UNIVERSITY OF SOUTHAMPTON

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

High-level Synthesis for On-line Testability
Petros'Oikonomakos
December, 2004

A thesis submitted for the title of
Doctor ot Philosophy:




UNIVERSITY OF SOUTHAMPTON

High-level Synthesis
for On-line Testability

by

Petros Oikonomakos

A thesis submitted for the degree of

Doctor of Philosophy.

School of Electronics and Computer Science,

University of Southampton

December, 2004



UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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High-level Synthesis
for On-line Testability

by Petros Oikonomakos

On-line testing increases hardware reliability, which is essential in safety-critical
applications, particularly in hostile operating conditions. High-level synthesis, on the other
hand, offers fast time-to-market and allows quick and painless design space exploration.
This thesis details the realisation of on-line testability, in the form of self-checking design,
within a high-level synthesis environment. The MOODS (Multiple Objective Optimisation
in Data and control path Synthesis) high-level synthesis suite is used for the
implementation of this concept.

A high-level synthesis tool typically outputs controller / datapath hardware architectures.
These two parts pose different self-checking problems that require different solutions.
Datapath self-checking is realised using duplication and inversion testing schemes within
the circuit data-flow graph. The challenge therein is to identify and implement suitable
high-level transformations and algorithms to enable the automatic addition of self-
checking properties to the system functionality. This further involves the introduction of an
expression quantifying on-line testability and including it in the standard high-level
synthesis cost function, thus materialising a three-dimensional design space, to be explored
by the designer feeding the synthesis tool with the problem specifications and constraints.

In contrast, controller self-checking is not implemented within the synthesis process, but is
rather the result of a post-processing synthesis step, directly applying an appropriate
checker to the system control signals. Nevertheless, challenges include choosing suitable
self-checking techniques, achieving the Totally Self-Checking (TSC) goal, and
investigating ways to reuse any existing datapath self-checking resources for controller on-
line testability. Solutions based both on parity-checking and on straightforward 1-hot
checking are given, again providing the designer with enhanced opportunities for time-
efficient experimentation in search for the best sohution in every given synthesis project.

The self-checking structures are finally verified theoretically and experimentally, through
fault simulation. Overall, the enhanced version of the MOODS system, produced as a
result of this research work, enables the implementation of reliable electronics efficiently,
so that reliability-critical applications can be accommodated in a mass production context.
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Chapter 1

Introduction

Hardware reliability is an area of electronic design, attaining more and more importance in
recent years. The typical solution for the increase of the on-field reliability of digital elec-
tronic components is on-line testing. As the term suggests, on-line testing targets and de-
tects chip failures that occur while the system is operating, as opposed to fabrication errors
or defects [1] that are detected during manufacturing tests. Typically, on-line detection is
followed by corrective action, thus implementing fault tolerance. On-line testing should

essentially be viewed as the first step towards fault tolerance.

In earlier days of computing [2], on-line testing solutions were devised primarily for pro-
tection against failures that were attributed to initially minor manufacturing imperfections
in chips. Over time, aging, corrosion, electrical, thermal and mechanical stress exacerbated
the effects of such imperfections, thus eventually developing permanent logic faults.
Clearly, when such faults were anticipated in safety-critical applications during the ex-
pected lifetime of an electronic component, it was imperative that a detection and recovery
mechanism be configured. As fabrication quality improved, the reliability risk associated
with such phenomena decreased rapidly and on-line testing lost a lot of its significance in
the 1980s; indeed, the testing literature is particularly poor in on-line testing techniques

during that decade.

This situation began to change in the beginning of the 1990s and changed fundamentally
around and after 1995, with the continuous shrinking in transistor sizes and the decrease in
operating voltage levels (low-power computing). The push for ever-reducing geometries
in order to meet the requirements of Moore’s law [3] prompted engineers to look for reli-

ability “workarounds”, driven by the need to produce operative electronics out of imper-
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fect fabrication lines. Fault tolerance was identified as such a workaround [4]. Putting
aside this re-surfacing of fault tolerance for permanent faults, the real driving force for re-
liability in the last ten years has been the increasing number of problems with single-event
upsets (SEUs) in modern electronics. A SEU is a transient fault that corrupts a logic value
either in a memory or in functional logic only once; however, this one-off failure, or the
superposition of multiple such failures, is enough to disturb the correct operation of the
system. SEUs (also termed soff errors) are primarily attributed to environmental radiation
effects, in principle alpha particle cosmic radiation or atmospheric neutrons. Such radia-
tion can induce electrical charges at particular capacitive parts of a circuit; given the re-
duced voltage levels of modern low-power electronics, this charge is often comparable to
the charge stored in the said parts during normal operation. As a result, the logic value de-
termined by the amount of charge stored in the particular location is likely to change. An-
other explanation of radiation upsets is that particles that hit the body of transistors in the
OFF state can induce enough energy to create a channel, thus unexpectedly turning the

transistor ON and potentially corrupting the logic value at its drain.

In the light of this situation, on-line testing and fault tolerance have gained significant im-
portance in modern electronics. Safety-critical or even life-critical applications cannot risk
faitures and thus require constant testing. These applications include space and aviation,
automotive and medical electronics. The situation is particularly severe in high altitudes
and in space, where the density of cosmic particles is higher than on sea level. Further, it is
predicted that technology rapidly approaches the point where even everyday commodity
applications will need some sort of protection against radiation upsets [5]. Interestingly,
for all these reasons the industry experts of the consortium publishing the International
Technology Roadmap for Semiconductors [4] have identified fault tolerance as one of the
five major “crosscutting” challenges in semiconductor design. Moreover, on-line testing
and its extension fault tolerance have been proved useful to straightforwardly enhance
manufacturing yield, by providing protection even against manufacturing defects [6]. Fi-
nally, on-line testing in the form of self-checking has also been proposed as a counter-

measure against optical tampering in security applications [7].

In this era of digital electronics that require more and more functions on a single chip,
electronic design automation (EDA) tools are used throughout the whole process of chip

design. Naturally, significant efforts are also invested in tool development, both in indus-
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trial environments and in academic research groups. High-level synthesis is a particular
trend within the EDA context, whereby electronic systems are produced automatically by
a synthesis tool when the tool is fed merely by an algorithmic description of the desired
behaviour, and automatically extracts all structural and timing information. The benefits
are fast time-to-market, fast and efficient design space exploration, and optimisation at the
highest level of abstraction. Clearly, mass production industrial environments can greatly

benefit from such characteristics.

The Multiple Objective Optimisation in Data and control path Synthesis (MOODS) tool is
a high-level synthesis suite, developed in the University of Southampton [8]. It is an ex-
ample of academic research in the field of high-level synthesis, and its particular charac-
teristic is automatically trading-off different system parameters (area, delay), in its attempt

to simultaneously satisfy all (typically contradicting) designer requirements.
1.1 Objectives and thesis organisation

As on-line testing becomes more and more relevant to industry sectors that require high
volumes of production, it becomes obvious that it would be beneficial to develop a high-
level synthesis tool, capable of automatically producing on-line testable systems, while
simultaneously optimising for the traditional synthesis goal of area and delay. No present
synthesis tool offers this. It is this gap in the art of semiconductor electronic design that
this work fills. The fundamentals of high-level synthesis for on-line testability are pro-
vided. The development part of the work enhances the existing MOODS system to provide
on-line testability. The whole foundation and implementation are tested through numerous

experiments, and the reliability of the overall produced solutions is assessed.

This thesis comprises eight chapters. Chapters 2 — 4 cover background material, as in the

following.

Chapter 2 provides a thorough overview of electronic testing. Conventional off-line testing
is briefly covered; however, overwhelming emphasis is naturally given to digital on-line

testing techniques.
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Chapter 3 describes high-level synthesis. The basic terminology and definitions are ini-

tially given, followed by a more detailed overview of the MOODS High-Level Synthesis

Suite.

Chapter 4 gives elements of fault simulation. In this thesis, fault simulation is used for re-
liability evaluation purposes; therefore, the basics are given and a few recent representa-

tive techniques demonstrating the state-of-the-art are presented.
Chapter 5 — 7 describe original work, along the following lines.

Chapter 5 presents the work carried out in the direction of providing dataparh self-
checking design for controller / datapath pairs produced by high-level synthesis processes.
The most appropriate on-line testing technique is identified, and details of the implementa-

tion with the MOODS system are given. Extensive experimental results are shown and

commented orn.

Chapter 6 focuses on the controller part of a controller / datapath architecture, and pro-
vides six alternative self-checking solutions for it, taking into account multiple communi-
cating control units, and utilising existing datapath self-checking resources. These tech-

niques are all implemented into MOODS, and more experimental results are presented.

Chapter 7 provides a theoretical and experimental evaluation of the reliability of the on-

line testable system under the presence of single or multiple physical failures.

Finally, chapter 8 presents ideas for future research based on this thesis and concludes it

by sumimarizing its most important contributions.

Three appendices are also included in this thesis. Appendix A is a brief “User’s Guide” of
the produced high-level synthesis for on-line testability variation of MOODS. Appendix B
shows the benchmark designs used in the experiments of chapters 5 and 6. Finally, Ap-
pendix C shows the research papers written and unofficial presentations given as part of

the work that lead to the production of this thesis.



Chapter 2

An Overview of Electronic Testing

This chapter provides background information on electronic testing theory and various
practical testing techniques, most of them developed in the 1990s. The presentation herein
begins with a very brief overview of off-line scan-based Design-For-Testability and Built-
In Self-Test (BIST) in section 2.1, while section 2.2 describes various on-line testing tech-

niques m detail. Finally, section 2.3 summarizes the chapter.

The behaviour of an electronic system under the presence of a logical fault can be evalu-
ated using the structural stuck-at fault model assumption [1], under which a wire in a sys-
tem is considered to retain a logical value (“0” or “17), regardless of the value driving it,
thus producing a logical error whenever the driving line assumes the opposite (“1” or “0”
respectively) value. An alternative structural model is the bridging fault model [1],
whereby an erroneous short circuit between two wires effectively gives rise to a new ele-
mentary logic function (AND or OR). Higher-level functional models also exist. For in-
stance, given the functional hardware description language (HDL) code of an electronic
system, a whole multi-bit variable can be modelled as being stuck at a particular arithme-
tic value. Another example of functional fault modelling are the stuck-at-true / struck-at-
Jalse faults, conceivable whenever a functional description contains conditional state-
ments. Generally speaking, the structural bit-wise stuck-at fault model has most often been
favoured over other models in the research literature, for its simplicity, representative
power, and ease of use. It is also fully adopted in this chapter and generally throughout the
whole of this thesis. By convention, a stuck-at-0 wire that fails to take the “1” value of the

line driving it, is said to assume the //0 or D value. Likewise, a stuck-at-1 wire that fails to

take the “0” value of its driving line, is said to assume the 0/7 or D value. These conven-

tional notations, taken from [1], will be used hereafter.
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2.1 Off-line testing

The general off-line testing scheme is depicted

Test

Vectors in Figure 2.1. The Circuit Under Test (CUT) is

l l ........... l taken off-line (that is, its normal operation is

cuT suspended), fest vectors / test paiterns are ap-

plied to its inputs, and fest responses are read at

l the output(s). The test responses are compared

Test against the expected fault-free responses, and

Responses

Figure 2.1. Off-line electronic testing

mismatches signify faulty situations. Test vec-

tors are provided either externally, by Automatic
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Figure 2.2. DFT in an example CUT model

Test Equipment
(ATE), or inter-
nally by dedicated
hardware embed-
ded in the system
(chip or board). A
comprehensive
account of early
electronic testing
approaches can be
found in [1]. Some
elementary con-
cepts are provided
here, since they
are needed for the
foundation of this
work; further and
more recent ad-
vances are not
covered because
they exceed its

scope.
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2.1.1 Scan-based Design-For-Testability

This subsection deals with testing using externally applied vectors. Consider Figure 2.2a.
The CUT is assumed to comprise subcircuits Cl and C2, communicating through a single
line A. The abbreviations Pls and POs refer to the system Primary Inputs and Primary
Outputs respectively. In order for a stuck-at-x, xe {0,1} type fault at line A to be tested

against, the test vector at the Pls and the initial conditions in C1 must be such that A is
driven to the x value under fault-free operation. If such a vector can be found and such

conditions reached, then line A is said to be x -controllable. Further, in order for the effect
of the considered fault to be observed, the test vector and conditions in C2 must be such
that the erroneous value in line A corrupts one or more of the POs. Once again, if this is
possible, then line A is observable. The term Design-For-Testability (DFT) refers to the
family of design techniques that aim at increasing system controllability and observability,

often trading-off chip area and / or performance.

Figure 2.2b shows a first approach towards DFT, namely control and observation (collec-
tively test) point insertion. Line A is made directly O-controllable through the insertion of
an additional AND gate (shown in bold), controlled by an additional PI. It is also directly
connected to an additional PO, thus made observable. 1-controllability can also be
achieved using an OR gate, while simultaneous 0- and 1- controllability require a multi-
plexer. This approach can be very expensive in terms of additional /0 pins when several

test points need to be inserted, which is typically the case.

An alternative approach commonly applied is based on scan registers. A scan register is a
register that has both shift and parallel-load capabilities. An n-bit scan register is shown in

Figure 2.3. Scan register cells in the figure are normal flip-flops, augmented with a control

D1 Q1 D2 QZ Dn Qn
S‘n Sout
Scan Scan = [ s E— Scan
register register register
cell cell cell

T
CK

Figure 2.3. A scan register
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input T, determining normal or test mode operation. In normal mode (T=0), the register is
loaded with functional inputs through the parallel-load input ports D; — D,. In test mode,
data are shifted into the register through the S, primary input port, and / or shifted out

through the Se,: primary output port.

Figure 2.2¢ depicts how a scan register cell can be utilised for DFT purposes in the exam-
ple of 2.2a. It is assumed that the cell shown is actually part of an overall scan register, or
chain of registers, providing test point functionality for the whole design. In normal mode
operation, the multiplexer (MUX) propagates the functional value produced by C1. In con-
trast, in test mode, the value provided by the scan flip-flop is fed to C2 instead. Therefore
all that is needed to directly control point A is to feed the scan chain with the appropriate
bit value, and apply the appropriate number of clock pulses, so that this value reaches the
relevant scan cell. Further, in normal mode, the value of A is always registered at the scan
cell through port D. Therefore, in order to directly observe it, the scan chain can be
clocked as many times as needed for the appropriate value to reach the scan output port
Seut (Figure 2.3). This way, testability improvements are achieved using 2 or 3 primary
input ports (Sin, T, and perhaps a dedicated scan clock, which can be different from the
functional circuit clock), and only 1 primary output port (Sqy). Scan registers can be pre-
existing functional system registers, augmented to accommodate test mode shifting. If this
is not possible for a particular system (e.g. due to the absence of enough functional regis-

ters), then dedicated scan registers can be added.

POs Using the scan-based DFT ap-

proach, systematic boundary scan

xXC<Z

architectures can be formulated, as

Figure 2.4 shows. In the figure,

block C represents a segment of the

Ry considered system, while R; and R,

, are scan registers. R; is used to ob-
Figure 2.4. Boundary Scan )
serve the PlIs of C (effectively the

outputs of the previous segment), while R, controls the POs of C, through the multiplexer

(in effect controlling the inputs to the next segment).



P. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 26

2.1.2 Built-In Self-Test

PG Built-In Self-Test (BIST) deals with the situation when
test vectors are provided to the CUT by dedicated
........... hardware, embedded into the system itself, while re-
= CuT ' sponses are also analysed and the decision characteris-
ing the system as fault-free or faunlty is reached once
4 more by hardware in the circuit. A typical BIST con-
SR figuration employing a Test Pattern Generator (TPG)

Figure 2.5. Buili-In Self-Test and a Signature Register (SR) is shown in Figure 2.5. In
the following, properties of TPGs and SRs, and their

realisation using Linear Feedback Shift Registers (LFSRs) will be briefly discussed.

An n-bit LFSR is presented in Figure 2.6. It is composed of normal flip-flops connected as
the figure shows, while for the blocks denoted as ¢; it is ¢;e {0,1}, [<i<n. Effectively, the
c; blocks signify the presence or absence of a feedback connection at the relevant point. ¢,
is always 1. Associated with an n-bit LFSR is its characteristic polynomial P(x)=1+c x+
+eox* .. Fepx™. The LESR of Figure 2.6 is autonomous, meaning that it has no inputs but

the required clock signal.

v v y
Cn Cn-1 Cq
Qq ¥ Q ¢ Q
D Q __j» B—» D Q e TN —p—3 p Q Ny

CK

Figure 2.6. An autonomous n-bit LFSR

It can be shown that when P(x) is primitive [1], then all n-bit vectors except the all-zeros
vector successively appear in the outputs Q; of the LESR, provided that it is initialised
with a non-zero vector. This property can be exploited when exAaustive testing is desired
for an n-input CUT, by feeding the CUT input ports through the LFSR Q; outputs, thus
applying all 2™ non-zero vectors to the CUT, effectively utilising the LFSR for TPG pur-
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poses. Alternatively, non-exhaustive, deterministic test pattern sequences can be produced,
by designing appropriate autonomous LFSRs with non-primitive characteristic polynomi-

als and itialising them with appropriate vectors.

A slightly different LFSR structure that is used as a Multi-Input Signature Register
(MISR), is shown in Figure 2.7, where the clock signal is implied but not explicitly shown.

This structure is not autonomous; rather, it is fed by the CUT outputs X;, corresponding to

X2 Xn

X
} D Q 8-1) é_» D Q &» ........... ¢ D Q Qn
o> —o—>

v

o ]| CK o, || CK c CK

: t f

Figure 2.7. An n-bit LFSR configured as an MISR

responses of the circuit to TPG vectors. When all test vectors have been applied and the
MISR has processed all test responses, then a unique pattern called a signafure resides in
the MISR. This pattern is then compared against a pre-computed fault-free signature, and
any mismatch signifies a faulty situation. In the prevailing terminology, the test responses

are often said to be compressed by the MISR.

R4 In practice, when circuits of realistic sizes

are considered, it is often possible and eco-

nomical to configure functional registers

C1 into LFSRs and use them as TPGs or MISRs

in test mode, while maintaining their normal

functionality during functional mode. This

R2 often leads to situations when segments of

A large circuits are fed by the same TPG or

C2 have their test responses compacted by the
same MISR. In such cases, BIST has to

v work in more than one test sessions, by par-

R3 titioning the circuit in groups of segments

that do not share BIST resources, and can
Figure 2.8. BIST in separate test

sessions : the need for BILBO registers therefore be tested concurrently. A more
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complicated situation is depicted in Figure 2.8. C1 and C2 refer to segments of a large
CUT, communicating with functional registers R1, R2 and R3 as shown. Clearly, R1 can
be configured as a TPG for C1, while R3 can be an MISR for C2. R2 can be either a TPG
for C2 or an MISR for C1. In either case, an additional LFSR needs to be introduced, to
act as an MISR for C1 or a TPG for C2 respectively. Alternatively, it would be desirable
to transform R2 into an architecture that would be able to provide both TPG and MISR
functionality, so that no additional LFSR would be needed. A Built-In Logic-Block Obser-
vation (BILBO) register provides such dual functionality. A BILBO structure is given in
[1] and not repeated here; for the purposes of the present work, it is enough to mention
that a BILBO is an LFSR-based structure that can function as either a normal register, a
shift register (§2.1.1), an LFSR-based TPG, or an LFSR-based MISR, depending on the

values of two control inputs.

2.2 On-line testing

In this section, the state-of-the-art of on-line testing is presented. The discussion is much
more thorough than in the off-line case of §2.1, since on-line testing is essentially the fo-
cus of this work. Generally speaking, on-line testing techniques can be classified into three
main categories, namely :

- self-checking design

- on-line BIST or on-line scan-based DFT

- monitoring analogue electronic parameters (such as current)

Self-checking design consists of encoding module outputs using some error detecting code
and then checking some code-specific invariant property (e.g. parity). On-line BIST and
on-line scan-based DFT, on the other hand, attempt to use the concepts and structures of
§2.1, in the on-line context. Usually existing (off-line) BIST or scan constructs are ex-
ploited to perform tests during certain time windows when normal operation is temporarily
suspended, either globally for the whole system (periodic BIST), or locally (during subsys-
tems’ idle periods). Monitoring analogue characteristics is useful to detect errors in elec-
trical properties of information signals that either manifest faults that are hard to detect

otherwise, or will result in logical faults in the future.
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It has to be noted that the above classification is by no means exhaustive. In fact, there are
techniques that combine elements of the categories mentioned above. Moreover, there also

exist some unique techniques that do not really fall into any of these categories.

2.2.1 Self-checking design

The basic self-checking design scheme is depicted in Figure 2.9 [9]. The functional circuit

is such that the output signals it produces are

> Functional »  encoded. This can be a natural property of the
— | Circuit > . o A
© considered circuit; otherwise, the system has
Y ¥ to be augmented and redesigned appropriately,
Checker _ _
according to the chosen Error-Detecting and /
l or Correcting Code (EDC / ECC). Any circuit
Error fault that corrupts the output bits, such that the

. . . output word does not belong to the given code,
Figure 2.9. Self-checking design. ‘
is detected by the checker. If the output bits
are corrupted, but the output is still a code word, then the fault escapes detection, and it is

said to exceed the detecting capabilities of the particular code.

Before presenting the most important error detecting codes, some fundamental definitions
are given. These constitute the theoretical foundation of self-checking design, and theo-
retically determine the efficiency of practical self-checking schemes. They first appeared

in [10], and are repeated in practically every modem publication addressing the 1ssue (for

example [11]).

Let fbe the Boolean function corresponding to a circuit C. Let X be the set of inputs that C
receives and ¥ be the set of (encoded) outputs that it produces. Furthermore, let @ be a set
of modelled physical faults and ¢ a fault in @. The function of C in the presence of fault ¢
is denoted by f{x,@), while the fault-free function is denoted by f1x,0).

Definition 2. 1. A circuit is self~testing with respect to @ if and only if Vpe @ Jxe X:
VEALDE

In other words, the circuit is self-testing, if for every fault in the specified set, there 1s at

least one functional input that produces a non-code output.
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Definition 2.2: A circuit is fault-secure with respect to @ if and only if Vxe X, Voe @ :
Jl60)% Y or f(up)=f%,0).

In fault-secure circuits, an output in the presence of a single fault is either correct, or a
non-code word. That is, it cannot be an incorrect code word.

Definition 2.3: A circuit is totally self-checking (TSC) with respect to @ if and only if it is

both self-testing and fault-secure with respect to @.

The totally self-checking property is the usual goal when designing the functional circuit.
It guarantees that erroneous outputs produced by faults will not be mistaken for correct
ones (fault-secure), and that all modelled faults are detectable by the given set of input
vectors (self-testing). The fault-secure property is relevant to the structure of the circuit,
while the self-testing one is concerned both with the structure and with the set of inputs
the circuit receives, and whether or not they are enough to detect all faults in the particular

structural realisation of the circuit.

Definition 2.4: A circuit is called code-disjoint if and only if Vxe X : f{x,0)e Y and Vxg X :
fx,0)e Y.

That is, in the fault-free case, a code-disjoint circuit maps code inputs to code outputs and
non-code puts to non-code outputs.

Definition 2.5: A circuit is called a totally self-checking checker if and only if it is both
totally self-checking and code-disjoint.

In the case of a checker, a produced code word output corresponds to the fault-free indica-
tion, while a non-code word output is the error indication. Thus, a totally self-checking
checker produces code or non-code outputs according to its inputs (functional circuit out-
puts) in a fault-free case, while under the presence of a fault it produces either the correct
code output or a non-code output. In addition, there is at least one code input that leads to

a non-code output under the presence of a fault.

Allied to the above definitions is the following hypothesis [12, 13] :
Hypothesis 2.1: Faults occur one at a time, and the time distance between the occurrences
of two consecutive faults is long enough for all the available input code words to be ap-

plied to the circuit.
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It is important to differentiate between the available code words, and all possible code
words. The available code words are all the input code words applied during normal op-
eration, 1.e. the members of set X as defined above. However, there can be vectors that are
code words, in the sense that they satisfy the characteristic invariant property of the EDC
at hand, but do not appear at the circuit input ports during normal operation. In this case,
the set X of inputs is said to be incomplete. In the rest of this work, Hypothesis 2.1 will be

assumed, unless explicitly stated otherwise.

In practice, when designing checkers, it is clearly desirable that they be totally self-
checking with respect to the targeted set of faults. In principle, the three properties that the
checker must possess are considered separately, in each given situation. A general com-
ment that can be made at this point though, is that the fault-secure condition cannot be ful-
filled by a checker whose output is a single bit. Indeed, if xe {0,1} is the fault-free indica-
tion value of such a checker, and Z the single-bit output, then for the fault {o : Z stuck-at-
X}, any erroneous (i.e. non-code word) checker input will produce the code single-bit
word x [9]. For this purpose, double-output fault-secure checkers are typically used, where
by convention the complementary values {01,10} correspond to the fault free operation,

while any of the remaining {00,11} values indicates the presence of a fault.

Further, the code-disjoint property may not always be achievable (an example is consid-
ered in chapter 6). In such cases, the checker must be at least designed to achieve the self-
testing goal with as few code words as possible, and it must receive as many code inputs
as possible. Still, if the code inputs provided are not enough for the self-testing condition
to be satisfied, the last resort is self-exercising checker design [9]. In such a configuration,
the checker is armed with an internal TPG (§2.1.2) that provides the necessary code
words. These designs tend to be expensive in hardware overhead; therefore, it can some-
times be tempting to trade-off strict coherence with self-checking design theory for a more
hardware-efficient solution, also depending on the size and nature of the design and an

analysis of the realistic possibilities of a failure. An example of such a situation is shown

in chapter 5.

The most important EDCs and relevant self-checking design considerations are presented

in the following subsections §2.2.1.1 - §2.2.1.7. Before that, two classes of EDCs are de-

fined here [1, 9].
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Definition 2.6: Given two n-bit words x:=x,.,X,.2...Xxp and Y=Y, V,.3...v Vo, X covers y, if
and only if Vi, n-1=i>0 : if y;=1=x~1.

For example, if x=10111, »=10100, then x covers y, because x has a “1” in every bit posi-

tion that y has a “17”.

Definition 2.7: An EDC is unordered, if and only if there are no two different code words

x and y, such that x covers y.

Obviously, the above x=10111 and y=10100 words cannot be code words of the same un-

ordered code.

Definition 2.8 In a separable EDC, each bit in a given code word is either an information
bit, or a check bit. If the characteristic invariant property of the code is embedded within a
code word, so that such a classification is not possible, then the EDC is a nonseparable

code.

Typically, when a separable code is used, the functional circuit (Figure 2.9) is partitioned
into two parts, both fed by the functional input. These are the functional part, producing
the normal functional output, and the code prediction part, independently producing a
number of additional bits, ensuring adherence to a code-specific invariant property. By
contrast, when a nonseparable code is used, no such partitioning can be conceived. Rather,
the produced functional output adheres to the code-specific property by nature or by de-

sign.

The theory and definitions of this section are further demonstrated and clarified in the sub-

sequent §2.2.1.1 - §2.2.1.7 through specific examples.

2.2.1.1 Parity codes

When a parity code is used, a single check bit is added to the information bits, and it is
calculated such that the parity of each code word is constant (odd or even). Parity codes
can detect all single or odd multiplicity errors. They are the cheapest possible EDCs, since

the check bit is only one and parity checkers are relatively simple [9, 14].

The parity bit of a parity-encoded word is clearly separable from the information bits;
therefore, parity codes are separable codes, and normal combinational circuits need to be
augmented by a parity prediction part, in order to implement a parity self-checking

scheme. In the case of an arithmetic functional block, the parity bit can be calculated as
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the XOR function of the

input operands, and of
] Cc the internal “carry” sig-

nal bits of the sub-

blocks that constitute the

- ) overall circuit [15].

W > O

J However, in order for

the fault-secure property

to be achieved and

Co

maintained, 1t 1 essen-

tial that internal bit

Figure 2.10. Fault-secure full-adder cell faults affect an odd
with a redundant carry used for parity prediction number of primary out-

put bits. Nicolaidis et al. [15, 16] considered this problem for ripple-carry adders, and for a
collection of multiplier and divider structures and proved that fault security is in danger 1f
the functional internal “carry” bits are used for parity prediction. They further came up
with the full-adder logic cell with a redundant carry of Figure 2.10 [15], and used it as the
basic building block for their designs. A, B and C, in the figure, are the usual addition in-
puts and input carry, while S, C and C, are the sum, the output carry and a redundant carry
respectively. In a complex multi-bit arithmetic circuit, the redundant carries of internal full
adders and the parity bits of input operands are all XORed together; the result of this XOR
operation is the predicted parity bit of the circuit output. The authors of [15] analytically
prove that this way any single fault in any internal full adder cell may corrupt either none,

a single or an odd number of the circuit out-

stuck-at-0 puts. Therefore, under the presence of a fault
A ‘i— TN : ——————————————— : the circuit either produces the correct output,
B E 8 — E or reverses its parity, hence producing a non-
C i __g_“ code output. Fault-security is thus achieved.
L
D Parity checkers are easily designed as “parity

trees” composed of 2-input XOR gates. As

stated in [9], splitting the code word in two

groups and using two separate parity trees re-

Figure 2.11. A 5-bit odd parity
checker sults in a two-output fault secure parity
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checker. An example 5-bit odd parity checker is shown in Figure 2.11, fed by the 5-bit
odd-parity encoded input word ABCDE, and consisting of two parity trees, composed of

two (labelled 1,2) and one (labelled 3) XOR gate(s) respectively.

The simple example of Figure 2.11 is used here to clarify the importance of the self-testing
property of §2.2.1. Let us first assume that under fault free operation, the circuit input
word ABCDE can only take one of the three values in the following set X={01110, 01000,
00111}. As explained in §2.1.1, a value in the set ¥={01,10} signifies correct operation; in
the terminology of §2.1.1, Y'is the set of code word outputs. Clearly the input words are all
odd-parity encoded, and it can easily be confirmed that all three of them produce code
word outputs. However, the checker receives only a small subset of all possible 5-bit odd-
parity code words. It is not totally self-checking with respect to the set @ of all stuck-at
faults at its constituent gates, since it does not satisty the self-testing property when fed by
these three inputs only. This can easily be confirmed, since for the fault ¢ shown in Figure
2.11 representing an input of gate 1 to be stuck-at-0, there is no code word € X that pro-
duces a non-code word. ¢ is therefore undetectable by the particular set of functional in-
puts, and this potentially hinders the detecting capabilities of the checker. The significance
of this can be appreciated if one takes into account that the input word ABCDE is nor-
mally the encoded output of a functional circuit, according to Figure 2.9. If the checker
has already been hit by fault ¢, and at a future point of time an additional fault in the func-
tional circuit causes, for example, the non-code word ABCDE=11110 to appear in the
checker input, it is easy to verify that the checker response will be the code word output

01, meaning that the functional circuit fault escapes detection.

From the above example, it is clear that the self-testing property for a checker is not a
property of the checker alone; rather it is a property of the checker in the context of the
overall system it is part of, since it is the system that provides the code words. Further-
more, it is a property that is strongly related to the actual internal structure of the checker
(i this case, the particular arrangement of the 2-input XOR gates), since the set of mod-
elled faults @ is defined with respect to the structure [17]. Therefore, two behaviourally
equivalent (in the fault-free case) parity checkers in the same context, receiving the same

code words may not be both self-testing. Two converse problems can be formulated in this

context :
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e given a parity checker of known structure, it is desirable to identify the minimum
number of code word inputs that ensure the self-testing property.

e given a set of parity code word inputs, it is desirable to determine whether or not they
can ensure the self-testing property, for some checker structure(s), and, having secured

that, to design the corresponding optimally-structured checker.

Regarding the first problem, all XOR gates in the checker should receive all four possible
input combinations 00, 01, 10, 11 [18]. This guarantees that the checker will be self-
testing, regardless of the actual XOR gate implementation. Khakbaz and McCluskey [17]
propose a way to identify a set of code words ensuring this property. They show that it is
enough for the two XOR gates that produce the final checker outputs (e.g. gates 1 and 3 in
Figure 2.11) to receive these four combinations. These values can be traced back to the
checker primary inputs, and thus determine the required code words. For the checker of
Figure 2.11, it can easily be verified that {11100, 00010, 10101, 01011} is such a set, and
it can also be seen that the remaining XOR gate 2 also receives all possible inputs. Inter-
estingly, this limits the number of necessary code words to only four for every given

checker structure, regardless of bit-width.

As far as the second issue is concerned, the following two lemmas apply (taken from [17,
18], where proofs can also be found) :

Lemma 2.1: Any n-bit parity checker realisation that receives more than 75% of its possi-
ble codeword inputs is self-testing.

Lemma 2.2: Consider a 4xn Boolean matrix M, whose rows constitute a test set for an n-
bit even (odd) parity checker realised with 2-input XOR gates only. Then M has distinct

rows, all rows have even (odd) parity, and each column has exactly two Os and two 1s.

In the light of these two lemmas, it can now be stated that, given a set of n-bit parity code
word inputs, and taking into account that the total number of such possible code words is
2" if the number of code inputs is large enough (more than 3x2"~), then any 2-input
XOR gate realisation of the checker is a self-testing one. Otherwise, if four code words
can be found within the given set that satisfy the conditions of Lemma 2.2, then there ex-
ists at least one 2-input XOR gate realisation of a parity checker that is self-testing. Ana-

lytical algorithms to design such checkers, and to optimise them for speed (by minimising
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the number of logic gate levels within the checker), can be found in [17, 18], but exceed

the purposes of this presentation.

There can be situations when the input set is so incomplete that neither the conditions of
Lemma 2.1 nor those of Lemma 2.2 can be satisfied by the available code words. As men-

tioned in §2.2.1, self-exercising checker design provides a theoretically robust solution for

X4 X2 Xa

Figure 2.12. n-bit embedded TSC parity checker with error memorizing capability
this problem. The embedded parity TSC checker with error-memorizing capability of Fig-

ure 2.12 was presented in [12, 19, 20] for this purpose. In the figure, X,...X, is the even-
parity encoded checker input. The conventional even parity checker is supplemented by an
LFSR structure (similar to the MISR of Figure 2.7). As usual in LFSR designs, it is

cie {0,1}, 1<i<n, and c¢; signify the presence or absence of feedback at the particular point.
The design is based on the observation that the even parity code is a /inear code, that is
when two even-parity encoded words are added modulo-2 (XORed), the parity of the re-
sulting word is still even. Therefore, if the LFSR is designed so as to provide all even par-
ity words, then the set of code words that the conventional checker receives is greatly en-
hanced. The technique applies equally to odd-parity encoding, by simply inverting an arbi-
trary bit of the input word. The problem of designing a proper LFSR. (choosing suitable ¢;

values) 1s addressed by the following theory [12, 19, 201.

Definition 2.9: An EDC is called cyclic if, for every given code word, a “rotate” (cyclic

shift) operation always results in another code word.
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Observe that both even and odd parity codes are cyclic. For example, if the word

10001111 (which is an odd-parity 8-bit code word) is rotated left once, the resulting word

00011111 is still odd-parity encoded.

Definition 2.10: Given an n-bit code word c=cqc...cy.1, the polynomial
c(x)=cox™ e X L Hepaxtcen 2.1)

is called the code polynomial.

Definition 2.11: Given an n-bit cyclic code and a polynomial g(x) of degree n-k, g(x) is a

generator polynomial of the code, if all code polynomials corresponding to all code words

are divisible by g(x). The code is then particularly called an (», &) cyclic code.

It can be shown [12, 19, 20] that g(x)=x+1 is a generator polynomial of the even parity

code irrespective of the bit width, thus making it an (n,1) cyclic code.

Theorem 2.1: Let g(x) be a generator polynomial of an (n,k) cyclic code, and d(x) a primi-

tive polynomial of degree k. Then the LFSR with the characteristic polynomial

p(x)=g(x)d(x) generates all code words of the cyclic code, except for the all-zeros pattern.

Theorem 2.1 was initially introduced and proved by Hsiao et al [21].

It is now clear how the LFSR in Figure 2.12 can be designed. One simply needs to choose
a primitive polynomial of degree n-1 and multiply it by the generator polynomial (x+1), to
obtain the characteristic polynomial of an LFSR that produces all even parity code words,
when seeded with any non-zero even parity encoded word. Tarnick has shown [12, 19, 20]
that in order for the overall checker of Figure 2.12 to be totally self-checking, the func-
tional circuit only needs to provide two different non-zero code words. The disadvantage
of this technique is the hardware penalty that the introduction of the LFSR imposes, but it
is the only available solution if normal operation provides only very few code words, and

if strict adherence to self-checking theory is desirable.

An interesting application of parity error detecting codes is self-checking state machines.
Zeng et al. [22] propose a state encoding and parity prediction technique to check the pre-
sent state and primary output signals of state machines. The present state signals are
checked using a single parity bit. The primary outputs either have a parity bit computed
and attached to them, or are partitioned into groups, with a parity prediction scheme ap-
plied to each one of the groups. Hardware savings are achieved in the latter case, by allow-
ing logic sharing between different groups. Lakshminarayana et al [23] mention parity

prediction as a means to design self-checking controllers of controller / datapath designs,
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but do not elaborate on their technique with respect to self-checking theory. This issue is
revisited in chapter 6, with a theoretical evaluation, practical considerations, specific im-

plementation examples, and the particular contribution of this thesis.

2.2.1.2 m-out-of-n codes

An m-out-of-n code word has exactly m Is out of n total bits. m-out-of-n (also signified by
m/n) codes are an example of unordered and nonseparable codes. They detect all single

and multiple unidirectional errors (that is, errors resulting in corrupted signals where all

erroneous bits have the same value, either D or D ). The fault-secure property using unor-
dered codes in general, and m/n codes in particular can be achieved for a limited number
of functions, and it is practically considered only when the function outputs are already
encoded using such a code, by nature. Some attempts to design fault-secure arithmetic
units using unordered codes have been reported, but they are not widely adopted, since
they are much more expensive to implement than parity prediction schemes [15].

1
It can easily be verified that an m/n code has exactly (m) = nlfm!(n—m) code words. For
any given n, this value is maximum for m=[n/2] [10]. Therefore, [1/2]-out-of-n codes, of-
ten considered for n=2k and referred to as k-out-of-2k, are of particular interest, since they
have the maximum capacity (in code words) of all other m-out-of-n codes. 1-out-of-n (1/n,
also referred to as I-hot) codes are another special case of particular interest. They have
the minimum code word capacity {only n words), but they frequently appear in computer

systems by nature, e.g. in memory address “select” lines.

A lot of work has been presented in the direction of designing totally self-checking check-
ers for k/2k, 1-hot, as well as generic m/n codes. Historically, the first attempt was re-
ported in [10], also mentioned in [2]. Anderson and Metze [10] used majority functions for
this purpose.
Definition 2.12: Consider the n,-bit signal A, and let k, be the number of bits of 4 that take
the 1 value at a given point of time. Let i be an integer value. The majority function
Tk, >i) is defined as follows :
Tlh.=i)=1, if k=i (2.2a)
Tlk=i)=0, it k,<i (2.2b)
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A majority detection circuit is a circuit implementing a majority function, and is typically
realised in a 2-level AND-OR form, by using all possible i-bit combinations of all », bits

of 4 as inputs to respective AND gates, and ORing the AND gate outputs.

In [10], the realisation of TSC k/2k checkers is described, through either sum-of-products
or product-of-sums combinations of the outputs of suitable majority detection circuits. The
k/2k encoded signal that feeds the checker is partitioned into two signals A and B of bit
widths n, and ny, respectively, where n,=ny=k. Let k, and k;, be the number of 1s in each
signal. Then the logic functions F and G that produce the primary outputs of the checker

are described (for example in sum-of-products form) by the following equations :

k
F=3" T(ka2)x T(ko=k-i), i odd (2.3a)

i=0

3
G= Z Tk =)< T(ky>k-i), i even (2.3b)
i=0
Functions realising checkers for generic m/n codes are also provided, but it is shown that

the designs are TSC in the k/2k case only. However, TSC m/n checkers can be imple-

mented based on the k/2k ones, if the scheme of Figure 2.13 is applied. In this scheme, the

. . . 7 . . .
generic m/n code is first decoded into an / (' ]( 1-hot) code (using a simple conventional
i

decoder composed of AND gates only), and then a suitable totally self-checking code

A

) ) i n 2k
translator is used, to formulate a k/2k code, where k is selected such that 2~ < (’n} = { e

The code translator is shown in [10, 2] to be easily implementable using a single level of
OR gates only. It is to be noted that this modular technique is not proved to be applicable
for every given m/n code; in fact, some problematic codes for which the TSC goal is not

achieved are already admitted in [10].

m/n / UJ k/2k

—p > S
) > x » X
: : -
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Figure 2.13. m/n checker by Anderson and Metze
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k/2k dual This early work, however in-
] rail > complete, clearly showed the
N, importance of k/2k and 1-hot
: = . . .
K : , § u checkers, not only for the pur
0 pose of checking corresponding
k] » ST O 4 S
: A0 codes, but also in order to be
N
o : o : used as building blocks for ge-
> neric m/n checkers. Paschalis et

Figure 2.14. k/2k checker by Paschalis et al al [24] presented an alternative

modular design for a TSC k/2k checker, shown in Figure 2.14. The input signal is once
again divided into two signals of equal widths; this time, howewver, subcircuits N, and Ny
are used instead of majority functions. These subcircuits produce m-bit wide outputs,

where m=|logk + 1—} , that correspond to the binary representation of the number of 1s in

their inputs, augmented by suitably calculated constants, so as to be complementary.
These complementary signals are subsequently checked by an m-bit dual-rail checker.
Dual-rail checkers are covered together with the dual-rail code in §2.2.2.2; for the time
being, it is enough to mention that such a checker provides the fault-free indication if its
input vectors are complementary, and signals an error otherwise. Further, the implementa-
tion of N, and Ny, and the proper calculation of the mentioned constants, are discussed in
detail in [24]; interestingly, the subcircuits are composed of full-adder and half-adder cells
only. Tables comparing the implementations of [24] to these of [10] are also available in
[24]; from them, it is obvious that the most efficient implementation strongly relies on the
value of k. In principle, however, the adder-based approach becomes more and more
hardware-efficient as k grows [25]. The work of [24] is further continued in [26], [27] and
[25], where it is shown that the same or a similar technique can be used to design some
(but still not all) m/n checkers with n#2m, and sufficient conditions that m and n have to
satisfy in order for this to be possible are derived. In principle, m always needs to be

within a narrow range around 1/2, in order for the checker design to be TSC.

The above presented works cover the issue (and reveal the limitations) of m/n checkers
using logic gates as building blocks. Kavousianos et al [28] investigate the design of m/n
checkers based on CMOS transistors. They ultimately propose the design shown in Figure
2.15. This design consists of two almost identical m/m+1 programmable weight threshold

circuits Ly and Ly, producing the checker primary output 2-bit word QoQ;. Each one of



P. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 41

these subcircuits comprises a pull-up part of two PMOS transistors pm,, and pmy,., and a
pull-down part of n NMOS transistors, nm;-nm,. X=X;-X, is the checker input, while I is
a control input signal. [28] shows that for suitable values of transistor sizes (given as func-
tions of m), and for I=0, the pull-down part of L, drives Q; to a “strong 07, that prevails
over the 1 that the pull-up part attempts to drive Q, to, only if the number of 1s in X is
greater than m. Due to the inverter, pmy,+; has no effect in Ly, and Qg is driven to 0 only if
the number of 1s in X is greater than or equal fo m. Q, and Qg are therefore complemen-
tary only if the number of 1s in X is exactly equal to m, thus providing the fault-free indi-
cation. The operation can be analysed similarly and similar conclusions can be drawn
when I=1. The authors further prove the TSC property of their checker, which is notably
utilisable for arbitrary practical values of n and m, but has the limitation that it is totally
technology-specific, therefore unsuitable when a high-level of abstraction design flow is

adopted, or when independence of technology is desired.

GND
—~| nms —{ nmsy cevrenae —-i nmn

e e |
—— e

__4 nmy __{ nms ceereaae __l nmpy

X4 Xo ' e Xn

Figure 2.15. CMOS m/n checker by Kavousianos et al
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Let us now focus exclusively on the design of TSC checkers for 1-hot codes. Such check-
ers can be used as building blocks for the design of generic m/n checkers (according to
Figure 2.13). Further, as already mentioned, 1-hot codes often appear naturally in com-

puter systems, and are therefore of particular importance.

A couple of choices for 1-hot code checkers have already been covered in this section.

Firstly, Anderson and Metze’s

1/n dL!lal scheme (Figure 2.13, [10]) suggests
rai
— > that a code translator followed by a
— " % > — k/2k checker, implemented in any of
wE < L, _
as E 5 the ways proposed in [10, 2, 24, 26,
(ON, . .
&) <ZE § % — 27, 25] and mentioned here earlier,
oo
E can serve this purpose. Secondly,
e — p .
the /m CMOS checker of [28] is
Figure 2.16. 1/n checker by Khakbaz also utilisable for n=1. A third alter-

native is presented in [29] by Khak-
baz, covered in [2] by Lala, and depicted here in Figure 2.16. The n-bit wide 1-hot code is
first translated to a dual-rail code, consisting of p= ﬂog2 n_l pairs of complementary bits.
Subsequently a dual-rail checker (§2.2.2.2) produces the fault-detection or fault-free indi-
cation. The code translator is systematically implemented as follows :
e Letx;-x, be the 1-hot encoded inputs to the checker. Further, let (J1,K;)-(J,.K;) be the
p pairs of complementary code translator outputs.
e Consider the p-bit binary representation of all integers between 1 and » (inclusive).
The translator output pairs are produced by NOR gates, where input X; is connected to the
gate producing output J;, if the binary representation of integer 1 has a “1” in bit position
(p-j)- Conversely, input x; is connected to the gate producing output K;, if the binary repre-
sentation of integer i has a “0” in bit position (p-j). If I(k) denotes the k-position bit of the
binary representation of integer i, the above idea can be formulated as in the following

equations :



P. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 43

X1 X2 X3 X4 Xs Xs X7 Xg

.

O—0O—0-0

L
0
5

JA A

K
O OO O
) M ) e \ J
N4 N4 ./ N/

()
/
()
(N
2R
L/
()
-/

|

Y

w

Figure 2.17. 1/8 to 3-pair dual-rail code translator

J, =Y x,  foralli:I{p-j)=1 (2.4a)

K, :in ,foralli:/(p-j)=0 (2.4b)

The translator construction process is further clarified through the itlustrative simple ex-

ample of Figure 2.17, taken from [2]. The example deals with the translation of a 1/8 code
mto a ([ﬂlog2 S‘I) 3-pair dual rail code. Vertical lines represent the x; inputs, while horizon-

tal lines signify the NOR gate inputs. A bubble where a vertical line meets a horizontal
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one signifies a physical connection, i.e. the input corresponding to the vertical line is an

input to the gate corresponding to the horizontal line. For example :

Ty =0 +x;, + x5 +x,) 2.5
Figure 2.17 is an elegant visualisation of equations (2.4a) and (2.4b). Indeed, consider e.g.
input x3. It is 3<;0-=011<, so there are 1s in bit positions “0”” and “1”. According to the
above rule, this means that x3 will be an input to gates producing J; and J;, and the corre-
sponding connections can be observed in the figure. There is a O only in bit position “2”,

s0 x3 contributes to K, and again the connection appears in the figure.

In [29], Khakbaz further proves the TSC property for his design of Figure 2.16. This is
achieved automatically if the bit width of the 1-hot code is a power of 2, since in this case
the dual-rail checker of Figure 2.16 receives all possible code words. Otherwise, an im-

plementation of the p-pair dual-rail checker using a combination of two 2-pair dual-rail

@Ky (LK) (Kt (LK)
AA 4 y ¥ vy ¥y Vv
2-PAIR
DUAL-RAIL (P-2)-PAIR DUAL-RAIL CHECKER
CHECKER
vV YV
2-PAIR
DUAL-RAIL
CHECKER

'

Figure 2.18. TSC dual-rail checker for the design of Figure 2.16, n<>2°, n<>3
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checkers and a (p-2)-pair dual-rail checker is proposed. This implementation is depicted in
Figure 2.18 and achieves the TSC goal for any 1/n checker with n>3. (J,K); pairs in the
figure correspond to the outputs of the translator of Figure 2.17. When the code bit-width
is not a power of 2 the dual-rail code is incomplete, and therefore the TSC property for the
overall checker is not guaranteed by nature; it is, however, achieved by construction, since
as shown in [29] all three constituent checkers of Figure 2.18 separately receive all possi-

ble code words during normal operation.

Khakbaz’s 1-hot checker design was initially developed to target Programmable Logic Ar-
ray (PLA) implementations. It is, however, based on elementary logic functions; it can,
therefore, be realised in any technology. It is extensively used in this work (chapter 6) for

alternative technologies, and that is why particular emphasis has been given to it here.

As the 1-hot bit width grows, equations (2.4) can become significantly long. Depending on
the design flow and target technology, that can have serious impacts on the performance
of the checker. Tao et al [30] propose yet another choice for the 1-hot checker. They re-
visit the classical approach of Figure 2.13 (1/n-to-k/2k code translator, followed by a k/2k
checker), and propose NOR gate-based design solutions both for the translator and for the
checker. Once more, the implementation targets a PLA device, but it can be utilised for
other technologies. This technique is reported to experience minimum gate delay; it does
not, however, yield totally self-checking solutions for all n. Unfortunately, some practi-
cally important values of n are among those not served by it (e.g. 7, 9, 11). Depending on

the application at hand, this can be a prohibitive drawback.

Curiously, none of the techniques presented so far can be used to construct a TSC 1-out-
of-3 checker. The most generic of them [29], is utilisable for all values of n, except n=3.
The reason for this, is that the code translator (Figures 2.16, 2.17) in the 1/3 case, produces
an incomplete dual-rail code (3 dual-rail code words, 1 missing), which is not enough to
guarantee the TSC property for the subsequent dual-rail checker. In fact, it has been
proved mathematically that no stand-alone TSC 1/3 checker composed of logic gates can
be constructed [14]. This prompted the research community to look for alternative solu-
tions. One such solution [31] considers the 1/3 code in the context of a full-scale self-
checking system; it assumes that at least one totally self-checking checker (of any arbitrary

code) exists in the system, and combines it with the output of the translator of Figure 2.17,
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as shown in Figure 2.19. As the figure shows, the 2-pair output of the code translator is
broken in two. The first pair is combined with the (2-bit, §2.2.1) output of the arbitrary
code checker through a 2-pair dual-rail checker. The output of this checker is further com-
bined with the second pair through another dual-rail checker, to give the overall error or
error-free indication. Both 2-pair dual-rail checkers now receive all possible 4 input code

words, so the overall scheme is totally self-checking.

(INCOMPLETE)
1/3-TO-DUAL RAIL
CODE TRANSLATOR

ARBITRARY CODE
TSC CHECKER

LA 4 A A 4

2-PAIR
DUAL-RAIL
CHECKER

2-PAIR
DUAL-RAIL
CHECKER

Figure 2.19. A 1/3 code translator
combined with an arbitraty TSC checker

Another family of techniques look for transistor-level TSC implementations for the prob-

lematic 1/3 code checker. Lo and Thanawastien [32] propose a very compact checker,
consisting of 11 NMOS transistors only. The design is only partially self-checking (that is,
totally self-checking for only a subset of the faults of interest). Metra et al [33] present a
generic 1/n TSC checker, utilisable for the 1/3 case, and, like [28], based on threshold cir-
cuits (Figure 2.15). Of course, the m/n checker of [28] can in itself be used in the 1/n case,

including 1/3.
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As a final note on the m/n checker issue, Figure 2.20 shows an “out of the mainstream”

sequential configuration that can provide checker functionality for m/n codes. It is based
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in ADDER out

v
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Figure 2.20. Programmable embedded
self-testing checker for an m/n code

on the combination of an n-bit ripple-carry adder with an n-bit register, with the register
output being fed to one of the adder inputs. Such a configuration is often referred to as an
accumulator. The m/n encoded signal X is fed to the other input. Two D flip-flops are also
used, connected to the adder carry-in and carry-out ports as the figure depicts. The error
indication is produced at the carry-out end of the adder as shown. Stroele and Tarnick pro-
pose this design in [34], and provide an analytical proof and explanation of its fault detec-
tion capabilities, and a description of its properties. Interestingly, the same n-bit design
can be used for any given m/n code, provided that the register is initialised with a code
word belonging to the code at hand. This property makes it programmable. Its main ad-
vantage is that it is self-testing by construction as proved in [34]. On the other hand, it
sometimes experiences error latency of a few clock cycles (i.e. errors are sometimes de-
tected a few clock cycles after they occur). It is, therefore, not code-disjoint in the strict
sense of the term. Unfortunately, error latency increases as the value of n increases; its
usefulness is thus restricted to rather low bit-widths. It is also reported [34] that faults can

totally escape detection, albeit with a low probability.
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The extensive discussion of this section reflects the variety of choices available for
checker designs for m/n codes, including the special cases of k/2k, 1/n, and even dedicated
pieces of work to address the 1/3 case. Chapter 6 of this thesis provides a critical evalua-
tion of these choices in the context of this present work, and describes the associated im-
plementation and experimental results. As a final remark, further more options for n/m
checkers have notably been presented, most of them historical and / or out of the scope of

this thesis. These are further covered in [2] and {9].

2.2.1.3 Berger codes

An n-bit word encoded according to a Berger code scheme consists of a k-bit information
part I and an r-bit check part I, the latter being the binary representation of the number of
Is in the information part (clearly n=k+r). Variations exist, wherein I, is either the 1°s
complement of the number of 1s in I, or the number of Os in I. Without loss of generality
these variations are ignored in this discussion. In any case, a Berger code is a separable as
well as an unordered code [9]. As already mentioned in §2.2.1.2, it is not always possible
to achieve the fault-secure property using unordered codes; Berger codes are no exception

to this rule.

K CHECK-BIT r A generic implementation
——£—» GENERATOR/ S _
| 1's COUNTER = % of a Berger code checker
rx . R
3 8 is shown in Figure 2.21.
<< >
r o As is clear from the figure,
> oo
le the information part is fed
to a check-bit generator,
Figure 2.21. A general Berger code checker that effectively reproduces

the check part — or typically the complement of the check part, so that a dual-rail checker
can subsequently be applied to produce the erroneous or error-free indication. In practice,
the check-bit generator is a 1s counter with inverted outputs, composed of full- and half-
adder cells only. Issues related to the totally self-checking goal arise here as well, resulting
in modified versions of the general scheme of Figure 2.21, often involving suitable con-
stants added both to the output of the check-bit generator and to the check part (analogous
to the k/2k checker design of Figure 2.14), or using potentially existing checker outputs (in

line with the scheme of Figure 2.19). A recent account of such approaches can be found in



P. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 49

[35], but will not concern this thesis any further. It can also be noted that accumulator-

based designs (similar to that of Figure 2.20) have been configured in [34] for Berger

codes.
2.2.1.4 Codes based on Hamming distance

The Hamming distance of any two n-bit words is the number of bits in which they differ.
The Hamming distance concept has been used for error detecting and correcting purposes.
In particular, if a code is defined such that any two code words have a minimum Hamming
distance of d, then it can be shown that this code has the capability to detect d-1 errors,
and to con‘ect{(d - 1)/2j errors [1]. Note that both even and odd parity codes (§2.2.1.1)
are special cases of such codes, with ¢=2, therefore 1-error detecting and 0-error correct-

ing capability.

When d=3, the widely used, single-error-correcting / double-error-detecting code, often
simply called the (conventional) Hamming code can be defined analytically as follows [1].
If there are ¢ information bits, ¢ check bits are needed, where 2°>¢+c+1. The resulting
word consists of (g+c) bits and can be represented as by:....b2b;. Bits by', 0<i<e-1 are the
check bits. Let n be an integer and bj(n) the value of the j-th bit of n (represented in bi-
nary). Let p={(integer) I / b(I)=1}, that is p; is the set of integers whose binary representa-
tion has a 1 in position j. Then consider the following ¢ parity-check equations

Db, =0,i=1,..¢c (2.6)

ke p;
where the summation is modulo 2 (effectively XOR). From these equations, check bits can
be determined. For example, consider 4 information bits. It should be ¢=3. Then equations

(2.6) become

b ®b, ®b, ®b, =0 (2.7a)
b, ®b, ®b, ®b, =0 (2.7b)
b, ®b, ®b, ®b, =0 (2.7¢)

enabling the calculation of the check bits b;, b, and b, from the information bits b3, bs, bs
and b;. This example conveniently demonstrates how error correction works. Indeed, con-
sider a single erroneous bit, e.g. bs. Equations (2.7b) and (2.7¢) will now necessarily yield

logic 1s. Observe that the outputs of equations (2.7), from (2.7¢) to (2.7a), now form the
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Figure 2.22. Application of an error correcting code.
binary number 110, which corresponds to the decimal number 6, which is the subscript of
the erroneous bit b4. The block diagram of Figure 2.22 shows how error correction is real-
ised. The encoder block effectively realises equations (2.7) and produces the input check
bits, while the functional circuit is supplemented by an output check bit predictor block,
similar to the parity prediction schemes discussed in §2.2.1.1. The checker effectively
again just implements etluations (2.7), while the corrector interprets the checker informa-
tion to determine and invert the faulty bit. The checker also produces an error indication.
The only complicated block in the figure is the check bit predictor, which is realisable
only when the check bits of the functional result can be calculated from the check bits of
the function operands. This is not always achievable; in practice, the code is particularly

useful when the “functional circuit” is a system bus or a memory array.

In [36], the Hamming code is used to check a memory (SRAM) block. When a write op-
eration is performed, check bits are also computed and stored together with useful data.
When a read operation is performed, the stored word 1s first checked and then the informa-
tion part is isolated and used. The overall testing scheme is further armed with BIST re-
sources {§2.1.2) that test memory cells by performing read and write operations to cells

when they are not accessed for functional purposes.

Another application of Hamming encoding is found in [37]. The next state logic block of a
finite state machine is implemented such that the next state signals are encoded according
to the Hamming single ECC, and the scheme of Figure 2.22 is subsequently applied to
achieve fault tolerance by means of error correction. Interestingly, the whole process has
been coded as a pre-processing step in the synthesis process, therefore producing on-line
testable designs by automatically modifying the VHDL descriptions, and is reported to be

compatible with commercial synthesis tools.
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As opposed to the conventional Hamming code referring to minimum Hamming distance
between code words, Bolchini et al [38] propose a constant Hamming distance code, and
use it once more for the purposes of encoding the states of a finite state machine. The con-
stant Hamming distance property is not required of any two random code words, but rather
of two code words that correspond to consecutive states. That is, the encodings of any two
consecutive states differ by a constant distance d, but two non-consecutive states do not
differ by d, but by a multiple of d, depending on the number of states that are in between
the two states. It is a scheme that does not strictly conform to the usual self-checking de-
sign paradigm, in that the sequence of code words is relevant to the encoding. The authors
of [38] propose a graph theory-based algorithm to map states to code words, and also use
Berger encoding and checking (§2.2.1.3) for the combinational finite state machine output
function. Moreover, in [39] the same authors introduce a suitable TSC checker to verify
the constant distance between consecutive states. Further details exceed the scope of this
thesis; it has to be noted, however, that in contrast to conventional Hamming code, this
encoding does not provide error correction. Nevertheless, it detects faults resulting not

only in non-code words, but also in incorrect code words, that is, incorrect transitions to

legal states.

The schemes of [38, 37] are efficient for conventional finite state machines, but do not
give a satisfactory solution to the controller self-checking problem where the datapath in-

cludes storage elements. This issue is revisited and clarified in §6.1.1.

2.2.1.5 Arithmetic codes

The term “arithmetic codes” loosely corresponds to the family of codes whose words pre-
serve the characteristic code invariant property under arithmetic operations. These codes
are typically characterised by their base integer A. Let the non-coded word be W. Depend-
ing on how W and A are combined to produce the encoded word, three categories of such
codes are most often reported in the literature [5, 40] :

- residue codes

They are separable codes. The information part is the word W itself, while the check part
1s calculated as (W mod A).

- inverse residue codes
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They are separable codes too. Again the non-coded word forms the information part, but
this time the check part is [A — (W mod A)].

- AN codes

They are non-separable. The code words are the products of non-coded words by the base

A (WxA).

Clearly different choices of the base A lead to different incarnations of the above classes
of codes. As an example, Figure 2.23 shows a self-checking multiplier configuration based
on a base A residue code. Of practical interest are the residue codes with A=2"1, typically
referred to as low-cost residue codes. In this case, the modulo generators can be imple-
mented relatively cheaply, as trees of carry end-around adders (i.e., adders whose “carry-
out” signals are connected back to the “carry-in” ports) [5]. The comparator module is im-

plemented based on a dual-rail checker (see §2.2.2).

It is not within the scope of this presentation to give extensive details on arithmetic codes;
an interesting application of such codes can however be found in reference [41]. Its au-
thors show that self-checking schemes similar to Figure 2.23 for large multipliers can be
cheaper than the corresponding parity prediction schemes of [16, 15], presented here in
§2.2.1.1. They further present techniques to choose the most suitable base for various

kinds of multipliers and include these techniques and the resulting multiplier designs in a

W » Multiplier | modA R orror

W, » 1 “1 generator
encoded comparator
Yy output >

mod A > Multiplier | modA . indication

generator 2 ~1 generator
v /
mod A '
generator checker

Figure 2.23. A multiplier self-checking scheme based on a base A residue code.
unified CAD tool, which includes the work of [16, 15]. The tool produces HDL descrip-
tions of self-checking data-path modules, which can subsequently be used as building

blocks by standard synthesis tools.

Finally, [40] gives the self-exercising checker design solution for low-cost arithmetic
codes. Just as in the parity code case [12, 19, 20] presented in §2.2.1.1 (Figure 2.12), a

code words generator design (again resembling an LFSR in structure and hardware cost) is
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used to provide additional code words to the conventional arithimetic code checker. Alter-

natively, an accumulator (§2.2.1.2) can be used for code word generation purposes.

2.2.1.6 Sharing on- and off-line testing resources

This subsection focuses on a few approaches that aim at reusing test resources normally
employed for off-line BIST (§2.1.2), to provide on-line self-checking functionality as

well. The motivation behind such combined approaches is that both of the above families
of techniques impose significant hardware overheads to the original designs; having both
on a chip can result in prohibitively large cost. Reusing resources in the mentioned manner

is an attempt to keep the cost within acceptable limits.

The first successful attempt in this direction has been Unified Built-In Self-Test (UBIST)

[42]. The self-exercising checker design and the overall UBIST scheme proposed therein,

are shown in Figures 2.24 and 2.25 respectively.

In Figure 2.24, FIs are functional circuit inputs received by the checker during normal op-
eration (when the control signal T=0). In contrast, when T=1 (test mode), the checker re-

ceives inputs from the BILBO register (§2.1.2). The code / non-code indicator specifies if

the input word pro-

UBILBO
| vided by the BILBO is
BILBO ngr?—dci(/je é a code or a non-code
indicator i word. Testing the

checker with non-code

as well as code words

is reported to enhance
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pabilities. In both the
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word case, additional

logic in Figure 2.24
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UBIST checker
checker outputs fp and

Figure 2.24. A UBILBO and a UBIST checker fy will respectively
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provide a fault-free (fo=—~f;) or faulty (f=f}) indication. Dashed lines in the figure define
the Unified BILBO (UBILBO) block, as the combination of a usual BILBO register with
the code / non-code indicator and a few controlling transistors, and the UBIST checker as

the combination of a normal checker with the additional logic shown.

In Figure 2.25, a part of a circuit configured according to an overall UBIST scheme is
shown. Consider the off-line test mode and assume two test sessions, T1 and T2. During

T1, odd UBILBOs operate in TPG mode and provide test vectors to odd functional blocks.

% UBILBO % UBILBO —%2—-» UBILBO %—» UBILBO
;———>| 1 — 2 —_—p 3

R ﬁ Functional Q’\ Functional ILf\ Functional
Block 1 ﬂ/ Block 2 ‘ﬂ Block 3

UBIST UBIST UBIST UBIST
Checker O Checker 1 Checker 2 Checker 3

vy vy vy vy

Figure 2.25. The overall UBIST scherre

The responses are compressed by even UBILBOs (in MISR mode), as well as directly
verified by odd UBIST checkers. During T2, odd and even blocks mutually exchange
roles. During normal operation, BILBOs are isolated from the rest of the circuit (T=0 in
Figure 2.24), and functional block outputs are normally checked by the corresponding
checker modules, as in conventional self-checking design. It should be noted that the UB-
IST technique does not assume a particular error detection code. The designer is free to
choose the one that best accommodates his or her needs. BILBO designs that produce

code and non-code words for various codes are further included in [42].

