
lINr/ERSrry(}FSCH7rHAA4PTCM%

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

High-level Syn thes i s for On-line Tes tabi l i ty

Petros Oikdnomakos

December, 2004

A thesis submitted for the title of
Doctor of Philosophy.

UMVERSITY OF SOUTHAMPTON

High-level Synthesis

for On-line Testability

by

Petros Oikonomakos

A thesis submitted for the degree of

Doctor of Philosophy.

School of Electronics and Computer Science,

University of Southampton

December, 2004

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Pbilosopby

High-level Synthesis

for On-line Testability

by Petros Oikonomakos

On-line testing increases hardware reliability, which is essential in safety-critical
applications, particularly in hostile operating conditions. High-level synthesis, on the other
hand, offers fast time-to-market and allows quick and painless design space exploration.
This thesis details the realisation of on-line testability, in the form of self-checking design,
within a high-level synthesis environment. The MOODS (Multiple Objective Optimisation
in Data and control path Synthesis) high-level synthesis suite is used for the
implementation of this concept.

A high-level synthesis tool typically outputs controller / datapath hardware architectures.
These two parts pose different self^checking problems that require different solutions.
Datapath self-checking is realised using duplication and inversion testing schemes within
the circuit data-flow graph. The challenge therein is to identify and implement suitable
high-level transformations and algorithms to enable the automatic addition of self-
checking properties to the system functionality. This further involves the introduction of an
expression quantifying on-line testability and including it in the standard high-level
synthesis cost function, thus materialising a three-dimensional design space, to be explored
by the designer feeding the synthesis tool with the problem specifications and constraints.

In contrast, controller self-checking is not implemented within the synthesis process, but is
rather the result of a post-processing synthesis step, directly applying an appropriate
checker to the system control signals. Nevertheless, challenges include choosing suitable
self-checking techniques, achieving the Totally Self-Checking (TSC) goal, and
investigating ways to reuse any existing datapath self-checking resources for controller on-
line testabUity. Solutions based both on parity-checking and on straightforward 1-hot
checking are given, again providing the designer with enhanced opportunities for time-
efficient experimentation in search for the best solution in every given synthesis project.

The self-checking structures are finally verified theoretically and experimentally, through
fault simulation. Overall, the enhanced version of the MOODS system, produced as a
result of this research work, enables the implementation of reliable electronics efficiently,
so that rehability-critical applications can be accommodated in a mass production context.

Contents

Chapter 1; Introduction 18

1.1 Objectives and thesis organisation 20

Chapter 2: An Overview of Electronic Test ing 22

2.1 O&Iiae testing 23

2.1.1 Scan-based Design-For-Testability 24

2.1.2 Built-in Self^Test 26

2.2 On-line testing 28

2.2.1 Self^cbecking design 29

2.2.1.1 Parity codes 32

2.2.1.2 m-out-of^n codes 38

2.2.1.3 Berger codes 48

2.2.1.4 Codes based on Hamming distance 49

2.2.1.5 Arithmetic codes 51

2.2.1.6 Sharing on- and off-line testing resources 53

2.2.1.7 Other related work 55

2.2.2 Duplication testing and related schemes 56

2.2.2.1 Physical duplication 57

2.2.2.2 Dual-rail checking 60

2.2.2.3 Algorithmic duplication 65

2.2.3 On-line BIST and DFT 71

2.2.3.1 Concurrent testing 71

2.2.3.2 On-line BIST exploiting idle time 72

2.2.3.2.1 Idle time availability 73

2.2.3.2.2 Test length 74

2.2.3.2.3 Test scheduling for on-line BIST 76

2.2.3.3 On-line shiA-based DFT 78

2.2.3.4 Other approaches 79

2.2.3.4.1 Arithmetic on-line BIST 79

2.2.3.4.2 Analytical approaches 81

2.2.4 Analogue electronics related techniques 82

2.3 Summary 84

Chapter 3: High-Level Synthesis 85

3.1 Fundamentals 85

3.1.1 Internal Representation 88

3.1.2 Optimisation and Design Space Exploration 92

3.2 The MOODS High-level Synthesis System 94

3.2.1 The MOODS Internal Representation 94

3.2.2 The Optimisation Loop 95

3.2.3 Transformations 97

3.2.4 Designer specifications and the cost function 101

3.2.5 Available algorithms 103

3.2.5.1 Simulated annealing 103

3.2.5.2 Tailored heuristics 104

3.2.6 Hardware model 108

3.2.7 The cell library 111

3.3 Summary 112

Chapter 4: Fault Simulation Techniques 113

4.1 General 113

4.2 Representative simulation techniques 115

4.2.1 Transparent fault injection and simulation 117

4.3 Summary 121

Chapter 5; Datapath Self-checking Design 122

5.1 Problem statement and discussion of potential solutions 122

5.1.1 Problem requirements 124

5.1.2 Evaluation 125

5.2 Detailed presentation of proposed technique 130

5.2.] Algorithmic duphcation revisited 130

5.2.2 Inversion testing 137

5.2.3 Discussion 141

5.3 Implementation and Experimental Results 145

5.3.1 Preliminary experiments 146

5.3.2 Semi-automatic experiments 153

5.3.2.1 Self^checking resource insertion software Gramework 153

5.3.2.2 Experimental results 158

5.3.3 Fully automatic approach 160

5.3.3.1 A metric for on-line testability 161

5.3.3.2 Algorithms 164

5.3.3.3 Fault secure comparators and dual-rail checkers 166

5.3.3.4 Auxiliary modifications 170

5.3.3.5 Experimental results 173

5.3.3.6 Discussion 185

5.4 Summary 188

Chapter 6; Controller Self-checking Design 189

6.1 Problem statement 189

6.1.1 Encoded vs. one-hot implementations 190

6.1.2 Concurrency 191

6.1.3 Datapath self-checking constructs reuse 192

6.1.3.1 Intrinsically Secure states 193

6.1.3.2 The possibility of fault escapes 195

6.1.4 Discussion 196

6.2 Parity-based self^checking 197

6.2.1 Per process parity-based self-checking 198

6.2.2 Self-checking using a single parity checker 200

6.2.3 Utilising Intrinsically Secure states in a single process 201

6.2.4 Per process parity-based self-checking exploiting Intrinsically Secure states. 204

6.2.5 Parity-based self-checking using a single parity checker and exploiting

Intrinsically Secure states 206

6.2.6 Hardware costs 207

6.2.7 Achieving the totally self-checking goal 209

6.3 1/n based self-checking 215

6.3.1 Selection of a 1-hot checker 216

6.3.1.1 Checker specifications 216

6.3.1.2 1/n checkers revisited 217

6.3.2 Per process l/n-based self^checking 219

6.3.3 Per process l/n-based self-checking exploiting Intrinsically Secure states 221

6.4 Implementation and Experimental Results 224

6.4.1 MOODS-generated controller revisited 224

6.4.2 Self-checking design cell libraries 227

6.4.3 Facilitating Intrinsically Secure states 235

6.4.4 Experimental results 238

6.4.5 Discussion 247

6.5 Summary 248

Chapter 7: Reliability Evaluation 250

7.1 Datapath self-checking 250

7.1.1 Theoretical concerns 253

7.1.2 Experimental evaluation 255

7.1.2.1 Transparent Fault Injection and Simulation at the RTL 256

7.1.2.2 Injecting single faults 262

7.1.2.3 Injecting Multiple Faults 264

7.1.2.4 Common mode faults 265

7.1.3 Faults in the intercoimect and storage units 266

7.2 Control path self-checking 268

7.3 Summary 270

Chapter 8: Future Research and Conclusion 271

8.1 Future research directions 271

8.2 Concluding remarks 272

Appendix A: Modif ied MOODS User's Guide 274

A. 1 Setting up and interacting with the tool 274

A. 1.1 Defining the cost function 276

A. 1.2 Manual application of the testing transformations 277

A. 1.3 Application of the automatic algorithms 278

A. 1.4 Experimenting with Intrinsically Secure states 279

A. 1.5 Deliberately separating instructions 280

Appendix B: Benchmarks 281

B.l Tseng 281

B.2 Differential equation solver 284

B.3 QRS 287

B.4 Viterbi decoder 295

B.5 Greater Common Divider 310

Appendix C: List of papers 312

References 314

List of Figures
Figure 2.1 OH^line electronic testing 23

Figure 2.2 DFT in an example CUT model 23

Figure 2.3 A scan register 24

Figure 2.4 Boundary scan 25

Figure 2.5 Built-in Self-Test 26

Figure 2.6 An autonomous n-bit LFSR 26

Figure 2.7 An n-bit LFSR configured as an MISR 27

Figure 2.8 BIST in separate test session : the need for BILBO registers 27

Figure 2.9 Self-checking design 29

Figure 2.10 Fault-secure full-adder cell with a redundant carry used for parity prediction 33

Figure 2.11 A 5-bit odd parity checker 33

Figure 2.12 n-bit embedded TSC parity checker with error memorizing capability 36

Figure 2.13 m/n checker by Anderson and Metze 39

Figure 2.14 k/2k checker by Paschalis et al 40

Figure 2.15 CMOS m/n checker by Kavousianos et al 41

Figure 2.16 1/n checker by Khakbaz 42

Figure 2.17 1/8 to 3-pair dual-rail code translator 43

Figure 2.18 TSC checker for the design of Figure 2.16, n o 2 ' ' , n o 3 44

Figure 2.19 A 1/3 code translator combined with an arbitrary TSC checker 46

Figure 2.20 Programmable embedded self-checking checker for an m/n code 47

Figure 2.21 A general Berger code checker 48

Figure 2.22 Application of an error correcting code 50

Figure 2.23 A multiplier self-checking scheme based on a base A residue code 52

Figure 2.24 A UBILBO and a UBIST checker 53

Figure 2.25 The overall UBIST scheme 54

Figure 2.26 A combined on-line / off-line approach 54

Figure 2.27 Duplication testing 57

Figure 2.28 The IFIS technique 60

Figuie 2.29 Permitted IFIS state transitions 60

Figure 2.30 The dual-rail checker cell 61

Figure 2.31 A 5-pair dual-rail checker 62

Figure 2.32 n/2-pair embedded TSC dual-rail checker with error memorizing capability. 63

Figure 2.33 Algorithmic duplication motivational example 65

Figure 2.34 CBIST 71

Figure 2.35 An Iterative Logic Array 75

Figure 2.36 General scalable circuit 75

Figure 2.37 Example DFG and TDFG 77

Figure 3.1 Target architecture 86

Figure 3.2 HLS-based design flow 87

Figure 3.3 An example data-flow graph 89

Figure 3.4 An example control and data flow graph 90

Figure 3.5 Extended Petii-net based representation of an example digital system 91

Figure 3.6 Typical 2-dimensional design space 93

Figure 3.7 The MOODS optimisation loop 96

Figure 3.8 TF8 example 99

Figure 3.9 A simple data-flow graph : optimising for contradicting goals 105

Figure 3.10 Flow charts for the heuristic optimisation algorithms 107

Figure 3.11 Communication between the data path and the controller 108

Figure 3.12 The general control ceU 109

Figure 3.13 The controller generated by MOODS 110

Figure 4.1 The f a u l t _ i n i e c t package 117

Figure 4.2 2-input NAND gate with fault injection capabilities 118

Figure 4.3 Example netlist 119

Figure 4.4 Example testbench 119

Figure 5.1 Alternative views of the datapath 123

Figure 5.2 Self-checking design based on algorithmic duplication 126

Figure 5.3 Design space exploration for the original and the duplicate DFG 131

Figure 5.4 Example DFG 135

Figure 5.5 Semiconcurrent error detection solution for the example of Figure 5.4 (checking

periodicity P=2) 136

Figure 5.6 Inversion testing 138

Figure 5.7 Inverting an addition 138

Figure 5.8 Algorithmic inversion for an example DFG (Tseng benchmark) 140

Figure 5.9 Checking all intermediate results for the example of Figure 5.2 142

Figure 5.10 Compaction of datapath comparator responses 144

Figure 5.11 Insertion of duplication testing resources and subsequent optimisation 154

Figure 5.12 3-dimensional design space (area, delay, on-hne testability) 163

Figure 5.13 Block diagram of an n-bit dual-rail checker 167

Figure 5.14 The CHK_ARR cell 167

Figure 5.15 A 16-pair dual-rail checker 168

Figure 5.16 Sharing fault-secure comparators 170

Figure 6.1 Controller / datapath architecture 190

Figure 6.2 Highly parallel design 191

Figure 6.3 Securing a control state by accepting datapath error latency 193

Figure 6.4 The CTRL l self-checking scheme 198

Figure 6.5 The CTRL_2 self-checking scheme 201

Figure 6.6 Exploiting IS states in a single process with parity-based controller self-

checking 202

Figure 6.7 The CTRL_3 self-checking scheme 204

Figure 6.8 The CTRL 4 self^checking scheme 207

Figure 6.9 TSC parity checker, to be used in CTRL l, CTRL 2, CTRL_3, CTRL_4.... 211

Figure 6.10 Compacting the outputs of two TSC parity checkers 212

Figure 6.11 An example of fanout branches with different inversion parities 215

Figure 6.12 The CTRL_5 self-checking scheme 220

Figure 6.13 Exploiting IS states in a single process with 1/n controller self-checking.... 222

Figure 6.14 The CTRL 6 self-checking scheme 223

Figure 6.15 The MOODS contioller supplemented with self-checking capabilities 225

Figure 6.16 Conditional control flow 226

Figure 6.17 A 5-bit XOR array 227

Figure 6.18 The XOR_ARRAY cell 228

Figure 6.19 Block diagram of a 10-bit parity tree 228

Figure 6.20 Block diagram of a 21-bit parity checker 229

Figure 6.21 The 1-bit LFSR ceU 230

Figure 6.22 The L P S R _ l _ b i t cell 230

Figure 6.23 A 4-bit LFSR 231

Figure 6.24 The 1/8 TSC checker 232

Fisnre 6.25 The 1/7 TSC checker 233

Figure 6.26 Facilitating Intrinsically Secure states 236

Figure 7.1 The duplication checking scheme 251

Figure 7.2 Multiplication by 2 254

Figure 7.3 RTL N-bit unsigned adder cell with fault injection capabilities 257

Figure 7.4 RTL generic shift left module with fault injection capabilities 258

Figure 7.5 A generic N-pair dual-rail checker 259

Figure 7.6 A generic N-pair dual-rail checker with fault injection capabilities 260

Figure 7.7 A possible fault escape 264

Figure 7.8 Multiplexer configurations 267

Figure 7.9 Faulty registers equivalent to faulty functional modules 267

List of Tables
Table 3.1 The set of available transformations 97

Table 5.1 Example of unit differentiation 132

Table 5.2 Tseng benchmark preliminary synthesis results (Target technology Xilinx Virtex

XCV800 FPGA) 147

Table 5.3 Tseng benchmark fimctional module usage 147

Table 5.4 Diffeq benchmark preliminary synthesis results (Target technology Xilinx Virtex

XCV800 FPGA) 147

Table 5.5 QRS benchmark preliminary synthesis results 147

Table 5.6 Test resource insertion transformations 153

Table 5.7 Tseng benchmark semi-automatic experiments (Target technology Xilinx Virtex

XCV800 FPGA) 159

Table 5.8 Diffeq benchmark semi-automatic experiments (Target technology Xilinx Virtex

XCV800 FPGA) 159

Table 5.9 QRS benchmark semi-automatic experiments (Target technology Xilinx Virtex

XCVIOOO FPGA) 160

Table 5.10 Additional transformations 171

Table 5.11 Tseng benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA) 174

Table 5.12 Diffeq benchmark synthesis results (Target technology Xilinx Virtex XCV800

FPGA), relaxed clock period requirements 175

Table 5.13 Diffeq benchmark synthesis results (Target technology Xilinx Virtex XCV800

FPGA), moderate clock period requirements 175

Table 5.14 Diffeq benchmark synthesis results (Target technology Xilinx Virtex XCV800

FPGA), strict clock period requirements 175

Table 5.15 QRS benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA), very strict clock period requirements 176

Table 5.16 QRS benchmark synthesis results (Target technology Xilinx Viitex XCVIOOO

FPGA), strict clock period requirements 176

Table 5.17 QRS benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA), moderate clock period requirements 176

Table 5.18 QRS benchmark synthesis results (Target technology Xihnx Virtex XCVIOOO

FPGA), relaxed clock period requirements 176

Table 5.19 8-bit Viterbi decoder synthesis results (Target technology Xilinx Virtex

XCVIOOO FPGA), relaxed clock period requirements 177

Table 5.20 Ellip benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA), relaxed clock period requirements 178

Table 5.21 Ellip benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA), moderate clock period requirements 178

Table 5.22 Ellip benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA), strict clock period requirements 178

Table 5.23 GCD benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA), relaxed clock period requirements 179

Table 5.24 GCD benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA), moderate clock period requirements 179

Table 5.25 GCD benchmark synthesis results (Target technology Xilinx Virtex XCVIOOO

FPGA), strict clock period requirements 179

Table 5.26 Tseng benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI) 180

Table 5.27 Diffeq benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), relaxed clock period requirements 180

Table 5.28 Diffeq benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), moderate clock period requirements 181

Table 5.29 Diffeq benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), strict clock period requirements 181

Table 5.30 QRS benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), very strict clock period requirements 181

Table 5.31 QR.S benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), strict clock period requirements 181

Table 5.32 QRS benchmark syntliesis results (Target technology Alcatel CMOS .35

VLSI), moderate clock period requirements 181

Table 5.33 QRS benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), relaxed clock period requirements 182

Table 5.34 8-bit viterbi decoder synthesis results (Target technology Alcatel CMOS .35

VLSI), relaxed clock period requirements 182

Table 5.35 EUip Benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), relaxed clock period requirements 182

Table 5.36 Ellip Benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), moderate clock period requirements 183

Table 5.37 Ellip Benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), strict clock period requirements 183

Table 5.38 GCD Benchmark synthesis results (Target technology Alcatel CMOS .35

VLSI), relaxed clock period requirements 183

Table 5.39 GCD Benchmark synthesis results (Target Technology Alcatel CMOS .35

VLSI), moderate clock period requirements 183

Table 5.40 GCD Benchmaik synthesis results (Target Technology Alcatel CMOS .35

VLSI), strict clock period requirements 183

Table 5.41 32-bit viterbi decoder synthesis results (Target Technology Alcatel CMOS .35

VLSI) 184

Table 6.1 Self-checking hardware cost estimations 208

Table 6.2 Tseng Benchmark Version 1 synthesis results (Target Technology Alcatel

CMOS 0.35 VLSI), synthesis priorities : area high, delay low, moderate clock period

value 240

Table 6.3 Tseng Benchmark Version 2 synthesis results (Target Technology Alcatel

CMOS 0.35 VLSI), synthesis priorities : area high, delay low, moderate clock period

value 240

Table 6.4 Diffeq Benchmark Version 1 synthesis results (Target Technology Alcatel

CMOS 0.35 VLSI), synthesis priorities : area high, delay low, moderate clock period

value 240

Table 6.5 Diffeq Benchmark Version 2 synthesis results (Target Technology Alcatel

CMOS 0.35 VLSI), synthesis priorities : area high, delay low, moderate clock period

value 240

Table 6.6 QRS Benchmark Version I synthesis results (Target Technology Alcatel CMOS

0.35 VLSI), synthesis priorities : area low, delay high, strict clock period value 241

Table 6.7 QRS Benchnaark Version 2 synthesis results (Target Technology Alcatel CMOS

0.35 VLSI), synthesis priorities : area low, delay high, stiict clock period value 241

Table 6.8 8-bit viterbi decoder synthesis results (Target Technology Alcatel CMOS 0.35

VLSI), synthesis priorities : area high, delay low, moderate clock period value 242

Table 6.9 Elhp Benchmark Version 1 synthesis results (Target Technology Alcatel

CMOS 0.35 VLSI), synthesis priorities : area high, delay high, moderate clock period

value 242

Table 6.10 EUip Benchmark Version 2 synthesis results (Target Technology Alcatel

CMOS 0.35 VLSI), synthesis priorities : area high, delay high, moderate clock period

value 242

Table 6.11 GCD Benchmaik Version 1 synthesis results (Target Technology Alcatel

CMOS 0.35 VLSI), synthesis priorities : area high, delay lovy, moderate clock period

value 243

Table 6.12 GCD Benchmark Version 2 synthesis results (Target Technology Alcatel

CMOS 0.35 VLSI), synthesis priorities : area high, delay low, moderate clock period

value 243

Table 6.13 Tseng Benchmark Version 1 synthesis results (Target Technology Xilinx

XCVIOOO FPGA), synthesis priorities : area high, delay low, moderate clock period

value 244

Table 6.14 Tseng Benchmark Version 2 synthesis results (Target Technology Xilinx

XCVIOOO FPGA), synthesis priorities : area high, delay low, moderate clock period

value 244

Table 6.15 Diffeq Benchmark Version 1 synthesis results (Target Technology Xilinx

XCV800 FPGA), synthesis priorities : area high, delay low, moderate clock period

value 244

Table 6.16 Diffeq Benchmark Version 2 synthesis results (Target Technology Xilinx

XCV800 FPGA), synthesis priorities: area high, delay low, moderate clock period

value 244

Table 6.17 QRS Benchmark Version 1 synthesis results (Target Technology Xilinx XCV

1000 FPGA), synthesis priorities : area low, delay high, strict clock period value.. 245

Table 6.18 QRS Benchmark Version 2 syntliesis results (Target Technology Xihnx XCV

1000 FPGA), synthesis priorities : area low, delay high, strict clock period value.. 245

Table 6.19 8-bit viterbi decoder synthesis results (Target Technology Xilinx XCVIOOO

FPGA), synthesis priorities : area high, delay low, moderate clock period value 245

Table 6.20 Ellip Benchmark Version 1 synthesis results (Target Technology Xilinx

XCVIOOO FPGA), synthesis priorities : area high, delay high, moderate clock period

value 246

Table 6.21 Ellip Benchmark Version 2 synthesis results (Target Technology Xilinx

XCVIOOO FPGA), synthesis priorities : area high, delay high, moderate clock period

value 246

Table 6.22 GCD Benchmark Version 1 synthesis results (Target Technology Xilinx

XCVIOOO FPGA), synthesis priorities : area high, delay low, moderate clock period

value 246

Table 6.23 GCD Benchmark Version 2 synthesis results (Target Technology Xilinx

XCVIOOO FPGA), synthesis priorities : area high, delay low, moderate clock period

value 246

Table 7.1 Tseng benchmark fault simulation results (independent experiments) 263

Table 7.2 DiReq benchmark fault simulation results (multiple faults) 264

Table 7.3 Error-detecting properties of controller self-checking techniques 269

Acknowledgements

This work was funded partly by the Engineering and Physical Sciences Research Council

and partly by the School of Electronics and Computer Science of the University of

Southampton. I am grateful to both organisations for their financial support. I am also

grateful to my supervisor Dr Mark Zwohnski for guiding me vyhen I needed guidance and

trusting me when I did not. I acknowledge the contribution of Professor Bashir Al-

Hashimi, who served as the internal examiner of both my first year report and my transfer

viva, and on both occasions provided the very much appreciated third person's perspective

of my work. I would also like to thank my current employers in the Computer Laboratory

of the University of Cambridge, and in paiticular my immediate supervisor Dr Simon

Moore, for providing the financial and professional stability, that were invaluable for the

final completion of this thesis.

I am grateful to all my former colleagues in Southampton, for both the academic and the

social support that they provided. This should include everybody who worked in rooms

3049, 3051 and 3053 of the Mountbatten Building anytime between October 2000 and

October 2003; a special mention is needed for my good Mend Manoj Gaur and his family.

I would also like to thank the numerous members of the international research community

who exchanged ideas with me either in person or through email. Several of them provided

copies of their research papers and clarifications on them. The "primacy of honour" among

them belongs to Dr Steffen Tamick who enormously helped me to understand and

practically implement his previously published theoretical work.

This thesis is dedicated to all the members of my family, especially my father Eleftherios

and my mother Chrysoula, who once upon a time denied herself the chance to pursue her

own PhD in order to support the education and well-being of five other people. I am also

particularly gmtefiil to my brother George for introducing me to the art of Design

Automation in the first place.

Finally, I would like to dedicate this thesis to all the people who have been patient enough

to contribute to my spiritual growth, particularly by leading me to and keeping me in the

Holy Church of Christ.

Chapter 1

Introduction

Hardware reliability is an area of electronic design, attaining more and more importance in

recent years. The typical solution for the increase of the on-field reliabUity of digital elec-

tronic components is As the term suggests, on-line testing targets and de-

tects chip failures that occur while the system is operating, as opposed to fabrication errors

or defects [1] that are detected during manufacturing tests. Typically, on-line detection is

followed by corrective action, thus implementing/aw/f On-line testing should

essentially be viewed as the first step towards fault tolerance.

In earlier days of computing [2], on-line testing solutions were devised primarily for pro-

tection against failures that were attributed to initially minor manufacturing imperfections

in chips. Over time, aging, corrosion, electrical, thermal and mechanical stress exacerbated

the effects of such imperfections, thus eventually developing permanent logic faults.

Clearly, when such faults were anticipated in safety-critical applications during the ex-

pected lifetime of an electronic component, it was imperative that a detection and recovery

mechanism be conGgured. As fabrication quality improved, the rehability risk associated

with such phenomena decreased rapidly and on-line testing lost a lot of its significance in

the 1980s; indeed, the testing literature is particularly poor in on-line testing techniques

during that decade.

This situation began to change in the beginning of the 1990s and changed fimdamentally

aiound and after 1995, with the continuous shrinking in transistor sizes and the decrease in

operating voltage levels (low-power computing). The push for ever-reducing geometries

in order to meet the requiiements of Moore's law [3] prompted engineers to look for reli-

ability "workarounds", driven by the need to produce opgrafz've electronics out of

p. Oikonomakos, 2004 Chapter 1: Introduction 19

yecf fabrication lines. Fault tolerance was identified as such a workaround [4]. Putting

aside this re-surfacing of fault tolerance for permanent faults, the real driving force for re-

liability in the last ten years has been the increasing number of problems with

in modem electronics. A SEU is a transient fault that cormpts a logic value

either in a memory or in functional logic only oMce; however, this one-off failure, or the

superposition of multiple such failures, is enough to disturb the correct operation of the

system. SEUs (also termed errors) are primarily attributed to environmental radiation

effects, in principle alpha particle cosmic radiation or atmospheric neutrons. Such radia-

tion can induce electrical charges at particular capacidve parts of a circuit; given the re-

duced voltage levels of modem low-power electronics, this charge is often comparable to

the charge stored in the said parts during normal operation. As a result, the logic value de-

termined by the amount of charge stored in the particular location is likely to change. An-

other explanation of radiation upsets is that particles that hit the body of transistors in the

OFF state can induce enough energy to create a channel, thus unexpectedly turning the

tiansistor ON and potentially cormpting the logic value at its drain.

In the light of this situation, on-line testing and fault tolerance have gained significant im-

portance in modem electronics. Safety-critical or even hfe-critical applications cannot risk

failures and thus require constant testing. These applications include space and aviation,

automotive and medical electronics. The situation is particularly severe in high altitudes

and in space, where the density of cosmic particles is higher than on sea level. Further, it is

predicted that technology rapidly approaches the point where even everyday commodity

applications will need some sort of protection against radiation upsets [5]. Interestingly,

for all these reasons the industry experts of the consortium publishing the Intemational

Technology Roadmap for Semiconductors [4] have identified fault tolerance as one of the

five m^or "crosscutting" challenges in semiconductor design. Moreover, on-line testing

and its extension fault tolerance have been proved useful to straightforwardly enhance

manufacturing yield, by providing protection even against manufacturing defects [6]. Fi-

nally, on-line testing in the form of self-checking has also been proposed as a counter-

measure against optical tampering in security applications [7].

In this era of digital electronics that require more and more functions on a single chip,

electronic design automation (EDA) tools are used thioughout the whole process of chip

design. Naturally, significant efforts are also invested in tool development, both in indus-

p. Oikonomakos, 2004 Chapter 1: Introduction 2 0

trial environments and in academic research groups. High-level synthesis is a particular

trend within the EDA context, whereby electronic systems are produced automatically by

a synthesis tool when the tool is fed merely by an algorithmic description of the desired

AeAavzowf, and extracts all structural and timing information. The benefits

are fast time-to-market, fast and efficient design space exploration, and optimisation at the

highest level of abstraction. Clearly, mass production industrial environments can greatly

benefit from such characteristics.

The Multiple Objective Optimisation in Data and control path Synthesis (MOODS) tool is

a high-level synthesis suite, developed in the University of Southampton [8]. It is an ex-

ample of academic research in the field of high-level synthesis, and its particular charac-

teristic is automatically trading-off different system parameters (area, delay), in its attempt

to simultaneously satisfy all (typically contradicting) designer requirements.

1.1 Objectives and thesis organisation

As on-hne testing becomes more and more relevant to industry sectors that require high

volumes of production, it becomes obvious that it would be beneficial to develop a high-

level synthesis tool, capable of automatically producing on-line testable systems, while

simultaneously optimising for the traditional synthesis goal of area and delay. No present

synthesis tool offers this. It is this gap in the art of semiconductor electronic design that

this work fills. The fundamentals of ybr OM-Zme are pro-

vided. The development part of the work enhances the existing MOODS system to provide

on-line testability. The whole foundation and implementation are tested through numerous

experiments, and the reliability of the overall produced solutions is assessed.

This thesis comprises eight chapters. Chapters 2 - 4 cover background material, as in the

following.

Chapter 2 provides a thorough overview of electionic testing. Conventional off-line testing

is briefly covered; however, overwhehning emphasis is naturally given to digital on-line

testing techniques.

p. Oikonomakos, 2004 Chapter!: Introduction 2 1

Chapter 3 describes high-level synthesis. The basic terminology and definitions are ini-

tially given, followed by a more detailed overview of the MOODS High-Level Synthesis

Suite.

Chapter 4 gives elements of fault simulation. In this thesis, fault simulation is used for re-

liability evaluation purposes; therefore, the basics are given and a few recent representa-

tive techniques demonstrating the state-of-the-art are presented.

Chapter 5 - 7 describe original work, along the following lines.

Chapter 5 presents the work carried out in the direction of providing self-

checking design for controller / datapath pairs produced by high-level synthesis processes.

The most appropriate on-line testing technique is identified, and details of the implementa-

tion with the MOODS system are given. Extensive experimental results are shown and

commented on.

Chapter 6 focuses on the controller part of a controller / datapath architecture, and pro-

vides six alternative self-checking solutions for it, taking into account multiple communi-

cating control units, and utilising existing datapath self-checking resources. These tech-

niques are all implemented into MOODS, and more experimental results are presented.

Chapter 7 provides a theoretical and experimental evaluation of the reliability of the on-

line testable system under the presence of single or multiple physical failures.

Finally, chapter 8 presents ideas for future research based on this thesis and concludes it

by summarizing its most important contributions.

Three appendices are also included in this thesis. Appendix A is a brief "User's Guide" of

the produced high-level synthesis for on-line testability variation of MOODS. Appendix B

shows the benchmark designs used in the experiments of chapters 5 and 6. Finally, Ap-

pendix C shows the research papers written and unofficial presentations given as part of

the work that lead to the production of this thesis.

Chapter 2

An Overview of Electronic Testing

This chapter provides background information on electronic testing theory and various

practical testing techniques, most of them developed in the 1990s. The presentation herein

begins with a very brief overview of off-line and^wzVf-

(375'?]) in section 2.1, while section 2.2 describes various on-hne testing tech-

niques in detail. Finally, section 2.3 summarizes the chapter.

The behaviour of an electronic system under the presence of a logical fault can be evalu-

ated using the fault model assumption [1], under which a wire in a sys-

tem is considered to retain a logical value ("0" or "1"), regardless of the value driving it,

tl:us producing a logical error whenever the driving line assumes the opposite ("1" or "0"

respectively) value. An alternative structural model is the [1],

whereby an erroneous short circuit between two wires effectively gives rise to a new ele-

mentaiy logic function (AND or OR). Higher-level fimctional models also exist. For in-

stance, given the functional Zangwage (.HDZ) code of an electronic

system, a whole multi-bit variable can be modelled as being stuck at a particular arithme-

tic value. Another example of fimctional fault modelling are the

faults, conceivable whenever a functional description contains conditional state-

ments. Generally speaking, the stnictural bit-wise stuck-at fault model has most often been

favoured over other models in the research hterature, for its simplicity, representative

power, and ease of use. It is also fuUy adopted in this chapter and generally throughout the

whole of this thesis. By convention, a stuck-at-0 wire that fails to take the "1" value of the

line driving it, is said to assume the 7/0 or D value. Likewise, a stuck-at-1 wire that fails to

take the "0" value of its driving line, is said to assume the 0/7 or Z) value. These conven-

tional notations, taken from [1], will be used hereafter.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 23

2.1 Off-line testing

Test
Vectors

1
V '

CUT

Test
Responses

F/gure 2. Y. Of-//'ne e/ecfmn/c fesf/ng

CUT

The general off-line testing scheme is depicted

in Figure 2.1. The Czrcwzf is

taken off-line (that is, its normal operation is

suspended), f vgc^OM / (g j ^ a r e ap-

plied to its inputs, and ^gjf rgjpoMjgj are read at

the output(s). The test responses are compared

against the expected fault-free responses, and

mismatches signify faulty situations. Test vec-

tors are provided either externally, by

Pis C1
A ^

C2 C1 C2
->• POs

fAe c u r

CUT

Pis P O s C2 C1

('bj con W and obse/vaf/on po/'nf ;nse:f/on

CUT

P O s

to next cells
from

previous
cells

C1 C2

Scan
register

cell

(cj emp/oy/ng a scan reg/sfer ce//

F/gure 2.2. OFT/'n an examp/e CUT mode/

(WZE), or inter-

nally by dedicated

hardware embed-

ded in the system

(chip or board). A

comprehensive

account of early

electronic testing

approaches can be

found in [1]. Some

elementary con-

cepts are provided

here, since they

are needed for the

foundation of this

work; fui-ther and

more recent ad-

vances are not

covered because

they exceed its

scope.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 24

2.1.1 Scan-based Design-For-Testability

This subsection deals with testing using externally applied vectors. Consider Figure 2.2a.

The CUT is assumed to comprise subcircuits CI and C2, communicating through a single

line A. The abbreviations fVj and f 0^ refer to the system f rz/Ma/y and f rz/Mayy

respectively. In order for a stuck-at-x, {0,1} type fault at line A to be tested

against, the test vector at the Pis and the initial conditions in CI must be such that A is

driven to the jc value under fault-&ee operation. If such a vector can be found and such

conditions reached, then line A is said to bex-coMfro/ZaAZe. Further, in order for the effect

of the considered fault to be observed, the test vector and conditions in C2 must be such

that the erroneous value in line A corrupts one or more of the POs. Once again, if this is

possible, then line A is The term (Df 7]) refers to the

family of design techniques that aim at increasing system controUabihty and observability,

often trading-off chip area and / or performance.

Figure 2.2b shows a first approach towards DFT, namely coMA'o/ oMof okervaZzoM (collec-

tively /PozMf /mgrfzoM. Line A is made directly 0-controllable through the insertion of

an additional AND gate (shown in bold), controlled by an additional PI. It is also directly

connected to an additional PO, thus made observable. 1-controllability can also be

achieved using an OR gate, while simultaneous 0- and 1- controllability require a multi-

plexer. This approach can be very expensive in terms of additional I/O pins when several

test points need to be inserted, which is typically the case.

An alternative approach commonly apphed is based on j'coM regzjfgrj. A scan register is a

register that has both shift and parallel-load capabilities. An n-bit scan register is shown in

Figure 2.3. Scan register cells in the figure are normal flip-flops, augmented with a control

Qi D2

CK

Scan
register

cell

Scan
register

cell

Scan
register

cell

A'gu/ie 2.3. scan reg/sfer

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 25

input T, determining normal or test mode operation. In normal mode (T=0), the register is

loaded with functional inputs through the parallel-load input ports D, - Dn. In test mode,

data are shifted into the register through the Sin primary input port, and / or shifted out

through the Sout primary output port.

Figure 2.2c depicts how a scan register cell can be utilised for D F T purposes in the exam-

ple of 2.2a. It is assumed that the cell shown is actually part of an overall scan register, or

chain of registers, providing test point functionality for the whole design. In normal mode

operation, the multiplexer (MUX) propagates the fiinctional value produced by CI. In con-

trast, in test mode, the value provided by the scan flip-flop is f ed to C2 instead. Therefore

all that is needed to directly control point A is to feed the scan chain with the appropriate

bit value, and apply the appropriate number of clock pulses, so that this value reaches the

relevant scan cell. Further, in normal mode, the value of A is always registered at the scan

cell through port D. Therefore, in order to directly observe it, the scan chain can be

clocked as many times as needed for the appropriate value to reach the scan output port

Sou, (Figure 2.3). This way, testability improvements are achieved using 2 or 3 primary

input ports (Sin, T, and perhaps a dedicated scan clock, which can be different from the

functional circuit clock), and only 1 primary output port (Sout). Scan registers can be pre-

existing functional system registers, augmented to accommodate test mode shifting. If this

is not possible for a particular system (e.g. due to the absence of enough functional regis-

ters), then dedicated scan registers can be added.

M
U
X

Figure 2.4. Boundary Scan

Using the scan-based DFT ap-

proach, systematic JCOM

architectures can be formulated, as

Figure 2.4 shows. In the figure,

block C represents a segment of the

considered system, while R| and R2

are scan registers. R] is used to ob-

serve the Pis of C (effectively the

outputs of the previous segment), while R2 controls the POs of C, through the multiplexer

(in effect controlling the inputs to the next segment).

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 26

2.1.2 Built-in Self-Test

CUT

SR

TPG
(STiS'Z) deals with the situation when

test vectors are provided to the CUT by dedicated

hardware, embedded into the system itself, while re-

sponses are also analysed and the decision characteris-

ing the system as fault-firee or faulty is reached once

more by hardware in the circuit. A typical BIST con-

figuration employing a f

and a S'lgMofure is shown in Figure 2.5. In

the following, properties of TPGs and SRs, and their
F/'gure 2.5. Se/f-7esf

reahsation using .Lmear .Regwferj' will be briefly discussed.

An n-bit LFSR is presented in Figure 2.6. It is composed of normal flip-flops connected as

the figure shows, while for the blocks denoted as Cj it is Cje {0,1}, l ^ S a . Effectively, the

Ci blocks signify the presence or absence of a feedback coimection at the relevant point. Cn

is always 1. Associated with an n-bit LFSR is its P(x)=l+Cix+

+C2X^+.. .+Cnx". The LFSR of Figure 2.6 is meaning that it has no inputs but

the required clock signal.

CK

Cl

D Q
Qi V
—^ w—^ D Q

CK CK

T
D Q

CK

F/guns 2.6. /In autonomous n-b/Y LFS/?

It can be shown that when P(x) is jprz'mzn've [1], then all n-bit vectors except the aU-zeros

vector successively appear in the outputs Qi of the LFSR, provided that it is initialised

with a non-zero vector. This property can be exploited when eArAawĵ z've testing is desired

for an n-input CUT, by feeding the CUT input ports through the LFSR Qi outputs, thus

applying all 2""' non-zero vectors to the CUT, effectively utilising the LFSR for TPG pur-

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 27

poses. Alternatively, non-exhaustive, deterministic test pattern sequences can be produced,

by designing appropriate autonomous LFSRs with non-primitive characteristic polynomi-

als and initialising them with appropriate vectors.

A slightly different LFSR structure that is used as a

is shown in Figure 2.7, where the clock signal is implied but not explicitly shown.

This structure is not autonomous; rather, it is fed by the CUT outputs Xj, corresponding to

Xi

(D ^ D Q

CK

Q

X2

, 1

t
Cn-1

D Q

CK

Q2.

Xn

Ci

D Q

CK

Qn

Figure 2.7. An n-bit LFSR configured as an MISR

responses of the circuit to TPG vectors. When all test vectors have been applied and the

MISR has processed all test responses, then a unique pattern called a resides in

the MISR. This pattern is then compared against a pre-computed fault-free signature, and

any mismatch signifies a faulty situation. In the prevailing terminology, the test responses

are often said to be by the MISR.

R2

R3

C2

In practice, when circuits of realistic sizes

are considered, it is often possible and eco-

nomical to configure functional registers

into LFSRs and use them as TPGs or MISRs

in test mode, while maintaining their normal

functionality during functional mode. This

often leads to situations when segments of

large circuits are fed by the same TPG or

have their test responses compacted by the

same MISR. In such cases, BIST has to

work in more than one by par-

titioning the circuit in groups of segments

that do not share BIST resources, and can
F/gure 2.8. 8 /57 /n separate fesf

sess/ons ; need /or 8//_80 reg/sfers therefore be tested concurrently. A moie

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 2 8

complicated situation is depicted in Figure 2.8. CI and C2 refer to segments of a large

CUT, communicating with functional registers Rl, R2 and R3 as shown. Clearly, R1 can

be configured as a TPG for CI, while R3 can be an MISR for C2. R2 can be either a TPG

for C2 or an MISR for CI. In either case, an additional LFSR needs to be introduced, to

act as an MISR for CI or a TPG for C2 respectively. Alternatively, it would be desirable

to transform R2 into an architecture that would be able to provide TPG one/ MISR

functionality, so that no additional LFSR would be needed. A

vofzoM register provides such dual functionality. A BILBO structure is given in

[1] and not repeated here; for the purposes of the present work, it is enough to mention

that a BILBO is an LFSR-based structure that can function as either a normal register, a

shift register (§2.1.1), an LFSR-based TPG, or an LFSR-based MISR, depending on the

values of two control inputs.

2.2 On-line testing

In this section, the state-of-the-art of on-line testing is presented. The discussion is much

more thorough than in the off-line case of §2.1, since on-line testing is essentially the fo-

cus of this work. Generally speaking, on-line testing techniques can be classified into three

main categories, namely :

- self-checking design

- on-line BIST or on-line scan-based DFT

monitoring analogue electronic parameters (such as current)

Self-checking design consists of encoding module outputs using some error detecting code

and then checking some code-specific invariant property (e.g. parity). On-line BIST and

on-line scan-based DFT, on the other hand, attempt to use the concepts and structures of

§2.1, in the on-line context. Usually existing (off-line) BIST or scan constructs are ex-

ploited to perform tests during certain time windows when normal operation is temporarily

suspended, either globally for the whole system (perzo /̂z'c .BZS'Z), or locally (during subsys-

tems' zW/g periods). Monitoring analogue characteristics is useful to detect errors in elec-

trical properties of information signals that either manifest faults that are hard to detect

otherwise, or wiU result in logical faults in the future.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 29

It has to be noted that the above classification is by no means exhaustive. Ih fact, there are

techniques that combine elements of the categories mentioned above. Moreover, there also

exist some unique techniques that do not really faU into any of these categories.

2.2.1 Self-checking design

Functional
Circuit

I
Checker

The basic self-checking design scheme is depicted in Figure 2 .9 [9]. The functional circuit

is such that the output signals it produces are

eMCOt/eof. This can be a natural property of the

considered circuit; otherwise, the system has

to be augmented and redesigned appropriately,

according to the chosen a/zcf /

or (Z D C / A n y circuit

fault that corrupts the output bits, such that the

output word does not belong to the given code,

is detected by the checker. If the output bits

are corrupted, but the output is still a code word, then the fault detection, and it is

said to exceed the of the particular code.

Error

F/gure 2.9. Se/f-c/^eck/ng des/gn.

Before presenting the most important error detecting codes, some fimdamental definitions

are given. These constitute the theoretical foundation of self-checking design, and theo-

retically determine the efGciency of practical self-checking schemes. They first appeared

in [10], and are repeated in practically every modem publication addressing the issue (for

example [11]).

L e t / b e the Boolean function corresponding to a circuit C. Let v^be the set of inputs that C

receives and 7be the set of (encoded) outputs that it produces. Furthermore, let $ be a set

of modelled physical faults and p a fault in The function of C in the presence of fault (P

is denoted b y %) , while the fault-free function is denoted b y 0) .

2. / : A circuit is with respect to $ if and only if :

In other words, the circuit is self-testing, if for every fault in the specified set, there is at

least one functional input that produces a non-code output.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 3 0

2.2: A circuit i s w i t h respect to $ if and only if V^E (p :

y p c , y or/i^,%)

In fault-secure circuits, an output in the presence of a single fault is either correct, or a

non-code word. That is, it cannot be an incorrect code word.

2. j : A circuit is (TSC) with respect to $ if and only if it is

both self-testing and fault-secure with respect to (P.

The totally self-checking property is the usual goal when designing the functional circuit.

It guarantees that erroneous outputs produced by faults will not be mistaken for correct

ones (fault-secure), and that all modelled faults are detectable b y the given set of input

vectors (self-testing). The fault-secure property is relevant to the structure of the circuit,

while the self-testing one is concerned both with the structure and with the set of inputs

the circuit receives, and whether or not they are enough to detect all faults in the particular

structural reahsation of the circuit.

2.̂ :̂ A circuit is called if and only if V x e ^ : /(Cc.Ojeyand V.x;g%:

y.

That is, in the fault-free case, a code-disjoint circuit maps code inputs to code outputs and

non-code inputs to non-code outputs.

2. J: A circuit is called a (oW/y if and only if it is both

totally self-checking and code-disjoint.

In the case of a checker, a produced code word output corresponds to the fault-&ee indica-

tion, while a non-code word output is the error indication. Thus, a totally self-checking

checker produces code or non-code outputs according to its inputs (fiinctional circuit out-

puts) in a fault-free case, while under the presence of a fault it produces either the correct

code output or a non-code output. In addition, there is at least one code input that leads to

a non-code output under the presence of a fault.

Allied to the above definitions is the following hypothesis [12, 13] :

2.7: Faults occur one at a time, and the time distance between the occurrences

of two consecutive faults is long enough for all the input code words to be ap-

plied to the circuit.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 3 1

It is important to differentiate between the code words, and a// code

words. The available code words are all the input code words applied during normal op-

eration, i.e. the members of set jTas defined above. However, there can be vectors that are

code words, in the sense that they satisfy the characteristic invariant property of the EDC

at hand, but do not appear at the circuit input ports during normal operation. In this case,

the set of inputs is said to be In the rest of this work, Hypothesis 2.1 will be

assumed, unless explicitly stated otherwise.

In practice, when designing checkers, it is clearly desirable that they be totally self-

checking with respect to the targeted set of faults. In principle, the three properties that the

checker must possess are considered separately, in each given situation. A general com-

ment that can be made at this point though, is that the fault-secure condition cannot be ful-

filled by a checker whose output is a single bit. Indeed, if xe (0,1} is the fault-firee indica-

tion value of such a checker, and Z the single-bit output, then for the fault {cp : Z stuck-at-

x}, any erroneous (i.e. MOM-coc/g word) checker input wiU produce the codis single-bit

word X [9]. For this purpose, double-output fault-secure checkers are typically used, where

by convention the complementary values {01,10} correspond to the fault firee operation,

while any of the remaining {00,11} values indicates the presence of a fault.

Further, the code-disjoint property may not always be achievable (an example is consid-

ered in chapter 6). In such cases, the checker must be at least designed to achieve the self-

testing goal with as few code words as possible, and it must receive as many code inputs

as possible. Still, if the code inputs provided are not enough for the self-testing condition

to be satisfied, the last resort is checker design [9]. In such a configuration,

the checker is armed with an internal TPG (§2.1.2) that provides the necessary code

words. These designs tend to be expensive in hardware overhead; therefore, it can some-

times be tempting to trade-off strict coherence with self-checking design theory for a more

hardware-efficient solution, also depending on the size and nature of the design and an

analysis of the realistic possibilities of a failure. An example of such a situation is shown

in chapter 5.

The most important EDCs and relevant self-checking design considerations are presented

in the following subsections §2.2.1.1 - §2.2.1.7. Before that, tvyo classes of EDCs are de-

fined here [1, 9].

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 3 2

2.1 :̂ Given two n-bit words %:=;cM_/Xn_2...X/a;o and}':=yn-y}'/,-2. ^ coverj')/, IF

and only if Vz, : if_yy=l =>:ci=l.

For example, if;c=10111,y=10100, then % covers}:, because % has a ' T ' in every bit posi-

tion that)/has a "1".

2.7: An EDC is wMorc/erê y, if and only if there are no two different code words

% and};, such that ;c covers

Obviously, the above z=10111 and_y=10100 words cannot be code words of the same un-

ordered code.

2.(9: In a EDC, each bit in a given code word is either an

6zY, or a c/zec/: If the characteristic invariant property of the code is embedded within a

code word, so that such a classification is not possible, then the EDC is a

code.

Typically, when a separable code is used, the functional circuit (Figure 2.9) is partitioned

into two parts, both fed by the functional input. These are the/wMcr/oMaZ part, producing

the normal functional output, and the coc/e part, independently producing a

number of additional bits, ensuring adherence to a code-specific invariant property. By

contrast, when a nonseparable code is used, no such partitioning can be conceived. Rather,

the produced fiinctional output adheres to the code-specific property by nature or by de-

sign.

The theory and definitions of this section are further demonstrated and clarified in the sub-

sequent §2.2.1.1 - §2.2.1.7 through specific examples.

2.2.1.1 Parity codes

When a code is used, a single check bit is added to the information bits, and it is

calculated such that the parity of each code word is constant (odd or even). Parity codes

can detect all single or odd multiplicity errors. They are the cheapest possible EDCs, since

the check bit is only one and parity checkers are relatively simple [9, 14].

The parity bit of a parity-encoded word is clearly separable firom the information bits;

therefore, parity codes are separable codes, and normal combinational circuits need to be

augmented by a part, in order to implement a parity self-checking

scheme. In the case of an arithmetic functional block, the parity bit can be calculated as

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 33

Figure 2.10. Fault-secure full-adder cell
with a redundant carry used for parity prediction

the XOR function of the

input operands, and of

the internal "carry" sig-

nal bits of the sub-

blocks that constitute the

overall circuit [15].

However, in order for

the fault-secure property

to be achieved and

maintained, it is essen-

tial that internal bit

faults affect an otfc/

number of primary out-

put bits. Nicolaidis et al. [15, 16] considered this problem for ripple-cany adders, and for a

collection of multipher and divider structures and proved that faul t security is in danger if

the functional internal "carry" bits are used for parity prediction. They further came up

with the fuU-adder logic cell with a redundant carry of Figure 2.10 [15], and used it as the

basic buHding block for their designs. A, B and Cin in the figure, are the usual addition in-

puts and input carry, whUe S, C and Cp are the sum, the output carry and a redundant carry

respectively. In a complex multi-bit arithmetic circuit, the redundant carries of internal full

adders and the parity bits of input operands are all XORed together; the result of this XOR

operation is the predicted parity bit of the circuit output. The authors of [15] analytically

prove tliat this way any single fault in any internal fuU adder cell may corrupt either noMg,

a j'ZMg/e or an of the circuit out-

puts. Therefore, under the presence of a fault

the circuit either produces the correct output,

or reverses its parity, hence producing a non-

code output. Fault-security is thus achieved.

stuck-at-0

F/gure 2. f f 5 - 6 / Y odd panYy
c/^ec/cer

Parity checkers are easily designed as "parity

trees" composed of 2-input XOR gates. As

stated in [9], splitting the code word in two

groups and using two separate parity tiees re-

sults in a two-output fault secure parity

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 3 4

checker. An example 5-bit odd parity checker is shown in Figure 2.11, fed by the 5-bit

odd-parity encoded input word ABCDE, and consisting of two parity trees, composed of

two (labelled 1,2) and one (labelled 3) XOR gate(s) respectively.

The simple example of Figure 2.11 is used here to clarify the importance of the self-testing

property of §2.2.1. Let us fiist assume that under fault Gree operation, the circuit input

word ABCDE can only take one of the three values in the following setj^{01110,01000,

00111}. As explained in §2.1.1, a value in the set y={01,10} signifies correct operation; in

the terminology of §2.1.1, 7 is the set of code word outputs. Clearly the input words are all

odd-parity encoded, and it can easily be confirmed that all three of them produce code

word outputs. However, the checker receives only a small subset of aU possible 5-bit odd-

parity code words. It is not totally self-checking with respect to the set (Z) of all stuck-at

faults at its constituent gates, since it does not satisfy the self-testing property when fed by

these three inputs only. This can easily be confirmed, since for the fault p shown in Figure

2.11 representing an input of gate 1 to be stuck-at-0, there is no code word e %that pro-

duces a non-code word. (9 is therefore undetectable by the particular set of functional in-

puts, and this potentially hinders the detecting capabilities of the checker. The significance

of this can be appreciated if one takes into account that the input word ABCDE is nor-

mally the encoded output of a functional circuit, according to Figure 2.9. If the checker

has already been hit by fault p, and at a future point of time an additional fault in the func-

tional circuit causes, for example, the non-code word ABCDE=11110 to appear in the

checker input, it is easy to verify that the checker response will be the code word output

01, meaning that the fimctional circuit fault escapes detection.

From the above example, it is clear that the self-testing property for a checker is not a

property of the checker alone; rather it is a property of the checker in the context of the

overall system it is part of, since it is the system that provides the code words. Further-

more, it is a property that is strongly related to the actual internal structuie of the checker

(in this case, the particular arrangement of the 2-input XOR gates), since the set of mod-

elled faults $ is defined with respect to the structure [17]. Therefore, two behaviourally

equivalent (in the fault-&ee case) parity checkers in the same context, receiving the same

code words may not be both self-testing. Two converse problems can be formulated in this

context:

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 3 5

« given a parity checker of known structure, it is desirable to identify the minimum

number of code word inputs that ensure the self-testing property.

* given a set of parity code word inputs, it is desirable to determine whether or not they

can ensure the self-testing property, for some checker stmcture(s), and, having secured

that, to design the corresponding optimally-structured checker.

Regarding the first problem, all XOR gates in the checker should receive all four possible

input combinations 00, 01, 10, 11 [18]. This guarantees that the checker will be self-

testing, regardless of the actual XOR gate implementation. Khakbaz and McCluskey [17]

propose a way to identify a set of code words ensuring this property. They show that it is

enough for the two XOR gates that produce the final checker outputs (e.g. gates 1 and 3 in

Figure 2.11) to receive these four combinations. These values can be traced back to the

checker primary inputs, and thus determine the required code words. For the checker of

Figure 2.11, it can easily be verified that (11100, 00010, 10101, 01011} is such a set, and

it can also be seen that the remaining XOR gate 2 also receives all possible inputs. Inter-

estingly, this limits the number of necessary code words to for every given

checker structure, of bit-width.

As far as the second issue is concerned, the following two lemmas apply (taken from [17,

18], where proofs can also be found) :

ZgyMfMo 2.7: Any M-bit parity checker reahsation that receives more than 75% of its possi-

ble codeword inputs is self-testing.

Zemma 2.2: Consider a 4xM Boolean matrix M, whose rows constitute a test set for an «-

bit even (odd) parity checker realised with 2-iaput XOR gates only. Then M has distinct

rows, all rows have even (odd) parity, and each column has exactly two Os and two Is.

In the light of these two lemmas, it can now be stated that, given a set of n-bit parity code

word inputs, and taking into account that the total number of such possible code words is

2""', if the number of code inputs is large enough (more than 3x2"'"), then any 2-input

XOR gate realisation of the checker is a self-testing one. Otherwise, if four code words

can be found within the given set that satisfy the conditions of Lemma 2.2, then there ex-

ists ar /ecTAf one 2-iaput XOR gate realisation of a parity checker that is self-testing. Ana-

lytical algorithms to design such checkers, and to optimise them for speed (by minimising

p. O i k o n o m a k o s , 2 0 0 4 Chapter 2: A n O v e r v i e w o f Electronic T e s t i n g 36

the number of logic gate levels within the checker), can be found in [17, 18], but exceed

the purposes of this presentation.

There can be situations when the input set is so incomplete that neither the conditions of

Lemma 2.1 nor those of Lemma 2.2 can be satisfied by the available code words. As men-

tioned in §2.2.1, self-exercising checker design provides a theoretically robust solution for

Xi Xz Xn

V
D Q

C K

Qi t
^ @ 1 ^

Cn-1

D U

C K

Q,

Ci

D U

C K

Qn

C o n v e n t i o n a l Par i t y C h e c k e r

F / g u r e 2. ^2. e m b e d d e d 7 S C pan ' f y c/?ec/(er e r r o r m e m o n z / ' n g capab ; / / f y

this problem. The jgarzYy cAecAer wzYA copaAzVzYy of Fig-

ure 2.12 was presented in [12, 19, 20] for this purpose. In the figure, X]...Xn is the even-

parity encoded checker input. The conventional even parity checker is supplemented by an

LFSR structure (similar to the MISR of Figure 2.7). As usual in LFSR designs, it is

CjE {0,1}, l<i<n, and c; signify the presence or absence of feedback at the particular point.

The design is based on the observation that the even parity code is a //Mear code, that is

when two even-parity encoded words are added modulo-2 (XORed), the parity of the re-

sulting word is still even. Therefore, if the LFSR is designed so as to provide aU even par-

ity words, then the set of code words that the conventional checker receives is greatly en-

hanced. The technique apphes equally to odd-parity encoding, by simply inverting an arbi-

trary bit of the input word. The problem of designing a proper LFSR (choosing suitable C;

values) is addressed by the following theory [12, 19, 20].

29 : An EDC is called cycZzc if, for every given code word, a "rotate" (cyclic

shift) operation always results in another code word.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 3 7

Obsei-ve that both even and odd parity codes are cyclic. For example, if the word

10001111 (which is an odd-parity 8-bit code word) is rotated lef t once, the resulting word

00011111 is still odd-parity encoded.

2.70: Given an n-bit code word c=coc,...Cn_i, the polynomial

C(X)=C0X"'' +C] x"'-+... +Cn.2X+Cn. t (2.1)

is caUed the

2.77: Given an n-bit cychc code and a polynomial g(x) of degree n-k, g(x) is a

ggMgrafor of the code, if all code polynomials corresponding to aU code words

are divisible by g(x). The code is then particularly caUed an (n, A;) cyclic code.

It can be shown [12, 19, 20] that g(x)=x+l is a generator polynomial of the even parity

code irrespective of the bit width, thus making it an (n,l) cyclic code.

TTzeorefM 2.7: Let g(x) be a generator polynomial of an (n,k) cyclic code, and d(x) a primi-

tive polynomial of degree k. Then the LFSR with the characteristic polynomial

p(x)=g(x)d(x) generates all code words of the cyclic code, except for the all-zeros pattern.

Theorem 2.1 was initially introduced and proved by Hsiao et al [21].

It is now clear how the LFSR in Figure 2.12 can be designed. One simply needs to choose

a piimitive polynomial of degree n-1 and multiply it by the generator polynomial (x+1), to

obtain the characteristic polynomial of an LFSR that produces all even parity code words,

when seeded with any non-zero even parity encoded word. Tamick has shown [12, 19, 20]

that in order for the overall checker of Figure 2.12 to be totally self-checking, the func-

tional circuit only needs to provide fwo different non-zero code words. The disadvantage

of this technique is the hardware penalty that the introduction of the LFSR imposes, but it

is the only available solution if normal operation provides only very few code words, and

if strict adherence to self-checking theory is desirable.

An interesting application of parity error detecting codes is self-checking state machines.

Zeng et al. [22] propose a state encoding and parity prediction technique to check the pre-

sent state and primary output signals of state machines. The present state signals are

checked using a single parity bit. The primary outputs either have a parity bit computed

and attached to them, or are partitioned into groups, with a parity prediction scheme ap-

plied to each one of the groups. Hardware savings are achieved in the latter case, by allow-

ing logic sharing between different groups. Lakshminarayana et al [23] mention parity

prediction as a means to design self-checking controllers of controller / datapath designs.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 3 8

but do not elaborate on their technique with respect to self-checking theory. This issue is

revisited in chapter 6, with a theoretical evaluation, practical considerations, specific im-

plementation examples, and the particular contribution of this thesis.

2.2.1.2 m-out-of-n codes

An code word has exactly m i s out of n total bits, m-out-of-n (also signified by

m/)?) codes are an example of unordered and nonseparable codes. They detect aU single

and multiple errors (that is, errors resulting in corrupted signals where all

erroneous bits have the .ramg value, either D or D). The fault-secure property using unor-

dered codes in general, and nVn codes in particular can be achieved for a hmited number

of functions, and it is practically considered only when the function outputs are already

encoded using such a code, by nature. Some attempts to design fault-secure arithmetic

units using unordered codes have been reported, but they are not widely adopted, since

they are much more expensive to implement than parity prediction schemes [15].

It can easily be verified that an m/n code has exactly = «!//»!(« - cqje words. For

any given n, this value is maximum for m=[n/2] [10]. Therefore, [n/2]-out-of-n codes, of-

ten considered for n=2k and referred to as k-out-of-2k, are of particular interest, since they

have the maximum (in code words) of all other m-out-of-n codes. 1-out-of^n (1/n,

also referred to as 7-Aof) codes are another special case of particular interest. They have

the minimum code word capacity (only n words), but they 6equently appear in computer

systems by nature, e.g. in memory address "select" lines.

A lot of work has been presented in the direction of designing totally self-checking check-

ers for k/2k, 1-hot, as well as generic m/n codes. Historically, the first attempt was re-

ported in [10], also mentioned in [2]. Anderson and Metze [10] used T M o / ' o r z Y y f o r

this purpose.

2.72: Consider the Mg-bit signal 4̂, and let tg be the number of bits of that take

the 1 value at a given point of time. Let z be an integer value. The zM^̂ 'orzfŷ uMĈ zoM

is defined as follows :

(2.2a)

%>z)=0 , if ^,<z (2.2b)

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Test ing 39

A circwzY is a circuit implementing a majority function, and is typically

realised in a 2-level AND-OR form, by using all possible z'-bit combinations of all bits

ofy4 as inputs to respective AND gates, and ORing the AND gate outputs.

In [10], the realisation of TSC k/2k checkers is described, through either sum-of-products

or product-of-sums combinations of the outputs of suitable majority detection circuits. The

k/2k encoded signal that feeds the checker is partitioned into two signals A and B of bit

widths % and % respectively, where na=nb=k. Let ka and ky b e the number of Is in each

signal. Then the logic functions F and G that produce the primary outputs of the checker

are described (for example in sum-of-products form) by the following equations :

F= ^ I(ka>z) X r(kb>k-0, / odd

G= ^ 7(ka>/) X r(kb>k-/), ; even

(2.3a)

(2.3b)

Functions reahsing checkers for generic m/n codes are also provided, but it is shown that

the designs are TSC in the k/2k case only. However, TSC m/n checkers can be imple-

mented based on the k/2k ones, if the scheme of Figure 2.13 is applied. In this scheme, the

generic m/n code is first decoded into an (1-hot) code (using a simple conventional

decoder composed of AND gates only), and then a suitable totally self-checking code

translator is used, to formulate a k/2k code, where k is selected such that ^ -

The code translator is shown in [10, 2] to be easily implementable using a single level of

OR gates only. It is to be noted that this modular technique is not proved to be apphcable

for every given m/n code; in fact, some problematic codes for which the TSC goal is not

achieved are already admitted in [10].

m/n

LU <c
Q _ j
O w
o z

F/gure 2. f3. m/h c/]ec/(erby/\nde/'son and Mefze

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 40

dual

1

k

k+l-

2I<

Na
=i t r
< LU
Of

Na
=i t r
< LU
Of

Na
=i t r
< LU
Of

=i t r
< LU
Of

Nb

=i t r
< LU
Of

Nb

=i t r
< LU
Of

Nb

=i t r
< LU
Of

A'gure 2.M. A/2/c cAec/cer Ay Pasc/7a//s ef a/

This early work, however in-

complete, clearly showed the

importance of k/2k and 1-hot

checkers, not only for the pur-

pose of checking corresponding

codes , but also in order to be

used as building blocks for ge-

neric m/n checkers. Paschalis et

al [24] presented an alternative

modular design for a TSC k/2k checker, shown in Figure 2.14. The input signal is once

again divided into two signals of equal widths; this time, however, subcircuits Na and Ny

are used instead of majority functions. These subcircuits produce m-bit wide outputs,

where m= [logA: -Hi], that correspond to the binary representation of the number of 1 s in

their inputs, augmented by suitably calculated constants, so as to be complementary.

These complementary signals are subsequently checked by an m-bit cAecAer.

Dual-rail checkers are covered together with the dual-rail code in §2.2.2.2; for the time

being, it is enough to mention that such a checker provides the fault-free indication if its

input vectors are complementary, and signals an error otherwise. Further, the implementa-

tion of Na and Ny, and the proper calculation of the mentioned constants, are discussed in

detail in [24]; interestingly, the subcircuits are composed of full-adder and half-adder cells

only. Tables comparing the implementations of [24] to these of [10] are also available in

[24]; from them, it is obvious that the most efficient implementation strongly relies on the

value of k. In principle, however, the adder-based approach becomes more and more

hardware-efficient as k grows [25]. The work of [24] is further continued in [26], [27] and

[25], where it is shown that the same or a similar technique can be used to design some

(but still a//) m/n checkers with n:^2m, and sufficient conditions that m and n have to

satisfy in order for this to be possible are derived. In principle, m always needs to be

within a narrow range around n/2, in order for the checker design to be TSC.

The above presented works cover the issue (and reveal the limitations) of m/n checkers

using logic gates as building blocks. Kavousianos et al [28] investigate the design of m/n

checkers based on CMOS transistors. They ultimately propose the design shown in Figure

2.15. This design consists of two almost identical /M/m+7

czV'cwzfj' Lo and Li, producing the checker primary output 2-bit word QoQ]. Each one of

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 41

these subcircuits comprises a pull-up part of two PMOS transistors pm^ and pmm+i, and a

pull-down part of n NMOS transistors, mni-nmn. X=Xi-Xn is the checker input, while I is

a control input signal. [28] shows that for suitable values of transistor sizes (given as func-

tions of m), and for 1=0, the pull-down part of Li drives Qi to a "strong 0", that prevails

over the 1 that the pull-up part attempts to drive Q, to, if the number of Is in X is

greater than m. Due to the inverter, pm n̂+i has no effect in Lo, and Qo is driven to 0 only if

the number of Is in X is greater than or ggwaZ /o m. Qi and Qo are therefore complemen-

tary OM/y if the number of Is in X is eucacr/y equal to m, thus providing the fault-free indi-

cation. The operation can be analysed similarly and similar conclusions can be drawn

when 1=1. The authors further prove the TSC property of their checker, which is notably

utilisable for arbitrary practical values of n and m, but has the limitation that it is totally

technology-specific, therefore unsuitable when a high-level of abstraction design flow is

adopted, or when independence of technology is desired.

I—o||pnim+i

GND

V, dd

GND

pm, 1+1

Xi X2

—|rnm2

-GND

Xn

Ll

HI nmn

Qi

F/gure 2. f5. CMOS m/r? c/?ecker by Kavous/anos ef a/

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 42

Let us now focus exclusively on the design of TSC checkers for 1-hot codes. Such check-

ers can be used as building blocks for the design of generic m/n checkers (according to

Figure 2.13). Further, as already mentioned, 1-hot codes often appear naturally in com-

puter systems, and are therefore of particular importance.

rai

< LU

§5

< UJ

F/gure 2.^6. f/h c/7ec/(erbyK/)a/(baz

A couple of choices for 1-hot code checkers have already been covered in this section.

Firstly, Anderson and Metze's

"l/n dual scheme (Figure 2.13, [10]) suggests

that a code translator followed by a

k/2k checker, implemented in any of

the ways proposed in [10, 2, 24, 26,

27, 25] and mentioned here earlier,

can serve this purpose. Secondly,

the n/m CMOS checker of [28] is

also utilisable for n=l. A third alter-

native is presented in [29] by Khak-

baz, covered in [2] by Lala, and depicted here in Figure 2,16. The n-bit wide 1-hot code is

first translated to a dual-rail code, consisting of p=[log2 pairs of complementary bits.

Subsequently a dual-rail checker (§2.2.2.2) produces the fault-detection or fault-free indi-

cation. The code translator is systematically implemented as follows :

« Let xi-x„ be the 1-hot encoded inputs to the checker. Further, let (J,,Ki)-(Jp,Kp) be the

p pairs of complementary code translator outputs.

» Consider the p-bit binary representation of all integers between 1 and n (inclusive).

The translator output pairs are produced by NOR gates, where input xi is connected to the

gate producing output Jj, if the binary representation of integer i has a "1" in bit position

(p-j). Conversely, input Xj is connected to the gate producing output Kj, if the binary repre-

sentation of integer i has a "0" in bit position (p-j). If l(k) denotes the k-position bit of the

binary representation of integer i, the above idea can be formulated as in the following

equations :

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 43

X1 X2 X3 X4 X5 Xe X7 Xg

Figure 2.17. 1/8 to 3-pair dual-rail code translator

Jy = , for all i : / (p - y) - 1 (2.4a)

, for all i : - j) = 0 (2.4b)

The translator construction process is further clarified through the illustrative simple ex-

ample of Figure 2.17, taken from [2]. The example deals with the translation of a 1/8 code

into a (["logo S]) 3-pair dual raU code. Vertical lines represent the x, inputs, while horizon-

tal lines signify the NOR gate inputs. A bubble where a vertical line meets a horizontal

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 44

one signifies a physical connection, i.e. the input corresponding to the vertical line is an

input to the gate corresponding to the horizontal hne. For example :

Jg = (Z; + + %; +) (2.5)

Figure 2.17 is an elegant visuahsation of equations (2.4a) and (2.4b). Indeed, consider e.g.

input X]. It is 3<io>=011<2>, so there are Is in bit positions "0" and "1". According to the

above rule, this means that X3 will be an input to gates producing J3 and J2, and the corre-

sponding connections can be observed in the figure. There is a 0 only in bit position "2",

so X3 contributes to Ki and again the cormection appears in the figure.

In [29], Khakbaz further proves the TSC property for his design of Figure 2.16. This is

achieved automatically if the bit width of the 1-hot code is a power of 2, since in this case

the dual-rail checker of Figure 2.16 receives all possible code words. Otherwise, an im-

plementation of the p-pair dual-rail checker using a combination of two 2-pair dual-rail

2-PAIR
DUAL-RAIL
CHECKER

2-PAIR
DUAL-RAIL
CHECKER

(P-2)-PAIR DUAL-RAIL CHECKER

F/gure 2.78. fSC dua/-ra// c/^ec/cer/br des/'gn ofF/gure 2. f6, n<>2'', n<>3

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 4 5

checkers and a (p-2)-pair dual-rail checker is proposed. This implementation is depicted in

Figure 2.18 and achieves the TSC goal for any 1/n checker wi th n>3. (J,K)i pairs in the

figure correspond to the outputs of the translator of Figure 2.17. When the code bit-width

is not a power of 2 the dual-rail code is incomplete, and therefore the TSC property for the

overall checker is not guaranteed by nature; it is, however, achieved by construction, since

as shown in [29] all three constituent checkers of Figure 2.18 separately receive all possi-

ble code words during normal operation.

Khakbaz's 1-hot checker design was initially developed to target Programmable Logic Ar-

ray (PLA) implementations. It is, however, based on elementary logic functions; it can,

therefore, be realised in any technology. It is extensively used in this work (chapter 6) for

alternative technologies, and that is why particular emphasis has been given to it here.

As the 1-hot bit width grows, equations (2.4) can become significantly long. Depending on

the design flow and target technology, that can have serious impacts on the performance

of the checker. Tao et al [30] propose yet another choice for the 1-hot checker. They re-

visit the classical approach of Figure 2.13 (l/n-to-k/2k code translator, followed by a k/2k

checker), and propose NOR gate-based design solutions both for the translator and for the

checker. Once more, the implementation targets a PLA device, but it can be utHised for

other technologies. This technique is reported to expehence minimum gate delay; it does

not, however, yield totally self-checking solutions for all n. Unfortunately, some practi-

cally important values of n are among those not served by it (e.g. 7, 9, 11). Depending on

the apphcation at hand, this can be a prohibitive drawback.

Curiously, none of the techniques presented so far can be used to construct a TSC 1-out-

of-3 checker. The most generic of them [29], is utilisable for all values of n, n=3.

The reason for this, is that the code translator (Figures 2.16, 2.17) in the 1/3 case, produces

an incomplete dual-rail code (3 dual-rail code words, 1 missing), which is not enough to

guarantee the TSC property for the subsequent dual-rail checker. In fact, it has been

proved mathematically that no stand-alone TSC 1/3 checker composed of logic gates can

be constructed [14]. This prompted the research community to look for alternative solu-

tions. One such solution [31] considers the 1/3 code in the context of a full-scale self-

checking system; it assumes that at least one totally self-checking checker (of any arbitrary

code) exists in the system, and combines it with the output of the translator of Figure 2.17,

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 46

as shown in Figure 2.19. As the Sgure shows, the 2-pair output of the code translator is

broken in two. The first pair is combined with the (2-bit, §2.2.1) output of the arbitrary

code checker through a 2-pair dual-rail checker. The output of this checker is further com-

bined with the second pair tlirough another dual-rail checker, to give the overall error or

error-free indication. Both 2-pair dual-rail checkers now receive all possible 4 input code

words, so the overall scheme is totally self-checking.

2-PAIR
DUAL-RAIL
CHECKER

2-PAIR
DUAL-RAIL
CHECKER

ARBITRARY CODE
TSC CHECKER

(INCOIVIPLETE)
1/3-TO-DUAL RAIL

CODE TRANSLATOR

F/'gure 2.V9. /4 V/3 code frans/afor
comb/ned w/f/) an a/Tb/frafy TSC c/vec/cer

Another family of techniques look for transistor-level TSC implementations for the prob-

lematic 1/3 code checker. Lo and Thanawastien [32] propose a very compact checker,

consisting of 11 NMOS transistors only. The design is only self-checking (that is,

totally self-checking for only a subset of the faults of interest). Metra et al [33] present a

generic 1/n TSC checker, utilisable for the 1/3 case, and, like [28], based on threshold cir-

cuits (Figure 2.15). Of course, the m/n checker of [28] can in itself be used in the 1/n case,

including 1/3.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 47

As a final note on the in/n checker issue, Figure 2.20 shows an "out of the mainstream"

sequential configuration that can provide checker functionality for m/n codes. It is based

X

D F-F

carry
in

n-BIT
RIPPLE-CARRY

ADDER

n-BIT RE IGISTER

D F-F

carry
out

2.20. Pmgrammab/e embedded
se/f-fesf/ng cAec/fer for an m/h code

C
0

1
c

2
111

on the combination of an n-bit ripple-carry adder with an n-bit register, with the register

output being fed to one of the adder inputs. Such a configuration is often referred to as an

accwTMw/afor. The m/n encoded signal X is fed to the other input. Two D flip-flops are also

used, connected to the adder carry-in and carry-out ports as the figure depicts. The error

indication is produced at the carry-out end of the adder as shown. Stroele and Tamick pro-

pose this design in [34], and provide an analytical proof and explanation of its fault detec-

tion capabilities, and a description of its properties, hiterestingly, the same n-bit design

can be used for any given m/n code, provided that the register is initialised with a code

word belonging to the code at hand. This property makes it Its main ad-

vantage is that it is self-testing by construction as proved in [34]. On the other hand, it

sometimes experiences error latency of a few clock cycles (i.e. errors are sometimes de-

tected a few clock cycles after they occur). It is, therefore, not code-disjoint in the strict

sense of the term. Unfortunately, error latency increases as the value of n increases; its

usefulness is thus restricted to rather low bit-widths. It is also repoited [34] that faults can

totally escape detection, albeit with a low probability.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 48

The extensive discussion of this section reflects the variety of choices available for

checker designs for m/n codes, including the special cases of k/2k, 1/n, and even dedicated

pieces of work to address the 1/3 case. Chapter 6 of this thesis provides a critical evalua-

tion of these choices in the context of this present work, and describes the associated im-

plementation and experimental results. As a final remark, further more options for n/m

checkers have notably been presented, most of them historical and / or out of the scope of

this thesis. These are further covered in [2] and [9].

