (5.5) 

failed2 <= sc2 /= ecg_dif256; 

If the two comparisons in the above code segments were assigned to discrete comparators, 

and the clock period requirements were not violated, then all operations of (5.4) and (5.5) 

could be scheduled in the same control step. In order to provide a concise error indication, 

n failed signals are combined through a logic OR : 

f a i l e d <= f a i l e d l o r f a i l e d 2 o r ... o r f a i l e d n ; (5.6) 

Referring back to Table 5.5, the and versions were configured for the QRS 

benchmark, each one implementing the respective self-checking strategies as before, but 

this time a total of M=7 different f a i l e d signals were used; the choice of number was 

random. The table shows that the performance degradation experienced by both designs 

was much more tolerable, while the inverted version was the cheapest for the particular 

technology, but marginally slower than the duplicated one. The obvious question in this 

procedure is if the random value assigned to M was the optimal choice, and if there is a 

way to determine which choice would have been optimal. In effect, different values of M 

would enable exploration of different parts of the overall design space. It would be par-

ticularly time consuming to try a good number of alternative choices in this example, since 

each choice would require modifications throughout the whole length of a substantially 

sized behavioural VHDL input. The need to the design space exploration proc-

ess for self-checking resource insertion is evident. 

Concluding this subsection, it is to be noted that the preliminary results presented above 

do not as such reach the goals of the present chapter, as outlined in §5.2.3. Two of their 

obvious weaknesses are the need for manual intervention and the use of conventional one-

bit output comparators, not adhering to the scheme of Figure 5.10. They do, however, pro-

vide some usefiil insight on the problem of on-line testing within high-level synthesis, as 

summaiized in the following two points : 

« It is confirmed that the high-level synthesis considerations and trade-offs are relevant 

to self-checking resource insertion. Further automation in the design flow is also shown to 

be required, to facilitate efficient design space exploration for self-checking datapaths. 
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» Inversion testing appears to be a source of hardware savings, but is likely to lead to 

slower realisations, either by degrading the maximum clock speed, or by giving rise to ad-

ditional clock cycles. 

The Grst point provided the encouragement for further automation of the whole process; 

the second will be constructively used in §5.3.3.2. 

5.3.2 Semi-automatic experiments 

As §3.2 established, the internal functionality of MOODS involves the application of cer-

tain transformations to the design under synthesis, through multiple repetitions of the op-

timisation loop of Figure 3.7, directed by an automatic optimisation algorithm or by the 

designer manually interacting with the system, and controlled by a cost function. At the 

lowest level, it is the transformations that introduce changes to the resulting datapath 

structure. It is therefore sensible to state that the introduction of new functionahty within 

MOODS has to begin with defining an appropriate set of additional transformations. 

5.3.2.1 Self-checking resource insertion software framework 

In order for redundancy-based on-line testing schemes to be incorporated within the 

MOODS environment, three additional transformations were initially implemented. Table 

5.6 summarizes them. All three are described as "testing" transformations, thus distin-

guished from the allocation or scheduling transformations encountered in §3.2.3. A nota-

ble innovation in test-

symbolic 
name 

description type of 
transfomn 

TF22 physically duplicate instruction testing 
TF23 physically invert instruction testing 
TF26 remove instruction testing 

scheme 
testing 

ing transformations is 

that they introduce 

new functionality to 

the design, while the 

Table 5.6. Test resource insertion transformations traditional allocation 

and scheduling ones 

strictly presei-ve the circuit behaviour and only change the structural realisation. In that, 

the present work breaks with high-level syntliesis tradition. However, it should be made 

clear that the oiiginal functionality of the design is not affected by the testing transforma-
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tions; only redundant instructions are inserted and strictly utilised for self-checking pur-

poses. In that sense, testing transformations can be considered "semantic-preserving". 

In order to be exploitable within the optimisation loop of Figure 3.7, each of the transfor-

mations of Table 5.6 needs associated "validate", "estimate" and "perform" software func-

tions implemented within the MOODS system. The software development involved was 

earned out for the purposes of this work, taking up around 2000 lines of C-H- code [119]. 

Detailed descriptions of the transformations of Table 5.6 are novy given in the following. 

v 
C1 ( # 2 ) C 2 N ( # 1 ) C 1 

N+1 

N+2 COIVIP 

(aj Ong/na/ sfafe /mmed;afe/y aAer fesf 
resource /nse/f/on 

N f #1) C1 

#2 C1 

!= COIVIP 

N+1 

1= COIVIP 

('cj Opf/m/s/ngf for area Cd) Opf/m/smg /or speed 

F/gure 5. Y Y. /nserf/or; of dup/Zcaf/on fesf/ng resources 
and subsequent opW/zaf/or? 
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Transformation TF22 targets a given instruction and as-

sociates duplication-based self-checking resources to it. Clearly this involves the introduc-

tion of two additional operations, a duplicate and a comparison. The net result immedi-

ately after the transformation has been performed, is a locally "maximally serial" type of 

self-checking configuration, wherein a Mgw datapath module has been introduced to im-

plement the duplicate operation, together with a new comparator; the associated duplicate 

and comparison instruction also have Mgw/y m j e r W control steps dedicated to them. In 

other words, the transformation as such implements purely physical duplication and does 

not make any attempt to identify and reuse possibly existing idle modules. This initially 

appears to be naively expensive; Figure 5.11 depicts the situation and clarifies the benefits 

of such an approach. Firstly focus on Figure 5.1 la. A veiy simple segment of a DFG fea-

tures two independent operations of the same abstract type namely #1 and #2. They 

are scheduled in a single control step N, and assigned to components CI and C2. The 

components are assumed to be behaviouraUy identical. Figure 5.1 lb depicts the situation 

immediately after the application of TF22 on #2. The new elements mentioned above can 

be observed. Indeed, N+1 and N+2 are additional CSs, while a new component C3 imple-

ments the duplicate operation #2' and an introduced comparator COM? implements the 

comparison !=. At this point remember that optimisation within MOODS consists of a 

substantial number of repetitions of the optimisation loop of Figure 3.7, effectively leading 

to the application of a substantial number of transformations. Therefore, the final state of 

the design does not need to be that of Figure 5.1 lb since more transformations will foUow; 

Figures 5.11c and 5.1 Id show two possible mutually exclusive paths that subsequent op-

timisation steps can lead the design to. The scenario of Figure 5.1 Ic imphes that the de-

signer has specified the chip area as a top priority constraint, while delay optimisation is 

secondary (§3.2.4). An area-oriented algorithm will then be chosen (for instance the heu-

ristic of Figure 3.10b, readily available within MOODS). The hardware sharing transfor-

mation TFIO (§3.2.3) wiU then be applied on operations #1 and #2% The result is that 

component C3 is dropped and CI implements both #1 and # 2 \ Further, assume that the 

comparison can be chained after #2' without affecting the clock period; the CS merging 

transformation TF8 will then move operation != to CS N4-1 and drop CS N+2. Thus the 

state of the design reaches Figure 5,11c. One can observe that the solution at hand is a 

relatively cheap self-checking implementation (only the comparator is introduced), but 

gives rise to a delay degradation of a clock cycle (N+1). Alternatively, if the designer has 
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specified delay as his or her first priority, then the state of Figure 5.11 d will be reached, 

wherein CSs N and N+1 are merged using TF8, invoked by the heuristic of Figure 3.10a. 

Subsequently, N+2 is also merged with the other two exactly as before, assuming again 

that the clock period is long enough. In Figure 5.1 Id it can be seen that any hardware shar-

ing between CI, C2 and C3 is now impossible, since they are all active simultaneously. 

Therefore, self^checking is implemented at a high price, but the result is fast, since there is 

no additional delay degradation. The example overall shows that applying straight-

forward physical duphcation and then allowing the existing synthesis framework to further 

optimise leads to a vgrja/zVg design space exploration process, in the sense that the subse-

quent optimisation automatically follows the designer's directives and, depending on these 

directives, can take alternative paths. This would not be possible if TF22 immediately 

lead, for example, to the state of 5.11c, since then delay degradation would be unavoid-

able, and the requirements of a delay-constrained project less likely to be met. In effect, 

the initially naive state of 5.1 lb is dictated by the nature itself of iterative high-level syn-

thesis. 

As all transformations, TF22 also needs a validity check phase. Given a target instruction, 

the validity check software function first checks if the instruction is a valid datapath opera-

tion. If it is, then duplication testing can readily by applied, unless a) a self-checking 

scheme has already been inserted and associated with the instruction, or b) the instruction 

itself is the duplicate or the inverse of another functional operation in the DFG. 

Transformation TF23 invert iVKfrwcfzoM) is very similar to TF22. It is per-

formed exactly along the lines of Figure 5.11, although naturally in this case an inverse 

rather than a duplicate of operation #2 would appear in CS N+1 (Figure 5.11b). The trade-

offs and design space exploration arguments built around Figures 5.11c and 5 . l id equally 

apply in the inversion case. Once more, the same naive start leads to a versatile process. 

The validity check phase is also very similar to that of TF22, with the important addition 

that, in order for TF23 to be valid, the targeted instruction should be mathematically 

uniquely invertible (§5.2.2). For this purpose, each instruction type that the tool supports 

is characterised as either invertible or non-invertible and this infbmiation is hard-coded 

uito the tool; checking for invertibihty is then a simple table look-up. 
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Note that both TF22 and TF23 introduce new comparison operations to the datapath. 

These comparisons need dedicated one-bit registers to preserve their results, and the out-

puts of the registers should be compacted to produce a concise output, exactly as the 

VHDL statement (5.6) showed. The test resource firamework of this intermediate experi-

ment in fact automatically introduced a statement such as (5.6) in the RTL output Ale, thus 

accommodating this need. 

The third transformation shown on Table 5.6 is TF26 (removg rgj'/mg.ycAeTMe). It is the 

"undo" transformation of both TF22 and TF23. It targets a given instruction, and, as its 

name suggests, its function is to disassociate it from any self-checking resources that a 

previous application of either TF22 or TF23 may have inserted. This disassociation of a 

functional operation from its testing hardware may or may not involve a degree of actual 

dropping of hardware modules or control steps. As an example, refer back to Figure 5.11. 

If TF26 is applied to #2 at the state of Figure 5.1 lb, then operations #2' and != will be 

abolished; hardware modules C3 and COMP are only allocated to the abolished instruc-

tions, and therefore they will be removed as well. Control steps N+1 and N+2 will also be 

empty and therefore not needed anymore. In contrast, if TF26 is apphed at the design state 

of Figure 5.11c, then dropping out instruction #2' should be followed by the abolition 

of the component implementing it, since the component (CI) is also in use elsewhere (al-

located to #1). 

The validity check phase of TF26 needs to ensure that the targeted instruction : a) is a 

valid datapath operation, b) is not in itself the duphcate, inverse or comparison operation 

of a self-checking scheme, and c) has had self-checking resources associated to it and not 

yet removed. 

As the final remark of this subsection, recall that in the experiments of §5.3.1, at times a 

certain manual intervention (unit unsharing) was needed, to ensure that MOODS did not 

assign the same hardware module to the functional and the duplicate operations of a given 

duplication scheme. As a supplement to the test resource insertion transformations pre-

sented here, the validity check function of the existing functional unit sharing transforma-

tion TFIO (§3.2.3) was augmented, such that the transformation is considered invalid in 

case its two target instructions happen to partake in the same self-checking scheme. This 
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slight modification allows the designer to safely use the tailored heuristic algorithms of 

§3.2.5.2, without hindering the validity of any previously inserted self-checking schemes. 

5.3.2.2 Experimental results 

At this point, a number of intermediate experiments were carried out. The objective of 

these experhments was to validate the software framework of §5.3.2.1, effectively by re-

producing the results of Tables 5.2, 5.4 and 5.5; this time, however, no HDL modification 

was allowed, hoping that transformations TF22 and TF23 would do what the code seg-

ments did in §5.3.1. The experiments were conducted as foliovys. MOODS was invoked in 

console mode (Appendix A), a cost function chosen and the testing transformations were 

apphed by interacting with the system and manually choosing the type of transformation 

(TF22 or TF23) and the target instruction. When all instructions in the design were made 

on-line testable, the existing tailored heuristic optimisation algorithm was applied. As ex-

plained in §3.2.5.2, heuristic optimisation automatically follovys any of the three paths of 

Figure 3.10, depending on the designer priorities; in the context of this work, this equiva-

lently means that optimisation of test resources automatically follows either of the paths of 

Figure 5.11 (or alternates between the two, in case of equal priorities). Implementing on-

line testability this way is clearly a much more automated process than the one described 

in §5.3.1; however, a degree of manual intervention on behalf of the designer is still 

needed, even if this is through the tool user interface. This is vyhy the approach of this sub-

section is termed "semi-automatic". 

Tables 5.7 - 5.9 summarise the results provided by this set of experiments. All the ele-

ments on the tables are familiar from §5.3.1; the same three benchmarks and the same 

low-level tools were used, while version names also have the same meaning. 

versions this time were produced simply by specifying a very low clock period value, thus 

effectively disallowing chaining. Quahtatively the results of Tables 5.7, 5.8 and 5.9 match 

those of Tables 5.2, 5.4 and 5.5 respectively, hideed, is again the cheapest op-

tion for both the Tseng and the Diffeq designs, while the version is the least 

hardware-intensive in the QRS benchmark. always experiences the least fre-

quency degradation. Some minor numerical mismatches between Tables 5.2 and 5.7, and 

5.4 and 5.8, can be attributed to minor modifications to the MOODS system that are not 

related to this work. When comparing Tables 5.5 and 5.9, one notes that the designs on the 
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latter are significantly faster as well as more expensive. To understand the reason for this 

mismatch, recall the discussion of §5.3.1 regarding the dilemma over how many f a i l e d 

signals were to be used. Ultimately, a random number M=7 was chosen, and the ^ and 

designs of Table 5.5 were thus configured. In the designs of Table 5.9, literally 

every single self-checking scheme has its own error indication bit, because such bits are 

introduced together with the comparators, through the defined transfbimations TF22 and 

TF23. There is no mechanism to share the introduced error indication bits; therefore, even 

in the final, optimised design each self-checking scheme retains its unique error indication 

signal. These signals are equivalent to the f a i l e d signals defined in the manual experi-

ments of §5.3.1. Since the QRS benchmark includes around 70 operations that all have 

self-checking schemes attached to them, the situation is equivalent to having around 70 

different f a i l e d signals in the experiments of §5.3.1. In turn, this suggests that the por-

tion of the design space explored by the semi-automatic approach is different from that 

Version 

Resource Usage Speed Parameters Testing Penalty 

Average 

Error 

Latency 

(cycles) 

Version Slices Tristate 

Bufkrs 

Cycles Maximum 

Frequency 

Hardware 

Overhead 

(slices %) 

Performance 

Degradation 

(cycles %) 

Average 

Error 

Latency 

(cycles) 

137 400 7 50 MHz N/A N/A CO 

(/zfp/zcafeiy 164 704 7 35 MHz 19.7 0 0 

Mverrec/ / 156 720 7 4 MHz 13.9 0 0 

mverfec/ 2 163 752 12 42 MHz 19.0 71.4 1.25 

Tabie 5.7 : Tseng Benchmark semi-automatic experiments 

(Targef 7ec/?no/ogy)(7//nx 

Version 

Resource Usage Speed Parameters Testing Penalty 

Average 

Error 

Latency 

(cycles) 

Version Slices Tristate 

Buffers 

Cycles Maximum 

Frequency 

Hardware 

Overhead 

(slices %) 

Performance 

Degradation 

(cycles %) 

Average 

Error 

Latency 

(cycles) 

234 642 13 31 MHz N/A N/A 

344 1106 13 29 MHz 47.0 0 0 

328 1106 13 5 MHz 40.2 0 0 

404 1154 15 29 MHz 72.6 15.4 0.92 

Table 5.8 : Diffeq benchmark semi-automatic experiments 

(Target 7ec/?no/ogfyX///nx IZ/'/fexXCVGOO 
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Version 

Resource Usage 

Cycles 

Testing Penalty 

Version Slices Tristate 

Buffers 

Cycles 

Hardware Overhead Performance 

Degradation 

(cycles %) 

Version Slices Tristate 

Buffers 

Cycles 
slices % tristate 

buffers % 

Performance 

Degradation 

(cycles %) 

on'gma/ 470 2626 34 N/A N / A N/A 

f/up/zco/eaf 750 6548 36 59.6 149.4 5.9 

762 6915 37 62.1 163.3 8.8 

7a6/e 5.9 ; QRS benchmar/c sem/-aufomaf/c expen'menfs 

(Target Technology Xilinx Virtex XCV1000 FPGA) 

explored during the manual experiments, and explains the quantitative differences. An 

automated way to determine the optimal comparison resources is stiU missing. 

Once more, it has to be noted that the work presented in this experimentation round is stUl 

incomplete. Again the self-checking schemes lack the fault secure property, while full 

automation has not been achieved. However, the experiments are successful in that the 

transformational framework is experimentally validated; the subsequent §5.3.3 builds 

upon this framework and achieves M l automation. 

5.3.3 Fully automatic approach 

As §3.2 has established, automatic optimisation within an iterative and transformational 

high-level synthesis tool such as MOODS primarily depends upon the set of available 

transformations, the form of the cost function constantly monitoring the quality of the sys-

tem, and the choice of algorithms provided. High-level synthesis for on-line testability as 

outlined in this thesis has no reason to be different. Subsection 5.3.2.1 already de&ned 

three additions to the existing set of transformations. The following §5.3.3.1 will define 

and explain a metric for on-line testability, to be included in the system cost function. 

Subsection 5.3.3.2 will choose an algorithmic approach to fully automate test resource in-

sertion and integrate it with subsequent optimisation. Subsection 5.3.3.3 wiU alleviate the 

lack of fault security of §5.3.1 and §5.3.2. Two more additional transformations will fur-

ther be defined in §5.3.3.4. All these additions will create a fiilly integral and designer-

friendly synthesis environment; experimentation results will be given in §5.3.3.5 and 

comparative comments on §5.3.3.6. 
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5.3.3.1 A metric for on-line testability 

Transformations TF22 and TF23 (Table 5.6) have been shown to give rise to an initially 

inefficient design, paving the way for subsequent versatile optimisation. Still, the initial 

application of either of them results in a temporarily huge overhead (Figure 5.1 lb). Any 

synthesis system considering them will consult the controlling cost function to determine 

if they are beneficial or degrading; since for the tool at hand the cost function originally 

only relies on area and delay, one can conclude that the tool will be highly unhkely to ac-

cept TF22 or TF23 in automatic optimisation mode. This is because the area and delay es-

timation will oM/y reflect the penalties but the benefit of applying the transformation, 

causing it to appear brutally degrading. This not yet reflected benefit is, of course, the im-

provement in on-line testability. It follows that a metric is needed, to quantify on-hne test-

ability and include it in the original cost function (equation (3.3)), so as to bias tlie system 

towards introducing on-line testability by means of transformations TF22 and TF23. 

The following heuristic on-line testability metric is proposed here : 

= 0-, X + (T, X X (1 - ;^)+o-; X ( iog(z - ' )+o-J (5.7) 

where : 

f ]% is the percentage of original operations made on-line testable 

f 2% is the average (per functional module) idle time availability 

Z, (measured in control steps) is the average error latency per self-checking scheme, 

where the term error latency refers to the number of clock cycles that elapse between the 

manifestation and the detection of a fault (equivalently, the number of control steps be-

tween the fiinctional operation and the comparison of the self-checking scheme) 

Ci, 0-2, (73, (74 are weighting constants 

is normalized over its maximum value, obtained for f ,=1 and ^=0, and thus ulti-

mately expressed in %. It is well known thatlimZ"' = «,. As always, in practice infinity is 

expressed by a pre-defined "sufficiently large" number .Z7VF. In the context of this work, it 

was empirically chosen that the value should correspond to a quantity that cannot 

possibly appear in the synthesis session of a given design. Given that the largest quantity 

that can appear in a design is the number O f 6" of operations in the design, it was chosen 

th.dLtINF=OPS+\. The maximum value of on-line testability is then given by the expres-
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sion = O", + O"; X (log(/7VF)+ c r j and according to the above the normahzed on-

line testability is ultimately given by 

(5.8) 

The ideas summarized by equation (5.7) are clarified in the following. Clarifying com-

ments are provided with reference to the DFG of Figure 5.8. 

® P\ is clearly a factor that determines the quality of test, by simply reflecting that the 

more operations made on-line testable, the more testable the whole circuit is. For example, 

in the Tseng datapath as shown in Figure 5.8 only one out of eight original operations is 

on-line testable (addition +2, by means of inversion testing). Therefore f 1=1/8=12.5%. 

® The percentage of available idle time is easily calculated for the given state of a de-

sign. In the example at hand, subtractor SI is used in two out of a total of six control steps 

in the design. Therefore it is idle during 4 out of 6 CSs, yielding the 66.67% value for its 

idle time availability percentage. The respective percentages for the other modules in the 

datapath are 50% for adder Al , and 83.33% for multiplier M l , divider Dl , comparator CI 

and logic gates Gandl and Gorl. Averaging these values yields ^2=76.19%. 

® The term {1-P\) by which idle time availability Pn is multiplied, initially has the value 

1 (because initially f i=0), and as the design becomes more and more testable, it moves 

towards 0 (as > 1)- The significance of this, is that idle tkne can be an advantage in the 

fbrst optimisation stages, because idle modules can be utilised in future optimisation steps 

to implement duphcate / inverse computations not yet inserted. As optimisation pro-

gresses, less and less idle time is needed, since fewer and fewer duplicate / inverse compu-

tations are to be inserted. Therefore, the term cr̂  x f!, x (l - 7^) prevents functional module 

sharing in the initial stages, and allows it later on, when testing instructions will have been 

accommodated for, and there will be nothing to be gained by preventing sharing. 

" As far as the third tenn of (5.7) is concerned, clearly faults need to be detected as soon 

as possible, thus the linearised inverse error latency is present to facilitate merging of con-

trol steps that intervene between the original computation and the comparison operation 

(for instance, CSs 4 and 5 in Figure 5.8). For the Tseng DFG at hand, only one self-

checking scheme has been configured (+2, -2', !=1); its error latency is 2 control steps. 

Therefore 1=2. 

» The weighting constant values in (5.7) determine the relative contribution of each term 

in the overall on-line testability value. They have been set such that the first term contrib-
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utes 90% (as being the most important), while the third one contributes 10%. The second 

tei-rn contributes a small .1%. This does MO/ practically add up to more than 100%, since 

the second term comes out of play as the first approaches its maximum value. The exact 

values used in the experiments of this work for the constants vyere o-|=9x(log(7A^+cr4), 

(72=0.01 x(log(.0VF]+(74), (73=1, and (74=0.3. Notice that (7| and <72 depend on the "77VF" value 

defined above; therefore, they are constants for a given synthesis project, since TMF is a 

constant for a given design. These values were determined purely empirically, through ex-

perimentation and evaluation of the synthesis results produced using them. Notably, the 

overall contribution of the second term of equation (5.7) is very smaU. Clearly a higher 

value of (72 would have increased it, but once again experimentation dictated that this was 

not necessary. 

The MOODS cost function now becomes 

X area -f- x x > (5.9) 

Exactly like Cnrea and Cr/g/q),, reflects the designer-specified priority of the on-line test-

abihty criterion. 

Equations (5.7) and (5.8) succeed in providing a visualisation of the previously abstract 

concept of on-line testability, 

by identifying and exploiting 

the parameters that make up a 

good on-hne testable design. 

Inclusion in the cost function 

(5.9) informs the synthesis 

suite of the importance of on-

line testability and paves the 

way for automatic optimisa-

tion, through the choice of a 

suitable algorithm (§5.3.3.2). 

One subtle difference be-

tween on-line testability and 

the conventional criteria, is 

Ff'gure 5.12. 3-cf/mens/ona/ cfes/gn space optimising the latter re-
(area, de/ay, on-//ne fesfa6//#%) 
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fers to minimisation (of e.g. area or delay), while optimising on-line testability is equiva-

lent to /Maz/m/zzMg its value. Mdeed, if the designer wishes a design that would be "as test-

able as possible", then he or she should specify the 100% value as the testability optimisa-

tion target. For the same reason, in equation (5.9) should be understood as holding a 

negative value. Other than that, equation (5.9) is fully consistent with the cost function de-

scription of §3.2.4. Further, the introduction of a third user specification effectively gives 

rise to a jpace, as Figure 5.12 depicts. The coloured area shows 

the achievable region (§3.1.2) including the example point A, along with the projections of 

A on the three axes that deCne the space (area, delay, on-line testability). 

5.3.3.2 Algorithms 

The next step towards full inclusion of test resource insertion within the overall iterative 

optimisation process, is the choice and implementation of one or more suitable algo-

rithm(s), to control the optimisation loop execution. Synthesis experience using MOODS 

suggests that the tailored heuristic algorithms of §3.2.5.2 are very fast, and normally pro-

vide acceptable results, despite the theoretical risk of ending up in a local minimum. The 

problem is that aU versions of the heuristics use only a limited number of transformations; 

the testing transformations of §5.3.2.1 are not relevant, and there is no obvious way to in-

clude testing considerations to the metrics of §3.2.5.2. On the other hand, simulated an-

nealing (§3.2.5.1) is very abstract and thus particularly suitable for optimising anything 

that can be quantified, regardless of its nature. The disadvantage of simulated annealing is 

its very slow speed. 

In order to exploit the benefits and make up for the weaknesses of both simulated anneal-

ing and tailored heuristics, it was decided that a combination of the two should be used, as 

in the following : 

» Step 1 : apply simulated annealing, using designer defined parameters for the 

initial and the terminating "temperature", as well as for the rate of temperature decrease 

per step 

« Step 2 : apply the version of tailored heuristics that matches the area and delay design 

priorities (Figure 3.10) 

The "modified" simulated annealing mentioned in Step 1 of the above procedure refers to 

the standard simulated annealing algorithm already implemented within the MOODS sys-
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tern, with TF22 and TF23 included in the set of transformations, and a degree of determin-

ism incorporated. This determinism consists in the following. When the algorithm ran-

domly chooses a transformation from the set, if it happens to be a scheduling or allocation 

transformation then the algorithm proceeds as usual; if it turns out to be either of the test 

resource insertion transformations, then its actual type (duplication or inversion) is ini-

tially ignored, and which of the two will ultimately be applied is decided based on the fol-

lowing criteria: 

« if die target instruction is not invertible, then duplication is applied, else 

* if no inverse module instance is already present in the design, then duplication is 

applied, else 

» if frequency requirements are relaxed, then inversion is apphed, else 

" if delay is a higher priority than area, then duplication is applied, else 

" if area is more important than delay, then inversion is applied, else 

« area and delay are of equal importance; the initial randomly selected trans-

formation (TF22 or TF23) is applied 

The criteria upon which the choice of testing technique is made actually connect this dis-

cussion to the presentation of inversion testing in §5.2.2 and the manual experknents of 

§5.3.1. Indeed, remember that inversion testing is practically advocated in §5.2.2 only 

when idle modules of suitable types already exist in the datapath; if that is the case, then 

experimental observations in §5.3.1 suggest that applying inversion testing leads to com-

pact designs, but severe degradation in the maximum achievable clock speed. It can there-

fore be beneficial in situations that do not demand very fast clocks, in other words when 

frequency requirements are relaxed. The exact numerical correspondence of "relaxed" fr e-

quency requirements is to be determined experimentally, and varies firom design to design. 

On the other hand, when frequency requirements are strict and thus chaioiag is unlikely to 

occur, then duphcation and inversion were found ia §5.3.1 to lead to faster and cheaper 

(respectively) solutions; therefore duplication should be favoured when delay is the top 

priority, and vice versa. When area and delay have equal priorities, then there can be no 

certainty as to which choice will lead to a better long-term solution, and so the initial ran-

dom choice is adopted. 

The goal of the above modification is simply to prevent moves that design experience 

suggests are undoubtedly suboptimal. Although classic simulated annealing is famous for 
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turning around unfavourable situations and over time balancing at the cost function global 

minimum, there is no reason why a particular area of the design space cannot be excluded, 

if it is known a priori that the desired solution does not he within that area. It is in the light 

of this statement that the above modifications were decided. The positive result is the ac-

celeration of the simulated annealing algorithm. 

Returning to Step 1, it is clear that the designer can specify the duration of the simulated 

annealing optimisation process through the temperature parameters. The imphcation is 

that simulated annealing is used primarily for test resource insertion and secondarily for 

area and delay optimisation; therefore the designer can experimentally determine parame-

ters that practically apply simulated annealing for as much time as needed for a "suffi-

cient" improvement in testabihty. Tailored heuristics are employed afterwards (Step 2), 

optimising the already testable design for the traditional criteria of delay and area. In this 

way, the abstract nature of simulated aimealing is exploited, while its slow speed is com-

pensated for, firstly by the introduction of a degree of determinism, and secondly by fast 

and efficient heuristics that take over as soon as simulated annealing has fulfilled its pri-

mary objective. 

5.3.3.3 Fault secure comparators and dual-rail checkers 

The concluding remarks of both §5.3.1 and §5.3.2 include mentions to the missing prop-

erty of fault security. The present subsection presents the development work that solved 

this problem. Both duplication and, when applicable, inversion are fault secure as sepa-

rately shown in §2.2.2 and §5.2.2, provided that the checkers / comparators used in the 

schemes are fault secure by design. This means that the datapath self-checking schemes of 

this chapter can all be made fault secure, if the conventional, single-bit output comparators 

§5.3.1 and §5.3.2 are replaced by the standard two-bit output fault secure comparator 

modules mentioned in §2.2.2.1. Therefore, the task of this subsection is the design of a 

library of fault secure comparators, and the necessaiy modiScations to the MOODS sys-

tem to utilise them in the self-checking schemes. 

In essence, an n-pair fault secure comparator is composed of an M-pair fault-secure dual-

rail checker (§2.2.2.2) and M inverters applied to one of the dual-rail input vectors. In turn, 

an M-pair dual-rail checker consists of n-1 dual-rail checker cells, such as the one shown in 
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F/'gure 5. Y3. 8/oc/c d/agram of an duaZ-ra/V cAec/cer 

Figure 2.30. Figure 2.31 has 

exemplified this concept, 

by showing a 5-pair dual-

rail checker. A generic 

block diagram representa-

tion of an M-pair dual-rail 

checker is shown in Figure 

5.13. The Ggure shows that 

the checker is effectively 

composed of / : levels of ar-

rays of dual-rail cells. The 

number of levels t , the 

number of cells in each ar-

ray, and the number of in-

termediate signals between 

arrays are also analytically 

defined in the figure. An array fed by an even number of dual-rail pairs effectively applies 

dual-rail checks to each "pair of pairs" separately, since a dual-rail checker cell is ui effect 

a 2-pair dual-rail checker. In the event that an array is fed by an odd number of pairs, one 

pair is simply carried to the array output and fed to the lower level array, unaffected. It can 

easily be verified that for M=5 Figure 5.13 produces Figure 2.31. 

library ieee; 
use ieee.sbd_logic_ll 64.all; 
use ieee.numeric_st:d. all ; 
entity CHK_ARR is 

generic (m: positive := 1); 
port (inl, in2 : in std_logic_vector (m-1 downto 0); 

output: out std_logic_vector ((m + (m rem 2))-l downto 0) ) ; 
end CHKARR; 

architecture structure of CHK ARR is 
begin 

Bl: for i in 1 to m/2 generate 
output(m+(m rem 2)-i) <= (inl(m-2*i + l) and in2(m-2*i ) ) or (in2(m-2*i+l) 

and inl(m-2*i)); 
output(m-i-m/2) <= (inl(m-2*i+l) and inl(m-2*i)) or (in2(m -2*i+l) and 

in2(m-2*i)); 
end generate; 

B2: if ((m rem 2) =1) generate 
output((m+1)/2) < = inl(0); 
output (0) <= in2(0); 

end generate; 
end; 

F/gure 5. M .' 77?e CHK ARR ce// 
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Clearly, the first step towards the design of a complete dual-rail checker is the design of 

dual-rail ceU arrays. A generic and synthesisable VHDL description of a dual-rail array 

component has been written for this purpose; it is shown in Figure 5.14. The VHDL code 

shows that an appropriate, parameterized number of dual-rail ceUs are defined through 

signal assignment statements that follow the behaviour of Figure 2.30. 

Using the array component of Figure 5.14, one can easily implement fault secure com-

parators and dual-rail checkers of any desired bit widths. Figure 5.15 shows the synthesiz-

able VHDL description of a 16-pair dual-rail checker. A fault secure comparator is easily 

produced firom the design of Figure 5.15, by simply substituting the signal assignment 

library ieee; 
use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 
entity NEQ_3_nl6 is 

port (inl, inZ : in std_logic_vector(15 downto 0); 
output : out std_logic_vector(l downto 0)); 

end NEQ_3_nl6; 

architecture structure of NEQ_3_nl6 is 
signal intermediate_signals : std_logic_vector(61 downto 0); 
component CHK_ARR 

generic (m: positive := 1); 

port (inl : in std_logic_vector (m-1 downto 0); 
in2 : in std_logic_vector (m-1 downto 0); 

output : out std_logic_vector ((m + (m rem 2))-l downto 0) 
end component; 

for all: CHK_ARR use entity work.CHK_ARR(structure); 

begin 
interTnediate_signals(61 downto 46) <= inl; 
intermediate_signals(45 downto 30) <= in2; 
Ul: CHK_ARR generic map (16) 

port map (intermediate_signals(61 downto 46), 
intermediate_signals(45 downto 30), 
intermediate_signals(29 downto 14)); 

U2: CHK_ARR generic map (8) 

port map (intermediate_8ignals(29 downto 22), 
intermediate_signals(21 downto 14), 
intermediate_signals(13 downto 6)); 

U3: CHK_ARR generic map (4) 

port map (intermediate_signals(13 downto 10), 
intermediate_signals(9 downto 6), 
intermediate_signals(5 downto 2)); 

U4: CHK_ARR generic map (2) 

port map (intermediate_signals(5 downto 4), 
intermediate_signals(3 downto 2), 
intermediate_signals(l downto 0)); 

output <= intermediate_signals(l downto 0); 
end; 

Hgure 5. Y5 .YG-pa / r duaZ-ra/Y c/^ec/cer 
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intermediate_signals(45 downto 30) <= in2; (5.10) 

with 

intermediate_signals(45 downto 30) <= not in2; (5.11) 

Following these analytical structure definitions, a C++ programme was developed, that 

automatically produced two libraries of VHDL descriptions of dual-rail checkers and fault 

secure comparators, for all bit widths between 1 and 200. The MOODS core synthesis sys-

tem was then modified to use fault secure comparators in all self^checking schemes. Fur-

ther, the interim technique of compacting comparator responses using OR gates as shovm 

in §5.3.1 is no longer relevant. Instead, response compaction has to be done by using 2-bit 

registers attached to the comparators, and employing a universal dual-rail checker in the 

standai d way of Figure 5.10. This was also accommodated for within MOODS, again by 

using a cell from the dual-rail checker library. 

Note that the structure of Figure 5.13 is one out of several possible structures that an M-bit 

dual-rail checker can have. Such a checker will always use n-l checker cells, but alterna-

tive structures can be configured by applying alternative internal arrangements of the cells 

within the checker. As explained in §2.2.2.2, different arrangements wiU need to receive 

different test sets during their normal operation to ensure the self-testing property. There-

fore, if the inputs received during normal operation were known, it would be possible to 

choose the most efficient arrangement that would provide the self-testing property [58]. 

However, in the generic tool development context of this work, the inputs cannot possibly 

be known a priori. A solution that would ensure the self-testing property regardless of in-

puts would be the embedded dual-rail checker of Figure 2.32 [12, 19, 20]. This design, 

however, constitutes a very expensive solution, especially taking into account that a ge-

neric design can easily include tens of operations of realistic bit widths, that would need 

tens of long LFSRs if the structure of Figure 2.32 was applied to every single self-

checking scheme configured for them. It was therefore decided that a theoretical conces-

sion be made, by not explicitly pursuing the TSC goal (notably, none of the previous 

works on algorithmic duplication pursue it either). The self-checking schemes are still 

fault secure, and if the chip operates for long enough for each scheme to receive all possi-

ble inputs, under Hypothesis 2.1, then they are self-testing too; if ceitain local conditions 

within a given design prevent a checker from receiving all possible inputs, then there is a 
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theoretical risk that faults may escape. Sub-

section 7.1 elaborates more on these consid-

erations and proves that this risk is practi-

cally negligible for reasonably-sized de-

signs. 

hi the light of the arguments stated in the 

above paragraph, any arbitrary arrangement 

of dual-rail cells vyithin the checker would 

be sufficient for the purposes of this thesis. 

The structure of Figure 5.13 was conse-

quently devised because it is well-defined, 

and thus it was possible to automate its de-

sign. 

5.3.3.4 Auxil iary modifications 

Subsection 5.3.3.3 has presented the details 

of the comparators needed throughout the 

self-checking designs that the modified 

MOODS win produce. Although they per-

form a special function in a specific context, 

these comparators are normal data path 

modules, taking up valuable area of the 

chip. It is therefore desired that they can be 

shared. In fact, the MOODS firamework is 

readily able to share fault secure compara-

tors, by virtue of the existing hardware shar-

ing transfonnation TFIO (§3.2.3). However, 

the presence of the 2-bit registers together 

witli the fact that MOODS has no rehable 

register sharing mechanism gives rise to 

suboptimal configurations as exemplified in 

Figure 5.16. Figure 5.16a is effectively a 
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simplified version of Figure 5.10, showing two fault secure comparators writing their re-

sults to respective registers and the register outputs compacted by a dual-rail checker. 

