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My MPhil Thesis is based on research in progress concerning an Intelligent Firewall 

Architecture Model against Internet-scale viruses. An Internet-scale virus is defined to be 

a piece of code or a program that performs unintended tasks and brings unintended side 

effect. The Intelligent Firewall focuses on risk management against novel attacks. A main 

purpose of this project is to integrate a packet-based classification engine and a smart 

detection engine into a firewall. 

Classification is based on finding proper information and establishing links between data, 

on the other hand, recognition is based on making a decision about the information after 

classifying the data. I would like to use these terms with these concepts in my thesis. The 

packet-based classification engine aims at classifying Internet-scale virus packets apart 

from normal packets using packet header and payload, and then the smart detection 

engine deals with the stream of filtered packets from the classification engine which 

selected them as having a high probability of containing malicious content. To classify and 

recognize malicious packets from normal packets, I surveyed statistics of current 

Internet-scale viruses and analyzed malicious packets. 

I describe current Internet-scale viruses' effects on the Internet and security systems' 

problems. I analyse features of present network security systems: firewalls, intrusion 

detection systems, and anti-virus servers and examine related work to cope with 

disadvantages of the systems. I disuss the current Internet-scale virus trend through 

Internet-scale viruses' statistics. I will present the concepts of the Intelligent Firewall by 

discussing statistics and a survey on several current Internet-scale virus attacks. Detailed 

studies concerning the analysis of the virus infection processes and security holes are 

beyond the scope of this thesis. Using this analysis and investigation, I propose an 

Intelligent Firewall model which has several packet-based components, especially the 

packet-based classification with Bayesian Networks, and the smart detection engine with a 

Self-Organizing Map. This thesis will be beneficial to other security systems, including 

router parts and anti-virus detection systems. 
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Chapter 1 

Introduction 

Today, the Internet is used for many purposes. In accordance with this wide-spread 

Internet usage, Internet security breaches are growing. Internet-scale viruses are one of 

the major causes of the rising number of security breaches. A serious security risk is the 

propagation of Internet-scale viruses through email attachments. An Internet-scale virus is 

defined as a piece of code or a program that performs unintended tasks and brings 

unintended side effects such as damaging a system or network, obtaining secure 

information without permission, putting a system or network under heavy load, and so on. 

Nowadays some companies, which recognize the importance of security, adopt security 

systems such as firewalls, intrusion detection systems, and anti-virus servers. It is not easy 

to use all security systems, owing to high cost. Furthermore, it is not enough to protect a 

company's system with only a single security system, because each security system has 

different features, in which particularly protection against Denial of Service (DOS) and 

Internet-scale virus attacks is increasingly important. 

1.1 Increasingly Serious Attacks 

Internet-scale viruses include file viruses, file worms, and network worms. These 

Internet-scale viruses are being spread via systems' security holes, emails, messengers, etc. 

A virus is a piece of code that adds itself to other programs and cannot run independently. 

As Microsoft Windows became popular, Windows viruses and 

Windows-application-derived viruses using Visual Basic for Applications (VBA) spread 

widely. A common way of Windows virus dissemination is through emails. In addition, a 

worm is a program that can run by itself and propagate a fully working version of it to 

other machines. A network worm is a worm, which copies itself to another system by 

using common network facilities, and causes execution of the copy on that system. A 
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recent serious attack was Code Red. The Code Red worm is a malicious self-propagating 

code (CERT/CA-2001-23 2002) that spreads surreptitiously through a hole in certain 

Microsoft software. The Code Red, which left computers open to hijacking, has caused a 

lot of traffic being sent, clogging the bandwidth on the Internet. An infected system will 

show an increased processor and network load. The worm could easily permit hackers to 

take control of hundreds of thousands of infected machines. 

The biggest impact of these worms is that their propagation creates a DOS attack in 

many parts of the Internet, because of the huge amount of traffic generated. DOS attacks 

can interrupt services by flooding networks or systems with unwanted traffic. A service 

will be denied, because the network or system is overwhelmed. Distributed systems based 

on the client/server model have become increasingly popular. Therefore Distributed 

Denial of Service (DDOS) attacks are also getting escalated. In an DDOS, an attacker 

controls a number of handlers. A handler is a compromised host with a special program 

running on it. Each handler is capable of controlhng multiple agents. An agent is a 

compromised host, which is responsible for generating a stream of packets that is directed 

towards the intended victim. 

1.2 Classification and Recognition 

In my MPhil thesis, I am considering classification and recognition. We can give the 

following situation: We may be given a set of observations with the aim of establishing the 

existence of classes or clusters in the data. Or we may know for certain that there are so 

many classes, and the aim is to establish a rule whereby we can classify a new observation 

into one of the existing classes. 

The task of classification could cover any context in which some decision or forecast is 

made on the basis of currently available information, and a classification procedure is then 

some formal method for repeatedly making such judgments in new situations. 

If we create some classifier, the classifier should be considered of accuracy, speed, 

comprehensibility and time to learn (D.Michie 1994). 

1. Accuracy. There is the reliability of the rule, usually represented by the proportion 

of correct classifications, although it may be that some errors are more serious than 

others, and it may be important to control the error rate for some key class. 

2. Speed. The speed of the classifier is a major issue in real critical circumstances. 90% 

accurate may be preferred over one that is 95% accurate if it is 100 times faster. 



3. Comprehensibility. If it is an administrator that must apply the classification 

procedure, the procedure must be easily understood else mistakes will be made in 

applying the rule. It is important also that the administrators believe the system. 

4. Time to Learn. Especially in a rapidly changing environment, it may be necessary to 

learn a classification rule quickly, or make adjustments to an existing rule in real 

time. 

I shall assume that the problem concerns the construction of a procedure that will be 

applied to a continuing sequence of cases, in which each new case must be assigned to one 

of a set of predefined classes on the basis of observed attributes or features. 

The other is Pattern Recognition. There are many kinds of patterns; visual patterns, 

temporal patterns, logical patterns. Using a broad enough interpretation, we can find 

pattern recognition in every intelligent activity. No single theory of pattern recognition can 

possibly cope with such a broad range of problems. There are several models, statistical 

pattern recognition, syntactic or structural pattern recognition, knowledge-based pattern 

recognition and so on. These pattern recognitions could be viewed as a classification. 

However, I would like to define both of them like this. Classification is based on finding 

proper information and establishing links between data, on the other hand, recognition is 

based on making a decision about the information after classifying data. I would like to 

use these terms with these concepts in my thesis. The packet-based classification engine 

classifies packets into packet classes such as HTTP traffic, SMTP traffic, and FTP traffic. 

In addition, it makes a decision whether the packet class is filtered into the smart 

detection engine or dropped according to its probability of containing malicious content, 

which is deduced by Bayesian Networks. On the other hand, the smart detection engine 

deals with the filtered packets, which have a high probability of being malicious, from the 

packet-based classification engine. The smart detection engine deals with virus infected 

file to detect the virus part within the file. The infected file has a particular type of file 

structure one can recognize, but the file does not have a specific border line to distinguish 

the virus part from the remaining content of the file. Using a Self-Organizing Map, the 

smart detection engine aims at recognizing categorized patterns. 

1.3 Reader's Guide 

My MPhil Thesis is based on research in progress concerning an Intelligent Firewall 

Architecture Model against Internet-scale viruses. The Intelligent Firewall focuses on risk 

management against novel attacks. This packet-based recognition against Internet-scale 

viruses is one research part of the Janus (U.Ultes-Nitsche and IS.Yoo 2002) (IS.Yoo and 



U.Ultes-Nitsche 2002) Project. A main purpose of this project is to integrate a 

packet-based classification engine and a smart detection engine into a jfirewall. The 

packet-based classification engine aims at classifying Internet-scale virus packets apart 

from normal packets using packet header and pay load, and then the smart detection 

engine deals with the stream of filtered packets from the classification engine which 

selected them as having a high probability of containing malicious content. To classify and 

detect malicious packets from normal packets, I surveyed statistics of current Internet-scale 

viruses and analysed malicious packets. I will present the concepts of an Internet-scale 

virus and the Intelligent Firewall by discussing statistics and a survey on several current 

Internet-scale virus attacks. Detailed studies concerning the analysis of the virus infection 

processes and security holes are beyond the scope of this thesis. In this MPhil thesis, I 

have developed the general concepts that the Intelligent Firewall will comprise. My 

architecture decisions were based on a thorough analysis of available data about viruses as 

well as a literature study of suitable approaches for the detection of novel viruses. This led 

to the Intelligent Firewall architecture, which contains the packet-based classification 

engine and the smart detection engine. The considered approaches will be beneficial to 

other security systems, including router parts and anti-virus detection systems. 

The rest of this dissertation is organized as follows. In Chapter 2, I describe current 

Internet-scale viruses' effects on the Internet and security systems' problems. In Chapter 

3, I analyse features of present network security systems: firewalls, intrusion detection 

systems, and anti-virus servers and examine related work to cope with disadvantages of 

the systems. In Chapter 4, I discuss current Internet-scale virus trends through 

Internet-scale virus statistics. In addition, I classify Internet-scale viruses to analyse, and 

examine malicious virus patterns. Using this analysis, I propose an intelligent firewall 

model in Chapter 6. 

Chapter 5 addresses potential research models for classification and recognition. Several 

research models are possible. However, in this dissertation, I explain Bayesian Networks, 

Neural Networks, and Data Mining Techniques. I discuss what Bayesian Networks are, 

what kinds of features the networks have, and why they are suitable for my project. 

Moreover, I address what the main components of Neural Networks are, how they are 

trained, and what Self-Organizing Maps and Probabilistic Neural Networks are. In 

Chapter 6, I show what kind of architecture is needed for an Intelligent Firewall, what the 

components are, and how the packet-based classification engine and the smart detection 

engine work with Bayesian Networks and Neural Networks. Finally, in Chapter 7, I make 

a conclusion and mention future work. 



Chapter 2 

Motivations 

2.1 Internet-Scale Viruses 

Internet security breaches are growing. Viruses are the major cause of the rising number 

of security breaches. With the advantage of high-speed Internet access, many 

organizations and companies put their websites and their confidential information at high 

risk when establishing a connection to the Internet that is not securely implemented. 

Nowadays companies which recognize the seriousness of security adopt security systems 

such like firewalls, intrusion detection systems, and virus scanning proxy servers. It is not 

easy to take all security systems owing to high cost. However, it is also not enough to 

prevent their system with one security system because each security system has different 

features in present days; particularly Denial of Service (DOS) attacks and virus attacks 

are becoming serious. 

As I defined in the Introduction, an Internet-scale virus is a piece of code or a program 

that performs unintended tasks and brings unintended side effects. Internet-scale viruses 

are more than 90% of detected malicious occurrences, at least in the University of 

Southampton at the time of writing this thesis (see Figure 2.1). I present statistics about 

viruses which were detected while entering the ECS department in Appendix B. 

2.2 Current Network Security Systems' Problems 

DOS attacks are easy to perpetrate and almost impossible to defend against even whilst 

firewalls and Intrusion Detection Systems (IDSs) are installed. Even if the Intrusion 

Detection Systems generate alerts, log packets, send emails, and call pagers, the attacker 

could still get in, and by the time somebody could respond the damage would be done. A 
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malicious attacker could spoof attacks from many sources and effectively deny everybody 

access to the server. This is considered to be an unacceptable risk. A firewall would be of 

no help either. The web server has to remain available to the public and the vulnerability 

is in the web server software such as IIS. A firewall has no way of determining if a request 

being sent to a web server is benign or malicious. While the firewall could stop trafBc to 

ports that do not need to be publicly accessible, it is useless in this situation. Increasingly 

complex security scenarios and incorrect configurations contribute to a firewall's inability 

to provide gateway security. A firewall is also only able to deal with traffic that passes 

through the firewall, with all internal traffic completely unchecked. 

When a virus associated with DOS spreads through the Internet, virus scanning proxy 

servers and IDSs or Firewalls must cooperate to prevent these attacks. Although anti-virus 

servers and software have served users well for a lengthy period, today's fast-paced 

technology means that viruses travel much faster than signature updates can keep up 

with. This kind of software often relies on databases containing these virus signatures, 

which catch and define viruses. It is therefore essential to ensure that the database of 

signatures is as up-to-date as possible. This implies that a mechanism guarantees that the 

latest signatures are updated, as and when new viruses are detected. Therefore a process 

of automatic updating of signatures, a built-in feature found in most anti-virus products, 

as well performing the necessary upgrade maintenance are critical actions. These are steps 

that cannot be left up to human processing, but must be automated to be kept up-to-date 

at all times. This type of solution has become vital due to the different ways that a virus 

can enter an organisation. This means that protection is needed at each of the levels, 

stopping a virus where it enters rather than having to clean up after it has spread. 

Considering weaknesses of current security systems, the Intelligent Firewall focuses on risk 

management against novel attacks. The packet-based classification engine classifies 



malicious packets from normal packets using packet header and payload. Then the smart 

detection engine deals with the stream of filtered packets from the classification engine 

which selected them as to have a high probability of malicious contents. This novel 

firewall model will enable one to detect novel attacks. 





Chapter 3 

Analysis of Present Network 

Security Systems 

Anti-virus servers examine network traffic, aiming to prevent malicious code from entering 

network nodes by detecting known malicious-code patterns. Apparently, they can detect 

only known viruses. New viruses will only become detectable after their pattern 

characteristics have been analyzed and are made available. Current intrusion detection 

systems (IDSs) do not prevent an intrusion from happening; they only detect and report 

it. When a virus associated with a DOS attack spreads through the Internet (e.g. the 

CodeRed), anti-virus servers and IDSs should co-operate to prevent such an attack. 

However, although anti-virus servers and IDSs are installed, new virus information needs 

to be updated constantly. Furthermore, firewalls are used to guard and isolate connected 

segments of inter-networks. Inside network domains are protected against outside 

un-trusted networks, or parts of a network is protected against other parts (S chub a 1997). 

These firewalls use only TCP/IP headers - no payload information is used - to decide 

whether data packets are safe or not. I will discuss the different network security systems 

in this chapter. 

3.1 Firewalls 

Firewalls are used to guard and isolate connected segments of inter-networks. Inside 

network domains are protected against outside un-trusted networks, or parts of a network 

are protected against other parts (S chub a 1997). There are three types of Firewalls. I will 

try to explain the strengths and weaknesses of each firewall, then introduce existing 

approaches for this. 
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3.1 .1 T y p e s of Firewalls 

First is the packet-filter firewall. Packet filtering is mainly focused on the ability to accept 

or deny packets based on analysing the packets' heades. It is not suitable for defence 

means against intruders, just appropriate as another security measure. In addition, large 

lists of rules can be difficult to manage. Packet filters by themselves are not adequate to 

secure a complex network from attack. Main strengths of packet filter firewalls are speed 

and flexibility (John Wack and Pole 2002). These systems can be used to secure nearly 

any type of network communication or protocol. They are easy to be deployed into nearly 

any enterprise network infrastructure. However, they cannot prevent attacks and their 

logging functionality is very limited, because they do not examine upper-layer data. They 

do not support advanced user authentication schemes. They cannot, for instance, detect a 

network packet in which the OSI Layer 3 addressing information has been altered. 