2.2.1.3 Berger codes

An n-bit word encoded according to a Berger code scheme consists of a k-bit information

part I and an r-bit check part Ic, the latter being the binary representation of the number of

Is in the information part (clearly n=k4-r). Variations exist, wherein Ic is either the I 's

complement of the number of Is in I, or the number of Os in I. Without loss of generality

these variations are ignored in this discussion. In any case, a Berger code is a separable as

well as an unordered code [9]. As already mentioned in §2.2.1.2, it is not always possible

to achieve the fault-secure property using unordered codes; Berger codes are no exception

to this rule.

k CHECK-BIT
GENERATOR/
1's COUNTER

r

1

CHECK-BIT
GENERATOR/
1's COUNTER / ^ d a:

< LU p,
o: hd

' /

Ic /

A generic implementation

of a Berger code checker

is shown in Figure 2.21.

As is clear 6om the figure,

the information part is fed

to a check-bit generator,

F/gure 2.2f. genera/ Berger code c/^ec/cer effectively reproduces

the check part - or typically the complement of the check part, so that a dual-rail checker

can subsequently be applied to produce the erroneous or error-firee indication. In practice,

the check-bit generator is a Is counter with inverted outputs, composed of fiiD- and half-

adder cells only. Issues related to the totally self-checking goal arise here as well, resulting

in modified versions of the general scheme of Figure 2.21, often Involving suitable con-

stants added both to the output of the check-bit generator and to the check part (analogous

to the k/2k checker design of Figure 2.14), or using potentially existing checker outputs (in

line with the scheme of Figure 2.19). A recent account of such approaches can be found in

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 4 9

[35], but will not concern this thesis any further. It can also be noted that accumulator-

based designs (similar to that of Figure 2.20) have been configured in [34] for Berger

codes.

2.2.1.4 Codes based on Hamming distance

The of any two n-bit words is the number of bits in which they differ.

The Hamming distance concept has been used for error detecting and correcting purposes.

In particular, if a code is defined such that any two code words have a Hamming

distance of then it can be shown that this code has the capability to detect cf-1 errors,

and to correct|_(i^ - l) / 2 j errors [1]. Note that both even and odd parity codes (§2.2.1.1)

are special cases of such codes, with (f=2, therefore 1-error detecting and 0-error correct-

ing capabihty.

When c/=3, the widely used, single-error-correcting / double-error-detecting code, often

simply called the (conventional) Hamming code can be defined analytically as follows [1].

If there are ^ information bits, c check bits are needed, where 2'^^-l-c-t-l. The resulting

word consists of (g+c) bits and can be represented as byfc-. .bzbi. Bits bi', 0 < i ^ - l are the

check bits. Let n be an integer and bj(n) the value of the j-th bit of n (represented in bi-

nary). Let pj={(integer) I / bj(l)=l}, that is pj is the set of integers whose binary representa-

tion has a 1 in position j. Then consider the following c parity-check equations

^ 6 ^ = 0 , F l , . . . , c (2.6)

where the summation is modulo 2 (effectively XOR). From these equations, check bits can

be determined. For example, consider 4 information bits. It should be c=3. Then equations

(2.6) become

6, @ @ 6; @ 6̂ = 0 (2.7a)

6 2 0 6 3 0 6 (8 6 , = 0 (2.7b)

6 , @ 6 ; e 6 g e 6 , = 0 (2.7c)

enabling the calculation of tbe check bits 6/, 62 and 6/̂ from the information bits 63, 6j, 6^

and 67. This example conveniently demonstrates how error correction works. Indeed, con-

sider a single erroneous bit, e.g. 6 .̂ Equations (2.7b) and (2.7c) will now necessarily yield

logic Is. Observe that the outputs of equations (2.7), from (2.7c) to (2.7a), now form the

p. Oikonomakos, 2004 Chapter 2: A n Overview of Electronic Testing 50

corrected
ou tpu t

e n c o d e r

Func t iona l

Circuit

Check bit
pred ic to r

Checl(er Cor rec to r

Er ror

F /gure 2 . 2 2 v4pp / /caf;on o f a n e / m r c o m s c f / n g c o d e .

binary number 110, which corresponds to the decimal number 6, which is the subscript of

the erroneous bit &&. The block diagram of Figure 2.22 shows how error correction is real-

ised. The encoder block effectively realises equations (2.7) and produces the input check

bits, while the functional circuit is supplemented by an output check bit predictor block,

similar to the parity prediction schemes discussed in §2.2.1.1. The checker effectively

again just implements equations (2.7), while the corrector interprets the checker informa-

tion to determine and invert the faulty bit. The checker also produces an error indication.

The only complicated block in the figure is the check bit predictor, which is realisable

only when the check bits of the functional result can be calculated &om the check bits of

the function operands. This is not always achievable; in practice, the code is particularly

useful when the "fimctional circuit" is a system bus or a memory array.

In [36], the Hamming code is used to check a memory (SRAM) block. When a write op-

eration is performed, check bits are also computed and stored together with usefiil data.

When a read operation is performed, the stored word is first checked and then the informa-

tion part is isolated and used. The overall testing scheme is further armed with BIST re-

sources (§2.1.2) that test memory cells by performing read and write operations to cells

when they are not accessed for functional purposes.

Another application of Hamming encoding is found in [37]. The next state logic block of a

finite state machine is implemented such that the next state signals are encoded according

to the Hamming single ECC, and the scheme of Figure 2.22 is subsequently applied to

achieve fault tolerance by means of error correction. Interestingly, the whole process has

been coded as a pre-processing step in the synthesis process, therefore producing on-line

testable designs by automatically modifying the VHDL descriptions, and is reported to be

compatible with commercial synthesis tools.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 5 1

As opposed to the conventional Hamming code referring to minimum Hamming distance

between code words, Bolchini et al [38] propose a Hamming distance code, and

use it once more for the purposes of encoding the states of a finite state machine. The con-

stant Hamming distance property is not required of any two random code words, but rather

of two code words that correspond to consecutive states. That is, the encodings of any two

consecutive states differ by a constant distance (/, two non-consecutive states do not

differ by cf, but by a multiple of cf, depending on the number of states that are in between

the two states. It is a scheme that does not strictly conform to the usual self-checking de-

sign paradigm, in that the sequence of code words is relevant to the encoding. The authors

of [38] propose a graph theory-based algorithm to map states to code words, and also use

Berger encoding and checking (§2.2.1.3) for the combinational finite state machine output

function. Moreover, in [39] the same authors introduce a suitable TSC checker to verify

the constant distance between consecutive states. Further details exceed the scope of this

thesis; it has to be noted, however, that in contrast to conventional Hamming code, this

encoding does not provide error correction. Nevertheless, it detects faults resulting not

only in non-code words, but also in incorrect code words, that is, /Mcorrec^ transitions to

/ggaZ states.

The schemes of [38, 37] are efficient for conventional Anite state machines, but do not

give a satisfactory solution to the controller self-checking problem where the datapath in-

cludes storage elements. This issue is revisited and clarified in §6.1.1.

2.2.1.5 Arithmetic codes

The term "arithmetic codes" loosely corresponds to the family of codes whose words pre-

serve the characteristic code invariant property under arithmetic operations. These codes

are typically characterised by their integer A. Let the non-coded word be W. Depend-

ing on how W and A are combined to produce the encoded word, three categories of such

codes are most often reported in the literature [5, 40] :

- codej

They are separable codes. The information part is the word W itself, while the check part

is calculated as (W mod A).

- zMverjg rgjzWwe

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 52

They are separable codes too. Again tbe non-coded word forms the information part, but

this time the check part is [A - (W mod A)].

-

They are non-separable. The code words are the products of non-coded words by the base

A (WxA).

Clearly different choices of the base A lead to different incarnations of the above classes

of codes. As an example. Figure 2.23 shows a self-checking multiplier configuration based

on a base A residue code. Of practical interest are the residue codes with A=2'^-l, typically

referred to as residue codes. In this case, the modulo generators can be imple-

mented relatively cheaply, as trees of carfy acWgfj (i.e., adders whose "carry-

out" signals are connected back to the "carry-in" ports) [5]. The comparator module is im-

plemented based on a dual-rail checker (see §2.2.2).

It is not within the scope of this presentation to give extensive details on arithmetic codes;

an interesting application of such codes can however be found in reference [41]. Its au-

thors show that self-checking schemes similar to Figure 2.23 for large multipliers can be

cheaper than the corresponding parity prediction schemes of [16, 15], presented here in

§2.2.1.1. They further present techniques to choose the most suitable base for various

kinds of multipliers and include these techniques and the resulting multipher designs in a

error

encoded
output

indication

c h e c k e r

m o d A
genera to r

m o d A
genera tor

mod A
genera tor

m o d A

generator

compara to r

F/gure 2.23. muAp/ ;e f se/f-cAecWng sc/?eme b a s e d o n a b a s e A res/due code.

unified CAD tool, which includes the work of [16, 15]. The tool produces HDL descrip-

tions of self-checking data-path modules, which can subsequently be used as building

blocks by standard synthesis tools.

Finally, [40] gives the self-exercising checker design solution for low-cost arithmetic

codes. Just as in the parity code case [12, 19, 20] presented in §2.2.1.1 (Figure 2.12), a

code words generator design (again resembling an LFSR in structure and hardware cost) is

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 53

used to provide additional code words to the conventional arithmetic code checker. Alter-

natively, an accumulator (§2.2.1.2) can be used for code word generation purposes.

2.2.1.6 Sharing on- and off-line testing resources

This subsection focuses on a few approaches that aim at reusing test resources normally

employed for off-line BIST (§2.1.2), to provide on-line self-checking functionality as

well. The motivation behind such combined approaches is that both of the above famihes

of techniques impose significant hardware overheads to the original designs; having both

on a chip can result in prohibitively large cost. Reusing resources in the mentioned manner

is an attempt to keep the cost within acceptable limits.

The first successful attempt in this direction has been [/Mz/zetf (L@Z$'2)

[42]. The self-exercising checker design and the overall UBIST scheme proposed therein,

are shown in Figures 2.24 and 2.25 respectively.

In Figure 2.24, FIs are fimctional circuit inputs received by the checker during normal op-

eration (when the control signal T=0). In contrast, when T=1 (test mode), the checker re-

ceives inputs from the BILBO register (§2.1.2). The code / non-code indicator specifies if

UBILBO

UBIST checker

F/gure 2.24. L/8//.80 and a L/8/STc/vec/(e/-

code /
non-code
indicator

Checker

BILBO

the input word pro-

vided by the BILBO is

a code or a non-code

word. Testing the

checker with non-code

as well as code words

is reported to enhance

its self-exercising ca-

pabilities. In both the

code and the non-code

word case, additional

logic in Figure 2.24

ensures that the

checker outputs fo and

ft will respectively

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 54

provide a fault-free (fo=-f]) or faulty (fo=f,) indication. Dashed lines in the figure define

the [/Mz/zgaf (UBTLBO) block, as the combination of a usual BILBO register with

the code / non-code indicator and a few controlling transistors, and the UEZSTcAecArgr as

the combination of a normal checker with the additional logic shown.

In Figure 2.25, a part of a circuit configured according to an overall UBIST scheme is

shown. Consider the off-line test mode and assume two test sessions, Tl and T2. During

Tl, odd UBILBOs operate in TPG mode and provide test vectors to odd functional blocks.

12
11

UBILBO
1

T1
T2

UBILBO
2

12
T1

UBILBO
3

T1
T2

UBILBO
4

Functional u Functional u Functional
Block 1 Block 2 Blocks

UBIST
Checker 0

UBIST
Checker 1

I T T

UBIST
Checker 2

UBIST
Checkers

Figure 2.25. The overall UBISTscherrB

The responses are compressed by even UBILBOs (in MISR. mode), as weU as directly

verified by odd UBIST checkers. During T2, odd and even blocks mutually exchange

roles. During normal operation, BILBOs are isolated fi-om the rest of the circuit (T=0 in

Figure 2.24), and functional block ouq)uts are normally checked by the corresponding

checker modules, as in conventional self-checking design. It should be noted that the UB-

IST technique does not assume a particular error detection code. The designer is free to

choose the one that best accommodates his or her needs. BILBO designs that produce

code and non-code words for various codes are fiirther included in [42].

A more recent combined off- / on-line testing approach is presented in [43]. The overall

Normal

Inputs c
X

T

TPG/
Scan Register

Augmented Augmented

CUT \Check
Outputs

1 1 bits J

mode
select

1 2 .
Checker / SR /
Scan Register

F/gure 2.26. comb/ned on-//ne/o/f-//ne approac/7

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 5 5

testing scheme is shown in Figure 2.26. The TPG and signature register of the Sgure can

also operate as scan registers, so that the off-line test mode can be reahsed as either BIST

or shift-based testing. In either case, inputs &om the TPG / scan register are fed to the

augmented CUT and the normal outputs are either compressed in the SR or shifted out. In

this off-line mode, the check bits shown in the figure are ignored. During normal opera-

tion, clearly normal functional inputs are fed to the circuit. This time, a cAecA gengra-

ror residing within the augmented CUT is taken into account. Effectively, the generator is

designed such that the check bits it produces, in the fault-free case, equal to the bits resid-

ing in the signature register when fed by the given normal output. Tlieir equivalence is

then checked using a nonnal comparator, fed by the check bits and the contents of the SR.

The checker is thus composed of the SR, the comparator and some auxiliary logic. Hence,

the block labelled "checker / SR / scan register" is a resource shared by off- and on-hne

testing strategies. The authors of [43] also report a logic synthesis tool that synthesizes the

check bit generator, to produce the desired output. As reported in [43], a m^or disadvan-

tage is high fault latency, i.e. faults are detected on-line a number of clock cycles after

they occur. Proposed modifications reduce the latency, but increase hardware overhead,

thus cancelling out the benefits of hardware resource reuse.

In another approach [44, 45], the fMZiSR (f arzYy-prayervmg is introduced. It re-

ceives (n+l)-bit wide even-parity encoded inputs and produces two output signals, ri and

ri. In contrast to the usual convention, here it is r]=r2 if the checker input (CUT output) is

fault-free, and ri—r2 if it is faulty. The structure is a normal MISR with its state bits suita-

bly XORed. With some modifications, it can also be used as a test pattern generator or as a

scan register. Thus, BIST or scan-based testing can be configured within an overall design

utilising PMISRs, while during normal operation signals ri and rz from all PMISR struc-

tuies provide the on-line error indication. This work is extended in [46], to include a ge-

neric design methodology for other linear separable codes, (bus resulting in a linear Code-

This time, the state bits are not XORed. Rather, they are

input to a more complex code-specific linear combinational circuit.

2.2.1.7 Other related work

In this subsection, two other interesting pieces of self-checking design related work are

presented, that do not fit into any of the above subsections.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 5 6

In [47], an attempt to automate self-checking design is proposed. Simulatable and synthe-

sizable VHDL [48, 49] descriptions of self-checking design building blocks are presented.

These include code word generators and checkers for various error detecting codes. Parity,

Hamming and Berger codes are among them. The VHDL feature of parameterised compo-

nent descriptions, using generic values, is exploited, thus making the descriptions useful

for several data-path bit-widths. Two component versions are given for each code, sup-

porting both serial and parallel application of information parts to the code bit generator.

The overall system is considered to be supervised by a controlling unit, which receives

and handles the error indications. Auxiliary blocks (e.g. special purpose registers) are also

presented, to facihtate communication between the controlling unit, the error detection cir-

cuits, and the outside world.

Finally, as a supplement to self-checking design, [50] proposes a transient fault tolerance

technique, based on Coc/g f raygrvmg. This technique augments the functional-

ity of logic blocks receiving encoded inputs, such that the blocks implement their usual

operation when fed by a code word, but preserve their previous outputs when fed by non-

code words. Clearly the logic blocks have to be augmented to integrate checkers and auxil-

iary logic within them. They are then said to incoi-porate f rgjervmg

Implementations and applications of such elements and resulting logic blocks

are discussed in [50]. The technique is effective against transients of short durations, but

clearly cannot provide satisfactory fault recovery against permanent faults.

2.2.2 Duplication testing and related schemes

In this subsection, duplication and duplication-related techniques are discussed. Techni-

cally, these techniques adhere to the general self-checking scheme of Figure 2.9, and thus

fall into the broad category of self-checking design. Therefore the self-checking theory

definitions and terminology (§2.2.1) will be used throughout this subsection. However,

duplication schemes are addressed separately due to their extensive development and spe-

cial significance for the purposes of this thesis (chapter 5).

Broadly speaking, duplication techniques adhere to the paradigm of Figure 2.27. The simi-

larities with the general self-checking scheme of Figure 2.9 are evident. Indeed, the func-

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 57

Functional Input

Augmented
ICUC

Functional
Circuit

Redundant
Circuit

Comparator/
Checker

•> Error
Functional

Output

A'gure 2.27. Oup//ca(/on fesf/ng

tional circuit is augmented through

the addition of a redundant circuit,

which can be viewed as a check bit

generator. This redundant circuit is

fed by the functional input, and may

produce either an identical copy of

the functional output, or some varia-

tion (e.g. the complement of the

functional output). In that context,

the fimctional / redundant output pair

can be viewed as an "encoded word"

in the sense of §2.2.1. A checker

module is further used to produce a

2-bit error indication (often simply

by comparing the functional and redundant outputs). The totally self-checking properties

of Definitions 2.3 and 2.5 are once more desired for the augmented Circuit Under Check

(CUC) and the checker respectively. Variations of duplication testing are defined with re-

spect to what exactly the structure and functionality of the redundant circuit are, and

whether it is physically introduced or its operation implemented by pre-existing idle fimc-

tional resources. Other variations do not fully follow the paradigm of Figure 2.27. Indeed,

there can be cases where the flow of data through the functional and redundant circuits

follows different paths, or where the fimctional input is first somehow processed (e.g.

shifted) before being fed to the redundant circuit. All these techniques share the common

property that the size of the redundant circuit is of the same order as the fiinctional circuit

(as opposed, e.g. to parity prediction normally using much less hardware than most func-

tional circuits), and the redundant output is typically of the same bit width as the func-

tional output (once more, as opposed for instance to a parity scheme always needing a sin-

gle additional bit regardless of the functional output bit width). These common character-

istics loosely outline the family of duplication-related techniques addressed herein.

2.2.2.1 Physical duplication

In the basic physical duplication checking scheme, the redundant circuit of Figure 2.27 is a

replica of the functional circuit, and it is physically introduced together with a comparator.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 5 8

The scheme is fault secure by nature [9]. Indeed, a fault in the augmented CUC may affect

either the functional or the redundant circuit, thus potentially corrupting bits in either the

fumctional or the redundant part of the "encoded" output (ngver both). Any fault that

reaches the encoded output will thus create a non-code word (i.e., an output word whose

functional and redundant parts are unequal). The comparator module also has to be fault-

secure; as a matter of fact, fault-secure comparators are implemented by inverting all bits

of one of the inputs, and then introducing a dual-rail checker (to be presented in detail in

§2.2.2.2). Further, the hardware overhead associated with physical duplication clearly ex-

ceeds 100%.

Physical duplication as explained above is also referred to as duplication, assum-

ing that the functional and redundant circuit are structurally equivalent. Although very ro-

bust against single faults, identical duplication can be problematic in cases where double

faults are expected to develop in the system, such that the functional and redundant cir-

cuits demonstrate the jame faulty behaviour (commoM-mode faults). An alternative to

identical physical duplication, is to introduce a redundant circuit that is

equivalent, but diverse to the fimctional circuit, thus implementing

duplication [51, 52, 53].

In [51], Mitra and McCluskey perform fault simulations on a number of benchmark logic

circuits, to compare various self-checking techniques, including diverse and identical du-

plication, parity prediction (§2.2.1.1) and Berger codes (§2.2.1.3) against multiple faults,

and against double common mode faults. Their results are strongly in favour of divei-se

duplication. The work also includes comparisons in terms of hardware overhead. Interest-

ingly, in many considered examples, Berger code self-checking is more expensive than

duplication, due to the complexity of Berger code prediction logic and Berger code check-

ers.

In [52], Mitra et al once more compare identical and diverse duplication with respect to

their vulnerability to double faults and once more establish the increased detection prop-

erty of diverse duplication through fault simulations. They also provide a theoretical ap-

proach to the issue, through the introduction of fault pairs :

2.7 j : A duplication scheme is with respect to a fault pair

where/i affects the functional a n d ^ affects the redundant circuit, if there exists a ftmc-

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 5 9

tional input for which the two circuits produce different outputs under the presence of the

faults. is then called a fault pair.

Notice the analogy between the self-testing property considering f/ng/g faults, for on}' self-

checking technique (Definition 2.1), and the self-testing property considering

faults, as defined above for duplication schemes. In [52], Mitra et al further pre-

sent a simulation-based algorithm to identify non self-testable fault pairs in any given du-

plex system, and propose test point insertion (§2.1.1) to detect such faults, by periodically

applying suitable test vectors to the circuit, when it is idle or temporarily taken off-line.

In [53], Mitra and McCluskey flirther support their work of [51, 52], by presenting a logic

synthesis for diversity technique. The technique is fed by a truth table describing the de-

sired functionality, together with a given implementation, and produces the redundant im-

plementation that demonstrates the maximum diversity with respect to the given one, also

trying to minimise the area overhead. For this purpose, they quantify diversity as foUows :

: Given two combinational realisations of the same functionality, the c/z-

verjzYy c/,,, with respect to the fault pair is the probabihty that the two realisations do

Mor produce identical faulty outputs under the presence of the fault pair.

Assuming that aU system input vectors are equally probable, Definition 2.14 effectively

suggests that the more the inputs that expose a given fault pair, the more diverse the two

realisations are, with respect to the particular pair. A unique value for the diversity of the

two implementations is computed by calculating the diversity of the implementations with

respect to aU modelled fault pairs and averaging over the number of pairs. Diversity to-

gether with area overhead then define a 2-dimentional design space, which is explored by

logic synthesis algorithms also proposed in [53].

An alternative to full hardware duplication is presented in [11]. Only a "sufficiently big"

subset of possible faults are targeted, and the redundant circuit this time is a reduced ver-

sion of the functional circuit, designed such that on/y the targeted faults in the functional

circuit can be detected. Input patterns exposing only non-targeted faults are treated as

"don't cares" when synthesizing the redundant circuit, thus leading to logic minimisation.

Further, the comparator / checker is fed by one or two additional control bits, and

equipped with a simple control unit that receives the bits and determines if the checker

must check or not, depending on the input word. It thus becomes a compara-

tor / checker. Clearly, testability is traded-off for cheaper hardware implementation. The

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 60

efficiency of this technique strongly depends on knowing ZM the input patterns

functional modules are likely to receive, as well as the input patterns fiinctional modules

will MOf receive, so that the set of faults that cannot harm the functional output (and there-

fore do not need to be targeted) can be determined.

2.2.2.2 Dual-rail checking

A variety of diverse duplication is cAgctmg [9]. In a dual-rail design, the redun-

dant circuit of Figure 2.27 does not produce the same output as the fimctional circuit, but

its logic complement (in the fault-free case). A "code word" comprising the fimctional in-

formation paii, and a check part of the same size, where every check bit is the complement

of the respective information bit, is genericaUy called a encoded word.

FB IN
FB OUT

OUT

Element 2 Element 1 Element 3

OUT

00
%

10

01

11

Figure 2.28. The IF IS technique

Dual-rail testing following the paradigm of Figure

2.27 is fault-secure by nature, but not widely

adopted, since it does not offer any real benefit

over physical duplication. Nevertheless, techniques

employing dual-rail encoded datapaths have been

presented. An example is the 7F/5' (if It Fails It

Stops) scheme [54, 55, 56, 57]. Figure 2.28 repre-

sents a portion of a system designed using this

technique. The system is partitioned into /FAS' e/e-

Each element corresponds to a fraction of the overall functionality, implemented

using dual-rail encoding, comprising both functional and redundant circuits. Each element

is thus an augmented version of a normal functional circuit, whose output is twice as wide

as the normal output. The elements further include suitable control logic, so that eveiy pair

of functional and respective redundant bits experience oMg change in their logic

F/'gure 2.29. Perm/ffed /F/S
state transitions

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 61

values every clock cycle. In particular, if the information bit changes due to the circuit

functionahty, then the redundant bit remains stable and vice versa. Thus, an IFIS element

output pair is only allowed to experience any of the transitions shown in Figure 2.29. As

also depicted in Figure 2.28, each element receives feedback Arom its successor and input

from its predecessor. If an element demonstrates an illegal transition due to the presence of

a fault, then suitable checkers in its successor and predecessor detect the failure and cause

the corresponding elements to stabilize their outputs. Thus, the effect of the fault soon

propagates and the system operation stops. Apart firom the usual input and output ports, a

system implementing the IFIS technique also features input and output feedback ports

(FB IN, FB OUT), to communicate with a master controller. A n important contribution

of this work is the implementation of an on-line testable UAR.T — the first on-line testable

design of some realistic complexity to be presented in the literature. Note that this tech-

nique is proposed at the system level, that is, at a higher level of abstraction than the be-

havioural level that this thesis is particularly concerned with. This means, for example,

that every IFIS element of Figure 2.28 is a full, complex, typically sequential circuit (e.g.,

the receiver and transmitter are both IFIS elements in the mentioned UART implementa-

tion).

Figure 2.30. The dual-rail checker cell

Although the scheme of Figure 2.27 is not

widely used for dual-rail checking, suit-

able checkers that verify the dual-rail

property of their input signals are conven-

iently applicable in a variety of situations.

These checkers are commonly known as

cAecArerj and implemented using

the c/uaZ-ra;/ eg// of Figure 2.30

[2, 9]. It can easily be confirmed that when

the 2-bit input words are com-

plementary (xTg = 70:)' then the

output pair zozy is complementary too, thus providing the fault &ee indication, according to

tlie usual self-checking convention (§2.2.1), ensuring fault-security. The cell thus effec-

tively acts as a 2-pair dual-rail checker. An n-pair dual-rail checker can now easily be con-

structed as a tree of n-1 such cells, as Figure 2.31 exemplifies for the 5-pair case. The de-

sign of the figure checks the dual-rail property of two 5-bit inpnt signals (5 pairs of com-

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 62

plementary bits), and the 2-pair constituent blocks are simply dual-rail cells as of Figure

2.30. Observe how the ceU outputs are combined together, exploiting their fault-firee com-

plementary property, ultimately leading to the typical 2-bit checker output. Clearly, a dual-

rail checker is desired to be totally setf-checking (§2.2.1). The analysis of the TSC prop-

erty of dual-rail checkers is analogous to the analysis followed in the case of parity check-

ers (§2.2.1.1). This is expected, since parity checking Ainctionality is also provided by tree

structures (specifically

XOR trees). Once more,

the code-disjoint and fault-

secure properties are en-

sured by construction (2-

bit output). For the re-

maining self-testing prop-

erty, every cell has to re-

ceive aU four possible 2-

pair dual-rail code words

(0011,0110, 1001, 1100),

and once again a minimum

set of words achieving this

can be determined by con-

sidering all possible code

inputs to the final cell pro-

ducing the ultimate

checker output, and trac-

ing back to the overall

checker primary inputs.

The number of required

code words is, again, OM/y

four, of bit

Agure 2.3f. 5-pa/r dua/-ra/7 c/iecker width.

2-PAIR
DUAL-RAIL
CHECKER

2-PAIR
DUAL-RAIL
CHECKER

2-PAIR
DUAL-RAIL
CHECKER

2-PAIR
DUAL-RAIL
CHECKER

Further, the following lemma applies [58] :

Zgmma 2. J : Consider a 4x(2xn) Boolean matrix M, whose distinct rows constitute a test

set for an n-pair dual-rail checker, composed of 2-pair dual-rail checker cells (Figure 2.30)

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 63

only. TbenVke [1, n], the kth and (k+n)th columns of the matrix are bitwise complemen-

tary. Moreover, if only the Arst half of the matrix is considered, by ignoring the (n+l)th,

(n+2)tb, ..., (2xn)th columns, then two of the four distinct rows of the resulting matrix

have even and the other two odd parity, while each column has exactly two Is and two Os.

The similarities to the parity-related Lemma 2.2 are evident. Lemma 2.3 implies that if a

given configuration requires a dual-rail checker that will receive the rows of a matrix M

during normal operation, then there exists /gay^ owe arrangement of dual-rail checker

cells within the overall checker that leads to a TSC realisation. An analytical algorithmic

procedure for the extraction of the fastest such realisation (given the matrix M) can be

found in [58].

Z2

@ - r - ^ D Q

CK

Qi

Cn-1

D U

CK

02

C1

D U

CK

Qn

C o n v e n t i o n a l n /2 -pa i r Dua l - ra i l C h e c k e r

F/gure 2.32. wS-pa/r embedded 7SC duaZ-ra// cAec/cerw/fA error memon'z/ng capa6//f<y

The analogies with parity checkers are further extended in [12, 19, 20], proposing the em-

(/waZ-razV 73'C wzYA to be used whenever the

environment is unable to provide the required inputs to the conventional dual-rail checker

(Figure 2.32). The design is based on the same tlieory as its parity-checking counterpart

(§2.2.1.1). Consider two n-bit words W=X,.. .Xn/2Y].. .Yn/z and W - X ' , . . .X'n/zY'i.. .Y'n/i-

If both words are dual-rail encoded (i.e. Xj—Yj and X';—Y', for all i), then elementary

Boolean calculus can show that the modulo 2 sum W @ W is dual-rail encoded. Thus,

the dual-rail code is not linear. However, if W is such that X'j=Y'i for all i (duphcation

encoded), then the result of W@ W can be shown to be a dual-rail word. Therefore, if the

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 6 4

LFSR of Figure 2.32 produces duplication encoded words of bit width n and the n-bit in-

put Z|. . .Zn is dual-rail encoded, then the conventional dual-rail checker will receive dual-

rail words. Further, the n-bit duplication code is cyclic, and g(x)=x'^+l is a generator

polynomial [12]. According to Theorem 2.1, one can construct an LFSR producing all du-

plication code words of degree n, by choosing a primitive polynomial d(x) of degree n/2

and using g(x)d(x) as the LFSR characteristic polynomial. The resulting checker will be

totally self-checking under the sole assumption that the environment provides at least two

different dual-rail encoded words [12].

A few applications of dual-rail checkers have been presented in previous subsections,

where such checkers were used as building blocks for broader checking schemes. More

specifically, a class of m/n checkers (§2.2.1.2), specialised 1/n checkers (§2.2.1.2), Berger

code checkers (§2.2.1.3), as well as fault-secure duplication checkers (comparators,

§2.2.2.1) all include dual-rail checker blocks. Further, observe that, under the typical con-

vention of §2.2.1, the fault-firee response of a checker of any kind constitutes a dual-rail

pair (01 or 10). Assuming a complete system with self-checking capabilities attached to

several hardware blocks realising the system functionality, the responses from all self-

checking blocks should, in the fault-fi-ee case, constitute several dual-rail pairs. By com-

bining all these responses and leading the constructed dual-rail word to an appropriate

dual-rail checker, a designer can produce a single 2-bit primary output, providing a con-

cise indication of the health of the system [9]. This technique is very popular in self-

checking systems, and is often referred to as r&ypoMjg A dual-

rail checker employed in that manner is consequently called a rejpoMje

Another example application of dual-rail checking is presented in [59]. With reference to

the paradigm of Figure 2.27, the authors of [59] selectively XOR groups of combinational

functional circuit output lines, so that the bit-width of the compacted word reaching the

checker is reduced to no more than 5 in all practical cases considered. The redundant cir-

cuit is then effectively a always producing the complement of the compacted word,

and correct operation is verified by a suitable dual-rail checker. Hardware savings are due

to the simple structure of the coder, when compared to a redundant circuit that would

demonstrate exactly the "complementary" behaviour to the fiill fimctional circuit. The re-

duced bit width of the checker is another source of savings. The authors analyse the func-

tional circuit structure and identify groupings of circuit output lines that minimise the pos-

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 65

sibility of fault escapes associated with compaction. On an interesting word of note, this

output partition and compaction technique is also shown to be utihsable in an off-line

BIST mode, where a MISR structure (§2.1.2) substitutes the dual-rail checker. Overall,

this technique demonstrates snnilarities to the controllable self-checking of [11], in that it

trades off testability for hardware savings (by accepting a possibility of fault escapes) and

it requires that the functional circuit gate-level stmcture be known.

2.2.2.3 Algorithmic duplication

+3 ^ A2

F/gure 2.33. /̂ /gonY/?m/c
cfup/Zcaf/on mof/Vaf/ona/ examp/e

Straightforward physical duplication and dual-rail self-checking are primarily defined for

isolated, usually combinational circuits. Of more

interest is the situation of an overall, complex

sequential system, typically described by a con-

ceptual algorithm, synthesized using a CAD tool,

and composed of several functional building

blocks and storage elements, implementing the

algorithm. Clearly, such systems can be fully du-

plicated and their outputs verified according to

Figure 2.27; however, this leads to a significant

overhead. Alternative approaches try to analyse

the system datapath and identify ways to dupli-

cate and check the system (functionality), without necessarily duplicating all of

the system (hardware modules). This concept outlines a/gonV/zTM/c

(also called a/gorzYA/Mzc /eveZ re-coTMpufmg). The family of algorithmic duplication vari-

ants are considered in this subsection. The presentation assumes famiharity with the con-

cept of a grapA (Z)f (7) and will hereafter use such graphs to describe example

system functionality. This assumption is reasonable, since the DFG is a well-established

and extensively used scheme ui the area of hardware design. In any case, a fomial defini-

tion of the DFG is provided in this thesis in §3.1.1 (Definition 3.2), as part of the presenta-

tion of high-level synthesis. Another idea which is important for the purposes of this sub-

section, is that of modules' /WZe n'mg. At any given time point, a (typically combinational)

hardware module, forming a part of a complex system, is said to be icfZe, if it is not fed by

usefiil functional inputs and does not produce any useful output at this particular point.

The concepts of idle time and algorithmic duplication, and considerations, benefits and

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 6 6

trade-oHs associated with their application are demonstrated in the following, through a

motivating example.

Consider the simple but instructive data flow graph of Figure 2.33, defining the function-

ality of a hypothetical elementary arithmetic chip or part thereof. Operations (additions)

+1 and +2 are implemented by module (adder) Al, +3 is implemented by A2 and multipli-

cation * 1 is realised by multiplier M1. 1, 2 and 3 define the temporal rela-

tionship of these operations. Indeed, in the example, operation +1 is executed a clock cy-

cle before +2 and +3, while the latter are followed by multiplication *1. Arrows in the

graph further show data dependencies between operations (e.g., the output o f+1 feeds +2).

Overall, the realisation of the system functionality requires 2 adders (Al, A2) and 1 multi-

plier (Ml). In line with the introductory comments in the previous paragraph, two copies

of the same datapath could be constructed, and the pruTiary outputs of the two copies (i.e.

the outputs of multiphcation * 1 in both cases) could be compared to verify the correct op-

eration. However, in large systems it is often desirable to give a pre-emptive indication of

the health of the chip, in this context by duplicating and separately comparing all (or a

number of) the constituent elementary operations, rather than the overall design. To this

end, a feasible option would be to physically duplicate modules A l , A2 and Ml, so that

whenever an operation is executed by a module, its duplicate is fed by the same inputs and

produces (in the fault free case) the same output; this would clearly result in 4 adders, 2

multipliers and 2 comparators. Observe, though, that adder A2 is idle during control steps

1 and 3, while adder Al is also idle during control step 3. A2 can therefore be employed

during control step 1 to duphcate operation +1. Similarly, operations +2 and +3 can be du-

plicated during control step 3, mapping the duplicates on modules A2 and Al respectively.

This introduces 1 clock cycle e fmr (a possible error is detected 1 clock cycle after

it occurs), but saves hardware, since the duphcation of additions does not require the in-

troduction of any new adder. In order to verify operation *1, the only option is to intro-

duce a new multiplier. So, pre-emptive elementary result verification is achieved with only

2 adders, 2 multipliers and the implied 2 comparators, together with some additional mul-

tiplexers, registers and interconnect, while 1 clock cycle error latency is introduced to two

of the self-checking operations. Also note that, implementing algorithmic duplication as

described above leads to fault-secure schemes (provided that fault-secure comparators are

used), since the hardware modules realising duplicate operations of+1 , +2,4-3 and *1 are

all different from the modules realising the corresponding functional operations. An addi-

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 6 7

tional advantage would be to map the duplicates to diverse hardware as well (if possible),

tlius providing protection against common mode fault pairs (§2.2.2.1). In the rest of this

subsection, the presentation overviews works that address the concept of applying algo-

rithmic duplication within complex datapaths.

In [60], OraHoglu and Karri combine fault detection based on algorithmic duphcation with

self-recovery from transient faults. Their approach shghtly differs &om the paradigm

given in the previous paragraph, in that they do not compare the results of every single

pair of a functional and a duplicate elementary operation. Rather, they define control steps

during which comparison has to take place (cAecXyomf^), and at these checkpoints they

compare outputs of cAamj' of functional operations, with outputs of chains of duplicate

operations. A chain of operations in this context refers to aU operations that are executed

between two consecutive checkpoints and have data dependencies among them (i.e. di-

rectly or indirectly connected by arcs in the DFG). Of course, a chain of duplicate opera-

tions cannot use any hardware modules already used by the corresponding chain of func-

tional operations. When an error is detected at a checkpoint, the system to the

previous checkpoint control step, so that the faulty chains wiU be recomputed, hoping that

the transient fault will have vanished. Of course, the technique is unsuitable for permanent

faults. All chains of duplicate operations effectively constitute a DFG. To this

end, tasks addressed in [60] include an algorithmic approach to determine the checkpoints,

an analytical and ultimately automated way to construct the duplicate DFG and assign

hardware modules to operations, as well as the application of arithmetic properties (dis-

tributivity, associativity) on the duplicate DFG, demonstrated to lead to hardware savings

in appropriate designs. On the same theme, Narasiinhan et al [61] particularly focus on

evaluating the placement of checkpoints in a design, taking into account resource con-

straints (i.e. number of available comparators) and timing specifications (i.e. maximimi

allowed speed degradation due to rollback and recomputation, given the expected duration

of tr ansient faults).

Hamilton and Orailoglu [62] present an algorithmic duplication technique to provide on-

line /Wenfi/zcafzoM, together with fault detection and recovery. Fault identification re-

fers to identifying the faulty functional module in a datapath producing erroneous results.

In line with [60, 61], they also consider chains of operations. Further, a chain and its du-

plicate are defined to constitute a A-ocA. Fault detection is provided by comparing the two

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 6 8

outputs fiom the two chains of a given track, while fault identification is based on func-

tional unit Given two functional units A and B, unit A is said to be differ-

entiated from unit B if a track exists that utilizes A but not B. Fault identification is

achieved when every unit in the system is differentiated &om all other units. For instance,

consider three addition operations, +1, +2 and +3, and their duplicates +1% +2' and +3'.

Let A, B and C be functional units capable of realising them (adders). Assume that +1 is

implemented by A, +2 by C, +3 by B, +1' by B, +2' by A and +3 ' by C. Thus, three tiacks

are forrned, namely track 1 corresponding to +1 and +1' and utilizing units A and B, track

2 corresponding to +2 and +2' and utilizing A and C, and track 3 corresponding to +3 and

+3' and utilizing B and C. Clearly all three units aie differentiated from one another. If

track 1 detects a fault then either A or B is faulty. Additionally, if track 2 also signals a

fault, then A is identified as faulty. Alternatively, if track 3 fails, then C is determined

faulty. The authors of [62] consequently analyse given design DFGs and assign functional

and duplicate operations to hardware modules, such that module differentiation is maxi-

mized, while hardware and timing constraints are not violated. Track module utilisation

information is stored in appropriately inserted storage elements, while additional control

logic exploits all track comparison responses to identify any faulty module. When an error

occurs and a faulty module is identified, control rolls back to the previous checkpoint (ex-

actly as in [60, 61]) and recomputation takes place; this time, however, all chains utilising

the faulty module are disabled. Thus, the technique provides some limited tolerance to

permanent faults as well as transient ones. The same work is carried forward in [63],

where redundant logic is added, in order to achieve fault-security (Definition 2.2, §2.2.1)

and recovery for a greater set of faults in the overall design (i.e. for faults affecting not

only the datapath modules implementing the above mentioned tracks, but also the control

logic, and the fault identification and recovery units).

In [64], Karri and Iyer present their technique. Similarly to [60, 62, 61], In-

trospection fully utilises modules' idle times for algorithmic duplication purposes; how-

ever, no additional functional modules are introduced in case the idle time is not enough.

Instead, the authors of [64] prefer to produce designs with a number of "unchecked" op-

erations. As an illustrative example, let us refer back to Figure 2.33. As explained above,

adder A2 can be used to duplicate operation +1, while A1 and A2 can duplicate +3 and 4-2

respectively, during control step 3. Under Introspection, no new multiplier is introduced,

therefore no duplication testing is applied to operation * 1 and the resulting design demon-

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 6 9

strates degraded fault detection capabilities. The Introspection hardware overhead is

minimal (simply the result of introduced comparators and registers), but the technique can

be very inefficient as far as fault detection is concerned in designs where there is too little

idle time. On the other hand, when foo mwcA idle time is available, the authors of [64] pro-

pose exploiting it to implement fault identiGcation, effectively b y assigning the same

computation to three different modules. Indeed, a pair-wise comparison of module outputs

is then enough to identify the faulty one. Clearly the usefulness of this technique for either

fault detection or identification very much depends on the considered design.

Lakshminarayana et al [23] revisit the problem of defining and synthesizing a duplicate

DFG. In previous approaches [60, 62, 61], pairs of functional and duplicate operations or

chains of operations were not allowed to share any hardware modules. The particular nov-

elty of [23] is an analysis of the probability of fault escapes if some limited de-

gree of such hardware sharing is allowed, in any given functional and duplicate DFG, for

any candidate sharing scenario. Based on this analysis, its authors accept the sharing if the

said probabihty is below a defined threshold. Their starting point is a purely physically

duplicated system, where checking takes place at the primary outputs only. However, they

perform judicious intemiediate result checking, having observed that such checking can

minimise the fault escape probability and promote hardware sharing. They fiirther propose

parity checking (§2.2.1.1) as a solution to the control path self-checking problem, without,

however, paying any attention to the self-testing property (Definition 2.1).

Another alternative is provided in [65], in the form of jgmzcoMcwrreMf error detection. In

this technique, no intermediate operations (e.g. "+2" in Figure 2.33) are checked. Primary

outputs are not a/wayj checked either; rather, primary outputs are only checked once every

f executions of the functional circuit, where f is an integer value (cAgcA:mg /pgnocfzc/Yk). If

the fimctional DFG takes A: clock cycles, then the duplicate needs to be constrained within

f clock cycles. Typically f > l , which leads to a very relaxed time constraint for the du-

phcate DFG, effectively allowing for area savings through hardware sharing between the

original and the duplicate operations (as in [23]). The area / checking periodicity trade-offs

are investigated, through the implementation of alternative design solutions, for different

values of f . Increased error latency is an obvious disadvantage of this approach.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 7 0

In [66, 67, 68], Wu and Karri once more address the problem of minimising area over-

heads and time penalties when employing a dnphcate DFG. They partition the functional

and duplicate DFGs into several sub-DFGs and compare the sub-DFG outputs / intermedi-

ate computation results, together with the primary DFG outputs (an idea already seen in

[23]). A novelty in their approach is that they feed selected orzgma/ DFG values to the

corresponding DFG operations, having observed that such a rearrangement al-

lows for hardware and clock cycle savings, by breaking data dependencies within the du-

plicate DFG. hi another two publications [69, 70], the same authors reject the idea of a

duplicate DFG that is executed in parallel with the functional one; rather, they propose an

arrangement in which the original DFG is executed f times, the f t h result is preserved,

then recomputation using the duplicate DFG is executed and the resulting outputs are

compared against the stored ones to confirm correct operation or produce an error indica-

tion. This is reminiscent of the semiconcurrent error detection of [65], in that once again

only one every f obtained results is checked; however, in the semiconcurrent case the du-

plicate DFG is executed m para/Zg/ to the original, rather than temporarily suspending use-

flil operation, hi that sense, [69] and [70] can be classified as error detec-

tion approaches. Naturally, all previously mentioned works where every primary output

was always checked in parallel to the useful operation [62, 60, 61, 63, 64, 23] offer coM-

cwrrgMf error detection. Returning to [69], one can note that the emphasis is on assigning

duphcate operations to different hardware modules from the respective original ones (a/Zo-

can'oM c/zvgfj'fYy), so as to minimise the possibility of fault escapes (in that sense, it is

reminiscent of [23], although the fault analysis is not as thoroug;h). In [70], (fzverjzVy

is also investigated, through wzYA qperoMck. The idea is to keep the

same operation-to-operator correspondence between the original and duplicate DFGs, but

to do the recomputation having shiAed the original input by two bits. The recomputa-

tion output is then shifted by two bits, and the result compared against the stored

output of the f t h functional computation, as mentioned above. Hardware overheads and

fault escape probabilities are also calculated for this technique.

Chapter 5 of this thesis revisits the algorithmic duplication variants presented in the above,

evaluates them with respect to their testabihty characteristics, overheads and synthesis ap-

proaches, presents the contribution of this work and outhnes comparisons.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 7 1

2.2.3 On-line BIST and DFT

Having completed the detailed overview of self-checking design, both based on error-

detecting codes (§2.2.1) and on duplication-related techniques (§2.2.2), this presentation

moves on to on-Zme BuUt-In Self-Test and Design For Testability. The difference between

(externally applied or built-in) and is that the former builds up the

designer's confidence on the health of a fabricated system through the application of test

vectors and collection of test responses, as shown in §2.1, while the latter provides an OM-

gozMg verification of obtained results. It should be made clear that in that sense they are

fundamentally different reliability approaches. Testing is typically an off-line operation, as

§2.1 showed; the application of test vectors is either done once (^rocfwcfz'on or by pe-

riodically taking the system off-line for testing purposes (pgrzo<5̂ zc .STST). The topic of this

subsection then, is a presentation of "test vector-based" testing, that, in contrast to what

applies typically, require the system to be taken off-line. Moreover, the following

material should not be confused with the works presented in §2.2.1.6, regarding shared

resources for self-checking and off-line testing. In the schemes of §2.2.1.6, the system was

purely self-checking when on-line - in contrast to the approaches of this subsection that

apply test vectors when on-line.

2.2.3.1 Concurrent testing

C o m p a r a t o r

/Outputs

Ffgure 2.34. CB/ST

A historical approach to on-line BIST was

proposed by Saluja et al [71]. The CoMcwr-

(CBIST) configuration

which they presented is shown in Figure

2.34, consisting of the circuit under test

CUT, a comparator, a multiplexer MUX, and

two typical BIST resources (a TPG and an

MISR, see §2.1). In off-line test mode (when

signal Test=l), the CUT receives inputs from

the TPG and feeds them to the MISR., just as

in any normal BIST configuration. In on-line

mode, the TPG contents and the functional

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 7 2

inputs are compared. In case they are equal, the MISR compresses the CUT outputs and

the TPG advances to the next test pattern. Otherwise, test resources remain idle. Therefore,

when the system is on-hne, the test resources are active whenever "convenient", depend-

ing on the inputs the CUT receives during normal operation. On-line BIST in this context

can be conceived as an "extra" feature of the normal operation mode. Obviously, the time

required for the TPG to cycle through all states ZafeMC}') depends on the functional

input data and can be unacceptably high. Still, CBIST is considered a classic approach and

it is referenced by several other researchers as probably the very first attempt in this field.

More recently, Santos [72] proposed a similar idea, based on the boundary scan architec-

ture (Figure 2.4). Input test vectors are shifted into input boundary scan cells and func-

tional inputs are compared against them. If they coincide, outputs are collected in bound-

ary scan output cells and shifted out, compacted in a signature register or compared with

pre-computed expected outputs. Consequently, the next test vector can be shifted into the

boundary scan cells. In order to reduce test latency, not only input test vectors are consid-

ered for comparison with functional inputs, but also their complements and vectors result-

ing by dividing test vectors and complements into two parts, searching for each part indi-

vidually and considering all possible combinations. For example, if the 4-bit vector 1001

is shifted in, then 0110, 1010 and 0101 are also considered.

2.2.3.2 On-line BIST exploiting idle time

Applying BIST while the system is on-line as presented ui §2.2.3.1 has the major disad-

vantage that the application of a complete test to the CUT can take an unpredictably - and

probably unacceptably - long time. Recall the observation of §2.2.2.3, that in realistic sys-

tems, combinational modules experience clock cycles during which they do not implement

any useful operation (idle time). While §2.2.2.3 showed how such idle cycles can be used

for self-checking purposes, the works presented herein investigate the possibihty of ex-

ploiting these idle cycles to apply test vectors to the idle modules. For example, referring

back to Figure 2.33, a test vector can be applied to adder A2 during CS 1. The test re-

sponse information has to be preserved (using an MISR) or shifted out (assuming a test

clock significantly faster than the functional clock), so that the adder can perform its func-

tional operation (addition +3) during CS 2. Afterwards, the test process can resume at the

idle CS 3, by the application of the next test vector. When the system primary output is

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 7 3

produced, control normally returns to the first control step; if the idle cycles of a single

execution of the DFG are not enough for a whole test set to be applied to the functional

modules, then the test is not reset but it is carried on at the next execution of the DFG, ef-

fectively spanning multiple repetitions of the normal functionality [73]. When aU test vec-

tors have been applied, a fault-free response confirms the results of all the previous func-

tional executions. This idea of applying test vectors to hardware resources when they are

not functionally used is exploited in [36] to test memory cells, in combination with a

Hamming distance-based ECC (§2.2.1.4). The focus of the present subsection is on

datapaths.

From the above description of on-line BIST, it is evident that the more the idle time avail-

able in a particular datapath the more efficient the test process. This highlights a difference

between exploiting idle cycles for self^checking and exploiting them for BIST. In the for-

mer, idle time is only a since it can reduce hardware overheads (§2.2.2.3). In the

latter, idle time availability actually of applying the technique in

a given design, since too little idle time may result in unacceptably high test latency.

Therefore, a major task in on-line BIST is to fit a full test set within as few functional exe-

cutions as possible. This can be done either by favouring idle t ime when designing the sys-

tem of interest, or by reducing the number of required test vectors (fear Ze/igfA), by using

suitable functional modules. Finally, one needs to define a for his or her de-

sign, i.e. define the flow of test data through the design, together with the flow of func-

tional data. These crucial issues (idle time availability, test length minimization, test

scheduling) are discussed in the following three subsections.

2.2.3.2.1 Idle time availability

The most notable systematic approaches to the analysis of datapaths in search of idle cy-

cles have been presented by Baker et al [74], Brown et al [73] and Williams et al [75]. In

[74], all combinational flmctional blocks in a given design are considered separately, and a

is generated for each one of them. A latent profile is a data structure that

contains detailed information about the utilisation of modules in clock cycles, i.e. denoting

if a functional module is "busy" or idle during a given clock cycle. [73] provides an exten-

sion, wherein example designs of substantial size are considered, module latent profiles

are extracted, and it is illustrated that idle periods are enough for the application of full

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 7 4

sets of test vectors in many practical cases, of realistically long data-flow graphs. Further,

the availability of idle time is identified as a possible goa / (as opposed to a design

natural property). Loop structures and conditional execution of operations are also briefly

discussed, by considering "best" and "worst" case scenarios, corresponding to "as much as

possible" and "as little as possible" available idle time. In [75], data-dependent conditional

execution is further investigated. Operations that are executed conditionally are assigned

execution probabilities; these probabilities are subsequently combined with latent profile

information to calculate fgj'/ for fiinctional blocks. Effectively,

for every given fimctional block in an overall design, the work in [75] calculates a prob-

abihty that a full test can be applied to it, in the potentially available idle time.

2.2.3.2.2 Test length

The term "test length" refers to the number of test vectors that need to be applied to a

CUT, so that all modelled CUT internal faults can be detected. Minimising the test length

is clearly of particular importance in the context of idle cycles-based on-line BIST. In fact,

it is the combination of idle time availability and a test sequence short enough to fit in that

idle time, that determine the feasibihty of on-line BIST.

Once again, consider the generic testing scheme of Figure 2.1. Assume that ± e CUT is fed

by M inputs. An exhaustive test set for this circuit consists of 2"'^ non-zero test patterns

(§2.1.2). For large values of M, the exhaustive test length can be prohibitively long. How-

ever, the test length can be significantly reduced if testing techniques are

applied. This involves some form of segmentation of the CUT, through the insertion of

redundant logic. A typical approach is to partition the CUT into A segments, where the

output of each segment; depends on M, primary inputs only. Each segment can then be ex-

haustively tested separately from the rest of the CUT, by 2"' test vectors. It is often possi-

A
ble to define such a partitioning that ^ 2 " ' « 2", thus greatly reducing the overall test

1=1

length. Moreover, it is also possible that different segments can be tested in parallel, lead-

ing to further test time reductions. Several segmentation techniques and associated TPG

designs for pseudoexhaustive testing can be found in [1].

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 75

Furthermore, it is sometimes worth examining circuit functional blocks to check if pseu-

doexhaustive testing can be applied to them by nature. The following definitions are rele-

vant [1].

2 7 J." An /og/c is a circuit composed of identical cells in-

terconnected in a regular pattern (Figure 2.35).

An ILA is if it cam be pseudoexhaustively tested with a test set

whose length does not depend on the number of cells.

Clearly C-testability is a

very useful property for

-M- data path modules,

since it limits the test

set regardless of the bit-

width.Agoodexample

of a C-testable ILA of special practicality is the ripple carry adder. This adder consists of a

number of full adder cells, coimected through their cany-in and carry-out ports, in a fash-

ion that closely resembles the generic ILA structure of Figure 2.35. C-testability then im-

plies that each full adder can separately be tested by its own test set, and also that adder

cells can be tested concurrently, thus resulting in a test set whose length is truly independ-

ent of the bit-width (i.e. independent of the number of fuH adder cells).

cell 0 ce 1 1 cell N-1

An alternative concept is presented in [76]. Let us consider the circuit model of Figure

2.36.

2.77: A circuit C, as of Figure 2.36, is defined as if its output function

Z(n) is independent of the number n of its input data buses.

Most data path modules normally implement a function of the form Z(A(n),B(n)), where

A(n)=An-i • •. Ai Aq and B (n) = B n -

Dn-1 I.. .B]Bo. In the formulation of

Figure 2.36, Dj=(Ai,Bi),

i=0,... ,n-1 and w=2, u=n and a

control bus K. of bit-width v

may or may not be present. In

the sense of Definition 2.17,

such modules can be considered

scalable, since their function

D
a
t
a

Dz
Di
Do

/ — •

yW .

/ /w :
^ / w

circuit 0

Contro

F/gure 2.36. Genera/ Sca/a6/e C/rcu/Y

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 7 6

Z(n) (e.g. addition, multiplication, shift) is independent of n. It is interesting that scalabil-

ity is a broader concept than C-testability. Indeed, the authors of [76] prove that a ripple

carry adder is both C-testable and scalable, while a carry look-ahead adder is scalable but

not C-testable. They further demonstrate that scalable circuits can be tested by very com-

pact test sets, and they derive analytical test sets and test generator structures for a number

of example scalable circuits.

Reductions in the length of test sets are also reported w h e n a s opposed to struc-

tural, fault models are used. An example is the TMwfafzoM technique of [77]. Muta-

tion testing originates from the software testing domain; the authors of [77] apply it to de-

rive functional tests for hardware, having observed the obvious similarities between a

piece of software and an HDL-described hardware design. In mutation testing, HDL de-

scriptions are repeated several times, and in every repetition a single fimctional error is

iryected (for instance, a "-t-" operator is substituted by a These corrupted descriptions

are called and their erroneous behaviour represents functional faults. Conse-

quently, test vectors are applied (by a simulator) to the correct description and to mutants.

When a mutant output differs from the correct output, that mutant is considered to be

"kiUed", in the sense that a vector that detects the modelled fault has been identified. Re-

sults presented in [77] show that fault coverage is sufficient, while the time required to

determine the test set is much less than that required by exhaustive fault simulation ap-

plied to synthesized low-level hardware descriptions.

A technique similar to mutation testing can be found in [78]. This time, HDL specifica-

tions are translated into binary decision diagrams (BDDs). Faults are injected in the BDD

constructs, rather than in the specification itself Again, inconsistency between the fault-

fiee and the faulty case determines test vectors. Some additional post-synthesis gate-level

simulation is employed here, to uncover faults not detected by the faults injected in the

BDD representations.

2.2.3.2.3 Test scheduling for on-line BIST

Having discussed the issues of idle time analysis (§2.2.3.2.1) and techniques for the reduc-

tion of the test set length (§2.2.3.2.2), this presentation now focuses on test scheduling for

on-line BIST. In other words, assuming that the maximum possible availabihty of idle

P, Oikonomakos, 2004 Chapter 2: A n Overview of Electronic Testing 77

time has been achieved, and that test length reduction techniques have been apphed, it is

now desirable to identify wAen and Aow test vectors can be applied to the functional mod-

ules constituting the overall design, as well as how this can be done concurrently with the

functional operation.

DFG TDFG

R1#m R2

MISR

F/gure 2.37. Examp/e OFG and 70FG

For this purpose, Singh and Knight [79] propose the gropA (TDf G). In Fig-

ure 2.37, a DFG and a corresponding TDFG are shown. In both graphs, circles represent

operations (exactly as in Figure 2.33), while solid rectangles correspond to registers. The

graphs are also annotated with the symbolic names of the hardvyare units that implement

coiTesponding operations or register loads (e.g. multiplier Ml , register RX etc.). It is as-

sumed that control returns to control step 1, after step 4 is finished. From the figure, it is

obvious that hardware resources are used in the TDFG during a CS only if they are idle

during that CS in the DFG. A dedicated TPG and a dedicated MISR are further intro-

duced. The TPG provides test patterns at CS 3, while the MISR compacts the response of

a chain of operations during CS 2 of the subsequent execution. Observe that test data pro-

duced by the TPG goes through all system functional blocks and registers before reaching

the MISR, thus providing a degree of testing for all system hardware resources. According

to the test schedule of Figure 2.37, one test vector is applied to the system for every func-

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 7 8

tional execution. Longer DFGs would allow for more tests per execution. Flottes et al [80]

extend this work, by considering data dependent conditional branches in the system. Ef-

fectively, each conditional branch is considered separately and small TDFGs are derived

for each one of them. In [81], a practical case study of the ideas presented in [79] is given,

through the construction of a TDFG for a discrete PID regulator, while in [82] the muta-

tion testing idea (§2.2.3.2.2) is proposed to determine the test set the TPG will provide. A

problem with all these TDFG-based techniques is that the quality of test vectors applied to

modules can be rather poor. For example, in Figure 2.37 most multiplications in the TDFG

are either squarings of the input operand or multiplications by a constant; it can easily be

shown that both of these operations cancel out the pseudorandom properties of the vectors

the TPG is providing, thus leading to reduced detection capabilities (l o w e r c o v e r a g e

[1]). The insertion of more than one TPG in the TDFG is mentioned in [80] to partially

remedy this weakness.

2.2,3.3 On-line shift-based DFT

As well as BIST, shift-based design for testability has also been proposed in the on-line

context. Most of the work done in this field has been carried out by Ismaeel et al [83, 84,

85]. Naal and Simeu [86] presented their own contribution. The underlying principle in aU

these works is that selected DFG operations are targeted; both their input and output sig-

nals are shifted out at "convenient" moments, and the partial result produced by the chip

under test is compared against the expected result, produced b y external test equipment

using the above mentioned shiAed-out input signal values. The goal is to test each hard-

ware module using this shiA-based technique at least once in a time &ame called "pass".

The first obvious restriction of this approach is that the chip needs to be constantly moni-

tored by off-chip testing devices on the field.

In [84], idle-time operations are inserted in the DFG and targeted instead of the functional

ones implemented by the same hardware modules. This is shovm to promote register shar-

ing, thus minimizing the number of signals to be shifted out. In [86], factorisation of com-

plex arithmetic calculations is proposed, in an attempt to miaimize the number of hard-

ware modules required and increase idle time, which can in turn be used for redundant op-

erations, again providing opportunities for more efficient signal shifting. In [85], multi-

type units (ALUs) and multi-cycled operations are included in the discussion. ALUs are

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Test ing 7 9

tested at least once in a pass, for every operation they implement. Finally, [83] is the most

comprehensive presentation of this family of techniques. Signal shifting is explained in

detail and the use of concurrent testing registers (CTRs) is shown. CTRs are shift registers,

where copies of the values to be shiAed out are loaded at suitable moments, so that the

functional signal registers can be fully devoted to the functional operation, which is thus

not disturbed. Additional dedicated control logic provides the interface between the nor-

mal operation and the CTRs. The "pass" is formally deSned as max(NC,Ntest), where NC

is the total number of steps in the DFG, and Ntes, is the number of steps required to test

each module in the design exactly once.

2.2.3.4 Other approaches

The matehal presented herein concludes the background presentation of digital design for

on-line testability. The following two subsections cover generic techniques based on

.BTiST (§2.2.3.4.1), as well as schemes that are based on the analytical algebraic

description of the system functionality (§2.2.3.4.2).

2.2.3.4.1 Arithmetic on-line BIST

Arithmetic BIST is based on the observation that the combination of an arithmetic unit

(e.g. an adder) and a register can be used either as a TPG (by adding a constant value to

the contents of the register) or as a response compactor (by adding the test response to the

contents of the register). The arithmetic unit - register combination is defined as an arzYA-

The accumulator concept has already been encountered earlier in this

thesis (§2.2.1.2), where such a structure was used as a building block for a programmable

m/n checker (Figure 2.20). Originally exploited in off-line mode, arithmetic accumulators

are alternatives to the traditional LFSR-based BIST resources, since their outputs exhibit

similar properties to the LFSR outputs. Given enough functional resources that can be

combined into accumulators, the hardware overhead introduced by LFSRs can be avoided

[87]. Tliere have been several off-line arithmetic BIST techniques in the literature. For the

sake of completeness, a few recent ones are briefed here. In [87], the CUT is partitioned

into test blocks (consisting of one or more hardware modules) and accumulators are con-

figured around the boundaries of the blocks. LFSRs are introduced only when not enough

accumulators can be configured by the hardware resources available. Partitioning is driven

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 8 0

by a cost function integrating hardware overhead and performance penalty introduced by

test resources and the problem is formulated into an integer linear programming task. In

[88, 89], once more accumulator-based test conGgurations are presented and the module

assignment and module sharing problems are dealt with by a cost function driven heuris-

tic. The cost function incorporates area savings and testability gain, where the testability

gain is expressed by the accumulator-forming potential of any hardware assignment or

sharing decision.

On another note, Mukheqee et al [90] consider fixed-width multipliers fed by test patterns,

and observe that their outputs experience reduced pseudorandom properties, due to the

truncation of the least significant part. Reduced randomness results in inadequate testing

of modules driven by multiphers (a concept already encountered in this thesis in

§2.2.3.2.3). The authors of [90] propose adding the (normally truncated / wasted) least sig-

nificant part of the multiplier output to the most significant part, when in test mode.

Simulations estabhsh the improvement in pseudorandomness of the patterns produced at

the multiplier output. Motivated by this work, Gizopoulos et al [91] subsequently propose

partitioning a substantially sized circuit into chains comprising one multiplier and one or

two adders or subtractors. LFSRs are later inserted to provide BIST functionality to each

chain separetely, thus providing acceptable test coverage for the arithmetic modules of the

overall circuit.

The previously presented works form the foundation of an arithmetic BIST-based tech-

nique particularly named .gTiST (KBTiS'T), introduced b y Karri and Mukheqee

[92]. In VBIST, adders are used for test pattern generation (as in arithmetic BIST) instead

of the LFSRs used in [91]. The multiplier - adder chains of [91] are formed, and multiplier

outputs have their two halves added together for increased randomness as in [90]. Re-

sponse compaction finally takes place, again in the arithmetic BIST fashion, using adder-

based accumulators. In addition to that, the whole problem is addressed at the HDL level,

by modifying the functional descriptions of synthesizable circuits to include VBIST opera-

tions. Moreover, testing can be performed either off-line (as in [91, 87, 90, 88, 89]) or OM-

ZzMg, during the widely mentioned and in many ways exploited module idle time (hence

the versatile property). The technique is suitable for a rather restricted number of designs,

namely only those that can be partitioned into the multiplier - adder(s) chains of [91].

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 8 1

2.2.3.4.2 Analytical approaches

This subsection briefs a couple of techniques that especially focus on linear digital sys-

tems, manipulate their analytical equations, and derive suitable invariants that are moni-

tored to ensure correct operation.

Bayraktaroglu and Orailoglu [93, 94] deal with digital filters. They start from the digital

filter equation

(2.8)

M in equation (2.8) is a point of (discrete) time, while vectors and %[A:] are the output

and input vectors of the filter respectively, At is the coefficient matrix denoting the filter

flmctionality, and Mis the order of the filter.

After a few steps of algebraic manipulation [94], equation (2.9) is reached

A/
(2.9)

n = 0 /7=0

where / is an invariant property depending on only, and rm&t depends on filter coeffi-

cients and maximum (expected) input magnitude. Equation (2.9) is the invariant relation

that should always hold in the fault-free case, and it is this relation that the filter is con-

stantly monitored against. Two adders and two registers are introduced in the Glter realisa-

tion to calculate the sun:is of input and output signals and a checker determines if their dif-

ference is within the specified tolerance A fault or the accumulation of minor fault

effects is detected when it is not. With the addition of two multiplexers, a designer may

reuse the adder - register pairs in the input and output of the filter as arithmetic accumula-

tor-based TPG and MISR for off-line testing purposes.

Another analytical approach can be found in [95]. The authors address linear digital sys-

tems in general. Such a system can be described in matrix form as in the following.

%(f +1) = - %(/) + B «(/) ^

y(f) = C - %(r) 4- D - w(f)

where %(̂), y(r) and w(f) are state, output and input vectors respectively, while 4̂, .8, C and

Z) are system parameter matrices.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 8 2

Manipulating the above the authors come up with the equation

r(f) = v'' (f)] (2.11)

/-(f) is defined as the system jganYy cAecA;. }̂ *̂ (f) and [/^^(f) are vectors comprising the pre-

sent and delayed values of the output and input signals respectively. Matrix is a

time-invariant function of C and Z), while vector depends on and C only.

In the fault free case, the invariant property is f(f)=0. On-line testing is performed by syn-

thesizing the system defined by equation (2.11), including it in the overall implementation

and monitoring its output /^/).

2.2.4 Analogue electronics related techniques

A few representative analogue electronics-related techniques are briefly mentioned here.

The goal of such techniques is to detect a fault by means of its impact on analogue charac-

teristics rather than on logic values. Sometimes faults are detected because analogue char-

acteristics are corrupted at the same time as logic values (e.g. current monitoring, crosstalk

effects), while sometimes the effect of a fault on some analogue characteristic enables de-

tection the logic value is corrupted (e.g. delay testing). As chapter 5 wiU argue,

these approaches are not particularly useful for the purposes of the present thesis; the pres-

entation herein is, therefore, very brief^ and truly representative rather than exhaustive.

CwrreMf moMzVormg is the most developed of all the techniques in this family. It is based

on the concept that most physical defects in VLSI systems result in abnormal current con-

sumption. It can be performed either externally or by embedded A-m cwrrgMf

(^7Cj) [9]. An application of current monitoring is presented by Bogliolo et al [96]. Fault-

tolerant circuits based on (rzpZe moJwZar (ZMR) are considered. Such circuits

consist of three copies of the same hardware, followed by mq/orfYy voferj, and they offer

tolerance against single faults in any of the three rephcas, simply by fault masking within

the voting hardware. It is, however, desirable not only to mask a single fault, but also to

acknowledge its presence, since any faulty situation that leads to permanent damage in any

of the three copies will necessarily result in a circuit that is defenceless against any subse-

quent additional fault. The authors of [96] therefore design a novel m^ority voter, utilis-

ing an embedded current sensor for this purpose. When the sensor detects abnormal cur-

rent flow, the environment is informed that the circuit has lost its fault tolerant property.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 8 3

Paschalis et al [97] address (fg/qy A delay fault refers to a circuit wire

that does eventually take the value of the port driving it, albeit with an unacceptably long

delay. Delay faults are regarded as forerunners to logic faults; it is therefore desirable that

they be detected as soon as they appear. [97] defines a maximum delay that a wire can ex-

perience in order for the situation to be regarded as fault-free A

TSC (Definition 2.3) grro/- mcfzcaror is then shown, receiving a two-bit input and produc-

ing a two-bit output. This indicator consists of two 2-pair dual-rail checkers (§2.2.2.2),

suitable delay elements and some elementary control logic. It stabilises its output at the

fault-free indication whenever a fault-free value ("01" or "10") appears at its inputs. It also

does so when the input is fed by a faulty indication ("00" or "11") of duration less than the

discrimination time. In contrast, if the faulty input persists, then the error indicator locks

its output at the "00" or "11" state, and ignores any subsequent transition of its inputs, un-

til it receives a special "reset" control signal. The structure can be appended to the output

of a TSC checker (§2.2, §2.3) of any arbitrary code, enhancing it with concurrent delay

testing capabilities.

Favalli and Metra [98] consider c r o i ' j W A : i . e . logic faults that are due to the capaci-

tive coupling between two parallel lines in a system bus. Such faults are sometimes multi-

ple; therefore they are likely not to fall within the detection capabilities of a particular

EDC (§2.2). In [98], electrical simulations are conducted for buses encoded according to a

number of typical EDCs. The results of these simulations are used to establish analytical

expressions for the probability that a crosstalk fault will be detected by the EDC at hand.

Motivated by the significantly high fault escape probability of this study, the same authors

[99] present a novel, transistor-level detector design, especially tailored to target crosstalk,

delay as well as short-lived transient faults. This detector signals an error indication if a

transition occurs during the m^grvaZ, i.e. during a specified interval following

the rising edge of the system clock.

A few more reliability indicators are briefly mentioned in [9]. These include temperature,

voltage, output activity and radiation. None of them is reported to have been widely ex-

ploited though.

p. Oikonomakos, 2004 Chapter 2: An Overview of Electronic Testing 8 4

2.3 Summary

This chapter has given a full and comprehensive presentation of on-hne testing theoretical

concepts and practical approaches. In the area of self-checking design, varions error-

detecting codes were reviewed. Such codes provide excellent solutions for the reliability

of small-scale, mostly combinational circuits. Regarding large-scale systems, reliability

improvements have been attempted through the setting up of on-line BIST, scan-based

DFT, and, most usually, algorithmic duplication schemes. Some of the works proposing

such schemes included elements of synthesis-related considerations. However, none of

them comprehensively addressed all the aspects of automatic large-scale system synthesis

within the context of existing synthesis tools. Detailed critical evaluations of these tech-

niques in the synthesis context are needed; these are carried out in chapters 5 and 6 of this

thesis, followed by the specific contributions of this research work.

While the overall discussion in this chapter was very broad, particular emphasis was given

to elements of on-line testing that are actively exploited in the rest of this research work

and are therefore of particular importance for the purposes of the presentation herein.

These include :

» self-checking design theory

» parity, m/n and dual-rail checker designs

« algorithmic duplication-based self-checking, for substantially-sized sequential circuits

Chapter 3

High-Level Synthesis

High-level synthesis is addressed in this chapter. The fiindamental definitions and con-

cepts are given in section 3.1, while section 3.2 focuses particularly on the specifics of the

c o M f r o / (M D 0 D 6) High-Level

Synthesis Suite, which is used in chapters 5 and 6 for all the implementation and experi-

mental results of this thesis. Section 3.3 summarizes the chapter. Only synchronous sys-

tems with a single clock are considered in this work, and this will be implied throughout

this thesis.

Emphasis throughout this chapter is given to these high-level synthesis elements that are

most significant for the purposes of the present thesis. More detailed presentations can be

found in two recent dedicated PhD theses, by Wilhams [8] and KoUig [100].

3.1 Fundamentals

j . y : (or synthesis (also referred to as of digital

systems is the process of automatically extracting a^rrwcA^m/ realisation of the system

fiom the description of its [8, 100].

Typically, a high-level synthesis system is fed by a behavioural description written in a

/zarcfwarg ZoMguagg (HDL), most commonly the AzgA jpeecf

cz'rcuz'Ay //arafwarg Dgjcn)7^zoM 2aMgwagg ()/HDZ,) [48], although attempts at using other

languages such as 6)/j^g7MChave also been reported [101]. Note that this behaviouial de-

scription is limited to an abstract, purely algorithmic representation of the relationship be-

tween system inputs and outputs, with no exphcit timing or structure information. In fact.

p. Oikonomakos, 2004 Chapter]: High-Level Synthesis 86

Primary Conditiona
Inputs Signals

Glue'
logic

Primary Control
Outputs Signals

Controller Data path-

it is within the synthesis

process itself that such in-

formation is derived, and it is

included in the high-level

synthesis output, which is

again in the form of an HDL,

albeit at a lower level of ab-

straction, corresponding to a

netlist of components, storage

units and interconnect, typi-

cally referred to as a

/gvg/ (RTL) descrip-

tion, suitable for subsequent

synthesis by commercially

available low-level synthesis tools. This output is graphically depicted in the coMrro/Zer/

target architecture of Figure 3.1. From the figure, it is evident that the structure

of the resulting system consists of units, implementing the primary input / out-

put behaviour of the system, and a coMfro/Zer (or coM/roZ part, determining timing

issues. These two constituent parts communicate by means of the elementary, gate-level

' g/wg " logic. In essence, the controller realises a finite-state machine (FSM), thus provid-

ing timing information in the form of j'zgna/j to the data path. In addition, when

the initial behavioural description of the system includes conditional or loop statements,

then some of the signals produced by the data path need to be f e d to the controller in the

form of j ignak, in order for the FSM to con-ectly produce suitable next-state

information.

