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Phase Cycling Methods and Spinning Sideband Manipulation

in Solid-State NMR
by Natala Ivchenko

In solid-state nuclear magnetic resonance, phase cycling is used to
compensate for experimental imperfections and to cancel out undesired
signal components. This is achieved by adding together the signals from a
number of single experiments, in which the experimental radiofrequency
phases are varied and the NMR signals combined.

Magic angle spinning is a technique that averages out anisotropic
interactions that cause line broadening. If the spinning frequency is not
sufficiently high, spinning sidebands occur. They both complicate the
spectrum and provide useful information. Methods exist for their
suppression and separation, using pulse sequences of carefully-timed
m-pulses.

In this thesis, multiplex phase cycling is proposed. In many cases,
multiplex phase cycling allows selection of desired coherence pathways using
a reduced number of signal acquisitions. By applying different phase factors
to the signal in the processing stage, it is possible to obtain signals from
different coherence pathways from the same data. The multiplex method is
demonstrated experimentally in two-dimensional double-quantum NMR.

Cogwheel phase cycling is a new phase cycling strategy in which the
phases of all the pulses are cycled simultaneously. An application of the
cogwheel phase cycling to sideband suppression and sideband separation
pulse sequences is demonstrated in the thesis. In the case of spin-1/2
nuclei, the cogwheel cycle provides a near seven-fold experimental time
saving, while for quadrupolar nuclei, the time saving can be up to a factor
of hundred.

The m-pulse duration is usually neglected when designing sequences for
sideband suppression and separation. In this thesis, a method is described
for taking into account the finite m-pulse duration. An improvement in
pulse sequence performance is demonstrated experimentally.

A new pulse sequence for suppressing spinning sidebands in the
magic-angle-spinning spectra of quadrupolar nuclei is also described.



“Scary-lookin’ fing, inee?”
Stan Shunpike; on Sirius Black

J. K. Rowling, “Harry Potter
and the Prisoner of Azkaban”



Contents

O.-l Acknowledgements . . . . .. .. ... ... ... .. ...
0.2 Abbreviations . . . . . . . .. .. ..
1 Introduction
1.1 Nuclear Magnetic Resonance . . . . .. .. .. ............
1.2 Solid-State NMR Spectroscopy . . . . ... ... .0 . ... .....
1.3 Magic-Angle Spinning . . . . .. ... L.
1.4 Phase Cycling . . . . . . . . . . . .
1.5 Overview of the Thesis . . . . . . . . .. ... ... ... . ......
2 General Principles of NMR
2.1 Nuclear Spin. . . . . . . . . .. . . . e
2.2 The NMR spectrometer . . . . . . ... . . .. .. .. ......
23 RFPulse. . . .. . . . . . e
2.4  One-dimensional Fourier Transform NMR . .. ... ... ... ...
2.5 Two-Dimensional NMR.. . . . . .. . ... ... .. .. ... .....
2.5.1 Pure Absorption NMR . . . . . ... ... ... ... .....
2.5.2 SHR procedure . .. ... ... ... . ... ... .o ....
2563 TPPIMethod . ... ... ... ... .. .. .. ... .....
3 Theoretical Background
3.1 Wavefunctions and Operators . . . . ... ... ... .........
3.2 Spin States . . . . . ... e e e e
3.3 Density Matrix . . ... . . ... . . . e e
3.4 Populations and Coherences . . . . ... ... ... ... .......
3.5 Coherence Transfer Pathways . . . . ... ... ............

i1
12
13
14

16
16
17
21
23
24
24
28
30




CONTENTS

4 Spin Interactions

4.1 Spin Hamiltonian . . . . . ... .. .. ... ... .. ... .. ...,

4.1.1 Internal and External Spin Interactions . . . . ... ... ...

4.1.2 Single-Spin and Pairwise Interactions . . . . . ... ... ...
4.2 Coordinate Frames . . . . .. ... .. ... ... ... .. ...
43 Euler Angles. . . . . . . . .
4.4 TIrreducible Spherical Tensors . . . . . . . . . . ... . . ... I
4.5 High-field Approximation. . . . . ... ... ... ...........
4.6 The Zeeman Interaction . . . .. .. ... ... ... ... ...
4.7 The RF Hamiltonian . . . .. .. ... ... .. .. ... .......
4.8 Chemical Shift Hamiltonian . . . . .. ... ... .. ... ......
4.9 J-Coupling . .. . . . . . . . e e
4.10 Dipole-Dipole Coupling . . . . . . . . . . . . ... .. ...,
4.11 Quadrupolar Coupling . . . . . . . .. ... .. L

5 Basic Techniques
5.1 Magic-Angle Spinning . . . . .. ... o oo
5.2 Cross-Polarization. . . . . . ... ... ... ... . .
5.3 Heteronuclear Decoupling . . ... .. e .
5.4 Recoupling Techniques . . . ... ... ... ... ... .. ......
5.4.1 C- and R-type Recoupling Sequences . . . ... ........
5.5 Phase Cycling . . . . . . . . . . .o
5.5.1 Nested Phase Cycling. . . . .. ... ... ... ... ..
5.5.2 Cogwheel Phase Cycling . . .. ... ... ...........
5.5.3 CTP Selection By Field Gradients . . . . . ... .. ......
5.6 Simulation of NMR Experiments . .. ... ... ... ........

6 Multiplex Phase Cycling
6.1 Theoretical Description . . . . . . . . . . .. ... ... o e
6.2 Advantages and Disadvantages. . . . . . .. ... . ... ... ...

6.3 Experimental Demonstration. . . . . . . . . ... . .. ... ...

7 Improvement of TOSS/PASS Pulse Sequences
7.1 Spinning Sidebands . . . . . .. . ... Lo o

40
40
41
42
43
43
45
47
48
48
49
59
56
o7

61
61
62
64
66
67
68
72
75
78
79

81
81
86
87

94




CONTENTS 4

7.2 Methods for Sideband Manipulation . . . . . . .. .. .. ... .... o7
7.3 Sideband Suppression . . . . . .. .. ... 98
7.3.1 Theory of TOSS . .. .. ... . . . .. . .. ... . ..... 98

7.4 Methods for Sideband Separation . . ... ... ............ 103
741 Theoryof PASS . . . . . . . . .. .. ... 103

7.5 The m-Pulse Duration . .. ... ... ... ............. 107
7.5.1 Approximate Solution of Finite-Pulse TOSS/PASS Equations 108

7.6 Experimental Results . . . . ... ... . ... ... .......... 111

8 Quadrupolar TOSS 114
8.1 Sideband Suppression for Half-Integer Quadrupolar Nuclei . . . . .. 114
8.2 Experimental Demonstration and Discussion . . . . .. ... ... .. 116

9 Application of Cogwheel Phase Cycling 119
9.1 Coherence Pathway Selection . . ... ... . ... .......... 119
9.2 Experimental Demonstration. . . . . . ... ... ... .. ...... 121
9.2.1 Sideband Suppression for Spins—% ................ 121

9.2.2 Sideband Separation for Spins-3 . . . .. ... ... ... ... 123

9.2.3 Sideband Suppression for Quadrupolar Half-Integer Spins . . . 123

10 Summary 129
A Pulse Program 131

B SIMPSON Input File 133




CONTENTS 5

0.1 Acknowledgements

Here, I would like to express my gratitude to all those people who helped and
supported me during my Ph.D. years.

First of all, my thanks go to my supervisor Prof. Malcolm H. Levitt. Thank you
dear Malcolm for the encouragement, trust, supervision and critisism (the latter one
especially) I have received from you. A big thanks to you, Latha and Leela for
welcoming me and my family into your home in Southampton for those few days

when we didn’t have anywhere to stay.

I am also very grateful to my adviser Prof. Geoffrey R. Luckhurst, for all the advice

given to me on my quarterly reports and on other subjects.

I have had a great deal of support from people in Malcolm’s group: Andreas and
Jorn - for helping me in the beginning of my studies both with the NMR and
computer; Colan - for so many things: helping me with English and the NMR, and
teaching how to be less messy; Madhu - for great help with the NMR and for his
course in solid-state NMR that I enjoyed; Ole - for help with computer-related
issues, spectrometer and NMR in general; Marina - for teaching me Linux secrets;
Jacco - for help with computer and spectrometer. Discussions with each and every
person in the group have been very useful and educating for me on NMR - thank

you!