Second is the stateful inspection firewall. Stateful inspection firewalls add Layer4 

awareness to the standard packet filter architecture (John Wack and Pole 2002). Stateful 

inspection adds some intelligence to packet filtering. With stateful inspection, the firewall 

keeps track of a session so it knows if the session is already active. It uses this information 

plus a list of rules to determine whether a packet should be blocked or forwarded. Stateful 

inspection is a combination of packet filtering and a circuit level gateway. There is no 

examination of the application information. These systems share the strengths and 

weaknesses of packet filter firewalls. The actual stateful inspection technology is relevant 

only to TCP/IP. Moreover it has very high costs because the state of connection is 

monitored at all times. 

Third are application-proxy gateway firewalls. Application gateways are software based. 

All the data in a packet is examined, including the application layer, for content. If a field 

meets a set of predefined rules, the gateway creates a path between two protocols between 

the remote host and the internal host. Since every detail of the packet is examined, 

application gateways are the most secure type of firewall. These tools also have very-

sophisticated logging facilities. The disadvantage of an application gateway is that a proxy 

application must be created for each networked service. Some application gateways 

require modified clients. Application gateways also have the lowest throughput. According 

to (John Wack and Pole 2002), application-proxy gateway firewalls have more extensive 

logging capabilities, are capable of authenticating users directly, and can be made less 

vulnerable to address spoofing attacks. These systems are not generally well suited to 

high-bandwidth or real-time applications. 
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3.1 .2 R e l a t e d Work 

Related to our concept of an intelligent firewall, there are two existing approaches I would 

like to discuss here. The first one in (Xu and Singhal 1999) proposes an ATM firewall 

using a proxy cache, which uses a QoF (QuaHty of Firewalling) scheme. Its main 

components are call screening, proxy, traffic monitoring service, packet filtering service, 

and firewall management. These combined components determine a packet's safeness. The 

packet-filtering service inspects the headers of IP packets to block unsafe packets, while 

allowing safe packets to pass. The traffic-monitoring service checks the packet headers 

against the traffic-monitoring rules, which are similar to the packet-filtering rules. 

The second approach in (J.Hughes 1996), which was referred to in (Xu and Singhal 1999), 

proposes a policy cache architecture. To determine whether or not a packet is safe, only 

the first cell will be checked, which contains the IP header, protocol, TCP/UDP ports and 

TCP flags. However, there are limitations: IP packets with IP option fields are not 

accepted, because IP options can be as large as 40 bytes and may push the TCP headers 

to the second cell. Using CAM (Content Addressable Memory) to cache a safe header is 

not a scalable solution. CAM cannot scale to a large size due to technological constraints 

and is extremely expensive. 

Both of these papers use only TCP/IP headers - no pay load information is used - to 

detect whether data packets are safe or not, even though they aim to develop a new 

firewall architecture. It does not seem that inspecting only header information is sufficient 

to overcome weaknesses of firewalls. 

3.2 Intrusion Detection Systems 

Intrusion detection is the process of monitoring the events occurring in a computer system 

or network and analyzing them for signs of intrusions, defined as attempts to compromise 

confidentiality, integrity, availability, or to bypass the security mechanisms of a computer 

or network (Bace and Mell 2001). IDS (Intrusion Detection Systems) are software or 

hardware products that automate this monitoring and analysis process. The definition of 

IDS does not include preventing the intrusion from occurring, only detecting it and 

reporting the intrusion to an operator (Jai Sundar Balasubramaniyan and Zamboni 1998). 

3.2.1 T y p e s of Intrusion D e t e c t i o n S y s t e m s 

First is the network-based IDS. This monitors network traffic on the wire for specific 

activities/signatures that represent an attack (Richards 1999). Strengths of this are to 
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monitor a large network and to be little impact upon an existing network (Bace and Mell 

2001). Moreover, it detects malicious and suspicious attacks as they are occurring in true 

real-time and provides faster response and notification to the attack at hand (Laing 2000). 

It examines all packet headers for signs of malicious and suspicious activity and can also 

investigate the content of the payload. It uses live network traffic for its attack detection 

in real-time and a hacker cannot remove this evidence once captured. However, weaknesses 

of this are to have difficulties in processing all packets, it is possible for the system to fail 

to recognize an attack during high traffic and there is a need to analyze packets quickly 

(Bace and Mell 2001). It is also possible to misunderstand normal traffic as a malicious 

traffic. It is easy to trigger numerous false positives because of normal traffic looking very-

close to malicious traffic. In addition, the approach faces performance problems, especially 

with increasing network speeds, and resource exhaustion problems could occur 

(John Mchugh and Allen 2000). IDSs can suffer from resource exhaustion problems when 

they must maintain attack-state information for many attacked hosts over a long period of 

time. A network-based IDS does not control the network or maintain its connectivity 

(H.Ptacek and N.Newsham 1998). It follows that these systems are vulnerable to DOS. 

Second is the host-based IDS. This focuses on a server and monitors specific user and 

application actions and logs entries (Richards 1999). Strengths referred by (Laing 2000) 

are that it could be possible to verify attacks; actual attacks or exploit's detection has 

been deemed as more accurate and less prone to false positives. It suits for system specific 

activity and monitoring key components. Weakness summarized by (Bace and Mell 2001) 

are that it is hard to manage, easy to be attacked and disabled as part of the attack, does 

not suit for detecting network scans and can be disabled by DOS attacks. 

Third is the application-based IDS. This monitors interaction between users and 

applications, but is more vulnerable than host-based IDSs (Bace and Mell 2001). 

3.2 .2 Classif ication of Intrusion D e t e c t i o n 

First is misuse detection (signature-based detection (Bace and Mell 2001) or signal 

detection (John Mchugh and Allen 2000)). It recognizes known "bad" behaviour 

(Sundaram 1996). Specific pattern matching is applied to a portion of a network packet 

(John Mchugh and Allen 2000). However, it needs to update signatures of new attacks 

constantly because it is unable to detect truly new attacks (Bace and Mell 2001). 

Second is anomaly detection (anomaly-based detection; noise detection; unusual or 

abnormal with intrusions (John Mchugh and Allen 2000)). This detection is able to catch 

"bad" behaviour (Sundaram 1996) and unusual behaviour (Bace and Mell 2001). It 

produces information that can be used to define signatures for misuse detection (Bace and 

Mell 2001). However, it produces a large number of false alarms and its costs are high 
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because it requires extensive 'training sets' (Bace and Mell 2001). It is computationally 

expensive because of the overhead of keeping track of and updating several system profile 

metrics (Sundaxam 1996). 

3.2.3 Re la t ed Work 

Intrusion represents both intrusion and misuse in (Jai Sundar Balasubramaniyan and 

Zamboni 1998). This paper dealt with intrusion detection systems using autonomous 

agents. An agent is an independently-running entity that monitors certain aspects of a 

host and reports abnormal or interesting behaviour. To perform data collection and 

analysis, agents send all their messages to the transceiver. However, this research focused 

on distributed architectures and it did not mention about how agents detect anomalous 

behaviour. 

The other research (Kumar and H.Spafford 1995) proposed using a pattern matching 

approach to the representation and detection of intrusion signatures. One of interesting 

part of their server architecture model is that intrusion patterns are placed in queues 

having an appropriate priority level, and patterns in each queue are dealt with in a round 

robin fashion. This approach, which focused on software architecture and pattern 

matching, is not enough to prevent new attacks from happening as they change their 

attack pattern very rapidly. 

3.3 Anti-Virus Servers 

According to NUA (Online Internet Survey Company) Research, email is responsible for 

the spread of 80 percent of computer virus infections (Postini 2000). Various estimates 

place the cost of damage to computer systems by malicious email attachments in the 

rangeof 10-15 billion dollars last year alone. Many commercial systems are used in an 

attempt to detect and prevent these attacks. The most popular approach to defend 

against malicous program is through anti-virus scanners such as Symantec (Symantec 

2002) and McAfee (McAfee 2002), as well as server-based filters that filters email with 

executable attachments or embedded macros in documents. 

Currently monitoring systems exist through organizations such as WildList (WildList 

2001), and the Trend Micro (Micro 2002). WildList is an organization consisting of 64 

virus information professionals, who report all computer programs that they have received 

and positively identified as malicious. This list does not include those cases where an 

attachment is considered suspicious but not yet classified as malicious, or include any 

viruses not specifically reported by these 64 participants. This leaves computer systems 
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vulnerable to attack from unreported viral incidents (WildList 2001). Since the process of 

reporting is not automated, malicious program, especially the self-replicating program, 

can spread much faster than the warnings generated by WildList. 

Trend depends on a proprietary virus scanner, HouseCall (HouseCall 2002) which 

integrates with the Trend Micro Control Manager to report information about actual 

virus infections. It attempts to predict virus outbreaks and prevent them pro-actively 

with the use of a dynamic map to analyze worldwide virus trends in real time (Micro 

2002). However, since HouseCall is not widely used, Trend's data is incomplete. 

Furthermore, if Trend's database is not updated at the time that a virus infects a system, 

then the virus remains unreported. 

An anti-virus server is defined as a server-side virus-checking programs. Its specific name 

depends on the company that produes it; for example, V3Netscan and VSVirusWall in 

Ahnlab.Inc.(Ahnlab 2002), and MailMonitor in Sophos (Sophos 2002). Anti-virus servers 

examine network traffic, aiming to prevent malicious code from entering network nodes by 

detecting known malicious-code patterns, for instance in an email attachment. 

Apparently, they can detect only known viruses. All of the major anti-virus vendors have 

produced networked products and systems that scan incoming email. However, because 

Trojan horses, worms and viruses can spread through local networks, shared hard drives 

and individual document files, as well as through the Internet, it is always necessary to 

have virus checking available on each client machine as well as on Internet gateways. Too 

often, patterns that identify new malware are not ready until days or even weeks after 

serious damage has been done. New viruses will only become detectable after their 

pattern characteristics have been analysed and are made available. Looking at techniques 

applied by other security systems, in our case intrusion detection systems, seems to 

benefit virus detection (M.Swimmer 2000). 

There approaches have been successful in protecting computers against known malicious 

programs usually employing signature-based methods. Almost all anti-virus products 

claim that they can detect 100% of known viruses. However, we realize that hundreds of 

new viruses are created every month, they have not yet provided a means of protecting 

against unknown viruses, nor do they assist in providing information that may help trace 

those individuals responsible for creating viruses. 

3.3 .1 R e l a t e d Work 

Recently there have been approaches to detect new or unknown malicioius program by 

analyzing the payload of an attachment. The methods used include heuristics (S.R.White 

1998), neural networks (J.O.Kephart 1994), and data mining techniques 
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(Matthew G.Schultz and Zadok 2001), (Matthew G.Schultz 2001). However, these 

methods in general do not perform well enough to detect malicious programs. 

IBM researchers (O.Kephart and C.Arnold 1994) developed a statistical method for 

automatically extracting malicious executable signatures. Their research was based on 

speech recognition algorithms and was shown to perform almost as good as a human 

expert at detecting known malicious executables. Their algorithm was eventually 

packaged with IBM's anti-virus software. 

(R.W.Lo and R.A.Olsson 1995) presented a method for filtering malicious code based on 

telltale signs for detecting malicious code. These were manually engineered based on 

observing the characteristics of malicious code. 

Unfortunately, a new malicious program may not contain any known signatures so 

traditional signature-based methods may not detect a new malicious executable. In an 

attempt to solve this problem, the anti-virus industry generates heuristic classifiers by 

hand (Gryaznov 1999). This process can be even more costly than generating signatures, 

so finding an automatic method to generate classifiers has been the subject of research in 

the anti-virus community. To solve this problem, different IBM researchers applied Neural 

Networks to the problem of detecting boot sector malicious binaries (G.Tesauro and 

G.B.Sorkin 1996). A Neural Network is a classifier that aims to explore in human 

cognition. Because of the limitations of the implementation of their classifier, they were 

unable to analyse anything other than small boot sector viruses which comprise about 5% 

of all malicious binaries. 

In similar work, (Arnold and Tesauro 2000) apphed the same techniques to Win32 

binaries, but because of limitations of the Neural Network classifier, they were unable to 

have the comparable accuracy over new Win32 binaries. 
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Chapter 4 

Analysis of Internet-Scale Viruses 

4.1 Internet-Scale Virus Statistics 

According to Computer Virus Incident Reports (IPA/ISEC 2002) for May 2002 compiled 

by the Information-technology Promotion Agency Security Center (IPA/ISEC), the total 

number of reports for the first half of 2002 was 1.2 times greater than that of the year 

before. Moreover, the major reported viruses propagated via email, and the top 2 viruses 

were spread by exploiting security holes. Even though I am not satisfied with the 

categories of this survey, the results are quite interesting to look at more closely. I have 

produced charts based on the survey. 

In Figure 4.1 and Figure 4.2, I use two terms: a security-hole virus and an email virus. A 

security-hole virus exploits a security hole. Even if distribution is via email, the way to 

infect a system is because of a security-hole, the virus belongs to the security-hole viruses. 

An email virus is distributed as an email attachment and does not exploit a security hole. 

Ratio o t Source of Vi iuses 
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F I G U R E 4 . 1 : Ratio of Source of Viruses. As the Internet became popular, email attach-
ments have been the major source of viruses since 1999. 

Figure 4.2 shows new Internet-scale viruses' trends using security holes and emails. In 

1999, macro viruses were the biggest portion, but from 2000, the ratio of email viruses has 
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increased significantly. Complex Internet viruses exploiting security holes have got 

escalated in 2002. 

Ratio of Kinds of Viruses 
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F I G U R E 4.2: Ratio of Kinds of Viruses. The trend of virus is shown in this chart. In 
1999, macro viruses were the biggest portion, but from 2000, the ratio of email virus has 
increased. Complex Internet viruses exploiting security holes have got escalated in 2002. 

Figure 4.3 shows the percentage of several file extensions among Windows file worms. As 

one can see, most Internet-scale viruses ^ have Win32 executable format (about 86%) 

among the file/network worms. 
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F I G U R E 4.3; Ratio of Windows File Worms transferred by Email. This pie chart shows 
the percentage of several file extensions among Windows file worms. Win32 executables 

are about 86%, among these approx. 80% are transferred by email. 

According to my survey into Internet-scale virus statistics based on the Virus Information 

of the Ahnlab (Ahnlab 2002), about 80% of Windows file worms are transferred via email, 

and approx. 61% have an .EXE file extension. I present this statistics survey record in 

Appendix A. 

^Internct-scale viruses include file viruses, file worms and network worms (rcf. Introduction). Figure 4.3 
presents file worms or network worms, but the division is not clear in this chart, therefore, I use the term 
Internet-scale viruses rather than worms. 
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4.2 Classification of Internet-Scale Viruses 

Most Internet-scale virus attacks have unselective targets. In this section, I discuss two 

types of blind targeting: social engineering attacks and security vulnerabilities attacks. I 

focus on the deployment of Internet-scale viruses rather than the detection of viruses in 

infected systems; before a machine is being infected, how do they spread, and after a 

system is infected, how do viruses spread from there to another machines. Internet-scale 

viruses show some characteristics, whilst their deployment is being processed which are 

useful in order to detect them. I analyze the deployment of Internet-scale viruses 

subsequently. 