Signals

Figure 3.2 (taken from [8]) captures the typical HLS-based digital system design flow,

where the dashed rectangle defines the areas that a generic high-level synthesis tool oper-

ates on. The initial behavioural description is compiled, and an intennediate internal repre-

sentation of the system functionality and structure is formulated. It is on the data structures

corresponding to this representation that the system a/gorzY/zTTW are applied,

taking into account the designer parameter specifications (typically area and delay goals),

together with a /z'6ra/}'. This libraiy contains parameter information regarding

the data and control path units, storage elements and interconnect modules that are used as

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 87

^r

High-level Synthesis

Technology
Library

Simulator

RTL Synthesis

Compiler

Netlister

RTL
netlist

Internal
Representation

Designer
Specifications

Behavioural
Description

Synthesis /
Optimisation

Figure 3.2. HLS-based design flow

building blocks for the realisation of the system. That way, the tool is able to determine

the quahty of a given realisation of the system at any time, thus providing feedback to the

optimisation algorithm. Typically, this feedback greatly influences automatic optimisation

decisions. After all optimisation, a back-end netlister produces the HLS RTL output. A

ceZZ file (not appearing in the figure) is associated with this output. This file com-

prises synthesisable RTL HDL descriptions for all the above-mentioned system building

blocks. Note the relationship between this cell library and the technology library of Figure

3.2 : the latter comprises characteristics and properties (in a non-

standard, non-HDL format) for the HDL cells of the former. Fi-

nally, it is good design practice to simulate both the behavioural and the RTL descriptions,

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 8 8

in order to verify their equivalence, before feeding the latter to commercial, technology-

specific RTL synthesis tools for the actual implementation.

From the above brief presentation, it is obvious that in HLS-based design, the designer's

role is limited to providing the algorithmic description of the system fimctionality, along

with his or her specifications; the tool is responsible for the hardware realisation. Clearly,

this speeds up the design process tremendously, and minimises the possibilities of a de-

signer error, since describing the functionality of a system is m u c h easier, less time-

consuming and less error-prone than designing the actual structure. This highlights fast

as the big advantage of adopting an HLS-based design flow. It is also in-

teresting to observe that the only place in the design flow where target technology is con-

sidered, is the technology library. Given that a technology library file is normally a simple

add-on to the synthesis system, it can be deduced that the behavioural synthesis process is,

in essence, independent of target technology, and it can easily be modified to target alter-

native technologies, thus offering enhanced opportunities for experimentation.

Clearly, the heart of a high-level synthesis tool is the internal representation of the circuit,

and the synthesis algorithms that operate on it. The rest of this section is therefore dedi-

cated to these two elements.

3.1.1 Internal Representation

The internal intermediate form of a given digital system is the product of the behavioural

description compilation, sometimes including some source-code level trivial optimisa-

tions, and it should be chosen such that it can consistently represent the behaviour and

stmcture of the design. A widely adopted choice for this representation is the fZow

GropA (DFC). According to De Micheli [102], this giaph is formally defined as follows.

Consider a digital system whose overall functionality can be broken down to elemen-

tary tasks. These tasks can be logical (e.g. AND, OR), arithmetic (e.g. addition, multipli-

cation), comparisons, or data transfers. These operations are assumed to be fed by one or

more inputs, and to produce one or more elementaiy results.

j .2 : A data-flow graph of a given digital system is a directed graph

whose vertex set F={v,; z = l , 2 , . . c o r r e s p o n d s to the set of elementary tasks of the

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 89

Primary inputs

CS1

CS2

CSS

+3 A3

1 M1

system, while the directed edge set

v = l , 2 , . . . , coiresponds

to the transfer of data &om one opera-

tion to another.

An example DFG with only four opera-

tions is shown in Figure 3.3. The verti-

Primary output

F/'gi/re 3.3. examp/e cfafa-/7owgrap/7

ces and edges of definition 3.2 can be

observed in the figure. In addition,

some common conventional notations

and terms can also be defined. In par-

ticular, observe that every vertex / op-

eration is assigned a unique symbolic

name (conveniently indicating the type

of operation the vertex is representing), and annotated with the symbolic name of the data

path unit that implements the task. For example, in Figure 3.3, operation (addition) +1 is

shown to be implemented by data path unit (adder) A l , multiplication *1 is implemented

by multiplier M l etc. In the prevailing terminology, +1 is to Al , *1 to M l etc.

Related to allocation is the concept of fimctional modules to particular hardware

instantiations, taken from the cell library (§3.2). In the example at hand, +1 is allocated to

Al , and then a suitable (adder or ALU) cell is chosen from the cell library and bound to

Al , taking its parameters (area, delay etc.) into account. Further, in Figure 3.3 data de-

pendencies between operations can also be observed. For example, +2 has to be executed

after +1, since it is fed by its output. Recalling that only synchronous systems are consid-

ered, this practically means that 4-1 needs to be executed one clock cycle before +2, and its

result stored in an appropriate storage unit (register). +1 is then said to be one

coMfro/ (CiS^ before 4-2. Figure 3.3 clearly exemplifies the concept of control steps, by

representing their boundaries with dashed lines, and assigning a unique name to each one

of them (CSl, CS2, CS3). The total number of control steps in the DFG determines the

overall delay of the circuit, and is defined as the c n f / c a Z A DFG annotated with such

scheduling information is sometimes referred to as a (.WFG)

[103].

p. Oikonomakos, 2004 Chapter]: High-Level Synthesis 90

D F G 1

IF sel=1 THEN

_ a
DFG2 DFG3

While a DFG representation

is widely accepted as a con-

venient notation to represent

sequential circuits, it is not

suitable for representing de-

signs that include condi-

tional branches or iterative

loops. It has, however, been

extended to include such

constructs, thus giving rise

to the coM/roZ

(COf'G), loosely de-

fined iu the following [8,
F/gure 3.4. /In examp/e c o n W and dafa-/7ow grap/?

j. j : A control and data-flow graph is a hierarchical structure, which at the top

level describes the flow of contiol through the system as a directed graph, where each ver-

tex either corresponds to a separate DFG segment, or is a special "branching" vertex.

Figure 3.4 exemplifies the concept of a "branching" vertex, to represent a conditional exe-

cution situation. The rectangles annotated DFGl, DFG2, DFG3 correspond to normal

DFGs, like the one of Figure 3.3, while triangles signify branching nodes. Note that the

delay through branch DFG2 is not necessarily the same as that through DFG3; in such

cases, the critical path is defined as the longest among all paths that lead from the initial

control state to the final one. Once again, the critical path determines the overall delay

value of the system.

END F

Alternatively to the DFG / CDFG representations, fg^z-Mg/'j' (ETfTViy) [8]

can be formed. In contrast to the former, the latter require two different graph structures

for the control and data path parts of each design. In ETPN representation, the control path

is represented by a directed graph whose veitices correspond to the control states of the

design, and whose edges signify the flow of control. The graph representing the data path

is composed of nodes naturally corresponding to functional units storage elements,

with edges connecting nodes when there is flow of data between them. Edges in the data

path graph are annotated with the symbolic name of the control state during which flow of

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 91

data occurs; conditional edges in the control path graph are annotated with the symbolic

name of the data path signal that determines which branch will be followed. As an illustra-

tive example, Figure 3.5 shows a Petri-net equivalent of Figure 3.3. In contrast to the DFG

case, storage units are explicitly shown in the data path graph, and in Figure 3.5b they are

signified by the symbols a, b, c, d, t l , t2 and t3. Simple comparison of Figures 3.3 and 3.5

is enough to show the increased memory storage requirements that a Petri-net based inter-

nal implementation requires. It is also obvious, however, that such a representation makes

more information readily available; it is therefore more beneficial in terms of performance

if Sequent access to the data structures is needed.

In the rest of this thesis, both DFG and ETPN-based representations will be used for illus-

tration purposes, as applicable per situation.

p r i m a r y i n p u t s

A2

CS2
r

t 2

CS2

A3

1

CS2

t3

CSS

tVII

CS3
y

primary output

confro/ paf/i (bj dafa paf/i

A'gure 3.5. Extended r/med Pefn-nef based represenfaf/on of an examp/e d/g/fa/ sysfem

p. Oikonomakos, 2004 Chapter]: High-Level Synthesis 9 2

3.1.2 Optimisation and Design Space Exploration

Bearing in mind the concepts of scheduling, allocation, and binding explained through

Figure 3.3, it is now possible to provide a definition for the optimisation task.

: The design is the process of determining the optimal schedul-

ing, allocation, and binding for a design, such that the user specifications are satisfied.

The design optimisation problem has been shown not to have an analytical solution in fi-

nite time. Several heuristic algorithms have therefore been proposed, that aim at providing

as good approximate solutions as possible, in as little time as possible. Algorithms exist

that address the scheduling, allocation, and binding problems separately, or simultane-

ously [8, 100]. In brief, scheduling algorithms can be :

» : operations are scheduled in turns, one at a time, based on algorithm-

specific criteria

* : a default schedule is initially formulated, and suitable transfor-

mations are subsequently apphed to it. They can fiirther be distinguished into de-

rgrmm/jrn'c (e.g. integer linear programming-based), and (e.g. simulated

annealing)

Similarly, allocation is typically done using either :

» /(eraffvg /conafrwcfivg techniques : similarly to their scheduhng counterparts, op-

erations are allocated one at a time in turns, or

» techniques : these techniques rely on analysing the data path as a whole, and

then trying to simultaneously allocate all (or a significant number of) operations.

They are normally based either on grapA or on zMaz'/zeman'ca/

(e.g. once again, integer hnear programming).

Any fiirther presentation of generic optimisation algorithms exceeds the scope of this

work. The algorithms employed by the MOODS system are, however, explained in detail

in §3.2. For the time being, the concept of jpacg g.^ZorarzoM is introduced [8, 102].

j . J : Let n be the number of design parameters / user specifications. The ô ĝ y/gM

j'/pocg is an n-dimensional space spanned by these parameters, whose points include aU

possible alternative realisations of a single given design behaviour.

p. Oikonomakos, 2004 Chapters: High-Level Synthesis 93

The two parameters always considered first in HLS are the design area (related to the ac-

tual production cost of the circuit), and the design delay (corresponding to the system per-

formance). This gives rise to a typical 2-dimensional design space, depicted in Figure 3.6.

Clearly, not all points in the design space are achievable, since there are physical limits as

to how fast and / or small a circuit implementing a given behaviour can be. The

/-ggzoM of tlie design space is thus shown in the figure. However, not all achievable designs

are acceptable. The regzoM is the part of the achievable region that comprises

designs that satisfy the designer constraints. The process of considering alternative designs

within the design space achievable region until a design in the acceptable region is

reached, is commonly refenred to as jpczcg exp/orafzon. Since the designer require-

ments cannot be known a priori, it is important that a high-level synthesis tool be able to

explore as much of

the design space as

possible, as fast as

possible, so as to be

more likely to sat-

isfy strict con-

straints, in as many

design scenarios as

possible.
a c c e p ^ a b ^

reg/c

A
"c

'2
%

2
c

(0 8

achievable
region \ delay

1 constraint

area

F/gure 3.6. Typ/ca/ 2-d/mens/ona/ des/gn space

Three-dimensional

design spaces have

been proposed re-

cently, the third di-

mension most commonly being power consumption [104], or testabihty [103]. As will be

made evident in chapter 5 (§5.3.3.1), this present work also considers a three-dimensional

design space, where testability is the third dimension. Of course, in theory the de-

sign space can have more than the physically representable three dimensions.

In principle, transformational optimisation approaches are more abstract, take more com-

putational time and are capable of escaping local minima in the design space. Suitable

constructive approaches have sometimes been quoted to give better solutions [100], but in

theory they may not always reach the global minimimi.

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 9 4

3.2 The MOODS High-level Synthesis System

In this section, elements of the way MOODS performs the design space exploration proc-

ess and comes up with design implementations are provided. In brief^ when MOODS is

Arst invoked, the behavioural VHDL description is parsed and analysed, and an initial,

naive, maximally serial implementation of the design is formulated and stored in its inter-

nal data structures (internal representation). In this implementation, every operation is

scheduled on a separate control step and allocated to a separate data path unit. Clearly, it is

the biggest and slowest possible realisation of the design and it serves only as a starting

point. This initial design is consequently optimised by applying local, semantic-preserving

scheduling, allocation and binding to it, in an iterative manner, through

multiple repetitions of an Zooji?. The selection and targeting of transformations

to be applied is supervised by a suitable o/gorzYAm, and guided by a c o j f A f t e r

optimisation, and in hne with the paradigm of Figure 3.2, an R T L VHDL netlist is output.

This netlist is effectively an interconnection of instances of cells firom a suitably provided

MOODS cell library.

Topics covered in the following subsections are : the design internal representation within

MOODS (§3.2.1), the optimisation loop (§3.2.2), the set of available transformations

(§3.2.3), the cost function (§3.2.4), the algorithms currently available (§3.2.5), details

about the hardware model assumed for the control path (§3.2.6), and finally a list of the

MOODS cell library components (§3.2.7). Emphasis is naturally given to these elements

that are essential for this thesis, while further details can be found in the literature [74, 73,

8, 75, 104].

3.2.1 The l\/100DS Internal Representation

From the brief description in §3.2, it is clear that optimisation within MOODS is an itera-

tive process. This applies to both the scheduling and allocation tasks, since they are actu-

ally considered simultaneously, within the same optimisation process (§3.2.2). Therefore,

the data structures that form the internal representation are expected to be accessed very

frequently. As explained in §3.1.1, this makes Petri nets a tempting option for the internal

representation. Indeed, the representation fonned within MOODS closely resembles

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 9 5

ETPNs in that separate structures are stored for the control and the data path, in principle

formulated following the ETPN rules. However, it also features some non-ETPN ele-

ments. To name just a few, these include :

the control path node data structures include information about operations scheduled

for execution in them

there exist software pointers called connecting operation nodes

in the control path with datapath functional units

» a comprehensive set of control path node types is used, enabling the efficient represen-

tation of a substantial subset of behavioural VHDL constructs

« an additional concfzYzoM data structure encompasses information about instructions

executed only on a certain condition

All these additions (plus others not mentioned here) significantly enhance the semantic

power of the representation, and are presented in detail in [8].

3.2.2 The Optimisation Loop

The optimisation loop of Figure 3.7 is the heart of the optimisation process. It defines the

stages through which the system routinely cycles whenever an optimisation transformation

is considered, regardless of the actual nature of the transformation. The whole iterative

optimisation process is thus nothing but several repetitions of this loop. The different

phases of the optimisation loop are explained in the following.

During the jg/ecfioM phase, a transformation is picked firom the set of available transfor-

mations (§3.2.3) and the data which it wiU target are also selected. The optimisation algo-

rithm (§3.2.5) determines which transformation and data will be selected. Alternatively,

MOODS can run in an interactive mode, during which the designer goes through the op-

timisation loop "manually". It is to be noted, however, that irrespective of the applied al-

gorithm or interactive mode option, optimisation always proceeds according to the scheme

of Figure 3.7.

As is further clarified in §3.2.3, any given transformation can only target specific kinds of

data. For example, if a unit sharing transformation is selected, appropriate data are two

distinct datapath units of the same type (or compatible types). In addition to that, the de-

sign characteristics at a given time may (and often do) prevent a particular transformation

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 96

6-om being applied to a given set of data. In the example at hand, unit sharing is prevented

if, for instance, the two datapath units are both active during the same given control step.

Such design characteristics are checked during the stage.

If the given transformation on the given data is determined to be valid, the system pro-

ceeds to the stage. It is during this stage that tiansfoi-mations are actually

evaluated and it is determined if they are beneficial or degrading. This is done through the

c o j f (§ 3 . 2 . 4) . Note

that the same transformation

on the same data in a given

design may be either beneficial

or degiading, depending on the

designer specifications, re-

flected on the cost function.

Whether or not the transforma-

tion will actually be applied is

finally determined, once more

by the algorithm currently in

use (or by the designer, if in

interactive mode). Indeed,

there are optimisation algo-

rithms that occasionally accept

degrading transformations.

The execution stage of the loop

is self-explanatory : the trans-

formation is finally applied,

that is, the internal system data

structures are modified so as to

reflect the change in the con-

ceptual design realisation.

(rans/bfTn
and data
ge/echon

esffmabon

pemifTn
fransformaf/onZ

yes

1

execuf/on

pe/form
anof/ier \

(ransAormaBonZ

After execution, or if either the F/gure 3.7.' MOODS opf/m/saf/on /oop

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 97

validation or the execution stage fails, there is the option to either proceed to another

transformation or finish optimisation. The point at which optimisation actually finishes is

once again determined either by the algorithm in use or by the designer interacting with

the system.

3.2.3 Transformations

symbolic
name

description type of
transform

TF2 sequential merge scheduling
TF3 group instructions on register scheduling
TF6 ungroup to time scheduling
TF7 ungroup on group scheduling
TF8 merge fork and successor scheduling
TF9 parallel merge scheduling

TF10 share functional unit allocation
TF12 unshare functional unit fully allocation
TF13 unshare single instruction from

functional unit
allocation

TF21 unshare single instruction from
control state

scheduling

7a6/e 3.7. T/ve sef of at/a/Vab/e frans/bmis

Table 3.1 presents

the set of transfor-

mations available

within MOODS.

Each transformation

is uniquely identi-

fied by a symbolic

name appearing in

the first row; a brief

description is also

provided in the sec-

ond row. Finally,

the third row gives the type of the respective transformation, that is, classifies it as either a

scheduling or an allocation transformation. These transformations are explained in more

detail in the following [8].

The jggwg/in'aZ merge transformation (TF2) targets two sequential control nodes, as are,

for example, nodes CSl and CS3 of Figure 3.5. It results in a single control step, encom-

passing all operations of the targeted steps. Practically, ail operations of the temporally

preceding step (CSl in the example) are moved to the temporally succeeding (CS3), and

the former is optimised out, thus saving one control step in the overall critical path. If the

merged control nodes include any two operations that feed one another, then the register

that originally stored the intermediate result across the CS boundary is also optimised out,

and the two operations are c/zamecf within the resulting control step. One single operation,

or two or more operations scheduled for serial (chained) operation within the same control

step wiU hereby be referred to as an operation (or instruction) growf. In order for trans-

formation TF2 to be applied, the test phase of the optimisation loop checks that : a) no in-

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis

structions in any of the merged control steps share any hardware, unless they are mutually

exclusive, b) any possible chaining does not violate the designer clock period specifica-

tion, and c) there are no data dependencies between the top state instructions and any in-

structions in the states between the targeted ones. For example, referring back to Figure

3.5, this last check ensures that no output of any operation in C S l is needed in CS2; there-

fore, the operations of CSl can be moved to CSS.

Transformation TF3 (growj:) OM rgg/jfer) targets a given register, and aims ex-

clusively at optimising it out, by chaining the two instructions writing to and reading &om

it. Once more, the corresponding control states are merged, and the instructions form a

group. Clearly, TF2 and TF3 can often have exactly the same effect; however, their start-

ing points (targets) are different, and are therefore considered separately. The tests re-

quired to ensure validity of this transformation are the same as for TF2, plus an additional

check that no other instruction writes to the given register, or reads &om it, so it can safely

be removed.

Transformation TF6 fo fme) is the first "undo" transformation presented here. It

targets a single control node, and it is only meaningful if the targeted node is the result of

any of the merging transformations (TF2, TF3, TF8, or TF9, the last two presented later in

this section). It also takes a maximum execution time value as input, and checks whether

the given node requires more than this time for all its operations to be fully executed. If it

does, then the transformation tries to locate any groups of chained instructions, and tm-

group them, by introducing new control steps and new registers to carry intermediate val-

ues across their boundaries. Although new control steps are introduced, possibly lengthen-

ing the critical path, the transformation can result in actual improvements in system per-

formance, since breaking long chains of operations is often expected to enable higher

clock frequency values to be achieved. Further, "undo" transformations are useful in algo-

rithms that accept temporary degradation in system quality within the optimisation proc-

ess, such as the simulated annealing algorithm (§3.2.5). In practice, TF6 can rarely be in-

valid, mostly in situations resulting from the sharing of registers among several system

variables. Such sharing is, however, not permitted in this work.

TF7 (wMgrowj) OM group) is another "undo" transformation. Once more, it targets a single

CS, and it is meaningful only when the given CS encompasses more than one gi oup of in-

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 99

structions. This can be two or more single (or chains of) instructions executed in parallel

within the same step. It simply creates a new dedicated control step and schedules a cho-

sen group in this step.

TF8 (/MergeybrA: oMt/ j'wcce^j'or) is a control step merging transformation, allied to TF2

and TF3. It involves ybrX: nodes in the control path, that is, nodes with multiple output

edges, resulting 6om conditional or loop behavioural VHDL statements. It merges a given

fork node, with its immediate successor, practically by moving the operations executed in

the successor node up to the top one, in the form of operations executed A

simple example is considered in Figure 3.8. 3.8a depicts the original situation. CSl is the

fork node, while CS2 and CS3 are the two successors. The CSs are also annotated with the

instructions that are scheduled in them, and z'j respectively. When condition "sel" is

true, then CS2 is visited and executed; otherwise CSS is visited and ; j executed instead.

Both cases are followed by CS4 and the execution of its respective instruction zV. In Fig-

ure 3.8b, TF8 targets steps CSl and CS2. As the figure shows, CS2 is dropped and is

moved to CSl, together with its execution condition "sel". A second immediate execution

of TF8, this time targeting CSl and CS3, results in the simple situation of 3.8c, where the

fork node and both of its successors have been substituted by a single node, featuring the

original zV and two mutually exclusive instructions. Having abolished the fork construct,

the system now has enhanced potential for scheduling optimisation, by further applying

sequential merge transformations. Interestingly, TF8 can be considered as a generalised

version of TF2, since any normal control state within a sequential branch (Figure 3.5), can

be considered as a "fork" with a single successor. This is why it is often used within

MOODS instead of TF2. Naturally, the validity check for TF8 consists of the usual hard-

ware sharing and clock period tests.

C S 1 j / Y , / 2 (s e l)

C S 3 /3

C S 4

(C ^ —
/2 (sel), (sel)

(c ^ / 4

(a) on'g/na/ sfafe (6) app/y/ng 7F8 on CSt CS2 ('c) app/y/ng 7F8 on CSY, CS3

Figure 3.8. TF8 example

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 1 0 0

The last control step merging transformation available in MOODS, is the poroZ/e/ mergmg

one (TF9). This transformation targets two parallel control nodes, that is two nodes that

are unconditionally visited concurrently. Clearly, there is no reason why the control path

cannot be simplified by merging the two into one, encompassing all concurrently executed

instructions of both. When TF9 is considered, the check phase of the optimisation loop

simply needs to verify that the given states are truly parallel.

Three allocation transformations are presented next. TFIO uMif j/ian'Mg) natu-

rally targets two functional units and attempts to create a combined one, and allocate to it

all the instructions originally allocated to the targeted units, by introducing suitable multi-

plexers to implement time-sharing. Clearly, the validity check phase should ensure that the

units are not concurrently active (no concurrently executed operations have been allocated

to them, except mutually exclusive ones). Of course, the two units must be either of the

same type (e.g. two multipliers), or of such types that can be combined into a single arith-

metic and logic unit (ALU). The latter case will not be fiirther considered here.

TF12 (uMgAarg)̂ Mcf;oMaZ wnif targets a single functional unit that has been the result

of one or more executions of the previously presented TFIO. The result of TF12 is a num-

ber of new, suitable, non time-shared units, each one of them implementing only one of

the operations previously allocated to the targeted unit. This transformation is always

valid, although it is meaningless if a unit implementing a single instruction is targeted.

TF13 (wM.yAarg jmg/g w«zV) is a low-level version of unit un-

sharing. Just like TF12, a previously combined fimctional unit is targeted; this time,

though, one of the instructions it implements is also given. It results in a single unit im-

plementing the given instruction, and an additional unit implementing aU the instructions

previously assigned to the targeted unit, except the extracted one. TF13 is naturally also

always valid, provided that it is meaningful.

The last transformation presented here is TF21 (z/M ŷ/zare

It targets a particular instruction, and creates a dedicated control state for it, either

before or after its original control state. Any other instructions originally scheduled for the

original control state are either unaffected, or have a new control state created for them, if

data dependencies suggest so. This transformation can always be apphed, and it does not

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 1 0 1

greatly contribute to the tool optimisation potential. It is, however, a powerful tool in cer-

tain situations (e.g. in the expanded module experiments described by Williams [8], as

well as in §6.4.3 of this thesis).

Note that no binding transformation has been described in this subsection; indeed, in the

version of MOODS used for the purposes of this work, there only exists one hardware cell

for every functional module type (§3.2.7). Binding is therefore restricted to a one-on-one

mapping of modules to cells, and does not provide scope for iterative optimisation deci-

sions. However, an "alternative binding" transformation exists within MOODS [8]; this

transformation could accommodate a more evolved version of the cell library, thus con-

sidering the binding problem within the optimisation loop. Finally, a few additional trans-

formations are mentioned in [8], such as register sharing, and clock period scaling, but are

mostly implemented for experimental purposes, they are not shown to be critical for the

optimisation process, and are not explicitly considered here.

3.2.4 Designer specifications and ttie cost function

As a first step towards setting up a synthesis session, the designer specifies his or her con-

straints in terms of the design characteristics, namely :

« area (in a technology-specific unit, e.g. logic gates or FPGA slices for ASIC or FPGA

technology respectively)

* delay (typically in nanoseconds)

» clock period (also in nanoseconds)

Other characteristics also mentioned in [8] (total number of nets, static power consump-

tion) are not considered here.

The clock period value is used during the test phase of several state merging transforma-

tions (as mentioned in §3.2.2), to determine the feasibihty of the given transformation.

Typically, a low period value prevents excessive state merging and operation chaining, but

of course leads to a higli frequency Gnal implementation. If the designer specifies no clock

period value, the system calculates a default one based on the current implementation de-

tails [8]. This is not further considered in this thesis, and a designer-specified period is im-

plied hereafter.

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 1 0 2

Regarding the other two design parameters, the designer also gives corresponding priority

(first or second) preferences. Using these priorities, MOODS implements a

quantifying the quality of any given instance of the system under optimisation. This func-

tion is invoked in the optimisation loop during the cost estimation phase (§3.2.2, Figure

3.7), and is used to forecast the effectiveness of the considered transformation, with close

respect to user requirements, as these are reflected in both the desired values and the speci-

fied priorities.

More specifically, MOODS constantly keeps track of the circuit area calculated using the

following formula :

area = ^ areajp + ^ area^p + ^ areoj (3 . 1)

where the three factors represent the sum of the area of all data path units, the sum of the

area of all hardware modules constituting the controller, and the sum of all interconnect

modules (multiplexers) respectively. It should be recalled that the module area values used

to calculate (3.1) are known to the system through the technology library.

The total delay is simply calculated as the product of the critical path by the clock period :

(/e/oy = (criVzca/ _)x) (3.2)

The cost fiinction characterising tbe system can now be expressed as :

X <̂3 + CoTe/ay X (/e/oy (3.3)

Coreo and are priority-related (therefore weighting constants. In

essence, the goal of the whole optimisation process is the minimization of equation (3.3).

Practically, during the estimation phase, the synthesis system calculates the change in "en-

ergy" of the circuit that is expected to occur if the transformation under consideration is

applied. The change in energy for a given parameter f is given by :

P — P

^ m/Zza/ arg e/

where

is the current value for parameter f (calculated by either equation (3.1) or

(3.2), depending o n f)

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 1 0 3

is a rough estiomtion of the efE'ect tlie transform wiU have on the value of f

if it is apphed

f is the value of f in the initial, totally unoptimised design (§3.2)

f/orge/ is tlie user specification itself

Very often is assumed to be assigned the zero value, both for area and for delay.

While neither of them is feasible, such a set of specifications can be used by a designer to

demand a circuit that would be "as hardware-efficient as possible, and as fast as possible".

For the rest of this thesis, this assumption wiU be implied, unless otherwise stated. Under

this assumption, f(a;^g,can be omitted &om equation (3.4), and the equation then expresses

the estimated change in the value of the parameter, normalised over its initial value. Re-

garding the f valuB, this is calculated separately for every transfoimation, by spe-

cially written software functions within the synthesis system, giving emphasis on speed of

calculations, rather than on accuracy.

The overall energy change of the design is nominally calculated by averaging the energy

changes of a l l p r i o r i t y requirements OM/y. Given that only two parameters have been

mentioned up to now, this practically means that if area optimisation is the first priority

and delay the second, then only the change in area energy is considered, and vice versa.

Averaging occurs when the designer specifies equal priorities.

Ultimately, if the energy change of the design is negative, then the transformation is con-

sidered to be beneficial; otherwise, it is regarded as degrading.

3.2.5 Available algorithms

As regards the algorithm that supervises the optimisation process, in the current version of

MOODS there is a choice of either the general-purpose simulated anneahng algorithm, or

goal-oriented tailored heuristics. These choices are described in the following subsections.

3.2.5.1 Simulated annealing

Simulated annealing [8] is a generic optimisation algorithm for minimising functions of

many variables (in our case, the cost function). Its name is derived from the statistical me-

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 1 0 4

chanics method of annealing in solids. In the synthesis context, the designer specifies an

"initial temperature", a "terminating temperature" and parameters to determine how

slowly "temperature" will decrease. Random transformations are chosen and evaluated. At

any given point of time, the current temperature value 7 and the estimated energy change

associated to the transformation at hand (§3.2.4), are used to calculate a fArgjAo/af value fA,

as in the following :

(3.5)

If a transformation is improving, it is applied; otherwise, a random number is generated,

and if it is greater than the threshold, then the transformation is rejected. If the random

number is lower than the threshold, then the transformation is applied o/fAowgA it is de-

grading. The temperature is decreased in every optimisation loop step, and at the same

time the threshold is reduced, as can easily be confirmed from equation (3.5). Therefore,

the more time passes (and the lower the temperature gets), the more the probability that

degrading transformations will be accepted decreases. Accepting degrading transforma-

tions in early stages of the design process can be usefiil to avoid cost function local min-

ima, therefore exploring the design space better, in the search for the global minimum. As

the design "cools down", only upgrading tiansformations are accepted, so that the global

minimum is reached. Despite its randomness, this algorithm asymptotically converges to

the global minimum of the function under minimisation.

The main advantage of simulated annealing is its abstractness and its ignorance of any

physical significance of the variables that the cost function under minimisation depends

on. Effectively, using simulated anneahng, whatever can be quantified and included in the

cost function, can also be optimised. The main problem is its very slow speed, especially

for large designs. In essence, while an optimum solution is theoretically guaranteed, the

algoritlim is so slow that it can be impractical for the designer to wait for it.

3.2.5.2 Tailored heuristics

In order to speed up the design process, goal-oriented tailored heuiistics are also available.

There are three versions : oriented towards minimising area, delay or both. The basic idea

behind these heuristics is reflected in Figure 3.9. In the DFG of 3.9a, the original state of

two control steps, featuring a single addition each, is shown. In 3.9b, transformation TFIO

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 105

(unit sharing, §3.2.3) is applied, and the adders implementing the two operations are com-

bined. The design is clearly optimised for area, control steps CS1 and CS2 can no

longer be merged unless the algorithm allows a degrading "undo" transformation. In the

alternative 3.9c, the design is optimised for speed, by merging control steps CSl and CS2

through TF2 (sequential merge, §3.2.3); Aowever, the adders cannot be combined any-

CS1

CS2

+1 A1

+2 A2

CS1

CS2

+1 A1

+2 A1

CS1 +1 A1 / + 2 W

(a) on'ginal state (b) optimising for area (c) optimising for delay

F/guns 3.9. s/mp/e dafa-Aow grap/?opf /m/s;ng for conffad/cf /ng goa/s

more, as they are active concurrently, therefore the design will be fast and comparatively

expensive. This small example illustrates the well-known concept that area efficiency and

speed are contradicting goals; fiirther, it shows that if either of them is first priority over

the other, then as much optimising of the first priority as possible needs to be carried out,

considering the second. Otherwise, optimising the second priority goal is likely to

block the 6rst, and that would be a most undesirable effect. Moreover, if the topology and

the operation of the circuit pennit it, it would be beneGcial to optimise the first goal in

such a way, that situations like these of Figures 3.9b, 3.9c are avoided, in order that the

optimisation potential of the second goal is not hindered unnecessarily.

In order to serve these purposes, the tailored heuristics framework fuither associates a

number of metrics and indicators with the MOODS internal data structures corresponding

to a given design. These metrics and indicators are briefed in the following :

« a .yAcrreaA/Zzi);yacfor is associated with each data path unit. In effect, this factor ex-

presses the area that will be saved if the unit at hand is combined with all other units of the

same type, thus quantifying its hardware sharing potential. Clearly, when optimising for

area, datapath units with high shareability factors should be preferred.

« a j/acA value is also associated with each control node, suggesting how "far away"

from the critical path the node is. A zero slack value signifies a node on the critical path,

while positive values indicate non-critical path nodes; further, the shortest the path on

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 1 0 6

which the node is, the highest the slack value [105]. When optimising for delay, control

nodes on the critical path should be targeted primarily.

a cnYfca/ yacfor is calculated for each datapath node [8], corresponding to the per-

centage of instructions implemented by the unit at hand, that ai'e scheduled for execution

at control nodes on the critical path. If units with high critical path factors are shared, then

situations like that of Figure 3.9b are hkely to arise and block subsequent critical path

node merging / delay optimisation. It is therefore desirable that when optimising for area,

preference be given to units with low critical path factors.

» a yacfor is calculated for each control node; this corresponds to the percentage of

operations scheduled for the particular node, that have been allocated to a unit with a posi-

tive shareability factor. Merging control nodes with high share factors is likely to produce

situations like the one of Figure 3.9c, where no subsequent area optimisation is possible. It

would therefore be preferable to choose control nodes with low share factors, if such

nodes can be identified in the system.

Based on the above indicators and metrics, two software routines have been deSned, that

are later suitably combined to construct the heuristic optimisation algorithms. These rou-

tines aim at optimising the first priority objective, while minimising the negative effects

on the secondary one. They are :

» : it is used to minimise the critical path length, by successively applying

transformations TF8 and TF9 (§3.2.3). It is fed by a threshold share factor value, and tar-

gets all nodes whose share factors are calculated below that threshold.

« : performs hardware sharing between functional units, by repeating trans-

formation TFIO (§3.2.3). A threshold critical path factor value is given to it, and aU data

path units with critical path factors below that threshold are considered.

The flow charts for the tailored heuristic optimisation algorithms are now shown in Figure

3.10, taken from [8]. From the flow charts, it is obvious that an initial zero value is first

assumed by the threshold values, to be incremented in subsequent iterations. This way, the

optimisation moves that are most effective as far as the first priority is concerned, and less

impairing, as regards the second criterion, are given preference. A more complete version

of the tailored algorithms is given in [8], taking into account the possibility to meet user

constraints before the threshold value takes the 100% value; in this presentation, the flow

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 107

charts have been simphfied under the "as cheap as possible and as fast as possible" as-

sumption mentioned in §3.2.4.

As is evident from the above description, only a small subset (TF8, TF9, TFIO) of aU the

available transformations are considered in the tailored heuristics. The reason for this is

that these three transformations have been shown to contribute the most towards the opti-

mum design solution. The heuristic approach has been proved to be much faster than

simulated annealing. However, it is absolutely parameter-oriented and therefore not easily

expandable to include additional criteria. Further, there is always a risk to end up in a local

rninimiun instead of the global that is searched for, because only improving transforma-

tions are considered.

sAare /acfor f/imsAo/d. =0

compact_CP
/ncremenf sAare facfor

(AmsAo/d

yes

cnbca/pafh facfor
fA/esAo/d '=0

compac(_OP
mcmmenf CfYb'ca/ paff?

^cfor fAmafio/d

//7reyAo/:/=

EA/0

cnOca/ pafA /acfor
fhresho/d -0

compact__DP
/ncmmen(cn(/ca/ paff?

///cuZ/w/Aycfc/oTv no

s/;are ^cfor f/imsAo/d. =0

compacf_CP
/ncremenf sAare facfor

fAresAo/d

E/VO

cf*'ca/paf/? ̂ c(or
(hrssAo/d .'=0

shafe factor (AresAo/d .=0

compact_DP

compact_CP

increment thresholds

W7are o/K

fAwAo/f/ =

E/VO

(aj ra;/ored fo de/ay Tayyored fo area Ccj Equa/ pnon'f/es

F/gure 3. YOF/ow c/)a/fs /br /?eur/sf/c opf/m/saf/'on a/gonY/ims

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 108

3.2.6 Hardware model

This chapter continues with a presentation of the actual hardware model of the MOODS

output designs. As already mentioned, the data path is simply an interconnection of func-

tional units, registers and multiplexers (a list of these building blocks is given in §3.2.7).

Therefore, it conforms to the typical structural / RTL data path modelling. The MOODS

controller architecture, though, has some interesting properties, and it is for that reason

that it is presented here in detail, given also that it is greatly referred to in chapter 6, when

controller self-checking design is considered.

Figure 3.11 shows a conceptual model depicting the communication between the control-

ler and datapath in a system like the one of Figure 3.1. The datapath is shown on the right-

hand side of 3.11 in a form that resembles a data-flow graph, where storage elements are

also shown (although this is not consistent with the formal definition 3.2). In the particular

data path example, four operations (01 - 04) are scheduled over three control steps (N -

N+2), and the registers shown are used to store and preserve intermediate results across

control state boundaries. The internal structure of the controller is not yet revealed; never-

theless, the figure shows how the controller outputs (hereafter coM/roZ ẑgMoZj) connect to

the data path. Specifically, the control signals feed the storage registers' "load enable"

ports, and this connection determines when the operation is actually executed. For in-

condit ional s ignals

F/gure J.YY Commi/n/caf/on be tween cfafa paf/? a n d confro/Zer

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 1 0 9

Stance, operation 0 4 is assigned to a fiinctional module; assuming that the module is com-

binational, some logic value always appears at its output port. However, the value is stored

in the appropriate register oM/y at CS N+2; in that sense, 04 is executed at N+2, and

the corresponding functional unit is said to be acfzve only then. Clearly, in order for this to

happen, the control signal corresponding to N+2 should assume the "true" value during CS

N+2, while all other control signals should assume "false". If (without loss of generality)

"active-high" encoding is assumed, then this example shows that the controller output

should by definition be "one-hot" encoded (§2.2.1.2). While this is a general observation

that applies to all controller / datapath architectures, the actual controller implementation

can be quite different from system to system.

For the sake of completeness, it should be noted that, together with register "load-

enables", the controller outputs also feed multiplexer "select" ports in the data path. This

has no imphcation whatsoever as regards the purposes of the present thesis, and will there-

fore not be considered anv further.

> o u t enab

^—

F/gure 3. Y2 .' TTie genera / confro/ ce/ /

Within MOODS, the controller is implemented using a special hardware cell defined

within the VHDL cell hbrary (§3.2.7), namely the ggrngm/ ce/Z. Being part of the

library, this cell is described in RTL VHDL, and its actual structure is derived by RTL

synthesis tools. Figure 3.12 shows the typical implementation for this cell, as synthesised

by Mentor Graphics LeonardoSpectrum, version 2002e.l6. A cell of this type corresponds

to a unique state in the control path. A D-type flip-flop is the basic building block for the

cell. The D-input of the flip-flop is the OR function of a number of tokens, corresponding

to the predecessor states in the control path. In the example of Figure 3.12, a 3-bit token

input is shown, meaning that the given state is the successor of any of three different

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 110

states. If the control state implemented by the particular cell is visited conditionally, then

the input tokens are the result of the AND function of the corresponding predecessor state

signal(s) with suitable conditional signals, produced by the data path. Finally, the flip-flop

Q-output (labelled out enable in 3.12) is essentially the control signal of the state at hand,

which is fed to appropriate data path storage units, as well as to the successor state(s) gen-

eral control ceU input token(s).

The whole controller is thus implemented as Figure 3.13 shows. The control signals are

directly led to the datapath; they are also fed back to the general control cells, properly re-

arranged so that each control signal is input only to the cell(s) corresponding to its succes-

sor state(s). In addition, conditional control transitions are implemented where necessary

by a block of AND gates, also fed by the appropriate conditional signals, as shown. In ef-

fect, the operations described above (ANDing, followed by rearrangement, followed by

ORing within the control cells, as shown in Figure 3.12) correspond to the next state sig-

Condi t iona l

s ignals

rst

tokef

tokens

tokens

AND

General Q
Contro l

^ Cell

General Q
Contro l

Cell

Genera l Q

Control
Cell

t o data path

F/'gure 3. ; 7/76 confroZ/er generated by MOODS

p. Oikonomakos, 2004 Chapter 3: High-Level Synthesis 1 1 1

nal generation, thus making the MOODS controller model a proper FSM. Clearly, the

number of flip-flops is equal to the total number of control states. This is considered to be

an expensive but fast implementation in VLSI (ASIC) technology, while it appears much

cheaper in FPGA technology, due to the existence of dedicated storage elements within

FPGA slices [106].

3.2.7 The cell library

This subsection concludes the presentation of MOODS by providing a list of the hardware

cells made available to the system through the cell library. These cells include [105] :

. logic gates : "NOT", "AND", "OR", 'TSTAND", "NOR", "XOR", "XNOR"

« conventional, single-bit output equality comparators : "9^"

» unsigned and signed integer arithmetic comparators : "<", ">", ">", ">/:^' (ALU)

» left and right "shift" and "rotate" modules and ALUs

« b o ± unsigned and signed integer arithmetic functional blocks : negator ("unary mi-

nus"), ripple-carry adder - subtractor - add/subtract ALU, incrementer, decrementer, mul-

tiplier, absolute value calculator

» typical digital logic RTL blocks : register, up-counter, down-counter, multiplexers,

decoder

» control cells : general control (§3.2.6), call control

» auxihary cells : concatenation, unsigned and signed bit extension

The functionality of most of these cells is obvious from their names, as they correspond to

the usual elementary operations found in VHDL or any other programming language.

ALUs in this context are essentially combined cells capable of implementing alternative

types of operations, depending on the value of suitable controlling signals. The "call con-

trol" cell is a special cell used to implement VHDL p r o c e d u r e and f u n c t i o n con-

structs. With such a rich collection of hardware modules, a very good subset of the VHDL

language can be synthesised. This subset includes all common logic and integer arithmetic

statements, loop and conditional statements, subprograms, as well as multiple concurrent

communicating p r o c e s s blocks.

p. Oikonomakos, 2004 Chapter]: High-Level Synthesis 1 1 2

3.3 Summary

The fundamental concepts of high-level synthesis have been covered in this chapter. Par-

ticular emphasis has been given to the incarnation of these concepts within the MOODS

high-level synthesis system. As a concluding remark, it is important to once again stress

that the whole performance of MOODS highly depends on the following three elements :

» the set of transformations

" the available algorithms

» the cost function

Clearly, this means that any attempt to alter, refine or enhance the MOODS fiinctionahty

should focus on expressing the alterations, refinements or enhancements through the

above elements.

Chapter 4

Fault Simulation Techniques

When a fault testing or fault tolerance strategy is applied to a digital circuit, it is desirable

to determine or demonstrate its effectiveness against the most commonly occurring faults,

before putting the circuit into action. For this purpose, a number of controlled experiments

are typically conducted, wherein the behaviour of the system is intentionally altered to

imitate its predicted behaviour in the presence of the targeted faults. This is the topic of

fjy'gcA'oM a n d T h e relevant material in the literature is extensive;

practically, every research group concerned with testing, has to a ceitain extent also

worked with fault simulation, in order to validate their work. Fault simulation experiments

have been carried out in this work as well (§7.1.2.1). The present chapter briefly describes

a small number of representative fault simulation techniques, thus providing the founda-

tion for the experiments of chapter 7.

4.1 General

In order to vahdate the reliability of a design, four alternative approaches have been ap-

phed[107, 108, 109] :

* Aarc/warg zM/'ecfz'oM : this is done after fabrication, and it consists of

iryecting faults in a sensitive fabricated chip, by disturbing critical factors of the environ-

ment. Most commonly either heavy ion radiation or electiomagnetic interference is used

for this purpose.

* /azz/f zVygcfzoM : the software of a microprocessor-based system is

changed such that the processor behaves as if under the presence of a physical fault.

* Zogzc (mp/emeM/gof/M/'ecfzon : the hardware system is initially pro-

totyped on a programmable logic part (FPGA). Faults are injected on the part either

p. Oikonomakos, 2004 Chapter 4: Fault Simulation Techniques 1 1 4

through suitably added control lines or, in certain state-of-the-art FPGAs, through dy-

namic partial reconfiguration.

» /awZr /yy'eĉ zoM : this is done at the pre-manufacturing design stage.

Typically, at this stage the system is described in the form of some hardware description

language code, and fault injection is done by suitably perturbing this description, so that

the resulting system would emulate faulty behaviour.

A survey of hardware- and software-implemented fault icyection methods can be found in

[110], while [111] includes comprehensive information on radiation-based fault ir^ection

in an industrial setting, followed by standardised certification of chip performance in hos-

tile enviroimients. Injecting faults on programmable logic parts is an interesting and rela-

tively new idea, constantly gaining ground as FPGAs themselves gain ground. It is pro-

posed as an alternative to HDL-simulated fault iryection, and the main motivation behind

an FPGA approach is that programmable logic emulations of hardware parts are much

faster than HDL simulations running on general-purpose computers. Therefore, an FPGA-

based fault injection experiment is due to finish faster than an equivalent experiment on a

software simulator. In [112], Civera et al set up a fault iiyection configuration based on

programmable logic, wherein bit-flips (i.e. bits that have their fault-free values comple-

mented) are injected on the storage elements of an FPGA prototype by a host computer.

The injection is implemented by dedicated hardware added to the storage elements, while

the information regarding which faults will be iiyected during a given experiment is com-

municated to the FPGA from the host PC through a suitable additional system primary in-

put and a chain of "mask^' flip-flops connected together in a scan register fashion similar

to that of Figure 2.3. Alternatively, Antoni et al [109, 113] exploit the runtime partial re-

configuration capabilities of modem Xilinx Virtex FPGAs [106] to irject faults once more

in memory elements, this time by partially substituting the original fault free FPGA con-

figuration with one that demonstrates selective faulty behaviour. The advantage is that no

permanent additional hardware infrastructure or primary input needs to be inserted for

fault injection purposes; the price is that frequent reconfiguration, even partial, slows

down the experimentation, cancelling out the speed benefit of FPGA emulation.

This chapter is hereafter concerned solely with simulation-based fault injection on HDL

descriptions.

p. Oikonomakos, 2004 Chapter 4: Fault Simulation Techniques 1 1 5

4.2 Representative simulation techniques

Motivated by the extensive use of the VHDL language [48] in present-day CAD, several

researchers have proposed approaches to faciUtate fault iryection and simulation in VHDL

models of digital systems. A representative number of such approaches are covered in this

section.

A typical example of injecting faults at the logic gate level can be found in [114]. The first

three tasks addressed therein are to analyse the fault behaviour of the basic logic gates,

identify fault dominances and equivalences [1], and define corresponding gate

VHDL descriptions. Mutant descriptions in this context are VHDL models that behave

identically to the original gates in the fault free case, but imitate well-defined faulty behav-

iours when suitable values of added control signals dictate so. Armed with these mutant

gate models, and given any complex system gate-level netlist, the authors of [114] substi-

tute the original gates with the mutants, thus providing fault iryection capabilities to the

overall netlist. They subsequently specify an explicit list of targeted faults. A suitable test

bench is further written, that uses the information of the fault list to suitably inject the de-

sired faults (typically one by one) into the modified netlist and observe the responses, with

respect to the responses of a fault 6ee simulation run, thus evaluating the effectiveness of

the fault detection or tolerance mechanism incorporated within the simulated circuit. No-

tably, gate substitution and test bench production are fully automated in a fault simulation

tool presented in [114]. The designer only needs to provide the original circuit netlist and

the fault list, while any commercial HDL simulator can be used for the fault experiments

(e.g. ModelSim [115]).

The work of [116] concentrates on the technology-specific lowest level of the design flow

and provides a "bottom-up" perspective of fault injection. Its authors conduct analogue

electrical simulations of the cells within a standard gate-level cell library. They simulate

both the ideal fault-Gree situation with the cells operating properly, and all combinations of

possible manufacturing defects in the semiconductor devices that constitute the standard

cells. Comparison of electrical simulation results enables the "mapping" of fault effects

from the analogue to the digital domain. Accurate "mutant" standard cells in VHDL are

thus made possible. These cells can subsequently be used in any standard cell level fault

simulation environment (typically as in [114]).

p. Oikonomakos, 2004 Chapter 4: Fault Simulation Techniques 1 1 6

DeLong et al [117] conduct fault injection and simulation experiments at a high level in

the design flow, namely at the architectural level of a microprocessor system. Faults are

hijected in the internal processor buses, through VHDL ywMcfzoMJ. Effectively,

each bus is driven firom two sources. The first source is the functional logic driving the bus

under fault free operation, and the second is a constant logic signal, denoting a stuck-at-

0/1 type fault (if it assumes the logic 0/1 value), or no fault injection (if it holds the "un-

known" value x). Clearly, driving a signal &om two sources results in conflicts over which

value will ultimately be assumed; typically in VHDL the conflict is resolved by a suitable

function (rejoZw /̂onywMcfz'oM [48]). In this case, the resolution function consults the con-

stant fault injection signal to determine whether the target bus is to be driven to logic 0/1

regardless of the functional driving source, or whether the fault-fi-ee scenario is in effect,

wherein the bus is driven to the value dictated by the fimctional driving logic.

An interesting study of different HDL fault simulation approaches has recently been pub-

hshed in [107, 108]. Its authors identify and implement three alternative simulation strate-

gies. In the first, they simply use j/mw/afor offered b y a commercial VHDL

simulator [115] to force targeted signals to desired faulty values. In the second, they add

suitable modules at desired locations in the original system description. These

modules suitably corrupt signal values, in a manner similar to the resolution functions

used in [117]. Finally, the third approach considered uses descriptions. This con-

cept has already been encountered in [114, 116]; the authors of [107, 108] configure mu-

tant descriptions using the (generally unpopular) gwnrcfecf VHDL construct. In

brief, a VHDL guarded block is a block of statements that are only executed when a de-

fined Boolean condition (the is true; more details can be found in [48]. [107, 108]

propose a different mutated architecture for every modelled fault in every component in

the system nethst. One obvious disadvantage of this is the need of an enormous number of

alternative VHDL architectures when a realistic number of faults is to be modelled. Ar-

guably there are ways to implement fault injection based on mutants that do not suffer

from this problem (usiag control signals as in [114], or conceptual linked lists of faults as

§4.2.1 will present).

The presentation of this section has revealed that even when only HDL simulation-based

fault experiments are considered, the designer of a fault testable or fault tolerant system is

p. Oikonomakos, 2004 Chapter 4: Fault Simulation Techniques 117

presented with a number of options regarding exactly how to conduct such experiments.

Firstly, a choice regarding the level at which the experiments will be carried out is re-

quired; secondly, one of three different perturbation philosophies needs to be favoured.

4.2.1 Transparent fault injection and simulation

This subsection gives a detailed presentation of a particular VHDL approach, namely the

j'zmwWioM technique developed by Zwohnski in [49, 118].

In the terminology of §4.2, the technique at hand should be classified as a member of the

mutant modules based family of fault simulation approaches, and its current form is ap-

phed at the gate level. The following presentation both exemplifies the generic fundamen-

tal concepts of fault simulation described in §4.2, and stresses the specific advantages of

the technique at hand. Further, §7.1.2 of this thesis will constructively utilise and extend

the following material, to implement an RTL variation of the particular technique. The

presentation of this subsection at times uses VHDL and "pseudo"-VHDL code segments

to better illustrate the

approach.
u s e s t i d . t e x t i o . a l l ; - - c o n t a i n s d e f i n i t i o n o f l i n e

p a c k a g e f a u l t : _ i n j e c C i s

t y p e f a u l [_ m o d e l ;

t y p e f a u l t _ p t : i r i s a c c e s s f a u l t _ m o d e l ;

t y p e f a u l t _ p t r _ a r r a y i s a r r a y (i n t e g e r r a n g e < >) o f f a u l t p t r ;

t y p e f a u l t _ m o d e l i s

r e c o r d

t a u l t _ n a m e

s i m u l a t i n g

d e t e c t e d

n e x t f a u l t

l i n e ; - - l i n e i s a c c e s s s t r i n g

b o o l e a n ;

b o o l e a n ;

f a u l t p t r ;

e n d r e c o r d f a u l t _ m o d e l ;

s h a r e d v a r i a b l e f i r s t _ f a u l t

e n d p a c k a g e f a u l t _ i n i e c t ;

f a u l t _ p t r

F/gure .' The f a u l t i n j e c t pac/cage

The technique firstly

involves de&ning the

f a u l t _ i n j e c t

package of Figure 4.1.

As can be seen in the

figure, the

E a u l t _ m o d e l data type deSned in the package is a composite type (a similar to

the record data structures found in programming languages). It contains the following four

fields :

« f a u l t name, effectively a pointer (occe.yj' in VHDL terminology) to a string holding

a symbolic name for the fault

« s i m u l a t i n g , a Boolean flag denoting if the fault represented by the record is iryected

to the circuit at a given time point

" d e t e c t e d , a second Boolean flag which should be set as soon as the fault of interest

has been detected

p. Oikonomakos, 2004 Chapter 4: Fault Simulation Techniques 118

« n e x t _ f a u l t , a pointer to the next f a i i l t _ m o d e l type record

It is through this last pointer that a linked hst of f a u l t _ m o d e l type variables can be

formed, exactly as in procedural programming languages such as C-H- [119]. To enable

this, a jAareaf van'aAZe (equivalent to the global variable concept) named f i r s t _ f a u l t

is also declared in the package. This variable is simply a pointer to a record of type

f a u l t m o d e l and it is initialised to the n u l l value.

As soon as simulation starts, the shared variable f i r s t _ f a u l t becomes the head of the

linked list of faults. The pseudo-code of Figure 4.2 shows how this is achieved, and how

i i o r a r y l e e e ;

u s e i e e e . s L d _ l o g i c _ l l 6 4 . a l l ;

u s e w o r k . f a u l c _ i n j e c t . a l l ;

e n C i C y n a n d 2 i s

p o r e (z : o u t : s t d _ l o g i c ; a , b : i n s t d _ l o g i c) ;

e n d e n C i L y n a n d 2 ;

a r c h i L e c b u r e i n i e c C _ f a u l t : o f n a n d 2 i s

b e g i n

n n : p r o c e s s (a , b) i s

v a r i a b l e z _ s a l , a _ s a l f b _ s a l : f a u l C _ p i : r : = n u l l ;

b e g i n

- - f i r s t p a r t (v a r i a b l e i n i t i a l i s a t i o n)

i f z _ s a l = n u l l t h e n

z _ s a l n e w f a u l t _ m o d e l ' (

n e w s t r i n g ' (i n j e c t _ f a u l t ' i n s t a n c e _ n a m e & " z _ s a l ' ') ,

f a l s e , f a l s e , f i r s t _ f a u l t) ;

f i r s t _ f a u l t : = z _ s a l ;

- - s i m i l a r l y f o r o t h e r f a u l t s

e n d i f ;

- - s e c o n d p a r t (f u n c t i o n a l i t y)

i f z _ s a l . s i m u l a t i n g t h e n - - z / 1

z <= ' 1 ' ;

e l s i f a _ s a l . s i m u l a t i n g t h e n - - a / 1

z < = n o t b ;

e l s i f b _ s a l . s i m u l a t i n g t h e n - - b / l

z < = n o t a ;

e l s e - - f a u l t - f r e e

z <= a n a n d b ;

e n d i f ;

e n d p r o c e s s n n ;

e n d a r c h i t e c t u r e i n j e c t _ f a u l t ;

F/gure 4.2 . 2-/npuf A//\/VO gafe w/Y/7 /f^'ecf/on capab/VA'es

faulty behaviour is

imitated for the ex-

ample of a two-input

NAND gate. Apply-

ing fault equivalence

and fault dominance

principles [1] on the

NAND gate shows

that only three dis-

crete faults need to be

considered. These

correspond to any of

the inputs a, b or the

output z of the gate to

be stuck-at-1. Three

local pointers to

f a u l t _ m o d e l records are thus declared and initialised to n u l l , one for each of the

faults. At the first execution of process nn, new record objects are created to represent the

faults, and appended at the head of the fault list, using the shared variable

f i r s t _ f a u l t . The first part of the code of Figure 4.2 shows how this is done for vari-

able z _ s a l (representing the fault according to which the gate output z is stuck-at-1).

Variables a _ s a l and b s a l are handled similarly. The code clearly shows that this first

part becomes ineffective as soon as non-null values have been assigned to z _ s a l , a _ s a l

and b _ s a l , i.e. it is effective only in the first execution of the process, and its purpose is

p. Oikonomakos, 2004 Chapter 4: Fault Simulation Techniques 119

purely the automatic formation and initialisation of a linked list of fault variables. The

second part of the code corresponds to the NAM) gate model functionality. A chain of i f

statements describes the alternative behaviours, depending on the experiment scenaiio

(any of three possible fault icgections or fault free operation).

Note that the VHDL model of Figure 4.2

can be considered a "mutant" NAND

gate, since it demonstrates normal fimc-

tionahty in the fault free scenario and the

appropriate faulty behaviour under the

presence of a fault. Similar mutants can

be written for any other elementary logic

gate functionality along the lines of Fig-

F/gure 4.3; Examp/e nef//sf 4 2, using the framework of package

f a u l t : _ i n i e c t . Thus a library of "fault icyectable" logic gates can be developed. More

complex nethsts can subsequently be configured using this library. Figure 4.3 shows a

simple example netlist

s o c i a C i o n i i s C) ;

l i b r a r y i e e e ;

u s e i e e e . s c d _ l o g i c _ 1 1 6 4 . a l l , s L d . t e x t i o . a l l ,

w o r k . f a u l t _ i n i e c t . a l l ;

e n t i t y t b i s e n d e n t i t y t b ;

a r c h i t e c t u r e f i l e i o o f t b i s

s i g n a l d e c l a r a t i o j i s

b e g i n

a l : e n t i t y w o r k . T o p _ l e v e l _ n e t l i s t p o r t m a p (a

p i : p r o c e s s i s

v a r i a b l e h e a d _ p t r : f a u l t _ p t r : = n u l l ;

v a r i a b l e f a u l t _ c o u n t , f a u l t B _ d e t e c t e d : n a t u r a l : = 0 ;

o t h e r a u x i l i a r y v a r i a b l e s

b e g i n

e x e c u t e f a u l t f r e e s i m u l a t i o n f o r e v e r y i n p u t i n v e c t o r s . t x t

a n d w r i t e r e s u l t s y i t A c o r r e s p o n d i n g i n p u t s i n r e s u l t s . t x t

w a i t f o r 1 0 0 n s ;

h e a d _ p t r : = f i r s t _ f a u l t ;

w h i l e h e a d _ p t r / = n u l l l o o p

f a u l t _ c o u n t : = f a u l t _ c o u n t + 1 ;

h e a d _ p t r . s i m u l a t i n g : = t r u e ;

w h i l e n o t e n d f i l e (r e s u l t s) l o o p

r e a d r e s u l t s . t x t a n d a p p l y i n p u t v e c t o r

w a i t f o r 1 0 0 n s ;

i f (o u t p u t d i f f e r s f r o m t A a t h ^ r i t t e n i n r e s u l t s . t x t) t h e n

h e a d _ p t r . d e t e c t e d : = t r u e ; - - f a u l t d e t e c t e d

h f r i t e d e t e c t i o n i n f o r m a t i o n i n f a u l t s . t x t

e n d i f ;

e n d l o o p ;

h e a d _ p t r . s i m u l a t i n g : = f a l s e ;

w a i t f o r 1 0 0 n s ;

h e a d _ p t r : = h e a d _ p t r . n e x t _ f a u l t ;

e n d l o o p ;

s u m m a r i z e r e s u l t s

o u t p u t f a u l t c o v e r a g e i n f o r m a t i o n i n f a u l t s . t x t

i . e . f a u l t s d e t e c t e d / f a u l t s i n j e c t e d

w a i t ; - - h a l t

e n d p r o c e s s p i ;

e n d a r c h i t e c t u r e f i l e i o ;

F/gure 4.4 .- Examp/e fesfbenc/?

comprising three

NAND gates. Solid

lines in the figure de-

pict physical coimec-

tions; in contrast,

dashed lines corre-

spond to conceptual

software hnks, thus

niustrating the fault

list. All three

f a u l t _ m o d e l o b -

jects within each gate

are linked together as

explained through the

code of Figure 4.2;

moreover, conceptual

links between objects

p. Oikonomakos, 2004 Chapter 4: Fault Simulation Techniques 1 2 0

in different gates are also formed as Figure 4.3 graphically shows. This is achieved auto-

matically, since there is only one f a u l t pointer variable, shared by all processes

in aU entities in the overall netlist. Automatically including all faults in the list is an ad-

vantage over the techniques described in §4.2, since no explicit list of faults needs to be

provided by the designer. Another interesting observation on Figures 4.2 and 4.3 is that

the physical gate interface and the connections between gate inputs and outputs are not

affected by the inclusion of fault iryection capabilities in the VHDL model. Indeed, the

mutant model of Figure 4.2 has only two input ports a and b, and an output port z, exactly

as if it was a normal NAND gate. Further, in Figure 4.3 the outputs of the first logic level

are fed to the inputs of the second, exactly as if the NAND gates did not have fault injec-

tion capabUities. In essence, the structural properties of the original netlist are fuUy pre-

served when mutants replace the usual logic gates. This means that a normal nethst can

readily be used for fault experiments as soon as the mutant gate library has been formed,

simply by instructing the VHDL simulator to use the mutant descriptions in place of the

normal ones. This is typically done in VHDL in a single line of code jpecz-

[48]). It follows that the technique is particularly easy to instrument and leaves

large parts of the original structural VHDL netlist descriptions unaffected; this justifies the

ZraMjpareMf property attributed to it.

Figiure 4.4 shows a possible testbench template (in pseudo-VHDL) required to orchestrate

the overall fault simulation experiment. In this particular testbench, a set of input test vec-

tors is provided by the designer in the v e c t o r s . t x t file. A round of fault-free simula-

tions is initially conducted for the top-level design (T o p _ l e v e l _ n e t l i s t in the fig-

ure), and the results together with the corresponding inputs 6 o m v e c t o r s . t x t are

stored in r e s u l t s . t x t . Subsequently, elements in the fault list are accessed one by

one, using pointer variable h e a d _ p t r) . Each fault is simulated by having its correspond-

ing s i m u l a t e d flag set. All test vectors are apphed to the design and the responses are

compared against those written in r e s u l t s . t x t during fault free simulation. Whenever

a mismatch is found, the fault is marked as detected and relevant detection information is

output to f a u l t s . t x t . Such information may include the symbolic name of the fault,

shmlation time at which it was detected, the input vector that detected it, or indeed any-

thing else the design requires. After all faults have been simulated, some kind of summa-

rizing information can conclude file f a u l t s . t x t . For example, the total number of de-

tected faults can be calculated and reported.

p. Oikonomakos, 2004 Chapter 4: Fault Simulation Techniques 1 2 1

4.3 Summary

The fundamental concepts of fault simulation and related reliability evaluation techniques

were given in this chapter. Most importantly, Zwolinski's transparent fault simulation

technique was detailed. This technique will be constructively used in chapter 7 for the re-

liability evaluation experiments of this thesis.

Chapter 5

Datapath Self-checking Design

This chapter focuses on the on-hne testing of the datapath part of controller / datapath de-

signs. In the context of this thesis, such designs are considered in the form of RTL netlists,

automatically generated by high-level synthesis. When such a netlist is ultimately imple-

mented on silicon or downloaded onto an FPGA, it can normally be observed that most of

the silicon area / FPGA resources are occupied by data rather than by control operations. It

is therefore sensible that datapath on-line testability is the first issue to be addressed to-

wards implementing high-level synthesis for on-line testability.

This chapter is organised as follows. Section 5.1 specifies the requirements of datapath on-

line testabihty, revisits the families of on-line testing techniques presented in §2.2 and

evaluates them in the light of the specifications of the problem at hand. Ultimately, the

family of algorithmic duplication and related self-checking design techniques are chosen

as the most appropriate solution. Section 5.2 elaborates more on the chosen technique in

relation to background material (§2.2.2.3) and presents the testing idea. Section

5.3 details the implementation of datapath self-checking design within the MOODS (§3.2)

high-level synthesis system and presents experimental results and comparative comments.

Finally, section 5.4 draws the concluding remarks of this chapter.

5.1 Problem statement and discussion of potent ial solut ions

This section presents a discussion of requirements and potential solutions to the datapath

on-line testing problem. Throughout the whole chapter, the datapath is shown either using

the DFG representation (Definition 3.2) or thiough the actual hardware used to implement

the DFG fimctionahty, as appropriate per situation. Figure 5.1a shows a familiar simple

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 123

DFG example (also used in Figures 2.33 and 3.3), while the datapath netlist realising the

DFG is depicted in Figure 5.1b. A comparative inspection of 5.1a and 5.1b establishes the

conespondence between the DFG and the hardware implementing it. Indeed, adder A1 is

used twice in the DFG; therefore, two multiplexers (MUXES) are used in the implementa-

tion to choose between the two possible inputs. Registers (REGs) are also employed to

preserve values across DFG boundaries. Both multiplexers and registers receive control

+3 A2

MUXES

A 1 A2

REG
REG

REG

(aj grap/7 /-/ardw/are nef//sf

F/gi/re 5. Y. /\#emaf/Ve v/en/s of f/ve (/afapaf/7

signals from the controller part of the design; these signals act as "select" and "load en-

able" inputs respectively (§3.2.6); thus the correct timing is in effect ensured. The control-

ler and the mentioned signals are omitted in the figure, for clarity. The problem addressed

in this chapter is to augment datapaths of the form of Figure 5.1, in such a way as to en-

able the user to have an on-line indication of the health of the system and a timely report

of any hardware failui e. Further, the insertion of the resources necessary for this additional

fumctionality has to be done within the high-level synthesis process, concurrently with the

rest of the synthesis tasks (§3.1.2), and as transparently to the designer as possible. This

last proposition primarily means that the synthesis tool should be able to generate on-line

testable systems at the designer's request, without requiring an}" modification of the origi-

nal HDL description of the system behaviour (along the lines of Figure 3.2).

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 2 4

5.1.1 Problem requirements

In order to choose an OM-Zme testing solution for the datapath of a complex design, to be

realised by a Ag/zovzouraZ one naturally has to take into account precisely

the particular characteristics of these two concepts, in addition to the usual performance

and cost specifications.

More specifically, when a system is on-line, it is desirable that any fault corrupting its op-

eration be detected as soon as possible, so that any existing recovery mechanism can be

triggered (low error latency). At times, short-lived faults develop into the system but do

not manifest themselves at the outputs of the system, because they happen not to be sensi-

tised by the functional input vector applied to the system throughout their hfetime. These

fault are termed An OM-Zme testing solution need not target latent faults. In

fact, detecting a latent fault and taking corrective action typically involves performance

degradation; since the system is on-line and producing useful output, it is preferable to

avoid such degradation unless absolutely necessary (i.e. unless a fault manifests itself by

corrupting logic values). Therefore, the approach taken in this thesis is that latent faults

jAozf/o' be detected in the on-line context, so that undesirable "false alarms" will be

avoided.

Addressing the whole problem at the behavioural synthesis level has its own implications.

Firstly, just as a behavioural synthesis tool should understand and synthesize as broad a

range of HDL descriptions and design styles as possible, so should a "behavioural synthe-

sis for on-line testability" tool be able to generate acceptable testing solutions for as wide

a class of designs as possible. This suggests that the adopted testing technique should be

generically applicable rather than application-specific. Further, recall that the high-level

synthesis process as such is largely independent of the target technology, while its output,

being an RTL netlist, is still relatively high in the design flow and does not necessarily re-

strict the lower-level tools to a particular gate level stnicture of the RTL building blocks

(§3.1). A testing strategy maintaining these benefits should therefore not depend on the

target technology or gate level structure. Another important benefit of high-level synthesis

is the interaction between the designer and the tool, through the cost requirements of a

given project. Recall, for example, that the MOODS cost function of §3.2.4 affects the

choice of optimisation algorithm, by determining the particular incarnation of the tailored

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 2 5

heuristic to be used (§3.2.5.2). Any testing technique considered in this context should be

able to take advantage of this versatility.

In summary, before choosing any of the techniques presented in chapter 2 for implementa-

tion within synthesis, the said techniques need to be evaluated based on the following cri-

teria.

(a) error latency

(b) avoidance of "false alarms"

(c) general applicability, including independence of low-level structure and target tech-

nology

(d) ability to take advantage of high-level synthesis versatile design space exploration

Efficiency in terms of area overhead and time penalty is, of course, an important issue not

included In the above points. The approach of this thesis is to pursue efficiency by exploit-

ing any area and performance optimisation techniques already existing in the high-level

synthesis tool of interest (as will be seen in §5.3.3.2), rather than addressing efficiency

through an appropriate choice of technique. It should be borne in mind that this work ad-

dresses (oo/ rather than design cojg It is therefore important for a

tool to be generic (requirement (c) above), even if some of the solutions it provides may

be less efficient than manually derived, application-specific ones.

5.1.2 Evaluation

The general families of on-line testing approaches of chapter 2 are considered here, as po-

tential datapath on-line testing solutions. Self-checking design, based both on general

EDCs (§2.2.1) and on duplication-related techniques (§2.2.2), on-line BIST (§2.2.3.2),

shift-based on-line DFT (§2.2.3.3), and analogue characteristic monitoring (§2.2.4) are all

included in tlie discussion. Special attention is paid to requirements (a) - (d) of §5.1.1.

Error-detecting codes (§2.2.1) could be utilised in a high-level synthesis design flow, by

analysing all R.TL cells that consist the tool cell library (§3.1, §3.2.7), and defining self-

checking versions of them, that can be furtlier included in tbe cell library, together with

appropriate checkers. Referring back to Figure 5.1, the self-checking design of a datapath

would then involve the utihsation of the self-checking versions of aU datapath modules.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 126

e.g. adder A1 in the figure would be realised by a self-checking adder incorporating an

appropriate checker, multiplier Ml would also need to be a self-checking multiplier etc.

Such an approach could easily use data from the literature. For instance, recall that [16, 15,

41] presented self-checking ripple-carry addition based on parity checking, as well as self-

checking multiplication based both on parity and on arithmetic codes (§2.2.1.1, §2.2.1.5).

Registers could also employ parity checking or even support error correction (§2.2.1.4,

[36]). It can be observed that tliis solution has no "active" interaction with the high-level

synthesis process, in the sense that it only deals with the cell library and final operation

binding, but does not interfere with the scheduling and allocation phases. In other words, it

cannot take fuU advantage of the versatile high-level synthesis optimisation. Further, it

necessarily requires some degradation ui the maximum achievable clock speed; indeed, all

operations in Figure 5.1 would include a certain invariant property checking, thus made

slower. On the other hand, no false alarms could normally be produced by a self-checking

system, while error latency would be minimal, since any logic error would be detected in

the clock cycle it manifested itself. However, a property of self-checking design that is

actually a disadvantage in the context of high-level synthesis is its total dependence on and

+3' A1

1')I\/I2

=1 CI

F/gure 5.2. Se/f-c/?ec/(/ngf des/gn based on a/gor/f/vm/c dup//caf/bn

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 127

intervention with the gate-level structure of the circuit under check (see for example Fig-

ure 2.10). In short, with respect to points (a) - (d), EDC-based self-checking satisfies (a)

and (h), but lacks (c) and (d).

Self-checking design based on algorithmic duplication and related techniques can provide

an interesting alternative. Figure 5.2 shows how it can be applied to the simple DFG ex-

ample of Figure 5.1a. Operations +1% +2', +3', and * r in the figure denote the duplicates

of the respective fimctional operations, while !=1 is a comparison operation, implemented

by the newly introduced fault secure comparator module CI. In line with §2.2.2.3, a func-

tional and a duplicate operation are never implemented by the same hardware module. The

scheme as presented in Figure 5.2 experiences a delay degradation of a clock cycle, and it

may also experience an error latency of a few clock cycles. For instance, if adder A1 is

faulty and produces a failure in addition +1 during CS 1, the failure will not be detected

before CS 4. Further, the chaining (§3.2.3) of comparison !=1 after multiplication *! '

within CS 4 will probably lead to clock speed degradation. A remedy to the fault latency

problem could be the introduction, scheduling and allocation of multiple comparison op-

erations at intermediate points in the DFG (§2.2.2.3), while better clock speed could be

achieved by further accepting an additional fifth control step and scheduling the final

comparison there. From the above it is evident that the considerations and trade-offs asso-

ciated with algorithmic duplication have direct relevance to the high-level synthesis design

space exploration tasks (allocation, scheduling). The whole problem can therefore ideally

be formulated within the core of the synthesis process. An additional strong point is that

the scheme of Figure 5.2 is purely generic and behavioural, in that it makes no assumption

about either the gate-level structure of the modules realising the system fimctionality, or

about the overall functionahty as such, or even about the target technology. It can there-

fore be stated that algorithmic duplication and related schemes retain the benefits of

EDC-based self-checking design ancf fit well into the behavioural synthesis context.

An additional benefit of a "behavioural" self-checking scheme such as algorithmic duph-

cation, in the context of CAD tool development, is its natural j'wppof fybrywfwre

Consider a given synthesis tool, and an associated cell library. Assume that only one

cell of a particular functionahty is available in the hbrary, for instance only one type of

adder such as a ripple-carry adder. If EDC-based self-checking is desired, then the library

will also include a self-checking version of the adder, as explained above. If a structurally

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 2 8

alternative cell implementing the behaviour is added to the library during a subse-

quent development phase, then clearly the new cell will need to be analysed, for instance

along the lines of [15], and its self-checking version developed from the beginning. In the

adder example mentioned above, such a new cell could be a carry look-ahead adder. As

[16, 15, 41] have shown, the development of a self-checking version will require a consid-

erable amount of analysis and logic level design work. In contrast, algorithmic duplica-

tion, being a naturally behavioural technique, will readily lend itself to future tool expan-

sions. In the running adder scenario and referring to Figure 5.2, either of adders A1 and

A2 could be of any structure. The structure itself is chosen during the binding phase

(§3.1.1) of high-level synthesis, and the self-checking scheme is valid in any case.