I appreciate very much the help of all the people who proofread my thesis and gave
me very useful responses: Prof. Malcolm H. Levitt, Dr. Colan .E. Hughes,

Dr. Darren H. Brouwer, Dr. Marina Carravetta, Dr. Mattias Edén, Dr. Xin Zhao,
Dr. Mykola Ivchenko. It must have been a big job, and was a great help. Also, I
would like to thank Ildefonso Marin-Montesinos for help with binding the thesis.

Marina and Linda, it was very nice having you girls around me, to chat and to

gossip with, have coffee with, and go shopping with - thanks for this, it was fun.

I am greatful to Mr. Colin Flowers for introducing me to teaching - I really miss

this part of my Southampton University life.

Dear Jill and Nikki, you have made my (and, I’'m sure, many other postgraduate

students’) stay and studies at the University of Southampton easier, helping me




CONTENTS 6

with all the paper work and many other issues, so thank you.

The warm and supportive atmosphere in the group would undoubtedly not be such
without our out-of-work meetings, and therefore I am grateful to people who hosted
the parties and barbeques: Colan, Andreas, Marina and Ole, Malcolm, Darren,

Jacco, Xin and Sean.

A special thanks to Ole and Marina for being such great friends and for being there

on SO0 many occasions.

I am very grateful to my parents - Tetjana and Mychailo Zabolotny - for the love

and constant support that I have had from them all my life.

My dear husband Mykola always provides me with all the help, comfort and
encouragement I need, at any occasion. Thank you! My children, son Stefan and

baby daughter Christina are a source of joy and optimism.



CONTENTS

0.2 Abbreviations

1D - One-Dimensional

2D - Two-Dimensional

ADC - Analog-to-Digital Converter

CP - Cross Polarization

CS — Chemical Shift

CSA - Chemical Shift Anisotropy

CTP - Coherence Transfer Pathway

CW - Continuous Wave

DREAM - Dipolar Recoupling Enhanced by Amplitude Modulation
DQ - Double Quantum |
EM - Electromagnetic

FIREMAT - Five m Replicated Magic Angle Turning

FT - Fourier Transform

HORROR - Homonuclear Rotary Resonance

IRS - Isotropic Rotation Sequence

IRT - Irreducible Spherical Tensor

LS - Liquid State

MAS - Magic Angle Spinning

MRI - Magnetic Resonance Imaging

MQ - Multiple Quantum

NMR - Nuclear Magnetic Resonance




CONTENTS

PAS - Principal Axes System

PASS - Phase-Altered Separation of Sidebands
PFG - Pulsed Field Gradient

R? - Rotational Resonance

REDOR - Rotational Echo Double Resonance
RF - Radio-Frequency

RFDR - Radio-Frequency Driven Recoupling
QTOSS - Quadrupole TOSS

QPASS - Quadrupole PASS

SELTICS - Sideband Elimination by Temporary Interruption of the Chemical
Shift

SHR - States-Habercorn-Ruben

SS - Solid State

TOSS - Total Suppression of Spinning Sidebands
TPPI - Time-Proportional Phase Incrementation
TPPM - Two Pulse Phase-Modulated

VIABLE - Variable-Low-Speed Sideband Suppression
WWII - World War II

XiX - X-inverse-X



Chapter 1

Introduction

1.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is a phenomenon that is based on the property
of some atomic nuclei in a magnetic field to absorb and emit electromagnetic
radiation in the radio-frequency (RF) range. The absorption and emission is limited
to narrow spectral lines, corresponding to the precession frequencies of the nuclei in
the external magnetic field. Analysis of these lines is the subject of NMR
spectroscopy, which provides information on the spatial configuration of the atoms

and molecules.

In order for a nucleus to be NMR-active, it must possess a spin. Spin is a special
kind of angular momentum; in contrast to a classical angular momentum that a
macroscopic body possesses when in motion, spin is an intrinsic property of a
particle that does not require motion. Most nuclear isotopes have spin and can
therefore be used in NMR studies.

An important discovery was made by Max Planck in the very beginning of the XX
century. He stated that the energy of an oscillator did not change continuously but
rather in portions. The idea of discrete energy levels for an oscillator was later
extended to a molecular level. The energy of vibrational and rotational molecular
motion is also quantized. The transitions between discrete energy levels lead to

absorption or emission of electromagnetic radiation of well defined frequency v.
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Various kinds of spectroscopy study different parts of the frequency spectrum, and

thus different interactions (though there are no sharp boundaries between them):

e radiofrequency — (3x10%-3x10'%) Hz. This region corresponds to the change

in nuclear spin states in a magnetic field

e microwave — (3x10'%-3x10'2) Hz. This frequency range corresponds to

rotational motion of molecules

e infra-red — (3x10'2-3x10™) Hz. These frequencies correspond to the

separation between the vibrational levels of molecules

e visible + ultra-violet (UV) — (3x10'4-3x10'®) Hz. This region corresponds to

the separation of the energy states of the valence electrons

e X-ray — (3x10'-3x10*®) Hz — corresponds to the energy separation of the

electron levels in the inner electron shells

e v-ray — 3x10'® Hz and above. This frequency corresponds to the energy

change due to intranuclear particle rearrangement

NMR spectroscopy uses the radio-frequency part of the spectrum. In fact, the
frequency range determined the historical time point when NMR was discovered

[1, 2]. World War II led to intensive development of radio-frequency generators and
instruments, and after the war ended these techniques could be introduced into
civilian and scientific use. In the mid-forties, two American groups: Edward Mills
Purcell and his co-workers, from Harvard University, and Felix Bloch with
co-workers from Stanford university performed experiments with nuclear magnetism
and obtained the first NMR signal on protons: in solid paraffin and liquid water.
The interest of both of these scientists in the NMR was stimulated by WWII, when
both of them worked on radar developments, though Bloch had been working on

the neutron magnetic moment since the mid-thirties.

For the first few decades after the discovery of NMR, the continuous wave (CW)
method of data acquisition was used: the radiation was swept through a range of

frequencies each of which was probed individually. Later on, Fourier Transform
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NMR spectroscopy was introduced, which used short pulses of radiowaves to excite
a broad range of transitions simultaneously, with their frequencies extracted from

the signal by Fourier Transformation.

In 1952, F. Bloch and E. M. Purcell won the Nobel Prize in Physics “for their
development of new methods for nuclear magnetic precision measurements and
discoveries in connection therewith”. Since then, there have been a number of
scientists honoured with Nobel Prizes for their work connected with NMR:
Richard R. Ernst (1991, “for his contributions to the development of the
methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy”),
Kurt Wiithrich (2002, “for his development of nuclear magnetic resonance
spectroscopy for determining the three-dimensional structure of biological
macromolecules in solution”), Paul C. Lauterbur and Sir Peter Mansfield (2003,
“for their discoveries concerning magnetic resonance imaging”), and many others in

related disciplines [3]. Since the early 1950’s, NMR spectrometers have become

commercially available.

1.2 Solid-State NMR Spectroscopy

One of the major goals of NMR spectroscopy is the determination of the structure
of matter, i.e. providing information on types of nuclei occuring in the sample, their
separations and the environment created by surrounding molecular electrons. From
this, molecular structures of single molecules and intermolecular arrangements can
be derived.

There are two experimental techniques that can produce high-resolution structures
of biological molecules, namely X-ray crystallography and NMR. In X-ray
diffraction experiments, a monochromatic beam of a suitable wavelength is sent to
either a single crystal (preferably) or a crystalline powder. The beam is scattered by
the atomic electrons. The areas of high electron densities are arranged regularly in
the crystal lattice. Similar to macroscopic diffraction, the scattered waves interfere
with each other either cancelling each other or adding up. The diffraction pattern is
analysed and the structure may be deduced. In the NMR spectroscopy, the sample

(in any physical state) is placed in a strong static magnetic field and irradiated with
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suitable frequencies. This causes transitions between the spin states of the atomic
nuclei whose energies can be detected. The spectrum is then analysed. At present,
the majority of protein structures in the Protein Database have been solved by
X-ray crystallographers. However, as NMR hardware develops rapidly (in 2005, a
1 GHz magnet will be commercially available), the resolution of NMR, spectra will

improve, so that the number of NMR-solved structures is expected to increase.