Suppose that comparator CI implements comparison !=1, while comparator C2 imple-

ments !=2. If !=1 and !=2 have not been scheduled for the same control step, then the 

modules implementing them can be shared. Under this assumption, Figure 5.16b shows 

the situation immediately after merging C2 into CI using the classic module sharing trans-

formation TFIO. It is easy to observe that unneeded logic remains in the system; indeed, 

there is no reason to keep both registers. In fact, sharing the registers not only saves a reg-

ister, but also minimises the size of the response compactor. In the particular case, since 

the response compactor is only a 2-pair dual-rail checker, sharing the registers will enable 

its fiiU removal; this is the desired state shown in Figure 5.16c. 

The above example establishes the need for some hmited register sharing functionality to 

be added to the synthesis system. As always within MOODS, this was formulated in a 

suitable transformation. To be consistent with the MOODS nomenclature, an "unsharing" 

transformation was developed too. These two transformations are tabulated in Table 5.10 

and explained in detail in the following. 

symbolic 
name 

description type of 
transform 

TF24 share test response register testing/ 
allocation 

TF25 restore original 
test response register 

testing/ 
allocation 

ra6/e 5. f 0. frans/brmaf/ons 

Transfonnation TF24 /"egzjfer) targets two functional operations hav-

ing testing schemes attached to them. It redirects the comparator output of the second 

scheme to the register that stores the comparator output of the first. The register originally 

attached to the second operation is abandoned. The test phase of TF24 first ensures that 

the target instructions are valid and suitable for self-checking. Then it checks that they ac-

tually both had self^checking schemes attached to them and neither of the schemes has 

been removed. Finally, it makes sure that the two comparators are under no condition ac-

tive at the same control step. 
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Transfomiation TF25 (rejfore orzgzMa/ /ejf fgjyo/Ke regz'jfer) is the inverse of TF24. In-

deed, it targets a single functional instruction that has had a testing scheme attached to it 

and its dedicated test response register removed through TF24. It simply reintroduces the 

original register and redirects the testing scheme output accordingly. The test phase simply 

checks that the above statements about the targeted instruction are true, i.e. that it has had 

a self^checking scheme attached to it and the original register has been removed. 

It is to be noted that TF24 and TF25 do not provide a proper framework for general-

purpose register sharing. Indeed, register sharing generally refers to using a single register 

to store multiple functional signals; instead, TF24 effectively implements 

what could be called "signal sharing". In simple terms, TF24 causes a certain non-

functional, auxiliary signal to be fully abandoned (together with the register storing it) and 

an alternative one to take its place. Clearly this cannot apply to functional signals. 

Although the "pseudo" register sharing implemented in this subsection is transformational, 

the relevant transformations TF24 and TF25 are not as such considered within the simu-

lated anneahng step of the automatic on-line test synthesis process (§5.3.3.2). Instead, they 

are embedded within the hardware sharing (TFIO) and unsharing (TF12, TF13) transfor-

mations, such that whenever fault secure comparator modules are chosen to be shared or 

unshared, their respective target registers are shared or unshared as weU. Thus, the trans-

formations of this subsection can be seen as a way to "tidy up" the suboptimalities left by 

the pre-existing MOODS framework when interacting with the additions of this thesis 

(e.g. Figure 5.16). 

One might think that sharing small 2-bit registers is a minor issue that will lead to only 

marginal improvements. However, recall §5.3.1 and the observation that, in the context of 

tlie manual experiments, using multiple f a i l e d signals produced very different results 

from using just one (Table 5.5). The need for an automatic way to identify an optimal 

number of such signals was also highlighted. The semi-automatic experiments (§5.3.2.2) 

further confirmed this need. In the dual-rail domain of this subsection, the 2-bit compara-

tor outputs and the registers storing them are the equivalent to the single-bit f a i l e d sig-

nals of §5.3.1 and §5.3.2.2. In that sense, defining TF24 and TF25, and embedding tliem 

in the usual MOODS hardware sharing transformations provides an automatic solution to 

tliis last outstanding problem. 
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5.3.3.5 Experimental results 

The final experimental results validating the automatic datapath self-checking design of 

this whole chapter are presented here. Given the synthesis framework of §5.3.3.1 -

§5.3.3.4, no time-consuming HDL modification or console-mode operation-aAer-

operation handhng is needed anymore. When the modified MOODS is invoked, the de-

signer has the chance to specify the cost function, both in terms of the traditional parame-

ters (area, delay, clock period) and in terms of on-line testability. Subsequently synthesis 

proceeds along the lines of §5.3.3.2, beginning with an initial simulated annealing stage 

and concluding with a stage of tailored heuristic optimisation. If the designer does not 

specify an on-hne testability specification, then the simulated annealing stage is omitted 

and an untestable version is produced, by plainly using the original synthesis suite of §3.2. 

In most cases, synthesis of self-checking designs finishes within This is an im-

portant advantage from the design space exploration point of view; indeed, it allows the 

designer to experiment with different values of parameters fast and painlessly, until a solu-

tion that satisfies his or her project needs is reached. 

Tables 5 .11 - 5.41 show the automatically obtained results. The three benchmarks men-

tioned in previous subsections (Tseng, Diffeq, QRS) are used; an additional few designs 

are also tried. Note that some of these benchmarks include loops, conditionals, as well as 

parallel processes (covered in more detail in §6.1.2). Thus, it is demonstrated that all struc-

tures hkely to appear in a reahstic design scenario can be accommodated. In all experi-

ments, the designer's goals were set to 0 units of area, 0 nanoseconds of delay and, when 

desired, 100% on-line testability. Of course, these goals were classified as high or low pri-

ority, thus resulting in alternative design space exploration paths in each different synthe-

sis run; tliis classification is always shown on the tables. In fact, on-line testability is al-

ways either a high priority or totally omitted. Further, the simulated anneaHng parameters 

were always chosen such that aU the instructions in the design were secured by a self-

checking scheme. Thus, in aU experiments targeting on-line testability, f i of equation 

(5.7) ultimately assumes 100%. Together with other design statistics, the tables also report 

tlie on-line testability technique used, as well as a value for on-line testabUity as calculated 

using equation (5.7). Regarding the technique, the information on the tables only refers to 

the invertible instructions. Thus, "inversion" on the tables should be interpreted as "invert-
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ible instructions are checked by inversion, while non-invertible ones still use duplication". 

On the other hand, "duplication" simply means "all instructions are checked by duplica-

tion". Very often some iavertible instructions are checked by duplication and some others 

by inversion, in the same design. On the tables, this is termed a "mixed" technique, and it 

automatically arises when there is no deterministic reason to choose one over the other and 

a random choice is made within simulated annealing (as explained in §5.3.3.2). Regarding 

the testability value reported, since f , is always leA to reach 100%, any deviation of 

maximum 100% value is an indication of error latency. The desired 

clock frequency was adjusted between experiments, in order to promote or prevent chain-

ing. Practically, for a given design in a given technology, a clock period value was ex-

perimentally identified that allowed unconstrained chaining; this is always shown on the 

tables as a "relaxed" clock period requirement A second clock period value was also 

found, that did not allow any instruction chaining at all. This is tenned a "strict" or "very 

shict" period constraint. In most cases, one or two period values between these two ex-

tremes were also tried and classified accordingly (e.g. "moderate"). 

The first automatic experiments were conducted using the Tseng benchmark, and targeting 

an FPGA part. Table 5.11 shows the results, highlighting points of particular interest. The 

least hardware-intensive self-checking version was the one on the second row, using in-

version when possible and having a hardware overhead of 29.5%. There were two ver-

sions that did not experience any clock cycle degradation; one of them however suffered 

severe frequency degradation, due to relaxed clock period requirements leading to exten-

sive chaining. The highest maximum &equency value (41 MHz) was achieved at a rela-

tively high price (42.5% in hardware, 57.1% in clock cycles and some error latency, since 

testability is at 94.8%). The final choice lies with the designer; the goal of tool develop-

ment, tliat is efficient design space exploration providing him or her with a variety of 

choices, is clearly achieved. 

Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

orHine 
testability slices 

Thstate 
buffers 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardwfare 
(slices %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

hiqh high relaxed - 146 4 3 2 7 4 8 N/A N/A none, 0.0 
iiigh high relaxed high 189 7 5 2 7 7 29 .5 0 .0 inversion, 100.0 
high low strict high 2 0 8 7 8 4 11 41 42 .5 57.1 inversion, 94.8 
low high strict high 197 7 3 6 7 3 8 35.0 0.0 duplication, 100.0 
high high strict high 197 7 5 2 8 40 35.0 14 .3 mixed, 99.6 
Tab/e 5 . M Tseng synfAes/s resu/k (Targef TecAno/ogy X// /nx W r f e x X C W 0 0 0 FPG/Aj 
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Tables 5.12 - 5.14 sum up the results of the experimentation with the Diffeq benchmark. 

Three different untestable versions were synthesized, each one shown on a different table, 

with different clock period requirements. A total of nine self-checking versions were also 

produced. Notably, two different combinations of specifications can lead to effectively the 

same result. The second row Table 5.12 and the third row of Table 5.13 are an example of 

this phenomenon. This simply means that two different optimisation paths may lead to the 

Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay dock 
period 

on-line 
testability slices 

Tristate 
buffers 

dock 
cydes 

maximum 
frequency 

(MHz) 

hardware 
(slices %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

hiqh hiqh relaxed 2 3 4 6 4 2 13 31 N/A N/A none, 0.0 
high high relaxed hiqh 3 2 1 9 6 2 1 4 7 3 7 . 2 7 . 7 inversion, 100.0 
hiph low relaxed hiqh 3 2 1 9 6 2 1 4 6 3 7 . 2 7l7 inversion, 100.0 
low high relaxed high 3 2 3 9 6 2 14 8 3 8 . 0 7.7 inversion, 100.0 
Tabfe 5.12 . D/ffeq 8enchmar)f synf/?es/s resu#s (Targef 7echno/ogyX///nx VMexXCVBOO FPG,4j, 

/le/axed c/ocfr pen'od requ/mmenfs 

Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

area delay clock 
period 

on-line 
testability slices 

Tristate 
buffers 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(slices %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

high high moderate 234 642 13 31 N/A N/A none, 0.0 
high high moderate high 331 962 14 28 41.5 7.7 mixed, 100.0 
high low moderate high 321 962 14 7 37.2 7.7 inversion, 100.0 
low high moderate high 338 1026 14 28 44.4 7.7 duplication, 100.0 

7aA/e 5.73.' D//feqf 8enc/?mar/c resu/fs (Targef Tec/̂ no/ogy X//;nx W/fex 
mocferafe c/oc/( pen'od requ/remenk 

Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability 

Tnstate 
buffers 

dock 
cydes 

maximum 
frequency 

(MHz) 

hardware 
(slices %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high Strict - 306 706 19 43 N/A N/A none, 0.0 
high high strict high 427 1170 28 35 39.5 47.4 mixed, 91.6 
high low strict high 429 1202 30 37 40.2 57.9 inversion, 91.2 
low high strict high 436 1282 25 38 42.5 31.6 duplication, 92.1 

Table 5.14 : Diffeq Benchmark synthesis results (Target Technology Xilinx Virtex XCV800 FPGA), 
strict clock period requirements 

same point in the design space. The tables again highlight the optimum results with re-

spect to different criteria. Hardware overhead can be as low as 37.2%, while clock cycle 

degradation is in several cases kept as low as a single cycle. The maximum frequency 

achieved by a self-checking design is 38 MHz, again at a certain hardware overhead and 

clock cycle penalty price. 

The following tables 5.15 - 5.18 present the results of synthesis using the QRS design. 

This design is of particular significance, both because it corresponds to a useful system 

rather tlian a devised benchmark, and because of its substantial size. Each synthesis for on-

line testability run with the particular design took approximately 20 minutes of real time, 

which is a serious time-to-market advantage. Indeed, having written the original VHDL 

description, the designer can use high-level synthesis to produce a variety of on-line 
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Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay 
period 

on-line 
testability slices 

Tristate 
bulTefS 

clock 
cycles 

maximLfn 
frequency 

(MHz) 

hardware 
(slices %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

hiqh high very strict - 564 2552 66 19.2 N/A N/A none, 0.0 
hiqh high very sUict high 875 6703 69 2.1 55.1 4.5 mixed, 93.8 
low high very strict high 794 6511 66 8.5 40.8 0.0 duplication, 94.5 
high low very strict high 983 6298 107 2.3 74.3 62.1 mixed, 92.1 
TaA/e 5 . 7 5 ; ORS 8encAmaf*synf / ]es/s resu/k (Ta/gef recAno/ogyX/ /mx VMexXCVYOOO FPG/\), 

very sfn'cf c/oc/r pen'od requ/remenfs 

Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability slices 

Tristate 
buffers 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(skes %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

hiqh high strict - 514 2689 45 2.6 N/A N/A none, 0.0 
high high strict high 774 7221 47 1.1 50.6 4.4 mixed, 95.8 
low high strict high 788 7357 43 1.0 53.3 -4.4 duplication, 95.4 
hiqh low strict high 829 5936 101 3.1 61.3 124.4 mixed, 93.0 
Tab/e 5.^6; QRS 8enc/?maf*synf/?es;s resu/fs CTa/gef rec/ino/ogyX/Z/nx y//fexXC\/fOOO FPG/\j, 

strict clock period requirements 

Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay dock 
period 

orWine 
testability slices 

Instate 
buffers 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(sBces %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high moderate 457 2577 34 9.7 N/A N/A none, 0.0 
high high moderate high 706 7221 37 1.0 54.5 8.8 mixed, 100.0 
low high moderate high 715 7336 33 0.8 56.5 -2.9 mixed, 97.3 
high low moderate high 839 5936 100 2.7 83.6 194.1 mixed, 92.9 

Table 5.17: QRS Benchmark synthesis results (Target Technology Xilinx VIrtex XCV1000 FPGA), 
moderate c/oc/c penod req^u/remenfs 

Synthesis constraints 
and prion'ties 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay dock 
period 

on-line 
testability slices 

Tnstate 
buffers cycles 

maxmum 
frequency 

(MHz) 

hardware 
(slices %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high relaxed - 470 2626 34 3.2 N/A N/A none, 0.0 
hiqh high relaxed high 764 7164 37 0.6 62.6 8.8 mixed, 97.3 
low high relaxed high 732 7227 34 0.9 55.7 0.0 mixed, 100.0 
high low relaxed high 839 5936 100 2.6 78.5 194.1 mixed, 92.9 
Tab/e 5.78. QRS 8enc/?marfc synf/7es;s resu/k (Targef 7ec/7no/ogy X///nx WrfexXCVYOOO 

m/axed c/oc/c pen'od requ/remenfs 

testable realisations to choose from, within hours of real time. The cheapest on-line test-

able realisation identified used up 706 FPGA slices, for an overhead of 54.5% with respect 

to its original untestable design. Ih general, all but one solutions in this experiment experi-

ence a hardware overhead of more than 50%, which is still cheap with respect to straight-

forward physical duplication and comparison (>100%). There is a huge variation as re-

gards design performance, hideed, one can notice values between 33 and 107 cycles. This 

is because of the substantial size of the design, which consequently means the achievable 

region in the design space is also of substantial size, hi turns, this effects in a particularly 

large number of optimisation patbs, once more stressing the importance of being able to 

traverse these paths quickly. An interesting observation is that on two occasions (Tables 

5.16 and 5.17) there exist testable designs that are faster (i. e. take up slightly fewer clock 

cycles) than their untestable equivalents. This can perfectly well be attributed to algorithm 

inefficiencies (the tailored heuristic algorithms are, after all, only Aez/n'jn'cj). A more 
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elaborate explanation is that the particular versions are shown on the tables to be produced 

using a "high" delay priority versus a "low" for area, while their corresponding untestable 

designs have an equal priority for the two criteria. 

Table 5.19 shows the experimental results reached for a design not encoimtered earlier in 

this thesis; that is an 8-bit viterbi decoder, featuring 72 operations. It is not a standard HLS 

benchmark, and it is explained in [131]. The full VHDL code can be found in Appendix B. 

One observation on the table is that in this case it appears rather clear which testable ver-

sion will most probably be preferred. Indeed, the last row shows a design that is both the 

cheapest and the fastest in clock cycles, although it experiences a modestly suboptimal 

degradation in maximum frequency. The most serious observation, however, is that all 

three synthesized testable designs are rather expensive; indeed, in two cases their hardware 

overhead greatly exceeds 100%. The explanation for this is that the particular design is 

composed of parallel VHDL processes, each one using a copy of each of its hard-

ware modules to implement the instructions assigned to it. The only way to perform dupli-

cation testing under these circumstances is to physically introduce an additional module of 

every type, in every process. This very much results in physical duplication; the 

Synthesis constraints 
and pn'orities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

daay dock 
period 

on-lina 
testability 

Tristate 
tRiffers 

clock 
cyclea 

majdmum 
frequency 

(MHz) 

hardware 
(slices %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

hiqh high relaxed - 174 344 4 37 N/A N/A none, 0.0 
high high relaxed high 428 936 6 31 146.0 50.0 duplication, 95.3 

high low relaxed - 174 344 4 38 N/A N/A none, 0.0 
high low relaxed high 448 849 7 37 157.5 75.0 duplication, 92.9 
low high relaxed - 174 344 4 37 N/A N/A none, 0.0 
low high relaxed high 314 731 4 33 80.5 0.0 duplication, 100.0 

fab/e 5. wferb/ decoder synfAes/s resu/fs (Targef 7ec/]no/ogy X///nx y/ffexXCWOOO 
re/axed c/oc/( pen'od requ/remenfs 

conclusion is that the particular design is rather unsuitable for duplication testing. Suitable 

error-correcting codes (§2.2.1) would probably give cheaper, although technology-specific 

and harder to devise, results. On the positive side, it is important that the synthesis tool 

was able to come up with jo/Mg solution, even for this pathological design. This proves the 

ggMenc property, highly desired when developing a tool. Besides, an overhead of 80.5% is 

still below 100% and it may be acceptable in certain applications. 

The next design experimented with, was an elliptical filter, taken from [8]. The results ob-

tained when targeting an FPGA part aie shown in Tables 5.20 — 5.22, where the best nu-

merical results per parameter are highlighted. It is an interesting benchmark, in that the 
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Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

area delay clock 
period 

on-line 
testability 

Instate 
buffers 

maximum 
frequency 

fMHz) 

hardware 
(slices %) (cycles %) 

Testability 
(technique, 
value %) 

higil low relaxed 322 923 32 52 N/A N/A none, 0.0 
high low relaxed high 541 2052 38 34 68.0 18.8 duplication, 93.8 
hiqh high relaxed - 315 1018 17 50 N/A N/A none, 0.0 
higli high relaxed high 408 2626 17 32 29.5 0 duplication, 100.0 
low high relaxed high 426 2674 19 32 35.2 11.8 duplication, 99.9 
7a6/e 5.20; E/Z/p 8enc/?ma:^ synf/?8s/s msu/fs (Ta/gef TecAno/ogy X///nx W/fex XCW000 FPG/lj, 

fe/axed c/oc/cpenbd regu/remenfs 

Synthesis constraints 
and prionties 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay dock 
period 

on-line 
testability slices 

Instate 
buffers 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(slices %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high low moderate - 322 923 32 52 N/A N/A none. 0.0 
high low moderate high 497 2019 36 34 54.3 12.5 duplication, 94.3 

high tiigh moderate - 315 1018 17 50 N/A N/A none, 0.0 
high high moderate high 437 2562 20 32 38.7 17.6 duplication, 99.9 
low high moderate high 446 2450 23 34 41.6 35.3 duplication, 97.4 
Table 5.21: Ellip Benchmark synthesis results (Target Technology Xiiinx VIrtex XCV1000 FPGA), 

moderafe c/oc/cpenodreq[u//'emenfs 

Synthesis constraints 
and prionties 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability slices 

Tristate 
buffers 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(sBces %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high low Strict - 322 923 32 52 N/A N/A none, 0.0 
high low strict high 516 2020 39 34 60.2 21.9 duplication, 93.6 

high high strict - 315 1018 17 50 N/A N/A none, 0.0 
high high strict high 467 2642 21 32 48.3 23.5 duplication, 98.3 
low high strict high 441 2579 21 33 40.0 23.5 duplication, 97.4 
7a6/8 5.22; E///p 8enc/7marfc synfAes/s (Ta/gef Tec/vno/ogy X/Z/nx VV/Yex XC\/fOOO 

sfncf cfock pen'od reqWremenfs 

range of variation in the statistics is particularly broad. For example, the hardware over-

head for test resource insertion ranges from a modest 29.5% to 68%. Some synthesis ses-

sions have clearly failed. Indeed, on all three tables, the second row corresponds to a self-

checking design synthesized with a high priority for area optimisation and a low priority 

for delay optimisation. However, the heuristics totally failed in these cases, since the re-

sults are both the most expensive and the slowest when compared to the other synthesis 

runs. Ultimately, design space exploration leads to a very good result, shown on die fourth 

row of Table 5.20, requiring a minimum hardware overhead of 29.5% with no additional 

clock cycles and a maximum frequency value of the same order as all other self-checking 

results. 

The last benchmark design that tested the datapath self-checking synthesis system target-

ing FPGA technology was a Greater Common Divider module (GCD), found in [129]. 

Tables 5.23 - 5.25 summarise the results. On these tables one can observe the same phe-

nomenon aheady seen on Tables 5.15 - 5.17, that is, on-line testable design that are 
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Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 

area delay dock 
period 

on-jine 
testability slices 

Instate 
buffers 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(slices %) 

spaed 
(cydes %) 

(technique, 
value %) 

high high relaxed - 81 2 9 2 7 2 6 N / A N/A none, 0.0 
hiqh hiqh relaxed hiqh 137 7 4 8 7 29 6 9 . 1 0.0 duplication, 99.7 
hiqh low relaxed hiqh 121 5 8 0 6 2 5 4 9 . 4 - 1 4 . 3 duplication, 100.0 
low high relaxed high 124 I 6 4 4 6 2 2 5 3 . 1 -14 .3 duplication, 100.0 
Table 5.23 : GCD Benchmark synthesis results (Target Technology Xilinx VIrtex XCV1000 FPGA), 

re/axed c/oc/c pen'od reu/qreme/ifs 

Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability slice. 

Tristate 
buffers 

clock 
c y d G S 

maximum 
frequency 

WHz) 

liardware 
(slices %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

hiqh high moderate 82 2 7 6 8 26 N / A N/A none, 0.0 
high hiqh moderate hiqh 140 6 6 8 8 3 3 7 0 . 7 0.0 duplication, 99.7 

hiqh low moderate hiqh 127 5 8 0 7 3 3 5 4 . 9 -12 .5 duplication. 100.0 
low high moderate high 126 5 9 6 7 32 5 3 . 7 - 1 2 . 5 duplication, 100.0 

7ab/e 5.24 . GCO 8enc/?mar/csynAes/s resu/k (Targef 7ec/?no/ogyX///nx WexXCWOOO 
moderate c/ock penbd requ/remenfs 

Synthesis constraints 
and priorities 

Hardware 
usage 

Performance Overheads 
Testability 
(technique, 
value %) 

area delay dock 
period 

on-line 
testability 

Tristate 
buffers 

dock 
cycles 

maximum 
frequency 

(MHz) 

h^dware 
(slices %) (cydes %) 

Testability 
(technique, 
value %) 

high high Strict - 84 2 2 8 9 4 2 N/A N/A none, 0.0 
high high strict hiqh 144 6 5 2 9 3 7 7 1 . 4 0.0 duplication, 99.7 

high low strict high 144 7 1 6 8 32 7 1 . 4 -11.1 duplication, 100.0 

low high strict high 151 7 1 6 8 3 4 7 9 . 8 -11.1 duplication, 100.0 
7aA/e 5.25 / GCO 8enc/]ma/ifrsyn*es/s resu/fs (Targef Tec/ino/ogyX/Z/nx y//fexXCWOOO FPG/\j, 

sfncf c/oc/c penod requ/remenk 

faster than their corresponding untestable versions. Again, this can be regarded as a sign of 

inefficient performance of the heuristic algorithm when synthesizing the untestable design. 

In fact, it is likely that the untestable versions ended up in a cost function local minimum. 

When on-line testability was apphed, a degree of simulated annealing helped the synthesis 

process escape the local minimum, while at the same time the introduction of self-

checking resources created an overall very different design for the heuristic algorithms to 

optimise. The results experimentally prove that the overall strategy was successful. Re-

garding the area overhead reported on Tables 5.23 - 5.25, this is in most cases relatively 

high, but it can be kept at as little as just below 50% (49.4% on the third row of Table 

5.23). 

Tlius the experiments conducted to target Xilinx FPGA parts finished. One of the benefits 

of high-level synthesis mentioned throughout this thesis is the technology-independence of 

the core synthesis system, and the ability to optimise for alternative technologies if suit-

able technology libraries are provided (§3.1). In order to experimentally vahdate the point 

of technology independence, and evaluate the performance of the ideas of §5.2.3 in a dif-

ferent technology, development work was undertaken that produced a MOODS technol-

ogy libraiy targeting an Alcatel CMOS .35nm technology. This effectively allowed the 
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duplication of all the experiments of Tables 5.11 - 5.25 for this alternative technology. 

Very much Hke in the FPGA case, the RTL output of MOODS was fed to a low-level tool 

for register-transfer level synthesis. The tool in this case was version 2002e.l6 of Mentor 

Graphics LeonardoSpectrum [132]. The results for different synthesis runs are shown in 

the following Tables 5.26 - 5.41. The only difference with respect to the previous tables in 

this chapter is that hardware usage is now naturally reported in terms of logic gates re-

quired. Once more, the results on the tables are the ones reported by the low-level tool, so 

they are as accurate as possible. 

Table 5.26 summarizes the experimentation for the Tseng benchmark. One can easily ob-

serve that Table 5.26 accurately follows the lines of Table 5.11, in that the same choices of 

priorities are needed to produce e.g. the cheapest or the fastest result. 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability 

Hardware 
usage 
(gates) 

clock 
cydes 

maximum 
frequency 

(MHz) 

tiardware 
(gates %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high relaxed - 1799 7 63.7 N/A N/A none, 0.0 
high high relaxed high 2308 7 15.2 28.3 0.0 inversion, 100.0 
high low strict high 2830 12 52.8 57.3 71.4 inversion, 94.0 
low high strict high 2367 7 50.2 31.6 0.0 duplication, 100.0 
high high stnct high 2644 9 51.1 47.0 28.6 mixed, 97.2 

Table 5.26 : Tseng Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI) 

Tables 5.27 - 5.29 show the alternative solutions produced for the Diffeq benchmaik. The 

lowest hardware penalty required for self-checking is identified to be 33.9%. There exist 

several versions that only impose a single clock cycle of delay degradation, while notably 

the fastest testable design produced does not need any additional cycles. Finally, the re-

sults on Table 5.29 can achieve very high frequencies at a high area price and additional 

cycles; if high frequency is an issue in a given project, then the second and fourth rows of 

Table 5.28 may be the best candidates, since they experience a modest frequency degrada-

tion with good area and delay statistics. Once more, there is satisfactory consistency with 

Tables 5.12 - 5.14. 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability 

Hardware 
usage 
(gates) 

dock 
cycles 

maximum 
fiwqijency 

(MHz) 

hardware 
(gales %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high relaxed - 3 5 3 5 13 4 0 . 3 N/A N/A none, 0.0 
high high relaxed high 4 7 5 9 14 14.6 34 .6 7 . 7 inversion, 100.0 
high low relaxed high 4 7 3 9 14 13.8 34.1 7.7 inversion, 100.0 
low high relaxed high 4 7 3 4 14 12.8 33 .9 7.7 inversion, 100,0 

7a6/e 5.270//yeq Benc/ima/* synfAes/s resu/fs (Ta/gef Tiec/ino/ogy/4/cafe/ C/WOS .35 
/B/axed c/oc/rper/od reu/qremenk 



p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 181 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

area delay dock 
period 

on-line 
testability 

Hardware 
usage 
(gates) 

dock 
cydes 

maximum 
frequency 

(MHz) 

hardware 
(gates %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

hiqh high moderate 3 5 3 5 13 4 0 . 3 N/A N/A none, 0.0 
hiqh high moderate high 4 9 0 9 13 36 .2 3 8 . 9 0.0 mixed, 100.0 
high iow moderate high 4 7 3 4 14 12.8 3 3 . 9 7.7 inversion, 100.0 
low high moderate high 4 7 8 4 14 35.6 3 5 . 3 7.7 duplication, 100.0 

Table 5.28 : Diffeq Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI), 
moderate clock period requirements 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Perfonnance Overheads 
Testability 
(technique, 
value %) 

cklay dock 
period 

on-line 
t%tability 

Hardware 
usage 
(gates) 

dock 
cycles 

maximum 
frequency 

(MHz) 

hanjware 
(gates %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high strict - 4111 19 4 0 . 3 N / A N/A none, 0.0 
high high strict high 6 5 5 2 27 40 .2 5 9 . 4 42 .1 mixed, 91.6 
hiqh low strict high 6 9 9 0 30 4 0 . 5 7 0 . 0 57 .9 Inversion, 91.2 
iow high strict high 6 0 1 8 25 41 .0 4 6 . 4 31 .6 duplication, 92.1 

Tab/e 5.29.' 0/#eq Benc/vmark synf/?es/s msu/fs ("Targef 7ecf7no/ogy/t/cafe/ CAfOS .35 
sfn'cf c/ock pen'od mq[u/remenk 

Tables 5.30-5.33 summarize the experiments conducted for the QRS benchmark in VLSI 

technology. An immediate observation is that the hardware penalty is relatively high, 

never dropping below 72%. This can be compared against Tables 5.15-5.18, where over-

heads around 55% were often achievable. Other than that, once more a substantially 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay dock 
period 

on-line 
testability 

Hardware 
usage 
(gates) cycles 

maximum 
f l u e n c y 

(MHz) 

hardware 
(gates %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high very sirict 7559 56 43.1 N/A N/A none, 0.0 
high high very stnct high 13747 56 21.6 81.9 0.0 mixed. 94.0 
low hiqh very strict high 13278 51 23.4 75.7 -8.9 duplication, 94.7 
high low very strict high 14813 101 32.0 96.0 80.4 mixed, 92.2 

7a6/e 5.30.' ORS Benc/imarfcsynfhes/s resu/fs (Ta/gef Tec/ino/ogy/t/cafe/ CA/fOS .35 VLS/j, 
i/e/y sfncf c/oc/c pemod requ/'/'emenfs 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

area delay dock 
period 

on-line 
testability 

Hardware 
usage 
(gates) 

dock 
cydes 

maximum 
frequency 

(MHz) 

hardware 
(gates %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high strict 7137 39 19.7 N/A N/A none, 0.0 
high high Strict high 12759 40 3.2 78.8 2.6 mixed, 97.9 
low hiqh strict high 12959 37 3.6 81.6 -5.1 duplication, 96.0 
high low Strict hiqh 12953 91 8.3 81.5 133.3 mixed, 93.1 

7a6/e 5.3f ; QRS 8encAmarksynf/]es/s (Targef 7'ec/7no/ogy/^/cafe/ CA/fOS .35 VLS/j, 
sfr/cf c/oc/c penod reqfu/remenfs 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay dock 
period 

on-line 
testability 

Hardware 
usage 
(gates) 

clock 
cycles 

maximum 
frequency 

(MHz) 

fiardware 
(gales %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

hiqh high moderate - 6849 35 9.2 N/A N/A none, 0.0 
high high moderate high 12574 34 2.9 83.6 -2.9 mixed, 98.7 
low hiqh moderate hiqh 12390 32 3.0 80.9 -8.6 mixed, 93.1 
high low moderate high 12953 91 8.3 89.1 160.0 mixed, 93.1 

7aA/e 5.32.' QRS Benc/imark synfAes/s resu/fs (Targef 7ecAno/ogy /^/cafe/ CMOS .35 
moderafe c/oc/c pen'od requ/remenfs 
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Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability 

Hardware 
usage 
(gates) 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(gates %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high hiqh relaxed - 6 9 3 6 34 8.9 N/A N/A none, 0.0 
hiqh hiqh relaxed high 1 1 9 2 7 32 3.0 72 .0 -6 .0 mixed, 100.0 
low high relaxed high 1 2 0 6 3 31 2 . 7 73.9 -8 .8 mixed, 98.7 
high low relaxed high 1 2 9 5 3 91 8 .3 8 6 . 8 167.6 mixed, 93.1 

Table 5.33 : QRS Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI), 
relaxed clock period requirements 

sized design such as QRS once again has a pai-ticularly broad design space; this is verified 

on the tables by the variety of different results. Further, the phenomenon that certain on-

line testable designs are faster than their untestable counteiparts can once more be ob-

served. 

Table 5.34 briefs the experiments for the 8-bit viterbi decoder. The encouraging observa-

tion is that in VLSI technology the hardware overheads are generally much more tolerable 

than the FPGA ones of Table 5.19. 

Synthesis constraints 
and priorities Hardware 

usage 
(gales) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability 

Hardware 
usage 
(gales) 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(gates %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

high high relaxed 2062 4 116.2 N/A N/A none, 0.0 
high high relaxed high 4589 5 85.8 122.6 25.0 duplication, 95.3 

hiqh low relaxed - 3262 5 106.9 N/A N/A none. 0.0 
high low relaxed high 4734 7 127.4 45.1 40.0 duplication, 93.3 
low high relaxed - 2060 4 113.7 N/A N/A none, 0.0 
low high relaxed high 3421 5 92.5 66.1 25.0 duplication, 100.0 

Table 5.34 : 8-bit viterbi decoder synthesis results (Target Technology Alcatel CMOS .35 VLSI), 
re/axed c/oc/f per/od /-equ/remenfs 

The elliptical filter experiments are shown in the following Tables 5.35 - 5.37. The tables 

show a number of points in the 3D design space that can be considered neighbouring, in 

that most of tbem have a critical path length of 17 or 18 clock cycles, are composed of 

around 6500 - 6900 logic gates (minimum 6589 for an overhead of 48.2%), and can 

achieve frequencies in most cases around 35 - 40 MHz. The optimal values with respect to 

each of these criteria are highlighted separately on the tables, while designs for which a 

parameter is outside these ranges are rather unlikely to be favoured by the designer. 

Synthesis constraints 
and orlon'ties Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-line 
testability 

Hardware 
usage 
(gates) cycles 

maximum 
frequency 

(MHz) 

hardware 
(gates %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high low relaxed - 4174 30 49.3 N/A N/A none, 0.0 
high low relaxed high 7678 37 40.9 83.9 23.3 duplication, 93.6 
high high relaxed - 4446 1 7 50.0 N/A N/A none, 0.0 
high high relaxed high 6706 1 7 41.6 50.8 0.0 duplication, 100.0 

low high relaxed high 6862 1 9 34.8 54.3 11.8 duplication, 99,9 

TaA/e 5.35.' E///p Benc/^marfcsynAes/s msu/fs (Targef TecAno/ogy/l/cafe/ CMOS .35 VLS/j, 
m/axed c/oc/( per/od requ/remenfs 
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Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

area delay clock 
period 

on-line 
testability 

Hardware 
usage 
(gates) 

dock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(galas %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

high low moderate 4 1 7 4 30 4 9 . 3 N/A N/A none, 0.0 
hiqh low moderate high 8 0 1 5 37 4 3 . 5 9 2 . 0 2 3 . 3 duplication, 93.6 
hiqh high moderate - 4 4 4 6 17 50 .0 N/A N/A none. 0.0 
high high moderate high 6 8 8 7 18 37 .0 5 4 . 9 5 .9 duplication. 99.9 
low high moderate high 6 5 8 9 18 40 .2 4 8 . 2 5 .9 duplication, 100.0 

7aA/e 5.36.' E///p Benc/ima;* syn%es/s msuAs (Targef rec/?no/ogy/\/cafe/ CMOS .35 W.S/j, 
moderafe c/ock penbd requ/remenfs 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

area delay clock 
period 

onWine 
testability 

Hardware 
usage 
(gates) 

clock 
cycles 

maximum 
frequency 

(MHz) 

hardware 
(gates %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

high low strict - 4 1 7 4 3 0 4 9 . 3 N/A N/A none, 0.0 
hiqh low strict high 8 0 1 5 37 43,5 9 2 . 0 2 3 . 3 duplication, 93.6 

hiqh high strict - 4 4 4 6 17 50 .0 N/A N/A none, 0.0 
high high strict nign 6 8 9 7 21 41 .2 55 .1 2 3 . 5 duplication, 99.9 
low high strict high 6 5 8 9 18 40 .2 4 8 . 2 5 .9 duplication, 100.0 

Tab/e 5.37E///p BencAma/* synf/^es/s /esu/k (Targef 7echno/ogy /\/ca(e/ CMOS .35 
sfr/cf c/oc/c penod requ/remenfs 

Notably, the hardware overhead was not found possible to drop as low as the best choice 

of the equivalent FPGA-targeting experiment of Table 5.20. 