On-line BIST during idle cycles, as explained in §2.2.3.2, is another potential solution.

The concept of a TDFG (Figure 2.37) associated with a given DFG initially gives the im-

pression that the approach is very relevant to synthesis. However, as §2.2.3.2.3 aheady

pointed out, low test quahty can be a real problem with TDFGs. Further, test quality as

well as test length highly depend on the gate-level structure of the circuit constituent

blocks (§2.2.3.2.2); therefore, the approach is not generic enough. Finally, the error indi-

cation itself that BIST provides is of doubtful usefulness in the on-line testing context. To

understand this, refer back to the example TDFG configuration of Figure 2.37. Putting

aside the test quality considerations, assume that the TPG provides all of its test vectors in

X: executions of the functional circuit. An erroneous signature in the MISR after the A: exe-

cutions provides the error indication. However, this indication does not specify of

the A functional results produced by the circuit was corrupted. In fact, it is likely that by

the time the MISR detects the fault, the fault will have propagated to other parts of the

overall system, probably with catastrophic effects. In other words, on-line BIST experi-

ences error latency. It is also possible that the MISR has detected a latent

fault, thus leading to a false alarm. In summary, none of requirements (a) - (c) is satisfied.

At this point, it can be mentioned that the on-line BIST evaluation of the previous para-

graph is equally applicable to on-line arithmetic BIST (§2.2.3.4.1), the latter in essence

being a form of BIST with a ceitain non-standard implementation (i.e. using accumulators

instead of LFSRs). In fact, it can be expected that arithmetic BIST will have even more

restricted applicability, since it cannot accommodate designs in which too few adder - reg-

ister pairs can be configured.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 2 9

On-line shiA-based DFT (§2.2.3.3) is discussed in the following. In this family of tech-

niques, the inputs and outputs of selected operations are shifted out of the chip and tested

by an external testing unit, which effectively repeats the operation. A mismatch between a

shifted output and an output produced by the testing unit signifies the presence of a fault.

On one hand, the scheduling and choice of operations that will have their inputs and out-

puts shifted out can be formulated as a synthesis task. Further, there is no obvious danger

of a false alarm. On the other hand, however, error latency is unpredictable and uncontrol-

lable. Even fiirther, there are serious concerns regarding the practicality of implementing

concurrent shift-based testing. In particular, shifting out a number of variables while the

system is operating would involve an additional shift clock. If realistic bit-width values are

considered, this clock would need to be tens of times faster than the functional clock, so

that a number of variables can be shiAed out during a single cycle of the fimctional clock

[83]. This will limit the scope of the technique to very low speed applications. Moreover,

the idea itself of utilising an external testing unit for concurrent testing is of doubtful prac-

ticality, since such a unit will need to be compact enough to accompany the chip on the

field. Furthermore, if rehable testing is desired, then the testing unit as such will need to

be designed using some on-line testability strategy, further complicating the problem. The

above critical remarks are backed by the absence of convincing experimental results in the

relevant publications [83, 84, 85, 86]. In summary, while the idea of shift-based on-line

DFT is likely to satisfy requirements (b) and (d), it is also likely to experience high error

latency (requirement (a)). Most importantly, general applicabihty (requirement (c)) is not

guaranteed; as a matter of fact, there is not enough evidence that even partial applicability

is feasible.

Let us now focus on the family of techniques labelled as monitoring analogue characteris-

tics (§2.2.4). Such solutions detect faults through abnormalities in their electrical proper-

ties, sometimes even before the corruption of logic values. This is an interesting advantage

as regards en or latency, although it can be stated that alarms will rise even if logic values

are not corrupted. The strongest argument against them, however, is that they are only

relevant to the target technology (e.g. abnonnal flow of current can onZy be defined with

respect to the technology), and by nature address the on-line testing problem at a very low

level in the design flow. Therefore they are neither generally applicable nor related to the

behavioural HDL level of abstraction, thus not fitting the perspective of the present thesis.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 3 0

The background presentation of chapter 2 also includes analytical techniques (§2.2.3.4.2).

These are purely apphcation-specific, thus not satisfying the critical general applicability

requirement (c) of §5.1.1.

The detailed evaluation of this section establishes that algorithmic duplication related,

"behavioural self-checking" techniques are the most suitable for implementation within a

high-level synthesis environment.

5.2 Detailed presentation of proposed technique

Section 5.1 justified why algorithmic duplication related techniques should form the basis

of a datapath self-checking solution in the context of this thesis. However, subsection

2.2.2.3 has presented a significant number of algorithmic duplication choices. These

choices vary both as regards their self-checking related properties (e.g. error latency, po-

tential fault escapes etc.) and as regards their implementation details (e.g. at which level of

abstraction testing resources are inserted and exactly how this is done). The following sub-

section 5.2.1 critically evaluates the techniques of §2.2.2.3, identifies strengths and weak-

nesses, and defines concepts not adequately covered by them. Subsection 5.2.2 proposes a

valiant of duplication testing (namely inversion testing) and shows its potential usefulness

within DFGs. Subsection 5.2.3 summarises the conclusions of §5.2.1 and §5.2.2, and de-

fines the goals of the algorithmic duplication-based datapath self^checking implementa-

tion, to be presented later in §5.3.

5.2.1 Algorithmic duplication revisited

The first pieces of published research work with reference to a variant of algorithmic du-

plication were the ones advocating checkpointing, rollback and recomputation as means of

recovery from transient faults [60, 61]. Regarding its fault handling characteristics, the

idea of rollback and recomputation can lead to deadlocks if a permanent fault appears ki

the system. Further, error latency is not considered and not identified as a design goal. Re-

garding the duplicate DFG synthesis approach proposed in [60], it can be observed that the

presented algorithm receives the fuUy scheduled oiiginal DFG as an input. From the opti-

misation point of view (§3.1.2), this is a disadvantage, since a significant area of the over-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 131

Onginal DFG
synthes is

D D2 D3

Dupl ica te D F G

synthes is

D2,l D2,2 . . . D2,n

('aj Synf/ies/s of fAe ong/na/ OFG /b//owed
by synf/7es/s of f/?e dup//'cafe OFG

Original and duplicate
D F G synthes is

T
Dl.l DL2 Dl,n

D2,l D2,2 D2.n

Dm,l Dm,2 . . . Dm,n

(b) The onginal and the duplicate DFGs
synf/ies/'zed /V? same opf/m/'saf/on process

0)
"O

Dm,2

D2,1

area

(cj Oes/gn space po/nf of wew

F/'gure 5.3. Oes/gn Space Exp/oraf/on fo/-f/?e ong/'na/ ancf f/ie dup//'cafe OFG

all system design space remains out of reach. Figure 5.3 illustrates and clarifies this idea.

In Figure 5.3a, a synthesis process is applied to the original DFG, a total number of m dif-

ferent design space points Dl-Dm are visited, and the example point D2 is highlighted as

the most favourable. The duplicate DFG is independently synthesised next, n candidate

designs D2,l-D2,n are identified for the overall system and the example point D2,l is cho-

sen. Clearly, only n candidate choices are considered for the overall synthesis solution.

Now focus on Figure 5.3b, where the two DFGs are optimised simultaneously. The dashed

rectangle in the figure includes all possible overall design choices, corresponding to the

combination of all choices for the original and duplicate DFGs (Dl,l-Dm,n). As the figure

depicts, all n^m possible design space points are now considered for the overall design, by

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 132

synthesizing the two DFGs in the same optimisation process, effectively treating them as

OMg DFG. This is a much preferable synthesis path, as illustrated by the fact that, although

D2 in Figure 5.3a is the best choice for the original DFG m /jo/anoM, there is no reason

why an initially suboptimal solution Di with 1̂ 62 cannot yield a n overall better solution for

tlie final system. Indeed, Figure 5.3b exemplifies such a scenario, by highlighting design

Dm,2 as the most favourable out of all nxm choices. Observe that point Dm,2 cannot even

be reached by the process of Figure 5.3a. An alternative view of this concept is the design

space graph of Figure 5.3c. The coloured area in the graph corresponds to the overall self-

checking system achievable region (§3.1.2). The region explored when the original DFG

is fixed at the D2 design choice is marked as region 1, while the rest of the achievable de-

sign space area is called region 2. If the original DFG is synthesized first and fixed at D2

in the manner of 5.3a, then only region 1 will be visited by the overall synthesis process.

In contrast, if both the original and the duplicate DFG are optimised simultaneously as in

5.3b, then all of the coloured area (regions 1 awcf 2) will be explored.

An additional weakness of [60, 61] is that they do not address loop and conditional con-

structs in the designs they synthesise, thus restricting the usefulness of the technique.

Computation Unit
1 A
r B
2 C
2' A
3 B
3' C

The next family of techniques covered in §2.2.2.3 are [62, 63], proposing fault identifica-

tion through fimctional unit differentiation.

An initial comment that can be given re-

garding tbe differentiation idea is that it is

expected to work under the assumption that

faulty units never or mask faults.

Indeed, consider once more the simple dif-

Table 5.7, Example of unit differentiation example given in §2.2.2,3,

summarized in Table 5.1. Units A, B and C are pair-wise differentiated. For example, con-

sider A and C. Track (1, T) utilises A but not C; while track (3,3 ') utihses C but not A.

Tracks of functional and redundant computations with differentiation properties can also

be noticed if one considers either of the remaining pairs of units (A,B and B,C). Theoreti-

cally, if A experiences a fault, track (3,3') will be fault-fi-ee, while both (1,1') and (2,2')

will signal faults, thus identifying A as faulty. However, depending on the inputs that unit

A is fed with, it is entirely possible that either (1,1') or (2,2) will experience a fault mask-

ing event. This will result in a single fault indication, making faul t identification impossi-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 133

ble. Fault simulation experiments would be needed in [62, 63] to estimate how serious this

problem could be; such experiments are however missing, and the differentiation tech-

nique remains of unproven, questionable practicality. As regards the synthesis approach of

[62], design space exploration is more complete than in [60], since both fimctional and

redundant computations are considered as constituting one DFG. However, loops and

conditional branches are still not accommodated. Further, the synthesis cost parameters

are only given in terms of number of functional units used and clock cycles needed; thus,

important information such as the relative area cost of particular units in certain technolo-

gies, and the clock speed are missing. In principle, omitting this information can lead the

synthesis process towards wrong decisions; in [63], this concern is confirmed by the fact

that the experimental results report a hardware overhead of 100% (equivalent to

duplication).

The Introspection technique of [64] fully utihses any existing module idle time, but is by

nature unable to cope with cases where there is too little idle time, since it totally rejects

redundant module insertion. In that sense, it is case-specific rather than generic. As cov-

ered in § 5.1.1, this is not consistent with the philosophy of the present thesis. From the

synthesis point of view, an interesting binding algorithm is outlined in [64]; however, the

algorithm input is a fully scheduled DFG (as in [60]). As a result, the design space is not

explored efficiently (as illustrated previously in Figure 5.3). Finally, loops and condition-

als are not explicitly addressed here either.

The next scheme presented in §2.2.2.3 is the behavioural synthesis of fault secure systems

of [23]. It is probably the most complete of the algorithmic duplication approaches; how-

ever, a number of weaknesses can be spotted in it as well. The synthesis process starts

with a scheduled DFG, followed by a full physical duplication and comparison of the pri-

mary output results of the cir cuit of interest. Comparisons of selected intermediate results

(e.g. the results of additions +1 and +1' in Figure 5.2) are introduced under certain condi-

tions, particularly when the fault study in [23] suggests that such a comparison promotes

hardware sharing between the original and the duplicate DFG, while keeping the probabil-

ity of fault escapes below a defined threshold. A weakness here is that all comparisons,

including those of intermediate results, take place at a dedicated control step, after the

execution of the functional circuit has finished (e.g. after CS 3 of Figure 5.2). One can

then understand that designs with realistically long critical paths will experience high error

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 3 4

latency (possibly of the order of the critical path length). In that sense, this self-checking

approach is efficient and suitable for an a validation of the obtained result,

unsuitable for the pre-emptive indication needed in safety critical applications, so as to

tiigger any existing recovery or self-repaiiing mechanism. Further, the authors of [23] are

the first to mention that fault secure comparators (§2.2.2.1) are needed in algorithmic du-

plication applications, and therefore assume that their comparators are such. However,

they do not elaborate on the actual comparator structure to ensure this property. As regards

the synthesis approach they use, one can observe that they feed their algorithm with a

scheduled and bound DFG. Their subsequent self-checking synthesis steps are in fact al-

lowed to make slight changes to the original DFG scheduling; this is an improvement in

terms of design space exploration with respect to [60, 62, 64, 61, 63], but the allowed

changes are indeed very limited, only apphcable under the strict condition that they lead to

an immediate improvement. An additional improvement of [23] over [60, 62, 64, 61, 63]

is the ability to handle loop constructs in designs. Conditional branches are, however, still,

not accommodated; in fact, this author thinks that the approach of [23] is particularly un-

suitable for conditionals, since it very much relies on analytical calculations of fault es-

cape probabilities. Conditional branches would make the calculations very complicated

because the probability of visiting or not visiting a particular DFG node would need to be

taken into account when calculating the probabihty of fault escapes.

Semiconcurrent error detection [65] is considered next. The evaluation is illustrated by the

example of Figures 5.4 and 5.5. Figure 5.4a shows a simple DFG, comprising 1 multipli-

cation and 3 additions and having a critical path length of 3 control steps. In 5.4b, a possi-

ble algorithmic duplication solution is shown. Only the final primary output results are

compared in the presented scenario. Further, the example solution has been configured

such that no new hardware modules are added; a delay degradation of 2 clock cycles

(66.6%) is accepted instead. Figure 5.5 shows a semiconcurrent error detection solution

for the same example, with checking periodicity f = 2 (f has been defined in §2.2.2.3). The

primary inputs and outputs in Figure 5.5 are exactly as in Figure 5.4 (e.g. addition +1 is

fed by a primary input), but are not explicitly shown in order not to overload the figure.

The configuration graphically depicts that semiconcurrent error detection sacrifices some

testability for area and / or delay savings. Indeed, in Figure 5.5 two executions of the fimc-

tionality of 5.4a are conducted with a nominal latency of 3 control steps each; only one of

them needs to be checked, because f=2 . This means that the duplicate DFG has a very

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 135

+3)A1

(aj Ong/na/ DFG

M1 A M2

2 (+1 J A1 +2 1 A2

+3 A2

4 \ \

5

N ^ C I

a/gon%m/c dup//'caf/on so/uf/on, w/f/i pr/ma/y oufpuf compan'son on/y

F/gure 5.4. Examp/e OFG

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 136

+2 A2

+3 ' A2

Figure 5.5. Semiconcurrent error detection solution
/or examp/e ofF/gure 5.4 ('c/?ec/f/ng penod/c/Yy P=:^

relaxed delay specification of 6 control steps. It is easily scheduled within these 6 steps,

and it does not require any additional hardware modules. This way, a low-cost self-

checking solution is insti-umented; the quality of test, however, is highly degraded. Indeed,

consider a DFG with a realistically long critical path, and / or P » 2 . An error indication at

the output will simply signify that there is a cerfam malfunction in the chip; it will not de-

termine wAen the fault first appeared, or Aow maMy of the f executions have been affected

by the fault. Clearly, there is both unpredictable error latency and uncertainty as to the

magnitude of the effect of a given detected fault. In hne with [23], semiconcurrent error

detection is suitable for a theoretically inexpensive but limited periodic checking of the

health of the system, possibly to detect non-fatal malfunctions; it is imsuitable for pre-

emptive error checking in safety-critical applications. Regarding the synthesis characteris-

tics of [65], a set of constructive (§3.1.2) synthesis algorithms is given for the scheduling

of the duplicate, relaxed-latency DFG, given the original, scheduled and bound, functional

DFG. The approach suffers from the poor design space exploration problem explained in

Figure 5.3. On a positive note, extended versions of the algorithms are also given, accom-

p. Oikonomakos, 2004 Chapter 5: Datapath Self^checking Design 1 3 7

modating both conditional branches and loop structures in the DFG, for the first time. The

algorithms are said to be under inclusion in an experimental integral synthesis tool; how-

ever, no results from this tool are given. The experimental results of [65] have been ob-

tained by commercial synthesis tools. From the information provided in [65], one con-

cludes that this was done by modifying the original HDL descriptions of the considered

designs, and implementing script-based scheduhng and binding of the duphcate DFGs on

commercial CAD tools, in effect applying the presented constructive algorithms.

From the point of view of this thesis, this requirement for substantial designer intervention

is a serious disadvantage.

The research of [69, 70] proposes two diverse realisations of the same DFG. The two ver-

sions are differentiated &om each other either because of different allocation of operations

to operators or because of the recomputation with shifted operands applied in [70]

(§2.2.2.3). The Arst realisation is executed f times; then the second is executed once, and

thus the last functional result is verified by comparison. It is evident that once again only 1

out o f f obtained results is verified; therefore the technique suffers from potentially high

enor latency and uncertainty exactly as explained above for the semiconcurrent solution. It

is therefore again unsuitable for safety critical systems. From the synthesis point of view,

the approach of [69, 70] is fully manual and there is no mention of any design automation

attempt. In that sense, these works are not relevant to the goal of the present thesis, since

they address the whole problem at a lower level of abstraction.

Finally, [66, 67, 68] propose constructive algorithms for the configuration of duplication

and comparison schemes (as of Figure 5.2). They do not offer anything theoretically novel

with respect e.g. to [23]; they only compare final results, thus being unsuitable for pre-

emptive self-checking; furthermore, they are also manual RT-level approaches, therefore

concepts such as behavioural design space exploration are not applicable in them.

5.2.2 Inversion testing

Figure 5.6 depicts the mveMzon paradigm. The figure accurately follows the no-

menclature of Figure 2.27 (duplication testing). Indeed, a redundant circuit is again added

to the functional one, and a checker / fault secure comparator (§2.2.2.1) is employed to

signify the potential presence of a fault. The difference with duplication is that the redun-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1:

dant circuit in the inversion case is no

longer a replica of the functional one.

Rather, it is a circuit that reproduces the

original functional input, when suitably

fed by the functional output. Clearly, this

means that the flow of data throughout

the scheme should be as Figure 5.6

shows, i.e. the inverse operation should

take place after the functional one, rather

than in parallel (compare to Figure 2.27).

Other than that, the redundant circuit has

to be of approximately the same size as

the functional one. This proposition is

historically backed by the theoretical fault detection study of [120], analytically proving

that for any given system under check, the "detection" logic added to it should be at least

as complex as the system itself, if an unrestricted fault model is adopted (i.e. if all possible

faults are targeted). In that sense, inversion testing can be considered a member of the

family of duplication-related techniques, as loosely defined in §2.2.2.

Functional Input

Aug men ted CUC

Functiona
Output

> Error

Functional
Circuit

Checker/
Comparator

Redundant
Circuit

F/gure 5.6. /nt/ers/o/i

Clearly, inversion cannot be applied to any arbitrary fimction. One can think of several

examples where there can be no redundant circuit that uniquely reproduces the original

inputs, when fed by the functional outputs. Logic functions (AND, OR) are such non-

invertible examples. An arithmetic example is the square - square root pair, which is not

^ wMzgwg/y invertible for signed arithme-

tic. However, when a unique inverse

for the functional output exists, then

the scheme is fault secure. Figure 5.7

exemplifies the inversion testing idea

and demonstrates fault security,

through the simple addition - subtrac-

tion pair. In the figure, let a and b be

signals of bit-width n (e.g. n=8 or

n=16), corresponding to arithmetic

values. Signal c equals a4-b, while

F u n c t i o n a l

Output

Augm^ed
CUC

Error

Adder

Comparator

Subtractor

F/gfure 5.7. /nverf/'ng an add/Y/bn

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 3 9

likewise d is equal to c-b. Basic arithmetic suggests that in the fault free case, signal d wUl

always be equal to input a, and the comparator wiU verify the correct operation. Any sin-

gle fault manifesting itself at the output of the adder will result in a corrupted value c' with

c ' # + b . Due to the 1-to-l property of subtraction, the subtracter output will now be d'=c'-

b # and the comparator wiU detect the fault. Alternatively, if a hardware fault corrupts the

operation of the subtractor when it is fed by correct inputs, changing the output to d " # - b ,

then the comparator will once more be fed by unequal values and detect the fault. Finally,

any manifested single comparator fault will clearly result in an error indication, so long as

the comparator has been designed to be 2-bit output fault-secure, on the principles of self-

checking design (§2.2.2.1). It is thus evident that the scheme is fault secure with respect to

single faults, since any non-latent single fault in any part of the scheme will result in an

error indication. It should again be stressed that this is clearly a result of the 1-to-l prop-

erty of the considered arithmetic functions. It is only under this condition that fault secu-

rity is guaranteed and only under this condition that inversion defines a valid alternative to

duplication.

Simple visual inspection of Figures 2.27 and 5.6 immediately gives rise to the issue of

whether inversion can be a choice over duplication. An initial remark is that

physically inverting a circuit is expected to be approximately as expensive as physically

duplicating it, since the redundant inversion circuit is expected to be at least of the size of

the functional one [120]. Further, inversion will be considerably slower, since in Figure

5.6 the functional output is verified after both the redundant circuit and the comparator

have performed their operation. In contrast, in the duphcation testing of Figure 2.27, the

redundant circuit operation is performed concurrently with the functional operation. It can

therefore be stated that, even when an inverse function exists and leads to a fault secure

scheme, physical inversion of isolated circuits has MO advantage over physical duplication,

and is therefore of no interest.

Inversion becomes interesting only in the context of substantially-sized sequential sys-

tems. This is illustrated in the following example. Figure 5.8 depicts a possible DFG reali-

sation of the Tlyeng design. This design was introduced in [121] and has ever since been

widely used in the high-level synthesis community for benchmarking purposes. Although

not conesponding to any useful functionality, its form is regarded as highly representative

of situations typically encountered in high-level synthesis. Hence it is an instructive and

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 140

2' SI

!=1 CI

(^ D 1

F/gure 5.8. /\/gonY/?m/'c /nyers/on /bran
examp/e OFG (Tseng 6enc/?ma/'/f)

useful example. Temporarily omit-

1 ting the two highlighted opera-

tions, one can observe that the de-

2 / (-1 sign includes three additions (+1,

+2, +3), one subtraction (-1), one

multiplication (*1), one division

(/I), as well as two logic flmc-

tions, a bit-wise AND (&1) and a

bit-wise OR (|1). In the present

realisation, these operations are

scheduled in a total of 6 control

steps as shown, and allocated to an

adder A1, a subtracter SI, a multi-

plier M l , a divider Dl, an array of

AND gates Gm,dl and an array of

OR gates Ggrl. All operations

have two fiinctional inputs; how-

ever, in line with the previous Figure 5.5, several inputs are omitted in Figure 5.8 for the

sake of clarity. All inputs and outputs that define uitemal data dependencies are clearly

depicted by arcs, as usual (Appendix B includes a complete VHDL description of the

Tseng benchmark). Let us now focus on operation +2, and assume that a self-checking

scheme is required for this addition alone. Since there is only one fiinctional adder in the

design, applying duplication testing would necessarily result in the introduction of a new

adder A2 together with a new comparator CI. If inversion is applied instead, then a self-

checking solution for +2 could be configiued as the figure shows, by introducing the two

highlighted operations. Subtraction -2' inverts addition +2 using the existing subtracter

SI, which is idle during CS 4. Further, the necessary comparison !=1 is conducted during

CS 5, on the newly introduced comparator CI. This way, operation +2 is checked by

means of a/gorzYA/M/c mverj'foM (inversion testing that does involve physi-

cal introduction of a new "redundant" module). With respect to duplication, it is evident

that in this particular case algorithmic inversion saves the hardware cost of an adder mod-

ule. Referring back to Figure 5.8, one can observe that alternative inversion solutions

could be considered by moving operations -2' and / or !=1 in time. For example, the com-

parison could be moved to control step 4 and chained (§3.2.3) after the subtraction. This

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 4 1

would reduce error latency to a single control step, while it might not require clock speed

degradation, since the (probably slow) multiphcation *1 is already present in CS 4. Of

course, this cannot be determined conceptually here; low-level implementations and the

target technology need to be taken into account. In a high-level synthesis environment,

such information is readily available in or can easily be calculated from the technology

library (§3.1).

In summary, the above example points out that, in DFGs of substantial sizes, there can be

cases when algorithmic inversion provides an interesting and beneficial alternative to al-

gorithmic duplication. In that sense, it should be kept as an cfegreg

when devising self-checking DFGs. The example also shows that the whole problem with

all of its parameters and trade-offs is best addressed at the behavioural synthesis level of

absti'action.

Other than the historical theoretical study of [120] mentioned above, one can also find two

recent pubhcations proposing schemes that remind of inversion self-checking as shown

here. In [122], an encoder (compressor) - decoder (decompressor) pair is used for testing

purposes in a dependable computing architecture, while in [123] decryption ("inverting")

is applied to encrypted data, in order to detect faults in a certain hardware implementation

of a cryptographic application. Still, properly defining, analysing and considering inver-

sion in the context of self-checking DFGs, within high-level synthesis, is a novelty and

one of the contributions of the research presented in this thesis.

5.2.3 Discussion

Subsection 5.2.1 evaluated algorithmic duplication techniques found in the literature and

identified concepts not adequately addiessed by them, not simultaneously addressed by

them, or at times not addressed by them at all. Subsection 5.2.2 defined inversion and al-

gorithmic inversion. The datapath self-checking design work of this thesis covers the is-

sues left open by previous researchers, while exploiting algorithmic inversion, where it is

beneficial. To this end, the goals and properties of the implementation presented in this

tliesis can be categorized with respect to the following three criteria :

« Fault recoveiy. Past attempts at fault recovery have yielded application-specific and

unproven recovery mechanisms (§5.2.1). In principle, any adopted recovery mechanism

p. Oikonomakos, 2004 Chapter 5: Datapath Self^checking Design 142

primary inputs

4 C1

error
indications

primary output

Figure 5.9. Checking all intermediate results for the example of Figure 5.2

will by nature rely on the target technology (e.g. targeting a dynamically reconfigurable

FPGA part can reveal interesting opportunities for run-time self-repair). In order to keep

this work generic and technology independent, this author makes no assumption regarding

the fault recovery technique. This thesis is thus restricted to /zmeZy and repoiting of

faulty circimistances, such that faults can be reported o j joon ow the sys-

tem primary outputs are corrupted, so that aw}' recovery mechanism can react in a timely

manner.

" Fault detection. The duplication-based fault detection mechanism applied in this thesis

is effectively shaped by the requirement for timely reporting, as stated above. Previous

research works overviewed in §5.2.1 mostly employed checking of primary outputs; at

times not even all primary outputs were checked [65, 69, 70], while in certain cases se-

lected but limited intermediate results were also checked [60, 23, 61]. The strict error la-

tency requirements stated in this thesis mandate that jzMgZe intermediate result be

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 143

checked. Algorithmic duplication is applied to perform this checking; algorithmic inver-

sion is also used alternatively.

« Synthesis. Addressing the whole self-checking problem at the high-level synthesis

level has a number of challenges, implications, as well as inherent advantages over previ-

ous pieces of work. Insertion of self-checking resources should ultimately be done auto-

matically by the synthesis tool, without any HDL modification or other intervention of the

user to the synthesis process, other than specifying the synthesis constraints. Even further,

self-checking insertion and other design optimisation (for area or delay) should be done in

a j'ZMg/e optunisation process, to facilitate efficient design space exploration (Figure 5.3).

The choice between algorithmic duphcation or inversion in a given situation should also

be automatic within this same process. Moreover, both duplication and inversion require

fault secure comparators and such comparators do not normally exist in cell libraries by

default. The design of fault secure comparator cells, utilisable by the core synthesis sys-

tem, is therefore an additional challenge. Once these goals have been reached, the result-

ing integral synthesis for on-line testability tool will be able to take full advantage of exist-

ing high-level synthesis benefits. To this end, loops and conditionals will be accommo-

dated painlessly (so long as the original tool supports them), chaining of operations will be

a feasible design choice, while independence of technology and support for alternative

technologies through existing libraries will also be available by default.

Figure 5.9 shows how Figure 5.2 could be transformed to provide checking of aU interme-

diate operations. The original data flow graph stiU comprises operations +1, -^2, +3 and

*1, dependent on each other and scheduled exactly as in Figure 5.2. The duplicate opera-

tions receive the same inputs as the respective original ones, and produce outputs that are

compared against the original operation outputs through suitable comparison operations,

implemented on introduced fault secure comparators. This can be confirmed on the figure,

by focusing, for example, on additions +2 and +2', whose outputs feed comparison !=2,

implemented on comparator CI. The original operation output is always also fed to its

proper successor operation (e.g. the output of +2 feeds *1). ^4// internal arcs are thus veri-

fied concurrently with the useful operation. This ensures that all intermediate results are

fault-free when they feed their successors, unless an error is indicated (at the right-hand

side of the figure). This scheme clearly provides a monitoring of the health of the

system, and detects faults literally as soon as they manifest themselves at the outputs of

faulty functional units. For instance, if adder A2 is faulty and corrupts the output of opera-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 144

tion +1 % then the fault will be detected at CS 2 rather than at the end of the whole opera-

tion (CS 4). This may seem like a modest improvement for such a trivial example; one can

however understand the importance of timely reporting in a realistic design with a critical

path length of a few tens of cycles. On another note, the Ggure also depicts the chaining of

operations mentioned earlier. Indeed, comparisons !=2, !=3 and !=4 are chained after re-

dundant operations within control steps 3 and 4. Clearly, this is a design option; dedicated

control steps could alternatively have been introduced for the comparisons. In a realistic

situation, the choice will be made within the optimisation process, taking designer priori-

ties and technology parameters into account.

Now focus on the error indications on the right-hand side of the DFG of Figure 5.9. In this

particular example, two 2-bit output comparators CI and C2 are used. Under the timely

reporting assumption, the outputs of these comparators need to be combined and taken to a

chip primary output port. This is done here by applying the standard practice of self-

checking response compaction, using a two-pair dual-rail checker (§2.2.2.2). Figure 5.10

reminds us of the idea and illustrates its application in the particular context. Modules CI

and C2 in Figure 5.10 represent the comparators found in Figure 5.9. Two fUp-flops (ef-

fectively constituting a 2-bit register) are attached to each of them. "Write enable" signals

En2 En1

out

FF FF FF FF

2-PAIR
DUAL-RAIL
CHECKER

CI C2

F/gure 5. fO. Compacf/on oWafapafA comparafor responses

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 4 5

Enl and En2 are such that the flip-flops register their input values only at the appropriate

control steps, according to the DFG. For instance, C2 produces a value of interest only at

control step 3 and it is only during that control step that the corresponding flip-flop is en-

abled to store a value. Naturally, there is also a clock input to the flip-flops, omitted in the

figure for clarity. The values stored in the flip-flops asynchronously feed a dual-rail

checker, here acting as a response compactor. The output of the response compactor drives

the overall chip "health indication" primary output. The system designer can then handle

this health indication to trigger any recovery mechanism as desired.

A final observation on Figure 5.9 is that the data-flow graph is ovgrZoatfed with nodes (op-

erations) and especially arcs (operation input / outputs). Indeed, the introduction of several

new comparisons and the associated data dependencies create a situation which may re-

quire a great many multiplexers, comparators and intercoimect to be implemented in

hardware. One may think that this overloading will lead to an unacceptably high hardware

overhead, possibly higher than physical duplication, characterizing the whole approach

impractical. Section 5.3 will experimentally prove that this is not the case if the optimisa-

tion potential of high-level synthesis is properly exploited.

5.3 Implementation and Experimental Results

The presentation of this chapter now moves on to the implementation of the concepts out-

lined in §5.2.3. Implementation involves two interdependent tasks. Firstly, insertion of

self-checking resources should be done automatically and transparently, at the designer's

request. Secondly, the resulting self-checking system should be optimised for the tradi-

tional high-level synthesis objectives, i.e. area and delay. These tasks should ideally be

addressed simultaneously. Ultimately this can best be achieved if the self-checking prob-

lem is formulated in a manner that a high-level synthesis tool can use. The rest of this

chapter details how this is achieved using the MOODS high-level synthesis system (§3.2),

and presents experimental results, comparisons and conclusions. It should be noted that

the work is by no means restricted to the particular tool. The concepts presented hereafter

are generic in their essence; if a different tool was given, then the low-level practical im-

plementation details could be ac^usted as applicable to match the idiosyncrasies of the tool

at hand. As shown in §3.2 MOODS is a transformational tool; a tool based on constructive

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 4 6

algorithms could alternatively be written. All the theoretical foundation of §5.1 and §5.2

would still be valid, but a different implementation strategy would need to be adopted.

5.3.1 Preliminary experiments

As a preliminary step towards implementing on-line testing within MOODS, a number of

manual experiments targeting standard synthesis benchmarks were conducted using the

original MOODS system of §3.2. These experiments essentially constituted a feasibihty

investigation. The manual methodology followed, results obtained and lessons learned are

given in the following.

The first benchmark design used was the Tseng datapath, aheady presented in §5.2.2.

With respect to Figure 5.8, the multiplication and the division have been substituted by left

and right shifts respectively; this is permitted since their constant operands are powers of 2

(Appendix B), and in fact it leads to particularly economical realizations, since shifters are

much cheaper than multipliers. For the purposes of this subsection, self-checking func-

tionahty was manually inserted to the design by modifying the original VHDL description.

Consider the following simple addition example in VHDL :

v 8 i := v 3 i + v 5 i ; (5.1)

where v8 i , v3 i and v 5 i are bit vectors representing unsigned integer values. Duphca-

tion testing is implemented as :

v8i := v3i + v5i;

scl := v3i + v5i; (5.2)

failed <= scl /= v8i;

scl is an additional bit vector of the same size as the already existing ones, while

failed is a single-bit port, responsible for communicating the error indication informa-

tion. Inversion testing can alternatively be configured for the same example as follows :

v8i := v3i + v5i;

scl := v8i - v5i; (5-3)

failed <= scl /= v3i;

Both the original and the modified behavioural descriptions of the design were fed to

MOODS and optimised using the existing tailored heuristics (§3.2.5.2), with equal priori-

ties for the area and delay criteria and a nominal value for the clock period. The MOODS

p. Oikonomakos, 2004 Chapter 5: Datapath Self^checking Design 147

RTL output was subsequently further synthesized targeting a standard FPGA part (Xilinx

Virtex XCV800) and using a commercial tool (Synplicity Synplify version Pro 6.2 [124]).

The final implementation was carried out using the Xilinx Design Manager (version 3.1i

[125]). Table 5.2 sums the results of this experimentation. The first column on the table

defines the synthesized version of the design. The orzgma/ version refers to the untestable

implementation (i.e. without any VHDL modification). The version is the result

of applying the duplication modification exemplified in code segment (5.2) in aU eight op-

erations of the data-flow graph. The particular version also needed some further manual

Error
Cyc/a; //orcfivore

Orer/fecK/

Error

Ongmo/ 7 - - CJO

766 9 27.2 2&6 0
/ Jg 9 2&(f 0
76/ 770 13 / 7 . j &J.7 OJ

Tab/e 5.2 ; Tseng benchma/* pre/Wna/y synf/;es/s resu/fs (Targef fecAno/ogy X///nx V/rfex XC VSOO

WfVerf .guAfracfor.; W//0 r/gAf com;?arafor.;
gofe; ga/CL; Âi/i'Erf jAi/̂er.;

1 / / / / / -

Di/pAcokiY 2 2 2 2 2 2 I
/nverfeiV 7 I / 2 2 2 2 I

7a6/e 5 . 3 T s e n g bencAma/* /uncAona/ modu/e usage

Ker.f;'oM

/4veruge
Error

lafency
(tyc/a;,;

Ker.f;'oM Wcej TrLTfa/e Cyc/e;
Fre^uenQ'

//art/wore
OverAeoc/

/ "e^rmonce
f)egra(/7/;on

/4veruge
Error

lafency
(tyc/a;,;

Or/gma/ 23^ J7g 13 2Jy1#/z - - oo
j22 15 2 jMHz j&2 0

/nverfec/ / 15 4 Afffz i / . j 0
/nverkiY 2 PP6 IS 2JM//Z o . j j

Ta6/e 5.4 ' O/YTeg bencAmarfc pre//m/na/y synf/ies/s resu/fs (Targef fec/7no/ogy X;//nx W e x XC\/800 FPG/4^

Fer.;/on Tbrgef TecAno/ogt'
7(&;o;frce C/;age

Cyc/g;
Taffrng f eno/fy

Fer.;/on Tbrgef TecAno/ogt'
<̂ /zcef Trufafg

Cyc/g; /for^/yfore
OverAeat/

faybrmonce
Oegrac/afion

|tyc/g^
Or(^/ncf/ A7/»u: Mr/ei^CMfOO 2P/0 33 - -

Or/gmo/ A7/fMx;rcpj2ggAy 2P/0 33 - -

7 JgP 4574 77 26.7 733.3
//7V / y îrfearZCKSOO 600 JOOO 77 29.0 733.3

A';/fn;cA'CPJ2g6';rK 702 4574 77 2&7 733.3
/nw 7 67/ JOOO 77 22.4 733.3

Dzf/)/ 2 J20g 42 40.6 27.3
/nv 2 6jO J44y 43 J J. J 30.3

Tab/e 5.5 ; QRS benchma* pWm;naQ/ synf/7es/s resWfs

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 4 8

mtervention, on top of the tailored heuristics optimisation. The reason is that the automatic

optimisation procedure naturally assigns additions v8i := -v3i + v 5 i ; a n d s c l : =

v3 i + v5 i ; to the same functional unit, trying to minimise the overall hardware. Of

course, in the case at hand this is not valid, because a fumctional and a redundant operation

need to be executed by disjoint hardware for the self-checking scheme to be meaningful

(§2.2.2). A number of manually selected applications of the "imshare" transformation

TF13 (§3.2.3) were thus needed to produce valid self-checking output (see also [126] and

Appendix A for information about running MOODS in a manual, "console" mode). Refer-

ring back to Table 5.2, the version is the product of modifying operations ac-

cording to the inversion paradigm of segment (5.3) wAere oppZicabZe (§5.2.2), while still

retaining duplication where inversion is not apphcable. In addition, an version

is given. The difference between this last version and is that in the

pairs of functional and redundant operations are not allowed to be chained in the same

control step. Chaining is prevented manually in the DFG, by forcibly inserting a control

step boundary between the two operations. The MOODS VHDL Reference and Style

Guides [127, 128] or Appendix A of this thesis can be consulted for practical details on

how this is done.

The rest of the columns in Table 5.2 give the actual numeric results of the synthesis ex-

periments. FPGA resource usage is given in terms of the number of occupied slices [125].

The number of tristate buffers used is also included, for the sake of completeness. These

buffers are used for multiplexing. More specifically, this author's design experience,

backed by previous research conducted in [100], suggests that multiplexers implemented

in FPGAs using standard look-up table based logic are very costly in terms of area (in fact

they occupy more area than functional modules, thus rendering hardware sharing a disad-

vantageous option). It was found that using tristate buffers to implement multiplexers

solves this problem, as there is a plethora of normally unused such buffers in a typical

FPGA device. The number of buffers used may appear excessive, but this has no negative

implications on the design quality, since it is the number of occupied slices that signifies

the FPGA area utihsation. Speed parameters of the synthesized designs are reported sub-

sequently; these are the critical path length (measured in number of clock cycles) and the

maximum firequency achievable by a given realisation. The hardware and speed overheads

are more clearly illustrated next, by means of the percentage of increase in slice usage and

the percentage of performance degradation in number of cycles. Finally, for this small ex-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 4 9

ample (eight operations) it is easy to calculate the average error latency, in cycles; this is

reported in the last column of Table 5.2. The error latency is given as infinite in the case of

the offgma/ design, since there is no on-line testing applied to it (i.e. faults are never de-

tected). Note that the hardware usage and frequency statistics on the table are the ones re-

ported by the actual lowest-level implementer tool; therefore, they are as realistic as could

be and fully reflect the optimisation contribution of RT-level synthesis. This note applies

not only to Table 5.2 but to all tables hereafter.

A simple comparison of the results in Table 5.2 for the and the ver-

sions reveals that has a smaller hardware overhead. This is consistent with the

inversion testing intuition provided through Figure 5.8. Further, Table 5.2 shows that error

latency in both cases is 0, since for all instructions in the DFG the functional, redundant

and comparison operations are scheduled in the same control step, and thus faults are de-

tected at the same control step as they occur. Performance degradation (in terms of clock

cycles) is also the same; however, chaining of functional / inverse operation pairs within

the same control step results in the maximum achievable clock frequency being 7 times

lower in the version. Focusing now on the version, it can be seen

tliat it needs an additional 4 cycles, but the maximum achievable clock 6equency is not

degraded with respect to the version. The hardware overhead is more than for

the version but is still less than the version. Non-zero error latency

is introduced; indeed, out of 8 operations, 4 are inverted and checked with an error latency

of 1. Error latency is 0 for the other 4 (duplicated) ones, giving an average of 0.5. In an

attempt to more clearly demonstrate the area savings for this simple but illustrative exam-

ple, Table 5.3 summarizes the functional module usage of the different Tseng versions.

The (fupZ/cofecf version naturally features double the number of hardware components with

respect to the original one; the version is shown to include an adder and a sub-

tractor less. In fact it is the absence of these two arithmetic modules that gives rise to a

cheaper self-checking solution when using invertion testing. has exactly the

same functional module usage as and is thus not included on Table 5.3. The

three extra FPGA slices that the unchained version occupies are due to regis-

ters introduced to store the results of original computations across clock cycle boundaries,

before being fed to the redundant ones.

The next design tried was a differential equation solver (hereafter Diffeq). It is taken from

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 150

[129] and it has also seen extensive usage for benchmarking purposes, also considered

representative of more complicated but typical HLS situations. The experiments con-

ducted with Diffeq are shown on Table 5.4. The version names have the same meaning as

in the previous example. The self-checking versions were again produced manually and

synthesized using equal priorities and targeting a Xilinx Virtex XCV800 FPGA part. The

observations are along the same lines as before. The version is the most expen-

sive, but also the fastest both as regards clock cycles required and maximum achievable

clock frequency. Chained is the cheapest with respect to hardware overhead,

but suffers severe frequency degradation. Unchained is moderate in hardware

usage and does not cause frequency degradation, but results in a few additional clock cy-

cles in the critical path.

The question that naturally arises in both of the above examples, is which of the on-line

testable versions one would choose. As is usually the case when working in high-level

synthesis, there can be no definite answer, and the choice is always up to the designer.

Considering the results of Table 5.2 as an illustrative example, it can be commented that if

cost is the biggest restriction, then the designer may probably choose the (cheapest)

chained version. If the clock frequency degradation imposed cannot be toler-

ated, maybe they will consider paying the extra price for the non-chained zMvg/Ygc(_2 reali-

zation. Still, if the additional clock cycles are unacceptable, maybe they will have to pay

even more to have the c/wpZ/ca/gcf version. Finally, if the latter is too expensive and reli-

ability is not a first priority, the designer may decide to drop on-line testing completely

and go for the orzgznaf untestable version. It is thus in practice demonstrated that the trade-

offs and dilemmas of traditional high-level synthesis apply equally to the problem at hand;

this time, though, on-line testability acts as an parameter.

The last experiments of this subsection were conducted on the QRS benchmark [130]. The

particular design is actually of substantial size (-70 operations, mainly additions, subtrac-

tions, and divisions by powers of 2, implemented by "shift right" modules), and it corre-

sponds to a useful medical electronics application. Table 5.5 presents the obtained results.

This table assumes a slightly different form from the previous Tables 5.2 and 5.4. Firstly,

a dedicated column shows the particular FPGA targeted in each experiment. The maxi-

mmn frequency is not reported; this is because there were no significant degradations in its

value, since the original untestable QR.S designs already feature considerable chaining.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 5 1

Finally, the average error latency is not reported either, since the number of operations in

this design make its manual calculation impractical. For this benchmark, initially a dupli-

cated and an inverted version were configured and synthesized. These are denoted on the

table as y and Two different FPGAs were targeted in two different sets of ex-

periments. The interesting observation is that there are cases when inversion can be more

expensive than duplication; indeed, is cheaper when a Viitex XCV800 is used,

while is cheaper for the alternative part XC95288XV. This can be explained as an

e f k c t of low-level refinement, or of the place and route algorithms utilized by the final

hnplementation tool. Clearly a design which appears more expensive than another when

considered at a high level in the design flow, may at times demonstrate enhanced optimi-

zation potential at lower levels, especially in FPGA technology. This observation gives

rise to a strong argument for high-level synthesis : it is desirable that the time &om the

conceptual design to the final solution be as little as possible, so that alternative solutions

can be tried fast and efGciently.

A second observation on the table is that and always experience severe delay

degradation (more than 100%). This is a most undesirable effect and it can be explained as

follows. Recall that self-checking functionality was added to the design by means of the

VHDL modifications of (5.2) or (5.3). In both cases the one-bit signal f a i l e d was used

to store fault indication information. Clearly only one "write" operation can target a signal

at a given control step. This means that each of the comparison operations attempting to

write to the f a i l e d signal will need a control step of its own. There are around 70 such

comparisons (equal to the number of fimctional operations), so at least 70 discrete control

steps will be needed for the self-checking design. This is indeed confirmed on the table

(77 control steps). In effect, the implementation of self-checking as done here hinders the

control step merging potential of the data-flow graph. This problem can partly be solved

manually, by using multiple f a i l e d signals. For example, consider the following VHDL

code segment describing a duplication-tested subtraction :

ecg_dif := ecgl - ecgml;

scl : = ecgl - ecgml; (5.4)

failedl <= scl /= ecg_dif;

A second self-checking operation immediately following should take the form :

p. Oikonomakos, 2004 Chapter 5. Datapath Self-checking Design 152

ecg_dif256 := ecg_dif / 256;

sc2 := e c g _ d i f / 256; (5.5)

failed2 <= sc2 /= ecg_dif256;

If the two comparisons in the above code segments were assigned to discrete comparators,

and the clock period requirements were not violated, then all operations of (5.4) and (5.5)

could be scheduled in the same control step. In order to provide a concise error indication,

n failed signals are combined through a logic OR :

f a i l e d <= f a i l e d l o r f a i l e d 2 o r ... o r f a i l e d n ; (5.6)

Referring back to Table 5.5, the and versions were configured for the QRS

benchmark, each one implementing the respective self-checking strategies as before, but

this time a total of M=7 different f a i l e d signals were used; the choice of number was

random. The table shows that the performance degradation experienced by both designs

was much more tolerable, while the inverted version was the cheapest for the particular

technology, but marginally slower than the duplicated one. The obvious question in this

procedure is if the random value assigned to M was the optimal choice, and if there is a

way to determine which choice would have been optimal. In effect, different values of M

would enable exploration of different parts of the overall design space. It would be par-

ticularly time consuming to try a good number of alternative choices in this example, since

each choice would require modifications throughout the whole length of a substantially

sized behavioural VHDL input. The need to the design space exploration proc-

ess for self-checking resource insertion is evident.

Concluding this subsection, it is to be noted that the preliminary results presented above

do not as such reach the goals of the present chapter, as outlined in §5.2.3. Two of their

obvious weaknesses are the need for manual intervention and the use of conventional one-

bit output comparators, not adhering to the scheme of Figure 5.10. They do, however, pro-

vide some usefiil insight on the problem of on-line testing within high-level synthesis, as

summaiized in the following two points :

« It is confirmed that the high-level synthesis considerations and trade-offs are relevant

to self-checking resource insertion. Further automation in the design flow is also shown to

be required, to facilitate efficient design space exploration for self-checking datapaths.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 153

» Inversion testing appears to be a source of hardware savings, but is likely to lead to

slower realisations, either by degrading the maximum clock speed, or by giving rise to ad-

ditional clock cycles.

The Grst point provided the encouragement for further automation of the whole process;

the second will be constructively used in §5.3.3.2.

5.3.2 Semi-automatic experiments

As §3.2 established, the internal functionality of MOODS involves the application of cer-

tain transformations to the design under synthesis, through multiple repetitions of the op-

timisation loop of Figure 3.7, directed by an automatic optimisation algorithm or by the

designer manually interacting with the system, and controlled by a cost function. At the

lowest level, it is the transformations that introduce changes to the resulting datapath

structure. It is therefore sensible to state that the introduction of new functionahty within

MOODS has to begin with defining an appropriate set of additional transformations.

5.3.2.1 Self-checking resource insertion software framework

In order for redundancy-based on-line testing schemes to be incorporated within the

MOODS environment, three additional transformations were initially implemented. Table

5.6 summarizes them. All three are described as "testing" transformations, thus distin-

guished from the allocation or scheduling transformations encountered in §3.2.3. A nota-

ble innovation in test-

symbolic
name

description type of
transfomn

TF22 physically duplicate instruction testing
TF23 physically invert instruction testing
TF26 remove instruction testing

scheme
testing

ing transformations is

that they introduce

new functionality to

the design, while the

Table 5.6. Test resource insertion transformations traditional allocation

and scheduling ones

strictly presei-ve the circuit behaviour and only change the structural realisation. In that,

the present work breaks with high-level syntliesis tradition. However, it should be made

clear that the oiiginal functionality of the design is not affected by the testing transforma-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 154

tions; only redundant instructions are inserted and strictly utilised for self-checking pur-

poses. In that sense, testing transformations can be considered "semantic-preserving".

In order to be exploitable within the optimisation loop of Figure 3.7, each of the transfor-

mations of Table 5.6 needs associated "validate", "estimate" and "perform" software func-

tions implemented within the MOODS system. The software development involved was

earned out for the purposes of this work, taking up around 2000 lines of C-H- code [119].

Detailed descriptions of the transformations of Table 5.6 are novy given in the following.

v
C1 (# 2) C 2 N (# 1) C 1

N+1

N+2 COIVIP

(aj Ong/na/ sfafe /mmed;afe/y aAer fesf
resource /nse/f/on

N f #1) C1

#2 C1

!= COIVIP

N+1

1= COIVIP

('cj Opf/m/s/ngf for area Cd) Opf/m/smg /or speed

F/gure 5. Y Y. /nserf/or; of dup/Zcaf/on fesf/ng resources
and subsequent opW/zaf/or?

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 5 5

Transformation TF22 targets a given instruction and as-

sociates duplication-based self-checking resources to it. Clearly this involves the introduc-

tion of two additional operations, a duplicate and a comparison. The net result immedi-

ately after the transformation has been performed, is a locally "maximally serial" type of

self-checking configuration, wherein a Mgw datapath module has been introduced to im-

plement the duplicate operation, together with a new comparator; the associated duplicate

and comparison instruction also have Mgw/y m j e r W control steps dedicated to them. In

other words, the transformation as such implements purely physical duplication and does

not make any attempt to identify and reuse possibly existing idle modules. This initially

appears to be naively expensive; Figure 5.11 depicts the situation and clarifies the benefits

of such an approach. Firstly focus on Figure 5.1 la. A veiy simple segment of a DFG fea-

tures two independent operations of the same abstract type namely #1 and #2. They

are scheduled in a single control step N, and assigned to components CI and C2. The

components are assumed to be behaviouraUy identical. Figure 5.1 lb depicts the situation

immediately after the application of TF22 on #2. The new elements mentioned above can

be observed. Indeed, N+1 and N+2 are additional CSs, while a new component C3 imple-

ments the duplicate operation #2' and an introduced comparator COM? implements the

comparison !=. At this point remember that optimisation within MOODS consists of a

substantial number of repetitions of the optimisation loop of Figure 3.7, effectively leading

to the application of a substantial number of transformations. Therefore, the final state of

the design does not need to be that of Figure 5.1 lb since more transformations will foUow;

Figures 5.11c and 5.1 Id show two possible mutually exclusive paths that subsequent op-

timisation steps can lead the design to. The scenario of Figure 5.1 Ic imphes that the de-

signer has specified the chip area as a top priority constraint, while delay optimisation is

secondary (§3.2.4). An area-oriented algorithm will then be chosen (for instance the heu-

ristic of Figure 3.10b, readily available within MOODS). The hardware sharing transfor-

mation TFIO (§3.2.3) wiU then be applied on operations #1 and #2% The result is that

component C3 is dropped and CI implements both #1 and # 2 \ Further, assume that the

comparison can be chained after #2' without affecting the clock period; the CS merging

transformation TF8 will then move operation != to CS N4-1 and drop CS N+2. Thus the

state of the design reaches Figure 5,11c. One can observe that the solution at hand is a

relatively cheap self-checking implementation (only the comparator is introduced), but

gives rise to a delay degradation of a clock cycle (N+1). Alternatively, if the designer has

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 5 6

specified delay as his or her first priority, then the state of Figure 5.11 d will be reached,

wherein CSs N and N+1 are merged using TF8, invoked by the heuristic of Figure 3.10a.

Subsequently, N+2 is also merged with the other two exactly as before, assuming again

that the clock period is long enough. In Figure 5.1 Id it can be seen that any hardware shar-

ing between CI, C2 and C3 is now impossible, since they are all active simultaneously.

Therefore, self^checking is implemented at a high price, but the result is fast, since there is

no additional delay degradation. The example overall shows that applying straight-

forward physical duphcation and then allowing the existing synthesis framework to further

optimise leads to a vgrja/zVg design space exploration process, in the sense that the subse-

quent optimisation automatically follows the designer's directives and, depending on these

directives, can take alternative paths. This would not be possible if TF22 immediately

lead, for example, to the state of 5.11c, since then delay degradation would be unavoid-

able, and the requirements of a delay-constrained project less likely to be met. In effect,

the initially naive state of 5.1 lb is dictated by the nature itself of iterative high-level syn-

thesis.

As all transformations, TF22 also needs a validity check phase. Given a target instruction,

the validity check software function first checks if the instruction is a valid datapath opera-

tion. If it is, then duplication testing can readily by applied, unless a) a self-checking

scheme has already been inserted and associated with the instruction, or b) the instruction

itself is the duplicate or the inverse of another functional operation in the DFG.

Transformation TF23 invert iVKfrwcfzoM) is very similar to TF22. It is per-

formed exactly along the lines of Figure 5.11, although naturally in this case an inverse

rather than a duplicate of operation #2 would appear in CS N+1 (Figure 5.11b). The trade-

offs and design space exploration arguments built around Figures 5.11c and 5 . l id equally

apply in the inversion case. Once more, the same naive start leads to a versatile process.

The validity check phase is also very similar to that of TF22, with the important addition

that, in order for TF23 to be valid, the targeted instruction should be mathematically

uniquely invertible (§5.2.2). For this purpose, each instruction type that the tool supports

is characterised as either invertible or non-invertible and this infbmiation is hard-coded

uito the tool; checking for invertibihty is then a simple table look-up.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 5 7

Note that both TF22 and TF23 introduce new comparison operations to the datapath.

These comparisons need dedicated one-bit registers to preserve their results, and the out-

puts of the registers should be compacted to produce a concise output, exactly as the

VHDL statement (5.6) showed. The test resource firamework of this intermediate experi-

ment in fact automatically introduced a statement such as (5.6) in the RTL output Ale, thus

accommodating this need.

The third transformation shown on Table 5.6 is TF26 (removg rgj'/mg.ycAeTMe). It is the

"undo" transformation of both TF22 and TF23. It targets a given instruction, and, as its

name suggests, its function is to disassociate it from any self-checking resources that a

previous application of either TF22 or TF23 may have inserted. This disassociation of a

functional operation from its testing hardware may or may not involve a degree of actual

dropping of hardware modules or control steps. As an example, refer back to Figure 5.11.

If TF26 is applied to #2 at the state of Figure 5.1 lb, then operations #2' and != will be

abolished; hardware modules C3 and COMP are only allocated to the abolished instruc-

tions, and therefore they will be removed as well. Control steps N+1 and N+2 will also be

empty and therefore not needed anymore. In contrast, if TF26 is apphed at the design state

of Figure 5.11c, then dropping out instruction #2' should be followed by the abolition

of the component implementing it, since the component (CI) is also in use elsewhere (al-

located to #1).

The validity check phase of TF26 needs to ensure that the targeted instruction : a) is a

valid datapath operation, b) is not in itself the duphcate, inverse or comparison operation

of a self-checking scheme, and c) has had self-checking resources associated to it and not

yet removed.

As the final remark of this subsection, recall that in the experiments of §5.3.1, at times a

certain manual intervention (unit unsharing) was needed, to ensure that MOODS did not

assign the same hardware module to the functional and the duplicate operations of a given

duplication scheme. As a supplement to the test resource insertion transformations pre-

sented here, the validity check function of the existing functional unit sharing transforma-

tion TFIO (§3.2.3) was augmented, such that the transformation is considered invalid in

case its two target instructions happen to partake in the same self-checking scheme. This

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 158

slight modification allows the designer to safely use the tailored heuristic algorithms of

§3.2.5.2, without hindering the validity of any previously inserted self-checking schemes.

5.3.2.2 Experimental results

At this point, a number of intermediate experiments were carried out. The objective of

these experhments was to validate the software framework of §5.3.2.1, effectively by re-

producing the results of Tables 5.2, 5.4 and 5.5; this time, however, no HDL modification

was allowed, hoping that transformations TF22 and TF23 would do what the code seg-

ments did in §5.3.1. The experiments were conducted as foliovys. MOODS was invoked in

console mode (Appendix A), a cost function chosen and the testing transformations were

apphed by interacting with the system and manually choosing the type of transformation

(TF22 or TF23) and the target instruction. When all instructions in the design were made

on-line testable, the existing tailored heuristic optimisation algorithm was applied. As ex-

plained in §3.2.5.2, heuristic optimisation automatically follovys any of the three paths of

Figure 3.10, depending on the designer priorities; in the context of this work, this equiva-

lently means that optimisation of test resources automatically follows either of the paths of

Figure 5.11 (or alternates between the two, in case of equal priorities). Implementing on-

line testability this way is clearly a much more automated process than the one described

in §5.3.1; however, a degree of manual intervention on behalf of the designer is still

needed, even if this is through the tool user interface. This is vyhy the approach of this sub-

section is termed "semi-automatic".

Tables 5.7 - 5.9 summarise the results provided by this set of experiments. All the ele-

ments on the tables are familiar from §5.3.1; the same three benchmarks and the same

low-level tools were used, while version names also have the same meaning.

versions this time were produced simply by specifying a very low clock period value, thus

effectively disallowing chaining. Quahtatively the results of Tables 5.7, 5.8 and 5.9 match

those of Tables 5.2, 5.4 and 5.5 respectively, hideed, is again the cheapest op-

tion for both the Tseng and the Diffeq designs, while the version is the least

hardware-intensive in the QRS benchmark. always experiences the least fre-

quency degradation. Some minor numerical mismatches between Tables 5.2 and 5.7, and

5.4 and 5.8, can be attributed to minor modifications to the MOODS system that are not

related to this work. When comparing Tables 5.5 and 5.9, one notes that the designs on the

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 159

latter are significantly faster as well as more expensive. To understand the reason for this

mismatch, recall the discussion of §5.3.1 regarding the dilemma over how many f a i l e d

signals were to be used. Ultimately, a random number M=7 was chosen, and the ^ and

designs of Table 5.5 were thus configured. In the designs of Table 5.9, literally

every single self-checking scheme has its own error indication bit, because such bits are

introduced together with the comparators, through the defined transfbimations TF22 and

TF23. There is no mechanism to share the introduced error indication bits; therefore, even

in the final, optimised design each self-checking scheme retains its unique error indication

signal. These signals are equivalent to the f a i l e d signals defined in the manual experi-

ments of §5.3.1. Since the QRS benchmark includes around 70 operations that all have

self-checking schemes attached to them, the situation is equivalent to having around 70

different f a i l e d signals in the experiments of §5.3.1. In turn, this suggests that the por-

tion of the design space explored by the semi-automatic approach is different from that

Version

Resource Usage Speed Parameters Testing Penalty

Average

Error

Latency

(cycles)

Version Slices Tristate

Bufkrs

Cycles Maximum

Frequency

Hardware

Overhead

(slices %)

Performance

Degradation

(cycles %)

Average

Error

Latency

(cycles)

137 400 7 50 MHz N/A N/A CO

(/zfp/zcafeiy 164 704 7 35 MHz 19.7 0 0

Mverrec/ / 156 720 7 4 MHz 13.9 0 0

mverfec/ 2 163 752 12 42 MHz 19.0 71.4 1.25

Tabie 5.7 : Tseng Benchmark semi-automatic experiments

(Targef 7ec/?no/ogy)(7//nx

Version

Resource Usage Speed Parameters Testing Penalty

Average

Error

Latency

(cycles)

Version Slices Tristate

Buffers

Cycles Maximum

Frequency

Hardware

Overhead

(slices %)

Performance

Degradation

(cycles %)

Average

Error

Latency

(cycles)

234 642 13 31 MHz N/A N/A

344 1106 13 29 MHz 47.0 0 0

328 1106 13 5 MHz 40.2 0 0

404 1154 15 29 MHz 72.6 15.4 0.92

Table 5.8 : Diffeq benchmark semi-automatic experiments

(Target 7ec/?no/ogfyX///nx IZ/'/fexXCVGOO

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 160

Version

Resource Usage

Cycles

Testing Penalty

Version Slices Tristate

Buffers

Cycles

Hardware Overhead Performance

Degradation

(cycles %)

Version Slices Tristate

Buffers

Cycles
slices % tristate

buffers %

Performance

Degradation

(cycles %)

on'gma/ 470 2626 34 N/A N / A N/A

f/up/zco/eaf 750 6548 36 59.6 149.4 5.9

762 6915 37 62.1 163.3 8.8

7a6/e 5.9 ; QRS benchmar/c sem/-aufomaf/c expen'menfs

(Target Technology Xilinx Virtex XCV1000 FPGA)

explored during the manual experiments, and explains the quantitative differences. An

automated way to determine the optimal comparison resources is stiU missing.

Once more, it has to be noted that the work presented in this experimentation round is stUl

incomplete. Again the self-checking schemes lack the fault secure property, while full

automation has not been achieved. However, the experiments are successful in that the

transformational framework is experimentally validated; the subsequent §5.3.3 builds

upon this framework and achieves M l automation.

5.3.3 Fully automatic approach

As §3.2 has established, automatic optimisation within an iterative and transformational

high-level synthesis tool such as MOODS primarily depends upon the set of available

transformations, the form of the cost function constantly monitoring the quality of the sys-

tem, and the choice of algorithms provided. High-level synthesis for on-line testability as

outlined in this thesis has no reason to be different. Subsection 5.3.2.1 already de&ned

three additions to the existing set of transformations. The following §5.3.3.1 will define

and explain a metric for on-line testability, to be included in the system cost function.

Subsection 5.3.3.2 will choose an algorithmic approach to fully automate test resource in-

sertion and integrate it with subsequent optimisation. Subsection 5.3.3.3 wiU alleviate the

lack of fault security of §5.3.1 and §5.3.2. Two more additional transformations will fur-

ther be defined in §5.3.3.4. All these additions will create a fiilly integral and designer-

friendly synthesis environment; experimentation results will be given in §5.3.3.5 and

comparative comments on §5.3.3.6.

p. Oikonomakos, 2004 Chapter 5: Datapath Self^checking Design 161

5.3.3.1 A metric for on-line testability

Transformations TF22 and TF23 (Table 5.6) have been shown to give rise to an initially

inefficient design, paving the way for subsequent versatile optimisation. Still, the initial

application of either of them results in a temporarily huge overhead (Figure 5.1 lb). Any

synthesis system considering them will consult the controlling cost function to determine

if they are beneficial or degrading; since for the tool at hand the cost function originally

only relies on area and delay, one can conclude that the tool will be highly unhkely to ac-

cept TF22 or TF23 in automatic optimisation mode. This is because the area and delay es-

timation will oM/y reflect the penalties but the benefit of applying the transformation,

causing it to appear brutally degrading. This not yet reflected benefit is, of course, the im-

provement in on-line testability. It follows that a metric is needed, to quantify on-hne test-

ability and include it in the original cost function (equation (3.3)), so as to bias tlie system

towards introducing on-line testability by means of transformations TF22 and TF23.

The following heuristic on-line testability metric is proposed here :

= 0-, X + (T, X X (1 - ;^)+o-; X (iog(z - ')+o-J (5.7)

where :

f]% is the percentage of original operations made on-line testable

f 2% is the average (per functional module) idle time availability

Z, (measured in control steps) is the average error latency per self-checking scheme,

where the term error latency refers to the number of clock cycles that elapse between the

manifestation and the detection of a fault (equivalently, the number of control steps be-

tween the fiinctional operation and the comparison of the self-checking scheme)

Ci, 0-2, (73, (74 are weighting constants

is normalized over its maximum value, obtained for f ,=1 and ^=0, and thus ulti-

mately expressed in %. It is well known thatlimZ"' = «,. As always, in practice infinity is

expressed by a pre-defined "sufficiently large" number .Z7VF. In the context of this work, it

was empirically chosen that the value should correspond to a quantity that cannot

possibly appear in the synthesis session of a given design. Given that the largest quantity

that can appear in a design is the number O f 6" of operations in the design, it was chosen

th.dLtINF=OPS+\. The maximum value of on-line testability is then given by the expres-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 6 2

sion = O", + O"; X (log(/7VF)+ c r j and according to the above the normahzed on-

line testability is ultimately given by

(5.8)

The ideas summarized by equation (5.7) are clarified in the following. Clarifying com-

ments are provided with reference to the DFG of Figure 5.8.

® P\ is clearly a factor that determines the quality of test, by simply reflecting that the

more operations made on-line testable, the more testable the whole circuit is. For example,

in the Tseng datapath as shown in Figure 5.8 only one out of eight original operations is

on-line testable (addition +2, by means of inversion testing). Therefore f 1=1/8=12.5%.

® The percentage of available idle time is easily calculated for the given state of a de-

sign. In the example at hand, subtractor SI is used in two out of a total of six control steps

in the design. Therefore it is idle during 4 out of 6 CSs, yielding the 66.67% value for its

idle time availability percentage. The respective percentages for the other modules in the

datapath are 50% for adder Al , and 83.33% for multiplier M l , divider Dl , comparator CI

and logic gates Gandl and Gorl. Averaging these values yields ^2=76.19%.

® The term {1-P\) by which idle time availability Pn is multiplied, initially has the value

1 (because initially f i=0), and as the design becomes more and more testable, it moves

towards 0 (as > 1)- The significance of this, is that idle tkne can be an advantage in the

fbrst optimisation stages, because idle modules can be utilised in future optimisation steps

to implement duphcate / inverse computations not yet inserted. As optimisation pro-

gresses, less and less idle time is needed, since fewer and fewer duplicate / inverse compu-

tations are to be inserted. Therefore, the term cr̂ x f!, x (l - 7^) prevents functional module

sharing in the initial stages, and allows it later on, when testing instructions will have been

accommodated for, and there will be nothing to be gained by preventing sharing.

" As far as the third tenn of (5.7) is concerned, clearly faults need to be detected as soon

as possible, thus the linearised inverse error latency is present to facilitate merging of con-

trol steps that intervene between the original computation and the comparison operation

(for instance, CSs 4 and 5 in Figure 5.8). For the Tseng DFG at hand, only one self-

checking scheme has been configured (+2, -2', !=1); its error latency is 2 control steps.

Therefore 1=2.

» The weighting constant values in (5.7) determine the relative contribution of each term

in the overall on-line testability value. They have been set such that the first term contrib-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 163

utes 90% (as being the most important), while the third one contributes 10%. The second

tei-rn contributes a small .1%. This does MO/ practically add up to more than 100%, since

the second term comes out of play as the first approaches its maximum value. The exact

values used in the experiments of this work for the constants vyere o-|=9x(log(7A^+cr4),

(72=0.01 x(log(.0VF]+(74), (73=1, and (74=0.3. Notice that (7| and <72 depend on the "77VF" value

defined above; therefore, they are constants for a given synthesis project, since TMF is a

constant for a given design. These values were determined purely empirically, through ex-

perimentation and evaluation of the synthesis results produced using them. Notably, the

overall contribution of the second term of equation (5.7) is very smaU. Clearly a higher

value of (72 would have increased it, but once again experimentation dictated that this was

not necessary.

The MOODS cost function now becomes

X area -f- x x > (5.9)

Exactly like Cnrea and Cr/g/q),, reflects the designer-specified priority of the on-line test-

abihty criterion.

Equations (5.7) and (5.8) succeed in providing a visualisation of the previously abstract

concept of on-line testability,

by identifying and exploiting

the parameters that make up a

good on-hne testable design.

Inclusion in the cost function

(5.9) informs the synthesis

suite of the importance of on-

line testability and paves the

way for automatic optimisa-

tion, through the choice of a

suitable algorithm (§5.3.3.2).

One subtle difference be-

tween on-line testability and

the conventional criteria, is

Ff'gure 5.12. 3-cf/mens/ona/ cfes/gn space optimising the latter re-
(area, de/ay, on-//ne fesfa6//#%)

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 6 4

fers to minimisation (of e.g. area or delay), while optimising on-line testability is equiva-

lent to /Maz/m/zzMg its value. Mdeed, if the designer wishes a design that would be "as test-

able as possible", then he or she should specify the 100% value as the testability optimisa-

tion target. For the same reason, in equation (5.9) should be understood as holding a

negative value. Other than that, equation (5.9) is fully consistent with the cost function de-

scription of §3.2.4. Further, the introduction of a third user specification effectively gives

rise to a jpace, as Figure 5.12 depicts. The coloured area shows

the achievable region (§3.1.2) including the example point A, along with the projections of

A on the three axes that deCne the space (area, delay, on-line testability).

5.3.3.2 Algorithms

The next step towards full inclusion of test resource insertion within the overall iterative

optimisation process, is the choice and implementation of one or more suitable algo-

rithm(s), to control the optimisation loop execution. Synthesis experience using MOODS

suggests that the tailored heuristic algorithms of §3.2.5.2 are very fast, and normally pro-

vide acceptable results, despite the theoretical risk of ending up in a local minimum. The

problem is that aU versions of the heuristics use only a limited number of transformations;

the testing transformations of §5.3.2.1 are not relevant, and there is no obvious way to in-

clude testing considerations to the metrics of §3.2.5.2. On the other hand, simulated an-

nealing (§3.2.5.1) is very abstract and thus particularly suitable for optimising anything

that can be quantified, regardless of its nature. The disadvantage of simulated annealing is

its very slow speed.

In order to exploit the benefits and make up for the weaknesses of both simulated anneal-

ing and tailored heuristics, it was decided that a combination of the two should be used, as

in the following :

» Step 1 : apply simulated annealing, using designer defined parameters for the

initial and the terminating "temperature", as well as for the rate of temperature decrease

per step

« Step 2 : apply the version of tailored heuristics that matches the area and delay design

priorities (Figure 3.10)

The "modified" simulated annealing mentioned in Step 1 of the above procedure refers to

the standard simulated annealing algorithm already implemented within the MOODS sys-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 165

tern, with TF22 and TF23 included in the set of transformations, and a degree of determin-

ism incorporated. This determinism consists in the following. When the algorithm ran-

domly chooses a transformation from the set, if it happens to be a scheduling or allocation

transformation then the algorithm proceeds as usual; if it turns out to be either of the test

resource insertion transformations, then its actual type (duplication or inversion) is ini-

tially ignored, and which of the two will ultimately be applied is decided based on the fol-

lowing criteria:

« if die target instruction is not invertible, then duplication is applied, else

* if no inverse module instance is already present in the design, then duplication is

applied, else

» if frequency requirements are relaxed, then inversion is apphed, else

" if delay is a higher priority than area, then duplication is applied, else

" if area is more important than delay, then inversion is applied, else

« area and delay are of equal importance; the initial randomly selected trans-

formation (TF22 or TF23) is applied

The criteria upon which the choice of testing technique is made actually connect this dis-

cussion to the presentation of inversion testing in §5.2.2 and the manual experknents of

§5.3.1. Indeed, remember that inversion testing is practically advocated in §5.2.2 only

when idle modules of suitable types already exist in the datapath; if that is the case, then

experimental observations in §5.3.1 suggest that applying inversion testing leads to com-

pact designs, but severe degradation in the maximum achievable clock speed. It can there-

fore be beneficial in situations that do not demand very fast clocks, in other words when

frequency requirements are relaxed. The exact numerical correspondence of "relaxed" fr e-

quency requirements is to be determined experimentally, and varies firom design to design.

On the other hand, when frequency requirements are strict and thus chaioiag is unlikely to

occur, then duphcation and inversion were found ia §5.3.1 to lead to faster and cheaper

(respectively) solutions; therefore duplication should be favoured when delay is the top

priority, and vice versa. When area and delay have equal priorities, then there can be no

certainty as to which choice will lead to a better long-term solution, and so the initial ran-

dom choice is adopted.

The goal of the above modification is simply to prevent moves that design experience

suggests are undoubtedly suboptimal. Although classic simulated annealing is famous for

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 6 6

turning around unfavourable situations and over time balancing at the cost function global

minimum, there is no reason why a particular area of the design space cannot be excluded,

if it is known a priori that the desired solution does not he within that area. It is in the light

of this statement that the above modifications were decided. The positive result is the ac-

celeration of the simulated annealing algorithm.

Returning to Step 1, it is clear that the designer can specify the duration of the simulated

annealing optimisation process through the temperature parameters. The imphcation is

that simulated annealing is used primarily for test resource insertion and secondarily for

area and delay optimisation; therefore the designer can experimentally determine parame-

ters that practically apply simulated annealing for as much time as needed for a "suffi-

cient" improvement in testabihty. Tailored heuristics are employed afterwards (Step 2),

optimising the already testable design for the traditional criteria of delay and area. In this

way, the abstract nature of simulated aimealing is exploited, while its slow speed is com-

pensated for, firstly by the introduction of a degree of determinism, and secondly by fast

and efficient heuristics that take over as soon as simulated annealing has fulfilled its pri-

mary objective.

5.3.3.3 Fault secure comparators and dual-rail checkers

The concluding remarks of both §5.3.1 and §5.3.2 include mentions to the missing prop-

erty of fault security. The present subsection presents the development work that solved

this problem. Both duplication and, when applicable, inversion are fault secure as sepa-

rately shown in §2.2.2 and §5.2.2, provided that the checkers / comparators used in the

schemes are fault secure by design. This means that the datapath self-checking schemes of

this chapter can all be made fault secure, if the conventional, single-bit output comparators

§5.3.1 and §5.3.2 are replaced by the standard two-bit output fault secure comparator

modules mentioned in §2.2.2.1. Therefore, the task of this subsection is the design of a

library of fault secure comparators, and the necessaiy modiScations to the MOODS sys-

tem to utilise them in the self-checking schemes.