As a tool for structure determination, NMR of liquid state samples is about 25
years younger than the X-ray method. Solid-state NMR is an even younger
technique because many theoretical as well as experimental problems have only
been solved during the last decade. Each of these three experimental techniques
(X-ray crystallography, LS NMR and SS NMR) can often solve problems that the
others cannot. For example, not all molecules form crystals big enough for the
X-ray method to study, and the 3D structure of crystalline compounds may differ
from the native structure. LS NMR has a much better spectral resolution than SS
NMR. However, a huge amount of distance-dependent and orientation-dependent
information is lost due to the molecular motion (although it can sometimes be
reintroduced by adding liquid crystals, for example bicelles, into the system [4]).
Still, most NMR experiments are performed in the liquid state. There are cases, for
example with membrane proteins, semi-crystalline and amorphous materials, when
SS NMR is the best (and only) choice [5].

1.3 Magic-Angle Spinning

Using NMR, it is possible to detect various kinds of internuclear interactions.
Among these interactions, there are some that do not depend on the space
orientation of molecules with respect to the external magnetic field, and others, that
are orientation-dependent. The latter — anisotropic — interactions do not survive
molecular motion that is present in a gas or liquid state, since their average over all
orientations is zero. Because of this, in LS NMR the spectra show relatively
well-resolved narrow lines. The important structural information contained in the

anisotropic interactions is, however, lost.

In solid-state NMR, the situation is quite different. NMR samples, that usually are
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in a powder form, consist of a huge number of crystallites. Each crystallite, with its
own space orientation, will give a different spectral line. All these lines added
together result in a broad pattern of low intensity. In order to deal with this
problem, solid-state spectroscopists use a technique called “magic-angle spinning”
(MAS) [6, 7]. A fine powder sample is placed in a cylindrical container (a rotor)
that is spun about an axis tilted by the angle of 54.74° with respect to the magnetic
field. As a result of this procedure, the spectral lines become narrow and liquid-like.
However, if the spinning frequency at MAS is not large enough, spinning sidebands
will arise. The frequencies of these lines differ from the isotropic frequency by an
integer multiple of the spinning frequency. Together with the isotropic peak, they
contain much structural information. On the other hand, having several peaks
instead of one leads to a crowded spectrum. There are ways to suppress the
spinning sidebands and to separate them by their order. Part of this thesis concerns

the development of an improved method for this purpose.

In the periodic table, most isotopes have a spin, I. For some of them, I = % and the
nucleus has a spherical charge destribution. However, the absolute majority of
nuclei are quadrupolar, i.e. their spin I > 1 so that their shape is not
spherically-symmetrical. They are, for several reasons, generally more difficult to
observe and manipulate. Nevertheless, interest in them is great because of their
occurence in many industrial materials as well as in biological systems. For these
nuclei, quadrupolar interaction exists that is anisotropic but has a different angular
dependence from the other interactions. MAS does not average this interaction out
completely, and even at a very high rotation frequency there is a line broadening
due to this interaction. Part of this thesis describes an implementation of a method
for the separation or suppression of the spinning sidebands of half-integer

quadrupolar nuclei.

1.4 Phase Cycling

The NMR signal is a sum of several components. Often, only particular ones are of
interest, but not the others. A procedure called “phase cycling” [8, 9] is used to

filter out certain classes of NMR signal and suppress others. Phase cycling is
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performed by repeating an NMR experiment a certain number of times changing the

phase of the RF field that manipulates the spins, and adding the signals together.

1.5 Overview of the Thesis

In Chapters 2-5 of this thesis, an overview of modern NMR spectroscopy is given.
In Chapter 2, the general principles of NMR spectroscopy are described, including
the properties and behaviour of nuclear spins, the origin of the NMR signal, Fourier
transformation and the NMR spectrum. The construction of a single-channel NMR,
spectrometer is described. In Chapter 3, some theoretical background is given.
Wavefunctions and operators are introduced, as well as nuclear spin-states. The
construction of a density matrix is briefly described. Spin state populations,
coherences, their orders and coherence pathways are introduced. Chapter 4 is
devoted to spin interactions. All the spin interactions of importance in solid-state
NMR are described and the corresponding Hamiltonians are given. The coordinate
frames and Euler angles that describe transformations between different reference
frames are introduced. In Chapter 5, the experimental techniques, that are
commonly used in solid-state NMR, spectroscopy, are described, among them
cross-polarization, magic-angle spinning, decoupling and recoupling techniques, and
phase cycling methods. A program for computer simulation of the NMR
experiments — SIMPSON [10] — is briefly described.

In Chapter 6, a new phase cycling procedure — multiplex phase cycling — is

introduced. Experimental results are shown.

In Chapter 7, methods for spinning sideband manipulations are described. An
improvment of TOSS and PASS sequences that are used for sideband suppression

and separation is proposed and demonstrated experimentally.

In Chapter 8, a new QTOSS sequence for spinning sideband suppression in
quadrupolar samples is described. It can be used at higher spinning frequencies

than existing QTOSS sequences.

In Chapter 9, an application of the cogwheel phase cycling procedure to the TOSS

and 2D PASS pulse sequences for spin—% and quadrupolar nuclei, is demonstrated.
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Chapter 10 contains a summary of results.
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Chapter 2

General Principles of NMR

2.1 Nuclear Spin

Nuclear spin I is a special kind of angular momentum. Unlike classical angular
momentum, it is not due to the rotational motion of the nucleus but is an intrinsic
property.

Atomic nuclei are composed of protons and neutrons. Each of these nucleons
consists of three elementary particles, called quarks, that have spin—%. An
antiparallel spin configuration of three quarks leads to the proton and neutron
having spin—%. In an atomic nucleus, the spins of protons and neutrons can be
aligned in different ways. In some, the most energetically favored spin combination
is when the total spin value is the minimal possible, but that is not always the case.
The nuclei that are most commonly used in NMR, (e.g. 3C, N, H) all have
spin-1. The majority of nuclei have spins I > 1. Electrons also have spin-;. In
diamagnetic materials, that are usually studied by NMR, there is, however, no net
electronic magnetization. Therefore, electrons do not directly contribute to NMR,
signals. However, their presence around the nuclei strongly influences the NMR

signals and is of great importance in NMR.

The magnetic moment of a nucleus [I is proportional to the angular momentum, I

-

g=yI (2.1)

- 16
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where the proportionality coeflicient, -y, is the gyromagnetic ratio. Depending on
the sign of 7y, the spin angular momentum of the nucleus and its magnetic moment
are either parallel or anti-parallel [11]. In the absence of any external fields, nuclear
spins in the system have no preferred orientation. Consequently, the average

polarization of the spin system is zero.

Application of an external field, By, significantly influences the behaviour of the

spins. First, they start precessing around the field vector with a frequency wy:
Wo = —By (2.2)

The precession frequency of a nucleus is called the Larmor frequency. In addition,
in the presence of the field there is a dependence of the energy of the nucleus on the

orientation of its magnetic moment:

It is energetically favourable for the spins to have their magnetic moments oriented

with field rather than against it; the average magnetization is no longer zero but is

along B, field (longitudinal magnetization). The partial alignment of the spins with
the field makes NMR experiments possible.

2.2 The NMR spectrometer

A schematic picture of an NMR spectrometer is shown in Fig. 2.1. The most
expensive part of an NMR spectrometer is the magnet (Fig. 2.1, 1). Today
(December 2004), the most powerful commercially available superconducting
magnet generates a field of 21.6 T, which corresponds to 920 MHz in *H precession
frequency and is about 300,000 times larger than the Earth’s magnetic field. In the
magnet, there is a superconducting solenoid immersed in liquid helium which is
surrounded in turn by liquid nitrogen. N, (with a boiling point of 77 K) is used as a
relatively low-cost insulating layer protecting the more expensive He (that boils at 4
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The sample, either a liquid in an NMR tube or a solid — crystal or powder — in a
rotor is placed into an NMR probe (Fig. 2.1, 2) that is inserted into the magnet. In
order to make the magnetic field homogeneous, two sets of shimming coils are used:
superconducting coils that are situated in the magnet itself and room-temperature
ones that are positioned in the NMR probe. While the superconducting shimming
is only made once when installing the magnet, the room-temperature shimming is

ideally checked prior to every experimental session for each probe that is to be used.