The CCD benchmark synthesis experiments for VLSI technology are summarized in Ta-

bles 5.38 - 5.40. The observation in this experiment with respect to Tables 5.23 - 5.25 is 

Synthesis constraints 
and prion'ties Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

area delay dock 
period 

on-lbie 
testability 

Hardware 
usage 
(gates) 

ck%k 
cydes 

maximum 
fmquency 

(MHz) 

hardware 
(gates %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

high high relaxed - 1041 7 40 .7 N/A N/A none, 0.0 
high high relaxed high 1198 8 40.1 15.1 1 4 . 3 duplication, 100.0 
hiqh low relaxed hiqh 1471 8 4 0 . 3 4 1 . 3 14.3 duplication. 100.0 
low high relaxed high 1 4 8 9 6 36 .6 4 3 . 0 - 1 4 . 3 duplication, 100.0 

Tab/e 5.38. GCO BencAmarfc syn%es/s resu/fs fTa/gef fec/ino/ogy/t/cafe/ C/WOS .35 VLS/J, 
ns/axed c/oc/( per/'od requ/remenfs 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay dock 
period 

on4ine 
testability 

Hardware 
usage 
(gates) 

dock 
cydes 

maximum 
frequency 

(MHz) 

hardware 
(gales %) 

speed 
(cydes %) 

Testability 
(technique, 
value %) 

high high moderate 1041 7 4 0 . 7 N/A N/A none, 0.0 
high high moderate high 1 3 1 5 8 4 3 . 9 2 6 . 3 14 .3 duplication, 9 9 . 7 

high low moderate hiqh 1564 8 3 7 . 5 50 .2 14 .3 duplication, 99.7 
low high moderate high 1418 6 36 .2 36 .2 - 1 4 . 3 duplication, 100,0 

Table 5.39 : GCD Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI), 
moderate clock period requirements 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay dock 
period 

on-line 
testability 

Hardware 
usage 
(gates) 

clock 
cydes 

maximum 
frequency 

(MHz) 

hardware 
(gales %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

high high strict - 9 7 8 9 60 .6 N/A N/A none, 0.0 
high hiqh strict high 1378 8 4 3 . 9 4 0 . 9 -11,1 duplication, 100.0 
high low strict hiqh 1450 9 4 3 . 9 4 8 . 3 0.0 duplication, 97,5 
low high strict high 1324 8 43.1 35 .4 -11.1 duplication, 100.0 

Tab/e 5.40.' GCO 8enc/?marf( synfAes/s resu#s (Targef 7ec/?no/ogy/\/cafe/ CMOS .35 \//.S/j, 
gfn'cf c/oc/( pen'od reqru/remenfs 
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that most overheads appear lower than in the FPGA scenario. Indeed, the hardware pen-

alty can be as low as 15.1%, while performance degradation is either non existent or toler-

able. Maximum frequency values in self-checking versions are usually of the same order 

as in the original equivalents, with the exception of Table 5.40 where a maximum fre-

quency drop of roughly 16 MHz can be observed. 

A simple statement that can be given regarding the proportional overheads of designs im-

plemented in VLSI compared to the same designs implemented on FPGA parts, is that no 

safe assumption can be made about the relative overheads of the latter &om the experi-

ments targeting the former, and vice versa. That is, if on an FPGA part a design requires a 

certain hardware overhead to be made self-checking, the same design in VLSI may require 

much lower, much higher or roughly the same. This is expected, since the relative sizes of 

different RTL components greatly vary from technology to technology. It is, for example, 

well known that logic gates are expensive on an FPGA, while arithmetic modules are 

comparatively more expensive in VLSI. Therefore, experimentation is the only way for a 

secure conclusion, and this further stresses the importance of facilitating such experimen-

tation through high-level synthesis. 

As a final experiment. Table 5.41 shows the results of two synthesis runs for a 32-bit 

viterbi decoder in VLSI. This design comes from [131] together with its 8-bit counterpart 

presented earlier. It is however much bigger; it comprises 288 operations and 32 parallel 

processes, which are both considerably bigger than anything presented in the algorithmic 

duplication literature before. An original untestable design was synthesized first, followed 

Synthesis constraints 
and priorities Hardware 

usage 
(gates) 

Performance Overheads 
Testability 
(technique, 
value %) 

delay clock 
period 

on-ihe 
testability 

Hardware 
usage 
(gates) 

dock 
cycles 

maxgnum 
frequency 

(MHz) 

hardware 
(gates %) 

speed 
(cycles %) 

Testability 
(technique, 
value %) 

low high relaxed 15606 4 79.6 N/A N/A none, 0.0 
low high relaxed high 20361 5 49.9 30.5 25.0 duplication, 95.3 
Tab/e 5.41 ; 32-M wferbf decoder synthes/s resu/k (Target Techno/ogy A/catef CMOS .35 VLS/) 

by a self-checking version. The penalties related to test resource insertion can be regarded 

as moderate (30.5% in area, a clock cycle in delay, and some necessary degradation in 

maximum frequency). Notably, the automatic synthesis run for the self-checking version 

took about 24 hours of real time. The explanation is that the increase in the number of 

operations in the design results in a considerable increase in the number of different ran-

dom choices of transformations and data within simulated annealing, thus lengthening the 

synthesis time. To understand this, refer, for example, to transformation TFIO of §3.2.3 
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("share functional unit"), and consider a design comprising a total of Of .9 operations. In 

the initial state each operation is allocated to a dedicated datapath unit. Further consider a 

fuUy testable realisation, with dedicated units fbr each redundant and comparison opera-

tion. This will give a total of 3xOf 6' functional units. Since TF10 is fed by two functional 

units, the total number of combinations the algorithm can choose firom is given by 

J X O f^ j ^ ^ Wj')!/2! (3 X Of6' - 2)! = (3 X O f - 2)x (3 x O f ^ - i)/2 (5-12) 

It is clear that the number of choices Increases rapidly as the complexity of the system in-

creases. Taking Into account that similar increase is also experienced by the other alloca-

tion, scheduling and testing transformations, the consequent increase in the overall compu-

tational time is evident. Such long run-time may appear impractical at first and be used as 

an argument against simulated annealing; however one has to take into account the time-

to-market savings if datapath self-checking is apphed in an industrial environment. In-

deed, in such an environment, 24 hours of automatic synthesis is still much more 

efficient than days of designer effort to manually configure self-checking schemes for 

hundreds of instructions in the original HDL code, then again manually synthesize with 

special care to map the functional and checking parts of the schemes on disjoint hardware, 

and maybe conduct multiple synthesis runs and further HDL modifications to try alterna-

tive solutions. On the other hand, it can be predicted that considerably more complex de-

signs than the 288-operation, 32-bit viterbi decoder will require prohibitively long synthe-

sis run-time; it is therefore sensible to state that the biggest designs the proposed technique 

can practically handle would be composed of around 300 operations. This is still the most 

complicated ever presented in the self-checking design hterature. 

5.3.3.6 Discussion 

Subsection 5.2.1 critically evaluated the algorithmic duplication literature material and 

identified points not adequately covered therein. Based on that, the approach of this thesis 

was defined and implemented. The present subsection conducts an a posteriori evaluation 

of the numerical data of §5.3.3.5 with respect to results presented in the algorithmic dupli-

cation literature. An important word of note is that no "strict" arithmetic comparisons can 

be drawn, since each past publication uses a different technology, and at times even out-
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dated generations of technologies are quoted. The idea that no reliable comparisons can be 

given is not only sensible, but also advocated by the results in this thesis, showing over-

head disagreements between different technologies. For that reason, the comparisons 

given here are only of the quality of considered results. 

The rollback and recomputation technique of [60] mostly reports results in the form of 

RTL fimctional modules used. This is not an accurate metric, since the area of multiplex-

ers and registers is ignored. A single result is given for a fully implemented VLSI chip; 

this experiences a hardware overhead value of approximately 170%, which is overwhelm-

ingly more expensive than the vast m^ority of the results in this thesis. On the other hand, 

by nature rollback and recomputation imposes strict performance constraints; therefore no 

additional clock cycles are permitted. 

The differentiation-related techniques of [62, 63] report overheads equal to physical dupli-

cation [63] or slightly less [62]. Interestingly, in [62] the elhptical filter benchmark was 

used, also used in this thesis. When 17 clock cycles were used in the DFG, the result of 

[62] imposed a hardware penalty of about 77%. This value is at times comparable to but 

still higher than the results herein (indeed, Table 5.17 quotes 29.5% on an FPGA and Ta-

ble 5.32 gives 50.8% in VLSI). 

Introspection [64] gives minimal hardware overhead (always less than 5%). However, bear 

in mind that the particular technique totally rejects the idea of introducing redundancy for 

self-checking purposes and purely utilises any naturally existing idle time. At times only a 

small number of operations are checked (in the fonnuladon of this thesis, f t of §5.3.3.1 is 

at times well below 50%). Therefore, this technique is probably not meaningfully compa-

rable at all with the present material, since in this thesis the goal is fiiU self-checking 

and as much area saving as possible. 

The work of Lakshmiiiarayana et al [23] has already mentioned in §5.2.1 as probably the 

overall best developed in the background literature. For 9 different benchmarks used, 

overheads of roughly between 25% - 85% were reported. The results are therefore compa-

rable to those of the present thesis. 
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The semiconcurrent error detection scheme of [65] reports hardware overheads roughly 

between 26% and 100% for a checking periodicity of 2 [65], but no performance statistics. 

Two of the benchmarks used are the elliptical filter and the differential equation solver, 

also familiar in this thesis. A huge overhead of just over 100% is reported in [65] for the 

former, while the latter is at the lower end of the overhead range, roughly at 26%. This 

thesis has given better results for the elliptical filter in both technologies used, and not as 

good but sdU comparable (around 35% in Table 5.25) for the differential equation solver. 

Further recall that the results of [65] were obtained It can therefore be stated 

that the high-level synthesis for on-line testabihty technique of this thesis 

achieves at times cheaper and much more testable (§5.2) results than those manually de-

rived in the literature. 

References [69, 70] always achieve below 30% in hardware overhead. However, testabil-

ity is greatly reduced since only a percentage of the produced results are checked, and that 

includes no intermediate results. Further, synthesis is conducted manually and automation 

is not even mentioned as a future goal. In that sense, comparisons are probably not mean-

ingful. 

Finally, [66, 67, 68] also do not concern tool development. Still, the manually obtained 

results range approxunately between 10% and 60%, and are thus on average cheaper, but 

still comparable to the ones automatically produced herein. 

An inspection of all background literature reveals that the value of the operating maximum 

clock &equency is never reported. However, there should always be a frequency degrada-

tion associated with test resource insertion. Even merging two existing functional modules 

requires multiplexers; this increases the delay of operations, since it lengthens the path that 

input signals have to traverse before reaching module outputs. This delay degradation nec-

essarily results in clock speed degrading. As the tables of §5.3.3.5 have shown, this work 

not only acknowledges this frequency degradation, but also fiilly treats the clock speed as 

a design parameter, by trading off clock speed through chaining, to devise low cost self-

checking solutions that provide a valid option in low frequency projects. This approach is 

adopted for the first time. 
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5.4 Summary 

In conclusion, in this chapter we have presented a fully automatic integral high-level syn-

thesis for datapath on-line testability approach. The realisation of this approach within the 

MOODS high-level synthesis system involved : 

» implementing five additional transformations that were included in the pre-existing 

MOODS set of transformations 

» developing an elementary soAware tool for the automatic production of a VHDL li-

brary of fault-secure dual-rail checkers and comparators 

« defining and formalising a metric for on-line testability, effectively giving rise to a 3-

dimensional design space 

The particular approach is the first to include a// of the following : 

» test resource insertion is done fully automatically within the HLS optimisation loop; 

no input HDL modification or other designer interaction is needed 

* still, the designer's requirements are taken into account, through his or her choice of 

priorities; design space exploration is fast and efficient, thus allowing experimentation for 

alternative priorities 

» loops, conditionals and parallel processes are fully accommodated 

« instruction chaining is aggressively utilised 

* the inversion testing idea is defined and exploited as an alternative to duplication 

» alternative technologies are accommodated 

« the duplication / inversion self-checking schemes are made fault secure 

« all intermediate results are checked; this ensures minimal error latency, and timely re-

porting of faulty hardware 

All this is offered at a hardware overhead and delay degradation that are comparable to 

and at times cheaper than the experimental results of previous publications. 



Chapter 6 

Controller Self-checking Design 

As high-level synthesis systems become more and more powerful and able to provide so-

lutions for more and more comphcated designs, comprising conditional operations, loops 

and parallel structures, the controllers they produce become more and more complicated 

and occupy more area on the Anal chip. Hence, the RTL output of such a system cannot be 

considered reliable unless an on-line testing scheme for the control path is included in the 

system. In this context, in addition to the traditional self-checking of data paths, covered in 

chapter 5 of this thesis, controller checking has recently attained considerable importance 

as mandatory practice for ensuring the correct operation of controller / datapath pairs, such 

as the designs output by high-level synthesis systems that are considered throughout this 

thesis (Figure 3.1). In this chapter, emphasis is given to the self^checking design of the 

controller part. 

The chapter is organised as follows. Section 6.1 reviews the target architecture, states the 

problem, and briefly describes previously proposed solutions. Section 6.2 examines how 

parity-based self-checking (§2.2.1.1) can be utilised for controller self-checking purposes, 

and highlights its properties and limitations. In section 6.3, "1/n" self-checking (§2.2.1.2) 

is considered as an alternative solution. Section 6.4 discusses the problem in the specific 

context of the MOODS high-level synthesis system (§3.2), outlines the implementation, 

presents the obtained experimental results, and gives comments on them. Finally, section 

6.5 concludes the chapter. 

6.1 Problem statement 

This section describes the target architecture and comprehensively states the controller 

self-checking problem. 
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6.1.1 Encoded vs. one-hot implementations 

Figure 6.1 revisits the typical architecture of a controller / datapath pair. The figure is 

highly reminiscent of Figure 3 .11 - indeed, the same DFG example is used for the 

datapath. Figure 6.1, however, fiirther reveals the typical controller block structure. In 

principle, the controller consists of state flip-flops constituting the and a 

block of next-state logic responsible for producing the next-state vector that is to be loaded 

OI 02 

0 3 N+1 

N+2 04 

c o n d i t i o n a l s i g n a l s 

n e x t s t a t e l o g i c 

O) 

1 3 

-a 

F/gure 6. V Confro/Zer/dafapaf/? arc/f/fecfure 

onto the state register. Any possibly existing conditional signals also contribute to the pro-

duction of the next-state vector. The datapath consists of hardware modules that imple-

ment instructions scheduled over several control states. Intermediate results are stored in 

appropriate registers, and are thus preserved across control state boundaries. The analysis 

of subsection 3.2.6 has established that the controller outputs / control signals (point B of 

Figure 6.1) should by necessity be one-hot encoded in order for the state transitions to be 

properly realised. Since the state register contents can, in general, be encoded according to 

a variety of encoding schemes, a is applied (also shown in Figure 6.1) to produce 

the one-hot control signals. The state register, together with the decoder and the next state 

logic constitute the overall controller, depicted on the left-hand side of the figure by a 

dashed rectangle. 



p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 191 

From the FSM testability point of view, typically [38, 133, 37, 22, 23, 134] the state sig-

nals are encoded according to some coding scheme with enhanced error detection and / or 

correction capabilities, such as parity [22, 23, 133], Hamming encoding [37], constant 

Hamming distance [38], or even controller physical duplication [134]. All checking and 

correcting takes place at the actual state register outputs (point "A" of Figure 6.1). If this is 

applied in a sequential datapath configuration such as the one at hand, then any possible 

faults in the decoder are not considered, and are therefore likely to corrupt the actual de-

coded control signals, resulting in an erroneous sequence of control states, which cannot in 

principle be detected by datapath hardware module self-checking schemes. Further, the 

more complicated the encoding scheme, the more complicated the decoding logic, and 

naturally the more possibilities that a fault may corrupt it. Consequently, if robust reliabil-

ity properties are to be maintained, it is highly desirable that controller testing take place 

q/rgf the decoding operation, that is on the raw one-hot control signals (at point "B" of 

Figure 6.1). This idea is not only preferable as regards the stated testability concerns, but 

also disconnects the controller self-checking problem 6om the controller encoding and 

controller synthesis problems, allowing the designer to make use of any proposed self-

checking solutions regardless of his or her control path synthesis flow (in some cases with 

some restrictions that will be mentioned in §6.2). For example, Hellebrand et al [133] pro-

pose a novel approach that decomposes a long control unit into a collection of shorter 

ones, communicating among themselves in a pipeline fashion. The approach significantly 

speeds up the controller. There is no obvious reason why such control path improvement 

techniques cannot be combined with self-checking solutions discussed in this chapter. 

6.1.2 Concurrency 

I n i t i a l i sa t ion s t a t e 

j : X 

a a 

[ _ ] 

Agure 6.2 .' H/'g/v^para/Ze/ des/gn 

Further to tbe target archi-

tecture, when complex digi-

tal systems are imple-

mented, it is often the case 

that they comprise several 

communicating controller / 

datapath designs such as the 

one of Figure 6.1; when the 

implementation is the result 
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of a VHDL-based high-level synthesis process, then these structures originate from several 

synthesisable VHDL concurrent procgj'j'ej. These structures of ten share a single 

f/oM control state, which forks out to several "sub-controllers'% as Figure 6.2 depicts. In the 

figure, rounded rectangles correspond to control states, while vertices naturally show the 

flow of control, inamanner that closely resembles Petri-nets (§3.1.1). ncontrol paths (Pr 

Pn) are shown. Observe the correspondence between Figure 6.1 and Figure 6.2. Each rec-

tangle in 6.2 signifies a separate control state; therefore, a unique control signal (decoder 

output in 6.1) is dedicated to it. In 6.2, the data path is not shown, and the emphasis is on 

illustrating the concept of concurrency; in fact, each of the constituent concurrent designs 

of 6.2 is implemented according to the paradigm of 6.1. 

VHDL processes can be arbitrarily long and complex, or they can include as few instruc-

tions as can fit within a single control state. The latter is usually the result of a process that 

simply updates system primary outputs. At any system reset, the initialisation state be-

comes active, siniply meaning that the control signal associated with it assumes the "1" 

value, while all other control signals throughout all other concurrent designs are at "0". 

One clock cycle later, control passes to the actual concurrent control paths. From this point 

onwards (and until the next reset), exactly n (as in Figure 6.2) control signals are at "1". 

Observe that even single-state control paths are synthesised to comprise (wo states, since 

they share the common initialisation state with all other control paths in the overall system 

(e.g. Pn in the figure). Therefore, the 1-hot (in this case, l-out-of-2) controller output 

model explained in §6.1.1, is equally applicable regardless of the critical path length of the 

given design. 

While there can be shght variations, the control flow model of this subsection is typical of 

highly parallel hardware designs. It wiU therefore be assumed throughout the rest of this 

thesis. Further, the VHDL "concurrent processes" term wiU hereafter be used to refer not 

only to the conceptual descriptions, but also to the resulting commimicating controller / 

datapath pairs that constitute parallel designs. 

6.1.3 Datapath self-checking constructs reuse 

The problem of realising self-checking datapaths through high-level synthesis was com-

prehensively addressed in chapter 5 of this thesis. Every effort was taken to minimise 
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hardware penalties; however, even at their minimum, such penalties are inevitable, and 

sometimes severe. An additional self-checking solution for the control path would involve 

extra hardware. To this end, it would be desirable to reuse existing datapath self-checking 

constructs, for controller self-checking purposes. This can be done when (and if) coMrro/-

/gr fault effects are observable in the This is not a new concept; indeed, [135] is 

a representative example of making controller faults observable in the datapath in the con-

text of the off-line testuig of a controller / datapath architecture. In [63], effective control-

ler duplication is proposed and exploited for the same purpose hi a self-checking datapath. 

However, to the best of this author's knowledge, it is the first time that a com-

bined approach is pursued for the on-line, self-checking design problem. 

6.1.3.1 Intrinsically Secure states 

Consider Figure 6.3a. A portion of a DFG-like representation is shown. A functional op-

eration (addition +1) has been scheduled for control step (CS) N+1. A duplicate operation 

of the same type, with the same inputs (addition +1') is also scheduled for parallel execu-

tion during the same CS, while the outputs are fed to a fault secure comparator, responsi-

ble for verifying correct operation or signalling the presence of a fault As chapter 5 estab-

lished, self-checking datapaths can be constructed out of such duplication (and related) 

testing configurations. Further recall that, assuming a long enough clock period, the addi-

tions and the comparison can be scheduled in a single CS (N+1); thus, self-checking is 

provided at no error latency. It should also be recalled that in the context of a DFG the 

Zero-error /afency dup/ycabon-based 6̂̂  /tccepf/ng an error /afency of a s/ng/e 
se/f-c/?ec/(/ng des/gn c/oc/f cyc/e 

F/gure 6.3 Secunng a confro/ sfafe by accepf/ng dafapaf/) e/Tor/agency 
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comparator output is also (synchronously) stored in a register, and the register contents 

(asynchronously) compacted by a dual-rail checker, together with outputs 6om all other 

similar comparators present in the design. 

Let us move on to Figure 6.3b. In this case, the functional operation has been scheduled a 

control step earher, at CS N. Thus, its output is stored in an appropriate register, and the 

duplicate and comparison operations are executed one clock cycle later. Any fault at the 

functional operation output will be detected with an error latency of one clock cycle. In the 

context of this chapter, the following observation is more important than a single clock 

cycle error latency. 

6.7 : If an induced fault corrupts the control signal that activates state N+1 

(i.e. enables the loading of respective registers), such that the said signal behaves as a 

stuck-at-1, then N+1 will be activated prematurely (i.e. before N, therefore before +1 is 

executed and its output stored appropriately). Consequently, the comparison operation wiU 

not compare the values it has been designed to compare, but tvyo random values (in princi-

ple unequal), and therefore it is likely to produce an error indication. Thus, a coMA-oZ/gr 

fault will be detected through the existing self-checking scheme. 

There is always a possibility of fault escapes, if the random values mentioned above coin-

cide. This will be ignored for the moment For the time being, the following definition is 

provided. 

1̂ .7: A control state is referred to as (75), if the comparison 

(checking) part of a datapath self-checking scheme has been scheduled in it, but at least 

one of the functional or redundant parts of the scheme has been scheduled in previous 

states. 

In other words, a state in the situation of CS N+1 in Figure 6.3b is IS by definition. The 

discussion up to now has been restricted to duplication testing; however, the same con-

cepts can be applied to any self-checking scheme that can have its computation and check-

ing parts separated across the boundary of two different control states. This includes inver-

sion testing; therefore, the IS-states idea is fuUy compatible with the implementations of 

chapter 5. Also, note that in Figure 6.3, control step N pre-existed in the design, and some 
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operations were probably scheduled in it. Therefore there was no actual delay degradation 

by moving the operation and securing CS N+l. In the context of a reahstic design, this 

may not always be possible (due to data dependencies) and some delay degradation may 

need to be accepted, but it is expected to be in principle tolerable. It is further worth ob-

serving that movitig +1 to CS N, necessarily (re-)introduces a register to store the result 

across the CS boundary. This means a hardware overhead; it is therefore likely that at 

times the hardware savings due to the simpliScation of the controller self-checking 

scheme (shown later in §6.2, §6.3) will be cancelled out by the register overhead. On the 

other hand, there are cases where Intrinsically Secure states appear in self-checking de-

signs naturally, and therefore exploiting their controller self-checking potential is free. 

The concept of control states that are IntrinsicaUy Secure according to Definition 6.1 is a 

particular contribution of this thesis. The area and delay overhead concerns stated in the 

above paiagraph can only be answered through experimentation individually for any given 

design. The experiments of §6.4 will investigate a number of designs and, among others, 

provide an insight on this issue. 

6.1.3.2 The possibility of fault escapes 

Let us go back to Figure 6.3b and comment on the probability of aD (0/1) type error [1] 

on the control signal corresponding to control state N+l to remain undetected, due to the 

possibility that the output of the duplicate operation may coincide with the contents of the 

(improperly loaded) register that stores the functional operation result under fault-free 

operation. 

Assume that the bit-width of operation "+1" in Figure 6.3b is w. Then 2"" different words 

can appear in the left hand side input of the comparator. Assuming that all words have the 

same probability, this probability for a particular word is equal to 1/2"'. Therefore, given 

the value that "+1prematurely computes during N+l, and the functional operation bit-

width w, the probability of a fault escape can be estimated as pe=l/2"'. For example, for 

%=3, pe=12.5%, which is unacceptably high. Based on the above. Definition 6.1 can be 

updated as follows : 
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7 ' : A control state is referred to as 5'ecwre (75), if the conditions 

of Definition 6.1 hold, and in addition the bit-width of the fiinctional operation is higher 

than a defined threshold value f. 

A sensible value for the threshold would be, e.g., at least (=7, which gives pe=0.8%. This 

choice is motivated by the usual convention of traditional testing, whereby a testing 

scheme is considered successful when it detects 99% of the modelled faults [1]. Of course, 

in the context of the problem at hand it makes sense to differentiate between single-bit 

logic operations and multi-bit arithmetic operations. WhUe it would be unwise to speak 

about Intrinsically Secure states when referring to the former (as these would have an es-

cape probability of 50%), such states can be defined for arithmetic operations, experienc-

ing escape probabilities of 0.4%, 0.002% and 2x10'^% for the usual choices of 8-, 16- and 

32-bit arithmetic respectively. 

A practical precaution which can be applied in order to minimise the possibility of fault 

escapes in IS states, is to reset the register that carries the fimctional output value across 

the CS boundary, to a value that is highly unlikely to occur, as soon as its functional con-

tent is not needed anymore. Such a typical value can be the aU-ls pattern for unsigned 

arithmetic operations. Normally the appearance of this pattern during normal operation is 

an indication of (potential) overflow, and it should not appear if careful design has been 

applied. 

6.1.4 Discussion 

Subsections 6.1.1, 6.1.2, and 6.1.3 deSne the backbone of the problem at hand. In sum-

mary, the controller self-checking problem addressed in this chapter has the following 

characteristics : 

» self-checking should be applied to the decoded 1-hot controller outputs 

« multiple concurrent processes should be handled efficiently 

* the idea of Intrinsically Secure states can be exploited, in an attempt to minimise over-

heads 

« generally, the controller self-checking scheme should be as economical as possible, 

given the penalty related to the (assumingly existing) datapath self-checking; at the same 
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time, consistency with self-checking design theory is desirable (totally self-checking prop-

erty, §2.2.1) 

Given the 1-hot encoding restriction, solutions that impose particular encodings (such as 

Hamming in [37]) are not applicable. Duplicating the controller [134] is rejected, since it 

is expected to give very expensive results; indeed, the hardware sharing potentials ex-

ploited in chapter 5 do not exist in the control path case (i.e. there is no equivalent to "idle 

hardware module cycles", and no ground for "algorithmic" duplication in the control 

path). Observe, though, that a 1-hot encoded n-bit signal maintains odd parity. Further, 

parity-based self-checking (§2.2.1.1) is known to be the cheapest among error-detecting 

solutions; it has already been proposed for control path self-checking in [23], albeit only a 

short note was dedicated to this issue. It is considered in detail in this thesis in the follow-

ing §6.2. 1-out-of-n and / or m-out-of-n self-checking would also appear to be feasible so-

lutions for the given problem. At a Srst glance, one would expect them to be more expen-

sive than parity; in §6.3 we discuss this issue. 

6.2 Parity-based self-checking 

In this section, parity-based controller checking in the context of highly parallel synthe-

sized controller / datapath designs is addressed. Recall that parity checking of a bit vector 

detects all faults in the system producing the vector, that result in single- or odd-

multiplicity logic errors in the vector. Regarding the problem at hand, and referring back 

to Figure 6.1, a parity checker at point "B" will detect aU controller faults that give rise to 

a single or an odd number of corrupted control signals. Combined with Hypothesis 2.1 

(faults occur one at a time), this means that the controller has to be designed such that no 

single fault in it can result in an even number of corrupted bits at the controller output. 

Normally the easiest and most straightforward way to achieve this, is to disallow logic 

sharing between the logic cones that produce each one of the control signals, replicating 

some logic operations in the next state logic and decoder blocks if necessary [37, 22]. 

Other than that, the techniques presented in this section are generic, and applicable to any 

controller encoding and synthesis approach. The approach itself normally is dictated by 

the target technology and any particular constraints. More specifically, if the state register 

is designed to be one-hot as such (for example, as in MOODS, §3.2.6), then the next state 

logic block is simple, while a decoder is not needed. The implementation is fast; however. 
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the large number of flip-flops needed may lead to expensive realisations. The number of 

flip-flops is dramatically reduced if suitable encoding is applied; the complexity of next 

state logic and decoder are, however, increased. The resulting controller is also considera-

bly slowed down. In addition, there are technologies for which a plethora of storage ele-

ment resources are available (e.g. some FPGAs [106]), therefore the direct one-hot imple-

mentation may not always be as expensive as it first appears. 

In the rest of this section, and unless otherwise stated, it will be assumed that the controller 

has been designed taking into account the above note about odd error multiplicity. 

6.2.1 Per process parity-based self-checking 

Consider a design like the one of Figure 6.2, consisting of n concurrent processes 

(P[,.. .,Pn), each one consisting of m. (0<i<n) control states, plus the common initialisation 

state, hereafter state-0. Parity-based self-checking design can be straightforwardly imple-
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Figure 6.4 : The CTRL_1 self-checking scheme 
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mented as Figure 6.4 shows. Dashed lines in the figure correspond to the control flow, 

while solid lines represent actual signals coming from the controller block, hi order to un-

derstand Figure 6.4, notice its correspondence with Figures 6.1 and 6.2. The system con-

current processes are shown in 6.4 effectively in the same fashion as in 6.2. Clearly, a 

unique control signal &om the controller of Figure 6.1 corresponds to each state, as estab-

hshed in §6.1. This is graphically depicted in Figure 6.4 by a single signal line shown to 

end at each rectangle representing a control state. Signal lines also fan out to appropriate 

checkers, thus showing the considered self-checking scheme. As can be observed, every 

process has its control signals checked by a separate odd parity checker, and aU responses 

are compacted by a dual-rail checker, as is the usual practice in self-checking design 

(§2.2.2.2). The control signal corresponding to the state-0 becomes active only upon sys-

tem reset, and is fed to all parity checkers. Thus, at any given point of time each parity 

checker receives a one-hot signal at its input, and therefore detects any single- or odd-

multiplicity errors. This scheme will hereafter be referred to as the self-checking 

scheme. 

The actual odd parity and dual-raU checker structures are not detailed yet; for the moment, 

let us make the assumption that all checker components are double-output, composed of 

two-input gates only. This assumption is in absolute agreement with the usual checker de-

signs presented in §2.2.1.1 and §2.2.2.2, and it implies that the usual 2-input XOR gates 

and dual-rail checker cells are used for the parity and dual-rail checkers respectively. No 

assumption is, however, made at this point regarding the arrangement of gates and cells 

within the checkers. This approach will be adopted for the moment and until §6.2.7, where 

a few structure-related considerations are given. 

Based on the above assumption, the hardware cost of CTRL l can easily be estimated as 

follows, n parity checkers (PCi,.. .,PCn) are used, each one consisting of two XOR trees, to 

ensure the fault secure property [5]. Any random checker PCj has mj+l inputs (all states in 

the corresponding process, plus the common state). Every k-input parity tree is composed 

of k-1 XOR gates, therefore PCi consists of mi-l XOR gates. Further, the dual-rail checker 

has n input pairs; therefore it consists of n-1 dual-rail checker cells (§2.2.2.2), which 

yields 6x(n-l) AND/OR gates. In total, the hardware cost for this technique is given by the 

following expression : 
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2 + 6x(m-l)xCoff^,yg/g^ (6.1) 

where CostxoR and CostANo/oR refer to the hardware costs of respective gates, and the im-

phcit assumption is that under the particular target technology an AND and an OR gate 

have the same cost. When this is not true, the above expression can easily be suitably 

amended. 

Let be the total number of states in the design. Clearly 

+ 1 (6.2) 
/ = ! 

Further 

^ ( / M , - l ) = ̂ (/M,)-M = #^-(M + l) (6.3) 

Equations (6.1) and (6.3) yield : 

-(M + l)]xC0j'(;,CQ;; +6x(n-l)xCoj(^/yg/Q;; (6-4) 

Equation (6.4) gives the hardware cost of the CTRL l self-checking scheme for the de-

sign, as a function of the number of processes, the total number of control states, and of 

the target technology and specific gate implementations. 

6.2.2 Self-checking using a single parity checker 

Using parity checking necessarily results in a number of XOR gates that is of the order of 

as defined above, and cannot be dramatically decreased. However, the dual-rail checker 

may be considered redundant if the checking scheme of Figure 6.5 is used. In this ap-

proach, all control signals are led to a single parity checker. At reset only the state-0 con-

trol signal will have a logical 1 value; at any other point of time the number of Is will be 

equal to the number of processes, n. If n is odd by design (n=2k-l-l), then odd parity is 

iiatiu:ally maintained at all times. If n=2k, then a single-state "dummy" process is inserted. 

No instruction is executed in this process; an additional control signal is, however, gener-

ated by the controller for it, and so odd parity is maintained for the controller output. This 

is the self-checking scheme. 

The odd parity checker has TV,, inputs. The hardware cost is given by : 
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Equation (6.5) is accurate only for n=2k+l; otherwise it is approximate. Particularly, it 

ignores both the area overhead of introducing the dummy control state to the design, and 

the corresponding additional input to the parity checker. However, in the usual case that 

the overhead contribution of these two elements can sensibly be considered negli-

gible. 
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Figure 6.5 : The CTRL_2 self-checking scheme 

It is interesting to note that if n=l , then equation (6.4) and equation (6.5) yield the same 

value (A^-2)xCo.y(;k'o;!- This is expected, since it is obvious by simple comparative inspec-

tion of Figures 6.4 and 6.5 that for a single process both CTRL_1 and CTRL_2 correspond 

to a single parity check. 

6.2.3 Utilising Intrinsically Secure states in a single process 

In this subsection, as well as in the next two ones §6.2.4 and §6.2.5, it is assumed that the 

design datapath has been synthesized such as to demonstrate self-checking properties (for 
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example, as in chapter 5). With this assumption in mind, the self-checking resources in-

serted for the purpose of datapath checking are identified to be utilisable for the purpose of 

providing cheaper self-checking for the control signals as well, by exploiting the Intriasi-

caUy Secure states concept introduced in §6.1.3. The motivations for this approach lie in 

Observation 6.1 which was made on designs produced in chapter 5 of this thesis. How-

ever, they are generic enough to be equally apphcable in alternative environments and de-

sign flows. 
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Figures 6.4 and 6.5. A scheme 
Figure 6.6 : Exploiting IS states in a single process 

panfy-based confm//er se/f-c/?eckfng 
for the utilisation of IS-states 

for the purposes of the problem at hand is fiirther shown in Figure 6.6. Particularly, control 

signals from IS states are compacted using an OR gate, and the resulting signal is fed to an 

odd parity checker, together with the control signals corresponding to non-IS states. 

DzeorgTM 6.7 : The configuration of Figure 6.6 detects all single control signal faults, while 

providing the fault-free indication under fault-free operation. 

f : 

a) Consider the case when one of the IS state control signals is active : 

a l ) Under fault-free operation, since one of the IS state control signals is active (logic 

1), the OR output is a logic 1; since the controller is one-hot, all control signals 

corresponding to non-IS states are 0. Therefore, the parity checker is fed by a one-

hot pattern, and correctly detects odd parity. 
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a2) If the control signal of an inactive IS state assumes the 3 value (chapter 2 and [1]), 

therefore erroneously becoming a 1 when it should have been a 0, then the parity 

checking scheme of Figure 6.6 does not detect the fault; however, since the said 

state is Intrinsically Secure, the fault is detected by the corresponding checker in 

the data path (Figure 6.3). 

a3) If tlie control signal of the active IS state erroneously fails to take the active (logic 

1) value, and is stuck-at-0 instead (D value [1]), then the OR gate output is at logic 

0. At the same time, all non-IS control signals are 0, and the parity checker detects 

the erroneous (even) parity. 

a4) If a non-IS control signal takes the value/), then since the OR gate outputs 1, the 

checker is fed by a two-hot type input, which is of even parity, and therefore de-

tects the fault. 

b) Now consider the case when one of the non-IS signals is active. 

b l ) Under fault-6-ee operation, the OR gate outputs logic 0, since all IS control signals 

are inactive. Therefore only one of the parity checker inputs is 1. The parity is odd 

and correct operation is confirmed. 

b2) If an IS state control signal assumes the D value, then the OR gate output errone-

ously changes to 1. Therefore the parity checker (being fed by a two-hot type sig-

nal) detects the fault. Further, since the state is Intrinsically Secure, the data path 

checker also detects the fault. This double-check property increases the depend-

ability of the system. 

b3)If a non-IS state control signal assumes the D value, then there are two Is in the 

checker input, both coming from the non-IS control signals, since the OR gate out-

puts 0. The parity is even, and the fault is detected by the checker. 

b4) Finally, if the active non-IS state control signal fails to take the logic 1 value, and 

assumes the Z) value instead, then the checker is fed by a 0 from the OR gate, and 

by all-zeros G-om the non-IS states. Once more, the parity is even and the fault is 

detected. A 

The key point in the above proof, that in fact clarifies the beneAt of exploiting IS states, is 

a2 : p a r i t y t o detect the fault, but this c/oea no Aarm, since error detecting capabilities 

for the considered type of fault exist in the datapath. Therefore, the controller checking 

scheme is simplified, through the abolishing of error detection capabilities that are not 

needed, resulting in some hardware savings. This is achieved by dropping a number of 
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XOR gates that are used within the checker when straightforward parity checking is ap-

plied, and using an OR gate with a suitable number of inputs. An additional (and in fact 

more important) benefit of this approach, is that errors of wiy multiplicity in control sig-

nals can be detected, provided that one of them corrupts an IS state signal. Thus, the odd-

multiplicity error detection limitation of parity is overcome. Backtracking to the odd mul-

tiphcity-related note in the beginning of §6.2, it can now be understood that, by utilising 

IS states as shown above, the designer can allow hardware sharing between control signal 

cones of logic, that at least one IS state can be identified among the signals for 

whose logic cone sharing is applied. This is expected to be another source of hardware 

savings. 