A more recent combined off- / on-line testing approach is presented in [43]. The overall

Normal Normal
Augmented >
Inputs g > Outputs
> CUT Check
% @ bits
TPG/ < > Checker / SR/
Scan Register mode Scan Register

select

Figure 2.26. A combined on-line / off-line approach



P. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 55

testing scheme is shown in Figure 2.26. The TPG and signature register of the figure can
also operate as scan registers, so that the off-line test mode can be realised as either BIST
or shift-based testing. In either case, inputs from the TPG / scan register are fed to the
augmented CUT and the normal outputs are either compressed in the SR or shifted out. In
this off-line mode, the check bits shown in the figure are ignored. During normal opera-
tion, clearly normal functional inputs are fed to the circuit. This time, a check bit genera-
tor residing within the augmented CUT is taken into account. Effectively, the generator 1s
designed such that the check bits it produces, in the fault-free case, equal to the bits resid-
ing in the signature register when fed by the given normal output. Their equivalence is
then checked using a normal comparator, fed by the check bits and the contents of the SR.
The checker is thus composed of the SR, the comparator and some auxiliary logic. Hence,
the block labelled “checker / SR / scan register” is a resource shared by off- and on-line
testing strategies. The authors of [43] also report a logic synthesis tool that synthesizes the
check bit generator, to produce the desired output. As reported in [43], a major disadvan-
tage is high fault latency, i.e. faults are detected on-line a number of clock cycles after
they occur. Proposed modifications reduce the latency, but increase hardware overhead,

thus cancelling out the benefits of hardware resource reuse.

In another approach [44, 45], the PMISR (Parity-preserving MISR) is introduced. It re-
ceives (n+1)-bit wide even-parity encoded inputs and produces two output signals, r; and
. In contrast to the usual convention, here it is r=1; if the checker input (CUT output) is
fault-free, and r;=~1; if it is faulty. The structure is a normal MISR with its state bits suita-
bly XORed. With some modifications, it can also be used as a test pattern generator or as a
scan register. Thus, BIST or scan-based testing can be configured within an overall design
utilising PMISRs, while during normal operation signals r; and r, from all PMISR struc-
tures provide the on-line error indication. This work is extended in [46], to include a ge-
neric design methodology for other linear separable codes, thus resulting in a linear Code-
Preserving MISR (COPMISR). This time, the state bits are not XORed. Rather, they are

input to a more complex code-specific linear combinational circuit.

2.2.1.7 Other related work

In this subsection, two other interesting pieces of self-checking design related work are

presented, that do not fit into any of the above subsections.
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In [47], an attempt to automate self-checking design is proposed. Simulatable and synthe-
sizable VHDL [48, 49] descriptions of self-checking design building blocks are presented.
These include code word generators and checkers for various error detecting codes. Parity,
Hamming and Berger codes are among them. The VHDL feature of parameterised compo-
nent descriptions, using generic values, is exploited, thus making the descriptions useful
for several data-path bit-widths. Two component versions are given for each code, sup-
porting both serial and parallel application of information parts to the code bit generator.
The overall system is considered to be supervised by a controlling unit, which receives
and handles the error indications. Auxiliary blocks (e.g. special purpose registers) are also
presented, to facilitate communication between the controlling unit, the error detection cir-

cuits, and the outside world.

Finally, as a supplement to self-checking design, [50] proposes a transient fault tolerance
technique, based on Code Word State Preserving. This technique augments the functional-
ity of logic blocks receiving encoded inputs, such that the blocks implement their usual
operation when fed by a code word, but preserve their previous outputs when fed by non-
code words. Clearly the logic blocks have to be augmented to integrate checkers and auxil-
iary logic within them. They are then said to incorporate Code Word State Preserving
Elements. Implementations and applications of such elements and resulting logic blocks
are discussed in [50]. The technique is effective against transients of short durations, but

clearly cannot provide satisfactory fault recovery against permanent faults.
2.2.2 Duplication testing and related schemes

In this subsection, duplication and duplication-related techniques are discussed. Techni-
cally, these techniques adhere to the general self-checking scheme of Figure 2.9, and thus
fall into the broad category of self-checking design. Therefore the self-checking theory
definitions and terminology (§2.2.1) will be used throughout this subsection. However,
duplication schemes are addressed separately due to their extensive development and spe-

cial significance for the purposes of this thesis (chapter 5).

Broadly speaking, duplication techniques adhere to the paradigm of Figure 2.27. The simi-

larities with the general self-checking scheme of Figure 2.9 are evident. Indeed, the func-
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tional circuit is augmented through
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Figure 2.27. Duplication testing module is further used to produce a
2-bit error indication (often simply

by comparing the functional and redundant outputs). The totally self-checking properties
of Definitions 2.3 and 2.5 are once more desired for the augmented Circuit Under Check
(CUC) and the checker respectively. Variations of duplication testing are defined with re-
spect to what exactly the structure and functionality of the redundant circuit are, and
whether it is physically introduced or its operation implemented by pre-existing idle func-
tional resources. Other variations do not fully follow the paradigm of Figure 2.27. Indeed,
there can be cases where the flow of data through the functional and redundant circuits
follows different paths, or where the functional input is first somehow processed (e.g.
shifted) before being fed to the redundant circuit. All these techniques share the common
property that the size of the redundant circuit is of the same order as the functional circuit
(as opposed, e.g. to parity prediction normally using much less hardware than most func-
tional circuits), and the redundant output is typically of the same bit width as the func-
tional output (once more, as opposed for instance to a parity scheme always needing a sin-
gle additional bit regardless of the functional output bit width). These common character-

istics loosely outline the family of duplication-related techniques addressed herein.

2.2.2.1 Physical duplication

In the basic physical duplication checking scheme, the redundant circuit of Figure 2.27 is a

replica of the functional circuit, and it is physically introduced together with a comparator.
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The scheme is fault secure by nature [9]. Indeed, a fault in the augmented CUC may affect
either the functional or the redundant circuit, thus potentially corrupting bits in either the
functional or the redundant part of the “encoded” output (never both). Any fault that
reaches the encoded output will thus create a non-code word (i.e., an output word whose
functional and redundant parts are unequal). The comparator module also has to be fault-
secure; as a matter of fact, fault-secure comparators are implemented by inverting all bits
of one of the inputs, and then introducing a dual-rail checker (to be presented in detail in
§2.2.2.2). Further, the hardware overhead associated with physical duplication clearly ex-

ceeds 100%.

Physical duplication as explained above is also referred to as identical duplication, assum-
ing that the functional and redundant circuit are structurally equivalent. Although very ro-
bust against single faults, identical duplication can be problematic in cases where double
faults are expected to develop in the system, such that the functional and redundant cir-
cuits demonstrate the same faulty behaviour (common-mode faults). An alternative to
identical physical duplication, is to introduce a redundant circuit that is fimctionally
equivalent, but structurally diverse to the functional circuit, thus implementing diverse

duplication [51, 52, 53].

In [51], Mitra and McCluskey perform fault simulations on a number of benchmark logic
circuits, to compare various self-checking techniques, including diverse and identical du-
plication, parity prediction (§2.2.1.1) and Berger codes (§2.2.1.3) against multiple faults,
and against double common mode faults. Their results are strongly in favour of diverse
duplication. The work also includes comparisons in terms of hardware overhead. Interest-
ingly, in many considered examples, Berger code self-checking is more expensive than
duplication, due to the complexity of Berger code prediction logic and Berger code check-

ers.

In [52], Mitra et al once more compare identical and diverse duplication with respect to
their vulnerability to double faults and once more establish the increased detection prop-
erty of diverse duplication through fault simulations. They also provide a theoretical ap-
proach to the issue, through the introduction of self-testable fault pairs :

Definition 2.13 . A duplication scheme is self-festing with respect to a fault pair (f1, /),

where /) affects the functional and f; affects the redundant circuit, if there exists a func-
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tional input for which the two circuits produce different outputs under the presence of the
faults. (/1, /2) 1s then called a self-testable fault pair.

Notice the analogy between the self-testing property considering single faults, for any self-
checking technique (Definition 2.1), and the self-testing property considering double
faults, as defined above especially for duplication schemes. In [52], Mitra et al further pre-
sent a simulation-based algorithm to identify non self-testable fault pairs in any given du-
plex system, and propose test point insertion (§2.1.1) to detect such faults, by periodically

applying suitable test vectors to the circuit, when it is idle or temporarily taken off-line.

In [53], Mitra and McCluskey further support their work of [51, 52], by presenting a logic
synthesis for diversity technique. The technique is fed by a truth table describing the de-
sired functionality, together with a given implementation, and produces the redundant im-
plementation that demonstrates the maximum diversity with respect to the given one, also
trying to minimise the area overhead. For this purpose, they quantify diversity as follows :
Definition 2.14 : Given two combinational realisations of the same functionality, the di-
versity d;; with respect to the fault pair (7, /;) is the probability that the two realisations do
not produce identical faulty outputs under the presence of the fault pair.

Assuming that all system input vectors are equally probable, Definition 2.14 effectively
suggests that the more the inputs that expose a given fault pair, the more diverse the two
realisations are, with respect to the particular pair. A unique value for the diversity of the
two implementations is computed by calculating the diversity of the implementations with
respect to all modelled fault pairs and averaging over the number of pairs. Diversity to-
gether with area overhead then define a 2-dimentional design space, which is explored by

logic synthesis algorithms also proposed in [53].

An alternative to full hardware duplication is presented in [11]. Only a “sufficiently big”
subset of possible faults are targeted, and the redundant circuit this time is a reduced ver-
sion of the functional circuit, designed such that only the targeted faults in the functional
circuit can be detected. Input patterns exposing only non-targeted faults are treated as
“don’t cares” when synthesizing the redundant circuit, thus leading to logic minimisation.
Further, the comparator / checker is fed by one or two additional control bits, and
equipped with a simple control unit that receives the bits and determines if the checker
must check or not, depending on the input word. It thus becomes a controllable compara-

tor / checker. Clearly, testability is traded-off for cheaper hardware implementation. The
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efficiency of this technique strongly depends on knowing in advance the input patterns
functional modules are likely to receive, as well as the input patterns functional modules
will not receive, so that the set of faults that cannot harm the functional output (and there-

fore do not need to be targeted) can be determined.

2.2.2.2 Dual-rail checking

A variety of diverse duplication 1s dual-rail checking [9]. In a dual-rail design, the redun-
dant circuit of Figure 2.27 does not produce the same output as the functional circuit, but
its logic complement (in the fault-free case). A “code word” comprising the functional in-
formation part, and a check part of the same size, where every check bit is the complement

of the respective information bit, is generically called a dual-rail encoded word.

FB‘_OUT N
* v vy ¥ v ¥
—> Element1 ; Element 2 »  Element3 z
IN ouT
Figure 2.28. The IFIS technique
Dual-rail testing following the paradigm of Figure
2.27 is fault-secure by nature, but not widely
adopted, since it does not offer any real benefit
over physical duplication. Nevertheless, techniques
employing dual-rail encoded datapaths have been
presented. An example is the /FIS (if It Fails It
Stops) scheme [54, 53, 56, 57]. Figure 2.28 repre-
Figure 2.29. Permitted IFIS sents a portion of a system designed using this
state transitions technique. The system is partitioned into /FIS ele-

ments. Each element corresponds to a fraction of the overall functionality, implemented

using dual-rail encoding, comprising both functional and redundant circuits. Each element
is thus an augmented version of a normal functional circuit, whose output is twice as wide
as the normal output. The elements further include suitable control logic, so that every pair

of functional and respective redundant bits experience exactly one change in their logic
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values every clock cycle. In particular, if the information bit changes due to the circuit
functionality, then the redundant bit remains stable and vice versa. Thus, an IFIS element
output pair is only allowed to experience any of the transitions shown in Figure 2.29. As
also depicted in Figure 2.28, each element receives feedback from its successor and input
from its predecessor. If an element demonstrates an illegal transition due to the presence of
a fault, then suitable checkers in its successor and predecessor detect the failure and cause
the corresponding elements to stabilize their outputs. Thus, the effect of the fault soon
propagates and the system operation stops. Apart from the usual input and output ports, a
system implementing the IFIS technique also features input and output feedback ports
(FB_IN, FB_OUT), to communicate with a master controller. An important contribution
of this work is the implementation of an on-line testable UART - the first on-line testable
design of some realistic complexity to be presented in the literature. Note that this tech-
nique 1s proposed at the system level, that is, at a higher level of abstraction than the be-
havioural level that this thesis is particularly concerned with. This means, for example,
that every IFIS element of Figure 2.28 is a full, complex, typically sequential circuit (e.g.,

the receiver and transmitter are both IFIS elements in the mentioned UART implementa-

tion).

Xg Although the scheme of Figure 2.27 is not

Zo widely used for dual-rail checking, suit-

Xy able checkers that verify the dual-rail

property of their input signals are conven-

iently applicable in a variety of situations.

These checkers are commonly known as

Z; dual-rail checkers and implemented using

Yo the dual-rail checker cell of Figure 2.30

[2, 9]. It can easily be confirmed that when

Y1

the 2-bit input words (xpx,, voy;) are com-

Figure 2.30. The dual-rail checker cell —
plementary (xo = Yo, Xy = yl), then the

output pair zyz, is complementary too, thus providing the fault free indicatjon, according to
the usual self-checking convention (§2.2.1), ensuring fault-security. The cell thus effec-
tively acts as a 2-pair dual-rail checker. An n-pair dual-rail checker can now easily be con-
structed as a tree of n-1 such cells, as Figure 2.31 exemplifies for the 5-pair case. The de-

sign of the figure checks the dual-rail property of two 5-bit input signals (5 pairs of com-
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plementary bits), and the 2-pair constituent blocks are simply dual-rail cells as of Figure
2.30. Observe how the cell outputs are combined together, exploiting their fault-free com-
plementary property, ultimately leading to the typical 2-bit checker output. Clearly, a dual-
rail checker is desired to be totally self-checking (§2.2.1). The analysis of the TSC prop-
erty of dual-rail checkers is analogous to the analysis followed in the case of parity check-
ers (§2.2.1.1). This is expected, since parity checking functionality is also provided by tree
structures (specifically
XOR trees). Once more,

the code-disjoint and fault-

secure properties are en-

sured by construction (2-

’—l bit output). For the re-
I vy 'Y I maining self-testing prop-

2-PAIR 2-PAIR erty, every cell has to re-
DUAL-RAIL DUAL-RAIL
CHECKER CHECKER

ceive all four possible 2-

pair dual-rail code words
, (0011, 0110, 1001, 1100),
and once again a minimum

vy r v set of words achieving this

2-PAIR can be determined by con-

DUAL-RAIL sidering all possible code

CHECKER
inputs to the final cell pro-

ducing the ultimate

checker output, and trac-

ing back to the overall
2-PAIR

DUAL-RAIL
CHECKER The number of required

checker primary inputs.

— code words is, again, onfy
l l four, regardless of bit

width.

Figure 2.31. A 5-pair dual-rajl checker

Further, the following lemma applies [58] :
Lemma 2.3 : Consider a 4x(2xn) Boolean matrix M, whose distinct rows constitute a test

set for an n-pair dual-rail checker, composed of 2-pair dual-rail checker cells (Figure 2.30)



P. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 63

only. ThenV ke [1, n], the kth and (k+n)th columns of the matrix are bitwise complemen-
tary. Moreover, if only the first half of the matrix is considered, by ignoring the (n+1)th,
(n+2)th, ..., (2xn)th columns, then two of the four distinct rows of the resulting matrix

have even and the other two odd parity, while each column has exactly two Is and two 0s.

The similarities to the parity-related Lemma 2.2 are evident. Lemma 2.3 implies that if a
given configuration requires a dual-rail checker that will receive the rows of a matrix M
during normal operation, then there exists at least one arrangement of dual-rail checker
cells within the overall checker that leads to a TSC realisation. An analytical algorithmic
procedure for the extraction of the fastest such realisation (given the matrix M) can be

found in [58].

v Q4 Qo Qn
e » D Q D Q ........... \*5?;_} D Q

A T

Cn CK Cn-1 CK Cq CK

Figure 2.32. n/2-pair embedded TSC dual-rail checker with error memorizing capability

The analogies with parity checkers are further extended in [12, 19, 20}, proposing the em-
bedded dual-rail TSC checker with error-memorizing capability, to be used whenever the
environment is unable to provide the required inputs to the conventional dual-rail checker
(Figure 2.32). The design is based on the same theory as its parity-checking counterpart
{§2.2.1.1). Consider two n-bit words W=X,.. . X,;nY ... Yy and W'=X"';.. X' Y'1...Y 4.
If both words are dual-rail encoded (i.e. X;=~Y; and X=~Y'; for all i), then elementary
Boolean calculus can show that the modulo 2 sum W® W' is nor dual-rail encoded. Thus,
the dual-rail code is not linear. However, if W' is such that X'=Y"; for all i (duplication

encoded), then the result of W ® W' can be shown to be a dual-rail word. Therefore, if the
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LFSR of Figure 2.32 produces duplication encoded words of bit width n and the n-bit in-
put Z;...Zy, is dual-rail encoded, then the conventional dual-rail checker will receive dual-
rail words. Further, the n-bit duplication code is cyclic, and g(x)=x"+1 is a generator
polynomial [12]. According to Theorem 2.1, one can construct an LFSR producing all du-
plication code words of degree n, by choosing a primitive polynomial d(x) of degree n/2
and using g(x)d(x) as the LESR characteristic polynomial. The resulting checker will be
totally self-checking under the sole assumption that the environment provides at least two

different dual-rail encoded words [12].

A few applications of dual-rail checkers have been presented in previous subsections,
where such checkers were used as building blocks for broader checking schemes. More
specifically, a class of m/n checkers (§2.2.1.2), specialised 1/n checkers (§2.2.1.2), Berger
code checkers (§2.2.1.3), as well as fault-secure duplication checkers (comparators,
§2.2.2.1) all include dual-rail checker blocks. Further, observe that, under the typical con-
vention of §2.2.1, the fault-free response of a checker of any kind constitutes a dual-rail
pair (01 or 10). Assuming a complete system with self-checking capabilities attached to
several hardware blocks realising the system functionality, the responses from all self-
checking blocks should, in the fault-free case, constitute several dual-rail pairs. By com-
bining all these responses and leading the constructed dual-rail word to an appropriate
dual-rail checker, a designer can produce a single 2-bit primary output, providing a con-
cise indication of the health of the system [9]. This technique is very popular in self-
checking systems, and is often referred to as self-checking response compaction. A dual-

rail checker employed in that manner is consequently called a response compactor.

Another example application of dual-rail checking is presented in [59]. With reference to
the paradigm of Figure 2.27, the authors of [59] selectively XOR groups of combinational
functional circuit output lines, so that the bit-width of the compacted word reaching the
checker is reduced to no more than 5 in all practical cases considered. The redundant cir-
cuit is then effectively a coder, always producing the complement of the compacted word,
and correct operation is verified by a suitable dual-rail checker. Hardware savings are due
to the simple structure of the coder, when compared to a redundant circuit that would
demonstrate exactly the “complementary” behaviour to the full functional circuit. The re-
duced bit width of the checker is another source of savings. The authors analyse the func-

tional circuit structure and identify groupings of circuit output lines that minimise the pos-
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sibility of fault escapes associated with compaction. On an interesting word of note, this
output partition and compaction technique is also shown to be utilisable in an off-line
BIST mode, where a MISR structure (§2.1.2) substitutes the dual-rail checker. Overall,
this technique demonstrates similarities to the controllable self-checking of [11], in that it
trades off testability for hardware savings (by accepting a possibility of fault escapes) and

it requires that the functional circuit gate-level structure be known.

2.2.2.3 Algorithmic duplication

Straightforward physical duplication and dual-rail self-checking are primarily defined for
isolated, usually combinational circuits. Of more

interest 1s the situation of an overall, complex

) AT sequential system, typically described by a con-
ceptual algorithm, synthesized using a CAD tool,
5 A1 A2 and composed of several functional building
blocks and storage elements, implementing the
3 Na algorithm. Clearly, such systems can be fully du-
M1

plicated and their outputs verified according to
Figure 2.27; however, this leads to a significant
Figure 2.33. Algorithmic overhead. Alternative approaches try to analyse
duplication motivational example  the system datapath and identify ways to dupli-
cate and check the system operations (functionality), without necessarily duplicating all of
the system operators (hardware modules). This concept outlines algorithmic duplication
(also called algorithmic level re-computing). The family of algorithmic duplication vari-
ants are considered in this subsection. The presentation assumes familiarity with the con-
cept of a data-flow graph (DFG) and will hereafter use such graphs to describe example
system functionality. This assumption is reasonable, since the DFG is a well-established
and extensively used scheme in the area of hardware design. In any case, a formal defini-
tion of the DFG is provided in this thesis in §3.1.1 (Definition 3.2), as part of the presenta-
tion of high-level synthesis. Another idea which is important for the purposes of this sub-
section, is that of modules’ idle time. At any given time point, a (typically combinational)
hardware module, forming a part of a complex system, is said to be idle, if it is not fed by
useful functional inputs and does not produce any useful output at this particular point.

The concepts of idle time and algorithmic duplication, and considerations, benefits and
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trade-offs associated with their application are demonstrated in the following, through a

motivating example.

Consider the simple but instructive data flow graph of Figure 2.33, defining the function-
ality of a hypothetical elementary arithmetic chip or part thereof. Operations (additions)
+1 and +2 are implemented by module (adder) Al, +3 is implemented by A2 and multipli-
cation *1 is realised by multiplier M1. Control steps 1, 2 and 3 define the temporal rela-
tionship of these operations. Indeed, in the example, operation +1 is executed a clock cy-
cle before +2 and +3, while the latter are followed by multiplication *1. Arrows in the
graph further show data dependencies between operations (e.g., the output of +1 feeds +2).
Overall, the realisation of the system functionality requires 2 adders (Al, A2) and 1 multi-
plier (M1). In line with the introductory comments in the previous paragraph, two copies
of the same datapath could be constructed, and the primary outputs of the two copies (i.e.
the outputs of multiplication *1 in both cases) could be compared to verify the correct op-
eration. However, in large systems it is often desirable to give a pre-emptive indication of
the health of the chip, in this context by duplicating and separately comparing all {or a
number of) the constituent elementary operations, rather than the overall design. To this
end, a feasible option would be to physically duplicate modules A1, A2 and M1, so that
whenever an operation is executed by a module, its duplicate is fed by the same inputs and
produces (in the fault free case) the same output; this would clearly result in 4 adders, 2
multipliers and 2 comparators. Observe, though, that adder A2 is idle during control steps
I and 3, while adder A1 is also idle during control step 3. A2 can therefore be employed
during control step 1 to duplicate operation +1. Sumilarly, operations +2 and +3 can be du-
plicated during control step 3, mapping the duplicates on modules A2 and Al respectively.
This introduces 1 clock cycle error latency (a possible error is detected 1 clock cycle after
it occurs), but saves hardware, since the duplication of additions does not require the in-
troduction of any new adder. In order to verify operation *1, the only option is to intro-
duce a new multiplier. So, pre-emptive elementary result verification is achieved with only
2 adders, 2 multipliers and the implied 2 comparators, together with some additional mul-
tiplexers, registers and interconnect, while 1 clock cycle error latency is introduced to two
of the self-checking operations. Also note that, implementing algorithmic duplication as
described above leads to fault-secure schemes (provided that fault-secure comparators are
used), since the hardware modules realising duplicate operations of +1, +2, +3 and *1 are

all different from the modules realising the corresponding functional operations. An addi-
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tional advantage would be to map the duplicates to diverse hardware as well (if possible),
thus providing protection against common mode fault pairs (§2.2.2.1). In the rest of this
subsection, the presentation overviews works that address the concept of applying algo-

rithmic duplication within complex datapaths.

In [60], Orailoglu and Karri combine fault detection based on algorithmic duplication with
self-recovery from transient faults. Their approach slightly differs from the paradigm
given in the previous paragraph, in that they do not compare the results of every single
pair of a functional and a duplicate elementary operation. Rather, they define control steps
during which comparison has to take place (checkpoints), and at these checkpoints they
compare outputs of chains of functional operations, with outputs of chains of duplicate
operations. A chain of operations in this context refers to all operations that are executed
between two consecutive checkpoints and have data dependencies among them (i.e. di-
rectly or indirectly connected by arcs in the DFG). Of course, a chain of duplicate opera-
tions cannot use any hardware modules already used by the corresponding chain of func-
tional operations. When an error is detected at a checkpoint, the system rolls back to the
previous checkpoint control step, so that the faulty chains will be recomputed, hoping that
the transient fault will have vanished. Of course, the technique is unsuitable for permanent
faults. All chains of duplicate operations effectively constitute a duplicate DFG. To this
end, tasks addressed in [60] include an algorithmic approach to determine the checkpoints,
an analytical and ultimately automated way to construct the duplicate DFG and assign
hardware modules to operations, as well as the application of arithmetic properties (dis~
tributivity, associativity) on the duplicate DFG, demonstrated to lead to hardware savings
in appropriate designs. On the same theme, Narasimhan et al [61] particularly focus on
evaluating the placement of checkpoints in a design, taking into account resource con-
straints (i.e. number of available comparators) and timing specifications (i.e. maximum
allowed speed degradation due to rollback and recomputation, given the expected duration

of transient faults).

Hamilton and Orailoglu [62] present an algorithmic duplication technique to provide on-
line fault identification, together with fault detection and recovery. Fault identification re-
fers to identifying the faulty functional module in a datapath producing erroneous results.
In line with [60, 61], they also consider chains of operations. Further, a chain and its du-

plicate are defined to constitute a frack. Fault detection is provided by comparing the two
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outputs from the two chains of a given track, while fault identification is based on func-
tional unit differentiation. Given two functional units A and B, unit A is said to be differ-
entiated from unit B if a track exists that utilizes A but not B. Fault identification is
achieved when every unit in the system is differentiated from all other units. For instance,
consider three addition operations, +1, +2 and +3, and their duplicates +1’, +2" and +3'.
Let A, B and C be functional units capable of realising them (adders). Assume that +1 is
mnplemented by A, +2 by C, +3 by B, +1' by B, +2’ by A and +3’ by C. Thus, three tracks
are formed, namely track 1 corresponding to +1 and +1’ and utilizing units A and B, track
2 corresponding to +2 and +2' and utilizing A and C, and track 3 corresponding to +3 and
+3" and utilizing B and C. Clearly all three units are differentiated from one another. If
track 1 detects a fault then either A or B is faulty. Additionally, if track 2 also signals a
fault, then A is identified as faulty. Alternatively, if track 3 fails, then C is determined
faulty. The authors of [62] consequently analyse given design DFGs and assign functional
and duplicate operations to hardware modules, such that module differentiation is maxi-
mized, while hardware and tuming constraints are not violated. Track module utilisation
information is stored in appropriately inserted storage elements, while additional control
logic exploits all track comparison responses to identify any faulty module. When an error
occurs and a faulty module is identified, control rolls back to the previous checkpoint (ex-
actly as in [60, 61]) and recomputation takes place; this time, however, all chains utilising
the faulty module are disabled. Thus, the technique provides some limited tolerance to
permanent faults as well as transient ones. The same work is carried forward in [63],
where redundant logic is added, in order to achieve fault-security (Definition 2.2, §2.2.1)
and recovery for a greater set of faults in the overall design (i.e. for faults affecting not
only the datapath modules implementing the above mentioned tracks, but also the control

logic, and the fault identification and recovery units).

In [64], Kari and Iyer present their Introspection technique. Similarly to [60, 62, 61}, In-
trospection fully utilises modules’ idle times for algorithmic duplication purposes; how-
ever, no additional functional modules are introduced in case the idle time is not enough.
Instead, the authors of [64] prefer to produce designs with a number of “unchecked” op-
erations. As an illustrative example, let us refer back to Figure 2.33. As explained above,
adder A2 can be used to duplicate operation +1, while Al and A2 can duplicate +3 and +2
respectively, during control step 3. Under Introspection, no new multiplier is introduced,

therefore no duplication testing is applied to operation *1 and the resulting design demon-
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strates degraded fault detection capabilities. The Introspection hardware overhead is
minimal (simply the result of introduced comparators and registers), but the technique can
be very inefficient as far as fault detection is concerned in designs where there is too little
idle time. On the other hand, when ro0 much idle time is available, the authors of [64] pro-
pose exploiting it to implement fault identification, effectively by assigning the same
computation to three different modules. Indeed, a pair-wise comparison of module outputs
is then enough to identify the faulty one. Clearly the usefulness of this technique for either

fault detection or identification very much depends on the considered design.

Lakshminarayana et al [23] revisit the problem of defining and synthesizing a duplicate
DFG. In previous approaches [60, 62, 61], pairs of functional and duplicate operations or
chains of operations were not allowed to share any hardware modules. The particular nov-
elty of [23] is an analysis of the probability of fault escapes (afiasing) if some limited de-
gree of such hardware sharing is allowed, in any given functional and duplicate DFG, for
any candidate sharing scenario. Based on this analysis, its authors accept the sharing if the
said probability is below a defined threshold. Their starting point is a purely physically
duplicated system, where checking takes place at the primary outputs only. However, they
perform judicious intermediate result checking, having observed that such checking can
minimise the fault escape probability and promote hardware sharing. They further propose
parity checking (§2.2.1.1) as a solution to the control path self-checking problem, without,

however, paying any attention to the self-testing property (Definition 2.1).

Another alternative is provided in [65], in the form of semiconcurrent error detection. In
this technique, no intermediate operations (e.g. “+2” in Figure 2.33) are checked. Primary
outputs are not always checked either; rather, primary outputs are only checked once every
P executions of the functional circuit, where P is an integer value (checking periodicity). If
the functional DFG takes k& clock cycles, then the duplicate needs to be constrained within
Pxk clock cycles. Typically P>1, which leads to a very relaxed time constraint for the du-
plicate DFG, effectively allowing for area savings through hardware sharing between the
original and the duplicate operations (as in [23]). The area / checking periodicity trade-offs
are investigated, through the implementation of alternative design solutions, for different

values of P. Increased error latency is an obvious disadvantage of this approach.
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In [66, 67, 68], Wu and Karri once more address the problem of minimising area over-
heads and time penalties when employing a duplicate DFG. They partition the functional
and duplicate DFGs into several sub-DFGs and compare the sub-DFG outputs / intermedi-
ate computation results, together with the primary DFG outputs (an idea already seen in
[23]). A novelty in their approach is that they feed selected original/ DFG values to the
corresponding duplicate DFG operations, having observed that such a rearrangement al-
lows for hardware and clock cycle savings, by breaking data dependencies within the du-
plicate DFG. In another two publications [69, 70], the same authors reject the idea of a
duplicate DFG that is executed in parallel with the functional one; rather, they propose an
arranigement in which the original DFG is executed P times, the Pth result is preserved,
then recomputation using the duplicate DFG is executed and the resulting outputs are
compared against the stored ones to confirm correct operation or produce an error indica-
tion. This is reminiscent of the semiconcurrent error detection of {65], in that once again
only one every P obtained results is checked; however, in the semiconcurrent case the du-
plicate DFG 1s executed in parallel to the original, rather than temporarily suspending use-
ful operation. In that sense, [69] and [70] can be classified as non-concurrent error detec-
tion approaches. Naturally, all previously mentioned works where every primary output
was always checked in parallel to the useful operation [62, 60, 61, 63, 64, 23] offer con-
current error detection. Returning to [69], one can note that the emphasis is on assigning
duplicate operations to different hardware modules from the respective original ones (a/lo-
cation diversity), so as to minimise the possibility of fault escapes (in that sense, it is
reminiscent of [23], although the fault analysis is not as thorough). In [70], data diversity
is also investigated, through recomputation with shifted operands. The idea is to keep the
same operation-to-operator correspondence between the original and duplicate DFGs, but
to do the recomputation having shifted the original input /eff by two bits. The recomputa-
tion output is then shifted right by two bits, and the result compared against the stored
output of the Pth functional computation, as mentioned above. Hardware overheads and

fault escape probabilities are also calculated for this technique.

Chapter 5 of this thesis revisits the algorithmic duplication variants presented in the above,
evaluates them with respect to their testability characteristics, overheads and synthesis ap-

proaches, presents the contribution of this work and outlines comparisons.
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2.2.3 On-line BIST and DFT

Having completed the detailed overview of self-checking design, both based on error-
detecting codes (§2.2.1) and on duplication-related techniques (§2.2.2), this presentation
moves on to on-line Built-In Self-Test and Design For Testability. The difference between
(externally applied or built-in) testing and self-checking, is that the former builds up the
designer’s confidence on the health of a fabricated system through the application of test
vectors and collection of test responses, as shown in §2.1, while the latter provides an on-
going verification of obtained results. It should be made clear that in that sense they are
fundamentally different reliability approaches. Testing is typically an off-line operation, as
§2.1 showed; the application of test vectors is either done once (production test) or by pe-
riodically taking the system off-line for testing purposes (periodic BIST). The topic of this
subsection then, is a presentation of “test vector-based” testing, that, in contrast to what
applies typically, does not require the system to be taken off-line. Moreover, the following
material should not be confused with the works presented in §2.2.1.6, regarding shared
resources for self-checking and off-line testing. In the schemes of §2.2.1.6, the system was
purely self-checking when on-line — in contrast to the approaches of this subsection that

apply test vectors when on-line.

2.2.3.1 Concurrent testing

A historical approach to on-line BIST was

@nputs Test{_>
D___ proposed by Saluja et al [71]. The Concur-
.

Comparator
rent Built-In Self-Test (CBIST) configuration
< ————— TPG |e—
which they presented is shown in Figure

MUX
2.34, consisting of the circuit under test
Test =

CUT, a comparator, a multiplexer MUX, and

cuT two typical BIST resources (a TPG and an

MISR, see §2.1). In off-line test mode (when

j signal Test=1), the CUT receives inputs from

"> MISR

A

the TPG and feeds them to the MISR, just as

in any normal BIST configuration. In on-line
Outputs

) mode, the TPG contents and the functional
Figure 2.34. CBIST
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inputs are compared. In case they are equal, the MISR compresses the CUT outputs and
the TPG advances to the next test pattern. Otherwise, test resources remain idle. Therefore,
when the system is on-line, the test resources are active whenever “convenient”, depend-
ing on the inputs the CUT receives during normal operation. On-line BIST in this context
can be conceived as an “extra” feature of the normal operation mode. Obviously, the time
required for the TPG to cycle through all states (fest latency) depends on the functional
input data and can be unacceptably high. Still, CBIST is considered a classic approach and

it is referenced by several other researchers as probably the very first attempt in this field.

More recently, Santos [72] proposed a sumilar idea, based on the boundary scan architec-
ture (Figure 2.4). Input test vectors are shifted into input boundary scan cells and func-
tional inputs are compared against them. If they coincide, outputs are collected in bound-
ary scan output cells and shifted out, compacted in a signature register or compared with
pre-computed expected outputs. Consequently, the next test vector can be shifted into the
boundary scan cells. In order to reduce test latency, not only input test vectors are consid-
ered for comparison with functional inputs, but also their complements and vectors result-
ing by dividing test vectors and complements into two parts, searching for each part indi-
vidually and considering all possible combinations. For example, if the 4-bit vector 1001

is shifted in, then 0110, 1010 and 0101 are also considered.
2.2.3.2 On-line BIST exploiting idle time

Applying BIST while the system is on-line as presented in §2.2.3.1 has the major disad-
vantage that the application of a complete test to the CUT can take an unpredictably - and
probably unacceptably — long time. Recall the observation of §2.2.2.3, that in realistic sys-
tems, combinational modules experience clock cycles during which they do not implement
any useful operation (idle time). While §2.2.2.3 showed how such idle cycles can be used
for self-checking purposes, the works presented herein investigate the possibility of ex-
ploiting these idle cycles to apply test vectors to the idle modules. For example, referring
back to Figure 2.33, a test vector can be applied to adder A2 during CS 1. The test re-
sponse information has to be preserved (using an MISR) or shifted out (assuming a test
clock significantly faster than the functional clock), so that the adder can perform its func-
tional operation (addition +3) during CS 2. Afterwards, the test process can resume at the

idle CS 3, by the application of the next test vector. When the system primary output is
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produced, control normally returns to the first control step; if the idle cycles of a single
execution of the DFG are not enough for a whole test set to be applied to the functional
modules, then the test is not reset but it is carried on at the next execution of the DFG, ef-
fectively spanning multiple repetitions of the normal functionality [73]. When all test vec-
tors have been applied, a fault-free response confirms the results of all the previous func-
tional executions. This idea of applying test vectors to hardware resources when they are
not functionally used is exploited in [36] to test memory cells, in combination with a

Hamming distance-based ECC (§2.2.1.4). The focus of the present subsection is on

datapaths.

From the above description of on-line BIST, it is evident that the more the idle time avail-
able in a particular datapath the more efficient the test process. This highlights a difference
between exploiting idle cycles for self-checking and exploiting them for BIST. In the for-
mer, idle time is only a benefit, since it can reduce hardware overheads (§2.2.2.3). In the
latter, idle time availability actually determines the feasibility of applying the technique in
a given design, since too little idle time may result in unacceptably high test latency.
Therefore, a major task in on-line BIST is to fit a full test set within as few functional exe-
cutions as possible. This can be done either by favouring idle time when designing the sys-
tem of interest, or by reducing the number of required test vectors (test length), by using
suitable functional modules. Finally, one needs to define a tesz schedule for his or her de-
sign, i.e. define the flow of test data through the design, together with the flow of func-
tional data. These crucial issues (idle time availability, test length minimization, test

scheduling) are discussed in the following three subsections.

2.2.3.2.1 ldle time availability

The most notable systematic approaches to the analysis of datapaths in search of idle cy-
cles have been presented by Baker et al [74], Brown et al [73] and Williams et al [75]. In
[747, all combinational functional blocks in a given design are considered separately, and a
latent profile 1s generated for each one of them. A latent profile is a data structure that
contains detailed information about the utilisation of modules in clock cycles, i.e. denoting
if a functional module is “busy” or idle during a given clock cycle. [73] provides an exten-
sion, wherein example designs of substantial size are considered, module latent profiles

are extracted, and it is illustrated that idle periods are enough for the application of full
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sets of test vectors in many practical cases, of realistically long data-flow graphs. Further,
the availability of idle time is identified as a possible design goal (as opposed to a design
natural property). Loop structures and conditional execution ot operations are also briefly
discussed, by considering “best” and “worst” case scenarios, corresponding to “as much as
possible” and “as little as possible” available 1dle time. In [75], data-dependent conditional
execution is further investigated. Operations that are executed conditionally are assigned
execution probabilities; these probabilities are subsequently combined with latent profile
information to calculate test completion probabilities for functional blocks. Effectively,
for every given functional block in an overall design, the work in [75] calculates a prob-

ability that a full test can be applied to it, in the potentially available idle time.

2.2.3.2.2 Test length

The term “test length” refers to the number of test vectors that need to be applied to a
CUT, so that all modelled CUT internal faults can be detected. Minimising the test length
is clearly of particular importance in the context of idle cycles-based on-line BIST. In fact,
it is the combination of idle time availability and a test sequence short enough to fit in that

idle time, that determine the feasibility of on-line BIST.

Once again, consider the generic testing scheme of Figure 2.1. Assume that the CUT is fed
by 7 inputs. An exhaustive test set for this circuit consists of 2" non-zero test patterns
(§2.1.2). For large values of n, the exhaustive test length can be prohibitively long. How-
ever, the test length can be significantly reduced if pseudoexhaustive testing techniques are
applied. This involves some form of segmentation of the CUT, through the insertion of
redundant logic. A typical approach is to partition the CUT into & segments, where the
output of each segment i depends on »; primary inputs only. Each segment can then be ex-
haustively tested separately from the rest of the CUT, by 2" test vectors. It is often possi-
ble to define such a partitioning that/z 2" << 2", thus greatly reducing the overall test

i=]
length. Moreover, it is also possible that different segments can be tested in parallel, lead-
ing to further test time reductions. Several segmentation techniques and associated TPG

designs for pseudoexhaustive testing can be found in [1].
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Furthermore, it is sometimes worth examining circuit functional blocks to check if pseu-

doexhaustive testing can be applied to them by nature. The following definitions are rele-
vant [1].

Definition 2.15: An iterative logic array (ILA) is a circuit composed of identical cells in-

terconnected in a regular pattern (Figure 2.33).
Definition 2.16: An ILA is C-testable if it can be pseudoexhaustively tested with a test set

whose length does not depend on the number of cells.

Clearly C-testability is a
v l l very useful property for

cell 0 cell 1 II'N-1
— » C€ s e s - data path modules,

% i since it limits the test
v

set regardless of the bit-

Figure 2.35. An lterative Logic Array width. A good example
LAg >

of a C-testable ILA of special practicality is the ripple carry adder. This adder consists of a
number of full adder cells, connected through their carry-in and carry-out ports, in a fash-
ion that closely resembles the generic ILA structure of Figure 2.35. C-testability then im-
plies that each full adder can separately be tested by its own test set, and also that adder
cells can be tested concurrently, thus resulting in a test set whose length is truly independ-

ent of the bit-width (i.e. independent of the number of full adder cells).

An alternative concept is presented in [76]. Let us consider the circuit model of Figure
2.36.

Definition 2.17: A circuit C, as of Figure 2.36, is defined as scalable if its output function
Z(n) is independent of the number n of its input data buses.

Most data path modules normally implement a function of the form Z(A(n),B(n)), where

An)y=Aq...AAp and B(n)=B,.

....BBy. In the formulation of b D, 1—#—;————»

Figure 2.36, Di=(A,By), . n-bit u
=0,....n-1 and W(:Z, u=n and a ? gf —74\,1_—’ 4W., ireut © ‘
control bus K of bit-width v a Dy 7

may or may not be present. In v

the sense of Definition 2.17, Control «

such modules can be considered

scalable, since their function Figure 2.36. General Scalable Circuit
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Z(n) (e.g. addition, multiplication, shift) is independent of n. It is interesting that scalabil-
ity is a broader concept than C-testability. Indeed, the authors of [76] prove that a ripple
carry adder is both C-testable and scalable, while a carry look-ahead adder is scalable but
not C-testable. They further demonstrate that scalable circuits can be tested by very com-
pact test sets, and they derive analytical test sets and test generator structures for a number

of example scalable circuits.

Reductions in the length of test sets are also reported when functional, as opposed to struc-
tural, fault models are used. An example is the mutation testing technique of [77]. Muta-
tion testing originates from the software testing domain; the authors of [77] apply it to de-
rive functional tests for hardware, having observed the obvious similarities between a
piece of software and an HDL-described hardware design. In mutation testing, HDL de-
scriptions are repeated several times, and in every repetition a single functional error is
injected (for instance, a “+” operator is substituted by a “-*). These corrupted descriptions
are called mutants and their erroneous behaviour represents functional faults. Conse-
quently, test vectors are applied (by a simulator) to the correct description and to mutants.
When a mutant output differs from the correct output, that mutant is considered to be
“killed”, in the sense that a vector that detects the modelled fault has been identified. Re-
sults presented in [77] show that fault coverage is sufficient, while the time required to
determine the test set is much less than that required by exhaustive fault simulation ap-

plied to synthesized low-level hardware descriptions.

A technique similar to mutation testing can be found in [78]. This time, HDL specifica-
tions are translated into binary decision diagrams (BDDs). Faults are injected in the BDD
constructs, rather than in the specification itself. Again, inconsistency between the fault-
free and the faulty case determines test vectors. Some additional post-synthesis gate-level
simulation is employed here, to uncover faults not detected by the faults injected in the

BDD representations.
2.2.3.2.3 Test scheduling for on-line BIST
Having discussed the issues of idle time analysis (§2.2.3.2.1) and techniques for the reduc-

tion of the test set length (§2.2.3.2.2), this presentation now focuses on test scheduling for

on-line BIST. In other words, assuming that the maximum possible availability of idle



P. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 77

time has been achieved, and that test length reduction techniques have been applied, it is
now desirable to identify when and how test vectors can be applied to the functional mod-

ules constituting the overall design, as well as how this can be done concurrently with the

functional operation.

DFG TDFG
a
T Riga R2 R3+
M1 M2
2 RX R
M2
3
RY
S1
4
R2 _J
d

Figure 2.37. Example DFG and TDFG
For this purpose, Singh and Knight {79] propose the fest data-flow graph (TDFG). In Fig-
ure 2.37, a DFG and a corresponding TDFG are shown. In both graphs, circles represent
operations (exactly as in Figure 2.33), while solid rectangles correspond to registers. The
graphs are also annotated with the symbolic names of the hardware units that implement
corresponding operations or register loads (e.g. multiplier M1, register RX etc.). It is as-
sumed that control returns to control step 1, after step 4 is finished. From the figure, it is
obvious that hardware resources are used in the TDFG during a CS only if they are idle
during that CS in the DFG. A dedicated TPG and a dedicated MISR are further intro-
duced. The TPG provides test patterns at CS 3, while the MISR compacts the response of
a chain of operations during CS 2 of the subsequent execution. Observe that test data pro-
duced by the TPG goes through all system functional blocks and registers before reaching
the MISR, thus providing a degree of testing for all system hardware resources. According

to the test schedule of Figure 2.37, one test vector is applied to the system for every func-



P. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 78

tional execution. Longer DFGs would allow for more tests per execution. Flottes et al [80]
extend this work, by considering data dependent conditional branches in the system. Ef-
fectively, each conditional branch is considered separately and small TDFGs are derived
for each one of them. In [81], a practical case study of the ideas presented in [79] is given,
through the construction of a TDFG for a discrete PID regulator, while in [82] the muta-
tion testing idea (§2.2.3.2.2) is proposed to determine the test set the TPG will provide. A
problem with all these TDFG-based techniques is that the quality of test vectors applied to
modules can be rather poor. For example, in Figure 2.37 most muitiplications in the TDFG
are either squarings of the input operand or multiplications by a constant; it can easily be
shown that both of these operations cancel out the pseudorandom properties of the vectors
the TPG is providing, thus leading to reduced detection capabilities (lower fuulf coverage
[1]). The insertion of more than one TPG in the TDFG is mentioned in {80] to partially

remedy this weakness.

2.2.3.3 On-line shift-based DFT

As well as BIST, shift-based design for testability has also been proposed in the on-line
context. Most of the work done in this field has been carried out by Ismaeel et al [83, 84,
85]. Naal and Simeu [86] presented their own contribution. The underlying principle in all
these works is that selected DFG operations are targeted; both their input and output sig-
nals are shifted out at “convenient” moments, and the partial result produced by the chip
under test is compared against the expected result, produced by external test equipment
using the above mentioned shifted-out input signal values. The goal is to test each hard-
ware module using this shift-based technique at least once in a time frame called “pass”.
The first obvious restriction of this approach is that the chip needs to be constantly moni-

tored by off-chip testing devices on the field.

In [84], idle-time operations are inserted in the DFG and targeted instead of the functional
ones implemented by the same hardware modules. This is shown to promote register shar-
ing, thus minimizing the number of signals to be shifted out. In [86], factorisation of com-
plex arithmetic calculations is proposed, in an attempt to minimize the number of hard-
ware modules required and increase idle time, which can in turn be used for redundant op-
erations, again providing opportunities for more efficient signal shifting. In [85], multi-

type units (ALUs) and multi-cycled operations are included in the discussion. ALUs are
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tested at least once in a pass, for every operation they implement. Finally, [83] is the most
comprehensive presentation of this family of techniques. Signal shifting is explained in
detail and the use of concurrent testing registers (CTRs) is shown. CTRs are shift registers,
where copies of the values to be shifted out are loaded at suitable moments, so that the
functional signal registers can be fully devoted to the functional operation, which is thus
not disturbed. Additional dedicated control logic provides the interface between the nor-
mal operation and the CTRs. The “pass” is formally defined as max(INC,Nieq), where NC
is the total number of steps in the DFG, and N 15 the number of steps required to test

each module in the design exactly once.

2.2.3.4 Other approaches

The material presented herein concludes the background presentation of digital design for
on-line testability. The following two subsections cover generic techniques based on
arithmetic BIST (§2.2.3.4.1), as well as schemes that are based on the analytical algebraic

description of the system functionality (§2.2.3.4.2).

2.2.3.4.1 Arithmetic on-line BIST

Arithmetic BIST is based on the observation that the combination of an artthmetic unit
(e.g. an adder) and a register can be used either as a TPG (by adding a constant value to
the contents of the register) or as a response compactor (by adding the test response to the
contents of the register). The arithmetic unit — register combination is defined as an arith-
metic accumulator. The accumulator concept has already been encountered earlier in this
thesis (§2.2.1.2), where such a structure was used as a building block for a programmable
m/n checker (Figure 2.20). Originally exploited in off-line mode, arithmetic accumulators
are alternatives to the traditional LFSR-based BIST resources, since their outputs exhibit
similar properties to the LFSR outputs. Given enough functional resources that can be
combined into accumulators, the hardware overhead introduced by LFSRs can be avoided
[87]. There have been several off-line arithmetic BIST techniques in the literature. For the
sake of completeness, a few recent ones are briefed here. In [87], the CUT is partitioned
into test blocks (consisting of one or more hardware modules) and accumulators are con-
figured around the boundaries of the blocks. LFSRs are introduced only when not enough

accumulators can be configured by the hardware resources available. Partitioning is driven
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by a cost function integrating hardware overhead and performance penalty introduced by
test resources and the problem is formulated into an integer linear programming task. In

[88, 89], once more accumulator-based test configurations are presented and the module

assignment and module sharing problems are dealt with by a cost function driven heuris-
tic. The cost function mcorporates area savings and testability gain, where the testability
gain is expressed by the accumulator-forming potential of any hardware assignment or

sharing decision.

On another note, Mukherjee et al [90] consider fixed-width multipliers fed by test patterns,
and observe that their outputs experience reduced pseudorandom properties, due to the
truncation of the least significant part. Reduced randomness results in inadequate testing
of modules driven by multipliers (a concept already encountered in this thesis in
§2.2.3.2.3). The authors of [90] propose adding the (normally truncated / wasted) least sig-
nificant part of the multiplier output to the most significant part, when in test mode.
Simulations establish the improvement in pseudorandomness of the patterns produced at
the multiplier output. Motivated by this work, Gizopoulos et al [91] subsequently propose
partitioning a substantially sized circuit into chains comprising one multiplier and one or
two adders or subtractors. LFSRs are later inserted to provide BIST functionality to each
chain separetely, thus providing acceptable test coverage for the arithmetic modules of the

overall circuit.

The previously presented works form the foundation of an arithmetic BIST-based tech-
nique particularly named Versatile BIST (VBIST), introduced by Karri and Mukherjee
[92]. In VBIST, adders are used for test pattern generation {as in arithmetic BIST) instead
of the LFSRs used in [91]. The multiplier - adder chains of [91] are formed, and multiplier
outputs have their two halves added together for increased randomness as in [90]. Re-
sponse compaction finally takes place, again in the arithmetic BIST fashion, using adder-
based accumulators. In addition to that, the whole problem is addressed at the HDL level,
by modifying the functional descriptions of synthesizable circuits to include VBIST opera-
tions. Moreover, testing can be performed either off-line (as in [91, 87, 90, 88, 89}) or on-
line, during the widely mentioned and in many ways exploited module idle time (hence
the versatile property). The technique is suitable for a rather restricted number of designs,

namely only those that can be partitioned into the multiplier — adder(s) chains of [91].
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2.2.3.4.2 Analytical approaches

This subsection briefs a couple of techniques that especially focus on linear digital sys-

tems, manipulate their analytical equations, and derive suitable invariants that are moni-

tored to ensure correct operation.

Bayraktaroglu and Orailoglu [93, 94] deal with digital filters. They start from the digital

filter equation
M
yinl=> hx{n—k] (2.8)
fr=0

7 in equation (2.8) is a point of (discrete) time, while vectors y[ k] and x[k] are the output
and input vectors of the filter respectively, 4, is the coefficient matrix denoting the filter

functionality, and A is the order of the filter.

After a few steps of algebraic manipulation [94], equation (2.9) is reached

where [ 1s an invariant property depending on 4; only, and 7., depends on filter coeffi-
cients and maximum (expected) input magnitude. Equation (2.9) is the invariant relation
that should always hold in the fault-free case, and it is this relation that the filter is con-
stantly monitored against. Two adders and two registers are introduced in the filter realisa-
tion to calculate the sums of input and output signals and a checker determines if their dif-
ference is within the specified tolerance 7. A fault or the accumulation of minor fault
effects is detected when it is not. With the addition of two multiplexers, a designer may

reuse the adder — register pairs in the input and output of the filter as arithmetic accumula-

tor-based TPG and MISR for off-line testing purposes.

Another apalytical approach can be found in [95]. The authors address linear digital sys-
tems in general. Such a system can be described in matrix form as in the following.
x(t+1D)=A-x(¢t)+ B - u(t)
y(@)y=C x(t)+ D u(r)

(2.10)

where x(f), y(r) and u(7) are state, output and input vectors respectively, while 4, B, C and

D are system parameter matrices.
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Manipulating the above state-space equations, the authors come up with the equation

r()y=v YW () -HW - UM (1) 211
#(f) is defined as the system parity check. Y(¢) and UM(z) are vectors comprising the pre-
sent and k delayed values of the output and input signals respectively. Matrix A is a

time-invariant function of 4, B, C and D, while vector v’ depends on 4 and C only.

In the fault free case, the invariant property is r(2)=0. On-line testing is performed by syn-
thesizing the system defined by equation (2.11), including it in the overall implementation

and monitoring its output (7).
2.2.4 Analogue electronics related techniques

A few representative analogue electronics-related techniques are briefly mentioned here.
The goal of such techniques is to detect a fault by means of its impact on analogue charac-
teristics rather than on logic values. Sometimes faults are detected because analogue char-
acteristics are corrupted at the same time as logic values (e.g. current monitoring, crosstalk
effects), while sometimes the effect of a fault on some analogue characteristic enables de-
tection before the logic value is corrupted (e.g. delay testing). As chapter 5 will argue,
these approaches are not particularly useful for the purposes of the present thesis; the pres-

entation herein is, therefore, very brief, and truly representative rather than exhaustive.

Current monitoring is the most developed of all the techniques in this family. It is based
on the concept that most physical defects in VLSI systems result in abnormal current con-
sumption. It can be performed either externally or by embedded built-in current sensors
(BICS) [9]. An application of current monitoring is presented by Bogliolo et al [96]. Fault-
tolerant circuits based on triple modular rechindancy (TMR) are considered. Such circuits
consist of three copies of the same hardware, followed by majority voters, and they offer
tolerance against single faults in any of the three replicas, simply by fault masking within
the voting hardware. It is, however, desirable not only to mask a single fault, but also to
acknowledge its presence, since any faulty situation that leads to permanent damage in any
of the three copies will necessarily result in a circuit that is defenceless against any subse-
quent additional fault. The authors of [96] therefore design a novel majority voter, utilis-
ing an embedded current sensor for this purpose. When the sensor detects abnormal cur-

rent flow, the environment is informed that the circuit has lost its fault tolerant property.
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Paschalis et al [97] address concurrent delay testing. A delay fault refers to a circuit wire
that does eventually take the value of the port driving it, albeit with an unacceptably long
delay. Delay faults are regarded as forerunners to logic faults; it is therefore desirable that
they be detected as soon as they appear. [97] defines a maximum delay that a wire can ex-
perience in order for the situation to be regarded as fault-free (discrimination time). A
TSC (Definition 2.3) error indicator is then shown, receiving a two-bit input and produc-
ing a two-bit output. This indicator consists of two 2-pair dual-rail checkers (§2.2.2.2),
suitable delay elements and some elementary control logic. It stabilises its output at the
fault-free indication whenever a fault-free value (“01” or “10”) appears at its inputs. It also
does so when the input is fed by a faulty indication (“00” or “11””) of duration less than the
discrimination time. In contrast, if the faulty input persists, then the error indicator locks
its output at the “00” or “11” state, and ignores any subsequent transition of its inputs, un-
til it receives a special “reset” control signal. The structure can be appended to the output
of a TSC checker (§2.2, §2.3) of any arbitrary code, enhancing it with concurrent delay

testing capabilities.

Favalli and Metra [98] consider crosstalk faults, i.e. logic faults that are due to the capaci-
tive coupling between two parallel lines in a system bus. Such faults are sometimes multi-
ple; therefore they are likely not to fall within the detection capabilities of a particular
EDC (§2.2). In [98], electrical simulations are conducted for buses encoded according to a
number of typical EDCs. The results of these simulations are used to establish analytical
expressions for the probability that a crosstalk fault will be detected by the EDC at hand.
Motivated by the significantly high fault escape probability of this study, the same authors
[99] present a novel, transistor-level detector design, especially tailored to target crosstalk,
delay as well as short-lived transient faults. This detector signals an error indication if a
transition occurs during the stability time interval, i.e. during a specified interval following

the rising edge of the system clock.

A few more reliability indicators are briefly mentioned in [9]. These include temperature,
voltage, output activity and radiation. None of them is reported to have been widely ex-

ploited though.
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2.3 Summary

This chapter has given a full and comprehensive presentation of on-line testing theoretical
concepts and practical approaches. In the area of self-checking design, various error-
detecting codes were reviewed. Such codes provide excellent solutions for the reliability
of small-scale, mostly combinational circuits. Regarding large-scale systems, reliability
improvements have been attempted through the setting up of on-line BIST, scan-based
DFT, and, most usually, algorithmic duplication schemes. Some of the works proposing
such schemes included elements of synthesis-related considerations. However, none of
them comprehensively addressed all the aspects of automatic large-scale system synthesis
within the context of existing synthesis tools. Detailed critical evaluations of these tech-
niques in the synthesis context are needed; these are carried out in chapters 5 and 6 of this
thesis, followed by the specific contributions of this research work.

While the overall discussion in this chapter was very broad, particular emphasis was given
to elements of on-line testing that are actively exploited in the rest of this research work
and are therefore of particular importance for the purposes of the presentation herein.
These include :

e self-checking design theory

e parity, m/n and dual-rail checker designs

e algorithmic duplication-based self-checking, for substantially-sized sequential circuits



Chapter 3

High-Level Synthesis

High-level synthesis is addressed in this chapter. The fundamental definitions and con-
cepts are given in section 3.1, while section 3.2 focuses particularly on the specifics of the
Multiple Objective Optimisation in Data and control path Synthesis (MOODS) High-Level
Synthesis Suite, which is used in chapters 5 and 6 for all the implementation and experi-
mental results of this thesis. Section 3.3 sunmmarizes the chapter. Only synchronous sys-
tems with a single clock are considered in this work, and this will be implied throughout

this thesis.

Emphasis throughout this chapter is given to these high-level synthesis elements that are
most significant for the purposes of the present thesis. More detailed presentations can be

found in two recent dedicated PhD theses, by Williams [8] and Kollig [100].

3.1 Fundamentals

Definition 3.1 : High-level (or behavioural) synthesis (also referred to as ALS) of digital
systems 1s the process of automatically extracting a structural realisation of the system

from the description of its behaviour [8, 100].

Typically, a high-level synthesis system is fed by a behavioural description written in a
hardware description language (HDL), most commonly the Very high speed integrated
circuits Hardware Description Language (VHDL) [48], although attempts at using other
languages such as SystemC have also been reported [101]. Note that this behavioural de-
scription is limited to an abstract, purely algorithmic representation of the relationship be-

tween system inputs and outputs, with no explicit timing or structure information. In fact,
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it is within the synthesis

Primary Conditional
~ Inputs Signals process itself that such in-
/’\ formation is derived, and it is
mcluded in the high-level
synthesis output, which is
Data path: “[(;i;in Controller again in the form of an HDL,
albeit at a lower level of ab-
straction, corresponding to a
netlist of components, storage
units and interconnect, typi-
o (F;Z?;)i?; . gizl:]Z?s! cally referred to as a register-

transfer level (RTL) descrip-
Figure 3.1. Target architecture tion, suitable for subsequent
synthesis by commercially
available low-level synthesis tools. This output is graphically depicted in the controller /
datapath target architecture of Figure 3.1. From the figure, it is evident that the structure
of the resulting system consists of data path units, implementing the primary input / out-
put behaviour of the system, and a controller (or control path) part, determining timing
1ssues. These two constituent parts communicate by means of the elementary, gate-level
“glue” logic. In essence, the controller realises a finite-state machine (FSM), thus provid-
1ng timing information in the form of control signals to the data path. In addition, when
the 1nitial behavioural description of the system includes conditional or loop statements,
then some of the signals produced by the data path need to be fed to the controller in the

form of conditional signals, in order for the FSM to correctly produce suitable next-state

mformation.

Figure 3.2 (taken from [8]) captures the typical HLS-based digital system design flow,
where the dashed rectangle defines the areas that a generic high-level synthesis tool oper-
ates on. The initial behavioural description is compiled, and an intermediate internal repre-
sentation of the system functionality and structure is formulated. It is on the data structures
corresponding to this representation that the system optimisation algorithms ave applied,
taking into account the designer parameter specifications (typically area and delay goals),
together with a technology library. This library contains parameter information regarding

the data and control path units, storage elements and interconnect modules that are used as
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Figure 3.2. HLS-based design flow

building blocks for the realisation of the system. That way, the tool is able to determine
the quality of a given realisation of the system at any time, thus providing feedback to the
optimisation algorithm. Typically, this feedback greatly influences automatic optimisation
decisions. After all optimisation, a back-end netlister produces the HLS RTL output. A
cell library file (not appearing in the figure) is associated with this output. This file com-
prises synthesisable RTL HDL descriptions for all the above-mentioned system building
blocks. Note the relationship between this cell library and the technology library of Figure
3.2 : the latter comprises technology-specific characteristics and properties (in a non-
standard, non-HDL format) for the fechnology-independent HDL cells of the former. Fi-

nally, it is good design practice to simulate both the behavioural and the RTL descriptions,
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in order to verify their equivalence, before feeding the latter to commercial, technology-

specific RTL synthesis tools for the actual implementation.

From the above brief presentation, it is obvious that in HLS-based design, the designer’s
role is limited to providing the algorithmic description of the system functionality, along
with his or her specifications; the tool is responsible for the hardware realisation. Clearly,
this speeds up the design process tremendously, and minimises the possibilities of a de-
signer error, since describing the functionality of a system is much easier, less time-
consuming and less error-prone than designing the actual structure. This highlights fast
time-to-market as the big advantage of adopting an HLS-based design flow. It is also in-
teresting to obsetrve that the only place in the design flow where target technology is con-
sidered, is the technology library. Given that a technology library file is normally a simple
add-on to the synthesis system, it can be deduced that the behavioural synthesis process is,
in essence, independent of target technology, and it can easily be modified to target alter-

native technologies, thus offering enhanced opportunities for experimentation.

Clearly, the heart of a high-level synthesis tool is the internal representation of the circuit,

and the synthesis algorithms that operate on it. The rest of this section is therefore dedi-

cated to these two elements.
3.1.1 Internal Representation

The internal intermediate form of a given digital system is the product of the behavioural
description compilation, sometimes including some source-code level trivial optimisa-
tions, and it should be chosen such that it can consistently represent the behaviour and
structure of the design. A widely adopted choice for this representation is the Data Flow

Graph (DFG). According to De Micheli [102], this graph is formally defined as follows.

Consider a digital system whose overall functionality can be broken down to 7, elemen-
tary tasks. These tasks can be logical (e.g. AND, OR), arithmetic (e.g. addition, multipli-
cation), comparisons, or data transfers. These operations are assumed to be fed by one or
more inputs, and to produce one or more elementary results.