In addition, each time a new probe or sample is inserted into the magnet, the probe
should be tuned and matched. Good tuning means that, for all the observed nuclei,
the resonant frequencies of the circuits coincide with the respective
radio-frequencies. Good matching minimizes the RF power that is reflected by the

probe.

The radiofrequency field is produced by an RF synthesizer (Fig. 2.1, 3). The
frequency is set by the NMR machine user. From the RF synthesizer, the RF signal
goes to the phase shifter unit (Fig. 2.1, 4), and thereafter in two directions: to the
pulse gate (Fig. 2.1, 5) and to the receiver (Fig. 2.1, 11). The pulse gate is a switch
that turns on and off to produce RF pulses of different duration (pulse width 7).
The pulse programmer unit (Fig. 2.1, 6) controls both the phase shifter and the
pulse gate, allowing one to obtain RF pulses of any duration and phase (within

accuracy limits).

After the pulse gate, the RF signal reaches the RF amplifier (Fig. 2.1, 7) that
increases the intensity of the RF pulses before sending them to the probe. From the
amplifier, the RF signals comes to the duplexer (F1g 2.1, 8), whose task is the
following: to let the strong amplified RF pulses in to the probe (but not to the
receiver) and to direct the small NMR signal coming from the probe to the sensitive

signal receiver (Fig. 2.1, 11) via the signal amplifier (Fig. 2.1, 10).

When the RF signal comes to the probe (that is matched and tuned), electrical
current in the RF coils (Fig. 2.1, 9) generates an oscillating field in the éample.
After the RF pulse, the oscillating net magnetization of the spins in the sample, in
turn, generates electric currents in the RF coil. A very weak NMR signal comes to
the duplexer, is diverted to the signal amplifier (or preamplifier) that scales it up

and then goes on to the quadrature receiver.
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Amphﬁer Signal
Amplifier

Duplexer l
h 4

Pulse Gate

Shifter

Keyboard

Figure 2.1: Schematic presentation of an NMR spectrometer with one channel.

Adapted with permission from Ref. [11]
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The quadrature receiver has two main tasks to perform. The first is to convert
down the signal frequency. The frequency of NMR signals, wy, as well as the
frequency of the RF pulses, wgr, is on the order of tens to hundreds of MHz. This
is too fast for accurate conversion into digital form. Hence, the quadrature receiver
combines the NMR signal with a reference signal of frequency wgrr to generate a

signal with relative frequency €2q:
0 = wo — WgF (2-4)

The signal oscillating with the relative Larmor frequency can now be registered by
the analog-to digital converter (Fig. 2.1, 12). The second problem that the
quadrature receiver solves is the sign ambiguity in the relative frequency. The NMR

signal is proportional to
s o cos(§2ot) (2.5)

Therefore it is not possible to distinguish between positive and negative frequencies.

To get rid of the frequency sign ambiguity, an additional signal of the form
s o sin(§2t) (2.6)

is needed. The quadrature receiver has two outputs: one for the down-converted
NMR signal described above, and the other one for a down-converted NMR signal
differing in phase by 3:

81 o< cos(§2gt) (2.7)
Sg o cos(§2gt — g) = sin(Qgt) (2.8)

These two signals are interpreted as the real and imaginary parts of a complex

NMR signal and are combined to remove the sign ambiguity:

Scomplez = S1 + iSz 0.6 exp(iQot) (29)
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If the radiofrequency reference signal is shifted in phase, this is transfered to the

signal as follows:

Scomplex X exp(iQOt) eXp(—igarec) (210)

After this, the two parts of the NMR signal reach the analog-to-digital converters
(Fig. 2.1, 12). There they are converted into digital form. The dwell time is the
time interval between two sampling points. The real and imaginary parts of the
NMR signal, in digital form, then come to the post-digitizer phase-shifter unit
(Fig. 2.1, 13) that shifts the phase of the signal by an additional factor of
exp(—ipg,). From here, the signal finally comes to the computer (Fig. 2.1, 14) to

be saved, processed and analyzed by the spectrometer user.

On the Varian spectrometers, used for this thesis work, Spinsight software (version

4.3.2) was used for data acquisition and processing.

2.3 RF Pulse

During the NMR experiment, the spins experience a constant field EO. In addition,
an RF field BEF may be applied perpendicular to B},. The RF pulse is an
oscillation of the RF field (Fig. 2.2, (a)) proportional to

Brr cos(wrrt + ) during the RF pulse (2.11)

0 otherwise

where wgp is the frequency of the pulse and ¢ is the phase of the RF pulse. Usually,
pulses are denoted by rectangles (Fig. 2.2, (b)) in diagrams representing the NMR

experiment.

In order for the RF pulse to affect the spins, wgrr (the frequency of the oscillating
RF field) has to be resonant with the precessional motion of the spins. Short and
strong RF pulses affect a relatively wide range of frequencies while long and weak
ones are more frequency-selective. This field causes nutational motion of the spins

with the frequency

1
Wnut :‘ ‘2"YBRF | (212)
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wnut 1s often used as a measure of ”pulse strength”, because it is proportional to
l BRF |
It is convenient to use a frame that rotates with the frequency of the RF pulse

(rotating frame) so that the RF field appears to be static in this frame.

The pulse is characterized by a flip-angle 8 and a phase . The flip-angle is the

('th

T

! (B),=(90),

Figure 2.2: RF pulse. The oscillating RF field, a; schematic presentation of an RF

pulse, b, and ¢, effect of an RF pulse §, on a magnetization vector.
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angle by which the spin polarization axis is rotated by the pulse and is given by
/8 = WnutTp : (213)

where 7, is the duration of the pulse. The phase indicates the angle between the
z-axis and the axis around which the polarization is rotated, in the zy-plane of the
rotating frame. In Fig. 2.2 (¢), the effect of a pulse with flip-angle 8 = 7/2 and
phase ¢ = /2 is shown. Magnetization in the z-direction is turned by 90° around
the y-axis giving magnetization in the z-direction. Therefore, the phase is 0 for
rotation around the the z-axis, § for rotation around the y-axis and so on. Phases
are often denoted by the symbols z, ¥y, —z and —y, indicating the axis, around

which the positive spin rotation is performed.

2.4 One-dimensional Fourier Transform NMR

One-dimensional NMR. experiments are the simplest to perform. The experiment is
done by applying a pulse or sequence of pulses with time intervals between them
(Fig. 2.3, a) and then acquiring the signal s(t). After Fourier transformation, the
1D spectrum S(w) is obtained.

Signals can be represented both in terms of their time history, s(¢), and in terms of
their frequency content S(w). The relation between the time domain and the

frequency domain is given by the integral Fourier transform:

S(w) = /0+oo s(t) exp (—iwt)dt (2.14)

The advantage of pulse NMR is that all the spins are excited simultaneously and
the transient signal is recorded containing all the frequencies of interest, as opposed
to scanning the frequencies and recording the absorption (as was done in continuous

wave NMR in the early days).

In practice the NMR signal is not a continuous function defined for all times, but is
acquired over a limited time at finite sampling intervals. A discrete Fourier
transform is therefore used in practice, instead of continuous Fourier transform
(2.14).
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2.5 Two-Dimensional NMR

Often, multidimensional (2D, 3D, 4D, etc) NMR experiments are performed in order
to provide more information. They are used, for instance, for peak assignment in
large molecules like proteins, for determination of line shapes in solid-state spectra,
in particular for quadrupoles, for J and dipole-dipole coupling determination, etc.
A 2D experiment is constructed by introducing an arrayed time interval ¢; into the
1D pulse sequence (Fig. 2.3, b). After the signal s(¢t; = 0,¢,) is acquired a necessary
number of times (for instance, in order reach a satisfactory signal-to-noise ratio),
the t; interval is incremented by a chosen time At;, and the experiment is repeated
the same number of times and the signal s(t; = Aty,t2) is acquired again. These
signals can be visualized as slices in a 2D space with different coordinates in #;. A

2D FT is then applied to the data set in order to obtain a 2D spectrum (Fig. 2.3):

+o0 +oo
S(wl, w2) = / / S(tl, tg) exp (—iwltl) exp (—’iwgtg)dtldtg (215)
0 0

In a similar manner, NMR experiments with higher dimensionality (3D, 4D, etc)
are built by adding more incremented intervals into the pulse sequence. (One can
also add another experimental dimension by arraying not the time interval but, for
instance, the number of elements in a block of pulses, a pulse duration or a phase).
After a multidimensional F'T is applied to such a data set, a multidimensional
spectrum is obtained. A 3D spectrum is represented as a cube or a surface in any

two of three dimensions.