6.2.4 Per process parity-based self-checking exploiting Intrinsically 

Secure states 

Based on the material of §6.2.3, an overall self-checking scheme for a parallel design can 
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be configured as Figure 6.7 shows. The figure follows the notations of the previous Fig-

ures 6.4 and 6.5; however, here signal buses have been substituted by block arrows for 

convenience. Control signals reaching each process are separated into two groups, corre-

sponding to IS and non-IS state control signals, with each group separately treated as 

§6.2.3 suggests. Indeed, the IS-state group signals are ORed, and the result feeds the proc-

ess parity checker, where it meets all other signals from the non-IS group. The initiahsa-

tion state signal is once more fed to all parity checkers, since no actual operations take 

place during initialisation, and therefore it cannot possibly be Intrinsically Secure. The 

scheme of Figure 6.6 is thus separately applied to every process; parity checker responses 

are naturally compacted by a dual-rail checker. If no IS states can be identified in a given 

process, tlien the OR gate is redundant, and theoretically replaced by a constant logic 0. 

Since a constant 0 does not change the parity of the overall signal, it is safely omitted. The 

overall conAguration will hereafter be referred to as the J scheme. 

Exactly like in the purely parity-based schemes, an estimation of the CTRL_3 hardware 

cost is attempted here. For this purpose, let us deSne mj,s and mi,N as the number of IS and 

non-IS (respectively) states of process Pi. Clearly mi,s+mi,N=n3i, as deAned in §6.2.1. Each 

parity checker PC; has mj ^+Z inputs (therefore ^ XOR gates) if and mi,N+l in-

puts (therefore mi,N-l XOR gates) if mi,s=0. Further define nis<n as the number of proc-

esses that include at least one IS state. The total number of XOR gates needed will be 

equal to 

Further, all OR gates are of mi,s inputs. Also, the response compactor compacts n input 

pairs, for a hardware cost of 6x(n-l) 2-input AND/OR gates. Overall, the cost is given by 

A/)-("-%) 

where function CoR(k) denotes the hardware cost of a k-input OR gate. 

If there is no IS state in any process, it can easily be verified, by comparison of Figures 6.4 

and 6.7, that CTRL_3 becomes equivalent to CTRL l. This can also be seen in equation 

(6.7), substituting mi,s=0, and for all i. In this case, and taking into account the 

definition of vV, through equation (6.2), equations (6.4) and (6.7) yield the same value. 
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6.2.5 Parity-based self-checking using a single parity checker and ex-

ploiting Intrinsically Secure states 

The next controller self-checking design scheme presented here is naturaUy a combination 

of CTRJL_2 and CTRL_3. It is depicted in Figure 6.8, and will be called As is 

obvious &om the figure, aU non-IS states from all concurrent processes, plus all OR gate 

outputs compacting IS state control signals are fed to a single odd parity checker. 

Z/gmma : The conAguration of Figure 6.8 detects all single control signal faults, while 

providing the fault-free indication under fault-free operation. 

Lemma 6.1 is a generalization of Theorem 6.1, and it can be informally verified as fol-

lows. During reset, only the initialisation state is active, thus a one-hot signal reaches the 

parity checker, and the correct operation is confirmed. During aU subsequent control 

states, each process will contribute a logic 1 either because of one of its non-IS state sig-

nals, or as the output of corresponding OR gates. So a total of n Is wUl feed the parity 

checker. Therefore, exactly as in the CTRL 2 technique, a single-state "dummy" process 

is inserted to ensure odd parity, in case n=2k. The above statements apply during fault-free 

operation, verifying that in that case the scheme produces the fault-free indication; under a 

single fault in any control signal of any process, the process at hand will either 

* erroneously contribute an additional 1 (see a4 and b3 in the proof of Theorem 6.1), 

thus accumulating an even number of Is (2k+2) in the checker input (the checker will 

therefore detect the fault), or 

* fail to produce its corresponding 1 (cases a3 and b4 as above), again leading to an even 

number of Is (2k) fed to the checker, thus again asserting the faulty indication, or 

* produce its fault-firee control signal, signal a fault at its data path (case a2), or even 

" produce an additional 1 at its control signals and an erroneous signal at the data 

path (b2), thus giving a double alarm. 

The validity of Lemma 6.1 is thus verified. 

The odd parity checker inputs are all non-IS state control signals of the design (a total of 

^ (m. ) +1 bits, including state-0), plus one signal for every process that has at least one 

IS state (as defined above, there are n,s such processes). Based on this observation, the fol-
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following expression can be derived, giving the hardware cost estimation for the CTRL_4 

scheme. 

CO:SY, cr;?: 4 = % X Cof + (6.8) 

Equation (6.8) takes into account the overhead fi-om both the X O R gate-based checker and 

the OR gates relevant to IS states, but, like (6.5), it ignores overheads associated with the 

dummy state insertion, in the case of an even n. 

6.2.6 Hardware costs 

This section attempts a comparison of the four techniques presented in the previous sec-

tions in terms of their hardware cost, assuming CMOS VLSI target technology [136]. In 

this teclinology, it is known that typically CostA}4D/OR=6 transistors (implemented as a 2-

input NAND/NOR followed by an inverter), and CoR(k)=2x(k+l) transistors (imple-
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mented as a k-iaput NOR followed by an inverter). It is also assumed that the XOR gates 

are implemented as transmission-gate XORs, thus yielding CostxoR=6 transistors [136]. It 

can be argued that the transmission-gate XOR, although particularly cheap, is not the best 

implementation of an XOR function; indeed, the realisation using three NAND gates and 

two inverters is usually prefered by most designers. Likewise, with respect to the k-input 

OR realisation, for high values of k, k-input NOR gates may be too slow for a particular 

technology, and implementations using multiple 2- or 3-input NORs may be preferred in-

stead. However, the present cost assumptions are purely for the purpose of illustrating the 

relative theoretical costs derived for the corresponding schemes and they are useful as 

such. 

Table 6.1 summarizes the CMOS transistor count estimations for some sets of values of 

the associated parameters, for all four schemes, as given by equations (6.4), (6.5), (6.7), 

and (6.8). To facilitate easier understanding of the figures in the table, the meanings of pa-

rameter symbols defined in the previous sections are repeated in the following. 

Ns total number of control states in the design (including initialisation) 

n total number of concurrent processes 

nts number of processes that include at least one Intrinsically Secwe state 

mj.N number of non-Intrinsically Secure states in process i 

mi,s number of Intrinsically Secure states in process i 

Parameters Checker transistor count 

N, n "ts miM, for l<i<n mi,s, for l<i<n CTRL_1 CTRL_2 C T R L J CTRL_4 

50 1 0 49 0 288 2 8 8 288 288 

20 I 1 15 4 108 108 100 100 

30 3 0 13. 15, 1 0 for every i 228 168 228 168 

151 15 15 5 for every i 5 for every i 1314 8 9 4 1134 714 

The fiist row of the table corresponds to a single-process design, with no Intrinsically Se-

cure states. The expected result is that aU techniques yield the saine cost, since they aU 

lead to a simple parity check. The second row corresponds to another single-process de-

sign; tliis time, however, it is possible to identify four Intrinsically Secure states within the 

process. The result is a slightly cheaper checker when CTRL_3 or CTRL_4 are used, on 

top of the increased error detection capabilities mentioned in §6.2.3. Naturally, CTRL l 

and CTRL_2 effectively lead to the same design, and so do CTRL 3 and CTRL_4. In the 
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third row, a parallel (3-process) design with no Intrinsically Secure states is considered. 

Significant hardware savings are noticeable when the single-parity checking schemes 

CTRL_2 and CTRL_4 are used. Finally, the fourth row depicts the most complicated case 

of a highly parallel (15 processes) design, with identifiable Intrinsically Secure states in all 

processes. In particular, the assumption is that exactly half (5/10) of the states in each 

process are IS. Such cases can appear in reahstic, useful designs, implementing complex 

digital signal processing algorithms. Comparing the estimations for the CTRL l and the 

CTRL_4 schemes, an improvement of the order of 45% can be noticed. 

It should be stressed that the estimations of this subsection are Mo/ experimental results; 

rather, they are an attempt to evaluate the theory of this section in the light of some hypo-

thetical but possible design scenarios. They simply give a flavour of the expected proper-

ties of the self-checking choices presented so far. Experimental evaluation is still neces-

sary, especially given that the results of Table 6.1 ignore the presence of the datapath, and 

the effect on the datapath area that each controller self-checking choice may imply. Such 

implementation results are given in §6.4. 

Nevertheless, the above estimations verify that controller checking using a single checker 

can lead to more compact implementations (CTRL_2, CTRL_4). Naturally, the higher the 

degree of concurrency (n), the more significant the improvement. Noticeable savings 

(-26%) appear in Table 6.1 even for n=3 processes. However, recall that the hardware cost 

of the data path is not shown in the table. Realistically, it can be esticnated that the hard-

ware savings will become really important for a number of concurrent processes of the 

order of n=10. As regards the schemes exploiting IS states (CTRL_3, CTRL_4) versus 

their pure parity counterparts (CTRL l, CTRL_2), Table 6.1 suggests that the hardware 

savings associated with them are rather modest; therefore, the improved reliability, stem-

ming from overcoming the odd multiplicity fault detection limitation, should be kept as 

their main advantage. 

6.2.7 Achieving the totally self-checking goal 

All four techniques considered in this section employ parity checking to a greater or lesser 

extent. Since parity checking properties have seen extensive theoretical investigation 
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(§2.2.1.1), it is desirable to evaluate the presented schemes with respect to self-checking 

theory as well. 

As a first word of note, parity checking for a 1-hot encoded signal is not - strictly speak-

ing - code-disjoint (Definition 2.4). Indeed, an n-bit 1-hot encoded signal demonstrates 

odd parity, so does an n-bit signal with three (or any other 2 k + l > l number of) Is 

among its bits. Such a signal may be the result of a highly hostile enviroimient, causing 

two (or an even number of) faults on the signal, and consequently resulting in a situation 

where a non-code (i.e. not 1-hot) checker input produces a code (fault-free indication) out-

put. However, the underlying single-fault Hypothesis 2.1, backed by the comments of §6.2 

regarding separate cones of logic for every controller output, rules out such a situation. 

Parity checking for the 1-hot controller outputs can, therefore, in this background, be 

loosely regarded as a code-disjoint operation. Fault-security (Definition 2.2) can likewise 

be confirmed. 

Regarding the self-testing property (Definition 2.1) also required for the totally-self-

checking goal to be achieved, recall Lemmas 2.1 and 2.2 (§2.2.1.1 and [17, 18]). Accord-

ing to them, a parity-based self-checking scheme is guaranteed to be self-testing if the 

checker receives either 

- 75% of all possible code words, or 

- the rows of a 4xM matrix, whose distinct columns have exactly two Is and two Os. 

In contrast to the previous paragraph, "code words" here refers to all odd parity encoded 

n-bit words, rather than to all 1-out-of-n words. The words of an n-bit 1-hot code are al-

ways n, while there are 2"/2=2"'' different odd parity encoded words in total. Clearly it is 

2"''x75%>n for all n>3, therefore the first condition cannot be true in the case at hand, ex-

cept for the trivial case n=3. Moreover, there can be no two different available code words 

that have a 1 at the same bit position. This means that a matrix such as the one of the sec-

ond condition cannot be constincted from the available code words of the considered case. 

One is therefore forced to conclude that the presented schemes at their cun-ent form are 

not self-testing; consequently, they are not totally self-checking eitlier. 

Recalling §2.2.1.1, the solution to this problem is self-exercising checker design. This is 

directly applicable in this case, by simply substituting the conventional 2-input XOR gate-

based parity checkers implied in Figures 6.4, 6.5, 6.7 and 6.8 with the LFSR-based struc-
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ture of Figure 2.12, repeated (slightly modified) in Figure 6.9 for convenience. The dashed 

rectangle in the figure outlines the overall checker structure to be used in the CTRL l, 

CTRL_2, CTRL_3 and CTRL_4 schemes. Recall that only the even parity code is a linear 

code. In practice, this means that the LFSR of Figure 6.9 must "internally" be based on 

even paiity encoding. This is in contrast to the situation at hand, where checker inputs 

demonstrate odd parity. Therefore, in line with Tamick's advice [12], two inverters are 

applied to the structure of Figure 2.12, as Figure 6.9 depicts. The first one is applied to an 

arbitrary bit of the checker input (in this case, the input LSB), so that the LFSR is fed witb 

the required even parity words. The second one is applied to the (even parity) LFSR out-

put, once again to an arbitrary bit (again the LSB in the figure), to produce the odd parity 

Control signals 

D U 

CK 

02 

C1 

D U 

CK 

Qn 

Conventional Odd Parity Checker 

Figure 6.9. TSC parity checker, to be used in CTRL_1, CTRL_2, CTRL_3, CTRL_4 

encoded code word that feeds the conventional odd parity checker. The n-bit LFSR itself 

can be designed by obtaining its characteristic polynomial as outlined in §2.2.1.1, based 

on Theorem 2.1, and consulting the literature for tables of primitive polynomials (see for 

example [137, 138]). 
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As mentioned in §2.2.1.1, the presence of the LFSR has the effect that the conventional 

pahty checker embedded within the overall structure of Figure 6.9 receives all possible 

code words, as long as two different code words appear in its inputs (which is always true 

in the case at hand). Again according to Lemma 2.1, this means that any arrangement of 2-

input XOR gates in the disjoint parity trees that constitute the conventional checker, will 

lead to a TSC solution. 

2-PAIR 
DUAL-RAIL 
CHECKER 

TOTALLY 
SELF-CHECKING 

ODD PARITY CHECKER 

TOTALLY 
SELF-CHECKING 

ODD PARITY CHECKER 

F/gure 6. YO. Compacf/ng oufpufs of 
two TSC parity checkers 

Let us now examine the dual-rail checkers of Figures 6.4 and 6.7 with respect to the totally 

self-checking goal. First of all, consider the simple example of Figure 6.10 and assume 

fault-free operation. The figure imphes that only two processes exist in the system, and 

their control signals are checked using two TSC odd parity checkers like the one of Figui e 

6.9, applying either CTRL l or CTRL 3. The outputs are naturally compacted using a 

two-pair dual-rail checker (in effect a single dual-rail checker cell), as shown. Since the 

corresponding conventional parity checkers receive aU code words, they are also able to 

produce both possible code outputs (01, 10). The exact state of each control path (i.e. the 

exact signal fed to the TSC odd parity checker), together with the internal state of the cor-

responding LFSR determine which of the two possible outputs will be produced. In prin-
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ciple, the two processes are independent, while the two LFSRs are always independent. It 

is therefore sensible to state that, over time, all possible code input combinations {(01, 

01), (01, 10), (10, 01), (10, 10)} win appear at the input of the dual-rail checker. General-

izing for an n-process design, with n TSC parity checkers producing both their code out-

puts, it can be understood that a// possible 2" input combinations will be fed to the n-pair 

dual-rail checker. As explained in §2.2.2.2, only four well-selected code inputs are enough 

to guarantee the self-testing property for an n-bit dual-rail checker of a given structure. 

The fact that all possible code words are applied to the checker in the case at hand, sug-

gests that oMy structure (i.e. any internal arrangement of the n-1 dual-rail checker cells) 

will result in a TSC design. 

At this point, the issue regarding the actual checker structures of Figures 6.4, 6.5, 6.7, and 

6.8, left open in §6.2.1, has been answered. To summarise, aU parity checkers in the fig-

ures are implemented using the configuration of Figure 6.9, where the conventional parity 

checker shown, is composed of two 2-input XOR gate-based parity trees, with arbitrary 

distribution of gates between the trees, and arbitrary aiTangement of the gates within the 

trees. In addition, the dual-rail checkers of Figures 6.10 are composed of an arbitrary ar-

rangement of 2-pair dual-rail ceUs. 

Clearly, the result of utilising the TSC checker of Figure 6.9 in the controller self-checking 

schemes, is that the estimations of equations (6.4), (6.5), (6.7) and (6.8) are no longer 

valid, since they were derived assuming simple parity checkers, and do not take the LFSR 

hardware overhead into account. They can, however, easily be suitably augmented as fol-

lows. Let CostLFSR._i be the constant hardware cost of an LFSR cell, that is the cost of a 

fhp-flop, plus the cost of the XOR gate. Clearly, the n-bit LFSR of Figure 6.9 will cost 

nxCostLFSR_i. This is not totally accurate, since the XOR gate can be a 2 or a 3-input one, 

depending on the absence or presence of a feedback tap, so CostLFSR_i should not be a con-

stant. The two inverters are also not taken into accoimt. Let us, however, ignore these neg-

ligible details, and accept this approximation for the puiposes of this discussion. In each of 

tlie presented schemes, the number of LFSR cells is equal to the total number of inputs of 

all parity checkers. Based on this : 

« in the CTRL l scheme (Figure 6.4), checker PCi has mi+l inputs, adding up to a total 

of 
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^ (/M, + l ) = + M - 1 (6.9) 

inputs in all parity checkers (equation (6.2) has been used in the above). Equation (6.4) 

can now be updated as 

- (» + l)]x + 6 x (?; -1) x C o ^ , g,; + 
(6.43 

« in the CTRL_2 scheme (Figure 6.5), the single odd parity checker receives Vy, inputs. 

Equation (6.5) can now simply be rewritten as 

2 ^ ^ 2 ) x X , (6.5 ) 

» in the CTRL_3 scheme (Figure 6.7), as aheady seen in §6.2.4, each process Pj with at 

least one Intrinsically Secure state (m^ s ^ ) feeds an mj_N+2 input parity checker, while 

whenever no IS state can be identified (mi,s=0) the checker has mi_N+l inputs. The rela-

tionship giving the total number of parity checker inputs is shown in the foUowuig to be 

analogous to equation (6.6) 

Z! ('"'.v + + Z ( '"w +1) = Z i (^,.,v ) + » + «/.; 

Equation (6.7) now becomes 

(6.10) 

X + 6x(M — l ) x 

X Cost / i-n,, , 

(6.73 

» finally, in the CTRL_4 scheme (Figure 6.8), the total number of checker inputs 

(§6.2.5) has been shown to b e ^ ( m y ^) + +1, which updates equation (6.8) to 

(6.83 

An inspection of the updated equations reveals that the relationsliips between the hardware 

costs of the different schemes still hold; indeed, comparing, for example, equations (6.43 
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and (6.5'), is enough for one to realise that the more the degree of parallehsm n, the more 

the hardware savings achieved, not only due to the absence of AND / OR gates, but also 

due to the reduced number of LFSR cells. This is totally consistent with the observations 

already made in §6.2.6. It can therefore be claimed that, although the numeric results of 

Table 6.1 are now even farther &om being accurate, the qualitative insight they provide is 

still relevant. 

On the other hand, the increase in area imposed by the design of Figure 6.9, can be unac-

ceptable in the case of realistic designs. Recall, for example, chapter 5, where even de-

signs with a critical path of the order of 100 states were shown. This clearly implies that 

if Mof a/wayj' o j ay o^gorj ' . The 

situation calls for an alternative approach; self-checking using 1/n checkers is therefore 

considered in the following section §6.3. 

6.3 1/n based self-checking 

This section investigates the possibility of directly applying 1/n self-checking to the con-

troller outputs. The reader is reminded that an m/n checker (§2.2.1.2) detects all single, as 

well as multiple wMfVf/'rgcfzoMa/ faults in its inputs. The imphcation of this on the controller 

structure (Figure 6.1), is that the next 

O state logic and decoder blocks have to be 

designed such that no single internal 

controller fault can under any circum-

stances give rise to a bidirectional multi-

ple fault on the controller output. This 

problem has been addressed in [139], 

based on the following definition. 

The zMvgrjf'oM of a 

F/gi/re 6. Y Y. examp/e of /anouf logic path is the number of inversions in 
branches with different inversion parities modulo 2, 

Given a block of logic, a fault on an internal wire will only lead to unidirectional faults on 

the output of the block, if all paths on the fanout of the wire have the same inversion par-

ity. The trivial but illustrative circuit of Figure 6.11 clarifies this proposition. The figure 

D D 

1 - 0 

o-o 
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shows a stuck-at-0 wiie, assummg the D value when its source tries to drive it to 1. The 

wire has a fanout of 3 branches. The top and the bottom branches have a 0 inversion parity 

(2 and 0 inversions respectively). If faults reach the circuit outputs through both of these 

branches, then they result in the same logic error, hideed, in the figure, if the second input 

to the AND gate is logic 1, then fault propagation through both paths leads to D-type 

faults. Of course, a fault does not necessarily make its way to the circuit output, an exam-

ple being the scenario where the second AND gate input is a logic 0, leading to a fault-fi-ee 

0 value in the output. In contrast, the middle branch has an inversion parity of 1 (a single 

inversion). Clearly, this produces a Z) on the respective circuit output; in combination with 

the top and bottom branches, the D-type faulty input wire causes bidirectional faults on the 

output lines. 

Returning to the controller self-checking problem, it is such situations that need to be ex-

cluded when designing the controller blocks, in order for m/n checking to be safely appli-

cable. It is therefore to be noted, that, in contrast to the parity checking situation of §6.2, 

hardware sharing between the logic cones of controller outputs permitted, so long as it 

does not lead to fanout branches with different inversion parities. Clearly, this is a less re-

strictive constraint than that of §6.2; it can, tlierefore, lead to more compact control path 

realisations. In the following, it will be assumed that this constraint is satisfied, and under 

this sole assumption the presented techniques are generically applicable. 

6.3.1 Selection of a 1-hot checker 

Several 1-out-of-n checker designs have been proposed (§2.2.1.2). Unlike the parity 

checking case, where XOR. trees dominate the field, there seems to be no clear winner as 

far as 1/n checking is concerned. This subsection states the desired properties of the 1/n 

checker to be used, then revisits the techniques presented in §2.2.1.2, and finally justifies a 

particular choice. 

6.3.1.1 Checker specifications 

The checker needed for the current problem should have the following characteristics : 

(a) It must be This comes directly out of the problem statement of 

§6.1.4; as akeady mentioned therein, the assumption is that the designer has already paid a 
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significant penalty for datapath self-checking (chapter 5). It is therefore desirable to keep 

any controller-related extra overhead as low as possible. 

(b) It must be ggMenc, applicable to as wide a range of the bit width n as possible. This 

stems fi-om the whole context of this work : any solution should be able to easily lend it-

self to high-level synthesis, where the length of the process critical paths cannot possibly 

be known a priori. Applicability implies that the checker should be not only constructable, 

but also consistent with theory (totally self-checking) for as many values of n as possible 

(§6.1.4). 

(c) It must be Incorporating technology-independent solutions in 

high-level synthesis is a virtue, since it takes full advantage of the largely technology-

independent nature of the synthesis process, and maintains its ability to be easily tuned to 

alternative technologies. 

(d) It must be relatively jz/np/e in its description, so that it can easily be coded in an HDL 

and incorporated in an Electronic Design Automation (EDA) flow. 

(e) In contrast, speed is Mor a critical factor. To understand this, once again consider Fig-

ure 6.1. The minimum clock period achievable by the synchronous design is determined 

by the datapath, while controller self-checking is done in parallel to the datapath opera-

tion. As chapters 3 and 5 have established, it is often the case that several data path opera-

tors or multiplexers operate in series within the same control step. This guarantees ample 

time for the (normally faster) single operation of 1/n checking to be completed. 

The above characteristics add up to a simple sentence : a checker that demonstrates re-

quirements (a)-(d) can be allowed to perform suboptimally as regards speed. 

6.3.1.2 1/n checkers revisited 

A critical summary of §2.2.1.2 is provided here. The reader is reminded of all proposed 

solutions for the 1-hot self-checking problem, and these solutions are evaluated in the light 

of points (a)-(e) of §6.3.1.1. 

Recall Anderson and Metze's m/n checker (Figure 2.13 and [10]). A 1-hot checker is ef-

fectively implemented as part of it, using a simple code translator, followed by a k/2k 

checker implemented using majority functions. The design is inherently based on logic 

gates, so it is technology-independent, while the m^ority functions could be described in 
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an HDL and therefore their design automated. However, the TSC property cannot be satis-

fied for all values of n (n=7 is a characteristic problematic situation mentioned in [10]); 

the design is therefore unsuitable for the situation at hand. 

The adder-based k/2k checkers proposed by Paschahs et al (Figure 2.14 and [24]) can be 

used in Anderson and Metze's scheme instead of the majority function based one. One ad-

vantage is that the design becomes cheaper compared to [10] as k increases; it is also in-

dependent of technology, since it uses full and half adders as building blocks. On the other 

hand, it is rather complicated to describe it in a generic HDL form, since its TSC property 

strongly relies on the arrangement of adders within the blocks of Figure 2.14. Therefore, a 

behavioural description is not possible, and a structural one is rather hard to parameterise 

(so as to make it genericaUy utihsable at a high level of abstraction). The TSC property is 

achieved for the k/2k checker, //"it receives all its code words; however, the translator of 

Figure 2.13 is known to not always provide all code words. Consequently, it is not guaran-

teed that such a combination provides a TSC solution for every bit width of interest. 

The checker of Tao et al [30] is also based on a configuration similar to Figure 2.13. The 

stL-ucture is based on elementary logic functions, and its design is described algorithmi-

cally; it could therefore fit within an HDL-based design flow, had it been more generically 

applicable. Indeed, the TSC property is not achieved for some common values of n (such 

as 7, 9, 11). 

CMOS technology specific designs [28, 33] are cheap and generic. They are, however, 

unsuitable for the problem at hand, clearly due to theii" total dependence on target technol-

ogy, and their irrelevance to high-level HDL-based design flow. 

Khakbaz's 1-hot checker ([29] and Figures 2.16, 2.17, 2.18) is an interesting option. Its 

hardware cost is reported to be comparable with [10] and [24], it can be applied for every 

bit width, except the well-known problematic 1 -out-of-3 case, it is technology-

independent, and it can be described in a behavioural HDL through equations (2.4), and 

using a coinmon dual-rail checker description (§5.3.3.3). In the literature it is criticised as 

being slow [30], but as argued in §6.3.1.1 this may not necessarily harm. Clearly, it is a 

tempting choice. 
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Finally, the accumulator-based sequential structure of Stroele and Tamick (Figure 2.20 

and [34]), although easily implementable, particularly suitable for high-level description, 

and totally technology independent, does not conform to the usual self-checking theory, in 

that it experiences fault latency of unpredictable length, and it can even experience fault 

escapes. 

The above discussion singles out Khakbaz's 1/n checker design as the most suitable can-

didate. The following subsections §6.3.2, §6.3.3 describe the controller self^checking solu-

tions instrumented using it. 

6.3.2 Per process 1/n-based self-checking 

Based on the selected 1/n checker structure. Figure 6.12 shows how an overall self-

checking solution for the controller of a generic highly parallel conceptual design can be 

configured. The technique is directly analogous to the CTRL l method, as simple com-

parison of Figures 6.4 and 6.12 suggests. This time, however, the parity checkers have 

been substituted by 1/n checkers, implemented as in Figure 2.16. Responses &om all 

checkers corresponding to aU processes are naturally compacted by the usual dual rail 

checker. This scheme is hereafter referred to as the self-checking scheme. 

Figure 6.12 also shows how the problematic l-out-of-3 checker case is dealt with. Let us 

concentrate on process Pn- Without loss of generality, it is assumed to comprise 2 states. 

Together with state-0, this dictates the need for a 1 -out-of-3 checker. As a first word of 

note, it has to be stated that such short processes are rather trivial, and not frequendy en-

countered in controller / datapath architectures. The only realistically meaningful service 

that a 2-state process normally has to offer, is the updating of outputs or internal signals, 

concurrently with other, useful operations performed by the rest of the processes in the 

system. Typically, this involves brief periods of activity, and extended periods during 

which the short process simply waits. Further, the overall system critical path, being the 

critical path of the longest process, is highly unlikely to be any relevant to the 2-state 

process length. It would tlierefore do no harm to add a "dummy" state to the short process 

(as shown in process Pn hi the figure), thus eliminating the need for a l-out-of-3 checker, 

and performing 1 -out-of-4 checking instead. Essentially, having control of the synthesis 

task, the designer can avoid the problematic 1/3 situation. 
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One is tempted to think that the same principle of inserting dummy states to avoid prob-

lematic codes could be used more extensively, and an alternative checker adopted instead 

of Khakbaz's one. For example, Tao's checker (§6.3.1.2) could be used, and dummy states 

inserted whenever 1/7, 1/9 or 1/11 codes were encountered. This is, however, not so, since 

processes that are 6, 8, or 10 states long typically perform useful tasks and often determine 

the critical path; therefore, lengthening them is very likely to hinder performance and 

partly cancel out the benefit of the HLS critical path length optimisation effort. 
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Figure 6.12: The CTRL_5 self-checking scheme 

It also has to be noted that the combined 1/3 self-checking approach of [31] (Figure 2.19) 

would also provide an acceptable TSC solution, since one expects at least one more proc-

ess (therefore at least one more checker output) in the system control path, and definitely a 

number of 2-bit comparator outputs coming from the datapath (chapter 5). Inserting a 
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dummy state as above was, however, preferred, for being more standalone and independ-

ent of the system context, also simpler in concept and easier to incorporate in synthesis. 

The CTRL_5 scheme is TSC overall. Indeed, the 1-ont-of-n checkers receive all their code 

inputs and are all TSC (as proved in [29]), especially so now that the l-out-of-3 issue has 

been resolved. The dual-rail checker is code-disjoint and fault-secuie by construction 

(§2.2.2.2), and it also receives all its code inputs, since the arguments built around Figure 

6.10 are equally applicable here. It is therefore self^testing for any internal arrangement of 

dual-rail checker cells. This makes both the dual-rail checker and the overall scheme to-

tally self-checking. Notably, this does Mof require any costly LFSR-based design, in con-

trast to the parity-based techniques. 

Finally, no hardware cost estimation prediction is given here. Firstly, the nature of the 

code translator that forms part of the 1/n checker (Figure 2.17) allows for hardware shar-

ing and optimisation, without affecting the TSC property (notably, in contrast to parity 

checkers). This will be made clear in the implementation part of this chapter (§6.4.2). This 

optin:isation often depends on the synthesis tool in use. Therefore, any prediction on a 

purely theoretical basis would likely be misleading. Secondly, such a prediction would 

only serve the purpose of comparison between 1/n based schemes and their parity based 

counterparts, e.g. in this case CTRL S and CTRL l, through equation (6.4'). This last 

equation is, however, highly dependent on target technology (because of CostLFSR i being 

dependent on technology). It is, therefore, best to leave any such comparison for the ex-

perimental section §6.4. 

6.3.3 Per process 1/n-based self-checking exploiting Intrinsically Se-

cure states 

Figure 6.13 is clearly analogous to Figure 6.6, and shows how any existing Intrinsically 

Secure states can be exploited within a single process, when 1/n checking is applied. As 

the proof of Theorem 6.1 has shown, any single fault in the control signals leads to either 

the aU-Os pattern, or a 2-out-of-n word, or even a 1-out-of-n word, plus an alarm from the 

datapath. In any of these cases, the 1/n checker serves just as well as the parity checker. 

Moreover, given that 1/n checkers can detect not only single, but also multiple unidirec-

tional faults, it would be interesting to consider such faults here as well. 
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: The configuration of Figure 6.13 detects all unidirectional control signal 

faults, while providing the fault-firee indication under fault-free operation. 

f/-oq/": 

The proof proceeds on the footsteps of the proof of Theorem 6.1 : 

a) Consider the case when one of the IS state control signals is active : 

a l ) Under fault-&ee operation, since one of the IS state control signals is active (logic 

1), the OR output is a logic 1; since the controUer is one-hot, all control signals 

corresponding to non-IS states are 0. Therefore, the 1/n checker is fed by a 1/n pat-

tern, thus signalling correct operation. 

a2) Let us consider k>l D type faults. If aU of them appear on IS-state control signals, 

then the datapath produces k error indications. If all of them appear on non-IS state 

control signals, then the 
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nnmber of datapath 
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a3) There can only be a sin-

gle Z) type fault, since there is only one active signal in the design (the one corre-

sponding to an IS state). If this faulty situation occurs, then the 1/n checker is fed 

by the aU-Os pattern and thus detects the fault. 

b) Now consider the case when one of the non-IS signals is active. 

b l ) Under fault-free operation, the OR gate outputs logic 0, since all IS control signals 

are inactive. Only one of the 1/n checker inputs is 1, so fault-free operation is con-

firmed. 

F/gure 6. Y3; Exp/o/Y/ng /S sfafes /'n a s/'ng/e 
process kv/f/) f /h confm/Ze/' se//^c/?ec/f/ng 
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b2) Consider k>l D type faults. The situation is evaluated exactly as in a2 above and no 

further explanation is required. 

b3) Once again, there can be no multiple D type fault, and under the presence of a sin-

gle one, the checker is fed by all-Os and naturally detects the fault. A 

Interestingly, consider a double bidirectional fault, that is, a fault affecting two controller 

outputs, such that one assumes the D value, and the other assumes 3 . Such a fault would 

escape detection in the environment of Figure 6.12; Aowever, in Figure 6.13, if the signal 

taking the D (0/1) value happens to correspond to an IS state, then the data path signals a 
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fault and the fault is detected. This shows that, once more, when utilising Intrinsically Se-

cure states within a process, in the marmer of Figure 6.13, the overall self-checking 

scheme demonstrates enhanced fault detection capabilities, in that now bidirectional faults 

can also be detected, provided that they corrupt any IS state towards az) value. The anal-

ogy with the corresponding parity-based scheme is evident. 
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An overall scheme for the self^checking design of the control path utilising 1/n checkers, 

and taking Intrinsically Secure states into account, is now proposed in Figure 6.14. It is 

clearly the 1/n "equivalent" to CTRL_3, and will be called In line with §6.3.2, if 

any of the checkers C, is originally fed by 3 inputs, an additional dummy state is provided 

to the corresponding control path, to resolve the problematic l-out-of^3 situation (although 

no such situation is depicted in the figure). Moreover, no theoretical cost estimation is at-

tempted here either, although CTRL_6 can be expected to be somewhat cheaper than 

CTRL_5, due to utilising cheaper checkers. 

Finally, note that no technique analogous to CTRL_2 or CTRL_4 is proposed, i.e. there is 

no attempt to utilise a single m/n checker. The reason for this, is that there is no generic 

TSC m/n checker, for arbitrary n and m>l. Most designs mentioned §2.2.1.2 are rather 

restricted to the area around the k/2k checker, which is not useful for the purposes of this 

research. 

6.4 Implementat ion and Experimental Results 

The discussion in this section focuses on the MOODS High-Level Synthesis Suite (§3.2), 

and precisely on the implementation of the ideas of §6.2, §6.3 within MOODS. Some es-

sential properties of the MOODS controller are first established (§6.4.1), then implementa-

tion details are given (§6.4.2, §6.4.3), and finally the obtained experimental results are 

presented, together with relevant comments (§6.4.4). 

6.4.1 MOODS-generated controller revisited 

Sections 6.2 and 6.3 established that controllers need to satisfy certain properties, in order 

for the respective techniques to be applicable. As a reminder, in order to apply parity-

based schemes, one needs to design the controller such that any single internal fault can 

affect an odd number of output signal bits, while if 1/n-based techniques are desired, the 

designer needs to make sure that any internal fault may only lead to unidirectional faults 

on the output. Favourable exceptions exist (§6.2.3, §6.3.3), but the above statements are in 

principle correct. Observe that, if a controller has the property that every modelled internal 

fault may lead to one and only one corrupted output bit, then both of the above require-
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ments are satisfied. In the following, it is shown that the control path generated by 

MOODS indeed possesses this characteristic by construction, and therefore aU six consid-

ered techniques can safely be utilised in its environment. 