Definition 3.2 . A data-flow graph G«V,E) of a given digital system is a directed graph

whose vertex set F={v;; i=1,2,..., 1y} corresponds to the set of elementary tasks of the
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Primary inputs system, while the directed edge set
AL E={(vi,v)); i,j=1,2,..., nops} corresponds

to the transfer of data from one opera-

-
tion to another.
A1l
CS1
An example DFG with only four opera-

tions is shown in Figure 3.3. The verti-

CS2 A2 A3
ces and edges of definition 3.2 can be
observed in the figure. In addition,
CS3 M1
some common conventional notations
l and terms can also be defined. In par-
Primary output ticular, observe that every vertex / op-

. eration is assigned a unique symbolic
Figure 3.3. An example data-flow graph
name (conveniently indicating the type

of operation the vertex is representing), and annotated with the symbolic name of the data
path unit that implements the task. For example, in Figure 3.3, operation {addition) +1 is
shown to be implemented by data path unit (adder) A1, multiplication *1 is implemented
by multiplier M1 etc. In the prevailing terminology, +1 is allocated to Al, *1 to M1 etc.
Related to allocation is the concept of binding functional modules to particular hardware
instantiations, taken from the cell library (§3.2). In the example at hand, +1 is allocated to
Al, and then a suitable (adder or ALU) cell is chosen from the cell library and bound to
Al, taking its parameters (area, delay etc.) into account. Further, in Figure 3.3 data de-
pendencies between operations can also be observed. For example, +2 has to be executed
after +1, since it is fed by its output. Recalling that only synchronous systems are consid-
ered, this practically means that +1 needs to be executed one clock cycle before +2, and its
result stored in an appropriate storage unit (register). +1 is then said to be scheduled one
control step (CS) before +2. Figure 3.3 clearly exemplifies the concept of control steps, by
representing their boundaries with dashed lines, and assigning a unique name to each one
of them (CS1, CS2, CS3). The total number of control steps in the DFG determines the
overall delay of the circuit, and is defined as the critical path. A DFG annotated with such

scheduling information is sometimes referred to as a scheduled data-flow graph (SDFG)

[103].
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While a DFG representation
1s widely accepted as a con-
DFG1 yaceep

venient notation to represent

sequential circuits, it is not

suitable for representing de-

IF sel=1 THEN signs that include condi-

tional branches or iterative

loops. It has, however, been

DFG2 DFG3
extended to include such

“True” branch
youeliq esjed,

constructs, thus giving rise

to the control and data-flow

END IF graph (CDFG), loosely de-

fined in the following [8,
Figure 3.4. An example control and data-flow graph 102].
Definition 3.3 . A control and data-flow graph is a hierarchical structure, which at the top
level describes the flow of control through the system as a directed graph, where each ver-
tex either corresponds to a separate DFG segment, or is a special “branching” vertex.
Figure 3.4 exemplifies the concept of a “branching” vertex, to represent a conditional exe-
cution situation. The rectangles annotated DFG1, DFG2, DFG3 correspond to normal
DFGs, like the one of Figure 3.3, while triangles signify branching nodes. Note that the
delay through branch DFG2 is not necessarily the same as that through DFG3; in such
cases, the critical path is defined as the longest among all paths that lead from the initial

control state to the final one. Once again, the critical path determines the overall delay

value of the system.

Alternatively to the DFG / CDFG representations, extended timed Petri-nets (ETPNs) [8]
can be formed. In contrast to the former, the latter require two different graph structures
for the control and data path parts of each design. In ETPN representation, the control path
is represented by a directed graph whose vertices correspond to the control states of the
design, and whose edges signify the flow of control. The graph representing the data path
is composed of nodes naturally corresponding to functional units and storage elements,
with edges connecting nodes when there is flow of data between them. Edges in the data

path graph are annotated with the symbolic name of the control state during which flow of
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data occurs; conditional edges in the control path graph are annotated with the symbolic
name of the data path signal that determines which branch will be followed. As an illustra-
tive example, Figure 3.5 shows a Petri-net equivalent of Figure 3.3, In contrast to the DFG
case, storage units are explicitly shown in the data path graph, and in Figure 3.5b they are
signified by the symbols a, b, ¢, d, t1, t2 and t3. Simple comparison of Figures 3.3 and 3.5
is enough to show the increased memory storage requirements that a Petri-net based inter-
nal implementation requires. It is also obvious, however, that such a representation makes
more information readily available; it is therefore more beneficial in terms of performance

if frequent access to the data structures is needed.

In the rest of this thesis, both DFG and ETPN-based representations will be used for illus-

tration purposes, as applicable per situation.

primary inputs
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(a) conirol path (b) data path

Figure 3.5. Extended Timed Petri-net based representation of an example digital system
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3.1.2 Optimisation and Design Space Exploration

Bearing in mind the concepts of scheduling, allocation, and binding explained through
Figure 3.3, itis now possible to provide a definition for the optimisation task.
Definition 3.4 : The design optimisation is the process of determining the optimal schedul-

ing, allocation, and binding for a design, such that the user specifications are satisfied.

The design optimisation problem has been shown not to have an analytical solution in fi-
nite time. Several heuristic algorithms have therefore been proposed, that aim at providing
as good approximate solutions as possible, in as little time as possible. Algorithms exist
that address the scheduling, allocation, and binding problems separately, or simultane-
ously [8, 100]. In brief, scheduling algorithms can be :
e constructive : operations are scheduled in turns, one at a time, based on algorithm-
specific criteria
e transformational : a default schedule is initially formulated, and suitable transfor-
mations are subsequently applied to it. They can further be distinguished into de-
terministic (e.g. integer linear programming-based), and stochastic (e.g. simulated
annealing)
Similarly, allocation is typically done using either :
e terative / constructive techniques : similarly to their scheduling counterparts, op-
erations are allocated one at a time in turns, or
o global techniques : these techniques rely on analysing the data path as a whole, and
then trying to simultaneously allocate all (or a significant number of) operations.
They are normally based either on graph theory, or on mathematical programming

(e.g. once again, integer linear programming).

Any further presentation of generic optimisation algorithms exceeds the scope of this
work. The algorithms employed by the MOODS system are, however, explained in detail
in §3.2. For the time being, the concept of design space exploration is introduced [8, 102].
Definition 3.5 : Let n be the number of design parameters / user specifications. The design
space is an n-dimensional space spanned by these parameters, whose points include all

possible alternative realisations of a single given design behaviour.
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The two parameters always considered first in HLS are the design area (related to the ac-
tual production cost of the circuit), and the design delay (corresponding to the system per-
formance). This gives rise to a typical 2-dimensional design space, depicted in Figure 3.6.
Clearly, not all points in the design space are achievable, since there are physical limits as
to how fast and / or small a circuit implementing a given behaviour can be. The achievable
region of the design space is thus shown in the figure. However, not all achievable designs
are acceptable. The acceptable region is the part of the achievable region that comprises
designs that satisfy the designer constraints. The process of considering alternative designs
within the design space achievable region until a design in the acceptable region is
reached, is commonly referred to as design space exploration. Since the designer require-

ments cannot be known a priori, it is important that a high-level synthesis tool be able to

explore as much of

A
the design space as

possible, as fast as
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isfy strict con-

delay
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straints, in as many

possible.
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Three-dimensional
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been proposed re-
Figure 3.6. Typical 2-dimensional design space cently, the third di-
mension most commonly being power consumption [104], or testability [103]. As will be
made evident in chapter 5 (§5.3.3.1), this present work also considers a three-dimensional
design space, where on-/ine testability is the third dimension. Of course, in theory the de-

sign space can have more than the physically representable three dimensions.

In principle, transformational optimisation approaches are more abstract, take more com-
putational time and are capable of escaping local minima in the design space. Suitable
constructive approaches have sometimes been quoted to give better solutions [100], but in

theory they may not always reach the global minimum.
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3.2 The MOODS High-level Synthesis System

In this section, elements of the way MOODS performs the design space exploration proc-
ess and comes up with design implementations are provided. In brief, when MOODS is
first invoked, the behavioural VHDL description is parsed and analysed, and an initial,
naive, maximally serial implementation of the design is formulated and stored in its inter-
nal data structures (internal representation). In this implementation, every operation is
scheduled on a separate control step and allocated to a separate data path unit. Clearly, it is
the biggest and slowest possible realisation of the design and it serves only as a starting
point. This initial design is consequently optimised by applying local, semantic-preserving
scheduling, allocation and binding transformations to it, in an iterative manner, through
multiple repetitions of an optimisation loop. The selection and targeting of transformations
to be applied is supervised by a suitable algorithm, and guided by a cost function. After
optimisation, and in line with the paradigm of Figure 3.2, an RTL VHDL netlist is output.

This netlist is effectively an interconnection of instances of cells from a suitably provided

MOODS cell library.

Topics covered in the following subsections are : the design internal representation within
MOODS (§3.2.1), the optimisation loop (§3.2.2), the set of available transformations
(§3.2.3), the cost function (§3.2.4), the algorithms currently available (§3.2.5), details
about the hardware model assumed for the control path (§3.2.6), and finally a list of the
MOODS cell library components (§3.2.7). Emphasis is naturally given to these elements

that are essential for this thesis, while further details can be found in the literature [74, 73,

8,75, 104].
3.2.1 The MOODS Internal Representation

From the brief description in §3.2, it is clear that optimisation within MOODS is an itera-
tive process. This applies to both the scheduling and allocation tasks, since they are actu-
ally considered simultaneously, within the same optimisation process (§3.2.2). Therefore,
the data structures that form the internal representation are expected to be accessed very
frequently. As explained in §3.1.1, this makes Petri nets a tempting option for the internal

representation. Indeed, the representation formed within MOODS closely resembles
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ETPNs in that separate structures are stored for the control and the data path, in principle
formulated following the ETPN rules. However, it also features some non-ETPN ele-
ments. To name just a few, these include :

o the control path node data structures include information about operations scheduled
for execution in them

s there exist software pointers called implementation links, connecting operation nodes
in the control path with datapath functional units

e a comprehensive set of control path node types is used, enabling the efficient represen-
tation of a substantial subset of behavioural VHDL constructs

e an additional condition list data structure encompasses information about instructions
executed only on a certain condition

All these additions (plus others not mentioned here) significantly enhance the semantic

power of the representation, and are presented in detail in [8].

3.2.2 The Optimisation Loop

The optimisation loop of Figure 3.7 is the heart of the optimisation process. It defines the
stages through which the system routinely cycles whenever an optimisation transformation
is considered, regardless of the actual nature of the transformation. The whole iterative
optimisation process is thus nothing but several repetitions of this loop. The different

phases of the optimisation loop are explained in the following.

During the selection phase, a transformation is picked from the set of available transfor-
mations (§3.2.3) and the data which it will target are also selected. The optimisation algo-
rithim (§3.2.5) determines which transformation and data will be selected. Alternatively,
MOODS can run in an interactive mode, during which the designer goes through the op-
timisation loop “manually”. It is to be noted, however, that irrespective of the applied al-
gorithm or interactive mode option, optimisation always proceeds according to the scheme

of Figure 3.7.

As is further clarified in §3.2.3, any given transformation can only target specific kinds of
data. For example, if a unit sharing transformation is selected, appropriate data are two
distinct datapath units of the same type (or compatible types). In addition to that, the de-

sign characteristics at a given time may (and often do) prevent a particular transformation
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from being applied to a given set of data. In the example at hand, unit sharing is prevented
if, for instance, the two datapath units are both active during the same given control step.

Such design characteristics are checked during the validity test stage.

If the given transformation on the given data is determined to be valid, the system pro-
ceeds to the cost estimation stage. It 1s during this stage that transformations are actually

evaluated and it is determined if they are beneficial or degrading. This is done through the

cost function (§3.2.4). Note
transform

and data .
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on the same data in a given
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After execution, or if either the Figure 3.7 : The MOODS optimisation loop
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validation or the execution stage fails, there is the option to either proceed to another
transformation or finish optimisation. The point at which optimisation actually finishes is
once again determined either by the algorithm in use or by the designer interacting with

the system.

3.2.3 Transformations

symbolic description type of Table 3.1 presents
name transform the set of transfor-
TF2 sequential merge scheduling . ,
TF3 group instructions on register | scheduling mations available
TF6 ungroup to time scheduling within MOODS.
TF7 ungroup on group scheduling .
TF8 merge fork and successor scheduling Each transformation
TF9 parallel merge scheduling is uniquely identi-
TF10 share functional unit allocation fied by a symbolic
TF12 unshare functional unit fully allocation
TF13 unshare single instruction from | allocation name appearing in
functional unit - T
TF21 unshare single instruction from | scheduling the first row; & brief
control state description is also

Table 3.1. The set of available transforms provided in the sec-
ond row. Finally,
the third row gives the type of the respective transformation, that is, classifies it as either a
scheduling or an allocation transformation. These transformations are explained in more

detail in the following [8].

The sequential merge transformation (TF2) targets two sequential control nodes, as are,
for example, nodes CS1 and CS3 of Figure 3.5. It results in a single control step, encom-
passing all operations of the targeted steps. Practically, all operations of the temporally
preceding step (CS1 in the example) are moved to the temporally succeeding (CS3), and
the former is optimised out, thus saving one control step in the overall critical path. If the
merged control nodes include any two operations that feed one another, then the register
that originally stored the intermediate result across the CS boundary is also optimised out,
and the two operations are chained within the resulting control step. One single operation,
or two or more operations scheduled for serial (chained) operation within the same control
step will hereby be referred to as an operation (or instruction) group. In order for trans-

formation TF2 to be applied, the test phase of the optimisation loop checks that : a) no in-
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structions in any of the merged control steps share any hardware, unless they are mutually
exclusive, b) any possible chaining does not violate the designer clock period specifica-
tion, and ¢) there are no data dependencies between the top state instructions and any in-
structions in the states between the targeted ones. For example, referring back to Figure
3.5, this last check ensures that no output of any operation in CS1 is needed in CS2; there-

fore, the operations of CS1 can be moved to CS3.

Transformation TF3 (group instructions on register) targets a given register, and aims ex-
clusively at optimising it out, by chaining the two instructions writing to and reading from
it. Once more, the corresponding control states are merged, and the instructions form a
group. Clearly, TF2 and TF3 can often have exactly the same effect; however, their start-
ing points (targets) are different, and are therefore considered separately. The tests re-
quired to ensure validity of this transformation are the same as for TF2, plus an additional

check that no other instruction writes to the given register, or reads from it, so it can safely

be removed.

Transformation TF6 (ungroup to time) is the first “undo” transformation presented here. It
targets a single control node, and it is only meaningful if the targeted node is the result of
any of the merging transformations (TF2, TF3, TES, or TF9, the last two presented later in
this section). It also takes a maximum execution time value as input, and checks whether
the given node requires more than this time for all its operations to be fully executed. If it
does, then the transformation tries to locate any groups of chained instructions, and un-
group them, by introducing new control steps and new registers to carry intermediate val-
ues across their boundaries. Although new control steps are introduced, possibly lengthen-
ing the critical path, the transformation can result in actual improvements in system per-
formance, since breaking long chains of operations is often expected to enable higher
clock frequency values to be achieved. Further, “undo” transformations are useful in algo-
rithms that accept temporary degradation in system quality within the optimisation proc-
ess, such as the simulated annealing algorithm (§3.2.5). In practice, TF6 can rarely be in-
valid, mostly in situations resulting from the sharing of registers among several system

variables. Such sharing is, however, not permitted in this work.

TE7 (ungroup on group) is another “undo” transformation. Once more, it targets a single

CS, and 1t is meaningful only when the given CS encompasses more than one group of in-
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structions. This can be two or more single (or chains of) instructions executed in parallel

within the same step. It simply creates a new dedicated control step and schedules a cho-

sen group in this step.

TFS (merge fork and successor) is a control step merging transformation, allied to TF2
and TF3. It involves fork nodes in the control path, that is, nodes with multiple output
edges, resulting from conditional or loop behavioural VHDL statements. It merges a given
fork node, with its immediate successor, practically by moving the operations executed in
the succéssor node up to the top one, in the form of operations executed conditionally. A
simple example is considered in Figure 3.8. 3.8a depicts the original situation. CS1 is the
fork node, while CS2 and CS3 are the two successors. The CSs are also annotated with the
instructions that are scheduled in them, i/, i2 and 73 respectively. When condition “sel” is
true, then CS2 is visited and i2 executed; otherwise CS3 is visited and i3 executed instead.
Both cases are followed by CS4 and the execution of its respective instruction 4. In Fig-
ure 3.8b, TFS targets steps CS1 and CS2. As the figure shows, CS2 is dropped and i2 is
moved to CS1, together with its execution condition “sel”. A second immediate execution
of TF8, this time targeting CS1 and CS3, results in the simple situation of 3.8c, where the
fork node and both of its successors have been substituted by a single node, featuring the
original 7/ and two mutually exclusive instructions. Having abolished the fork construct,
the system now has enhanced potential for scheduling optimisation, by further applying
sequential merge transformations. Interestingly, TF8 can be considered as a generalised
version of TF2, since any normal control state within a sequential branch (Figure 3.5), can
be considered as a “fork” with a single successor. This is why it is often used within
MOODS instead of TF2. Naturally, the validity check for TF8 consists of the usual hard-

ware sharing and clock period tests.

i1, 12 (sel) @ —
i1,i2 (sel}, i3 (sel)

(a) original state (b} applying TF8 on CS1, CS2 (c) applying TF8 on CS1, CS3

Figure 3.8. TF8 example
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The last control step merging transformation available in MOODS, is the parallel merging
one (TF9). This transformation targets two parallel control nodes, that is two nodes that
are unconditionally visited concurrently. Clearly, there is no reason why the control path
cannot be simplified by merging the two into one, encompassing all concurrently executed
instructions of both. When TF9 is considered, the check phase of the optimisation loop

simply needs to verify that the given states are truly parallel.

Three allocation transformations are presented next. TF10 (functional unit sharing) natu-
rally targets two functional units and attempts to create a combined one, and allocate to it
all the instructions originally allocated to the targeted units, by introducing suitable multi-
plexers to implement time-sharing. Clearly, the validity check phase should ensure that the
units are not concurrently active (no concurrently executed operations have been allocated
to them, except mutually exclusive ones). Of course, the two units must be either of the
same type (e.g. two multipliers), or of such types that can be combined into a single arith-

metic and logic unit (ALU). The latter case will not be further considered here.

TF12 (unshare functional unit fully) targets a single functional unit that has been the result
of one or more executions of the previously presented TF10. The result of TF12 is a num-
ber of new, suitable, non time-shared units, each one of them implementing only one of
the operations previously allocated to the targeted unit. This transformation is always

valid, although it is meaningless if a unit implementing a single instruction is targeted.

TE13 (unshare single instruction from functional unit) is a low-level version of unit un-
sharing. Just like TF12, a previously combined functional unit is targeted; this time,
though, one of the instructions it implements is also given. It results in a single unit im-
plementing the given instruction, and an additional unit implementing all the instructions
previously assigned to the targeted unit, except the extracted one. TF13 is naturally also

always valid, provided that it is meaningful.

The last transformation presented here is TF21 (unshare single instruction from control
state). It targets a particular instruction, and creates a dedicated control state for it, either
before or after its original control state. Any other instructions originally scheduled for the
original control state are either unaffected, or have a new control state created for them, if

data dependencies suggest so. This transformation can always be applied, and it does not
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greatly contribute to the tool optimisation potential. It is, however, a powerful tool in cer-
tain situations (e.g. in the expanded module experiments described by Williams [8], as

well as 1n §6.4.3 of this thesis).

Note that no binding transformation has been described in this subsection; indeed, in the
version of MOODS used for the purposes of this work, there only exists one hardware cell
for every functional module type (§3.2.7). Binding is therefore restricted to a one-on-one
mapping of modules to cells, and does not provide scope for iterative optimisation deci-
sions. However, an “alternative binding” transformation exists within MOODS [8]; this
transformation could accommodate a more evolved version of the cell library, thus con-
sidering the binding problem within the optimisation loop. Finally, a few additional trans-
formations are mentioned in [8], such as register sharing, and clock period scaling, but are
mostly implemented for experimental purposes, they are not shown to be critical for the

optimisation process, and are not explicitly considered here.
3.2.4 Designer specifications and the cost function

As a first step towards setting up a synthesis session, the designer specifies his or her con-
straints in terms of the design characteristics, namely :

e area (in a technology-specific unit, e.g. logic gates or FPGA slices for ASIC or FPGA
technology respectively)

e delay (typically in nanoseconds)

e clock period (also in nanoseconds)

Other characteristics also mentioned in [8] (total number of nets, static power consump-

tion) are not considered here.

The clock period value is used during the test phase of several state merging transforma-
tions (as mentioned in §3.2.2), to determine the feasibility of the given transformation.
Typically, a low period value prevents excessive state merging and operation chaining, but
of course leads to a high frequency final implementation. If the designer specifies no clock
period value, the system calculates a default one based on the current implementation de-
tails [8]. This is not further considered in this thesis, and a designer-specified period is im-

plied hereafter.
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Regarding the other two design parameters, the designer also gives corresponding priority
(first or second) preferences. Using these priorities, MOODS implements a cost function,
quantifying the quality of any given instance of the system under optimisation. This func-
tion is invoked in the optimisation loop during the cost estimation phase (§3.2.2, Figure
3.7), and is used to forecast the effectiveness of the considered transformation, with close

respect to user requirements, as these are reflected in both the desired values and the speci-

fied priorities.

More specifically, MOODS constantly keeps track of the circuit area calculated using the

following formula :

area = Z aredy, + Z area, + Z area; (3.1)

where the three factors represent the sum of the area of all data path units, the sum of the
area of all hardware modules constituting the controller, and the sum of all interconnect
modules (multiplexers) respectively. It should be recalled that the module area values used

to calculate (3.1) are known to the system through the technology library.

The total delay is simply calculated as the product of the critical path by the clock period :

delay = (critical _path)x (clock _ period ) (3.2)

The cost function characterising the system can now be expressed as :

Cost = Cyppy Xred +C gy, X delay (3.3)

Carea A0 Cgerqy ave priority-related (therefore designer-specified) weighting constants. In

essence, the goal of the whole optimisation process is the minimization of equation (3.3).

Practically, during the estimation phase, the synthesis system calculates the change in “en-
ergy” of the circuit that is expected to occur if the transformation under consideration is
applied. The change in energy for a given parameter P is given by :

AE = Peslinmte - P(:urrcnl (3 4)

Fitiat =11 arg et
where
P yren 1 the current value for parameter P (calculated by either equation (3.1) or

(3.2), depending on P)



P. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 103

Posiimare 15 & rough estimation of the effect the transform will have on the value of P
if it is applied
Piisiar 18 the value of P in the initial, totally unoptimised design (§3.2)

Prarger 1s the user specification itself

Very often Pyge 1s assumed to be assigned the zero value, both for area and for delay.
While neither of them is feasible, such a set of specifications can be used by a designer to
demand a circuit that would be “as hardware-efficient as possible, and as fast as possible”.
For the rest of this thesis, this assumption will be implied, unless otherwise stated. Under
this assumption, P, can be omitted from equation (3.4), and the equation then expresses
the estimated change in the value of the parameter, normalised over its initial value. Re-
garding the Peimqe value, this is calculated separately for every transformation, by spe-
cially written software functions within the synthesis system, giving emphasis on speed of

calculations, rather than on accuracy.

The overall energy change of the design 1s nominally calculated by averaging the energy
changes of all first priority requirements on/y. Given that only two parameters have been
mentioned up to now, this practically means that if area optimisation is the first priority
and delay the second, then only the change n area energy is considered, and vice versa.

Averaging occurs when the designer specifies equal priorities.

Ultimately, if the energy change of the design is negative, then the transformation is con-

sidered to be beneficial; otherwise, it is regarded as degrading.

3.2.5 Available algorithms
As regards the algorithm that supervises the optimisation process, in the current version of

MOODS there 1s a choice of either the general-purpose simulated annealing algorithm, or

goal-oriented tailored heuristics. These choices are described in the following subsections.

3.2.5.1 Simulated annealing

Simulated annealing [8] is a generic optimisation algorithm for minimising functions of

many variables (in our case, the cost function). Its name is derived from the statistical me-
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chanics method of annealing in solids. In the synthesis context, the designer specifies an
“initial temperature”, a “terminating temperature” and parameters to determine how
slowly “temperature” will decrease. Random transformations are chosen and evaluated. At
any given point of time, the current temperature value 7 and the estimated energy change
associated to the transformation at hand (§3.2.4), are used to calculate a threshold value ih,
as in the following :

th = e AEIT) (3.5)

If a transformation is improving, it is applied; otherwise, a random number is generated,
and if it is greater than the threshold, then the transformation is rejected. If the random
number is lower than the threshold, then the transformation is applied although it is de-
grading. The temperature is decreased in every optimisation loop step, and at the same
time the threshold is reduced, as can easily be confirmed from equation (3.5). Therefore,
the more time passes (and the lower the temperature gets), the more the probability that
degrading transformations will be accepted decreases. Accepting degrading transforma-
tions in early stages of the design process can be useful to avoid cost function local min-
ima, therefore exploring the design space better, in the search for the global minimum. As
the design “cools down”, only upgrading transformations are accepted, so that the global
minimum 1s reached. Despite its randomness, this algorithm asymptotically converges to

the global minimum of the function under minimisation.

The main advantage of simulated annealing is its abstractness and its ignorance of any
physical significance of the variables that the cost function under mininusation depends
on. Effectively, using simulated annealing, whatever can be quantified and included in the
cost function, can also be optimised. The main problem is its very slow speed, especially
for large designs. In essence, while an optimum solution is theoretically guaranteed, the

algorithm is so slow that it can be impractical for the designer to wait for it.

3.2.5.2 Tailored heuristics

In order to speed up the design process, goal-oriented tailored heuristics are also available.
There are three versions : oriented towards minimising area, delay or both. The basic idea
behind these heuristics is reflected in Figure 3.9. In the DFG of 3.9a, the original state of

two control steps, featuring a single addition each, is shown. In 3.9b, transformation TF10
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(unit sharing, §3.2.3) is applied, and the adders implementing the two operations are com-
bined. The design is clearly optimised for area, but control steps CS1 and CS2 can no
longer be merged unless the algorithm allows a degrading “undo” transformation. In the
alternative 3.9¢c, the design is optimised for speed, by merging control steps CS1 and CS2

through TF2 (sequential merge, §3.2.3); however, the adders cannot be combined any-

ATy

Cc Cs

(a) original state (b) optimising for area (c) optimising for delay
Figure 3.9. A simple data-flow graph : optimising for contradicting goals

more, as they are active concurrently, therefore the design will be fast and comparatively
expensive. This small example illustrates the well-known concept that area efficiency and
speed are contradicting goals; further, it shows that if either of them is first priority over
the other, then as much optimising of the first priority as possible needs to be carried out,
before considering the second. Otherwise, optimising the second priority goal is likely to
block the first, and that would be a most undesirable effect. Moreover, if the topology and
the operation of the circuit permit it, it would be beneficial to optimise the first goal in
such a way, that situations like these of Figures 3.9b, 3.9c are avoided, in order that the

optimisation potential of the second goal is not hindered unnecessarily.

In order to serve these purposes, the tailored heuristics framework further associates a
number of metrics and indicators with the MOODS internal data structures corresponding
to a given design. These metrics and indicators are briefed in the following :

e ashareability factor is associated with each data path unit. In effect, this factor ex-
presses the area that will be saved if the unit at hand is combined with all other units of the
same type, thus quantifying its hardware sharing potential. Clearly, when optimising for
area, datapath units with high shareability factors should be preferred.

e aslack value is also associated with each control node, suggesting how “far away”
from the critical path the node is. A zero slack value signifies a node on the critical path,

while positive values indicate non-critical path nodes; further, the shortest the path on
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which the node is, the highest the slack value [105]. When optimising for delay, control
nodes on the critical path should be targeted primarily.

e acritical path factor is calculated for each datapath node [8], corresponding to the per-
centage of instructions implemented by the unit at hand, that are scheduled for execution
at control nodes on the critical path. If units with high critical path factors are shared, then
situations like that of Figure 3.9b are likely to arise and block subsequent critical path
node merging / delay optimisation. It is therefore desirable that when optimising for area,
preference be given to units with low critical path factors.

o ashare factor is calculated for each control node; this corresponds to the percentage of
operations scheduled for the particular node, that have been allocated to a unit with a posi-
tive shareability factor. Merging control nodes with high share factors is likely to produce
situations like the one of Figure 3.9¢, where no subsequent area optimisation is possible. It
would therefore be preferable to choose control nodes with low share factors, if such

nodes can be identified in the system.

Based on the above indicators and metrics, two software routines have been defined, that
are later suitably combined to construct the heuristic optimisation algorithms. These rou-
tines alm at optimising the first priority objective, while minimising the negative effects
on the secondary one. They are :

e compact CP it is used to minimise the critical path length, by successively applying
transformations TF8 and TF9 (§3.2.3). It is fed by a threshold share factor value, and tar-
gets all nodes whose share factors are calculated below that threshold.

e compact DP : performs hardware sharing between functional units, by repeating trans-
formation TF10 (§3.2.3). A threshold critical path factor value is given to it, and all data

path units with critical path factors below that threshold are considered.

The flow charts for the tailored heuristic optimisation algorithms are now shown in Figure
3.10, taken from {8]. From the flow charts, it is obvious that an initial zero value is first
assumed by the threshold values, to be incremented in subsequent iterations. This way, the
optimisation moves that are most effective as far as the first priority is concerned, and less
impairing, as regards the second criterion, are given preference. A more complete version
of the tailored algorithms is given in [8], taking into account the possibility to meet user

constraints before the threshold value takes the 100% value; in this presentation, the flow
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charts have been simplified under the “as cheap as possible and as fast as possible” as-

sumption mentioned in §3.2.4.

As is evident from the above description, only a small subset (TFS, TF9, TF10) of all the

available transformations are considered in the tailored heuristics. The reason for this is

that these three transformations have been shown to contribute the most towards the opti-

mum design solution. The heuristic approach has been proved to be much faster than

simulated annealing. However, it is absolutely parameter-oriented and therefore not easily

expandable to include additional criteria. Further, there is always a risk to end up in a local

minimum instead of the global that is searched for, because only improving transforma-

tions are considered.
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Figure 3.10 : Flow charts for the heuristic optimisation algorithms
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3.2.6 Hardware model

This chapter continues with a presentation of the actual hardware model of the MOODS
output designs. As already mentioned, the data path is simply an interconnection of func-
tional units, registers and multiplexers (a list of these building blocks is given in §3.2.7).
Therefore, it conforms to the typical structural / RTL data path modelling. The MOODS
controller architecture, though, has some interesting properties, and it is for that reason
that it is presented here in detail, given also that it is greatly referred to in chapter 6, when

controller self-checking design is considered.

Figure 3.11 shows a conceptual model depicting the communication between the control-
ler and datapath in a system like the one of Figure 3.1. The datapath is shown on the right-
hand side of 3.11 in a form that resembles a data-flow graph, where storage elements are
also shown (although this is not consistent with the formal definition 3.2). In the particular
data path example, four operations (O1 — O4) are scheduled over three control steps (N —
N+2), and the registers shown are used to store and preserve intermediate results across
control state boundaries. The internal structure of the controller is not yet revealed; never-
theless, the figure shows how the controller outputs (hereafter control signals) connect to
the data path. Specifically, the control signals feed the storage registers’ “load enable”

ports, and this connection determines when the operation is actually executed. For in-

Controller

conditional signals

Figure 3.11 : Communication between the data path and the controller
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stance, operation O4 is assigned to a functional module; assuming that the module is com-
binational, some logic value always appears at its output port. However, the value is stored
in the appropriate register onfy at CS N+2; in that sense, 04 is executed only at N+2, and
the corresponding functional unit is said to be active only then. Clearly, in order for this to
happen, the control signal corresponding to N-+2 should assume the “true” value during CS
N+2, while all other control signals should assume “false”. If (without loss of generality)
“active-high” encoding is assumed, then this example shows that the controller output
should by definition be “one-hot” encoded (§2.2.1.2). While this is a general observation
that applies to all controller / datapath architectures, the actual controller implementation

can be quite different from system to system.

For the sake of completeness, it should be noted that, together with register “load-
enables”, the controller outputs also feed multiplexer “select” ports in the data path. This
has no implication whatsoever as regards the purposes of the present thesis, and will there-

fore not be considered any further.

T , \
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Figure 3.12 : The general control cell

Within MOODS, the controller is implemented using a special hardware cell defined
within the VHDL cell library (§3.2.7), namely the general control cell. Being part of the
library, this cell is described in RTL VHDL, and its actual structure is derived by RTL
synthesis tools. Figure 3.12 shows the typical implementation for this cell, as synthesised
by Mentor Graphics LeonardoSpectruun, version 2002e.16. A cell of this type corresponds
to a unique state in the control path. A D-type flip-flop is the basic building block for the
cell. The D-input of the flip-flop is the OR function of a number of tokens, corresponding
to the predecessor states in the control path. In the example of Figure 3.12, a 3-bit token

input is shown, meaning that the given state is the successor of any of three different
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states. If the control state implemented by the particular cell is visited conditionally, then

the input tokens are the result of the AND function of the corresponding predecessor state
signal(s) with suitable conditional signals, produced by the data path. Finally, the flip-flop
Q-output (labelled out enable in 3.12) is essentially the control signal of the state at hand,
which is fed to appropriate data path storage units, as well as to the successor state(s) gen-

eral control cell input token(s).

The whole controller is thus implemented as Figure 3.13 shows. The control signals are
directly led to the datapath; they are also fed back to the general control cells, properly re-
arranged so that each control signal is input only to the cell(s) corresponding to its succes-
sor state(s). In addition, conditional control transitions are implemented where necessary
by a block of AND gates, also fed by the appropriate conditional signals, as shown. In ef-
fect, the operations described above (ANDing, followed by rearrangement, followed by

ORing within the control cells, as shown in Figure 3.12) correspond to the next state sig-
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Figure 3.13 : The controller generated by MOODS
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nal generation, thus making the MOODS controller model a proper FSM. Clearly, the
number of flip-flops is equal to the total number of control states. This is considered to be
an expensive but fast implementation in VLSI (ASIC) technology, while it appears much

cheaper in FPGA technology, due to the existence of dedicated storage elements within

FPGA slices [106].
3.2.7 The cell library

This subsection concludes the presentation of MOODS by providing a list of the hardware
cells made available to the system through the cell library. These cells include [105] :

e logic gates : “NOT”, “AND”, “OR”, “NAND”, “NOR”, “XOR”, “XNOR”

s conventional, single-bit output equality comparators : =", “~”

s unsigned and signed integer arithmetic comparators : “<”, “<7 “>7 “>” /<7 (ALU)
o left and right “shift” and “rotate” modules and ALUs

e both unsigned and signed integer arithmetic functional blocks : negator (“unary mi-
nus®), ripple-carry adder — subtractor — add/subtract ALU, incrementer, decrementer, mul-
tiplier, absolute value calculator

o typical digital logic RTL blocks : register, up-counter, down-counter, multiplexers,
decoder

» control cells : general control (§3.2.6), call control

s auxiliary cells : concatenation, unsigned and signed bit extension

The functionality of most of these cells is obvious from their names, as they correspond to
the usual elementary operations found in VHDL or any other programming language.
ALUs in this context are essentially combined cells capable of implementing alternative
types of operations, depending on the value of suitable controlling signals. The “call con-
trol” cell 1s a special cell used to implement VHDL procedure and function con-
structs. With such a rich collection of hardware modules, a very good subset of the VHDL
language can be synthesised. This subset includes all common logic and integer arithmetic
statements, loop and conditional statements, subprograms, as well as multiple concurrent

communicating process blocks.
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3.3 Summary

The fundamental concepts of high-level synthesis have been covered in this chapter. Par-
ticular emphasis has been given to the incarnation of these concepts within the MOODS
high-level synthesis system. As a concluding remark, it is important to once again stress
that the whole performance of MOODS highly depends on the following three elements :
o the set of transformations

e the available algorithms

s the cost function

Clearly, this means that any attempt to alter, refine or enhance the MOODS functionality

should focus on expressing the alterations, refinements or enhancements through the

above elements.



Chapter 4

Fault Simulation Techniques

When a fault testing or fault tolerance strategy is applied to a digital circuit, it is desirable
to determine or demonstrate its effectiveness against the most commonly occurring fauits,
before putting the circuit into action. For this purpose, a number of controlled experiments
are typically conducted, wherein the behaviour of the system is intentionally altered to
imitate its predicted behaviour in the presence of the targeted faults. This is the topic of
Jault injection and fauli simulation. The relevant material in the literature is extensive;
practically, every research group concerned with testing, has to a certain extent also
worked with fault simulation, in order to validate their work. Fault simulation experiments
have been carried out in this work as well (§7.1.2.1). The present chapter briefly describes
a small number of representative fault simulation techniques, thus providing the founda-

tion for the experiments of chapter 7.

4.1 General

In order to validate the reliability of a design, four alternative approaches have been ap-
plied [107, 108, 109] :

e Jardware implemented fault injection : this is done after fabrication, and it consists of
injecting faults in a sensitive fabricated chip, by disturbing critical factors of the environ-
ment. Most commonly either heavy ion radiation or electromagnetic interference is used
for this purpose.

e software implemented fault injection : the software of a microprocessor-based system is
changed such that the processor behaves as if under the presence of a physical fault.

e programmable logic implemenied fault injection - the hardware system is initially pro-

totyped on a programmable logic part (FPGA). Faults are injected on the part either
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through suitably added control lines or, in certain state-of-the-art FPGAs, through dy-
namic partial reconfiguration.

o simulation-based fault injection : this is done at the pre-manufacturing design stage.
Typically, at this stage the system is described in the form of some hardware description
language code, and fault injection is done by suitably perturbing this description, so that

the resulting system would emulate faulty behaviour.

A survey of hardware- and software-implemented fault injection methods can be found in
[110], while {111] includes comprehensive information on radiation-based fault injection
in an industrial setting, followed by standardised certification of chip performance in hos-
tile environments. Injecting faults on programmable logic parts is an interesting and rela-
tively new idea, constantly gaining ground as FPGAs themselves gain ground. It is pro-
posed as an alternative to HDL-simulated fault injection, and the main motivation behind
an FPGA approach is that programmable logic emulations of hardware parts are much
faster than HDL simulations running on general-purpose computers. Therefore, an FPGA-
based fault injection experiment is due to finish faster than an equivalent experiment on a
software simulator. In [112], Civera et al set up a fault injection configuration based on
programmable logic, wherein bit-flips (i.e. bits that have their fault-free values comple-
mented) are injected on the storage elements of an FPGA prototype by a host computer.
The mjection is implemented by dedicated hardware added to the storage elements, while
the information regarding which faults will be injected during a given experiment is com-
municated to the FPGA from the host PC through a suitable additional system primary in-
put and a chain of “mask™ flip-flops connected together in a scan register fashion similar
to that of Figure 2.3. Alternatively, Antoni et al [109, 113] exploit the runtime partial re-
configuration capabilities of modern Xilinx Virtex FPGAs [106] to inject faults once more
in memory elements, this time by partially substituting the original fault free FPGA con-
figuration with one that demonstrates selective faulty behaviour. The advantage is that no
permanent additional hardware infrastructure or primary input needs to be inserted for
fault injection purposes; the price is that frequent reconfiguration, even partial, slows

down the experimentation, cancelling out the speed benefit of FPGA emulation.

This chapter is hereafter concerned solely with simulation-based fault injection on HDL

descriptions.
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4.2 Representative simulation techniques

Motivated by the extensive use of the VHDL language [48] in present-day CAD, several
researchers have proposed approaches to facilitate fault injection and simulation in VHDL

models of digital systems. A representative number of such approaches are covered in this

section.

A typical example of injecting faults at the logic gate level can be found in [114]. The first
three tasks addressed therein are to analyse the fault behaviour of the basic logic gates,
identify fault dominances and equivalences [1], and define corresponding mutant gate
VHDL descriptions. Mutant descriptions in this context are VHDL models that behave
identically to the original gates in the fault free case, but imitate well-defined faulty behav-
iours when suitable values of added control signals dictate so. Armed with these mutant
gate models, and given any complex system gate-level netlist, the authors of [114] substi-
tute the original gates with the mutants, thus providing fault injection capabilities to the
overall netlist. They subsequently specify an explicit list of targeted faults. A suitable test
bench is further written, that uses the information of the fault list to suitably inject the de-
sired faults (typically one by one) into the modified netlist and observe the responses, with
respect to the responses of a fault free simulation run, thus evaluating the effectiveness of
the fault detection or tolerance mechanism incorporated within the simulated circuit. No-
tably, gate substitution and test bench production are fully automated in a fault simulation
tool presented in [114]. The designer only needs to provide the original circuit netlist and
the fault list, while any commercial HDL simulator can be used for the fault experiments

(e.g. ModelSim [115]).

The work of [116] concentrates on the technology-specific lowest level of the design flow
and provides a “bottom-up” perspective of fault injection. Its authors conduct analogue
electrical simulations of the cells within a standard gate-level cell library. They simulate
both the ideal fault-free situation with the cells operating properly, and all combinations of
possible manufacturing defects in the semiconductor devices that constitute the standard
cells. Comparison of electrical simulation results enables the “mapping” of fault effects
from the analogue to the digital domain. Accurate “mutant” standard cells in VHDL are
thus made possible. These cells can subsequently be used in any standard cell level fault

simulation environment (typically as in [114]).
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Del.ong et al [117] conduct fault injection and simulation experiments at a high level in
the design flow, namely at the architectural level of a microprocessor system. Faults are
injected in the internal processor buses, through VHDL resolution functions. Effectively,
gach bus is driven from two sources. The first source is the functional logic driving the bus
under fault free operation, and the second is a constant logic signal, denoting a stuck-at-
0/1 type fault (if it assumes the logic 0/1 value), or no fault injection (if it holds the “un-
known” value x). Clearly, driving a signal from two sources results in conflicts over which
value will ultimately be assumed; typically in VHDL the conflict is resolved by a suitable
function (resolution function [48]). In this case, the resolution function consults the con-
stant fault injection signal to determine whether the target bus is to be driven to logic 0/1
regardless of the functional driving source, or whether the fault-free scenario is in effect,

wherein the bus 1s driven to the value dictated by the functional driving logic.

An interesting study of different HDL fault simulation approaches has recently been pub-
lished in [107, 108]. Its authors identify and implement three alternative simulation strate-
gies. In the first, they simply use simulator commands offered by a commercial VHDL
simulator [115] to force targeted signals to desired faulty values. In the second, they add
suitable saboteur modules at desired locations in the original system description. These
modules suitably corrupt signal values, in a manner similar to the resolution functions
used in [117]. Finally, the third approach considered uses mutans descriptions. This con-
cept has already been encountered in [114, 116]; the authors of {107, 108] configure mu-
tant descriptions using the (generally unpopular) guarded blocks VHDL construct. In
brief, a VHDL guarded block is a block of statements that are only executed when a de-
fined Boolean condition (the guard) is true; more details can be found in [48]. [107, 108]
propose a different mutated architecture for every modelled fault in every component in
the system netlist. One obvious disadvantage of this is the need of an enormous number of
alternative VHDL architectures when a realistic number of faults is to be modelled. Ar-
guably there are ways to implement fault injection based on mutants that do not suffer
from this problem (using control signals as in {114}, or conceptual linked lists of faults as

§4.2.1 will present).

The presentation of this section has revealed that even when only HDL simulation-based

fault experiments are considered, the designer of a fault testable or fault tolerant system is
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presented with a number of options regarding exactly how to conduct such experiments.
Firstly, a choice regarding the level at which the experiments will be carried out is re-

quired; secondly, one of three different perturbation philosophies needs to be favoured.
4.2.1 Transparent fault injection and simulation

This subsection gives a detailed presentation of a particular VHDL approach, namely the
transparent fault injection and simulation technique developed by Zwolinski in [49, 118].
In the terminology of §4.2, the technique at hand should be classified as a member of the
mutant modules based family of fault simulation approaches, and its current form is ap-
plied at the gate level. The following presentation both exemplifies the generic fundamen-
tal concepts of fault simulation described in §4.2, and stresses the specific advantages of
the technique at hand. Further, §7.1.2 of this thesis will constructively utilise and extend
the following material, to implement an RTL variation of the particular technique. The

presentation of this subsection at times uses VHDL and “pseudo”-VHDL code segments

to better illustrate the

use std.textio.all; -- contains definicion of line
e Foinmtamt 1

pacAageFfaulvginjeut is approach.
type fault_model;
type fault _ptr is access fault_model;
type fault_ptr_array is array (integer range <>} of fault_ptr;

type fault model is The technique firstly

record
1§ult_n§me : line; -- line is access string ﬂlVOlVGS defining ﬂl@
simulating : boolean;
detected : boolean; \ .
next_fault : fault_ptr; fault_ll’lj ect

end record fault_model;

package of Figure 4.1.

shared variable first_fault : fault_ptr := null;
end package fault_inject; As can be seen in the
Figure 4.1 : The fault inject package figure, the

fault model data type defined in the package is a composite type (a record, similar to
the record data structures found in programming languages). It contains the following four
fields :

¢ fault name, effectively a pointer (access in VHDL terminology) to a string holding
a symbolic name for the fault

e simulating, a Boolean flag denoting if the fault represented by the record is injected
to the circuit at a given time point

e detected, a second Boolean flag which should be set as soon as the fault of interest

has been detected
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e next fault, a pointer to the next fault model type record

Tt is through this last pointer that a linked list of fault _model type variables can be
formed, exactly as in procedural programming languages such as C++ [119]. To enable
this, a shared variable (equivalent to the global variable concept) named first fault
is also declared in the package. This variable is simply a pointer to a record of type

fault model and it is initialised to the null value.

As soon as simulation starts, the shared variable first fault becomes the head of the

linked list of faults. The pseudo-code of Figure 4.2 shows how this is achieved, and how

library ieee; faulty behaviour is
use iees.std logic_1164.al1l;
use work.fault_inject.all; imitated fOI' the ex-
entity nand2 is
port {(z : cut std_logic; a, b : in std_logic); .
end entity nand?; ample of a two-input
architecture inject_fault of nand2 is NAND gate. Apply-
begin
nn : process (a, b) 1is : :
variable z_sal, a_sal, b_sal : fault_ptr := null; mg fault eqmvalence
begin i
-~ first part (variable initialisation) and fault dominance
if z_sal = null then
z_sal := new fault model’( . :
new string' (inject_fault'instance_name & “"z_sal"), p11nc1ples [1] on the
false, false, first_ fault};
first_fault := z_sal; NAND gate shows
-~ similarly for other faults that Only three dis-
end if;
-- second part (functionality) crete faults need to be
if z_sal.simulating then -~ z/1
z <= 1Y considered. These
elsif a_sal.simulating then -- z/1
z <= not b; -
elsif b_sal.simulating then -- b/1 COlreSpond to any Of
z <= not a; N
else -- fault-free the mputs a, b or the
z <= a nand b;
end if;
e process nu; output z of the gate to
end architecture inject_fault;
be stuck-at-1. Three
Figure 4.2 : 2-input NAND gate with fault injection capabilities .
local pointers to

fault model records are thus declared and initialised to nul1, one for each of the
faults. At the first execution of process nn, new record objects are created to represent the
faults, and appended at the head of the fault list, using the shared variable

first fault. The first part of the code of Figure 4.2 shows how this is done for vari-
able z_sal (representing the fault according to which the gate output z is stuck-at-1).
Variables a_sal andb_sal are handled similarly. The code clearly shows that this first
part becomes ineffective as soon as non-null values have been assignedto z_sal,a sal

and b_sal, i.e. it is effective only in the first execution of the process, and its purpose is
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purely the automatic formation and initialisation of a linked list of fault variables. The
second part of the code corresponds to the NAND gate model functionality. A chain of 1 £
statements describes the alternative behaviours, depending on the experiment scenario

(any of three possible fault injections or fault free operation).

Figure 4.3 : Example netlist

Note that the VHDL model of Figure 4.2
can be considered a “mutant” NAND
gate, since it demonstrates normal func-
tionality in the fault free scenario and the
appropriate faulty behaviour under the
presence of a fault. Similar mutants can
be written for any other elementary logic
gate functionality along the lines of Fig-

ure 4.2, using the framework of package

fault inject. Thus a library of “fault injectable” logic gates can be developed. More

complex netlists can subsequently be configured using this library. Figure 4.3 shows a

ieee:
.std_legic_li64.all, std.textio.all,
.fault_inject.all;
is end entity tb;

architecture fileioc of tb is

ignal declarations

=2
n

o

=1
al: entity work.Top_ level netlist port wmap (association list);
pl: process 1is
variable head_ptr : fault _ptr :=
variable fault_count, faults_detec
other auxiliary variables
begin
execute fault free simulation for every input 1n vectors.txt
and write results with corresponding inputs in results.txt
wait for 100 ns;
head ptr:=first_fault;
while head ptr /= null loop
fault_count := fault count + 1;
head_ptr.simulating := true;
while not endfile(results} loop
read results.txt and apply Iinput vector
walt for 100 ns;

rmull;
ted : natural := 0;

if [output s that written in results.txt) then
head_ptr.detected true; -- fault detected
write detection information in faults.txt
end if;
end loop;
head_ptr.simulating := false;
walt for 100 ns;
head_ptr := head ptr.next fault;

o

end o
summarize results
output fault coverage information in faul
i.e. faults detected / faults injected
wait; -- halt
end process pl;
end architecture fileio;

te.tx

o

Figure 4.4 : Example testbench

simple example netlist
comprising three
NAND gates. Solid
lines in the figure de-
pict physical connec-
tions; in contrast,
dashed lines corre-
spond to conceptual
software links, thus
illustrating the fault
list. All three

fault model ob-
jects within each gate
are linked together as
explained through the
code of Figure 4.2;
moreover, conceptual

links between objects
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in different gates are also formed as Figure 4.3 graphically shows. This is achieved auto-
matically, since there is only one first fault pointer variable, shared by all processes
in all entities in the overall netlist. Automatically including all faults in the list is an ad-
vantage over the techniques described in §4.2, since no explicit list of faults needs to be
provided by the designer. Another interesting observation on Figures 4.2 and 4.3 is that
the physical gate interface and the connections between gate inputs and outputs are not
affected by the inclusion of fault injection capabilities in the VHDL model. Indeed, the
mutant model of Figure 4.2 has only two input ports a and b, and an output port z, exactly
as if it was a normal NAND gate. Further, in Figure 4.3 the outputs of the first logic level
are fed to the inputs of the second, exactly as if the NAND gates did not have fault injec-
tion capabilities. In essence, the structural properties of the original netlist are fully pre-
served when mutants replace the usual logic gates. This means that a normal netlist can
readily be used for fault experiments as soon as the mutant gate library has been formed,
simply by instructing the VHDL simulator to use the mutant descriptions in place of the
normal ones. This is typically done in VHDL in a single line of code (configuration speci-
fication [48]). It follows that the technique is particularly easy to instrument and leaves
large parts of the original structural VHDL netlist descriptions unaffected; this justifies the

transparent property attributed to it.

Figure 4.4 shows a possible testbench template (in pseudo-VHDL) required to orchestrate
the overall fault simulation experiment. In this particular testbench, a set of input test vec-
tors is provided by the designer in the vectors. txt file. A round of fault-free simula-
tions is initially conducted for the top-level design (Top_level netlist in the fig-
ure), and the results together with the corresponding inputs from vectors. txt are
stored in results. txt. Subsequently, elements in the fault list are accessed one by
one, using pointer variable head ptr). Each fault is simulated by having its correspond-
ing simulated flag set. All test vectors are applied to the design and the responses are
compared against those written in results. txt during fault free simulation. Whenever
a mismatch is found, the fault is marked as detected and relevant detection information is
output to faults. txt. Such information may include the symbolic name of the fault,
stimulation time at which it was detected, the input vector that detected it, or indeed any-
thing else the design requires. After all faults have been simulated, some kind of summa-
rizing information can conclude file faults. txt. For example, the total number of de-

tected faults can be calculated and reported.
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4.3 Summary

The fundamental concepts of fault simulation and related reliability evaluation techniques
were given in this chapter. Most importantly, Zwolinski’s transparent fault simulation
technique was detailed. This technique will be constructively used in chapter 7 for the re-

liability evaluation experiments of this thesis.



Chapter 5

Datapath Self-checking Design

This chapter focuses on the on-line testing of the datapath part of controller / datapath de-
signs. In the context of this thesis, such designs are considered in the form of RTL netlists,
automatically generated by high-level synthesis. When such a netlist is ultimately imple-
mented on silicon or downloaded onto an FPGA, it can normally be observed that most of
the silicon area / FPGA resources are occupied by data rather than by control operations. It
is therefore sensible that datapath on-line testability is the first issue to be addressed to-

wards implementing high-level synthesis for on-line testability.

This chapter is organised as follows. Section 5.1 specifies the requirements of datapath on-
line testability, revisits the families of on-line testing techniques presented in §2.2 and
evaluates them in the light of the specifications of the problem at hand. Ultimately, the
family of algorithmic duplication and related self-checking design techniques are chosen
as the most appropriate solution. Section 5.2 elaborates more on the chosen technique in
relation to background material (§2.2.2.3) and presents the inversion testing idea. Section
5.3 details the implementation of datapath self-checking design within the MOODS (§3.2)
high-level synthesis system and presents experimental results and comparative comments.

Finally, section 5.4 draws the concluding remarks of this chapter.

5.1 Problem statement and discussion of potential solutions

This section presents a discussion of requirements and potential solutions to the datapath
on-line testing problem. Throughout the whole chapter, the datapath is shown either using
the DFG representation (Definition 3.2) or through the actual hardware used to implement

the DFG functionality, as appropriate per situation. Figure 5.1a shows a familiar simple
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DFG example (also used in Figures 2.33 and 3.3), while the datapath netlist realising the
DFG is depicted in Figure 5.1b. A comparative inspection of 5.1a and 5.1b establishes the
correspondence between the DFG and the hardware implementing it. Indeed, adder Al is
used twice in the DFG; therefore, two multiplexers (MUXES) are used in the implementa-
tion to choose between the two possible inputs. Registers (REGSs) are also employed to

preserve values across DFG boundaries. Both multiplexers and registers receive control

/
MUXES "1
Al
1 A1 e + A2
!
2 Al A2 | ]l |REG
REG ’__!
,,,,, <
3 M1 M1 *
REG
(a) Data-flow graph (b) Hardware netlist

Figure 5.1. Alternative views of the datapath
signals from the controller part of the design; these signals act as “select” and “load en-
able” inputs respectively (§3.2.6); thus the correct timing 1s in effect ensured. The control-
ler and the mentioned signals are omitted in the figure, for clarity. The problem addressed
in this chapter is to augment datapaths of the form of Figure 5.1, in such a way as to en-
able the user to have an on-line indication of the health of the system and a timely report
of any hardware failure. Further, the insertion of the resources necessary for this additional
functionality has to be done within the high-level synthesis process, concurrently with the
rest of the synthesis tasks (§3.1.2), and as transparently to the designer as possible. This
last proposition primarily means that the synthesis tool should be able to generate on-line
testable systems at the designer’s request, without requiring arzy modification of the origi-

nal HDL description of the system behaviour (along the lines of Figure 3.2).
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5.1.1 Problem requirements

In order to choose an on-line testing solution for the datapath of a complex design, to be
realised by a behavioural synthesis tool, one naturally has to take into account precisely
the particular characteristics of these two concepts, in addition to the usual performance

and cost specifications.

More specifically, when a system 1s on-line, it 1s desirable that any fault corrupting its op-
eration be detected as soon as possible, so that any existing recovery mechanism can be
triggered (low error latency). At times, short-lived faults develop into the system but do
not manifest themselves at the outputs of the system, because they happen not to be sensi-
tised by the functional input vector applied to the system throughout their lifetime. These
fault are termed latent faults. An on-line testing solution need not target latent faults. In
fact, detecting a latent fault and taking corrective action typically involves performance
degradation; since the system is on-line and producing useful output, it is preferable to
avoid such degradation unless absolutely necessary (i.e. unless a fault manifests itself by
corrupting logic values). Therefore, the approach taken in this thesis is that latent faults

should not be detected in the on-line context, so that undesirable ““false alarms” will be

avoided.

Addressing the whole problem at the behavioural synthesis level has its own implications.
Firstly, just as a behavioural synthesis tool should understand and synthesize as broad a
range of HDL descriptions and design styles as possible, so should a “behavioural synthe-
sis for on-line testability” tool be able to generate acceptable testing solutions for as wide
a class of designs as possible. This suggests that the adopted testing technique should be
generically applicable rather than application-specific. Further, recall that the high-level
synthesis process as such is largely independent of the target technology, while its output,
being an RTL netlist, is still relatively high in the design flow and does not necessarily re-
strict the lower-level tools to a particular gate level structure of the RTL building blocks
(§3.1). A testing strategy maintaining these benefits should therefore not depend on the
target technology or gate level structure. Another important benefit of high-level synthesis
is the interaction between the designer and the tool, through the cost requirements of a
given project. Recall, for example, that the MOODS cost function of §3.2.4 affects the

choice of optimisation algorithm, by determining the particular incarnation of the tailored
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heuristic to be used (§3.2.5.2). Any testing technique considered in this context should be

able to take advantage of this versatility.

In summary, before choosing any of the techniques presented in chapter 2 for implementa-
tion within synthesis, the said techniques need to be evaluated based on the following cri-
teria.

(a) error latency

(b) avoidance of “false alarms”

(c) general applicability, including independence of low-level structure and target tech-
nology

(d) ability to take advantage of high-level synthesis versatile design space exploration

Efficiency in terms of area overhead and time penalty is, of course, an important issue not
included in the above points. The approach of this thesis is to pursue efficiency by exploit-
ing any area and performance optimisation techniques already existing in the high-level
synthesis tool of interest (as will be seen in §5.3.3.2), rather than addressing efficiency
through an appropriate choice of technique. It should be borne in mind that this work ad-
dresses tool development rather than design case studies. It is therefore important for a
tool to be generic (requirement (c) above), even if some of the solutions it provides may

be less efficient than manually derived, application-specific ones.

5.1.2 Evaluation

The general families of on-line testing approaches of chapter 2 are considered here, as po-
tential datapath on-line testing solutions. Self-checking design, based both on general
EDCs (§2.2.1) and on duplication-related techniques (§2.2.2), on-line BIST (§2.2.3.2),
shift-based on-line DFT (§2.2.3.3), and analogue characteristic monitoring (§2.2.4) are all

mcluded in the discussion. Special attention is paid to requirements (a) — (d) of §5.1.1.

Error-detecting codes (§2.2.1) could be utilised in a high-level synthesis design flow, by
analysing all RTL cells that consist the tool cell library (§3.1, §3.2.7), and defining self-
checking versions of them, that can be further included in the cell library, together with
appropriate checkers. Referring back to Figure 5.1, the self-checking design of a datapath

would then involve the utilisation of the self-checking versions of all datapath modules,



P. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 126

c.g. adder Al in the figure would be realised by a self-checking adder incorporating an
appropriate checker, multiplier M1 would also need to be a self-checking multiplier etc.
Such an approach could easily use data from the literature. For instance, recall that [16, 15,
41] presented self-checking ripple-carry addition based on parity checking, as well as self-
checking multiplication based both on parity and on arithmetic codes (§2.2.1.1, §2.2.1.5).
Registers could also employ parity checking or even support error correction (§2.2.1.4,
[36]). It can be observed that this solution has no “active” interaction with the high-level
synthesis process, in the sense that it only deals with the cell library and final operation
binding, but does not interfere with the scheduling and allocation phases. In other words, it
cannot take full advantage of the versatile high-level synthesis optimisation. Further, it
necessarily requires some degradation in the maximum achievable clock speed; indeed, all
operations in Figure 5.1 would include a certain invariant property checking, thus made
slower. On the other hand, no false alarms could normally be produced by a self-checking
system, while error latency would be minimal, since any logic error would be detected in
the clock cycle it manifested itself. However, a property of self-checking design that is

actually a disadvantage in the context of high-level synthesis is its total dependence on and
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Figure 5.2. Self-checking design based on algorithmic duplication
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intervention with the gate-level structure of the circuit under check (see for example Fig-
ure 2.10). In short, with respect to points (a) — (d), EDC-based self-checking satisfies (a)

and (b), but lacks (¢) and (d).

Self-checking design based on algorithmic duplication and related techniques can provide
an interesting alternative. Figure 5.2 shows how it can be applied to the simple DFG ex-
ample of Figure 5.1a. Operations +17, +27, +37, and *1” in the figure denote the duplicates
of the respective functional operations, while !=1 Is a comparison operation, implemented
by the newly introduced fault secure comparator module C1. In line with §2.2.2.3, a func-
tional and a duplicate operation are never implemented by the same hardware module. The
scheme as presented in Figure 5.2 experiences a delay degradation of a clock cycle, and it
may also experience an error latency of a few clock cycles. For instance, if adder Al is
faulty and produces a failure in addition +1 during CS 1, the failure will not be detected
betore CS 4. Further, the chaining (§3.2.3) of comparison =1 after multiplication *1’
within CS 4 will probably lead to clock speed degradation. A remedy to the fault latency
problem could be the introduction, scheduling and allocation of multiple comparison op-
erations at intermediate points in the DFG (§2.2.2.3), while better clock speed could be
achieved by further accepting an additional fifth control step and scheduling the final
comparison there. From the above it is evident that the considerations and trade-offs asso-
ciated with algorithmic duplication have direct relevance to the high-level synthesis design
space exploration tasks (allocation, scheduling). The whole problem can therefore ideally
be formulated within the core of the synthesis process. An additional strong point is that
the scheme of Figure 5.2 is purely generic and behavioural, in that it makes no assumption
about either the gate-level structure of the modules realising the system functionality, or
about the overall functionality as such, or even about the target technology. It can there-
fore be stated that algorithmic duplication and related schemes both retain the benefits of

EDC-based self-checking design and fit well into the behavioural synthesis context.

An additional benefit of a “behavioural” self-checking scheme such as algorithmic dupli-
cation, in the context of CAD tool development, is its natural support for future expan-
sions. Consider a given synthesis tool, and an associated cell library. Assume that only one
cell of a particular functionality is available in the library, for instance only one type of
adder such as a ripple-carry adder. If EDC-based self-checking is desired, then the library

will also include a self-checking version of the adder, as explained above. If a structurally
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alternative cell implementing the same behaviour is added to the library during a subse-
quent development phase, then clearly the new cell will need to be analysed, for instance
along the lines of [15], and its self-checking version developed from the beginning. In the
adder example mentioned above, such a new cell could be a carry look-ahead adder. As
[16, 15, 41] have shown, the development of a self-checking version will require a consid-
erable amount of analysis and logic level design work. In contrast, algorithmic duplica-
tion, being a naturally behavioural technique, will readily lend itself to future tool expan-
sions. In the running adder scenario and referring to Figure 5.2, either of adders Al and
A2 could be of any structure. The structure itself is chosen during the binding phase

(§3.1.1) of high-level synthesis, and the self-checking scheme is valid in any case.

On-line BIST during idle cycles, as explained in §2.2.3.2, is another potential solution.
The concept of a TDFG (Figure 2.37) associated with a given DFG initially gives the im-
pression that the approach is very relevant to synthesis. However, as §2.2.3.2.3 already
pointed out, low test quality can be a real problem with TDFGs. Further, test quality as
well as test length highly depend on the gate-level structure of the circuit constituent
blocks (§2.2.3.2.2); therefore, the approach is not generic enough. Finally, the error indi-
cation itself that BIST provides is of doubtful usefulness in the on-line testing context. To
understand this, refer back to the example TDFG configuration of Figure 2.37. Putting
aside the test quality considerations, assume that the TPG provides all of its test vectors in
k executions of the functional circuit. An erroneous signature in the MISR after the & exe-
cutions provides the error indication. However, this indication does not specify which of
the k functional results produced by the circuit was corrupted. In fact, it is likely that by
the time the MISR detects the fault, the fault will have propagated to other parts of the
overall system, probably with catastrophic effects. In other words, on-line BIST experi-
ences unpredictable error latency. 1t is also possible that the MISR has detected a latent

fault, thus leading to a false alarm. In summary, none of requirements (a) — (¢) is satisfied.