2.5.1 Pure Absorption NMR

A one-dimensional NMR quadrature-detected signal is a sum of many individual

contributions and can be written as:
n
s(t) =) ag- exp (i — Ao)t) (2.16)
r=1

where n is the number of components, a, is the complex amplitude of the £* signal

component that includes both its intensity | a; | and phase @;:

ag =| as | exp(igy) (2.17)
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{2 is the relative frequency, and A, is the decay rate constant of this signal

component. By performing a Fourier transform, a 1D spectrum can be obtained:

S = /0.00 s(t) exp(—it)dt = i ag - L(£2;Qp, Ap) (2.18)

=1

Here, £ is a complex Lorentzian [11]:
L(Q;Qe, Ag) = A(; Qe, Ag) +3D(Q; Q, Ag). (2.19)

The real and imaginary parts of the complex Lorentzian, called absorption and

dispersion Lorentzians, respectively, are given by the expressions:

3
A Qg M) = o (Q"_ o7 (2.20)
0—Q

24 (Q- )2

D(QQ, M) =

They give the absorption and dispersion line shapes (Fig. 2.4).

FT(t)
a ==
o 0
Tt (0/2m)/Hz
/'/
z P
FT(t,t) & °f
b Em—— S Y ’/
e
o, 0
t t. (o,/2m)/Hz

Figure 2.3: a, 1D and b, 2D NMR. experiments and spectra.
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Only the real part of the spectrum is usually displayed. Both parts contain equal
amounts of frequency information, but the absorption part has a number of

advantages compared to the dispersion part:

¢ it has a non-zero integral

e it is narrower, since its amplitude goes down as a function of m while for

the dispersion line shape the dependence is (Q—_IQJ

Therefore, in practice Re(S(f2)) is displayed on the monitor screen by default.

A complex 2D signal is generally expressed as follows:

s(t,ta) = Y agexp (194" — A)t) exp (((QF — AP)t,) (2.21)
£

where the summation is over all the signal components. After complex 2D Fourier

transformation, the signal S(Qy, ;) is obtained:

(9, Q) = (A(Q) + D)) (A(Q) +iD(Q)) = (2.22)
A(Q21)A(2) = D(Q1)D(Q2) + 1. A()D(Q2e) +iD()A(S22)

Here, a pure absorption line shape can not be easily obtained as both the real and

imaginary parts of the spectrum contain a mixture of absorption and dispersion

Figure 2.4: Absorption (a) and dispersion (b) Lorentzian line shapes.
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Lorentzians. This results in so-called phase twist lineshapes, see Fig. 2.5. This line

shape is highly undesirable, mainly because of its long dispersion tails [11].

Figure 2.5: Example of a peak line shape with phase twists, with a mixture of ab-
sorption and dispersion mode one-dimensional Lorentzians. Figure is taken from [11],

with permission.

A special procedure is needed in order solve the problem described above, i.e. to get
pure absorption 2D line shapes. There are four such methods that can be combined

into two groups [12]:

e schemes producing real data sets:

— Time-Proportional Phase Incrementation (TPPI) method [13]
— Redfield method [14]

e schemes producing complex data sets:

— States-Haberkorn-Ruben (SHR, or States) method [15]
— States-TPPI method [16]
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Although the resulting NMR spectra that are produced by using any of these
methods are equal in quality and required acquisition time, the TPPI and SHR
methods are generally more popular then the other two. Therefore the Redfield and
States-TPPI methods will not be discussed here.

2.5.2 SHR procedure

The SHR method (also referred as the States method) was proposed by D. J. States,
R. A. Haberkorn and D. J. Ruben in 1982 [15]. In this method, two real data sets

that are shifted by 5 with respect to each other in the ¢; dimension are acquired:

§P(tr,t2) = (2.23)
Z G exp(i(Qf)tQ + ¢2)) COS(le)tl + 1) eXP(_/\gl)tl) eXP(_/\§2)t2)
2

s (1, 1p) = (2.24)
) 7r
D aeexp(i(f7tz + 02)) cos( 1 + 1 — ) exp(=Atr) exp(-APtz) =
Z
Y arexp(i(Q7t + ) sin(Pt + 1) exp(— A1) exp(—Ata)
;
In the direct dimension t,, the problem of frequency discrimination is taken care of

by quadrature detection. The signal processing is accomplished according to the

following scheme:

1. 1D Fourier transformation of both the amplitude-modulated signals with

respect to the £, dimension:
x<
Scos(tl, QQ) = / Scos(tl., tg)dtg exp (—ngtg) = (225)
0

Z ag exp(—/\gl)tl) cos(le)tl + 1) L(; ng), /\1(22))
¢

SSin(tl, Qz) = / SSin(tl, tz)dtg exp (—iQQtQ) = (226)
0

> apexp(—AN ) sin(Q 4 + 1) £(; 9P, A)
14

where L£(Qo; Qf), /\f)) is the complex Lorentzian.
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2. The real part of the two signals is taken. In both cases, it contains only the

absorption part of the Lorentzian:
Re(S5°%(t1,s)) Zag exp(— )tl) cos(le)tl + <p1).A(Qz,Q ,)\f))

Re(S™(t:, %)) Zaeexp M) sin(V8 + 01 A% 97, )

3. The two data sets Re(S(t1,Q,)) and Re(S*™(¢;,)) are combined together

into a hybrid complex signal:

SSHE(t Q) = Re(S5°%(ty, ) + iRe(S¥™(t1,Q)) = ' (2.27)
Zaeexp Mt) exp(i(Qf 1 + 1) A2 247, A7)

4. Finally, a 1D Fourier transform with respect to ¢; is taken:

SSHR(Ql, Qz) = / SSHR(tl, Qz)dtl exp (—’I,Qltl) = (228)

0

£(Q1; 2, A1) A0 02, AP

5. The real part of SS#2(Qy, Q) is a pure-absorption 2D spectrum with

frequency sign discrimination:
Re(SSTR(Q, Qp)) = A(; 27, A7) A(Q2; 97, 2P) (2.29)

The phase shift of the two signals is achieved by applying a different phase to the
excitation block before #; (in the case of a double-quantum experiment the

additional phase factor is 7).

Graphically, this method can be illustrated in the following way (see Fig. 2.6, ¢).
Sine and cosine functions cos(Q()¢;) and sin(Q(M¢,), being, respectively, symmetric
and antisymmetric with respect to the ¢, = 0 axis, result in two symmetrical peaks,
with amplitude having either the same sign (for cos-modulated signal) or opposite
signs (for the sin-modulated signal) for the two peaks. The result of their

summation is a spectrum with frequency discrimination.
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2.5.3 TPPI Method

In the TPPI method [13], the phase of the preparation pulse (or block of pulses), in

addition to the pulse phase that is required by the phase cycle, experiences a phase

[ ]
[ ]
ac,-
[ ]
[ ]
QZ
: [ ]
[ ] . [ ]
A o
b | 1l  |—g
e
i
@ Q,
&
® v
[ ]
QZ
[ ] [ J [ ]
[ ] [ [ ]
Co +C —
@ [ ]
@ [ ]
QZ QZ QZ

Figure 2.6: Graphical illustration of introduction of the frequency sign discrimination
by the SHR and TPPI methods. A hypothetical 2D spectrum with no frequency
discrimination is shown in (a). (b) and (c¢) illustrate the ideas behind the TPPI and
SHR methods, respectively.
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shift that is proportional to nAt;, where At is the time step in the ¢, dimension
and n is the number of completed increments. The additional phase, prppy, is

calculated as:
t At 2.
erppr(t1) = 2 |At1n 1 (2.30)

Here, |p| is the absolute value of the coherence order that is selected during ¢,. The
2D NMR signal has the following form:

.S‘TPPI tl t2 Z COS t1 + (,OTpp[(tl)) (2.31)

exp(=X; 1) eXP(Wé 1) exp(=A§t2)

(signal phases ¢; and ¢, are dropped here as they can be manually cancelled by
phasing). The signal has a frequency shift in the ¢; dimension:

=w® +p

w%l)TPPI (2.32)

T
2- |p|Aty

which means a shift by half of the Nyquist zone [17]. The Nyquist zone is defined as
the range between the positive and negative Nyquist frequencies

—Whyquist = — Y5 = —%z—; = —ay and +Whyguist = a3 (here, wy, is the spectral
width). Signals coming from positive and negative coherences are shifted up and
down in frequency, respectively. Therefore, the Nyquist frequency must be doubled
to accommodate the peaks. This is done by doubling the sampling rate (i.e.
incrementing time with steps of A—;l), which means that the experimental time is
doubled as well. Pure absorption mode for the peaks is achieved by taking a real
Fourier transform in the ¢; dimension. Only half of the resulting spectrum (the

upper part) is used (see Fig. 2.6,b)).
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Theoretical Background

3.1 Wavefunctions and Operators

The quantum state of a system can be described by a wavefunction | ¥y >. It is
time dependent and contains all the information on the electrons and nuclei in the
system (their coordinates, velocities, spin states, etc). In NMR, however, only the

nuclear spin part of it is considered: | Yspin >.