First of all, recall the generic controller model given in Figure 6.1, consisting of a state 

register and two combinational logic blocks, namely the next state logic and decoder 

blocks. Compare this model against the MOODS-speciGc control path implementation of 

Figures 3.12 and 3.13. The comparison reveals that in the MOODS implementation no de-

coder is present. This is expected, since as mentioned in §3.2.6, there exists exactly one 

general control cell (one flip-flop) for every control state in the system. The D-fUp flops 

found within the general control cells effectively constitute the state register, and any sin-

conditional signals 
(from data path) 

general control cells , 

" 7 " 
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BLOCK 
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(CS2) ( C ^ ( C ^ 

s1 CS1 s2 s3 

to CS2 to CS3 to CS4 

(aj con^m/ paf/? (Ibj /vaz-dware /mp/emenfaf/o/? 

F/gi/re 6.Y6. Cond/Y/ona/ conW/7oM/ 

gle fault in any of them (in any of their ports : D input, Q output, set, reset, clock) may 

only affect a single controller output. 

Let the discussion now concentrate on the "next state" logic block. Once more, compari-

son of Figures 6.1, 3.12 and 3.13 reveals that the next state logic in the MOODS imple-

mentation effectively comprises the AND gate block (Figure 3.13) and the OR gates found 

within the general conhol cells (Figure 3.12). For convenience, this idea is depicted in 

Figure 6.15. The figure is just an alternative view of Figure 3.13, except for the self-

checking scheme block included here. Other than that, the general control cells of §3.2.6 

have been decomposed into the flip flops constituting the state register, and a separate OR-

gate block. The above mentioned next state block model is also shown. As Figure 3.12 

established, OR gates are dedicated to flip-flops; this means that the output path from any 

gate in the block only leads to one flip-flop. In other words, any fault in any gate of the 

OR-gate block can only affect one flip-flop, therefore it can only result in a cor-

rupted bit in the control signals. 

The AND-gate block requires some more attention. The particular block implements con-

ditional control flow, originating in conditional and loop statements in the system VHDL 

description. An illustrative example of conditional control flow is provided in Figure 

6.16a, together with its hardware implementation in 6.16b. hi the example, control step 

CSl is followed by CS2, CS3 or CS4, depending on the values of conditional signals s i , 

s2 and s3 (notably, exactly one of them is "tme" when CSl is active). This is implemented 

in the AJSID-gate logic block in the simple manner that Figure 6.16b depicts. The outputs 

of the AND gates are directed to the general control cells / flip flops that correspond to the 



p. Oikonomakos, 2(X)4 Chapter 6: ControHer Self-checking Design 2 2 7 

succeeding CS2, CS3 and CS4 (at times through suitable OR gates in the respective 

block). Since there is exactly one flip flop in the state register fo r every control step, the 

logic path from the output of each AND gate leads to exactly one state flip flop. Indeed, 

any variation from this would lead to functionally meaningless situations, for example 

VHDL c a s e statements where two different branches are activated simultaneously. In 

turns, this means that any single fault in the AND-gate block can propagate to a single flip 

flop, and thereby affect a jmg/g control signal. 

Thus the discussion of this subsection concludes. The last few paragraphs established that 

any single fault in any part of the MOODS controller (state register, OR-gate block, AND-

gate block) may corrupt a single output bit. In fact, this is an inherent property of direct 

one-hot encoding of the control signals. All six controller self-checking schemes of §6.2 

and §6.3 can thus safely be applied. 

6.4.2 Self-checking design cell libraries 

Subsection 6.4.1 established that controller self-checking as addressed in this chapter is 

perfectly applicable to the control path model of designs synthesized by MOODS. As is 

obvious 6-om the discussion so far, in principle controller self-checking has no direct rele-

vance to the synthesis tasks of chapter 3, as the checking hardware is always just an add-

on to the normal design (see for example Figure 6.15). Therefore, all that is needed for the 

implementation of the considered techniques within HLS is a simple post processing step. 

Such a post processing step should take into account the self-checking technique that the 

designer chooses for a particular experiment (CTRL l , CTRL_2, CTRL 3, CTRL_4, 

CTRL 5 or CTRL_6), identify any Intrinsically Secure states (if applicable) and then add 

a synthesisable VHDL description of the checking 
in1 (4 downto 0) 

block to the tool output code, taking care of the proper 

connections of control signals to the inputs of the self-

checking logic block. This logic block comprises 

conventional parity checkers, LFSR structures, dual-

rail checkers, and / or 1-out-of-n checkers, as applica-

ble. Such components are not available within the 
V / 

output(2 downto 0) Standard MOODS cell library (§3.2.7); a dual-rail cell 

Agure 6. Y 7. Xl 5-6/f XOR army library was however developed and used for the pur-



p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 228 

library ieee; 
use ieee. sl:d_logic_1164. all; 
use ieee.numeric_std.all; 
entity XOR_AREAY is 

generic (m: positive := 1); 
port (inl : in std_logic_vector (m-1 downto 0); 

output: out std_logic_vector ((m/2 + (m rem 2))-l downto 0)); 
end XOR_ARRAY; 

architecture structure of XOR_ARRAY is 
begin 

G1: if m>l generate 
output (m/2+(m rem 2)-l downto 0) <= inl (m-1 downto m/2+(m rem 2)) xor 

inl(m/2+(m rem 2)-l downto (m rem 2)); 
end generate; 

G2: if (m rem 2)=1 generate 
output(0) <= inl(O); 

end generate; 
end; 

F/gi/re 6. Y8 / 77)6 X O R A R R A Y ce// 

10 

poses of chapter 5 as explained in §5.3.3.3. As a reminder, a relatively simple C+4- pro-

gramme was written that automatically created a VHDL p a c k a g e , comprising synthe-

sisable descriptions of dual-rail checkers, receiving anything between 1 and 200 pairs of 

inputs. Parity checkers are known to have a very similar structure, except that instead of 

dual-rail checker cells they consist of 2-input XOR gates ([2, 5] and §2.2.1.1 of this the-

sis). As explained in §6.2.7, an n-bit conventional parity checker employed in this work as 

Figure 6. 9 has shown, can have an arbitrary arrangement of its 

constituent 2-input XOR gates without loss of the 

TSC property. A straightforward symmetrical ar-

rangement was therefore chosen, and a C44- pro-

gramme was used to automatically create the respec-

tive parity checker VHDL p a c k a g e . Initially an 

XOR array cell is defined (analogous to the checker 

array of §5.3.3.3). Figure 6.17 shows an example 5-bit 

XOR array, while Figure 6.18 shows the VHDL de-

scription of the generic m-bit XOR array ceU. Parity 

trees are then composed of X O R arrays. Figure 6.19 

gives an example 10-bit parity tree. The figure depicts 

the block diagram structure of the implementation; of 

course some XOR arrays are very simple structures, 

for example a 2-bit "XOR array" only consists of a 

10-bit XOR array 

/5 

5-bit XOR array 

3-bit XOR array 

I 
2-bit XOR array 

F/gure 6.79. 8/oc/(d/agram 
of a YO-Mpanfy^ree single XOR gate. 
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A generic M-bit parity checker consists of two disjoint parity trees, of widths 1"^/2] 

and / 2J respectively. Figure 6.20 shows the block diagram of a 21 -bit parity checker. 

The overall parity checker library contains the XOR array of Figure 6.18, structural de-

scriptions of parity trees of bit width values in the range 1 - 100, and based on them, struc-

tural descriptions of parity checkers of bit width values in the range 1 - 200. If needed, a 

trivial modification of the generator C-H- programme could produce checkers of even 

wider inputs. 

A library of LFSR cells was implemented similarly. Firstly a 1-bit LFSR cell was defined. 

The cell is shown in Figure 6.21, while its synthesisable VHDL description is provided in 

Figure 6.22. The cell is used as a building block for the LFSR structure of Figure 6.9. By 

connecting a constant 0 to the "feedback" input port, one can model the absence of a feed-

back tap (indeed, logic synthesis tools typically optimise out the feedback input in such 

cases). Similarly, by connecting a constant 0 to the s h i f t _ i n p input typically causes 

this input to be optimised out and creates a 1-bit LFSR cell like the leftmost cell of Figure 

6.9. The VHDL g e n e r i c r s t _ v a l determines whether the "rst" input will be con-

nected to the "set" or to the "reset" (as in Figure 6.21) port of the D-fhp flop. This pro-

21-bit input 

/11 
/ 

r 

11-bit parity tree 

/10 
/ 

10-bit parity tree 

Y 

F/gure 6.20. 8/oc/( d/agram of a 2 f -Mpar#y c/?ec/fe/-
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shift_inp 

ck 

rst 

D Q 

CK RST 

shiftout 
— ^ 

feedback 

out_q 

Figure 6.21. The 1-bit LFSR cell 

input vides a convenient mechanism for the ini-

tialisation of the LFSR with the desired 

value. The positions where feedback taps 

are to be added in an n-bit LFSR are de-

termined as §2.2.1.1 explained, based on 

Theorem 2.1 and Figure 2.12. In particu-

lar, for a given n, an (n-l)-degree primi-

tive polynomial is chosen, from the tables 

of primitive trinomials and pentanomials 

of degrees between 2 - 1 0 0 provided in 

[137]. The chosen polynomial is multi-

plied by the generator polynomial of the even parity code g(x)=x-H, thus creating the n-bit 

characteristic polynomial of the LFSR to be designed. The reader is reminded that such a 

procedure guarantees that the resulting LFSR will produce all non-zero even parity code 

words, if initialised with a non-zero even parity encoded pattern (Theorem 2.1). A C-H-

programme is thus written, that "knows" the characteristic polynomial corresponding to 

every n. It automatically generates an output VHDL p a c k a g e that consist of the 

LPSR_1 b i t ceU, followed by synthesisable descriptions of suitable LFSRs of bit-

widths between 2 and 100. When outputting the description of each LFSR, the generator 

programme provides constant Os 

or suitable signals to inputs as 

appropriate to model feedback 

taps, proper r s t _ v a l values to 

initialise to an even parity non-

zero word, and also cares for the 

inverted input and output values 

needed to accommodate the odd 

parity considered in this thesis, 

according to Figure 6.9. As an 

example, Figure 6.23 shows the 

VHDL description of the 4-bit 

LFSR. The 3-bit primitive trino-

end; mial chosen from [137] was 

d(x)=x^4-x4-l, thus determining 

library ieee; 
use ieee. st:d_logic_1164. all; 
encity LFSR_l_biL is 

generic (rsc_val : integer); 
pore (input: : in st:d_logic; 

feedback : in st:d_logic; 
shift_inp : in st:d_logic; 
ck : in st:d_logic; 
rsL : in sLd_logic; 
8hift_ouC : out: st:d_logic; 
out:_q : out std_logic) ; 

end LFSR_l_bit; 

architecture structure of LFSR_l_bit is 
signal internal_sig : std_logic; 

begin 
internal_sig <= input xor shift_inp xor feedback; 
out_q <= intemal_sig; 
process (ck, rst) 
begin 

if rst = '1' then 
if r3t_val = 0 then 
shift out <= '0'; 

2ise 
' 1' shift_out 

end if; 

elsif rising_edge(ck) then 

3hift_out <= internal_sig; 
end if; 

end process; 

F/gure 6.22 ; Tlhe LFSR i b i t ce// 
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library ieee; 
use ieee. 9t:d_logic_1164. all; 
entity LFSR_n4 is 

port (input : in std_logic_vecl:or(3 downto 0); 
ck : in scd_logic; 
rst : in std_logic; 
output : out std_logic_vector(3 downto 0)) 

end LFSR_n4; 
architecture structure of LFSR_n4 is 

signal shift out v : std_logic_vector(3 downto 0 
signal shift_inp_v : std_logic_vector(3 downto 0) ; 
signal feedback_v : std_logic_vector(3 downto 0) 
signal neg_in : std_logic; 
signal neg_out : std_logic; 

component LFSR_l_bit 
generic (rst_val : integer); 
port (input : in 8td_logic; 

feedback : in std_logic; 
5hift_inp : in std_logic; 
ck : in atd_logic; 
rst : in std_logic; 
shift out : out std_logic; 
out_q : out 8td_logic); 

end component; 
for all: LFSR_l_bit use entity work.LFSR_l_bit(3t ructure) 

begin 

feedback_v(0) <= shift_out_v(3); 
shift_inp_v(0) <= '0'; 
neg_in <= not input(0); 
LO: LFSR_l_bit generic map (1) port map (neg_in, fe edback v (0) , 

3hift_inp_v(0), ck, rst, shift_out_v(0), neg_out); 
output(0) <= not neg_out; 

feedback v(l) <= '0'; 
shift_inp v(l) <= shift_out_v(0); 
LI: LFSR l_bit generic map (1) port map (input(1), f eedback_ _v (1) , 

shift_inp_v(l), ck, rst, shift_out_v(l), output(1)); 

feedback v(2) <= shift_out_v(3); 
8hift_inp_v(2) <3 shift_out_v(l); 
L2: LFSR l_bit generic map (0) port map (input(2), f eedback_ _v(2} , 

shift_inp_v(2), ck, rst, shift_out_v(2), output(2)); 

feedback_v(3) <= ghift_out_v(3); 
shift_inp_v(3) <= shift_out_v(2); 
L3: LFSR l_bit generic map (0) port map (input(3), f eedback_ _v<3) , 

shift_inp_v(3), ck, rst, shift_out__v(3), output (3)); 
end; 

Rgure 6.23 .' 4-6/f LFSR 

the LFSR characteristic polynomial p(x)=x''+x^+x^+l. On the figure it can be confirmed 

that the description provided indeed implements p(x), that the LFSR is initialised to the 

"0011" value, and that the 0-bit position input and output are inverted. 

The last building block needed for the implementation of the controller self-checking 

schemes of this chapter, is the 1/n checker of [29]. As Figure 2.16 revealed, this is com-

posed of a (l/n)-to-(dual-rail) code translator, followed by a dual rail checker, imple-

mented either symmetrically if n is a power of 2, or using three dual-rail checkers in the 

configuration of Figure 2.18 otherwise. Clearly, the dual-rail checkers can perfectly well 

be the ones implemented in §5.3.3.3. The task at this point is, therefore, to implement the 
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code translator. For this purpose, it is enough to express equations (2.4) using the VHDL 

syntax. The equations aie repeated in the following, 

Jy - ^ , for all i ' / [ f - / ) = 1 (6.11a) 

, for alii = 0 (6.11b) 

library ieee; 
use ieee.8Cd_logic_1164.all; 
use work.neq_3_cell8.all; 

entity 0NE_H0T_CHK_ii8 is 
port (inl : in st:d_logic_vect:or(7 downto 0); 

output : out std_logic_vector(l downto 0)); 
end 0NE_H0T_CHK_n8; 

architecture structure of 0NE_H0T_CHK_n8 is 
signal J,K : std_logic_vector(2 downto 0); 
component NE0_3_n3 

port (inl : in std_logic_vector (2 downto 0). 
in2 : in std_logic_vector (2 downto 0), 

output : out std_logic_vector (1 downto 0)); 
end component; 

for all: NE0_3_n3 use entity work.NE0_3_n3(structure); 

Degin 
J(2) 

K ( 2 ) 

J(l) 
K(l) 

J(0) 
K ( 0 ) 

inl(O) or inl(2) or inl(4) or inl not 
not { 
not (inl(l) or in 
not (inl(O) or 
not (inl(3) or 

nl(3) or inl(5) or inl(7)) 
or inl(5) or inl(6)) 

nl(3) or inl(4) or inl(7)} 
nl(4) or inl(5) or inl(6)) 

not (inl(O) or inl(l) or inl(2) inl(7) 

The summation symbol in this context represents a logic OR; thus the inverse summations 

of equations (6.11) are in fact NOR functions. The reader is reminded that ( l<^n) is the 

f'th-position bit of the 

checker input, /(^) is the 

Ath-position bit of the bi-

nary representation of inte-

ger f, i n t e g e r i s calculated 

as ^=|"log2 , and the 

above two equations are 

defined Vy : l^'<p, giving a 

total of 2xj? equations. 

Every (^, ^ ) pair is then 

complementary, thus consti-

tuting a ̂ -pair dual-rail en-

coded word. The translator 

equations are analytically 

weU-defined and depend solely on the value of therefore, a relatively simple C++ pro-

gramme was written to automate the production of yet another VHDL p a c k a g e , com-

prising descriptions for the translator equations and corresponding translator-based 1/n 

checkers, with bit-widths between 2 and 100, excZwcfmg the problematic n=3 case. Once 

more, an extension of the library to values over 100 is perfectly feasible through simple 

modifications of the generator C++ programme. As an example, the VHDL description of 

the 1/8 to 3-pair dual-rail translator (Figure 2.17) and the resulting checker is shown in 

Figure 6.24. Notably, it is a particularly compact description. The equivalence of the trans-

lator assignment statements to equations (6.11) can easily be verified. Also observe the 

utilisation of the 3-pair dual-rail checker ( componen t NEQ_3_n3, produced as in 

§5.3.3.3). Figure 6.25 depicts a somewhat harder situation, where the 1/7 checker is im-

Nl: NEQ_3_n3 port map (J, K, output); 
end; 

F/gure 6.24; Y/8 7SC c/^ec/fer 
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library ieee; 
use ieee.std_logic_1164.all; 
use work.neq_3_cells.all; 

entity 0NE_H0T_CHK_n7 is 
port (inl : in std_logic_vector(6 downto 0); 

output : out std_logic_^vector(l downto 0) ) ; 
end 0NE_H0T_CHK_n7; 

architecture structure of 0NE_H0T_CHI^n7 is 
signal J,K : std_logic_vector(2 downto 0); 
signal intermediate_signals : std_logic_vector(3 downto 0); 
signal outl,out2 : std_logic_vector(l downto 0); 
signal nlinl/nlin2 : std_logic_vector(l downto 0); 
component NE0_3_n2 

port (inl : in std_logic_vector (1 downto 0); 
in2 : in std_logic_vector (1 downto 0) ; 

output : out std_logic_vector (1 downto 0)); 
end component; 

for all: NE0_3_n2 use entity work.NE0_3_n2 (structure); 

component NZQ_3_nl 
port (inl : in std_logic_vector (0 downto 0); 

in2 : in std_logic_vector (0 downto 0); 
output : out std_logic_vector (1 downto 0)); 

end component; 

for all: NEQ_3_nl use entity work.N2Q_3_nl (structure); 

begin 
J{2) <= not {inl(O) or inl(2) or inl(4) or inl(6)); 
K:(2) <= not (inl(l) or inl(3) or 
J{1) <= not (inl(l) or inl(2) or inl(5) or inl(6)); 
K(l) <= not (Inl(O) or inl(3) or inl(4)); 
J(0) <= not (inl(3) or inl(4) or inl(5) or inl(6)); 
K{0) <= not (inl(O) or Inl(l) or inl(2)); 

mini <- J(2) & J(0) ; 
nlin2 <= K(2) & K(0); 
Nl: NE0_3_n2 port map (nlinl, nlin2, outl); 

N2: NEQ_3_nl port map (J(l downto 1), K(1 downto 1), out2); 

intermediate_signals <= outl(l) & out2(l) & outl(O) & out2(0) 
N3: NEQ_3_n2 port map (intermediate__signals(3 downto 2), 

intermediate_signals(l downto 0), output); 
end; 

F/gure 6.25; The V/7 7SC c/7ec/ce/' 

plemented. Since 7 is not a power of 2, three instances of dual-rail checkers are used, con-

figured as in Figure 2.18. This is clearly reflected in the code of Figure 6.25. 

An interesting property of the particular translator descriptions is that they are purely be-

havioural and make no assumption whatsoever about how an RTL synthesis tool will ac-

tually implement them. In fact, a typical tool will take advantage of common terms in 

equations (6.11) to perform hardware sharing. For example, refer back to Figure 2.17, and 

consider translator outputs Ji and K2. Observe that both include the term X4+X3 in their re-

spective equations. A typical tool will notice this, and will share the corresponding logic 

gate appropriately. Note that this does not harm the TSC property of the checker. Indeed, 
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for any (Jj ,Kj) pair, the equations producing Jj and Ky cannot have common Xj inputs. Any 

logic sharing wHl therefore be between the expressions for Jj and a Kk, or Jj and a J^, with 

This means that there can be no logic sharing circumstances under which a single 

fault in a gate may result in a bit flip in both Jj and Kj. Thus the fault secure property is 

preserved. 

Using the cells described in this subsection, the control path self-checking schemes can be 

implemented. The approach taken in this work, is to output the controller self-checking 

block to a separate file, as a separate VHDL e n t i t y (during the synthesis post process-

ing step mentioned at the beginning of this subsection). Clearly, this entity can be totally 

constructed using conventional parity checkers, LFSRs, 1-hot checkers, and dual-rail 

checkers as applicable per situation. Then the normal MOODS output file, already sup-

plemented by the data path self-checking techniques of chapter 5, is fiirther augmented 

with an instantiation of the control path checker, as a component within the overall RTL 

VHDL netlist, fed by the control signals. An additional 1-pair dual-rail checker is further 

used to compact the responses from the datapath and the controller self-checking schemes, 

and to produce the overall system health indication to the 2-bit output port already intro-

duced in chapter 5. This way, the final HLS output may as applicable per situation be 

based on the following files: 

« the usual RTL netlist 

» the control path checker 

» the nonnal MOODS ceU library (§3.2.7) 

» the fault-secure comparator library (§5.3.3.3) 

» the dual-rail checker library (§5.3.3.3) 

" the parity checker library 

" the LFSR library 

» the 1/n checker library 

For example, a design with both fiill datapath self-checking and any parity-based control-

ler self-checking will depend on a total of 7 files (all of the above except the 1/n checker 

library). 

Finally, note that as well as enabling the implementation of the self-checking schemes in 

the context of this work, the development of a self-checking in6astructure environment in 
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the form of synthesisable VHDL components has research value as such (refer for exam-

ple to [47]). 

6.4.3 Facilitating Intrinsically Secure states 

Although as akeady said the controller self-checking problem is not relevant to the syn-

thesis tasks, it would be desirable to implement a mechanism vyithin the synthesis process 

to direct the system towards creating more Intrinsically Secure states than it normally 

would. Such a mechanism would clearly allow experimentation with the concept of IS 

states, and evaluate their usefukiess in practice. 

Refer to the DFG of Figure 6.26. In 6.26a, two control states are shown; one operation is 

scheduled at each one of them. The usual notations (§3.1.1) are used to signify that they 

are assigned to the same functional module. Figure 3.26b depicts a typical situation after 

duplication self-checking insertion and subsequent optimisation. The design is well opti-

mised, with comparisons chained within the same CSs as the functional and redundant 

computations, but none of the control states is Intrinsically Secure. This author's design 

experience suggests that most designs tend to end up in such situations if the combination 

of simulated annealing and tailored heuristics explained in chapter 5 is applied. 

Figure 3.26c depicts an alternative situation. Operation +1 has been moved one CS earlier, 

and this has allowed +2 to move up to the same CS as operations +1' and !=1. This last 

move would not have been possible i f+1 had not moved, since +1 and +2 are assigned to 

the same functional unit Al . This situation is particularly desirable for the experimental 

purposes of this chapter, since both CS2 and CS3 of Figure 6.26c are in fact Intrinsically 

Secure. The emergence of IS states can therefore be promoted by a synthesis heuristic that 

would move the design &om situations such as that of Figure 6.26b to situations such as 

Figure 6.26c. 

At this point, recall the set of transformations available within the standard MOODS suite 

(§3.2.3). Focus especially on the "merge fork and successor" TF8, and on the "unshare 

single instruction from control state" TF21 (Table 3.1) transformations. Notice that the 

application of TF21 on operation +1' of CSl in Figure 6.26b will create a dedicated con-

trol step for the operation. Data dependency between +1' and !=I will then necessarily 
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Figure 6.26. Facilitating Intrinsically Secure states 
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create another CS, this time dedicated to comparison !=1. If the same transformation is 

applied to +2% then two new CSs wiU similarly be created, this time for +2' and !=2. This 

intermediate situation is depicted in Figure 6.26d. If control steps CS3 and CS4 are now 

merged using transformation TF8, then components CI and A1 will both be active during 

the new merged state; this means that operation +1, ako allocated to A1 will no more be 

allowed to move to the same control step as comparison !=1, since A1 will be occupied 

during that particular control step. Hence, this new state will aWays be Intrinsically Se-

cure according to Definition 6.1, since t h e ( + 1 ) and (!=1) parts of the 

self-checking scheme composed of+1,+!' ,!=!, will always be scheduled for different con-

trol steps. Subsequent optimisation using for example one of the heuristics of §3.2.5.2 will 

typically lead to the desirable situation of Figure 6.26c. Notice the combination of trans-

formations that allowed the move : first all redundant operations were extracted from the 

shared control states using TF21, then control states where comparisons were scheduled, 

were merged with their successors using TF8. Of course, the underlying assumption 

throughout this explanation is that the "blocking" unit A1 cannot be unshared; it would 

therefore be sensible not to apply IS state creation withija the simulated annealing block, 

but rather after it, and before the tailored heuristics. 

Based on the above, the on-line test synthesis approach presented in §5.3.3.2 can be 

slightly amended to produce more Intrinsically Secure states, as follows : 

» Step 1 : apply simulated annealing as in §5.3.3.2 

» Step 2 : traverse all control steps, identify those that have all three parts (functional, 

redundant, and comparison operations) of self-checking schemes scheduled at them, and 

apply TF21 to the redundant operation 

» Step 3 : repeat Step 2 until no more such CSs can be found 

" Step 4 : apply TF8 to all control steps where fault-secure comparison operations have 

been scheduled 

" Step 5 : repeat Step 4 until no more such CSs can be found 

" Step 6 : apply tailored heuristics as in §5.3.3.2 

Relatively short C-H- functions implementing Steps 2 and 4 were provided to the MOODS 

system, together with suitable MOODS commands to enable tke designer to use them 

through the MOODS interactive command prompt (Appendix A). Steps 3 and 5 are not 

automated, so it is left to the designer to make sure no more suitable CSs can be identified, 

or even decide to move to the tailored heuristics optimisation step prematurely. 
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Clearly, the procedure described here is not efficient as far as synthesis is concerned. In-

deed, it would be better and faster for the design space exploration process to reach Figure 

6.26c automatically, without having to go through 6.26b, also relying on user interaction 

to pass through 6.26d. However, bear in mind that the goal of this subsection is not to give 

an efficient "high-level synthesis for Intrinsically Secure states" approach; rather, it is to 

jofMg/zow facilitate the emergence of said states, for the sole purpose of experimental 

evaluation and comparisons, as will be made clear in the following §6.4.4. In that sense, 

the above rudimentary step-wise approach serves its purpose adequately. 

As a concluding remark, it is to be noted that for the implementation purposes of this 

chapter. Intrinsically Secure states are considered according to the updated Definition 6.1', 

with the threshold value ^ 7 as §6.1.3.2 suggests. 

6.4.4 Experimental results 

This subsection presents the experimental results obtained on the lines of the detailed 

analysis of §6.1, §6.2, §6.3, and the particular MOODS implementation details of this cur-

rent section. In the following tables, a "Version 1" realisation refers to the design obtained 

by the usual synthesis process of chapter 5, given the user constraints, and additionally 

utilising the self-checking cells described in §6.4.2 to provide controller self-checking. 

"Version 2" signifies that the heuristic procedure of §6.4.3 has fiirther been applied, thus 

in principle leading to more IS states. Results are given both for ASIC and FPGA imple-

mentations, for as many controller self-checking schemes as applicable per situation. As in 

chapter 5, dedicated technology library files were provided to the system for each different 

target technology. The behavioural synthesis RTL output was fed to the Mentor Graphics 

LeonardoSpectrum [132] RTL synthesis tool (version 2002e.l6) in the case of ASIC im-

plementation. When FPGA technology was targeted, the Synplicity Synplify [124] tool 

(version Pro 6.2) was used instead, while the design was further implemented using Xilinx 

Design Manager version 3.1i [125]. In both cases, the tables present results reported 6om 

the low level tools (Spectrum and Design Manager respectively); hence, they correspond 

to the most realistic area and delay estimations that can be obtained. 
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Tables 6.2 - 6.23 summarise all experimental results. The first and second columns in aU 

tables denote the self-checking strategy applied to the data path and the controller respec-

tively. Where applicable, the second columns also mention the number of IS states identi-

fied. The next three columns give the size and performance statistics of the particular im-

plementations, in terms of logic gates used or FPGA slices occupied (depending on tech-

nology) as a merit of the design size, and number of clock cycles and maximum achiev-

able frequency in MHz as a merit of the design performance. Finally, the last two columns 

provide the area overhead and speed penalty associated with including self-checking to the 

considered designs. In designs where both datapath and controller self-checking have been 

applied, the area overhead percentage reported accounts for both. This simply reflects the 

fact that, since the data path generally occupies most of the chip area, it is unlikely that a 

designer would want controller self-checking solely, but he or she would rather opt for a 

combined solution. 

Tables 6.2 and 6.3 show the results obtained for a Version 1 and a Version 2 (respectively) 

implementations of the Tseng design, both cases with the same synthesis priorities and 

targeting the same ASIC technology. The first row in both tables shows the original de-

sign. All overhead percentages in the tables are always given with respect to this untesta-

ble version. A design with a self-checking data path is given immediately afterwards, fol-

lowed by combinations of both datapath and controller self-checking, the latter alterna-

tively taking all six forms described in this chapter (or as many as applicable in any given 

design). Table 6.2 highlights CTRL_6 as the cheapest of the six techniques among the 

Version 1 implementations, with a 58.4% overall hardware overhead. Also notice that 3 

out of 5 states in the design are identified as IS, meaning that the majority of bidirectional 

controller faults will be detected, together with the unidirectional ones, providing almost 

complete confidence even in the most hostile environment. Finally, the degradation in the 

maximum firequency found in chapter 5 is naturally encountered here as well. Table 6.3 

shows that CTRL_6 is also the cheapest approach among the Version 2 type designs. The 

IS states identified are 3 again, while compared to Table 6.2 the implementation is clearly 

more expensive, but a side effect of the heuristic of §6.4.3 is that higher frequency can 

now be achieved (-42MHz compared to -MMHz). This is a result of breaking chains of 

functional - redundant - comparison operations oiiginally scheduled for the same CS. The 

Table 6.3 results would therefore be preferable in a high frequency requirement scenario. 
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data path 
testing 

control path 
testing 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
fqates %) 

speed penalty 
(cycles %) 

- - 1768 4 54.6 N/A N/A 
Inversion - 2783 5 14.9 57.4 25.0 
inversion CTRL 1 2842 5 14.3 60.7 25.0 
inversion CTRL 2 2864 5 14.3 62.0 25.0 
inversion CTRL 3. 3 IS 2833 5 14.3 60.2 25.0 
inversion CTRL 4, 3 IS 2857 5 14.3 61.6 25.0 
inversion CTRL 5 2808 5 14.3 58.8 25.0 
inversion CTRL 6, 3 IS 2801 5 14.3 58.4 25.0 
TaA/e 6.2; rseng 8ef7c/)maf* \/ers/on V synfhes/s resu/fs (Targef Techno/ogy/Vcafe/ CMOS 0.35 

syn(/)es;a pn'o/vY/es .' ama /7/g/i, de/ay /ow, mode/afe c/oc/c pen'od ya/ue 

data path 
testing 

control path 
testing 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(qates %) 

speed penalty 
(cycles %) 

- - 1768 4 54.6 N/A N/A 
inversion - 2915 5 42.3 64.9 25.0 
inversion CTRL 1 3131 5 41.9 77.1 25.0 
inversion CTRL 2 3153 5 41.9 78.3 25.0 
inversion CTRL 3, 3 IS 3125 5 41.9 76.8 25.0 
inversion CTRL 4, 3 IS 3148 5 41.9 78.1 25.0 
inversion CTRL 5 3097 5 41.8 75.2 25.0 
inversion CTRL 6. 3 IS 3091 5 41.9 74.8 25.0 
Table 6.3 : Tseng Benchmark Version 2 synthesis resuits (Target Technology Alcatel CMOS 0.35 VLSI), 

synf/)es;s pno/rf/es.' area de/ay /oi% moderafe c/oc/c pen'ocf va/ue 

Tables 6.4 and 6.5 present corresponding results for the Diifeq benchmark. CTRL_6 is 

again bighhghted as the most economical solution in both, while again Version 2 experi-

ences a marginally higher area overhead, in conjunction with two additional IS states. In-

terestingly, the IS-state facilitating heuristic combined with the standard MOODS tailored 

heuristic gives rise to a Version 2 design that is comparatively faster than its Version 1 

counterpart (saving 3 states in the critical path). Given the modest additional overhead, the 

CTRL 6 design of Table 6.5 is likely to be the preferred choice for this benchmark, espe-

cially if speed is a particularly critical concern. 

Notice that both designs given so far have had controller self-checking versions utilising 

data path 
testing 

control path 
testing 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(gates %) 

speed penalty 
(cycles %) 

- - 3679 16 39.6 N/A N/A 
inversion - 6075 25 39.6 65.1 56.3 
inversion CTRL 1 6400 25 37.8 74.0 56.3 
inversion CTRL 2 6424 25 37.8 74.6 56.3 
inversion CTRL 3, 5 IS 6361 25 37.8 72.9 56.3 
inversion CTRL 4, 5 IS 6377 25 37.8 73.3 56.3 
inversion CTRL 5 6246 25 37.8 69.8 56.3 
inversion CTRL 6. 5 IS 6237 25 37.7 69.5 56:3 

Table 6.4 : DIffeq Benchmark Version 1 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI), 
synthesis priorities : area high, delay low, moderate clock period value 

data path 
testing 

control path 
testing 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(gates %) 

speed penalty 
(cycles %) 

- - 3679 16 39.6 N/A N/A 
inversion - 6143 22 39.6 67.0 37.5 
inversion CTRL 1 6460 22 37.7 75.6 37.5 
Inversion CTRL 2 6480 22 37.7 76.1 37,5 
inversion CTRL 3, 7 IS 6404 22 37.7 74.1 37.5 
Inversion CTRL 4. 7 IS 6428 22 37.7 74.7 37.5 
inversion CTRL 5 6325 22 37.6 71.9 37.5 
inversion CTRL 6, 7 IS 6307 22 37.6 71.4 37.5 

Table 6.5 : Diffeq Benchmark Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI), 
synf/)es/s pnon'&'es ; area /7fgh, de/ay /oyy, moderafe c/oc/f pen'od v̂ a/ue 
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the multi-process schemes CTRL_2 and CTRL_4. In fact, both designs are essentially 

single-process ones, but they also include short processes, solely responsible for the updat-

ing of system primary outputs. These processes are so short that indeed the hardware in-

troduced to implement "dummy" processes (Figures 6.5 and 6.8) is more than the savings 

achieved through using a single parity checker; hence, in all tables so far CTRL_2 and 

CTRIL_4 are more expensive than CTRL l and CTRL_3 respectively (recall the predic-

tion of §6.2.6 that in order for hardware savings to be noticeable and significant a degree 

of parallelism of the order of 10 would be needed). 

The case is different in the QRS benchmark (Tables 6.6 and 6.7). Here primary outputs are 

updated within the same process as the rest of the operation, therefore CTRL_2 and 

CTRL_4 are not applicable; thus the tables have two rows less. The familiar (from chapter 

5) phenomenon of self-checking designs that are faster than the untestable ones can be ob-

served here, CTRL_6 is once more the cheapest choice in both cases. Notably, Version 2 

in Table 6.7 exceeds 100% in overhead when combined self-checking is applied; it is 

therefore expected that the Version 1 options of Table 6.6 would appear preferable. 

data path control patti area (gates) speed (cycles) maximum hardware overhead speed penalty 
testing testing frequency (MHz) (gates %) (cycles %) 

- - 7343 56 43.2 N/A N/A 
duplication - 13278 51 23.4 80.8 -8.9 
duplication CTRL 1 13748 51 23.4 87.2 -8.9 
duplication CTRL_3,11 IS 13648 51 23.4 85.9 -8.9 
duplication CTRL 5 13442 51 23.4 83.1 -8.9 
duplication CTRL_6,11 IS 13417 51 23.4 82.7 -8.9 

Table 6.6 : QRS Benchmark Version 1 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI), 
syn(/7es/s pn'orrf/eaa/ea /ow, cfe/ay h/g/?, sfncf c/oc/c p e n o d va/ue 

data path 
testing 

control path 
tesUnq 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(gates %) 

speed penalty 
(cycles %) 

- - 7343 56 43.2 N/A N/A 
duplication - 14624 50 25.6 99.2 -10.7 
duplication CTRL 1 15288 50 25.0 108.2 -10.7 
duplication CTRL 3, 18 IS 15154 50 25.0 106.4 -10.7 
duplication CTRL 5 14985 50 24.9 104.1 -10.7 
duplication CTRL_6, IBIS 14943 50 25.0 103.5 -10.7 

Table 6.7; QRS Benchmarl< Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI), 
syn#7es/s p/fo/Vf/'es; ansa /ow, de/ay /t/g/?, sfr/cf c/oc/c penocf va/ue 

Table 6.8 overviews the experiments conducted for an 8-bit Viterbi decoder. All opera-

tions in this design are of low bit width; no Intrinsically Secure states are therefore consid-

ered, and the corresponding schemes CTRL_3, CTRL 4 and CTRL_6 are not apphcable. 