At this point, it can be mentioned that the on-line BIST evaluation of the previous para-
graph is equally applicable to on-line arithimetic BIST (§2.2.3.4.1), the latter in essence
being a form of BIST with a certain non-standard implementation (1.e. using accumulators
instead of LFSRs). In fact, it can be expected that arithmetic BIST will have even more
restricted applicability, since it cannot accommodate designs in which too few adder — reg-

ister pairs can be configured.
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On-line shift-based DFT (§2.2.3.3) is discussed in the following. In this family of tech-
niques, the inputs and outputs of selected operations are shifted out of the chip and tested
by an external testing unit, which effectively repeats the operation. A mismatch between a
shifted output and an output produced by the testing unit signifies the presence of a fault.
On one hand, the scheduling and choice of operations that will have their inputs and out-
puts shifted out can be formulated as a synthesis task. Further, there is no obvious danger
of a false alarm. On the other hand, however, error latency is unpredictable and uncontrol-
lable. Even further, there are serious concerns regarding the practicality of implementing
concurrent shift-based testing. In particular, shifting out a number of variables while the
system is operating would involve an additional shift clock. If realistic bit-width values are
considered, this clock would need to be tens of times faster than the functional clock, so
that a number of variables can be shifted out during a single cycle of the functional clock
[83]. This will limit the scope of the technique to very low speed applications. Moreover,
the idea itself of utilising an external testing unit for concurrent testing is of doubtful prac-
ticality, since such a unit will need to be compact enough to accompany the chip on the
field. Furthermore, if reliable testing is desired, then the testing unit as such will need to
be designed using some on-line testability strategy, further complicating the problem. The
above critical remarks are backed by the absence of convincing experimental results in the
relevant publications [83, 84, 85, 86]. In summary, while the idea of shift-based on-line
DFT is likely to satisfy requirements (b) and (d), it is also likely to experience high error
latency (requirement (a)). Most importantly, general applicability (requirement (c)) is not
guaranteed; as a matter of fact, there is not enough evidence that even partial applicability

is feasible.

Let us now focus on the family of techniques labelled as monitoring analogue characteris-
tics (§2.2.4). Such solutions detect faults through abnormalities in their electrical proper-
ties, sometimes even before the corruption of logic values. This is an interesting advantage
as regards error latency, although it can be stated that alarms will rise even if logic values
are not corrupted. The strongest argument against them, however, is that they are only
relevant to the target technology (e.g. abnormal flow of current can only be defined with
respect to the technology), and by nature address the on-line testing problem at a very low
level in the design flow. Therefore they are neither generally applicable nor related to the

behavioural HDL level of abstraction, thus not fitting the perspective of the present thesis.
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The background presentation of chapter 2 also includes analytical techniques (§2.2.3.4.2).
These are purely application-specific, thus not satisfying the critical general applicability

requirement (c) of §5.1.1.

The detailed evaluation of this section establishes that algorithmic duplication related,

“behavioural self-checking” techniques are the most suitable for implementation within a

high-level synthesis environment.

5.2 Detailed presentation of proposed technique

Section 5.1 justified why algorithmic duplication related techniques should form the basis
of a datapath self-checking solution in the context of this thesis. However, subsection
2.2.2.3 has presented a significant number of algorithmic duplication choices. These
choices vary both as regards their self-checking related properties (e.g. error latency, po-
tential fault escapes etc.) and as regards their implementation details (e.g. at which level of
abstraction testing resources are inserted and exactly how this is done). The following sub-
section 5.2.1 critically evaluates the techniques of §2.2.2.3, identifies strengths and weak-
nesses, and defines concepts not adequately covered by them. Subsection 5.2.2 proposes a
variant of duplication testing (namely inversion testing) and shows its potential usefulness
within DFGs. Subsection 5.2.3 summarises the conclusions of §5.2.1 and §5.2.2, and de-
fines the goals of the algorithmic duplication-based datapath self-checking implementa-

tion, to be presented later in §5.3.
5.2.1 Algorithmic duplication revisited

The first pieces of published research work with reference to a variant of algorithmic du-
plication were the ones advocating checkpointing, rollback and recomputation as means of
recovery from transient faults [60, 61]. Regarding its fault handling characteristics, the
idea of rollback and recomputation can lead to deadlocks if a permanent fault appears in
the system. Further, error latency is not considered and not identified as a design goal. Re-
garding the duplicate DFG synthesis approach proposed in [60], it can be observed that the
presented algorithm receives the fully scheduled original DFG as an input. From the opti-

misation point of view (§3.1.2), this is a disadvantage, since a significant area of the over-
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Figure 5.3. Design Space Exploration for the original and the duplicate DFG
all system design space remains out of reach. Figure 5.3 illustrates and clarifies this idea.
In Figure 5.3a, a synthesis process is applied to the original DFG, a total number of m dif-
ferent design space points D1-Dm are visited, and the example point D2 is highlighted as
the most favourable. The duplicate DFG is independently synthesised next, n candidate
designs D2,1-D2,n are identified for the overall system and the example point D2,1 is cho-
sen. Clearly, only n candidate choices are considered for the overall synthesis sohution.
Now focus on Figure 5.3b, where the two DFGs are optimised simultaneously. The dashed
rectangle in the figure includes all possible overall design choices, corresponding to the
combination of all choices for the original and duplicate DFGs (D1,1-Dm,n). As the figure

depicts, all nxm possible design space points are now considered for the overall design, by
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synthesizing the two DFGs in the same optimisation process, effectively treating them as
one DFG. This is a much preferable synthesis path, as illustrated by the fact that, although
D2 in Figure 5.3a is the best choice for the original DFG in isolation, there is no reason
why an initially suboptimal solution Di with i#2 cannot yield an overall better solution for
the final system. Indeed, Figure 5.3b exemplifies such a scenario, by highlighting design
Dm,2 as the most favourable out of all nxm choices. Observe that point Dm,2 cannot even
be reached by the process of Figure 5.3a. An alternative view of this concept is the design
space graph of Figure 5.3c. The coloured area in the graph corresponds to the overall self-
checking system achievable region (§3.1.2). The region explored when the original DFG
is fixed at the D2 design choice is marked as region 1, while the rest of the achievable de-
sign space area is called region 2. If the original DFG is synthesized first and fixed at D2
in the manner of 5.3a, then only region 1 will be visited by the overall synthesis process.
In contrast, if both the original and the duplicate DFG are optimised simultaneously as in

5.3b, then all of the coloured area (regions 1 and 2) will be explored.

An additional weakness of {60, 61] is that they do not address loop and conditional con-

structs in the designs they synthesise, thus restricting the usefulness of the technique.

The next family of techniques covered in §2.2.2.3 are [62, 63], proposing fault identifica-

tion through functional unit differentiation.

Computation Unit
1 A An initial comment that can be given re-
1T B garding the differentiation idea is that it is
22 - i expected to work under the assumption that
B 3} B faulty units never or rarely mask faults.
3 c Indeed, consider once more the simple dif-

Table 5.1. Example of unit differentiation ferentiation example given in §2.2.2.3,

summarized in Table 5.1. Units A, B and C are pair-wise differentiated. For example, con-
sider A and C. Track (1,1") utilises A but not C; while track (3,3 ") utilises C but not A.
Tracks of functional and redundant computations with differentiation properties can also
be noticed if one considers either of the remaining pairs of units (A,B and B,C). Theoreti-
cally, if A experiences a fault, track (3,37 will be fault-free, while both (1,17) and (2,27)
will signal faults, thus identifying A as faulty. However, depending on the inputs that unit
A is fed with, it is entirely possible that either (1,17) or (2,2") will experience a fault mask-

ing event. This will result in a single fault indication, making fault identification impossi-
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ble. Fault simulation experiments would be needed in [62, 63] to estimate how serious this
problem could be; such experiments are however missing, and the differentiation tech-
nique remains of unproven, questionable practicality. As regards the synthesis approach of
[62], design space exploration is more complete than in [60], since both functional and
redundant computations are considered as constituting one DFG. However, loops and
conditional branches are still not accommodated. Further, the synthesis cost parameters
are only given in terms of number of functional units used and clock cycles needed; thus,
important information such as the relative area cost of particular units in certain technolo-
gies, and the clock speed are missing. In principle, omitting this information can lead the
synthesis process towards wrong decisions; in [63], this concern is confirmed by the fact
that the experimental results report a hardware overhead of 100% (equivalent to physical

duplication).

The Introspection technique of [64] fully utilises any existing module idle time, but is by
nature unable to cope with cases where there is too little idle time, since it totally rejects
redundant module insertion. In that sense, it is case-specific rather than generic. As cov-
ered in §5.1.1, this is not consistent with the philosophy of the present thesis. From the
synthesis point of view, an interesting binding algorithm is outlined in [64]; however, the
algorithm input is a fully scheduled DFG (as in [60]). As a result, the design space is not
explored efficiently (as illustrated previously in Figure 5.3). Finally, loops and condition-

als are not explicitly addressed here either.

The next scheme presented in §2.2.2.3 is the behavioural synthesis of fault secure systems
of [23]. 1t is probably the most complete of the algorithmic duplication approaches; how-
ever, a number of weaknesses can be spotted in it as well. The synthesis process starts
with a scheduled DFG, followed by a full physical duplication and comparison of the pri-
mary output results of the circuit of interest. Comparisons of selected intermediate results
(e.g. the results of additions +1 and +1" in Figure 5.2) are introduced under certain condi-
tions, particularly when the fault study in {23] suggests that such a comparison promotes
hardware sharing between the original and the duplicate DFG, while keeping the probabil-
ity of fault escapes below a defined threshold. A weakness here is that all comparisons,
including those of intermediate results, take place at a dedicated control step, after the
execution of the functional circuit has finished (e.g. after CS 3 of Figure 5.2). One can

then understand that designs with realistically long critical paths will experience high error



P. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 134

latency (possibly of the order of the critical path length). In that sense, this self-checking
approach is efficient and suitable for an a posteriori validation of the obtained result, but
unsuitable for the pre-emptive indication needed in safety critical applications, so as to
trigger any existing recovery or self-repairing mechanism. Further, the authors of [23] are
the first to mention that fault secure comparators (§2.2.2.1) are needed in algorithmic du-
plication applications, and therefore assume that their comparators are such. However,
they do not elaborate on the actual comparator structure to ensure this property. As regards
the synthesis approach they use, one can observe that they feed their algorithm with a
scheduled and bound DFG. Their subsequent self-checking synthesis steps are in fact al-
lowed to make slight changes to the original DFG scheduling; this is an improvement in
terms of design space exploration with respect to [60, 62, 64, 61, 637, but the allowed
changes are indeed very limited, only applicable under the strict condition that they lead to
an immediate improvement. An additional improvement of [23] over [60, 62, 64, 61, 63]
is the ability to handle loop constructs in designs. Conditional branches are, however, still,
not accommodated; in fact, this author thinks that the approach of [23] is particularly un-
suitable for conditionals, since it very much relies on analytical calculations of fault es-
cape probabilities. Conditional branches would make the calculations very complicated
because the probability of visiting or not visiting a particular DFG node would need to be

taken into account when calculating the probability of fault escapes.

Semiconcurrent error detection [65] is considered next. The evaluation is illustrated by the
example of Figures 5.4 and 5.5. Figure 5.4a shows a simple DFG, comprising I multipli-
cation and 3 additions and having a critical path length of 3 control steps. In 5.4b, a possi-
ble algorithmic duplication solution is shown. Only the final primary output results are
compared in the presented scenario. Further, the example solution has been configured
such that no new hardware modules are added; a delay degradation of 2 clock cycles
(66.6%) 1s accepted instead. Figure 5.5 shows a semiconcurrent error detection solution
for the same example, with checking periodicity P=2 (P has been defined in §2.2.2.3). The
primary inputs and outputs in Figure 5.5 are exactly as in Figure 5.4 (e.g. addition +1 is
fed by a primary input), but are not explicitly shown in order not to overload the figure.
The configuration graphically depicts that semiconcurrent error detection sacrifices some
testability for area and / or delay savings. Indeed, in Figure 5.5 two executions of the func-
tionality of 5.4a are conducted with a nominal latency of 3 control steps each; only one of

them needs to be checked, because P=2. This means that the duplicate DFG has a very
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(a) Original DFG

v

(b) An algorithmic duplication solution, with primary output comparisorn only

Figure 5.4. Example DFG
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Figure 5.5. Semiconcurrent error detection solution
for the example of Figure 5.4 (checking periodicity P=2)

relaxed delay specification of 6 control steps. It is easily scheduled within these 6 steps,
and it does not require any additional hardware modules. This way, a low-cost self-
checking solution is instrumented; the quality of test, however, is highly degraded. Indeed,
consider a DFG with a realistically long critical path, and / or P>>2. An error indication at
the output will simply signify that there is « cerfain malfunction in the chip; it will not de-
termine when the fault first appeared, or iow many of the P executions have been affected
by the fault. Clearly, there is both unpredictable error latency and uncertainty as to the
magnitude of the effect of a given detected fault. In line with [23], semiconcurrent error
detection is suitable for a theoretically inexpensive but limited periodic checking of the
health of the system, possibly to detect non-fatal malfunctions; it is unsuitable for pre-
emptive error checking in safety-critical applications. Regarding the synthesis characteris-
tics of [65], a set of constructive (§3.1.2) synthesis algorithms is given for the scheduling
of the duplicate, relaxed-latency DFG, given the original, scheduled and bound, functional
DFG. The approach suffers from the poor design space exploration problem explained in

Figure 5.3. On a positive note, extended versions of the algorithms are also given, accom-
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modating both conditional branches and loop structures in the DFG, for the first time. The
algorithms are said to be under inclusion in an experimental integral synthesis tool; how-
ever, no results from this tool are given. The experimental results of [65] have been ob-
tained by commercial synthesis tools. From the information provided in [65], one con-
cludes that this was done by modifying the original HDL descriptions of the considered
designs, and implementing script-based scheduling and binding of the duplicate DFGs on
commercial CAD tools, in effect manually applying the presented constructive algorithms.
From the point of view of this thesis, this requirement for substantial designer intervention

is a serious disadvantage.

The research of [69, 70] proposes two diverse realisations of the same DFG. The two ver-
sions are differentiated from each other either because of different allocation of operations
to operators or because of the recomputation with shifted operands applied in [70]
(§2.2.2.3). The first realisation is executed P times; then the second is executed once, and
thus the last functional result is verified by comparison. It is evident that once again only 1
out of P obtained results is verified; therefore the technique suffers from potentially high
error latency and uncertainty exactly as explained above for the semiconcurrent solution. It
is therefore again unsuitable for safety critical systems. From the synthesis point of view,
the approach of [69, 70] is fully manual and there is no mention of any design automation
attempt. In that sense, these works are not relevant to the goal of the present thesis, since

they address the whole problem at a lower level of abstraction.

Finally, [66, 67, 68] propose constructive algorithms for the configuration of duplication
and comparison schemes (as of Figure 5.2). They do not offer anything theoretically novel
with respect e.g. to [23]; they only compare final results, thus being unsuitable for pre-
emptive self-checking; furthermore, they are also manual RT-level approaches, therefore

concepts such as behavioural design space exploration are not applicable i them.

5.2.2 Inversion testing

Figure 5.6 depicts the inversion testing paradigm. The figure accurately follows the no-
menclature of Figure 2.27 (duplication testing). Indeed, a redundant circuit is again added
to the functional one, and a checker / fault secure comparator (§2.2.2.1) is employed to

signify the potential presence of a fault. The difference with duplication is that the redun-



P. Oikonomakos, 2004

Chapter 5: Datapath Self-checking Design 1

LI
[ee]

Functionaljlnput

Augmented CUC

PR v g uyeiet b iR s ey

Functional
Circuit

¥
Redundant

Circuit

Comparator

Checker/

Lf—bz Error

I

4

i

i

H .
! Functional
1 B
1

1

i

I

H

I

)

i

I

Output

Figure 5.6. Inversion Testing

dant circuit in the inversion case is no
longer a replica of the functional one.
Rather, it is a circuit that reproduces the
original functional input, when suitably
fed by the functional output. Clearly, this
means that the flow of data throughout
the scheme should be as Figure 5.6
shows, 1.e. the inverse operation should
take place after the functional one, rather
than in parallel (compare to Figure 2.27).
Other than that, the redundant circuit has
to be of approximately the same size as

the functional one. This proposition is

historically backed by the theoretical fault detection study of [ 1207, analytically proving

that for any given system under check, the “detection” logic added to it should be at least

as complex as the system itself, if an unrestricted fault model is adopted (i.e. if all possible

faults are targeted). In that sense, inversion testing can be considered a member of the

family of duplication-related techniques, as loosely defined in §2.2.2.

Clearly, inversion cannot be applied to any arbitrary function. One can think of several

examples where there can be no redundant circuit that uniquely reproduces the original

mputs, when fed by the functional outputs. Logic functions (AND, OR) are such non-

invertible examples. An arithmetic example is the square - square root pair, which is not
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Figure 5.7. Inverting an addition

uniquely invertible for signed arithme-
tic. However, when a unique inverse
for the functional output exists, then
the scheme is fault secure. Figure 5.7
exemplifies the inversion testing idea
and demonstrates fault security,
through the simple addition — subtrac-
tion pair. In the figure, let a and b be
signals of bit-width n (e.g. n=8 or
n=16), corresponding to arithmetic

values. Signal ¢ equals a+b, while
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likewise d is equal to c-b. Basic arithmetic suggests that in the fault free case, signal d will
always be equal to input a, and the comparator will verify the correct operation. Any sin-
gle fault manifesting itself at the output of the adder will result in a corrupted value ¢’ with
¢'#a+b. Due to the 1-to-1 property of subtraction, the subtractor output will now be d'=c’-
b+#a and the comparator will detect the fault. Alternatively, if a hardware fault corrupts the
operation of the subtractor when it is fed by correct inputs, changing the output to d”"#c-b,
then the comparator will once more be fed by unequal values and detect the fault. Finally,
any manifested single comparator fault will clearly result in an error indication, so long as
the comparator has been designed to be 2-bit output fault-secure, on the principles of self-
checking design (§2.2.2.1). It is thus evident that the scheme is fault secure with respect to
single faults, since any non-latent single fault in any part of the scheme will result in an
error indication. It should again be stressed that this is clearly a result of the 1-to-1 prop-
erty of the considered arithmetic functions. It is only under this condition that fault secu-

rity 1s guaranteed and only under this condition that inversion defines a valid alternative to

duplication.

Simple visual inspection of Figures 2.27 and 5.6 immediately gives rise to the issue of
whether inversion can be a beneficial choice over duplication. An initial remark 1s that
physically inverting a circuit is expected to be approximately as expensive as physically
duplicating it, since the redundant inversion circuit is expected to be at least of the size of
the functional one [120]. Further, inversion will be considerably slower, since in Figure
3.6 the functional cutput is verified after both the redundant circuit and the comparator
have performed their operation. In contrast, in the duplication testing of Figure 2.27, the
redundant circuit operation is performed concurrently with the functional operation. It can
therefore be stated that, even when an inverse function exists and leads to a fault secure
scheme, physical inversion of 1solated circuits has no advantage over physical duplication,

and is therefore of no interest.

Inversion becomes interesting only in the context of substantially-sized sequential sys-
tems. This is illustrated in the following example. Figure 5.8 depicts a possible DFG reali-
sation of the Tseng design. This design was introduced in [121] and has ever since been
widely used in the high-level synthesis community for benchmarking purposes. Although
not corresponding to any useful functionality, its form is regarded as highly representative

of situations typically encountered in high-level synthesis. Hence it is an instructive and
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Figure 5.8. Algorithmic inversion for an
example DFG (Tseng benchmark)

useful example. Temporarily omit-
ting the two highlighted opera-
tions, one can observe that the de-
sign includes three additions (+1,
+2, +3), one subtraction (-1), one
multiplication (*1), one division
(/1), as well as two logic func-
tions, a bit-wise AND (&l) and a
bit-wise OR (]1). In the present
realisation, these operations are
scheduled in a total of 6 control
steps as shown, and allocated to an
adder A1, a subtractor S1, a multi-
plier M1, a divider D1, an array of
AND gates G,uq! and an array of
OR gates G, 1. All operations

have two functional inputs; how-

ever, in line with the previous Figure 5.5, several inputs are omitted in Figure 5.8 for the

sake of clarity. All inputs and outputs that define internal data dependencies are clearly

depicted by arcs, as usual (Appendix B includes a complete VHDL description of the

Tseng benchmark). Let us now focus on operation +2, and assume that a self-checking

scheme is required for this addition alone. Since there is only one functional adder in the

destgn, applying duplication testing would necessarily result in the introduction of a new

adder A2 together with a new comparator C1. If inversion is applied instead, then a self-

checking solution for +2 could be configured as the figure shows, by introducing the two

highlighted operations. Subtraction -2 inverts addition +2 using the existing subtractor

S1, which is idle during CS 4. Further, the necessary comparison !=1 is conducted during

CS 5, on the newly introduced comparator C1. This way, operation +2 is checked by

means of algorithmic inversion (inversion testing that does not necessarily involve physi-

cal introduction of a new “redundant” module). With respect to duplication, it is evident

that in this particular case algorithmic inversion saves the hardware cost of an adder mod-

ule. Referring back to Figure 5.8, one can observe that alternative inversion solutions

could be considered by moving operations -2” and / or =1 in time. For example, the com-

parison could be moved to control step 4 and chained (§3.2.3) after the subtraction. This
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would reduce error latency to a single control step, while it might not require clock speed
degradation, since the (probably slow) multiplication *1 is already present in CS 4. Of
course, this cannot be determined conceptually here; low-level implementations and the
target technology need to be taken into account. In a high-level synthesis environment,

such information is readily available in or can easily be calculated from the technology

library (§3.1).

In summary, the above example points out that, in DFGs of substantial sizes, there can be
cases when algorithmic inversion provides an interesting and beneficial alternative to al-
gorithmic duplication. In that sense, it should be kept as an additional degree of freedom
when devising self-checking DFGs. The example also shows that the whole problem with

all of its parameters and trade-offs is best addressed at the behavioural synthesis level of

abstraction.

Other than the historical theoretical study of [120] mentioned above, one can also find two
recent publications proposing schemes that remind of inversion self-checking as shown
here. In [122], an encoder {compressor) - decoder (decompressor) pair is used for testing
purposes in a dependable computing architecture, while in [123] decryption (“inverting”)
is applied to encrypted data, in order to detect faults in a certain hardware implementation
of a cryptographic application. Still, properly defining, analysing and considering inver-
sion in the context of self-checking DFGs, within high-level synthesis, is a novelty and

one of the contributions of the research presented in this thesis.

5.2.3 Discussion

Subsection 5.2.1 evaluated algorithmic duplication techniques found in the literature and
wdentified concepts not adequately addressed by them, not simultaneously addressed by
them, or at times not addressed by them at all. Subsection 3.2.2 defined inversion and al-
gorithmic inversion. The datapath self-checking design work of this thesis covers the 1s-
sues left open by previous researchers, while exploiting algorithmic inversion, where it is
beneficial. To this end, the goals and properties of the implementation presented in this
thesis can be categorized with respect to the following three criteria :

e Fault recovery. Past attempts at fault recovery have yielded application-specific and

unproven recovery mechanisms (§5.2.1). In principle, any adopted recovery mechanism
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Figure 5.9. Checking all intermediate results for the example of Figure 5.2
will by nature rely on the target technology (e.g. targeting a dynamically reconfigurable
FPGA part can reveal interesting opportunities for run-time self-repair). In order to keep
this work generic and technology independent, this author makes no assumption regarding
the fault recovery technique. This thesis is thus restricted to timely and secure reporting of
faulty circumstances, such that faults can be reported as soon as possible, before the sys-
tem primary outputs are corrupted, so that any recovery mechanism can react in a timely
manner.
o Fault detection. The duplication-based fault detection mechanism applied in this thesis
is effectively shaped by the requirement for timely reporting, as stated above. Previous
research works overviewed in §5.2.1 mostly employed checking of primary outputs; at
times not even all primary outputs were checked [65, 69, 70], while in certain cases se-
lected but limited intermediate results were also checked [60, 23, 61]. The strict error la-

tency requirements stated in this thesis mandate that every single intermediate result be
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checked. Algorithmic duplication is applied to perform this checking; algorithmic inver-
sion is also used alternatively.

e Synthesis. Addressing the whole self-checking problem at the high-level synthesis
level has a number of challenges, implications, as well as inherent advantages over previ-
ous pieces of work. Insertion of self-checking resources should ultimately be done auto-
matically by the synthesis tool, without any HDL modification or other intervention of the
user to the synthesis process, other than specifying the synthesis constraints. Even further,
self-checking insertion and other design optimisation (for area or delay) should be done in
a single optimisation process, to facilitate efficient design space exploration (Figure 5.3).
The choice between algorithmic duplication or inversion in a given situation should also
be automatic within this same process. Moreover, both duplication and inversion require
fault secure comparators and such comparators do not normally exist in cell libraries by
default. The design of fault secure comparator cells, utilisable by the core synthesis sys-
tem, is therefore an additional challenge. Once these goals have been reached, the result-
ing integral synthesis for on-line testability tool will be able to take full advantage of exist-
ing high-level synthesis benefits. To this end, loops and conditionals will be accommo-
dated painlessly (so long as the original tool supports them), chaining of operations will be
a feasible design choice, while independence of technology and support for alternative

technologies through existing libraries will also be available by default.

Figure 5.9 shows how Figure 5.2 could be transformed to provide checking of all interme-
diate operations. The original data flow graph still comprises operations +1, +2, +3 and
*1, dependent on each other and scheduled exactly as in Figure 5.2. The duplicate opera-
tions receive the same inputs as the respective original ones, and produce outputs that are
compared against the original operation outputs through suitable comparison operations,
implemented on introduced fault secure comparators. This can be confirmed on the figure,
by focusing, for example, on additions +2 and +2°, whose outputs feed comparison =2,
implemented on comparator C1. The original operation output is always also fed to its
proper successor operation (e.g. the output of +2 feeds *1). A// internal arcs are thus veri-
fied concwrently with the useful operation. This ensures that all intermediate results are
fault-free when they feed their successors, unless an error is indicated (at the right-hand
side of the figure). This scheme clearly provides a constant monitoring of the health of the
system, and detects faults literally as soon as they manifest themselves at the outputs of

faulty functional units. For instance, if adder A2 is faulty and corrupts the output of opera-
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tion +1’, then the fault will be detected at CS 2 rather than at the end of the whole opera-
tion (CS 4). This may seem like a modest improvement for such a trivial example; one can
however understand the importance of timely reporting in a realistic design with a critical
path length of a few tens of cycles. On another note, the figure also depicts the chaining of
operations mentioned earlier. Indeed, comparisons !=2, =3 and =4 are chained after re-
dundant operations within control steps 3 and 4. Clearly, this is a design option; dedicated
control steps could alternatively have been introduced for the comparisons. In a realistic
situation, the choice will be made within the optimisation process, taking designer priori-

ties and technology parameters into account.

Now focus on the error indications on the right-hand side of the DFG of Figure 5.9. In this
particular example, two 2-bit output comparators C1 and C2 are used. Under the timely
reporting assumption, the outputs of these comparators need to be combined and taken to a
chip primary output port. This is done here by applying the standard practice of self-
checking response compaction, using a two-pair dual-rail checker (§2.2.2.2). Figure 5.10
reminds us of the idea and illustrates its application in the particular context. Modules C1
and C2 in Figure 5.10 represent the comparators found in Figure 5.9. Two flip-flops (ef-

fectively constituting a 2-bit register) are attached to each of them. “Write enable” signals

C1 C2

P

En1 En2

lV ll

2-PAIR
DUAL-RAIL
CHECKER

output port

Figure 5.10. Compaction of datapath comparator responses
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Enl and En2 are such that the flip-flops register their input values only at the appropriate
control steps, according to the DFG. For mnstance, C2 produces a value of interest only at
control step 3 and it is only during that control step that the corresponding flip-flop is en-
abled to store a value. Naturally, there is also a clock input to the flip-flops, omitted in the
figure for clarity. The values stored in the flip-flops asynchronously feed a dual-rail
checker, here acting as a response compactor. The output of the response compactor drives
the overall chip “health indication” primary output. The system designer can then handle

this health indication to trigger any recovery mechanism as desired.

A final observation on Figure 5.9 is that the data-flow graph is overloaded with nodes (op-
erations) and especially arcs (operation input / outputs). Indeed, the introduction of several
new comparisons and the associated data dependencies create a situation which may re-
quire a great many multiplexers, comparators and interconnect to be implemented in
hardware. One may think that this overloading will lead to an unacceptably high hardware
overhead, possibly higher than physical duplication, characterizing the whole approach
impractical. Section 5.3 will experimentally prove that this is not the case if the optimisa-

tion potential of high-level synthesis is properly exploited.
5.3 Implementation and Experimental Results

The presentation of this chapter now moves on to the implementation of the concepts out-
lined in §5.2.3. Implementation involves two interdependent tasks. Firstly, insertion of
self-checking resources should be done automatically and transparently, at the designer’s
request. Secondly, the resulting self-checking system should be optimised for the tradi-
tional high-level synthesis objectives, i.e. area and delay. These tasks should ideally be
addressed simultaneously. Ultimately this can best be achieved if the self-checking prob-
lem is formulated in a manner that a high-level synthesis tool can use. The rest of this
chapter details how this is achieved using the MOODS high-level synthesis system (§3.2),
and presents experimental results, comparisons and conclusions. It should be noted that
the work is by no means restricted to the particular tool. The concepts presented hereafter
are generic in their essence; if a different tool was given, then the low-level practical im-
plementation details could be adjusted as applicable to match the idiosyncrasies of the tool

at hand. As shown in §3.2 MOODS is a transformational tool; a tool based on constructive
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algorithms could alternatively be written. All the theoretical foundation of §5.1 and §5.2

would still be valid, but a different implementation strategy would need to be adopted.

5.3.1 Preliminary experiments

As a preliminary step towards implementing on-line testing within MOODS, a number of
manual experiments targeting standard synthesis benchmarks were conducted using the
original MOODS system of §3.2. These experiments essentially constituted a feasibility
investigation. The manual methodology followed, results obtained and lessons learned are

given in the following.

With respect to Figure 5.8, the multiplication and the division have been substituted by left
and right shifts respectively; this is permitted since their constant operands are powers of 2
{Appendix B), and in fact it leads to particularly economical realizations, since shifters are
much cheaper than multipliers. For the purposes of this subsection, self-checking func-
tionality was manually inserted to the design by modifying the original VHDL description.
Consider the following simple addition example in VHDL :

v8i := w31 + vbi; (5.1)
where v81, v31i and v51 are bit vectors representing unsigned integer values. Duplica-
tion testing 1s implemented as :

v81 := v3i + v5i;

scl := v31i + vb5i; (5.2)

failed <= scl /= v8i;
scl is an additional bit vector of the same size as the already existing ones, while
failed is a single-bit port, responsible for communicating the error indication informa-
tion. Inversion testing can alternatively be configured for the same example as follows :

v81i := v3i + v5i;

scl v8i - v5i; (5.3)

I

failed <= scl /= v3i;

Both the original and the modified behavioural descriptions of the design were fed to
MOODS and optimised using the existing tailored heuristics (§3.2.5.2), with equal priori-

ties for the area and delay criteria and a nominal value for the clock period. The MOODS
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RTL output was subsequently further synthesized targeting a standard FPGA part (Xilinx
Virtex XCV800) and using a commercial tool (Synplicity Synplify version Pro 6.2 [124]).
The final implementation was carried out using the Xilinx Design Manager (version 3.11
[125]). Table 5.2 sums the results of this experimentation. The first column on the table
defines the synthesized version of the design. The original version refers to the untestable
implementation (i.e. without any VHDL modification). The duplicated version is the result
of applying the duplication modification exemplified in code segment (5.2) in all eight op-

erations of the data-flow graph. The particular version also needed some further manual

Average
Resource Usage Speed Parameters Testing Penalty Error
Version Slices Tristate Cycles Maximum Hardware Performance Latency
Buffers Frequency Overhead Degradation (cycles)
(slices %) (eyeles %)

Original 137 400 7 50 MHz - - oo
Duplicated 166 706 9 35 MHz 21.2 28.6 0
Inverted 1 158 754 9 5 MHz 133 28.6 0
Inverted 2 161 770 13 33 MHz 17.5 8§5.7 0.5

Table 5.2 : Tseng benchmark preliminary synthesis results (Target technology Xilinx Virtex XCV800 FPGA)

Version adders subtractors OR AND left right comparators
gates gates shifters shifters

Original ! ] 1 / 1 ! -
Duplicated 2 2 2 2 2 2 /
Inverted ] ! I 2 2 2 2 i

Table 5.3 : Tseng benchmark functional module usage
Average
Resource Usuge Speed Parameters Testing Penalty Error
Version Slices Tristate Cycles Maximum Hardware Performance Latency
Buffers Frequency Overhead Degradation (cycles)
(slices %) (cycles %)

Original 233 578 13 25 MHz - - oo
Duplicated 322 964 15 25 MHz 38.2 154 0
Inverted [ 306 948 15 4 MHz 313 15.4
Inverted 2 316 996 18 25 MHz 35.0 38.3 0.33

Table 5.4 : Diffeq benchmark preliminary synthesis results (Target technology Xilinx Virtex XCV800 FPGA)

Resource Usage Testing Penalty
Version Target Technology Cycles Hardware Performance
Slices Tristate Overhead Degradation
Buffers (slices %) (cycles %)
Original Xilinx Virtex XCV800 465 2910 33 - -
Original Xilinx XC93288XV 548 2910 33 - -
Dupl 1 Xilinx Virtex XCVS00 589 4874 77 26.7 133.3
Inv_1 Xilinx Virtex XCV800 600 5000 77 29.0 133.3
Dupl_1 Xilinx XC95288XV 702 4874 77 28.1 1333
Inv [ Nilinx XC95288XV 671 5000 77 22,4 133.3
Dupl 2 Xilinx Virtex XCV800 654 3208 42 40.6 27.3
Inv 2 Xil inx Virtex XCV800 630 5441 43 35.5 30.3

Table 5.5 : QRS benchmark preliminary synthesis results
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intervention, on top of the tailored heuristics optimisation. The reason is that the automatic
optimisation procedure naturally assigns additions v81i := v3i + v5i; andscl :=
v3i + v5i; tothe same functional unit, trying to minimise the overall hardware. Of
course, in the case at hand this is not valid, because a functional and a redundant operation
need to be executed by disjoint hardware for the self-checking scheme to be meaningful
(§2.2.2). A number of manually selected applications of the “unshare” transformation
TF13 (§3.2.3) were thus needed to produce valid self-checking output (see also [126] and
Appendix A for information about running MOODS in a manual, “console” mode). Refer-
ring back to Table 5.2, the inverted I version is the product of modifying operations ac-
cording to the inversion paradigm of segment (5.3) where applicable (§5.2.2), while still
retaining duplication where inversion is not applicable. In addition, an inverted 2 version
is given. The difference between this last version and inverted 1, is that in inverted 2 the
pairs of functional and redundant operations are not allowed to be chained in the same
control step. Chaining is prevented manually in the DFG, by forcibly inserting a control
step boundary between the two operations. The MOODS VHDL Reference and Style
Guides [127, 128] or Appendix A of this thesis can be consulted for practical details on

how this 1s done.

The rest of the columns in Table 5.2 give the actual numeric results of the synthesis ex-
periments. FPGA resource usage is given in terms of the number of occupied slices [125].
The number of tristate buffers used is also included, for the sake of completeness. These
buffers are used for multiplexing. More specifically, this author’s design experience,
backed by previous research conducted in [100], suggests that multiplexers implemented
in FPGAs using standard look-up table based logic are very costly in terms of area (in fact
they occupy more area than functional modules, thus rendering hardware sharing a disad-
vantageous option). It was found that using tristate buffers to implement multiplexers
solves this problem, as there is a plethora of normally unused such buffers in a typical
FPGA device. The number of buffers used may appear excessive, but this has no negative
implications on the design quality, since it is the number of occupied slices that signifies
the FPGA area utilisation. Speed parameters of the synthesized designs are reported sub-
sequently; these are the critical path length (measured in number of clock cycles) and the
maximum frequency achievable by a given realisation. The hardware and speed overheads
are more clearly illustrated next, by means of the percentage of increase in slice usage and

the percentage of performance degradation in number of cycles. Finally, for this small ex-
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ample (eight operations) it is easy to calculate the average error latency, in cycles; this is
reported 1n the last column of Table 5.2. The error latency is given as infinite in the case of
the original design, since there is no on-line testing applied to it (i.e. faults are never de-
tected). Note that the hardware usage and frequency statistics on the table are the ones re-
ported by the actual lowest-level implementer tool; therefore, they are as realistic as could
be and fully reflect the optimisation contribution of RT-level synthesis. This note applies

not only to Table 5.2 but to all tables hereafter.

A simple comparison of the results in Table 5.2 for the duplicated and the inverted 1 ver-
sions reveals that inverted [ has a smaller hardware overhead. This is consistent with the
mversion testing intuition provided through Figure 5.8. Further, Table 5.2 shows that error
latency in both cases is 0, since for all instructions in the DFG the functional, redundant
and comparison operations are scheduled in the same control step, and thus faults are de-
tected at the same control step as they occur. Performance degradation (in terms of clock
cycles) 1s also the same; however, chaining of functional / inverse operation pairs within
the same control step results in the maximum achievable clock frequency being 7 times
lower in the inverted [ version. Focusing now on the inverted 2 version, it can be seen
that it needs an additional 4 cycles, but the maximum achievable clock frequency is not
degraded with respect to the duplicated version. The hardware overhead is more than for
the inverted_ I version but is still less than the duplicated version. Non-zero error latency
1s introduced; indeed, out of 8 operations, 4 are inverted and checked with an error latency
of 1. Error latency is O for the other 4 (duplicated) ones, giving an average of 0.5. In an
attempt to more clearly demonstrate the area savings for this simple but illustrative exam-
ple, Table 5.3 summarizes the functional module usage of the different Tseng versions.
The duplicated version naturally features double the number of hardware components with
respect to the original one; the inverted [ version is shown to include an adder and a sub-
tractor less. In fact it is the absence of these two arithmetic modules that gives rise to a
cheaper self-checking solution when using invertion testing. Inverted 2 has exactly the
same functional module usage as inverted I and is thus not included on Table 5.3. The
three extra FPGA slices that the unchained inverted 2 version occupies are due to regis-
ters introduced to store the results of original computations across clock cycle boundaries,

before being fed to the redundant ones.

The next design tried was a differential equation solver (hereatter Diffeq). It is taken from
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[129] and it has also seen extensive usage for benchmarking purposes, also considered
representative of more complicated but typical HLS situations. The experiments con-
ducted with Diffeq are shown on Table 5.4. The version names have the same meaning as
in the previous example. The self-checking versions were again produced manually and
synthesized using equal priorities and targeting a Xilinx Virtex XCV800 FPGA part. The
observations are along the same lines as before. The duplicated version is the most expen-
sive, but also the fastest both as regards clock cycles required and maximum achievable
clock frequency. Chained inverted [ is the cheapest with respect to hardware overhead,
but suffers severe frequency degradation. Unchained inverted 2 Is moderate in hardware

usage and does not cause frequency degradation, but results in a few additional clock cy-

cles in the critical path.

The question that naturally arises in both of the above examples, is which of the on-line
testable versions one would choose. As is usually the case when working in high-level
synthesis, there can be no definite answer, and the choice is always up to the designer.
Considering the results of Table 5.2 as an illustrative example, it can be commented that if
cost s the biggest restriction, then the designer may probably choose the (cheapest)
chained inverted 1 version. If the clock frequency degradation imposed cannot be toler-
ated, maybe they will consider paying the extra price for the non-chained inverted 2 reali-
zation. Still, if the additional clock cycles are unacceptable, maybe they will have to pay
even more to have the duplicated version. Finally, if the latter is too expensive and reli-
ability is not a first priority, the designer may decide to drop on-line testing completely
and go for the original untestable version. It is thus in practice demonstrated that the trade-
offs and dilemmas of traditional high-level synthesis apply equally to the problem at hand;

this time, though, on-line testability acts as an additional parameter.

The last experiments of this subsection were conducted on the QRS benchmark [130]. The
particular design is actually of substantial size (~70 operations, mainly additions, subtrac-
tions, and divisions by powers of 2, implemented by “shift right” modules), and it corre-
sponds to a useful medical electronics application. Table 5.5 presents the obtained results.
This table assumes a slightly different form from the previous Tables 5.2 and 5.4. Firstly,
a dedicated column shows the particular FPGA targeted in each experiment. The maxi-
mum frequency is not reported; this is because there were no significant degradations in its

value, since the original untestable QRS designs already feature considerable chaining.
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Finally, the average error latency is not reported either, since the number of operations in
this design make its manual calculation impractical. For this benchmark, initially a dupli-
cated and an inverted version were configured and synthesized. These are denoted on the
table as dup/ I and inv_I. Two different FPGAs were targeted in two different sets of ex-
periments. The interesting observation is that there are cases when inversion can be more
expensive than duplication; indeed, dup! [ is cheaper when a Virtex XCV800 is used,
while inv_/ is cheaper for the alternative part XC95288XV. This can be explained as an
effect of low-level refinement, or of the place and route algorithms utilized by the final
implementation tool. Clearly a design which appears more expensive than another when
considered at a high level in the design flow, may at times demonstrate enhanced optimi-
zation potential at lower levels, especially in FPGA technology. This observation gives
rise to a strong argument for high-level synthesis : it is desirable that the time from the
conceptual design to the final solution be as little as possible, so that alternative solutions

can be tried fast and efficiently.

A second observation on the table is that dup/ I and inv_I always experience severe delay
degradation (more than 100%). This is a most undesirable effect and it can be explained as
follows. Recall that self-checking functionality was added to the design by means of the
VHDL modifications of (5.2) or (5.3). In both cases the one-bit signal failed was used
to store fault indication information. Clearly only one “write” operation can target a signal
at a given control step. This means that each of the comparison operations attempting to
write to the failed signal will need a control step of its own. There are around 70 such
comparisons (equal to the number of functional operations), so at least 70 discrete control
steps will be needed for the self-checking design. This is indeed confirmed on the table
(77 control steps). In effect, the implementation of self-checking as done here hinders the
control step merging potential of the data-flow graph. This problem can partly be solved
manually, by using multiple £ai led signals. For example, consider the following VHDL
code segment describing a duplication-tested subtraction :

ecg dif := ecgl - ecgmil;

scl = ecgl - ecgml; (5.4)

failedl <= scl /= ecg dif;

A second self-checking operation immediately following should take the form :
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ecg dif256 := ecg dif / 256;
sc2 := ecg dif / 256; (5.5
failed2 <= sc2 /= ecg dif256;

If the two comparisons in the above code segments were assigned to discrete comparators,
and the clock period requirements were not violated, then all operations of (5.4) and (5.5)

could be scheduled in the same control step. In order to provide a concise error indication,
n failed signals are combined through a logic OR :

failed <= failedl or failed2 or .. or failedn; (5.6)

Referring back to Table 5.5, the dup! 2 and inv_2 versions were configured for the QRS
benchmark, each one implementing the respective self-checking strategies as before, but
this time a total of n=7 different failed signals were used; the choice of number was
random. The table shows that the performance degradation experienced by both designs
was much more tolerable, while the inverted version was the cheapest for the particular
technology, but marginally slower than the duplicated one. The obvious question in this
procedure is if the random value assigned to » was the optimal choice, and if there is a
way to determine which choice would have been optimal. In effect, different values of »
would enable exploration of different parts of the overall design space. It would be par-
ticularly time consuming to try a good number of alternative choices in this example, since
each choice would require modifications throughout the whole length of a substantially
sized behavioural VHDL input. The need to automate the design space exploration proc-

ess for self-checking resource insertion is evident.

Concluding this subsection, it is to be noted that the preliminary results presented above
do not as such reach the goals of the present chapter, as outlined in §5.2.3. Two of their
obvious weaknesses are the need for manual intervention and the use of conventional one-
bit output comparators, not adhering to the scheme of Figure 5.10. They do, however, pro-
vide some useful insight on the problem of on-line testing within high-level synthesis, as
summarized in the following two points :

o [t is confirmed that the high-level synthesis considerations and trade-offs are relevant
to self-checking resource insertion. Further automation in the design flow is also shown to

be required, to facilitate efficient design space exploration for self-checking datapaths.
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e Iunversion testing appears to be a source of hardware savings, but is likely to lead to
slower realisations, either by degrading the maximum clock speed, or by giving rise to ad-

ditional clock cycles.

The first point provided the encouragement for further automation of the whole process;

the second will be constructively used in §5.3.3.2,

5.3.2 Semi-automatic experiments

As §3.2 established, the internal functionality of MOODS involves the application of cer-
tain transformations to the design under synthesis, through multiple repetitions of the op-
timisation loop of Figure 3.7, directed by an automatic optimisation algorithm or by the
designer manually interacting with the system, and controlled by a cost function. At the
lowest level, it is the transformations that introduce changes to the resulting datapath
structure. It is therefore sensible to state that the introduction of new functionality within

MOODS has to begin with defining an appropriate set of additional transformations.
5.3.2.1 Self-checking resource insertion software framework

In order for redundancy-based on-line testing schemes to be incorporated within the
MOODS environment, three additional transformations were initially implemented. Table
5.6 summarizes them. All three are described as “testing” transformations, thus distin-

guished from the allocation or scheduling transformations encountered in §3.2.3. A nota-

ble innovation in test-

symbolic description type of ing transformations 1s
name transform =
TF22 physically duplicate instruction testing that they introduce
TF23 physically invert‘instruc‘gion test!ng new functionality to
TF26 remove instruction testing testing
scheme the design, while the
Table 8.6. Test resource insertion transformations traditional allocation

and scheduling ones
strictly preserve the circuit behaviour and only change the structural realisation. In that,
the present work breaks with high-level synthesis tradition. However, it should be made

clear that the original functionality of the design is not affected by the testing transforma-
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tions; only redundant instructions are inserted and strictly utilised for self-checking pur-

poses. In that sense, testing transformations can be considered “semantic-preserving”.

In order to be exploitable within the optimisation loop of Figure 3.7, each of the transfor-
mations of Table 5.6 needs associated “validate”, “estimate” and ““perform” software func-
tions implemented within the MOODS system. The software development involved was
carried out for the purposes of this work, taking up around 2000 lines of C++ code [119].

Detailed descriptions of the transformations of Table 5.6 are now given in the following.

/ N\ / \ / \ /

4
N+1 @ c3
g
N+2 COMP

(a) Original state (b) Immediately after test
resource insertjon

\ / \ / \ \ ,
C3
N 1 @ c2 @ o @ @ c2
N
COMP
COMP

(c) Optimising for area (d) Optimising for speed

N+1

Figure 5.11. Insertion of duplication testing resources
and subsequent optimization
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Transformation TF22 (physically duplicate instruction) targets a given instruction and as-
sociates duplication-based self-checking resources to it. Clearly this involves the introduc-
tion of two additional operations, a duplicate and a comparison. The net result immedi-
ately after the transformation has been performed, is a locally “maximally serial” type of
self-checking configuration, wherein a new datapath module has been introduced to im-
plement the duplicate operation, together with a new comparator; the associated duplicate
and comparison instruction also have newly inserted control steps dedicated to them. In
other words, the transformation as such implements purely physical duplication and does
not make any attempt to identify and reuse possibly existing idle modules. This initially
appears to be naively expensive; Figure 5.11 depicts the situation and clarifies the benefits
of such an approach. Firstly focus on Figure 5.11a. A very simple segment of a DFG fea-
tures two independent operations of the same abstract type “#”°, namely #1 and #2. They
are scheduled in a single control step N, and assigned to components C1 and C2. The
components are assumed to be behaviourally identical. Figure 5.11b depicts the situation
immediately after the application of TF22 on #2. The new elements mentioned above can
be observed. Indeed, N-+1 and N+2 are additional CSs, while a new component C3 imple-
ments the duplicate operation #2” and an introduced comparator COMP implements the
comparison !=. At this point remember that optimisation within MOODS consists of a
substantial number of repetitions of the optimisation loop of Figure 3.7, effectively leading
to the application of a substantial number of transformations. Therefore, the final state of
the design does not need to be that of Figure 5.11b since more transformations will follow;
Figures 5.11c and 5.11d show two possible mutually exclusive paths that subsequent op-
timisation steps can lead the design to. The scenario of Figure 5.11c implies that the de-
signer has specified the chip area as a top priority constraint, while delay optimisation is
secondary (§3.2.4). An area-oriented algorithm will then be chosen (for instance the heu-
ristic of Figure 3.10b, readily available within MOODS). The hardware sharing transfor-
mation TF10 (§3.2.3) will then be applied on operations #1 and #2°. The result is that
component C3 is dropped and C1 implements both #1 and #2°. Further, assume that the
comparison can be chained after #2" without affecting the clock period; the CS merging
transformation TF8 will then move operation != to CS N+1 and drop CS N+2. Thus the
state of the design reaches Figure 5.11c. One can observe that the solution at hand is a
relatively cheap self-checking implementation (only the comparator is introduced), but

gives rise to a delay degradation of a clock cycle (N+1). Alternatively, if the designer has
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specified delay as his or her first priority, then the state of Figure 5.11d will be reached,
wherein CSs N and N+1 are merged using TF8, invoked by the heuristic of Figure 3.10a.
Subsequently, N+2 1s also merged with the other two exactly as before, assuming again
that the clock period is long enough. In Figure 5.11d it can be seen that any hardware shar-
ing between C1, C2 and C3 is now impossible, since they are all active simultaneously.
Therefore, self-checking is implemented at a high price, but the result is fast, since there is
no additional delay degradation. The example overall shows that naively applying straight-
forward physical duplication and then allowing the existing synthesis framework to further
optumise leads to a versatile design space exploration process, in the sense that the subse-
quent optimisation automatically follows the designer’s directives and, depending on these
directives, can take alternative paths. This would not be possible if TF22 immediately
lead, for example, to the state of 5.11c, since then delay degradation would be unavoid-
able, and the requirements of a delay-constrained project less likely to be met. In effect,

the initially naive state of 5.11b is dictated by the nature itself of iterative high-level syn-

thesis.

As all transformations, TF22 also needs a validity check phase. Given a target instruction,
the validity check software function first checks if the instruction is a valid datapath opera-
tion. If it is, then duplication testing can readily by applied, unless a) a self-checking
scheme has already been inserted and associated with the instruction, or b} the instruction

itself is the duplicate or the inverse of another functional operation in the DFG.

Transtormation TF23 (physically invert instruction) is very similar to TF22. It is per-
formed exactly along the lines of Figure 5.11, although naturally in this case an inverse
rather than a duplicate of operation #2 would appear in CS N+1 (Figure 5.11Db). The trade-
offs and design space exploration arguments built around Figures 5.11¢c and 5.11d equally
apply in the inversion case. Once more, the same naive start leads to a versatile process.
The validity check phase is also very similar to that of TF22, with the important addition
that, in order for TF23 to be valid, the targeted instruction should be mathematically
uniquely invertible (§5.2.2). For this purpose, each instruction type that the tool supports
1s characterised as either invertible or non-invertible and this information is hard-coded

into the tool; checking for invertibility is then a simple table look-up.
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Note that both TF22 and TF23 introduce new comparison operations to the datapath.
These comparisons need dedicated one-bit registers to preserve their results, and the out-
puts of the registers should be compacted to produce a concise output, exactly as the
VHDL statement (5.6) showed. The test resource framework of this intermediate experi-
ment in fact antomatically introduced a statement such as (5.6) in the RTL output file, thus

accommodating this need.

The third transformation shown on Table 5.6 is TF26 (remove testing scheme). 1t is the
“undo” transformation of both TF22 and TF23. It targets a given instruction, and, as its
name suggests, its function is to disassociate it from any self-checking resources that a
previous application of either TF22 or TF23 may have inserted. This disassociation of a
functional operation from its testing hardware may or may not involve a degree of actual
dropping of hardware modules or control steps. As an example, refer back to Figure 5.11.
If TF26 1s applied to #2 at the state of Figure 5.11b, then operations #2" and != will be
abolished; hardware modules C3 and COMP are only allocated to the abolished instruc-
tions, and therefore they will be removed as well. Control steps N+1 and N+2 will also be
empty and therefore not needed anymore. In contrast, if TF26 is applied at the design state
of Figure 5.11c¢, then dropping out instruction #2” should not be followed by the abolition
of the component implementing it, since the component (C1) is also in use elsewhere (al-

located to #1).

The validity check phase of TF26 needs to ensure that the targeted instruction : a) is a
valid datapath operation, b) is not in itself the duplicate, inverse or comparison operation
of a self-checking scheme, and c) has had self-checking resources associated to it and not

yet removed.

As the final remark of this subsection, recall that in the experiments of §5.3.1, at times a
certain manual intervention (unit unsharing) was needed, to ensure that MOODS did not
assign the same hardware module to the functional and the duplicate operations of a given
duplication scheme. As a supplement to the test resource insertion transformations pre-
sented here, the validity check function of the existing functional unit sharing transforma-
tion TF10 (§3.2.3) was augmented, such that the transformation is considered invalid in

case its two target instructions happen to partake in the same self-checking scheme. This
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slight modification allows the designer to safely use the tailored heuristic algorithms of

§3.2.5.2, without hindering the validity of any previously inserted self-checking schemes.

5.3.2.2 Experimental results

At this point, a number of intermediate experiments were carried out. The objective of
these experiments was to validate the software framework of §5.3.2.1, effectively by re-
producing the results of Tables 5.2, 5.4 and 5.5; this time, however, no HDL modification
was allowed, hoping that transformations TF22 and TF23 would do what the code seg-
ments did in §5.3.1. The experiments were conducted as follows. MOODS was invoked in
console mode (Appendix A), a cost function chosen and the testing transformations were
applied by interacting with the system and manually choosing the type of transformation
(TF22 or TF23) and the target instruction. When all instructions in the design were made
on-line testable, the existing tailored heuristic optimisation algorithm was applied. As ex-
plained in §3.2.5.2, heuristic optimisation automatically follows any of the three paths of
Figure 3.10, depending on the designer priorities; in the context of this work, this equiva-
lently means that optimisation of test resources automatically follows either of the paths of
Figure 5.11 (or alternates between the two, in case of equal priorities). Implementing on-
line testability this way is clearly a much more automated process than the one described
in §5.3.1; however, a degree of manual intervention on behalf of the designer is still
needed, even if this is through the tool user interface. This 1s why the approach of this sub-

section 1s termed “semi-automatic”.

Tables 5.7 — 5.9 summarise the results provided by this set of experiments. All the ele-
ments on the tables are familiar from §5.3.1; the same three benchmarks and the same
low-level tools were used, while version names also have the same meaning. Inverted 2
versions this time were produced simply by specifying a very low clock period value, thus
effectively disallowing chaining. Qualitatively the results of Tables 5.7, 5.8 and 5.9 match
those of Tables 5.2, 5.4 and 5.5 respectively. Indeed, inverted 1 is again the cheapest op-
tion for both the Tseng and the Diffeq designs, while the duplicated version is the least
hardware-intensive in the QRS benchmark. /nverted 2 always experiences the least fre-
quency degradation. Some minor numerical mismatches between Tables 5.2 and 5.7, and
5.4 and 5.8, can be attributed to minor modifications to the MOODS system that are not

related to this work. When comparing Tables 5.5 and 3.9, one notes that the designs on the
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latter are significantly faster as well as more expensive. To understand the reason for this
mismatch, recall the discussion of §5.3.1 regarding the dilemma over how many failed
signals were to be used. Ultimately, a random number n=7 was chosen, and the dup/ 2 and
inv_2 designs of Table 5.5 were thus configured. In the designs of Table 5.9, literally
every single self-checking scheme has its own error indication bit, because such bits are
introduced together with the comparators, through the defined transformations TF22 and
TF23. There is no mechanism to share the introduced error indication bits; therefore, even
in the final, optimised design each self-checking scheme retains its unique error indication
signal. These signals are equivalent to the failed signals defined in the manual experi-
ments of §5.3.1. Since the QRS benchmark includes around 70 operations that all have
self-checking schemes attached to them, the situation is equivalent to having around 70
different £ailed signals in the experiments of §5.3.1. In turn, this suggests that the por-

tion of the design space explored by the semi-automatic approach is different from that

Average
Resource Usage Speed Parameters Testing Penalty Error
Version Slices | Trstate | Cycles | Maximum | Hardware Performance Latency
Buffers Frequency | Overhead Degradation (cyeles)
(slices %) (cycles %)
original 137 400 7 50 MHz N/A N/A oo
duplicated 164 704 7 35 MHz 19.7 0 0
inverted | 156 720 7 4 MHz 13.9 0 0
inverfed 2 163 752 12 42 MHz 19.0 714 i 1.25
Table 5.7 : Tseng Benchmark semi-automatic experiments
(Target Technology Xilinx Virtex XCV800 FPGA)
[ Average
Resource Usage Speed Parameters Testing Penalty Error
Version Slices Tristate Cycles | Maximum | Hardware Performance Latency
Buffers Frequency | Overhead Degradation (cycles)
(slices %) (cycles %)
original 234 642 13 31 MHz N/A N/A oo
duplicated 344 1106 13 29 MHz 47.0 0 0
inverted 1 328 1106 13 5 MHz 40.2 0 0
inverted 2 404 1154 15 29 MHz 72.6 154 0.92

Table 5.8 : Diffeq benchmark semi-automatic experiments
(Target Technology Xilinx Virtex XCV800 FPGA)
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[— Resource Usage Testing Penalty
Hardware Overhead Performance
Version Slices Tristate Cycles Toes 9L P Degradation
Buffers buffers % (cycles %)
original 470 2626 34 N/A N/A N/A
duplicated 750 6548 36 59.6 1494 59
inverted 762 6915 37 62.1 163.3 8.8 |

Table 5.9 : QRS benchmark semi-automatic experiments
(Target Technology Xilinx Virtex XCV1000 FPGA)

explored during the manual experiments, and explains the quantitative differences. An

automated way to determine the optimal comparison resources is still missing.

Once more, it has to be noted that the work presented in this experimentation round 1s still
incomplete. Again the self-checking schemes lack the fault secure property, while full
automation has not been achieved. However, the experiments are successful in that the
transformational framework is experimentally validated; the subsequent §5.3.3 builds

upon this framework and achieves full automation.

5.3.3 Fully automatic approach

As §3.2 has established, automatic optimisation within an iterative and transformational
high-level synthesis tool such as MOODS primarily depends upon the set of available
transformations, the form of the cost function constantly monitoring the quality of the sys-
tem, and the choice of algorithms provided. High-level synthesis for on-line testability as
outlined in this thesis has no reason to be different. Subsection 5.3.2.1 already defined
three additions to the existing set of transformations. The following §5.3.3.1 will define
and explain a metric for on-line testability, to be included in the system cost function.
Subsection 5.3.3.2 will choose an algorithmic approach to fully automate test resource in-
sertion and integrate it with subsequent optimisation. Subsection 5.3.3.3 will alleviate the
lack of fault security of §5.3.1 and §5.3.2. Two more additional transformations will fur-
ther be defined in §5.3.3.4. All these additions will create a fully integral and designer-
friendly synthesis environment; experimentation results will be given in §5.3.3.5 and

comparative comments on §5.3.3.6.
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5.3.3.1 A metric for on-line testability

Transformations TF22 and TF23 (Table 5.6) have been shown to give rise to an initially
inefficient design, paving the way for subsequent versatile optimisation. Still, the initial
application of either of them results in a temporarily huge overhead (Figure 5.11b). Any
synthesis system considering them will consult the controlling cost function to determine
if they are beneficial or degrading; since for the tool at hand the cost function originally
only relies on area and delay, one can conclude that the tool will be highly unlikely to ac-
cept TF22 or TF23 in automatic optimisation mode. This is because the area and delay es-
timation will only reflect the penalties but not the benefit of applying the transformation,
causing it to appear brutally degrading. This not yet reflected benefit is, of course, the im-
provement in on-line testability. It follows that a metric is needed, to quantify on-line test-
ability and include it in the original cost function (equation (3.3)), so as to bias the system

towards introducing on-line testability by means of transformations TF22 and TF23.

The following heuristic on-line testability metric is proposed here :

T =0, X F +o*2><Pz><(1—PI)+0'3x(log(L“)+0'4) (5.7)

on=line

where :

P,% 1is the percentage of original operations made on-line testable

P,% is the average (per functional module) idle time availability

L (measured in control steps) is the average errvor latency per self-checking scheme,
where the term error latency refers to the number of clock cycles that elapse between the
manifestation and the detection of a fault (equivalently, the number of control steps be-
tween the functional operation and the comparison of the self-checking scheme)

o), 02, 03, 04 are weighting constants

Tpnsine 18 normalized over its maximum value, obtained for Pi=1 and L=0, and thus ulti-

mately expressed in %. It is well known that lirroxL”l = oo . As always, in practice infinity is

L

expressed by a pre-defined “sufficiently large” number /NF. In the context of this work, it
was empirically chosen that the /NF value should correspond to a quantity that cannot
possibly appear in the synthesis session of a given design. Given that the largest quantity
that can appear in a design is the number OPS of operations in the design, it was chosen

that INF=OPS§+1. The maximum value of on-line testability is then given by the expres-
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10D 7)),y e = Oy + 05 X (log(ZNF )+ 0,) and according to the above the normalized on-
line testability (7, ) is ultimately given by
Lormtine
<Tm7—/ine > = T - X l OO% (5 . 8)

on=ling max

The 1deas summarized by equation (5.7) are clarified in the following. Clarifying com-
ments are provided with reference to the DFG of Figure 5.8.

e P, is clearly a factor that determines the quality of test, by simply reflecting that the
more operations made on-line testable, the more testable the whole circuit is. For example,
in the Tseng datapath as shown in Figure 5.8 only one out of eight original operations is
on-line testable (addition +2, by means of inversion testing). Therefore P,=1/8=12.5%.

e The percentage of available idle time is easily calculated for the given state of a de-
sign. In the example at hand, subtractor S1 is used in two out of a total of six control steps
in the design. Therefore it is idle during 4 out of 6 CSs, yielding the 66.67% value for its
idle time availability percentage. The respective percentages for the other modules in the
datapath are 50% for adder Al, and 83.33% for multiplier M1, divider D1, comparator C1
and logic gates Gnql and G, 1. Averaging these values yields P,=76.19%.

e The term (/-P;) by which idle time availability P, is multiplied, initially has the value
1 (because initially P;=0), and as the design becomes more and more testable, it moves
towards 0 (as P, — 1). The significance of this, is that idle time can be an advantage in the
first optimisation stages, because idle modules can be utilised in future optimisation steps
to implement duplicate / inverse computations not yet inserted. As optimisation pro-
gresses, less and less idle time is needed, since fewer and fewer duplicate / inverse compu-
tations are to be inserted. Therefore, the term o, x 2, x(1— P ) prevents functional module
sharing in the initial stages, and allows it later on, when testing instructions will have been
accommodated for, and there will be nothing to be gained by preventing sharing.

e  As far as the third term of (5.7) is concerned, clearly faults need to be detected as soon
as possible, thus the linearised inverse errvor latency is present to facilitate merging of con-
trol steps that intervene between the original computation and the comparison operation
(for instance, CSs 4 and 5 in Figure 5.8). For the Tseng DFG at hand, only one self-
checking scheme has been configured (+2, -2°, I=1); its error latency is 2 control steps.
Therefore L=2.

e The weighting constant values in (5.7) determine the relative contribution of each term

in the overall on-line testability value. They have been set such that the first term contrib-
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utes 90% (as being the most important), while the third one contributes 10%. The second
term contributes a small .1%. This does not practically add up to more than 100%, since
the second term comes out of play as the first approaches its maximum value. The exact
values used in the experiments of this work for the constants were g,=9x(log(INF)+o4),
,=0.01x(log(INF)+ay), 05=1, and 0,=0.3. Notice that gy and o depend on the “INF” value
defined above; therefore, they are constants for a given synthesis project, since INF is a
constant for a given design. These values were determined purely empirically, through ex-
perimentation and evaluation of the synthesis results produced using them. Notably, the
overall contribution of the second term of equation (5.7) is very small. Clearly a higher

value of o> would have increased it, but once again experimentation dictated that this was

not necessary.

The MOODS cost function now becomes

Cost =c . Xarea +c

area delay X d@[ay + COLT x <va7—/ine> (59)
Exactly like caee a0d Cyery, corr reflects the designer-specified priority of the on-line test-

ability criterion.

Equations (5.7) and (5.8) succeed in providing a visualisation of the previously abstract
concept of on-line testability,
4 by identifying and exploiting
the parameters that make up a
good on-line testable design.
Inclusion in the cost function
(5.9) informs the synthesis
suite of the importance of on-
line testability and paves the

way for automatic optimisa-

on-line testability

tion, through the choice of a
suitable algorithm (§5.3.3.2).