4.2 .1 Social Engineer ing At tacks 

Social Engineering is the hacker term for tricking unaware users into downloading or 

executing malicious software via email, Internet relay chat (IRC) or instant messaging 

(EW). 

4.2.1.1 W32/S irCam Malicious Code 

It spreads through email and potentially through unprotected network shares 

(CERT/CA-2001-22 2001). Once the malicious code has been executed on a system, it 

may reveal or delete sensitive information. The virus appears in an email message written 

in either English or Spanish with a seemingly random subject line. The email message 

contains an attachment whose name matches the subject line and has a double file 

extension (e.g. subject.ZIP.BAT or subject.DOC.EXE). The second extension is .EXE, 

.COM, .BAT, .PIF, or .LNK. The attached file contains both the malicious code and the 

content of a file copied from an infected system. 

In addition, this worm includes its own SMTP client capabilities, which it uses to 

propagate via email. It determines its recipient list by recursively searching for email 

addresses contained in all *.WAB (Windows Address Book) files. As a result, its 

propagation via mass emailing can cause DOS conditions. 

4.2.1.2 W 3 2 / G i b e Malicious Code 

W32/Gibe is a Windows binary executable written in Visual Basic that is disseminated 

via email (CERT/IN-2002-02 2002). The email appears to be a patch from Microsoft 

updating the security system. The email message created by W32/Gibe tries to convince 
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users that the attached file is a patch supplied by Microsoft. In fact, the attached file is a 

copy of the malicious code. 

This virus installs a backdoor(GFXacc.exe), which listens on port 12378/tcp. This may 

allow an intruder to gain access to the system and execute arbitrary commands. In 

addition, W32/Gibe mass-mails copies of itself to addresses found on the victim host. The 

victim and targeted sites may experience an increased load on the mail server when the 

malicious code is propagating. 

4.2.1.3 W32 /MyParty Malicious Code 

This virus is written for the Windows platform. It spreads as an email attachment 

(CERT/IN-2002-01 2002). The attached file name is "www.myparty.yahoo.com.", which 

causes the web browser to run unexpectedly, '.com' is both an executable file extension in 

Windows and a top-level domain. The payload contained in W32/Myparty is 

non-destructive. 

When this virus is executed, an email message is sent to a predefined address with a 

subject line of the folder where the W32/MyParty malicious code was stored on the 

victim's host. When it sends this message, it uses the SMTP statement HELO HOST to 

identify itself to the SMTP server. Meanwhile, the hard drive is scanned for *.WAB files. 

Outlook Express indexes and folders(.DBX) in order to harvest email addresses. Then 

copies of the malicious code are emailed to all the email addresses it could find. This step 

of mass mailing may be time-dependent. W32/MyParty may cause the default web 

browse to run unexpectedly. Likewise, the victim and targeted sites may experience an 

increased load on the mail server when the malicious code is propagating. 

4.2.1.4 W32/Goner Malicious Code 

This worm is a malicious Windows program distributed as an email file attachment and 

via ICQ ^ file transfers (CERT/IN-2001-15 2001). To a user, the file (gone.scr) appears to 

be a Windows screen saver. When the file is executed, the worm displays a splash screen 

then a false error message "Error While Analyze DirectX!" in an attempt to get an OK 

click on the error windows to launch the worm. It copies itself to the Windows system 

folder and modifies the Windows registry to execute itself. W32/Goner propagates by 

sending itself to all addresses listed in the Microsoft Outlook address book. 

This code may also propagate via the ICQ messaging program. W32/Goner initiates a file 

transfer with any online users in the infected user's contact list. If the user on the 

^ICQ stands for "I Seek You". 
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receiving end approves the transfer, the worm sends a copy of itself. 

The worm looks for and terminates processes associated with many popular anti-virus and 

security programs. Furthermore, this worm may install DOS scripts for the mIRC Internet 

Relay Chat client. The worm may disable anti-virus and security software which are 

installed on the system. During propagation, sites may experience DOS conditions on 

hosts or email systems through which the worm is sent. 

4.2.1.5 VBS/LoveLetter 

This worm is created in VBS (Visual Basic Script language) and spreads in a variety of 

ways; email propagation, widows file sharing, IRC, USENET news, and possibly via 

WebPages (CERT/CA-2000-04 2000). 

It arrives via email and is activated by a double click on the message attachment called 

LOVE-LETTER-FOR-YOU.TXT.vbs. This worm attempts to send copies of itself using 

Microsoft Outlook to all the entries in all the address books. This worm uses email as the 

primary spreading channel. 

It is also able to use mIRC clients as secondary distribution channels. When the worm 

executes, it attempts to create a script file to send a copy of the worm via DCC (Direct 

Client Communication) to other people in any IRC channel joined by the victim. 

This worm also uses windows file sharing systems. When the worm executes, it searches 

for certain types of files and replace them with a copy of the worm. It may also be applied 

to users reading messages in USENET newsgroups. 

4.2 .2 Security Vulnerabi l i ty At tacks 

Currently security holes which Internet-scale viruses misuse are related to Microsoft 

Software, such as Internet Information Server (IIS), Windows NT, Windows 2000, 

Outlook Express, and Windows Internet Explorer. 

4.2.2.1 Code R e d / C o d e Red II 

The Code Red/Code Red II is a malicious self-propagating worm (CERT/CA-2001-23 

2002) misusing Microsoft's Internet Information Server (IIS), which affects network 

performance. 

The Code Red worm attempts to connect to port 80/tcp on a randomly chosen host 

assuming that a web server will be found. Upon a successful connection to port 80, the 
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attacking host sends a crafted HTTP GET request to the victim, attempting to exploit a 

buffer overflow in the Indexing service. And the same HTTP GET request is sent to each 

of the randomly chosen hosts due to the self-propagating nature of the worm. However, 

depending on the configuration of the host which receives this request, IIS 4.0 and 5.0 

servers with Indexing service installed almost certainly are compromised by the Code Red 

worm. Unpatched CISCO 600-series DSL routers process the HTTP request thereby 

triggering an unrelated vulnerability which causes the router to stop forwarding packets. 

Moreover, systems which are not running IIS, but with an HTTP server listening on port 

80/tcp accept the HTTP request, return with an "HTTP 400 Bad Request" message, and 

potentially log this request in an access log. 

On the other hand, the Code Red H worm attempts to connect to port 80/tcp like the 

Code Red did. Then the HTTP GET request is sent to each of the randomly chosen 

hosts. Unpatched Windows 2000 servers running IIS 4.0 or 5.0 with Indexing service 

installed are likely to be compromised by the Code Red II worm. Unpatched Windows NT 

servers running IIS 4.0 or 5.0 with Indexing Server 2.0 installed could experience crashes 

of the IIS server. With unpatched CISCO 600-series DSL routers, it is same as with the 

Code Red worm. Patched systems, or systems which are not running IIS with an HTTP 

server listening on TCP port 80 accept the HTTP request, return with an "HTTP 4xx" 

error message, and potentially log this request in an access log. 

If the HTTP request is successful, the worm begins executing on the victim host. The 

Code Red II copies CMD.EXE to root.exe in the IIS scripts and MSADC folders. Placing 

CMD.EXE in a publicly accessible directory may allow an intruder to execute arbitrary 

commands on the compromised machine with the privileges of the IIS server process. 

Then the worm creates a Trojan horse as copy of explorer.exe and copies it to the C; and 

D; drives. On systems which are not patched against the relative shell patch (MSOO-052 

2000) ^ vulnerability, this Trojan horse runs every time when a user logs in the system. 

The beginning of Code Red's attack packet looks like the following (CERT/CA-2001-19 

2001), (CERT/IN-2001-09 2001): 

GET/dcfault.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3 

^Microsoft has released a patch that eliminates this security vulnerability in Microsoft Windows NT 4.0 
and Windows 2000. Under ccrtain conditions, the vulnerability could enable a malicious user to cause code 
of his choice to run when another user subsequently logged onto the same machine. 
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4.2.2.2 Nimda Worm 

The Nimda worm affects both user workstations (clients) running Windows 95, 98, ME, 

NT or 2000 and servers running Windows NT and 2000 (CERT/CC 2002). The worm 

modifies web documents (e.g., .htm, .html, and .asp files) and certain executable files 

found on the systems it infects, and creates numerous copies of itself under various file 

names. One part of the Nimda Worm's attack packets looks like the following 

(CERT/CA-2G01-26 2001): 

GET /scripts/root.exo?/c+dir 

GET /MSADC/root .exc?/c+dir 

GET /c/winnt/systein32/cmd.exe?/c+dir 

GET /d/winnt/system32/cmd.exc?/c+dir 

The Nimda worm has three types of propagation. First is email propagation. This worm 

propagates through email messages consisting of two sections; a blank message, and an 

executable attachment. The first section is defined as MIME (Multipurpose Internet Mail 

Extensions) type "text/html", but it contains no text, so the email appears to have no 

content. The second section is defined as MIME type "audio/x-wav", but it contains a 

base64-encoded attachment file "readme.exe", which is a binary executable. Due to a 

vulnerability of Microsoft Internet Explorer to start the HTML mail automatically, the 

enclosed attachment is executed and, as result, infects the machine with the worm. Even 

though this worm is promulgated through email, the infected machine provides a copy of 

the worm via a web server or the file system because the executable file modifies all web 

content files in the system. 

Second is browser propagation. Nimda modifies all web content files it finds. As a result, 

any user browsing web content on the system may download a copy of the worm. 

The third way of propagation is file system propagation. The Nimda worm creates 

numerous copies of itself in all writable directories to which the user has access. If a user 

on another system subsequently selects the copy of the worm file on the shared network 

drive, the worm may be able to compromise that system. This worm may also cause 

bandwidth DOS conditions on networks with infected machines. 

4.2.2.3 W32/BadTrans 

This is a mass mailing worm which uses Outlook to reply to unread email messages. It 

also drops a remote access Trojan Horses to the infected computer. This malicious 
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Windows program distributes as an email file attachment. Using a known vulnerability in 

Internet Explorer, Outlook Express and Outlook email programs may execute the 

malicious program as soon as the email message is viewed. The format of the MIME 

headers in an email containing W32/BadTrans attempts to exploit a vulnerability in 

Internet Explorer. The filename in the email attachment of a W32/BadTrans infected 

email varies from message to message but always has two file extensions. 

The beginning email message of the worm looks like the following (CERT/IN-2001-14 

2001). 

T h e M I M E headers contain: 

Mime-Version: 1.0 

Content-Type: multipart/related; 

type= "multipart / alternative"; 

boundary="====_ABC1234567890DEF_====" 

T h e b o d y of the M I M E message contains: 

-==== .ABC1234567890DEF_==== 

Content-Type: multipart/alternative; 

boundary="====_ABC0987654321DEF _ = = = = " 

-====_ABC0987654321DEF-==== 

Content-Type: text/html; 

charset= "iso-8859-1" 

Content-Transfer-Encoding: quoted-printable 

< H T M L > < H E A D > < / H E A D > < B O D Y bgColor=3D#ffffff> 

<iframe src=3Dcid:EA4DMGBP9p height=3D0 width=3D0> 

< / i f r a m e > < / B O D Y > < / H T M L > 

-====_ABC0987654321DEF_====-

-====_ABC1234567890DEF_==== 

Content-Type: audio/x-wav; 

name— "filename.ext.ext" 

Content-Transfer-Encoding: basc64 

Content-ID: 

4.2.2.4 W32/KIez-H 

This worm contains a compressed copy of the new variant of the W32/Elkern virus, which 

is dropped and executed when the worm is run. It is quite similar to the other variants of 

this dangerous virus. This worm searches for email address entries in the Windows 

address book, in ICQ list and in the files on the disk. It uses its own maihng routine. 
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The worm attempts to use the well known MIME security hole in MS-Outlook, 

MS-outlook Express, and Internet Explorer to run the attachment automatically. Infected 

emails have some characteristics; the subject line is either random or is composed from 

several strings, the body text is either empty or composed randomly, and the attached file 

has a random name with extension .PIF, .SCR, .EXE or .BAT. 

4.3 Malicious Virus Patterns in Infected Files 

I address infected files' format patterns rather than the virus itself in this section. As I 

mentioned, a virus is a piece of code, however it infects several files and changes their 

forms as an effect of the infection. By and large Internet-scale viruses consist of a virus 

program and several auxiliary files and information which support the virus program to 

spread smoothly. Once the virus program infects several files in one system, existing files 

contain a piece of virus code and are spread as another infected virus program. The 

following will examine the virus-infected programs' structure. 

4.3 .1 Parasi t ic Viruses 

Parasitic Viruses are all the file viruses which have to change the contents of target files 

while transferring copies of themselves, but the files themselves remain to be completely or 

partly usable. The main types of these viruses are the prepending viruses which are storing 

themselves at the top of a file, the appending ones which store themselves at the end of a 

file, and the inserting ones which insert themselves somewhere in the middle of a file. The 

insertion method may also be different by moving a fragment of the file towards the end of 

file or by copying its own code to such parts of the file which are known to be unused. 

The most common method of virus incorporation into a file is by appending the virus to 

the end of file. In this process the virus changes the top of file in such way that the virus 

code is executed first. 

This kind of appending is simple and usually effective. The virus writer does not need to 

know anything about the program to which the virus will append and the appended 

program simply serves as a carrier for the virus (P.Pfieeger 1997). 

In DOS COM files, in most cases this is achieved by changing the first three or more bytes 

in the instruction code into " JMP LOC-Virus" or into the address of the routine passing 

control to the body of the virus like in Figure 4.4. 

DOS EXE files are converted to the format of a COM file and then infected as a COM file 

or the head of the file is modified. In the DOS EXE file header, the starting address is 
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FIGURE 4.4: Virus positions in COM file. 

changed (CS;IP), and the length of the executable module is changed. Or less often the 

stack pointer registers are changed (SS:SP), then the virus goes to change the CRC(Cychc 

Redundancy Checksum) part of the file and so on. 

In the Windows and OS/2 executables (newEXE - NE, PE, LE, LX) the fields in the 

NewEXE header are changed. The structure of this header is much more complicated 

than that of a conventional DOS EXE file, so there are more fields to be changed; the 

starting address, the number of sections in the file, properties of the sections etc. In 

addition to that, before infection, the size of the file may increase to a multiple of one 

paragraph (16 bytes) in DOS or to a section in Windows and OS/2. The size of the 

section depends on the properties of the EXE file header. Figure 4.5 shows this case. 
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Program Code 
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FIGURE 4.5: Virus positions in DOS EXE/New EXE file. 