In essence, an n-pair fault secure comparator is composed of an M-pair fault-secure dual-

rail checker (§2.2.2.2) and M inverters applied to one of the dual-rail input vectors. In turn,

an M-pair dual-rail checker consists of n-1 dual-rail checker cells, such as the one shown in

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 167

levels

/ /

|_«/2j dual-rail cells

/

[^1/2] dual-rail cells

f 1

=r«/2i

/

single dual-rail cell

/ /
'

F/'gure 5. Y3. 8/oc/c d/agram of an duaZ-ra/V cAec/cer

Figure 2.30. Figure 2.31 has

exemplified this concept,

by showing a 5-pair dual-

rail checker. A generic

block diagram representa-

tion of an M-pair dual-rail

checker is shown in Figure

5.13. The Ggure shows that

the checker is effectively

composed of / : levels of ar-

rays of dual-rail cells. The

number of levels t , the

number of cells in each ar-

ray, and the number of in-

termediate signals between

arrays are also analytically

defined in the figure. An array fed by an even number of dual-rail pairs effectively applies

dual-rail checks to each "pair of pairs" separately, since a dual-rail checker cell is ui effect

a 2-pair dual-rail checker. In the event that an array is fed by an odd number of pairs, one

pair is simply carried to the array output and fed to the lower level array, unaffected. It can

easily be verified that for M=5 Figure 5.13 produces Figure 2.31.

library ieee;
use ieee.sbd_logic_ll 64.all;
use ieee.numeric_st:d. all ;
entity CHK_ARR is

generic (m: positive := 1);
port (inl, in2 : in std_logic_vector (m-1 downto 0);

output: out std_logic_vector ((m + (m rem 2))-l downto 0)) ;
end CHKARR;

architecture structure of CHK ARR is
begin

Bl: for i in 1 to m/2 generate
output(m+(m rem 2)-i) <= (inl(m-2*i + l) and in2(m-2*i)) or (in2(m-2*i+l)

and inl(m-2*i));
output(m-i-m/2) <= (inl(m-2*i+l) and inl(m-2*i)) or (in2(m -2*i+l) and

in2(m-2*i));
end generate;

B2: if ((m rem 2) =1) generate
output((m+1)/2) < = inl(0);
output (0) <= in2(0);

end generate;
end;

F/gure 5. M .' 77?e CHK ARR ce//

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 6 8

Clearly, the first step towards the design of a complete dual-rail checker is the design of

dual-rail ceU arrays. A generic and synthesisable VHDL description of a dual-rail array

component has been written for this purpose; it is shown in Figure 5.14. The VHDL code

shows that an appropriate, parameterized number of dual-rail ceUs are defined through

signal assignment statements that follow the behaviour of Figure 2.30.

Using the array component of Figure 5.14, one can easily implement fault secure com-

parators and dual-rail checkers of any desired bit widths. Figure 5.15 shows the synthesiz-

able VHDL description of a 16-pair dual-rail checker. A fault secure comparator is easily

produced firom the design of Figure 5.15, by simply substituting the signal assignment

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;
entity NEQ_3_nl6 is

port (inl, inZ : in std_logic_vector(15 downto 0);
output : out std_logic_vector(l downto 0));

end NEQ_3_nl6;

architecture structure of NEQ_3_nl6 is
signal intermediate_signals : std_logic_vector(61 downto 0);
component CHK_ARR

generic (m: positive := 1);

port (inl : in std_logic_vector (m-1 downto 0);
in2 : in std_logic_vector (m-1 downto 0);

output : out std_logic_vector ((m + (m rem 2))-l downto 0)
end component;

for all: CHK_ARR use entity work.CHK_ARR(structure);

begin
interTnediate_signals(61 downto 46) <= inl;
intermediate_signals(45 downto 30) <= in2;
Ul: CHK_ARR generic map (16)

port map (intermediate_signals(61 downto 46),
intermediate_signals(45 downto 30),
intermediate_signals(29 downto 14));

U2: CHK_ARR generic map (8)

port map (intermediate_8ignals(29 downto 22),
intermediate_signals(21 downto 14),
intermediate_signals(13 downto 6));

U3: CHK_ARR generic map (4)

port map (intermediate_signals(13 downto 10),
intermediate_signals(9 downto 6),
intermediate_signals(5 downto 2));

U4: CHK_ARR generic map (2)

port map (intermediate_signals(5 downto 4),
intermediate_signals(3 downto 2),
intermediate_signals(l downto 0));

output <= intermediate_signals(l downto 0);
end;

Hgure 5. Y5 .YG-pa / r duaZ-ra/Y c/^ec/cer

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 169

intermediate_signals(45 downto 30) <= in2; (5.10)

with

intermediate_signals(45 downto 30) <= not in2; (5.11)

Following these analytical structure definitions, a C++ programme was developed, that

automatically produced two libraries of VHDL descriptions of dual-rail checkers and fault

secure comparators, for all bit widths between 1 and 200. The MOODS core synthesis sys-

tem was then modified to use fault secure comparators in all self^checking schemes. Fur-

ther, the interim technique of compacting comparator responses using OR gates as shovm

in §5.3.1 is no longer relevant. Instead, response compaction has to be done by using 2-bit

registers attached to the comparators, and employing a universal dual-rail checker in the

standai d way of Figure 5.10. This was also accommodated for within MOODS, again by

using a cell from the dual-rail checker library.

Note that the structure of Figure 5.13 is one out of several possible structures that an M-bit

dual-rail checker can have. Such a checker will always use n-l checker cells, but alterna-

tive structures can be configured by applying alternative internal arrangements of the cells

within the checker. As explained in §2.2.2.2, different arrangements wiU need to receive

different test sets during their normal operation to ensure the self-testing property. There-

fore, if the inputs received during normal operation were known, it would be possible to

choose the most efficient arrangement that would provide the self-testing property [58].

However, in the generic tool development context of this work, the inputs cannot possibly

be known a priori. A solution that would ensure the self-testing property regardless of in-

puts would be the embedded dual-rail checker of Figure 2.32 [12, 19, 20]. This design,

however, constitutes a very expensive solution, especially taking into account that a ge-

neric design can easily include tens of operations of realistic bit widths, that would need

tens of long LFSRs if the structure of Figure 2.32 was applied to every single self-

checking scheme configured for them. It was therefore decided that a theoretical conces-

sion be made, by not explicitly pursuing the TSC goal (notably, none of the previous

works on algorithmic duplication pursue it either). The self-checking schemes are still

fault secure, and if the chip operates for long enough for each scheme to receive all possi-

ble inputs, under Hypothesis 2.1, then they are self-testing too; if ceitain local conditions

within a given design prevent a checker from receiving all possible inputs, then there is a

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 170

(aj or/g/na/ sfafe

REG2 REG1

01

2-PAIR
DUAL-RAIL
CHECKER

REG2 REG1

C2
!=2

2-PAIR
DUAL-RAIL
CHECKER

undes/rab/e pos^-sAan'ng s/fuaf/on

REG1

(cj des/'red sfafe

F/gure 5.76. Sbar/ng fau/f secure
comparators

theoretical risk that faults may escape. Sub-

section 7.1 elaborates more on these consid-

erations and proves that this risk is practi-

cally negligible for reasonably-sized de-

signs.

hi the light of the arguments stated in the

above paragraph, any arbitrary arrangement

of dual-rail cells vyithin the checker would

be sufficient for the purposes of this thesis.

The structure of Figure 5.13 was conse-

quently devised because it is well-defined,

and thus it was possible to automate its de-

sign.

5.3.3.4 Auxil iary modifications

Subsection 5.3.3.3 has presented the details

of the comparators needed throughout the

self-checking designs that the modified

MOODS win produce. Although they per-

form a special function in a specific context,

these comparators are normal data path

modules, taking up valuable area of the

chip. It is therefore desired that they can be

shared. In fact, the MOODS firamework is

readily able to share fault secure compara-

tors, by virtue of the existing hardware shar-

ing transfonnation TFIO (§3.2.3). However,

the presence of the 2-bit registers together

witli the fact that MOODS has no rehable

register sharing mechanism gives rise to

suboptimal configurations as exemplified in

Figure 5.16. Figure 5.16a is effectively a

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 171

simplified version of Figure 5.10, showing two fault secure comparators writing their re-

sults to respective registers and the register outputs compacted by a dual-rail checker.

Suppose that comparator CI implements comparison !=1, while comparator C2 imple-

ments !=2. If !=1 and !=2 have not been scheduled for the same control step, then the

modules implementing them can be shared. Under this assumption, Figure 5.16b shows

the situation immediately after merging C2 into CI using the classic module sharing trans-

formation TFIO. It is easy to observe that unneeded logic remains in the system; indeed,

there is no reason to keep both registers. In fact, sharing the registers not only saves a reg-

ister, but also minimises the size of the response compactor. In the particular case, since

the response compactor is only a 2-pair dual-rail checker, sharing the registers will enable

its fiiU removal; this is the desired state shown in Figure 5.16c.

The above example establishes the need for some hmited register sharing functionality to

be added to the synthesis system. As always within MOODS, this was formulated in a

suitable transformation. To be consistent with the MOODS nomenclature, an "unsharing"

transformation was developed too. These two transformations are tabulated in Table 5.10

and explained in detail in the following.

symbolic
name

description type of
transform

TF24 share test response register testing/
allocation

TF25 restore original
test response register

testing/
allocation

ra6/e 5. f 0. frans/brmaf/ons

Transfonnation TF24 /"egzjfer) targets two functional operations hav-

ing testing schemes attached to them. It redirects the comparator output of the second

scheme to the register that stores the comparator output of the first. The register originally

attached to the second operation is abandoned. The test phase of TF24 first ensures that

the target instructions are valid and suitable for self-checking. Then it checks that they ac-

tually both had self^checking schemes attached to them and neither of the schemes has

been removed. Finally, it makes sure that the two comparators are under no condition ac-

tive at the same control step.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 7 2

Transfomiation TF25 (rejfore orzgzMa/ /ejf fgjyo/Ke regz'jfer) is the inverse of TF24. In-

deed, it targets a single functional instruction that has had a testing scheme attached to it

and its dedicated test response register removed through TF24. It simply reintroduces the

original register and redirects the testing scheme output accordingly. The test phase simply

checks that the above statements about the targeted instruction are true, i.e. that it has had

a self^checking scheme attached to it and the original register has been removed.

It is to be noted that TF24 and TF25 do not provide a proper framework for general-

purpose register sharing. Indeed, register sharing generally refers to using a single register

to store multiple functional signals; instead, TF24 effectively implements

what could be called "signal sharing". In simple terms, TF24 causes a certain non-

functional, auxiliary signal to be fully abandoned (together with the register storing it) and

an alternative one to take its place. Clearly this cannot apply to functional signals.

Although the "pseudo" register sharing implemented in this subsection is transformational,

the relevant transformations TF24 and TF25 are not as such considered within the simu-

lated anneahng step of the automatic on-line test synthesis process (§5.3.3.2). Instead, they

are embedded within the hardware sharing (TFIO) and unsharing (TF12, TF13) transfor-

mations, such that whenever fault secure comparator modules are chosen to be shared or

unshared, their respective target registers are shared or unshared as weU. Thus, the trans-

formations of this subsection can be seen as a way to "tidy up" the suboptimalities left by

the pre-existing MOODS framework when interacting with the additions of this thesis

(e.g. Figure 5.16).

One might think that sharing small 2-bit registers is a minor issue that will lead to only

marginal improvements. However, recall §5.3.1 and the observation that, in the context of

tlie manual experiments, using multiple f a i l e d signals produced very different results

from using just one (Table 5.5). The need for an automatic way to identify an optimal

number of such signals was also highlighted. The semi-automatic experiments (§5.3.2.2)

further confirmed this need. In the dual-rail domain of this subsection, the 2-bit compara-

tor outputs and the registers storing them are the equivalent to the single-bit f a i l e d sig-

nals of §5.3.1 and §5.3.2.2. In that sense, defining TF24 and TF25, and embedding tliem

in the usual MOODS hardware sharing transformations provides an automatic solution to

tliis last outstanding problem.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 173

5.3.3.5 Experimental results

The final experimental results validating the automatic datapath self-checking design of

this whole chapter are presented here. Given the synthesis framework of §5.3.3.1 -

§5.3.3.4, no time-consuming HDL modification or console-mode operation-aAer-

operation handhng is needed anymore. When the modified MOODS is invoked, the de-

signer has the chance to specify the cost function, both in terms of the traditional parame-

ters (area, delay, clock period) and in terms of on-line testability. Subsequently synthesis

proceeds along the lines of §5.3.3.2, beginning with an initial simulated annealing stage

and concluding with a stage of tailored heuristic optimisation. If the designer does not

specify an on-hne testability specification, then the simulated annealing stage is omitted

and an untestable version is produced, by plainly using the original synthesis suite of §3.2.

In most cases, synthesis of self-checking designs finishes within This is an im-

portant advantage from the design space exploration point of view; indeed, it allows the

designer to experiment with different values of parameters fast and painlessly, until a solu-

tion that satisfies his or her project needs is reached.

Tables 5 .11 - 5.41 show the automatically obtained results. The three benchmarks men-

tioned in previous subsections (Tseng, Diffeq, QRS) are used; an additional few designs

are also tried. Note that some of these benchmarks include loops, conditionals, as well as

parallel processes (covered in more detail in §6.1.2). Thus, it is demonstrated that all struc-

tures hkely to appear in a reahstic design scenario can be accommodated. In all experi-

ments, the designer's goals were set to 0 units of area, 0 nanoseconds of delay and, when

desired, 100% on-line testability. Of course, these goals were classified as high or low pri-

ority, thus resulting in alternative design space exploration paths in each different synthe-

sis run; tliis classification is always shown on the tables. In fact, on-line testability is al-

ways either a high priority or totally omitted. Further, the simulated anneaHng parameters

were always chosen such that aU the instructions in the design were secured by a self-

checking scheme. Thus, in aU experiments targeting on-line testability, f i of equation

(5.7) ultimately assumes 100%. Together with other design statistics, the tables also report

tlie on-line testability technique used, as well as a value for on-line testabUity as calculated

using equation (5.7). Regarding the technique, the information on the tables only refers to

the invertible instructions. Thus, "inversion" on the tables should be interpreted as "invert-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 174

ible instructions are checked by inversion, while non-invertible ones still use duplication".

On the other hand, "duplication" simply means "all instructions are checked by duplica-

tion". Very often some iavertible instructions are checked by duplication and some others

by inversion, in the same design. On the tables, this is termed a "mixed" technique, and it

automatically arises when there is no deterministic reason to choose one over the other and

a random choice is made within simulated annealing (as explained in §5.3.3.2). Regarding

the testability value reported, since f , is always leA to reach 100%, any deviation of

maximum 100% value is an indication of error latency. The desired

clock frequency was adjusted between experiments, in order to promote or prevent chain-

ing. Practically, for a given design in a given technology, a clock period value was ex-

perimentally identified that allowed unconstrained chaining; this is always shown on the

tables as a "relaxed" clock period requirement A second clock period value was also

found, that did not allow any instruction chaining at all. This is tenned a "strict" or "very

shict" period constraint. In most cases, one or two period values between these two ex-

tremes were also tried and classified accordingly (e.g. "moderate").

The first automatic experiments were conducted using the Tseng benchmark, and targeting

an FPGA part. Table 5.11 shows the results, highlighting points of particular interest. The

least hardware-intensive self-checking version was the one on the second row, using in-

version when possible and having a hardware overhead of 29.5%. There were two ver-

sions that did not experience any clock cycle degradation; one of them however suffered

severe frequency degradation, due to relaxed clock period requirements leading to exten-

sive chaining. The highest maximum &equency value (41 MHz) was achieved at a rela-

tively high price (42.5% in hardware, 57.1% in clock cycles and some error latency, since

testability is at 94.8%). The final choice lies with the designer; the goal of tool develop-

ment, tliat is efficient design space exploration providing him or her with a variety of

choices, is clearly achieved.

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay clock
period

orHine
testability slices

Thstate
buffers

dock
cycles

maximum
frequency

(MHz)

hardwfare
(slices %)

speed
(cycles %)

Testability
(technique,
value %)

hiqh high relaxed - 146 4 3 2 7 4 8 N/A N/A none, 0.0
iiigh high relaxed high 189 7 5 2 7 7 29 .5 0 .0 inversion, 100.0
high low strict high 2 0 8 7 8 4 11 41 42 .5 57.1 inversion, 94.8
low high strict high 197 7 3 6 7 3 8 35.0 0.0 duplication, 100.0
high high strict high 197 7 5 2 8 40 35.0 14 .3 mixed, 99.6
Tab/e 5 . M Tseng synfAes/s resu/k (Targef TecAno/ogy X// /nx W r f e x X C W 0 0 0 FPG/Aj

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 175

Tables 5.12 - 5.14 sum up the results of the experimentation with the Diffeq benchmark.

Three different untestable versions were synthesized, each one shown on a different table,

with different clock period requirements. A total of nine self-checking versions were also

produced. Notably, two different combinations of specifications can lead to effectively the

same result. The second row Table 5.12 and the third row of Table 5.13 are an example of

this phenomenon. This simply means that two different optimisation paths may lead to the

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay dock
period

on-line
testability slices

Tristate
buffers

dock
cydes

maximum
frequency

(MHz)

hardware
(slices %)

speed
(cydes %)

Testability
(technique,
value %)

hiqh hiqh relaxed 2 3 4 6 4 2 13 31 N/A N/A none, 0.0
high high relaxed hiqh 3 2 1 9 6 2 1 4 7 3 7 . 2 7 . 7 inversion, 100.0
hiph low relaxed hiqh 3 2 1 9 6 2 1 4 6 3 7 . 2 7l7 inversion, 100.0
low high relaxed high 3 2 3 9 6 2 14 8 3 8 . 0 7.7 inversion, 100.0
Tabfe 5.12 . D/ffeq 8enchmar)f synf/?es/s resu#s (Targef 7echno/ogyX///nx VMexXCVBOO FPG,4j,

/le/axed c/ocfr pen'od requ/mmenfs

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

area delay clock
period

on-line
testability slices

Tristate
buffers

dock
cycles

maximum
frequency

(MHz)

hardware
(slices %)

speed
(cydes %)

Testability
(technique,
value %)

high high moderate 234 642 13 31 N/A N/A none, 0.0
high high moderate high 331 962 14 28 41.5 7.7 mixed, 100.0
high low moderate high 321 962 14 7 37.2 7.7 inversion, 100.0
low high moderate high 338 1026 14 28 44.4 7.7 duplication, 100.0

7aA/e 5.73.' D//feqf 8enc/?mar/c resu/fs (Targef Tec/̂ no/ogy X//;nx W/fex
mocferafe c/oc/(pen'od requ/remenk

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability

Tnstate
buffers

dock
cydes

maximum
frequency

(MHz)

hardware
(slices %)

speed
(cycles %)

Testability
(technique,
value %)

high high Strict - 306 706 19 43 N/A N/A none, 0.0
high high strict high 427 1170 28 35 39.5 47.4 mixed, 91.6
high low strict high 429 1202 30 37 40.2 57.9 inversion, 91.2
low high strict high 436 1282 25 38 42.5 31.6 duplication, 92.1

Table 5.14 : Diffeq Benchmark synthesis results (Target Technology Xilinx Virtex XCV800 FPGA),
strict clock period requirements

same point in the design space. The tables again highlight the optimum results with re-

spect to different criteria. Hardware overhead can be as low as 37.2%, while clock cycle

degradation is in several cases kept as low as a single cycle. The maximum frequency

achieved by a self-checking design is 38 MHz, again at a certain hardware overhead and

clock cycle penalty price.

The following tables 5.15 - 5.18 present the results of synthesis using the QRS design.

This design is of particular significance, both because it corresponds to a useful system

rather tlian a devised benchmark, and because of its substantial size. Each synthesis for on-

line testability run with the particular design took approximately 20 minutes of real time,

which is a serious time-to-market advantage. Indeed, having written the original VHDL

description, the designer can use high-level synthesis to produce a variety of on-line

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 176

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay
period

on-line
testability slices

Tristate
bulTefS

clock
cycles

maximLfn
frequency

(MHz)

hardware
(slices %)

speed
(cycles %)

Testability
(technique,
value %)

hiqh high very strict - 564 2552 66 19.2 N/A N/A none, 0.0
hiqh high very sUict high 875 6703 69 2.1 55.1 4.5 mixed, 93.8
low high very strict high 794 6511 66 8.5 40.8 0.0 duplication, 94.5
high low very strict high 983 6298 107 2.3 74.3 62.1 mixed, 92.1
TaA/e 5 . 7 5 ; ORS 8encAmaf*synf /]es/s resu/k (Ta/gef recAno/ogyX/ /mx VMexXCVYOOO FPG/\),

very sfn'cf c/oc/r pen'od requ/remenfs

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability slices

Tristate
buffers

dock
cycles

maximum
frequency

(MHz)

hardware
(skes %)

speed
(cycles %)

Testability
(technique,
value %)

hiqh high strict - 514 2689 45 2.6 N/A N/A none, 0.0
high high strict high 774 7221 47 1.1 50.6 4.4 mixed, 95.8
low high strict high 788 7357 43 1.0 53.3 -4.4 duplication, 95.4
hiqh low strict high 829 5936 101 3.1 61.3 124.4 mixed, 93.0
Tab/e 5.^6; QRS 8enc/?maf*synf/?es;s resu/fs CTa/gef rec/ino/ogyX/Z/nx y//fexXC\/fOOO FPG/\j,

strict clock period requirements

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay dock
period

orWine
testability slices

Instate
buffers

dock
cycles

maximum
frequency

(MHz)

hardware
(sBces %)

speed
(cycles %)

Testability
(technique,
value %)

high high moderate 457 2577 34 9.7 N/A N/A none, 0.0
high high moderate high 706 7221 37 1.0 54.5 8.8 mixed, 100.0
low high moderate high 715 7336 33 0.8 56.5 -2.9 mixed, 97.3
high low moderate high 839 5936 100 2.7 83.6 194.1 mixed, 92.9

Table 5.17: QRS Benchmark synthesis results (Target Technology Xilinx VIrtex XCV1000 FPGA),
moderate c/oc/c penod req^u/remenfs

Synthesis constraints
and prion'ties

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay dock
period

on-line
testability slices

Tnstate
buffers cycles

maxmum
frequency

(MHz)

hardware
(slices %)

speed
(cycles %)

Testability
(technique,
value %)

high high relaxed - 470 2626 34 3.2 N/A N/A none, 0.0
hiqh high relaxed high 764 7164 37 0.6 62.6 8.8 mixed, 97.3
low high relaxed high 732 7227 34 0.9 55.7 0.0 mixed, 100.0
high low relaxed high 839 5936 100 2.6 78.5 194.1 mixed, 92.9
Tab/e 5.78. QRS 8enc/?marfc synf/7es;s resu/k (Targef 7ec/7no/ogy X///nx WrfexXCVYOOO

m/axed c/oc/c pen'od requ/remenfs

testable realisations to choose from, within hours of real time. The cheapest on-line test-

able realisation identified used up 706 FPGA slices, for an overhead of 54.5% with respect

to its original untestable design. Ih general, all but one solutions in this experiment experi-

ence a hardware overhead of more than 50%, which is still cheap with respect to straight-

forward physical duplication and comparison (>100%). There is a huge variation as re-

gards design performance, hideed, one can notice values between 33 and 107 cycles. This

is because of the substantial size of the design, which consequently means the achievable

region in the design space is also of substantial size, hi turns, this effects in a particularly

large number of optimisation patbs, once more stressing the importance of being able to

traverse these paths quickly. An interesting observation is that on two occasions (Tables

5.16 and 5.17) there exist testable designs that are faster (i. e. take up slightly fewer clock

cycles) than their untestable equivalents. This can perfectly well be attributed to algorithm

inefficiencies (the tailored heuristic algorithms are, after all, only Aez/n'jn'cj). A more

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 177

elaborate explanation is that the particular versions are shown on the tables to be produced

using a "high" delay priority versus a "low" for area, while their corresponding untestable

designs have an equal priority for the two criteria.

Table 5.19 shows the experimental results reached for a design not encoimtered earlier in

this thesis; that is an 8-bit viterbi decoder, featuring 72 operations. It is not a standard HLS

benchmark, and it is explained in [131]. The full VHDL code can be found in Appendix B.

One observation on the table is that in this case it appears rather clear which testable ver-

sion will most probably be preferred. Indeed, the last row shows a design that is both the

cheapest and the fastest in clock cycles, although it experiences a modestly suboptimal

degradation in maximum frequency. The most serious observation, however, is that all

three synthesized testable designs are rather expensive; indeed, in two cases their hardware

overhead greatly exceeds 100%. The explanation for this is that the particular design is

composed of parallel VHDL processes, each one using a copy of each of its hard-

ware modules to implement the instructions assigned to it. The only way to perform dupli-

cation testing under these circumstances is to physically introduce an additional module of

every type, in every process. This very much results in physical duplication; the

Synthesis constraints
and pn'orities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

daay dock
period

on-lina
testability

Tristate
tRiffers

clock
cyclea

majdmum
frequency

(MHz)

hardware
(slices %)

speed
(cycles %)

Testability
(technique,
value %)

hiqh high relaxed - 174 344 4 37 N/A N/A none, 0.0
high high relaxed high 428 936 6 31 146.0 50.0 duplication, 95.3

high low relaxed - 174 344 4 38 N/A N/A none, 0.0
high low relaxed high 448 849 7 37 157.5 75.0 duplication, 92.9
low high relaxed - 174 344 4 37 N/A N/A none, 0.0
low high relaxed high 314 731 4 33 80.5 0.0 duplication, 100.0

fab/e 5. wferb/ decoder synfAes/s resu/fs (Targef 7ec/]no/ogy X///nx y/ffexXCWOOO
re/axed c/oc/(pen'od requ/remenfs

conclusion is that the particular design is rather unsuitable for duplication testing. Suitable

error-correcting codes (§2.2.1) would probably give cheaper, although technology-specific

and harder to devise, results. On the positive side, it is important that the synthesis tool

was able to come up with jo/Mg solution, even for this pathological design. This proves the

ggMenc property, highly desired when developing a tool. Besides, an overhead of 80.5% is

still below 100% and it may be acceptable in certain applications.

The next design experimented with, was an elliptical filter, taken from [8]. The results ob-

tained when targeting an FPGA part aie shown in Tables 5.20 — 5.22, where the best nu-

merical results per parameter are highlighted. It is an interesting benchmark, in that the

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 178

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

area delay clock
period

on-line
testability

Instate
buffers

maximum
frequency

fMHz)

hardware
(slices %) (cycles %)

Testability
(technique,
value %)

higil low relaxed 322 923 32 52 N/A N/A none, 0.0
high low relaxed high 541 2052 38 34 68.0 18.8 duplication, 93.8
hiqh high relaxed - 315 1018 17 50 N/A N/A none, 0.0
higli high relaxed high 408 2626 17 32 29.5 0 duplication, 100.0
low high relaxed high 426 2674 19 32 35.2 11.8 duplication, 99.9
7a6/e 5.20; E/Z/p 8enc/?ma:^ synf/?8s/s msu/fs (Ta/gef TecAno/ogy X///nx W/fex XCW000 FPG/lj,

fe/axed c/oc/cpenbd regu/remenfs

Synthesis constraints
and prionties

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay dock
period

on-line
testability slices

Instate
buffers

dock
cycles

maximum
frequency

(MHz)

hardware
(slices %)

speed
(cycles %)

Testability
(technique,
value %)

high low moderate - 322 923 32 52 N/A N/A none. 0.0
high low moderate high 497 2019 36 34 54.3 12.5 duplication, 94.3

high tiigh moderate - 315 1018 17 50 N/A N/A none, 0.0
high high moderate high 437 2562 20 32 38.7 17.6 duplication, 99.9
low high moderate high 446 2450 23 34 41.6 35.3 duplication, 97.4
Table 5.21: Ellip Benchmark synthesis results (Target Technology Xiiinx VIrtex XCV1000 FPGA),

moderafe c/oc/cpenodreq[u//'emenfs

Synthesis constraints
and prionties

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability slices

Tristate
buffers

dock
cycles

maximum
frequency

(MHz)

hardware
(sBces %)

speed
(cycles %)

Testability
(technique,
value %)

high low Strict - 322 923 32 52 N/A N/A none, 0.0
high low strict high 516 2020 39 34 60.2 21.9 duplication, 93.6

high high strict - 315 1018 17 50 N/A N/A none, 0.0
high high strict high 467 2642 21 32 48.3 23.5 duplication, 98.3
low high strict high 441 2579 21 33 40.0 23.5 duplication, 97.4
7a6/8 5.22; E///p 8enc/7marfc synfAes/s (Ta/gef Tec/vno/ogy X/Z/nx VV/Yex XC\/fOOO

sfncf cfock pen'od reqWremenfs

range of variation in the statistics is particularly broad. For example, the hardware over-

head for test resource insertion ranges from a modest 29.5% to 68%. Some synthesis ses-

sions have clearly failed. Indeed, on all three tables, the second row corresponds to a self-

checking design synthesized with a high priority for area optimisation and a low priority

for delay optimisation. However, the heuristics totally failed in these cases, since the re-

sults are both the most expensive and the slowest when compared to the other synthesis

runs. Ultimately, design space exploration leads to a very good result, shown on die fourth

row of Table 5.20, requiring a minimum hardware overhead of 29.5% with no additional

clock cycles and a maximum frequency value of the same order as all other self-checking

results.

The last benchmark design that tested the datapath self-checking synthesis system target-

ing FPGA technology was a Greater Common Divider module (GCD), found in [129].

Tables 5.23 - 5.25 summarise the results. On these tables one can observe the same phe-

nomenon aheady seen on Tables 5.15 - 5.17, that is, on-line testable design that are

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 179

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability

area delay dock
period

on-jine
testability slices

Instate
buffers

dock
cycles

maximum
frequency

(MHz)

hardware
(slices %)

spaed
(cydes %)

(technique,
value %)

high high relaxed - 81 2 9 2 7 2 6 N / A N/A none, 0.0
hiqh hiqh relaxed hiqh 137 7 4 8 7 29 6 9 . 1 0.0 duplication, 99.7
hiqh low relaxed hiqh 121 5 8 0 6 2 5 4 9 . 4 - 1 4 . 3 duplication, 100.0
low high relaxed high 124 I 6 4 4 6 2 2 5 3 . 1 -14 .3 duplication, 100.0
Table 5.23 : GCD Benchmark synthesis results (Target Technology Xilinx VIrtex XCV1000 FPGA),

re/axed c/oc/c pen'od reu/qreme/ifs

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability slice.

Tristate
buffers

clock
c y d G S

maximum
frequency

WHz)

liardware
(slices %)

speed
(cydes %)

Testability
(technique,
value %)

hiqh high moderate 82 2 7 6 8 26 N / A N/A none, 0.0
high hiqh moderate hiqh 140 6 6 8 8 3 3 7 0 . 7 0.0 duplication, 99.7

hiqh low moderate hiqh 127 5 8 0 7 3 3 5 4 . 9 -12 .5 duplication. 100.0
low high moderate high 126 5 9 6 7 32 5 3 . 7 - 1 2 . 5 duplication, 100.0

7ab/e 5.24 . GCO 8enc/?mar/csynAes/s resu/k (Targef 7ec/?no/ogyX///nx WexXCWOOO
moderate c/ock penbd requ/remenfs

Synthesis constraints
and priorities

Hardware
usage

Performance Overheads
Testability
(technique,
value %)

area delay dock
period

on-line
testability

Tristate
buffers

dock
cycles

maximum
frequency

(MHz)

h^dware
(slices %) (cydes %)

Testability
(technique,
value %)

high high Strict - 84 2 2 8 9 4 2 N/A N/A none, 0.0
high high strict hiqh 144 6 5 2 9 3 7 7 1 . 4 0.0 duplication, 99.7

high low strict high 144 7 1 6 8 32 7 1 . 4 -11.1 duplication, 100.0

low high strict high 151 7 1 6 8 3 4 7 9 . 8 -11.1 duplication, 100.0
7aA/e 5.25 / GCO 8enc/]ma/ifrsyn*es/s resu/fs (Targef Tec/ino/ogyX/Z/nx y//fexXCWOOO FPG/\j,

sfncf c/oc/c penod requ/remenk

faster than their corresponding untestable versions. Again, this can be regarded as a sign of

inefficient performance of the heuristic algorithm when synthesizing the untestable design.

In fact, it is likely that the untestable versions ended up in a cost function local minimum.

When on-line testability was apphed, a degree of simulated annealing helped the synthesis

process escape the local minimum, while at the same time the introduction of self-

checking resources created an overall very different design for the heuristic algorithms to

optimise. The results experimentally prove that the overall strategy was successful. Re-

garding the area overhead reported on Tables 5.23 - 5.25, this is in most cases relatively

high, but it can be kept at as little as just below 50% (49.4% on the third row of Table

5.23).

Tlius the experiments conducted to target Xilinx FPGA parts finished. One of the benefits

of high-level synthesis mentioned throughout this thesis is the technology-independence of

the core synthesis system, and the ability to optimise for alternative technologies if suit-

able technology libraries are provided (§3.1). In order to experimentally vahdate the point

of technology independence, and evaluate the performance of the ideas of §5.2.3 in a dif-

ferent technology, development work was undertaken that produced a MOODS technol-

ogy libraiy targeting an Alcatel CMOS .35nm technology. This effectively allowed the

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 180

duplication of all the experiments of Tables 5.11 - 5.25 for this alternative technology.

Very much Hke in the FPGA case, the RTL output of MOODS was fed to a low-level tool

for register-transfer level synthesis. The tool in this case was version 2002e.l6 of Mentor

Graphics LeonardoSpectrum [132]. The results for different synthesis runs are shown in

the following Tables 5.26 - 5.41. The only difference with respect to the previous tables in

this chapter is that hardware usage is now naturally reported in terms of logic gates re-

quired. Once more, the results on the tables are the ones reported by the low-level tool, so

they are as accurate as possible.

Table 5.26 summarizes the experimentation for the Tseng benchmark. One can easily ob-

serve that Table 5.26 accurately follows the lines of Table 5.11, in that the same choices of

priorities are needed to produce e.g. the cheapest or the fastest result.

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability

Hardware
usage
(gates)

clock
cydes

maximum
frequency

(MHz)

tiardware
(gates %)

speed
(cycles %)

Testability
(technique,
value %)

high high relaxed - 1799 7 63.7 N/A N/A none, 0.0
high high relaxed high 2308 7 15.2 28.3 0.0 inversion, 100.0
high low strict high 2830 12 52.8 57.3 71.4 inversion, 94.0
low high strict high 2367 7 50.2 31.6 0.0 duplication, 100.0
high high stnct high 2644 9 51.1 47.0 28.6 mixed, 97.2

Table 5.26 : Tseng Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI)

Tables 5.27 - 5.29 show the alternative solutions produced for the Diffeq benchmaik. The

lowest hardware penalty required for self-checking is identified to be 33.9%. There exist

several versions that only impose a single clock cycle of delay degradation, while notably

the fastest testable design produced does not need any additional cycles. Finally, the re-

sults on Table 5.29 can achieve very high frequencies at a high area price and additional

cycles; if high frequency is an issue in a given project, then the second and fourth rows of

Table 5.28 may be the best candidates, since they experience a modest frequency degrada-

tion with good area and delay statistics. Once more, there is satisfactory consistency with

Tables 5.12 - 5.14.

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability

Hardware
usage
(gates)

dock
cycles

maximum
fiwqijency

(MHz)

hardware
(gales %)

speed
(cycles %)

Testability
(technique,
value %)

high high relaxed - 3 5 3 5 13 4 0 . 3 N/A N/A none, 0.0
high high relaxed high 4 7 5 9 14 14.6 34 .6 7 . 7 inversion, 100.0
high low relaxed high 4 7 3 9 14 13.8 34.1 7.7 inversion, 100.0
low high relaxed high 4 7 3 4 14 12.8 33 .9 7.7 inversion, 100,0

7a6/e 5.270//yeq Benc/ima/* synfAes/s resu/fs (Ta/gef Tiec/ino/ogy/4/cafe/ C/WOS .35
/B/axed c/oc/rper/od reu/qremenk

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 181

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

area delay dock
period

on-line
testability

Hardware
usage
(gates)

dock
cydes

maximum
frequency

(MHz)

hardware
(gates %)

speed
(cycles %)

Testability
(technique,
value %)

hiqh high moderate 3 5 3 5 13 4 0 . 3 N/A N/A none, 0.0
hiqh high moderate high 4 9 0 9 13 36 .2 3 8 . 9 0.0 mixed, 100.0
high iow moderate high 4 7 3 4 14 12.8 3 3 . 9 7.7 inversion, 100.0
low high moderate high 4 7 8 4 14 35.6 3 5 . 3 7.7 duplication, 100.0

Table 5.28 : Diffeq Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
moderate clock period requirements

Synthesis constraints
and priorities Hardware

usage
(gates)

Perfonnance Overheads
Testability
(technique,
value %)

cklay dock
period

on-line
t%tability

Hardware
usage
(gates)

dock
cycles

maximum
frequency

(MHz)

hanjware
(gates %)

speed
(cycles %)

Testability
(technique,
value %)

high high strict - 4111 19 4 0 . 3 N / A N/A none, 0.0
high high strict high 6 5 5 2 27 40 .2 5 9 . 4 42 .1 mixed, 91.6
hiqh low strict high 6 9 9 0 30 4 0 . 5 7 0 . 0 57 .9 Inversion, 91.2
iow high strict high 6 0 1 8 25 41 .0 4 6 . 4 31 .6 duplication, 92.1

Tab/e 5.29.' 0/#eq Benc/vmark synf/?es/s msu/fs ("Targef 7ecf7no/ogy/t/cafe/ CAfOS .35
sfn'cf c/ock pen'od mq[u/remenk

Tables 5.30-5.33 summarize the experiments conducted for the QRS benchmark in VLSI

technology. An immediate observation is that the hardware penalty is relatively high,

never dropping below 72%. This can be compared against Tables 5.15-5.18, where over-

heads around 55% were often achievable. Other than that, once more a substantially

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay dock
period

on-line
testability

Hardware
usage
(gates) cycles

maximum
f l u e n c y

(MHz)

hardware
(gates %)

speed
(cycles %)

Testability
(technique,
value %)

high high very sirict 7559 56 43.1 N/A N/A none, 0.0
high high very stnct high 13747 56 21.6 81.9 0.0 mixed. 94.0
low hiqh very strict high 13278 51 23.4 75.7 -8.9 duplication, 94.7
high low very strict high 14813 101 32.0 96.0 80.4 mixed, 92.2

7a6/e 5.30.' ORS Benc/imarfcsynfhes/s resu/fs (Ta/gef Tec/ino/ogy/t/cafe/ CA/fOS .35 VLS/j,
i/e/y sfncf c/oc/c pemod requ/'/'emenfs

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

area delay dock
period

on-line
testability

Hardware
usage
(gates)

dock
cydes

maximum
frequency

(MHz)

hardware
(gates %)

speed
(cycles %)

Testability
(technique,
value %)

high high strict 7137 39 19.7 N/A N/A none, 0.0
high high Strict high 12759 40 3.2 78.8 2.6 mixed, 97.9
low hiqh strict high 12959 37 3.6 81.6 -5.1 duplication, 96.0
high low Strict hiqh 12953 91 8.3 81.5 133.3 mixed, 93.1

7a6/e 5.3f ; QRS 8encAmarksynf/]es/s (Targef 7'ec/7no/ogy/^/cafe/ CA/fOS .35 VLS/j,
sfr/cf c/oc/c penod reqfu/remenfs

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay dock
period

on-line
testability

Hardware
usage
(gates)

clock
cycles

maximum
frequency

(MHz)

fiardware
(gales %)

speed
(cydes %)

Testability
(technique,
value %)

hiqh high moderate - 6849 35 9.2 N/A N/A none, 0.0
high high moderate high 12574 34 2.9 83.6 -2.9 mixed, 98.7
low hiqh moderate hiqh 12390 32 3.0 80.9 -8.6 mixed, 93.1
high low moderate high 12953 91 8.3 89.1 160.0 mixed, 93.1

7aA/e 5.32.' QRS Benc/imark synfAes/s resu/fs (Targef 7ecAno/ogy /^/cafe/ CMOS .35
moderafe c/oc/c pen'od requ/remenfs

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 182

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability

Hardware
usage
(gates)

dock
cycles

maximum
frequency

(MHz)

hardware
(gates %)

speed
(cycles %)

Testability
(technique,
value %)

high hiqh relaxed - 6 9 3 6 34 8.9 N/A N/A none, 0.0
hiqh hiqh relaxed high 1 1 9 2 7 32 3.0 72 .0 -6 .0 mixed, 100.0
low high relaxed high 1 2 0 6 3 31 2 . 7 73.9 -8 .8 mixed, 98.7
high low relaxed high 1 2 9 5 3 91 8 .3 8 6 . 8 167.6 mixed, 93.1

Table 5.33 : QRS Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
relaxed clock period requirements

sized design such as QRS once again has a pai-ticularly broad design space; this is verified

on the tables by the variety of different results. Further, the phenomenon that certain on-

line testable designs are faster than their untestable counteiparts can once more be ob-

served.

Table 5.34 briefs the experiments for the 8-bit viterbi decoder. The encouraging observa-

tion is that in VLSI technology the hardware overheads are generally much more tolerable

than the FPGA ones of Table 5.19.

Synthesis constraints
and priorities Hardware

usage
(gales)

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability

Hardware
usage
(gales)

dock
cycles

maximum
frequency

(MHz)

hardware
(gates %)

speed
(cydes %)

Testability
(technique,
value %)

high high relaxed 2062 4 116.2 N/A N/A none, 0.0
high high relaxed high 4589 5 85.8 122.6 25.0 duplication, 95.3

hiqh low relaxed - 3262 5 106.9 N/A N/A none. 0.0
high low relaxed high 4734 7 127.4 45.1 40.0 duplication, 93.3
low high relaxed - 2060 4 113.7 N/A N/A none, 0.0
low high relaxed high 3421 5 92.5 66.1 25.0 duplication, 100.0

Table 5.34 : 8-bit viterbi decoder synthesis results (Target Technology Alcatel CMOS .35 VLSI),
re/axed c/oc/f per/od /-equ/remenfs

The elliptical filter experiments are shown in the following Tables 5.35 - 5.37. The tables

show a number of points in the 3D design space that can be considered neighbouring, in

that most of tbem have a critical path length of 17 or 18 clock cycles, are composed of

around 6500 - 6900 logic gates (minimum 6589 for an overhead of 48.2%), and can

achieve frequencies in most cases around 35 - 40 MHz. The optimal values with respect to

each of these criteria are highlighted separately on the tables, while designs for which a

parameter is outside these ranges are rather unlikely to be favoured by the designer.

Synthesis constraints
and orlon'ties Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-line
testability

Hardware
usage
(gates) cycles

maximum
frequency

(MHz)

hardware
(gates %)

speed
(cycles %)

Testability
(technique,
value %)

high low relaxed - 4174 30 49.3 N/A N/A none, 0.0
high low relaxed high 7678 37 40.9 83.9 23.3 duplication, 93.6
high high relaxed - 4446 1 7 50.0 N/A N/A none, 0.0
high high relaxed high 6706 1 7 41.6 50.8 0.0 duplication, 100.0

low high relaxed high 6862 1 9 34.8 54.3 11.8 duplication, 99,9

TaA/e 5.35.' E///p Benc/^marfcsynAes/s msu/fs (Targef TecAno/ogy/l/cafe/ CMOS .35 VLS/j,
m/axed c/oc/(per/od requ/remenfs

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 183

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

area delay clock
period

on-line
testability

Hardware
usage
(gates)

dock
cycles

maximum
frequency

(MHz)

hardware
(galas %)

speed
(cydes %)

Testability
(technique,
value %)

high low moderate 4 1 7 4 30 4 9 . 3 N/A N/A none, 0.0
hiqh low moderate high 8 0 1 5 37 4 3 . 5 9 2 . 0 2 3 . 3 duplication, 93.6
hiqh high moderate - 4 4 4 6 17 50 .0 N/A N/A none. 0.0
high high moderate high 6 8 8 7 18 37 .0 5 4 . 9 5 .9 duplication. 99.9
low high moderate high 6 5 8 9 18 40 .2 4 8 . 2 5 .9 duplication, 100.0

7aA/e 5.36.' E///p Benc/ima;* syn%es/s msuAs (Targef rec/?no/ogy/\/cafe/ CMOS .35 W.S/j,
moderafe c/ock penbd requ/remenfs

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

area delay clock
period

onWine
testability

Hardware
usage
(gates)

clock
cycles

maximum
frequency

(MHz)

hardware
(gates %)

speed
(cydes %)

Testability
(technique,
value %)

high low strict - 4 1 7 4 3 0 4 9 . 3 N/A N/A none, 0.0
hiqh low strict high 8 0 1 5 37 43,5 9 2 . 0 2 3 . 3 duplication, 93.6

hiqh high strict - 4 4 4 6 17 50 .0 N/A N/A none, 0.0
high high strict nign 6 8 9 7 21 41 .2 55 .1 2 3 . 5 duplication, 99.9
low high strict high 6 5 8 9 18 40 .2 4 8 . 2 5 .9 duplication, 100.0

Tab/e 5.37E///p BencAma/* synf/^es/s /esu/k (Targef 7echno/ogy /\/ca(e/ CMOS .35
sfr/cf c/oc/c penod requ/remenfs

Notably, the hardware overhead was not found possible to drop as low as the best choice

of the equivalent FPGA-targeting experiment of Table 5.20.

The CCD benchmark synthesis experiments for VLSI technology are summarized in Ta-

bles 5.38 - 5.40. The observation in this experiment with respect to Tables 5.23 - 5.25 is

Synthesis constraints
and prion'ties Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

area delay dock
period

on-lbie
testability

Hardware
usage
(gates)

ck%k
cydes

maximum
fmquency

(MHz)

hardware
(gates %)

speed
(cydes %)

Testability
(technique,
value %)

high high relaxed - 1041 7 40 .7 N/A N/A none, 0.0
high high relaxed high 1198 8 40.1 15.1 1 4 . 3 duplication, 100.0
hiqh low relaxed hiqh 1471 8 4 0 . 3 4 1 . 3 14.3 duplication. 100.0
low high relaxed high 1 4 8 9 6 36 .6 4 3 . 0 - 1 4 . 3 duplication, 100.0

Tab/e 5.38. GCO BencAmarfc syn%es/s resu/fs fTa/gef fec/ino/ogy/t/cafe/ C/WOS .35 VLS/J,
ns/axed c/oc/(per/'od requ/remenfs

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay dock
period

on4ine
testability

Hardware
usage
(gates)

dock
cydes

maximum
frequency

(MHz)

hardware
(gales %)

speed
(cydes %)

Testability
(technique,
value %)

high high moderate 1041 7 4 0 . 7 N/A N/A none, 0.0
high high moderate high 1 3 1 5 8 4 3 . 9 2 6 . 3 14 .3 duplication, 9 9 . 7

high low moderate hiqh 1564 8 3 7 . 5 50 .2 14 .3 duplication, 99.7
low high moderate high 1418 6 36 .2 36 .2 - 1 4 . 3 duplication, 100,0

Table 5.39 : GCD Benchmark synthesis results (Target Technology Alcatel CMOS .35 VLSI),
moderate clock period requirements

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay dock
period

on-line
testability

Hardware
usage
(gates)

clock
cydes

maximum
frequency

(MHz)

hardware
(gales %)

speed
(cycles %)

Testability
(technique,
value %)

high high strict - 9 7 8 9 60 .6 N/A N/A none, 0.0
high hiqh strict high 1378 8 4 3 . 9 4 0 . 9 -11,1 duplication, 100.0
high low strict hiqh 1450 9 4 3 . 9 4 8 . 3 0.0 duplication, 97,5
low high strict high 1324 8 43.1 35 .4 -11.1 duplication, 100.0

Tab/e 5.40.' GCO 8enc/?marf(synfAes/s resu#s (Targef 7ec/?no/ogy/\/cafe/ CMOS .35 \//.S/j,
gfn'cf c/oc/(pen'od reqru/remenfs

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 184

that most overheads appear lower than in the FPGA scenario. Indeed, the hardware pen-

alty can be as low as 15.1%, while performance degradation is either non existent or toler-

able. Maximum frequency values in self-checking versions are usually of the same order

as in the original equivalents, with the exception of Table 5.40 where a maximum fre-

quency drop of roughly 16 MHz can be observed.

A simple statement that can be given regarding the proportional overheads of designs im-

plemented in VLSI compared to the same designs implemented on FPGA parts, is that no

safe assumption can be made about the relative overheads of the latter &om the experi-

ments targeting the former, and vice versa. That is, if on an FPGA part a design requires a

certain hardware overhead to be made self-checking, the same design in VLSI may require

much lower, much higher or roughly the same. This is expected, since the relative sizes of

different RTL components greatly vary from technology to technology. It is, for example,

well known that logic gates are expensive on an FPGA, while arithmetic modules are

comparatively more expensive in VLSI. Therefore, experimentation is the only way for a

secure conclusion, and this further stresses the importance of facilitating such experimen-

tation through high-level synthesis.

As a final experiment. Table 5.41 shows the results of two synthesis runs for a 32-bit

viterbi decoder in VLSI. This design comes from [131] together with its 8-bit counterpart

presented earlier. It is however much bigger; it comprises 288 operations and 32 parallel

processes, which are both considerably bigger than anything presented in the algorithmic

duplication literature before. An original untestable design was synthesized first, followed

Synthesis constraints
and priorities Hardware

usage
(gates)

Performance Overheads
Testability
(technique,
value %)

delay clock
period

on-ihe
testability

Hardware
usage
(gates)

dock
cycles

maxgnum
frequency

(MHz)

hardware
(gates %)

speed
(cycles %)

Testability
(technique,
value %)

low high relaxed 15606 4 79.6 N/A N/A none, 0.0
low high relaxed high 20361 5 49.9 30.5 25.0 duplication, 95.3
Tab/e 5.41 ; 32-M wferbf decoder synthes/s resu/k (Target Techno/ogy A/catef CMOS .35 VLS/)

by a self-checking version. The penalties related to test resource insertion can be regarded

as moderate (30.5% in area, a clock cycle in delay, and some necessary degradation in

maximum frequency). Notably, the automatic synthesis run for the self-checking version

took about 24 hours of real time. The explanation is that the increase in the number of

operations in the design results in a considerable increase in the number of different ran-

dom choices of transformations and data within simulated annealing, thus lengthening the

synthesis time. To understand this, refer, for example, to transformation TFIO of §3.2.3

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 8 5

("share functional unit"), and consider a design comprising a total of Of .9 operations. In

the initial state each operation is allocated to a dedicated datapath unit. Further consider a

fuUy testable realisation, with dedicated units fbr each redundant and comparison opera-

tion. This will give a total of 3xOf 6' functional units. Since TF10 is fed by two functional

units, the total number of combinations the algorithm can choose firom is given by

J X O f^ j ^ ^ Wj')!/2! (3 X Of6' - 2)! = (3 X O f - 2)x (3 x O f ^ - i)/2 (5-12)

It is clear that the number of choices Increases rapidly as the complexity of the system in-

creases. Taking Into account that similar increase is also experienced by the other alloca-

tion, scheduling and testing transformations, the consequent increase in the overall compu-

tational time is evident. Such long run-time may appear impractical at first and be used as

an argument against simulated annealing; however one has to take into account the time-

to-market savings if datapath self-checking is apphed in an industrial environment. In-

deed, in such an environment, 24 hours of automatic synthesis is still much more

efficient than days of designer effort to manually configure self-checking schemes for

hundreds of instructions in the original HDL code, then again manually synthesize with

special care to map the functional and checking parts of the schemes on disjoint hardware,

and maybe conduct multiple synthesis runs and further HDL modifications to try alterna-

tive solutions. On the other hand, it can be predicted that considerably more complex de-

signs than the 288-operation, 32-bit viterbi decoder will require prohibitively long synthe-

sis run-time; it is therefore sensible to state that the biggest designs the proposed technique

can practically handle would be composed of around 300 operations. This is still the most

complicated ever presented in the self-checking design hterature.

5.3.3.6 Discussion

Subsection 5.2.1 critically evaluated the algorithmic duplication literature material and

identified points not adequately covered therein. Based on that, the approach of this thesis

was defined and implemented. The present subsection conducts an a posteriori evaluation

of the numerical data of §5.3.3.5 with respect to results presented in the algorithmic dupli-

cation literature. An important word of note is that no "strict" arithmetic comparisons can

be drawn, since each past publication uses a different technology, and at times even out-

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 8 6

dated generations of technologies are quoted. The idea that no reliable comparisons can be

given is not only sensible, but also advocated by the results in this thesis, showing over-

head disagreements between different technologies. For that reason, the comparisons

given here are only of the quality of considered results.

The rollback and recomputation technique of [60] mostly reports results in the form of

RTL fimctional modules used. This is not an accurate metric, since the area of multiplex-

ers and registers is ignored. A single result is given for a fully implemented VLSI chip;

this experiences a hardware overhead value of approximately 170%, which is overwhelm-

ingly more expensive than the vast m^ority of the results in this thesis. On the other hand,

by nature rollback and recomputation imposes strict performance constraints; therefore no

additional clock cycles are permitted.

The differentiation-related techniques of [62, 63] report overheads equal to physical dupli-

cation [63] or slightly less [62]. Interestingly, in [62] the elhptical filter benchmark was

used, also used in this thesis. When 17 clock cycles were used in the DFG, the result of

[62] imposed a hardware penalty of about 77%. This value is at times comparable to but

still higher than the results herein (indeed, Table 5.17 quotes 29.5% on an FPGA and Ta-

ble 5.32 gives 50.8% in VLSI).

Introspection [64] gives minimal hardware overhead (always less than 5%). However, bear

in mind that the particular technique totally rejects the idea of introducing redundancy for

self-checking purposes and purely utilises any naturally existing idle time. At times only a

small number of operations are checked (in the fonnuladon of this thesis, f t of §5.3.3.1 is

at times well below 50%). Therefore, this technique is probably not meaningfully compa-

rable at all with the present material, since in this thesis the goal is fiiU self-checking

and as much area saving as possible.

The work of Lakshmiiiarayana et al [23] has already mentioned in §5.2.1 as probably the

overall best developed in the background literature. For 9 different benchmarks used,

overheads of roughly between 25% - 85% were reported. The results are therefore compa-

rable to those of the present thesis.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 187

The semiconcurrent error detection scheme of [65] reports hardware overheads roughly

between 26% and 100% for a checking periodicity of 2 [65], but no performance statistics.

Two of the benchmarks used are the elliptical filter and the differential equation solver,

also familiar in this thesis. A huge overhead of just over 100% is reported in [65] for the

former, while the latter is at the lower end of the overhead range, roughly at 26%. This

thesis has given better results for the elliptical filter in both technologies used, and not as

good but sdU comparable (around 35% in Table 5.25) for the differential equation solver.

Further recall that the results of [65] were obtained It can therefore be stated

that the high-level synthesis for on-line testabihty technique of this thesis

achieves at times cheaper and much more testable (§5.2) results than those manually de-

rived in the literature.

References [69, 70] always achieve below 30% in hardware overhead. However, testabil-

ity is greatly reduced since only a percentage of the produced results are checked, and that

includes no intermediate results. Further, synthesis is conducted manually and automation

is not even mentioned as a future goal. In that sense, comparisons are probably not mean-

ingful.

Finally, [66, 67, 68] also do not concern tool development. Still, the manually obtained

results range approxunately between 10% and 60%, and are thus on average cheaper, but

still comparable to the ones automatically produced herein.

An inspection of all background literature reveals that the value of the operating maximum

clock &equency is never reported. However, there should always be a frequency degrada-

tion associated with test resource insertion. Even merging two existing functional modules

requires multiplexers; this increases the delay of operations, since it lengthens the path that

input signals have to traverse before reaching module outputs. This delay degradation nec-

essarily results in clock speed degrading. As the tables of §5.3.3.5 have shown, this work

not only acknowledges this frequency degradation, but also fiilly treats the clock speed as

a design parameter, by trading off clock speed through chaining, to devise low cost self-

checking solutions that provide a valid option in low frequency projects. This approach is

adopted for the first time.

p. Oikonomakos, 2004 Chapter 5: Datapath Self-checking Design 1 8 8

5.4 Summary

In conclusion, in this chapter we have presented a fully automatic integral high-level syn-

thesis for datapath on-line testability approach. The realisation of this approach within the

MOODS high-level synthesis system involved :

» implementing five additional transformations that were included in the pre-existing

MOODS set of transformations

» developing an elementary soAware tool for the automatic production of a VHDL li-

brary of fault-secure dual-rail checkers and comparators

« defining and formalising a metric for on-line testability, effectively giving rise to a 3-

dimensional design space

The particular approach is the first to include a// of the following :

» test resource insertion is done fully automatically within the HLS optimisation loop;

no input HDL modification or other designer interaction is needed

* still, the designer's requirements are taken into account, through his or her choice of

priorities; design space exploration is fast and efficient, thus allowing experimentation for

alternative priorities

» loops, conditionals and parallel processes are fully accommodated

« instruction chaining is aggressively utilised

* the inversion testing idea is defined and exploited as an alternative to duplication

» alternative technologies are accommodated

« the duplication / inversion self-checking schemes are made fault secure

« all intermediate results are checked; this ensures minimal error latency, and timely re-

porting of faulty hardware

All this is offered at a hardware overhead and delay degradation that are comparable to

and at times cheaper than the experimental results of previous publications.

Chapter 6

Controller Self-checking Design

As high-level synthesis systems become more and more powerful and able to provide so-

lutions for more and more comphcated designs, comprising conditional operations, loops

and parallel structures, the controllers they produce become more and more complicated

and occupy more area on the Anal chip. Hence, the RTL output of such a system cannot be

considered reliable unless an on-line testing scheme for the control path is included in the

system. In this context, in addition to the traditional self-checking of data paths, covered in

chapter 5 of this thesis, controller checking has recently attained considerable importance

as mandatory practice for ensuring the correct operation of controller / datapath pairs, such

as the designs output by high-level synthesis systems that are considered throughout this

thesis (Figure 3.1). In this chapter, emphasis is given to the self^checking design of the

controller part.

The chapter is organised as follows. Section 6.1 reviews the target architecture, states the

problem, and briefly describes previously proposed solutions. Section 6.2 examines how

parity-based self-checking (§2.2.1.1) can be utilised for controller self-checking purposes,

and highlights its properties and limitations. In section 6.3, "1/n" self-checking (§2.2.1.2)

is considered as an alternative solution. Section 6.4 discusses the problem in the specific

context of the MOODS high-level synthesis system (§3.2), outlines the implementation,

presents the obtained experimental results, and gives comments on them. Finally, section

6.5 concludes the chapter.

6.1 Problem statement

This section describes the target architecture and comprehensively states the controller

self-checking problem.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 190

6.1.1 Encoded vs. one-hot implementations

Figure 6.1 revisits the typical architecture of a controller / datapath pair. The figure is

highly reminiscent of Figure 3 .11 - indeed, the same DFG example is used for the

datapath. Figure 6.1, however, fiirther reveals the typical controller block structure. In

principle, the controller consists of state flip-flops constituting the and a

block of next-state logic responsible for producing the next-state vector that is to be loaded

OI 02

0 3 N+1

N+2 04

c o n d i t i o n a l s i g n a l s

n e x t s t a t e l o g i c

O)

1 3

-a

F/gure 6. V Confro/Zer/dafapaf/? arc/f/fecfure

onto the state register. Any possibly existing conditional signals also contribute to the pro-

duction of the next-state vector. The datapath consists of hardware modules that imple-

ment instructions scheduled over several control states. Intermediate results are stored in

appropriate registers, and are thus preserved across control state boundaries. The analysis

of subsection 3.2.6 has established that the controller outputs / control signals (point B of

Figure 6.1) should by necessity be one-hot encoded in order for the state transitions to be

properly realised. Since the state register contents can, in general, be encoded according to

a variety of encoding schemes, a is applied (also shown in Figure 6.1) to produce

the one-hot control signals. The state register, together with the decoder and the next state

logic constitute the overall controller, depicted on the left-hand side of the figure by a

dashed rectangle.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 191

From the FSM testability point of view, typically [38, 133, 37, 22, 23, 134] the state sig-

nals are encoded according to some coding scheme with enhanced error detection and / or

correction capabilities, such as parity [22, 23, 133], Hamming encoding [37], constant

Hamming distance [38], or even controller physical duplication [134]. All checking and

correcting takes place at the actual state register outputs (point "A" of Figure 6.1). If this is

applied in a sequential datapath configuration such as the one at hand, then any possible

faults in the decoder are not considered, and are therefore likely to corrupt the actual de-

coded control signals, resulting in an erroneous sequence of control states, which cannot in

principle be detected by datapath hardware module self-checking schemes. Further, the

more complicated the encoding scheme, the more complicated the decoding logic, and

naturally the more possibilities that a fault may corrupt it. Consequently, if robust reliabil-

ity properties are to be maintained, it is highly desirable that controller testing take place

q/rgf the decoding operation, that is on the raw one-hot control signals (at point "B" of

Figure 6.1). This idea is not only preferable as regards the stated testability concerns, but

also disconnects the controller self-checking problem 6om the controller encoding and

controller synthesis problems, allowing the designer to make use of any proposed self-

checking solutions regardless of his or her control path synthesis flow (in some cases with

some restrictions that will be mentioned in §6.2). For example, Hellebrand et al [133] pro-

pose a novel approach that decomposes a long control unit into a collection of shorter

ones, communicating among themselves in a pipeline fashion. The approach significantly

speeds up the controller. There is no obvious reason why such control path improvement

techniques cannot be combined with self-checking solutions discussed in this chapter.

6.1.2 Concurrency

I n i t i a l i sa t ion s t a t e

j : X

a a

[_]

Agure 6.2 .' H/'g/v^para/Ze/ des/gn

Further to tbe target archi-

tecture, when complex digi-

tal systems are imple-

mented, it is often the case

that they comprise several

communicating controller /

datapath designs such as the

one of Figure 6.1; when the

implementation is the result

P, Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 1 9 2

of a VHDL-based high-level synthesis process, then these structures originate from several

synthesisable VHDL concurrent procgj'j'ej. These structures of ten share a single

f/oM control state, which forks out to several "sub-controllers'% as Figure 6.2 depicts. In the

figure, rounded rectangles correspond to control states, while vertices naturally show the

flow of control, inamanner that closely resembles Petri-nets (§3.1.1). ncontrol paths (Pr

Pn) are shown. Observe the correspondence between Figure 6.1 and Figure 6.2. Each rec-

tangle in 6.2 signifies a separate control state; therefore, a unique control signal (decoder

output in 6.1) is dedicated to it. In 6.2, the data path is not shown, and the emphasis is on

illustrating the concept of concurrency; in fact, each of the constituent concurrent designs

of 6.2 is implemented according to the paradigm of 6.1.

VHDL processes can be arbitrarily long and complex, or they can include as few instruc-

tions as can fit within a single control state. The latter is usually the result of a process that

simply updates system primary outputs. At any system reset, the initialisation state be-

comes active, siniply meaning that the control signal associated with it assumes the "1"

value, while all other control signals throughout all other concurrent designs are at "0".

One clock cycle later, control passes to the actual concurrent control paths. From this point

onwards (and until the next reset), exactly n (as in Figure 6.2) control signals are at "1".

Observe that even single-state control paths are synthesised to comprise (wo states, since

they share the common initialisation state with all other control paths in the overall system

(e.g. Pn in the figure). Therefore, the 1-hot (in this case, l-out-of-2) controller output

model explained in §6.1.1, is equally applicable regardless of the critical path length of the

given design.

While there can be shght variations, the control flow model of this subsection is typical of

highly parallel hardware designs. It wiU therefore be assumed throughout the rest of this

thesis. Further, the VHDL "concurrent processes" term wiU hereafter be used to refer not

only to the conceptual descriptions, but also to the resulting commimicating controller /

datapath pairs that constitute parallel designs.

6.1.3 Datapath self-checking constructs reuse

The problem of realising self-checking datapaths through high-level synthesis was com-

prehensively addressed in chapter 5 of this thesis. Every effort was taken to minimise

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 193

hardware penalties; however, even at their minimum, such penalties are inevitable, and

sometimes severe. An additional self-checking solution for the control path would involve

extra hardware. To this end, it would be desirable to reuse existing datapath self-checking

constructs, for controller self-checking purposes. This can be done when (and if) coMrro/-

/gr fault effects are observable in the This is not a new concept; indeed, [135] is

a representative example of making controller faults observable in the datapath in the con-

text of the off-line testuig of a controller / datapath architecture. In [63], effective control-

ler duplication is proposed and exploited for the same purpose hi a self-checking datapath.

However, to the best of this author's knowledge, it is the first time that a com-

bined approach is pursued for the on-line, self-checking design problem.

6.1.3.1 Intrinsically Secure states

Consider Figure 6.3a. A portion of a DFG-like representation is shown. A functional op-

eration (addition +1) has been scheduled for control step (CS) N+1. A duplicate operation

of the same type, with the same inputs (addition +1') is also scheduled for parallel execu-

tion during the same CS, while the outputs are fed to a fault secure comparator, responsi-

ble for verifying correct operation or signalling the presence of a fault As chapter 5 estab-

lished, self-checking datapaths can be constructed out of such duplication (and related)

testing configurations. Further recall that, assuming a long enough clock period, the addi-

tions and the comparison can be scheduled in a single CS (N+1); thus, self-checking is

provided at no error latency. It should also be recalled that in the context of a DFG the

Zero-error /afency dup/ycabon-based 6̂̂ /tccepf/ng an error /afency of a s/ng/e
se/f-c/?ec/(/ng des/gn c/oc/f cyc/e

F/gure 6.3 Secunng a confro/ sfafe by accepf/ng dafapaf/) e/Tor/agency

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 1 9 4

comparator output is also (synchronously) stored in a register, and the register contents

(asynchronously) compacted by a dual-rail checker, together with outputs 6om all other

similar comparators present in the design.

Let us move on to Figure 6.3b. In this case, the functional operation has been scheduled a

control step earher, at CS N. Thus, its output is stored in an appropriate register, and the

duplicate and comparison operations are executed one clock cycle later. Any fault at the

functional operation output will be detected with an error latency of one clock cycle. In the

context of this chapter, the following observation is more important than a single clock

cycle error latency.

6.7 : If an induced fault corrupts the control signal that activates state N+1

(i.e. enables the loading of respective registers), such that the said signal behaves as a

stuck-at-1, then N+1 will be activated prematurely (i.e. before N, therefore before +1 is

executed and its output stored appropriately). Consequently, the comparison operation wiU

not compare the values it has been designed to compare, but tvyo random values (in princi-

ple unequal), and therefore it is likely to produce an error indication. Thus, a coMA-oZ/gr

fault will be detected through the existing self-checking scheme.

There is always a possibility of fault escapes, if the random values mentioned above coin-

cide. This will be ignored for the moment For the time being, the following definition is

provided.

1̂ .7: A control state is referred to as (75), if the comparison

(checking) part of a datapath self-checking scheme has been scheduled in it, but at least

one of the functional or redundant parts of the scheme has been scheduled in previous

states.

In other words, a state in the situation of CS N+1 in Figure 6.3b is IS by definition. The

discussion up to now has been restricted to duplication testing; however, the same con-

cepts can be applied to any self-checking scheme that can have its computation and check-

ing parts separated across the boundary of two different control states. This includes inver-

sion testing; therefore, the IS-states idea is fuUy compatible with the implementations of

chapter 5. Also, note that in Figure 6.3, control step N pre-existed in the design, and some

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 1 9 5

operations were probably scheduled in it. Therefore there was no actual delay degradation

by moving the operation and securing CS N+l. In the context of a reahstic design, this

may not always be possible (due to data dependencies) and some delay degradation may

need to be accepted, but it is expected to be in principle tolerable. It is further worth ob-

serving that movitig +1 to CS N, necessarily (re-)introduces a register to store the result

across the CS boundary. This means a hardware overhead; it is therefore likely that at

times the hardware savings due to the simpliScation of the controller self-checking

scheme (shown later in §6.2, §6.3) will be cancelled out by the register overhead. On the

other hand, there are cases where Intrinsically Secure states appear in self-checking de-

signs naturally, and therefore exploiting their controller self-checking potential is free.

The concept of control states that are IntrinsicaUy Secure according to Definition 6.1 is a

particular contribution of this thesis. The area and delay overhead concerns stated in the

above paiagraph can only be answered through experimentation individually for any given

design. The experiments of §6.4 will investigate a number of designs and, among others,

provide an insight on this issue.

6.1.3.2 The possibility of fault escapes

Let us go back to Figure 6.3b and comment on the probability of aD (0/1) type error [1]

on the control signal corresponding to control state N+l to remain undetected, due to the

possibility that the output of the duplicate operation may coincide with the contents of the

(improperly loaded) register that stores the functional operation result under fault-free

operation.

Assume that the bit-width of operation "+1" in Figure 6.3b is w. Then 2"" different words

can appear in the left hand side input of the comparator. Assuming that all words have the

same probability, this probability for a particular word is equal to 1/2"'. Therefore, given

the value that "+1prematurely computes during N+l, and the functional operation bit-

width w, the probability of a fault escape can be estimated as pe=l/2"'. For example, for

%=3, pe=12.5%, which is unacceptably high. Based on the above. Definition 6.1 can be

updated as follows :

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 1 9 6

7 ' : A control state is referred to as 5'ecwre (75), if the conditions

of Definition 6.1 hold, and in addition the bit-width of the fiinctional operation is higher

than a defined threshold value f.

A sensible value for the threshold would be, e.g., at least (=7, which gives pe=0.8%. This

choice is motivated by the usual convention of traditional testing, whereby a testing

scheme is considered successful when it detects 99% of the modelled faults [1]. Of course,

in the context of the problem at hand it makes sense to differentiate between single-bit

logic operations and multi-bit arithmetic operations. WhUe it would be unwise to speak

about Intrinsically Secure states when referring to the former (as these would have an es-

cape probability of 50%), such states can be defined for arithmetic operations, experienc-

ing escape probabilities of 0.4%, 0.002% and 2x10'^% for the usual choices of 8-, 16- and

32-bit arithmetic respectively.

A practical precaution which can be applied in order to minimise the possibility of fault

escapes in IS states, is to reset the register that carries the fimctional output value across

the CS boundary, to a value that is highly unlikely to occur, as soon as its functional con-

tent is not needed anymore. Such a typical value can be the aU-ls pattern for unsigned

arithmetic operations. Normally the appearance of this pattern during normal operation is

an indication of (potential) overflow, and it should not appear if careful design has been

applied.

6.1.4 Discussion

Subsections 6.1.1, 6.1.2, and 6.1.3 deSne the backbone of the problem at hand. In sum-

mary, the controller self-checking problem addressed in this chapter has the following

characteristics :

» self-checking should be applied to the decoded 1-hot controller outputs

« multiple concurrent processes should be handled efficiently

* the idea of Intrinsically Secure states can be exploited, in an attempt to minimise over-

heads

« generally, the controller self-checking scheme should be as economical as possible,

given the penalty related to the (assumingly existing) datapath self-checking; at the same

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 1 9 7

time, consistency with self-checking design theory is desirable (totally self-checking prop-

erty, §2.2.1)

Given the 1-hot encoding restriction, solutions that impose particular encodings (such as

Hamming in [37]) are not applicable. Duplicating the controller [134] is rejected, since it

is expected to give very expensive results; indeed, the hardware sharing potentials ex-

ploited in chapter 5 do not exist in the control path case (i.e. there is no equivalent to "idle

hardware module cycles", and no ground for "algorithmic" duplication in the control

path). Observe, though, that a 1-hot encoded n-bit signal maintains odd parity. Further,

parity-based self-checking (§2.2.1.1) is known to be the cheapest among error-detecting

solutions; it has already been proposed for control path self-checking in [23], albeit only a

short note was dedicated to this issue. It is considered in detail in this thesis in the follow-

ing §6.2. 1-out-of-n and / or m-out-of-n self-checking would also appear to be feasible so-

lutions for the given problem. At a Srst glance, one would expect them to be more expen-

sive than parity; in §6.3 we discuss this issue.

6.2 Parity-based self-checking

In this section, parity-based controller checking in the context of highly parallel synthe-

sized controller / datapath designs is addressed. Recall that parity checking of a bit vector

detects all faults in the system producing the vector, that result in single- or odd-

multiplicity logic errors in the vector. Regarding the problem at hand, and referring back

to Figure 6.1, a parity checker at point "B" will detect aU controller faults that give rise to

a single or an odd number of corrupted control signals. Combined with Hypothesis 2.1

(faults occur one at a time), this means that the controller has to be designed such that no

single fault in it can result in an even number of corrupted bits at the controller output.

Normally the easiest and most straightforward way to achieve this, is to disallow logic

sharing between the logic cones that produce each one of the control signals, replicating

some logic operations in the next state logic and decoder blocks if necessary [37, 22].

Other than that, the techniques presented in this section are generic, and applicable to any

controller encoding and synthesis approach. The approach itself normally is dictated by

the target technology and any particular constraints. More specifically, if the state register

is designed to be one-hot as such (for example, as in MOODS, §3.2.6), then the next state

logic block is simple, while a decoder is not needed. The implementation is fast; however.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 198

the large number of flip-flops needed may lead to expensive realisations. The number of

flip-flops is dramatically reduced if suitable encoding is applied; the complexity of next

state logic and decoder are, however, increased. The resulting controller is also considera-

bly slowed down. In addition, there are technologies for which a plethora of storage ele-

ment resources are available (e.g. some FPGAs [106]), therefore the direct one-hot imple-

mentation may not always be as expensive as it first appears.

In the rest of this section, and unless otherwise stated, it will be assumed that the controller

has been designed taking into account the above note about odd error multiplicity.

6.2.1 Per process parity-based self-checking

Consider a design like the one of Figure 6.2, consisting of n concurrent processes

(P[,.. .,Pn), each one consisting of m. (0<i<n) control states, plus the common initialisation

state, hereafter state-0. Parity-based self-checking design can be straightforwardly imple-

JO
CO
c
O)
(/]

o
U

Pi

m,

m2

Odd panty Odd parity

checker PCi checker PC2

1

Pn.