An operator Ais a general rule for producing a function g from a given function f.
If the functions can be expanded on a full basis of N functions, operators are in

general represented by a matrix of dimension of N x N. If g f, i.e. if
Al f>=alf> (3.1)

then the function | f > is an eigenfunction of the operator A with eigenvalue a.
Two operators A and B are said to commute if

o~ o~ o~

[A, Bl = AB—-BA=0 | (3.2)

3.2 Spin States

In quantum mechanics the angular momentum operator is defined as
1

Ez—%wxﬁy (3.3)

32
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and the operator of the square of the angular momentum is

—— e~

=1, +I, +L, . (3.4)

It can be shown that L2 commutes with all the components f,;, f,; and f,:, while

the components do not commute between themselves:
Lz, L) = 6hL,. (3.5)

This means that a common system of eigenfunctions can be chosen for the operator
1% and any of the component operators, usually f,: with z chosen along the external
magnetic field. The system of eigenfunctions can be described with two eigenvalues,

[ and m, the orbital quantum number and the azimuthal quantum number,

respectively:

L,lm >= hm|lm > (3.6)
and

L2|im >=Rl(l + 1)|im > . (3.7)

Here |Im > denotes the corresponding eigenfunction of both operators. The orbital
quantum number [ can take non-negative integral values: 0, 1, ..., and the azimuthal
quantum number takes values between —! and [ with a spacing of 1. This means

that the angular momentum is quantised, taking on a discrete set of values [ and m.
From now on the unit & will be dropped, for simplicity.
For an isolated nucleus with spin I, there are 27 + 1 values for the azimuthal
quantum number m, i.e. possible spin states: m = —I,(—=I +1),...,+I. For a
single spin-3, there are only 2 possible values, +1:

~ 1

L |a>= +35 | >

Lig>=—318> (3.8)
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where a =| %; +% >and 8 = %; —% >. The states o and [ are called the Zeeman
eigenstates of the particle. The functions | @ > and | 5 > are the eigenstates of the
operator I, (projection of I on the direction of the magnetic field), and eigenstates

of the Zeeman Hamiltonian with determined energies (Fig. 3.1).

However, a spin is not restricted to these two states, it can be in any state that is a

superposition of | & > and | 8 >:
| >=co | > +cs | B> (3.9)

where c, and cg are the superposition coefficients (complex numbers) that give the
relative contributions of the Zeeman eigenstates |a > and |3 > to the function |¢) >.

They must satisfy the normalization condition:
| ca P+ ] cs P=1 (3.10)

The number of Zeeman energy levels depends on £ and is equal 2+ 1. For a spin—%,
there are four states: | ;+3 > | %;+% >, | %;—% > and | 3; —% > (the

corresponding energy diagram is shown in Fig. 3.2).

3.3 Density Matrix

A real sample consists of a large number of spins. Each of them is in a

superposition state, with its own ¢, and cg, so that it is nearly impossible to

E/

Cd

—IB)

— o)

Figure 3.1: Energy level diagram for a spin-7 nucleus in a magnetic field, with positive

Y.
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describe the system in terms of the individual spin states. It is possible, however, to
describe it using the density matriz method that describes the quantum state of the

spin ensemble as a whole.

In quantum mechanics, an average result of many observations on an operator @ —

the expectation value — for a spin state | 1 > is defined as:

<Q>=<v¢|Q|v> (3.11)

It can be shown that this is equivalent to

<Q@>=Tr{|y><vy|Q} (3.12)

For a system of N spins that are in states |11 >, ¢z >,..., |t~ >, expression (3.11)

transforms into:

<Q> =< | Q| >+<t|Qlvh2>+...+ <9n | Q| vy >
=Tr{(|$n >< |+ [h2 >< tha| + ...+ [y >< Pn|)Q}  (3.13)

This expression may be rewritten as follows:
<Q>=Tr{pQ} (3.14)

E N
312, 3/2)

— |312,1/2)
—[3/2,-1/2)
—|3/2,-3/2)

Figure 3.2: Energy level diagram for a spin—% nucleus in a magnetic field, with negative

Y.
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where the density operator g is defined as

p=ly><y] (3.15)

Here, the average is taken over the whole spin ensemble.

3.4 Populations and Coherences

For a system of non-interacting spins—%, the density matrix (matrix representation

of the density operator) is written as

s P Calh Calp
5:<p pﬂ);( ﬂ) (3.16)
Ppa  PBB CaCh  CBCH

The diagonal components of the p matrix, denoted as pao and pgg, are called the

"populations” of the state o and f, respectively (Fig. 3.3).

Figure 3.3: Graphical representations of all the four possible populations in a system

of two spins-3.

The off-diagonal elements, denoted as p.g and pg,, are the “coherences” between

the states a and 3. Coherences between the two states, in general |7 > and | s >,
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are classified by their orders. The coherence order is defined as difference between
their projections of angular momenta M, — M,. In the case of one spin—%, the

coherence p,p has an order of

i) 1
Pag =45 = (=5) =1 (3.17)

In a spin-state diagram (see Fig. 3.4), coherences between states are shown as

arrows from one state to the other.

0000 1>
A I

2> 000000 <« |
| —— -—e0o0cao0 |3

\

Figure 3.4: Graphical representations of all the possible coherences (arrows) in an

ensemble of spin-3 pairs.

In the case of isolated spins, the populations and coherences have a simple physical
meaning. Populations (always real numbers) are responsible for the longitudinal
magnetization. The sign difference between the populations of the states o and S
determines how the net polarization is directed with respect to the external field:
either parallel (for pao > pgg) or antiparallel (for pae < pgg). Coherences (in general
complex numbers) describe the transverse magnetization. Their phase describes the
direction of the magnetization in the same manner as the pulse phase describes the
magnetisation rotation axis, i.e. starting from the +z-axis, and their amplitude

describes the amount of the coherence.
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3.5 Coherence Transfer Pathways

Each NMR, experiment can be characterized by a coherence transfer pathway
(CTP). A CTP is defined as the history of coherence orders during the experiment,
leading to the observable signal. Before the NMR experiment starts, the spin
system is in a state of thermal equilibrium, with the net magnetization along the
magnetic field. The corresponding coherence order is (0). It is possible to show [11]
that the quadrature receiver only detects the (-1)-coherence order. This is not true,
however, if the two output channels of the quadrature receiver are not well balanced
so that either the amplitudes of the two signals differ or the phase difference
between them is not equal to 90°. In this case, some (+1)-order coherence will go
through as well which will result into appearance of false peaks that are mirror

images of the true peaks with respect to the reference frequency.

Assuming perfect quadrature detection, the CTP always starts from order (0), and
always ends with order (-1). In between, depending on the desired spin interaction
to be observed, the NMR signal follows a certain coherence pathway. Pulses change
the coherence order, while between the pulses the existing coherence orders are
fixed. The history of the coherence order changes during the NMR experiment is
called a total coherence pathway. For clarity, coherence transfer pathways are
usually shown as bold lines in a coherence pathway diagram. In Fig. 3.5, an
example of a coherence transfer diagram for an NMR, experiment, that will be

discussed later in this thesis, is shown.
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Figure 3.5: Coherence pathway for the TOSS pulse sequence (that is discussed later

in this thesis) consisting of a Z-pulse followed by five 7-pulses.
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Spin Interactions

4.1 Spin Hamiltonian

The Hamiltonian is a particularly important concept in NMR. It is the energy
operator and allows the calculation of the transition energy between different spin

states, giving an understanding of the NMR, spectrum.