4.3 .2 Fi le W o r m s 

File worms are a modification of companion viruses but unlike them they do not 

connect their presence with any executable file. When they multiply, they just copy their 

' 'These viruses do no t change the infccted files. The i r o p e r a t i o n is to c rea te a clone of t h e t a r g e t file, so 

t h a t when t he t a rge t file runs , i ts clone virus gets t h e control ins tead . 
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code to some other disk or directory hoping that these new copies will someday be 

executed by a user. Sometimes these file worms give their copies some special names in 

order to push user into running the copy, for example, INSTALL.EXE or 

WINSTART.BAT. There are worm viruses using rather unusual techniques, for instance, 

to add their copies to archives (ARJ, ZIP and others). Such viruses are ArjVirus and 

Winstart. Some other viruses insert the command starting the infected file into BAT files. 

4.3 .3 Macro Viruses 

Macro viruses are in fact programs written in macro languages, built into some data 

processing systems such like Microsoft Word, and Microsoft Excel spreadsheet. To 

propagate, such viruses use the capabilities of macro languages and with their help 

transfer themselves from one infected file, e.g. document or spreadsheet, to another. 

Macro viruses for Microsoft Word, Microsoft Excel and Office97 are most common. 

Figure 4.6 shows the case. 
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FIGURE 4.6: Macro virus' position in an infected document 

File Worms are able to infect Word documents, and Excel viruses can infect Excel 

spreadsheets. The same is true for Office97(Kaspersky 2000). Because of the complicated 

format of the Word, Excel and Microsoft Office file, the mechanism of spreading of macro 

viruses in a file can only be presented approximately here. 

I have to mention that Microsoft Word Version 6 and 7 allows to encrypt macros in 

documents (Kaspersky 2000). Therefore some word viruses are present inside the infected 

documents in an encrypted and execute only form. 
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Most of the known viruses for Word are incompatible with native language versions and 

fail under the English version. However viruses inside documents remain active and may 

infect other computers with the corresponding version of Word. 
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Chapter 5 

Potential Research Models for 

Classification/Recognition 

A wide variety of approaches has been taken toward classification. Three main historical 

strands of research can be identified (D.Michie 1994): the statistical approach, machine 

learning and neural networks. Statistical approaches are generally characterised by having 

an explicit underlying probability model, which provides a probabiliy of being in each class 

rather than a classification. Machine learning is generally taken to encompass automatic 

computing procedures based on logical or binary operations, that learn a task from a series 

of examples. Machine learning aims to generate classifying expressions simple enough to 

be understood easily by human beings. Like statistical approaches, background knowledge 

may be exploited in development, but operation is assumed without human intervention. 

The field of neural networks has arisen from diverse sources, ranging from the fascination 

of mankind with understanding and emulating the human brain, to broader issues of 

copying human abilities, to the practical commercial and scientific disciplines of pattern 

recognition, modelling, and prediction. These have largely involved different professional 

and academic groups, and emphasised different issues. However, all groups have had some 

objectives in common. They have all attempted to derive procedures that would be able: 

to equal, if not exceed, a human decision-maker's behaviour, but have the advantage 

of consistency and, to a variable extent, explicitness. 

to handle a wide variety of problems and, given enough data, to be extremely 

general. 

• to be used in practical settings with proven success. 
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As I mentioned in the Introduction, there are several models for recognition; statistical 

pattern recognition, syntactic or structural pattern recognition, knowledge-based pattern 

recognition and so on. For these pattern recognition models, there are three main research 

areas; Neural Network, Fuzzy Inference Systems, and Data Mining. 

In this thesis, I selected three main models for classification and recognition. Even though 

historically the main models are statistical, machine learning and neural networks, this 

range is too wide to deal with. Furthermore, each area is connected with each other. For 

instance, machine learning can include neural networks, the machine learning and neural 

networks combine the complexity of some of the statistical techniques. 

Therefore, I chose three potential approaches in this big area after investigating and 

surveying them : Bayesian Networks, Neural Networks, and Data Mining. 

5.1 Bayesian Networks 

A Bayesian network is a directed and acyclic graph that compactly represents a 

probability distribution (Pearl 1988). Each variable Xi is represented as a node in the 

network. A directed edge between two nodes indicates probabilistic dependency from the 

variable denoted by the parent node to that of the child. 

Conditional independence appears in the cases of serial and diverging connections. 

Figure 5.1 where A and C are conditionally independent given B. 

0 <?) <c) 

F I G U R E 5 . 1 : Conditional Independent.: A and C arc conditionally independent given B . 

Consequently, the structure of the network denotes the assumption that each node Xi in 

the network is conditionally independent of its non-descendants given its parents. To 

describe a probability distribution satisfying these assumptions, each node Xi in the 

network is associated with a conditional probability table, which specifies the distribution 

over Xi given any possible assignment of values to its parents. If Xi has no parents, it 

simply contains a prior probability distribution over X / s values. The network structure 

and the associated parameters uniquely define a probability distribution over the variables 

in the network. 
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5.1.1 Subjec t ive Probabi l i ty and Objec t ive Probabi l i ty 

Bayesian probability is interpreted as degree of belief (J.M.Bernardo and A.F.M.Smith 

1994). Bayesian probability is also known as subjective probability, personal probability, 

or epistemic probability. Beliefs are always subjective, and all the probabilities appearing 

in Bayesian probability theory are conditional. In particular, under the belief 

interpretation probability is not an objective property of some physical setting, but is 

conditional to the prior assumptions and experience of the learning system. 

There is a long standing debate as to whether the subjective or the objective approach is 

the most appropriate. Objective may seem more plausible at first, but does require lots of 

data and is prone to experimental error. Therefore, some people say the Bayesian 

approach must be subjective. This is because there were no statistics when Bayes 

published his theorem, and so he would have considered a probability as purely subjective. 

I think subjective probability is more or less the feel for how probable something is, the 

degree to which a person's belief is probably true given the total evidence that the person 

has. I will use the term Bayesian to describe methods based on the calculus that develops 

out of Bayes' theorem, regardless of whether the probabilities are estimated by subjective 

or objective methods. However, I would like to say that the way to get a probability from 

total evidence and to deal with the probability for my project is subjective. 

5.1 .2 Bayes ' T h e o r e m and Bayes ian Inference 

Here, we use two variables which are related with the next chapter. To get probability of 

malicious packets, we are getting some specific evidence from data. 

For independent events E and M, M represents a group of malicious packets, E 

represents specific evidence about these packets. 

V{M AE) = V{M)*Y>{E) 

However, in cases where E and M are not independent. We must write: 

F{M AE) = P{M)*P{E \ M) 

Where, P(i? | M) is the probability of the specific evidence given the malicious packets 

have occurred. 

31 



5.1.2.1 Conditional Probability 

The conditional probability of event E given event M, denoted 'P{E | M), is given by, 

Now since conjunction is commutative, 

P{M A E) = P{M)*P{E I M) 

= P{E)*P{M 1 E) 

and by rearranging we get: 

P{M)*P{E I M) 
P(M I E) = 

P{E) 

5.1.2.2 Bayes' Theorem as an Inference Mechanism 

We write, 

• P(M I E): Posterior probability, the probability of malicious packets given the 

specific evidence, which is what we wish to infer. 

• P{E): The probability of the specific evidence; this is a measurable quantity that we 

get from existing data. 

• P ( £ I M): The probability of the specific evidence given the malicious packets. We 

can measure this from the case histories of the malicious packets. 

• P(M): Prior probability, the probability of malicious packets which we get from 

existing data. 

5.1.2.3 Prior and Likelihood Information 

P(M \E) = a* P(M) * P{E I M) 

We write, 
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• P(M I E): Posterior Information. 

• 1/P{E) = a: It is a normalized value ^ by measurable quantity. We represent this 

value as a. 

• P{M): Prior information, since we knew it before we made any measurements. 

• P(-E' I M): Likelihood information, since we gain it from measurement of evidences. 

Prior information should be subjective. It represents our belief about the domain we are 

considering, even if data has made a substantial contribution to our belief. Likelihood 

information should be objective. It is a result of the data gathering from which we are 

going to make an inference. It makes some assessment of the accuracy of our data 

gathering. In practice either or both forms can be subjective or objective. 

In some cases, we obtain the prior probability from statistics. For example, we can 

calculate the prior probability as the number of instances of a disease divided by the 

number of patients presenting for treatment. However in many cases this is not possible 

since the data is not there, and there may also be prior knowledge in other forms. 

5.1 .3 S imple Bayes ian Classifier 

The most straighforward and widely tested method for probabilistic induction is the 

simple Bayesian Classifier (Langley and Sage 1994) A simple Bayesian Classifier is a 

simple structure in which nodes that show the same parent node cannot have a connection 

between them (i.e. it is a tree-like structure). A simple Bayesian Classifier is illustrated in 

Figure 5.2. 

P ( C = F ) P ( C = T ) 

F I G U R E 5.2: A Structure of a simple Bayesian Classifier 

We assume each node as a class. This simple Bayesian Classifier represents each class with 

a single probability table. In particular, each table has an associated class probability 

P{Ci), which specifies the prior probability that one will observe a member of class Q . 

' T h e goal of data normalization is so that none of components of input vectors has an overwhelming 
influence on the training result. There are several methods for data normalization. 

^ Bayesian classifier has a number of names: the simple Bayesian Classifier (P. Langley 1993), the Naive 
Dayesian Classifierfl.Kononenko 1990) and idiot Bayes(W. Duntine 1990). These names are commonly used. 
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Each table also has an associated set of conditional probabilities, specifying a probability 

distribution for each attribute. However, Bayesian Inference is inadequate to deal with 

more complex models of prior knowledge. Once several factors affect a decision they need 

to be combined somehow. 

The simple Bayesian classifier relies on two important assumptions (Langley and Sage 

1994). First is a single probability table. Instances in each class can be summarized by a 

single probability table, and these are sufficient to distinguish the classes from one another. 

Another assumption is independence of attributes. The simple Bayesian classifier requires 

that the probability distributions for attributes are independent of each other within each 

class. One can model attribute dependence within the Bayesian framework (Pearl 1988). 

But determining such dependencies and estimating them from limited training data is 

much more difficult. Thus, the independence assumption has clear attractions. It is 

applicable in many cases. 

When we use Bayes' theorem we have just one hypothesis and one piece of evidence. 

However, we have evidence from more than one source in the real world. We get: 

The term P{M) *F{Ei A A • • • A En | M) is of little use for inference since for large n 

we are unlikely to be able to estimate it. Hence we normally make the assumption that 

the Ei are independent given M, this allows us to write: 

P{Ei A E2 A • • • A En | M) = P{Ej | M) * P(^g | M) * • • • * P{En | M) 

The term P{Ei A E2 A • • • A En) can be eliminated by normalisation, therefore the 

inference equation we can obtain from Bayes' theorem is: 

P(M \ El A E2 A • • • A En) = a * P(M) * P{Ei | M) * P(^g | M) * • • • * P(£^„|M) 

where 

a = 
P(E] A Eg A - - - A En) 

5.1 .4 Bayes ian Dec i s ion Tree 

There is a large number of conditional probabilities. We need a very large data set to 

make a reasonable estimate. In this point, the use of a tree gives us a much more accurate 
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and easy-to-read way of expressing how each term relates to one another in a given 

context, such as the analysis of SMTP packets. 

SMTP (Simple Mail Transfer Protocol) (RFC0821 1982) (RFC2821 2001) is for the 

Internet electronic mail transport. Based on this protocol, I can get SMTP's semantic 

entities, which might be present in a mail packet. The Mail Packet Decision Tree in 

Figure 5.3 shows us a model which is better to understand. The "header" node represents 

considering a mail's subject and "body" represents the mail's data part. The nodes 

"header" and "body" of a mail packet can be seen as a common, cause of the "MIME 

type" and "Plain Text Type" nodes (e.g. "MIME type" and "Plain Text type" are 

children of "header" meaning that a mail's subject is either plain text or MIME 

encoded.). It is important to note here that the MIME (Multipurpose Internet Mail 

Extensions) type of the header node and that of the body node are very different. The 

header node's MIME is followed by (RFC2047 1996), on the other hand, the body node's 

MIME is followed by (RFC2045 1996), (RFC2046 1996), and (RFC2048 1996). 

SMTP decoded Packet I 
-"PlfiodylSD) P HeadirlSD 

header P(SDBMIBody) PtSDBTiajdyJ PISQHMIHsaderJ SDHTIHnderl 

Ml ME type MIME type Plain Text Type PlalnTarttype 

pDlT) 

F I G U R E 5 . 3 : Mail Packet Decision Tree 

If we use each nodes' symbols like SD for the root node(SMTP decoded Packet), Header 

for the header node. Body for the body node, SDHM for the MIME type node, SDHT for 

the Plain Text Type node, SDBM for the MIME type node inherited from the body node, 

and SDBT for the Plain Text Type node which is again inherited from the body node, as 

we can see in Figure 5.3, the probability of header node of a mail packet could be denoted 

by V{Header \ SD), because it is the conditional probability that an observed packet is of 

type Header given that it is an SMTP packet {SD). That means that it is the probability 

of a data packet to be part of a mail's header under the assumption that we already know 

that is it a SMTP packet. Like this, the probability of the body node of a mail packet is 

P{Body I SD). I will call this kind of probabilities a link matrix. This Bayesian Decision 

Tree presents relations among nodes and gives us accurate estimation of conditional 

probabilities. 

5.1.5 Re la t ed Work 

The simple Bayesian classifier gives remarkably high accuracies in many natural domains 

(G.Cestnik and I.Bratko 1987). The simple probabilistic method outperformed a 
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decision-tree algorithm on four out of five natural domains (P.Langley and K.Thompson 

1992). They compare the method to IND's emulation ^ of C4 algorithm and a 

frequency-based algorithm that simply guesses the modal class. The five domains include 

the small soybean dataset (classifying soybeans into different categories based on their 

appearance), chess end games involving a king-rook-king-pawn confrontation, cases of 

lymphography diseases, and two biological datasets. For each domain, they randomly split 

the data set into 80% training instances and 20% test instances, repeating this process to 

obtain 50 separate pairs of training and test sets. In four of the domains, the simple 

Bayesian classifier is at least as accurate as a C4 reimplementation. The result shows that 

it behaves well across a variety of domains. 

5.2 Neural Network Models 

Neural networks are a wide class of flexible nonlinear regression and discriminant models, 

data reduction models, and nonlinear dynamical systems (Haykin 1999). They consists of 

an often large number of neurons, i.e. simple linear or nonlinear computing elements, 

interconnected in often complex ways and often organized into layers. 

When neural networks are used for data analysis, it is important to distinguish between 

neural network models and neural network algorithms (S.Sarle 1994). Many neural 

network models are similar or identical to popular statistical techniques such as 

generalized linear models, polynomial regression, nonparametric regression and 

discriminant analysis, and cluster analysis, especially where the emphasis is on prediction 

of complicated phenomena rather than on explanation. These neural network models can 

be very useful. There are also a few neural network models, such as counter propagation, 

learning vector quantization, and self-organizing maps, that have no precise statistical 

equivalent but may be useful for data analysis. 