L _ T

I

Odd parity

checker PCn.-

Dual-rail checker /
response compactor

3
-5
_co
(Q' 3
9L
0)

Odd parity

checker PCn

Figure 6.4 : The CTRL_1 self-checking scheme

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 1 9 9

mented as Figure 6.4 shows. Dashed lines in the figure correspond to the control flow,

while solid lines represent actual signals coming from the controller block, hi order to un-

derstand Figure 6.4, notice its correspondence with Figures 6.1 and 6.2. The system con-

current processes are shown in 6.4 effectively in the same fashion as in 6.2. Clearly, a

unique control signal &om the controller of Figure 6.1 corresponds to each state, as estab-

hshed in §6.1. This is graphically depicted in Figure 6.4 by a single signal line shown to

end at each rectangle representing a control state. Signal lines also fan out to appropriate

checkers, thus showing the considered self-checking scheme. As can be observed, every

process has its control signals checked by a separate odd parity checker, and aU responses

are compacted by a dual-rail checker, as is the usual practice in self-checking design

(§2.2.2.2). The control signal corresponding to the state-0 becomes active only upon sys-

tem reset, and is fed to all parity checkers. Thus, at any given point of time each parity

checker receives a one-hot signal at its input, and therefore detects any single- or odd-

multiplicity errors. This scheme will hereafter be referred to as the self-checking

scheme.

The actual odd parity and dual-raU checker structures are not detailed yet; for the moment,

let us make the assumption that all checker components are double-output, composed of

two-input gates only. This assumption is in absolute agreement with the usual checker de-

signs presented in §2.2.1.1 and §2.2.2.2, and it implies that the usual 2-input XOR gates

and dual-rail checker cells are used for the parity and dual-rail checkers respectively. No

assumption is, however, made at this point regarding the arrangement of gates and cells

within the checkers. This approach will be adopted for the moment and until §6.2.7, where

a few structure-related considerations are given.

Based on the above assumption, the hardware cost of CTRL l can easily be estimated as

follows, n parity checkers (PCi,.. .,PCn) are used, each one consisting of two XOR trees, to

ensure the fault secure property [5]. Any random checker PCj has mj+l inputs (all states in

the corresponding process, plus the common state). Every k-input parity tree is composed

of k-1 XOR gates, therefore PCi consists of mi-l XOR gates. Further, the dual-rail checker

has n input pairs; therefore it consists of n-1 dual-rail checker cells (§2.2.2.2), which

yields 6x(n-l) AND/OR gates. In total, the hardware cost for this technique is given by the

following expression :

p. Oikonomakos, 2004 Chapter 6: ControUer Self-checking Design 200

2 + 6x(m-l)xCoff^,yg/g^ (6.1)

where CostxoR and CostANo/oR refer to the hardware costs of respective gates, and the im-

phcit assumption is that under the particular target technology an AND and an OR gate

have the same cost. When this is not true, the above expression can easily be suitably

amended.

Let be the total number of states in the design. Clearly

+ 1 (6.2)
/ = !

Further

^ (/ M , - l) = ̂ (/M,)-M = #^-(M + l) (6.3)

Equations (6.1) and (6.3) yield :

-(M + l)]xC0j'(;,CQ;; +6x(n-l)xCoj(^/yg/Q;; (6-4)

Equation (6.4) gives the hardware cost of the CTRL l self-checking scheme for the de-

sign, as a function of the number of processes, the total number of control states, and of

the target technology and specific gate implementations.

6.2.2 Self-checking using a single parity checker

Using parity checking necessarily results in a number of XOR gates that is of the order of

as defined above, and cannot be dramatically decreased. However, the dual-rail checker

may be considered redundant if the checking scheme of Figure 6.5 is used. In this ap-

proach, all control signals are led to a single parity checker. At reset only the state-0 con-

trol signal will have a logical 1 value; at any other point of time the number of Is will be

equal to the number of processes, n. If n is odd by design (n=2k-l-l), then odd parity is

iiatiu:ally maintained at all times. If n=2k, then a single-state "dummy" process is inserted.

No instruction is executed in this process; an additional control signal is, however, gener-

ated by the controller for it, and so odd parity is maintained for the controller output. This

is the self-checking scheme.

The odd parity checker has TV,, inputs. The hardware cost is given by :

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 201

Equation (6.5) is accurate only for n=2k+l; otherwise it is approximate. Particularly, it

ignores both the area overhead of introducing the dummy control state to the design, and

the corresponding additional input to the parity checker. However, in the usual case that

the overhead contribution of these two elements can sensibly be considered negli-

gible.

(O (0
c O)
c/]

c o U

P., Pn

mz

r - f -
"dummy"

inserted if n=2k

Odd parity
checker

n o

_(/]
(O'
3
92.
C/)

Figure 6.5 : The CTRL_2 self-checking scheme

It is interesting to note that if n=l , then equation (6.4) and equation (6.5) yield the same

value (A^-2)xCo.y(;k'o;!- This is expected, since it is obvious by simple comparative inspec-

tion of Figures 6.4 and 6.5 that for a single process both CTRL_1 and CTRL_2 correspond

to a single parity check.

6.2.3 Utilising Intrinsically Secure states in a single process

In this subsection, as well as in the next two ones §6.2.4 and §6.2.5, it is assumed that the

design datapath has been synthesized such as to demonstrate self-checking properties (for

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 202

example, as in chapter 5). With this assumption in mind, the self-checking resources in-

serted for the purpose of datapath checking are identified to be utilisable for the purpose of

providing cheaper self-checking for the control signals as well, by exploiting the Intriasi-

caUy Secure states concept introduced in §6.1.3. The motivations for this approach lie in

Observation 6.1 which was made on designs produced in chapter 5 of this thesis. How-

ever, they are generic enough to be equally apphcable in alternative environments and de-

sign flows.

[1 3

I Normal State

Intrinsically Secure
State

r

1, J'

1, r

1,) '

),
r

1, r

Odd Parity
Checker

9
3
O
if)
(O'
3
D)

Figure 6.6 focuses on a single

process, possibly by isolating

any of the concurrent processes

of Figure 6.2. It is further as-

sumed that a number of IS

states (in the sense of definition

6.1') are identifiable within this

process. The figure exemplifies

two such states, clearly distin-

guishing them from the non-IS

states. Control signals are

shown in a manner similar to

Figures 6.4 and 6.5. A scheme
Figure 6.6 : Exploiting IS states in a single process

panfy-based confm//er se/f-c/?eckfng
for the utilisation of IS-states

for the purposes of the problem at hand is fiirther shown in Figure 6.6. Particularly, control

signals from IS states are compacted using an OR gate, and the resulting signal is fed to an

odd parity checker, together with the control signals corresponding to non-IS states.

DzeorgTM 6.7 : The configuration of Figure 6.6 detects all single control signal faults, while

providing the fault-free indication under fault-free operation.

f :

a) Consider the case when one of the IS state control signals is active :

a l) Under fault-free operation, since one of the IS state control signals is active (logic

1), the OR output is a logic 1; since the controller is one-hot, all control signals

corresponding to non-IS states are 0. Therefore, the parity checker is fed by a one-

hot pattern, and correctly detects odd parity.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 0 3

a2) If the control signal of an inactive IS state assumes the 3 value (chapter 2 and [1]),

therefore erroneously becoming a 1 when it should have been a 0, then the parity

checking scheme of Figure 6.6 does not detect the fault; however, since the said

state is Intrinsically Secure, the fault is detected by the corresponding checker in

the data path (Figure 6.3).

a3) If tlie control signal of the active IS state erroneously fails to take the active (logic

1) value, and is stuck-at-0 instead (D value [1]), then the OR gate output is at logic

0. At the same time, all non-IS control signals are 0, and the parity checker detects

the erroneous (even) parity.

a4) If a non-IS control signal takes the value/), then since the OR gate outputs 1, the

checker is fed by a two-hot type input, which is of even parity, and therefore de-

tects the fault.

b) Now consider the case when one of the non-IS signals is active.

b l) Under fault-6-ee operation, the OR gate outputs logic 0, since all IS control signals

are inactive. Therefore only one of the parity checker inputs is 1. The parity is odd

and correct operation is confirmed.

b2) If an IS state control signal assumes the D value, then the OR gate output errone-

ously changes to 1. Therefore the parity checker (being fed by a two-hot type sig-

nal) detects the fault. Further, since the state is Intrinsically Secure, the data path

checker also detects the fault. This double-check property increases the depend-

ability of the system.

b3)If a non-IS state control signal assumes the D value, then there are two Is in the

checker input, both coming from the non-IS control signals, since the OR gate out-

puts 0. The parity is even, and the fault is detected by the checker.

b4) Finally, if the active non-IS state control signal fails to take the logic 1 value, and

assumes the Z) value instead, then the checker is fed by a 0 from the OR gate, and

by all-zeros G-om the non-IS states. Once more, the parity is even and the fault is

detected. A

The key point in the above proof, that in fact clarifies the beneAt of exploiting IS states, is

a2 : p a r i t y t o detect the fault, but this c/oea no Aarm, since error detecting capabilities

for the considered type of fault exist in the datapath. Therefore, the controller checking

scheme is simplified, through the abolishing of error detection capabilities that are not

needed, resulting in some hardware savings. This is achieved by dropping a number of

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 204

XOR gates that are used within the checker when straightforward parity checking is ap-

plied, and using an OR gate with a suitable number of inputs. An additional (and in fact

more important) benefit of this approach, is that errors of wiy multiplicity in control sig-

nals can be detected, provided that one of them corrupts an IS state signal. Thus, the odd-

multiplicity error detection limitation of parity is overcome. Backtracking to the odd mul-

tiphcity-related note in the beginning of §6.2, it can now be understood that, by utilising

IS states as shown above, the designer can allow hardware sharing between control signal

cones of logic, that at least one IS state can be identified among the signals for

whose logic cone sharing is applied. This is expected to be another source of hardware

savings.

6.2.4 Per process parity-based self-checking exploiting Intrinsically

Secure states

Based on the material of §6.2.3, an overall self-checking scheme for a parallel design can

Control
Signals

Control
Signals

1 J C o n t r o l

S i g n a l s
Contro
Signals

1

Odd parity Odd parity

checker PCi checker PCz

Odd parity Odd parity

checker PC^, checker PCn

Dual-rail checker /
response compactor

t t
F/gure 6 . 7 T / i e se/f-c/)ec/(/ng sc/veme

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 0 5

be configured as Figure 6.7 shows. The figure follows the notations of the previous Fig-

ures 6.4 and 6.5; however, here signal buses have been substituted by block arrows for

convenience. Control signals reaching each process are separated into two groups, corre-

sponding to IS and non-IS state control signals, with each group separately treated as

§6.2.3 suggests. Indeed, the IS-state group signals are ORed, and the result feeds the proc-

ess parity checker, where it meets all other signals from the non-IS group. The initiahsa-

tion state signal is once more fed to all parity checkers, since no actual operations take

place during initialisation, and therefore it cannot possibly be Intrinsically Secure. The

scheme of Figure 6.6 is thus separately applied to every process; parity checker responses

are naturally compacted by a dual-rail checker. If no IS states can be identified in a given

process, tlien the OR gate is redundant, and theoretically replaced by a constant logic 0.

Since a constant 0 does not change the parity of the overall signal, it is safely omitted. The

overall conAguration will hereafter be referred to as the J scheme.

Exactly like in the purely parity-based schemes, an estimation of the CTRL_3 hardware

cost is attempted here. For this purpose, let us deSne mj,s and mi,N as the number of IS and

non-IS (respectively) states of process Pi. Clearly mi,s+mi,N=n3i, as deAned in §6.2.1. Each

parity checker PC; has mj ^+Z inputs (therefore ^ XOR gates) if and mi,N+l in-

puts (therefore mi,N-l XOR gates) if mi,s=0. Further define nis<n as the number of proc-

esses that include at least one IS state. The total number of XOR gates needed will be

equal to

Further, all OR gates are of mi,s inputs. Also, the response compactor compacts n input

pairs, for a hardware cost of 6x(n-l) 2-input AND/OR gates. Overall, the cost is given by

A/)-("-%)

where function CoR(k) denotes the hardware cost of a k-input OR gate.

If there is no IS state in any process, it can easily be verified, by comparison of Figures 6.4

and 6.7, that CTRL_3 becomes equivalent to CTRL l. This can also be seen in equation

(6.7), substituting mi,s=0, and for all i. In this case, and taking into account the

definition of vV, through equation (6.2), equations (6.4) and (6.7) yield the same value.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 0 6

6.2.5 Parity-based self-checking using a single parity checker and ex-

ploiting Intrinsically Secure states

The next controller self-checking design scheme presented here is naturaUy a combination

of CTRJL_2 and CTRL_3. It is depicted in Figure 6.8, and will be called As is

obvious &om the figure, aU non-IS states from all concurrent processes, plus all OR gate

outputs compacting IS state control signals are fed to a single odd parity checker.

Z/gmma : The conAguration of Figure 6.8 detects all single control signal faults, while

providing the fault-free indication under fault-free operation.

Lemma 6.1 is a generalization of Theorem 6.1, and it can be informally verified as fol-

lows. During reset, only the initialisation state is active, thus a one-hot signal reaches the

parity checker, and the correct operation is confirmed. During aU subsequent control

states, each process will contribute a logic 1 either because of one of its non-IS state sig-

nals, or as the output of corresponding OR gates. So a total of n Is wUl feed the parity

checker. Therefore, exactly as in the CTRL 2 technique, a single-state "dummy" process

is inserted to ensure odd parity, in case n=2k. The above statements apply during fault-free

operation, verifying that in that case the scheme produces the fault-free indication; under a

single fault in any control signal of any process, the process at hand will either

* erroneously contribute an additional 1 (see a4 and b3 in the proof of Theorem 6.1),

thus accumulating an even number of Is (2k+2) in the checker input (the checker will

therefore detect the fault), or

* fail to produce its corresponding 1 (cases a3 and b4 as above), again leading to an even

number of Is (2k) fed to the checker, thus again asserting the faulty indication, or

* produce its fault-firee control signal, signal a fault at its data path (case a2), or even

" produce an additional 1 at its control signals and an erroneous signal at the data

path (b2), thus giving a double alarm.

The validity of Lemma 6.1 is thus verified.

The odd parity checker inputs are all non-IS state control signals of the design (a total of

^ (m.) +1 bits, including state-0), plus one signal for every process that has at least one

IS state (as defined above, there are n,s such processes). Based on this observation, the fol-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 207

1 1 I Control
Signals

Control
Signals

1 I Contro
Signals

Control
Signals

dummy
inserted if n=2k

Odd parity
checker

F/gure 6.8 ; The C7RL_4 se/f-c/iec/f/ng sc/veme

following expression can be derived, giving the hardware cost estimation for the CTRL_4

scheme.

CO:SY, cr;?: 4 = % X Cof + (6.8)

Equation (6.8) takes into account the overhead fi-om both the X O R gate-based checker and

the OR gates relevant to IS states, but, like (6.5), it ignores overheads associated with the

dummy state insertion, in the case of an even n.

6.2.6 Hardware costs

This section attempts a comparison of the four techniques presented in the previous sec-

tions in terms of their hardware cost, assuming CMOS VLSI target technology [136]. In

this teclinology, it is known that typically CostA}4D/OR=6 transistors (implemented as a 2-

input NAND/NOR followed by an inverter), and CoR(k)=2x(k+l) transistors (imple-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 208

mented as a k-iaput NOR followed by an inverter). It is also assumed that the XOR gates

are implemented as transmission-gate XORs, thus yielding CostxoR=6 transistors [136]. It

can be argued that the transmission-gate XOR, although particularly cheap, is not the best

implementation of an XOR function; indeed, the realisation using three NAND gates and

two inverters is usually prefered by most designers. Likewise, with respect to the k-input

OR realisation, for high values of k, k-input NOR gates may be too slow for a particular

technology, and implementations using multiple 2- or 3-input NORs may be preferred in-

stead. However, the present cost assumptions are purely for the purpose of illustrating the

relative theoretical costs derived for the corresponding schemes and they are useful as

such.

Table 6.1 summarizes the CMOS transistor count estimations for some sets of values of

the associated parameters, for all four schemes, as given by equations (6.4), (6.5), (6.7),

and (6.8). To facilitate easier understanding of the figures in the table, the meanings of pa-

rameter symbols defined in the previous sections are repeated in the following.

Ns total number of control states in the design (including initialisation)

n total number of concurrent processes

nts number of processes that include at least one Intrinsically Secwe state

mj.N number of non-Intrinsically Secure states in process i

mi,s number of Intrinsically Secure states in process i

Parameters Checker transistor count

N, n "ts miM, for l<i<n mi,s, for l<i<n CTRL_1 CTRL_2 C T R L J CTRL_4

50 1 0 49 0 288 2 8 8 288 288

20 I 1 15 4 108 108 100 100

30 3 0 13. 15, 1 0 for every i 228 168 228 168

151 15 15 5 for every i 5 for every i 1314 8 9 4 1134 714

The fiist row of the table corresponds to a single-process design, with no Intrinsically Se-

cure states. The expected result is that aU techniques yield the saine cost, since they aU

lead to a simple parity check. The second row corresponds to another single-process de-

sign; tliis time, however, it is possible to identify four Intrinsically Secure states within the

process. The result is a slightly cheaper checker when CTRL_3 or CTRL_4 are used, on

top of the increased error detection capabilities mentioned in §6.2.3. Naturally, CTRL l

and CTRL_2 effectively lead to the same design, and so do CTRL 3 and CTRL_4. In the

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 0 9

third row, a parallel (3-process) design with no Intrinsically Secure states is considered.

Significant hardware savings are noticeable when the single-parity checking schemes

CTRL_2 and CTRL_4 are used. Finally, the fourth row depicts the most complicated case

of a highly parallel (15 processes) design, with identifiable Intrinsically Secure states in all

processes. In particular, the assumption is that exactly half (5/10) of the states in each

process are IS. Such cases can appear in reahstic, useful designs, implementing complex

digital signal processing algorithms. Comparing the estimations for the CTRL l and the

CTRL_4 schemes, an improvement of the order of 45% can be noticed.

It should be stressed that the estimations of this subsection are Mo/ experimental results;

rather, they are an attempt to evaluate the theory of this section in the light of some hypo-

thetical but possible design scenarios. They simply give a flavour of the expected proper-

ties of the self-checking choices presented so far. Experimental evaluation is still neces-

sary, especially given that the results of Table 6.1 ignore the presence of the datapath, and

the effect on the datapath area that each controller self-checking choice may imply. Such

implementation results are given in §6.4.

Nevertheless, the above estimations verify that controller checking using a single checker

can lead to more compact implementations (CTRL_2, CTRL_4). Naturally, the higher the

degree of concurrency (n), the more significant the improvement. Noticeable savings

(-26%) appear in Table 6.1 even for n=3 processes. However, recall that the hardware cost

of the data path is not shown in the table. Realistically, it can be esticnated that the hard-

ware savings will become really important for a number of concurrent processes of the

order of n=10. As regards the schemes exploiting IS states (CTRL_3, CTRL_4) versus

their pure parity counterparts (CTRL l, CTRL_2), Table 6.1 suggests that the hardware

savings associated with them are rather modest; therefore, the improved reliability, stem-

ming from overcoming the odd multiplicity fault detection limitation, should be kept as

their main advantage.

6.2.7 Achieving the totally self-checking goal

All four techniques considered in this section employ parity checking to a greater or lesser

extent. Since parity checking properties have seen extensive theoretical investigation

p. Oikonomakos, 2004 Chapter 6: Controller Setf-checking Design 2 1 0

(§2.2.1.1), it is desirable to evaluate the presented schemes with respect to self-checking

theory as well.

As a first word of note, parity checking for a 1-hot encoded signal is not - strictly speak-

ing - code-disjoint (Definition 2.4). Indeed, an n-bit 1-hot encoded signal demonstrates

odd parity, so does an n-bit signal with three (or any other 2 k + l > l number of) Is

among its bits. Such a signal may be the result of a highly hostile enviroimient, causing

two (or an even number of) faults on the signal, and consequently resulting in a situation

where a non-code (i.e. not 1-hot) checker input produces a code (fault-free indication) out-

put. However, the underlying single-fault Hypothesis 2.1, backed by the comments of §6.2

regarding separate cones of logic for every controller output, rules out such a situation.

Parity checking for the 1-hot controller outputs can, therefore, in this background, be

loosely regarded as a code-disjoint operation. Fault-security (Definition 2.2) can likewise

be confirmed.

Regarding the self-testing property (Definition 2.1) also required for the totally-self-

checking goal to be achieved, recall Lemmas 2.1 and 2.2 (§2.2.1.1 and [17, 18]). Accord-

ing to them, a parity-based self-checking scheme is guaranteed to be self-testing if the

checker receives either

- 75% of all possible code words, or

- the rows of a 4xM matrix, whose distinct columns have exactly two Is and two Os.

In contrast to the previous paragraph, "code words" here refers to all odd parity encoded

n-bit words, rather than to all 1-out-of-n words. The words of an n-bit 1-hot code are al-

ways n, while there are 2"/2=2"'' different odd parity encoded words in total. Clearly it is

2"''x75%>n for all n>3, therefore the first condition cannot be true in the case at hand, ex-

cept for the trivial case n=3. Moreover, there can be no two different available code words

that have a 1 at the same bit position. This means that a matrix such as the one of the sec-

ond condition cannot be constincted from the available code words of the considered case.

One is therefore forced to conclude that the presented schemes at their cun-ent form are

not self-testing; consequently, they are not totally self-checking eitlier.

Recalling §2.2.1.1, the solution to this problem is self-exercising checker design. This is

directly applicable in this case, by simply substituting the conventional 2-input XOR gate-

based parity checkers implied in Figures 6.4, 6.5, 6.7 and 6.8 with the LFSR-based struc-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 211

ture of Figure 2.12, repeated (slightly modified) in Figure 6.9 for convenience. The dashed

rectangle in the figure outlines the overall checker structure to be used in the CTRL l,

CTRL_2, CTRL_3 and CTRL_4 schemes. Recall that only the even parity code is a linear

code. In practice, this means that the LFSR of Figure 6.9 must "internally" be based on

even paiity encoding. This is in contrast to the situation at hand, where checker inputs

demonstrate odd parity. Therefore, in line with Tamick's advice [12], two inverters are

applied to the structure of Figure 2.12, as Figure 6.9 depicts. The first one is applied to an

arbitrary bit of the checker input (in this case, the input LSB), so that the LFSR is fed witb

the required even parity words. The second one is applied to the (even parity) LFSR out-

put, once again to an arbitrary bit (again the LSB in the figure), to produce the odd parity

Control signals

D U

CK

02

C1

D U

CK

Qn

Conventional Odd Parity Checker

Figure 6.9. TSC parity checker, to be used in CTRL_1, CTRL_2, CTRL_3, CTRL_4

encoded code word that feeds the conventional odd parity checker. The n-bit LFSR itself

can be designed by obtaining its characteristic polynomial as outlined in §2.2.1.1, based

on Theorem 2.1, and consulting the literature for tables of primitive polynomials (see for

example [137, 138]).

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 212

As mentioned in §2.2.1.1, the presence of the LFSR has the effect that the conventional

pahty checker embedded within the overall structure of Figure 6.9 receives all possible

code words, as long as two different code words appear in its inputs (which is always true

in the case at hand). Again according to Lemma 2.1, this means that any arrangement of 2-

input XOR gates in the disjoint parity trees that constitute the conventional checker, will

lead to a TSC solution.

2-PAIR
DUAL-RAIL
CHECKER

TOTALLY
SELF-CHECKING

ODD PARITY CHECKER

TOTALLY
SELF-CHECKING

ODD PARITY CHECKER

F/gure 6. YO. Compacf/ng oufpufs of
two TSC parity checkers

Let us now examine the dual-rail checkers of Figures 6.4 and 6.7 with respect to the totally

self-checking goal. First of all, consider the simple example of Figure 6.10 and assume

fault-free operation. The figure imphes that only two processes exist in the system, and

their control signals are checked using two TSC odd parity checkers like the one of Figui e

6.9, applying either CTRL l or CTRL 3. The outputs are naturally compacted using a

two-pair dual-rail checker (in effect a single dual-rail checker cell), as shown. Since the

corresponding conventional parity checkers receive aU code words, they are also able to

produce both possible code outputs (01, 10). The exact state of each control path (i.e. the

exact signal fed to the TSC odd parity checker), together with the internal state of the cor-

responding LFSR determine which of the two possible outputs will be produced. In prin-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 1 3

ciple, the two processes are independent, while the two LFSRs are always independent. It

is therefore sensible to state that, over time, all possible code input combinations {(01,

01), (01, 10), (10, 01), (10, 10)} win appear at the input of the dual-rail checker. General-

izing for an n-process design, with n TSC parity checkers producing both their code out-

puts, it can be understood that a// possible 2" input combinations will be fed to the n-pair

dual-rail checker. As explained in §2.2.2.2, only four well-selected code inputs are enough

to guarantee the self-testing property for an n-bit dual-rail checker of a given structure.

The fact that all possible code words are applied to the checker in the case at hand, sug-

gests that oMy structure (i.e. any internal arrangement of the n-1 dual-rail checker cells)

will result in a TSC design.

At this point, the issue regarding the actual checker structures of Figures 6.4, 6.5, 6.7, and

6.8, left open in §6.2.1, has been answered. To summarise, aU parity checkers in the fig-

ures are implemented using the configuration of Figure 6.9, where the conventional parity

checker shown, is composed of two 2-input XOR gate-based parity trees, with arbitrary

distribution of gates between the trees, and arbitrary aiTangement of the gates within the

trees. In addition, the dual-rail checkers of Figures 6.10 are composed of an arbitrary ar-

rangement of 2-pair dual-rail ceUs.

Clearly, the result of utilising the TSC checker of Figure 6.9 in the controller self-checking

schemes, is that the estimations of equations (6.4), (6.5), (6.7) and (6.8) are no longer

valid, since they were derived assuming simple parity checkers, and do not take the LFSR

hardware overhead into account. They can, however, easily be suitably augmented as fol-

lows. Let CostLFSR._i be the constant hardware cost of an LFSR cell, that is the cost of a

fhp-flop, plus the cost of the XOR gate. Clearly, the n-bit LFSR of Figure 6.9 will cost

nxCostLFSR_i. This is not totally accurate, since the XOR gate can be a 2 or a 3-input one,

depending on the absence or presence of a feedback tap, so CostLFSR_i should not be a con-

stant. The two inverters are also not taken into accoimt. Let us, however, ignore these neg-

ligible details, and accept this approximation for the puiposes of this discussion. In each of

tlie presented schemes, the number of LFSR cells is equal to the total number of inputs of

all parity checkers. Based on this :

« in the CTRL l scheme (Figure 6.4), checker PCi has mi+l inputs, adding up to a total

of

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 214

^ (/M, + l) = + M - 1 (6.9)

inputs in all parity checkers (equation (6.2) has been used in the above). Equation (6.4)

can now be updated as

- (» + l)]x + 6 x (?; -1) x C o ^ , g,; +
(6.43

« in the CTRL_2 scheme (Figure 6.5), the single odd parity checker receives Vy, inputs.

Equation (6.5) can now simply be rewritten as

2 ^ ^ 2) x X , (6.5)

» in the CTRL_3 scheme (Figure 6.7), as aheady seen in §6.2.4, each process Pj with at

least one Intrinsically Secure state (m^ s ^) feeds an mj_N+2 input parity checker, while

whenever no IS state can be identified (mi,s=0) the checker has mi_N+l inputs. The rela-

tionship giving the total number of parity checker inputs is shown in the foUowuig to be

analogous to equation (6.6)

Z! ('"'.v + + Z ('"w +1) = Z i (^,.,v) + » + «/.;

Equation (6.7) now becomes

(6.10)

X + 6x(M — l) x

X Cost / i-n,, ,

(6.73

» finally, in the CTRL_4 scheme (Figure 6.8), the total number of checker inputs

(§6.2.5) has been shown to b e ^ (m y ^) + +1, which updates equation (6.8) to

(6.83

An inspection of the updated equations reveals that the relationsliips between the hardware

costs of the different schemes still hold; indeed, comparing, for example, equations (6.43

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 1 5

and (6.5'), is enough for one to realise that the more the degree of parallehsm n, the more

the hardware savings achieved, not only due to the absence of AND / OR gates, but also

due to the reduced number of LFSR cells. This is totally consistent with the observations

already made in §6.2.6. It can therefore be claimed that, although the numeric results of

Table 6.1 are now even farther &om being accurate, the qualitative insight they provide is

still relevant.

On the other hand, the increase in area imposed by the design of Figure 6.9, can be unac-

ceptable in the case of realistic designs. Recall, for example, chapter 5, where even de-

signs with a critical path of the order of 100 states were shown. This clearly implies that

if Mof a/wayj' o j ay o^gorj ' . The

situation calls for an alternative approach; self-checking using 1/n checkers is therefore

considered in the following section §6.3.

6.3 1/n based self-checking

This section investigates the possibility of directly applying 1/n self-checking to the con-

troller outputs. The reader is reminded that an m/n checker (§2.2.1.2) detects all single, as

well as multiple wMfVf/'rgcfzoMa/ faults in its inputs. The imphcation of this on the controller

structure (Figure 6.1), is that the next

O state logic and decoder blocks have to be

designed such that no single internal

controller fault can under any circum-

stances give rise to a bidirectional multi-

ple fault on the controller output. This

problem has been addressed in [139],

based on the following definition.

The zMvgrjf'oM of a

F/gi/re 6. Y Y. examp/e of /anouf logic path is the number of inversions in
branches with different inversion parities modulo 2,

Given a block of logic, a fault on an internal wire will only lead to unidirectional faults on

the output of the block, if all paths on the fanout of the wire have the same inversion par-

ity. The trivial but illustrative circuit of Figure 6.11 clarifies this proposition. The figure

D D

1 - 0

o-o

p. Oikonomakos, 2004 Chapter 6. Controller Self-checking Design 2 1 6

shows a stuck-at-0 wiie, assummg the D value when its source tries to drive it to 1. The

wire has a fanout of 3 branches. The top and the bottom branches have a 0 inversion parity

(2 and 0 inversions respectively). If faults reach the circuit outputs through both of these

branches, then they result in the same logic error, hideed, in the figure, if the second input

to the AND gate is logic 1, then fault propagation through both paths leads to D-type

faults. Of course, a fault does not necessarily make its way to the circuit output, an exam-

ple being the scenario where the second AND gate input is a logic 0, leading to a fault-fi-ee

0 value in the output. In contrast, the middle branch has an inversion parity of 1 (a single

inversion). Clearly, this produces a Z) on the respective circuit output; in combination with

the top and bottom branches, the D-type faulty input wire causes bidirectional faults on the

output lines.

Returning to the controller self-checking problem, it is such situations that need to be ex-

cluded when designing the controller blocks, in order for m/n checking to be safely appli-

cable. It is therefore to be noted, that, in contrast to the parity checking situation of §6.2,

hardware sharing between the logic cones of controller outputs permitted, so long as it

does not lead to fanout branches with different inversion parities. Clearly, this is a less re-

strictive constraint than that of §6.2; it can, tlierefore, lead to more compact control path

realisations. In the following, it will be assumed that this constraint is satisfied, and under

this sole assumption the presented techniques are generically applicable.

6.3.1 Selection of a 1-hot checker

Several 1-out-of-n checker designs have been proposed (§2.2.1.2). Unlike the parity

checking case, where XOR. trees dominate the field, there seems to be no clear winner as

far as 1/n checking is concerned. This subsection states the desired properties of the 1/n

checker to be used, then revisits the techniques presented in §2.2.1.2, and finally justifies a

particular choice.

6.3.1.1 Checker specifications

The checker needed for the current problem should have the following characteristics :

(a) It must be This comes directly out of the problem statement of

§6.1.4; as akeady mentioned therein, the assumption is that the designer has already paid a

p. Oikonomakos, 2004 Chapter 6. Controller Self-checking Design 2 1 7

significant penalty for datapath self-checking (chapter 5). It is therefore desirable to keep

any controller-related extra overhead as low as possible.

(b) It must be ggMenc, applicable to as wide a range of the bit width n as possible. This

stems fi-om the whole context of this work : any solution should be able to easily lend it-

self to high-level synthesis, where the length of the process critical paths cannot possibly

be known a priori. Applicability implies that the checker should be not only constructable,

but also consistent with theory (totally self-checking) for as many values of n as possible

(§6.1.4).

(c) It must be Incorporating technology-independent solutions in

high-level synthesis is a virtue, since it takes full advantage of the largely technology-

independent nature of the synthesis process, and maintains its ability to be easily tuned to

alternative technologies.

(d) It must be relatively jz/np/e in its description, so that it can easily be coded in an HDL

and incorporated in an Electronic Design Automation (EDA) flow.

(e) In contrast, speed is Mor a critical factor. To understand this, once again consider Fig-

ure 6.1. The minimum clock period achievable by the synchronous design is determined

by the datapath, while controller self-checking is done in parallel to the datapath opera-

tion. As chapters 3 and 5 have established, it is often the case that several data path opera-

tors or multiplexers operate in series within the same control step. This guarantees ample

time for the (normally faster) single operation of 1/n checking to be completed.

The above characteristics add up to a simple sentence : a checker that demonstrates re-

quirements (a)-(d) can be allowed to perform suboptimally as regards speed.

6.3.1.2 1/n checkers revisited

A critical summary of §2.2.1.2 is provided here. The reader is reminded of all proposed

solutions for the 1-hot self-checking problem, and these solutions are evaluated in the light

of points (a)-(e) of §6.3.1.1.

Recall Anderson and Metze's m/n checker (Figure 2.13 and [10]). A 1-hot checker is ef-

fectively implemented as part of it, using a simple code translator, followed by a k/2k

checker implemented using majority functions. The design is inherently based on logic

gates, so it is technology-independent, while the m^ority functions could be described in

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 1 8

an HDL and therefore their design automated. However, the TSC property cannot be satis-

fied for all values of n (n=7 is a characteristic problematic situation mentioned in [10]);

the design is therefore unsuitable for the situation at hand.

The adder-based k/2k checkers proposed by Paschahs et al (Figure 2.14 and [24]) can be

used in Anderson and Metze's scheme instead of the majority function based one. One ad-

vantage is that the design becomes cheaper compared to [10] as k increases; it is also in-

dependent of technology, since it uses full and half adders as building blocks. On the other

hand, it is rather complicated to describe it in a generic HDL form, since its TSC property

strongly relies on the arrangement of adders within the blocks of Figure 2.14. Therefore, a

behavioural description is not possible, and a structural one is rather hard to parameterise

(so as to make it genericaUy utihsable at a high level of abstraction). The TSC property is

achieved for the k/2k checker, //"it receives all its code words; however, the translator of

Figure 2.13 is known to not always provide all code words. Consequently, it is not guaran-

teed that such a combination provides a TSC solution for every bit width of interest.

The checker of Tao et al [30] is also based on a configuration similar to Figure 2.13. The

stL-ucture is based on elementary logic functions, and its design is described algorithmi-

cally; it could therefore fit within an HDL-based design flow, had it been more generically

applicable. Indeed, the TSC property is not achieved for some common values of n (such

as 7, 9, 11).

CMOS technology specific designs [28, 33] are cheap and generic. They are, however,

unsuitable for the problem at hand, clearly due to theii" total dependence on target technol-

ogy, and their irrelevance to high-level HDL-based design flow.

Khakbaz's 1-hot checker ([29] and Figures 2.16, 2.17, 2.18) is an interesting option. Its

hardware cost is reported to be comparable with [10] and [24], it can be applied for every

bit width, except the well-known problematic 1 -out-of-3 case, it is technology-

independent, and it can be described in a behavioural HDL through equations (2.4), and

using a coinmon dual-rail checker description (§5.3.3.3). In the literature it is criticised as

being slow [30], but as argued in §6.3.1.1 this may not necessarily harm. Clearly, it is a

tempting choice.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 1 9

Finally, the accumulator-based sequential structure of Stroele and Tamick (Figure 2.20

and [34]), although easily implementable, particularly suitable for high-level description,

and totally technology independent, does not conform to the usual self-checking theory, in

that it experiences fault latency of unpredictable length, and it can even experience fault

escapes.

The above discussion singles out Khakbaz's 1/n checker design as the most suitable can-

didate. The following subsections §6.3.2, §6.3.3 describe the controller self^checking solu-

tions instrumented using it.

6.3.2 Per process 1/n-based self-checking

Based on the selected 1/n checker structure. Figure 6.12 shows how an overall self-

checking solution for the controller of a generic highly parallel conceptual design can be

configured. The technique is directly analogous to the CTRL l method, as simple com-

parison of Figures 6.4 and 6.12 suggests. This time, however, the parity checkers have

been substituted by 1/n checkers, implemented as in Figure 2.16. Responses &om all

checkers corresponding to aU processes are naturally compacted by the usual dual rail

checker. This scheme is hereafter referred to as the self-checking scheme.

Figure 6.12 also shows how the problematic l-out-of-3 checker case is dealt with. Let us

concentrate on process Pn- Without loss of generality, it is assumed to comprise 2 states.

Together with state-0, this dictates the need for a 1 -out-of-3 checker. As a first word of

note, it has to be stated that such short processes are rather trivial, and not frequendy en-

countered in controller / datapath architectures. The only realistically meaningful service

that a 2-state process normally has to offer, is the updating of outputs or internal signals,

concurrently with other, useful operations performed by the rest of the processes in the

system. Typically, this involves brief periods of activity, and extended periods during

which the short process simply waits. Further, the overall system critical path, being the

critical path of the longest process, is highly unlikely to be any relevant to the 2-state

process length. It would tlierefore do no harm to add a "dummy" state to the short process

(as shown in process Pn hi the figure), thus eliminating the need for a l-out-of-3 checker,

and performing 1 -out-of-4 checking instead. Essentially, having control of the synthesis

task, the designer can avoid the problematic 1/3 situation.

p. Oikonomakos, 2004 Chapter 6: Control ler Self-checking Design 220

One is tempted to think that the same principle of inserting dummy states to avoid prob-

lematic codes could be used more extensively, and an alternative checker adopted instead

of Khakbaz's one. For example, Tao's checker (§6.3.1.2) could be used, and dummy states

inserted whenever 1/7, 1/9 or 1/11 codes were encountered. This is, however, not so, since

processes that are 6, 8, or 10 states long typically perform useful tasks and often determine

the critical path; therefore, lengthening them is very likely to hinder performance and

partly cancel out the benefit of the HLS critical path length optimisation effort.

Pi P2

(U
c O)
'(D
"o "

o
o

m2

1/n

T ,, T

1/n

checker Ci checker C2

1

Pn-1

C O -

I 3 H-

d]

"dummy"
+ inserted if m,=2

1/n

checker C „

J

1/4

checker Cn

n
Dual-rail checker /

response compactor

o
o 3

CO
CD' 3
a)

Figure 6.12: The CTRL_5 self-checking scheme

It also has to be noted that the combined 1/3 self-checking approach of [31] (Figure 2.19)

would also provide an acceptable TSC solution, since one expects at least one more proc-

ess (therefore at least one more checker output) in the system control path, and definitely a

number of 2-bit comparator outputs coming from the datapath (chapter 5). Inserting a

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 2 1

dummy state as above was, however, preferred, for being more standalone and independ-

ent of the system context, also simpler in concept and easier to incorporate in synthesis.

The CTRL_5 scheme is TSC overall. Indeed, the 1-ont-of-n checkers receive all their code

inputs and are all TSC (as proved in [29]), especially so now that the l-out-of-3 issue has

been resolved. The dual-rail checker is code-disjoint and fault-secuie by construction

(§2.2.2.2), and it also receives all its code inputs, since the arguments built around Figure

6.10 are equally applicable here. It is therefore self^testing for any internal arrangement of

dual-rail checker cells. This makes both the dual-rail checker and the overall scheme to-

tally self-checking. Notably, this does Mof require any costly LFSR-based design, in con-

trast to the parity-based techniques.

Finally, no hardware cost estimation prediction is given here. Firstly, the nature of the

code translator that forms part of the 1/n checker (Figure 2.17) allows for hardware shar-

ing and optimisation, without affecting the TSC property (notably, in contrast to parity

checkers). This will be made clear in the implementation part of this chapter (§6.4.2). This

optin:isation often depends on the synthesis tool in use. Therefore, any prediction on a

purely theoretical basis would likely be misleading. Secondly, such a prediction would

only serve the purpose of comparison between 1/n based schemes and their parity based

counterparts, e.g. in this case CTRL S and CTRL l, through equation (6.4'). This last

equation is, however, highly dependent on target technology (because of CostLFSR i being

dependent on technology). It is, therefore, best to leave any such comparison for the ex-

perimental section §6.4.

6.3.3 Per process 1/n-based self-checking exploiting Intrinsically Se-

cure states

Figure 6.13 is clearly analogous to Figure 6.6, and shows how any existing Intrinsically

Secure states can be exploited within a single process, when 1/n checking is applied. As

the proof of Theorem 6.1 has shown, any single fault in the control signals leads to either

the aU-Os pattern, or a 2-out-of-n word, or even a 1-out-of-n word, plus an alarm from the

datapath. In any of these cases, the 1/n checker serves just as well as the parity checker.

Moreover, given that 1/n checkers can detect not only single, but also multiple unidirec-

tional faults, it would be interesting to consider such faults here as well.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 222

: The configuration of Figure 6.13 detects all unidirectional control signal

faults, while providing the fault-firee indication under fault-free operation.

f/-oq/":

The proof proceeds on the footsteps of the proof of Theorem 6.1 :

a) Consider the case when one of the IS state control signals is active :

a l) Under fault-&ee operation, since one of the IS state control signals is active (logic

1), the OR output is a logic 1; since the controUer is one-hot, all control signals

corresponding to non-IS states are 0. Therefore, the 1/n checker is fed by a 1/n pat-

tern, thus signalling correct operation.

a2) Let us consider k>l D type faults. If aU of them appear on IS-state control signals,

then the datapath produces k error indications. If all of them appear on non-IS state

control signals, then the

-c I
X

I Normal State

, Intrinsically Secure
I State

o §
"S

' (O' 3 Q] - w

V

1 -out-of-5
checker

1 -out-of-n checker is

fed by a (k+l)-out-of-n

word, and signals a

fault. If some of the

faults are in IS and

some in non-IS state

control signals, then

both the 1/n checker,

and an appropriate

nnmber of datapath

checkers produce error

indications.

a3) There can only be a sin-

gle Z) type fault, since there is only one active signal in the design (the one corre-

sponding to an IS state). If this faulty situation occurs, then the 1/n checker is fed

by the aU-Os pattern and thus detects the fault.

b) Now consider the case when one of the non-IS signals is active.

b l) Under fault-free operation, the OR gate outputs logic 0, since all IS control signals

are inactive. Only one of the 1/n checker inputs is 1, so fault-free operation is con-

firmed.

F/gure 6. Y3; Exp/o/Y/ng /S sfafes /'n a s/'ng/e
process kv/f/) f /h confm/Ze/' se//^c/?ec/f/ng

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 223

b2) Consider k>l D type faults. The situation is evaluated exactly as in a2 above and no

further explanation is required.

b3) Once again, there can be no multiple D type fault, and under the presence of a sin-

gle one, the checker is fed by all-Os and naturally detects the fault. A

Interestingly, consider a double bidirectional fault, that is, a fault affecting two controller

outputs, such that one assumes the D value, and the other assumes 3 . Such a fault would

escape detection in the environment of Figure 6.12; Aowever, in Figure 6.13, if the signal

taking the D (0/1) value happens to correspond to an IS state, then the data path signals a

Control
Signals

Contra
Signals

Contro
Signals

Control
Signals

y '
1/n 1/n

checker Ci checker Cz

1

i;n 1/n

checker Cn-i checker C„

r
Dual-rail checker /

response compactor

F/gure G. Y4; The C71R/._6 se//-c/)ec/f/ng sc/veme

fault and the fault is detected. This shows that, once more, when utilising Intrinsically Se-

cure states within a process, in the marmer of Figure 6.13, the overall self-checking

scheme demonstrates enhanced fault detection capabilities, in that now bidirectional faults

can also be detected, provided that they corrupt any IS state towards az) value. The anal-

ogy with the corresponding parity-based scheme is evident.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 2 4

An overall scheme for the self^checking design of the control path utilising 1/n checkers,

and taking Intrinsically Secure states into account, is now proposed in Figure 6.14. It is

clearly the 1/n "equivalent" to CTRL_3, and will be called In line with §6.3.2, if

any of the checkers C, is originally fed by 3 inputs, an additional dummy state is provided

to the corresponding control path, to resolve the problematic l-out-of^3 situation (although

no such situation is depicted in the figure). Moreover, no theoretical cost estimation is at-

tempted here either, although CTRL_6 can be expected to be somewhat cheaper than

CTRL_5, due to utilising cheaper checkers.

Finally, note that no technique analogous to CTRL_2 or CTRL_4 is proposed, i.e. there is

no attempt to utilise a single m/n checker. The reason for this, is that there is no generic

TSC m/n checker, for arbitrary n and m>l. Most designs mentioned §2.2.1.2 are rather

restricted to the area around the k/2k checker, which is not useful for the purposes of this

research.

6.4 Implementat ion and Experimental Results

The discussion in this section focuses on the MOODS High-Level Synthesis Suite (§3.2),

and precisely on the implementation of the ideas of §6.2, §6.3 within MOODS. Some es-

sential properties of the MOODS controller are first established (§6.4.1), then implementa-

tion details are given (§6.4.2, §6.4.3), and finally the obtained experimental results are

presented, together with relevant comments (§6.4.4).

6.4.1 MOODS-generated controller revisited

Sections 6.2 and 6.3 established that controllers need to satisfy certain properties, in order

for the respective techniques to be applicable. As a reminder, in order to apply parity-

based schemes, one needs to design the controller such that any single internal fault can

affect an odd number of output signal bits, while if 1/n-based techniques are desired, the

designer needs to make sure that any internal fault may only lead to unidirectional faults

on the output. Favourable exceptions exist (§6.2.3, §6.3.3), but the above statements are in

principle correct. Observe that, if a controller has the property that every modelled internal

fault may lead to one and only one corrupted output bit, then both of the above require-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 225

ments are satisfied. In the following, it is shown that the control path generated by

MOODS indeed possesses this characteristic by construction, and therefore aU six consid-

ered techniques can safely be utilised in its environment.

First of all, recall the generic controller model given in Figure 6.1, consisting of a state

register and two combinational logic blocks, namely the next state logic and decoder

blocks. Compare this model against the MOODS-speciGc control path implementation of

Figures 3.12 and 3.13. The comparison reveals that in the MOODS implementation no de-

coder is present. This is expected, since as mentioned in §3.2.6, there exists exactly one

general control cell (one flip-flop) for every control state in the system. The D-fUp flops

found within the general control cells effectively constitute the state register, and any sin-

conditional signals
(from data path)

general control cells ,

" 7 "

4--

OR-GATE
BLOCK

1 2

a:
LU LU

<
1—
CO

t - m
UJ lU

01

AND-GATE
BLOCK

I next state
ilogic block

control signals
(to data path)

SELF-CHECKING
SCHEME

error indication

F/gure 6.Y5. 7/?e MOOOS confm/Zer
supp/emenfed n/zYA? se/f-c/?ec/(/ng capab/Z/Y/es

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 226

(CS2) (C ^ (C ^

s1 CS1 s2 s3

to CS2 to CS3 to CS4

(aj con^m/ paf/? (Ibj /vaz-dware /mp/emenfaf/o/?

F/gi/re 6.Y6. Cond/Y/ona/ conW/7oM/

gle fault in any of them (in any of their ports : D input, Q output, set, reset, clock) may

only affect a single controller output.

Let the discussion now concentrate on the "next state" logic block. Once more, compari-

son of Figures 6.1, 3.12 and 3.13 reveals that the next state logic in the MOODS imple-

mentation effectively comprises the AND gate block (Figure 3.13) and the OR gates found

within the general conhol cells (Figure 3.12). For convenience, this idea is depicted in

Figure 6.15. The figure is just an alternative view of Figure 3.13, except for the self-

checking scheme block included here. Other than that, the general control cells of §3.2.6

have been decomposed into the flip flops constituting the state register, and a separate OR-

gate block. The above mentioned next state block model is also shown. As Figure 3.12

established, OR gates are dedicated to flip-flops; this means that the output path from any

gate in the block only leads to one flip-flop. In other words, any fault in any gate of the

OR-gate block can only affect one flip-flop, therefore it can only result in a cor-

rupted bit in the control signals.

The AND-gate block requires some more attention. The particular block implements con-

ditional control flow, originating in conditional and loop statements in the system VHDL

description. An illustrative example of conditional control flow is provided in Figure

6.16a, together with its hardware implementation in 6.16b. hi the example, control step

CSl is followed by CS2, CS3 or CS4, depending on the values of conditional signals s i ,

s2 and s3 (notably, exactly one of them is "tme" when CSl is active). This is implemented

in the AJSID-gate logic block in the simple manner that Figure 6.16b depicts. The outputs

of the AND gates are directed to the general control cells / flip flops that correspond to the

p. Oikonomakos, 2(X)4 Chapter 6: ControHer Self-checking Design 2 2 7

succeeding CS2, CS3 and CS4 (at times through suitable OR gates in the respective

block). Since there is exactly one flip flop in the state register fo r every control step, the

logic path from the output of each AND gate leads to exactly one state flip flop. Indeed,

any variation from this would lead to functionally meaningless situations, for example

VHDL c a s e statements where two different branches are activated simultaneously. In

turns, this means that any single fault in the AND-gate block can propagate to a single flip

flop, and thereby affect a jmg/g control signal.

Thus the discussion of this subsection concludes. The last few paragraphs established that

any single fault in any part of the MOODS controller (state register, OR-gate block, AND-

gate block) may corrupt a single output bit. In fact, this is an inherent property of direct

one-hot encoding of the control signals. All six controller self-checking schemes of §6.2

and §6.3 can thus safely be applied.

6.4.2 Self-checking design cell libraries

Subsection 6.4.1 established that controller self-checking as addressed in this chapter is

perfectly applicable to the control path model of designs synthesized by MOODS. As is

obvious 6-om the discussion so far, in principle controller self-checking has no direct rele-

vance to the synthesis tasks of chapter 3, as the checking hardware is always just an add-

on to the normal design (see for example Figure 6.15). Therefore, all that is needed for the

implementation of the considered techniques within HLS is a simple post processing step.

Such a post processing step should take into account the self-checking technique that the

designer chooses for a particular experiment (CTRL l , CTRL_2, CTRL 3, CTRL_4,

CTRL 5 or CTRL_6), identify any Intrinsically Secure states (if applicable) and then add

a synthesisable VHDL description of the checking
in1 (4 downto 0)

block to the tool output code, taking care of the proper

connections of control signals to the inputs of the self-

checking logic block. This logic block comprises

conventional parity checkers, LFSR structures, dual-

rail checkers, and / or 1-out-of-n checkers, as applica-

ble. Such components are not available within the
V /

output(2 downto 0) Standard MOODS cell library (§3.2.7); a dual-rail cell

Agure 6. Y 7. Xl 5-6/f XOR army library was however developed and used for the pur-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 228

library ieee;
use ieee. sl:d_logic_1164. all;
use ieee.numeric_std.all;
entity XOR_AREAY is

generic (m: positive := 1);
port (inl : in std_logic_vector (m-1 downto 0);

output: out std_logic_vector ((m/2 + (m rem 2))-l downto 0));
end XOR_ARRAY;

architecture structure of XOR_ARRAY is
begin

G1: if m>l generate
output (m/2+(m rem 2)-l downto 0) <= inl (m-1 downto m/2+(m rem 2)) xor

inl(m/2+(m rem 2)-l downto (m rem 2));
end generate;

G2: if (m rem 2)=1 generate
output(0) <= inl(O);

end generate;
end;

F/gi/re 6. Y8 / 77)6 X O R A R R A Y ce//

10

poses of chapter 5 as explained in §5.3.3.3. As a reminder, a relatively simple C+4- pro-

gramme was written that automatically created a VHDL p a c k a g e , comprising synthe-

sisable descriptions of dual-rail checkers, receiving anything between 1 and 200 pairs of

inputs. Parity checkers are known to have a very similar structure, except that instead of

dual-rail checker cells they consist of 2-input XOR gates ([2, 5] and §2.2.1.1 of this the-

sis). As explained in §6.2.7, an n-bit conventional parity checker employed in this work as

Figure 6. 9 has shown, can have an arbitrary arrangement of its

constituent 2-input XOR gates without loss of the

TSC property. A straightforward symmetrical ar-

rangement was therefore chosen, and a C44- pro-

gramme was used to automatically create the respec-

tive parity checker VHDL p a c k a g e . Initially an

XOR array cell is defined (analogous to the checker

array of §5.3.3.3). Figure 6.17 shows an example 5-bit

XOR array, while Figure 6.18 shows the VHDL de-

scription of the generic m-bit XOR array ceU. Parity

trees are then composed of X O R arrays. Figure 6.19

gives an example 10-bit parity tree. The figure depicts

the block diagram structure of the implementation; of

course some XOR arrays are very simple structures,

for example a 2-bit "XOR array" only consists of a

10-bit XOR array

/5

5-bit XOR array

3-bit XOR array

I
2-bit XOR array

F/gure 6.79. 8/oc/(d/agram
of a YO-Mpanfy^ree single XOR gate.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 229

A generic M-bit parity checker consists of two disjoint parity trees, of widths 1"^/2]

and / 2J respectively. Figure 6.20 shows the block diagram of a 21 -bit parity checker.

The overall parity checker library contains the XOR array of Figure 6.18, structural de-

scriptions of parity trees of bit width values in the range 1 - 100, and based on them, struc-

tural descriptions of parity checkers of bit width values in the range 1 - 200. If needed, a

trivial modification of the generator C-H- programme could produce checkers of even

wider inputs.

A library of LFSR cells was implemented similarly. Firstly a 1-bit LFSR cell was defined.

The cell is shown in Figure 6.21, while its synthesisable VHDL description is provided in

Figure 6.22. The cell is used as a building block for the LFSR structure of Figure 6.9. By

connecting a constant 0 to the "feedback" input port, one can model the absence of a feed-

back tap (indeed, logic synthesis tools typically optimise out the feedback input in such

cases). Similarly, by connecting a constant 0 to the s h i f t _ i n p input typically causes

this input to be optimised out and creates a 1-bit LFSR cell like the leftmost cell of Figure

6.9. The VHDL g e n e r i c r s t _ v a l determines whether the "rst" input will be con-

nected to the "set" or to the "reset" (as in Figure 6.21) port of the D-fhp flop. This pro-

21-bit input

/11
/

r

11-bit parity tree

/10
/

10-bit parity tree

Y

F/gure 6.20. 8/oc/(d/agram of a 2 f -Mpar#y c/?ec/fe/-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 230

shift_inp

ck

rst

D Q

CK RST

shiftout
— ^

feedback

out_q

Figure 6.21. The 1-bit LFSR cell

input vides a convenient mechanism for the ini-

tialisation of the LFSR with the desired

value. The positions where feedback taps

are to be added in an n-bit LFSR are de-

termined as §2.2.1.1 explained, based on

Theorem 2.1 and Figure 2.12. In particu-

lar, for a given n, an (n-l)-degree primi-

tive polynomial is chosen, from the tables

of primitive trinomials and pentanomials

of degrees between 2 - 1 0 0 provided in

[137]. The chosen polynomial is multi-

plied by the generator polynomial of the even parity code g(x)=x-H, thus creating the n-bit

characteristic polynomial of the LFSR to be designed. The reader is reminded that such a

procedure guarantees that the resulting LFSR will produce all non-zero even parity code

words, if initialised with a non-zero even parity encoded pattern (Theorem 2.1). A C-H-

programme is thus written, that "knows" the characteristic polynomial corresponding to

every n. It automatically generates an output VHDL p a c k a g e that consist of the

LPSR_1 b i t ceU, followed by synthesisable descriptions of suitable LFSRs of bit-

widths between 2 and 100. When outputting the description of each LFSR, the generator

programme provides constant Os

or suitable signals to inputs as

appropriate to model feedback

taps, proper r s t _ v a l values to

initialise to an even parity non-

zero word, and also cares for the

inverted input and output values

needed to accommodate the odd

parity considered in this thesis,

according to Figure 6.9. As an

example, Figure 6.23 shows the

VHDL description of the 4-bit

LFSR. The 3-bit primitive trino-

end; mial chosen from [137] was

d(x)=x^4-x4-l, thus determining

library ieee;
use ieee. st:d_logic_1164. all;
encity LFSR_l_biL is

generic (rsc_val : integer);
pore (input: : in st:d_logic;

feedback : in st:d_logic;
shift_inp : in st:d_logic;
ck : in st:d_logic;
rsL : in sLd_logic;
8hift_ouC : out: st:d_logic;
out:_q : out std_logic) ;

end LFSR_l_bit;

architecture structure of LFSR_l_bit is
signal internal_sig : std_logic;

begin
internal_sig <= input xor shift_inp xor feedback;
out_q <= intemal_sig;
process (ck, rst)
begin

if rst = '1' then
if r3t_val = 0 then
shift out <= '0';

2ise
' 1' shift_out

end if;

elsif rising_edge(ck) then

3hift_out <= internal_sig;
end if;

end process;

F/gure 6.22 ; Tlhe LFSR i b i t ce//

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 231

library ieee;
use ieee. 9t:d_logic_1164. all;
entity LFSR_n4 is

port (input : in std_logic_vecl:or(3 downto 0);
ck : in scd_logic;
rst : in std_logic;
output : out std_logic_vector(3 downto 0))

end LFSR_n4;
architecture structure of LFSR_n4 is

signal shift out v : std_logic_vector(3 downto 0
signal shift_inp_v : std_logic_vector(3 downto 0) ;
signal feedback_v : std_logic_vector(3 downto 0)
signal neg_in : std_logic;
signal neg_out : std_logic;

component LFSR_l_bit
generic (rst_val : integer);
port (input : in 8td_logic;

feedback : in std_logic;
5hift_inp : in std_logic;
ck : in atd_logic;
rst : in std_logic;
shift out : out std_logic;
out_q : out 8td_logic);

end component;
for all: LFSR_l_bit use entity work.LFSR_l_bit(3t ructure)

begin

feedback_v(0) <= shift_out_v(3);
shift_inp_v(0) <= '0';
neg_in <= not input(0);
LO: LFSR_l_bit generic map (1) port map (neg_in, fe edback v (0) ,

3hift_inp_v(0), ck, rst, shift_out_v(0), neg_out);
output(0) <= not neg_out;

feedback v(l) <= '0';
shift_inp v(l) <= shift_out_v(0);
LI: LFSR l_bit generic map (1) port map (input(1), f eedback_ _v (1) ,

shift_inp_v(l), ck, rst, shift_out_v(l), output(1));

feedback v(2) <= shift_out_v(3);
8hift_inp_v(2) <3 shift_out_v(l);
L2: LFSR l_bit generic map (0) port map (input(2), f eedback_ _v(2} ,

shift_inp_v(2), ck, rst, shift_out_v(2), output(2));

feedback_v(3) <= ghift_out_v(3);
shift_inp_v(3) <= shift_out_v(2);
L3: LFSR l_bit generic map (0) port map (input(3), f eedback_ _v<3) ,

shift_inp_v(3), ck, rst, shift_out__v(3), output (3));
end;

Rgure 6.23 .' 4-6/f LFSR

the LFSR characteristic polynomial p(x)=x''+x^+x^+l. On the figure it can be confirmed

that the description provided indeed implements p(x), that the LFSR is initialised to the

"0011" value, and that the 0-bit position input and output are inverted.

The last building block needed for the implementation of the controller self-checking

schemes of this chapter, is the 1/n checker of [29]. As Figure 2.16 revealed, this is com-

posed of a (l/n)-to-(dual-rail) code translator, followed by a dual rail checker, imple-

mented either symmetrically if n is a power of 2, or using three dual-rail checkers in the

configuration of Figure 2.18 otherwise. Clearly, the dual-rail checkers can perfectly well

be the ones implemented in §5.3.3.3. The task at this point is, therefore, to implement the

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 232

code translator. For this purpose, it is enough to express equations (2.4) using the VHDL

syntax. The equations aie repeated in the following,

Jy - ^ , for all i ' / [f - /) = 1 (6.11a)

, for alii = 0 (6.11b)

library ieee;
use ieee.8Cd_logic_1164.all;
use work.neq_3_cell8.all;

entity 0NE_H0T_CHK_ii8 is
port (inl : in st:d_logic_vect:or(7 downto 0);

output : out std_logic_vector(l downto 0));
end 0NE_H0T_CHK_n8;

architecture structure of 0NE_H0T_CHK_n8 is
signal J,K : std_logic_vector(2 downto 0);
component NE0_3_n3

port (inl : in std_logic_vector (2 downto 0).
in2 : in std_logic_vector (2 downto 0),

output : out std_logic_vector (1 downto 0));
end component;

for all: NE0_3_n3 use entity work.NE0_3_n3(structure);

Degin
J(2)

K (2)

J(l)
K(l)

J(0)
K (0)

inl(O) or inl(2) or inl(4) or inl not
not {
not (inl(l) or in
not (inl(O) or
not (inl(3) or

nl(3) or inl(5) or inl(7))
or inl(5) or inl(6))

nl(3) or inl(4) or inl(7)}
nl(4) or inl(5) or inl(6))

not (inl(O) or inl(l) or inl(2) inl(7)

The summation symbol in this context represents a logic OR; thus the inverse summations

of equations (6.11) are in fact NOR functions. The reader is reminded that (l<^n) is the

f'th-position bit of the

checker input, /(^) is the

Ath-position bit of the bi-

nary representation of inte-

ger f, i n t e g e r i s calculated

as ^=|"log2 , and the

above two equations are

defined Vy : l^'<p, giving a

total of 2xj? equations.

Every (^, ^) pair is then

complementary, thus consti-

tuting a ̂ -pair dual-rail en-

coded word. The translator

equations are analytically

weU-defined and depend solely on the value of therefore, a relatively simple C++ pro-

gramme was written to automate the production of yet another VHDL p a c k a g e , com-

prising descriptions for the translator equations and corresponding translator-based 1/n

checkers, with bit-widths between 2 and 100, excZwcfmg the problematic n=3 case. Once

more, an extension of the library to values over 100 is perfectly feasible through simple

modifications of the generator C++ programme. As an example, the VHDL description of

the 1/8 to 3-pair dual-rail translator (Figure 2.17) and the resulting checker is shown in

Figure 6.24. Notably, it is a particularly compact description. The equivalence of the trans-

lator assignment statements to equations (6.11) can easily be verified. Also observe the

utilisation of the 3-pair dual-rail checker (componen t NEQ_3_n3, produced as in

§5.3.3.3). Figure 6.25 depicts a somewhat harder situation, where the 1/7 checker is im-

Nl: NEQ_3_n3 port map (J, K, output);
end;

F/gure 6.24; Y/8 7SC c/^ec/fer

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 233

library ieee;
use ieee.std_logic_1164.all;
use work.neq_3_cells.all;

entity 0NE_H0T_CHK_n7 is
port (inl : in std_logic_vector(6 downto 0);

output : out std_logic_^vector(l downto 0)) ;
end 0NE_H0T_CHK_n7;

architecture structure of 0NE_H0T_CHI^n7 is
signal J,K : std_logic_vector(2 downto 0);
signal intermediate_signals : std_logic_vector(3 downto 0);
signal outl,out2 : std_logic_vector(l downto 0);
signal nlinl/nlin2 : std_logic_vector(l downto 0);
component NE0_3_n2

port (inl : in std_logic_vector (1 downto 0);
in2 : in std_logic_vector (1 downto 0) ;

output : out std_logic_vector (1 downto 0));
end component;

for all: NE0_3_n2 use entity work.NE0_3_n2 (structure);

component NZQ_3_nl
port (inl : in std_logic_vector (0 downto 0);

in2 : in std_logic_vector (0 downto 0);
output : out std_logic_vector (1 downto 0));

end component;

for all: NEQ_3_nl use entity work.N2Q_3_nl (structure);

begin
J{2) <= not {inl(O) or inl(2) or inl(4) or inl(6));
K:(2) <= not (inl(l) or inl(3) or
J{1) <= not (inl(l) or inl(2) or inl(5) or inl(6));
K(l) <= not (Inl(O) or inl(3) or inl(4));
J(0) <= not (inl(3) or inl(4) or inl(5) or inl(6));
K{0) <= not (inl(O) or Inl(l) or inl(2));

mini <- J(2) & J(0) ;
nlin2 <= K(2) & K(0);
Nl: NE0_3_n2 port map (nlinl, nlin2, outl);

N2: NEQ_3_nl port map (J(l downto 1), K(1 downto 1), out2);

intermediate_signals <= outl(l) & out2(l) & outl(O) & out2(0)
N3: NEQ_3_n2 port map (intermediate__signals(3 downto 2),

intermediate_signals(l downto 0), output);
end;

F/gure 6.25; The V/7 7SC c/7ec/ce/'

plemented. Since 7 is not a power of 2, three instances of dual-rail checkers are used, con-

figured as in Figure 2.18. This is clearly reflected in the code of Figure 6.25.

An interesting property of the particular translator descriptions is that they are purely be-

havioural and make no assumption whatsoever about how an RTL synthesis tool will ac-

tually implement them. In fact, a typical tool will take advantage of common terms in

equations (6.11) to perform hardware sharing. For example, refer back to Figure 2.17, and

consider translator outputs Ji and K2. Observe that both include the term X4+X3 in their re-

spective equations. A typical tool will notice this, and will share the corresponding logic

gate appropriately. Note that this does not harm the TSC property of the checker. Indeed,

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 3 4

for any (Jj ,Kj) pair, the equations producing Jj and Ky cannot have common Xj inputs. Any

logic sharing wHl therefore be between the expressions for Jj and a Kk, or Jj and a J^, with

This means that there can be no logic sharing circumstances under which a single

fault in a gate may result in a bit flip in both Jj and Kj. Thus the fault secure property is

preserved.

Using the cells described in this subsection, the control path self-checking schemes can be

implemented. The approach taken in this work, is to output the controller self-checking

block to a separate file, as a separate VHDL e n t i t y (during the synthesis post process-

ing step mentioned at the beginning of this subsection). Clearly, this entity can be totally

constructed using conventional parity checkers, LFSRs, 1-hot checkers, and dual-rail

checkers as applicable per situation. Then the normal MOODS output file, already sup-

plemented by the data path self-checking techniques of chapter 5, is fiirther augmented

with an instantiation of the control path checker, as a component within the overall RTL

VHDL netlist, fed by the control signals. An additional 1-pair dual-rail checker is further

used to compact the responses from the datapath and the controller self-checking schemes,

and to produce the overall system health indication to the 2-bit output port already intro-

duced in chapter 5. This way, the final HLS output may as applicable per situation be

based on the following files:

« the usual RTL netlist

» the control path checker

» the nonnal MOODS ceU library (§3.2.7)

» the fault-secure comparator library (§5.3.3.3)

» the dual-rail checker library (§5.3.3.3)

" the parity checker library

" the LFSR library

» the 1/n checker library

For example, a design with both fiill datapath self-checking and any parity-based control-

ler self-checking will depend on a total of 7 files (all of the above except the 1/n checker

library).

Finally, note that as well as enabling the implementation of the self-checking schemes in

the context of this work, the development of a self-checking in6astructure environment in

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 3 5

the form of synthesisable VHDL components has research value as such (refer for exam-

ple to [47]).

6.4.3 Facilitating Intrinsically Secure states

Although as akeady said the controller self-checking problem is not relevant to the syn-

thesis tasks, it would be desirable to implement a mechanism vyithin the synthesis process

to direct the system towards creating more Intrinsically Secure states than it normally

would. Such a mechanism would clearly allow experimentation with the concept of IS

states, and evaluate their usefukiess in practice.

Refer to the DFG of Figure 6.26. In 6.26a, two control states are shown; one operation is

scheduled at each one of them. The usual notations (§3.1.1) are used to signify that they

are assigned to the same functional module. Figure 3.26b depicts a typical situation after

duplication self-checking insertion and subsequent optimisation. The design is well opti-

mised, with comparisons chained within the same CSs as the functional and redundant

computations, but none of the control states is Intrinsically Secure. This author's design

experience suggests that most designs tend to end up in such situations if the combination

of simulated annealing and tailored heuristics explained in chapter 5 is applied.

Figure 3.26c depicts an alternative situation. Operation +1 has been moved one CS earlier,

and this has allowed +2 to move up to the same CS as operations +1' and !=1. This last

move would not have been possible i f+1 had not moved, since +1 and +2 are assigned to

the same functional unit Al . This situation is particularly desirable for the experimental

purposes of this chapter, since both CS2 and CS3 of Figure 6.26c are in fact Intrinsically

Secure. The emergence of IS states can therefore be promoted by a synthesis heuristic that

would move the design &om situations such as that of Figure 6.26b to situations such as

Figure 6.26c.

At this point, recall the set of transformations available within the standard MOODS suite

(§3.2.3). Focus especially on the "merge fork and successor" TF8, and on the "unshare

single instruction from control state" TF21 (Table 3.1) transformations. Notice that the

application of TF21 on operation +1' of CSl in Figure 6.26b will create a dedicated con-

trol step for the operation. Data dependency between +1' and !=I will then necessarily

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 236

CS1

CS2
A1 +2

CS1

CS2

Caj /n/f/a/ s#uaf/'on (b)Typical self-checking situation

A1(+ n \ ^ I / A1 (+1

CS1 \ \ / i i

A 2 (+ 1 ') X / f \ A2(+1 '
CS2 \ _

/ \ / / / \ ^

C1 (!=1) / /A1 (+2) C1 f !=1
CS2 CSS

A2 f +2'") / / / A 1 f +2
CS4

C1 (!=2) A2 f +2'
CSS CS5

CS6 C1 (1=2!

Ccj Oes/rab/e s/fuaf/'on, 2 /S sfafes I'd) /nfermed/'afe s/fuaf/'on

Figure 6.26. Facilitating Intrinsically Secure states

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 3 7

create another CS, this time dedicated to comparison !=1. If the same transformation is

applied to +2% then two new CSs wiU similarly be created, this time for +2' and !=2. This

intermediate situation is depicted in Figure 6.26d. If control steps CS3 and CS4 are now

merged using transformation TF8, then components CI and A1 will both be active during

the new merged state; this means that operation +1, ako allocated to A1 will no more be

allowed to move to the same control step as comparison !=1, since A1 will be occupied

during that particular control step. Hence, this new state will aWays be Intrinsically Se-

cure according to Definition 6.1, since t h e (+ 1) and (!=1) parts of the

self-checking scheme composed of+1,+!' ,!=!, will always be scheduled for different con-

trol steps. Subsequent optimisation using for example one of the heuristics of §3.2.5.2 will

typically lead to the desirable situation of Figure 6.26c. Notice the combination of trans-

formations that allowed the move : first all redundant operations were extracted from the

shared control states using TF21, then control states where comparisons were scheduled,

were merged with their successors using TF8. Of course, the underlying assumption

throughout this explanation is that the "blocking" unit A1 cannot be unshared; it would

therefore be sensible not to apply IS state creation withija the simulated annealing block,

but rather after it, and before the tailored heuristics.

Based on the above, the on-line test synthesis approach presented in §5.3.3.2 can be

slightly amended to produce more Intrinsically Secure states, as follows :

» Step 1 : apply simulated annealing as in §5.3.3.2

» Step 2 : traverse all control steps, identify those that have all three parts (functional,

redundant, and comparison operations) of self-checking schemes scheduled at them, and

apply TF21 to the redundant operation

» Step 3 : repeat Step 2 until no more such CSs can be found

" Step 4 : apply TF8 to all control steps where fault-secure comparison operations have

been scheduled

" Step 5 : repeat Step 4 until no more such CSs can be found

" Step 6 : apply tailored heuristics as in §5.3.3.2

Relatively short C-H- functions implementing Steps 2 and 4 were provided to the MOODS

system, together with suitable MOODS commands to enable tke designer to use them

through the MOODS interactive command prompt (Appendix A). Steps 3 and 5 are not

automated, so it is left to the designer to make sure no more suitable CSs can be identified,

or even decide to move to the tailored heuristics optimisation step prematurely.

P.Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 3 8

Clearly, the procedure described here is not efficient as far as synthesis is concerned. In-

deed, it would be better and faster for the design space exploration process to reach Figure

6.26c automatically, without having to go through 6.26b, also relying on user interaction

to pass through 6.26d. However, bear in mind that the goal of this subsection is not to give

an efficient "high-level synthesis for Intrinsically Secure states" approach; rather, it is to

jofMg/zow facilitate the emergence of said states, for the sole purpose of experimental

evaluation and comparisons, as will be made clear in the following §6.4.4. In that sense,

the above rudimentary step-wise approach serves its purpose adequately.

As a concluding remark, it is to be noted that for the implementation purposes of this

chapter. Intrinsically Secure states are considered according to the updated Definition 6.1',

with the threshold value ^ 7 as §6.1.3.2 suggests.

6.4.4 Experimental results

This subsection presents the experimental results obtained on the lines of the detailed

analysis of §6.1, §6.2, §6.3, and the particular MOODS implementation details of this cur-

rent section. In the following tables, a "Version 1" realisation refers to the design obtained

by the usual synthesis process of chapter 5, given the user constraints, and additionally

utilising the self-checking cells described in §6.4.2 to provide controller self-checking.

"Version 2" signifies that the heuristic procedure of §6.4.3 has fiirther been applied, thus

in principle leading to more IS states. Results are given both for ASIC and FPGA imple-

mentations, for as many controller self-checking schemes as applicable per situation. As in

chapter 5, dedicated technology library files were provided to the system for each different

target technology. The behavioural synthesis RTL output was fed to the Mentor Graphics

LeonardoSpectrum [132] RTL synthesis tool (version 2002e.l6) in the case of ASIC im-

plementation. When FPGA technology was targeted, the Synplicity Synplify [124] tool

(version Pro 6.2) was used instead, while the design was further implemented using Xilinx

Design Manager version 3.1i [125]. In both cases, the tables present results reported 6om

the low level tools (Spectrum and Design Manager respectively); hence, they correspond

to the most realistic area and delay estimations that can be obtained.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 3 9

Tables 6.2 - 6.23 summarise all experimental results. The first and second columns in aU

tables denote the self-checking strategy applied to the data path and the controller respec-

tively. Where applicable, the second columns also mention the number of IS states identi-

fied. The next three columns give the size and performance statistics of the particular im-

plementations, in terms of logic gates used or FPGA slices occupied (depending on tech-

nology) as a merit of the design size, and number of clock cycles and maximum achiev-

able frequency in MHz as a merit of the design performance. Finally, the last two columns

provide the area overhead and speed penalty associated with including self-checking to the

considered designs. In designs where both datapath and controller self-checking have been

applied, the area overhead percentage reported accounts for both. This simply reflects the

fact that, since the data path generally occupies most of the chip area, it is unlikely that a

designer would want controller self-checking solely, but he or she would rather opt for a

combined solution.