One subtle difference be-

tween on-line testability and
area

the conventional criteria, 18

that optimising the latter re-

Figure 5.12. 3-dimensional design space
(area, delay, on-line testability)
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fers to minimisation (of e.g. area or delay), while optimising on-line testability is equiva-
lent to maximizing its value. Indeed, if the designer wishes a design that would be “as test-
able as possible”, then he or she should specity the 100% value as the testability optimisa-
tion target. For the same reason, co;r in equation (5.9) should be understood as holding a
negative value. Other than that, equation (5.9) is fully consistent with the cost function de-
scription of §3.2.4. Further, the introduction of a third user specification effectively gives
rise to a three-dimensional design space, as Figure 5.12 depicts. The coloured area shows
the achievable region (§3.1.2) including the example point A, along with the projections of

A on the three axes that define the space (area, delay, on-line testability).

5.3.3.2 Algorithms

The next step towards full inclusion of test resource insertion within the overall iterative
optimisation process, is the choice and implementation of one or more suitable algo-
rithm(s), to control the optimisation loop execution. Synthesis experience using MOODS
suggests that the tailored heuristic algorithms of §3.2.5.2 are very fast, and normally pro-
vide acceptable results, despite the theoretical risk of ending up in a local minimum. The
problem is that all versions of the heuristics use only a limited number of transformations;
the testing transformations of §5.3.2.1 are not relevant, and there is no obvious way to in-
clude testing considerations to the metrics of §3.2.5.2. On the other hand, simulated an-
nealing (§3.2.5.1) is very abstract and thus particularly suitable for optimising anything
that can be quantified, regardless of its nature. The disadvantage of simulated annealing is

its very slow speed.

In order to exploit the benefits and make up for the weaknesses of both simulated anneal-
ing and tailored heuristics, it was decided that a combination of the two should be used, as
in the following :

e Step | : apply modified simulated annealing, using designer defined parameters for the
initial and the terminating “temperature”, as well as for the rate of temperature decrease
per step

o Step 2 : apply the version of tailored heuristics that matches the area and delay design
priorities (Figure 3.10)

The “modified” simulated annealing mentioned in Step 1 of the above procedure refers to

the standard simulated annealing algorithm already implemented within the MOODS sys-
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tem, with TF22 and TF23 included in the set of transformations, and a degree of determin-
ism incorporated. This determinism consists in the following. When the algorithm ran-
domly chooses a transformation from the set, if it happens to be a scheduling or allocation
transformation then the algorithm proceeds as usual; if it turns out to be either of the test
resource insertion transformations, then its actual type (duplication or inversion) is ini-
tially ignored, and which of the two will ultimately be applied is decided based on the fol-
lowing criteria :
o if the target instruction is not invertible, then duplication is applied, else
¢ if no inverse module instance is already present in the design, then duplication is
applied, else
e if frequency requirements are relaxed, then inversion is applied, else
e if delay is a higher priority than area, then duplication is applied, else
e if area is more important than delay, then inversion is applied, else
o area and delay are of equal importance; the initial randomly selected trans-

formation (TF22 or TF23) is applied

The criteria upon which the choice of testing technique is made actually connect this dis-
cussion to the presentation of inversion testing in §5.2.2 and the manual experiments of
§5.3.1. Indeed, remember that inversion testing is practically advocated in §5.2.2 only
when idle modules of suitable types already exist in the datapath; if that is the case, then
experimental observations in §5.3.1 suggest that applying inversion testing leads to com-
pact designs, but severe degradation in the maximum achievable clock speed. It can there-
fore be beneficial in situations that do not demand very fast clocks, in other words when
frequency requirements are relaxed. The exact numerical correspondence of “relaxed” fre-
quency requirements is to be determined experimentally, and varies from design to design.
On the other hand, when frequency requirements are strict and thus chaining is unlikely to
occur, then duplication and inversion were found in §5.3.1 to lead to faster and cheaper
(respectively) solutions; therefore duplication should be favoured when delay is the top
priority, and vice versa. When area and delay have equal priorities, then there can be no
certainty as to which choice will lead to a better long-term solution, and so the initial ran-

dom choice is adopted.

The goal of the above modification is simply to prevent moves that design experience

suggests are undoubtedly suboptimal. Although classic simulated annealing is famous for
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turning around unfavourable situations and over time balancing at the cost function global
minimum, there is no reason why a particular area of the design space cannot be excluded,
if it 1s known a priori that the desired solution does not lie within that area. It is in the light
of this statement that the above modifications were decided. The positive result is the ac-

celeration of the simulated annealing algorithm.

Returning to Step 1, it is clear that the designer can specify the duration of the simulated
annealing optimisation process through the temperature parameters. The implication 1s
that simulated annealing is used primarily for test resource insertion and secondarily for
area and delay optimisation; therefore the designer can experimentally determine parame-
ters that practically apply simulated annealing for as much time as needed for a “suffi-
cient” improvement in testability. Tailored heuristics are employed afterwards (Step 2),
optimising the already testable design for the traditional criteria of delay and area. In this
way, the abstract nature of simulated annealing is exploited, while its slow speed is com-
pensated for, firstly by the introduction of a degree of determinism, and secondly by fast

and efficient heuristics that take over as soon as simulated annealing has fulfilled its pri-

mary objective.
5.3.3.3 Fault secure comparators and dual-rail checkers

The concluding remarks of both §5.3.1 and §5.3.2 include mentions to the missing prop-
erty of fault security. The present subsection presents the development work that solved
this problem. Both duplication and, when applicable, inversion are fault secure as sepa-
rately shown in §2.2.2 and §5.2.2, provided that the checkers / comparators used in the
schemes are fault secure by design. This means that the datapath self-checking schemes of
this chapter can all be made fault secure, if the conventional, single-bit output comparators
§5.3.1 and §5.3.2 are replaced by the standard two-bit output fault secure comparator
modules mentioned in §2.2.2.1. Therefore, the task of this subsection is the design of a
library of fault secure comparators, and the necessary modifications to the MOODS sys-

tem to utilise them in the self-checking schemes.

In essence, an n-pair fault secure comparator is composed of an n-pair fault-secure dual-
rail checker (§2.2.2.2) and » inverters applied to one of the dual-rail input vectors. In turn,

an n-pair dual-rail checker consists of n-1 dual-rail checker cells, such as the one shown in



P. Oikonomakos, 2004 Chapter S: Datapath Self-checking Design

167

| /2 | dual-rail cells

m=f_n/2‘f

77} ny
4 4

|1, /2] dual-rail cells

fnz {ng Hy= [_nk /21

2 < <2t

I levels

Aams kU IEE R RAENE TR

KA NN zEEAREAAAR NS E AR A,

&n/ﬂ =2 &i’l/{_q =2

single dual-rail cell
i/n;{:”f

i/n/(:']

Figure 5.13. Block diagram of an n-bit dual-rail checker

Figure 2.30. Figure 2.31 has
exemplified this concept,
by showing a S-pair dual-
rail checker. A generic
block diagram representa-
tion of an n-pair dual-rail
checker is shown in Figure
5.13. The figure shows that
the checker is effectively
composed of k levels of ar-
rays of dual-rail cells. The
number of levels %, the
number of cells in each ar-
ray, and the number of in-
termediate signals between

arrays are also analytically

defined in the figure. An array fed by an even number of dual-rail pairs effectively applies

dual-rail checks to each “pair of pairs” separately, since a dual-rail checker cell 1s in effect

a 2-pair dual-rail checker. In the event that an array is fed by an odd number of pairs, one

pair is simply carried to the array output and fed to the lower level array, unaffected. It can

easily be verified that for »=>5 Figure 5.13 produces Figure 2.31.

library ieee;

use leee.std_logic_1i64.all;
use leee.numeric std.all;
entity CHK ARR is

in2(m-2%1i));
and generate;

B2: if ((m rem 2)=1) generate
output { (m+1)/2) <= inl (0);
ocutput (0) <= 1in2 (0} ;

end generate;
end;

generic (m: positive := 1);
port {inl, in2 in std logic_vector (m-1 downto 0);
output: out std_logic_vector ({(m + {m rem 2)) -1 downto 0));
end CHK ARR;
architecture structure of CHK_ARR is
begin
Bl: for i in 1 to m/2 generate
output {(m+ (m rem 2)-1i) <= (inl{m-2*i+1) and in2{(m-2+%*1i)) or (in2(m-2%i+1)
and ini{m-2*1i));
output (m-i-mw/2) <= (inl{m-2*1i+1) and inl(m-2%*i)) or (in2(m-2*i+1) and

Figure 5.14 : The CHK_ARR cell
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Clearly, the first step towards the design of a complete dual-rail checker is the design of
dual-rail cell arrays. A generic and synthesisable VHDL description of a dual-rail array
component has been written for this purpose; it is shown in Figure 5.14. The VHDL code
shows that an appropriate, parameterized number of dual-rail cells are defined through

signal assignment statements that follow the behaviour of Figure 2.30.

Using the array component of Figure 5.14, one can easily implement fault secure com-
parators and dual-rail checkers of any desired bit widths. Figure 5.15 shows the synthesiz-
able VHDL description of a 16-pair dual-rail checker. A fault secure comparator is easily

produced from the design of Figure 5.15, by simply substituting the signal assignment

library ieee;
use ieee.std logic_11i64.all;
use ieee.numeric std.all;
entity NEQ_ 3 _nlé is
port {inl, in2 : in std_logic vector {15 downto 0) ;
output : out std_logic vector(l downto 0)};
end NEQ_3 nl6;

architecture structure of NEQ 3 nlé is
signal intermediate signals : std logic_vector (61 downto 0] ;
component CHK ARR
generic (m: positive := 1j;
port (inl : in std logic vector (m-1 downto 0);
in2z : in std logic vector (m-1 downto 0);
output : out std logic_vector ((m + (m rem 2})-1 downto 0));

end component;
for all: CHK_ARR use entity work.CHK ARR(structure);

begin
intermediate signals (61 downto 46) <= inl;
intermediate_signals (45 downto 30) <= in2;
Ul: CHK_ARR generic map (16)
port map (intermediate signals (61 downto 46),
intermediate_signals {45 downto 30),
intermediate signals (29 downto 14)};
U2: CHK_ARR generic map (8)
port map (intermediate signals (29 downto 227,
intermediate_signals (21 downto 14),
intermediate_signals ({13 downto 6));
U3: CHE_ARR generic map (4)
port map {intermediate signals (13 downto 10},
intermediate_signals (9 downto 6
intermediate signals {5 downto 2
U4: CHK_ARR generic map (2)
port map (intermediate signals (5 downto 4
intermediate signals (3 downto 2)
intermediate_signals {1l downto 0
output <= intermediate signals(l downto 0);
end;

),
F

i

Figure 5.15 : A 16-pair dual-rail checker
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intermediate signals (45 downto 30) <= in2; (5.10)
with

intermediate signals (45 downto 30) <= not in2; (5.11)

Following these analytical structure definitions, a C++ programme was developed, that
automatically produced two libraries of VHDL descriptions of dual-rail checkers and fault
secure comparators, for all bit widths between 1 and 200. The MOODS core synthesis sys-
tem was then modified to use fault secure comparators in all self-checking schemes. Fur-
ther, the interim technique of compacting comparator responses using OR gates as shown
in §5.3.1 is no longer relevant. Instead, response compaction has to be done by using 2-bit
registers attached to the comparators, and employing a universal dual-rail checker in the
standard way of Figure 5.10. This was also accommodated for within MOODS, again by

using a cell from the dual-rail checker library.

Note that the structure of Figure 5.13 is one out of several possible structures that an n-bit
dual-rail checker can have. Such a checker will always use n-1 checker cells, but alterna-
tive structures can be configured by applying alternative internal arrangements of the cells
within the checker. As explained in §2.2.2.2, different arrangements will need to receive
different test sets during their normal operation to ensure the self-testing property. There-
fore, if the inputs received during normal operation were known, it would be possible to
choose the most efficient arrangement that would provide the self-testing property [58].
However, in the generic tool development context of this work, the inputs cannot possibly
be known a priori. A solution that would ensure the self-testing property regardless of in-
puts would be the embedded dual-rail checker of Figure 2.32 [12, 19, 20]. This design,
however, constitutes a very expensive solution, especially taking into account that a ge-
neric design can easily include tens of operations of realistic bit widths, that would need
tens of long LFSRs if the structure of Figure 2.32 was applied to every single self-
checking scheme configured for them. It was therefore decided that a theoretical conces-
sion be made, by not explicitly pursuing the TSC goal (notably, none of the previous
works on algorithmic duplication pursue it either). The self-checking schemes are still
fault secure, and if the chip operates for long enough for each scheme to receive all possi-
ble inputs, under Hypothesis 2.1, then they are self-testing too; if certain local conditions

within a given design prevent a checker from receiving all possible inputs, then there is a
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Figure 5.16. Sharing fault secure
comparators

theoretical risk that faults may escape. Sub-
section 7.1 elaborates more on these consid-
erations and proves that this risk is practi-
cally negligible for reasonably-sized de-

signs.

In the light of the arguments stated in the
above paragraph, any arbitrary arrangement
of dual-rail cells within the checker would
be sufficient for the purposes of this thesis.
The structure of Figure 5.13 was conse-
quently devised because it is well-defined,
and thus it was possible to automate its de-

sign.

5.3.3.4 Auxiliary modifications

Subsection 5.3.3.3 has presented the details
of the comparators needed throughout the
self-checking designs that the modified
MOODS will produce. Although they per-
form a special function In a specific context,
these comparators are normal data path
modules, taking up valuable area of the
chip. It is therefore desired that they can be
shared. In fact, the MOQODS framework is
readily able to share fault secure compara-
tors, by virtue of the existing hardware shar-
ing transformation TF10 (§3.2.3). However,
the presence of the 2-bit registers together
with the fact that MOODS has no reliable
register sharing mechanism gives rise to
suboptimal configurations as exemplified in

Figure 5.16. Figure 5.16a is effectively a
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simplified version of Figure 5.10, showing two fault secure comparators writing their re-
sults to respective registers and the register outputs compacted by a dual-rail checker.
Suppose that comparator C1 implements comparison !=1, while comparator C2 imple-
ments !=2. If I=1 and !=2 have not been scheduled for the same control step, then the
modules implementing them can be shared. Under this assumption, Figure 5.16b shows
the situation immediately after merging C2 into C1 using the classic module sharing trans-
formation TF10. It is easy to observe that unneeded logic remains in the system; indeed,
there is no reason to keep both registers. In fact, sharing the registers not only saves a reg-
ister, but also minimises the size of the response compactor. In the particular case, since
the response compactor is only a 2-pair dual-rail checker, sharing the registers will enable

its full removal; this is the desired state shown in Figure 5.16c.

The above example establishes the need for some limited register sharing functionality to
be added to the synthesis system. As always within MOODS, this was formulated in a
suitable transformation. To be consistent with the MOODS nomenclature, an “unsharing”

transformation was developed too. These two transformations are tabulated in Table 5.10

and explained in detail in the following.

symbolic description type of
name transform

TF24 share test response register testing/
allocation

TF25 restore original testing/
test response register allocation

Table 5.10. Additional transformations

Transformation TF24 (share test response register) targets two functional operations hav-
ing testing schemes attached to them. It redirects the comparator output of the second
scheme to the register that stores the comparator output of the first. The register originally
attached to the second operation is abandoned. The test phase of TF24 first ensures that
the target instructions are valid and suitable for self-checking. Then it checks that they ac-
tually both had self-checking schemes attached to them and neither of the schemes has

been removed. Finally, it makes sure that the two comparators are under no condition ac-

tive at the same control step.
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Transformation TF25 (restore original test response register) is the inverse of TF24. In-
deed, it targets a single functional instruction that has had a testing scheme attached to it
and its dedicated test response register removed through TF24. Tt simply reintroduces the
original register and redirects the testing scheme output accordingly. The test phase simply
checks that the above statements about the targeted instruction are true, i.e. that it has had

a self~checking scheme attached to it and the original register has been removed.

It is to be noted that TF24 and TF25 do not provide a proper framework for general-
purpose register sharing. Indeed, register sharing generally refers to using a single register
to store multiple distinguishable functional signals; instead, TF24 effectively implements
what could be called “signal sharing”. In simple terms, TF24 causes a certain non-
functional, auxiliary signal to be fully abandoned (together with the register storing it) and

an alternative one to take its place. Clearly this cannot apply to functional signals.

Although the “pseudo” register sharing implemented in this subsection is transformational,
the relevant transformations TF24 and TF25 are not as such considered within the simu-
lated annealing step of the automatic on-line test synthesis process (§5.3.3.2). Instead, they
are embedded within the hardware sharing (TF10) and unsharing (TF12, TF13) transfor-
mations, such that whenever fault secure comparator modules are chosen to be shared or
unshared, their respective target registers are shared or unshared as well. Thus, the trans-
formations of this subsection can be seen as a way to “tidy up” the suboptimalities left by
the pre-existing MOODS framework when interacting with the additions of this thesis

(e.g. Figure 5.10).

One might think that sharing small 2-bit registers is a minor issue that will lead to only
marginal improvements. However, recall §5.3.1 and the observation that, in the context of
the manual experiments, using multiple £ailed signals produced very different results
from using just one (Table 5.5). The need for an automatic way to identify an optimal
nwmber of such signals was also highlighted. The semi-automatic experiments (§5.3.2.2)
further confirmed this need. In the dual-rail domain of this subsection, the 2-bit compara-
tor outputs and the registers storing them are the equivalent to the single-bit failed sig-
nals of §5.3.1 and §5.3.2.2. In that sense, defining TF24 and TF25, and embedding them
in the usual MOODS hardware sharing transformations provides an automatic solution to

this last outstanding problem.
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5.3.3.5 Experimental results

The final experimental results validating the automatic datapath self-checking design of
this whole chapter are presented here. Given the synthesis framework of §5.3.3.1 -
§5.3.3.4, no time-consuming HDL modification or console-mode operation-after-
operation handling is needed anymore. When the modified MOODS is invoked, the de-
signer has the chance to specify the cost function, both in terms of the traditional parame-
ters (area, delay, clock period) and in terms of on-line testability. Subsequently synthesis
proceeds along the lines of §5.3.3.2, beginning with an initial simulated annealing stage
and concluding with a stage of tailored heuristic optimisation. If the designer does not
specify an on-line testability specification, then the simulated annealing stage is omitted
and an untestable version is produced, by plainly using the original synthesis suite of §3.2.
In most cases, synthesis of self-checking designs finishes within minutes. This is an im-
portant advantage from the design space exploration point of view; indeed, it allows the
designer to experiment with different values of parameters fast and painlessly, until a solu-

tion that satisfies his or her project needs is reached.

Tables 5.11 — 5.41 show the automatically obtained results. The three benchmarks men-
tioned in previous subsections (Tseng, Diffeq, QRS) are used; an additional few designs
are also tried. Note that some of these benchmarks include loops, conditionals, as well as
parallel processes (covered m more detail in §6.1.2). Thus, it is demonstrated that all struc-
tures likely to appear in a realistic design scenario can be accommodated. In all experi-
ments, the designer’s goals were set to O units of area, 0 nanoseconds of delay and, when
desired, 100% on-line testability. Of course, these goals were classified as high or low pri-
ority, thus resulting in alternative design space exploration paths in each different synthe-
sis run; this classification is always shown on the tables. In fact, on-line testability is al-
ways either a high priority or totally omitted. Further, the simulated annealing parameters
were always chosen such that all the instructions in the design were secured by a self-
checking scheme. Thus, in all experiments targeting on-line testability, P, of equation
(5.7) ultimately assumes 100%. Together with other design statistics, the tables also report
the on-line testability technique used, as well as a value for on-line testability as calculated
using equation (5.7). Regarding the technique, the information on the tables only refers to

the invertible instructions. Thus, “inversion” on the tables should be interpreted as “invert-
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ible instructions are checked by inversion, while non-invertible ones still use duplication”.
On the other hand, “duplication” simply means “all instructions are checked by duplica-
tion”. Very often some invertible instructions are checked by duplication and some others
by inversion, in the same design. On the tables, this is termed a “mixed” technique, and it
automatically arises when there is no deterministic reason to choose one over the other and
a random choice 1s made within simulated annealing (as explained in §5.3.3.2). Regarding

the testability value reported, since P, is always left to reach 100%, any deviation of

> from its maximum 100% value is an indication of error latency. The desired

L
clock frequency was adjusted between experiments, in order to promote or prevent chain-
mg. Practically, for a given design in a given technology, a clock period value was ex-
perimentally identified that allowed unconstrained chaining; this is always shown on the
tables as a “relaxed” clock period requirement. A second clock period value was also
found, that did not allow any instruction chaining at all. This is termed a “strict” or “very

strict” period constraint. In most cases, one or two period values between these two ex-

tremes were also tried and classified accordingly (e.g. “moderate™).

The first automatic experiments were conducted using the Tseng benchmark, and targeting
an FPGA part. Table 5.11 shows the results, highlighting points of particular interest. The
least hardware-intensive self-checking version was the one on the second row, using in-
version when possible and having a hardware overhead of 29.5%. There were two ver-
sions that did not experience any clock cycle degradation; one of them however suffered
severe frequency degradation, due to relaxed clock period requirements leading to exten-
sive chaining. The highest maximum frequency value (41 MHz) was achieved at a rela-
tively high price (42.5% in hardware, 57.1% in clock cycles and some error latency, since
testability is at 94.8%). The final choice lies with the designer; the goal of tool develop-
ment, that is efficient design space exploration providing him or her with a variety of

choices, is clearly achieved.

Synthesis constraints Hardware Performance Overheads

and priorities usage Testability

area delay clock on-ine Tristate clock maximum hardware speed (technique,
period testability | slices buffers cycles fre(ﬁ;ﬁ;cy (slices %} {cycies %) value %)

high | high | relaxed - 146 432 7 48 N/A N/A none, 0.0
high | high | relaxed high 189 752 7 7 29.5 0.0 inversion, 100.0
high | low strict high 208 784 11 41 42.5 57.1 inversion, 84.8
low | high strict high 197 736 7 38 35.0 0.0 duplication, 100.0
high | high strict high 197 752 8 40 35.0 14.3 mixed, 99.6

Table 5.11 : Tseng Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA)
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Tables 5.12 — 5.14 sum up the results of the experimentation with the Diffeq benchmark.
Three different untestable versions were synthesized, each one shown on a different table,
with different clock period requirements. A total of nine self-checking versions were also
produced. Notably, two different combinations of specifications can lead to effectively the
same result. The second row Table 5.12 and the third row of Table 5.13 are an example of

this phenomenon. This simply means that two different optimisation paths may lead to the

Synthesis constraints Hardware Performance Overheads

and priorities usage Testability

area delay clock on-iine Tristate clack maximum hardware speed (technique,

period testability | slices buffers cycles {rszﬁﬂu:;)cy (slices %) {cycles %} value %)

high | high | relaxed - 234 642 13 31 N/A N/A none, 0.0
high | high | relaxed high 321 962 14 7 37.2 7.7 inversion, 100.0
high | low | relaxed high 321 962 14 6 37.2 7.7 inversion, 100.0

| low | high | relaxed high 323 962 14 8 38.0 7.7 inversion, 100.0 |

Table 5.12 : Diffeq Benchmark synthesis results (Target Technology Xilinx Vin‘ex XCV800 FPGA),
relaxed clock period requirements

Synthesis constraints Hardware Performance Overheads

and pricrities usage Testability

area delay clock on-fine Tristate clock maximum hardware speed (technique,
period testability | slices buffers cycles frs;&u:;}cy (slices %) (cycles %) value %)

high | high | moderate - 234 642 13 31 N/A N/A none, 0.0
high | high | moderate high 331 962 14 28 415 7.7 mixed, 100.0
high low | moderate high 321 962 14 7 37.2 7.7 inversion, 100.0
low high § moderate high 338 1028 14 28 44.4 77 duplication, 100.0

Table 5.13 : Diffeq Benchmark synthesis resuits (Target Technology Xilinx Virtex XCV800 FFPGA),
moderate clock period requirements

Synthesis constraints Hardware Performance Overheads
and priorities usage Testability
area delay ciock on-line Tristate clock maximum hardware speed (technique,
period testability | slices buffers cycles frsz;:/]u::)cy (slices %) {cycles %) value %>
high | high strict - 306 706 19 43 N/A N/A none, 0.0
high | high strict high 427 1170 28 35 39.5 47.4 mixed, 91.6
high low strict high 429 1202 30 37 40.2 57.9 inversion, 81.2 |
low | high strict high | 436 1282 25 38 42.5 31.6 duplication, 92.1_|

Table 5.14 : Diffeq Benchmark synthesis results (Target Technology Xilinx Virtex XCV800 FPGA),
strict clock period requirements

same point in the design space. The tables again highlight the optimum results with re-
spect to different criteria. Hardware overhead can be as low as 37.2%, while clock cycle
degradation is in several cases kept as low as a single cycle. The maximum frequency
achieved by a self-checking design is 38 MHz, again at a certain hardware overhead and

clock cycle penalty price.

The following tables 5.15 — 5.18 present the results of synthesis using the QRS design.
This design is of particular significance, both because it corresponds to a useful system
rather than a devised benchmark, and because of its substantial size. Each synthesis for on-
line testability run with the particular design took approximately 20 minutes of real time,
which is a serious time-to-market advantage. Indeed, having written the original VHDL

description, the designer can use high-level synthesis to produce a variety of on-line
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Synthesis constraints Hardware Performance Overheads
and priorities usage Testability
area delay [ cio'ck on—lir}g ) Tristate clock maximum hgrdware speed (technique,
E period testability | slices buffers cycles fre(gﬂu:gcy (slices %) {cycles %) value %)
high | high | verystict - 564 2552 66 19.2 N/A N/A none, 0.0
high | high | verstret high 875 6703 69 2.1 55.1 4.5 mixed, 93.8
low | high | vestid high 794 6511 66 8.5 40.8 0.0 duplication, 94.5
high | low | verstd high 983 6298 107 2.3 74.3 62.1 mixed, 92.1
Table 5.15 : QRS Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),
very strict clock period requirements
Synthesis constraints Hardware Performance Overheads
and priorities usage Testability
area delay clock on-ling Tristate clock maximum hardware speed (technique,
period testability | slices buffers cycles fre(ﬁﬂu}j:)cy (slices %) (cycles %) value %)
high | high strict - 514 2689 45 2.6 N/A N/A none, 0.0
high | high strict high 774 7221 47 1.1 50.6 4.4 mixed, 95.8
low | high strict high 788 7357 43 1.0 53.3 -4.4 duplication, 95.4
high | low strict high 829 5936 101 3.1 61.3 124.4 mixed, 93.0
Table 5.16 : QRS Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),
strict clock period requirements
Synthesis constraints Hardware Performance Overheads
and priorities usage Testablility
area delay clock on-fine Tristate clock maximum hardware speed (technique,
period testability | sfices buffers cycles fre(rc\]/!u}:e‘;)cy (slices %) {cycies %) value %)
high | high | moderate - 457 2577 34 9.7 N/A N/A none, 0.0
high | high | moderate high 706 7221 37 1.0 54.5 8.8 mixed, 100.0
low | high | moderate high 715 7336 33 0.8 56.5 -2.9 mixed, 97.3
high | low | moderate high 839 5936 100 2.7 83.6 194.1 mixed, 92.9
Table 5.17 : QRS Benchmark synthesis resulis (Target Technology Xilinx Virtex XCV1000 FPGA),
moderate clock period requirements
Synthesis constraints Hardware [ Performance Overheads
and priorities usage f Testability
area delay clock on-line Tristate ciock maximum hardware speed (technique,
period testability | slices buffers cycles fre{s;;:;)cy (slices %) {cycles %} value %)
high | high | relaxed - 470 2626 34 3.2 N/A N/A none, 0.0
high | high | relaxed high 764 7164 37 0.6 62.6 8.8 mixed, 97.3
low | high | relaxed high 732 7227 34 0.9 55.7 0.0 mixed, 100.0
high | low | relaxed high 839 5936 100 2.6 78.5 1941 mixed, 92.9
Table 5.18 : QRS Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),

relaxed clock period requirements
testable realisations to choose from, within hours of real time. The cheapest on-line test-

able realisation identified used up 706 FPGA slices, for an overhead of 54.5% with respect
to its original untestable design. In general, all but one solutions in this experiment experi-
ence a hardware overhead of more than 50%, which is still cheap with respect to straight-
forward physical duplication and comparison (>100%). There is a huge variation as re-
gards design performance. Indeed, one can notice values between 33 and 107 cycles. This
is because of the substantial size of the design, which consequently means the achievable
region in the design space is also of substantial size. In turns, this effects in a particularly
large number of optimisation paths, once more stressing the importance of being able to
traverse these paths quickly. An interesting observation is that on two occasions (Tables
5.16 and 5.17) there exist testable designs that are faster (i.e. take up slightly fewer clock
cycles) than their untestable equivalents. This can perfectly well be attributed to algorithm

inefficiencies (the tailored heuristic algorithms are, after all, only heuristics). A more
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elaborate explanation is that the particular versions are shown on the tables to be produced
using a “high” delay priority versus a “low” for area, while their corresponding untestable

designs have an equal priority for the two criteria.

Table 5.19 shows the experimental results reached for a design not encountered earlier in
this thesis; that is an 8-bit viterbi decoder, featuring 72 operations. It is not a standard HLS
benchmark, and it is explained in [131]. The full VHDL code can be found in Appendix B.
One observation on the table is that in this case it appears rather clear which testable ver-
sion will most probably be preferred. Indeed, the last row shows a design that is both the
cheapest and the fastest in clock cycles, although it experiences a modestly suboptimal
degradation in maximum frequency. The most serious observation, however, is that all
three synthesized testable designs are rather expensive; indeed, in two cases their hardware
overhead greatly exceeds 100%. The explanation for this is that the particular design is
composed of parallel VHDL processes, each one using a single copy of each of its hard-
ware modules to implement the instructions assigned to it. The only way to perform dupli-
cation testing under these circumstances is to physically introduce an additional module of

every type, in every process. This very much results in physical duplication; the

Synthesis constraints Hardware Performance Overheads

and priorities usage Testability

area delay clock on-line Tristate clock maximum hardware speed (technique,

period testability | slices buffers cycles f(igﬂu:%cy (slices %) (cycles %) value %>

high | high | relaxed - 174 344 4 37 N/A N/A none, 0.0
high | high | relaxed high 428 936 6 31 146.0 50.0 duplication, 95.3

high | low | relaxed - 174 344 4 38 N/A N/A none, 0.0
high | low | relaxed high 448 849 7 37 157.5 75.0 duplication, 92.9

low | high [ relaxed - 174 344 4 37 N/A N/A none, 0.0
low | high [ relaxed high 314 731 4 33 80.5 0.0 duplication, 100.0

Table 5.19 : 8-bit viterbi decoder synthesis resuits (Target Technology Xilinx Virtex XCV1000
FPGA), relaxed clock period requirements

conclusion is that the particular design is rather unsuitable for duplication testing. Suitable
error-correcting codes (§2.2.1) would probably give cheaper, although technology-specific
and harder to devise, results. On the positive side, it is important that the synthesis tool

was able to come up with some solution, even for this pathological design. This proves the
generic property, highly desired when developing a tool. Besides, an overhead of 80.5% is

still below 100% and it may be acceptable in certain applications.

The next design experimented with, was an elliptical filter, taken from [8]. The results ob-
tained when targeting an FPGA part are shown in Tables 5.20 — 5.22, where the best nu-

merical results per parameter are highlighted. It is an interesting benchmark, in that the
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Synthesis constrainis Hardware Performance Overheads

and priorities usage ] Testability

area delay clock on-lir}g ) Tristate clock maximum hardware speed (technique,
period testability | slices buffers cycles fre(ﬁﬂu::\cy {slices %) (cycles %) value %)

high low relaxed - 322 923 32 52 N/A N/A none, 0.0
high low | relaxed high 541 2052 38 34 68.0 18.8 duplication, 93.8
high | high | relaxed - 315 1018 17 50 N/A NIA none, 0.0
high | high | relaxed high 408 2828 17 32 29.5 0 duplication, 100.0
low | high | relaxed high 426 2674 19 32 35.2 11.8 duplication, 99.9

Table 5.20 . Ellip Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),
relaxed clock period requirements

[ Synthesis constraints Hardware Performance Overheads

and priorities usage Testability

area delay clock or-line Tristate clock maximum hardware speed (technique,
period testability | slices buffers cycles fre(gﬁu:;)cy (slices %) {cycles %) value %)

high Jow | moderate - 322 923 32 52 N/A N/A none, 0.0
high low | moderate high 497 2019 36 34 54.3 12.5 duplication, 94.3
high | high | moderate - 315 1018 17 50 N/A N/A none, 0.0
high | high | moderate high 437 2562 20 32 38.7 17.6 duplication, 99.9
low high | moderale high 448 2450 23 34 41.8 35.3 duplication, 97.4

Table 5.21 : Ellip Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),
moderate clock period requirements

Synthesis constraints Hardware Performance Overheads

and priorities usage Testability

area delay clock on-line Tristate clock maximum hardware speed (technique,
period testability | slices buffers cycles fre?&u:;)cy (slices %) {cycles %) value %)

high low strict - 322 923 32 52 N/A N/A none, 0.0
high | low strict high 516 2020 39 34 60.2 21.9 duplication, 93.6
high | high strict - 315 1018 17 50 N/A N/A none, 0.0
high | high strict high 467 2642 21 32 48.3 23.5 duplication, 98.3
low | high strict high 441 2579 21 33 40.0 23.5 duplication, 97.4

Table 5.22 : Ellip Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),
strict clock period requirements

range of variation in the statistics is particularly broad. For example, the hardware over-
head for test resource insertion ranges from a modest 29.5% to 68%. Some synthesis ses-
sions have clearly failed. Indeed, on all three tables, the second row corresponds to a self-
checking design synthesized with a high priority for area optimisation and a low priority
for delay optimisation. However, the heuristics totally failed in these cases, since the re-
sults are both the most expensive and the slowest when compared to the other synthesis
runs. Ultimately, design space exploration leads to a very good result, shown on the fourth
row of Table 5.20, requiring a minimum hardware overhead of 29.5% with no additional

clock cycles and a maximum frequency value of the same order as all other self-checking

results.

The last benchmark design that tested the datapath self-checking synthesis system target-
ing FPGA technology was a Greater Conmumon Divider module (GCD), found in [129].
Tables 5.23 —~ 5.25 summarise the results. On these tables one can observe the same phe-

nomenon already seen on Tables 5.15 — 5,17, that is, on-line testable design that are
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Synthesis constraints Hardware Performance Overheads

and priorities usage Testability

area delay clopk on-!im_e Tristate clock maximum hardware speed (technique,
period testability | slices buffers cycles frve(&u:;)cy (slices %) {cycles %) value %)

high | high | relaxed - 81 292 7 28 N/A N/A none, 0.0
high | high | refaxed high 137 748 7 29 69.1 0.0 duplication, 99.7
high low relaxed high 121 580 6 25 49.4 -14.3 duplication, 100.0
low high | relaxed high 124 644 S 22 531 -14.3 duplication, 100.0

Table 5.23 : GCD Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),
relaxed clock period reuigrements

Synthesis constraints Hardware Performance Overheads

and priorities usage Testability

area delay f clock on-line Tristate clock maximum hardware speed (technique,

period testability | slices buffers cycles fre(gﬁu‘i;)cy (slices %) {cycles %) value %)

high | high | moderate - 82 276 8 26 N/A N/A none, 0.0
high | high | moderate high 140 668 8 33 70.7 0.0 duplication, 99.7
high low | moderate high 127 580 7 33 54.9 -12.5 duplication, 100.0
low | high | moderate high 126 596 7 32 53.7 -12.5 duplication, 100.0

Table 5.24 : GCD Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),
moderate clock period requirements

Synthesis constraints Hardware Performance Overheads

and priorities usage Testability

area delay clock on-line Tristate clock maximum hardware speed (technique‘
period testability | slices buffers cycles frs?E;J:;)cy (slices %} (cycles %) value %)

high high strict - 84 228 9 42 N/A N/A none, 0.0
high high sirict high 144 | 652 9 37 71.4 0.0 duplication, 89.7
high low strict high 144 718 <] 32 714 -11.1 duplication, 100.0
low high strict high 151 716 8 34 79.8 -1141 duplication, 100.0

Table 5.25 : GCD Benchmark synthesis results (Target Technology Xilinx Virtex XCV1000 FPGA),
strict clock period requirements

faster than their corresponding untestable versions. Again, this can be regarded as a sign of
inefficient performance of the heuristic algorithm when synthesizing the untestable design.
In fact, it is likely that the untestable versions ended up in a cost function local minimum.
When on-line testability was applied, a degree of simulated annealing helped the synthesis
process escape the local minimum, while at the same time the introduction of self-
checking resources created an overall very different design for the heuristic algorithms to
optimise. The results experimentally prove that the overall strategy was successful. Re-
garding the area overhead reported on Tables 5.23 — 5.25, this is in most cases relatively
high, but it can be kept at as little as just below 50% (49.4% on the third row of Table
5.23).

Thus the experiments conducted to target Xilinx FPGA parts finished. One of the benefits
of high-level synthesis mentioned throughout this thesis is the technology-independence of
the core synthesis system, and the ability to optimise for alternative technologies if suit-
able technology libraries are provided (§3.1). In order to experimentally validate the point
of technology independence, and evaluate the performance of the ideas of §5.2.3 in a dif-
ferent technology, development work was undertaken that produced a MOODS technol-

ogy library targeting an Alcatel CMOS .35um technology. This effectively allowed the
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duplication of all the experiments of Tables 5.11 — 5.25 for this alternative technology.
Very much like in the FPGA case, the RTL output of MOODS was fed to a low-level tool
for register-transfer level synthesis. The tool in this case was version 2002¢.16 of Mentor
Graphics LeonardoSpectrum [132]. The results for different synthesis runs are shown in
the following Tables 5.26 — 5.41. The only difference with respect to the previous tables in
this chapter 1s that hardware usage is now naturally reported in terms of logic gates re-
quired. Once more, the results on the tables are the ones reported by the low-level tool, so

they are as accurate as possible.

Table 5.26 summarizes the experimentation for the Tseng benchmark. One can easily ob-
serve that Table 5.26 accurately follows the lines of Table 5.11, in that the same choices of

priorities are needed to produce e.g. the cheapest or the fastest result.

Synthesis constraints Performance Overheads

and priorities Hardware Testability

| ] et | emaniy e e | ey | (omeste | (orbeew) | loommaus
P 4 (gates) ¥ (Elez) v g ° 4 ° value %)

high | high | relaxed - 1798 7 63.7 N/A N/A none, 0.0
high | high | relaxed high 2308 7 15.2 28.3 0.0 inversion, 100.0
high low sirict high 2830 12 52.8 57.3 71.4 inversion, 94.0
jow | high strict high 2367 7 50.2 31.6 0.0 duplication, 100.0
high | high strict high 2644 9 511 47.0 28.6 mixed, 97.2

Table 5.26 : Tseng Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI)

Tables 5.27 — 5.29 show the alternative solutions produced for the Diffeq benchmark. The
lowest hardware penalty required for self-checking is identified to be 33.9%. There exist
several versions that only impose a single clock cycle of delay degradation, while notably
the fastest testable design produced does not need any additional cycles. Finally, the re-
sults on Table 5.29 can achieve very high frequencies at a high area price and additional
cycles; if high frequency is an issue in a given project, then the second and fourth rows of
Table 5.28 may be the best candidates, since they experience a modest frequency degrada-
tion with good area and delay statistics. Once more, there is satisfactory consistency with

Tables 5.12 - 5.14.

Synthesis constraints Performance Overheads

and priorities Hardware Testability

area delay clock on-line usage clock maximum hardware speed (technique)
periad testability (gates) cycles frequency {gates %} (cycles %) value %)
(MHz

high | high [ relaxed - 3535 13 40.3 N/A N/A none, 0.0
high | high ! relaxed high 4759 14 14.6 348 7.7 inversion, 100.0
high | low | relaxed high 4739 14 13.8 341 7.7 inversion, 100.0
low | high | relaxed high 4734 14 12.8 33.9 7.7 inversion, 100.0

Table 5.27 : Diffeq Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
relaxed clock period reuiqgrements
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[ Synthesis constraints Performance Overheads
and priorities Hardware Testability
area delay clqck on»Jirjg usage clock maximum hardware speed {technique,
period | testabllity (gates) vles | freuency | (gales %) | (eyoles %) value %)
high | high | moderate - 3535 13 40.3 N/A N/A none, 0.0
high | high | moederate high 4909 13 36.2 38.9 0.0 mixed, 100.0
high | low | moderate | high 4734 14 12.8 33.9 7.7 inversion, 100.0
low | high | moderate high 4784 14 35.6 35.3 7.7 duplication, 100.0

moderate clock period requirements

Table 5.28 : Diffeq Benchmark synthesis results (Target Technology Alcafe/ CMOS .35 VLSI),

Synthesis constraints Performance Overheads
and priorities Hardware Testability
area delay clopk on-lir_)g usage clock maximum hardware speed (technique,
period testability (gates) cycles fr?&uggcy {gates %) (cycles %) value %)
high | high strict - 4111 19 40.3 N/A N/A none, 0.0
high [ high strict high 6552 27 40.2 59.4 421 mixed, 91.6
high low strict high 6990 30 40.5 70.0 57.9 inversion, 891.2
low | high strict high 6018 25 41.0 46.4 31.6 duplication, 92.1

Table 5.29 : Diffeq Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
strict clock period requirements

Tables 5.30 — 5.33 summarize the experiments conducted for the QRS benchmark in VLSI

technology. An immediate observation is that the hardware penalty is relatively high,

never dropping below 72%. This can be compared against Tables 5.15 — 5.18, where over-

heads around 55% were often achievable. Other than that, once more a substantially

Synthesis constraints Performance Overheads
and priorities Hardware Testability
area delay clock on-line usage clock maximum hardware speed (technique,
period testability (gates) cycies frequency (gates %) {cycles %) value %)
(MHz)
high high very strict - 7559 56 43.1 N/A N/A none, 0.0
high high very strict high 13747 56 21.6 81.9 0.0 mixed, 94.0
low high very strict high 13278 51 23.4 75.7 -8.9 duplication, 94.7
high ] low very strict high 14813 | 101 32.0 96.0 80.4 mixed, 92.2

very strict clock period requirements

Table 5.30 : QRS Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),

Synthesis constraints Performance Overheads
and priorities Hardware Testability
RN | e | omatin U998 | Sees | feauney | (menty | (ovmeeon | logmae®
P 4 (gates) yele (?AHz) Y gates 7% Y ° value %)
high | high strict - 7137 39 19.7 N/A N/A none, 0.0
high | high strict high 12759 40 3.2 78.8 2.6 mixed, 97.9
low | high strict high 12959 37 3.6 81.6 -5.1 duplication, 96.0
high | low strict high 12953 91 8.3 81.5 133.3 mixed, 93.1

Table 5.31 : QRS Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),

strict clock period requirements

Synthesis constraints Performance Overheads

and priorities Hardware Testability

area delay clock an-line usage clock maximum hardware speed (technique,

period testability (gates) cycles frequgﬂcy {gates %) {cycles %) value %)

(MHz)

high high | moderate - 6849 35 9.2 N/A N/A none, 0.0
| high high | moderate nigh 12574 34 2.9 83.8 -2.9 mixed, 98.7
| low | high | moderate high 12390 32 3.0 80.9 -8.6 mixed, 93.1
[ high low | moderate high 12953 91 8.3 89.1 160.0 mixed, 83.1

Table 5.32 : QRS Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
moderate clock period requirements
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Synthesis constraints Performance Overheads

and priorities Hardware Testability

area delay ciopk on-!irj@ usage clock maxirmum hardware speed (technique,
period testability (gates) cycles fr?ﬁ/iu:g:y {gates %) (cycles %) value %)

high | high | relaxed - 6936 34 8.9 N/A N/A none, 0.0
high | high | relaxed high 11927 32 3.0 72.0 -6.0 mixed, 100.0
low | high | relaxed high 12063 31 2.7 73.9 -8.8 mixed, 98.7
high | low | relaxed high 120953 91 8.3 86.8 167.6 mixed, 93.1

Table 5.33 : QRS Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
relaxed clock period requirements

sized design such as QRS once again has a particularly broad design space; this is verified
on the tables by the variety of different results. Further, the phenomenon that certain on-
line testable designs are faster than their untestable counterparts can once more be ob-

served.

Table 5.34 briefs the experiments for the 8-bit viterbi decoder. The encouraging observa-
tion is that in VLSI technology the hardware overheads are generally much more tolerable

than the FPGA ones of Table 5.19.

Synthesis constraints Performance Overheads

and priorities Hardware Testability

area delay clock on-line usage clock maximum hardware speed (technique,
pericd testability (gates) cycles frequency {gates %) (cycles %) value %)
(MHz)

high | high | relaxed - 2062 4 116.2 N/A N/A none, 0.0
high | high | relaxed high 4589 5 85.8 122.6 25.0 duplication, 95.3
high low relaxed - 3262 5 106.9 N/A N/A none, 0.0
high | low | relaxed high 4734 7 127.4 45.1 40.0 duplication, 93.3
low | high | relaxed - 2060 4 113.7 N/A N/A noneg, 0.0
low | high | relaxed high 3421 5 92.5 66.1 25.0 duplication, 100.0

Table 5.34 : 8-bit viterbi decoder synthesis resuits (Target Technology Alcatel CMOS .35 VLSI),
relaxed clock period requirements

The elliptical filter experiments are shown in the following Tables 5.35 — 5.37. The tables
show a number of points in the 3D design space that can be considered neighbouring, in
that most of them have a critical path length of 17 or 18 clock cycles, are composed of
around 6500 — 6900 logic gates (minimum 6589 for an overhead of 48.2%), and can
achieve frequencies in most cases around 35 — 40 MHz. The optimal values with respect to
each of these criteria are highlighted separately on the tables, while designs for which a

parameter is outside these ranges are rather unlikely to be favoured by the designer.

Synthesis constraints Performance Overheads

and priorities Hardware Testability

area delay cfo_ckd . O?"g?ﬁ usage clo’ckﬂ 1frﬂ.axir‘mm hartdwao;e spleedo/ ) (technique,
perio estability (gates) cycles rE;J(\un:;‘.)cy (gates %) {cycles % value %)

high low | relaxed - 4174 30 49.3 N/A N/A none, 0.0
high | low | relaxed high 7678 37 40.9 83.9 233 duplication, 93.6
high | high | relaxed - 4446 17 50.0 N/A N/A none, 0.0
high | high | relaxed high 6706 17 41.8 50.8 0.0 duplication, 100.0
low | high | relaxed high 6862 19 34.8 54.3 11.8 duplication, 99.9

Table 5.35 : Ellip Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLS/),
relaxed clock period requirements
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(UN]

[T Synthesis constraints Performance Overheads

and priorities Hardware Testability

area ] delay clo'ck on—lirlg usage clock maximum hardware speed (technique,
period testability (gates) cycles fri&us;)cy (gates %) {cycles %) value %)

high | low | moderate - 4174 30 49.3 N/A N/A none, 0.0 |
high | low | moderate | high 8015 37 43.5 92.0 23.3 duplication, 93.6
high | high | moderate - 4446 17 50.0 N/A N/A none, 0.0
high | high | moderate high 6887 18 37.0 54.9 5.9 duplication, 99.9
Jow | high | moderate high 6589 18 40.2 48.2 5.9 duplication, 100.0 |

Table 5.36 : Ellip Benchmark synthesis results (Target Te

chnology Alcatel CMOS .35 VLSI),

moderate clock period requirements

Synthesis constraints Performance Overheads

and priorities Hardware Testability

area delay clock on-line usage clock maxirnum hardware speed (technique,
period testability (gates) cycles frequency {gates %) (cycles %) value %)
(MHz)

high low strict - 4174 30 49,3 N/A N/A none, 0.0
high low strict high 8015 37 43.5 92.0 23.3 duplication, 93.6
high | high strict - 4446 17 50.0 N/A N/A none, 0.0
high | high strict high 6897 21 41.2 55.1 23.5 duplication, 99.9
low high strict high 6589 18 40.2 48.2 59 duplication, 100.0

Table 5.37 : Ellip Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
strict clock period requirements

Notably, the hardware overhead was not found possible to drop as low as the best choice

of the equivalent FPGA-targeting experiment of Table 5.20.

The GCD benchmark synthesis experiments for VLSI technology are summarized in Ta-

bles 5.38 — 5.40. The observation in this experiment with respect to Tables 5.23 - 5.25 is

Synthesis constraints Performance Overheads

and priorities Hardware Testability

TR ] eres | testaniy ooees craes | imveney | (oeery | (e | (oChniaue
P 4 (gates) ¥ (I?AHZ) Y 9 ° 4 ° value %)

high | high | relaxed - 1041 7 40.7 N/A N/A none, 0.0
high | high | relaxed high 1198 8 401 15.1 14.3 duplication, 100.0
high | low | relaxed high 1471 8 40.3 41.3 14.3 duplication, 100.0
low | high | relaxed high 1489 6 36.6 43.0 -14.3 duplication, 100.0

Table 5.38 : GCD Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),

relaxed clock period requirements

Synthesis constraints Performance Overheads

and priorities Hardware Testability

TR ed | e US808 | s | fenuenty | (omesvhy | e | g
per y (gates) y (&U:;Y (gates %) yeles %) value %)

high | high | moderate - 1041 7 40.7 N/A N/A none, 0.0
high | high | moderate high 1315 8 43.9 26.3 14.3 duplication, 99.7
high | low | moderate high 1564 8 37.5 50.2 14.3 duplication, 99.7
low | high | moderate high 1418 6 36.2 36.2 -14.3 duplication, 100.0

Table 5.39 : GCD Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),

moderate clock period requirements

Synthesis constraints Performance Overheads

and priorities Hardware Testability

TR et | e USA0E | ke | Temumnoy | (este | (obenw) | eonmigue
(-3 o Q,
p ility (gates) ¥ {?AHZ)V gates %) 4 J value %)

high | high strict - 978 9 60.6 N/A N/A none, 0.0
high | high strict high 1378 8 43.9 40.9 -11.1 duplication, 100.0
high | low strict high 1450 9 43.9 48.3 0.0 duplication, 97.5
low high strict high 1324 8 43.1 35.4 -11.1 duplication, 100.0

Table 5.40 : GCD Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
strict clock period requirements
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that most overheads appear lower than in the FPGA scenario. Indeed, the hardware pen-
alty can be as low as 15.1%, while performance degradation is either non existent or toler-
able. Maximum frequency values in self-checking versions are usually of the same order
as in the original equivalents, with the exception of Table 5.40 where a maximum fre-

quency drop of roughly 16 MHz can be observed.

A simple statement that can be given regarding the proportional overheads of designs im-
plemented in VLSI compared to the same designs implemented on FPGA parts, is that no
safe assumption can be made about the relative overheads of the latter from the experi-
ments targeting the former, and vice versa. That is, if on an FPGA part a design requires a
certain hardware overhead to be made self-checking, the same design in VLSI may require
much lower, much higher or roughly the same. This is expected, since the relative sizes of
different RTL components greatly vary from technology to technology. It is, for example,
well known that logic gates are expensive on an FPGA, while arithmetic modules are
comparatively more expensive in VLSI. Therefore, experimentation is the only way for a

secure conclusion, and this further stresses the importance of facilitating such experimen-

tation through high-level synthesis.

As a final experiment, Table 5.41 shows the results of two synthesis runs for a 32-bit
viterbi decoder in VLSI. This design comes from [131] together with its 8-bit counterpart
presented earlier. It is however much bigger; it comprises 288 operations and 32 parallel
processes, which are both considerably bigger than anything presented in the algorithmic

duplication literature before. An original untestable design was synthesized first, followed

Synthesis constraints Performance Overheads
and priorities Hardware Testability
area delay clock on-ine usage clock maximum hardware speed (techmqueY
period testability (gates) cycles fre(gﬂu:;)cy (gates %) (cycles %) value %)
low | high | relaxed - 15606 4 79.6 N/A N/A none, 0.0
low high | relaxed high 20361 5 49.9 30.5 25.0 duplication, 95.3

Table 5.41 : 32-bit viterbi decoder synthesis results (Target Technology Alcatel CMOS .35 VLS))

by a self-checking version. The penalties related to test resource insertion can be regarded

as moderate (30.5% in area, a clock cycle in delay, and some necessary degradation in

maximum frequency). Notably, the automatic synthesis run for the self-checking version

took about 24 hours of real time. The explanation is that the increase in the number of

operations in the design results in a considerable increase in the number of different ran-

dom choices of transformations and data within simulated annealing, thus lengthening the

synthesis time. To understand this, refer, for example, to transformation TF10 of §3.2.3
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(“share functional unit”), and consider a design comprising a total of OPS operations. In
the initial state each operation is allocated to a dedicated datapath unit. Further consider a
fully testable realisation, with dedicated units for each redundant and comparison opera-
tion. This will give a total of 3xOPS functional units. Since TF10 is fed by two functional

units, the total number of combinations the algorithm can choose from is given by

) J: (3xOPS)/2(3x OPS —2) = (3x OPS - 2)x (3x OPS ~1)/2 (5.12)

(3 X OPS
It is clear that the number of choices increases rapidly as the complexity of the system in-
creases. Taking into account that similar increase is also experienced by the other alloca-
tion, scheduling and testing transformations, the consequent increase in the overall compu-
tational time is evident. Such long run-time may appear impractical at first and be used as
an argument against simulated annealing; however one has to take into account the time-
to-market savings if datapath self-checking is applied in an industrial environment. In-
deed, in such an environment, 24 hours of effortless automatic synthesis is still much more
efficient than days of designer effort to manually configure self-checking schemes for
hundreds of instructions in the original HDL code, then again manually synthesize with
special care to map the functional and checking parts of the schemes on disjoint hardware,
and maybe conduct multiple synthesis runs and further HDL modifications to try alterna-
tive solutions. On the other hand, it can be predicted that considerably more complex de-
signs than the 288-operation, 32-bit viterbi decoder will require prohibitively long synthe-
sis run-time; it is therefore sensible to state that the biggest designs the proposed technique
can practically handle would be composed of around 300 operations. This is still the most

complicated ever presented in the self-checking design literature.

5.3.3.6 Discussion

Subsection 5.2.1 critically evaluated the algorithmic duplication literature material and

identified points not adequately covered therein. Based on that, the approach of this thesis
was defined and implemented. The present subsection conducts an a posteriori evaluation
of the numerical data of §5.3.3.5 with respect to results presented in the algorithmic dupli-
cation literature. An important word of note is that no “strict” arithmetic comparisons can

be drawn, since each past publication uses a different technology, and at times even out-
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dated generations of technologies are quoted. The idea that no reliable comparisons can be
given is not only sensible, but also advocated by the results in this thesis, showing over-
head disagreements between different technologies. For that reason, the comparisons

given here are only roughly indicative of the quality of considered results.

The rollback and recomputation technique of [60] mostly reports results in the form of
RTL functional modules used. This is not an accurate metric, since the area of multiplex-
ers and registers is ignored. A single result is given for a fully implemented VLSI chip;
this experiences a hardware overhead value of approxumately 170%, which is overwhelm-
ingly more expensive than the vast majority of the results in this thesis. On the other hand,
by nature rollback and recomputation imposes strict performance constraints; therefore no

additional clock cycles are permitted.

The differentiation-related techniques of [62, 63] report overheads equal to physical dupli-
cation [63] or slightly less [62]. Interestingly, in [62] the elliptical filter benchmark was
used, also used in this thesis. When 17 clock cycles were used in the DFG, the result of
[62] imposed a hardware penalty of about 77%. This value is at times comparable to but

still higher than the results herein (indeed, Table 5.17 quotes 29.5% on an FPGA and Ta-
ble 5.32 gives 50.8% in VLSI).

Introspection [64] gives minimal hardware overhead (always less than 5%). However, bear
in mind that the particular technique totally rejects the idea of introducing redundancy for
self-checking purposes and purely utilises any naturally existing idle time. At times only a
small number of operations are checked (in the formulation of this thesis, P; of §5.3.3.1 is
at times well below 50%). Therefore, this technique is probably not meaningtully compa-
rable at all with the present material, since in this thesis the goal is first full self-checking

and thern as much area saving as possible.

The work of Lakshminarayana et al [23] has already mentioned in §5.2.1 as probably the
overall best developed in the background literature. For 9 different benchmarks used,
overheads of roughly between 25% - 85% were reported. The results are therefore compa-

rable to those of the present thesis.
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The semiconcurrent error detection scheme of [65] reports hardware overheads roughly
between 26% and 100% for a checking periodicity of 2 [65], but no performance statistics.
Two of the benchmarks used are the elliptical filter and the differential equation solver,
also familiar in this thesis. A huge overhead of just over 100% is reported in [65] for the
former, while the latter is at the lower end of the overhead range, roughly at 26%. This
thesis has given better results for the elliptical filter in both technologies used, and not as
good but still comparable (around 35% in Table 5.25) for the differential equation solver.
Further recall that the results of [65] were obtained manually. It can therefore be stated
that the high-level synthesis for on-line testability technique of this thesis automatically
achieves at times cheaper and much more testable (§5.2) results than those manually de-

rived in the literature.

References [69, 70] always achieve below 30% in hardware overhead. However, testabil-
ity is greatly reduced since only a percentage of the produced results are checked, and that
includes no intermediate results. Further, synthesis is conducted manually and automation

is not even mentioned as a future goal. In that sense, comparisons are probably not mean-

ingful.

Finally, {66, 67, 68] also do not concern tool development. Still, the manually obtained
results range approximately between 10% and 60%, and are thus on average cheaper, but

still comparable to the ones automatically produced herein.

An inspection of all background literature reveals that the value of the operating maximum
clock frequency is never reported. However, there should always be a frequency degrada-
tion assoclated with test resource insertion. Even merging two existing functional modules
requires multiplexers; this increases the delay of operations, since it lengthens the path that
input signals have to traverse before reaching module outputs. This delay degradation nec-
essarily results in clock speed degrading. As the tables of §5.3.3.5 have shown, this work
not only acknowledges this frequency degradation, but also fully treats the clock speed as
a design parameter, by trading off clock speed through chaining, to devise low cost self-
checking solutions that provide a valid option in low frequency projects. This approach is

adopted for the first time.



P. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 188

5.4 Summary

In conclusion, in this chapter we have presented a fully automatic integral high-level syn-
thesis for datapath on-line testability approach. The realisation of this approach within the
MOODS high-level synthesis system involved :

s implementing five additional transformations that were included in the pre-existing
MOODS set of transformations

o developing an elementary software tool for the automatic production of a VHDL li-
brary of fault-secure dual-rail checkers and comparators

o defining and formalising a metric for on-line testability, effectively giving rise to a 3-
dimensional design space

The particular approach is the first to include a// of the following :

e testresource insertion is done fully automatically within the HLS optimisation loop;
no input HDL modification or other designer interaction is needed

s gtill, the designer’s requirements are taken into account, through his or her choice of
priorities; design space exploration is fast and efficient, thus allowing experimentation for
alternative priorities

» loops, conditionals and parallel processes are fully accommodated

s instruction chaining is aggressively utilised

e the inversion testing idea is defined and exploited as an alternative to duplication

» alternative technologies are accommodated

s the duplication / inversion self-checking schemes are made fault secure

o all intermediate results are checked; this ensures minimal error latency, and timely re-
porting of faulty hardware

All this is offered at a hardware overhead and delay degradation that are comparable to

and at times cheaper than the experimental results of previous publications.



Chapter 6

Controller Self-checking Design

As high-level synthesis systems become more and more powerful and able to provide so-
lutions for more and more complicated designs, comprising conditional operations, loops
and parallel structures, the controllers they produce become more and more complicated
and occupy more area on the final chip. Hence, the RTL output of such a system cannot be
considered reliable unless an on-line testing scheme for the control path is included in the
system. In this context, in addition to the traditional self-checking of data paths, covered in
chapter 5 of this thesis, controller checking has recently attained considerable importance
as mandatory practice for ensuring the correct operation of controller / datapath pairs, such
as the designs output by high-level synthesis systems that are considered throughout this
thesis (Figure 3.1). In this chapter, emphasis is given to the seif-checking design of the

controller part.

The chapter is organised as follows. Section 6.1 reviews the target architecture, states the
problem, and briefly describes previously proposed solutions. Section 6.2 examines how
parity-based self-checking (§2.2.1.1) can be utilised for controller self-checking purposes,
and highlights its properties and limitations. In section 6.3, “1/n” self-checking (§2.2.1.2)
is considered as an alternative solution. Section 6.4 discusses the problem in the specific
context of the MOODS high-level synthesis system (§3.2), outlines the implementation,
presents the obtained experimental results, and gives comments on them. Finally, section

6.5 concludes the chapter.

6.1 Problem statement

This section describes the target architecture and comprehensively states the controller

self-checking problem.
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6.1.1 Encoded vs. one-hot implementations

Figure 6.1 revisits the typical architecture of a controller / datapath pair. The figure is
highly reminiscent of Figure 3.11 — indeed, the same DFG example is used for the
datapath. Figure 6.1, however, further reveals the typical controller block structure. In
principle, the controller consists of state flip-flops constituting the state register, and a

block of next-state logic responsible for producing the next-state vector that is to be loaded
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Figure 6.1 : Controller / datapath architecture
onto the state register. Any possibly existing conditional signals also contribute to the pro-
duction of the next-state vector. The datapath consists of hardware modules that imple-
ment instructions scheduled over several control states. Intermediate results are stored in
appropriate registers, and are thus preserved across control state boundaries. The analysis
of subsection 3.2.6 has established that the controller outputs / control signals (point B of
Figure 6.1) should by necessity be one-hot encoded in order for the state transitions to be
properly realised. Since the state register contents can, in general, be encoded according to
a variety of encoding schemes, a decoder is applied {also shown in Figure 6.1) to produce
the one-hot control signals. The state register, together with the decoder and the next state
logic constitute the overall controller, depicted on the left-hand side of the figure by a

dashed rectangle.
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From the FSM testability point of view, typically [38, 133,37, 22, 23, 134] the state sig-
nals are encoded according to some coding scheme with enhanced error detection and / or
correction capabilities, such as parity [22, 23, 133], Hamming encoding [37], constant
Hamming distance [38], or even controller physical duplication [134]. All checking and
correcting takes place at the actual state register outputs (point “A” of Figure 6.1). If this is
applied in a sequential datapath configuration such as the one at hand, then any possible
faults in the decoder are not considered, and are therefore likely to corrupt the actual de-
coded control signals, resulting in an erroneous sequence of control states, which cannot in
principle be detected by datapath hardware module self-checking schemes. Further, the
more complicated the encoding scheme, the more complicated the decoding logic, and
naturally the more possibilities that a fault may corrupt it. Consequently, if robust reliabil-
ity properties are to be maintained, it is highly desirable that controller testing take place
after the decoding operation, that is on the raw one-hot control signals (at point “B” of
Figure 6.1). This idea is not only preferable as regards the stated testability concerns, but
also disconnects the controller self-checking problem from the controller encoding and
controller synthesis problems, allowing the designer to make use of any proposed self-
checking solutions regardless of his or her control path synthesis flow (in some cases with
some restrictions that will be mentioned in $6.2). For example, Hellebrand et al [133] pro-
pose a novel approach that decomposes a long control unit into a collection of shorter
ones, communicating among themselves in a pipeline fashion. The approach significantly
speeds up the controller. There is no obvious reason why such control path improvement

techniques cannot be combined with self-checking solutions discussed in this chapter.

6.1.2 Concurrency

Initialisation state

[j Further to the target archi-
@ ¢ ﬁj‘_\ tecture, when complex digi-
tal systems are imple-
% """" mented, it is often the case
that they comprise several
==
I—

communicating controller /

datapath designs such as the

P, Po e, P P. one of Figure 6.1; when the

Figure 6.2 : Highly parallel design implementation is the result
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of a VHDL-based high-level synthesis process, then these structures originate from several
synthesisable VHDL concurrent processes. These structures often share a single initialisa-
tion control state, which forks out to several “sub-controllers”, as Figure 6.2 depicts. In the
figure, rounded rectangles correspond to contro! states, while vertices naturally show the
flow of control, in a manner that closely resembles Petri-nets (§3.1.1). n control paths (P;-
P,) are shown. Observe the correspondence between Figure 6.1 and Figure 6.2. Each rec-
tangle in 6.2 signifies a separate control state; therefore, a unique control signal (decoder
output in 6.1) is dedicated to it. In 6.2, the data path is not shown, and the emphasis is on
illustrating the concept of concwrency; in fact, each of the constituent concurrent designs

of 6.2 is implemented according to the paradigm of 6.1.