The state function | ¥(t) > that describes the state of a spin system and the

Hamiltonian operator H are connected by the equation
d 5
S(t) = —if() (41)

which is called the time-dependent Schrodinger equation. For a spin ensemble
whose state is described by a density matrix p, equation (4.1) transforms into the

more general von Neumann equation [18]:

£5P(0) = ~i[, ple) (42)

For a system of spins, the total Hamiltonian Htotal can be represented as a sum of
y

interaction Hamiltonian terms:
ﬁzﬁz+ﬁRF+ﬁcs+ﬁQ+ﬁj+ﬁDD (4.3)
The main interactions are [19, 20]:

40
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° ﬁz, the Zeeman Hamiltonian that describes the interaction of the nuclear

spins with the external static magnetic field, B,

7 rF, the RF Hamiltonian. This is a time-dependent Hamiltonian that

describes the interaction of the spins with the external time-dependent field
Brp(t)

° ’f-ch, the chemical shift Hamiltonian that describes the effect of eléctron

shielding of By on the nuclear spins

° 7:2.], the J-coupling Hamiltonian, or scalar coupling Hamiltonian, that

describes the spin-spin interaction that is mediated by the bonding electrons

o Hp D, the dipole-dipole coupling Hamiltonian that describes the through-space

spin-spin interaction

. ’f-ZQ, the quadrupole coupling Hamiltonian that describes the interaction of

nuclei having I > £ with the electric field gradient

4.1.1 Internal and External Spin Interactions

The nuclear spins in a sample interact with electromagnetic fields. These spin
interactions can be classified in many different ways. First of all, there are external
interactions — with fields generated by objects outside the sample, like magnetic
fields generated by the NMR spectrometer (and other devices, e.g. mobile phones),
and internal interactions — those generated by sources within the molecules: fellow
nuclei that possess a spin, electrons etc. The total Hamiltonian for a nuclear spin is

therefore a sum of two terms — external and internal:

ﬁ = ﬁezt + }/Zznt (4-4)
The external part of the Hamiltonian, ’flezt, includes two terms that describe the
interaction of each individual spin with two kinds of magnetic field that are
generated by the spectrometer: the static field, EO, and the RF field, By (t).

—~

Hence, H.q: consists of two terms:

Hezs = Hz + Her (4.5)
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Other random disturbing external fields, that are weak compared to these two, have
their effect successfully removed (in most cases) or can be ignored because of their

small scale.

The internal Hamiltonian, ﬁint, describes interactions of the spin I with magnetic
and electric fields that are generated within the molecular environment. The
electric part of the internal Hamiltonian, ﬁezec, exists only in the case of
quadrupolar nuclei (those with spin I > %) The magnetic part of the internal
Hamiltonian consists of terms describing interactions of individual spins with the

fields in the sample and pairwise interactions between spins.

4.1.2 Single-Spin and Pairwise Interactions

The nuclear interactions described above can be divided into two groups, depending

on the number of nuclear spins involved into each of them:

1. Single-spin interactions: Zeeman, RF, chemical shift and quadrupolar. If a
spin system consists of different nuclear species I, S and so on, the

Hamiltonian term describing an single-spin interaction, X, is:

Ispins Sspins

Hx=> H+ > H+.. (4.6)
7 k

2. Pair-wise interactions: J-coupling and dipole-dipole couplings. For a spin
system consisting of a number of I, S, etc spins, the respective Hamiltonian of

a pairwise interaction, Y, is:

Ispins Ispins Sspins Sspins Ispms Sspins
Hy=> > #HE+ E > H™ + E E H o+ (4.7)
J k>3 m>l

Ispins x\—~Ispins A ik : . . . .
Here, ) Y ks;  H'® is a sum over the interactions between the spins of the
same kind (I) that are called homonuclear interactions. The term

Tspt 3 54 . . . .
Lyoiepine 5 7P 43l describes so called heteronuclear interactions, i.e. those

between different spin species I and S.
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4.2 Coordinate Frames

In total, there are four coordinate systems important for SS NMR:

e the principal axes system, or PAS (P). For each interaction tensor A, there is
a PAS that is chosen in such a way that the tensor is diagonalised; the z¥, y¥
and z” axes are assigned in such a way that the principal values of the tensor
A follow the rule: A7, > A7 > AF . In a molecule consisting of several spin
sites, there is a set of P frames. In a powder sample consisting of many
crystallites with different orientations, for each crystallite there is its own set

of principal axie systems

o the molecular frame (). This system is used to describe the molecular

orientation and its choice is arbitrary

e the rotor-fixed frame R. Its 2 is the rotor axis (the one around which the
NMR sample is rotated)

o the laboratory frame (L). It is chosen to have its zZ-axis parallel to the static
y

magnetic field By

Objects (vectors and tensors) that are expressed in these coordinate systems, are
denoted with respective superscripts: L, P, R, M. The mutual relation of these

coordinate frames is illustrated in Fig. 4.1.

4.3 Euler Angles

Three angles are needed to describe the relative orientation of two coordinate
systems A into B. In SS NMR, it is customary to use the Euler angles
Qap = (4B, BaB, vaB)- There are several definitions of the Euler angles in the

literature. The convention used in this thesis consists of the following steps [21]:

e rotation around the original z4-axis, until y4 is perpendicular to both z4 and

ZB (aAB)
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e rotation around the original y4-axis, until the two z-axes coincide (84p)

e rotation around the original z4-axis, until the two coordinate systems coincide

(vaB)

A vector ¢ that is expressed in a frame A can be expressed in a frame B as follows:

&® =R (aap, Bap, va8)" (4.8)

X

L

Figure 4.1: Reference frames used in solid-state NMR: laboratory (L), rotor (R),
molecular (M) and PAS (P).
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where R = R Yoy, 5}43, vap) is the Euler rotational matrix:

CaCBCy — SaSy —CaCaSy — SaCy CaSp
R = | sacpcy+ 525y —85aCaSy~+ CaCy 505p (4.9)

—38Cy SpSy Cp
The following abbreviations are used: ¢, = cosaap, so = sin aap, etc.

If the object to be transformed between the coordinate frames A and B is a tensor

T4 rather than a vector, the following is valid:

T = R Y aup, Bas, 7a8) T*R(aap, Bap, YAB) (4.10)

The reference frames P, M, R and L are related to each other by sets of respective

Euler angles.

The set of Euler angles Qppr = (apar, Bpa, Ypar) that describes transformation from
P to M is fixed for each crystallite.

The R reference frame is related to the principal axes system of a certain
interaction by the following set of Euler angles: Qpp = (apr, fpr, Ypr). Similar
Euler angles relate the rotor frame and the molecular frame in cases where the
latter is used. In a solid sample made of powder crystallites the Euler angles above

are distributed randomly.

The laboratory frame L in a rotating sample is related to the R reference frame by
a set of time-dependent Euler angles Qrp = (gL, Brr, YrL), where Bgr is usually

the magic angle.

4.4 Irreducible Spherical Tensors

In general, any Hamiltonian operator in NMR can be presented in the following
form [19]:

H=CI-A-J (4.11)
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where C is a constant, ?and /jare vector operators (the former one is a spin
operator and the latter one depends on the particular spin interaction), and A is
the second-rank tensor (a 3 x 3 matrix), specific for the interaction, that describes
its strength and spatial orientation. Depending on whether the interaction is
single-spin or two-spin, the interaction Hamiltonian can be presented in one of the

following formats, respectively:

H=CI-A-B (4.12)
or

Ai=ci-A.§ (4.13)

where B is the magnetic field vector. Here, everything is presented in terms of
Cartesian operators and tensors. Sometimes, when several reference frames are
involved and transformations between them are to be performed easily, it is more

convenient to use the so-called irreducible spherical tensors.

Transformations of an irreducible spherical tensor X of a rank ¢ from a reference

frame A into a frame B can be written as follows:

(X8 = [XO)1 DO (Qup) (4.14)

b

where Qap = (@ap, BaB; vap) is the set of three Euler angles that describe rotation
from one frame to the other, and D@ (Q4p) is the Wigner rotation matrix [21, 22].