The design is highly parallel (8 concurrent processes). Comparison of the CTRL l and 

CTRL_2-based solutions now verifies the hardware savings associated with moving &om 

the former to the latter (67.8% overhead reduced to 63.5%). However, the solution based 

on 1/n checking is again the cheapest with 51.7%. 
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data path 
testing 

control path 
tastinq 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(qates %) 

speed penalty 
(cycles %) 

- - 3262 5 106.9 N/A N/A 
duplication - 4734 7 127.4 45.1 40.0 
duplication CTRL 1 5475 7 116.4 67.8 40.0 
duplication CTRL 2 5333 7 116.9 63.5 40.0 
duplication CTRL 5 4947 7 115.6 51.7 40.0 

7ab/e 6.8 .8-b/f v/ferb/ decoder syn(/3es/s msu/fs (Targef Tec/ino/ogyzA/cafe/ CMOS 0.35 W_S// 
synthesis priorities : area high, delay low, moderate clocl< period value 

Tables 6.9 and 6.10 present corresponding results for the elliptical filter design. The Ver-

sion 1 datapath-only self-checking realisation experiences an overhead of 95.7%. Natu-

rally, one would reject this option and change the specifications in the search of a better 

solution on the lines of chapter 5; however, for the experimental purposes of this work it is 

interesting to add a controller self-checking scheme and observe if this will raise the cost 

to more than 100%. In fact. Table 6.9 reveals that only CTRL 2 produces a cost of exactly 

100%, while all other techniques remain below that line, with CTRL_6 once again the 

least expensive. Version 2 in this case offers both a particularly expensive, and slower de-

sign; hence, the 4 additional IS states it produces are unlikely to appear tempting. 

data path 
testing 

control path 
testing 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(gates %) 

speed penalty 
(cycles %) 

- - 3697 9 35.7 N/A N/A 
duplication - 7236 12 21.4 95.7 33.3 
duplication CTRL 1 7374 12 21.3 99.5 33.3 
duplication CTRL 2 7393 12 21.3 100.0 33.3 
duplication CTRL 3, 6 IS 7328 12 21.4 98.2 33.3 
duplication CTRL 4, 6 IS 7349 12 21.4 98.8 33.3 
duplication CTRL 5 7292 12 21.4 97.2 33.3 
duplication CTRL 6, 6 IS 7283 12 21.2 97.0 33.3 

7ab/e 6.9 ; EAp Senchma:* Vers/on f synfAes/s resu/fs (Targef Techno/ogy/4/cafe/ CMOS 0.35 \/LS/J, 
synf/?es/s pnof#;es; area de/ay mode/afe c/oc/c pen'od va/ue 

data path 
testing 

control path 
testing 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hiardware overhead 
(gates %) 

speed penalty 
(cycles %) 

- - 3697 9 35.7 N/A N/A 
duplication - 7897 14 26.6 113.6 55.6 
duplication CTRL 1 8247 14 24.0 123.1 55.6 
duplication CTRL 2 8258 14 24.0 123.4 55.6 
duplication CTRL_3,1015 8166 14 24.1 120.9 55.6 
duplication CTRL_4, 10 IS 8187 14 24.1 121.4 55.6 
duplication CTRL 5 8154 14 24.1 120.6 55.6 
duplication CTRL_8. 10 IS 8140 14 24.1 120.2 55.6 

Table 6.10 : Ellip Benchmark Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI), 
synthesis priorities : area high, delay high, moderate clock period value 

Tables 6.11 and 6.12 show the results obtained for the CCD benchmark design. Both ver-

sions were considered; however, none of them included any IS states. Clearly, the heuris-

tic of §6.4.3 failed to create any such states. Interestingly, however, it gave rise to a mar-

ginally cheaper design. Further, the design is strictly single-process. This limits the 

choices of controller self-checking techniques to only CTRL 1 and CTRL_5, with the lat-

ter appearing cheaper in both versions. It can be observed that the CTRL_5 choice of the 

Version 2 design is the cheapest overall, and notably achieves a maximum frequency 

value of 45MHz, that is, even higher than the untestable design itself Version 1 might be 

preferable if the shorter (by a single state) critical path it offers is of any significance in the 
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data path 
testing 

control path 
testing 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(gates %) 

speed penalty 
(cycles %) 

- - 1022 9 42.0 N/A N/A 
duplication - 1471 8 40.3 43.9 -11.1 
duplication CTRL 1 1559 8 40.3 52.5 -11.1 
duplication CTRL 5 1502 8 43.7 47.0 -11.1 

7aA/e 6.YY .GCO 8enc/?ma;̂  Vers/on f synfAes/s resu/fs (Targef 7ec/]no/ogy/\/cafe/ CMOS 0.35 VLS/̂ , 
synthesis priorities : area high, deiay low, moderate clock period value 

data path 
testing 

control path 
testing 

area (gates) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(gates %) 

speed penalty 
(cycles %) 

- - 1022 9 42.0 N/A N/A 
duplication - 1455 9 45.1 42.4 0.0 
duplication CTRL 1 1563 9 45.1 52.9 0.0 
duplication CTRL 5 1499 9 45.0 46.7 0.0 

7aA/e 6. Y2 .GCO SencAma/* l/ers/on 2 synf/?es/s msu/fs (Targef Tiachno/ogy /\/cafe/ CMOS 0.35 
synAes/s pn'ofA'es; a/ea cfe/ay /ow, mocfe/afe c/ocfc pen'od va/ue 

context of the considered project. 

An interesting observation of the experiments so far, is that in all of them, 

OM j-Aof c/zecA:mg are c/ieoper fAoM fAezr cAecA:zMg couMfe/parfa. Of course, this 

does not invalidate the fact that parity is indeed in principle the cheapest among error de-

tecting codes; what makes the above parity schemes comparatively expensive is the appli-

cation of the LFSRs in the checkers (Figure 6.9), to provide the self-testing property. In 

other words, it appears that parity checking is not the best solution for the particular prob-

lem, unless strict adherence to self-checking theory could be abandoned. Before endorsing 

this rather premature conclusion, it is instructive to investigate the effect of target technol-

ogy. 

In the following Tables 6.13 - 6.23, the above experiments are effectively repeated, this 

time targeting Xilinx Virtex FPGA devices [106]. As the experiments of chapter 5 have 

also illustrated, designs targeting this technology are less straightforward than the respec-

tive ASIC targeting ones, and are particularly hard to assess at any design stage other than 

the final implementation, since the amount of FPGA resources utilised greatly depends on 

the low level synthesis tools and the packing algorithms they employ. 

Tables 6.13 and 6.14 present both versions of the Tseng benchmark targeting the 

XCVIOOO Xilinx FPGA component. Comparing with Tables 6.2 and 6.3, one can notice 

that the designer requirements provided to MOODS are the same as in the VLSI targeting 

experiments. This is actually true for all experiments hereafter. The results, however, are 

often different. In the particular case of Table 6.13, first of all notice that, in contrast to 

Table 6.2, no IS states are identified for the considered benchmark. Therefore CTRL_3, 

CTRL_4 and CTRL_6 are meaningless, and CTRL_5 is the cheapest solution. The maxi-



p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 244 

mum frequency is hugely degraded; this is true for Version 2 (Table 6.14) as well, once 

more in contrast with its VLSI counterpart (Table 6.3). 

data path control path area (slices) speed (cycles) maximum hardware overhead speed penalty 
testlnq testing frequency (MHz) (slices %) (cycles %) 

- - 127 4 43 N/A N/A 
inversion - 193 5 4 52.0 25.0 
inversion CTRL 1 198 5 4 55.9 25.0 
inversion CTRt. 2 199 5 4 56.7 25.0 
inversion CTRL 5 193 5 4 52:0 25.0 

7a6/e 6 . f 3 ; Tseng BencAma;* \/ers/on Y synfAes/snsgu/fs (Targef 7ec/)no/ogy)(7//nxXCW000FPG/^^, 
synfAes/s pnofAes; area cfe/ay /ow, mocferafe c/oc/c pen'ocf ya/ue 

data path 
testing 

control path 
tesdnq 

area (slices) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penalty 
(cycles %) 

- - 127 4 43 N/A N/A 
inversion - 222 5 4 74.8 25.0 
inversion CTRL 1 237 5 4 86.6 25.0 
inversion CTRL 2 236 5 4 85.8 25.0 
inversion CTRL 3, 3 IS 228 5 4 79.5 25.0 
inversion CTRL 4, 3 IS 230 5 4 81.1 25.0 
inversion CTRL 5 226 5 4 78.0 25.0 
inversion CTRL 6, 3 IS 230 5 4 81.1 25.0 

Table 6.14 : Tseng Benchmark Version 2 synthesis resuits (Target Technology Xilinx XCV1000 FPGA), 
synffies/s pn'onWes; area A/gA, de/ay /ow, modemfe c/oc/( penod ya/ue 

Tables 6.15 and 6.16 are devoted to the Diffeq benchmark. Two facts are particularly no-

ticeable in these tables. Firstly, for the first time parity-based solutions are cheaper than 

1/n-based ones (CTRL_4 in Table 6.15 and CTRL_3 in 6.16). Secondly, Version 2 here 

not only imposes a higher overhead, but also fails to achieve its main goal, since it creates 

one Intrinsically Secure state /gjj than Version 1. This is not very surprising, since the 

heuristic of §6.4.3 was based on a simple observation and did not offer any comprehensive 

analysis or sophisticated synthesis procedure; experiments up to now have shown that in 

principle it directs designs towards more IS states, but failures are possible. In contrast, in 

data path 
testing 

control path 
testing 

area (slices) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penalty 
(cycles %) 

- - 260 18 9 N/A N/A 
inversion - 439 23 6 68.8 27.8 
inversion CTRL 1 457 23 6 75.8 27.8 
inversion CTRL 2 456 23 6 75.4 27.8 
inversion CTRL 3, 8 IS 455 23 6 75.0 27.8 
inversion CTRL 4, 8 IS 453 23 5 74.2 27.8 
inversion CTRL 5 460 23 6 76.9 27.8 
inversion CTRL 6. 8 IS 454 23 5 74.6 27.8 

Tab/e 6 . f 5 0 / # e g Benchmarfc Vers/on f synfhes/s resu/fs (Targef 7echno/ogyXi/fnxXCV800 
synthesis priorities : area high, delay low, moderate clock period value 

data path 
testing 

control path 
testing 

area (slices) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penalty 
(cycles %) 

- - 260 18 9 N/A N/A 
inversion - 450 23 8 73.1 27.8 
Inversion CTRL 1 466 23 8 79.2 27.8 
inversion CTRL 2 466 23 7 79.2 27.8 
inversion CTRL 3, 7 IS 462 23 7 77.7 27.8 
inversion CTRL 4, 7 IS 464 23 8 78.5 27.8 
inversion CTRL 5 469 23 8 80.4 27.8 
inversion CTRL 6, 7 IS 467 23 7 79.6 27.8 

7"a6fe G.fG : OiYfeq Benchmark Version 2 synAes/s resuffs (Targef Technology XiftnxXCVSOO FPGAj, 
synf/?es/s pn'onY/es.- area A/gh, de/ay /otv, moderate c/oc/( penod ya/ue 
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the QRS benchmark experiments presented in the following Tables 6.17 and 6.18, it can 

be noticed tliat Version 2 produces a total of 24 IS, accounting for more than a third of all 

states in the design. CTRL_3 is the cheapest option in both versions; Version 1 generally 

occupies less slices, but Version 2 is faster, primarily because of allowing somewhat 

higher frequencies, but also because of a slightly shorter critical path (1 CS). It is worth-

while to compare Tables 6.17 and 6.18 with the VLSI-targeting equivalents 6.6 and 6.7. 

Apart from the natural difference in frequency values, further differences in the number of 

clock cycles, the overhead percentages and the most economical controller self-checking 

technique stress the effect of target technology and the importance of providing for both 

ASIC and FPGA solutions within high-level synthesis, to accommodate a wider range of 

designer needs. 

data path 
testing 

control path 
testing 

area (slices) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penally 
(cycles %) 

- - 591 69 17.4 N/A N/A 
duplication - 837 67 1.9 41.6 -2.9 
duplication CTRL 1 944 67 2.0 59.7 -2.9 
duplication CTRL_3,19 IS 833 67 2.0 57.9 -2.9 
duplication CTRL 5 956 67 1.9 61.8 -2.9 
duplication CTRL_6, 19 IS 944 67 2.2 59.7 -2.9 

Table 6.17: QRS Benchmarl< Version 1 synthesis resuits (Target Technology Xilinx XCV1000 FPGA), 
synthesis priorities : area low, delay high, strict clock period value 

data path 
testing 

control path 
testinq 

area (slices) spaed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penalty 
(cycles %) 

- - 591 69 17.4 N/A N/A 
duplication - 905 66 3.8 53.1 -4.3 
duplication CTRL 1 994 66 3.2 68.2 -4.3 
duplication CTRL 3, 24 IS 983 66 3.3 66.3 -4.3 
duplication CTRL 5 1001 66 3.8 69.4 -4.3 
duplication CTRL_G, 24 IS 992 66 3.8 67.9 -4.3 

Table 8.18 : QRS Benchmark Version 2 synthesis resuits (Target Technology Xilinx XCV1000 FPGA), 
syntf7es/s pnof# /es ; area /ow, de/ay sWcf doc/c pen'od va/ue 

Table 6.19 is dedicated to the 8-bit FPGA-based Viterbi decoder. The overhead percent-

ages are always well above 100%, with a significant delay penalty as well. These over-

heads are in agreement with the previous observation on Table 5.19, that the particular 

benchmark is not suitably accommodated by duphcation testing. What can be kept out of 

this expernnent though is that the CTRL 2 scheme provides the least expensive solution 

for the first time in this experimentation. 

data path control path area (slices) speed (cycles) maximum hardware overhead speed penalty 
testinq testinq frequency (MHz) (slices %) (cycles %) 

- - 174 4 38 N/A N/A 
duplication - 447 7 31 156.9 75.0 
duplication CTRL 1 517 7 29 197.1 75.0 
duplication CTRL 2 508 7 31 192.0 75.0 
duplication CTRL 5 541 7 30 210.9 75.0 

Tab/e 6 . ^ 9 d e c o d e r synfAes/s resu/fs (Targef 7ec/ino/ogyX///nxXC\/fOOO FPG,4J, 
synfhes/g pn'onf/'eg ; area A/g/?, de/ay /ow, moderafe c /ock p e n o d va/ue 

The Elliptical filter design also experiences very high overheads in this technology (Tables 

6.20 and 6.21). Probably the most interesting point in these results is the disagreement be-

tween Versions 1 and 2 regarding the most efficient and economical realisation (CTRL_6 
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data path 
testing 

control path 
testing 

area (slices) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penalty 
(cycles %) 

- - 229 10 5.0 N/A N/A 
duplication - 492 17 4.2 114.8 70.0 
duplication CTRL 1 525 17 3.9 129.3 70.0 

1 duplication CTRL 2 528 17 4.1 130.6 70.0 
duplication CTRL_3, tOIS 523 17 4.3 128.4 70.0 
duplication CTRL_4,10 IS 523 17 4.3 128.4 70.0 
duplication CTRL 5 530 17 4.2 131.4 70.0 
duplication CTRL_6,10 IS 523 17 4.5 128.4 70.0 

Table 6.20: Ellip Benchmark Version 1 synthesis results (Target Technology Xilinx XCV1000 FPGA), 
synthesis priorities : area high, delay high, moderate clock period value 

data path 
testing 

contnal path 
testing 

area (slices) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penalty 
(cycles %) 

- - 229 10 5,0 N/A N/A 
duplication - 582 18 2.3 154.1 80.0 
di^llcation CTRL 1 605 18 2.3 164.2 80.0 
duplication CTRL 2 607 18 2.3 165.1 80.0 
duplication CTRL 3,14 15 595 18 2.2 160.0 80.0 
duplication CTRL_'t, MIS 594 18 2.3 159.4 80.0 
duplication CTRL 5 615 18 2.3 168.6 80.0 
duplication CTRL 6, 14 IS 600 18 2.3 162.0 80.0 

Table 6.21 : Ellip Benchmark Version 2 synthesis results (Target Technology Xilinx XCV1000 FPGA), 
synfAes/s pn'onf/es; a/iea A/gA, de/ay A/gA, modefafe c/oc/c pen'od va/ue 

in Version 1, CTRL 4 in Version 2). Note also that the majority of states in Version 2 

have been made Intrinsically Secure (14 out of 18). 

Finally, Tables 6.22 and 6.23 give the FPGA results for the CCD benchmark. Version 2 

(Table 6.23) succeeds in creating 3 Intrinsically Secure states (in contrast to Table 6.12), 

but utilising them does not save hardware (indeed, CTRL l and CTRL_3 give the same 

overhead). 

data path 
testing 

control path 
testing 

area (slices) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penalty 
(cycles %) 

- - 85 10 45 N/A N/A 
duplication - 124 9 34 45.9 -10.0 
duplication CTRL 1 131 9 33 54.1 -10.0 
duplication CTRL 5 132 9 33 55.3 -10.0 

Table 8.22 :GCD Benchmark Version 1 synthesis results (Target Technology Xilinx XCV1000 FPGA), 
synthesis priorities : area high, delay low, moderate clock period value 

data path 
testing 

control path 
testing 

area (slices) speed (cycles) maximum 
frequency (MHz) 

hardware overhead 
(slices %) 

speed penalty 
(cycles %) 

- - 85 10 45 NVA N/A 
duplication - 140 11 35 64.7 10.0 
duplication CTRL 1 148 11 35 74.1 10.0 
duplication CTRL 3, 3 IS 148 11 35 74.1 10.0 
duplication CTRL 5 153 11 33 80.0 10.0 
duplication CTRL 6, 3 IS 154 11 33 81.2 10.0 

ra6/e 6.23 .GCO SencAmarfc \/ers/on 2 synfAes/s resu/fs CTa/gef 7ecAno/ogyX//m/XCyfOOO 
synthesis priorities : area high, delay low, moderate clock period value 

The FPGA-targeting experiments have shown that in such technology, no definite control 

path self-checking technique can be favoured a priori; it is important to conduct a number 

of experiments and choose the most appropriate for any given case. Of course, it can be 

argued that the number of occupied slices does not make a real difference in the price of 

the design, as long as it fits into the target FPGA part. If a designer adopts such an ap-

proach, then the preferable designs are probably different from the less resource-

occupying ones highlighted in the tables above. For example, if maximum fault detection 
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capabilities in an extremely hostile environment is required, then CTRL_6 in Table 6.21 

may be preferable over CTRL_4, since it will detect all unidirectional faults due to 1-hot 

checking, and in addition all bidirectional faults affecting any of the 14 (out of a total of 

18) states - in practice, the vast majority of bidirectional faults. 

6.4.5 Discussion 

As mentioned in the discussion of the datapath self-checking experiments (§5.3.3.6), nu-

merical comparisons with previously presented controller / datapath self-checking solu-

tions are not always rehable, mainly due to differences in target technology. The situation 

is even more complicated in the controller self-checking problem of this chapter, because 

only two previous publications [23, 134] acknowledge the need to provide a dedicated 

self-checking scheme for the control path. Even then, [23] mentions parity checking, but 

does not elaborate on how to achieve the totally self-checking goal and does not quantify 

the proportional contribution of the control path self-checking resources to the overall 

hardware overhead. [134] proposes the expectably expensive solution of full hardware du-

plication and once more does not report on the relative overhead due to the controller 

checking hardware. Other publications referring to FSM self-checking by means of a vari-

ety of EDCs [38, 133, 37, 22] are not relevant, because the FSMs they target do not con-

trol a sequential datapath (i.e. the right-hand side part of the architecture of Figure 6.1 is 

entirely missing). Therefore the architectures they address are different from the one con-

sidered here. The conclusion is that there is no published data that the results of this work 

can be compared against; in fact, the work in this chapter is the first to comprehensively 

address all aspects of the control path self-checking problem in a controller / datapath 

hardware implementation. In spite of the absence of material for comparison, some com-

ments evaluating the results of §6.4.4 are provided in the following. 

With respect to the overall cheapest solution, the results herein have shown that it greatly 

depends on target technology. There is a definite trend in favour of 1/n checking using 

Khakbaz's checker of [29] when VLSI technology is targeted. In contrast, there is no clear 

winner when FPGA parts are used alternatively. In fact, each one of the six self-checking 

solutions implemented in this chapter was found to be the cheapest option in at least one 

of the FPGA targeting experiments. Therefore experimentation is needed before a choice 
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is made in these cases. Such experimentation is clearly facilitated by the material of both 

chapter 5 and this present chapter. 

It is also possible to evaluate the two ideas that gave rise to the parity-based variations in 

§6.2, namely the single checker in multi-process designs idea, and the Intrinsically Secure 

states concept. As for the former, it was verified that it can benefit designs with a high de-

gree of parallelism. For example, an approximate 4% of hardware savings (with respect to 

using multiple checkers) was experienced for the 8-process design tried in table 6.8. As 

regards IS states, comparisons of respective techniques (i.e. C T R L l vs CTRL_3, 

CTRL_2 vs CTRL_4, and CTRL_5 vs CTRL_6) show that the associated hardware sav-

ings exist, but are very modest, on average around 1%. The conclusion from this is that 

utilising Intrinsically Secure states in a given design is a valid option, leading to 

some little hardware savings and offering increased protection against multiple fault sce-

narios in particularly hostile environments. Notably, this is very much in line with the pre-

diction given in §6.2.6. Further, Version 2 type implementations were on most tables more 

expensive than their Version 1 counterparts. One reason for that is the mandatory intro-

duction of additional registers, along the lines of Figure 6.3. On the other hand, it was also 

found that often Version 2 designs can run at higher frequencies (the most illustrative ex-

ample is the comparison between tables 6.2 and 6.3). The conclusion is that modifying op-

timised designs to create additional Intrinsically Secure states is not advisable due to sig-

nificant extra hardware, unless the hostility of the operating enviromnent is a m^or con-

cern and the extra cost can thus be justified and / or high firequency operation is desired. 

Notably, it is possible to implement controller self-checking as described herein in a tool 

other than MOODS. For this purpose, it is enough to perform an analysis of the control 

path model of the synthesis tool at hand (similar to the analysis of §6.4.1) and amend ap-

propriately if any problems are identified (i.e. if any controller faults may corrupt control 

signals of even multiplicity and / or create bidirectional errors). This is typically done by 

suitably replicating selected pieces of logic, as [37] and [22] have widely covered. 

6.5 Summary 

Overall, the discussion of this chapter establishes that the control path self-checking prob-

lem is in fact much more complicated than in the considerably simpler situations ad-
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dressed in the past, has a variety of possible solutions, while interaction with the synthesis 

system provides opportunities for existing data path self-checking construct reuse, for en-

hanced system operation rehability. The key elements that define the contribution of this 

thesis to the field of control path self-checking are the following three : 

" both parity and 1-out-of-n self-checking solutions are considered and compared, under 

alternative technologies 

# the option of using a single parity checker in highly parallel designs is provided 

» increased security against very hostile environments is achieved, through the defini-

tion, identification and exploitation of Intrinsically Secure states 

As a by-product of the development phase of this work, a comprehensive library of syn-

thesisable VHDL descriptions of parity, 1/n, and dual-rail checkers is produced. 

Together with the datapath self-checking solutions of chapter 5, this chapter implements 

controller and datapath self-checking design, in a unified, integral, highly auto-

mated and designer-friendly high-level synthesis environment, enabling the rapid realisa-

tion of hardware for safety-critical applications. 



Chapter 7 

Reliability Evaluation 

A theoretical and, where needed, experimental evaluation of the robustness of the imple-

mented datapath (chapter 5) and controller (chapter 6) self-checking schemes is given 

here. In the datapath case, the totally self-checking (TSC) property (Definition 2.3) is 

guaranteed under the single fault condition stated in Hypothesis 2.1, ^a l l code words ap-

pear at the inputs of the duplication schemes. The validity of the hypothesis is therefore 

arguably strongly dependent not only on the structure of the system, but also on the input 

data it is fed with. It is therefore interesting to consider the robustness of the datapath 

scheme in cases when the set of functional inputs is restricted, potentially resulting in 

faults remaining undetected and leading to the accumulation of multiple faults. In contrast, 

the controller self-checking scheme receives inputs that are totally predictable at design 

time, and in principle independent of the data the system receives. Further, the implemen-

tations of chapter 6 take the TSC property into fuU account (§6.2.7, §6.3.1.2). A theoreti-

cal evaluation therefore fuUy covers the issue. 

Section 7.1 deals with the reliabUity of datapath self-checking, initially by expressing 

theoretical concerns, and subsequently by setting up a fault simulation environment and 

evaluating the scheme through experiments. Section 7.2 addresses the control path self-

checking properties, effectively by formally summarising the error detection properties of 

the alternative schemes presented in chapter 6. Section 7.3 concludes the chapter. 

7.1 Datapath self-checking 

In this section, an estimation of the robustness of the datapath self-checking scheme is 

given. As already mentioned in the beginning of chapter 2, the stuck-at fault model is as-
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sumed throughout this thesis. Of course, this model is not literally valid in the on-line test-

ing context. Indeed, any wire physically stuck at a particular value would naturally be de-

tected during the off-line production test. Transient faults are more relevant to this work. 

In order to model them, at any given point of time a faulty signal is considered to behave 

o j ^ i t was stuck-at a logic value. After a period of time equal to the defined duration of 

the fault, the signal is allowed to behave properly and assume the value of the wire driving 

it. This way, "temporary" stuck-at faults are used to model the transient faulty Ae/zavzowr 

of a faulty circuit element rather than its actual state, that is, the e/yecf rather than the 

physical cowjg of a fault. 

Further, not all stuck-at faults of a system are considered. Rather, only those at the inputs 

and outputs of the datapath RTL modules are of interest. This idea is explained by refer-

ring to Figure 7.1, where a datapath module, its duplicate and the associated comparator 

are shown. Three faults fi, fz and f] 
V: 

I are iHustrated in Module 1, each 

one signifying that a given wire 

within the module is stuck at a par-

ticular value. Let us assume that 

there exist electrical connections 

between the stuck wires and Mod-

ule 1 output bits, in particular be-

tween fi and output bit X], f? and bit 

Modul 
f, /I f: A f, 

Dupl(Modulc I) 

Xj Xk 
f; fo 

Comparator 

F/gure 7. VTTie dUjoZ/'caf/'on cAecWng scheme 

Xi, and f; and both bits Xj and Xk. Define also the following four conceptual faults at the 

outputs of Module 1. 

f , : Xi stuck-at-0 

f; : Xj stuck-at-1 

fs : Xk stuck-at-1 

f?: X| stuck-at-0 

Assume that f,, f^, fg and f? are not physically present in the system. 

Further consider a random primaiy input vector V| feeding Module 1. In the scenario de-

picted by Figure 7.1, fault fi is not sensitized by Vi, and therefore remains internal to the 

module fault event). In the same scenario, fault f2 is propagated to the module out-

put, corrupting bit x;. Finally, f; is propagated to the output through both possible paths. 
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thus corrupting two different module output bits, xj and x^. Without loss of generality, let 

us assume that under the presence of the corresponding faults f i and fg, and when fed by 

the particular input, x, assumes the D (1/0) value, while xj and Xk become D (0/1). Then the 

behaviour of the system under fault f2 is clearly equivalent to the behaviour that the sys-

tem would experience if the above defined fault was present. It follows that in this case 

a single fault in the RTL module primary output (f^) fully represents an internal module 

fault (fz). Moreover, the behaviour under 1] is equivalent to the hypothetical behaviour un-

der the superposition of faults f; and fe. It can therefore be stated that a certain class of in-

ternal faults (I; being a member of this class) can be fiiUy represented by the suitable su-

perposition of multiple faults at the module outputs (in this example f; and fg). Further-

more, observe that gzYAer f^ or fg would a/oMg cause the comparator to detect faulty opera-

tion, exactly as ^ would do. In that sense, f] can be considered "loosely" equivalent to ei-

ther single fault f^ or fg a/oMg. This does mean to say that e.g. f^ and fs are generally 

equivalent; however, the nature of the considered problem is such that here their primarily 

interesting effects (i.e. triggering the fault detection mechanism) are equivalent, although 

the two faults clearly lead to overall different situations. Indeed, the output of Module 1 

under the presence of f; is different from its output under the presence of f;, assuming that 

in both cases it is fed by V]. Still, the information that both output values are erroneous and 

therefore detectable means that from the perspective of this thesis the "interesting" effect 

of internal faults that corrupt mu//zp/g output values can be represented by .ymg/g primary 

output faults. 

As regards fault fi, if no available Module 1 input can sensitize it, then it remains internal 

to the module forever, and it does not corrupt the system operation. Such faults are of no 

interest and not considered in this work. Alternatively, suppose that there is at least one 

available input vector V29̂ Vi that sensitizes ft, such that f, manifests itself at the module 

output, naturally by corrupting output bit X| to which it is electrically connected. Further, 

without loss of generality assume that at the instance depicted in Figure 7.1, with Module 

1 fed by vi, xi correctly assumes the logic 0 value. Therefore, at the instance of Figure 7.1, 

the behaviour of the system under fault fi at the instance of Figure 7.1 can be considered 

to be equivalent to the hypothetical behaviour under fault f? defined above. This is a valid 

statement, since both faults are latent at the particular moment. It has therefore been estab-

lished that even latent internal faults can be modelled by equivalent latent single faults at 

the primary outputs of the R.TL modules. 
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Moreover, depending on the module functionality and inputs feeding it, stuck-at faults at 

the module can provide convenient means to model multiple faults. For ex-

ample, consider an adder module and a corrupted a (0/1) value at bit position i of the first 

adder operand. If the respective bit of the second operand is a fault-free 1, then all output 

bits to the left of i, and up to the first fault-free 0 will be inverted. In this case, 

faults can be modelled by a stuck-at fault at the It is therefore useful to 

include all input stuck-at faults in the set of considered faults as vyell, unless there is a 

clear and data-independent 1 to 1 equivalence between an input and an output fault, sug-

gested by the particular module functionality. 

The above discussion has established that single stuck-at faults at the inputs and outputs of 

RTL modules satisfactorily model the system faulty behaviour under Hypothesis 2.1 (sin-

gle internal fault), m fAe coMfgpcr Âg cofwzcfgrgaf j)ro6Zgm. A particular advantage of this 

approach is that it is fully consistent with the high level design philosophy, since it makes 

no assumption whatsoever about the gate-level structural implementations of RTL mod-

ules, but is only concerned with their behaviour. This thesis is not further concerned with 

the general, recently surfaced idea of fault representativeness at the RT level. The relevant 

hterature [140, 141, 142] can be consulted for statistical analyses and discussions of this 

still open issue. 

7.1.1 Theoretical concerns 

Recall once more Hypothesis 2.1, repeated in the following Hypothesis 7.1 for conven-

ience : 

7.7: Faults occur one at a time, and the time distance between the occurrences 

of two consecutive faults is long enough for all the available iaput code words to be ap-

phed to the circuit. 

Let us also recall the totally self-checking property established through definitions 2.1 -

2.5. In short. Module 1 and Dupl(Module 1) of Figure 7.1 will need to be such that under 

tlie presence of an internal fault, the following two properties should be satisfied : 

a) fault secure property : for every available input word, the comparator input will either 

be fault-free or a non-code word (i.e. it cannot be an mco/rgc/ cot/g wortf) 



p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 254 

b) self-testing property : at least one of the available input words sensitizes the internal 

fault, i.e. produces a non-code output 

As for the comparator of Figure 7.1, it additionally needs to exclusively map input code 

words to output code words and vice versa (code disjoint property). 

Given that duplication and, where applicable (§5.2.2), inversion testing are fault secure by 

nature (§2.2.2.1, §5.2.2), if Hypothesis 7.1 is accepted for a scheme like the one of Figure 

7.1, one would sensibly state that, in a fault-Sree scenario. Module 1 and its duplicate will 

produce all possible code outputs, thus feeding the comparator with all possible code 

words. Assuming a comparator based on a suitably structured (fault secure and code-

disjoint) dual-rail checker, as is the case in this work (§5.3.3.3), this leads to the conclu-

sion that the datapath self-checking scheme is totally self-checking, and therefore detects 

all single faults in any of the fiinctional, duphcate or comparator modules. 

A 

P n -

Multiplier 2 Multiplier 1 

comparator 

F/gure 7.2 .' MuA/p/Zcaf/on 6y 2 

While the discussion in the 

above paragraph is valid, it si-

lently assumes that the module 

inputs are random, that all pos-

sible inputs are available, and 

that they have equal probability 

to appear. This is a sensible as-

sumption when the self-

checking scheme is considered 

in isolation; let us, however. 

not forget that in the context of a complex overall system, operations are embedded deep 

into a design, being fed by the outputs of other operations, the other operations themselves 

fed by further previous levels of operations etc. This relationship is illustratively depicted 

in the DFG representation of a circuit (§3.1.1). The effect of this, is that, while primary 

inputs can in principle be considered random, the randomness and availability of the in-

puts of operations "lower" in the DFG are not guaranteed; in fact, these inputs greatly de-

pend not only on the primary inputs, but also on the actual functionality and on the pres-

ence of constants in the data flow graph. At times it is obvious that nof a// possible inputs 

are available. Such a characteristic situation is shown in Figure 7.2. The functional module 

(multiplier 1) performs the operation 2xA, where A is an (n/2)-bit number. Multiplier 2 
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duplicates the operation, and both outputs are fed to the comparator. Clearly, multiplica-

tion by 2 never produces an odd number. Consequently, the LSBs po and p'o of both out-

puts will always be 0 under fault free operation. Therefore, the comparator will always 

miss all input code words for which po=p'o=l, that is, half of all possible code words. Fur-

ther, the dual-rail checker within the comparator is never fed by the rows of a suitable 

4x(2xn) matrix (Lemma 2.3 and [58]), and therefore the self-testing property is not 

achieved. In practice, this means that any fault in the checker that is equivalent e.g. to the 

LSB of the left band side operand to be stuck-at-0 cannot be detected and will remain in 

the design for ever. Now, if an additional fault in the functional Multiplier 1 causes po to 

be stuck-at-1, then the corrupted value will not be detected, it will be led to the rest of the 

system and thus hinder the overall system operation. The example is analogous to the one 

described in §2.2.1.1 referring to Figure 2.11. 

The discussion has established that there can be cases within a DFG for which Hypothesis 

7.1 is not enough to guarantee the TSC property, resulting in the possibility that faults re-

main undetected. In order for this to have disastrous effects on the system fiinctionahty, a 

subsequent fault in the system must corrupt jg/ec/etf modules at times. To under-

stand this, refer back to the example of Figure 7.2, and remember that typically such a 

self-checking scheme will be one of a few tens of such schemes in the overall system. 

Consider the above mentioned fault scenario, wherein the LSB of the comparator left hand 

side operand is stuck-at-0 and therefore undetectable. In order for the next fault to have 

disastrous effects, it must hit the scheme (among tens of others), in a 

way (causing po to be stuck-at-1, and not effecting any other bit in any other way). A fault 

hi a different scheme or with a slightly different effect is more likely to be detected rather 

than cause a fault escape. Intuitively, given the typical complexity of the considered sys-

tems, featuring a few thousands of possible RTL faults, it can be argued that the probabil-

ity of a disastrous fault effect is rather iosignificant. Of course, this has to be backed by 

experimental data, as done in the following §7.1.2. 

7.1.2 Experimental evaluation 

Recall the Transparent Fault Injection and Simulation technique of §4.2.1 (also [118, 49]). 

Clearly, using the gate models with fault iryection capabilities it proposes, fault simulation 

at gate-level netlists can conveniently be conducted. In order for the technique to be appli-
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cable at the RT level according to the model of §7.1, RTL component models with fault 

injection capabilities need to be developed. Such components will effectively define an 

RTL cell library with fault injection capabilities, as an extension to the standard MOODS 

cell library (§3.2.7), thus setting up a fault simulation environment to supplement on-Une 

test synthesis. As §4.2.1 established, this environment can easily utilize a commercial digi-

tal simulation tool such as the very popular ModelSim tool [115]. 