Tables 6.2 and 6.3 show the results obtained for a Version 1 and a Version 2 (respectively)

implementations of the Tseng design, both cases with the same synthesis priorities and

targeting the same ASIC technology. The first row in both tables shows the original de-

sign. All overhead percentages in the tables are always given with respect to this untesta-

ble version. A design with a self-checking data path is given immediately afterwards, fol-

lowed by combinations of both datapath and controller self-checking, the latter alterna-

tively taking all six forms described in this chapter (or as many as applicable in any given

design). Table 6.2 highlights CTRL_6 as the cheapest of the six techniques among the

Version 1 implementations, with a 58.4% overall hardware overhead. Also notice that 3

out of 5 states in the design are identified as IS, meaning that the majority of bidirectional

controller faults will be detected, together with the unidirectional ones, providing almost

complete confidence even in the most hostile environment. Finally, the degradation in the

maximum firequency found in chapter 5 is naturally encountered here as well. Table 6.3

shows that CTRL_6 is also the cheapest approach among the Version 2 type designs. The

IS states identified are 3 again, while compared to Table 6.2 the implementation is clearly

more expensive, but a side effect of the heuristic of §6.4.3 is that higher frequency can

now be achieved (-42MHz compared to -MMHz). This is a result of breaking chains of

functional - redundant - comparison operations oiiginally scheduled for the same CS. The

Table 6.3 results would therefore be preferable in a high frequency requirement scenario.

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 240

data path
testing

control path
testing

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
fqates %)

speed penalty
(cycles %)

- - 1768 4 54.6 N/A N/A
Inversion - 2783 5 14.9 57.4 25.0
inversion CTRL 1 2842 5 14.3 60.7 25.0
inversion CTRL 2 2864 5 14.3 62.0 25.0
inversion CTRL 3. 3 IS 2833 5 14.3 60.2 25.0
inversion CTRL 4, 3 IS 2857 5 14.3 61.6 25.0
inversion CTRL 5 2808 5 14.3 58.8 25.0
inversion CTRL 6, 3 IS 2801 5 14.3 58.4 25.0
TaA/e 6.2; rseng 8ef7c/)maf* \/ers/on V synfhes/s resu/fs (Targef Techno/ogy/Vcafe/ CMOS 0.35

syn(/)es;a pn'o/vY/es .' ama /7/g/i, de/ay /ow, mode/afe c/oc/c pen'od ya/ue

data path
testing

control path
testing

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
(qates %)

speed penalty
(cycles %)

- - 1768 4 54.6 N/A N/A
inversion - 2915 5 42.3 64.9 25.0
inversion CTRL 1 3131 5 41.9 77.1 25.0
inversion CTRL 2 3153 5 41.9 78.3 25.0
inversion CTRL 3, 3 IS 3125 5 41.9 76.8 25.0
inversion CTRL 4, 3 IS 3148 5 41.9 78.1 25.0
inversion CTRL 5 3097 5 41.8 75.2 25.0
inversion CTRL 6. 3 IS 3091 5 41.9 74.8 25.0
Table 6.3 : Tseng Benchmark Version 2 synthesis resuits (Target Technology Alcatel CMOS 0.35 VLSI),

synf/)es;s pno/rf/es.' area de/ay /oi% moderafe c/oc/c pen'ocf va/ue

Tables 6.4 and 6.5 present corresponding results for the Diifeq benchmark. CTRL_6 is

again bighhghted as the most economical solution in both, while again Version 2 experi-

ences a marginally higher area overhead, in conjunction with two additional IS states. In-

terestingly, the IS-state facilitating heuristic combined with the standard MOODS tailored

heuristic gives rise to a Version 2 design that is comparatively faster than its Version 1

counterpart (saving 3 states in the critical path). Given the modest additional overhead, the

CTRL 6 design of Table 6.5 is likely to be the preferred choice for this benchmark, espe-

cially if speed is a particularly critical concern.

Notice that both designs given so far have had controller self-checking versions utilising

data path
testing

control path
testing

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
(gates %)

speed penalty
(cycles %)

- - 3679 16 39.6 N/A N/A
inversion - 6075 25 39.6 65.1 56.3
inversion CTRL 1 6400 25 37.8 74.0 56.3
inversion CTRL 2 6424 25 37.8 74.6 56.3
inversion CTRL 3, 5 IS 6361 25 37.8 72.9 56.3
inversion CTRL 4, 5 IS 6377 25 37.8 73.3 56.3
inversion CTRL 5 6246 25 37.8 69.8 56.3
inversion CTRL 6. 5 IS 6237 25 37.7 69.5 56:3

Table 6.4 : DIffeq Benchmark Version 1 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
synthesis priorities : area high, delay low, moderate clock period value

data path
testing

control path
testing

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
(gates %)

speed penalty
(cycles %)

- - 3679 16 39.6 N/A N/A
inversion - 6143 22 39.6 67.0 37.5
inversion CTRL 1 6460 22 37.7 75.6 37.5
Inversion CTRL 2 6480 22 37.7 76.1 37,5
inversion CTRL 3, 7 IS 6404 22 37.7 74.1 37.5
Inversion CTRL 4. 7 IS 6428 22 37.7 74.7 37.5
inversion CTRL 5 6325 22 37.6 71.9 37.5
inversion CTRL 6, 7 IS 6307 22 37.6 71.4 37.5

Table 6.5 : Diffeq Benchmark Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
synf/)es/s pnon'&'es ; area /7fgh, de/ay /oyy, moderafe c/oc/f pen'od v̂ a/ue

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 241

the multi-process schemes CTRL_2 and CTRL_4. In fact, both designs are essentially

single-process ones, but they also include short processes, solely responsible for the updat-

ing of system primary outputs. These processes are so short that indeed the hardware in-

troduced to implement "dummy" processes (Figures 6.5 and 6.8) is more than the savings

achieved through using a single parity checker; hence, in all tables so far CTRL_2 and

CTRIL_4 are more expensive than CTRL l and CTRL_3 respectively (recall the predic-

tion of §6.2.6 that in order for hardware savings to be noticeable and significant a degree

of parallelism of the order of 10 would be needed).

The case is different in the QRS benchmark (Tables 6.6 and 6.7). Here primary outputs are

updated within the same process as the rest of the operation, therefore CTRL_2 and

CTRL_4 are not applicable; thus the tables have two rows less. The familiar (from chapter

5) phenomenon of self-checking designs that are faster than the untestable ones can be ob-

served here, CTRL_6 is once more the cheapest choice in both cases. Notably, Version 2

in Table 6.7 exceeds 100% in overhead when combined self-checking is applied; it is

therefore expected that the Version 1 options of Table 6.6 would appear preferable.

data path control patti area (gates) speed (cycles) maximum hardware overhead speed penalty
testing testing frequency (MHz) (gates %) (cycles %)

- - 7343 56 43.2 N/A N/A
duplication - 13278 51 23.4 80.8 -8.9
duplication CTRL 1 13748 51 23.4 87.2 -8.9
duplication CTRL_3,11 IS 13648 51 23.4 85.9 -8.9
duplication CTRL 5 13442 51 23.4 83.1 -8.9
duplication CTRL_6,11 IS 13417 51 23.4 82.7 -8.9

Table 6.6 : QRS Benchmark Version 1 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
syn(/7es/s pn'orrf/eaa/ea /ow, cfe/ay h/g/?, sfncf c/oc/c p e n o d va/ue

data path
testing

control path
tesUnq

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
(gates %)

speed penalty
(cycles %)

- - 7343 56 43.2 N/A N/A
duplication - 14624 50 25.6 99.2 -10.7
duplication CTRL 1 15288 50 25.0 108.2 -10.7
duplication CTRL 3, 18 IS 15154 50 25.0 106.4 -10.7
duplication CTRL 5 14985 50 24.9 104.1 -10.7
duplication CTRL_6, IBIS 14943 50 25.0 103.5 -10.7

Table 6.7; QRS Benchmarl< Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
syn#7es/s p/fo/Vf/'es; ansa /ow, de/ay /t/g/?, sfr/cf c/oc/c penocf va/ue

Table 6.8 overviews the experiments conducted for an 8-bit Viterbi decoder. All opera-

tions in this design are of low bit width; no Intrinsically Secure states are therefore consid-

ered, and the corresponding schemes CTRL_3, CTRL 4 and CTRL_6 are not apphcable.

The design is highly parallel (8 concurrent processes). Comparison of the CTRL l and

CTRL_2-based solutions now verifies the hardware savings associated with moving &om

the former to the latter (67.8% overhead reduced to 63.5%). However, the solution based

on 1/n checking is again the cheapest with 51.7%.

p. Oikonomakos, 2004 Chapter 6: ControDer Self-checking Design 242

data path
testing

control path
tastinq

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
(qates %)

speed penalty
(cycles %)

- - 3262 5 106.9 N/A N/A
duplication - 4734 7 127.4 45.1 40.0
duplication CTRL 1 5475 7 116.4 67.8 40.0
duplication CTRL 2 5333 7 116.9 63.5 40.0
duplication CTRL 5 4947 7 115.6 51.7 40.0

7ab/e 6.8 .8-b/f v/ferb/ decoder syn(/3es/s msu/fs (Targef Tec/ino/ogyzA/cafe/ CMOS 0.35 W_S//
synthesis priorities : area high, delay low, moderate clocl< period value

Tables 6.9 and 6.10 present corresponding results for the elliptical filter design. The Ver-

sion 1 datapath-only self-checking realisation experiences an overhead of 95.7%. Natu-

rally, one would reject this option and change the specifications in the search of a better

solution on the lines of chapter 5; however, for the experimental purposes of this work it is

interesting to add a controller self-checking scheme and observe if this will raise the cost

to more than 100%. In fact. Table 6.9 reveals that only CTRL 2 produces a cost of exactly

100%, while all other techniques remain below that line, with CTRL_6 once again the

least expensive. Version 2 in this case offers both a particularly expensive, and slower de-

sign; hence, the 4 additional IS states it produces are unlikely to appear tempting.

data path
testing

control path
testing

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
(gates %)

speed penalty
(cycles %)

- - 3697 9 35.7 N/A N/A
duplication - 7236 12 21.4 95.7 33.3
duplication CTRL 1 7374 12 21.3 99.5 33.3
duplication CTRL 2 7393 12 21.3 100.0 33.3
duplication CTRL 3, 6 IS 7328 12 21.4 98.2 33.3
duplication CTRL 4, 6 IS 7349 12 21.4 98.8 33.3
duplication CTRL 5 7292 12 21.4 97.2 33.3
duplication CTRL 6, 6 IS 7283 12 21.2 97.0 33.3

7ab/e 6.9 ; EAp Senchma:* Vers/on f synfAes/s resu/fs (Targef Techno/ogy/4/cafe/ CMOS 0.35 \/LS/J,
synf/?es/s pnof#;es; area de/ay mode/afe c/oc/c pen'od va/ue

data path
testing

control path
testing

area (gates) speed (cycles) maximum
frequency (MHz)

hiardware overhead
(gates %)

speed penalty
(cycles %)

- - 3697 9 35.7 N/A N/A
duplication - 7897 14 26.6 113.6 55.6
duplication CTRL 1 8247 14 24.0 123.1 55.6
duplication CTRL 2 8258 14 24.0 123.4 55.6
duplication CTRL_3,1015 8166 14 24.1 120.9 55.6
duplication CTRL_4, 10 IS 8187 14 24.1 121.4 55.6
duplication CTRL 5 8154 14 24.1 120.6 55.6
duplication CTRL_8. 10 IS 8140 14 24.1 120.2 55.6

Table 6.10 : Ellip Benchmark Version 2 synthesis results (Target Technology Alcatel CMOS 0.35 VLSI),
synthesis priorities : area high, delay high, moderate clock period value

Tables 6.11 and 6.12 show the results obtained for the CCD benchmark design. Both ver-

sions were considered; however, none of them included any IS states. Clearly, the heuris-

tic of §6.4.3 failed to create any such states. Interestingly, however, it gave rise to a mar-

ginally cheaper design. Further, the design is strictly single-process. This limits the

choices of controller self-checking techniques to only CTRL 1 and CTRL_5, with the lat-

ter appearing cheaper in both versions. It can be observed that the CTRL_5 choice of the

Version 2 design is the cheapest overall, and notably achieves a maximum frequency

value of 45MHz, that is, even higher than the untestable design itself Version 1 might be

preferable if the shorter (by a single state) critical path it offers is of any significance in the

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 243

data path
testing

control path
testing

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
(gates %)

speed penalty
(cycles %)

- - 1022 9 42.0 N/A N/A
duplication - 1471 8 40.3 43.9 -11.1
duplication CTRL 1 1559 8 40.3 52.5 -11.1
duplication CTRL 5 1502 8 43.7 47.0 -11.1

7aA/e 6.YY .GCO 8enc/?ma;̂ Vers/on f synfAes/s resu/fs (Targef 7ec/]no/ogy/\/cafe/ CMOS 0.35 VLS/̂ ,
synthesis priorities : area high, deiay low, moderate clock period value

data path
testing

control path
testing

area (gates) speed (cycles) maximum
frequency (MHz)

hardware overhead
(gates %)

speed penalty
(cycles %)

- - 1022 9 42.0 N/A N/A
duplication - 1455 9 45.1 42.4 0.0
duplication CTRL 1 1563 9 45.1 52.9 0.0
duplication CTRL 5 1499 9 45.0 46.7 0.0

7aA/e 6. Y2 .GCO SencAma/* l/ers/on 2 synf/?es/s msu/fs (Targef Tiachno/ogy /\/cafe/ CMOS 0.35
synAes/s pn'ofA'es; a/ea cfe/ay /ow, mocfe/afe c/ocfc pen'od va/ue

context of the considered project.

An interesting observation of the experiments so far, is that in all of them,

OM j-Aof c/zecA:mg are c/ieoper fAoM fAezr cAecA:zMg couMfe/parfa. Of course, this

does not invalidate the fact that parity is indeed in principle the cheapest among error de-

tecting codes; what makes the above parity schemes comparatively expensive is the appli-

cation of the LFSRs in the checkers (Figure 6.9), to provide the self-testing property. In

other words, it appears that parity checking is not the best solution for the particular prob-

lem, unless strict adherence to self-checking theory could be abandoned. Before endorsing

this rather premature conclusion, it is instructive to investigate the effect of target technol-

ogy.

In the following Tables 6.13 - 6.23, the above experiments are effectively repeated, this

time targeting Xilinx Virtex FPGA devices [106]. As the experiments of chapter 5 have

also illustrated, designs targeting this technology are less straightforward than the respec-

tive ASIC targeting ones, and are particularly hard to assess at any design stage other than

the final implementation, since the amount of FPGA resources utilised greatly depends on

the low level synthesis tools and the packing algorithms they employ.

Tables 6.13 and 6.14 present both versions of the Tseng benchmark targeting the

XCVIOOO Xilinx FPGA component. Comparing with Tables 6.2 and 6.3, one can notice

that the designer requirements provided to MOODS are the same as in the VLSI targeting

experiments. This is actually true for all experiments hereafter. The results, however, are

often different. In the particular case of Table 6.13, first of all notice that, in contrast to

Table 6.2, no IS states are identified for the considered benchmark. Therefore CTRL_3,

CTRL_4 and CTRL_6 are meaningless, and CTRL_5 is the cheapest solution. The maxi-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 244

mum frequency is hugely degraded; this is true for Version 2 (Table 6.14) as well, once

more in contrast with its VLSI counterpart (Table 6.3).

data path control path area (slices) speed (cycles) maximum hardware overhead speed penalty
testlnq testing frequency (MHz) (slices %) (cycles %)

- - 127 4 43 N/A N/A
inversion - 193 5 4 52.0 25.0
inversion CTRL 1 198 5 4 55.9 25.0
inversion CTRt. 2 199 5 4 56.7 25.0
inversion CTRL 5 193 5 4 52:0 25.0

7a6/e 6 . f 3 ; Tseng BencAma;* \/ers/on Y synfAes/snsgu/fs (Targef 7ec/)no/ogy)(7//nxXCW000FPG/^^,
synfAes/s pnofAes; area cfe/ay /ow, mocferafe c/oc/c pen'ocf ya/ue

data path
testing

control path
tesdnq

area (slices) speed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penalty
(cycles %)

- - 127 4 43 N/A N/A
inversion - 222 5 4 74.8 25.0
inversion CTRL 1 237 5 4 86.6 25.0
inversion CTRL 2 236 5 4 85.8 25.0
inversion CTRL 3, 3 IS 228 5 4 79.5 25.0
inversion CTRL 4, 3 IS 230 5 4 81.1 25.0
inversion CTRL 5 226 5 4 78.0 25.0
inversion CTRL 6, 3 IS 230 5 4 81.1 25.0

Table 6.14 : Tseng Benchmark Version 2 synthesis resuits (Target Technology Xilinx XCV1000 FPGA),
synffies/s pn'onWes; area A/gA, de/ay /ow, modemfe c/oc/(penod ya/ue

Tables 6.15 and 6.16 are devoted to the Diffeq benchmark. Two facts are particularly no-

ticeable in these tables. Firstly, for the first time parity-based solutions are cheaper than

1/n-based ones (CTRL_4 in Table 6.15 and CTRL_3 in 6.16). Secondly, Version 2 here

not only imposes a higher overhead, but also fails to achieve its main goal, since it creates

one Intrinsically Secure state /gjj than Version 1. This is not very surprising, since the

heuristic of §6.4.3 was based on a simple observation and did not offer any comprehensive

analysis or sophisticated synthesis procedure; experiments up to now have shown that in

principle it directs designs towards more IS states, but failures are possible. In contrast, in

data path
testing

control path
testing

area (slices) speed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penalty
(cycles %)

- - 260 18 9 N/A N/A
inversion - 439 23 6 68.8 27.8
inversion CTRL 1 457 23 6 75.8 27.8
inversion CTRL 2 456 23 6 75.4 27.8
inversion CTRL 3, 8 IS 455 23 6 75.0 27.8
inversion CTRL 4, 8 IS 453 23 5 74.2 27.8
inversion CTRL 5 460 23 6 76.9 27.8
inversion CTRL 6. 8 IS 454 23 5 74.6 27.8

Tab/e 6 . f 5 0 / # e g Benchmarfc Vers/on f synfhes/s resu/fs (Targef 7echno/ogyXi/fnxXCV800
synthesis priorities : area high, delay low, moderate clock period value

data path
testing

control path
testing

area (slices) speed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penalty
(cycles %)

- - 260 18 9 N/A N/A
inversion - 450 23 8 73.1 27.8
Inversion CTRL 1 466 23 8 79.2 27.8
inversion CTRL 2 466 23 7 79.2 27.8
inversion CTRL 3, 7 IS 462 23 7 77.7 27.8
inversion CTRL 4, 7 IS 464 23 8 78.5 27.8
inversion CTRL 5 469 23 8 80.4 27.8
inversion CTRL 6, 7 IS 467 23 7 79.6 27.8

7"a6fe G.fG : OiYfeq Benchmark Version 2 synAes/s resuffs (Targef Technology XiftnxXCVSOO FPGAj,
synf/?es/s pn'onY/es.- area A/gh, de/ay /otv, moderate c/oc/(penod ya/ue

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Des ign 245

the QRS benchmark experiments presented in the following Tables 6.17 and 6.18, it can

be noticed tliat Version 2 produces a total of 24 IS, accounting for more than a third of all

states in the design. CTRL_3 is the cheapest option in both versions; Version 1 generally

occupies less slices, but Version 2 is faster, primarily because of allowing somewhat

higher frequencies, but also because of a slightly shorter critical path (1 CS). It is worth-

while to compare Tables 6.17 and 6.18 with the VLSI-targeting equivalents 6.6 and 6.7.

Apart from the natural difference in frequency values, further differences in the number of

clock cycles, the overhead percentages and the most economical controller self-checking

technique stress the effect of target technology and the importance of providing for both

ASIC and FPGA solutions within high-level synthesis, to accommodate a wider range of

designer needs.

data path
testing

control path
testing

area (slices) speed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penally
(cycles %)

- - 591 69 17.4 N/A N/A
duplication - 837 67 1.9 41.6 -2.9
duplication CTRL 1 944 67 2.0 59.7 -2.9
duplication CTRL_3,19 IS 833 67 2.0 57.9 -2.9
duplication CTRL 5 956 67 1.9 61.8 -2.9
duplication CTRL_6, 19 IS 944 67 2.2 59.7 -2.9

Table 6.17: QRS Benchmarl< Version 1 synthesis resuits (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area low, delay high, strict clock period value

data path
testing

control path
testinq

area (slices) spaed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penalty
(cycles %)

- - 591 69 17.4 N/A N/A
duplication - 905 66 3.8 53.1 -4.3
duplication CTRL 1 994 66 3.2 68.2 -4.3
duplication CTRL 3, 24 IS 983 66 3.3 66.3 -4.3
duplication CTRL 5 1001 66 3.8 69.4 -4.3
duplication CTRL_G, 24 IS 992 66 3.8 67.9 -4.3

Table 8.18 : QRS Benchmark Version 2 synthesis resuits (Target Technology Xilinx XCV1000 FPGA),
syntf7es/s pnof# /es ; area /ow, de/ay sWcf doc/c pen'od va/ue

Table 6.19 is dedicated to the 8-bit FPGA-based Viterbi decoder. The overhead percent-

ages are always well above 100%, with a significant delay penalty as well. These over-

heads are in agreement with the previous observation on Table 5.19, that the particular

benchmark is not suitably accommodated by duphcation testing. What can be kept out of

this expernnent though is that the CTRL 2 scheme provides the least expensive solution

for the first time in this experimentation.

data path control path area (slices) speed (cycles) maximum hardware overhead speed penalty
testinq testinq frequency (MHz) (slices %) (cycles %)

- - 174 4 38 N/A N/A
duplication - 447 7 31 156.9 75.0
duplication CTRL 1 517 7 29 197.1 75.0
duplication CTRL 2 508 7 31 192.0 75.0
duplication CTRL 5 541 7 30 210.9 75.0

Tab/e 6 . ^ 9 d e c o d e r synfAes/s resu/fs (Targef 7ec/ino/ogyX///nxXC\/fOOO FPG,4J,
synfhes/g pn'onf/'eg ; area A/g/?, de/ay /ow, moderafe c /ock p e n o d va/ue

The Elliptical filter design also experiences very high overheads in this technology (Tables

6.20 and 6.21). Probably the most interesting point in these results is the disagreement be-

tween Versions 1 and 2 regarding the most efficient and economical realisation (CTRL_6

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 246

data path
testing

control path
testing

area (slices) speed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penalty
(cycles %)

- - 229 10 5.0 N/A N/A
duplication - 492 17 4.2 114.8 70.0
duplication CTRL 1 525 17 3.9 129.3 70.0

1 duplication CTRL 2 528 17 4.1 130.6 70.0
duplication CTRL_3, tOIS 523 17 4.3 128.4 70.0
duplication CTRL_4,10 IS 523 17 4.3 128.4 70.0
duplication CTRL 5 530 17 4.2 131.4 70.0
duplication CTRL_6,10 IS 523 17 4.5 128.4 70.0

Table 6.20: Ellip Benchmark Version 1 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area high, delay high, moderate clock period value

data path
testing

contnal path
testing

area (slices) speed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penalty
(cycles %)

- - 229 10 5,0 N/A N/A
duplication - 582 18 2.3 154.1 80.0
di^llcation CTRL 1 605 18 2.3 164.2 80.0
duplication CTRL 2 607 18 2.3 165.1 80.0
duplication CTRL 3,14 15 595 18 2.2 160.0 80.0
duplication CTRL_'t, MIS 594 18 2.3 159.4 80.0
duplication CTRL 5 615 18 2.3 168.6 80.0
duplication CTRL 6, 14 IS 600 18 2.3 162.0 80.0

Table 6.21 : Ellip Benchmark Version 2 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synfAes/s pn'onf/es; a/iea A/gA, de/ay A/gA, modefafe c/oc/c pen'od va/ue

in Version 1, CTRL 4 in Version 2). Note also that the majority of states in Version 2

have been made Intrinsically Secure (14 out of 18).

Finally, Tables 6.22 and 6.23 give the FPGA results for the CCD benchmark. Version 2

(Table 6.23) succeeds in creating 3 Intrinsically Secure states (in contrast to Table 6.12),

but utilising them does not save hardware (indeed, CTRL l and CTRL_3 give the same

overhead).

data path
testing

control path
testing

area (slices) speed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penalty
(cycles %)

- - 85 10 45 N/A N/A
duplication - 124 9 34 45.9 -10.0
duplication CTRL 1 131 9 33 54.1 -10.0
duplication CTRL 5 132 9 33 55.3 -10.0

Table 8.22 :GCD Benchmark Version 1 synthesis results (Target Technology Xilinx XCV1000 FPGA),
synthesis priorities : area high, delay low, moderate clock period value

data path
testing

control path
testing

area (slices) speed (cycles) maximum
frequency (MHz)

hardware overhead
(slices %)

speed penalty
(cycles %)

- - 85 10 45 NVA N/A
duplication - 140 11 35 64.7 10.0
duplication CTRL 1 148 11 35 74.1 10.0
duplication CTRL 3, 3 IS 148 11 35 74.1 10.0
duplication CTRL 5 153 11 33 80.0 10.0
duplication CTRL 6, 3 IS 154 11 33 81.2 10.0

ra6/e 6.23 .GCO SencAmarfc \/ers/on 2 synfAes/s resu/fs CTa/gef 7ecAno/ogyX//m/XCyfOOO
synthesis priorities : area high, delay low, moderate clock period value

The FPGA-targeting experiments have shown that in such technology, no definite control

path self-checking technique can be favoured a priori; it is important to conduct a number

of experiments and choose the most appropriate for any given case. Of course, it can be

argued that the number of occupied slices does not make a real difference in the price of

the design, as long as it fits into the target FPGA part. If a designer adopts such an ap-

proach, then the preferable designs are probably different from the less resource-

occupying ones highlighted in the tables above. For example, if maximum fault detection

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 4 7

capabilities in an extremely hostile environment is required, then CTRL_6 in Table 6.21

may be preferable over CTRL_4, since it will detect all unidirectional faults due to 1-hot

checking, and in addition all bidirectional faults affecting any of the 14 (out of a total of

18) states - in practice, the vast majority of bidirectional faults.

6.4.5 Discussion

As mentioned in the discussion of the datapath self-checking experiments (§5.3.3.6), nu-

merical comparisons with previously presented controller / datapath self-checking solu-

tions are not always rehable, mainly due to differences in target technology. The situation

is even more complicated in the controller self-checking problem of this chapter, because

only two previous publications [23, 134] acknowledge the need to provide a dedicated

self-checking scheme for the control path. Even then, [23] mentions parity checking, but

does not elaborate on how to achieve the totally self-checking goal and does not quantify

the proportional contribution of the control path self-checking resources to the overall

hardware overhead. [134] proposes the expectably expensive solution of full hardware du-

plication and once more does not report on the relative overhead due to the controller

checking hardware. Other publications referring to FSM self-checking by means of a vari-

ety of EDCs [38, 133, 37, 22] are not relevant, because the FSMs they target do not con-

trol a sequential datapath (i.e. the right-hand side part of the architecture of Figure 6.1 is

entirely missing). Therefore the architectures they address are different from the one con-

sidered here. The conclusion is that there is no published data that the results of this work

can be compared against; in fact, the work in this chapter is the first to comprehensively

address all aspects of the control path self-checking problem in a controller / datapath

hardware implementation. In spite of the absence of material for comparison, some com-

ments evaluating the results of §6.4.4 are provided in the following.

With respect to the overall cheapest solution, the results herein have shown that it greatly

depends on target technology. There is a definite trend in favour of 1/n checking using

Khakbaz's checker of [29] when VLSI technology is targeted. In contrast, there is no clear

winner when FPGA parts are used alternatively. In fact, each one of the six self-checking

solutions implemented in this chapter was found to be the cheapest option in at least one

of the FPGA targeting experiments. Therefore experimentation is needed before a choice

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 4 8

is made in these cases. Such experimentation is clearly facilitated by the material of both

chapter 5 and this present chapter.

It is also possible to evaluate the two ideas that gave rise to the parity-based variations in

§6.2, namely the single checker in multi-process designs idea, and the Intrinsically Secure

states concept. As for the former, it was verified that it can benefit designs with a high de-

gree of parallelism. For example, an approximate 4% of hardware savings (with respect to

using multiple checkers) was experienced for the 8-process design tried in table 6.8. As

regards IS states, comparisons of respective techniques (i.e. C T R L l vs CTRL_3,

CTRL_2 vs CTRL_4, and CTRL_5 vs CTRL_6) show that the associated hardware sav-

ings exist, but are very modest, on average around 1%. The conclusion from this is that

utilising Intrinsically Secure states in a given design is a valid option, leading to

some little hardware savings and offering increased protection against multiple fault sce-

narios in particularly hostile environments. Notably, this is very much in line with the pre-

diction given in §6.2.6. Further, Version 2 type implementations were on most tables more

expensive than their Version 1 counterparts. One reason for that is the mandatory intro-

duction of additional registers, along the lines of Figure 6.3. On the other hand, it was also

found that often Version 2 designs can run at higher frequencies (the most illustrative ex-

ample is the comparison between tables 6.2 and 6.3). The conclusion is that modifying op-

timised designs to create additional Intrinsically Secure states is not advisable due to sig-

nificant extra hardware, unless the hostility of the operating enviromnent is a m^or con-

cern and the extra cost can thus be justified and / or high firequency operation is desired.

Notably, it is possible to implement controller self-checking as described herein in a tool

other than MOODS. For this purpose, it is enough to perform an analysis of the control

path model of the synthesis tool at hand (similar to the analysis of §6.4.1) and amend ap-

propriately if any problems are identified (i.e. if any controller faults may corrupt control

signals of even multiplicity and / or create bidirectional errors). This is typically done by

suitably replicating selected pieces of logic, as [37] and [22] have widely covered.

6.5 Summary

Overall, the discussion of this chapter establishes that the control path self-checking prob-

lem is in fact much more complicated than in the considerably simpler situations ad-

p. Oikonomakos, 2004 Chapter 6: Controller Self-checking Design 2 4 9

dressed in the past, has a variety of possible solutions, while interaction with the synthesis

system provides opportunities for existing data path self-checking construct reuse, for en-

hanced system operation rehability. The key elements that define the contribution of this

thesis to the field of control path self-checking are the following three :

" both parity and 1-out-of-n self-checking solutions are considered and compared, under

alternative technologies

the option of using a single parity checker in highly parallel designs is provided

» increased security against very hostile environments is achieved, through the defini-

tion, identification and exploitation of Intrinsically Secure states

As a by-product of the development phase of this work, a comprehensive library of syn-

thesisable VHDL descriptions of parity, 1/n, and dual-rail checkers is produced.

Together with the datapath self-checking solutions of chapter 5, this chapter implements

controller and datapath self-checking design, in a unified, integral, highly auto-

mated and designer-friendly high-level synthesis environment, enabling the rapid realisa-

tion of hardware for safety-critical applications.

Chapter 7

Reliability Evaluation

A theoretical and, where needed, experimental evaluation of the robustness of the imple-

mented datapath (chapter 5) and controller (chapter 6) self-checking schemes is given

here. In the datapath case, the totally self-checking (TSC) property (Definition 2.3) is

guaranteed under the single fault condition stated in Hypothesis 2.1, ^a l l code words ap-

pear at the inputs of the duplication schemes. The validity of the hypothesis is therefore

arguably strongly dependent not only on the structure of the system, but also on the input

data it is fed with. It is therefore interesting to consider the robustness of the datapath

scheme in cases when the set of functional inputs is restricted, potentially resulting in

faults remaining undetected and leading to the accumulation of multiple faults. In contrast,

the controller self-checking scheme receives inputs that are totally predictable at design

time, and in principle independent of the data the system receives. Further, the implemen-

tations of chapter 6 take the TSC property into fuU account (§6.2.7, §6.3.1.2). A theoreti-

cal evaluation therefore fuUy covers the issue.

Section 7.1 deals with the reliabUity of datapath self-checking, initially by expressing

theoretical concerns, and subsequently by setting up a fault simulation environment and

evaluating the scheme through experiments. Section 7.2 addresses the control path self-

checking properties, effectively by formally summarising the error detection properties of

the alternative schemes presented in chapter 6. Section 7.3 concludes the chapter.

7.1 Datapath self-checking

In this section, an estimation of the robustness of the datapath self-checking scheme is

given. As already mentioned in the beginning of chapter 2, the stuck-at fault model is as-

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 251

sumed throughout this thesis. Of course, this model is not literally valid in the on-line test-

ing context. Indeed, any wire physically stuck at a particular value would naturally be de-

tected during the off-line production test. Transient faults are more relevant to this work.

In order to model them, at any given point of time a faulty signal is considered to behave

o j ^ i t was stuck-at a logic value. After a period of time equal to the defined duration of

the fault, the signal is allowed to behave properly and assume the value of the wire driving

it. This way, "temporary" stuck-at faults are used to model the transient faulty Ae/zavzowr

of a faulty circuit element rather than its actual state, that is, the e/yecf rather than the

physical cowjg of a fault.

Further, not all stuck-at faults of a system are considered. Rather, only those at the inputs

and outputs of the datapath RTL modules are of interest. This idea is explained by refer-

ring to Figure 7.1, where a datapath module, its duplicate and the associated comparator

are shown. Three faults fi, fz and f]
V:

I are iHustrated in Module 1, each

one signifying that a given wire

within the module is stuck at a par-

ticular value. Let us assume that

there exist electrical connections

between the stuck wires and Mod-

ule 1 output bits, in particular be-

tween fi and output bit X], f? and bit

Modul
f, /I f: A f,

Dupl(Modulc I)

Xj Xk
f; fo

Comparator

F/gure 7. VTTie dUjoZ/'caf/'on cAecWng scheme

Xi, and f; and both bits Xj and Xk. Define also the following four conceptual faults at the

outputs of Module 1.

f , : Xi stuck-at-0

f; : Xj stuck-at-1

fs : Xk stuck-at-1

f?: X| stuck-at-0

Assume that f,, f^, fg and f? are not physically present in the system.

Further consider a random primaiy input vector V| feeding Module 1. In the scenario de-

picted by Figure 7.1, fault fi is not sensitized by Vi, and therefore remains internal to the

module fault event). In the same scenario, fault f2 is propagated to the module out-

put, corrupting bit x;. Finally, f; is propagated to the output through both possible paths.

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 5 2

thus corrupting two different module output bits, xj and x^. Without loss of generality, let

us assume that under the presence of the corresponding faults f i and fg, and when fed by

the particular input, x, assumes the D (1/0) value, while xj and Xk become D (0/1). Then the

behaviour of the system under fault f2 is clearly equivalent to the behaviour that the sys-

tem would experience if the above defined fault was present. It follows that in this case

a single fault in the RTL module primary output (f^) fully represents an internal module

fault (fz). Moreover, the behaviour under 1] is equivalent to the hypothetical behaviour un-

der the superposition of faults f; and fe. It can therefore be stated that a certain class of in-

ternal faults (I; being a member of this class) can be fiiUy represented by the suitable su-

perposition of multiple faults at the module outputs (in this example f; and fg). Further-

more, observe that gzYAer f^ or fg would a/oMg cause the comparator to detect faulty opera-

tion, exactly as ^ would do. In that sense, f] can be considered "loosely" equivalent to ei-

ther single fault f^ or fg a/oMg. This does mean to say that e.g. f^ and fs are generally

equivalent; however, the nature of the considered problem is such that here their primarily

interesting effects (i.e. triggering the fault detection mechanism) are equivalent, although

the two faults clearly lead to overall different situations. Indeed, the output of Module 1

under the presence of f; is different from its output under the presence of f;, assuming that

in both cases it is fed by V]. Still, the information that both output values are erroneous and

therefore detectable means that from the perspective of this thesis the "interesting" effect

of internal faults that corrupt mu//zp/g output values can be represented by .ymg/g primary

output faults.

As regards fault fi, if no available Module 1 input can sensitize it, then it remains internal

to the module forever, and it does not corrupt the system operation. Such faults are of no

interest and not considered in this work. Alternatively, suppose that there is at least one

available input vector V29̂ Vi that sensitizes ft, such that f, manifests itself at the module

output, naturally by corrupting output bit X| to which it is electrically connected. Further,

without loss of generality assume that at the instance depicted in Figure 7.1, with Module

1 fed by vi, xi correctly assumes the logic 0 value. Therefore, at the instance of Figure 7.1,

the behaviour of the system under fault fi at the instance of Figure 7.1 can be considered

to be equivalent to the hypothetical behaviour under fault f? defined above. This is a valid

statement, since both faults are latent at the particular moment. It has therefore been estab-

lished that even latent internal faults can be modelled by equivalent latent single faults at

the primary outputs of the R.TL modules.

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 5 3

Moreover, depending on the module functionality and inputs feeding it, stuck-at faults at

the module can provide convenient means to model multiple faults. For ex-

ample, consider an adder module and a corrupted a (0/1) value at bit position i of the first

adder operand. If the respective bit of the second operand is a fault-free 1, then all output

bits to the left of i, and up to the first fault-free 0 will be inverted. In this case,

faults can be modelled by a stuck-at fault at the It is therefore useful to

include all input stuck-at faults in the set of considered faults as vyell, unless there is a

clear and data-independent 1 to 1 equivalence between an input and an output fault, sug-

gested by the particular module functionality.

The above discussion has established that single stuck-at faults at the inputs and outputs of

RTL modules satisfactorily model the system faulty behaviour under Hypothesis 2.1 (sin-

gle internal fault), m fAe coMfgpcr Âg cofwzcfgrgaf j)ro6Zgm. A particular advantage of this

approach is that it is fully consistent with the high level design philosophy, since it makes

no assumption whatsoever about the gate-level structural implementations of RTL mod-

ules, but is only concerned with their behaviour. This thesis is not further concerned with

the general, recently surfaced idea of fault representativeness at the RT level. The relevant

hterature [140, 141, 142] can be consulted for statistical analyses and discussions of this

still open issue.

7.1.1 Theoretical concerns

Recall once more Hypothesis 2.1, repeated in the following Hypothesis 7.1 for conven-

ience :

7.7: Faults occur one at a time, and the time distance between the occurrences

of two consecutive faults is long enough for all the available iaput code words to be ap-

phed to the circuit.

Let us also recall the totally self-checking property established through definitions 2.1 -

2.5. In short. Module 1 and Dupl(Module 1) of Figure 7.1 will need to be such that under

tlie presence of an internal fault, the following two properties should be satisfied :

a) fault secure property : for every available input word, the comparator input will either

be fault-free or a non-code word (i.e. it cannot be an mco/rgc/ cot/g wortf)

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 254

b) self-testing property : at least one of the available input words sensitizes the internal

fault, i.e. produces a non-code output

As for the comparator of Figure 7.1, it additionally needs to exclusively map input code

words to output code words and vice versa (code disjoint property).

Given that duplication and, where applicable (§5.2.2), inversion testing are fault secure by

nature (§2.2.2.1, §5.2.2), if Hypothesis 7.1 is accepted for a scheme like the one of Figure

7.1, one would sensibly state that, in a fault-Sree scenario. Module 1 and its duplicate will

produce all possible code outputs, thus feeding the comparator with all possible code

words. Assuming a comparator based on a suitably structured (fault secure and code-

disjoint) dual-rail checker, as is the case in this work (§5.3.3.3), this leads to the conclu-

sion that the datapath self-checking scheme is totally self-checking, and therefore detects

all single faults in any of the fiinctional, duphcate or comparator modules.

A

P n -

Multiplier 2 Multiplier 1

comparator

F/gure 7.2 .' MuA/p/Zcaf/on 6y 2

While the discussion in the

above paragraph is valid, it si-

lently assumes that the module

inputs are random, that all pos-

sible inputs are available, and

that they have equal probability

to appear. This is a sensible as-

sumption when the self-

checking scheme is considered

in isolation; let us, however.

not forget that in the context of a complex overall system, operations are embedded deep

into a design, being fed by the outputs of other operations, the other operations themselves

fed by further previous levels of operations etc. This relationship is illustratively depicted

in the DFG representation of a circuit (§3.1.1). The effect of this, is that, while primary

inputs can in principle be considered random, the randomness and availability of the in-

puts of operations "lower" in the DFG are not guaranteed; in fact, these inputs greatly de-

pend not only on the primary inputs, but also on the actual functionality and on the pres-

ence of constants in the data flow graph. At times it is obvious that nof a// possible inputs

are available. Such a characteristic situation is shown in Figure 7.2. The functional module

(multiplier 1) performs the operation 2xA, where A is an (n/2)-bit number. Multiplier 2

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 5 5

duplicates the operation, and both outputs are fed to the comparator. Clearly, multiplica-

tion by 2 never produces an odd number. Consequently, the LSBs po and p'o of both out-

puts will always be 0 under fault free operation. Therefore, the comparator will always

miss all input code words for which po=p'o=l, that is, half of all possible code words. Fur-

ther, the dual-rail checker within the comparator is never fed by the rows of a suitable

4x(2xn) matrix (Lemma 2.3 and [58]), and therefore the self-testing property is not

achieved. In practice, this means that any fault in the checker that is equivalent e.g. to the

LSB of the left band side operand to be stuck-at-0 cannot be detected and will remain in

the design for ever. Now, if an additional fault in the functional Multiplier 1 causes po to

be stuck-at-1, then the corrupted value will not be detected, it will be led to the rest of the

system and thus hinder the overall system operation. The example is analogous to the one

described in §2.2.1.1 referring to Figure 2.11.

The discussion has established that there can be cases within a DFG for which Hypothesis

7.1 is not enough to guarantee the TSC property, resulting in the possibility that faults re-

main undetected. In order for this to have disastrous effects on the system fiinctionahty, a

subsequent fault in the system must corrupt jg/ec/etf modules at times. To under-

stand this, refer back to the example of Figure 7.2, and remember that typically such a

self-checking scheme will be one of a few tens of such schemes in the overall system.

Consider the above mentioned fault scenario, wherein the LSB of the comparator left hand

side operand is stuck-at-0 and therefore undetectable. In order for the next fault to have

disastrous effects, it must hit the scheme (among tens of others), in a

way (causing po to be stuck-at-1, and not effecting any other bit in any other way). A fault

hi a different scheme or with a slightly different effect is more likely to be detected rather

than cause a fault escape. Intuitively, given the typical complexity of the considered sys-

tems, featuring a few thousands of possible RTL faults, it can be argued that the probabil-

ity of a disastrous fault effect is rather iosignificant. Of course, this has to be backed by

experimental data, as done in the following §7.1.2.

7.1.2 Experimental evaluation

Recall the Transparent Fault Injection and Simulation technique of §4.2.1 (also [118, 49]).

Clearly, using the gate models with fault iryection capabilities it proposes, fault simulation

at gate-level netlists can conveniently be conducted. In order for the technique to be appli-

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 5 6

cable at the RT level according to the model of §7.1, RTL component models with fault

injection capabilities need to be developed. Such components will effectively define an

RTL cell library with fault injection capabilities, as an extension to the standard MOODS

cell library (§3.2.7), thus setting up a fault simulation environment to supplement on-Une

test synthesis. As §4.2.1 established, this environment can easily utilize a commercial digi-

tal simulation tool such as the very popular ModelSim tool [115].

7.1.2.1 Transparent Fault Injection and Simulation at the RTL

A straightforward RTL extension of the transparent fault injection and simulation tech-

nique is given here, through a "pseudo"-VHDL example of a generic RT-level N-bit adder

with fault injection capabilities (Figure 7.3). The model makes use of the faultiryect

package provided in Figure 4.1. As can be seen in Figure 7.3, appropriate _mask vector

variables are defined for all module input and output ports. In fact, two such vectors are

defined for each port, the first corresponding to stuck-at-0 type faults and the second to

stuck-at-ls (point #1 in the figure, at the declaration part of the VHDL process nn). Just

like in the gate-level case, a unique, suitably-named local fault variable is created for

every modelled RTL fault when simulation starts (point #2). Appropriate values are as-

signed to the mask vectors in every simulation instance (point #3), depending on which

fault is simulated at the given instance. An element of the 0 TMOjt vector for

signal % is assigned a 0 (1) value if the corresponding fault is simulated. Subsequently the

mask vector is ANDed (ORed) with signal x, in order to produce the effective value that is

going to contribute to the simulation output, also taking into account the fault-free module

Amctionality (point #4). This clearly defines a "mutant" N-bit adder, equivalent to the mu-

tant gates concept encountered in §4.2. In Ikie with the transparent nature of the gate-level

technique of §4.2.1, ANDing and ORing here are concgpfW, as are the mask variables,

fault pointers and fault model records. They do Mof involve the introduction of any physi-

cal hardware gates; hence, the (non-synthesisable) fault simulated cell model is "structur-

ally" equivalent to the synthesisable model, effectively meaning that no extra fault lines

need to be included in the design for fault simulation purposes. When no fault is simu-

lated, the two models are behaviouraUy equivalent as well. Indeed, it can be verified that

the model of Figure 7,3 computes a proper unsigned addition (at point #4) ia the fault-free

case (i.e., when all stuck-at-0 mask vectors carry the all-Is value, and all stuck-at-1 masks

bear all Os). The situation is clearly analogous to its gate-level counterpart.

p. Oikonomakos, 2004 Chapter 7: Reliabil ity Evaluation 2 5 7

library ieee;
use ieee. st:d_logic_1164. all;
use ieee.numeric_scd.all;
use work. Eaulc_iniect:. all;
encicy UADD_1 is

generic (n: posicive 1);
port: (inl, in2 : in sCd_logic_vec[:or (n-1 downco 0) ;

sum : ouL st:d_logic_vect:or (n downco 0)) ;
end 0ADD_1;
archiCecCure injecC_faulC of UADD_1 is
begin

nn : process is
variable inl_saO, inl_sal, in2_saO, in2_sal : faulc_pcr_array (n-1 downbo 0) (oChers => null)
— #1
variable sum_saO, sum_sal : faulC_pCr_array (n downCo 0) :» (oChers => null);
variable inl_9aO_mask, in2_saO_mask : sCd_logic_vecCor (n-1 downCo 0) := (ochers '1');
variable inl_sal_mask, in2_sal_taask : sCd_logic_vecCor (n-1 downCo 0) := (oChers -> '0');
variable sum_saO_mask : scd_logic_vecCor (n downCo 0) (oChers -> '1');
variable sum_sal_mask : scd_logic_veccor (n downco 0) :» (ochers '0');

begin
- - # 2

if inl_sa0(0) - null Chen
waic for 1 ns;
for i in 0 Co n-1 loop

inl_saO(i) :» new faulc_model'(
new scring'(injecC_faulC'inBCance_name &

"inlC & inCeger'image (i) & ")_saO''),
false, false, firsc_faulc);

firsc_faulc inl_saO(i);
-- objeccs inl_sal(i), in2_saO(i), in2_8al(i), sum_saO(i), sum_sal(i)
-- are created similarly

end loop;
sum_saO(n) new faulc_model'(

new scring'(iniecc_faulc'inscance_name 6
"sumC & inCeger'image (n) & ")_saO"),
false, false, firsC_faulC);

firsc_faulc := sum_saO(n);
sum_sal(n) new faulC_model'(

new scring'(in]ecc_faulc'inscance_name &
"sumC 6 inCeger'image (n) 6 ")_sal"),
false, false, firsC_faulC);

firsc_faulC sum_sal(n);
end if;

-- #3
for i in 0 Co n-1 loop

if inl_saO(i).simulaCing Chen
inl_saO_mask(i) := '0';

inl_saO_mask(i) '1';
end if;
if inl_sal(i).simulacing Chen

inl_sal_mask(i) := '1';
else

in]._sal_mask(i) :» '0';
end if;
-- masJc eiemenCs in2_saO_mask(i), in2_sal_mask(i), sum_saO_mask(i)y
-- sum_sal_mask(i) are handled similarly

end loop;
if sum_sa0(n).simulacing Chen

sum_saO_mask(n) :» '0';

sum_saO_mask(n) := '1';
end if;
if sum_sal(n).simulaCing Chen

sum_sal_mask(n) := '1';
else

sum_sal_mask(n) '0';
end if;
-- #4
sum <" sum_sal_mask or

(sum_saO_mask and
(sCd_logic_vecCor(unsigned("0" & (inl_sal_mask or (inl_saO_mask and inl))) +

unsigned("0" & (in2_sal_mask or (in2_saO_mask and in2))))));

waic on inl, in2;
end process nn;
end archicecCure injecC_faulC;

F/gure 7.3 / RT"! uns/gnecf adder ce// /au#/'n/ec(/on capab;'#es

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 5 8

No obvious equivalent or dominant faults can be found in this adder module, leading to a

total of 2*(3*N+1) total modelled faults. However, even in RTL modules there are cases

when not all input and output line faults need to be considered. An example is the generic

left shifter module pseudo-VHDL template of Figure 7.4. In this module, the second input

ia2 corresponds to the number of bits by which input inl will be left-shifted. Mask vectors

are employed just as in the adder case, however this time the module functionality implies

that the output signal bits are either hardwired to appropriate input bits, or directly con-

nected to logic 0. There is no point in explicitly modelling faults for the former (since they

are equivalent to corresponding input faults), while only stuck-at-1 faults need to be con-

sidered for the latter (since a possible stuck-at-0 would be equivalent to the fault-&ee op-

eration). Hence the number of output faults in the model of Figure 7.4 is reduced. These

ideas are reflected in the figure through the absence of fault pointers and masks corre-

library leee;
use ieee.scd_logic_il64.all, ieee.numeric_8bd.all, work.faulc_in]ecc.all;
enticy SLIj_l is

generic (n: positive 1;
m: positive 1);

pore (inl: in scd_logic_vector (n-1 downco 0);
in2: in scd_logic_vector (m-1 downco 0);
ouzput: out: 8cd_logic_veckor (n-1 downco 0));

end SLL_1;
archikeccure injecc__Eault: of SLL_1 is
begin
nn : process is

variable inl_6aO, inl_6al : Eaulc_pcr_array (n-1 downCo 0) := (ochers => null);
variable 0ucpuc_sal : faulc_pcr_array (n-l downco 0) (oChers => null);
variable in2_saO, in2_sal : fault per array (m-1 downco 0) := (ochers null);
variable inl_8aO_aiask : sCd_logic_vecCor (n-1 down^o 0) (ochers '1');
variable inl_sal_mask, oucpuc_8al_mask : scd_logic_veccor (n-1 downco 0) (others '0');
variable in2_saO_mask : scd_logic_veccor (m-1 downco 0) := (ochers '1');
variable in2_sal_ma6k : scd_logic_veccor (m-1 downco 0) := (ochers '0');

begin
if inl_sa0(0) = null Chen
waic for 1 ns;

-- creaCe new scuck fauic records as in the adder example
end if;
- - # 1

for i in 0 CO Co_lnCeger(unsigned(ln2))-l loop
-- fix 0ucpuc_sal_ma8k(i)

for i in 0 Co n-1 loop
-- fix inl_saO_mask(i) and inl_sal_mask(i)

end loop;
for i in 0 CO m-1 loop

-- fix in2_5aO_mask(i) and in2_sal_mask(i)
end loop;
oucpuc <= ouCput_sal_mask or

scd_logic_vecCor(shifC_lefC(un6igned((inl and inl_8aO_mask) or inl_sal_mask),
co_inceger(un5igned(((in2 and in2_saO_mask) or in2_8al_mask)))))

waic on inl, in2;
end process nn;
end archiceccure in]ecc_faulc;

Figure 7.4 : RTL generic shift left module with fault injection capabilities

sponding to stuck-at-0 type faults in the outputs, and also through the reduced range in the

loop taking care of output stuck-at-1 faults (point #1 in the code fragment). Other than

that, the philosophy of the fault-injectable shifter module clearly follows that of the adder.

Defming fault-injectable VHDL models for the rest of the standard MOODS cells (§3.2.7)

proceeds exactly as the two examples above. At this point, it has to be noted that no fault

p. Oikonomakos, 2004 Chapter 7: Reliabihty Evaluation 2 5 9

library ieee;
use ieee.scd_logic_ll64.all;
use ieee.numeric_std.all;
encicy NEQ_3 is

generic (n: positive :# i);
port: (inl, in2 : in 3Ld_logic_vecLor (n-1 downCo 0);

ouCpuC: ouL scd_logic_vecCor(l downCo 0));

archiceccure scniccure of NEQ_3 is

function steps (h: positive) return integer is
-- auxiliary function ; returns the number of checker arrays flevelsj needed for an h-pair checker
-- see Figure 5.13
variable i : integer i-O;

i:.0;

exic when h/(2**i)-l;

end loop;

if (n rem (2**i))»0 then
return i+l;

else
return i;

end if;
end steps;

constant levels : integer:- steps(n);

function no_of_int_sig (p: positive; i: integer) return posicive is
-- auxiliary function returns Che number of output signals of the ith level of a p-pair checker
-- see Figure 5.IJ
variable pairs, old : positive;

begin
if i)levels then

end if;
pairs:-p;
for k in 1 to 1 loop

if k/"l then
old:-pairs;
pairs:-pairs/2;
if (old rem 2)-l then
pairs:-pairs+1;

end if;
end if;

end loop;
return 2*pairB;

end noofintsig;

function index (num: positive; sumover:integer) return integer is
-- auxiliary function ; helps the calculation of the starting location of the outputs of level sum_over wichin
-- Che intermediate_signal array ^see below^, in a num-pair checker
variable sigs : integer:=0;

if 'nuBi-l then

for i in 1 to sum_over loop
sigs :- sigs t no_of_int_sig(num,i);

return sign;

constant tot : integer:- index(n,levels) t 2;

-- all signals connecting checker arrays
signal intermediate_signals : scd_logic_vector(tot-l downto 0);

component CHK_ARR
generic (m: positive :- 1);
port (ml ; in std_logic_vector (m-1 downto 0) ;

in2 : in 3td_logic_vector (m-l downto 0);
output: out 8td_logic_vector ((m + (m rem 2))-l downto 0));

end component;

interTnediate_8ignala {tot -1 downto tot-r.) <= inl;
intermediate_signals(tot-n-l downto tot-2*n) in2;
ZO: if n-1 generate -- trivial

interoediate signalsd downto 0) <- intermediate_signal8(3 downto 2);
end generate 20;

21: for i in 1 to levels generate
Ul: CHK_ARR generic niap (no_of_int_sig(n,i)/2)

port map (inter!nediate_signals (tot-index (n,i-l)-l downto tot-index (n,i-l)-no_of_int_sig(n,i;/2),
intermediate_signals(tot-index(n,i-1)-no_of_int_sig(n, i) / 2-1 downto tot-index(n,i)),
intermediate_signals(tot-index(n,i)-l downto tot-index(n,i+l)));

end generate Zl;
output <= intermediate_3lgnal3(l dosmto 0)

F/gure 7.5 . genen'c /V-pa/r duaZ-ra;/ checker

p. Oikonomakos, 2004 Chapter 7: Reliabil ity Evaluation 2 6 0

library leee;
use ieee.st:d_logic_ll64.all;
use ieee.numeric_sLd.all;
enkiCy NE0_3 is

generic (n: positive := 1);

pork (inl, in2 : in scd_logic_vecbor (n-1 downCo 0);
oucpub: out: sbd_logic_vect:or(l downbo 0));

end NEQ_3;

use work.fault_injecb.all;
archibecCure inieck_faulL oE NE0_3 is

-- function, consCanCy signal and component declarations exactly as in Figrure 7.5

-- generate statements exaccly as in Figure 7.5

nn : process is

variable inl_8aO, inl_sal, in2_saO, in2_sal : fault:_pt:r_array (n-1 downbo 0) := (others => i
variable inl_saO_mask, in2_saO_niask : sbd_logic_vect:or (n-1 downto 0) := (others => '1');
variable inl_sal_mask, in2_sal_mask : std_logic_vector (n-1 downto 0) (others => '0');

begin
if inl_sa0(0) - null then

for i in 0 to n - 1 loop
inl_saO(i) := new Eault_model'(

new string'(in]ect_fault'instance_name &
"inl(" & inceger'image(i) & ")_saO"),
false, false, first_fault);

first_fault := inl_saO(i);

-- all other fault variables in both inl and in2 are handled similarly

end loop;
end if;

for i in 0 to n-1 loop
if inl_saO(i).simulating then

inl_saO_mask(i) := '0';

else
inl saO mask(i) := 'l';

end if,- -
-- similarly for the other fault variables

end loop;

intermediate_signalB(tot-l downto tot-n) <= inl_sal_mask or (inl_saO_mask and inl);
intermediate_signals(tot-n-l downto tot -2*n) <= i n2_sal_mask or (i n 2_saO_mask and i n 2) ;
wait on inl, in2;

end process;
nn2: process is

variable out_saO, out_sal : fault_ptr_array (1 downto 0) := (others null);
variable out_saO_mask : std_logic_vector (1 downto 0) := "11";
variable out_sal_mask : std_logic_vector (1 downto 0) := "00";

begin
if out_sa0(0)=null then
out_sa0(0) := new fault_model'(

new string'(iniect_fault'instance_name &
"out_saO(0)"),
false, false, first_fault);

first_fault := out_sa0(0);

-- the same for out_saO(l), out_sal(0) and out_sal(l)

if out_sa0(0).simulacing then
out_sa0_mask(0) '0';

out_sa0_mask(0) := '1';

end if;

-- the same for out_saO(l), out_6al(0) and out_sal(l)

output <= out_sal_mask or (out_saO_mask and intermediate_Bignals(l downto 0));

wait on intermediate_signals(l downto 0);
end process;
end;

F/gure 7.6 . /I genenc A/-pa/r duaZ-ra// c/iec/cer fau/f /n/'ecf;on capab/'/A'es

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 6 1

icyection is considered and natiirally no fault-injectable models needed for storage ele-

ments (registers) or interconnect (multiplexer, sign extension) modules; instead, these

modules are assumed free of faults. This issue is revisited later in §7.1.3 and comments on

its implications provided. Further, no fault irjection was considered for control cells ei-

ther. The reason for this is that the controller self-checking scheme is totally self-checking

(as chapter 6 estabhshed), therefore its behaviour under the presence of faults, and its fault

detection capabilities are fully predictable, as mentioned throughout chapter 6, and will be

summarized in §7.2.

The fault secure comparator and dual-rail checker components of §5.3.3.3 can have faults

injected in their inputs and outputs by likewise defining suitable models, following exactly

the same principles as in the standard MOODS models. However, recall that an enormous

number of dual-rail checkers and comparators were automatically produced by suitable

software in §5.3.3.3. Writing separate mutant components for each one of them would be

an impractically time-consmnming process. To cope with this problem, a concise generic

description of an N-pair dual-rail checker was firstly configured, shown in Figure 7.5. The

description uses the C H K _ A R R cell of Figure 5.14. It further defines and utilises three aux-

iliary arithmetic functions; comments on the functions are provided in the figure with ref-

erences to the generic dual-rail checker scheme of Figure 5.13. The description appears

complicated but it fully describes Figure 5.13 for any value of N; for example, it can be

verified that for N=16 it becomes equivalent to Figure 5.15. In fact, there are RTL synthe-

sis tools that cannot synthesize the code of Figure 7.5. The reason for that is the VHDL

component instantiation statement labelled Ul towards the bottom of Figure 7.5. This

statement defines three slices of the long i n t e r m e d i a t : e _ s i g n a l s array as the actual

ports of component Ul. However, the slice boundary definition includes variable i (the

"loop" variable of the "generate" statement Zl). Using a variable in slice boundary defini-

tions was found by this author not to be acceptable by all VHDL compilers. For this pur-

pose, the description of Figure 7.5 is not generally synthesisable and cannot in principle be

used instead of the cells produced in §5.3.3.3. However, the description was accepted by

the compiler of the simulator tool [115] used herein for simulation experiments. The fact

that a description is used for all values of N is particularly advantageous, since it

enables the development of a respective "mutant" description, as Figure 7.6 outlines. The

general structure of the description of Figure 7.6 is exactly the same as that of Figure 7.5;

the difference is that in Figure 7.6 the simple assignment statements that involve the inputs

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 6 2

and the output of the checker are replaced by suitable processes that control the irgection

of faults in the checker ports, using suitable mask variables, exactly as done in Figure 7.3

for the N-bit adder. The fault-&ee behaviour of the mutant checker of Figure 7.6 is identi-

cal to the behaviour of the original checker of Figure 7.5, which in turns behaves identi-

cally to the fully synthesizable modules of §5.3.3.3. Exactly as done in §5.3.3.3, a generic

N-pair fault secure comparator with fault injection capabilities is described by simply

complementing one of the dual-rail inputs in Figure 7.6.

A test bench to control the overall fault simulation campaign can now be written as the

gate-level prototype of Figure 4.4 outlined. As an interesting word of note, the input / out-

put interfaces of a gate-level and an RT-level design are identical, and so effectively the

same test bench can be used for fault simulation at both levels, if so desired. In either case,

a test bench written as in Figure 4.4 can be tuned to implement exhaustive, deterministic,

or random injection experiments. Multiple faults can be iiyected as well as single ones (by

simply activating more than one . s i m u l a t i n g Gelds in the suitable fault model record).

Furthermore, by activating a fault and then deactivating it at a chosen simulation time (by

resetting the respective . s i m u l a t i n g Aeld), one can model transient (as opposed to

pemianent) faults, again simply by suitably amending the testbench. The corresponding

input vectors fUe (v e c t o r s . t x t) can include an exhaustive, or an incomplete but prede-

termined (even random) set of test vectors. Finally, the processing and presentation of ob-

tained results can be carried out as desirable through the testbench directives. Therefore,

the designer has all flexibility to tailor the simulation experiments through the test bench

and input vectors, to reach the desired conclusion, as applicable per situation.

In the simulation experiments described in the following two subsections, the commercial

simulator used was Model Technology ModelSim, version SE Plus 5.5e [115].

7.1.2.2 Injecting single faults

It has already been estabhshed that the duplication and (where applicable) inversion

datapath self-checking schemes of chapter 5 are fault secure against single faults. There-

fore, any single stuck-at fault in any of the functional, redundant or comparison modules

embedded within an overall self-checking datapath is expected either to be detected or to

remain latent. To verify this, the technique of §7.1.2.1 was used to conduct a number of

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 6 3

faults

in jected latent detected escaped
100000 65912 34088 0

7a6/e 7. f Tseng benc/imar/c fau/f s;mu/af/on resu/k
('/ndependenf exper/menfs^

fault simulation experiments on a self-checking version of the Tseng datapath, produced

as explained in chapter 5. In particular, the version randomly picked for the experiment

was the fourth one of Table 5.11 (the one employing duplication testing). The choice of

version is, however, not important, since all versions are equally secure against RTL

faults. Random faults were injected, and random inputs apphed; this way, the experiment

emulated the operation of a system whose operating conditions caimot possibly be known

in advance. Further, since in this subsection it is only single faults that are of interest,

whenever a fault remained latent it was removed, and the next one iigected at a different

simulation time point, after the previous removal. Therefore, this subsection addresses in-

dependent experiments.

The results, shown in Table 7.1, indeed verify the fault secure property, by demonstrating

no fault escapes at all. Notice that a particularly extensive number of experiments were

conducted (100000). In the particular benchmark circuit, the overall number of injectable

RTL faults was much smaller (exactly 758, automatically calculated through the test

bench, as a byproduct of the simulation). This means that the total 100000 experiments

included several incarnations of every fault, each time under different operating conditions

and different input values, thus increasing confidence in the system dependability. It is

worth noticing that the majority of experiments led to latent fault events (§7.1). This can

be explained by the fact that both the injected faults and the applied inputs were random.

As a result, in several cases an RTL input or output was driven to logic value z e (0,1},

while at the same time a stuck-at-z was simulated at the same signal. This clearly leaves

the fault latent; statistically these situations should account for 50% of all experiments.

Further recall that the Tseng benchmark includes logic operations (AND, OR) as seen in

the VHDL of Appendix B. At times iryected faults at the logic function operators were

prevented from manifestiag themselves simply by the natural masking properties of logic

functions (e.g. 0 AND D = 0). These two phenomena resulted in the increased percentage

of latent faults.

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 264

7.1.2.3 Injecting Multiple Faults

yrgg

Comparator f7 .Y

Module I

The effect of ± e accumulation of multiple latent faults in a self-checking design is ex-

perimentally addressed here. As the experiments of Table 7.1 established, in a typical de-

sign, there is a high probability that a fault hitting the design is not detected immediately,

but remains latent. The scenario of the previous subsection removed such latent faults,

considering them harmless transients; here, they are considered to remain permanently on

the system, thus giving rise to the said multiple fault accumulation. Such accumulation can

be particularly severe in situa-

tions where a self-checking

scheme receives a restricted sub-

set of all possible input words (as

in Figure 7.2), or in very hostile

enviromnents, where faults occur

very frequently, so that a self-

checking configuration does not

F/'gure 7.7. ,4 poss/'b/e fau/f escape have the time to receive all avail-

able input words. Clearly such accumulation is expected to result in a probabdity of faults

remaining undetected "for ever", and potentially corrupting the design primary outputs. A

situation where this can happen was explained around Figure 7.2, wherein an undetectable

latent fault in the checker, together with a subsequent fault in the functional module can

cause a fault escape. Another typical fault escape scenario would be the one shown in Fig-

ure 7.7, where the two modules in the duplication testing scheme have their respective M-

position bits stuck-at the same value and m oc/cf/fzoM the common input at that time hap-

pens to be such that the said bit should assume the logic complement value under fault

free operation. Once more, assuming that all modeled faults have equal probability to ap-

pear, and further taking into account that even small benchmark designs include anything

between a few hundreds and a few thousands of such RT-level faults, one can trivially

conclude that the probability that such a situation appear is very small (significantly less

than 1%).

inputs faults injected latent fault events detection events fault escapes
"sensible" 50000 23189 26811 0

random 50000 39227 10773 0

7a6/e 7.2 O/Tifeq! fau/f s/mu/af/'on resu/fs ('mu/f/p/e fau/fgj

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 6 5

This is further verified by the series of fault simulation experiments performed on a self-

checking version of the Diffeq benchmark. The version used was taken from Table 5.13,

and it was the one on the second row, featuring a "mixed" self-checking strategy (duplica-

tion and inversion as determined by the system to be better applicable per situation), and

including a total of 776 identifiable faults in the RTL datapath. This time, latent faults

were not removed, but remained in the system, and further faults were subsequently in-

jected. All accumulated faults were removed every time a detection event occurred. Two

sets of experiments were conducted : in the first, random but "sensible" input vectors were

applied; while in the second totally random ones were used. The significance of this is re-

lated to the fimctionality of the particular benchmark. Indeed, "sensible" inputs cause the

system to perform a number of repetitions of its main fimctional loop (see Appendix B for

the VHDL code), while totally random inputs are very likely to leave significant parts of

the datapath idle (and therefore unable to detect any faults) for long periods of time. This

way, high accumulations of faults were expected to be achieved in the design. The results

are summarized in Table 7.2. The table indeed verifies that the number of latent fault

situations significantly increases when totally random inputs are used. Most importantly, it

is demonstrated that 100000 simulation runs, including several accumulations of faults,

under a rich variety of conditions and inputs, were once more unable to produce a single

failure. This experimentally verifies the prediction of §7.1.1, also mentioned in this sub-

section : although the TSC property cannot be guaranteed for the duphcation- / inversion-

based schemes of the self^checking datapath, and consequently fault escapes are theoreti-

cally possible, the probability that such an escape occurs is insignificant. Differently put,

given a self-checking datapath produced as chapter 5 of this work explains, and assuming

a number of latent faults in the datapath, the probability that the next fault hitting the sys-

tem will either be detected or remain harmlessly latent, is overwhelmingly higher than the

probability that the said fault will interact with an existing latent fault to cause a disastrous

fault escape.

7.1.2.4 Common mode faults

The discussion so far has assumed that all modelled faults have the same probabihty to

appear in the design at any given moment. However, in particular VLSI technologies, mi-

nor defects in the fabrication process of standard cell masks can result in common mode

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 6 6

faults (§2.2.2.1). Simply put, this means that a// cells of a particular kind (e.g. all adders)

may feature some common, minor malfunction, not detectable in off-line production test,

due to its insignificant initial effect. Under certain environmental conditions or over time,

such defects may develop into logic faults, thus resulting in jome type of faulty behav-

iour in all cells of the said type. In the context of this discussion, referring back to Figure

7.7, this effectively means that given a latent stuck-at-x type fault at the n-th output bit of

the left-hand side module, the probability that the next fault in the system will be a disas-

trous stuck-at-% at the M-th bit of the right-hand side module, is significantly higher than

the probability that an unrelated fault will hit another part of the circuit. In a particular ap-

plication, whether or not common mode faults are likely to occur is something that can be

determined only in the context of the given application, especially taking into account the

target technology, reliability of fabrication process, and robustness of the off-line produc-

tion test.

Common mode faults are known to escape duplication testing schemes where both dupli-

cate modules have been produced by the same mask. Therefore, a high probability of such

faults is the only significant threat the datapath self-checking scheme of this work has to

face. To alleviate the risk, traditionally [51] diverse duplication is applied (§2.2.2),

wherein duplicate modules are behaviourally equivalent, but structurally different. Diverse

duplication cannot be currently adopted within MOODS, due to all datapath modules hav-

ing a single realisation within the cell library (§3.2.7). Assuming subsequent development

work leading to alternative cells, however, the synthesis process of chapter 5 would be

perfectly applicable to diverse duplication. In this work, inversion testing is proposed as a

valid alternative, if the frequency degradation often associated with it is tolerable in the

context of the particular project.

7.1.3 Faults in the interconnect and storage units

As has been obvious in the discussion so far, and exphcitly mentioned in §7.1.2.1, the

datapath self-checking scheme addressed here is dedicated to the functional datapath mod-

ules of designs resulting from high-level synthesis. The other parts of the datapath, namely

the interconnect and storage elements, are, as a first approach, assumed fault-free. This is a

sensible assumption, taking into account that the theme itself of this work is the high-level

synthesis o f A a r c f w a r e blocks. In such blocks, the chip area occupied by

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 267

functional
block

("aj /eed/ng a
funcOonaf bfoc/c

register

functional modules is significantly

higher than that occupied by storage and

interconnect. Therefore, an environ-

mental factor affecting the chip is much

more likely to affect the area occupied

by a functional module, rather than that

occupied by a register or a multiplexer. It

has to be clarified that considered hard-

ware blocks exclude large memory

blocks. If such blocks appear in a sys-

tem, self-checking design principles

have to be apphed to them as well (typically some variation of parity checking, see for ex-

ample [143, 144]), but this is out of the scope of this thesis (indeed, it would concern self-

checking design considered at the jyf fern /evg/).

fbj feed/ng a
reg/'sfer

Figure 7.8 : Multiplexer configurations

A further look at multiplexer faults further backs the fault-free assumption. Consider Fig-

ure 7.8. It depicts the two situations when a multiplexer is needed : to feed a fimctional

block (7.8a), or to feed a register (7.8b). Clearly, in 7.8a, the behaviour of a faulty multi-

plexer delivering a corrupted value to the functional module input, is equivalent to a

/ree multiplexer that correctly feeds a f u n c t i o n a l block, in particular a functional

block whose behaviour can be modelled by a suitable stuck-at fault in its input. Therefore,

the faulty behaviour of the multiplexer is covered by the already mentioned RTL fault

model of §7.1. Similarly, in Figure 7.8b, a faulty value delivered to the register by a cor-

rupted multiplexer, can be considered equiva-

lent to a corrupted register receiving a correct

value. Of course, registers are not covered by

the assumed fault model, and therefore such a

fault would be disastrous.

Let us now focus exclusively on registers. Care-

ful examination of a few design data flow

graphs reveals that there are classes of registers

whose faults are in fact equivalent to fimctional

module faults. Figure 7.9 shows such a DFG,

! -

F/gure 7.9 .' Fau/fyreg/sfers equ/Va/enf
to faulty functional modules

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 6 8

highlighting two registers in this category. The figure is notably similar to Figure 6.3; in-

deed, it depicts the - dominant throughout this thesis - duplication testing scheme. The

comparison operation has been scheduled one control step after the fimctional and the re-

dundant ones; therefore, the two highlighted registers carry the intermediate results across

the boundary of CSs N and N+1. Clearly, any active fault in any of the highlighted storage

units wUl propagate to the comparator input - it will therefore be equivalent to a suitable

comparator fault, hence covered by the assumed model. However, notice that any fault in

any of the non-highlighted registers feeding the functional or redundant operation will Mof

be detected, since each register feeds both adders, thus producing the erroneous re-

sult at the adder outputs. Interestingly, the scheme behaves very much hke if under the

presence of a common mode fault, thus exposing a defenceless part of the circuit.

7.2 Control path self-checking

The six alternative control path self-checking techniques presented in chapter 6 have been

designed to strictly adhere to self-checking design theory. That is, they aU achieve the to-

tally self-checking goal under Hypothesis 2.1 / 7.1. In contrast to the datapath case, the

hypothesis is now particularly valid. To understand this, refer back to Figure 6.1, and con-

sider the controller as a single module, receiving the conditional signals as inputs and pro-

ducing the control signals at the output. Recall (§6.4.1) that every internal fault in the

MOODS-generated controller may affect a j/Mg/e control signal. Further consider that the

control signals / control path checker inputs (Figure 6.15), in all realistic situations, are of

the order of 100 at the veiy most, compared to 2" different comparator inputs in a data

path duplication self-checking scheme with, e.g., 16 being a typical value for n, yielding

-650 times more values. Finally, no situation analogous to Figure 7.2 can be conceived for

the control path; that is, all control states are visited (and aU control signals produced) dur-

ing the usual system operation, even if some of them are visited less frequently than oth-

ers. In summary, the control path checker is extremely hkely to receive all of its available

code words between the occurrences of two consecutive faults, because they are relatively

very few, and because nothing prevents them from being produced. In combination with

the single fault property, this directly supports Hypothesis 2.1 / 7.1. The conclusion,

hence, is that any single fault in the controller or the control path checker will definitely be

detected before the next one occurs, thus excluding latent faults and accumulations of

faults resulting from them.