VHDL processes can be arbitrarily long and complex, or they can include as few instruc-
tions as can fit within a single control state. The latter is usually the result of a process that
simply updates system primary outputs. At any system reset, the initialisation state be-
comes active, simply meaning that the control signal associated with it assumes the “1”
value, while all other control signals throughout all other concurrent designs are at “0”.
One clock cycle later, control passes to the actual concurrent control paths. From this point
onwards (and until the next reset), exactly n (as in Figure 6.2) control signals are at “1”.
Observe that even single-state control paths are synthesised to comprise rwo states, since
they share the common initialisation state with all other control paths in the overall system
(e.g. Py in the figure). Therefore, the 1-hot (in this case, 1-out-of-2) controller output
model explained in §6.1.1, is equally applicable regardless of the critical path length of the

given design.

While there can be slight variations, the control flow model of this subsection is typical of
highly parallel hardware designs. It will therefore be assumed throughout the rest of this
thesis. Further, the VHDL “concurrent processes” term will hereafter be used to refer not
only to the conceptual descriptions, but also to the resulting communicating controller /

datapath pairs that constitute parallel designs.

6.1.3 Datapath self-checking constructs reuse

The problem of realising self-checking datapaths through high-level synthesis was com-

prehensively addressed in chapter 5 of this thesis. Every effort was taken to minimise
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hardware penalties; however, even at their minimum, such penalties are inevitable, and
sometimes severe. An additional self-checking solution for the control path would involve
extra hardware. To this end, it would be desirable to reuse existing datapath self-checking
constructs, for controller self-checking purposes. This can be done when (and if) control-
ler fault effects are observable in the datapath. This is not a new concept; indeed, [135] is
a representative example of making controller faults observable in the datapath in the con-
text of the off-line testing of a controller / datapath architecture. In [63], effective control-
ler duplication is proposed and exploited for the same purpose in a self-checking datapath.
However, to the best of this author’s knowledge, it is the first time that a low-cost com-

bined approach is pursued for the on-line, self-checking design problem.

6.1.3.1 Intrinsically Secure states

Consider Figure 6.3a. A portion of a DFG-like representation is shown. A functional op-
eration (addition +1) has been scheduled for control step (CS) N+1. A duplicate operation
of the same type, with the same inputs (addition +1) is also scheduled for parallel execu-
tion during the same CS, while the outputs are fed to a fault secure comparator, responsi-
ble for verifying correct operation or signalling the presence of a fault. As chapter 5 estab-
lished, self-checking datapaths can be constructed out of such duplication (and related)
testing configurations. Further recall that, assuming a long enough clock period, the addi-
tions and the comparison can be scheduled in a single CS (N+1); thus, self-checking is

provided at no error latency. It should also be recalled that in the context of a DFG the

N+1 N+1

(a) Zero-error latency duplication-based  (b) Accepting an error latency of a single
self-checking design clock cycle

Figure 6.3 : Securing a control state by accepting datapath error latency
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comparator output is also (synchronously) stored in a register, and the register contents
(asynchronously) compacted by a dual-rail checker, together with outputs from all other

similar comparators present in the design.

Let us move on to Figure 6.3b. In this case, the functional operation has been scheduled a
control step earlier, at CS N. Thus, its output is stored in an appropriate register, and the
duplicate and comparison operations are executed one clock cycle later. Any fault at the
functional operation output will be detected with an error latency of one clock cycle. In the
context of this chapter, the following observation is more important than a single clock

cycle error latency.

Observation 6.1 : 1f an induced fault corrupts the control signal that activates state N+1
(i.e. enables the loading of respective registers), such that the said signal behaves as a
stuck-at-1, then N+1 will be activated prematurely (1.c. before N, thercfore before +1 is
executed and its output stored appropriately). Consequently, the comparison operation will
not compare the values it has been designed to compare, but two random values (in princi-
ple unequal), and therefore it is likely to produce an error indication. Thus, a controller

fault will be detected through the existing datapath self-checking scheme.

There is always a possibility of fault escapes, if the random values mentioned above coin-

cide. This will be ignored for the moment. For the time being, the following definition is

provided.

Definition 6.1: A control state is referred to as [ntrinsically Secure (IS), if the comparison
(checking) part of a datapath self-checking scheme has been scheduled in it, but at least

one of the functional or redundant parts of the scheme has been scheduled in previous

states.

In other words, a state in the situation of CS N+1 in Figure 6.3b is IS by definition. The
discussion up to now has been restricted to duplication testing; however, the same con-
cepts can be applied to any self-checking scheme that can have its computation and check-
ing parts separated across the boundary of two different control states. This includes inver-
sion testing; therefore, the IS-states idea is fully compatible with the implementations of

chapter 5. Also, note that in Figure 6.3, control step N pre-existed in the design, and some
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operations were probably scheduled in it. Therefore there was no actual delay degradation
by moving the operation and securing CS N+1. In the context of a realistic design, this
may not always be possible (due to data dependencies) and some delay degradation may
need to be accepted, but it is expected to be in principle tolerable. It is further worth ob-
serving that moving +1 to CS N, necessarily (re-)introduces a register to store the result
across the CS boundary. This means a hardware overhead; it is therefore likely that at
times the hardware savings due to the simplification of the controller self-checking
scheme (shown later in §6.2, §6.3) will be cancelled out by the register overhead. On the
other hand, there are cases where Intrinsically Secure states appear in self-checking de-

signs naturally, and therefore exploiting their controller self-checking potential is free.

The concept of control states that are Intrinsically Secure according to Definition 6.1 is a
particular contribution of this thesis. The area and delay overhead concerns stated in the
above paragraph can only be answered through experimentation individually for any given
design. The experiments of §6.4 will investigate a number of designs and, among others,

provide an insight on this issue.
6.1.3.2 The possibility of fault escapes

Let us go back to Figure 6.3b and comment on the probability of ap (0/1) type error [1]
on the control signal corresponding to control state N+1 to remain undetected, due to the
possibility that the output of the duplicate operation may coincide with the contents of the

(improperly loaded) register that stores the functional operation result under fault-free

operation.

Assume that the bit-width of operation “+1” in Figure 6.3b is w. Then 2" different words
can appear in the left hand side input of the comparator. Assuming that all words have the
same probability, this probability for a particular word is equal to 1/2". Therefore, given
the value that “+1"” prematurely computes during N+1, and the functional operation bit-
width w, the probability of a fault escape can be estimated as p.=1/2". For example, for
w=3, p=12.5%, which is unacceptably high. Based on the above, Definition 6.1 can be

updated as follows :
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Definition 6.1": A control state is referred to as /ntrinsically Secure (IS), if the conditions
of Definition 6.1 hold, and in addition the bit-width of the functional operation is higher

than a defined threshold value ¢.

A sensible value for the threshold would be, e.g., at least =7, which gives p.=0.8%. This
choice 1s motivated by the usual convention of traditional testing, whereby a testing
scheme is considered successful when it detects 99% of the modelled faults [1]. Of course,
in the context of the problem at hand it makes sense to differentiate between single-bit
logic operations and multi-bit arithmetic operations. While it would be unwise to speak
about Intrinsically Secure states when referring to the former (as these would have an es-
cape probability of 50%), such states can be defined for arithmetic operations, experienc-
ing escape probabilities of 0.4%, 0.002% and 2x10°% for the usual choices of 8-, 16- and

32-bit arithmetic respectively.

A practical precaution which can be applied in order to minimise the possibility of fault
escapes in IS states, is to reset the register that carries the functional output value across
the CS boundary, to a value that is highly unlikely to occur, as soon as its functional con-
tent is not needed anymore. Such a typical value can be the all-1s pattern for unsigned
arithmetic operations. Normally the appearance of this pattern during normal operation is

an indication of (potential) overflow, and it should not appear if careful design has been

applied.
6.1.4 Discussion

Subsections 6.1.1, 6.1.2, and 6.1.3 define the backbone of the problem at hand. In sum-
mary, the controller self-checking problem addressed in this chapter has the following
characteristics :

e self-checking should be applied to the decoded 1-hot controller outputs

¢ multiple concurrent processes should be handled efficiently

e the idea of Intrinsically Secure states can be exploited, in an attempt to minimise over-
heads

e generally, the controller self-checking scheme should be as economical as possible,

given the penalty related to the (assumingly existing) datapath self-checking; at the same
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time, consistency with self-checking design theory is desirable (totally self-checking prop-

erty, §2.2.1)

Given the 1-hot encoding restriction, selutions that impose particular encodings (such as
Hamming in [37]) are not applicable. Duplicating the controller [134] is rejected, since it
is expected to give very expensive results; indeed, the hardware sharing potentials ex-
ploited in chapter 5 do not exist in the control path case (i.e. there is no equivalent to “idle
hardware module cycles”, and no ground for “algorithmic” duplication in the control
path). Observe, though, that a 1-hot encoded n-bit signal maintains odd parity. Further,
parity-based self-checking (§2.2.1.1) is known to be the cheapest among error-detecting
solutions; it has already been proposed for control path self-checking in [23], albeit only a
short note was dedicated to this issue. It is considered in detail in this thesis in the follow-
ing §6.2. 1-out-of-n and / or m-out-of-n self-checking would also appear to be feasible so-
lutions for the given problem. At a first glance, one would expect them to be more expen-

sive than parity; in §6.3 we discuss this issue.

6.2 Parity-based self-checking

In this section, parity-based controller checking in the context of highly parallel synthe-
sized controller / datapath designs is addressed. Recall that parity checking of a bit vector
detects all faults in the system producing the vector, that result in single- or odd-
multiplicity logic errors in the vector. Regarding the problem at hand, and referring back
to Figure 6.1, a parity checker at point “B” will detect all controller faults that give rise to
a single or an odd number of corrupted control signals. Combined with Hypothesis 2.1
(faults occur one at a time), this means that the controller has to be designed such that no
single fault in it can result in an even number of corrupted bits at the controller output.
Normally the easiest and most straightforward way to achieve this, is to disallow logic
sharing between the logic cones that produce each one of the control signals, replicating
some logic operations in the next state logic and decoder blocks if necessary [37, 22].
Other than that, the techniques presented in this section are generic, and applicable to any
controller encoding and synthesis approach. The approach itself normally is dictated by
the target technology and any particular constraints. More specifically, if the state register
is designed to be one-hot as such (for example, as in MOODS, §3.2.6), then the next state

logic block is simple, while a decoder is not needed. The implementation is fast; however,
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the large number of flip-flops needed may lead to expensive realisations. The number of
flip-flops is dramatically reduced if suitable encoding is applied; the complexity of next
state logic and decoder are, however, increased. The resulting controller is also considera-
bly slowed down. In addition, there are technologies for which a plethora of storage ele-
ment resources are available (e.g. some FPGAs [106]), therefore the direct one-hot imple-

mentation may not always be as expensive as it first appears.

In the rest of this section, and unless otherwise stated, it will be assumed that the controller

has been designed taking into account the above note about odd error multiplicity.

6.2.1 Per process parity-based self-checking

Consider a design like the one of Figure 6.2, consisting of n concurrent processes
(P1,...,Py), each one consisting of ny; (0<i<n) control states, plus the common initialisation

state, hereafter state-0. Parity-based self-checking design can be straightforwardly imple-
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mented as Figure 6.4 shows. Dashed lines in the figure correspond to the control flow,
while solid lines represent actual signals coming from the controller block. In order to un-
derstand Figure 6.4, notice its correspondence with Figures 6.1 and 6.2. The system con-
current processes are shown in 6.4 effectively in the same fashion as in 6.2. Clearly, a
unique control signal from the controller of Figure 6.1 corresponds to each state, as estab-
lished in §6.1. This is graphically depicted in Figure 6.4 by a single signal line shown to
end at each rectangle representing a control state. Signal lines also fan out to appropriate
checkers, thus showing the considered self-checking scheme. As can be observed, every
process has its control signals checked by a separate odd parity checker, and all responses
are compacted by a dual-rail checker, as is the usual practice in self-checking design
(§2.2.2.2). The control signal corresponding to the state-0 becomes active only upon sys-
tem reset, and is fed to all parity checkers. Thus, at any given point of time each parity
checker receives a one-hot signal at its input, and therefore detects any single- or odd-

multiplicity errors. This scheme will hereafter be referred to as the CTRL [ self-checking

scheme.

The actual odd parity and dual-rail checker structures are not detailed yet; for the moment,
let us make the assumption that all checker components are double-output, composed of
two-input gates only. This assumption is in absolute agreement with the usual checker de-
signs presented in §2.2.1.1 and §2.2.2.2, and it implies that the usual 2-input XOR gates
and dual-rail checker cells are used for the parity and dual-rail checkers respectively. No
assumption is, however, made at this point regarding the arrangement of gates and cells
within the checkers. This approach will be adopted for the moment and until §6.2.7, where

a few structure-related considerations are given.

Based on the above assumption, the hardware cost of CTRL 1 can easily be estimated as
follows. n parity checkers (PCy,...,PC,) are used, each one consisting of two XOR trees, to
ensure the fault secure property [5]. Any random checker PC; has m;+1 inputs (all states in
the corresponding process, plus the common state). Every k-input parity tree is composed
of k-1 XOR gates, therefore PC; consists of m;-1 XOR gates. Further, the dual-rail checker
bas n input pairs; therefore it consists of n-1 dual-rail checker cells (§2.2.2.2), which
yields 6x(n-1) AND/OR gates. In total, the hardware cost for this technique is given by the

following expression :
=l
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r 1 _I
Costerpy 1 = [Z (im; =1) |x Cost xp + 63 (n—1)% Cost 4xp op (6.1

i=l _I
where Costxor and Costanpsor refer to the hardware costs of respective gates, and the im-
plicit assumption is that under the particular target technology an AND and an OR gate
have the same cost. When this is not true, the above expression can easily be suitably

amended.

Let N, be the total number of states in the design. Clearly

N, = i (m,)+1 (6.2)
i
Further
i(m/ ~-1)= > (m,)=n=N,—(n+1) (6.3)
p pa
Equations {6.1) and (6.3) yield :
Costerpy 1 =Ns = (n+1)x Cost yop + 6x (= 1)x Cost ynp s o 6.4)

Equation (6.4) gives the hardware cost of the CTRL 1 self-checking scheme for the de-
sign, as a function of the number of processes, the total number of control states, and of

the target technology and specific gate implementations.

6.2.2 Self-checking using a single parity checker

Using parity checking necessarily results in a number of XOR gates that is of the order of
N; as defined above, and cannot be dramatically decreased. However, the dual-rail checker
may be considered redundant if the checking scheme of Figure 6.5 is used. In this ap-
proach, all control signals are led to a single parity checker. At reset only the state-0 con-
trol signal will have a logical 1 value; at any other point of time the number of 1s will be
equal to the number of processes, n. If n is odd by design (n=2k+1), then odd parity 1s
naturally maintained at all times. If n=2k, then a single-state “dummy”’ process is inserted.
No instruction is executed in this process; an additional control signal is, however, gener-
ated by the controller for it, and so odd parity is maintained for the controller output. This

is the CTRL 2 self-checking scheme.

The odd parity checker has N, inputs. The hardware cost is given by :

Cosicrpy_» = (Ne=2)x Costxop (6.5)



P. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 201

Equation (6.5) is accurate only for n=2k+1; otherwise it is approximate. Particularly, it
ignores both the area overhead of introducing the dummy control state to the design, and
the corresponding additional input to the parity checker. However, in the usual case that

Ng>>1, the overhead contribution of these two elements can sensibly be considered negli-

gible.
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Figure 6.5 : The CTRL_2 self-checking scheme

It is interesting to note that if n=1, then equation (6.4) and equation (6.5) yield the same
value (N,-2)xCostyog. This is expected, since it is obvious by simple comparative inspec-

tion of Figures 6.4 and 6.5 that for a single process both CTRL 1 and CTRL 2 correspond
to a single parity check.

6.2.3 Utilising Intrinsically Secure states in a single process

In this subsection, as well as in the next two ones §6.2.4 and §6.2.5, it is assumed that the

design datapath has been synthesized such as to demonstrate self-checking properties (for
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example, as in chapter 5). With this assumption in mind, the self-checking resources in-
serted for the purpose of datapath checking are identified to be utilisable for the purpose of
providing cheaper self-checking for the control signals as well, by exploiting the Intrinsi-
cally Secure states concept introduced in §6.1.3. The motivations for this approach lie in
Observation 6.1 which was made on designs produced in chapter 5 of this thesis. How-

ever, they are generic enough to be equally applicable in alternative environments and de-

sign flows.

Figure 6.6 focuses on a single

process, possibly by isolating
any of the concurrent processes

of Figure 6.2. It is further as-

sumed that a number of IS

sjeubig josuon

states (in the sense of definition

|| 6.1") are identifiable within this

e ey

process. The figure exemplifies

vV ¥ two such states, clearly distin-
Odd Parity

C:] Normal State
Checker
Intrinsically Secure states. Control signals are
. state l J

guishing them from the non-IS

shown in a manner similar to

Figure 6.6 : Exploiting IS states in a single process :
with parity-based controller self-checking Figures 6.4 and 6.5. A scheme
for the utilisation of IS-states

for the purposes of the problem at hand is further shown in Figure 6.6. Particularly, control
signals from IS states are compacted using an OR gate, and the resulting signal is fed to an

odd parity checker, together with the control signals corresponding to non-IS states.

Theorem 6.1 : The configuration of Figure 6.6 detects all single control signal faults, while
providing the fault-free indication under fault-free operation.
Proof':
a) Consider the case when one of the IS state control signals is active :
al) Under fault-free operation, since one of the IS state control signals is active (logic
1), the OR output is a logic 1; since the controller is one-hot, all control signals
corresponding to non-1IS states are 0. Therefore, the parity checker is fed by a one-

hot pattern, and correctly detects odd parity.
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a2) If the control signal of an inactive IS state assumes the D value (chapter 2 and [1]),
therefore erroneously becoming a 1 when it should have been a 0, then the parity
checking scheme of Figure 6.6 does not detect the fault; however, since the said
state is Intrinsically Secure, the fault is detected by the corresponding checker in
the data path (Figure 6.3).

a3) If the control signal of the active IS state erroneously fails to take the active (logic
1) value, and is stuck-at-0 instead (D value [1]), then the OR gate output is at logic
0. At the same time, all non-IS control signals are 0, and the parity checker detects
the erroneous (even) parity.

a4) If a non-IS control signal takes the value D, then since the OR gate outputs 1, the
checker is fed by a two-hot type input, which is of even parity, and therefore de-
tects the fault.

b) Now consider the case when one of the non-IS signals is active.

bl) Under fault-free operation, the OR gate outputs logic O, since all IS control signals
are inactive. Therefore only one of the parity checker inputs is 1. The parity is odd
and correct operation is confirmed.

b2) If an IS state control signal assumes the p value, then the OR gate output errone-
ously changes to 1. Therefore the parity checker (being fed by a two-hot type sig-
nal) detects the fault. Further, since the state is Intrinsically Secure, the data path
checker also detects the fault. This double-check property increases the depend-
ability of the system.

b3) If a non-IS state control signal assumes the o value, then there are two 1s in the
checker input, both coming from the non-IS control signals, since the OR gate out-
puts 0. The parity is even, and the fault is detected by the checker.

b4) Finally, if the active non-IS state control signal fails to take the logic 1 value, and
assumes the D value instead, then the checker is fed by a 0 from the OR gate, and
by all-zeros from the non-IS states. Once more, the parity is even and the fault is

detected. A

The key point in the above proof, that in fact clarifies the benefit of exploiting IS states, 1s
a2 : parity fails to detect the fault, but this does no harm, since error detecting capabilities
for the considered type of fault exist in the datapath. Therefore, the controller checking
scheme is simplified, through the abolishing of error detection capabilities that are not

needed, resulting in some hardware savings. This is achieved by dropping a number of
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XOR gates that are used within the checker when straightforward parity checking is ap-
plied, and using an OR gate with a suitable number of inputs. An additional (and in fact
more important) benefit of this approach, is that errors of any multiplicity in control sig-
nals can be detected, provided that one of them corrupts an IS state signal. Thus, the odd-
multiplicity error detection limitation of parity is overcome. Backtracking to the odd mul-
tiplicity-related note in the beginning of §6.2, it can now be understood that, by utilising
IS states as shown above, the designer can allow hardware sharing between control signal
cones of logic, provided that at least one IS state can be identified among the signals for
whose logic cone sharing is applied. This is expected to be another source of hardware

savings.

6.2.4 Per process parity-based self-checking exploiting Intrinsically

Secure states

Based on the material of §6.2.3, an overall self-checking scheme for a parallel design can
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Figure 6.7 : The CTRL_3 self-checking scheme
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be configured as Figure 6.7 shows. The figure follows the notations of the previous Fig-
ures 6.4 and 6.5; however, here signal buses have been substituted by block arrows for
convenience. Control signals reaching each process are separated into two groups, corre-
sponding to IS and non-IS state control signals, with each group separately treated as
§6.2.3 suggests. Indeed, the IS-state group signals are ORed, and the result feeds the proc-
ess parity checker, where it meets all other signals from the non-IS group. The initialisa-
tion state signal is once more fed to all parity checkers, since no actual operations take
place during initialisation, and therefore it cannot possibly be Intrinsically Secure. The
scheme of Figure 6.6 is thus separately applied to every process; parity checker responses
are naturally compacted by a dual-rail checker. If no IS states can be identified in a given
process, then the OR gate is redundant, and theoretically replaced by a constant logic 0.
Since a constant 0 does not change the parity of the overall signal, it is safely omitted. The

overall configuration will hereafter be referred to as the CTRL 3 scheme.

Exactly like in the purely parity-based schemes, an estimation of the CTRL 3 hardware
cost is attempted here. For this purpose, let us define m; s and m; i as the number of IS and
non-IS (respectively) states of process Pi. Clearly m;s+min=m;, as defined in §6.2.1. Each
parity checker PC; has m x+2 inputs (therefore my  XOR gates) if m; 70, and myn+1 in-
puts (therefore m;n-1 XOR gates) if m; s=0. Further define nig<n as the number of proc-
esses that include at least one IS state. The total number of XOR gates needed will be
equal to

Z(mw)+ Z(mw -1)= Z(mw)—(n—nls) (6.6)

il m; %0 iy =0 i=i

Further, all OR gates are of m; 5 inputs. Also, the response compactor compacts n input

pairs, for a hardware cost of 6x(n-1) 2-input AND/OR gates. Overall, the cost is given by

i

Costorpy 5= Z (’”i.,N )“ (n—nyg)

=) |

i
X Costyop + 6 (n=1)xCost yp o + Z Conlrms) (6.7)

=1

where function Cor{k) denotes the hardware cost of a k-input OR gate.

If there is no IS state in any process, it can easily be verified, by comparison of Figures 6.4
and 6.7, that CTRL 3 becomes equivalent to CTRL 1. This can also be seen in equation
(6.7), substituting m; s=0, and m; y=m; for all i. In this case, and taking into account the

definition of N, through equation (6.2), equations (6.4) and (6.7) yield the same value.
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6.2.5 Parity-based self-checking using a single parity checker and ex-

ploiting Intrinsically Secure states

The next controller self-checking design scheme presented here is naturally a combination
of CTRL 2 and CTRL_3. It is depicted in Figure 6.8, and will be called CTRL 4. As is
obvious from the figure, all non-IS states from all concurrent processes, plus all OR gate

outputs compacting IS state control signals are fed to a single odd parity checker.

Lemma 6.1 : The configuration of Figure 6.8 detects all single control signal faults, while

providing the fault-free indication under fault-free operation.

Lemma 6.1 is a generalization of Theorem 6.1, and it can be informally verified as fol-
lows. During reset, only the initialisation state is active, thus a one-hot signal reaches the
parity checker, and the correct operation is confirmed. During all subsequent control
states, each process will contribute a logic 1 either because of one of its non-IS state sig-
nals, or as the output of corresponding OR gates. So a total of n 1s will feed the parity
checker. Therefore, exactly as in the CTRL 2 technique, a single-state “dummy’” process
is inserted to ensure odd parity, in case n=2k. The above statements apply during fault-free
operation, verifying that in that case the scheme produces the fault-free indication; under a
single fault in any control signal of any process, the process at hand will either

e erroneously contribute an additional 1 (see a4 and b3 in the proof of Theorem 6.1),
thus accumulating an even number of 1s (2k+2) in the checker input (the checker will
therefore detect the fault), or

o fail to produce its corresponding 1 (cases a3 and b4 as above), again leading to an even
number of 1s (2k) fed to the checker, thus again asserting the faulty indication, or

o produce its fault-free control signal, bur signal a fault at its data path (case a2), or even
e produce both an additional 1 at its control signals and an erroneous signal at the data
path (b2), thus giving a double alarm.

The validity of Lemumna 6.1 is thus verified.

The odd parity checker inputs are all non-IS state control signals of the design (a total of

i

Z(mmv) +1 bits, including state-0), plus one signal for every process that has at least one

i=1

IS state (as defined above, there are njs such processes). Based on this observation, the fol-
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Figure 6.8 : The CTRL_4 self-checking scheme

following expression can be derived, giving the hardware cost estimation for the CTRL 4

scheme.

-

Ui I
Costerpr 4= {Z (m; N+ s — IJ x Costyop + Z Corlm; s) (6 8)

i=] =1
Equation (6.8) takes into account the overhead from both the XOR gate-based checker and
the OR gates relevant to IS states, but, like (6.3), it ignores overheads associated with the

dummy state insertion, in the case of an even n.

6.2.6 Hardware costs

This section attempts a comparison of the four techniques presented in the previous sec-
tions in terms of their hardware cost, assuming CMOS VLS target technology [136]. In
this technology, it is known that typically Costanpior=0 transistors (implemented as a 2-

input NAND/NOR followed by an inverter), and Cor(k)=2x(k+1) transistors (imple-
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mented as a k-input NOR followed by an inverter). It is also assumed that the XOR gates
are implemented as transmission-gate XORs, thus yielding Costyxor=6 transistors {136]. It
can be argued that the transmission-gate XOR, although particularly cheap, is not the best
implementation of an XOR function; indeed, the realisation using three NAND gates and
two inverters is usually prefered by most designers. Likewise, with respect to the k-input
OR realisation, for high values of k, k-input NOR gates may be too slow for a particular
technology, and implementations using multiple 2- or 3-input NORs may be preferred in-
stead. However, the present cost assumptions are purely for the purpose of illustrating the
relative theoretical costs derived for the corresponding schemes and they are useful as

such.

Table 6.1 summarizes the CMOS transistor count estimations for some sets of values of
the associated parameters, for all four schemes, as given by equations (6.4), (6.5), (6.7),
and (6.8). To facilitate easier understanding of the figures in the table, the meanings of pa-

rameter symbols defined in the previous sections are repeated in the following.

N total number of control states in the design (including initialisation)
n total number of concurrent processes
s number of processes that include at least one Intrinsically Secure state

min  number of non-Intrinsically Secure states in process 1

mis  number of Intrinsically Secure states in process 1

B Parameters Checker transistor count
N n ng miy, for I<isn | myg, for 1<i<n | CTRL_1 CTRL 2 | CTRL_3 | CTRL_4
50 1 0 49 0 288 288 288 288
20 t 1 13 4 108 108 100 100
30 3 0 13,15, 1 0 for every i 228 168 228 168
151 15 15 S forevery 1 % 5 for every 1 1314 894 1134 714

Table 6.1 : Self-checking hardware cost estimations
The first row of the table corresponds to a single-process design, with no Intrinsically Se-
cure states. The expected result is that all techniques yield the same cost, since they all
lead to a simple parity check. The second row corresponds to another single-process de-
sign; this time, however, it is possible to identify four Intrinsically Secure states within the
process. The result is a slightly cheaper checker when CTRL 3 or CTRL_4 are used, on
top of the increased error detection capabilities mentioned in §6.2.3. Naturally, CTRL 1

and CTRL 2 effectively lead to the same design, and so do CTRL 3 and CTRL 4. In the
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third row, a parallel (3-process) design with no Intrinsically Secure states is considered.
Significant hardware savings are noticeable when the single-parity checking schemes
CTRL_2 and CTRL 4 are used. Finally, the fourth row depicts the most complicated case
of a highly parallel (15 processes) design, with identifiable Intrinsically Secure states in all
processes. In particular, the assumption is that exactly half (5/10) of the states in each
process are IS. Such cases can appear in realistic, useful designs, implementing complex
digital signal processing algorithms. Comparing the estimations for the CTRL 1 and the

CTRL_4 schemes, an improvement of the order of 45% can be noticed.

It should be stressed that the estimations of this subsection are nof experimental results;
rather, they are an attempt to evaluate the theory of this section in the light of some hypo-
thetical but possible design scenarios. They simply give a flavour of the expected proper-
ties of the self-checking choices presented so far. Experimental evaluation is still neces-
sary, especially given that the results of Table 6.1 ignore the presence of the datapath, and
the effect on the datapath area that each controller self-checking choice may imply. Such

implementation results are given in §6.4.

Nevertheless, the above estimations verify that controller checking using a single checker
can lead to more compact implementations (CTRL 2, CTRL 4). Naturally, the higher the
degree of concurrency (n), the more significant the improvement. Noticeable savings
(~26%) appear in Table 6.1 even for n=3 processes. However, recall that the hardware cost
of the data path is not shown in the table. Realistically, it can be estimated that the hard-
ware savings will become really important for a number of concurrent processes of the
order of n=10. As regards the schemes exploiting IS states (CTRL 3, CTRL 4) versus
their pure parity counterparts (CTRL 1, CTRL 2), Table 6.1 suggests that the hardware
savings associated with them are rather modest; therefore, the improved reliability, stem-
ming from overcoming the odd muitiplicity fault detection limitation, should be kept as

their main advantage.
6.2.7 Achieving the totally self-checking goal

All four techniques considered in this section employ parity checking to a greater or lesser

extent. Since parity checking properties have seen extensive theoretical investigation
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(§2.2.1.1), it is desirable to evaluate the presented schemes with respect to self-checking

theory as well.

As a first word of note, parity checking for a 1-hot encoded signal is not — strictly speak-
ing — code-disjoint (Definition 2.4). Indeed, an n-bit 1-hot encoded signal demonstrates
odd parity, but so does an n-bit signal with three (or any other 2k-+1>1 number of) 1s
among its bits. Such a signal may be the result of a highly hostile environment, causing
two (or an even number of) faults on the signal, and consequently resulting in a situation
where a non-code (i.e. not 1-hot) checker input produces a code (fault-free indication) out-
put. However, the underlying single-fault Hypothesis 2.1, backed by the comments of §6.2
regarding separate cones of logic for every controller output, rules out such a situation.
Parity checking for the 1-hot controller outputs can, therefore, in this background, be
loosely regarded as a code-disjoint operation. Fault-security (Definition 2.2) can likewise

be confirmed.

Regarding the self-testing property (Definition 2.1) also required for the totally-self-
checking goal to be achieved, recall Lemmas 2.1 and 2.2 (§2.2.1.1 and [17, 18]). Accord-
ing to them, a parity-based self-checking scheme is guaranteed to be self-testing if the
checker receives either

- 75% of all possible code words, or

- the rows of a 4xn matrix, whose distinct columns have exactly two 1s and two Os.

In contrast to the previous paragraph, “code words” here refers to all odd parity encoded
n-bit words, rather than to all 1-out-of-n words. The words of an n-bit 1-hot code are al-
ways n, while there are 2"/2=2"" different odd parity encoded words in total. Clearly it is
2"'%75%>n for all n>3, therefore the first condition cannot be true in the case at hand, ex-
cept for the trivial case n=3. Moreover, there can be no two different available code words
that have a 1 at the same bit position. This means that a matrix such as the one of the sec-
ond condition cannot be constructed from the available code words of the considered case.
One is therefore forced to conclude that the presented schemes at their current form are

not self-testing; consequently, they are not totally self-checking either.

Recalling §2.2.1.1, the solution to this problem is self-exercising checker design. This is
directly applicable in this case, by simply substituting the conventional 2-input XOR gate-

based parity checkers implied in Figures 6.4, 6.5, 6.7 and 6.8 with the LFSR-based struc-
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ture of Figure 2.12, repeated (slightly modified) in Figure 6.9 for convenience. The dashed
rectangle in the figure outlines the overall checker structure to be used in the CTRL 1,
CTRL_2, CTRL_3 and CTRL_4 schemes. Recall that only the even parity code is a linear
code. In practice, this means that the LFSR of Figure 6.9 must “internally” be based on
even parity encoding. This is in contrast to the situation at hand, where checker inputs
demonstrate odd parity. Therefore, in line with Tamick’s advice [12], two inverters are
applied to the structure of Figure 2.12, as Figure 6.9 depicts. The first one is applied to an
arbitrary bit of the checker input (in this case, the input LSB), so that the LFSR is fed with
the required even parity words. The second one is applied to the (even parity) LFSR out-
put, once again to an arbitrary bit (again the LSB in the figure), to produce the odd parity

Control signals

A
- N

Qn

R
O
o
F—%
g
[9)

o CK o CK

Conventional Odd Parity Checker

Figure 6.9. TSC parity checker, to be used in CTRL_1, CTRL_2, CTRL_3, CTRL_4
encoded code word that feeds the conventional odd parity checker. The n-bit LEFSR itself

can be designed by obtaining its characteristic polynomial as outlined in §2.2.1.1, based
on Theorem 2.1, and consulting the literature for tables of primitive polynomials (see for

example [137, 138]).
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As mentioned in §2.2.1.1, the presence of the LFSR has the effect that the conventional
parity checker embedded within the overall structure of Figure 6.9 receives all possible
code words, as long as two different code words appear in its inputs (which is always true
in the case at hand). Again according to Lemma 2.1, this means that any arrangement of 2-
input XOR gates in the disjoint parity trees that constitute the conventional checker, will

lead to a TSC solution.

TOTALLY TOTALLY
SELF-CHECKING SELF-CHECKING
ODD PARITY CHECKER ODD PARITY CHECKER
vy Al

2-PAIR
DUAL-RAIL
CHECKER

Figure 6.10. Compacting the outputs of
two TSC parity checkers

Let us now examine the dual-rail checkers of Figures 6.4 and 6.7 with respect to the totally
self-checking goal. First of all, consider the simple example of Figure 6.10 and assume
fault-free operation. The figure implies that only two processes exist in the system, and
their control signals are checked using two TSC odd parity checkers like the one of Figure
6.9, applying either CTRL 1 or CTRL 3. The outputs are naturally compacted using a
two-pair dual-rail checker (in effect a single dual-rail checker cell), as shown. Since the
corresponding conventional parity checkers receive all code words, they are also able to
produce both possible code outputs (01, 10). The exact state of each control path (i.e. the
exact signal fed to the TSC odd parity checker), together with the internal state of the cor-

responding LFSR determine which of the two possible outputs will be produced. In prin-
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ciple, the two processes are independent, while the two LFSRs are always independent. It
is therefore sensible to state that, over time, all possible code input combinations {(01,
01), (01, 10), (10, 01}, (10, 10)} will appear at the input of the dual-rail checker. General-
izing for an n-process design, with n TSC parity checkers producing both their code out-
puts, it can be understood that a// possible 2" input combinations will be fed to the n-pair
dual-rail checker. As explained in §2.2.2.2, only four well-selected code inputs are enough
to guarantee the self-testing property for an n-bit dual-rail checker of a given structure.
The fact that all possible code words are applied to the checker in the case at hand, sug-
gests that any structure (i.e. any internal arrangement of the n-1 dual-rail checker cells)

will result in a TSC design.

At this point, the issue regarding the actual checker structures of Figures 6.4, 6.5, 6.7, and
6.8, left open in §6.2.1, has been answered. To summarise, all parity checkers in the fig-
ures are implemented using the configuration of Figure 6.9, where the conventional parity
checker shown, 1s composed of two 2-input XOR gate-based parity trees, with arbitrary
distribution of gates between the trees, and arbitrary arrangement of the gates within the
trees. In addition, the dual-rail checkers of Figures 6.10 are composed of an arbitrary ar-

rangement of 2-pair dual-rail cells.

Clearly, the result of utilising the TSC checker of Figure 6.9 in the controller self-checking
schemes, is that the estimations of equations (6.4), (6.5), (6.7) and (6.8) are no longer
valid, since they were derived assuming simple parity checkers, and do not take the LFSR
hardware overhead into account. They can, however, easily be suitably augmented as fol-
lows. Let Costiesr 1 be the constant hardware cost of an LFSR cell, that is the cost of a
flip-flop, plus the cost of the XOR gate. Clearly, the n-bit LFSR of Figure 6.9 will cost
nxCostrrsr_;. This is not totally accurate, since the XOR gate can be a 2 or a 3-input one,
depending on the absence or presence of a feedback tap, so Costyrsg_; should not be a con-
stant. The two inverters are also not taken into account. Let us, however, ignore these neg-
ligible details, and accept this approximation for the purposes of this discussion. In each of
the presented schemes, the number of LFSR cells is equal to the total number of inputs of
all parity checkers. Based on this :

e inthe CTRL 1 scheme (Figure 6.4), checker PC; has m;+1 inputs, adding up to a total

of
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i1

(m,+1)=N, +n-1 (6.9)
=]

i

inputs in all parity checkers (equation (6.2) has been used in the above). Equation (6.4)

can now be updated as

Costegy | = [NS ~(n+ 1)]>< Cost ypp +6x(n—1)x Cost p o + (6.4)

+(Ns +n-1)x Cosz‘LFSR_i

o inthe CTRL 2 scheme (Figure 6.5), the single odd parity checker receives V; inputs.

Equation (6.5) can now simply be rewritten as

Cost g 5 = (N, = 2)x Cost ypy + N, X Cost, gn N (6.5")

e inthe CTRL 3 scheme (Figure 6.7), as already seen in §6.2.4, each process P; with at
least one Intrinsically Secure state (in; s#0) feeds an m;n+2 input parity checker, while
whenever no IS state can be identified (ny s=0) the checker has my; +1 tnputs. The rela-

tionship giving the total number of parity checker inputs is shown in the following to be

analogous to equation (6.6)
Z (m, .y +2)+ Z (m,, +1)= Z (m, yy+n+ng (6.10)
1

ilmy; 520 il ny =0 i=

Equation (6.7) now becomes

”

COS[C}"RLMS - }:Z (mf./v )‘ (” My ):J X COSf/\'OR +6x (” - 1)>< COS[/IND/ OR

= (6.7
+ Z Cor (m.as )+ [Z (7771:/\/ )+ n+ne J X Cost gp
i=l i=l -
e finally, in the CTRL 4 scheme (Figure 6.8), the total number of checker inputs
(§6.2.5) has been shown to bez (m, ) +n, +1, which updates equation (6.8) to
=]
Costerg, 4 = LZ (m, ) +n = 1}( Cost yop + Z Cor(m,; )+
i=1 i=1
(6.8")

A{Z (m, ) +n,+ IJXCOSIU,&Q1

i=i

An inspection of the updated equations reveals that the relationships between the hardware

costs of the different schemes still hold; indeed, comparing, for example, equations (6.4")
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and (6.5"), is enough for one to realise that the more the degree of parallelism n, the more
the hardware savings achieved, not only due to the absence of AND / OR gates, but also
due to the reduced number of LFSR cells. This is totally consistent with the observations
already made in §6.2.6. It can therefore be claimed that, although the numeric results of
Table 6.1 are now even farther from being accurate, the qualitative insight they provide is

still relevant.

On the other hand, the increase in area imposed by the design of Figure 6.9, can be unac-
ceptable in the case of realistic designs. Recall, for example, chapter 5, where even de-
signs with a critical path of the order of 100 states were shown. This clearly implies that
parity checking in the considered context is not always as cheap as it first appears. The
situation calls for an alternative approach; self-checking using 1/n checkers is therefore

considered in the following section §6.3.
6.3 1/n based self-checking

This section investigates the possibility of directly applying 1/n self-checking to the con-

troller outputs. The reader is reminded that an m/n checker (§2.2.1.2) detects all single, as

well as multiple unidirectional faults in its inputs. The implication of this on the controller
structure (Figure 6.1), is that the next

D state logic and decoder blocks have to be

r_>o > designed such that no single internal

controller fault can under any circum-
D ><>

ol

stances give rise to a bidirectional multi-

ple fault on the controller output. This

problem has been addressed in [139],

1.0 based on the following definition.

Definition 6.2 : The inversion parity of a
Figure 6.11. An example of fanout logic path is the number of inversions in

branches with different inversion parities the path modulo 2.

Given a block of logic, a fault on an internal wire will only lead to unidirectional faults on
the output of the block, if all paths on the fanout of the wire have the same inversion par-

ity. The trivial but itlustrative circuit of Figure 6.11 clarifies this proposition. The figure



P. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 216

shows a stuck-at-0 wire, assuming the D value when its source tries to drive it to 1. The
wire has a fanout of 3 branches. The top and the bottom branches have a 0 inversion parity
(2 and 0 inversions respectively). If faults reach the circuit outputs through both of these
branches, then they result in the same logic error. Indeed, in the figure, if the second input
to the AND gate is logic 1, then fault propagation through both paths leads to D-type
faults. Of course, a fault does not necessarily make its way to the circuit output, an exam-
ple being the scenario where the second AND gate input is a logic 0, leading to a fault-free
0 value in the output. In contrast, the middle branch has an inversion parity of 1 (a single
inversion). Clearly, this produces a D on the respective circuit output; in combination with
the top and bottom branches, the D-type faulty input wire causes bidirectional faults on the

output lines.

Returning to the controller self-checking problem, it is such situations that need to be ex-
cluded when designing the controller blocks, in order for m/n checking to be safely appli-
cable. It is therefore to be noted, that, in contrast to the parity checking situation of §6.2,
hardware sharing between the logic cones of controller outputs is permitted, so long as it
does not lead to fanout branches with different inversion parities. Clearly, this is a less re-
strictive constraint than that of §6.2; it can, therefore, lead to more compact control path
realisations. In the following, it will be assumed that this constraint is satistied, and under

this sole assumption the presented techniques are generically applicable.
6.3.1 Selection of a 1-hot checker

Several 1-out-of-n checker designs have been proposed (§2.2.1.2). Unlike the parity
checking case, where XOR trees dominate the field, there seems to be no clear winner as
far as 1/n checking is concerned. This subsection states the desired properties of the 1/n

checker to be used, then revisits the techniques presented in §2.2.1.2, and finally justifies a

particular choice.

6.3.1.1 Checker specifications

The checker needed for the current problem should have the following characteristics :
(a) Tt must be hardware-efficient. This comes directly out of the problem statement of

§6.1.4; as already mentioned therein, the assumption is that the designer has already paid a
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significant penalty for datapath self-checking (chapter 5). It is therefore desirable to keep
any controller-related extra overhead as low as possible.

(b) It must be generic, applicable to as wide a range of the bit width n as possible. This
stems from the whole context of this work : any solution should be able to easily lend it-
self to high-level synthesis, where the length of the process critical paths cannot possibly
be known a priori. Applicability implies that the checker should be not only constructable,
but also consistent with theory (totally self-checking) for as many values of n as possible
(§6.1.4).

(c) It must be technology-independent. Incorporating technology-independent solutions in
high-level synthesis is a virtue, since it takes full advantage of the largely technology-
independent nature of the synthesis process, and maintains its ability to be easily tuned to
alternative technologies.

(d) It must be relatively simple in its description, so that it can easily be coded in an HDL
and incorporated in an Electronic Design Automation (EDA) flow.

(e) In contrast, speed is not a critical factor. To understand this, once again consider Fig-
ure 6.1. The minimum clock period achievable by the synchronous design is determined
by the datapath, while controller self-checking is done in parallel to the datapath opera-
tion. As chapters 3 and 5 have established, it is often the case that several data path opera-
tors or multiplexers operate in series within the same control step. This guarantees ample

time for the (normally faster) single operation of 1/n checking to be completed.

The above characteristics add up to a simple sentence : a checker that demonstrates re-

quirements (a)-(d) can be allowed to perform suboptimally as regards speed.

0.3.1.2 1/n checkers revisited

A critical summary of §2.2.1.2 is provided here. The reader is reminded of all proposed

solutions for the 1-hot self-checking problem, and these solutions are evaluated in the light

of points (a)-(e) of §6.3.1.1.

Recall Anderson and Metze’s m/n checker (Figure 2.13 and [10]). A 1-hot checker is ef-
fectively implemented as part of it, using a simple code translator, followed by a k/2k
checker implemented using majority functions. The design is inherently based on logic

gates, so it is technology-independent, while the majority functions could be described in
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an HDL and therefore their design automated. However, the TSC property cannot be satis-
fied for all values of n (n=7 is a characteristic problematic situation mentioned in [107);

the design is therefore unsuitable for the situation at hand.

The adder-based k/2k checkers proposed by Paschalis et al (Figure 2.14 and [24]) can be
used in Anderson and Metze’s scheme instead of the majority function based one. One ad-
vantage is that the design becomes cheaper compared to [10] as k increases; it is also in-
dependent of technology, since it uses full and half adders as building blocks. On the other
hand, it is rather complicated to describe it in a generic HDL form, since its TSC property
strongly relies on the arrangement of adders within the blocks of Figure 2.14. Therefore, a
behavioural description is not possible, and a structural one is rather hard to parameterise
(so as to make it generically utilisable at a high level of abstraction). The TSC property is
achieved for the k/2k checker, if it receives all its code words; however, the translator of
Figure 2.13 is known to not always provide all code words. Consequently, it is not guaran-

teed that such a combination provides a TSC solution for every bit width of interest.

The checker of Tao et al [30] is also based on a configuration similar to Figure 2.13. The
structure is based on elementary logic functions, and its design is described algorithmi-
cally; it could therefore fit within an HDIL-based design flow, had it been more generically
applicable. Indeed, the TSC property is not achieved for some common values of n (such

as 7,9, 11).

CMOS technology specific designs [28, 33] are cheap and generic. They are, however,
unsuitable for the problem at hand, clearly due to their total dependence on target technol-

ogy, and their irrelevance to high-level HDL-based design flow.

Khakbaz’s 1-hot checker ([29] and Figures 2.16, 2.17, 2.18) is an interesting option. Its
hardware cost is reported to be comparable with [10] and [24], it can be applied for every
bit width, except the well-known problematic 1-out-of-3 case, it is technology-
independent, and it can be described in a behavioural HDL through equations (2.4), and
using a common dual-rail checker description (§5.3.3.3). In the literature it is criticised as
being slow [30], but as argued in §6.3.1.1 this may not necessarily harm. Clearly, it is a

tempting choice.
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Finally, the accumulator-based sequential structure of Stroele and Tarnick (Figure 2.20
and [34]), although easily implementable, particularly suitable for high-level description,
and totally technology independent, does not conform to the usual self-checking theory, in

that it experiences fault latency of unpredictable length, and it can even experience fault

escapes.

The above discussion singles out Khakbaz’s 1/n checker design as the most suitable can-
didate. The following subsections §6.3.2, §6.3.3 describe the controller self-checking solu-

tions instrumented using it.
6.3.2 Per process 1/n-based self-checking

Based on the selected 1/n checker structure, Figure 6.12 shows how an overall self-
checking solution for the controller of a generic highly parallel conceptual design can be
configured. The technique is directly analogous to the CTRL 1 method, as simple com-
parison of Figures 6.4 and 6.12 suggests. This time, however, the parity checkers have
been substituted by 1/n checkers, implemented as in Figure 2.16. Responses from all
checkers corresponding to all processes are naturally compacted by the usual dual rail

checker. This scheme is hereafter referred to as the CTRL 5 self-checking scheme.

Figure 6.12 also shows how the problematic 1-out-of-3 checker case is dealt with. Let us
concentrate on process P,. Without loss of generality, it is assumed to comprise 2 states.
Together with state-0, this dictates the need for a 1-out-of-3 checker. As a first word of
note, it has to be stated that such short processes are rather trivial, and not frequently en-
countered in controller / datapath architectures. The only realistically meaningful service
that a 2-state process nornmally has to offer, is the updating of outputs or internal signals,
concurrently with other, useful operations performed by the rest of the processes in the
system. Typically, this involves brief periods of activity, and extended periods during
which the short process simply waits. Further, the overall system critical path, being the
critical path of the longest process, is highly unlikely to be any relevant to the 2-state
process length. It would therefore do no harm to add a “dummy” state to the short process
(as shown in process P, in the figure), thus eliminating the need for a 1-out-of-3 checker,
and performing 1-out-of-4 checking instead. Essentially, having control of the synthesis

task, the designer can avoid the problematic 1/3 situation.
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One is tempted to think that the same principle of inserting dummy states to avoid prob-
lematic codes could be used more extensively, and an alternative checker adopted instead
of Khakbaz’s one. For example, Tao’s checker (§6.3.1.2) could be used, and dummy states
mnserted whenever 1/7, 1/9 or 1/11 codes were encountered. This is, however, not so, since
processes that are 6, §, or 10 states long typically perform usetul tasks and often determine
the critical path; therefore, lengthening them is very likely to hinder performance and

partly cancel out the benefit of the HLS critical path length optimisation effort.
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Figure 6.12 : The CTRL_5 self-checking scheme

It also has to be noted that the combined 1/3 self-checking approach of [31] (Figure 2.19)
would also provide an acceptable TSC solution, since one expects at least one more proc-
ess (therefore at least one more checker output) in the system control path, and definitely a

number of 2-bit comparator outputs coming from the datapath (chapter 5). Inserting a
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dummy state as above was, however, preferred, for being more standalone and independ-

ent of the system context, also simpler in concept and easier to incorporate in synthesis.

The CTRL 5 scheme is TSC overall. Indeed, the 1-out-of-n checkers receive all their code
inputs and are all TSC (as proved in [29]), especially so now that the 1-out-of-3 issue has
been resolved. The dual-rail checker is code-disjoint and fault-secure by construction
(§2.2.2.2), and it also receives all its code inputs, since the arguments built around Figure
6.10 are equally applicable here. It is therefore self-testing for any internal arrangement of
dual-rail checker cells. This makes both the dual-rail checker and the overall scheme to-
tally self-checking. Notably, this does rof require any costly LFSR-based design, in con-

trast to the parity-based techniques.

Finally, no hardware cost estimation prediction is given here. Firstly, the nature of the
code translator that forms part of the 1/n checker (Figure 2.17) allows for hardware shar-
ing and optimisation, without affecting the TSC property (notably, in contrast to parity
checkers). This will be made clear in the implementation part of this chapter (§6.4.2). This
optimisation often depends on the synthesis tool in use. Therefore, any prediction on a
purely theoretical basis would likely be misleading. Secondly, such a prediction would
only serve the purpose of comparison between 1/n based schemes and their parity based
counterparts, e.g. in this case CTRL 5 and CTRL 1, through equation (6.4"). This last
equation 1s, however, highly dependent on target technology (because of Cost gsg_; being
dependent on technology). It is, therefore, best to leave any such comparison for the ex-

perimental section §6.4.

6.3.3 Per process 1/n-based self-checking exploiting Intrinsically Se-

cure states

Figure 6.13 is clearly analogous to Figure 6.6, and shows how any existing Intrinsically
Secure states can be exploited within a single process, when 1/n checking is applied. As
the proof of Theorem 6.1 has shown, any single fault in the control signals leads to either
the all-Os pattern, or a 2-out-of-n word, or even a 1-out-of-n word, plus an alarm from the
datapath. In any of these cases, the 1/n checker serves just as well as the parity checker.
Moreover, given that 1/n checkers can detect not only single, but also multiple unidirec-

tional faults, it would be interesting to consider such faults here as well.
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Theorem 6.2 : The configuration of Figure 6.13 detects all unidirectional control signal
faults, while providing the fault-free indication under fault-free operation.
Proof:
The proof proceeds on the footsteps of the proof of Theorem 6.1 :
a) Consider the case when one of the IS state control signals is active :
al) Under fault-free operation, since one of the IS state control signals is active (logic
1), the OR output is a logic 1; since the controller is one-hot, all control signals
corresponding to non-IS states are 0. Therefore, the 1/n checker is fed by a 1/n pat-
tern, thus signalling correct operation.
a2) Let us consider k>1 D type faults. If ali of them appear on IS-state control signals,

then the datapath produces k error indications. If all of them appear on non-IS state

control signals, then the
1-out-of-n checker is

fed by a (k+1)-out-of-n

word, and signals a
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Figure 6.13 : Exploiting IS states in a single indications.

process with 1/n controller self-checking
a3) There can only be a sin-

gle D type fault, since there is only one active signal in the design (the one corre-
sponding to an IS state). If this faulty situation occurs, then the 1/n checker 1s fed
by the all-Os pattern and thus detects the fault.
b) Now consider the case when one of the non-IS signals is active.
b1) Under fault-free operation, the OR gate outputs logic 0, since all IS control signals

are inactive. Only one of the 1/n checker inputs 1s 1, so fault-free operation is con-

firmed.
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b2) Consider k>1 p type faults. The situation is evaluated exactly as in a2 above and no
further explanation is required.
b3) Once again, there can be no multiple D type fault, and under the presence of a sin-

gle one, the checker is fed by all-Os and naturally detects the fault. A

Interestingly, consider a double bidirectional fault, that is, a fault affecting two controller
outputs, such that one assumes the D value, and the other assumes b . Such a fault would
escape detection in the environment of Figure 6.12; however, in Figure 6.13, if the signal

taking the b (0/1) value happens to correspond to an IS state, then the data path signals a

P7 P2 @ Pn—1 Pn
e m—— f ittt et e b
Control : i Control
Signals ! ' Signals
| i
i !
2 : :
21 : )
- Q my 1 ’
| R ;
OR Control
Signals .
\/ m2
v VAN ]
1in ih 1/n 1/n
checker C4 checkerC, | 7 checker Cp. checker C,

I — — |
bbbl

Dual-rail checker /
response compactor

|

Figure 6.14 : The CTRL_6 self-checking scheme

fault and the fault is detected. This shows that, once more, when utilising Intrinsically Se-
cure states within a process, in the manner of Figure 6.13, the overall self-checking
scheme demonstrates enhanced fault detection capabilities, in that now bidirectional faults
can also be detected, provided that they corrupt any IS state towards a p value. The anal-

ogy with the corresponding parity-based scheme is evident.
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An overall scheme for the self-checking design of the control path utilising 1/n checkers,
and taking Intrinsically Secure states into account, is now proposed in Figure 6.14. It is
clearly the 1/n “equivalent” to CTRL_3, and will be called CTRL 6. In line with §6.3.2, if
any of the checkers C; is originally fed by 3 inputs, an additional dummy state is provided
to the corresponding control path, to resolve the problematic I-out-of-3 situation (although
no such situation is depicted in the figure). Moreover, no theoretical cost estimation is at-
tempted here either, although CTRL 6 can be expected to be somewhat cheaper than

CTRL 5, due to utilising cheaper checkers.

Finally, note that no technique analogous to CTRL 2 or CTRL. 4 is proposed, i.e. there is
no attempt to utilise a single m/n checker. The reason for this, is that there is no generic
TSC m/n checker, for arbitrary n and m>1. Most designs mentioned §2.2.1.2 are rather

restricted to the area around the k/2k checker, which is not useful for the purposes of this

research.
6.4 Implementation and Experimental Results

The discussion n this section focuses on the MOODS High-ILevel Synthesis Suite (§3.2),
and precisely on the implementation of the ideas of §6.2, §6.3 within MOODS. Some es-
sential properties of the MOODS controller are first established (§6.4.1), then implementa-
tion details are given (§6.4.2, §6.4.3), and finally the obtained experimental results are

presented, together with relevant comments (§6.4.4).
6.4.1 MOODS-generated controller revisited

Sections 6.2 and 6.3 established that controllers need to satisfy certain properties, in order
for the respective techniques to be applicable. As a reminder, in order to apply parity-
based schemes, one needs to design the controller such that any single internal fault can
affect an odd number of output signal bits, while if 1/n-based techniques are desired, the
designer needs to make sure that any internal fault may only lead to unidirectional faults
on the output. Favourable exceptions exist (§6.2.3, §6.3.3), but the above statements are in
principle correct. Observe that, if a controller has the property that every modelled internal

fault may lead to one and only one corrupted output bit, then both of the above require-
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ments are satisfied. In the following, it is shown that the control path generated by
MOODS indeed possesses this characteristic by construction, and therefore all six consid-

ered techniques can safely be utilised in its environment.

First of all, recall the generic controller model given in Figure 6.1, consisting of a state
register and two combinational logic blocks, namely the next state logic and decoder
blocks. Compare this model against the MOODS-specific control path implementation of
Figures 3.12 and 3.13. The comparison reveals that in the MOODS implementation no de-
coder 1is present. This is expected, since as mentioned in §3.2.6, there exists exactly one
general control cell (one flip-flop) for every control state in the system. The D-flip flops

found within the general control cells effectively constitute the state register, and any sin-

conditional signals
(from data path)

general control cells

T o e o — e o

| | OR-GATE | !| AND-GATE |next state
| | BLOCK {55 BLOCK llogic block
|
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1

|

1

|

1

1

|
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, .
control signals

|

i > (to data path)

1
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SELF-CHECKING
SCHEME
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error indication

Figure 6.15. The MOODS controller
supplemented with self-checking capabilities
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Figure 6.16. Conditional control flow

gle fault in any of them (in any of their ports : D input, Q output, set, reset, clock) may

only affect a single controller output.

Let the discussion now concentrate on the “next state” logic block. Once more, compari-
son of Figures 6.1, 3.12 and 3.13 reveals that the next state logic in the MOODS imple-
mentation effectively comprises the AND gate block (Figure 3.13) and the OR gates found
within the general control cells (Figure 3.12). For convenience, this idea is depicted in
Figure 6.15. The figure is just an alternative view of Figure 3.13, except for the self-
checking scheme block included here. Other than that, the general control cells of §3.2.6
have been decomposed into the flip flops constituting the state register, and a separate OR-
gate block. The above mentioned next state block model is also shown. As Figure 3.12
established, OR gates are dedicated to flip-flops; this means that the output path from any
gate in the block only leads to one flip-flop. In other words, any fault in any gate of the
OR-gate block can only affect one flip-flop, therefore it can only result in a single cor-

rupted bit in the control signals.

The AND-gate block requires some more attention. The particular block implements con-
ditional control flow, originating in conditional and loop statements in the system VHDL
description. An illustrative example of conditional control flow is provided in Figure
6.16a, together with its hardware implementation in 6.16b. In the example, control step
CS1 is followed by CS2, CS3 or CS4, depending on the values of conditional signals s1,
s2 and s3 (notably, exactly one of them is “true” when CS1 is active). This is implemented
in the AND-gate logic block in the simple manner that Figure 6.16b depicts. The outputs

of the AND gates are directed to the general control cells / flip flops that correspond to the
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succeeding CS2, CS3 and CS4 (at times through suitable OR gates in the respective
block). Since there is exactly one flip flop in the state register for every control step, the
logic path from the output of each AND gate leads to exactly one state flip flop. Indeed,
any variation from this would lead to functionally meaningless situations, for example
VHDL case statements where two different branches are activated simultaneously. In
turns, this means that any single fault in the AND-gate block can propagate to a single flip

flop, and thereby affect a single control signal.

Thus the discussion of this subsection concludes. The last few paragraphs established that
any single fault in any part of the MOODS controller (state register, OR-gate block, AND-
gate block) may corrupt a single output bit. In fact, this is an inherent property of direct
one-hot encoding of the control signals. All six controller self-checking schemes of §6.2

and §6.3 can thus safely be applied.

6.4.2 Self-checking design cell libraries

Subsection 6.4.1 established that controller self-checking as addressed in this chapter is
perfectly applicable to the control path model of designs synthesized by MOODS. As is
obvious from the discussion so far, in principle controller self-checking has no direct rele-
vance to the synthesis tasks of chapter 3, as the checking hardware is always just an add-
on to the normal design (see for example Figure 6.15). Therefore, all that is needed for the
implementation of the considered techniques within HLS is a simple post processing step.
Such a post processing step should take into account the self-checking technique that the
designer chooses for a particular experiment (CTRL 1, CTRL 2, CTRL 3, CTRL 4,
CTRL_5 or CTRL 6), identify any Intrinsically Secure states (if applicable) and then add
a synthesisable VHDL description of the checking

in1(4 downto 0)
A block to the tool output code, taking care of the proper

connections of control signals to the inputs of the self-
checking logic block. This logic block comprises
conventional parity checkers, LFSR structures, dual-

rail checkers, and / or 1-out-of-n checkers, as applica-

ble. Such components are not available within the

standard MOODS cell library (§3.2.7); a dual-rail cell

output(2 downto 0)
Figure 6.17. A 5-bit XOR array library was however developed and used for the pur-
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library ieece;

use leee.std logic_1164.all;
use leee.numeric_std.all;
entity XOR_ARRAY is

generic {m: positive (= 1};
port (inl : in std_logic_vector (m-1 downto 0);
cutput: out std_logic_vector {((m/2 + (m rem 2))-1 downto 0));

end XOR_ARRAY;

architecture structure of XOR_ARRAY is
begin
Gl: if m»>1 generate
output {m/2+(m rem 2)-1 downto 0) <= inl{m-1 downto m/2+(m rem 2}) xor
inl(m/2+(m rem 2)-1 downto (m rem 2));
end generate;
G2Z: i1f (m rem 2})=1 generate
output (0) <= inl{0);
end generate;
end;

Figure 6.18 : The XOR_ARRAY cell

poses of chapter 5 as explained in §5.3.3.3. As a reminder, a relatively simple C++ pro-

gramme was written that automatically created a VHDL package, comprising synthe-
sisable descriptions of dual-rail checkers, receiving anything between 1 and 200 pairs of
inputs. Parity checkers are known to have a very similar structure, except that instead of
dual-rail checker cells they consist of 2-input XOR gates ([2, 5] and §2.2.1.1 of this the-
sis). As explained in §6.2.7, an n-bit conventional parity checker employed in this work as
Figure 6. 9 has shown, can have an arbitrary arrangement of its

constituent 2-input XOR gates without loss of the

10 TSC property. A straightforward symunetrical ar-
v rangement was therefore chosen, and a C++ pro-
10-bit XOR array gramme was used to automatically create the respec-
5 tive parity checker VHDL package. Initially an
\ 4 XOR array cell is defined (analogous to the checker
5-bit XOR array array of §5.3.3.3). Figure 6.17 shows an example 5-bit
f 3 XOR array, while Figure 6.18 shows the VHDL de-
3-bit XOR array scription of the generic m-bit XOR array cell. Parity
> trees are then composed of XOR arrays. Figure 6.19
A4 gives an example 10-bit parity tree. The figure depicts
2-bit XOR array the block diagram structure of the implementation; of
i course some XOR arrays are very simple structures,

. . for example a 2-bit “XOR array” only consists of a
Figure 6.19. Block diagram

of a 10-bit parity tree single XOR gate.




P. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 229

A generic n-bit parity checker consists of two disjoint parity trees, of widths fn / 21

and [_n/ ZJ respectively. Figure 6.20 shows the block diagram of a 21-bit parity checker.
The overall parity checker library contains the XOR array of Figure 6.18, structural de-
scriptions of parity trees of bit width values in the range 1 — 100, and based on them, struc-
tural descriptions of parity checkers of bit width values in the range 1 - 200. If needed, a
trivial modification of the generator C++ programme could produce checkers of even

wider mputs.

library of LFSR cells was implemented similarly. Firstly a 1-bit LFSR cell was defined.
The cell 1s shown in Figure 6.21, while its synthesisable VHDL description is provided in
Figure 6.22. The cell is used as a building block for the LFSR structure of Figure 6.9. By
connecting a constant 0 to the “feedback” input port, one can model the absence of a feed-
back tap (indeed, logic synthesis tools typically optimise out the feedback input in such
cases). Similarly, by connecting a constant 0 to the shift inp input typically causes
this input to be optimised out and creates a 1-bit LFSR cell like the leftmost cell of Figure
6.9. The VHDL generic rst val determines whether the “rst” input will be con-

nected to the “set” or to the “reset” (as in Figure 6.21) port of the D-flip flop. This pro-

21-bit input
A
- ™
" 10
11-bit parity tree 10-bit parity tree

—

Figure 6.20. Block diagram of a 21-bit parity checker
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input
shift_inp v shift out
= » D > —
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ck
feedback
rst
out_g
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Figure 6.21. The 1-bit LFSR cell

vides a convenient mechanism for the ini-
tialisation of the LFSR with the desired
value. The positions where feedback taps
are to be added in an n-bit LFSR are de-
termined as §2.2.1.1 explained, based on
Theorem 2.1 and Figure 2.12. In particu-
lar, for a given n, an (n-1)-degree primi-
tive polynomial is chosen, from the tables
of primitive trinomials and pentanomials
of degrees between 2 — 100 provided in

[137]. The chosen polynomial is multi-

plied by the generator polynomial of the even parity code g(x)=x-+1, thus creating the n-bit

characteristic polynomial of the LESR to be designed. The reader is reminded that such a

procedure guarantees that the resulting LFSR will produce all non-zero even parity code

words, if initialised with a non-zero even parity encoded pattern (Theorem 2.1). A C++

programime is thus written, that “knows” the characteristic polynomial corresponding to

every n. It automatically generates an output VHDL package that consist of the

LFSR_1 bit cell, followed by synthesisable descriptions of suitable LFSRs of bit-

widths between 2 and 100. When outputting the description of each LFSR, the generator

programime provides constant 0s

library ieee;
use ieee.std logic_1164.all;
entity LFSR_1_bit is
generic {rst_val : integer);
port {input : in std_logic;
feedback : in std_logic;

shift_inp : in std_logic;
ck : in std_logic;
rst : in std_legic;

shift_out : out std_logic;
out_g : out std_logic);
end LFSR_1_bit;

architecture structure of LFSR_1_bit is
signal internal_sig : std_logic;
begin

out_g <= internal_sig;

process (ck, rst)
begin
if xst = '1' then

0 then
gt

if rst_val =
shifs_out <=
else
shift_out <= '1';
end 1f;
elsif rising edge{ck) then
shift_out <= internal_sig;
end if;
end process;
end;

Figure 6.22 : The LFSR_1 bit cell

internal_sig <= input xor shift_inp xor feedback;

or suitable signals to inputs as
appropriate to model feedback
taps, proper rst_val values to
initialise to an even parity non-
zero word, and also cares for the
inverted input and output values
needed to accommodate the odd
parity considered in this thesis,
according to Figure 6.9. As an
example, Figure 6.23 shows the
VHDL description of the 4-bit
LFSR. The 3-bit primitive trino-
mial chosen from [137] was

d(x)=x’+x+1, thus determining
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library ieee;
use leee.std_logic_1164.2l1l;
entity LFSR_n4 is
port (input : in std_logic_vector (3 downto 0);
ck : in std_logic;
rst : in std_logilc;
output : out std_logic _vector(3 downto 0));
end LFSR_n4;
architecture structure of LFSR_n4 is
signal shift_out_v : std_logic_vector (3 downto 0) ;
signal shift_inp_v : std_logic_vector (3 downto 0);
signal feedback_v : std_logic_vector (3 downto 0} ;
signal neg_in : std_logic;
signal neg out : std_logic;
component LFSR_1_bit
generic (rst_val : integer);
port (input : in std_logic;
feedback : in std_logic;
shift_inp : in std_logic;
ck : in std_logic;
rst : in std_logic;
shift_out : out std_logic;
out_g : out std_logic);
end component;

begin

feedback_v(0) <= shift_out_vI(3};
shift_inp_v {0} <= '07;
neg_in <= not input(0);

shift_inp_v (0}, ck, rst, shift_out_v(0}, neg_out};
output (0} <= not neg_out;
feedback v(1l) <= '0';
shift_inp v (1) <= shift_ocut_v{(0};
Ll: LFSR_1_bit generic map (1) port map {input(l),
shift_inp v (1), ck, rst, shift_out_v(l}), output(il));

feedback v(2) <= shift_out_v(3};
shift_inp v{2) <= shift_out_v(1);

snifr_inp v({2), ck, rst, shift_out_vi{2), output(2));

feedback_v(3) <= shift_out_v(3);
shift_inp v ({3} <= shift_out_v(2};

shift_inp v (3), ck, rst, shift_out_v(3), output(3));
end;

Figure 6.23 : A 4-bit LFSR

for all: LFSR_1_bit use entity work.LFSR_1_bit (structure};

LO: LFSR_1_bit generic map (1) port map (neg_in, feedback_v{0},

feedback v(1),

L2: LFSR_1_bit generic map (0) port map (input(2}, feedback_v(2},

L3: LFSR_1_bit generic map (0) port map (input(3), feedback_v(3),

the LFSR characteristic polynomial p(x):><4~f-x3 +x*+1. On the figure it can be confirmed

that the description provided indeed implements p(x), that the LFSR is initialised to the

“0011” value, and that the 0-bit position input and output are inverted.

The last building block needed for the implementation of the controller self-checking

schemes of this chapter, is the 1/n checker of [29]. As Figure 2.16 revealed, this is com-

posed of a (1/n)-to-(dual-rail) code translator, followed by a dual rail checker, imple-

mented either symmetrically if n is a power of 2, or using three dual-rail checkers in the

configuration of Figure 2.18 otherwise. Clearly, the dual-rail checkers can perfectly well

be the ones implemented in §5.3.3.3. The task at this point is, therefore, to implement the
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code translator. For this purpose, it is enough to express equations (2.4) using the VHDL

syntax. The equations are repeated in the following.

J,.:Zx,,foralli:[(p—j):l (6.11a)
K, :Zx,.,forauizf(p—j):o (6.11b)

The summation symbol in this context represents a logic OR; thus the inverse summations

of equations (6.11) are in fact NOR functions. The reader is reminded that x; (1<i<n) is the

ith-position bit of the

library ieee;

use leee.std _logic_1164.all; - .
use work.neg_3_cells.all; checker 1nput, ](k) is the
entity ONE_HOT CHK né is kth-position bit of the bi-
port {inl : in std_logic_vector{7 downto 0};
output : out std_logic vector{l downto 0}); Ilar}frepreseniatﬂan.ofirne—

end ONE_HOT_CHK_n8;

architecture structure of ONE_HOT _CHK_ng is ger I, infeger p 18 calculated

signal J,K : std_logic_vector (2 downto 0);
component NEQ_3_n3 as p= [_log7 n-], and the
port (inl : in std_logic_vector (2 downto 0); -
in2 : in std_logic_vector {2 downto 0} ;

above two equations are

output : out std_logic_vector (1 downto 0});
end component;
definedV; : 1<<p, giving a
for all: NEQ 3 _n3 use entity work.NEQ_3_ n3 (structure) ;

total of 2xp equations.

begin
J{2) <= not {inl(0) or inil{2) or inl(4) or inl(6}); L.
K{2) <= not (ini{l) or inl{3) or inl{(5) or ini(7)); Every (J;, Kj) pair is then
J{1l} <= not {inl(l} or inl {2} or inl (5} or inli{s&));
K(1) <= not (inl{(0) or inl(3) or inl(4) or inl(7}); Complementary thus consti-
J(6) <= not (inl(3) or inl{2)} or inl{5) or inl(6)); ’
X{0) <= not {(inl(0) or inl{(l) or inl(2) or inl{7)}; : : el
N1: NEQ 3_n3 port map (J, X, outputj; tutlng ap-pax dual‘laﬂ en-
end;
coded word. The translator
Figure 6.24 : The 1/8 TSC checker equations are analytically

well-defined and depend solely on the value of »; therefore, a relatively sumple C++ pro-
gramme was written to automate the production of yet another VHDL package, com-
prising descriptions for the translator equations and corresponding translator-based 1/n
checkers, with bit-widths between 2 and 100, excluding the problematic n=3 case. Once
more, an extension of the library to values over 100 is perfectly feasible through simple
modifications of the generator C++ programme. As an example, the VHDL description of
the 1/8 to 3-pair dual-rail translator (Figure 2.17) and the resulting checker is shown in
Figure 6.24. Notably, it is a particularly compact description. The equivalence of the trans-
lator assignment statements to equations (6.11) can easily be verified. Also observe the
utilisation of the 3-pair dual-rail checker (component NEQ 3 n3, produced as in

§5.3.3.3). Figure 6.25 depicts a somewhat harder situation, where the 1/7 checker is im-



P. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 233

library leee;
use ieee.std logic_1164.all;
use work.neg_3_cells.all;

entity ONE_HOT_CHK_n7 is
port (inl : in std logic vecteor (s downto 0];
output : out std logic vector{i downto 0]} ;
end ONE_HOT_CHK_n7;

architecture structure of ONE_HOT_CHK n7 is
signal J,K : std logic_vector (2 downto 0);
signal intermediate_signals : std logic_vector (3 downto 0);
signal outl,out2 : std logic_vector (1l downto 0);
signal nlinl,nlin2 : std_logic_vector (1l downto 0);
component NEQ 3 n2
port (inl : in std_logic_vector (1 downto 0);
in2 : in std_logic_vector {1 downto 0}
output : out std logic_vector (1 downto 0});
end component;

for all: NEQ 3 n2 use entity work.NEQ_3 n2(structure);

component NEQ 3 nl
port {(ini : in std_logic vector {0 downto 0};
in2 : in std_logic_vector (0 downto 0);
cutput : out std logic vector (1 downto O0)};
end component;

for all: NEQ 3_nl use entity work.NEQ 3 nl{structure);

begin
J(2) <= not {in1{0} oxr inl (2} oxr inl{4) or inl(6}};
K(2] <= not (inl(l) or inl (3} or ini(5)};
J(1) <= not {inl(l) or ini{2) or inl (3} or inl{(s6}};
K{1} <= not (ini(0} or inl {2} or inli{4));
J(0) <= not {(inil(3) or inl(4) or inl{5) or inl(6));
K(0) <= not {(inl{0) or inl(l) or ini{(2)};

nlinl <= J(2) & J(0);
nlinz <= K(2) & K(0);
N1: NEQ 3 n2 port map (nlinl, niin2, outl};

N2: NEQ 3 _ni port map (J(1 downto 1), ¥{1 downto 1), out2);

intermediate signals <= outl{3l) & out2{l) & outl {0} & out2(0);
N3: NEQ_ 3 n2 port map (intermediate_signals(3 downto 2j,
intermediate signals(l downto 0), output);
end;

Figure 6.25: The 1/7 TSC checker

plemented. Since 7 is not a power of 2, three instances of dual-rail checkers are used, con-

figured as in Figure 2.18. This is clearly reflected in the code of Figure 6.25.

An interesting property of the particular translator descriptions is that they are purely be-
havioural and make no assumption whatsoever about how an RTL synthesis tool will ac-
tually implement them. In fact, a typical tool will take advantage of common terms in
equations (6.11) to perform hardware sharing. For example, refer back to Figure 2.17, and
consider translator outputs J; and K,. Observe that both include the term x4+Xs in their re-
spective equations. A typical tool will notice this, and will share the corresponding logic

gate appropriately. Note that this does not harm the TSC property of the checker. Indeed,
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for any (J; ,Kj) pair, the equations producing J; and K| cannot have common x; inputs. Any
logic sharing will therefore be between the expressions for J; and a Ky, or J; and a Ji, with
k#j. This means that there can be no logic sharing circumstances under which a single
fault in a gate may result in a bit flip in both J; and K. Thus the fault secure property is

preserved.

Using the cells described in this subsection, the control path self-checking schemes can be
implemented. The approach taken in this work, is to output the controller self-checking
block to a separate file, as a separate VHDL ent ity (during the synthesis post process-
ing step mentioned at the beginning of this subsection). Clearly, this entity can be totally
constructed using conventional parity checkers, LFSRs, 1-hot checkers, and dual-rail
checkers as applicable per situation. Then the normal MOODS output file, already sup-
plemented by the data path self-checking techniques of chapter 5, is further augmented
with an instantiation of the control path checker, as a component within the overall RTL
VHDL netlist, fed by the control signals. An additional 1-pair dual-rail checker is further
used to compact the responses from the datapath and the controller self-checking schemes,
and to produce the overall system health indication to the 2-bit output port already intro-
duced in chapter 5. This way, the final HLS output may as applicable per situation be
based on the following files :

e the usual RTL netlist

s the control path checker

s the normal MOODS cell library (§3.2.7)

o . the fault-secure comparator library (§5.3.3.3)

o the dual-rail checker library (§5.3.3.3)

o the parity checker library

e the LFSR library

o the 1/n checker library

For example, a design with both full datapath self-checking and any parity-based control-

ler self-checking will depend on a total of 7 files (all of the above except the 1/n checker

library).

Finally, note that as well as enabling the implementation of the self-checking schemes in

the context of this work, the development of a self-checking infrastructure environment in
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the form of synthesisable VHDL components has research value as such (refer for exam-

ple to [47]).
6.4.3 Facilitating Intrinsically Secure states

Although as already said the controller self-checking problem is not relevant to the syn-
thesis tasks, it would be desirable to implement a mechanism within the synthesis process
to direct the system towards creating more Intrinsically Secure states than it normally
would. Such a mechanism would clearly allow experimentation with the concept of IS

states, and evaluate their usefulness in practice.

Refer to the DFG of Figure 6.26. In 6.26a, two control states are shown; one operation is
scheduled at each one of them. The usual notations (§3.1.1) are used to signify that they
are assigned to the same functional module. Figure 3.26b depicts a typical situation after
duplication self-checking insertion and subsequent optimisation. The design is well opti-
mised, with comparisons chained within the same CSs as the functional and redundant
computations, but none of the control states is Intrinsically Secure. This author’s design
experience suggests that most designs tend to end up in such situations if the combination

of simulated annealing and tailored heuristics explained in chapter 5 is applied.

Figure 3.26¢ depicts an alternative situation. Operation +1 has been moved one CS earlier,
and this has allowed +2 to move up to the same CS as operations +1’ and !=1. This last
move would not have been possible if +1 had not moved, since +1 and +2 are assigned to
the same functional unit Al. This situation is particularly desirable for the experimental
purposes of this chapter, since both CS2 and CS3 of Figure 6.26¢ are in fact Intrinsically
Secure. The emergence of IS states can therefore be promoted by a synthesis heuristic that
would move the design from situations such as that of Figure 6.26b to situations such as

Figure 6.26¢.

At this point, recall the set of transformations available within the standard MOODS suite
(§3.2.3). Focus especially on the “merge fork and successor” TF&, and on the “unshare
single instruction from control state” TF21 (Table 3.1) transformations. Notice that the
application of TF21 on operation +1’ of CS1 in Figure 6.26b will create a dedicated con-

trol step for the operation. Data dependency between +1’ and =1 will then necessarily
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Figure 6.26. Facilitating Intrinsically Secure states
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create another CS, this time dedicated to comparison !=1. If the same transformation is
applied to +2', then two new CSs will similarly be created, this time for +2" and !=2. This
intermediate situation is depicted in Figure 6.26d. If control steps CS3 and CS4 are now
merged using transformation TF8, then components C1 and A1 will both be active during
the new merged state; this means that operation +1, also allocated to Al will no more be
allowed to move to the same control step as comparison !=1, since Al will be occupied
during that particular control step. Hence, this new state will always be Intrinsically Se-
cure according to Definition 6.1, since the functional (+1) and checking (!=1) parts of the
self-checking scheme composed of +1,+1',!=1, will always be scheduled for different con-
trol steps. Subsequent optimisation using for example one of the heuristics of §3.2.5.2 will
typically lead to the desirable situation of Figure 6.26c. Notice the combination of trans-
formations that allowed the move : first all redundant operations were extracted from the
shared control states using TF21, then control states where comparisons were scheduled,
were merged with their successors using TFS. Of course, the underlying assumption
throughout this explanation is that the “blocking” unit Al cannot be unshared; it would
therefore be sensible not to apply IS state creation within the simulated annealing block,

but rather after it, and before the tailored heuristics.

Based on the above, the on-line test synthesis approach presented in §5.3.3.2 can be
slightly amended to produce more Intrinsically Secure states, as follows :

e Step 1 : apply simulated annealing as in §5.3.3.2

e Step 2 : traverse all control steps, identify those that have all three parts (functional,
redundant, and comparison operations) of self-checking schemes scheduled at them, and
apply TF21 to the redundant operation

e Step 3 : repeat Step 2 until no more such CSs can be found

o Step 4 : apply TFS to all control steps where fault-secure comparison operations have
been scheduled

o Step 5 : repeat Step 4 until no more such CSs can be found

o Step 6 : apply tailored heuristics as in §5.3.3.2

Relatively short C++ functions implementing Steps 2 and 4 were provided to the MOODS
system, together with suitable MOODS commands to enable the designer to use them
through the MOODS interactive command prompt (Appendix A). Steps 3 and 5 are not
automated, so it is left to the designer to make sure no more suitable CSs can be identified,

or even decide to move to the tailored heuristics optimisation step prematurely.



P. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 238

Clearly, the procedure described here is not efficient as far as synthesis is concerned. In-
deed, it would be better and faster for the design space exploration process to reach Figure
6.26¢ automatically, without having to go through 6.26b, also relying on user interaction
to pass through 6.26d. However, bear in mind that the goal of this subsection is not to give
an efficient “high-level synthesis for Intrinsically Secure states™ approach; rather, it is to
somehow facilitate the emergence of said states, for the sole purpose of experimental
evaluation and comparisons, as will be made clear in the following §6.4.4. In that sense,

the above rudimentary step-wise approach serves its purpose adequately.

As a concluding remark, it is to be noted that for the implementation purposes of this

chapter, Intrinsically Secure states are considered according to the updated Definition 6.1/,

with the threshold value =7 as §6.1.3.2 suggests.

6.4.4 Experimental results

This subsection presents the experimental results obtained on the lines of the detailed
analysis of §6.1, §6.2, §6.3, and the particular MOODS implementation details of this cur-
rent section. In the following tables, a “Version 17 realisation refers to the design obtained
by the usual synthesis process of chapter 5, given the user constraints, and additionally
utilising the self-checking cells described in §6.4.2 to provide controller self-checking.
“Version 27 signifies that the heuristic procedure of §6.4.3 has further been applied, thus
in principle leading to more IS states. Results are given both for ASIC and FPGA imple-
mentations, for as many controller setf-checking schemes as applicable per situation. As in
chapter 5, dedicated technology library files were provided to the system for each different
target technology. The behavioural synthesis RTL output was fed to the Mentor Graphics
LeonardoSpectrum [132] RTL synthesis tool (version 2002e.16) in the case of ASIC im-
plementation. When FPGA technology was targeted, the Synplicity Synplify [124] tool
(version Pro 6.2) was used instead, while the design was further implemented using Xilinx
Design Manager version 3.11 [125]. In both cases, the tables present results reported from
the low level tools (Spectrum and Design Manager respectively); hence, they correspond

to the most realistic area and delay estimations that can be obtained.
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Tables 6.2 — 6.23 summarise all experimental results. The first and second columns in all
tables denote the self-checking strategy applied to the data path and the controller respec-
tively. Where applicable, the second columns also mention the number of IS states identi-
fied. The next three columns give the size and performance statistics of the particular im-
plementations, in terms of logic gates used or FPGA slices occupied (depending on tech-
nology) as a merit of the design size, and number of clock cycles and maximum achiev-
able frequency in MHz as a merit of the design performance. Finally, the last two columns
provide the area overhead and speed penalty associated with including self-checking to the
considered designs. In designs where both datapath and controller self-checking have been
applied, the area overhead percentage reported accounts for both. This simply reflects the
fact that, since the data path generally occupies most of the chip area, it 1s unlikely that a
designer would want controller self-checking solely, but he or she would rather opt for a

combined solution.

Tables 6.2 and 6.3 show the results obtained for a Version 1 and a Version 2 (respectively)
implementations of the Tseng design, both cases with the same synthesis priorities and
targeting the same ASIC technology. The first row in both tables shows the original de-
sign. All overhead percentages in the tables are always given with respect to this untesta-
ble version. A design with a self-checking data path is given immediately afterwards, fol-
lowed by combinations of both datapath and controller self-checking, the latter alterna-
tively taking all six forms described in this chapter (or as many as applicable in any given
design). Table 6.2 highlights CTRL 6 as the cheapest of the six techniques among the
Version | implementations, with a 58.4% overall hardware overhead. Also notice that 3
out of 5 states in the design are identified as IS, meaning that the majority of bidirectional
controller faults will be detected, together with the unidirectional ones, providing almost
complete confidence even in the most hostile environment. Finally, the degradation in the
maximum frequency found in chapter 5 is naturally encountered here as well. Table 6.3
shows that CTRL 6 is also the cheapest approach among the Version 2 type designs. The
IS states identified are 3 again, while compared to Table 6.2 the implementation is clearly
more expensive, but a side effect of the heuristic of §6.4.3 is that higher frequency can
now be achieved (~42MHz compared to ~14MHz). This is a result of breaking chains of
functional - redundant — comparison operations originally scheduled for the same CS. The

Table 6.3 results would therefore be preferable in a high frequency requirement scenario.



P. Oikonomakos, 2004

Chapter 6: Controller Self-checking Design

240

data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (gates %) {cycles %)

- - 1768 4 54.6 N/A N/A
inversion - 2783 5 14.9 57.4 25.0
inversion CTRL_1 2842 5 14.3 60.7 25.0
inversion CTRL 2 2864 5 14.3 62.0 25.0
inversion CTRL 3,318 2833 5 143 60.2 25.0
inversion CTRL 4,318 2857 5 14.3 61.6 25.0
inversion CTRL 5 2808 5 14.3 58.8 25.0
inversion CTRL 6,318 2801 5 14.3 584 250

Table 6.2 : Tseng Benchmark Version 1 synthesis results (Target Technology Alcatel CMQOS 0.35 VL.SI),

synthesis priorities : area high, delay low, moderate clock period value
data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (gates %) {cycles %)

- - 1768 4 548 N/A NIA
inversion - 2915 5 423 64.9 25.0
inversion CTRL 1 3131 5 41.9 77.1 25.0
inversion CTRL 2 3153 5 41.9 78.3 25.0
inversion CTRL 3,318 3125 5 41.8 76.8 25.0
I Tinversion CTRL 4,318 3148 5 41.9 78.1 25.0
inversion CTRL 5 3097 5 41.8 75.2 25.0
inversion CTRL 8, 31S 3091 5 41.9 74.8 250

Table 6.3 : Tseng Benchmark Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
synthesis priorities : area high, delay low, moderate clock period value

Tables 6.4 and 6.5 present corresponding results for the Diffeq benchmark. CTRL 6 is

again highlighted as the most economical solution in both, while again Version 2 experi-

ences a marginally higher area overhead, in conjunction with two additional IS states. In-

terestingly, the IS-state facilitating heuristic combined with the standard MOODS tailored

heuristic gives rise to a Version 2 design that is comparatively faster than its Version 1

counterpart (saving 3 states in the critical path). Given the modest additional overhead, the

CTRL 6 design of Table 6.5 is likely to be the preferred choice for this benchmark, espe-

cially if speed is a particularly critical concern.

Notice that both designs given so far have had controller self-checking versions utilising

data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (gates %) (cycles %)

- - 3679 18 39.6 N/A N/A
inversion - 6075 25 39.6 65.1 56.3
inversion CTRL 1 6400 25 37.8 74.0 56.3
inversion CTRL 2 8424 25 37.8 74.8 58.3
inversion CTRL 3,518 6361 25 37.8 72.9 56.3
inversion CTRL 4,518 6377 25 37.8 73.3 56.3
inversion CTRL_5 6246 25 37.8 69.8 56.3
inversion CTRL 6,518 6237 25 37.7 69.5 56.3

Table 6.4 : Diffeq Benchmark Versio

synthesis priorities

n 1 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
! area high, delay low, moderate clock period value

data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (gates %) (cycles %)

- - 3679 16 39.6 N/A N/A
inversion - 6143 22 39.6 67.0 37.5
inversion CTRL_1 6460 22 37.7 75.6 375
inversion CIRL 2 65480 22 37.7 76.1 375
inversion CTRL_3, 718 6404 22 37.7 74.1 37.5
inversion CTRL 4,718 6428 22 37.7 747 37.5
inversion CTRL 5 6325 22 37.6 719 375
inversion CTRL 6,718 6307 22 378 714 37.5

Table 6.5 : Diffeq Benchmark Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
synthesis priorities . area high, delay low, moderate clock period value
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the multi-process schemes CTRL_2 and CTRL_4. In fact, both designs are essentially
single-process ones, but they also include short processes, solely responsible for the updat-
ing of system primary outputs. These processes are so short that indeed the hardware in-
troduced to implement “dummy” processes (Figures 6.5 and 6.8) is more than the savings
achieved through using a single parity checker; hence, in all tables so far CTRL 2 and
CTRL_4 are more expensive than CTRL 1 and CTRL 3 respectively (recall the predic-
tion of §6.2.6 that in order for hardware savings to be noticeable and significant a degree

of parallelism of the order of 10 would be needed).

The case is different in the QRS benchmark (Tables 6.6 and 6.7). Here primary outputs are
updated within the same process as the rest of the operation, therefore CTRL 2 and
CTRL 4 are not applicable; thus the tables have two rows less. The familiar (from chapter
3) phenomenon of self-checking designs that are faster than the untestable ones can be ob-
served here. CTRI. 6 is once more the cheapest choice in both cases. Notably, Version 2
in Table 6.7 exceeds 100% in overhead when combined self-checking is applied; it is

therefore expected that the Version 1 options of Table 6.6 would appear preferabie.

data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (gates %) (cycles %)

- - 7343 56 43.2 N/A N/A
duplication - 13278 51 234 80.8 -8.9
duplication CTRL_1 13748 51 23.4 87.2 -8.9
duplication | CTRL_3,111S 13648 51 23.4 85.9 -8.9
duplication CTRL 5 13442 51 23.4 83.1 -8.9
duplication | .CTRL 6,118 13417 51 234 82,7 -8.9

Table 6.6 : QRS Benchmark Version 1 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
synthesis priorities : area low, delay high, strict clock period value

data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (gates %;) (cycles %)

- - 7343 56 43.2 N/A N/A
duplication - 14824 50 258 99.2 -10.7
duplication CTRL_1 15288 50 250 108.2 -10.7
duplication CTRL_3,1818 15154 50 25.0 106.4 -10.7
duplication CTRL 5 14885 50 24.9 1041 -10.7
duplication - | CTRL_6,11818 14943 50 25.0 103.5 -10.7

Table 6.7 : QRS Benchmark Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
synthesis priorities : area low, delay high, strict clock period value

Table 6.8 overviews the experiments conducted for an 8-bit Viterbi decoder. All opera-
tions in this design are of low bit width; no Intrinsically Secure states are therefore consid-
ered, and the corresponding schemes CTRL 3, CTRL 4 and CTRL_6 are not applicable.
The design is highly parallel (8 concurrent processes). Comparison of the CTRL_1 and
CTRL 2-based solutions now verifies the hardware savings associated with moving from
the former to the latter (67.8% overhead reduced to 63.5%). However, the solution based

on 1/n checking is again the cheapest with 51.7%.
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data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) {gates %) (cycles %)

- - 3262 5 106.9 N/A N/A
duplication - 4734 7 127.4 451 40.0 l
duplication CTRL_1 5475 7 116.4 67.8 40.0
duplication CTRL 2 5333 7 116.9 63.5 40.0

|_dupilication CTRL 5 4947 7 115.6 517 40.0

Table 6.8 :8-bit viterbi decoder synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),

synthesis priorities : area high, delay low, moderate clock period value

Tables 6.9 and 6.10 present corresponding results for the elliptical filter design. The Ver-

sion 1 datapath-only self-checking realisation experiences an overhead of 95.7%. Natu-

rally, one would reject this option and change the specifications in the search of a better

solution on the lines of chapter 5; however, for the experimental purposes of this work it is

mteresting to add a controller self-checking scheme and observe if this will raise the cost

to more than 100%. In fact, Table 6.9 reveals that only CTRL. 2 produces a cost of exactly

100%, while all other techniques remain below that line, with CTRL 6 once again the

least expensive. Version 2 in this case offers both a particularly expensive, and slower de-

sign; hence, the 4 additional IS states it produces are unlikely to appear tempting.

data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty

testing testing frequency (MHz) (gates %) {cycles %)
- - 3697 9 35.7 N/A N/A
duplication - 7236 12 214 95.7 333
duplication CTRL_1 7374 12 213 99.5 33.3
duplication CTRL 2 7393 12 213 100.0 33.3
duplication | CTRL 3,618 7328 12 214 98.2 33.3
duplication | CTRL 4,618 7349 12 214 98.8 33.3
duplication CTRL 5 7292 12 214 97.2 33.3
duplication | CTRL_:6,61S 7283 12 21.2 97.0 33.3

Table 6.9 : Ellip Benchmark Version 1 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),

synthesis priorities : area high, delay high, moderate clock period value
data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty

testing testing frequency (MHz) (gates %) {cycles %)
- - 3697 9 35.7 N/A N/A
duplication - 7897 14 26.6 113.6 55.6
duplication CTRL_1 8247 14 24.0 123.1 55.6
duplication CTRL_2 8258 14 24.0 123.4 55.6
duplication | CTRL_3,1018 8166 14 24.1 120.9 55.6
duplication | CTRL_4, 10 1S 8187 14 24.1 121.4 55.6
dupfication CTRL_5 8154 14 241 120.6 55.6
duplication : | 'CTRL_ 6,108 8140 14 241 120:2 55.6

Table 6.10 : Ellip Benchmark Version 2 synthesis results (Ta

synthesis priorities : area high, delay high, moderate clock period value

rget Technology Alcatel CMOS 0.35 VLSI),

Tables 6.11 and 6.12 show the results obtained for the GCD benchmark design. Both ver-

sions were considered; however, none of them included any IS states. Clearly, the heuris-

tic of §6.4.3 failed to create any such states. Interestingly, however, it gave rise to a mar-

ginally cheaper design. Further, the design is strictly single-process. This limits the

choices of controller self-checking techniques to only CTRL 1 and CTRL 5, with the lat-

ter appearing cheaper in both versions. It can be observed that the CTRL 5 choice of the

Version 2 design is the cheapest overall, and notably achieves a maximum frequency

value of 45MHz, that is, even higher than the untestable design itself. Version | might be

preferable if the shorter (by a single state) critical path it offers is of any significance in the
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| data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
| testing testing frequency (MHz) (gates %) (cycles %)

- - 1022 9 42.0 N/A N/A
duplication - 1471 8 40.3 43.9 =111
duplication CTRL_1 1559 3 40.3 52.5 -11.1
duplication CTRL_5 1502 8 437 47.0. =111

Table 6.11 :GCD Benchmark Version 1 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
synthesis priorities : area high, delay low, moderate clock period value

data path control path area (gates) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency {MHz) {gates %) (cycles %)

- - 1022 9 42.0 N/A N/A
duplication - 1485 9 45.1 42.4 0.0
duplication CTRL_1 1563 9 45.1 52.9 0.0
duplication CTRL.5 1499 9 45.0 467 0.0

Table 6.12 :GCD Benchmark Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLS/),
synthesis priorities : area high, delay low, moderate clock period value

context of the considered project.

An interesting observation of the experiments so far, is that in all of them, solutions based
on I-hot checking are cheaper than their parity checking counterparts. Of course, this
does not invalidate the fact that parity is indeed in principle the cheapest among error de-
tecting codes; what makes the above parity schemes comparatively expensive is the appli-
cation of the LFSRs in the checkers (Figure 6.9), to provide the self-testing property. In
other words, it appears that parity checking is not the best solution for the particular prob-
lem, unless strict adherence to self-checking theory could be abandoned. Before endorsing

this rather premature conclusion, it is instructive to investigate the effect of target technol-

ogy.

In the following Tables 6.13 — 6.23, the above experiments are effectively repeated, this
time targeting Xilinx Virtex FPGA devices [106]. As the experiments of chapter 5 have
also illustrated, designs targeting this technology are less straightforward than the respec-
tive ASIC targeting ones, and are particularly hard to assess at any design stage other than
the final implementation, since the amount of FPGA resources utilised greatly depends on

the low level synthesis tools and the packing algorithms they employ.

Tables 6.13 and 6.14 present both versions of the Tseng benchmark targeting the
XCV1000 Xilinx FPGA component. Comparing with Tables 6.2 and 6.3, one can notice
that the designer requirements provided to MOODS are the same as in the VLSI targeting
experiments. This is actually true for all experiments hereafter. The results, however, are
often different. In the particular case of Table 6.13, first of all notice that, in contrast to
Table 6.2, no IS states are identified for the considered benchmark. Therefore CTRL 3,
CTRL 4 and CTRL 6 are meaningless, and CTRL 5 is the cheapest solution. The maxi-
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mum frequency is hugely degraded; this is true for Version 2 (Table 6.14) as well, once

more in contrast with its VLSI counterpart (Table 6.3).

data path control path area {slices) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (slices %) (cycles %)
- - 127 4 43 NIA N/A
|__inversion - 193 5 4 52.0 25.0
I inversion CTRL_1 198 5 4 55.9 25.0
|__inversion CTRL 2 199 5 4 56.7 25.0
inversion CTRL-5 193 5 52:0 25.0

Table 6.13 : Tseng Benchmark Version 1 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area high, delay low, moderate clock period value

data path controf path area (slices) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (slices %) (cycles %)

- - 127 4 43 N/A NIA
inversion - 222 5 4 74.8 25.0
inversion CTRL 1 237 5 4 86.6 25.0
inversion CTRL 2 236 5 4 85.8 25.0
inversion CTRL_3, 318 228 5 4 79.5 25.0
inversion CTRL 4,318 230 5 4 81.1 25.0
inversion CTRL: S 226 5 4 78.0 25.0
inversion CTRL 6, 318 230 5 4 81.1 25.0

Table 6.14 : Tseng Benchmark Version 2 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synithesis priorities : area high, delay low, moderate clock period value

Tables 6.15 and 6.16 are devoted to the Diffeq benchmark. Two facts are particularly no-

ticeable in these tables. Firstly, for the first time parity-based solutions are cheaper than

1/n-based ones (CTRL 4 in Table 6.15 and CTRL 3

In 6.16). Secondly, Version 2 here

not only imposes a higher overhead, but also fails to achieve its main goal, since it creates

one Intrinsically Secure state less than Version 1. This is not very surprising, since the

heuristic of §6.4.3 was based on a simple observation and did not offer any comprehensive

analysis or sophisticated synthesis procedure; experiments up to now have shown that in

principle it directs designs towards more IS states, but failures are possible. In contrast, in

data path control path area (slices) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (slices %) (cycles %)

- - 260 18 9 N/A NFA
inversion - 439 23 6 68.8 27.8
inversion CTRL_1 457 23 6 75.8 27.8
inversion CTRL_2 456 23 6 754 27.8
inversion CTRL 3,818 455 23 6 75.0 27.8
inversion CTRL: 4,818 453 23 5 742 27.8
inversion CTRL_5 460 23 6 76.9 27.8
inversion CTRL 6,818 454 23 5 748 27.8

Table 6.15 : Diffeq Benchmark Version 1 synthesis results (Target Technology Xilinx XCV800 FPGA),
synthesis priorities : area high, delay low, moderate clock period value

speed penalty

data path control path area (slices) | speed (cycles) maximum hardware overhead
testing testing frequency (MHZ2) (slices %) (cycles %)
- - 260 18 9 N/A N/A
inversion - 450 23 8 73.1 27.8
inversion CTRL 1 466 23 8 79.2 27.8
inversion CTRL_2 466 23 7 79.2 27.8
inversion CTRL 3,718 462 23 7 777 27.8
inversion CTRL_4,718 464 23 8 78.5 27.8
inversion CTRL & 469 23 8 80.4 27.8
inversion CTRL 8,718 467 23 7 79.6 27.8

Table 6.16 : Diffeq Benchmark Version 2 synthesis results {Target Technology Xilinx XCV800 FPGA),
synthesis priorities : area high, delay low, moderate clock period value
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the QRS benchmark experiments presented in the following Tables 6.17 and 6.18, it can
be noticed that Version 2 produces a total of 24 IS, accounting for more than a third of all
states in the design. CTRL._3 is the cheapest option in both versions; Version 1 generally
occuplies less slices, but Version 2 is faster, primarily because of allowing somewhat
higher frequencies, but also because of a slightly shorter critical path (1 CS). It is worth-
while to compare Tables 6.17 and 6.18 with the VLSI-targeting equivalents 6.6 and 6.7.
Apart from the natural difference in frequency values, further differences in the number of
clock cycles, the overhead percentages and the most economical controller self-checking
technique stress the effect of target technology and the importance of providing for both
ASIC and FPGA solutions within high-level synthesis, to accommodate a wider range of

designer needs.

data path control path area (slices) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (slices %) {cycles %)

- - 591 69 174 N/A N/A
duplication - 837 67 1.9 41.6 -2.9
duplication CTRL_1 944 67 2.0 59.7 -2.9
duplication | CTRL: 3,198 933 87 2.0 57.9 -2.9
duplication CTRL 5 956 67 19 61.8 -2.9
duplication | CTRL 6, 1918 944 67 2.2 59.7 -2.9

Table 6.77 : QRS Benchmark Version 1 synthesis results (Target Technology Xilx XC V1000 FPGA),
synthesis priorities : area low, delay high, strict clock period value

data path control path area (slices) | speed {(cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (slices %) {cycles %)

- - 591 69 17.4 N/A N/A
duplication - 905 66 3.8 53.1 -4.3
duplication CTRL_1 994 86 3.2 68.2 -4.3
duplication | .CTRL.:3,24 IS 983 66 3.3 663 -4:3
duplication CTRL_5 1001 66 3.8 69.4 -4.3
duplication | CTRL_6, 24 1S 992 66 3.8 67.9 -4.3

Table 6.78 : QRS Benchmark Version 2 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area low, delay high, strict clock period value

Table 6.19 is dedicated to the 8-bit FPGA-based Viterbi decoder. The overhead percent-
ages are always well above 100%, with a significant delay penalty as well. These over-
heads are in agreement with the previous observation on Table 5.19, that the particular
benchmark is not suitably accommodated by duplication testing. What can be kept out of
this experiment though is that the CTRI. 2 scheme provides the least expensive solution

for the first time in this experimentation.

data path control path area (slices) | speed {cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (slices %) (cycles %)

- - 174 4 38 N/A N/A
duplication - 447 7 31 156.9 75.0
duplication CTRL 1 517 7 29 1971 75.0
duplication CTRL:2 508 7 31 192.0 75.0
duplication CTRL_5 541 7 30 210.9 75.0

Table 6.19 :8-bit viterbi decoder synthesis results (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area high, delay low, moderate clock period value

The Elliptical filter design also experiences very high overheads in this technology (Tables
6.20 and 6.21). Probably the most interesting point in these results is the disagreement be-

tween Versions 1 and 2 regarding the most efficient and economical realisation (CTRL 6
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| data path control path area (slices) | speed (cycles) maximum hardware overhead speed penalty

| testing testing frequency (MHz) (slices %) (cycles %)

| - - 229 10 5.0 N/A N/A
duplication - 492 17 4.2 114.8 70.0
duplication CTRL_1 525 17 39 129.3 70.0

| duplication CTRL_ 2 528 17 4.1 130.6 70.0
duplication | CTRL_3, 1018 523 17 4.3 128.4 70.0
duplication | CTRL 4, 1018 523 17 4.3 128.4 70.0
duplication CTRL 5 530 17 4.2 1314 70.0

| :duplication. | CTRL.8,1018 523 17 4.5 128.4 70.0

Table 6.20 : Ellip Benchmark Version 1 synthesis results ( Térget Technology Xilinx XCV1000 FPGA),
synthesis priorities : area high, delay high, moderate clock period value

| data path control path area (slices) | speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (slices %) (cycles %)

- - 229 10 5.0 N/A N/A
duplication - 582 18 2.3 154.1 80.0
duplication CTRL 1 805 18 2.3 164.2 80.0
duplication CTRL 2 607 18 2.3 165.1 80.0
duplication | CTRL 3, 1418 595 18 2.2 160.0 80.0
duplication | CTRL 4, 1415 594 18 23 159.4 80.0
duplication CTRL_5 615 18 23 168.6 80.0

|__duplication | CTRL_6, 1418 600 18 2.3 162.0 80.0

Table 6.21 : Ellip Benchmark Version 2 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area high, delay high, moderate clock period value

in Version 1, CTRL 4 in Version 2). Note also that the majority of states in Version 2
have been made Intrinsically Secure (14 out of 18).

Finally, Tables 6.22 and 6.23 give the FPGA results for the GCD benchmark. Version 2
{Table 6.23) succeeds in creating 3 Intrinsically Secure states (in contrast to Table 6.12),

but utilising them does not save hardware (indeed, CTRL 1 and CTRL 3 give the same

overhead).
data path control path area (slices) | speed (cycles) maximum hardware overhead speed penaity
testing testing frequency (MHz) (slices %) {cycles %)

- - 85 10 45 N/A N/A
duplication - 124 9 34 45.9 -10.0
duplication CTRL 1 131 9 33 54:1 =100
duplication CTRL 5 132 9 33 55.3 -10.0

Table 6.22 :GCD Benchmark Version 1 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area high, delay low, moderate clock period value

data path control path area {slices) | speed {cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) {slices %) {cycles %)

- - 85 10 45 N/A N/A
duplication - 140 11 35 64.7 10.0
duplication CTRL 1 148 1" 35 744 - 10.0
duplication | CTRL 3,318 148 X 35 741 10.0
duplication CTRL 5 153 11 33 80.0 10.0
duplication | CTRL 8,318 154 11 33 81.2 10.0

Table 6.23 :GCD Benchmark Version 2 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area high, delay low, moderate clock period value

The FPGA-targeting experiments have shown that in such technology, no definite control
path self-checking technique can be favoured a priori; it is important to conduct a number
of experiments and choose the most appropriate for any given case. Of course, it can be
argued that the number of occupied slices does not make a real difference in the price of
the design, as long as it fits into the target FPGA part. If a designer adopts such an ap-
proach, then the preferable designs are probably different from the less resource-

occupying ones highlighted in the tables above. For example, if maximum fault detection
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capabilities in an extremely hostile environment is required, then CTRL 6 in Table 6.21
may be preferable over CTRL 4, since it will detect all unidirectional faults due to 1-hot
checking, and in addition all bidirectional faults affecting any of the 14 (out of a total of

18) states — in practice, the vast majority of bidirectional faults.

6.4.5 Discussion

As mentioned in the discussion of the datapath self-checking experiments (§5.3.3.6), nu-
merical comparisons with previously presented controller / datapath self-checking solu-
tions are not always reliable, mainly due to differences in target technology. The situation
is even more complicated in the controller self-checking problem of this chapter, because
only two previous publications [23, 134] acknowledge the need to provide a dedicated
self-checking scheme for the control path. Even then, [23] mentions parity checking, but
does not elaborate on how to achieve the totally self-checking goal and does not quantify
the proportional contribution of the control path self-checking resources to the overall
hardware overhead. [134] proposes the expectably expensive solution of full hardware du-
plication and once more does not report on the relative overhead due to the controller
checking hardware. Other publications referring to FSM self-checking by means of a vari-
ety of EDCs [38, 133, 37, 22] are not relevant, because the FSMs they target do not con-
trol a sequential datapath (i.e. the right-hand side part of the architecture of Figure 6.1 is
entirely missing). Therefore the architectures they address are different from the one con-
sidered here. The conclusion is that there 1s no published data that the results of this work
can be compared against; in fact, the work in this chapter is the first to comprehensively
address all aspects of the control path self-checking problem in a controller / datapath
hardware implementation. In spite of the absence of material for comparison, some com-

ments evaluating the results of §6.4.4 are provided in the following.

With respect to the overall cheapest solution, the results herein have shown that it greatly
depends on target technology. There is a definite trend in favour of 1/n checking using
Khakbaz’s checker of [29] when VLSI technology is targeted. In contrast, there is no clear
winner when FPGA parts are used alternatively. In fact, each one of the six self-checking
solutions implemented in this chapter was found to be the cheapest option in at least one

of the FPGA targeting experiments. Therefore experimentation is needed before a choice



P. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 248

is made in these cases. Such experimentation is clearly facilitated by the material of both

chapter 5 and this present chapter.

It is also possible to evaluate the two ideas that gave rise to the parity-based variations in
§6.2, namely the single checker in multi-process designs idea, and the Intrinsically Secure
states concept. As for the former, it was verified that it can benefit designs with a high de-
gree of parallelism. For example, an approximate 4% of hardware savings (with respect to
using multiple checkers) was experienced for the 8-process design tried in table 6.8. As
regards IS states, comparisons of respective techniques (i.e. CTRL 1 vs CTRL 3,
CTRL 2 vs CTRL 4, and CTRL 5 vs CTRL 6) show that the associated hardware sav-
ings exist, but are very modest, on average around 1%. The conclusion from this is that
utilising existing Intrinsically Secure states in a given design is a valid option, leading to
some little hardware savings and offering increased protection against multiple fault sce-
narios in particularly hostile environments. Notably, this is very much in line with the pre-
diction given in §6.2.6. Further, Version 2 type implementations were on most tables more
expensive than their Version 1 counterparts. One reason for that is the mandatory intro-
duction of additional registers, along the lines of Figure 6.3. On the other hand, it was also
found that often Version 2 designs can run at higher frequencies (the most illustrative ex-
ample is the comparison between tables 6.2 and 6.3). The conclusion is that modifying op-
timised designs to create additional Intrinsically Secure states is not advisable due to sig-
nificant extra hardware, unless the hostility of the operating environment is a major con-

cern and the extra cost can thus be justified and / or high frequency operation is desired.

Notably, it is possible to implement controller self-checking as described herein in a tool
other than MOODS. For this purpose, it is enough to perform an analysis of the control

path model of the synthesis tool at hand (similar to the analysis of §6.4.1) and amend ap-
propriately if any problems are identified (i.e. if any controller faults may corrupt control
signals of even multiplicity and / or create bidirectional errors). This is typically done by

suitably replicating selected pieces of logic, as [37] and [22] have widely covered.

6.5 Summary

Overall, the discussion of this chapter establishes that the control path self-checking prob-

lem is in fact much more complicated than in the considerably simpler situations ad-
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dressed in the past, has a variety of possible solutions, while interaction with the synthesis
system provides opportunities for existing data path self-checking construct reuse, for en-
hanced system operation reliability. The key elements that define the contribution of this
thesis to the field of control path self-checking are the following three :

e both parity and 1-out-of-n self-checking solutions are considered and compared, under
alternative technologies

e the option of using a single parity checker in highly parallel designs is provided

e increased security against very hostile environments is achieved, through the defini-
tion, identification and exploitation of Intrinsically Secure states

As a by-product of the development phase of this work, a comprehensive library of syn-

thesisable VHDL descriptions of parity, 1/n, and dual-rail checkers is produced.

Together with the datapath self-checking solutions of chapter 5, this chapter implements
combined controller and datapath self-checking design, in a unified, integral, highly auto-
mated and designer-friendly high-level synthesis environment, enabling the rapid realisa-

tion of hardware for safety-critical applications.



Chapter 7

Reliability Evaluation

A theoretical and, where needed, experimental evaluation of the robustness of the imple-
mented datapath (chapter 5) and controller (chapter 6) self-checking schemes is given
here. In the datapath case, the totally self-checking (TSC) property (Definition 2.3) is
guaranteed under the single fault condition stated in Hypothesis 2.1, jfall code words ap-
pear at the inputs of the duplication schemes. The validity of the hypothesis is therefore
arguably strongly dependent not only on the structure of the system, but also on the input
data it is fed with. It is therefore interesting to consider the robustness of the datapath
scheme in cases when the set of functional inputs is restricted, potentially resulting in
faults remaining undetected and leading to the accumulation of multiple faults. In contrast,
the controller self-checking scheme receives inputs that are totally predictable at design
time, and in principle independent of the data the system receives. Further, the implemen-
tations of chapter 6 take the TSC property into full account (§6.2.7, §6.3.1.2). A theoreti-

cal evaluation therefore fully covers the issue.

Section 7.1 deals with the reliability of datapath self-checking, initially by expressing
theoretical concerns, and subsequently by setting up a fault simulation environment and
evaluating the scheme through experiments. Section 7.2 addresses the control path self-
checking properties, effectively by formally summarising the error detection properties of

the alternative schemes presented in chapter 6. Section 7.3 concludes the chapter.

7.1 Datapath self-checking

In this section, an estimation of the robustness of the datapath self-checking scheme is

given. As already mentioned in the beginning of chapter 2, the stuck-at fault model is as-
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sumed throughout this thesis. Of course, this model is not literally valid in the on-line test-
ing context. Indeed, any wire physically stuck at a particular value would naturally be de-
tected during the off-line production test. Transient faults are more relevant to this work.
In order to model them, at any given point of time a faulty signal is considered to behave
as if it was stuck-at a logic value. After a period of time equal to the defined duration of
the fault, the signal is allowed to behave properly and assume the value of the wire driving
it. This way, “temporary” stuck-at faults are used to model the transient faulty behaviour
of a faulty circuit element rather than its actual state, that is, the effect rather than the

physical cause of a fault.

Further, not all stuck-at faults of a system are considered. Rather, only those at the mnputs

and outputs of the datapath RTL modules are of interest. This idea is explained by refer-

ring to Figure 7.1, where a datapath module, 1ts duplicate and the associated comparator
are shown. Three faults fj, £, and 3

are illustrated in Module 1, each

l 1 one signifying that a given wire
Module | Dupl(Module 1}

f, f f, within the module is stuck at a par-
+ <ﬁ> % ticular value. Let us assume that

X N % there exist electrical connections

Comparator between the stuck wires and Mod-

ule 1 output bits, in particular be-
Figure 7.1 : FThe duplication checking scheme )
tween f; and output bit xy, f; and bit
x;, and f3 and both bits x; and xx. Define also the following four conceptual faults at the
outputs of Module 1.
fs : x; stuck-at-0
fs : %4 stuck-at-1
fs @ X stuck-at-1
7 : x; stuck-at-0

Assume that {3, 5, f5 and {5 are not physically present in the system.

Further consider a random primary input vector v, feeding Module 1. In the scenario de-
picted by Figure 7.1, fault f; is not sensitized by v;, and therefore remains internal to the
module (latent fault event). In the same scenario, fault f> is propagated to the module out-

put, corrupting bit x;. Finally, f3 is propagated to the output through both possible paths,
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thus corrupting two different module output bits, x; and x,. Without loss of generality, let
us assume that under the presence of the corresponding faults £5 and f3, and when fed by
the particular input, x; assumes the D (1/0) value, while x; and Xy become » (0/1). Then the
behaviour of the system under fault f; is clearly equivalent to the behaviour that the sys-
tem would experience if the above defined fault f; was present. It follows that in this case
a single fault in the RTL module primary output (fy) fully represents an internal module
fault (f;). Moreover, the behaviour under £3 1s equivalent to the hypothetical behaviour un-
der the superposition of faults f5 and f;. It can therefore be stated that a certain class of in-
ternal faults (f3 being a member of this class) can be fully represented by the suitable su-
perposition of multiple faults at the module outputs (in this example fs and f). Further-
more, observe that either 5 or f; would alone cause the comparator to detect faulty opera-
tion, exactly as f3 would do. In that sense, f3 can be considered “loosely” equivalent to el-
ther single fault fs or {5 alone. This does not mean to say that e.g. f3 and f5 are generally
equivalent; however, the nature of the considered problem is such that here their primarily
interesting effects (i.e. triggering the fault detection mechanism) are equivalent, although
the two faults clearly lead to overall different situations. Indeed, the output of Module 1
under the presence of f; is different from its output under the presence of fs, assuming that
in both cases it is fed by v,. Still, the information that both output values are erroneous and
therefore detectable means that from the perspective of this thesis the “interesting” effect
of internal faults that corrupt multiple output values can be represented by single primary

output faults.

As regards fault 3, if no available Module 1 input can sensitize it, then it remains internal
to the module forever, and it does not corrupt the system operation. Such faults are of no
mnterest and not considered in this work. Alternatively, suppose that there is at least one
available input vector vo#v; that sensitizes fj, such that f; manifests itself at the module
output, naturally by corrupting output bit x to which it is electrically connected. Further,
without loss of generality assume that at the instance depicted in Figure 7.1, with Module
1 fed by vy, x; correctly assumes the logic 0 value. Therefore, at the instance of Figure 7.1,
the behaviour of the system under fault £, at the instance of Figure 7.1 can be considered
to be equivalent to the hypothetical behaviour under fault f; defined above. This is a valid
statement, since both faults are latent at the particular moment. It has therefore been estab-
lished that even latent internal faults can be modelled by equivalent latent single faults at

the primary outputs of the RTL modules.
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Moreover, depending on the module functionality and inputs feeding it, stuck-at faults at
the module inputs can provide convenient means to model multiple owusput faults. For ex-
ample, consider an adder module and a corrupted b (0/1) value at bit position i of the first
adder operand. If the respective bit of the second operand is a fault-free 1, then all output
bits to the left of i, and up to the first fault-free 0 will be inverted. In this case, multiple
output faults can be modelled by a single stuck-at fault at the inpuz. It is therefore useful to
include all input stuck-at faults in the set of considered faults as well, unless there is a
clear and data-independent 1 to 1 equivalence between an input and an output fault, sug-

gested by the particular module functionality.

The above discussion has established that single stuck-at faults at the inputs and outputs of
RTIL modules satisfactorily model the system faulty behaviour under Hypothesis 2.1 (sin-
gle internal fault), in the context of the considered problem. A particular advantage of this
approach is that it is fully consistent with the high level design philosophy, since it makes
no assumption whatsoever about the gate-level structural implementations of RTL mod-
ules, but is only concerned with their behaviour. This thesis is not further concerned with
the general, recently surfaced idea of fault representativeness at the RT level. The relevant

literature [140, 141, 142] can be consulted for statistical analyses and discussions of this

still open issue.
7.1.1 Theoretical concerns

Recall once more Hypothesis 2.1, repeated in the following Hypothesis 7.1 for conven-
ience :
Hypothesis 7.1: Faults occur one at a time, and the time distance between the occurrences

of two consecutive faults is long enough for all the available input code words to be ap-

plied to the circuit.

Let us also recall the totally self-checking property established through definitions 2.1 —
2.5. In short, Module 1 and Dupl(Module 1) of Figure 7.1 will need to be such that under
the presence of an internal fault, the following two properties should be satisfied :

a) fault secure property : for every available input word, the comparator input will either

be fault-free or a non-code word (i.e. it cannot be an incorrect code word)
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b) self-testing property : at least one of the available input words sensitizes the internal
fault, i.e. produces a non-code output
As for the comparator of Figure 7.1, it additionally needs to exclusively map input code

words to output code words and vice versa (code disjoint property).

Given that duplication and, where applicable (§5.2.2), inversion testing are fault secure by
nature (§2.2.2.1, §5.2.2), if Hypothesis 7.1 is accepted for a scheme like the one of Figure
7.1, one would sensibly state that, in a fault-free scenario, Module 1 and its duplicate will
produce all possible code outputs, thus feeding the comparator with all possible code
words. Assuming a comparator based on a suitably structured (fault secure and code-
disjoint) dual-rail checker, as is the case in this work (§5.3.3.3), this leads to the conclu-
sion that the datapath self-checking scheme is totally self-checking, and therefore detects

all single faults in any of the functional, duplicate or comparator modules.

2 A 2 A While the discussion in the

l i l l above paragraph is valid, it si-

Multiplier 1 Multiplier 2 lently assumes that the module

inputs are random, that all pos-

sible inputs are available, and

n- =0 ,n~ ’ =0 1
bt Py Pt PP that they have equal probability

to appear. This is a sensible as-

comparator .
sumption when the self-

Figure 7.2 : Mutiilication by 2 checking scheme is considered
in 1solation; let us, however,
not forget that in the context of a complex overall system, operations are embedded deep
into a design, being fed by the outputs of other operations, the other operations themselves
fed by further previous levels of operations etc. This relationship is illustratively depicted
in the DFG representation of a circuit (§3.1.1). The effect of this, is that, while primary
mputs can in principle be considered random, the randomness and availability of the in-
puts of operations “lower” in the DFG are not guaranteed; in fact, these inputs greatly de-
pend not only on the primary inputs, but also on the actual functionality and on the pres-
ence of constants in the data flow graph. At times it is obvious that not all possible inputs

are available. Such a characteristic situation is shown in Figure 7.2. The functional module

(multiplier 1) performs the operation 2xA, where A is an (n/2)-bit number. Multiplier 2
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duplicates the operation, and both outputs are fed to the comparator. Clearly, multiplica-
tion by 2 never produces an odd number. Consequently, the LSBs p, and p'p of both out-
puts will always be 0 under fault free operation. Therefore, the comparator will always
miss all input code words for which py=p’s=1, that is, half of all possible code words. Fur-
ther, the dual-rail checker within the comparator is never fed by the rows of a suitable
4x(2»n) matrix (Lemma 2.3 and [58]), and therefore the self-testing property is not
achieved. In practice, this means that any fault in the checker that is equivalent e.g. to the
LSB of the left hand side operand to be stuck-at-0 cannot be detected and will remain in
the design for ever. Now, if an additional fault in the functional Multiplier 1 causes po to
be stuck-at-1, then the corrupted value will not be detected, it will be led to the rest of the
system and thus hinder the overall system operation. The example is analogous to the one

described in §2.2.1.1 referring to Figure 2.11.

The discussion has established that there can be cases within a DFG for which Hypothesis
7.1 is not enough to guarantee the TSC property, resulting in the possibility that faults re-
main undetected. In order for this to have disastrous effects on the system functionality, a
subsequent fault in the system must corrupt selecfed modules at selected times. To under-
stand this, refer back to the example of Figure 7.2, and remember that typically such a
self-checking scheme will be one of a few tens of such schemes in the overall system.
Consider the above mentioned fault scenario, wherein the LSB of the comparator left hand
side operand is stuck-at-0 and therefore undetectable. In order for the next fault to have
disastrous effects, it must hit the particular scheme (among tens of others), in a particular
way (causing pp to be stuck-at-1, and not effecting any other bit in any other way). A fault
in a different scheme or with a slightly different effect is more likely to be detected rather
than cause a fault escape. Intuitively, given the typical complexity of the considered sys-
tems, featuring a few thousands of possible RTL faults, it can be argued that the probabil-
ity of a disastrous fault effect is rather insignificant. Of course, this has to be backed by

experimental data, as done in the following §7.1.2.

7.1.2 Experimental evaluation

Recall the Transparent Fault Injection and Simulation technique of §4.2.1 (also [118, 49]).
Clearly, using the gate models with fault injection capabilities it proposes, fault simulation

at gate-level netlists can conveniently be conducted. In order for the technique to be appli-



P. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 256

cable at the RT level according to the model of §7.1, RTL component models with fault
injection capabilities need to be developed. Such components will effectively define an
RTL cell ibrary with fault injection capabilities, as an extension to the standard MOODS
cell library (§3.2.7), thus setting up a fault simulation environment to supplement on-line
test synthesis. As §4.2.1 established, this environment can casily utilize a commercial digi-

tal simulation tool such as the very popular ModelSim tool [115].
7.1.2.1 Transparent Fault Injection and Simulation at the RTL

A straightforward RTL extension of the transparent fault injection and simulation tech-
nique is given here, through a “pseudo”-VHDL example of a generic RT-level N-bit adder
with fault injection capabilities (Figure 7.3). The model makes use of the fault inject
package provided in Figure 4.1. As can be seen in Figure 7.3, appropriate _mask vector
variables are defined for all module input and output ports. In fact, two such vectors are
defined for each port, the first corresponding to stuck-at-0 type faults and the second to
stuck-at-1s (point #1 in the figure, at the declaration part of the VHDL process nn). Just
like in the gate-level case, a unique, suitably-named local fault variable is created for
every modelled RTL fault when simulation starts (point #2). Appropriate values are as-
signed to the mask vectors in every simulation instance (point #3), depending on which
fault is simulated at the given instance. An element of the stuck-at 0 (1) mask vector for
signal x 1s assigned a 0 (1) value if the corresponding fault is simulated. Subsequently the
mask vector is ANDed (ORed) with signal x, in order to produce the effective value that is
going to contribute to the simulation output, also taking into account the fault-free module
functionality (point #4). This clearly defines a “mutant” N-bit adder, equivalent to the mu-
tant gates concept encountered in §4.2. In line with the transparent nature of the gate-level
technique of §4.2.1, ANDing and ORing here are conceptual, as are the mask variables,
fault pointers and fault model records. They do not involve the introduction of any physi-
cal hardware gates; hence, the (non-synthesisable) fault simulated cell model is “structur-
ally” equivalent to the synthesisable model, effectively meaning that no extra fault lines
need to be included in the design for fault simulation purposes. When no fault is simu-
lated, the two models are behaviourally equivalent as well. Indeed, it can be verified that
the model of Figure 7.3 computes a proper unsigned addition (at point #4) in the fault-free
case (1.e., when all stuck-at-0 mask vectors carry the all-1s value, and all stuck-at-1 masks

bear all 0s). The situation is clearly analogous to its gate-level counterpart.
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library ;
use 1 _logic_1164.all;
use nuwmeric_std.all;

use _inject.all;
sncity UADD_1 is
generic (n: positive : b
port {(inl, in2 : in std_logic_vector (n-1 downto 0};
sum : out std_logic_vector (n downto 0});
end UADD_1;
architecture inject_fault of UADD_1 is

PR

begin
nn o: precess is
variable inl_sa0, inl_sal, in2_sad, in2_sal : fault_ptr array (n-1 downto 0} := {others =»> null};
-~ #1
variable sum_sa0, sum_sal : fault_ptr_array (n downto 0] := (others => nullj;
variable inl _sa0_mask, in2_sa0_mask : std_logic_vector (n-1 downto 0) := (others
variable inl_sal_mask, in2_sal_mask : std_logic_vector (n-1 downto 0) := (others
variaple sum_sa0_mask : std_logic_vector (n downto 0) := (cthers =» '17);
variable sum_sal_mask : std_logic_vector (n downto 0) := {others =» '0');
begin
-~ #2
if inl_sat {0} = null then
wait for 1 ns;
for i in 0 to n-1 loop
inl_sa0 (i} new fault model'/(
new string’ (inject_ tance _name &
“inl{® & integer'image{i) & "} _sal"},
false, false, first_fault};
first fault ini_sa0(i);
-- objects inl_sallij, in2_sa0{i}, in2_sallii)}, sum_sal (i), sum_salli)
-~ are created similarly
and loop;
sum_sad (n} := new fault_model'(
new string' (inject_f ‘instance_name &
“sum{" & integer'image{n) & "J_sal"j,
lse, first_fault);
sum_sal (n};
:= new fault_model’ (
ng' (inject_faulr'instance_name &
“sum{" & integer‘image(n) & "}_sal"},
false, false, first_fault);
c= sum_sal(n);
in 0 to n-1 loop
ini_sa0{i).simulating then
ini sal mask(i} = "0 ;
else
inl_sal_mask{i) := '1°;
and 1f;
ini_sal{i).simulating then
ini_sal_mask(i} := '17";
else
inl_sal_mask(i) := '0';
and 1f;
-- mask elements in2_sa0_mask{i), in2_sal mask(i}, sum_sal_maskli},
-- sum_sal_mask(i) are handled similarly
end loop;
if sum_sal (n}.simulating then
sum_sal_mask{n) := '07;
else
sum_sal_mask(n} := '1';
end if;

sum_sal_mask or

1_sal_mask or (inl_sa0_mask and inl
& {in2_sal_mask or {in2_sa0_mask and in2

wait on inl, in2;

end process nn;
end architecture inject fault;

Figure 7.3 : RTL N-bit unsigned adder cell with fault injection capabilities
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No obvious equivalent or dominant faults can be found in this adder module, leading to a
total of 2*(3*N+1) total modelled faults. However, even in RTL modules there are cases
when not all input and output line faults need to be considered. An example is the generic
left shifter module pseudo-VHDL template of Figure 7.4. In this module, the second input
in2 corresponds to the number of bits by which input inl will be left-shifted. Mask vectors
are employed just as in the adder case, however this time the module functionality implies
that the output signal bits are either hardwired to appropriate input bits, or directly con-
nected to logic 0. There is no point in explicitly modelling faults for the former (since they
are equivalent to corresponding input faults), while only stuck-at-1 faults need to be con-
sidered for the latter (since a possible stuck-at-0 would be equivalent to the fault-free op-
eration). Hence the number of output faults in the model of Figure 7.4 is reduced. These

ideas are reflected in the figure through the absence of fault pointers and masks corre-

all, ieee. numeric_std.all, work.faulet_injesct.all;

positive = 1;

w: positive := 1};

port (inl: in std_legic_vector (n-1 downto 0);
i in std_logic_vector {m-1 downto 0];

output: out std_leogic_vector (n-1 downtso 0} j;
end SLL_1;

architecture inject _fault of SLL_% is
begin
nn : process is
ble ini_sal, inl_sal : fault_ptr_array (n-1 downto 0} := {others =» null};
ble outpus_sal : fault_ptr_array (n-1 downto 0} := (others => nullj;
ble in2_sal, inZ_sal : faulf_ptr_array (m-1 downto 0} := {others =»> null)
te inl saf_mask : std_logic_vector {n-1 downto 0] := (others => '17}
inl_sal_mwask, output_sal_mask : std_logic_vector (n-1 downto 0] := (others => '0'};
in2_sad_mask : std_logic_vector {m-1 downto 39} := {others =» '1'}
in2_sal_mask : std_logic_vector (m-1 downtoc 0) := {others =»> ‘0')

0) = null then
r 1 ns;
create new stuck fault records as in the adder example

igned{inz}j -1 loop

for 1 in 0 ©o to_integer
-~ fix output_sal_mask

0 to n-1 loop
x inl_sad_mask{i) and ini_sal_mask{i}

_sal_mask (i} and in2_sal_mask (i)
end loop;
output <= put_sal_mask or

i logic_vector(shift_lefr{unsigned((inl and inl_sa0_mask) or inl_sal_mask],

_integer (unsigned(({in2 and in2_sa0_mask] or in2 sal mask)}}}i;

wait on inl, in2;
end process nn;
end architecture inject_faulg;

Figure 7.4 : RTL generic shift left module with fault injection capabilities

sponding to stuck-at-0 type faults in the outputs, and also through the reduced range in the
loop taking care of output stuck-at-1 faults (point #1 in the code fragment). Other than

that, the philosophy of the fault-injectable shifter module clearly follows that of the adder.