7.1.2.1 Transparent Fault Injection and Simulation at the RTL 

A straightforward RTL extension of the transparent fault injection and simulation tech-

nique is given here, through a "pseudo"-VHDL example of a generic RT-level N-bit adder 

with fault injection capabilities (Figure 7.3). The model makes use of the faultiryect 

package provided in Figure 4.1. As can be seen in Figure 7.3, appropriate _mask vector 

variables are defined for all module input and output ports. In fact, two such vectors are 

defined for each port, the first corresponding to stuck-at-0 type faults and the second to 

stuck-at-ls (point #1 in the figure, at the declaration part of the VHDL process nn). Just 

like in the gate-level case, a unique, suitably-named local fault variable is created for 

every modelled RTL fault when simulation starts (point #2). Appropriate values are as-

signed to the mask vectors in every simulation instance (point #3), depending on which 

fault is simulated at the given instance. An element of the 0 TMOjt vector for 

signal % is assigned a 0 (1) value if the corresponding fault is simulated. Subsequently the 

mask vector is ANDed (ORed) with signal x, in order to produce the effective value that is 

going to contribute to the simulation output, also taking into account the fault-free module 

Amctionality (point #4). This clearly defines a "mutant" N-bit adder, equivalent to the mu-

tant gates concept encountered in §4.2. In Ikie with the transparent nature of the gate-level 

technique of §4.2.1, ANDing and ORing here are concgpfW, as are the mask variables, 

fault pointers and fault model records. They do Mof involve the introduction of any physi-

cal hardware gates; hence, the (non-synthesisable) fault simulated cell model is "structur-

ally" equivalent to the synthesisable model, effectively meaning that no extra fault lines 

need to be included in the design for fault simulation purposes. When no fault is simu-

lated, the two models are behaviouraUy equivalent as well. Indeed, it can be verified that 

the model of Figure 7,3 computes a proper unsigned addition (at point #4) ia the fault-free 

case (i.e., when all stuck-at-0 mask vectors carry the all-Is value, and all stuck-at-1 masks 

bear all Os). The situation is clearly analogous to its gate-level counterpart. 
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library ieee; 
use ieee. st:d_logic_1164. all; 
use ieee.numeric_scd.all; 
use work. Eaulc_iniect:. all; 
encicy UADD_1 is 

generic (n: posicive 1); 
port: (inl, in2 : in sCd_logic_vec[:or (n-1 downco 0) ; 

sum : ouL st:d_logic_vect:or (n downco 0) ) ; 
end 0ADD_1; 
archiCecCure injecC_faulC of UADD_1 is 
begin 

nn : process is 
variable inl_saO, inl_sal, in2_saO, in2_sal : faulc_pcr_array (n-1 downbo 0) (oChers => null) 
— #1 
variable sum_saO, sum_sal : faulC_pCr_array (n downCo 0) :» (oChers => null); 
variable inl_9aO_mask, in2_saO_mask : sCd_logic_vecCor (n-1 downCo 0) := (ochers '1'); 
variable inl_sal_mask, in2_sal_taask : sCd_logic_vecCor (n-1 downCo 0) := (oChers -> '0'); 
variable sum_saO_mask : scd_logic_vecCor (n downCo 0) (oChers -> '1'); 
variable sum_sal_mask : scd_logic_veccor (n downco 0) :» (ochers '0'); 

begin 
- - # 2 

if inl_sa0(0) - null Chen 
waic for 1 ns; 
for i in 0 Co n-1 loop 

inl_saO(i) :» new faulc_model'( 
new scring'(injecC_faulC'inBCance_name & 

"inlC & inCeger'image (i) & ")_saO''), 
false, false, firsc_faulc); 

firsc_faulc inl_saO(i); 
-- objeccs inl_sal(i), in2_saO(i), in2_8al(i), sum_saO(i), sum_sal(i) 
-- are created similarly 

end loop; 
sum_saO(n) new faulc_model'( 

new scring'(iniecc_faulc'inscance_name 6 
"sumC & inCeger'image (n) & ")_saO"), 
false, false, firsC_faulC); 

firsc_faulc := sum_saO(n); 
sum_sal(n) new faulC_model'( 

new scring'(in]ecc_faulc'inscance_name & 
"sumC 6 inCeger'image (n) 6 ")_sal"), 
false, false, firsC_faulC); 

firsc_faulC sum_sal(n); 
end if; 

-- #3 
for i in 0 Co n-1 loop 

if inl_saO(i).simulaCing Chen 
inl_saO_mask(i) := '0'; 

inl_saO_mask(i) '1'; 
end if; 
if inl_sal(i).simulacing Chen 

inl_sal_mask(i) := '1'; 
else 

in]._sal_mask(i) :» '0'; 
end if; 
-- masJc eiemenCs in2_saO_mask(i), in2_sal_mask(i), sum_saO_mask(i)y 
-- sum_sal_mask(i) are handled similarly 

end loop; 
if sum_sa0(n).simulacing Chen 

sum_saO_mask(n) :» '0'; 

sum_saO_mask(n) := '1'; 
end if; 
if sum_sal(n).simulaCing Chen 

sum_sal_mask(n) := '1'; 
else 

sum_sal_mask(n) '0'; 
end if; 
-- #4 
sum <" sum_sal_mask or 

(sum_saO_mask and 
(sCd_logic_vecCor(unsigned("0" & (inl_sal_mask or (inl_saO_mask and inl))) + 

unsigned("0" & (in2_sal_mask or (in2_saO_mask and in2)))))); 

waic on inl, in2; 
end process nn; 
end archicecCure injecC_faulC; 

F/gure 7.3 / RT"! uns/gnecf adder ce// /au#/'n/ec(/on capab;'#es 
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No obvious equivalent or dominant faults can be found in this adder module, leading to a 

total of 2*(3*N+1) total modelled faults. However, even in RTL modules there are cases 

when not all input and output line faults need to be considered. An example is the generic 

left shifter module pseudo-VHDL template of Figure 7.4. In this module, the second input 

ia2 corresponds to the number of bits by which input inl will be left-shifted. Mask vectors 

are employed just as in the adder case, however this time the module functionality implies 

that the output signal bits are either hardwired to appropriate input bits, or directly con-

nected to logic 0. There is no point in explicitly modelling faults for the former (since they 

are equivalent to corresponding input faults), while only stuck-at-1 faults need to be con-

sidered for the latter (since a possible stuck-at-0 would be equivalent to the fault-&ee op-

eration). Hence the number of output faults in the model of Figure 7.4 is reduced. These 

ideas are reflected in the figure through the absence of fault pointers and masks corre-

library leee; 
use ieee.scd_logic_il64.all, ieee.numeric_8bd.all, work.faulc_in]ecc.all; 
enticy SLIj_l is 

generic (n: positive 1; 
m: positive 1); 

pore (inl: in scd_logic_vector (n-1 downco 0); 
in2: in scd_logic_vector (m-1 downco 0); 
ouzput: out: 8cd_logic_veckor (n-1 downco 0) ); 

end SLL_1; 
archikeccure injecc__Eault: of SLL_1 is 
begin 
nn : process is 

variable inl_6aO, inl_6al : Eaulc_pcr_array (n-1 downCo 0) := (ochers => null); 
variable 0ucpuc_sal : faulc_pcr_array (n-l downco 0) (oChers => null); 
variable in2_saO, in2_sal : fault per array (m-1 downco 0) := (ochers null); 
variable inl_8aO_aiask : sCd_logic_vecCor (n-1 down^o 0) (ochers '1'); 
variable inl_sal_mask, oucpuc_8al_mask : scd_logic_veccor (n-1 downco 0) (others '0'); 
variable in2_saO_mask : scd_logic_veccor (m-1 downco 0) := (ochers '1'); 
variable in2_sal_ma6k : scd_logic_veccor (m-1 downco 0) := (ochers '0'); 

begin 
if inl_sa0(0) = null Chen 
waic for 1 ns; 

-- creaCe new scuck fauic records as in the adder example 
end if; 
- - # 1 

for i in 0 CO Co_lnCeger(unsigned(ln2))-l loop 
-- fix 0ucpuc_sal_ma8k(i) 

for i in 0 Co n-1 loop 
-- fix inl_saO_mask(i) and inl_sal_mask(i) 

end loop; 
for i in 0 CO m-1 loop 

-- fix in2_5aO_mask(i) and in2_sal_mask(i) 
end loop; 
oucpuc <= ouCput_sal_mask or 

scd_logic_vecCor(shifC_lefC(un6igned((inl and inl_8aO_mask) or inl_sal_mask), 
co_inceger(un5igned(((in2 and in2_saO_mask) or in2_8al_mask))))) 

waic on inl, in2; 
end process nn; 
end archiceccure in]ecc_faulc; 

Figure 7.4 : RTL generic shift left module with fault injection capabilities 

sponding to stuck-at-0 type faults in the outputs, and also through the reduced range in the 

loop taking care of output stuck-at-1 faults (point #1 in the code fragment). Other than 

that, the philosophy of the fault-injectable shifter module clearly follows that of the adder. 

Defming fault-injectable VHDL models for the rest of the standard MOODS cells (§3.2.7) 

proceeds exactly as the two examples above. At this point, it has to be noted that no fault 
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library ieee; 
use ieee.scd_logic_ll64.all; 
use ieee.numeric_std.all; 
encicy NEQ_3 is 

generic (n: positive :# i); 
port: (inl, in2 : in 3Ld_logic_vecLor (n-1 downCo 0); 

ouCpuC: ouL scd_logic_vecCor(l downCo 0)); 

archiceccure scniccure of NEQ_3 is 

function steps (h: positive) return integer is 
-- auxiliary function ; returns the number of checker arrays flevelsj needed for an h-pair checker 
-- see Figure 5.13 
variable i : integer i-O; 

i:.0; 

exic when h/(2**i)-l; 

end loop; 

if (n rem (2**i))»0 then 
return i+l; 

else 
return i; 

end if; 
end steps; 

constant levels : integer:- steps(n); 

function no_of_int_sig (p: positive; i: integer) return posicive is 
-- auxiliary function returns Che number of output signals of the ith level of a p-pair checker 
-- see Figure 5.IJ 
variable pairs, old : positive; 

begin 
if i)levels then 

end if; 
pairs:-p; 
for k in 1 to 1 loop 

if k/"l then 
old:-pairs; 
pairs:-pairs/2; 
if (old rem 2)-l then 
pairs:-pairs+1; 

end if; 
end if; 

end loop; 
return 2*pairB; 

end noofintsig; 

function index (num: positive; sumover:integer) return integer is 
-- auxiliary function ; helps the calculation of the starting location of the outputs of level sum_over wichin 
-- Che intermediate_signal array ^see below^, in a num-pair checker 
variable sigs : integer:=0; 

if 'nuBi-l then 

for i in 1 to sum_over loop 
sigs :- sigs t no_of_int_sig(num,i); 

return sign; 

constant tot : integer:- index(n,levels) t 2; 

-- all signals connecting checker arrays 
signal intermediate_signals : scd_logic_vector(tot-l downto 0); 

component CHK_ARR 
generic (m: positive :- 1); 
port (ml ; in std_logic_vector (m-1 downto 0) ; 

in2 : in 3td_logic_vector (m-l downto 0); 
output: out 8td_logic_vector ((m + (m rem 2))-l downto 0)); 

end component; 

interTnediate_8ignala {tot -1 downto tot-r.) <= inl; 
intermediate_signals(tot-n-l downto tot-2*n) in2; 
ZO: if n-1 generate -- trivial 

interoediate signalsd downto 0) <- intermediate_signal8(3 downto 2); 
end generate 20; 

21: for i in 1 to levels generate 
Ul: CHK_ARR generic niap (no_of_int_sig(n,i)/2) 

port map (inter!nediate_signals (tot-index (n,i-l)-l downto tot-index (n,i-l)-no_of_int_sig(n,i;/2), 
intermediate_signals(tot-index(n,i-1)-no_of_int_sig(n, i) / 2-1 downto tot-index(n,i)), 
intermediate_signals(tot-index(n,i)-l downto tot-index(n,i+l))); 

end generate Zl; 
output <= intermediate_3lgnal3(l dosmto 0) 

F/gure 7.5 . genen'c /V-pa/r duaZ-ra;/ checker 
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library leee; 
use ieee.st:d_logic_ll64.all; 
use ieee.numeric_sLd.all; 
enkiCy NE0_3 is 

generic (n: positive := 1); 

pork (inl, in2 : in scd_logic_vecbor (n-1 downCo 0); 
oucpub: out: sbd_logic_vect:or(l downbo 0)); 

end NEQ_3; 

use work.fault_injecb.all; 
archibecCure inieck_faulL oE NE0_3 is 

-- function, consCanCy signal and component declarations exactly as in Figrure 7.5 

-- generate statements exaccly as in Figure 7.5 

nn : process is 

variable inl_8aO, inl_sal, in2_saO, in2_sal : fault:_pt:r_array (n-1 downbo 0) := (others => i 
variable inl_saO_mask, in2_saO_niask : sbd_logic_vect:or (n-1 downto 0) := (others => '1'); 
variable inl_sal_mask, in2_sal_mask : std_logic_vector (n-1 downto 0) (others => '0'); 

begin 
if inl_sa0(0) - null then 

for i in 0 to n - 1 loop 
inl_saO(i) := new Eault_model'( 

new string'(in]ect_fault'instance_name & 
"inl(" & inceger'image(i) & ")_saO"), 
false, false, first_fault); 

first_fault := inl_saO(i); 

-- all other fault variables in both inl and in2 are handled similarly 

end loop; 
end if; 

for i in 0 to n-1 loop 
if inl_saO(i).simulating then 

inl_saO_mask(i) := '0'; 

else 
inl saO mask(i) := 'l'; 

end if,- -
-- similarly for the other fault variables 

end loop; 

intermediate_signalB(tot-l downto tot-n) <= inl_sal_mask or (inl_saO_mask and inl); 
intermediate_signals(tot-n-l downto tot -2*n) <= i n2_sal_mask or ( i n 2_saO_mask and i n 2 ) ; 
wait on inl, in2; 

end process; 
nn2: process is 

variable out_saO, out_sal : fault_ptr_array (1 downto 0) := (others null); 
variable out_saO_mask : std_logic_vector (1 downto 0) := "11"; 
variable out_sal_mask : std_logic_vector (1 downto 0) := "00"; 

begin 
if out_sa0(0)=null then 
out_sa0(0) := new fault_model'( 

new string'(iniect_fault'instance_name & 
"out_saO(0)"), 
false, false, first_fault); 

first_fault := out_sa0(0); 

-- the same for out_saO(l), out_sal(0) and out_sal(l) 

if out_sa0(0).simulacing then 
out_sa0_mask(0) '0'; 

out_sa0_mask(0) := '1'; 

end if; 

-- the same for out_saO(l), out_6al(0) and out_sal(l) 

output <= out_sal_mask or (out_saO_mask and intermediate_Bignals(l downto 0)); 

wait on intermediate_signals(l downto 0); 
end process; 
end; 

F/gure 7.6 . /I genenc A/-pa/r duaZ-ra// c/iec/cer fau/f /n/'ecf;on capab/'/A'es 
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icyection is considered and natiirally no fault-injectable models needed for storage ele-

ments (registers) or interconnect (multiplexer, sign extension) modules; instead, these 

modules are assumed free of faults. This issue is revisited later in §7.1.3 and comments on 

its implications provided. Further, no fault irjection was considered for control cells ei-

ther. The reason for this is that the controller self-checking scheme is totally self-checking 

(as chapter 6 estabhshed), therefore its behaviour under the presence of faults, and its fault 

detection capabilities are fully predictable, as mentioned throughout chapter 6, and will be 

summarized in §7.2. 

The fault secure comparator and dual-rail checker components of §5.3.3.3 can have faults 

injected in their inputs and outputs by likewise defining suitable models, following exactly 

the same principles as in the standard MOODS models. However, recall that an enormous 

number of dual-rail checkers and comparators were automatically produced by suitable 

software in §5.3.3.3. Writing separate mutant components for each one of them would be 

an impractically time-consmnming process. To cope with this problem, a concise generic 

description of an N-pair dual-rail checker was firstly configured, shown in Figure 7.5. The 

description uses the C H K _ A R R cell of Figure 5.14. It further defines and utilises three aux-

iliary arithmetic functions; comments on the functions are provided in the figure with ref-

erences to the generic dual-rail checker scheme of Figure 5.13. The description appears 

complicated but it fully describes Figure 5.13 for any value of N; for example, it can be 

verified that for N=16 it becomes equivalent to Figure 5.15. In fact, there are RTL synthe-

sis tools that cannot synthesize the code of Figure 7.5. The reason for that is the VHDL 

component instantiation statement labelled Ul towards the bottom of Figure 7.5. This 

statement defines three slices of the long i n t e r m e d i a t : e _ s i g n a l s array as the actual 

ports of component Ul. However, the slice boundary definition includes variable i (the 

"loop" variable of the "generate" statement Zl). Using a variable in slice boundary defini-

tions was found by this author not to be acceptable by all VHDL compilers. For this pur-

pose, the description of Figure 7.5 is not generally synthesisable and cannot in principle be 

used instead of the cells produced in §5.3.3.3. However, the description was accepted by 

the compiler of the simulator tool [115] used herein for simulation experiments. The fact 

that a description is used for all values of N is particularly advantageous, since it 

enables the development of a respective "mutant" description, as Figure 7.6 outlines. The 

general structure of the description of Figure 7.6 is exactly the same as that of Figure 7.5; 

the difference is that in Figure 7.6 the simple assignment statements that involve the inputs 
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and the output of the checker are replaced by suitable processes that control the irgection 

of faults in the checker ports, using suitable mask variables, exactly as done in Figure 7.3 

for the N-bit adder. The fault-&ee behaviour of the mutant checker of Figure 7.6 is identi-

cal to the behaviour of the original checker of Figure 7.5, which in turns behaves identi-

cally to the fully synthesizable modules of §5.3.3.3. Exactly as done in §5.3.3.3, a generic 

N-pair fault secure comparator with fault injection capabilities is described by simply 

complementing one of the dual-rail inputs in Figure 7.6. 

A test bench to control the overall fault simulation campaign can now be written as the 

gate-level prototype of Figure 4.4 outlined. As an interesting word of note, the input / out-

put interfaces of a gate-level and an RT-level design are identical, and so effectively the 

same test bench can be used for fault simulation at both levels, if so desired. In either case, 

a test bench written as in Figure 4.4 can be tuned to implement exhaustive, deterministic, 

or random injection experiments. Multiple faults can be iiyected as well as single ones (by 

simply activating more than one . s i m u l a t i n g Gelds in the suitable fault model record). 

Furthermore, by activating a fault and then deactivating it at a chosen simulation time (by 

resetting the respective . s i m u l a t i n g Aeld), one can model transient (as opposed to 

pemianent) faults, again simply by suitably amending the testbench. The corresponding 

input vectors fUe ( v e c t o r s . t x t ) can include an exhaustive, or an incomplete but prede-

termined (even random) set of test vectors. Finally, the processing and presentation of ob-

tained results can be carried out as desirable through the testbench directives. Therefore, 

the designer has all flexibility to tailor the simulation experiments through the test bench 

and input vectors, to reach the desired conclusion, as applicable per situation. 

In the simulation experiments described in the following two subsections, the commercial 

simulator used was Model Technology ModelSim, version SE Plus 5.5e [115]. 

7.1.2.2 Injecting single faults 

It has already been estabhshed that the duplication and (where applicable) inversion 

datapath self-checking schemes of chapter 5 are fault secure against single faults. There-

fore, any single stuck-at fault in any of the functional, redundant or comparison modules 

embedded within an overall self-checking datapath is expected either to be detected or to 

remain latent. To verify this, the technique of §7.1.2.1 was used to conduct a number of 
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faults 

in jected latent detected escaped 
100000 65912 34088 0 

7a6/e 7. f Tseng benc/imar/c fau/f s;mu/af/on resu/k 
('/ndependenf exper/menfs^ 

fault simulation experiments on a self-checking version of the Tseng datapath, produced 

as explained in chapter 5. In particular, the version randomly picked for the experiment 

was the fourth one of Table 5.11 (the one employing duplication testing). The choice of 

version is, however, not important, since all versions are equally secure against RTL 

faults. Random faults were injected, and random inputs apphed; this way, the experiment 

emulated the operation of a system whose operating conditions caimot possibly be known 

in advance. Further, since in this subsection it is only single faults that are of interest, 

whenever a fault remained latent it was removed, and the next one iigected at a different 

simulation time point, after the previous removal. Therefore, this subsection addresses in-

dependent experiments. 

The results, shown in Table 7.1, indeed verify the fault secure property, by demonstrating 

no fault escapes at all. Notice that a particularly extensive number of experiments were 

conducted (100000). In the particular benchmark circuit, the overall number of injectable 

RTL faults was much smaller (exactly 758, automatically calculated through the test 

bench, as a byproduct of the simulation). This means that the total 100000 experiments 

included several incarnations of every fault, each time under different operating conditions 

and different input values, thus increasing confidence in the system dependability. It is 

worth noticing that the majority of experiments led to latent fault events (§7.1). This can 

be explained by the fact that both the injected faults and the applied inputs were random. 

As a result, in several cases an RTL input or output was driven to logic value z e (0,1}, 

while at the same time a stuck-at-z was simulated at the same signal. This clearly leaves 

the fault latent; statistically these situations should account for 50% of all experiments. 

Further recall that the Tseng benchmark includes logic operations (AND, OR) as seen in 

the VHDL of Appendix B. At times iryected faults at the logic function operators were 

prevented from manifestiag themselves simply by the natural masking properties of logic 

functions (e.g. 0 AND D = 0). These two phenomena resulted in the increased percentage 

of latent faults. 
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7.1.2.3 Injecting Multiple Faults 

yrgg 

Comparator f7 .Y 

Module I 

The effect of ± e accumulation of multiple latent faults in a self-checking design is ex-

perimentally addressed here. As the experiments of Table 7.1 established, in a typical de-

sign, there is a high probability that a fault hitting the design is not detected immediately, 

but remains latent. The scenario of the previous subsection removed such latent faults, 

considering them harmless transients; here, they are considered to remain permanently on 

the system, thus giving rise to the said multiple fault accumulation. Such accumulation can 

be particularly severe in situa-

tions where a self-checking 

scheme receives a restricted sub-

set of all possible input words (as 

in Figure 7.2), or in very hostile 

enviromnents, where faults occur 

very frequently, so that a self-

checking configuration does not 

F/'gure 7.7. ,4 poss/'b/e fau/f escape have the time to receive all avail-

able input words. Clearly such accumulation is expected to result in a probabdity of faults 

remaining undetected "for ever", and potentially corrupting the design primary outputs. A 

situation where this can happen was explained around Figure 7.2, wherein an undetectable 

latent fault in the checker, together with a subsequent fault in the functional module can 

cause a fault escape. Another typical fault escape scenario would be the one shown in Fig-

ure 7.7, where the two modules in the duplication testing scheme have their respective M-

position bits stuck-at the same value and m oc/cf/fzoM the common input at that time hap-

pens to be such that the said bit should assume the logic complement value under fault 

free operation. Once more, assuming that all modeled faults have equal probability to ap-

pear, and further taking into account that even small benchmark designs include anything 

between a few hundreds and a few thousands of such RT-level faults, one can trivially 

conclude that the probability that such a situation appear is very small (significantly less 

than 1%). 

inputs faults injected latent fault events detection events fault escapes 
"sensible" 50000 23189 26811 0 

random 50000 39227 10773 0 

7a6/e 7.2 O/Tifeq! fau/f s/mu/af/'on resu/fs ('mu/f/p/e fau/fgj 
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This is further verified by the series of fault simulation experiments performed on a self-

checking version of the Diffeq benchmark. The version used was taken from Table 5.13, 

and it was the one on the second row, featuring a "mixed" self-checking strategy (duplica-

tion and inversion as determined by the system to be better applicable per situation), and 

including a total of 776 identifiable faults in the RTL datapath. This time, latent faults 

were not removed, but remained in the system, and further faults were subsequently in-

jected. All accumulated faults were removed every time a detection event occurred. Two 

sets of experiments were conducted : in the first, random but "sensible" input vectors were 

applied; while in the second totally random ones were used. The significance of this is re-

lated to the fimctionality of the particular benchmark. Indeed, "sensible" inputs cause the 

system to perform a number of repetitions of its main fimctional loop (see Appendix B for 

the VHDL code), while totally random inputs are very likely to leave significant parts of 

the datapath idle (and therefore unable to detect any faults) for long periods of time. This 

way, high accumulations of faults were expected to be achieved in the design. The results 

are summarized in Table 7.2. The table indeed verifies that the number of latent fault 

situations significantly increases when totally random inputs are used. Most importantly, it 

is demonstrated that 100000 simulation runs, including several accumulations of faults, 

under a rich variety of conditions and inputs, were once more unable to produce a single 

failure. This experimentally verifies the prediction of §7.1.1, also mentioned in this sub-

section : although the TSC property cannot be guaranteed for the duphcation- / inversion-

based schemes of the self^checking datapath, and consequently fault escapes are theoreti-

cally possible, the probability that such an escape occurs is insignificant. Differently put, 

given a self-checking datapath produced as chapter 5 of this work explains, and assuming 

a number of latent faults in the datapath, the probability that the next fault hitting the sys-

tem will either be detected or remain harmlessly latent, is overwhelmingly higher than the 

probability that the said fault will interact with an existing latent fault to cause a disastrous 

fault escape. 

7.1.2.4 Common mode faults 

The discussion so far has assumed that all modelled faults have the same probabihty to 

appear in the design at any given moment. However, in particular VLSI technologies, mi-

nor defects in the fabrication process of standard cell masks can result in common mode 
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faults (§2.2.2.1). Simply put, this means that a// cells of a particular kind (e.g. all adders) 

may feature some common, minor malfunction, not detectable in off-line production test, 

due to its insignificant initial effect. Under certain environmental conditions or over time, 

such defects may develop into logic faults, thus resulting in jome type of faulty behav-

iour in all cells of the said type. In the context of this discussion, referring back to Figure 

7.7, this effectively means that given a latent stuck-at-x type fault at the n-th output bit of 

the left-hand side module, the probability that the next fault in the system will be a disas-

trous stuck-at-% at the M-th bit of the right-hand side module, is significantly higher than 

the probability that an unrelated fault will hit another part of the circuit. In a particular ap-

plication, whether or not common mode faults are likely to occur is something that can be 

determined only in the context of the given application, especially taking into account the 

target technology, reliability of fabrication process, and robustness of the off-line produc-

tion test. 

Common mode faults are known to escape duplication testing schemes where both dupli-

cate modules have been produced by the same mask. Therefore, a high probability of such 

faults is the only significant threat the datapath self-checking scheme of this work has to 

face. To alleviate the risk, traditionally [51] diverse duplication is applied (§2.2.2), 

wherein duplicate modules are behaviourally equivalent, but structurally different. Diverse 

duplication cannot be currently adopted within MOODS, due to all datapath modules hav-

ing a single realisation within the cell library (§3.2.7). Assuming subsequent development 

work leading to alternative cells, however, the synthesis process of chapter 5 would be 

perfectly applicable to diverse duplication. In this work, inversion testing is proposed as a 

valid alternative, if the frequency degradation often associated with it is tolerable in the 

context of the particular project. 

7.1.3 Faults in the interconnect and storage units 

As has been obvious in the discussion so far, and exphcitly mentioned in §7.1.2.1, the 

datapath self-checking scheme addressed here is dedicated to the functional datapath mod-

ules of designs resulting from high-level synthesis. The other parts of the datapath, namely 

the interconnect and storage elements, are, as a first approach, assumed fault-free. This is a 

sensible assumption, taking into account that the theme itself of this work is the high-level 

synthesis o f A a r c f w a r e blocks. In such blocks, the chip area occupied by 
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functional 
block 

("aj /eed/ng a 
funcOonaf bfoc/c 

register 

functional modules is significantly 

higher than that occupied by storage and 

interconnect. Therefore, an environ-

mental factor affecting the chip is much 

more likely to affect the area occupied 

by a functional module, rather than that 

occupied by a register or a multiplexer. It 

has to be clarified that considered hard-

ware blocks exclude large memory 

blocks. If such blocks appear in a sys-

tem, self-checking design principles 

have to be apphed to them as well (typically some variation of parity checking, see for ex-

ample [143, 144]), but this is out of the scope of this thesis (indeed, it would concern self-

checking design considered at the jyf fern /evg/). 

fbj feed/ng a 
reg/'sfer 

Figure 7.8 : Multiplexer configurations 

A further look at multiplexer faults further backs the fault-free assumption. Consider Fig-

ure 7.8. It depicts the two situations when a multiplexer is needed : to feed a fimctional 

block (7.8a), or to feed a register (7.8b). Clearly, in 7.8a, the behaviour of a faulty multi-

plexer delivering a corrupted value to the functional module input, is equivalent to a 

/ree multiplexer that correctly feeds a f u n c t i o n a l block, in particular a functional 

block whose behaviour can be modelled by a suitable stuck-at fault in its input. Therefore, 

the faulty behaviour of the multiplexer is covered by the already mentioned RTL fault 

model of §7.1. Similarly, in Figure 7.8b, a faulty value delivered to the register by a cor-

rupted multiplexer, can be considered equiva-

lent to a corrupted register receiving a correct 

value. Of course, registers are not covered by 

the assumed fault model, and therefore such a 

fault would be disastrous. 

Let us now focus exclusively on registers. Care-

ful examination of a few design data flow 

graphs reveals that there are classes of registers 

whose faults are in fact equivalent to fimctional 

module faults. Figure 7.9 shows such a DFG, 

! -

F/gure 7.9 .' Fau/fyreg/sfers equ/Va/enf 
to faulty functional modules 
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highlighting two registers in this category. The figure is notably similar to Figure 6.3; in-

deed, it depicts the - dominant throughout this thesis - duplication testing scheme. The 

comparison operation has been scheduled one control step after the fimctional and the re-

dundant ones; therefore, the two highlighted registers carry the intermediate results across 

the boundary of CSs N and N+1. Clearly, any active fault in any of the highlighted storage 

units wUl propagate to the comparator input - it will therefore be equivalent to a suitable 

comparator fault, hence covered by the assumed model. However, notice that any fault in 

any of the non-highlighted registers feeding the functional or redundant operation will Mof 

be detected, since each register feeds both adders, thus producing the erroneous re-

sult at the adder outputs. Interestingly, the scheme behaves very much hke if under the 

presence of a common mode fault, thus exposing a defenceless part of the circuit. 

7.2 Control path self-checking 

The six alternative control path self-checking techniques presented in chapter 6 have been 

designed to strictly adhere to self-checking design theory. That is, they aU achieve the to-

tally self-checking goal under Hypothesis 2.1 / 7.1. In contrast to the datapath case, the 

hypothesis is now particularly valid. To understand this, refer back to Figure 6.1, and con-

sider the controller as a single module, receiving the conditional signals as inputs and pro-

ducing the control signals at the output. Recall (§6.4.1) that every internal fault in the 

MOODS-generated controller may affect a j/Mg/e control signal. Further consider that the 

control signals / control path checker inputs (Figure 6.15), in all realistic situations, are of 

the order of 100 at the veiy most, compared to 2" different comparator inputs in a data 

path duplication self-checking scheme with, e.g., 16 being a typical value for n, yielding 

-650 times more values. Finally, no situation analogous to Figure 7.2 can be conceived for 

the control path; that is, all control states are visited (and aU control signals produced) dur-

ing the usual system operation, even if some of them are visited less frequently than oth-

ers. In summary, the control path checker is extremely hkely to receive all of its available 

code words between the occurrences of two consecutive faults, because they are relatively 

very few, and because nothing prevents them from being produced. In combination with 

the single fault property, this directly supports Hypothesis 2.1 / 7.1. The conclusion, 

hence, is that any single fault in the controller or the control path checker will definitely be 

detected before the next one occurs, thus excluding latent faults and accumulations of 

faults resulting from them. 
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It is instructive to go one step further, and consider a particularly hostile environment, in 

which multiple faults may hit the controller at any given time, thus producing multiple 

faulty control signals. Although this is probably an unreahstically hostile scenario, not 

normally considered in self-checking literature, it is interesting to note that the proposed 

schemes of chapter 6 provide enhanced detection capabilities that accommodate several 

such situations as well. These enhanced capabilities should be famihar since there were 

references to them throughout chapter 6; the following comments remind them and Table 

7.3 formally summarises them. The CTRL l technique (Figure 6.4) detects all single or 

odd-multiplicity errors among the control signals of any single process individually. The 

CTRL 2 scheme of Figure 6.5 detects all single or odd-multiplicity errors among the con-

trol signals of aU processes in the design accumulatively, CTRL 3 (Figure 6.7) offers sin-

gle and odd-multiplicity error detection on an individual process basis just like CTRL l; 

further, it detects any combination of faults so long as at least one of them corrupts the 

control signal of an Intrinsically Secure state (§6.1.3.1). The CTRL_4 scheme (Figure 6.8) 

has the same capabilities as CTRL_2, with the addition that identifying and taking IS 

states into account once more provides detection of any multiplicity errors that corrupt at 

least one IS control signal. CTRL_5 (Figure 6.12) detects all unidirectional errors on indi-

vidual processes, and so does CTRL_6 (Figure 6.14), with the addition that the latter de-

tects even bidirectional errors if any of them corrupts the control signal of an IS state. 

technique detection capabilities 
CTRL 1 single or odd-multiplicity errors per process 
CTRL 2 single or odd-multiplicity errors in all the control signals 
CTRL_3 any multiplicity errors if the control signal of an IS state is corrupted 

signle or odd-multiplicity errors per process otherwise 
CTRL_4 any multiplicity errors if the control signal of an IS state is corrupted 

signle or odd-multiplicity errors in all the control states otherwise 
CTRL 5 any multiplicity unidirectional errors per process 
CTRL_6 any multiplicity unidirectional errors per process, plus bidirectional 

errors for which the5 value is assumed by an IS-state control signal 
Table 7.3 : Error-detecting properties of controller self-checking techniques 

Note that in the above evaluation of CTRL_3, CTRL_4 and C T R L 6, it is assumed that 

the precautions of §6.1.3.2 have been respected, so that fault escapes related to Intrinsi-

cally Secure states are practically very unlikely. As a reminder, this means that IS states 

are considered only when the data path bus is reasonably wide, while appropriate registers 
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are reset to a value that has a low probability of occurrence as soon as their functional con-

tents are not needed anymore. 

7.3 Summary 

To summarize, this chapter has theoretically and experimentally established the reliability 

properties of the self-checking schemes of this thesis. In particular : 

« the datapath scheme succeeds in its primary mission, that is, it is extremely robust, de-

tecting all realistic fault scenarios affecting datapath functional modules. An exception to 

this can be common mode faults. Since such faults may or may not appear depending on 

the dependability of the production line in individual situations, this does not compromise 

the success of the technique. Further, if frequent common mode faults are expected, the 

inversion testing technique can provide a defence against them. 

» although not explicitly targeting them, the datapath scheme also detects a portion of 

intercoimect and storage unit faults. The remaining multiplexer and register faults can 

cause disastrous fault escapes, but the area they occupy on the chip is small enough to de-

mote this to a minor issue. 

» the alternative control path self-checking schemes are totally self-checking by con-

struction and therefore detect all single controller faults; in addition, they also defend 

against a variety of muldple-fault scenarios. 



Chapter 8 

Future Research and Conclusion 

This last chapter comprises two short sections. Section 8.1 proposes ideas for future work, 

while §8.2 gives the final concluding remarks of this thesis. 

8.1 Future research directions 

There are two families of research themes that can expand the work of this thesis : 

* algorithms for on-line test synthesis 

» expanding the fault detection capabilities provided herein to implement fault 

The motivation for the first direction is that the modified version of the general-purpose 

simulated annealing algorithm defined in §5.3.3.2 was shown in the experimental results 

to be useful for designs that include up to around 300 operations (§5.3.3.5). Indeed, it was 

found that the tool run-time would probably be unacceptably high for bigger designs. 

While 300 operations is enough to accommodate a good number of practical designs, and 

it is still about double the size of anything presented in the past, this author expects that 

dedicated research on synthesis algorithms can take good advantage of the "case for on-

line test synthesis" made in this thesis and configure automatic design flows that would 

explore the three-dimensional design space faster than the random and general-purpose 

simulated annealing choice. Such algorithms would probably need to be entirely new heu-

ristics that would take into account the nature itself of the self-checking resource insertion 

problem, while still not neglecting the traditional high-level synthesis criteria. It would be 

particularly interesting to investigate (as opposed to transformational) high-

level on-line test synthesis algorithms, motivated by the fact that previous research on 

constructive algorithms has produced excellent results [100]. 
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The second proposed research direction effectively refers to implementing "high-level 

synthesis for fault tolerance" as an extension of high-level synthesis for on-liae testability. 

Very much as in the on-line testing case, a comprehensive survey of fault tolerance tech-

niques will be needed, the most suitable for inclusion in synthesis will need to be chosen, 

and further tool implementation / expansion details through suitable transformations, algo-

rithms and metrics will have to be devised. A complication of fault tolerance is that choos-

ing the most suitable technique will be likely to depend both on target technology and on 

the assumed fault scenario (targeting transient or permanent faults). That is, while it was 

possible to define generic RT-level, technology-independent solutions for the on-line test-

ing problem that were proved robust even in very hostile enviroimients, this author feels 

that this will not apply for the fault tolerance problem. The implication is that multiple 

techniques will probably need to be implemented within the synthesis tool and the de-

signer will be required to make a pre-synthesis choice of technique. 

8.2 Concluding remarks 

The work described in this thesis has produced an mfegT-a/, 

based on the original MOODS behavioural synthesis suite. 

It is the first time on-line testability is thoroughly integrated into tlie core of the synthesis 

process in a fully automatic manner. This is particularly achieved in the datapath self-

checking scheme of chapter 5, and visuahsed by the 3-diaiensional design space used, 

through the definition of an arithmetic expression that quantifies on-line testability. The 

resulting tool offers fast, painless, technology-independent and versatile exploration of the 

3-dimensional space, aU inherited 6om traditional high-level synthesis. Complex VHDL 

constructs such as loops, conditionals and parallel processes are fully accommodated. 

From the testability point of view, all intermediate computations are checked, thus giving 

a constant monitoring of the health of the system and keeping error latency low. The in-

version testing scheme is defined and exploited. All this is offered at comparatively rea-

sonable hardware overhead values. 
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The work of chapter 6 arms the RTL synthesis outputs with protection for the second one 

of its constituent parts, that is the controller. Six alternative solutions are configured, ana-

lysed, implemented and experimentally evaluated for the controller self-checking problem. 