Standard neural network learning algorithms e.g. perceptron, multi-layer perceptron, back 

propagation, radial basis function networks, and feed-forward network, are inefficient 

because they are designed to be implemented on massively parallel computers but are, in 

fact, usually implemented on common serial computers such as ordinary PCs. On a serial 

computer, neural networks can be trained more efficiently by standard numerical 

^ IND is a tree calssification software. IND docs supervised learning using classification trees. It was 
developed as part of a NASA project to semi-autornatc the development of data analysis and modeling 
algorithms using artificial intelligence techniques. 

'' C4 is a well-known learning algorithm developed by Quinlan. This type of algorithms tries to fit a tree 
to a training sample using recursive partitioning. This means that the training set is split into increasingly 
homogeneous subsets until the leaf nodes contain only cases from a single class. An important problem in 
learning classification trees is overfitting on the training set. To this end, pruning strategies can be adopted, 
whereby the classification tree is simplified by discarding one or more subtrees and replacing them with 
leaves. 
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optimization algorithms such as those used for nonlinear regression. Nonlinear regression 

algorithms can fit most neural network models orders of magnitude faster than the 

standard neural network algorithms. Another reason for the inefficiency of neural network 

algorithms is that they are often designed for situations where the data are not stored, but 

each observation is available transiently in a real-time environment. Transient data are 

inappropriate for most types of statistical analysis. In statistical applications, the data are 

usually stored and are repeatedly accessible, so statistical algorithms can be faster and 

more stable than neural network algorithms. Hence, for most practical data analysis 

applications, the usual neural network algorithms are not useful. 

Because all neural networks are based on the concept of neurons, connections, and 

transfer functions, there is a similarity between the different structures, or architectures, 

of neural networks. The majority of the variations stems from the various learning rules 

and how those rules modify a network's typical topology. I am considering the 

Self-Organizing Map (SOM) and the Probabilistic Neural Network (PNN) in this thesis. 

5.2 .1 Major C o m p o n e n t s of an Artif icial N e u r o n 

These components (Anderson and McNeill 1992) are valid whether the neuron is used for 

input, output, or is in one of the hidden layers. 

5.2.1.1 Weighting Factors 

A neuron usually receives many simultaneous inputs. Each input has its own relative 

weight which gives the input impact that it needs on the processing element's summation 

function. These weights perform the same type of function as do the varying synaptic 

strengths of biological neurons. In both cases, some inputs are made more important than 

others so that they have a greater effect on the processing element as they combine to 

produce a neural response. Weights are adaptive coefficients within the network that 

determine the intensity of the input signal as registered by the artificial neuron. They are 

a measure of an input's connection strength. These strengths can be modified in response 

to various training sets and according to a network's specific topology or through its 

learning rules. 

5.2.1.2 Summation Function 

The first step in a processing element's operation is to compute the weighted sum of all of 

the inputs. Mathematically, the inputs and the corresponding weights are vectors which 

can be represented as ( i j , i g , . . . , i„) and (wj, tug,. . . , w„). The total input signal is the 
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dot, or inner, product of these two vectors. This simpUstic summation function is found 

by multiplying each component of the i vector by the corresponding component of the w 

vector and then adding up all the products, inputi — ij * wj, input2 = % * wg, etc., are 

added as inputi + input2 H h inputn- The result is a single number, not a multi-element 

vector. The inner product of two vectors can be considered a measure of their similarity. 

If the vectors point in the same direction, the inner product is maximum; if the vectors 

point in opposite direction (180 degrees out of phase), their inner product is minimum. 

The summation function can be more complex than just the simple input and weight sum 

of products. The input and weighting coefficients can be combined in many different ways 

before passing on to the transfer function. In addition to a simple product summing, the 

summation function can select the minimum, maximum, majority, product, or several 

normalizing algorithms. The specific algorithm for combining neural inputs is determined 

by the chosen network architecture and paradigm. Some summation functions have an 

additional process applied to the result before it is passed on to the transfer function. 

This process is sometimes called the activation function. The purpose of utilizing an 

activation function is to allow the summation output to vary with respect to time. 

Activation functions currently are pretty much confined to research. Most of the current 

network implementations use an identity activation function, which is equivalent to not 

having one. Additionally, such a function is likely to be a component of the network as a 

whole rather than of each individual processing element component. 

5.2.1.3 Transfer Function 

The result of the summation function, almost always the weighted sum, is transformed to 

a working output through an algorithmic process known as the transfer function. In the 

transfer function the summation total can be compared with some threshold to determine 

the neural output. If the sum is greater than the threshold value, the processing element 

generates a signal. If the sum of the input and weight products is less than the threshold, 

no signal or some inhibitory signal is generated. Both types of response are significant. 

The threshold, or transfer function, is generally non-linear. Linear functions are limited 

because the output is simply proportional to the input. Linear functions are not very-

useful. 

5.2.1.4 Scaling and Limiting 

After the processing element's transfer function, the result can pass through additional 

processes which scale and limit. This scaling simply multiplies a scale factor times the 

transfer value, and then adds an offset. Limiting is the mechanism which insures that the 
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scaled result does not exceed an upper or lower bound. This limiting is in addition to the 

hard limits that the original transfer function may have performed. 

5.2.1.5 Output Function (Competition) 

Each processing element is allowed one output signal which it may output to hundreds of 

other neurons. This is just like the biological neuron, where there are many inputs and 

only one output action. Normally, the output is directly equivalent to the transfer 

function's result. Some network topologies, however, modify the transfer result to 

incorporate competition among neighbouring processing elements. Neurons are allowed to 

compete with each other, inhibiting processing elements unless they have great strength. 

Competition can occur at one or both of two levels. First, competition determines which 

artificial neuron will be active, or provides an output. Second, competitive inputs help 

determine which processing element will participate in the learning or adaptation process. 

5.2.1.6 Error Function and Back-Propagated Value 

In most learning networks, the difference between the current output and the desired 

output is calculated. This raw error is then transformed by the error function to match 

the particular network architecture. The most basic architectures use this error directly, 

but some square the error while retaining its sign, some cube the error, other paradigms 

modify the raw error to fit their specific purposes. The artificial neuron's error is then 

typically propagated into the learning function of another processing element. This error 

term is sometimes called the current error. The current error is typically propagated 

backwards to a previous layer. Yet, this back-propagated value can be either the current 

error, the current error scaled in some manner (often by the derivative of the transfer 

function), or some other desired output depending on the network type. Normally, this 

back-propagated value, after being scaled by the learning function, is multiplied against 

each of the incoming connection weights to modify them before the next learning cycle. 

5.2.1.7 Learning Function 

The purpose of the learning function is to modify the variable connection weights on the 

inputs of each processing element according to some neural based algorithm. This process 

of changing the weights of the input connections to achieve some desired result can also be 

called the adaption function, as well as the learning mode. There are two types of 

learning: supervised and unsupervised. Supervised learning requires a teacher. The 

teacher may be a training set of data or an observer who grades the performance of the 
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network results. Either way, having a teacher is learning by reinforcement. When there is 

no external teacher, the system must organize itself by some internal criteria designed into 

the network. This is learning by doing. 

5.2.2 Training a Neura l Network 

There are two approaches to training; supervised and unsupervised. Supervised training 

involves a mechanism of providing the network with the desired output either by manually 

grading the network's performance or by providing the desired outputs with the inputs. 

Unsupervised training is where the network has to make sense of the inputs without 

outside help. 

5.2.2.1 Supervised Training 

In supervised training, both the inputs and the outputs are provided. The network then 

processes the inputs and compares its resulting outputs against the desired outputs. 

Errors are then propagated back through the system, causing the system to adjust the 

weights which control the network. This process occurs over and over as the weights are 

continually tweaked. The set of data which enables the training is called the training set. 

During the training of a network the same set of data is processed many times as the 

connection weights are ever refined. 

5.2.2.2 Unsupervised Training 

In unsupervised training, the network is provided with inputs but not with desired 

outputs. The system itself must then decide what features it will use to group the input 

data. This is often referred to as self-organization. 

5.2 .3 Self -Organizing M a p (SOM) 

The Self-Organizing Map (T.Kohonen 1995) is a neural network model for analyzing and 

visualizing high dimensional data. It belongs to the category of competitive learning 

network. The Self-Organizing Map is based on unsupervised learning map and nonlinear 

statistical relationships between high-dimensional input data into two-dimensional lattice 

(Nguyen 2002). The self-organizing map defines a neighbourhood relation between 

prototype vectors - also called codebook vectors. This neighbourhood relation can be a 

rectangular or hexagonal lattice of map units, (see Figure 5.4) 
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Kohonen Layer 

Inputs 
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FIGURE 5.4: T h e Kohonen Layer 

The primary use of the self-organizing map is to visualize topologies and hierarchical 

structures of higher-order dimensional input spaces. The self-organizing network has been 

used to create area-filled curves in two-dimensional space created by the Kohonen layer. 

The Kohonen layer can also be used for optimization problems by allowing the connection 

weights to settle out into a minimum energy pattern. 

A key difference between this network and many other networks is that the self-organizing 

map learns without supervision. However, when the topology is combined with other 

neural layers for prediction or categorization, the network first learns in an unsupervised 

manner and then switches to a supervised mode for the trained network to which it is 

attached. 

5.2.3.1 Training Structure 

The self-organizing map has typically two layers. The input layer is fully connected to a 

two-dimensional Kohonen layer. The output layer is used in a categorization problem and 

represents classes to which the input vector can belong. There are two steps in the 

training process for SOM (T.Kohonen 1995). First, a winner is searched, which minimizes 

the Euclidean distance measured between input data sample x and the map unit rrii. The 

smallest of the Euclidean distances ||a; — mi\\ can be made to define the best-matching 

node, signified by the subscript c. 

c = argmmjila; - m. 
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The Kohonen layer's processing elements measure the Euclidean distance of its weights 

from the incoming input values. During recall, the Kohonen element with the minimum 

distance is the winner and outputs one to the output layer. This is a competitive win, so 

all other processing elements are forced to zero for that input vector. Thus the winning 

processing element is, in a measurable way, the closest to the input value and thus 

represents the input value in the Kohonen two-dimensional map. So the input data, which 

may have many dimensions, comes to be represented by a two-dimensional vector which 

preserves the order of the higher dimensional input data. This can be thought of as an 

order-perserving projection of the input space onto the two-dimensional Kohonen layer. 

Second, the map units in the neighbourhood of the winner unit are updated according to 

a neighbourhood function hci(t) centered on the winner unit c. This update step can be 

carried out by applying the following formula: 

mi(t -f 1) = mi(t) 4- hci(t)[x(t) - mi(t)] 

Where t = 0, 1, 2, . . . is an integer, and the last term in the square brackets is 

proportional to the gradient of the squared Euclidean distance. A widely applied 

neighbourhood function is the the Gaussian function defined below. 

The SOM defines a mapping from input data space i?" onto a two-dimensional array of 

nodes, rc € and S are the location vectors of nodes c and i, respectively, in the 

array. The value of a{t) is identified with a learning-rate factor (0 < a{t) < 1), and the 

parameter (j{t) defines the width of the kernel. 

During training, the Kohonen processing element with the smallest distance adjusts its 

weight to be closer to the values of the input data. The neighbours of the winning element 

also adjust their weights to be closer to the same input data vector. The adjustment of 

neighbouring processing elements is instrumental in preserving the order of the input 

space. 

The problem of having one processing element takes over for a region and representing too 

much input data exists in this paradigm. As with counter-propagation, this problem is 

solved by a conscience mechanism built into the learning function. The conscience rule 

depends on keeping a record of how often each Kohonen processing element wins and this 

information is then used during training to bias the distance measurement. This 

conscience mechanism helps the Kohonen layer achieve its strongest benefit. The 

processing elements naturally represent approximately equal information about the input 

data set. Where the input space has sparce data, the representation is compacted in the 
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Kohonen space, or map. Where the input space has high density, the representative 

Kohonen elements spread out to allow finer discrimination. In this way the Kohonen layer 

is thought to mimic the knowledge representation of biological systems. 

5.2.4 Probabi l i s t ic Neural Network ( P N N ) 

Probabilistic Neural Networks (PNN) are a class of neural networks which combine some 

of the best attributes of statistical pattern recognition and feed-forward neural networks 

(Specht 1990). The PNN is based on well established statistical principles rather than 

heuristic approaches. Heuristic approaches usually involve making many small 

modifications to the system parameters which gradually improve system performance. 

The Multilayer Perceptron (MLP) neural network is typical of the heuristic approach and 

it is associated with long training times with no guarantee of achieving a suitable solution 

within a reasonable training time. The PNN on the other hand is derived from the Bayes' 

decision strategy and nonparametric ® kernel ® based estimators of probability density 

functions. It is guaranteed to approach the Bayes' optimal decision surface as the number 

of training samples increase provided the class probability density functions are smooth 

and continuous. 

The probabilistic neural network uses a supervised training set to develop distribution 

functions within a pattern layer. These functions, in the recall mode, are used to estimate 

the likelihood of an input feature vector being part of a learned category, or class. The 

learned patterns can also be combined or weighted with the a priori probability, also 

called the relative frequency, of each category to determine the most likely class for a 

given input vector. If the relative frequency of the categories is unknown, then all 

categories can be assumed to be equally likely and the determination of category is solely 

based on the closeness of the input feature vector to the distribution function of a class. 

5.2.4.1 Training Structure 

This network has three layers. The network contains an input layer which has as many 

elements as there are separable parameters needed to describe the objects to be classified. 

It has a pattern layer, which organizes the training set such that each input vector is 

represented by an individual processing element. And finally, the network contains an 

^ In pat tern recognition, density estimation without any prefcrcrcnce model assumptions is called non-
parametric density estimation. And one of non-parametric techniques used for density estimation is Parzcn. 
Parzen density estimation method (dc Ridder 1998) is a superposition of Gaussian Kernel located on many 
objects. These kernels are combined by linear summation to find a probability density function of the 
objects. This method is very accurate but requires a huge amount of objects, especially when estimating in 
a high dimensional space. 

® A local region size and shape is called a kernel. 
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output layer, called the summation layer, which has as many processing elements as there 

are classes to be recognized. Each element in this layer combines via processing elements 

within the pattern layer which relate to the same class and prepares that category for 

output. Sometimes a fourth layer is added to normalize the input vector, if the inputs are 

not already normalized before they enter the network. The input vector must be 

normalized to provided proper object separation in the pattern layer. 

The pattern layer represents a neural implementation of a version of a Bayes classifier, 

where the class dependent probability density functions are approximated using a Parzen 

estimator (Richard Duda and Stork 2001) This approach provides an optimum pattern 

classifier in terms of minimizing the expected risk of wrongly classifying an object. With 

the estimator, the approach gets closer to the true underlying class density functions as 

the number of training samples increases, so long as the training set is an adequate 

representation of the class distinctions. 

In the pattern layer, there is a processing element for each input vector in the training set. 

Normally, there are equal amounts of processing elements for each output class. Otherwise, 

one or more classes may be skewed incorrectly and the network will generate poor results. 