Defining fault-injectable VHDL models for the rest of the standard MOODS cells (§3.2.7)

proceeds exactly as the two examples above. At this point, it has to be noted that no fault
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return sigs;
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H downto 0}
ARR
positive
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end component ;

component CHK
generic

downtc 97 ;

begin
intermediate_signalsitot-1 downto tot-n} <= inl;
intermediate_signals(tot-n~1 downto tot-2*n) <= inZ;
Z0s generate -- trivial
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Figure 7.5 : A generic N-pair dual-rail checker

the number of checker arrays (levels) needed for an h-pair che

starting location of the ocutputs of 1

checker

ir

um_over within

@

i-1)-no_of int sigin,i)/2},
downto tot-index(n,i}},

K

1




. Oikonomakos, 2004 Chapter 7: Reliability Evaluation

260

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric std.all;
entity NEQ 3 is

generic {(n: positive := 1}
port {inl, in2 in std_logic_vector (n-1 downto 0);
output: out std_logic_vector{l downto 0});
end NEQ_3;
use work.fault_inject.all;

architecture inject fault of NEQ 3 is

function,

constant,
begin
generate statements exactly as in Figure 7.5

nn process is
variable inl_saC, inl_sal, in2_sal, in2_sal fault_ptr_array (n-1
variable inl _sal_mask, in2_sal0_mask std logic vector (n-1 downto
variable inl_sal_mask, in2_s cter {(n-1 downto
begin
if inl_sa0{0} = null then
for i in 0 to n-1 loop
inl_sal = new fault model'{
new string'{inject_fault'instance name &
"inl{" & integer'image{i] & ")_sad"},
false, false, first_fault);
first_fault := inl _sa0{i});
-- all other faulf variables in both inl and in2 are handled similarl
znd loop;
end if;

for i in 0 to n-1 loop

inl_sa0 (i} .simulating then
inl_sal_mask(i) := '0';
else
inl_sa0_mask{i} := "1";
end if;
-- similarly for the other fault variables
end loop;
intermediate_signals{tot-1 downto tot
intermediate _signals(tobt-n-1 downto tot-2*n)
wait on inl, in2;
end process;
an2: process is
variable out_sal, out_sal fault_ptr_array (1 downto 0} := {(others

{1 downto 0)
{1 downto 0}

w11
wgo;

variable ocut_saf_mask
variable out_sal_mask
begin
if out_sa0(0}=null then
out_sat{0] := new fault_model'(
new string’ (inject_fault'instance_names &
rout_sat{o)v),

std_logic_vector
std_logic_vector

false, false, first_fault);
first_fault := cut_sa0{0};
-- the same for out_sa0(i), out_sal{0) and out_sall(l

-~ the same for out_sa0{l), ocut_sal(0} and out_salll
output <= ocut_sal _mask or {out_sal_mask and intermediate signals(i
walt on intermediate_signals(l downtoc 0);

end process;

and;

Figure 7.6 : A generic N-pair dual-rail checker with fault injection capabilities

signal and component declarations exactly as in Figure 7.5

downto 0) :=
d) := {others
0} := {others

¥

<= inl_sal_mask or (inl_sa0_mask and inlj;
<= in2_sal_mask or {(in2_sal_mask and in2};

=> pull};

downto 0});

{others =»> null);
=> '1%);
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injection is considered and naturally no fault-injectable models needed for storage ele-
ments (registers) or interconnect (multiplexer, sign extension) modules; instead, these
modules are assumed free of faults. This issue is revisited later in §7.1.3 and comuments on
its implications provided. Further, no fault injection was considered for control cells ei-
ther. The reason for this is that the controller self-checking scheme is totally self-checking
(as chapter 6 established), therefore its behaviour under the presence of faults, and its fault
detection capabilities are fully predictable, as mentioned throughout chapter 6, and will be

summarized in §7.2.

The fault secure comparator and dual-rail checker components of §5.3.3.3 can have faults
injected in their inputs and outputs by likewise defining suitable models, following exactly
the same principles as in the standard MOODS models. However, recall that an enormous
number of dual-rail checkers and comparators were automatically produced by suitable
software in §5.3.3.3. Writing separate mutant components for each one of them would be
an impractically time-consumming process. To cope with this problem, a concise generic
description of an N-pair dual-rail checker was firstly configured, shown in Figure 7.5. The
description uses the CHK ARR cell of Figure 5.14. It further defines and utilises three aux-
iliary arithmetic functions; comments on the functions are provided in the figure with ref-
erences to the generic dual-rail checker scheme of Figure 5.13. The description appears
complicated but it fully describes Figure 5.13 for any value of N; for example, it can be
verified that for N=16 it becomes equivalent to Figure 5.15. In fact, there are RTL synthe-
sis tools that cannot synthesize the code of Figure 7.5. The reason for that is the VHDL
component instantiation statement labelled Ul towards the bottom of Figure 7.5. This
statement defines three slices of the long intermediate signals array as the actual
ports of component Ul. However, the slice boundary definition includes variable i (the
“loop” variable of the “generate” statement Z1). Using a variable in slice boundary defini-
tions was found by this author not to be acceptable by all VHDL compilers. For this pur-
pose, the description of Figure 7.5 is not generally synthesisable and cannot in principle be
used instead of the cells produced in §5.3.3.3. However, the description was accepted by
the compiler of the simulator tool [115] used herein for simulation experiments. The fact
that a single description is used for all values of N is particularly advantageous, since it
enables the development of a respective “mutant” description, as Figure 7.6 outlines. The
general structure of the description of Figure 7.6 is exactly the same as that of Figure 7.5;

the difference is that in Figure 7.6 the simple assignment statements that involve the inputs
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and the output of the checker are replaced by suitable processes that control the injection
of faults in the checker ports, using suitable mask variables, exactly as done in Figure 7.3
for the N-bit adder. The fault-free behaviour of the mutant checker of Figure 7.6 is identi-
cal to the behaviour of the original checker of Figure 7.5, which in tums behaves identi-
cally to the fully synthesizable modules of §5.3.3.3. Exactly as done in §5.3.3.3, a generic
N-pair fault secure comparator with fault injection capabilities is described by simply

complementing one of the dual-rail inputs in Figure 7.6.

A test bench to control the overall fault simulation campaign can now be written as the
gate-level prototype of Figure 4.4 outlined. As an interesting word of note, the input / out-
put interfaces of a gate-level and an RT-level design are identical, and so effectively the
same test bench can be used for fault sumulation at both levels, if so desired. In either case,
a test bench written as in Figure 4.4 can be tuned to implement exhaustive, deterministic,
or random injection experiments. Multiple faults can be injected as well as single ones (by
simply activating more than one . simulating fields in the suitable fault model record).
Furthermore, by activating a fault and then deactivating it at a chosen simulation time (by
resetting the respective . simulating field), one can model transient (as opposed to
permanent) faults, again simply by suitably amending the testbench. The corresponding
input vectors file (vectors . txt) can include an exhaustive, or an incomplete but prede-
termined (even random) set of test vectors. Finally, the processing and presentation of ob-
tained results can be carried out as desirable through the testbench directives. Therefore,
the designer has all flexibility to tailor the simulation experiments through the test bench

and input vectors, to reach the desired conclusion, as applicable per situation.

In the simulation experiments described in the following two subsections, the commercial

simulator used was Model Technology ModelSim, version SE Plus 5.5¢ [115].

7.1.2.2 Injecting single faults

It has already been established that the duplication and (where applicable) inversion

datapath self-checking schemes of chapter 5 are fault secure against single faults. There-
fore, any single stuck-at fault in any of the functional, redundant or comparison modules
embedded within an overall self-checking datapath is expected either to be detected or to

remain latent. To verify this, the technique of §7.1.2.1 was used to conduct a number of
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faults
injected latent | detected | escaped
100000 | 65912 34088 0

Table 7.1 Tseng benchmark fault simulation results
(independent experiments)

fault simulation experiments on a self-checking version of the Tseng datapath, produced
as explained in chapter 5. In particular, the version randomly picked for the experiment
was the fourth one of Table 5.11 (the one employing duplication testing). The choice of
version is, however, not important, since all versions are equally secure against RTL
faults. Random faults were injected, and random inputs applied; this way, the experiment
emulated the operation of a system whose operating conditions cannot possibly be known
in advance. Further, since in this subsection it is only single faults that are of interest,
whenever a fault remained latent it was removed, and the next one injected at a different
simulation time point, after the previous removal. Therefore, this subsection addresses in-

dependent experiments.

The results, shown in Table 7.1, indeed verify the fault secure property, by demonstrating
no fault escapes at all. Notice that a particularly extensive number of experiments were
conducted (100000). In the particular benchmark circuit, the overall number of injectable
RTL faults was much smaller (exactly 758, automatically calculated through the test
bench, as a byproduct of the simulation). This means that the total 100000 experiments
included several incarnations of every fault, each time under different operating conditions
and different mput values, thus increasing confidence in the system dependability. It is
worth noticing that the majority of experiments led to latent fault events (§7.1). This can
be explained by the fact that both the injected faults and the applied inputs were random.
As a result, in several cases an RTL input or output was driven to logic value xe {0,1},
while at the same time a stuck-at-x was simulated at the same signal. This clearly leaves
the fault latent; statistically these situations should account for 50% of all experiments.
Further recall that the Tseng benchmark includes logic operations (AND, OR) as seen in
the VHDL of Appendix B. At times injected faults at the logic function operators were
prevented from manifesting themselves simply by the natural masking properties of logic

functions (e.g. 0 AND D = 0). These two phenomena resulted in the increased percentage

of latent faults.
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7.1.2.3 Injecting Multiple Faults

The effect of the accumulation of multiple latent faults in a self-checking design is ex-

perimentally addressed here. As the experiments of Table 7.1 established, in a typical de-

sign, there is a high probability that a fault hitting the design is not detected immediately,

but remains latent. The scenario of the previous subsection removed such latent faults,

considering them harmless transients; here, they are considered to remain permanently on

the system, thus giving rise to the said multiple fault accumulation. Such accumulation can
be particularly severe in situa-

tions where a self-checking

i l scheme receives a restricted sub-
Module 1 Dupl(Module 1) set of all possible input words (as
output bit n driven to ~x in Figure 7.2), or in very hostile

under fault fiee operation

\ environments, where faults occur
bt stuclon Comparator bit n stuck-at x very frequently, so that a self-

| checking configuration does not

Figure 7.7 : A possible fault escape have the time to receive all avail-
able input words. Clearly such accumulation is expected to result in a probability of faults
remaining undetected “for ever”, and potentially corrupting the design primary outputs. A
situation where this can happen was explained around Figure 7.2, wherein an undetectable
latent fault in the checker, together with a subsequent fault in the functional module can
cause a fault escape. Another typical fault escape scenario would be the one shown in Fig-
ure 7.7, where the two modules in the duplication testing scheme have their respective n-
position bits stuck-at the same value x, and in addition the common input at that tune hap-
pens to be such that the said bit should assume the logic complement ~x value under fault
free operation. Once more, assuming that all modeled faults have equal probability to ap-
pear, and further taking into account that even small benchmark designs include anything
between a few hundreds and a few thousands of such RT-level faults, one can trivially
conclude that the probability that such a situation appear is very small (significantly less

than 1%).

inputs faults injected | latent fault events detection events fault escapes
“sensible” 50000 23189 26811 0
random 50000 39227 10773 0

Table 7.2 Diffeq benchmark fault simulation results (multiple faults)
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This is further verified by the series of fault simulation experiments performed on a self-
checking version of the Diffeq benchmark. The version used was taken from Table 5.13,
and it was the one on the second row, featuring a “mixed” self-checking strategy (duplica-
tion and inversion as determined by the system to be better applicable per situation), and
including a total of 776 identifiable faults in the RTL datapath. This time, latent faults
were not removed, but remained in the system, and further faults were subsequently in-
jected. All accumulated faults were removed every time a detection event occurred. Two
sets of experiments were conducted : in the first, random but “sensible” input vectors were
applied; while in the second totally random ones were used. The significance of this is re-
lated to the functionality of the particular benchmark. Indeed, “sensible” inputs cause the
system to perform a number of repetitions of its main functional loop (see Appendix B for
the VHDL code), while totally random inputs are very likely to leave significant parts of
the datapath idle (and therefore unable to detect any faults) for long periods of time. This
way, high accumulations of faults were expected to be achieved in the design. The results
are summarized in Table 7.2. The table indeed verifies that the nuumber of latent fault
situations significantly increases when totally random inputs are used. Most importantly, it
is demonstrated that 100000 simulation runs, including several accumulations of faults,
under a rich variety of conditions and inputs, were once more unable to produce a single
failure. This experimentally verifies the prediction of §7.1.1, also mentioned in this sub-
section : although the TSC property cannot be guaranteed for the duplication- / inversion-
based schemes of the self-checking datapath, and consequently fault escapes are theoreti-
cally possible, the probability that such an escape occurs is insignificant. Differently put,
given a self-checking datapath produced as chapter 5 of this work explains, and assuming
a number of latent faults in the datapath, the probability that the next fault hitting the sys-
tem will either be detected or remain harmlessly latent, is overwhelmingly higher than the

probability that the said fault will interact with an existing latent fault to cause a disastrous

fault escape.
7.1.2.4 Common mode faults
The discussion so far has assumed that all modelled faults have the same probability to

appear in the design at any given moment. However, in particular VLSI technologies, mi-

nor defects in the fabrication process of standard cell masks can result in common mode
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faults (§2.2.2.1). Simply put, this means that a// cells of a particular kind (e.g. all adders)
may feature some common, minor malfunction, not detectable in off-line production test,
due to its insignificant initial effect. Under certain environmental conditions or over time,
such defects may develop into logic faults, thus resulting in the same type of faulty behav-
iour in all cells of the said type. In the context of this discussion, referring back to Figure
7.7, this effectively means that given a latent stuck-at-x type fault at the n-th output bit of
the left-hand side module, the probability that the next fault in the system will be a disas-
trous stuck-at-x at the n-th bit of the right-hand side module, is significantly higher than
the probability that an unrelated fault will hit another part of the circuit. In a particular ap-
plication, whether or not common mode faults are likely to occur is something that can be
determined only in the context of the given application, especially taking into account the

target technology, reliability of fabrication process, and robustness of the off-line produc-

tion test.

Common mode faults are known to escape duplication testing schemes where both dupli-
cate modules have been produced by the same mask. Therefore, a high probability of such
faults is the only significant threat the datapath self-checking scheme of this work has to
face. To alleviate the risk, traditionally [51] diverse duplication is applied (§2.2.2),
wherein duplicate modules are behaviourally equivalent, but structurally different. Diverse
duplication cannot be currently adopted within MOODS, due to all datapath modules hav-
ing a single realisation within the cell library (§3.2.7). Assuming subsequent development
work leading to alternative cells, however, the synthesis process of chapter 5 would be
perfectly applicable to diverse duplication. In this work, inversion testing is proposed as a
valid alternative, if the frequency degradation often associated with it is tolerable in the

context of the particular project.

7.1.3 Faults in the interconnect and storage units

As has been obvious in the discussion so far, and explicitly mentioned in §7.1.2.1, the

datapath self-checking scheme addressed here is dedicated to the functional datapath mod-
ules of designs resulting from high-level synthesis. The other parts of the datapath, namely
the interconnect and storage elements, are, as a first approach, assumed fault-free. This is a
sensible assumption, taking into account that the theme itself of this work is the high-level

synthesis of functional hardware blocks. In such blocks, the chip area occupied by
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functional modules is significantly
higher than that occupied by storage and
interconnect. Therefore, an environ-

mental factor affecting the chip is much

r Y more likely to affect the area occupied
register
functional by a functional module, rather than that
block
occupied by a register or a multiplexer. It
(a) feeding a (b) feeding a has to be clarified that considered hard-
functional block register ware blocks exclude large memory
Figure 7.8 : Multiplexer configurations blocks. If such blocks appear in a sys-

tem, self-checking design principles
have to be applied to them as well (typically some variation of parity checking, see for ex-
ample [143, 144]), but this is out of the scope of this thesis (indeed, it would concern self-

checking design considered at the system level).

A further look at multiplexer faults further backs the fault-free assumption. Consider Fig-
ure 7.8. It depicts the two situations when a multiplexer is needed : to feed a functional
block (7.8a), or to feed a register (7.8b). Clearly, in 7.8a, the behaviour of a faulty multi-
plexer delivering a corrupted value to the functional module input, is equivalent to a fault-
free multiplexer that correctly feeds a faulty functional block, in particular a functional
block whose behaviour can be modelled by a suitable stuck-at fault in its input. Therefore,
the faulty behaviour of the multiplexer is covered by the already mentioned RTL fault
model of §7.1. Similarly, in Figure 7.8b, a faulty value delivered to the register by a cor-
rupted multiplexer, can be considered equiva-

lent to a corrupted register receiving a correct | ——
value. Of course, registers are not covered by

the assumed fault model, and therefore such a N \

fault would be disastrous.

Let us now focus exclusively on registers. Care- ... d- ...

ful examination of a few design data flow N+
+

graphs reveals that there are classes of registers

whose faults are in fact equivalent to functional ‘ ) ) .
Figure 7.9 : Faulty registers equivalent
module faults. Figure 7.9 shows such a DFG, to faulty functional modules
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highlighting two registers in this category. The figure is notably similar to Figure 6.3; in-
deed, it depicts the — dominant throughout this thesis — duplication testing scheme. The
comparison operation has been scheduled one control step after the functional and the re-
dundant ones; therefore, the two highlighted registers carry the intermediate results across
the boundary of CSs N and N+1. Clearly, any active fault in any of the highlighted storage
units will propagate to the comparator input — it will therefore be equivalent to a suitable
comparator fault, hence covered by the assumed model. However, notice that any fault in
any of the non-highlighted registers feeding the functional or redundant operation will not
be detected, since each register feeds both adders, thus producing the same erroneous re-
sult at the adder outputs. Interestingly, the scheme behaves very much like if under the

presence of a common mode fault, thus exposing a defenceless part of the circuit.

7.2 Control path self-checking

The six alternative control path self-checking techniques presented in chapter 6 have been
designed to strictly adhere to self-checking design theory. That is, they all achieve the to-
tally self-checking goal under Hypothesis 2.1/ 7.1. In contrast to the datapath case, the
hypothesis is now particularly valid. To understand this, refer back to Figure 6.1, and con-
sider the controller as a single module, receiving the conditional signals as inputs and pro-
ducing the control signals at the output. Recall (§6.4.1) that every internal fault in the
MOODS-generated controller may affect a single control signal. Further consider that the
control signals / control path checker inputs (Figure 6.15), in all realistic situations, are of
the order of 100 at the very most, compared to 2" different comparator inputs in a data
path duplication self-checking scheme with, e.g., 16 being a typical value for n, yielding
~650 times more values. Finally, no situation analogous to Figure 7.2 can be conceived for
the control path; that is, all control states are visited (and all control signals produced) dur-
ing the usual system operation, even if some of them are visited less frequently than oth-
ers. In summary, the control path checker is extremely likely to receive all of its available
code words between the occurrences of two consecutive faults, because they are relatively
very few, and because nothing prevents them from being produced. In combination with
the single fault property, this directly supports Hypothesis 2.1 / 7.1. The conclusion,
hence, is that any single fault in the controller or the control path checker will definitely be

detected before the next one occurs, thus excluding latent faults and accumulations of

faults resulting from them.
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It is instructive to go one step further, and consider a particularly hostile environment, in
which multiple faults may hit the controller at any given time, thus producing multiple
faulty control signals. Although this is probably an unrealistically hostile scenario, not
normally considered in self-checking literature, it is interesting to note that the proposed
schemes of chapter 6 provide enhanced detection capabilities that accommodate several
such situations as well. These enhanced capabilities should be familiar since there were
references to them throughout chapter 6; the following comments remind them and Table
7.3 formally summarises them. The CTRL 1 technique (Figure 6.4) detects all single or
odd-multiplicity errors among the control signals of any single process individually. The
CTRL 2 scheme of Figure 6.5 detects all single or odd-multiplicity errors among the con-
trol signals of all processes in the design accumulatively. CTRI. 3 (Figure 6.7) offers sin-
gle and odd-multiplicity error detection on an individual process basis just like CTRL 1;
further, it detects any combination of faults so long as at least one of them corrupts the
control signal of an Intrinsically Secure state (§6.1.3.1). The CTRIL 4 scheme (Figure 6.8)
has the same capabilities as CTRI. 2, with the addition that identifying and taking IS
states into account once more provides detection of any multiplicity errors that corrupt at
least one IS control signal. CTRL 5 (Figure 6.12) detects all unidirectional errors on indi-
vidual processes, and so does CTRL 6 (Figure 6.14), with the addition that the latter de-

tects even bidirectional errors if any of them corrupts the control signal of an IS state.

| technique detection capabilities
CTRL 1 single or odd-multiplicity errors per process
CTRL_2 single or odd-multiplicity errors in all the control signals

CTRL_3 any multiplicity errors if the control signal of an IS state is corrupted
signle or odd-multiplicity errors per process otherwise

CTRL_4 any multiplicity errors if the control signal of an IS state is corrupted
signle or odd-multiplicity errors in all the control states otherwise

CTRL 5 any multiplicity unidirectional errors per process

CTRL_6 any multiplicity unidirectional errors per process, plus bidirectional
errors for which the p value is assumed by an [S-state control signal

Table 7.3 : Error-detecting properties of controller self-checking techniques

Note that in the above evaluation of CTRL 3, CTRL 4 and CTRL 6, it is assumed that
the precautions of §6.1.3.2 have been respected, so that fault escapes related to Intrinsi-
cally Secure states are practically very unlikely. As a reminder, this means that IS states

are considered only when the data path bus is reasonably wide, while appropriate registers
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are reset to a value that has a low probability of occurrence as soon as their functional con-

tents are not needed anymore.
7.3 Summary

To summarize, this chapter has theoretically and experimentally established the reliability
properties of the self-checking schemes of this thesis. In particular :

o the datapath scheme succeeds in its primary mission, that is, it is extremely robust, de-
tecting all realistic fault scenarios affecting datapath functional modules. An exception to
this can be common mode faults. Since such faults may or may not appear depending on
the dependability of the production line in individual situations, this does not compromise
the success of the technique. Further, if frequent common mode faults are expected, the
inversion testing technique can provide a defence against them.

e although not explicitly targeting them, the datapath scheme also detects a portion of
interconnect and storage unit faults. The remaining multiplexer and register faults can
cause disastrous fault escapes, but the area they occupy on the chip is small enough to de-
mote this to a minor issue.

e the alternative control path self-checking schemes are totally self-checking by con-
struction and therefore detect all single controller faults; in addition, they also defend

against a variety of multiple-fault scenarios.



Chapter 8

Future Research and Conclusion

This last chapter comprises two short sections. Section 8.1 proposes ideas for future work,

while §8.2 gives the final concluding remarks of this thesis.

8.1 Future research directions

There are two families of research themes that can expand the work of this thesis :

e algorithms for on-line test synthesis

e expanding the fault detection capabilities provided herein to implement fault tolerance

The motivation for the first direction is that the modified version of the general-purpose
simulated annealing algorithm defined in §5.3.3.2 was shown in the experimental results
to be useful for designs that include up to around 300 operations (§5.3.3.5). Indeed, it was
found that the tool run-time would probably be unacceptably high for bigger designs.
While 300 operations is enough to accommodate a good number of practical designs, and
it is still about double the size of anything presented in the past, this author expects that
dedicated research on synthesis algorithms can take good advantage of the “case for on-
line test synthesis” made in this thesis and configure automatic design flows that would
explore the three-dimensional design space faster than the random and general-purpose
simulated annealing choice. Such algorithms would probably need to be entirely new heu-
ristics that would take into account the nature itself of the self-checking resource insertion
problem, while still not neglecting the traditional high-level synthesis criteria. It would be
particularly interesting to investigate constructive (as opposed to transformational) high-
level on-line test synthesis algorithms, motivated by the fact that previous research on

constructive algorithms has produced excellent results [100].
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The second proposed research direction effectively refers to implementing “high-level
synthesis for fault tolerance” as an extension of high-level synthesis for on-line testability.
Very much as in the on-line testing case, a comprehensive survey of fault tolerance tech-
niques will be needed, the most suitable for inclusion in synthesis will need to be chosen,
and further tool implementation / expansion details through suitable transformations, algo-
rithms and metrics will have to be devised. A complication of fault tolerance is that choos-
ing the most suitable technique will be likely to depend both on target technology and on
the assumed fault scenario (targeting transient or permanent faults). That is, while it was
possible to define generic RT-level, technology-independent solutions for the on-line test-
ing problem that were proved robust even in very hostile environments, this author feels
that this will not apply for the fault tolerance problem. The implication is that multiple
techniques will probably need to be implemented within the synthesis tool and the de-

signer will be required to make a pre-synthesis choice of technique.

8.2 Concluding remarks

The work described in this thesis has produced an integral, on-line test synthesis system,

based on the original MOODS behavioural synthesis suite.

It is the first time on-line testability is thoroughly integrated into the core of the synthesis
process in a fully automatic manner. This is particularly achieved in the datapath self-
checking scheme of chapter 5, and visualised by the 3-dimensional design space used,
through the definition of an arithmetic expression that quantifies on-line testability. The
resulting tool offers fast, painless, technology-independent and versatile exploration of the
3-dimensional space, all inherited from traditional high-level synthesis. Complex VHDL

constructs such as loops, conditionals and parallel processes are fully accommodated.

From the testability point of view, all intermediate computations are checked, thus giving
a constant monitoring of the health of the system and keeping error latency low. The in-

version testing scheme is defined and exploited. All this is offered at comparatively rea-

sonable hardware overhead values.
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The work of chapter 6 arms the RTL synthesis outputs with protection for the second one
of its constituent parts, that is the controller. Six alternative solutions are configured, ana-
lysed, implemented and experimentally evaluated for the controller self-checking problem.
The idea of reusing datapath self-checking resources for control path checking is con-
ceived and relevant solutions configured, through the introduction of the Intrinsically Se-
cure control states concept. A comprehensive self-checking component library is pro-
duced. Overall, control path self-checking resource insertion is formulated and imple-
mented in a fully automated manner, as an add-on to the MOODS synthesis tool. Together

with the material of chapter 5, combined datapath and controller self-checking design is

thus implemented.

Overall, from the point of view of EDA tool development, this work explored the totally
new area of including on-line testability in the design parameters and optimising for it in a
3-dimensional design space. From the point of view of self-checking design, it enabled the
realisation of well-studied gate-level techniques in a much higher level of the design flow,
increasing their practical significance by including them in realistically-sized designs.
Therefore, from both points of view it advances the state-of-the-art and opens up opportu-

nities for further research.



Appendix A

Modified MOODS User’s Guide

This appendix briefly presents the practical steps required to implement on-line testable
designs using the MOODS command prompt. The appendix assumes some familiarity
with the original synthesis system operation. Its intention is to instruct the experienced
MOODS designer on the new functionality of the modified system. Nevertheless, parts of
the original MOODS are briefly repeated when needed for the sake of completeness, while

references [126, 127, 128, 105, 8] can be consulted for more background information.

A.1 Setting up and interacting with the tool

Like most electronic CAD tools, MOODS organises its designs into projects. Therefore
the first set-up task before a synthesis session can start is the definition of a new project,
the inclusion and compilation of all required behavioural VHDL source files within it, and
the hierarchical assembling of the compiled files within the project in a library structure.
Details of how this is done can be found in [126]. Having set-up the synthesis project, the
synthesis engine, being the “heart” of the whole process can be invoked using a DOS-
prompt command such as the following.
(moods home directory)\Bin\Moods example

-m " {project directory)\experiments.lmf"

-w experiments

-mult2shift

-disable tforms 38000

{-use mux MUX 2}

{other arguments)
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The above command assumes that a top-level design called example has been compiled
and the project name is experiments. File experiments . 1mf contains information
on the directory location of the library files used in the project and is made known to the
synthesis engine through argument —m. Argument -w experiments defines the direc-
tory where created files are to be written in. Argument -mult2shift transforms all
multiplications and divisions by powers of 2 to left- or right-shifts respectively, and it is
highly recommended as it leads to significant hardware savings. Argument -
disable tforms excludes a number of transformations from the overall MOODS set
of transformations (§3.2.3). The number 38000 is interpreted as a binary bitmap, dictat-
ing which transformations will be excluded. The particular number suggests that all regis-
ter sharing transformations are disabled. Excluding these transformations is highly rec-
ommended for the purposes of this work, since it was found that the said transformations
are rather experimental in the current version of MOODS and using them only lengthens
the simulated annealing algorithm run-time (note that register sharing transformations
were not included in the presentation of §3.2.3, for the same reasons). The exact bitmap-
to-transformation correspondence for the above number can be found in appendix D of
[105]. Argument -use mux MUX_2 is recommended when the target technology is an
FPGA part. It instructs MOODS to use a particular cell library multiplexer description,
that subsequent RTL synthesis tools synthesize using the tristate buffers available within
FPGA slices [106]. This leads to better resource usage within the FPGA. However, the

argument should not be used when VLSI technology is targeted.
Other arguments exist [126], but exceed the scope of this appendix.

The first task of the system as soon as the above command is issued, is to read the initiali-
sation file, MOODS . ini, and be informed about a number of design options. While sev-
eral pieces of initialisation information can be passed to the tool through this file, the most
important information for the purposes of this thesis is the choice of target technology.
The target technology becomes known to the tool through a single declaration line in the
initialisation file. A typical declaration for this purpose would look like the following.

XC4000XV-09 = GenericLibrary, 4000XV.mlib

File 4000XV.mlib is the pre-existing system technology library, targeting Xilinx FPGA

parts. This library was augmented to include characterisation information for the newly



P. Oikonomakos, 2004 Appendix A: Modified MOODS User’s Guide 276

added dual-rail checker and fault secure comparator cells (§5.3.3.3). The new technology
library file is named 4000XVplus.mlib and in order to be taken into account the line

above should be substituted by
XC4000XV-09 = GenericLibrary, 4000XVplus.mlib

Furthermore, a new technology library file was written for the Alcatel CMOS VLSI 0.35
technology also used in the experiments of chapters 5 and 6. To use this technology, the

following declaration is needed instead of any of the two above.

HYA MTC45000 = GenericLibrary, MTC45000plus.mlib

The designer can thus choose his or her target technology of interest by editing file

MOODS . ini.

A.1.1 Defining the cost function

When MOODS is invoked, the input design has been read and certain preliminary tasks
have finished, it presents a command prompt and waits for the designer’s instructions.
Sensibly the first task is to define synthesis specifications through the cost function. The
command that gets MOODS to cost function definition mode is

cf
Now the designer needs to specify his or her requirements. This is done by “‘adding” pa-
rameters to the (initially empty) cost function vector. For example, adding an area con-
straint is done by

aa

The tool asks for the priority value of the area constraint, to which the designer may re-

spond by
1
or
2

for first or second priority respectively. The tool then again asks for the target area, to
which in this thesis the answer is always

0
meaning “as cheap as possible” (§3.2.4). Of course, non-zero numbers can be given in-

stead. The delay constraint is declared to the tool similarly, by using command
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ad
instead of aa. Again, in this thesis the target delay is always 0. On-line testability has been
configured to work similarly. Indeed, the cost function command

at
includes on-line testability in the set of constraints. The on-line testability priority in all
experiments of chapters 5 and 6 has always been 1, while the target value for on-line test-

ability has always been 100 (for 100%, §5.3.3.1).

The choice of control path self-checking scheme is done in the cost function definition as
well. Six alternative independent commands have been implemented for this. Command
al
instructs the tool to append the CTRL 1 (§6.2.1) self-checking scheme to the controller.
Alternatively, a2, a3, a4, a5 or a6 can be used, to order CTRL, 2 (§6.2.2), CIRL 3
(§6.2.4), CTRL 4 (§6.2.5), CTRL_5 (§6.3.2) or CTRL 6 (§6.3.3) respectively. No further
information is required by the tool with respect to controller self-checking, other than
choice of scheme. If none of the above six commands is issued, the tool by default as-

sumes that controller self-checking is not desired.

When all of the cost function parameters have been set up, command
£

finishes the cost function definition session and returns to the main MOODS prompt.
A.1.2 Manual application of the testing transformations

After leaving cost function set-up mode and returning to the main prompt, the user can
start applying transformations to the design under optimisation. These include the generic
transformations of §3.2.3 or the additional testing ones of §5.3.2.1 and §5.3.3.4. The man-
ual application of transformations proceeds as follows. Initially the “select transformation”
command is given

st
The designer is presented with a list of available transformations, including the five testing
ones added in this thesis. Selection is made by entering the appropriate number, e.g.

8
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for TFS. Assuming familiarity with the original transformations, let us focus on the testing
ones. Selecting TF22, TF23, TF25 or TF26 will cause MOODS to prompt for a single in-
struction characteristic number. In the case of TF22 (physical duplication) or TF23 (physi-
cal inversion), this will be the number of the instruction to which the designer desires to
attach self-checking resources. In the case of TF26 (remove testing scheme), it will be the
instruction whose testing scheme is to be removed. Finally, if TF25 (restore original test
response register) is the transformation at hand, then the instruction will be the one for
which the self-checking comparison output signal is desired to be unshared. Selecting
TF24 (share test response register) will prompt for two instructions. The second will be
the one for which the test response register is desired to be abandoned and the response

directed to the respective register of the first.

If the selected transformation passes the validity tests of §5.3.2.1 and §5.3.3.4, then the
tool will automatically estimate its effect and present the result on screen. Issuing the “per-
form” command

P

will subsequently actually perform the transformation.

The semi-automatic insertion of self-checking resources in the experiments of §5.3.2.2
was carried out using several repetitions of the above procedure for transformations TF22

and TF23.
A.1.3 Application of the automatic algorithms

Applying the automatic optimisation algorithms (simulated annealing, heuristics) of §3.2.5
proceeds exactly as in the original MOODS. Hence, the annealing initialisation command
ai
causes the tool to ask for four arithmetic values : initial temperature, ultimate temperature,
temperature decrease factor and number of transformations per optimisation step. Anneal-
ing execution command
ao
sets off the simulated annealing optimisation algorithin with the parameters given by the
designer in the initialisation step. If on-line testability has been given as a designer speci-

fication during the cost function set-up phase (§A.1.1), then transformations TF22 and
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TE23 are included in the set of transformations and the simulated annealing algorithm

takes its modified form described in §5.3.3.2.

The tailored heuristic algorithm is set off by the following command.
aoh
and takes any of the forms of Figure 3.10, depending on the relative values of designer

area and delay priorities.

A.1.4 Experimenting with Intrinsically Secure states

This section explains how to apply the ideas of facilitating Intrinsically Secure (IS) states
of §6.4.3 within the modified MOODS. Two new MOODS commands are implemented.
The “extract IS states” command

ei
implements step 2 of §6.4.3, that is, it directs the system to traverse all control states, iden-
tify those that have all three parts (functional, redundant, and comparison operations) of
self-checking schemes scheduled at them, and extract the redundant operation, by apply-

ing transformation TF21 to it.

The “merge IS states” command

mi
likewise implements step 4 of §6.4.3. Again it traverses all control states, identifies those
that have a fault secure comparison operation scheduled at them, and applies transforma-

tion TFS (merge fork and successor) to them.

The “Version 2" realisations explained and presented in §6.4.4 were produced as follows.
s Step | : optimise using simulated annealing (a1, ao)

e Step 2 :apply ei (effectively bringing self-checking schemes to the state of Figure
6.26d)

e Step 3 : repeat Step 2 until there is no self-checking scheme at the state of Figure 6.26b
e Step 4 : apply mi (creating configurations such as the desired state of Figure 6.26¢)

e Step 5 : repeat Step 4 until there is no self-checking scheme at the state of Figure 6.26b

e Step 6 : apply tailored heuristics (ach)
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When all desired optimisation has finished, the “finish optimisation” command
fi

terminates the synthesis engine.
A.1.5 Deliberately separating instructions

This final subsection briefly describes how two instructions can be forcibly separated in
two different control steps if the designer wishes so. The presented feature exists in the

original MOODS tool, and it is used in this thesis to prevent chaining in the manual ex-

periments of §5.3.1.

Consider two consecutive VHDL operations, for example the following two, taken di-
rectly from the examples of §5.3.1.

v81 := v3i + v5i;

scl := v81 - v5i;
Assume that it is desirable to forcibly prevent the chaining of the two instructions. The
most explicit way to do that is by directly disallowing the synthesis engine to schedule
them in the same control step, by using a VHDL wait for statement directly in the
source code, as in the following.

v81 := v31i + v5i;

wait for 10ns;

scl := v8i - vbi;
Any non-zero delay value (e.g. 10ns as above) will cause the synthesis tool to always
schedule the subtraction and all instructions below it, af least one control step after the ad-
dition and all instructions above it. In essence, the wait statement acts as a “barrier” pre-

venting the control step below it from merging with any of the control steps above.
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Benchmarks

This appendix provides the behavioural VHDL codes for five benchmark designs used in

this thesis for the experimentation of chapters 5 and 6.

B.1 Tseng

The Tseng datapath was introduced in [121] and it is very often the first benchmark used
for evaluation purposes in the field of behavioural synthesis. That is because it is consid-
ered to be representatives of situations often encountered in the synthesis of real designs.

The VHDL code used in this thesis is as follows.

library ieee;
use leee.std logic 1164.all;

use ileee.numeric std.all;

entity bench is
port(v3, v5, v7, v8, v9, vl1l, vl14, vl5 : out unsigned (15
downto 0)) ;

end bench;

architecture bench beh of bench is
gignal wvii, v2i, v3i, wv4i, v5i, v7i, v8i, wvoi, wvlo0i,
v1ili, v12i, v13i, v14i, vis5i : unsigned(15 downto 0);

begin
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mailn proc:process

begin

v1li <="1100011111011000";
v2i <«="0000101100111001";
v31 <="1110101100110001";
v4i <="0001000111101001";
v51 «="0101011111001110";
v71 <«="1100110111111001";
v81 <="0100111101000001";
v91 <«="0011101010010001";
v10i <="1100100000011000";
v11li <="1100100011111001";
v12i <="1100101000000101";
v13i <="1010110011010001";
v1i4i <="1001111111100111";
v15i <="1110000111111101";

loop
v3i <= v1i + v21i;
-~ can be commented out

walilt for 2 ns;

vhi <= v31i - wv4i;
-- can be commented out

walt for 2 ns;

v8i <= v31i + v5i;
-- can be commented out

walt for 2 ns;

v14i <= unsigned{std logic vector{vili) and
std logic vector(v8i));

vlii <= v14i;
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v1i21 <= vl1i;
v7i = v3i * 4;
-- can be commented out

walt for 2 ns;

v91l <= v1i + v7i;
-- can be commented out

wait for 2 ng;

v15i <= unsigned(std logic vector(vizi)
std logic vector(vsi));

v2i <= v15i;

v13i <= v3i;

v1llii := v101 / 2;

-- can be commented out
wait for 2 ns;
end loop;

end process;

process
begin
v3 <= Vv31i;
v5 <= vb5i;
v7 <= v71;
v8 <= Vv81i;
v9 <= v9i;
v1l <= v11li;
vlid <= v1di;
v15 <= v151i;

end process;

end bench beh;

ocr
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Signals v1i —v151 are normally primary input ports. However, it was found that many
FPGASs tried did not have enough input pins to accommodate 15 16-bit primary inputs.
They were therefore converted to internal signals and assigned initial values in the “un-
comfortable” way shown in the code. While this is not elegant or efficient coding, it has
no negative implications as regards the datapath operations, data dependencies and synthe-

sis tasks that are of primary interest here.

An additional point to note on the behavioural code above are the wait for 2 ns;
statements found therein. As explained in §A.1.5, these are used to control CS merging

and can be removed or commented out at the designer’s discretion.

B.2 Differential equation solver

The Diffeq benchmark is a simple differential equation solver, inspired from [129] and
slightly modified for synthesis within MOODS. The VHDL code is the following.
PACKAGE diffeqg types IS

SUBTYPE nat is integer range 0 to 65535;

END diffeqg types;

USE work.diffeqg types.all;
entity dif is
port (Xinport: in nat;

Yinport: in nat;
Uinport: in nat;
Aport : 1n nat;
DXport : in nat;
Xoutport: out nat;
Youtport: out nat;
Uoutport: out nat;
done: out bit);

end dif;

architecture diffeq of dif is
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signal oldx, oldy, oldu : nat;

signal newx, newy, newu : nat;

begin

MAIN : process

variable x var, y var, u var, a_var,

variable v1, tl, t2, £3, t4, t5, té:

variable looping : bit:='0";
variable 1 : nat;
begin
done<='0";
if (looping = '0') then
x var := Xinport;
y_var := Yinport;
u var := Uinport;
looping := '1°%;
else
X _var := newx;
y_var = newy;
u var := newu;
end if;
a var := Aport;
dx var := DXport;

if (x var < a var) then

-~ can be commented out

wait for 2 ns;

tl := u var * dx var;
-- can be commented out

wait for 2 ns;

t2 := 3 * x var;
-- can be commented out

wait for 2 ns;

t3 := 3 * y wvar;

-- can be commented out

dx wvar: nat;

nat;
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wait for 2 ns;
t4d := £l * t2;
-- can be commented out
walit for 2 ns;
t5 := dx var * t3;
-- can be commented out
wait for 2 ns;
té := u var - t4;
-- can be commented out
wait for 2 ns;
u var := té - tbh;
-- can be commented out
wait for 2 ns;
vyl := u var * dx var;
-- can be commented out
wait for 2 ns;
Yy var := y var + yl;
-~ can be commented out
wait for 2 ns;
X var := X var + dx var;
oldx <= x var;
oldy <= y var;
oldu <= u var;
else
Xoutport <= X var;
Youtport <= y var;
Uoutport <= u _var;
looping := '0';
done<="'1";
end if;
-- can be commented out
wait for 2 ns;

end process;

SYNCH: process
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begin
newx <= oldx;
newy <= oldy;
newu <= oldu;
wait for 2 ns;

end process;

end diffeq;

B.3 QRS

The QRS design is a medical electronics application, also popular as a high-level synthesis

benchmark since first used for benchmarking purposes, in [130].

PACKAGE grs types IS
SUBTYPE intlé IS integer RANGE 32767 DOWNTO -32768;

-- 16 bit integer

SUBTYPE nat2 IS integer RANGE 3 DOWNTO O;
-- 2 bit unsigned integer
END grs types;

USE work.grs types.all;

ENTITY grs IS

PORT (ecgl . IN intlé;
low . IN intlé6;
high : IN intlé;
indx . IN intlé6;
ftmlin : IN intlé6;
ftm2in : in intlé6;
ftmlout: buffer intls;
ftm2out: buffer intlé;

new data : IN boolean;
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data done: out

fl3o
RRpeak
RRoO

END grs;

boolean;
ouT nat2;
ouT boolean;
ouT intlé6);

USE work.grs types.all;

ARCHITECTURE system OF grs IS

BEGIN
grs_proc: PROCESS
CONSTANT ACTIVE boolean := false;
CONSTANT INACTIVE boolean := true;
VARIABLE ft, ecgml, vsi intl6;
VARIABLE ymax, xmax, yO0, ath, ys, yOm2, zmax, y0ml
intlé6;
VARIABLE sthl, sth2, lxmax, lymax, lzmax intlé6;
VARIABLE count, RR intlé;
VARIABLE £13 nat2;
VARIABLE £f11, fl12 boolean;
variable v2, v4, y8, v1ie, x2, x4, x8, x16, z2, z4,
z1l6, 1x8, 1lvy8, 1z8 intlé;
variable ecg dif, ecg dif256 intlé;
begin
RRpeak <= Inactive;
fl3o <= 0;
RRO <= 0;
yOml = 05
yom2 1= 05
ymax 1= 0
xmax 1= 0;
zmax = 0;

z8,
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fl1 := False;
f12 = False;

count := 0

ecgml := ftmlin;

init: FPOR 1 IN 1 TO indx LOOP -- initialization loop

data done<=false;

walt on new data until new_data;
ecg dif:=ecgl-ecgml;

ecg dif256:=ecg dif/256;

ft ftmlin + ecg dif - ecg dif256;

I

yei := £t - ftm2in;

-~ can be commented out



P. Oikonomakos, 2004 Appendix B: Benchmarks

290

walt for 2 ns;

IF {(ysi > ymax) THEN
ymax := ysij;
y2:=yai/2;

-- can be commented out
wait for 2 ns;
v4:=ysi/4;

~-- can be commented out
wait for 2 ns;
y8:=ysi/8;
y16:=ysi/16;

END IF;

IF ( ft > xmax) THEN
xmax := ft;
x2:=ft/2;

-- can be commented out
wait for 2 ns;
x4:=ft/4;

-- can be commented out
wait for 2 ng;
x8:=ft/8;
x16:=ft/16;

END IF;

IF (ft > 0) THEN

v0 = ft;
else
y0 = ~-ft;
END IF;
ath := x4;

IF ( ath > v0) THEN
v0 := ath;

END IF;

vs = y0 - yOm2Z;

IF (vys > zmax) THEN

Zmax = yS;
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z2:=ys8/2;
z4:=ys/4;

-- can be commented out

walt for 2 ns;

28:=ys/8;
z16:=ys/16;
END IF;

ftm2out <= ftmlin;

ftmlout «= ft;

ecgml := ecgl;

yOom2 = y0Oml;

vOoml = vO0;

sthi = v2 + y8 + vyl6;

sth2 z2 + z8 + zl6;

1l

data_ done<=true;

wait for 2 ns;

END LOOP init;

regular : LOOP

IF (ysi > sthl) THEN

£f11 = true;
count := 0;
END IF;

IF (ys > sth2) THEN

£12 = Lrue;
count := 0;
END IF;

IF ((fll = true) AND (fl2 = true)

RRpeak <= Active;

xmax c= X2 o+ x4+ X8 + 1x8;

x2:=xmax/2;
-~ can be commented out

wait for 2 ns;

(RR > low))

THEN
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x4 :=xmax/4;
-- can be commented out
walit for 2 ns;
x8:=xmax/8;
x16:=xmax/16;
yvmax = y2 + v4 + y8 + 1ly8;
v2:=ymax/2;
-- can be commented out
wait for 2 ns;
v4:=ymax/4;
-- can be commented out
wait for 2 ns;
v8:=ymax/8;
y16:=ymax/16;
Zzmax := z2 + z4 + z8 + 1z8;
z2:=zmax/2;
-- can be commented out
wait for 2 ns;
z4 :=zmax/4;
-- can be commented out
wait for 2 ns;
z8:=zmax/8;

z16:=zmax/16;

RR = 0;
count := 0;

f11 = false;
£12 = false;
£13 = 0;
lxmax := 0;
1x8:=0;

lymax := 0;
ly8:=0;

lzmax := 0;
1z8:=0;
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RRpeak <= Inactive;

END IF;

IF ((f1l1 = true) OR (fl2 = true)) THEN
count := count + 1;

END IF;

fl3o <= £13;
RRO <= RR;

data done<=false;

walt on new data until new data;
ecg dif:=ecgl-ecgml;

ecg dif256:=ecg dif/256;

ft ftmlout + ecg dif - ecg dif256;

i

vsi ft - ftm2Zout;

IF (ysi > lymax) THEN

lymax := ysi;
ly8:=ysi/8;
END IF;

IF ( ft > lxmax) THEN
Ixmax := ft;
1x8:=ft/8;

END TIF;

IF (ft > 0) THEN

v0 := ft;
else

y0 = -ft;
END IF;
ath := x4;

IF (y0 < ath) THEN
v0 := ath;

END IF;

ys := y0 - y0Om2;
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IF (ys > lzmax) THEN
lzmax := ys;
1z8:=y8/8;

END IF;

IF {count = 8) THEN

f11 = false;
f1l2 = false;
count := 0;

END IF;

IF (RR > high) THEN

£f13 = £13 + 1;
RR = 0
ymax := V2

- can be commented out

wait for 2 nsg;

y2:=ymax/2;
v =ymax/4;
y8:=ymax/8;

v16:=ymax/16;
Zmax := Z2;
- can be commented out
wait for 2 ns;
z2:=zmax/2;
z4 :=zmax/4;
z8:=2max/8;

z16:=zmax/16;

END IF;

sthl := v2 + y8 + yl6;
sth?2 = 22 + 28 + z16;
RR := RR + 1;

ecgml := ecgl;

vOom2 1= yOml;

vOml = y0;

ftm2out <= ftmlout;

ftmlout <= ft;
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data done<=true;

wait for 2 ns;
END LOOP regular;
END PROCESS grs proc;
END system;

Clearly it is a sizeable design. Hence it was claimed in chapter 5 that it is particularly en-

couraging that modified MOODS was able to cope with it.

B.4 Viterbi decoder

The 8-bit Viterbi decoder recently presented in [131] and used as a benchmark in chapters
5 and 0, is shown in the following. It can be observed that it is composed of § almost iden-
tical concurrent processes. There is also a 32-bit version (comprising 32 processes) used in

one experiment (Table 5.41), not shown here for brevity.

package pack Viterbi is

type four bit array is array (0 to 7) of integer range 0 to
6;

type array of bit vector is array (0 to 3) of bit vector(0
to 7);

type two bit integer array is array (0 to 1) of integer

range 0 to 6;

procedure vector multiO(entri:in bit; wpa, wpb: in integer
range 0 to 6; path0, pathl: in bit vector (0 to 7);
pathx : out bit vector(0 to 7); wpl:out integer range O

to 6);

procedure vector multil{entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit vector(0 to 7);
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pathx : out bit vector(0 to 7); wpl:out integer

to 6);

procedure vector multi2{entri:in bit; wpa,wpb:in
range O to 6; pathO,pathl: in bit vector (0 to 7);
pathx : out bit vector(0 to 7); wpl:out integer

to 6);

procedure vector multi3({entri:in bit; wpa,wpb:in
range 0 to 6; pathO,pathl: in bit vector (0 to 7);
pathx : out bit vector(0 to 7); wpl:out integer

to 6);

procedure vector multi4(entri:in bit; wpa,wpb:in
range 0 to 6; path0,pathl: in bit vector (0 to 7);
pathx : out bit vector(0 to 7); wpl:out integer

to 6);

procedure vector multiS{entri:in bit; wpa,wpb:in
range 0 to 6; pathO,pathl: in bit vector (0 to 7);
pathx : out bit vector(0 to 7); wpl:out integer

to 6);

procedure vector multié{entri:in bit; wpa,wpb:in
range 0 to 6; pathO,pathl: in bit vector (0 to 7);
pathx : out bit vector(0 to 7); wpl:out integer

to 6);

procedure vector multi7{(entri:in bit; wpa,wpb:in
range 0 to 6; pathO,pathl: in bit vector (0 to 7);
pathx : out bit vector(0 to 7); wpl:out integer

to 6);

end pack Viterbi;

range 0

integer

range O

integer

range 0

integer

range 0

integer

range 0O

integer

range 0

integer

range 0
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package body pack Viterbi is

procedure vector multiO(entri:in bit; wpa,wpb:in integer
range 0 to 6; pathO,pathl: in bit vector(0 to 7);
-- moods inline

pathx : out bit vector(0 to 7); wpl:out integer range 0
to 6) is

variable weight vector: integer range 0 to 6;

begin
if (entri='0'") then -- this only makes a one clock cycle
difference
welght vector:=wpb+l; --doing this reduced one clock cycle

if weight_vector <= wpa then
if (weight vector < 2) then
wpl:=welght vector;
pathx:=pathl (1 to 7)&'1";
else
wpl:=weight vector;
end 1if;
else
if {(wpa < 2) then
wpl:=wpa;
pathx:=path0 (1 to 7)&'0"';
else
wpl:=wpa;
end if;
end 1if;
else
weight vector:=wpa+l;
if weight vector <= wpb then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=path0(1l to 7)&'0"';
else

wpl:=weight vector;
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end 1if;
else

if {(wpb < 2) then

wpl:=wpb;
pathx:=pathl (1 to 7)&'1l"';
else
wpl:=wpb;
end 1f;
end 1if;
end 1if;

end vector multio;

procedure vector multil(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit vector(0 to 7);

-- moods inline

pathx : out bit vector (0 to 7); wpl:out

to 6) 1is

variable weight vector: integer range O

begin
if (entri='0') then
welght vector:=wpb+l;
if weight vector <= wpa then
if (weight wvector < 2) then
wpl:=weight wvector;
pathx:=pathl (1 to 7)&'1l';
else
wpl:=welight vector;
end 1if;
else
if (wpa < 2) then
wpl:=wpa;
pathx:=path0(1 toc 7)&'0";
else

wpl:=wpa;

integer range O

to 6;
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end if;
end 1if;
else

welght vector:=wpa+l;
if weight vector <= wpb then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=path0(1 to 7)&'0";
else
wpl:=weight vector;
end 1if;
else
if (wpb < 2) then
wpl:=wpb;
pathx:=pathl(l to 7)&'1l";
else
wpl:=wpb;
end 1if;
end 1if;

end if;

end vector multil;

procedure vector multi2(entri:in bit; wpa,wpb:in integer
range 0 to 6; pathO,pathl: in bit vector(0 to 7);
-- moods inline

pathx : out bit vector(0 to 7); wpl:out integer range
to 6) is

variable welght vector: integer range 0 to 6;

begin

if (entri='0') then

welght vector:=wpb+l;

if weight vector <= wpa then

if (weight vector < 2) then

wpl:=weight vector;
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pathx:=pathl(l to 7)&'l';
else
wpl:=weight vector;
end 1if;
else
if (wpa < 2) then
wpl:=wpa;
pathx:=path0(1 to 7)&'0"';
else
wpl:=wpa;
end if;
end if;
else
welght vector:=wpa+l;
if weight vector <= wpb then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=path0(1 to 7)&'0';
else
wpl:=weight vector;
end if;
else
if (wpb < 2) then
wpl:=wpb;
pathx:=pathl (1 to 7)&'1l"';
else
wpl:=wpb;
end 1f;
end 1f;

end 1if;

end vector multi2;

procedure vector multi3(entri:in bit; wpa,wpb:in integer

range 0 to 6; path(,pathl: in bit vector(0 to 7);
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-- moods inline

pathx : out bit vector(0 to 7); wpl:out

to 6) is
variable weight vector: integer range O
begin
if (entri='0') then

weilght vector:=wpb+l;
if weight vector <= wpa then
if (weight wvector < 2) then
wpl:=welght vector;
pathx:=pathl(l to 7)&'l’;
else
wpl:=weight vector;
end if;
else
1f (wpa < 2) then
wpl:=wpa;
pathx:=path0(1l to 7)&'0"';
else
wpl:=wpa;
end if;
end 1f;
else
welght vector:=wpa+l;
if weight vector <= wpb then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=path0(1 to 7)&'0"’;
else
wpl:=welght vector;
end 1if;
else
if (wpb < 2) then
wpl:=wpb;
pathx:=pathl (1l to 7)&'1l';

integer range 0

to

6;
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else
wpl:=wpb;
end if;
end 1f;

end 1if;

end vector multi3;

procedure vector multi4 (entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit vector (0
-- moods inline
pathx : out bit vector (0 to 7); wpl:out
to 6) 1is
variable weight wvector: integer range 0
begin
if (entri='0') then
welght vector:=wpb+l;
if weight vector <= wpa then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=pathl(l to 7)&'1";
else
wpl:=weight vector;
end if;
else
if {(wpa < 2) then
wpl:=wpa;
pathx:=path0(1 to 7)&'0";
else
wpl:=wpa;
end 1if;
end if;
else
welght vector:=wpa+i;

if weight vector <= wpb then

to 7);

integer range 0

to 6;
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if (weight vector < 2) then
wpl:=weight vector;
pathx:=path0(l1 to 7)&'0"';
else
wpl:=weight vector;
end 1if;
else

if (wpb < 2} then

wpl:=wpb;
pathx:=pathl (1 to 7)&'l"';
else
wpl:=wpb;
end if;
end 1if;
end if;

end vector multi4;

procedure vector multi5({entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit vector{(0 to 7);

-- moods inline

pathx : out bit vector(0 to 7); wpl:out integer range 0

to 6) 1is

variable weight vector: integer range 0 to 6;

begin
if (entri='0"') then
weight vector:=wpb+1;
if weight vector <= wpa then
if (weight wvector < 2) then
wpl:=weight vector;
pathx:=pathl(l to 7)&'1l"';
else
wpl:=welght vector;
end 1if;

else
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if (wpa < 2) then
wpl:=wpa;
pathx:=path0(1 to 7)&'0';
else
wpl:=wpa;
end if;
end if;
else
welght vector:=wpa+l;
if weight vector <= wpb then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=path0(1 to 7)&'0"';
else
wpl:=weilght vector;
end 1if;
else
if (wpb < 2) then
wpl:=wpb;
pathx:=pathl (1l to 7)&'1l"';
else
wpl:=wpb;
end if;
end 1if;

end 1if;

end vector multis;

procedure vector multié(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit vector (0 to 7);

-- moods inline

pathx : out bit vector(0 to 7); wpl:out integer range 0

to 6) is

variable weight vector: integer range O to 6;

begin
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if (entri='0') then
weight vector:=wpb+1;
if weight vector <= wpa then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=pathl (1l to 7)&'1l"';
else
wpl:=weight vector;
end 1if;
else
if (wpa < 2) then
wpl:=wpa;
pathx:=path0(1 to 7)&'0";
else
wpl:=wpa;
end 1if;
end if;
else
weight vector:=wpa+1l;
if weight vector <= wpb then
if (weight wvector < 2) then
wpl:=welight vector;
pathx:=path0(1 to 7)&'0"';
else
wpl:=weight vector;
end if;
else
1f (wpb < 2) then
wpl:=wpb;
pathx:=pathl(l to 7)&'1l"';
else
wpl:=wpb;
end if;
end 1f;

end if;
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end vector multié6;

procedure vector multi7(entri:in bit; wpa,wpb:in integer
range 0 to 6; pathO,pathl: in bit vector(0 to 7);
-- moods inline
pathx : out bit vector (0 to 7); wpl:out integer range 0
to 6) 1is
variable weight vector: integer range Q0 to 6;
begin
if (entri='0') then
welght vector:=wpb+1;
if weight vector <= wpa then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=pathl(l to 7)&'1"';
else
wpl:=weight vector;
end if;
else
if (wpa < 2) then
wpl:=wpa;
pathx:=path0{(1 to 7)&'0';
else
wpl:=wpa;
end 1f;
end 1f;
else
welght vector:=wpa+l;
if weight vector <= wpb then
if (weight vector < 2) then
wpl:=weight vector;
pathx:=path0(1 to 7)&'0";
else

wpl:=weight vector;
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end 1if;
else

if (wpb < 2) then
wpl:=wpb;
pathx:=pathl (1 to 7)&'1"';
else
wpl:=wpb;
end 1if;
end if;

end 1if;
end vector multi7;
end pack Viterbi;
use work.pack Viterbi.ALL;
entity ent Viterbi is
PORT ( entry: in bit;
exitx0, exitxl, exitx2, exitx3, exitx4, exitxs,
exitx6, exitx7: out bit vector{0 to 7));

end ent Viterbi;

architecture arch Viterbi of ent Viterbi is

signal wO:four bit array:=(0,3,3,3,3,3,3,3);

signal pathO,pathl,path2,path3,path4,paths,path6,path7:

bit vector(0 to 7);

begin

process
begin

exitx0O<=patho;
exitxl<=pathl;

exitx2<=path2;
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exitx3<=path3;
exitxd<=pathd;
exitx5<=pathb;
exitx6<=pathé;
exitx7<=path7;
walt for 1 ns;

end process;

entry0:process

variable wx: integer range 0 to 6;
variable pathx: bit vector (0 to 7);
begin

wait for 1 ns;

vector multiO (entry,w0(0),wl (4),pathl,path4, pathx,wx);

pathlO<=pathx;
w0 (0) <=wx;

end process entry0;

entryl:process

variable wx: integer range 0 to 6;
variable pathx: bit wvector(0 to 7);
begin

wait for 1 ns;

vector multil (entry,w0(5),w0 (1), path5,pathl, pathx, wx);

pathl<=pathx;
w0 (1) <=wx;

end process entryl;

entry2:process

variable wx: integer range 0 to 6;
variable pathx: bit vector(0 to 7);
begin

walt for 1 ns;

vector multi2 (entry,w0(1),w0(5),pathl,pathb, pathx,wx) ;

path2<=pathx;
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w0 (2) <=wx;

end process entry2;

entry3:process

variable wx: integer range 0 to 6;

variable pathx: bit vector (0 to 7);

begin

wailt for 1 ns;

vector multi3 (entry,w0(4),w0(0),pathd,path0,pathx,wx);
pathl3<=pathx;

w0 (3) <=wX;

end process entry3;

entrv4:process

variable wx: integer range 0 to 6;

variable pathx: bit vector (0 to 7);

begin

wait for 1 nsg;

vector multid (entry,w0(2),w0(6),path2,path6,pathx,wx);
path4<=pathx;

w0 (4) <=wx;

end process entry4d;

entry5:process

variable wx: integer range 0 to 6;

variable pathx: bit vector (0 to 7);

begin

wait for 1 ns;

vector multi5 (entry,w0(7),w0(3),path7,path3, pathx,wx) ;
pathS5«<=pathx;

w0 (5) <=wX;

end process entry5;

entryé:process

variable wx: integer range 0 to 6;
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variable pathx: bit wvector(0 to 7);

begin

wait for 1 ns;

vector multi6 {entry,w0(3),w0(7),path3,path?7,pathx,wx);
pathé<=pathx;

w0 (6) <=wx;

end process entryé;

entry7:process

variable wx: integer range 0 to 6;

variable pathx: bit vector (0 to 7);

begin

wait for 1 ns;

vector multi7(entry,w0(6),w0(2),paths,path2, pathx, wx);
path7<=pathx;

w0 (7) <=wx;

end process entry7;

end arch Viterbi;

B.5 Greater Common Divider

The greater common divider (GCD) benchmark is the last design listed here.

entity GCD is
port (X, Y : in integer range 0 to 65535;
gcd output : out integer range 0 to 65535);

end GCD;

architecture behavioural of GCD is

begin

BIGLOOP: process

variable xvar, yvar : integer range 0 to 65535;

begin
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wait for 20 ns;

Xxvar := X;
yvar 1= Y;
if ((xvar = 0) or (yvar = 0)) then

gcd output <= 0;

xvar := 0;
yvar := 0;
else
COMP: loop

wait for 20 ns;
if (xvar < yvar) then
yvar := yvar - xvar;
else
if (xvar > yvar) then
Xvar := Xvar - yvar;
end if;
end 1if;
exit COMP when (xvar = yvar);
end loop COMP;
gcd output <= xvar;
end if;
walt on x,v;

end process;

end behavioural;
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