The idea of reusing datapath self-checking resources for control path checking is con-

ceived and relevant solutions configured, through the introduction of the Intrinsically Se-

cure control states concept. A comprehensive self-checking component library is pro-

duced. Overall, control path self-checking resource insertion is formulated and imple-

mented in a fully automated maimer, as an add-on to the MOODS synthesis tool. Together 

with the material of chapter 5, datapath and controller self-checking design is 

thus implemented. 

Overall, from the point of view of EDA tool development, this vyork explored the totally 

new area of including on-line testability in the design parameters and optimising for it in a 

3-dimensional design space. From the point of view of self-checking design, it enabled the 

reahsation of well-studied gate-level techniques in a much higher level of the design flow, 

increasing their practical significance by including them in realistically-sized designs. 

Therefore, from both points of view it advances the state-of-the-art and opens up opportu-

nities for further research. 



Appendix A 

Modified IVIOODS User's Guide 

This appendix briefly presents the practical steps required to implement on-line testable 

designs usiag the MOODS command prompt. The appendix assumes some familiarity 

with the original synthesis system operation. Its intention is to instruct the 

MOODS designer on the new functionality of the modified system. Nevertheless, parts of 

the original MOODS are briefly repeated when needed for the sake of completeness, while 

references [126, 127, 128, 105, 8] can be consulted for more background information. 

A.1 Setting up and interacting with the tool 

Like most electronic CAD tools, MOODS organises its designs into Therefore 

the first set-up task before a synthesis session can start is the definition of a new project, 

the inclusion and compilation of all required behavioural VHDL source files within it, and 

the hierarchical assembling of the compiled files within the project in a library structure. 

Details of how this is done can be found in [126]. Having set-up the synthesis project, the 

synthesis engine, being the "heart" of the whole process can be invoked using a DOS-

prompt command such as the following. 

(moods jiome directory) \Bin\Moods example 

-m "(project directory) \experiments.lmf" 

-w experiments 

-mult2shift 

-disable_tforms 38000 

{-use_mux MUX_2} 

(otJ]er argumezzts} 



p. Oikonomakos, 2004 Appendix A: Modif ied MOODS User's Guide 2 7 5 

The above command assumes that a top-level design called e x a m p l e has been compiled 

and the project name is e x p e r i m e n t : s . File e x p e r i m e n t i s . Imf contains information 

on the directory location of the library files used in the project and is made known to the 

synthesis engine through argument -m. Argument -w e x p e r i m e n t s defines the direc-

tory where created files are to be written in. Argument - m u l t 2 s h i f t transforms all 

multiplications and divisions by powers of 2 to left- or right-shifts respectively, and it is 

highly recommended as it leads to significant hardware savings. Argument -

d i s a b l e _ t f orms excludes a number of transformations from the overall MOODS set 

of transformations (§3.2.3). The number 3 8 0 0 0 is interpreted as a binary bitmap, dictat-

ing which transformations will be excluded. The particular number suggests that all regis-

ter sharing transformations are disabled. Excluding these transformations is highly rec-

ommended for the purposes of this work, since it was found that the said transformations 

are rather experimental in the current version of MOODS and using them only lengthens 

the sunulated annealing algorithm run-time (note that register sharing transformations 

were not included in the presentation of §3.2.3, for the same reasons). The exact bitmap-

to-transformation correspondence for the above number can be found in appendix D of 

[105]. Argument - u s e _ m u x MUX 2 is recommended when the target technology is an 

FPGA part. It instructs MOODS to use a particular cell hbrary multiplexer description, 

that subsequent RTL synthesis tools synthesize using the tristate buffers available within 

FPGA slices [106]. This leads to better resource usage within the FPGA. However, the 

argument should not be used when VLSI technology is targeted. 

Other arguments exist [126], but exceed the scope of this appendix. 

The first task of the system as soon as the above command is issued, is to read the initiali-

sation file, MOODS . ini, and be informed about a number of design options. While sev-

eral pieces of initialisation information can be passed to the tool through this file, the most 

important information for the purposes of this thesis is the choice of target technology. 

The target technology becomes known to the tool through a single declaration line in the 

initialisation file. A typical declaration for this purpose would look hke the following. 

XC4000XV-09 = GenericLibrary, 4000XV.mlib 

File 4 0 0 OXV. ml i b is the pre-existing system technology library, targeting Xilinx FPGA 

parts. This hbraiy was augmented to include characterisation information for the newly 
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added dual-rail checker and fault secure comparator ceUs (§5.3.3.3). The new technology 

library file is named 400 OXVplus . m l i b and in order to be taken into account the line 

above should be substituted by 

XC4000XV-09 = GenericLibrary, 4000XVplus.mlib 

Furthermore, a new technology library file was written for the Alcatel CMOS VLSI 0.35 

technology also used in the experiments of chapters 5 and 6. To use this technology, the 

following declaration is needed instead of any of the two above. 

HYA_MTC45000 = GenericLibrary, MTC45000plus.mlib 

The designer can thus choose his or her target technology of interest by editing 61e 

MOODS. ini. 

A.1.1 Defining the cost function 

When MOODS is invoked, the input design has been read and certain preliminary tasks 

have finished, it presents a command prompt and waits for the designer's instructions. 

Sensibly the first task is to define synthesis specifications through the cost fimction. The 

command that gets MOODS to cost function definition mode is 

cf 

Now the designer needs to specify his or her requirements. This is done by "adding" pa-

rameters to the (initially empty) cost function vector. For example, adding an area con-

straint is done by 

aa 

The tool asks for the priority value of the area constraint, to which the designer may re-

spond by 

1 

or 

2 

for first or second priority respectively. The tool then again asks for the target area, to 

which in this thesis the answer is always 

0 

meaning "as cheap as possible" (§3.2.4). Of course, non-zero numbers can be given in-

stead. The delay constraint is declared to the tool similarly, by using command 
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ad 

instead of aa. Again, in this thesis the target delay is always 0. On-line testability has been 

configured to work similarly. Indeed, the cost function command 

a t 

includes on-line testability in the set of constraints. The on-line testability priority in all 

experiments of chapters 5 and 6 has always been 1, while the target value for on-line test-

abihty has always been 100 (for 100%, §5.3.3.1). 

The choice of control path self-checking scheme is done in the cost function definition as 

well. Six alternative independent commands have been implemented for this. Command 

3,1 

instructs the tool to append the CTRL l (§6.2.1) self-checking scheme to the controller. 

Alternatively, a2, a3, a4, a5 or a6 can be used, to order CTRL_2 (§6.2.2), CTRL 3 

(§6.2.4), CTRL_4 (§6.2.5), CTRL_5 (§6.3.2) or CTRL_6 (§6.3.3) respectively. No further 

information is required by the tool with respect to controller self-checking, other than 

choice of scheme. If none of the above six commands is issued, tbe tool by default as-

sumes that controller self-checking is Mof desired. 

When all of the cost function parameters have been set up, command 

f 

finishes the cost function definition session and returns to the main MOODS prompt. 

A. 1.2 Manual application of the testing transformations 

After leaving cost function set-up mode and returning to the main prompt, the user can 

start applying transformations to the design under optimisation. These include the generic 

transfonnations of §3.2.3 or the additional testing ones of §5.3.2.1 and §5.3.3.4. The man-

ual apphcation of transfonnations proceeds as follows. Initially the "select transformation" 

command is given 

St 

The designer is presented with a list of available transformations, the five testing 

ones added in this thesis. Selection is made by entering the appropriate number, e.g. 
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fbi" TF8. Assuming familiarity with the original transformations, let us focus on the testing 

ones. Selecting TF22, TF23, TF25 or TF26 will cause MOODS to prompt for a single in-

struction characteristic number. In the case of TF22 (physical duplication) or TF23 (physi-

cal inversion), this will be the number of the instruction to which the designer desires to 

attach self-checking resources. In the case of TF26 (remove testing scheme), it will be the 

instruction whose testing scheme is to be removed. Finally, if TF25 (restore original test 

response register) is the transformation at hand, then the instruction will be the one for 

which the self-checking comparison output signal is desired to be unshared. Selecting 

TF24 (share test response register) will prompt for two instructions. The second wiU be 

the one for which the test response register is desired to be abandoned and the response 

directed to the respective register of the first. 

If the selected transformation passes the validity tests of §5.3.2.1 and §5.3.3.4, then the 

tool will automatically estimate its effect and present the result on screen. Issuing the "per-

form" command 

P 

will subsequently actually perform the transformation. 

The semi-automatic insertion of self-checking resources in the experiments of §5.3.2.2 

was carried out using several repetitions of the above procedure for transformations TF22 

and TF23. 

A. 1.3 Application of the automatic algorithms 

Applying the automatic optimisation algorithms (simulated annealiiig, heuristics) of §3.2.5 

proceeds exactly as in the original MOODS. Hence, the annealing initialisation command 

a i 

causes the tool to ask for four arithmetic values : initial temperature, ultimate temperature, 

temperature decrease factor and number of transformations per optimisation step. Anneal-

ing execution command 

ao 

sets off the simulated annealing optimisation algorithm with the parameters given by the 

designer in the initialisation step. If on-line testability has been given as a designer speci-

fication during the cost fimction set-up phase (§A.1.1), then transformations TF22 and 
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TF23 are included in the set of transformations and the simulated annealing algorithm 

takes its modijRed form described in §5.3.3.2. 

The tailored heuristic algorithm is set off by the following command. 

aoh 

and takes any of the forms of Figure 3.10, depending on the relative values of designer 

area and delay priorities. 

A.1.4 Experimenting witli Intrinsically Secure states 

This section explains how to apply the ideas of facilitating Intrinsically Secure (IS) states 

of §6.4.3 within the modified MOODS. Two new MOODS commands are implemented. 

The "extract IS states" command 

e i 

implements step 2 of §6.4.3, that is, it directs the system to traverse all control states, iden-

tify those that have aU three parts (flmctional, redundant, and comparison operations) of 

self-checking schemes scheduled at them, and extract the redundant operation, by apply-

ing transformation TF21 to it. 

The "merge IS states" command 

mi 

likewise implements step 4 of §6.4.3. Again it traverses all control states, identifies those 

that have a fault secure comparison operation scheduled at them, and applies transforma-

tion TF8 (merge fork and successor) to them. 

The "Version 2" realisations explained and presented in §6.4.4 were produced as follows. 

* Step 1 : optimise using simulated annealing (a i , ao) 

» Step 2 : apply e i (effectively bringing self-checking schemes to the state of Figure 

6.26d) 

* Step 3 : repeat Step 2 until there is no self-checking scheme at the state of Figure 6.26b 

« Step 4 : apply mi (creating conAgurations such as the desired state of Figure 6.26c) 

* Step 5 : repeat Step 4 until there is no self-checking scheme at the state of Figure 6.26b 

* Step 6 : apply tailored heuristics (aoh) 
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When all desired optimisation has finished, the "finish optimisation" command 

f i 

terminates the synthesis engine. 

A. 1.5 Deliberately separating instructions 

This final subsection briefly describes how two instructions can be forcibly separated in 

two different control steps if the designer wishes so. The presented feature exists in the 

original MOODS tool, and it is used in this thesis to prevent chaining in the manual ex-

periments of §5.3.1. 

Consider two consecutive VHDL operations, for example the following two, taken di-

rectly from the examples of §5.3.1. 

v8i := v3i + v5i; 

S C l := v8i - v5i; 

Assmne that it is desirable to forcibly prevent the chaining of the two instructions. The 

most explicit way to do that is by directly disallowing the synthesis engine to schedule 

them in the same control step, by using a VHDL w a i t f o r statement directly in the 

source code, as in the following. 

v8i := v3i + v5i; 

wait for 10ns; 

scl := v8i - v5i; 

Any non-zero delay value (e.g. 10ns as above) will cause the synthesis tool to 

schedule the subtraction and all instmctions below it, one control step after the ad-

dition and all instructions above it. In essence, the wait statement acts as a '"barrier" pre-

venting the control step below it from merging with any of the control steps above. 



Appendix B 

Benchmarks 

This appendix provides the behavioural VHDL codes for five benchmaric designs used in 

this thesis for the experimentation of chapters 5 and 6. 

B.1 Tseng 

The Tseng datapath was introduced in [121] and it is very often the first benchmark used 

for evaluation purposes in the field of behavioural synthesis. That is because it is consid-

ered to be representatives of situations often encountered in the synthesis of real designs. 

The VHDL code used in this thesis is as follows. 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

entity bench is 

port(v3, v5, v7, v8, v9, vll, vl4, vl5 : out unsigned(15 

downto 0)); 

end bench; 

architecture bench_beh of bench is 

signal vli, v2i, v3i, v4if v5i, v7i, -v8i, v9i, vlOi, 

vlli, vl2i, vl3i, vl4i, vl5i : unsigned(15 downto 0); 

begin 
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ma]-n_proc: process 

begin 

vli < = "1100011111011000"; 

v2i < = "0000101100111001"; 

v3i "1110101100110001"; 

v4i < = "0001000111101001"; 

v5i < = "0101011111001110"; 

v7i < = "1100110111111001"; 

v8i ^ — "0100111101000001"; 

v9i < = "0011101010010001"; 

vlOi < ="1100100000011000" 

vlli < ="1100100011111001" 

vl2i < ="1100101000000101" 

vl3i < ="1010110011010001" 

vl4i < ="1001111111100111" 

vl5i < ="1110000111111101" 

loop 

v3i ' < = vli + v2i; 

- can be commented out 

wait for 2 ns; 

v5i <= v3i - v4i; 

- can be commented out 

wait for 2 ns; 

v8i <= v3i + v5i; 

- can be commented out 

wait for 2 ns; 

vl4i <= unsigned(std_logic_vector(vlli) and 

std_logic_vector(v8i)); 

vli <= vl4i; 
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vl2i <= vli; 

v7i := v3i * 4; 

-- can be commented out 

Tvait for 2 ns; 

v9i <= vli + v7i; 

-- can be commented out 

wait for 2 ns; 

vl5i <= unsigned(std_logic_vector(vl2i) or 

std_logic_vector(v9i)); 

v2i <= vl5i; 

vl3i <= v3i; 

vlli := vioi / 2; 

-- can be commented out 

wait for 2 ns; 

end loop; 

end process; 

process 

begin 

v3 <= v3i 

v5 <= v5i 

v7 <= v7i 

v8 <= v8i 

v9 <= v9i 

vll <= vlli 

vl4 <= vl4i 

vl5 <= vl5i 

end process; 

end bench beh.; 
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Signals v l i - v l 5 i are normally primary input ports. However, it was found that many 

FPGAs tried did not have enough input pins to accommodate 15 16-bit primary inputs. 

They were therefore converted to internal signals and assigned initial values in the "un-

comfortable" way shown in the code. While this is not elegant or efficient coding, it has 

no negative implications as regards the datapath operations, data dependencies and synthe-

sis tasks that are of primary interest here. 

An additional point to note on the behavioural code above are the w a i t f o r 2 n s ; 

statements found therein. As explained in §A.1.5, these are used to control CS merging 

and can be removed or commented out at the designer's discretion. 

B.2 Differential equation solver 

The Diffeq benchmark is a simple differential equation solver, inspired from [129] and 

slightly modified for synthesis within MOODS. The VHDL code is the following. 

PACKAGE d i E f e q _ t y p e s I S 

SUBTYPE nat is integer range 0 to 65535; 

END diffeq_types; 

USE work.diffeg_types.all; 

entity dif is 

port (Xinport: in nat 

Yinport: in nat 

Uinport: in nat 

Aport : in nat 

DXport : in nat 

Xoutport: out nat 

Yoiitport: out nat 

Uoutport: out nat 

done: out bit) 

end dif; 

a r c h i t e c t u r e d i f f e q o f d i f i s 
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signal oldx, oldy, oldu : nat; 

signal newx, newy, newu : nat; 

begin 

MAIN : process 

variable x_var^ y_var, u_var, a_var, dx_var: nat; 

variable yl, tl, t2, t3, t4, t5, t6: nat; 

variable looping : bit:='0'; 

variable i : nat; 

begin 

done<='0'; 

if (looping = '0') then 

x_var := Xinport; 

y_var := Yinport; 

u_var := Uinport; 

looping := '1'; 

else 

x_var := newx; 

y_var := newy; 

u_var := newu; 

end i f; 

a_var := Aport; 

dx_var := DXport; 

if (x_var < a_var) then 

-- can be commented out 

wait for 2 ns; 

t1 := u_var * dx_var; 

-- can be commented out 

wait for 2 ns; 

t2 := 3 * x_var; 

-- can be commented out 

wait for 2 ns; 

t3 := 3 * y_var; 

-- can be commented out 
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wait for 2 ns; 

t4 := tl * t2; 

-- can be commented out 

wait for 2 ns; 

tS := dx_var * t3; 

-- can be commented out 

wait for 2 ns; 

t6 := u_var - t4; 

-- can be commented out 

wait for 2 ns; 

u_var := t6 - t5; 

-- can be commented out 

wait for 2 ns; 

y1 := u_var * dx_var; 

-- can be commented out 

wait for 2 ns; 

y_var := y_var + yl; 

-- can be commented out 

wait for 2 ns; 

x_var := x_var + dx_var; 

oldx <= x_var; 

oldy <= y_var; 

oldu <= u_var; 

else 

Xoutport <= x_var; 

Youtport <= y_var; 

Uoutport <= u_var; 

looping := '0'; 

done<='1'; 

end if; 

-- can be commented out 

wait for 2 ns; 

end process; 

SYNCH: process 
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begin 

newx <= oldx; 

newy <= oldy; 

newu <= oldu; 

wait for 2 ns; 

end process; 

end diffeq; 

B.3 QRS 

The QRS design is a medical electronics application, also popular as a high-level synthesis 

benchmark since first used for benchmarking purposes, in [130]. 

PACKAGE qrs_types IS 

SUBTYPE intl6 IS integer RANGE 32767 DOWNTO -32768; 

16 bit integer 

SUBTYPE nat2 IS integer RANGE 

2 bit unsigned integer 

END qrs_types; 

3 DOWNTO 0 ; 

USE work.qrs_types.all, 

ENTITY qrs IS 

ecgl : IN intl6; 

low : IN intl6; 

high : IN intl6; 

indx : IN intl6; 

ftmlin : IN intl6; 

ftm2in : in intl6; 

ftmlout: buffer intlS; 

ftm2out: buffer intl6; 

new data : IN boolean 
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data_done: out boolean; 

fl3o : OUT nat2; 

RRpeak : OUT boolean; 

RRo : OUT intl6); 

END qrs; 

USE work.qrs_types.all; 

ARCHITECTURE system OF qrs IS 

BEGIN 

qrs_proc: PROCESS 

CONSTANT ACTIVE 

CONSTANT INACTIVE 

: boolean 

: boolean 

false; 

true; 

VARIABLE ft, ecgml, ysi : intl6; 

VARIABLE ymax, xmax, yO, ath, ys, yOm2, zmax, yOml : 

intlG; 

VARIABLE sthl, sth2, Ixmax, lymax, Izmax : intl6; 

VARIABLE count, RR : intl6; 

VARIABLE fl3 : nat2; 

VARIABLE fll, fl2 : boolean; 

variable y2, y4, y8, yl6, x2, x4, x8, xl6, z2, z4, z( 

zl6, 1x8, lyS, IzB : intl6; 

variable ecg_dif, ecg_dif256 : intlS; 

begin 

RRpeak <= Inactive; 

fl3o <= 0, 

< = 0 

: = 0 

RRo 

yOml 

yOm2 

ymax 

xmax 

zmax 

= 0 

= 0 

= 0 

= 0 
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y 2 

y4 

y8 

yl6:=0; 

x2 

X 4 

x8 

xl6:=0; 

z2 : =0 

z4 : =0 

z8 : =0 

Z l 6 : = 0; 

RR 

lymax 

Izmax 

Ixmax 

1x8:=0 

l y B : = 0 

lz8:=0 

fl3 

fll 

fl2 

count 

0; 

False; 

False; 

0; 

ecgml := ftmlin; 

init: FOR i IN 1 TO indx LOOP -- initialization loop 

data_done<=false; 

wait on new_data until new_data; 

ecg_dif:=ecgl-ecgml; 

ecg_dif256:=ecg_dif/256; 

ft := ftmlin + ecg_dif - ecg_dif256; 

ysi := ft - ftm2in; 

can be commented out 
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wait for 2 ns; 

IF (ysi > ymax) THEN 

ymax := ysi; 

y2:=ysi/2; 

-- can be commented out 

wait for 2 ns; 

y4:=ysi/4; 

-- can be commented out 

wait for 2 ns; 

y8:=ysi/8; 

yl6:=ysi/16; 

END IF; 

IF ( ft > xmax) THEN 

xmax := ft; 

x2 :=ft/2; 

-- can be commented out 

wait for 2 ns; 

x4:=ft/4; 

-- can be commented out 

wait for 2 ns; 

x8:=ft/8; 

Xl6:=ft/16; 

END IF; 

IF (ft > 0) THEN 

yO := ft; 

else 

yO := -ft; 

END IF; 

a t h : = X 4 ; 

IF ( ath > yO) THEN 

yO := ath; 

END IF; 

ys := yO - yOm2; 

IF (ys > zmax) THEN 

zmax := ys; 
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z2:=ys/2; 

z4:=ys/4; 

-- can be commented out 

wait for 2 ns; 

z8:=ys/8; 

Zl6:=ys/16; 

END IF; 

ftm2out <= ftmlin 

ftmlout <= ft; 

ecgml := ecgl; 

yOm2 := yOml; 

yOml := yO; 

sthl := y2 + y8 + yl6; 

Sth2 := z2 + z8 + zl6; 

data_done<=true; 

wait for 2 ns; 

END LOOP init; 

regular : LOOP 

IF (ysi > sthl) THEN 

fll := true; 

count := 0; 

END IF; 

IF (ys > sth2) THEN 

fl2 := true; 

count := 0; 

END IF; 

IF ((fll = true) AND (fl2 = true) AND (RR > low)) THEN 

RRpeak <= Active; 

xmax := x2 + x4 + x8 + 1x8; 

x2:=xmax/2; 

can be commented out 

wait for 2 ns; 
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x4:=xmax/4; 

can be commented out 

wait for 2 ns; 

x8:=xmax/8; 

xl6:=xmax/l6; 

ymax := y2 + y4 + y8 + lyB; 

y2:=ymax/2; 

can be commented out 

wait for 2 ns; 

y4:=ymax/4; 

can be commented out 

wait for 2 ns; 

y8:=ymax/8; 

yl6:=ymax/16; 

zmax := z2 + z4 + z8 + lz8; 

z2:=zmax/2; 

can be commented out 

wait for 2 ns; 

z4:=zmax/4; 

can be commented out 

wait for 2 ns; 

z8:=zmax/8; 

zl6:=zmax/16; 

RR 

count 

f l l 

fl2 

fl3 

Ixmax 

1x8:=0 

lymax 

lyS:=0 

1zmax := 0; 

lz8:=0; 

= 0; 

= 0; 

= f a l s e ; 

= false; 

= 0; 

= 0; 

= 0; 

E L S I 
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RRpeak <= Inactive; 

E N D I F ; 

IP ((fll = true) OR (fl2 = true)) THEN 

count := count + 1; 

END IF; 

fl3o <= fl3; 

RRo <= RR; 

data_done<=false; 

wait on new_data until new_data; 

ecg_dif:=ecgl-ecgml; 

ecg_dif256:=ecg_dif/256; 

ft := ftmlout + ecg_dif - ecg_dif256; 

ysi := ft - ftm2out; 

IF (ysi > lymax) THEN 

lymax := ysi; 

ly8:=ysi/8; 

END IF; 

IF ( ft > Ixmax) THEN 

Ixmax := ft; 

lx8:=ft/8; 

END IF; 

IF (ft > 0) THEN 

yO := ft; 

else 

yO := -ft; 

END IF; 

a t h := X 4 ; 

IP (yO < ath) THEN 

yO := ath; 

END IF; 

ys := yO - yOm2; 
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IF (ys > Izmax) THEN 

Izmax := ys; 

lz8:=ys/8; 

END IF; 

IF (count = 8) THEN 

fll := false; 

E12 := false; 

count := 0; 

END IF; 

IF (RR > high) THEN 

fl3 := fl3 + 1; 

RR := 0; 

ymax := y2 ; 

-- can be commented out 

wait for 2 ns; 

y2:=ymax/2 

y4:=ymax/4 

y8:=ymax/8 

yl6:=ymax/16; 

zmax := z2; 

- can be commented out 

wait for 2 ns; 

z2:=zmax/2; 

z4:=zmax/4; 

z8:=zmax/8; 

zl6:=zmax/l6; 

E N D I F ; 

Sthl := y2 + y8 + yl6; 

Sth2 := z2 + z8 + zl6; 

RR := RR + 1; 

ecgml := ecgl; 

yOm2 := yOml; 

yOml := yO; 

ftm2out <= ftmlout; 

ftmlout <= ft; 
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data_done<=true; 

wait for 2 ns; 

END LOOP regular; 

END PROCESS qrs_proc; 

END system; 

Clearly it is a sizeable design. Hence it was claimed in chapter 5 that it is particularly en-

couraging that modified MOODS was able to cope with it. 

B.4 Viterbi decoder 

The 8-bit Viterbi decoder recently presented in [131] and used as a benchmark in chapters 

5 and 6, is shown in the following. It can be observed that it is composed of 8 almost iden-

tical concurrent processes. There is also a 32-bit version (comprising 32 processes) used in 

one experiment (Table 5.41), not shown here for brevity. 

package pack_Viterbi is 

type four_bit_array is array (0 to 7) of integer range 0 to 

6; 

type array_of_bit_vector is array (0 to 3) of bit_vector(0 

to 7) ; 

type two_bit_integer_array is array (0 to 1) of integer 

range 0 to 6; 

procedure vector_m'ultiO(entri:in bit; wpa, wpb: in integer 

range 0 to 6; pathO, pathl: in bit_vector(0 to 7); 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) ; 

procedure vector_multil(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 
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pathx : out bit_vector(0 to 7); wpliout integer range 0 

to 6) ; 

procedure vector_multi2(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

pathx : out bit_vector(0 to 7); wpliout integer range 0 

to 6) ; 

procedure vector_multi3(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) ; 

procedure vector_multi4(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) ; 

procedure vector_multi5(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) ; 

procedure vector_multi6(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) ; 

procedure vector_multi7(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) ; 

end pack Viterbi; 
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package body pack_Viterbi is 

procedure vect:or_multiO(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

-- moods inline 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) is 

variable weight_vector: integer range 0 to 6; 

begin 

if (entri='0') then -- this only makes a one clock cycle 

difference 

weight_vector:=wpb+l; --doing this reduced one clock cycle 

if weight_vector <= wpa then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx:=pathl(l to 7)&'l'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpa < 2) then 

wpl:=wpa; 

pathx::=pathO(l to 7)&'0'; 

else 

wpl:=wpa; 

end if; 

end if; 

else 

weight_vector:=wpa+l; 

if weight_vector <= wpb then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=weight_vector; 
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end if; 

else 

if < 2) then 

wpl:=wpb; 

pathx:=pathl(l to 

else 

wpl:=wpb; 

end if; 

end if; 

end if; 

end vector_multiO; 

procedure vector_multil(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

-- moods inline 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) is 

variable weight_vector: integer range 0 to 6; 

begin 

if (entri='0') then 

weight_vector:=wpb+l; 

if weight_vector <= wpa then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx::=pathl(l to 7)&'l'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpa < 2) then 

wpl:=wpa; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=wpa; 
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end if; 

end if; 

else 

weight_vector:=wpa+l; 

if weight_vect:or <= wpb then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpb < 2) then 

wpl:=wpb; 

pathx:=pathl(l to 7)&'l'; 

else 

wpl:=wpb; 

end if; 

end if; 

end if; 

end vector_mu.ltil; 

procedure vector_multi2(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

-- moods inline 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) is 

variable weight_vector: integer range 0 to 6; 

begin 

if (entri='0') then 

weight_vector:=wpb+l; 

if weight_vector <= wpa then 

if (weight_vector < 2) then 

wpl:=weight vector; 
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pathx:=pathl(l to 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpa < 2) then 

wpl:=wpa; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=wpa; 

end if; 

end if; 

else 

weight_vector:=wpa+l; 

if weight_vector <= wpb then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx::=pathO(l to 7)&'0'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpb < 2) then 

wpl:=wpb; 

pathx:=pathl(l to 7)&:'l'; 

else 

wpl:=wpb; 

end if; 

end i f; 

end if; 

end vector_multi2; 

procedure vector_multi3(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 
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-- moods inline 

pathx : out bit_vector(0 to 7); wpliout integer range 0 

to 6) is 

variable weight_yector: integer range 0 to 6; 

begin 

if (entri='0') then 

weight_vector:=wpb+l; 

if weight_vector <= wpa then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx:=pathl(l to 7)&'l'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpa < 2) then 

wpl:=wpa; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=wpa; 

end if; 

end if; 

else 

weight_vector:=wpa+l; 

if weight_vector <= wpb then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpb < 2) then 

wpl:=wpb; 

pathx:=pathl(l to 7)&'l'; 



p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 2 

else 

wpl:=wpb; 

end if; 

end if; 

end if; 

end vector_multi3; 

procedure vector_mul1:i4(en1:ri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

-- moods inline 

pathx : out bit_vector(0 to 7); wpliout integer range 0 

to 6) is 

variable weight_vector: integer range 0 to 6; 

begin 

if (entri='0') then 

weight_vector: =:wpb+l; 

if weight_vector <= wpa then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx::=pathl(l to 7)&'l'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpa < 2) then 

wpl:=wpa; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=wpa; 

end if; 

end if; 

else 

weight_vector:=wpa+l; 

if weight_vector <= wpb then 
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if (weight_vect:or < 2) then 

wpl:=weight_vector; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpb < 2) then 

wpl:=wpb; 

pathx:=pathl(l to 7)&'l'; 

else 

wpl: =:wpb; 

end if; 

end if; 

end if; 

end vector_multi4; 

procedure vector_multi5(entri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

-- moods inline 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) is 

variable weight_vector: integer range 0 to 6; 

begin 

if (entri='0') then 

weight_vector:=wpb+l; 

if weight_vector <= wpa then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx::=pathl(l to 7)&'l'; 

else 

wpl:=weight_vector; 

end if; 

else 
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if (wpa < 2) then 

wpl:=wpa; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=wpa; 

end if; 

end if; 

else 

weight_vector:=wpa+l; 

if weight_vector <= wpb then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx::=pathO(l to 7)&'0'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpb < 2) then 

wpl:=wpb; 

pathx:=pathl(l to 7)&'l'; 

else 

wpl:=wpb; 

end if; 

end i f; 

end if; 

end vector_multi5; 

procedure vector_multi6(entri:in bit; wpa^wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

-- moods inline 

pathx : out bit_vector(0 to 7); wpl:out integer range 0 

to 6) is 

variable weight_vector: integer range 0 to 6; 

begin 
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if (entri='0') then 

weight_vector:=wpb+l; 

if weight_vector <= wpa then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx:=pathl(l to 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpa < 2) then 

wpl;=wpa; 

pathx:=pathO(l to 

else 

wpl:=wpa; 

end if; 

end if; 

else 

weight_vector:=wpa+l; 

if weight_vector <= wpb then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx::=pathO(l to 7)&'0'; 

else 

wpl:=weight_vector; 

end i f; 

else 

if (wpb < 2) then 

wpl:=wpb; 

pathx:=pathl(l to 7)&'l'; 

else 

wpl:=wpb; 

end if; 

end if; 

end if; 



p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 6 

end vect:or_miilti6; 

procedure vector_multi7(ent:ri:in bit; wpa,wpb:in integer 

range 0 to 6; pathO,pathl: in bit_vector(0 to 7); 

-- moods inline 

pathx : out bit_vector(0 to 7); wplzout integer range 0 

to 6) is 

variable weight_vector: integer range 0 to 6; 

begin 

if (entri='0') then 

weight_vector:=wpb+l; 

if weight_vector <= wpa then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx::=pathl(l to 7)&'l'; 

else 

wpl:=weight_vector; 

end if; 

else 

if (wpa < 2) then 

wpl:=wpa; 

pathx::=pathO(l to 7)&'0'; 

else 

wpl:=wpa; 

end if; 

end if; 

else 

weight_vector:=wpa+l; 

if weight_vector <= wpb then 

if (weight_vector < 2) then 

wpl:=weight_vector; 

pathx:=pathO(l to 7)&'0'; 

else 

wpl:=weight_vector; 
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end if; 

else 

if (wpb < 2) then 

wpl:=wpb; 

path)(:=pathl(l to 

else 

wpl:=wpb; 

end if; 

end i f; 

end if; 

end vector_multi7; 

end pack_Viterbi; 

use work.pack_Viterbi.ALL; 

entity ent_Viterbi is 

PORT ( entry: in bit; 

exitxO, exitxl, exitx2, exitx3, exitx4, exitxS, 

exitxS, exitx7: out bit_vector(0 to 7)); 

end ent_Viterbi; 

architecture arch_Viterbi of ent_Viterbi is 

signal wO:four_bit_array:=(0,3,3,3,3,3,3,3); 

signal pathO , pathl, path2 , path3 , path4, paths , paths, path7 : 

bit_vector(0 to 7); 

begin 

process 

begin 

exitxO<=pathO; 

exitxl<=pathl; 

exitx2<=path2; 
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exitx3<=path3 

exitx4<=path4 

exitx5<=path5 

exitx6<=pat:h6 

exitx7<=path7 

wait for 1 ns 

end process; 

entryO:process 

variable wx: integer range 0 to 6; 

variable pathx: bit_vector(0 to 7); 

begin 

wait for 1 ns; 

vector_multiO(entry,wO(0),wO(4),pathO,path4,pathx,wx); 

pathO<=pathx; 

wO(0)<=WX; 

end process entryO; 

entryl:process 

variable wx: integer range 0 to 6; 

variable pathx: bit_vector(0 to 7); 

begin 

wait for 1 ns; 

vector_multil(entry,wO(5),wO(1),paths , pathl,pathx,wx); 

pathl<=pathx; 

wO(1)<=wx; 

end process entryl; 

entryZ:process 

variable wx: integer range 0 to 6; 

variable pathx: bit_vector(0 to 7); 

begin 

wait for 1 ns; 

vector_multi2 (entry, wO (1) , wO (5) ,pathl,paths, pathx, wx) ; 

path2<=pathx; 
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wO(2)<=WX; 

end process entry2; 

entry]:process 

variable wx: integer range 0 to 6; 

variable pathx: bit_vector(0 to 7); 

begin 

wait for 1 ns; 

vector_multi3 (entry, wO (4) , wO (0) ,path4 , pathO , pathx, wx) ; 

paths<=pathx; 

wO (3)<=wx; 

end process entry3; 

entry4:process 

variable wx: integer range 0 to 6; 

variable pathx: bit_vector(0 to 7); 

begin 

wait for 1 ns; 

vector_multi4 (entry, wO (2) , wO (6) ,path2 , pathG , pathx, wx) ; 

path4<=pathx; 

wO(4)<=wx; 

end process entry4; 

entryS:process 

variable wx: integer range 0 to 6; 

variable pathx: bit_vector(0 to 7); 

begin 

wait for 1 ns; 

vector_multiS (entry ,wO (7) , wO (3) , path7, path3 , pathx, wx) ; 

path5<=pathx; 

wO(5)<=wx; 

end process entryS; 

entry6:process 

variable wx: integer range 0 to 6; 
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variable pathx: bit_vector(0 to 7); 

begin 

wait for 1 ns; 

vector_multi6 (entry, wO (3 ) , wO (7) ,path] , path?, pathx, wx) ; 

path6<=pathx; 

wO(6)<=wx; 

end process entryG; 

entry?:process 

variable wx: integer range 0 to 6; 

variable pathx: bit_vector(0 to 7); 

begin 

wait for 1 ns; 

vector_multi? (entry, wO (6) , wO (2) , path6, path2 , pathx, wx) ; 

path7<=pathx; 

wO(7)<=wx; 

end process entry?; 

end arch_Viterbi; 

B.5 Greater Common Divider 

The greater common divider (GCD) benchmark is the last design listed here. 

entity GCD is 

port (X, Y : in integer range 0 to 65535; 

gcd_output : out integer range 0 to 655]5); 

end GCD; 

architecture behavioural of GCD is 

begin 

BIGLOOP: process 

variable xvar, yvar : integer range 0 to 65535; 

begin 
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wait for 2 0 ns; 

xvar := X; 

yvar := Y; 

if ((xvar = 0 ) or (yvar = 0)) then 

gcd_outp'ut <= 0; 

xvar := 0; 

yvar := 0; 

else 

COMP: loop 

wait for 2 0 ns; 

if (xvar < yvar) then 

yvar := yvar - xvar; 

else 

if (xvar > yvar) then 

xvar := xvar - yvar; 

end i f; 

end if; 

exit COMP when (xvar = yvar); 

end loop COMP; 

gcd_output <= xvar; 

end if; 

wait on x,y; 

end process; 

end behavioural; 
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