Each processing element in the pattern layer is trained once. An element is trained to 

generate a high output value when an input vector matches the training vector. The 

training function may include a global smoothing factor to better generalize classification 

results. In any case, the training vectors do not have to be in any special order in the 

training set, since the category of a particular vector is specified by the desired output of 

the input. The learning function simply selects the first untrained processing element in 

the correct output class and modifies its weights to match the training vector. 

The pattern layer operates competitively, where only the highest match to an input vector 

wins and generates an output. In this way, only one classification category is generated for 

any given input vector. If the input does not relate well to any patterns programmed into 

the pattern layer, no output is generated. 

The Parzen estimation can be added to the pattern layer to fine tune the classification of 

objects. This is done by adding the frequency of occurrence for each training pattern built 

into a processing element. Basically, the probability distribution of occurrence for each 

example in a class is multiplied into its respective training node. In this way, a more 

accurate expectation of an object is added to the features which make it recognizable as a 

class member. 

^ The objective of pattern recognition problems is to minimize the number of classification errors, also 
called error rate. The minimum error rate over the set of all classifiers is defined as the Bayes error. Parzen 
fixes the volume of the local region (of Photogramrnetry and Sensing 2001). Estimating the Bayes error using 
the Parzen estimator is done by forming the log likelihood ratio functions and then using resubstitution and 
leave-one-out methodologies to find an optimistic and pessimistic value for error estimate. However, Parzen 
estimators are not known to bound the Bayes error (William E.Pierson 1998). 
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5.2.4.2 Pros and Cons 

Training of the probabilistic neural network is much simpler than with back-propagation. 

However, the pattern layer can be quite huge if the distinction between categories is 

varied. There are many proponents for this type of network, since the groundwork for 

optimization is founded in well known, classical mathematics. 

PNNs' features are very fast training times and the production of outputs with Bayes 

posterior ® probabilities. These useful features come at the expense of larger memory 

requirements and slower execution speed for prediction of unknown patterns compared to 

conventional neural networks. Testing can be slower than for backpropagation for software 

implementation as the computation time for a classification is proportional to the size of 

the training set. 

The main drawback of PNNs is that, like kernel methods ® in general, it suffers badly from 

the curse of dimensionality. A PNN cannot ignore irrelevant inputs without major 

modifications to the basic algorithm. But if all inputs are relevant, PNN has the very 

useful ability to say whether a test case is similar (i.e. has a high density) to any of the 

training data; if not, the output classification must be checked with scepticism. This 

ability is of limited use when inputs are irrelevant, since the similarity is measured with 

respect to all of the inputs, not just the relevant ones. 

5.2.5 R e l a t e d Work 

Nowadays almost all practical IDSs are signature-based systems. These systems work 

based on predefined descriptions of attack signatures. Various data source and 

type-of-pattern recognition techniques are still used. However, many known attacks can 

be easily modified to present many different signatures. If not all variations are in the 

database, a known attack may be missed. Moreover, early systems were constructed 

around concepts of statistical anomaly detection. These systems faced practical and 

theoretical difficulties, such as performance and creation of false positives. Some more 

modern approaches try to exploit neural-network-based techniques. 

• SOM and BP 

The research presented in (C.Lee and V.Heinbuch 2001) is based on a simulated 

network and IDS. The IDS is composed of a hierarchy of back propagation(BP) 

®Thc revised values of prior probabilities after receiving additional information. 
^In non-parametric density estimation, there arc three main methods; histograms, k-ncarest neighbours 

methods, kernel methods (Ilicscu ). Kernel methods use density function as sums of common point spread 
interpolation functions. 
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neural networks. The experimental IDS focuses on the protocol. The transfer 

control protocol (TCP) has a rich repertoire of well-defined behaviours that can be 

monitored by the experimental IDS. But, ill-formed packets could not be produced 

by the network simulation; therefore the experimental IDS did not monitor packet 

formation. A packet formation check remains necessary. 

To explore attack spaces, they use a hierarchy of Back Propagation (BP) neural 

networks for the protocol, and the Self-Organizing Map (SOM) technique for the 

anomaly classification. However, they did not regard the volume of traffic, packet 

size distribution, inter-arrival rates, login rates, the number of and ports for services 

(which could well be doable for real systems). For anomaly detection, they choose a 

hierarchy of back propagation. To test it, every packet is sent and received. Writing 

such a program would be akin to rewriting the TCP network software. They 

aggregated statistics to detect anomalies. This includes a lot of costs. The BP needs 

to know the output form. The BP is initialized randomly and must undergo 

supervised learning before its use as a detector. This requires knowledge of the 

desired output for each input vector. Often, obtaining training data with known 

content is difficult. Furthermore, if the input representing an anomaly represents a 

known attack, the neural network will learn to recognize those particular signatures 

as bad, but may not recognize other, novel attack signatures. The simulation of data 

traffic is rather artificial. Since true network activity does not follow the normal 

distributions they used. And the output for the SYN flood and fast scan attacks are 

well separated from the nominal output. 

For anomaly classification, they use an SOM. The SOM provides a two dimensional 

mapping of n-dimensional input data into unique clusters. Using the SOM, they can 

classify an anomaly, but not a malicious attack. Their training data itself is already 

quite anomalous. That is why they can classify many anomalies. But real data 

packets are hard to classify using their SOM, because the data parts of real packets 

must be grouped together in order for the SOM to analyse it. 

• TDNN and BP 

Research in (K.Ghosh and Schwartzbard 1999) is based on a classical feed-forward 

multi-layer perceptron network: a Back-Propagation neural network and Time Delay 

Neural Network (TDNN) to program-based anomaly detection. For a long time, 

such a research approach was focusing on user behaviour, but this paper dealt with 

the behaviour of software. It is therefore a novel and different approach to anomaly 

and misuse detection. The TDNN to program-based anomaly detection has proved 

to be more successful than using the BP for the same prupose. 

• MLP and SOM 

Lastly, to identify and classify network activity based on limited, incomplete, and 
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nonlinear data sources, (Cannady and Mahaifey 1998) present an analysis of the 

applicability of neural networks. They use the RealSecure network monitor from 

Internet Security Systems,.Inc. In their neural network architecture, Multi-Layer 

Perceptron (MLP) and hybrid forms (MLP + SOM) are adapted. The MLP was 

conducted using a backpropagation algorithm. The MLP result demonstrates the 

potential of neural networks to detect individual instances of possible misuse, on the 

other hand, Hybrid MLP + SOM result in correctly classifying each of the test cases 

and provide a positive demonstration of the ability of the hybrid neural network 

architecture to detect complex instances of misuse. 

5.3 Data Mining Techniques 

Data mining is the analysis of large observational data sets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and 

useful to the data owner (David Hand and Smyth 2001). The data mining approach 

describes the discovery of useful summaries of data based on relations, patterns, and rules 

that exist in the data. Pattern extraction and discovery as well as feature extraction 

capabilities of data mining processes seem to offer interesting possibilities for our 

detection engine. 

Data mining takes advantage of advances in the field of Artificial Intelligence(AI) and 

statistics. Both disciplines have been working on problems of pattern recognition and 

classification (Crows 1999). Data mining is, in some ways, an extension of statistics, with 

a few artificial intelligence and machine learning twists thrown in. Data Mining is about 

finding understandable knowledge, on other hand, machine learning is concerned with 

improving performance of an agent, for instance, training a neural network. Moreover, 

efficiency of the algorithm and scalability is more important in data mining. Because data 

mining is concerned with very large, real-world databases and machine learning typically 

looks at smaller data sets. However, data mining does not replace traditional statistical 

techniques. Rather it is an extension of statistical methods that is in part the result of a 

major change in the statistics community (Crows 1999). 

Data mining creates classification models by examining already classified data cases and 

inductively finding a predictive pattern. In the case where data mining is applied to 

detection (Matthew G.Schultz 2001), data mining methods detect patterns in large 

amounts of data, such as byte code, and use these patterns to detect future instances in 

similar data. Their classifier is a rule set, or detection model, generated by the data 

mining algorithm that was trained over a given set of training data. This needs to gather 

many kinds of information which is helpful to detect attacks. For an IDS, it has good 
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advantages. In the firewall case, the data which we need to monitor is very restricted. 

That is why it is not suitable. Data mining programs are applyed to computing patterns 

for feature constructions; for computing activity patterns from audio data, constructing 

features from the patterns and learning classifiers for intrusion detection from audit 

records processed according to the feature definitions (Wenke Lee 2000). Data 

mining-based approaches to building detection models for IDSs are discussed in 

(Wenke Lee 2001). These models generalize from both known attacks and normal 

behaviour in order to detect unknown attacks. 

5.3.1 R e l a t e d Work 

Data mining methods detect patterns in large amounts of data, and use these patterns to 

detect future instances in similar data. These data mining techniques have already been 

applied to IDSs (W.Lee and P.K.Chan 1997), (Wenke Lee and Mok 1999). Their methods 

were applied to system calls and network data to learn how to detect new intrusions. They 

reported good detection rates as a result of applying data mining to the problem of IDS. 

Data mining-based IDSs are only useful if their detection rate is higher than a 

hand-crafted method's detection rate with an acceptably low false positive rate. 

(Wenke Lee 2001) developed a data mining-based IDS that is capable of outperforming 

hand-crafted signature-based systems at a tolerated false positive rate. They have applied 

a number of algorithm-independent techniques to improve the performance of data 

mining-based IDSs. 

Another applicative part is detecting new malicious executables (Matthew G.Schultz 

2001). They designed a framework that uses data mining algorithms to train multiple 

classifiers on a set of malicious and benign executables to detect new examples. 
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Chapter 6 

A n Intelligent Firewall 

Architecture Model 

In various ways, we can create intelligent engines. All I focus on in my thesis is about two 

points of risk management in the Intelligent Firewall. One is increasing the detection ratio, 

the other is reducing false positives. Especially Internet-scale viruses are increasingly 

serious and have various formats. In infected data packets, establishing existences of 

classes or establishing a rule is necessary, even though it is really hard to find. As I defined 

before, classification is based on finding proper information and establishing links between 

data, on the other hand, recognition is based on making a decision about the information 

after classifying the data. For intelligent engines to do these classification and recognition 

roles, two engines are needed, each to handle one of the two mentioned abilities. 

The Intelligent Firewall has packet-based detection components (see Figure 6.1). To 

overcome weaknesses of a traditional firewall, this Intelligent Firewall contains packet 

classification and smart detection features. These detection components deal with not 

only a packet's header but also with its pay load. To capture packets from the datalink 

layer I have used libpcap (LIBPCAP 2002), and to decode data packets I have modified 

parts of snort (SNORT 2002). These packet-based detection components will be useful if 

their detection rate is reasonably high with an acceptably low rate of false positive. 

Moreover, the packet-based classification engine and the smart detection engine will not 

only detect anomalous network traffic as in IDSs, but also detect unusual data packets 

potentially belonging to Internet-scale viruses. 

The main role of the packet-based classification engine is to classify packets which could be 

malicious and estimate the probabilitiy of them being malicioius, on the other hand, the 

main role of the smart detection engine is recognizing malicious patterns in data packets 

that have a certain probability of being malicious. The packet-based classification engine 
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deals with investigating relations of packets based on certain parts of evidences, on the 

other hand, the smart detection engine recognizes patterns which represent maliciousness 

based on reasoning under uncertainty (the probability of being malicious data is high). By 

and large, the smart detection engine will deal with attached malicious files. 

I apply these concepts to establish a rule for the packet-based classification engine, and to 

identify the classes needed in the smart detection engine. To reduce error, the smart 

detection engine will deal with malicious packets which are filtered by the packet-based 

classification engine and have a high probability of being malicious. 

Real-time notification/reaction/record to disk 

Detected Packet Stream 

Detected Packet Stream Classified Packet Stream 

Decoded Packet Stream 

Filtered Packet Stream 

Packet Stream 

Network 

Smart Detection Engine 

Policy Interpreter 

Packet-Based Classification Engine 

libpcap 

Packet Decoder 

F I G U R E 6 . 1 : Packet-Based Detection Components in the Intelligent Firewall. After decod-
ing packets, the classification engine and the smart detection engine deal with not only 

packet headers but also packet payload to detect malicious packets. 

6.1 Data Packet Detection 

As I have surveyed social engineering attacks and secure vulnerability attacks, attack 

trends of Internet-scale viruses are that they are automatic and sophisticated, and 

intruders misuse infrastructure for their own purpose. To identify Internet-scale viruses, in 

addition to the usual network control ability of a firewall, data packet detection is 

compulsory. A packet-header check in a firewall is not sufficient to detect infrastructure 

based attacks, for example, to identify multiple file extension, domain-name-style file 

names and long subjects in email attachments. Win32/SirCam, Win32/Gibe, 
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Win32/Myparty, Nimda, and Win32/BadTrans misuse this point. Moreover, I beUeve 

that attack packets are peculiar. Likewise anti-virus softwares can detect viruses in 

programs using a unique character, which is called a virus signature, a peculiar attack 

pattern will also appear in the data packets such as Code Red's packet. IDSs run a 

process known as anomaly detection. An IDS constantly monitors network traffic and 

compares the stream of network packets with what it perceives as normal network traffic. 

Anomaly detection appears to be applicable not only to intrusion detection but also to 

virus monitoring (M.Swimmer 2000), now not being applied to the level of the full 

network traffic, but to single data packets. The improved virus monitor will examine data 

packets as usual. Besides checking against known malicious-code patterns, it will check 

whether it sees a pattern that it perceives as potentially malicious and will react 

accordingly, e.g. by creating some sort of warnings. However, during my investigation of 

data packets in some of the good packets, I could identify very similar patterns in packets 

which seem to contain malicious code, e.g. the BAT911/Chode worm. These were packets 

sent by Microsoft Servers to NetBIOS and DNS lookup services. For example, port 137 is 

reserved for the NetBIOS name service and port 138 is reserved for the NetBIOS 

datagram service. The subsequent packet was assumed to contain the signature of the 

"BAT911/Chode" worm even though it was a benign packet^: 

05/24-13;10:13.082716 152.78.70.46:137 > 152.78.70.127:137 

UDP TTL;128 TOS:OxO ID:47635 IpLen;20 DgmLen:78 

Len: 58 

0x0030: 00 00 00 00 00 00 20 45 45 46 44 46 44 45 46 43 EEFDFDEFC 

0x0040: 41 43 41 43 41 43 41 43 41 43 41 43 41 43 41 43 ACACACACACACACAC 

0x0050: 41 43 41 43 41 42 4C 00 00 20 00 01 ACACABL .. .. 