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 6 9

It is instructive to go one step further, and consider a particularly hostile environment, in

which multiple faults may hit the controller at any given time, thus producing multiple

faulty control signals. Although this is probably an unreahstically hostile scenario, not

normally considered in self-checking literature, it is interesting to note that the proposed

schemes of chapter 6 provide enhanced detection capabilities that accommodate several

such situations as well. These enhanced capabilities should be famihar since there were

references to them throughout chapter 6; the following comments remind them and Table

7.3 formally summarises them. The CTRL l technique (Figure 6.4) detects all single or

odd-multiplicity errors among the control signals of any single process individually. The

CTRL 2 scheme of Figure 6.5 detects all single or odd-multiplicity errors among the con-

trol signals of aU processes in the design accumulatively, CTRL 3 (Figure 6.7) offers sin-

gle and odd-multiplicity error detection on an individual process basis just like CTRL l;

further, it detects any combination of faults so long as at least one of them corrupts the

control signal of an Intrinsically Secure state (§6.1.3.1). The CTRL_4 scheme (Figure 6.8)

has the same capabilities as CTRL_2, with the addition that identifying and taking IS

states into account once more provides detection of any multiplicity errors that corrupt at

least one IS control signal. CTRL_5 (Figure 6.12) detects all unidirectional errors on indi-

vidual processes, and so does CTRL_6 (Figure 6.14), with the addition that the latter de-

tects even bidirectional errors if any of them corrupts the control signal of an IS state.

technique detection capabilities
CTRL 1 single or odd-multiplicity errors per process
CTRL 2 single or odd-multiplicity errors in all the control signals
CTRL_3 any multiplicity errors if the control signal of an IS state is corrupted

signle or odd-multiplicity errors per process otherwise
CTRL_4 any multiplicity errors if the control signal of an IS state is corrupted

signle or odd-multiplicity errors in all the control states otherwise
CTRL 5 any multiplicity unidirectional errors per process
CTRL_6 any multiplicity unidirectional errors per process, plus bidirectional

errors for which the5 value is assumed by an IS-state control signal
Table 7.3 : Error-detecting properties of controller self-checking techniques

Note that in the above evaluation of CTRL_3, CTRL_4 and C T R L 6, it is assumed that

the precautions of §6.1.3.2 have been respected, so that fault escapes related to Intrinsi-

cally Secure states are practically very unlikely. As a reminder, this means that IS states

are considered only when the data path bus is reasonably wide, while appropriate registers

p. Oikonomakos, 2004 Chapter 7: Reliability Evaluation 2 7 0

are reset to a value that has a low probability of occurrence as soon as their functional con-

tents are not needed anymore.

7.3 Summary

To summarize, this chapter has theoretically and experimentally established the reliability

properties of the self-checking schemes of this thesis. In particular :

« the datapath scheme succeeds in its primary mission, that is, it is extremely robust, de-

tecting all realistic fault scenarios affecting datapath functional modules. An exception to

this can be common mode faults. Since such faults may or may not appear depending on

the dependability of the production line in individual situations, this does not compromise

the success of the technique. Further, if frequent common mode faults are expected, the

inversion testing technique can provide a defence against them.

» although not explicitly targeting them, the datapath scheme also detects a portion of

intercoimect and storage unit faults. The remaining multiplexer and register faults can

cause disastrous fault escapes, but the area they occupy on the chip is small enough to de-

mote this to a minor issue.

» the alternative control path self-checking schemes are totally self-checking by con-

struction and therefore detect all single controller faults; in addition, they also defend

against a variety of muldple-fault scenarios.

Chapter 8

Future Research and Conclusion

This last chapter comprises two short sections. Section 8.1 proposes ideas for future work,

while §8.2 gives the final concluding remarks of this thesis.

8.1 Future research directions

There are two families of research themes that can expand the work of this thesis :

* algorithms for on-line test synthesis

» expanding the fault detection capabilities provided herein to implement fault

The motivation for the first direction is that the modified version of the general-purpose

simulated annealing algorithm defined in §5.3.3.2 was shown in the experimental results

to be useful for designs that include up to around 300 operations (§5.3.3.5). Indeed, it was

found that the tool run-time would probably be unacceptably high for bigger designs.

While 300 operations is enough to accommodate a good number of practical designs, and

it is still about double the size of anything presented in the past, this author expects that

dedicated research on synthesis algorithms can take good advantage of the "case for on-

line test synthesis" made in this thesis and configure automatic design flows that would

explore the three-dimensional design space faster than the random and general-purpose

simulated annealing choice. Such algorithms would probably need to be entirely new heu-

ristics that would take into account the nature itself of the self-checking resource insertion

problem, while still not neglecting the traditional high-level synthesis criteria. It would be

particularly interesting to investigate (as opposed to transformational) high-

level on-line test synthesis algorithms, motivated by the fact that previous research on

constructive algorithms has produced excellent results [100].

p. Oikonomakos, 2004 Chapter 8: Future Research and Conclusion 2 7 2

The second proposed research direction effectively refers to implementing "high-level

synthesis for fault tolerance" as an extension of high-level synthesis for on-liae testability.

Very much as in the on-line testing case, a comprehensive survey of fault tolerance tech-

niques will be needed, the most suitable for inclusion in synthesis will need to be chosen,

and further tool implementation / expansion details through suitable transformations, algo-

rithms and metrics will have to be devised. A complication of fault tolerance is that choos-

ing the most suitable technique will be likely to depend both on target technology and on

the assumed fault scenario (targeting transient or permanent faults). That is, while it was

possible to define generic RT-level, technology-independent solutions for the on-line test-

ing problem that were proved robust even in very hostile enviroimients, this author feels

that this will not apply for the fault tolerance problem. The implication is that multiple

techniques will probably need to be implemented within the synthesis tool and the de-

signer will be required to make a pre-synthesis choice of technique.

8.2 Concluding remarks

The work described in this thesis has produced an mfegT-a/,

based on the original MOODS behavioural synthesis suite.

It is the first time on-line testability is thoroughly integrated into tlie core of the synthesis

process in a fully automatic manner. This is particularly achieved in the datapath self-

checking scheme of chapter 5, and visuahsed by the 3-diaiensional design space used,

through the definition of an arithmetic expression that quantifies on-line testability. The

resulting tool offers fast, painless, technology-independent and versatile exploration of the

3-dimensional space, aU inherited 6om traditional high-level synthesis. Complex VHDL

constructs such as loops, conditionals and parallel processes are fully accommodated.

From the testability point of view, all intermediate computations are checked, thus giving

a constant monitoring of the health of the system and keeping error latency low. The in-

version testing scheme is defined and exploited. All this is offered at comparatively rea-

sonable hardware overhead values.

p. Oikonomakos, 2004 Chapter 8: Future Research and Conclusion 2 7 3

The work of chapter 6 arms the RTL synthesis outputs with protection for the second one

of its constituent parts, that is the controller. Six alternative solutions are configured, ana-

lysed, implemented and experimentally evaluated for the controller self-checking problem.

The idea of reusing datapath self-checking resources for control path checking is con-

ceived and relevant solutions configured, through the introduction of the Intrinsically Se-

cure control states concept. A comprehensive self-checking component library is pro-

duced. Overall, control path self-checking resource insertion is formulated and imple-

mented in a fully automated maimer, as an add-on to the MOODS synthesis tool. Together

with the material of chapter 5, datapath and controller self-checking design is

thus implemented.

Overall, from the point of view of EDA tool development, this vyork explored the totally

new area of including on-line testability in the design parameters and optimising for it in a

3-dimensional design space. From the point of view of self-checking design, it enabled the

reahsation of well-studied gate-level techniques in a much higher level of the design flow,

increasing their practical significance by including them in realistically-sized designs.

Therefore, from both points of view it advances the state-of-the-art and opens up opportu-

nities for further research.

Appendix A

Modified IVIOODS User's Guide

This appendix briefly presents the practical steps required to implement on-line testable

designs usiag the MOODS command prompt. The appendix assumes some familiarity

with the original synthesis system operation. Its intention is to instruct the

MOODS designer on the new functionality of the modified system. Nevertheless, parts of

the original MOODS are briefly repeated when needed for the sake of completeness, while

references [126, 127, 128, 105, 8] can be consulted for more background information.

A.1 Setting up and interacting with the tool

Like most electronic CAD tools, MOODS organises its designs into Therefore

the first set-up task before a synthesis session can start is the definition of a new project,

the inclusion and compilation of all required behavioural VHDL source files within it, and

the hierarchical assembling of the compiled files within the project in a library structure.

Details of how this is done can be found in [126]. Having set-up the synthesis project, the

synthesis engine, being the "heart" of the whole process can be invoked using a DOS-

prompt command such as the following.

(moods jiome directory) \Bin\Moods example

-m "(project directory) \experiments.lmf"

-w experiments

-mult2shift

-disable_tforms 38000

{-use_mux MUX_2}

(otJ]er argumezzts}

p. Oikonomakos, 2004 Appendix A: Modif ied MOODS User's Guide 2 7 5

The above command assumes that a top-level design called e x a m p l e has been compiled

and the project name is e x p e r i m e n t : s . File e x p e r i m e n t i s . Imf contains information

on the directory location of the library files used in the project and is made known to the

synthesis engine through argument -m. Argument -w e x p e r i m e n t s defines the direc-

tory where created files are to be written in. Argument - m u l t 2 s h i f t transforms all

multiplications and divisions by powers of 2 to left- or right-shifts respectively, and it is

highly recommended as it leads to significant hardware savings. Argument -

d i s a b l e _ t f orms excludes a number of transformations from the overall MOODS set

of transformations (§3.2.3). The number 3 8 0 0 0 is interpreted as a binary bitmap, dictat-

ing which transformations will be excluded. The particular number suggests that all regis-

ter sharing transformations are disabled. Excluding these transformations is highly rec-

ommended for the purposes of this work, since it was found that the said transformations

are rather experimental in the current version of MOODS and using them only lengthens

the sunulated annealing algorithm run-time (note that register sharing transformations

were not included in the presentation of §3.2.3, for the same reasons). The exact bitmap-

to-transformation correspondence for the above number can be found in appendix D of

[105]. Argument - u s e _ m u x MUX 2 is recommended when the target technology is an

FPGA part. It instructs MOODS to use a particular cell hbrary multiplexer description,

that subsequent RTL synthesis tools synthesize using the tristate buffers available within

FPGA slices [106]. This leads to better resource usage within the FPGA. However, the

argument should not be used when VLSI technology is targeted.

Other arguments exist [126], but exceed the scope of this appendix.

The first task of the system as soon as the above command is issued, is to read the initiali-

sation file, MOODS . ini, and be informed about a number of design options. While sev-

eral pieces of initialisation information can be passed to the tool through this file, the most

important information for the purposes of this thesis is the choice of target technology.

The target technology becomes known to the tool through a single declaration line in the

initialisation file. A typical declaration for this purpose would look hke the following.

XC4000XV-09 = GenericLibrary, 4000XV.mlib

File 4 0 0 OXV. ml i b is the pre-existing system technology library, targeting Xilinx FPGA

parts. This hbraiy was augmented to include characterisation information for the newly

p. Oikonomakos, 2004 Appendix A: ModiAed MOODS User's Guide 2 7 6

added dual-rail checker and fault secure comparator ceUs (§5.3.3.3). The new technology

library file is named 400 OXVplus . m l i b and in order to be taken into account the line

above should be substituted by

XC4000XV-09 = GenericLibrary, 4000XVplus.mlib

Furthermore, a new technology library file was written for the Alcatel CMOS VLSI 0.35

technology also used in the experiments of chapters 5 and 6. To use this technology, the

following declaration is needed instead of any of the two above.

HYA_MTC45000 = GenericLibrary, MTC45000plus.mlib

The designer can thus choose his or her target technology of interest by editing 61e

MOODS. ini.

A.1.1 Defining the cost function

When MOODS is invoked, the input design has been read and certain preliminary tasks

have finished, it presents a command prompt and waits for the designer's instructions.

Sensibly the first task is to define synthesis specifications through the cost fimction. The

command that gets MOODS to cost function definition mode is

cf

Now the designer needs to specify his or her requirements. This is done by "adding" pa-

rameters to the (initially empty) cost function vector. For example, adding an area con-

straint is done by

aa

The tool asks for the priority value of the area constraint, to which the designer may re-

spond by

1

or

2

for first or second priority respectively. The tool then again asks for the target area, to

which in this thesis the answer is always

0

meaning "as cheap as possible" (§3.2.4). Of course, non-zero numbers can be given in-

stead. The delay constraint is declared to the tool similarly, by using command

p. Oikonomakos, 2004 Appendix A: Modif ied MOODS User's Guide 2 7 7

ad

instead of aa. Again, in this thesis the target delay is always 0. On-line testability has been

configured to work similarly. Indeed, the cost function command

a t

includes on-line testability in the set of constraints. The on-line testability priority in all

experiments of chapters 5 and 6 has always been 1, while the target value for on-line test-

abihty has always been 100 (for 100%, §5.3.3.1).

The choice of control path self-checking scheme is done in the cost function definition as

well. Six alternative independent commands have been implemented for this. Command

3,1

instructs the tool to append the CTRL l (§6.2.1) self-checking scheme to the controller.

Alternatively, a2, a3, a4, a5 or a6 can be used, to order CTRL_2 (§6.2.2), CTRL 3

(§6.2.4), CTRL_4 (§6.2.5), CTRL_5 (§6.3.2) or CTRL_6 (§6.3.3) respectively. No further

information is required by the tool with respect to controller self-checking, other than

choice of scheme. If none of the above six commands is issued, tbe tool by default as-

sumes that controller self-checking is Mof desired.

When all of the cost function parameters have been set up, command

f

finishes the cost function definition session and returns to the main MOODS prompt.

A. 1.2 Manual application of the testing transformations

After leaving cost function set-up mode and returning to the main prompt, the user can

start applying transformations to the design under optimisation. These include the generic

transfonnations of §3.2.3 or the additional testing ones of §5.3.2.1 and §5.3.3.4. The man-

ual apphcation of transfonnations proceeds as follows. Initially the "select transformation"

command is given

St

The designer is presented with a list of available transformations, the five testing

ones added in this thesis. Selection is made by entering the appropriate number, e.g.

p. Oikonomakos, 2004 Appendix A: ModiAed MOODS User's Guide 2 7 8

fbi" TF8. Assuming familiarity with the original transformations, let us focus on the testing

ones. Selecting TF22, TF23, TF25 or TF26 will cause MOODS to prompt for a single in-

struction characteristic number. In the case of TF22 (physical duplication) or TF23 (physi-

cal inversion), this will be the number of the instruction to which the designer desires to

attach self-checking resources. In the case of TF26 (remove testing scheme), it will be the

instruction whose testing scheme is to be removed. Finally, if TF25 (restore original test

response register) is the transformation at hand, then the instruction will be the one for

which the self-checking comparison output signal is desired to be unshared. Selecting

TF24 (share test response register) will prompt for two instructions. The second wiU be

the one for which the test response register is desired to be abandoned and the response

directed to the respective register of the first.

If the selected transformation passes the validity tests of §5.3.2.1 and §5.3.3.4, then the

tool will automatically estimate its effect and present the result on screen. Issuing the "per-

form" command

P

will subsequently actually perform the transformation.

The semi-automatic insertion of self-checking resources in the experiments of §5.3.2.2

was carried out using several repetitions of the above procedure for transformations TF22

and TF23.

A. 1.3 Application of the automatic algorithms

Applying the automatic optimisation algorithms (simulated annealiiig, heuristics) of §3.2.5

proceeds exactly as in the original MOODS. Hence, the annealing initialisation command

a i

causes the tool to ask for four arithmetic values : initial temperature, ultimate temperature,

temperature decrease factor and number of transformations per optimisation step. Anneal-

ing execution command

ao

sets off the simulated annealing optimisation algorithm with the parameters given by the

designer in the initialisation step. If on-line testability has been given as a designer speci-

fication during the cost fimction set-up phase (§A.1.1), then transformations TF22 and

p. Oikonomakos, 2004 Appendix A: Modif ied MOODS User's Guide 2 7 9

TF23 are included in the set of transformations and the simulated annealing algorithm

takes its modijRed form described in §5.3.3.2.

The tailored heuristic algorithm is set off by the following command.

aoh

and takes any of the forms of Figure 3.10, depending on the relative values of designer

area and delay priorities.

A.1.4 Experimenting witli Intrinsically Secure states

This section explains how to apply the ideas of facilitating Intrinsically Secure (IS) states

of §6.4.3 within the modified MOODS. Two new MOODS commands are implemented.

The "extract IS states" command

e i

implements step 2 of §6.4.3, that is, it directs the system to traverse all control states, iden-

tify those that have aU three parts (flmctional, redundant, and comparison operations) of

self-checking schemes scheduled at them, and extract the redundant operation, by apply-

ing transformation TF21 to it.

The "merge IS states" command

mi

likewise implements step 4 of §6.4.3. Again it traverses all control states, identifies those

that have a fault secure comparison operation scheduled at them, and applies transforma-

tion TF8 (merge fork and successor) to them.

The "Version 2" realisations explained and presented in §6.4.4 were produced as follows.

* Step 1 : optimise using simulated annealing (a i , ao)

» Step 2 : apply e i (effectively bringing self-checking schemes to the state of Figure

6.26d)

* Step 3 : repeat Step 2 until there is no self-checking scheme at the state of Figure 6.26b

« Step 4 : apply mi (creating conAgurations such as the desired state of Figure 6.26c)

* Step 5 : repeat Step 4 until there is no self-checking scheme at the state of Figure 6.26b

* Step 6 : apply tailored heuristics (aoh)

p. Oikonomakos, 2004 Appendix A: Modif ied MOODS User's Guide 2 8 0

When all desired optimisation has finished, the "finish optimisation" command

f i

terminates the synthesis engine.

A. 1.5 Deliberately separating instructions

This final subsection briefly describes how two instructions can be forcibly separated in

two different control steps if the designer wishes so. The presented feature exists in the

original MOODS tool, and it is used in this thesis to prevent chaining in the manual ex-

periments of §5.3.1.

Consider two consecutive VHDL operations, for example the following two, taken di-

rectly from the examples of §5.3.1.

v8i := v3i + v5i;

S C l := v8i - v5i;

Assmne that it is desirable to forcibly prevent the chaining of the two instructions. The

most explicit way to do that is by directly disallowing the synthesis engine to schedule

them in the same control step, by using a VHDL w a i t f o r statement directly in the

source code, as in the following.

v8i := v3i + v5i;

wait for 10ns;

scl := v8i - v5i;

Any non-zero delay value (e.g. 10ns as above) will cause the synthesis tool to

schedule the subtraction and all instmctions below it, one control step after the ad-

dition and all instructions above it. In essence, the wait statement acts as a '"barrier" pre-

venting the control step below it from merging with any of the control steps above.

Appendix B

Benchmarks

This appendix provides the behavioural VHDL codes for five benchmaric designs used in

this thesis for the experimentation of chapters 5 and 6.

B.1 Tseng

The Tseng datapath was introduced in [121] and it is very often the first benchmark used

for evaluation purposes in the field of behavioural synthesis. That is because it is consid-

ered to be representatives of situations often encountered in the synthesis of real designs.

The VHDL code used in this thesis is as follows.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity bench is

port(v3, v5, v7, v8, v9, vll, vl4, vl5 : out unsigned(15

downto 0));

end bench;

architecture bench_beh of bench is

signal vli, v2i, v3i, v4if v5i, v7i, -v8i, v9i, vlOi,

vlli, vl2i, vl3i, vl4i, vl5i : unsigned(15 downto 0);

begin

p. Oikonomakos, 2004 Appendix B: Benchmarks 282

ma]-n_proc: process

begin

vli < = "1100011111011000";

v2i < = "0000101100111001";

v3i "1110101100110001";

v4i < = "0001000111101001";

v5i < = "0101011111001110";

v7i < = "1100110111111001";

v8i ^ — "0100111101000001";

v9i < = "0011101010010001";

vlOi < ="1100100000011000"

vlli < ="1100100011111001"

vl2i < ="1100101000000101"

vl3i < ="1010110011010001"

vl4i < ="1001111111100111"

vl5i < ="1110000111111101"

loop

v3i ' < = vli + v2i;

- can be commented out

wait for 2 ns;

v5i <= v3i - v4i;

- can be commented out

wait for 2 ns;

v8i <= v3i + v5i;

- can be commented out

wait for 2 ns;

vl4i <= unsigned(std_logic_vector(vlli) and

std_logic_vector(v8i));

vli <= vl4i;

p. Oikonomakos, 2004 Appendix B: Benchmarks 283

vl2i <= vli;

v7i := v3i * 4;

-- can be commented out

Tvait for 2 ns;

v9i <= vli + v7i;

-- can be commented out

wait for 2 ns;

vl5i <= unsigned(std_logic_vector(vl2i) or

std_logic_vector(v9i));

v2i <= vl5i;

vl3i <= v3i;

vlli := vioi / 2;

-- can be commented out

wait for 2 ns;

end loop;

end process;

process

begin

v3 <= v3i

v5 <= v5i

v7 <= v7i

v8 <= v8i

v9 <= v9i

vll <= vlli

vl4 <= vl4i

vl5 <= vl5i

end process;

end bench beh.;

p. Oikonomakos, 2CX)4 Appendix B: Benchmarks 284

Signals v l i - v l 5 i are normally primary input ports. However, it was found that many

FPGAs tried did not have enough input pins to accommodate 15 16-bit primary inputs.

They were therefore converted to internal signals and assigned initial values in the "un-

comfortable" way shown in the code. While this is not elegant or efficient coding, it has

no negative implications as regards the datapath operations, data dependencies and synthe-

sis tasks that are of primary interest here.

An additional point to note on the behavioural code above are the w a i t f o r 2 n s ;

statements found therein. As explained in §A.1.5, these are used to control CS merging

and can be removed or commented out at the designer's discretion.

B.2 Differential equation solver

The Diffeq benchmark is a simple differential equation solver, inspired from [129] and

slightly modified for synthesis within MOODS. The VHDL code is the following.

PACKAGE d i E f e q _ t y p e s I S

SUBTYPE nat is integer range 0 to 65535;

END diffeq_types;

USE work.diffeg_types.all;

entity dif is

port (Xinport: in nat

Yinport: in nat

Uinport: in nat

Aport : in nat

DXport : in nat

Xoutport: out nat

Yoiitport: out nat

Uoutport: out nat

done: out bit)

end dif;

a r c h i t e c t u r e d i f f e q o f d i f i s

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 8 5

signal oldx, oldy, oldu : nat;

signal newx, newy, newu : nat;

begin

MAIN : process

variable x_var^ y_var, u_var, a_var, dx_var: nat;

variable yl, tl, t2, t3, t4, t5, t6: nat;

variable looping : bit:='0';

variable i : nat;

begin

done<='0';

if (looping = '0') then

x_var := Xinport;

y_var := Yinport;

u_var := Uinport;

looping := '1';

else

x_var := newx;

y_var := newy;

u_var := newu;

end i f;

a_var := Aport;

dx_var := DXport;

if (x_var < a_var) then

-- can be commented out

wait for 2 ns;

t1 := u_var * dx_var;

-- can be commented out

wait for 2 ns;

t2 := 3 * x_var;

-- can be commented out

wait for 2 ns;

t3 := 3 * y_var;

-- can be commented out

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 8 6

wait for 2 ns;

t4 := tl * t2;

-- can be commented out

wait for 2 ns;

tS := dx_var * t3;

-- can be commented out

wait for 2 ns;

t6 := u_var - t4;

-- can be commented out

wait for 2 ns;

u_var := t6 - t5;

-- can be commented out

wait for 2 ns;

y1 := u_var * dx_var;

-- can be commented out

wait for 2 ns;

y_var := y_var + yl;

-- can be commented out

wait for 2 ns;

x_var := x_var + dx_var;

oldx <= x_var;

oldy <= y_var;

oldu <= u_var;

else

Xoutport <= x_var;

Youtport <= y_var;

Uoutport <= u_var;

looping := '0';

done<='1';

end if;

-- can be commented out

wait for 2 ns;

end process;

SYNCH: process

p. Oikonomakos, 2004 Appendix B: Benchmarks 287

begin

newx <= oldx;

newy <= oldy;

newu <= oldu;

wait for 2 ns;

end process;

end diffeq;

B.3 QRS

The QRS design is a medical electronics application, also popular as a high-level synthesis

benchmark since first used for benchmarking purposes, in [130].

PACKAGE qrs_types IS

SUBTYPE intl6 IS integer RANGE 32767 DOWNTO -32768;

16 bit integer

SUBTYPE nat2 IS integer RANGE

2 bit unsigned integer

END qrs_types;

3 DOWNTO 0 ;

USE work.qrs_types.all,

ENTITY qrs IS

ecgl : IN intl6;

low : IN intl6;

high : IN intl6;

indx : IN intl6;

ftmlin : IN intl6;

ftm2in : in intl6;

ftmlout: buffer intlS;

ftm2out: buffer intl6;

new data : IN boolean

p. Oikonomakos, 2004 Appendix B: Benchmarks 288

data_done: out boolean;

fl3o : OUT nat2;

RRpeak : OUT boolean;

RRo : OUT intl6);

END qrs;

USE work.qrs_types.all;

ARCHITECTURE system OF qrs IS

BEGIN

qrs_proc: PROCESS

CONSTANT ACTIVE

CONSTANT INACTIVE

: boolean

: boolean

false;

true;

VARIABLE ft, ecgml, ysi : intl6;

VARIABLE ymax, xmax, yO, ath, ys, yOm2, zmax, yOml :

intlG;

VARIABLE sthl, sth2, Ixmax, lymax, Izmax : intl6;

VARIABLE count, RR : intl6;

VARIABLE fl3 : nat2;

VARIABLE fll, fl2 : boolean;

variable y2, y4, y8, yl6, x2, x4, x8, xl6, z2, z4, z(

zl6, 1x8, lyS, IzB : intl6;

variable ecg_dif, ecg_dif256 : intlS;

begin

RRpeak <= Inactive;

fl3o <= 0,

< = 0

: = 0

RRo

yOml

yOm2

ymax

xmax

zmax

= 0

= 0

= 0

= 0

p. Oikonomakos, 2004 Appendix B: Benchmarks 289

y 2

y4

y8

yl6:=0;

x2

X 4

x8

xl6:=0;

z2 : =0

z4 : =0

z8 : =0

Z l 6 : = 0;

RR

lymax

Izmax

Ixmax

1x8:=0

l y B : = 0

lz8:=0

fl3

fll

fl2

count

0;

False;

False;

0;

ecgml := ftmlin;

init: FOR i IN 1 TO indx LOOP -- initialization loop

data_done<=false;

wait on new_data until new_data;

ecg_dif:=ecgl-ecgml;

ecg_dif256:=ecg_dif/256;

ft := ftmlin + ecg_dif - ecg_dif256;

ysi := ft - ftm2in;

can be commented out

p. Oikoaomakos, 2(X)4 Appendix B: Benchmarks 2 9 0

wait for 2 ns;

IF (ysi > ymax) THEN

ymax := ysi;

y2:=ysi/2;

-- can be commented out

wait for 2 ns;

y4:=ysi/4;

-- can be commented out

wait for 2 ns;

y8:=ysi/8;

yl6:=ysi/16;

END IF;

IF (ft > xmax) THEN

xmax := ft;

x2 :=ft/2;

-- can be commented out

wait for 2 ns;

x4:=ft/4;

-- can be commented out

wait for 2 ns;

x8:=ft/8;

Xl6:=ft/16;

END IF;

IF (ft > 0) THEN

yO := ft;

else

yO := -ft;

END IF;

a t h : = X 4 ;

IF (ath > yO) THEN

yO := ath;

END IF;

ys := yO - yOm2;

IF (ys > zmax) THEN

zmax := ys;

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 9 1

z2:=ys/2;

z4:=ys/4;

-- can be commented out

wait for 2 ns;

z8:=ys/8;

Zl6:=ys/16;

END IF;

ftm2out <= ftmlin

ftmlout <= ft;

ecgml := ecgl;

yOm2 := yOml;

yOml := yO;

sthl := y2 + y8 + yl6;

Sth2 := z2 + z8 + zl6;

data_done<=true;

wait for 2 ns;

END LOOP init;

regular : LOOP

IF (ysi > sthl) THEN

fll := true;

count := 0;

END IF;

IF (ys > sth2) THEN

fl2 := true;

count := 0;

END IF;

IF ((fll = true) AND (fl2 = true) AND (RR > low)) THEN

RRpeak <= Active;

xmax := x2 + x4 + x8 + 1x8;

x2:=xmax/2;

can be commented out

wait for 2 ns;

p. Oikonomakos, 2004 Appendix B: Benchmarks 292

x4:=xmax/4;

can be commented out

wait for 2 ns;

x8:=xmax/8;

xl6:=xmax/l6;

ymax := y2 + y4 + y8 + lyB;

y2:=ymax/2;

can be commented out

wait for 2 ns;

y4:=ymax/4;

can be commented out

wait for 2 ns;

y8:=ymax/8;

yl6:=ymax/16;

zmax := z2 + z4 + z8 + lz8;

z2:=zmax/2;

can be commented out

wait for 2 ns;

z4:=zmax/4;

can be commented out

wait for 2 ns;

z8:=zmax/8;

zl6:=zmax/16;

RR

count

f l l

fl2

fl3

Ixmax

1x8:=0

lymax

lyS:=0

1zmax := 0;

lz8:=0;

= 0;

= 0;

= f a l s e ;

= false;

= 0;

= 0;

= 0;

E L S I

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 9 3

RRpeak <= Inactive;

E N D I F ;

IP ((fll = true) OR (fl2 = true)) THEN

count := count + 1;

END IF;

fl3o <= fl3;

RRo <= RR;

data_done<=false;

wait on new_data until new_data;

ecg_dif:=ecgl-ecgml;

ecg_dif256:=ecg_dif/256;

ft := ftmlout + ecg_dif - ecg_dif256;

ysi := ft - ftm2out;

IF (ysi > lymax) THEN

lymax := ysi;

ly8:=ysi/8;

END IF;

IF (ft > Ixmax) THEN

Ixmax := ft;

lx8:=ft/8;

END IF;

IF (ft > 0) THEN

yO := ft;

else

yO := -ft;

END IF;

a t h := X 4 ;

IP (yO < ath) THEN

yO := ath;

END IF;

ys := yO - yOm2;

p. Oikonomakos, 2004 Appendix B: Benchmarks 294

IF (ys > Izmax) THEN

Izmax := ys;

lz8:=ys/8;

END IF;

IF (count = 8) THEN

fll := false;

E12 := false;

count := 0;

END IF;

IF (RR > high) THEN

fl3 := fl3 + 1;

RR := 0;

ymax := y2 ;

-- can be commented out

wait for 2 ns;

y2:=ymax/2

y4:=ymax/4

y8:=ymax/8

yl6:=ymax/16;

zmax := z2;

- can be commented out

wait for 2 ns;

z2:=zmax/2;

z4:=zmax/4;

z8:=zmax/8;

zl6:=zmax/l6;

E N D I F ;

Sthl := y2 + y8 + yl6;

Sth2 := z2 + z8 + zl6;

RR := RR + 1;

ecgml := ecgl;

yOm2 := yOml;

yOml := yO;

ftm2out <= ftmlout;

ftmlout <= ft;

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 9 5

data_done<=true;

wait for 2 ns;

END LOOP regular;

END PROCESS qrs_proc;

END system;

Clearly it is a sizeable design. Hence it was claimed in chapter 5 that it is particularly en-

couraging that modified MOODS was able to cope with it.

B.4 Viterbi decoder

The 8-bit Viterbi decoder recently presented in [131] and used as a benchmark in chapters

5 and 6, is shown in the following. It can be observed that it is composed of 8 almost iden-

tical concurrent processes. There is also a 32-bit version (comprising 32 processes) used in

one experiment (Table 5.41), not shown here for brevity.

package pack_Viterbi is

type four_bit_array is array (0 to 7) of integer range 0 to

6;

type array_of_bit_vector is array (0 to 3) of bit_vector(0

to 7) ;

type two_bit_integer_array is array (0 to 1) of integer

range 0 to 6;

procedure vector_m'ultiO(entri:in bit; wpa, wpb: in integer

range 0 to 6; pathO, pathl: in bit_vector(0 to 7);

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) ;

procedure vector_multil(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 9 6

pathx : out bit_vector(0 to 7); wpliout integer range 0

to 6) ;

procedure vector_multi2(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

pathx : out bit_vector(0 to 7); wpliout integer range 0

to 6) ;

procedure vector_multi3(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) ;

procedure vector_multi4(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) ;

procedure vector_multi5(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) ;

procedure vector_multi6(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) ;

procedure vector_multi7(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) ;

end pack Viterbi;

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 9 7

package body pack_Viterbi is

procedure vect:or_multiO(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

-- moods inline

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) is

variable weight_vector: integer range 0 to 6;

begin

if (entri='0') then -- this only makes a one clock cycle

difference

weight_vector:=wpb+l; --doing this reduced one clock cycle

if weight_vector <= wpa then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx:=pathl(l to 7)&'l';

else

wpl:=weight_vector;

end if;

else

if (wpa < 2) then

wpl:=wpa;

pathx::=pathO(l to 7)&'0';

else

wpl:=wpa;

end if;

end if;

else

weight_vector:=wpa+l;

if weight_vector <= wpb then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx:=pathO(l to 7)&'0';

else

wpl:=weight_vector;

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 9 8

end if;

else

if < 2) then

wpl:=wpb;

pathx:=pathl(l to

else

wpl:=wpb;

end if;

end if;

end if;

end vector_multiO;

procedure vector_multil(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

-- moods inline

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) is

variable weight_vector: integer range 0 to 6;

begin

if (entri='0') then

weight_vector:=wpb+l;

if weight_vector <= wpa then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx::=pathl(l to 7)&'l';

else

wpl:=weight_vector;

end if;

else

if (wpa < 2) then

wpl:=wpa;

pathx:=pathO(l to 7)&'0';

else

wpl:=wpa;

p. Oikonomakos, 2004 Appendix B: Benchmarks 2 9 9

end if;

end if;

else

weight_vector:=wpa+l;

if weight_vect:or <= wpb then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx:=pathO(l to 7)&'0';

else

wpl:=weight_vector;

end if;

else

if (wpb < 2) then

wpl:=wpb;

pathx:=pathl(l to 7)&'l';

else

wpl:=wpb;

end if;

end if;

end if;

end vector_mu.ltil;

procedure vector_multi2(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

-- moods inline

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) is

variable weight_vector: integer range 0 to 6;

begin

if (entri='0') then

weight_vector:=wpb+l;

if weight_vector <= wpa then

if (weight_vector < 2) then

wpl:=weight vector;

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 0

pathx:=pathl(l to

else

wpl:=weight_vector;

end if;

else

if (wpa < 2) then

wpl:=wpa;

pathx:=pathO(l to 7)&'0';

else

wpl:=wpa;

end if;

end if;

else

weight_vector:=wpa+l;

if weight_vector <= wpb then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx::=pathO(l to 7)&'0';

else

wpl:=weight_vector;

end if;

else

if (wpb < 2) then

wpl:=wpb;

pathx:=pathl(l to 7)&:'l';

else

wpl:=wpb;

end if;

end i f;

end if;

end vector_multi2;

procedure vector_multi3(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 1

-- moods inline

pathx : out bit_vector(0 to 7); wpliout integer range 0

to 6) is

variable weight_yector: integer range 0 to 6;

begin

if (entri='0') then

weight_vector:=wpb+l;

if weight_vector <= wpa then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx:=pathl(l to 7)&'l';

else

wpl:=weight_vector;

end if;

else

if (wpa < 2) then

wpl:=wpa;

pathx:=pathO(l to 7)&'0';

else

wpl:=wpa;

end if;

end if;

else

weight_vector:=wpa+l;

if weight_vector <= wpb then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx:=pathO(l to 7)&'0';

else

wpl:=weight_vector;

end if;

else

if (wpb < 2) then

wpl:=wpb;

pathx:=pathl(l to 7)&'l';

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 2

else

wpl:=wpb;

end if;

end if;

end if;

end vector_multi3;

procedure vector_mul1:i4(en1:ri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

-- moods inline

pathx : out bit_vector(0 to 7); wpliout integer range 0

to 6) is

variable weight_vector: integer range 0 to 6;

begin

if (entri='0') then

weight_vector: =:wpb+l;

if weight_vector <= wpa then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx::=pathl(l to 7)&'l';

else

wpl:=weight_vector;

end if;

else

if (wpa < 2) then

wpl:=wpa;

pathx:=pathO(l to 7)&'0';

else

wpl:=wpa;

end if;

end if;

else

weight_vector:=wpa+l;

if weight_vector <= wpb then

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 3

if (weight_vect:or < 2) then

wpl:=weight_vector;

pathx:=pathO(l to 7)&'0';

else

wpl:=weight_vector;

end if;

else

if (wpb < 2) then

wpl:=wpb;

pathx:=pathl(l to 7)&'l';

else

wpl: =:wpb;

end if;

end if;

end if;

end vector_multi4;

procedure vector_multi5(entri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

-- moods inline

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) is

variable weight_vector: integer range 0 to 6;

begin

if (entri='0') then

weight_vector:=wpb+l;

if weight_vector <= wpa then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx::=pathl(l to 7)&'l';

else

wpl:=weight_vector;

end if;

else

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 4

if (wpa < 2) then

wpl:=wpa;

pathx:=pathO(l to 7)&'0';

else

wpl:=wpa;

end if;

end if;

else

weight_vector:=wpa+l;

if weight_vector <= wpb then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx::=pathO(l to 7)&'0';

else

wpl:=weight_vector;

end if;

else

if (wpb < 2) then

wpl:=wpb;

pathx:=pathl(l to 7)&'l';

else

wpl:=wpb;

end if;

end i f;

end if;

end vector_multi5;

procedure vector_multi6(entri:in bit; wpa^wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

-- moods inline

pathx : out bit_vector(0 to 7); wpl:out integer range 0

to 6) is

variable weight_vector: integer range 0 to 6;

begin

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 5

if (entri='0') then

weight_vector:=wpb+l;

if weight_vector <= wpa then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx:=pathl(l to

else

wpl:=weight_vector;

end if;

else

if (wpa < 2) then

wpl;=wpa;

pathx:=pathO(l to

else

wpl:=wpa;

end if;

end if;

else

weight_vector:=wpa+l;

if weight_vector <= wpb then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx::=pathO(l to 7)&'0';

else

wpl:=weight_vector;

end i f;

else

if (wpb < 2) then

wpl:=wpb;

pathx:=pathl(l to 7)&'l';

else

wpl:=wpb;

end if;

end if;

end if;

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 6

end vect:or_miilti6;

procedure vector_multi7(ent:ri:in bit; wpa,wpb:in integer

range 0 to 6; pathO,pathl: in bit_vector(0 to 7);

-- moods inline

pathx : out bit_vector(0 to 7); wplzout integer range 0

to 6) is

variable weight_vector: integer range 0 to 6;

begin

if (entri='0') then

weight_vector:=wpb+l;

if weight_vector <= wpa then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx::=pathl(l to 7)&'l';

else

wpl:=weight_vector;

end if;

else

if (wpa < 2) then

wpl:=wpa;

pathx::=pathO(l to 7)&'0';

else

wpl:=wpa;

end if;

end if;

else

weight_vector:=wpa+l;

if weight_vector <= wpb then

if (weight_vector < 2) then

wpl:=weight_vector;

pathx:=pathO(l to 7)&'0';

else

wpl:=weight_vector;

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 7

end if;

else

if (wpb < 2) then

wpl:=wpb;

path)(:=pathl(l to

else

wpl:=wpb;

end if;

end i f;

end if;

end vector_multi7;

end pack_Viterbi;

use work.pack_Viterbi.ALL;

entity ent_Viterbi is

PORT (entry: in bit;

exitxO, exitxl, exitx2, exitx3, exitx4, exitxS,

exitxS, exitx7: out bit_vector(0 to 7));

end ent_Viterbi;

architecture arch_Viterbi of ent_Viterbi is

signal wO:four_bit_array:=(0,3,3,3,3,3,3,3);

signal pathO , pathl, path2 , path3 , path4, paths , paths, path7 :

bit_vector(0 to 7);

begin

process

begin

exitxO<=pathO;

exitxl<=pathl;

exitx2<=path2;

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 8

exitx3<=path3

exitx4<=path4

exitx5<=path5

exitx6<=pat:h6

exitx7<=path7

wait for 1 ns

end process;

entryO:process

variable wx: integer range 0 to 6;

variable pathx: bit_vector(0 to 7);

begin

wait for 1 ns;

vector_multiO(entry,wO(0),wO(4),pathO,path4,pathx,wx);

pathO<=pathx;

wO(0)<=WX;

end process entryO;

entryl:process

variable wx: integer range 0 to 6;

variable pathx: bit_vector(0 to 7);

begin

wait for 1 ns;

vector_multil(entry,wO(5),wO(1),paths , pathl,pathx,wx);

pathl<=pathx;

wO(1)<=wx;

end process entryl;

entryZ:process

variable wx: integer range 0 to 6;

variable pathx: bit_vector(0 to 7);

begin

wait for 1 ns;

vector_multi2 (entry, wO (1) , wO (5) ,pathl,paths, pathx, wx) ;

path2<=pathx;

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 0 9

wO(2)<=WX;

end process entry2;

entry]:process

variable wx: integer range 0 to 6;

variable pathx: bit_vector(0 to 7);

begin

wait for 1 ns;

vector_multi3 (entry, wO (4) , wO (0) ,path4 , pathO , pathx, wx) ;

paths<=pathx;

wO (3)<=wx;

end process entry3;

entry4:process

variable wx: integer range 0 to 6;

variable pathx: bit_vector(0 to 7);

begin

wait for 1 ns;

vector_multi4 (entry, wO (2) , wO (6) ,path2 , pathG , pathx, wx) ;

path4<=pathx;

wO(4)<=wx;

end process entry4;

entryS:process

variable wx: integer range 0 to 6;

variable pathx: bit_vector(0 to 7);

begin

wait for 1 ns;

vector_multiS (entry ,wO (7) , wO (3) , path7, path3 , pathx, wx) ;

path5<=pathx;

wO(5)<=wx;

end process entryS;

entry6:process

variable wx: integer range 0 to 6;

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 1 0

variable pathx: bit_vector(0 to 7);

begin

wait for 1 ns;

vector_multi6 (entry, wO (3) , wO (7) ,path] , path?, pathx, wx) ;

path6<=pathx;

wO(6)<=wx;

end process entryG;

entry?:process

variable wx: integer range 0 to 6;

variable pathx: bit_vector(0 to 7);

begin

wait for 1 ns;

vector_multi? (entry, wO (6) , wO (2) , path6, path2 , pathx, wx) ;

path7<=pathx;

wO(7)<=wx;

end process entry?;

end arch_Viterbi;

B.5 Greater Common Divider

The greater common divider (GCD) benchmark is the last design listed here.

entity GCD is

port (X, Y : in integer range 0 to 65535;

gcd_output : out integer range 0 to 655]5);

end GCD;

architecture behavioural of GCD is

begin

BIGLOOP: process

variable xvar, yvar : integer range 0 to 65535;

begin

p. Oikonomakos, 2004 Appendix B: Benchmarks 3 1 1

wait for 2 0 ns;

xvar := X;

yvar := Y;

if ((xvar = 0) or (yvar = 0)) then

gcd_outp'ut <= 0;

xvar := 0;

yvar := 0;

else

COMP: loop

wait for 2 0 ns;

if (xvar < yvar) then

yvar := yvar - xvar;

else

if (xvar > yvar) then

xvar := xvar - yvar;

end i f;

end if;

exit COMP when (xvar = yvar);

end loop COMP;

gcd_output <= xvar;

end if;

wait on x,y;

end process;

end behavioural;

Appendix C

List of papers

The research work in this thesis was presented and published in the ofGcial proceedings

of rigorously refereed conferences through the following research papers:

" P. Oikonomakos and M. Zwohnski, "Transformation Based Insertion of On-Line Test-

ing Resources in a High-Level Synthesis Environment", 8* IEEE International On-Line

Testing Workshop (IOLTW02), Isle of Bendor, Trance 2002, p. 185 [poster presentation,

paper available at http://www.cl.cam.ac.uk/'-po230/ioltw02.pdf]

" P. Oikonomakos, M. Zwolinski and B. M. Al-Hashimi, " FerjafzVe

[AzMg an On-Zme jWĝ rzc'% Design Automation and

Test in Europe Conference and Exhibition (DATE03), Munich, Germany 2003, pp 596-

601 [oral presentation, paper available at http://www.cl.cam.ac.uk/-po230/date03.pdf]

» P. Oikonomakos and M. Zwolinski, " f C o M f r o Z -

/er Dg.yzgM", 9""̂ IEEE International On-Line Testing Symposium

(IOLTS03), Kos Island, Greece 2003, pp 30-34 [oral presentation, paper available at

http://www.cl.cam. ac.uk/-'po230/iolts03.pdf]

The following informal presentations were also given :

* P. Oikonomakos and M. Zwolinski, ẑgA-Z,gvgZ /o //MpZemgnf Ow-

Amg rgj/a ẑYzYy", lEEE/IEE Real-Time Embedded Systems Workshop (RTESOl), Lon-

don, UK 2001

" P. Oikonomakos and M. Zwolinski, "Tfzg/z-Zgve/ ^^/zfAgj'z.yOn-Zzng 7g.yfa6z'Zz(y",

Postgraduate Research in Electronics, Photonics, communications and software (PREP02),

Nottingham, UK 2002

http://www.cl.cam.ac.uk/'-po230/ioltw02.pdf
http://www.cl.cam.ac.uk/-po230/date03.pdf
http://www.cl.cam

p. Oikonomakos, 2004 Appendix C: List of papers

P. Oikonomakos, OM-Z,z'Mg 7e^fa6/g Dej igw m

5'̂ SIGDA PhD Forum at the Design Automation Conference (DAC02), New Orleans,

USA 2002

« P. Oikonomakos and M. Zwohnski, "OM-Zme 7gjfa6;7zYy m a

Coj/fuMC ;̂oM-Drh;gM /fzgA-Zgve/ % 2"'' UK ACM SIGDA

Workshop on Electronic Design Automation (UKSIGDA02), Bournemouth, UK 2002

" P. Oikonomakos and M. Zwolinski, "CoM^oZ/gr 5'g^cAecAmg m a CoM(ro//gr /

y4rc/zzYec/«rg", 3"' UK ACM SIGDA Workshop on Electronic Design Automa-

tion (UKSIGDA03), Southampton, UK 2003

References

1. M. Abramovici, M.A. Breuer, A.D. Friedman, "Digital Systems Testing and Test-

able Design", IEEE Press 1990.

2. P.K. Lala, "Fault tolerant & Fault testable hardware design", Prentice Hall 1985.

3. G.E. Moore, "Cramming more components onto integrated circuits", Electronics,

Vol. 38, No. 8, April 1965.

(available at ApV/download.intel.com/research/silicon/moorespaper.pdf)

4. International Technology Roadmap for Semiconductors (ITRS), 2003 edition,

(available at http://public.itrs.net/Files/2003ITRS/Home2003.htm)

5. M. Nicolaidis, L. Anghel, "Concurrent Checking for VLSI", Microelectronic En-

gineering, Vol. 49, No. 1-2, November 1999, p. 139-156.

6. A.K. Nieuwland, R.P. Kleihorst, "The Positive Effect on IC Yield of Embedded

Fault Tolerance for SEUs", IEEE International On-line Testing Symposium, 2003,

p. 75-79.

7. J.J.A. Foumier, S. Moore, H. Li, R. MuUins, G. Taylor, "Security Evaluation of

Asynchronous Circuits", International Workshop on Cryptographic Hardware and

Embedded Systems, 2003, p. 137-151 (LNCS 2779).

8. A.C. Williams, "A Behavioural VHDL synthesis system using data path optimisa-

tion", PhD Thesis, University of Southampton, 1997.

9. M. Nicolaidis, Y. Zorian, "On-line Testing for VLSI - A compendium of ap-

proaches", Journal of Electronic Testing - Theory and Applications, Vol. 12, No.

1-2, February-April 1998, p. 7-20.

10. D.A. Anderson, G. Metze, "Design of Totally Self-Checking Check Circuits for m-

out-of-n Codes", IEEE Transactions on Computers, Vol. 22, No. 3, March 1973, p.

263-269.

http://public.itrs.net/Files/2003ITRS/Home2003.htm

p. Oikonomakos, 2004 References 3 1 5

11. S. Tamick, "Controllable Self-Checking Checkers for Conditional Concurrent

Checking", IEEE Transactions on CAD, Vol. 14, No. 5, May 1995, p. 547-553.

12. S. Tamick, "Embedded Parity and Two-Rail TSC Checkers with Error-

Memorizing Capability", VLSI Design, Vol. 5, No. 4, 1998, p. 347-356.

13. J.E. Smith, G. Metze "Strongly Fault Secure Logic Networks", IEEE Transactions

on Computers, Vol. 27, No. 6, June 1978, p. 491-499.

14. S.J. Piestrak, "Self-checking design in Eastern Europe", IEEE Design & Test of

Computers, Vol. 13, No. 1, Spring 1996, p.16-25.

15. M. Nicolaidis, R.O. Duarte, S. Manich, J. Figueras, "Fault-Secure Parity Prediction

Arithmetic Operators", IEEE Design & Test of Computers, Vol. 14, No. 2, April-

June 1997, p. 60-71.

16. M. Nicolaidis, R.O. Duarte, "Design of Fault-Secure Parity-Prediction Booth

Multipliers", Design Automation and Test in Europe, 1998, p. 7-14.

17. J. Khakbaz, E.J. McCluskey, "Self-Testing Embedded Parity Checkers", IEEE

Transactions on Computers, Vol. 33, No. 8, August 1984, p. 753-756.

18. D. Nikolos, "Optimal Self-Testing Embedded Parity Checkers", IEEE Transac-

tions on Computers, Vol. 47, No. 3, March 1998, p. 313-321.

19. S. Tamick, "Embedded Parity and Two-Rail TSC Checkers with Error Memoriz-

ing Capability", IEEE Intemational On-line Testing Workshop, 1995, p. 221-225.

20. S. Tamick, "Embedded Parity and Two-Rail TSC Checkers with Error Memoriz-

ing Capability", University of Potsdam Technical Report MPI-I-94-606, 1994.

(available at http://www.ift.cs.uiii-potsdam.de/agfr/english/reports.html/MPI-I-94-

606.ps.gz)

21. M.Y. Hsiao, A.M. Patel, D.K. Pradhan, "Store Address Generator with On-Line

Fault-Detection Capability", IEEE Transactions on Computers, Vol. 26, No. 11,

November 1977, p. 1144-1151.

22. C. Zeng, N. Saxena, E.J. McCluskey, "Finite State Machine Synthesis with Con-

current Error Detection", IEEE Intemational Test Conference, 1999, p. 672-679.

http://www.ift.cs.uiii-potsdam.de/agfr/english/reports.html/MPI-I-94-

p. Oikonomakos, 2004 References 3 1 6

23. G. Lakshminarayana, A. Raghimathaii, N.K. Jha "Behavioral Synthesis of Fault

Secure Controller/Datapaths Based on Aliasing Probability Analysis", IEEE

Transactions on Computers, Vol. 49, No. 9, September 2000, p. 865-885.

24. A.M. Paschalis, D. Nikolos, C. Halatsis, "EfBcient Modular Design of TSC

Checkers for M-out-of-2M-Codes", IEEE Transactions on Computers, Vol. 37,

No. 3, March 1988, p. 301-309.

25. W.F. Chang, C.W. Wu, "Low-cost Modular Totally Self-checking Checker Design

for m-out-of-n Code", IEEE Transactions on Computers, Vol. 48, No. 8, August

1999,p.815-826.

26. V.V. Dimakopoulos, G. Sourtziotis, A. Paschahs, D. Nikolos, "On TSC Checkers

for m-out-of-n Codes", IEEE Transactions on Computers, Vol. 44, No. 8, August

1995,p.1055-1059.

27. S.J. Piestrak, "Design of Self-Testing Checkers for m-out-of-n Codes Using Paral-

lel Counters", Journal of Electronic Testing - Theory and Applications, Vol. 12,

No. 1-2, February-April 1998, p. 63-68.

28. X. Kavousianos, D. Nikolos, G. Sidiropoulos, "Design of Compact and High

speed, Totally Self Checking CMOS Checkers for m-out-of-n Codes", IEEE Inter-

national Symposium on Defect and Fault Tolerance in VLSI System, 1997, p. 128-

136.

29. J. Khakbaz, "Totally Self-Checking Checker for 1-out-of-n Code Using Two-Rail

Codes", IEEE Transactions on Computers, Vol. 31, No. 7, July 1982, p. 677-681.

30. D.L. Tao, C.R.P. Hartmann, P.K. Lala, "A General Technique for Designing To-

tally Self-Checking Checker for 1-out-of-N Code with Minimum Gate Delay",

IEEE Transactions on Computers, Vol. 41, No. 7, July 1992, p. 881-886.

31. A.M. Paschalis, C. Efstathiou, C. Halatsis, "An Efficient TSC l-out-of-3 Code

Checker", IEEE Transactions on Computers, Vol. 39, No. 3, March 1990, p. 407-

411.

p. Oikonomakos, 2004 References 3 1 7

32. J.-C. Lo, S. Thanawastien, "On the Design of Combinational Totally Self-

Checking l-out-of-3 Code Checkers", IEEE Transactions on Computers, Vol. 39,

No.3, March 1990, p. 387-393.

33. C. Metra, M. Favalli, B. Ricco, "Novel 1-out-of-n CMOS checker", lEE Electron-

ics Letters, Vol. 30, No. 17, August 18, 1994, p. 1398—1400.

34. A.P. Strode, S. Tamick, "Programmable embedded self-testing checkers for all-

unidirectional error-detecting codes", IEEE VLSI Test Symposium, 1999, p. 361-

369.

35. W.-F. Chang, C.-W. Wu, "TSC Berger-code Checker Design for Z'̂ '-Bit Informa-

tion", Journal of Information Science and Engineering, Vol. 15, No. 3, 1999, p.

4 2 9 ^ 1 .

36. M. Lobetti-Bodoni, A. Phcco, A. Benso, S. Chiusano, P. Prinetto, "An on-line

BISTed SRAM IP core", IEEE International Test Conference, 1999, p. 993-1000.

37. R. Leveugle, "Automatic Modifications of High Level VHDL Descriptions for

Fault Detection or Tolerance", Design Automation and Test in Europe (DATE)

2002, p. 837 - 841.

38. C. Bolchini, R.. Montandon, F. Salice, D. Sciuto, "Design of VHDL-based totally

self-checking finite-state machine and data-path descriptions", IEEE Transactions

on VLSI, Vol. 8, No. 1, February 2000, p. 98-103.

39. C. Bolchini, R. Montandon, F. Salice, D. Sciuto, "Self-checking FSMs based on a

constant distance state encoding", IEEE International Symposium on Defect and

Fault Tolerance in VLSI System, 1995, p. 269-277.

40. S. Tamick, A.P. Stroele, "Embedded Self-testing checkers for low-cost arithmetic

codes", IEEE International Test Conference, 1998, p. 514-523.

41. I. Alzaher Noufal, M. Nicolaidis, "A CAD framework for generating self-checking

multipliers based on residue codes", Design Automation and Test in Europe

(DATE), 1999, p. 122-131.

p. Oikonomakos, 2004 References 318

42. M. Nicolaidis, "Self-exercising checkers for UniGed Built-in Self-Test (UBIST)",

IEEE Transactions on CAD, Vol. 8, No. 3, March 1989, p. 203-218.

43. X. Sun, M. Serra, "On-line and ofF-line testing with shared resources : a new BIST

approach", IEEE Transactions on CAD, Vol. 16, No. 9, September 1997, p. 1045-

1056.

44. M. Goessel, E.S. Sogomonyan, "A parity-preserving multi-input signature analyser

and its application for concurrent checking and BIST", Journal of Electronic Test-

ing - Theory and Apphcations, Vol. 8, No. 2, AprH 1996, p. 165-177.

45. E.S. Sogomonyan, M. Goessel, "A New Parity-Preserving Multi-Input Signature

Analyzer", IEEE International On-line Testing Workshop, 1995, p. 211-215.

46. A. Hlawiczka, M. Gossel, E. Sogomonyan, "A Linear Code-Preserving Signature

Analyser COPMISR", IEEE VLSI Test Symposium, 1997, p. 350-355.

47. C. Stroud, M. Ding, S. Seshadri, I. Kim, S. Roy, S. Wu, R. Karri, "A Parametrized

VHDL Library for On-line Testing", International Test Conference, 1997, p. 479-

488.

48. J. Bhasker, "A VHDL Primer", Prentice HaU 1999.

49. M. Zwolinski, "Digital System Design with VHDL", Prentice Hall 2000.

50. M. Nicolaidis, "Time Redundancy Based Soft-Error Tolerance to Rescue Nanome-

ter Technologies", IEEE VLSI Test Symposium, 1999, p. 86-94.

51. S. Mitra, E.J. McCluskey, "Which concurrent error detection scheme to choose?",

IEEE International Test Conference, 2000, p. 985-994.

52. S. Mitra, N.R. Saxena, E.J. McCluskey, "Fault Escapes in Duplex Systems", IEEE

VLSI Test Symposium, 2000, p. 453-458.

53. S. Mitra and E.J. McCluskey, "Combinational Logic Synthesis for Diversity in

Duplex Systems", IEEE International Test Conference, 2000, p. 179-188.

p. Oikonomakos, 2004 References 3 1 9

54. M. Saeed, D. Thulbom, J. Yeandel, S. Jones, "IFIS - A n On-line Testing Method-

ology Using Dual-Rail Data Coding", IEEE International On-Line Testing Work-

shop, 1996, p. 68-71.

55. J. Yeandel, D. Thulbom, S. Jones, "An on-line testable UAR.T implemented using

IFIS", IEEE VLSI Test Symposium, 1997, p. 344-349.

56. J. Yeandel, D. Thulbom, S. Jones, "IFIS : an online test methodology", lEE Pro-

ceedings - Circuits, Devices and Systems, Vol. 145, No. 1, February 1998, p. 1-6.

57. J. Yeandel, D. Thulbom, S. Jones, "The design and implementation of an on-line

testable UAR.T", Journal of Electronic Testing - Theory and Applications, Vol. 12,

No. 3, June 1998, p. 187-198.

58. D. Nikolos, "Self-Testing Embedded Two-Rail Checkers", Journal of Electronic

Testing - Theory and Applications, Vol. 12, No. 1-2, February-April 1998, p. 69-

79.

59. M. Seuring, M. Goessel, E. Sogomonyan, "A Stmctural Approach for Space

Compaction for Concurrent Checking and BIST", IEEE VLSI Test Symposium,

1998, p. 354-361.

60. A. Orailoglu, R. Karri, "Automatic Synthesis of Self-Recovering VLSI Systems",

IEEE Transactions on Computers, Vol. 45, No. 2, February 1996, p. 131-142.

61. R. Narasimhan, D.J. Rosenkrantz, S.S. Ravi, "EfGcient algorithms for analyzing

and synthesizing lault-tolerant datapaths", IEEE International Symposium on De-

fect and Fault Tolerance in VLSI System, 1995, p. 81-89.

62. S.N. Hamilton, A. Orailoglu, "On-line test for fault-secure fault identification",

IEEE Transactions on VLSI, Vol. 8, No. 4, August 2000, p. 446-452.

63. S.N. Hamilton, A. Orailoglu, A. Hertwig, "Self Recovering Controller and

Datapath Codesign", Design Automation and test in Europe (DATE), 1999, 596-

601.

64. R. Karri, B. Iyer, "Introspection : A Register Transfer Level Technique for Con-

cuiTent Error Detection and Diagnosis in Data Dominated Designs", ACM Trans-

p. Oikonomakos, 2004 References 3 2 0

actions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001,

p. 501-515.

65. A. Antola, F. Ferrandi, V. Piuri, M. Sami, "Semiconcurrent Error Detection in

Data Paths", IEEE Transactions on Computers, Vol. 50, No. 5, May 2001, p. 449-

465.

66. K. Wu, R. Karri, "Exploiting Idle cycles for Algorithm Level Re-Computing", De-

sign Automation and Test in Europe (DATE) 2002, p. 842-846.

67. K. Wu, R. Karri, "Register Transfer Level Approach to Hybrid Time and Hard-

ware Redundancy Based Fault Secure Datapath Synthesis", IEEE International

Test Conference, 2003, p. 902-911.

68. K Wu, R. Karri, "Re-computing using Ruptured Dependencies : A Low-cost,

Low-latency Register Transfer Level Approach to Fault-Secure Datapaths", IEEE

North Atlantic Test Workshop, 2003.

69. K. Wu, R. Karri, "Algorithm level recomputing using allocation diversity: a regis-

ter transfer level approach to time redundancy-based concurrent error detection",

IEEE Transactions on CAD, Vol. 21, Vol. 9, September 2002, p. 1077- 1087.

70. R. Karri, K. Wu, "Algorithm level re-computing using implementation diversity: a

register transfer level concurrent error detection technique", IEEE Transactions on

VLSI, Vol. 10, No. 6, December 2002, p. 864- 875.

71. KK. Saliya, R. Sharma, C.R Kime, "A Concurrent Testing Technique for Digital

Circuits", IEEE Transactions on CAD, Vol. 7, No. 12, December 1988, p. 1250-

1259.

72. J.M.V. Santos, "Concurrent Scan Monitoriag and Multi-Pattern Search", IEEE In-

ternational On-line Testing Workshop, 2000, p. 107-111.

73. A.D. Brown, K.R. Baker, A.J.C. Williams, "On-hne testing of statically and

dynamically scheduled synthesized systems", IEEE Transactions on CAD, Vol. 16,

No. 1, January 1997, p. 47-57.

p. Oikonomakos, 2004 References 321

74. K.R. Baker, M. Zwolinski, A.D. Brown, "Concurrent Testing of Latent Modules in

Synthesized Systems", IEEE International On-line Testing Workshop, 1995, p.

196-200.

75. A.C. Williams, A.D. Brown, M. Zwolinski, "In-line test of synthesized systems

exploiting latency analysis", lEE Proceedings : Computers and Digital Techniques,

Vol. 147, No. 1, January 2000, p. 33-41.

76. H. Al-Asaad, J.P. Hayes, B.T. Murray, "Scalable test generators for high-speed

datapath circuits", Journal of Electronic Testing - Theory and Applications, Vol.

12, No. 1-2, February-April 1998, p. 111-125.

77. G. Al-Hayek, C. Robach, "From Specification Validation to Hardware Testing : A

Unified Method", IEEE International Test Conference, 1996, p. 885-893.

78. F. Ferrandi, G. Ferrara, G. Fomana, F. Fummi, D. Sciuto, "Testability Alternatives

Exploration through Functional Testing", IEEE VLSI Test Symposium, 2000, p.

423-428.

79. R. Singh, J. Knight, "Concurrent testing in High Level Synthesis", IEEE Interna-

tional Symposium on High-level Synthesis, 1994, p. 96-103.

80. M.L. Flottes, D. Hammad, B. Rouzeyre, "Automatic Synthesis of BISTed Data

Paths From High Level Specification", European Design & Test Conference, 1994.

81. U. Kac, G. Papa, F. Novak, J. Silc, "On-line testing of a discrete PID regulator : a

case study", EUROMICRO 1997, p. 216-221.

82. U. Kac, F. Novak, C. Aktouf, C. Robach, "Combined Resource Allocation and

Test Generation for On-line Test Structures", IEEE International On-line Testing

Workshop, 1999, p. 211-215.

83. A.A. Ismaeel, R. Bhatnagar, R. Mathew, "Concurrent testing in high-level synthe-

sis", Microelectronics Reliability, Vol. 40, No. 12, December 2000, p. 2095-2106.

84. A. A. Ismaeel, R. Bhatnagar, R. Mathew, "Modification of scheduled data flow

graph for on-line testability", Microelectronics Reliability, Vol, 39, No. 10, Octo-

ber 1999,p.1473-1484.

p. Oikonomakos, 2004 References 3 2 2

85. A.A. Ismaeel, R. Matbew, R. Bhatnagar, "Module allocation for on-line testing",

Microelectronics Reliability, Vol. 40, No. 6, June 2000, p. 1011-1021.

86. M.A. Naal, E. Simeu, "High Level Synthesis Methodology for On-line Testability

Optimization", IEEE International On-line Testing Workshop, 2000, p. 201-206.

87. F. Mayer, A.P. Stroele, "A Versatile BIST technique combining test registers and

accumulators", IEEE International Conference on VLSI Design, 2000, p. 412-415.

88. A.P. Stroele, "Synthesis for arithmetic built-in self-test", IEEE VLSI Test Sympo-

sium, 2000, p. 165-170.

89. A.P. Stroele, "Synthesizing data paths with arithmetic self-test", IEEE Interna-

tional Symposium on Circuits and Systems, 2000, p. 11-45 -11-48.

90. N. Mukheqee, J. R^ski, J. Tyszer, "Design of Testable Multipliers for Fixed-width

Data Paths", IEEE Transactions on Computers, Vol. 46, No. 7, July 1997, p. 795-

810.

91. D. Gizopoulos, A. Paschalis, Y. Zorian, "An Effective BIST Scheme for

Datapaths", IEEE International Test Conference, 1996, p.76-85.

92. R. Karri, N. Mukheqee, "Versatile BIST : An Integrated Approach to On-line /

Off-hne B I S r ' , IEEE International Test Conference, 1998, p. 910-917.

93. I. Bayraktaroglu, A. Orailoglu, "Low-cost on-line test for digital filters", IEEE

VLSI Test Symposium, 1999, p. 446-451.

94. I. Bayraktaroglu, A. Orailoglu, "Unifying Methodologies for High Fault Coverage

Concurrent and Off-line Test of Digital Filters", IEEE International Symposium on

Circuits and Systems, v. 2, 2000, p. 11-705 -11-708.

95. A. Abdelhay, E. Simeu, "Analytical Redundancy Based Approach for Concurrent

Fault Detection in Linear Digital Systems", IEEE International On-line Testing

Workshop, 2000, p. 112-117.

96. A. Bogliolo, M. Favalli, M. Damiani, "Enabling Testability of Fault-Tolerant Cir-

cuits by means of loDQ-checkable voters", IEEE Transactions on VLSI, Vol. 8, No.

4, August 2000, p. 415-418.

p. Oikonomakos, 2004 References 3 2 3

97. A. Paschalis, D. Gizopoulos, N. Gaitanis, "Concurrent Delay Testing in Totally

Self-Checking Systems", Journal of Electronic Testing — Theory and AppHcations,

Vol. 12, No. 1-2, February-April 1998, p. 55-61.

98. M. Favalli, C. Metra, "Bus Crosstalk Fault-Detection Capabilities of Error Detect-

ing Codes for On-line Testing", IEEE Transactions on VLSI, Vol. 7, No. 3, Sep-

tember 1999.

99. C. Metra, M. Favalli, B. Ricco, "On-line detection of logic errors due to crosstalk,

delay and transient faults", IEEE International Test Conference, 1998, p. 524-533.

100. P. Kollig, "Algorithms for Scheduling, Allocation and Binding in High Level Syn-

thesis", PhD Thesis, Staffordshire University, 1998.

101. G. Economakos, P. Oikonomakos, I. Poulakis, I. Panagopoulos, G. Papakonstanti-

nou, "Behavioral Synthesis with SystemC", Design Automation and Test in

Europe (DATE), 2001, p. 21-25.

102. G. De Micheh, "Synthesis and Optimisation of Digital Circuits", McGraw - HiU

1994.

103. M.T.C. Lee, "High-Level Test Synthesis of Digital VLSI Circuits", Artech House

1997.

104. A.C. Williams, A.D. Brown, M. Zwolinski, "Simultaneous optimisation of dy-

namic power, area and delay in behavioural synthesis", lEE Proceedings : Com-

puters and Digital Techniques, Vol. 147, No. 6, November 2000, p. 383-390.

105. MOODS Internals, Version 1.0, July 2001.

106. Xilinx Virtex 2.5V Field Programmable Gate Arrays Product Specification DS003-

1, Version 2.5.

(available at http://www.xilinx.com/partinfo/ds003.pdf)

107. J. Gracia, J.C. Baraza, D. Gil, P.J. Gil, "Comparison and Application of Different

VHDL-Based Fault Injection Techniques", IEEE International Symposium on De-

fect and Fault Tolerance in VLSI System, 2001, p. 233-241.

http://www.xilinx.com/partinfo/ds003.pdf

p. Oikonomakos, 2004 References 3 2 4

108. D. Gil, J. Gracia, J.C. Baraza, P.J. Gil, "Study, comparison and application of dif-

ferent VHDL-based fault iryection techniques for the experimental validation of a

fault-tolerant system". Microelectronics Journal, Vol. 34, No. 1, January 2003, p.

41-51.

109. L. Antoni, R. Leveugle, B. Feher, "Using Run-Time Reconfiguration for Fault In-

jection in Hardware Prototypes", IEEE International Workshop on Defect and

Fault Tolerance in VLSI Systems, 2000, p. 405-413.

110. M.-C. Hsueh, T.K. Tsai, R.K. Iyer, "Fault Iiyection Techniques and Tools", IEEE

Computer, Vol. 30, No.4, April 1997, p. 75-82.

111. http://www.sertest.com/

112. P. Civera, L. Macchiarulo, M. Rehaudengo, M Sonza Reorda, M. Violante, "An

FPGA-based Approach for Speeding-Up Fault Injection Campaigns on Safety-

Critical Circuits", Journal of Electronic Testing-Theory and Applications, Vol.

18, No. 3, June 2002, p. 261-272.

113. L. Antoni, R. Leveugle, B. Feher, "Using Run-Time Reconfiguration for Fault In-

jection in Hardware Prototypes", IEEE International Workshop on Defect and

Fault Tolerance in VLSI Systems, 2002, p. 245-253.

114. S.A. AAabjahani, Z. Navabi, "Functional Fault Simulation of VHDL Gate Level

Models", VHDL International User's Forum, 1997, p. 18-24.

115. http://www.model.com/

116. D. Shaw, D. Al-KhaHli, C. Rozon, "Deriving accurate ASIC cell fault models for

VITAL compliant VHDL simulation", IEEE International Symposium on Circuits

and Systems, v. 5, 2001, p. V-263 - V-266.

117. T.A. Delong, B.W. Johnson, J.A. Profeta III, "A Fault Iiyection Technique for

VHDL Behavioral-Level Models", IEEE Design & Test of Computers, Vol. 13,

No. 4, Winter 1996, p. 24-33.

118. M. Zwolinski, "A Technique for Transparent Fault Injection and Simulation", Mi-

croelectronics Rehability, Vol. 41, No. 6, June 2001, p. 797-804.

http://www.sertest.com/
http://www.model.com/

p. Oikonomakos, 2004 References 3 2 5

119. B. Stroustup, "The C++ Programming Language", Addison Wesley, 1997.

120. J.F. Meyer, R.J. Sundstrom, "On-Line Diagnosis of Unrestricted Faults", IEEE

Transactions on Computers, Vol. 24, No. 5, May 1975, p. 468-475.

121. C.-J. Tseng, D.P. Siewiorek, "Facet: A procedure for the automated synthesis of

digital systems". Design Automation Conference (DAC), 1983, p. 490-496.

122. N.R. Saxena, S. Femandez-Gomez, W.-J. Huang, S. Mitra, S.-Y. Yu, E.J.

McCluskey, "Dependable Computing and Online Testing in Adaptive and Config-

urable Systems", IEEE Design & Test of Computers, Vol. 17, No. 1, January-

March 2000, p. 29-41.

123. G. Bertoni, L. Brevegheri, I. Koren, P. Maistri, V. Piuri, "Error Analysis and De-

tection Procedures for a Hardware Implementation of the Advanced Encryption

Standard", IEEE Transactions on Computers, Vol. 52, No. 4, April 2003, p. 492-

505.

124. http://www.synphcity.com/

125. http://toolbox.xilinx.com/docsan/3_li/

126. MOODS User Guide, Version 1.2 (alpha), August 2001.

127. MOODS VHDL Reference, Version 1.2 (alpha), August 2001.

128. MOODS VHDL Style Guide, Version 1.2 (alpha), August 2001.

129. N. Dutt, C. Ramachandran, "Benchmarks for the 1992 High-level Synthesis Work-

shop", Technical Report #92-107, University of Cahfomia Irvine, 1992.

130. P.R. Panda, C. Ramachandran, "1995 High-level Synthesis Design Repository",

Technical Report #95-04, University of Cahfomia Irvine, 1995.

131. J.S. Reeve, K. Amarasinghe, "A FPGA Implementation of a Parallel Viterbi De-

coder for Block Cyclic and Convolution Codes", IEEE International Conference

on Communications, 2004, p. 2596-2599.

132. http ://www.mentor. com/leonardospectrum/

http://www.synphcity.com/
http://toolbox.xilinx.com/docsan/3_li/
http://www.mentor

p. Oikonomakos, 2004 References 3 2 6

133. S. HeUebrand, H.-J. Wunderlich, A. Hertwig, "Synthesizing Fast, Online-Testable

Control Units", IEEE Design & Test of Computers, Vol. 15, No. 4, October-

December 1998, p. 36-41.

134. R. Karri, B. Iyer, I. Koren, "Phantom redundancy: a register transfer level tech-

nique for gracefully degradable data path synthesis", IEEE Transactions on CAD,

Vol. 21, No. 8, August 2002, p. 877-888.

135. J. Carletta, M. Nourani, C.A. Papachristou, "Synthesis of Controllers for Full Test-

ability of Integrated Datapath-Controller Pairs", Design Automation and Test in

Europe (DATE), 1999, p. 278-282.

136. N.H.E. Weste, K. Eshraghian, "Principles of CMOS VLSI Design", Addison

Wesley 1992.

137. P.H. BardeU, "Design Considerations for Parallel Pseudorandom Pattern Genera-

tors", Journal of Electronic Testing - Theory and Applications, Vol. 1, 1990, p. 73-

87.

138. P.H. BardeU, "Primitive Polynomials of Degree 301 - 500", Journal of Electronic

Testing - Theory and Applications, Vol. 3, 1992, p. 175-176.

139. N.K. Jha, S.-J. Wang, "Design and synthesis of self-checking VLSI circuits", IEEE

Transactions on CAD, Vol. 12, No. 6, June 1993, p. 878-887.

140. P.A. Thaker, V.D. Agrawal, M.E. Zaghloul, "A test evaluation technique for VLSI

circuits using register-transfer level fault modelling", IEEE Transactions on CAD,

Vol. 22, No. 8, August 2003, p. 1104-1113.

141. P.A. Thaker, V.D. Agrawal, M.E. Zaghloul, "Register-transfer level fault modeling

and test evaluation techniques for VLSI circuits", IEEE International Test Confer-

ence, 2000, p. 940-949.

142. J. Gracia, D. Gil, L. Lemus, P. Gil, "Studying Hardware Fault Representativeness

with VHDL Models", Conference on Design of Circuits and Integrated Systems,

2002.

143. http://www.iroctech.com/

http://www.iroctech.com/

p. Oikonomakos, 2004 References 3 2 7

144. F. Como, P. Prinetto, M. Sonza Reorda, "Fault Tolerant and BIST Design of a

FIFO cell", European Design Automation Conference, 1996, p. 233-238.