6.2 Dynamic Packet Handling Ability 

Although a firewall is able to control a network and maintain its connectivity, it handles 

packets only statically. Through open ports, a firewall would not inspect/control packets 

willingly. According to the analysis of distributed denial of service attack tools, it is well 

known how to use tools such as TFN (D.Dittrich 1999c), TFN2K, Trinoo (D.Dittrich 

1999a) and Stacheldraht (D.Dittrich 1999b). These programs use not only TCP and UDP 

packets but also ICMP packets. Moreover, because the programs use 

ICMP_ECHOREPLY packets for communication, it will be very difficult to block attacks 

without breaking most Internet programs that rely on ICMP. Since TFN, TFN2K and 

Stacheldraht use ICMP packets, it is much more difficult to detect them in action, and 

^It should be noted that such packets arc rare. 
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packets will go right through most firewalls. The current only sure way to destroy this 

channel is to deny all ICMP_ECHO traffic into the network. Furthermore, the tools 

mentioned above use any port randomly; it is hard to prevent the port from an attack in 

advance using the fixed port close scheme in current firewalls. Therefore, to prevent 

degradation of service on the network and to deny this kind of malicious packet, dynamic 

packet handling on the level of firewalls is crucial. 

6.3 Packet-Based Clcissification Engine Using Bayesian 

Networks 

The purpose of the packet-based classification engine is to determine whether a packet 

header is valid or not, to classify the packets into packet classes such as HTTP traffic, 

SMTP traffic, and FTP traffic, and to make a decision whether the packet classes are 

filtered into the smart detection engine or are dropped according to their probabilities of 

being malicious, which is deduced by a Bayesian Network. The packet-based classification 

engine will aim to cover the TCP/IP/ICMP protocols. Before classifying each packet, the 

engine checks the protocol header part of packets. In the IP protocol, according to the 

Internet Protocol Standard (RFC791 1981), an IP header length should always be greater 

than or equal to the minimal Internet header length (20 octets) and a packet's total length 

should always be greater than its header length. IP address checks are also important 

since land attacks ^ use the same IP address for source and destination. According to the 

TCP standard (RFC793 1981), neither the source nor the destination TCP port number 

can be zero, and TCP flags, e.g. URG and PSH flags, can be used only when a packet 

carries data. Thus, for instance, combinations of SYN and URG or SYN and PSH become 

invalid. In addition, any combination of more than one of the SYN, RST, and FIN flags is 

also invalid. The classiflcation engine will use a probability table for protocols. If an 

incoming packet does not satisfy the protocol standard, its probability of being malicious 

will increase. In this thesis, I consider only mail packets. 

6.3 .1 Class i fy ing Mai l Packets 

Many Internet-scale viruses consist of a virus program and several auxiliary files which 

support the virus program to spread smoothly. If we can classify these auxiliary files, the 

^Thc land attacks arc also known as IP DOS (Denial of Scrvicc). The land attack involves the perpetrator 
sending spoofed packets with the SYN flag sot to the victim's tnachinc on any open port that is listening. 
If the packets contain the same destination and source IP address as the host, the victim's rnachinc could 
hang or reboot. In addition, most systems cxperioncc a total freeze up, where as CTRL-ALT-DELETE fails 
to work, the mouse and keyboard become non operational and the only method of correction is to reboot 
via a reset button on the system or by turning the machine off. 
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virus parts of a program could be estimated as to have a high probability of being 

malicious. The packet-based classification engine classifies Internet-scale virus packets 

from normal packets using a packet's header and payload. Classification of payload 

depends on packet classes. For example, if incoming packets are mail packets which use 

the SMTP protocol, the engine classifies this packet as SMTP traffic and examines the 

mail subject, attachment files, body and so on, after checking whether an SMTP packet 

overflow occurs or not. In HTTP traffic, the engine checks URL, HOST, MIME type, and 

so on. The decision of the packets' maliciousness depends on a probabilistic analysis of 

data packets. 

Classified packets will be classified additionally to pass through either the smart detection 

engine or the policy interpreter, which deals with the packets following a security policy. 

6.3 ,2 A Probabi l i s t ic Analys i s of Mai l Packets 

According to SMTP (Simple Mail Transfer Protocol) Standard (RFC0821 1982) 

(RFC2821 2001), I can get SMTP's semantic entities and create a Bayesian decision tree 

to present probabilistic dependencies related to the maliciousness of a data packet, like in 

Figure 6.2. This shows us a better model to understand mail packets. It includes 

filenames as a semantic entity, as well as a substructure that I have created to analyse 

mail packets, and dependencies between entities in this substructure of mail packets. 

Moreover, this Bayesian decision tree represents relations among nodes and gives us 

accurate estimation of conditional probabilities. Furthermore, I connect each terminal 

node with the bottom node "malicious packet" to represent that this Bayesian decision 

tree is used to estimate the probability of packets to be malicious. 

The header node's "MIME type" is followed by Message Header Extensions for 

NON-ASCII Text (RFC2047 1996), on the other hand, the "MIME type" of the body 

node is followed by several standards, eg. Format of Internet Message Bodies (RFC2045 

1996), Media Types (RFC2046 1996) and Registration Procedure (RFC2048 1996). Each 

node is represented by a symbol and there is a probability between nodes, for instance, 

the "MIME type" of the "body" node is denoted by SDBM, the MailContent of the 

"MIME type" node is SDBMC. The probability P{SDBMC | SDBM) between the two 

nodes SDBM and SDBMC represents the probability of "MailContent" having a 

particular structure given the particular structure "MIME type" in the body content of a 

mail packet. That is why I call this kind of probability a link matrix. Like this, the other 

parts are also following the same notation except for the file extension parts. 

As Figure 6.2 shows, the file extension part is more complicated than the other parts. 

Because of multiple parents, pairs of link matrices need to be created. I will deal with 
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F I G U R E 6.2; For malicious packet classification, Probabilistic Dependency Diagram of mail 
packets 

more details in the next section using real data. Using the Bayesian decision tree, we can 

get the probabilities of being malicious for each node from a virus database. Using this 

information, the packet-based classification engine will make a decision whether packets 

could be malicious or not, based on a probabilistic analysis using the decision tree of 

Figure 6.2. 

6.3 .3 A p p l y i n g Rea l D a t a t o a Bayes ian D e c i s i o n Tree 

In most situation, we do not focus on defeasible assumptions, but rather on their logical 

consequences. Especially when this logical consequences come from reality, the assumption 

is supported strongly. I would call this logical consequences of defeasible assumptions 

'beliefs'. As time goes by and new evidence is oberved, changes in defeasible assumptions 

lead to changes in beliefs. Belief change leads to understand systems over time. This 

belief can be formed as a Bayesian Decision Tree. In additon, I believe that applying real 

data to a Bayesian Decision Tree represents the systems at the moment time of real data. 

In order to apply real data, I have used MRTG (Multi Router Traffic Grapher) ^ to check 

® The Multi Router Traffic Graphcr (MRTG) is a tool to monitor the traffic load on network-links. MRTG 
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T A B L E 6 . 1 ; Email messages and Virus numbers based on Mail Entering Numbers 
^Note for reading this chart. 

Email numbers in a Year Email numbers in a Month Email numbers in a Week 

Type Messages Viruses Messages Viruses Messages Viruses 
Max 215000 4957 (2.3%) 215000 395 (0.2%) 109000 361 (0.3%) 

Average 8339 165 (2.0%) 8995 201 (2.2%) 8542 293 (3.4%) 
Current 9797 274 (2.8%) 9633 223 (2.3%) 9633 223 (2.3%) 

email messages entering ECS network during past few years, and have analysed whole 

virus database from Ahnlab, then built a database of email packets. Through data from 

an existing database (see TABLE A.3, TABLE A.4, TABLE B.l, TABLE B.2, and 

TABLE B.3), we can get the probability of malicious mail packets, denoted P{SD) (see 

Figure 6.2), the probability of malicious executable files, denoted F{Exec), and the 

probabilities of malicious executable-formatted files, denoted P{format): P{.EXE), 

P(.gCA), P(.COM), P ( . f 7 f ) , P(.BAr), P(.yBg), and P(Oaerg). 

TABLE 6.1 shows email messages and virus numbers among the messages, this 

information is built by MRTG based on mail entering numbers on ECS. With this TABLE 

6.1, I can make a matrix for the probability of malicious mail packets. This data came 

from average virus messages in tables (Ref. Details in TABLE B.l, TABLE B.2, and 

TABLE B.3.) I use three average data values, not just one, for accuracy reasons. 

P(SD) = ( 0.020,0.022,0.034 ) 

Even though P{SD) is called a prior information in a particular model, it is the probability 

of some event prior to updating the probability of that event, within the framework of that 

model using new information. It does not mean a probability prior to any information. 

The other probabilities, which I can get from tables; TABLE A.3 and TABLE A.4, are 

P{Exec) = 0.8, P{.EXE) = 0.64, P{.SCR) = 0.22, P{.COM) = 0.06, P{.PIF) = 0.22, 

P{.BAT) = 0.03, P(.VBS) = 0.02, and P{Others) = 0.12. These probability values are 

computed by summation of each extension's percentage which is displayed by terminal 

generates HTML pages containing graphical images which provide a live visual representation of this traffic. 
Email messages arc measured by MRTG every sccond. To display the visual representation of this traffic, 

MRTG uses the weekly representation with 30 minute average data, the monthly representation with 2 hour 
average data, and the yearly representation with 1 day average data. Each number of messages represents a 
max, an average, and a current in a year, a month, and a week. MRTG displays this number which received 
data during a year, a month, and a week, in current time per day. For example, a max in a year is chosen 
by the maximum received number per day during one year, in a certain time when we measure. Please note 
that the year data is based on the 1 day average, the month data is based on 2 hour average data, and the 
week data is based on 30 minute data. That is the reason that the current data of a year is different from 
that of a week and a month. 
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nodes of Figure 6.3. I applied these probabilities to the Bayesian decision tree in 

Figure 6.3, which I created for a probabilistic analysis of mail packets. 

Included in Figure 6.3 is that, if an executable filename has a multi-extension, this file is 

almost 100% abnormal i.e. it has an extremely high probability of being malicious. 

Therefore, we do not need to calculate this part of probability individually. The 

packet-based classification engine should deal with these parts without calculating 

probability of being malicious for the obvious abnormal parts. In addition, the smart 

detection engine will recognize patterns, which represent packet maliciousness, based on 

reasoning over the probability of malicious data in the packet-based classification engine. 

If the maliciousness probability is high based on the probabilty in the packet-based 

classification engine, it means the protocol specification part of current packets is 

odd-looking or the protocol behaviour does not follow standards. However, to reduce 

error, the role of smart detection engine is to recognize and locate malicious patterns in 

the packets, which are filtered by the packet-based classification engine and are having 

high probability of being malicious. To deal with it, the smart detection engine will deal 

with mail attached documents and network traffic packets. Basically all packets with a 

maliciousness probability above a certain threshold will be filtered into the smart 

detection engine for examination. The threshold has to be set in a relatively arbitrary 

fashion first and then be adapted when fine-tuning is applied to the decision procedures. 

Some odd-looking packets can ,however, include legitimate traffic. For example, storms of 

FIN and RST packets and fragmented packets with the 'don't fragment packet' fiag set. 

Then, the policy interpreter will analyse the information it gets from the two engines and 

will decide whether to drop a packet or let it pass through the firewall, based on a packet's 

probability to contain malicious content and a specific security policy that rules the policy 

interpreter's decisions. 

In this point, one part of the future work could be this kind of problem, how to deal with 

this in a Bayesian decision tree, when the real situation reflects almost 100% abnormality. 

Furthermore, the current database is not sufficient to calculate all needed probabilities 

precisely, because of a lack of data. Moreover, all the way to calculate the probability in 

each node looks very cumbersome, I need to find a more intelligent way to calculate 

probabilities in the Bayesian networks. However, this is a part of the future work. 

6.4 Smart Detection Engine Using Neural Networks 

The smart detection engine deals with the filtered packets from the packet-based 

classification engine, which have a high probability of being malicious. I will train the 

smart detection engine to distinguish anomalous data packets from normal packets 
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F I G U R E 6 . 3 : Executable files' Probability based on Bayesian Decision Tree 

(Cannady and Mahaffey 1998), (C.Lee and V.Heinbuch 2001). I expect the smart 

detection engine will be able to detect malicious executable packets such like file viruses 

and file worms. In the file virus case, the infected data packet will be different from the 

original data packet. However, unlike anti-virus software, this engine does not need to 

match the infected part of a program exactly (G.Tesauro and G.B.Sorkin 1996). Detecting 

viruses in a system or file is a role of anti-virus software. This engine will help to reduce 

the risk from Internet-scale viruses entering a protected sub-network by identifying 

potentially malicious packets at the network boundary. The methodology to be applied to 

this engine are neural networks. To detect bad patterns, I take five aspects into account: 

pattern classification, competitive learning, unsupervised learning, ^ good performance, 

and flexible time delay. Possession of such features can be found in neural-network-based 

detection. 

Note that the smart detection engine deals with virus infected files rather than file worms. 

In a file worm's case, the packet-based classification engine can classify this file worm 

based on the context information as depicted in Figure 6.2. 

® Bad patterns to be detected do not produce only obvious output. Considering this fact, competitive 
learning and unsupervised learning are the only concepts which can be suitably applied to the smart detection 
engine. Without observing target output, this kind of learning is able to provide self-organisation. 
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6.4 ,1 Mai l A t t a c h e d File's Sequence Similari ty 

In this section, I discuss how to classify mail attached files, what kind of sequence 

similarity exists, and what kind of case the smart detection engine deals with. Figure 6.4 

represents how to decide the maliciousness of a mail attached file using a flow chart. This 

decision occurs in the packet-based detection engine then the engine will pass sequenced 

packets which need to be checked for abnormal patterns into the smart detection engine. 

Mail Attached 
File Name Mail Subject̂  Maif Body Content 

C^ îtipie^extension? 
Yes Joint 

W investigation 
ExeeutuNttfiie? 

(INK, SCR, COM, 
XE.8AT.PyeK 

Document File 
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VV32fBlrCam 
WSafMyPafly 
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W32fB@dTrans 
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F I G U R E 6.4: Mail Attachment Sequence Similarity and Basic probability of Being Mali-
cious. 

As Figure 6.4 shows, if a mail attachment has multiple file extensions, and is executable, 

then it contains with a very high probability abnormal and/or malicious code. 

W32/SirCam, W32/MyParty, VBS/LoveLetter, and W32/BadTrans are in this category. 

Otherwise, even if the file is not executable, the multi-extension makes it appear abnormal. 

Without considering file's contents, because of multi-extension filename, we assume this 

file is almost 100% abnormal. So if the packet-based classification recognizes such a file 

structure, the packets which contain this file will be filtered or dropped based on a policy 

in place. In this case, the file does not need to be sent it to the smart detection engine. 

If the attached file has a single extension, then, if the file is executable, the packet-based 

classification engine will investigate the packets' other information, e.g. mail subject and 

mail body contents, and decide whether to pass the packet into the smart detection engine 

or not. Nimda Worm, W32/Goner and W32/Gibe are covered by this case. If the 

packet-based classification engine cannot make an informed decision due to a lack of data, 

the engine assumes that the case it currently deals with 50% probability of being 

malicious. 
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However, if the file has a single extension and is not executable, then the file is a 

document. In this case, if the packet-based classificaiton engine cannot get the file's 

probability, the packet-based engine assumes this document has 50% probability of being 

malicious. Therefore, the file is sent to the smart detection engine to be checked further 

for macro viruses. 

Subsequently I summarise how the fiow-graph of Figure 6.4 describes how to estimate the 

probability of a file to be malicious. Note that without any specific probabilities for a 

case, the packet-based classification engine uses default probabilities. Moreover, the two 

cases of 50% maliciousness (the "document file" and "malicious file" nodes of Figure 6.4), 

are sent to the smart detection engine. 

• Almost 100% probability of being abnormal/malicious executable file: Before the 

process of the smart detection engine, the packet-based classification engine filters or 

drops the packets which contain this file. 

• At least 50% probability of being malicious document file: This file could contain 

macro viruses, the packet-based classification engine sends it to the smart detection 

engine to check for macro virus patterns. 

• At least 50% probability of being malicious executable file: If it is likely that this is 

a file worm (i.e. it comes with auxiliary files), the packet-based classification engine 

will investigate the packets' auxiliary information together with the other evidences. 

If it is likely that this is a virus-infected file, the smart detection engine will deal 

with it, aiming at recognizing the infection pattern. 

6.4 .2 R e c o g n i t i o n of File Structure P a t t e r n U s i n g Sel f -Organiz ing M a p 

As I analyzed malicious virus patterns in Chapter 4, there are infected file structure 

patterns to recognize parasitic viruses. However, there is no precise border between the 

virus part and the proper file content. Self-Organizing Maps (SOM) are suitable to be 

applied to recognizing virus patterns. There are different types of virus-infected files (see 

Figure 6.5); These types are based on my analysis of malicious virus patterns in Chapter 

4.3. 

• Prepending Viruses: The virus part is located at the top of a file. 

• Appending Viruses: The virus part is appended at the end of a file. 

• Inserting Viruses; The virus part is somewhere in the middle of a file. 

• Macro Viruses Pattern; The virus part is more specific than the other viruses. 

59 



Prepending V i r u s Appending Vi rus I n s e r t i n g V i r u s Macro V i r u s 

Virus 

Proyam 
Code 

and Data 

Program 
Code 

and Data 

Virus 

Program 
Code and 

Datasn 

Virus 

Prog-am 
Code and 
Datt^ 

File Header 

System Data 
(directoiy, FAT) 

Text 

Font 

Macros 
(if present) 

Virus Macros 

Other data 

FIGURE 6 . 5 : Virus Patterns based on the position of virus in an infected file. 

Subsequently I discuss how SOMs operate and how they can be applied to detect virus 

patterns. SOM does not refer to any ideal outputs for learning. Moreover, it classifies the 

input patterns into arbitrary categories by using the Kohonen Layer (see Figure 6.6). 

Kohonen Layer 

Inputs 
Y-Dimension 

FIGURE 6 . 6 : The Kohoncn Layer 

In the Kohonen Layer, the learning process occurs as cells compete to get the input 

patterns which are appropriate for the winning cells. Different categories of input patterns 

are won by different cells, therefore, categorical outputs are given by distinctive (x, y) 

coordinates of the winning cells. 
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To motivate that SOMs can be applied to detect attack patterns, it is worth mentioning 

the following related work. For instance, a SOM with six-dimensional input vectors, and a 

30 X 25 Kohonen Layer (Nguyen 2002), was used to detect the mailbomb ® attack. They 

examine a computer network data stream captured by real-time TCPTrace. This 

TCPTrace reports three different types of messages which are created by analyzing the 

headers of packets ; open messages, close messages, and update messages. Using these 

messages, they can get 6 statistics ; interactivity, average size of connection request, 

average size of connection reply, sum of idle request-reply time, sum of idle reply-request 

time, and number of connections. Data for these 6 dimensions was normalized and was 

used to train the SOM. After training with normal packets for 4 weeks, they detected the 

mailbomb attack using this SOM. According to their result, their program not only 

detected all mailbomb attacks but it could also detect errors in the input data. 

.Keitfonen Layer 

Inputs 
Y-Dimension 

F I G U R E 6.7: 4-type of outputs categorized by the Kohoncn Layer 

If we used, for example, a (4 X 4) 2-dimensional Kohonen Layer, the Kohonen Layer will 

categorize 4 types of inputs like in Figure 6.7. The four rows present the top of a file, two 

middle parts of a file, and the end of the file. So based on the position of a virus part in a 

file, categorical outputs are given, then according to these outputs, we can analyse the file. 

My goal to use SOM is to identify the position of the virus data and to identify that there 

is virus data in the file. 

However, if we use an X-dimension of 7, the Kohonen layer will categorize 7 types of 

inputs like in Figure 6.8. I prefer to stick to Y-dimension as 4, because packets are sent by 

bytes. In general we will need a finer granularity of the Kohonen layer. For 

implementation purposes the granularity of each dimension should be a multiple of 4. 

Hence I expect to use 4n X 4n Kohonen layer for a suitably chosen n. 

® A mail bomb is the sending of a massive amount of email to a specific person or system. A huge amount 
of mail may simply fill up the recipient's disk space on the server or, in some cases, may be too much for a 
server to handle and may cause the server to stop functioning. 
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F I G U R E 6 . 8 : 7-type of outputs categorized by The Kohonen Layer 

To categorise the file and to detect a virus part in the file precisely, Self-Organizing Maps 

should be one of solutions. Other possibilities will be examined in future work. 
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Chapter 7 

Conclusions 

7.1 Conclusion 

Currently I have produced a rudimentary firewall prototype using libpcap (LIBPCAP 

2002) and snort (SNORT 2002) modules. In order to capture packets from the datalink 

layer I have used libpcap, and to decode data packets I have modified parts of snort. My 

goal is to build a smart detection engine and integrate it into the prototype firewall which 

I have built. This prototype firewall runs like packet-filter firewalls, I referenced snort for 

packet decoding, however, eventually this firewall will be separated from snort part and 

libpcap to have a more light weight-implementation (only few features of snort are 

exploited by my implementation.) Meanwhile I built this prototype, I also captured and 

examined packets to design the packet-based classification engine and the smart detection 

engine. After training these engines, they will be included into the firewall. These engines 

will be useful if their detection rate is higher than that of traditional IDSs' anomaly 

detection rate with an acceptably low rate of false positives. 

During my investigation of data packets, in some of the good packets I could identify very 

similar patterns in packets which seem to contain malicious code, e.g. the BAT911/Chode 

worm. These were packets sent by Microsoft Servers to NetBIOS and DNS lookup 

services. For example, port 137 is reserved for the NetBIOS name service and port 138 is 

reserved for the NetBIOS datagram service. Compared with benign intranet packets, 

Microsoft packets sent by running Microsoft servers look very distinguished and very 

many such intranet packets are sent per second. However, extranet packets are different 

from intranet packets, considering the engines I need to think of the network environment 

to train the engines. I also have created an isolated network to build the intelligent 

firewall and run tests with malicious packets. 

The summary of this thesis is the following, 
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• Internet-Scale Viruses: An Internet-scale virus is a piece of code or a program that 

performs unintended tasks and brings unintended side effects such as damaging a 

system or network, obtaining secure information without permission, putting a 

system or network under heavy load, and so on. 

Approximately 86% of all Internet-scale viruses have a Win32 executable format. 

Moreover, about 80% of Windows file worms are transferred via email, and about 

61% of these files have an .EXE extension. 

I have exhaustively analysed statistical information about viruses as well as the 

structures of viruses. This information has been used throughout this thesis. 

• Present Network Security Systems: Current intrusion detection systems(IDSs) do 

not prevent an intrusion from happening. Although anti-virus servers and IDSs are 

installed to cooperate to prevent an Internet-scale virus attack, new virus 

information needs to be updated constantly. Because new viruses will only become 

detectable after their pattern characteristics have been analyzed and are made 

available. Furthermore, firewalls are used to guard and isolate connected segments of 

inter-networks. Inside network domains are protected against outside untrusted 

networks, or parts of a network is protected against other parts. These firewalls use 

only TCP/IP headers to decide whether data packets are safe or not. 

I have studied the characteristics of existing security systems, including their 

weaknesses, to come up with my prototype of an Intelligent Firewall. 

• The Intelligent Firewall: The Intelligent Firewall focuses on high detection ratio 

with low false positives for risk management against novel attacks, in this thesis 

particularly, against novel Internet-scale viruses. The Intelligent Firewall has 

packet-based detection components: the packet-based classification engine and the 

smart detection engine. 

The firewall architecture is the result of an analysis of existing AI techniques, taking 

into account the gained knowledge about attack patterns and weaknesses in current 

security systems. 

• Classification and Recognition: Classification is based on finding proper information 

and establishing links between data, on the other hand, recognition is based on 

making a decision about the information after classifying data. The Intelligent 

Firewall will classify packets into safe and unsafe packets. 

• The Packet-Based Classification Engine with Bayesian Network: The packet-based 

classification engine has three goals. First is to determine whether a packet header is 

valid or not. Second is to classify packets into packet classes such as HTTP traffic, 

SMTP traffics and FTP traffic. Last is to make a decision whether the packet class 

is filtered into the smart detection engine or dropped according to its probability to 

64 



be malicious, which is deduced by analysing structural information using a Bayesian 

Network. 

The Bayesian network presented in this thesis incorporates knowledge gained from 

the examination of past virus attacks. 

The Smart Detection Engine with Self-Organizing Map (SOM): The smart detection 

engine will deal with the filtered packets, which have a high probability of containing 

malicious content, from the packet-based classification engine. 

The smart detection engine deals with virus infected files rather than file worms, 

which can infect other files in a virus-like manner. The infected file then contains a 

pattern one can recognize, but there is no specific location within the file where this 

pattern will be found. Using a Self-Organizing Map, the smart detection engine can 

recognize these categorized patterns and their location in the file. 

The smart detection engine has only been developed conceptually in this thesis. Its 

concreate realization will be part of future work. 

The Intelligent Firewall focuses on risk management against novel attacks. Recently, 

although new serious Internet attacks have increased, virus detection focuses on anti-virus 

software and intrusion detection systems (IDSs). However, it appears to be time also to 

focus on a new firewall to support the other security systems. There was no research 

about firewalls having the ability to make decisions by deduction, using e.g. a Bayesian 

Network and to recognize categorized patterns of virus structures in infected files. My 

goal is to build a prototype of such an Intelligent Firewall. In this MPhil thesis, I have 

developed the general concepts that the Intelligent Firewall will comprise. My architecture 

decisions were based on a thorough analysis of available data about viruses as well as a 

literature study of suitable approaches for the detection of novel viruses. This led to the 

Intelligent Firewall architecture, which contains the packet-based classification engine and 

the smart detection engine. Through the packet-based classification engine, the firewall 

can deal with file worms and infected virus files can be recognized by the smart detection 

engine. I expect that based on the firewalls' abilities, the number of serious Internet-scale 

viruses entering a network can be decreased. Furthermore, the Intelligent Firewall will 

increase the ability to detect novel network attacks. This novel firewall model will enable 

one to detect new malicious code entering a network already before its precise signature is 

known. The considered approaches will be useful not only to develop a new type of 

firewall, but also to exploit their use in other security systems. 
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7.2 Future Work 

Future work will involve extending the architecture model and implementing a complete 

prototype. Currently, I decided to use Bayesian Networks for the classification engine and 

SOMs for the smart detection engine. These concepts form the basis of my future work 

and will possibly be refined during the course of their concrete realization. I am planning 

to implement the intelligent firewall on a network of computers to evaluate its 

performance after designing it in detail. One important area of future work will be the 

design of the classification engine and the smart detection engine to perform efficiently. 

The development of these engines requires many experiments using real attack packets to 

generate sufficient evidence of the applicability of the approach. Ideally, this work will be 

done in co-operation with industry or security sources to develop a standard data set 

consisting of infected data and many different sets of benign data. I also plan to extend 

this system to detect novel network attacks in other areas such as DOS(Denial of Service) 

and DDOS(Distributed Denial Of Service) attacks. 
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Appendix A 

Virus Statistics based on Ahnlab 

database 

I made virus statistics after surveying Ahnlab database, and then made these tables in 

accordance with our own purpose. The date of records in Virus Information is 06 August 

2002. 

In this database, the "virus" item includes only PC viruses, not Internet-scale viruses. 

Because of PC virus is originally called as a virus. Internet-scale viruses are contained in 

the "worm" item. 

T A B L E A.l: Distribution of Internet-Aware Viruses 

Computer Virus Total Number : 989 
(Current date: 06 August 2002.) 

Type Number Percentage 

Virus 776 78.5 % 
Worm 139 14.1 % 
Trojan 62 6.3% 
Hoax 4 0.4% 
Joke 4 
Etc 3 0j^% 
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T A B L E A . 2 : Classification of Internet-Aware Viruses 

Virus Total: 776 Trojan Horse Total: 62 Worm Total:139 

Windows File 58 Windows File 35 Windows File 120 
DOS File 435 DOS file 24 DOS file 1 

Boot Virus 101 Backdoor 0 Script 16 
Boot/File Virus 9 Script 3 Macro 1 

Script Virus 57 Other Executable File 1 
Linux Virus 1 
Palm Virus 0 
Macro Virus 114 

T A B L E A.3: Percent of Windows Worm 

Windows Worm 120 
Mail Transferred 96 

Ratio 80% 

T A B L E A.4: Classification of Windows File Worms 

Prevalence of Windows File Worm Via Email : total 96 worms 

File Format Number Percent 

.EXE file 58 60.4 % 
•PIF or .SCR file 18 18.8 % 

.BAT.COM.EXE.PIF.SCR file 
(among these, choose 1 format) 3 

.COM file 3 
.VBS file 2 

Self-executable 
compressed format 6 6j^% 

Other 6 6j^% 
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Appendix B 

ECS Email Record in University of 

Southampton 

I made these tables using ECS email record which is updated by MRTG. 

The date of record of these tables is Thursday, 25 July 2002 at 11:04. 

T A B L E B.l: Email based Mail Entering Numbers into ECS in a Year 

Type Messages Viruses Spams Type Viruses Spams 

Max 215000 4957 1881 Max 2.3% 0.9% 
Average 8339 165 706 Average 2.0% &5% 
Current 9797 274 1482 Current 2.8% 15.1% 
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T A B L E B . 2 : Email based Mail Entering Numbers into ECS in a Month 

Type Messages Viruses Spams Type Viruses Spams 

Max 215000 395 1881 Max 0.2% &9% 
Average 8995 201 1383 Average 2.2% 15.4% 
Current 9633 223 1586 Current 2.3% 16.5% 

T A B L E B . 3 : Email based Mail Entering Numbers into ECS in a Week 

Type Messages Viruses Spams Type Viruses Spams 

Max 109000 361 1710 Max 0.3% L6% 
Average 8542 293 1383 Average 3.4% 16.2% 
Current 9633 223 1586 Current 2.3% 16.5% 

T A B L E B . 4 : Viruses Detected Entering ECS 

Total 17300 

Name Number 

W32/Sircam.A 50 
W32/F1CSS 11 

W32/Klez.G 10 
W32/Navidad.B 7 
W32/Badtrans.B 5 
W32/Magistr.A 3 
W32/Navidad 2 
W32/Hybris.B 2 

Others 10 
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