This expression serves as a definition of irreducible spherical tensors.

Equation (4.14) can be written in components:
+2
[Xem)® = > [Xew "D, (Qas), (4.15)

m'=—{

where the components of the Wigner rotation matrix are defined as following;:

Dﬁﬁ?m(a, B,7) = exp(—im'a)df,?m(ﬂ) exp(—tmy). (4.16)
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Here, dfgm(ﬂ) are the reduced Wigner rotation elements and are found from a table

(e.g. [23, 24]) or directly calculated from the following expression:

—1)P/(£ + m)(€ — m" (€ + m)!(£ — m)!
dfﬁm(ﬂ) = Z (p!(g +\/'rr(z’ _p)!zg(_ m —~)p()!(p+?m(— m’))' X (4.17)

(cos (8/2))7* ™™ (—sin (8/2))* ™™

where the summation is over values of p for which the denominator is finite.

If the rotation between A and B occurs via an intermediate frame C the matrix

elements fogn, (Q4p) are found from
D (Qus) =>_ DY . (Quc) - DS (Qcs). | (4.18)

mll

In general, it can be shown that the expression for the Hamiltonian (4.11) is

equivalent to the following scalar product:

2 +£

H=> "> ()" ArmTtm (4.19)

£=0 m=—¢

where Ay_,, and fgm are the components of the spherical tensors A and f,
respectively. They are called the spin part T and the space part A of the
Hamiltonian. £ here denotes the rank of the tensors. For all the interactions in

spin- systems, £ =0,1,2.

4.5 High-field Approximation

It is possible to simplify the internal Hamiltonian terms by using the secular
approximation (also referred to as the high-field approximation) that applies well in
the majority of cases. For spins-3, the large interaction of the spins with the
external field B’O masks some of the components of the internal Hamiltonian terms.
Each of the internal interaction Hamiltonians ﬁﬁ"t can be substituted by a simplified
ﬁ:nt(o) that only contains secular terms (those that commute with j;) However, in

some cases of nuclei with spins I > 1, the secular approximation is not justified.
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Within the high-field approximation, equation (4.19) can be simplified by removing
all those interaction contributions whose spin-parts do not commute with the fz
operator. It is possible to show that foo, fm and fgo (for non-quadrupolar nuclei)

are the only secular terms. Therefore, equation (4.19) can be rewritten as

2
Heee = AT (4.20)
£=0

Both irreducible spherical tensors A and T have to be expressed in the same
reference frame, of course. It should be noticed that equation (4.20) is not accurate

for the quadrupolar case (see Section 4.11).

4.6 The Zeeman Interaction

Superconducting NMR. magnets generate a strong static uniform magnetic field By
that has components (0,0,B2) (in Laboratory reference frame). Interaction of the

field with the isolated spins I; is described by the Zeeman Hamiltonian:

—

ﬁ]z =—f- By = “VIijo = —’YIsz;‘z = wjj;'z (4.21)

where w; is the Larmor frequency of precession for the I;-spins. There are (21; + 1)

non-degenerate energy levels.

4.7 The RF Hamiltonian

The RF field By is generated by the radiofrequency coils. It is directed parallel to
the rl-axis. This field is much weaker than the static magnetic field Eo. However,
it oscillates with such a frequency (denoted wgp for RF frequency) that it is
resonant with the Larmor frequency of the spin-I;-species. When the pulse gate is

open, the RF field changes according to

Brr(t) = Bre cos(Wrrt + ¢p)és (4.22)
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where Bgp is the amplitude of the RF field, ¢, is the phase of the pulse, and €; is a
vector with coordinates (1,0,0). This oscillating field can be decomposed into a sum
of two components rotating in opposite directions: BEF (t) and BEE (). Only the
resonant component (the one that rotates in the same sense as the spin precession)

affects the spin motion. The other one can be neglected. Thus, the RF Hamiltonian

term can be written as

o~ 1 ~ . ~
’H%F(t) = —E’Y[BRF(COS((.URFt + QOP)IJ’Q; + sm(wRFt + QOP)ij>

=wl, ( cos(wgpt + gop)sz + sin(wgrpt + gop)ij> (4.23)

where w/,, is the nutation frequency of the I;-spins.

For convenience, the coordinate frame that rotates at the frequency wgp is used. In
this frame, the resonant component of the radio-frequency field appears static. The

RF Hamiltonian term in this frame is expressed as
Hrr = Wnut ( cos gopfm + sin go,,fy> (4.24)

This choice of reference frame is very convenient in NMR. The Larmor frequency wq
(in MHz) becomes a relative Larmor frequency 2y = wy — wrp. As wgrp is resonant
with wy, their difference typically has the order of kHz. The spectrum of a spin [ in

the presence of the static field By with scaled down frequency is shown in Fig. 4.2.

4.8 Chemical Shift Hamiltonian

The chemical shift is probably the most important interaction in NMR. Being
proportional to the gyromagnetic ratio, unique for every kind of nuclei, it helps
determine different spin species. Because it is very sensitive to the local
environment, it helps to distinguish spin sites within different chemical groups, for
instance 13C nuclei from aromatic rings, CH3—, CH,- and COOH-groups have

chemical shifts that are different enough to be able to distinguish them.

Nuclei in the sample are surrounded by electrons. In the presence of the strong

static magnetic field By, electrons near the nuclei create an induced magnetic field,
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Bing, that (in diamagnetic substances) opposes the external static field (see

Fig. 4.3). The nuclear spin experiences a local field, B?ac, that is given by
Bloc = By + Bina (4.25)

The resulting field E[OC — éo + B'md reflects the local environment of the site and is
different for nuclei within different groups — this is the origin of the chemical shift.
In general, in contrast to the static field By that has Bf, = 0 and Bf, = 0, the
induced field B;;ui is not parallel to the z-axis in the laboratory frame L but also has
z- and y- components, because the electronic charge distribution around a nucleus

is not spherical. It is proportional to the static field:
B, = 5By (4.26)

where d; is the chemical shift (or shielding) tensor of the spin site I;. It is a rank 2
tensor, i.e. a 3 X 3 matrix. Therefore, the local field B?OC has three components. The

precession frequency of the J;-spins is shifted by the electronic environment.

] +1/2%xQ,
Q

L; -1 /2><g2o

[

Figure 4.2: An isolated site j with I =  gives a single spectral NMR line at relative
frequency €.
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The chemical shift interaction can be quite large, up to several hundred kHz.

An imaginary spectrum for the case of liquids and (at high spinning frequency)
powder solid samples is shown in Fig. 4.3. The spectral line is shifted because the
Larmor frequency is proportional to the magnetic field that the spin feels (Bloc

instead of Bp).

Figure 4.3: A spectrum of a site j with I = £ in the presence of electrons in an atomic
orbital. The frequency of the spectral NMR line is shifted compared to the case of

nuclei completely isolated from their surrounding spins.
The chemical shift Hamiltonian, expressed in Cartesian coordinates, is:
7/'205 = —"/Ifé Eo (4.27)

The second-rank Cartesian chemical shift tensor & is reducible. It can be

decomposed into three irreducible tensors:
8; = 6@ 450 4 6@ (4.28)

where 6, §(1) and 6@ are the irreducible tensors of rank 0, 1 and 2, respectively.
The rank-0 tensor 6(% transforms as a scalar and represents the isotropic chemical
shift:

. 100
5(°)=§5iso e 30 (4.29)
001
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where &;, is the trace of the § tensor:
1 ,
6iso = 'g((s:z::z: + 6yy + 62:2:) (430)
The rank-1 tensor represents the antisymmetrical chemical shift.

0 Ozy Oy
O=| —ar 0 (4.31)

—Qg, —0y, 0

where

Qyy = %(&w - 61m) (432)

If the high-field approximation is valid, the rank-1 term can be neglected.

The last term, 62, describes the chemical shift anisotropy. It is traceless and

symmetric and equal to

.B:L':c ,B:cy ,B:L'z
8 = | By By By (4.33)
Bz Bey B
where
1
,Buv = 5(61“) + 61m - 26’iso) (434)

In its own PAS, the CSA tensor is diagonal:

& 0 0
=1 0 &% 0 (4.35)
0 0 &

The diagonal elements of the CSA tensor in the P reference frame, 85, 5{; and &7,

are its principal values. According to the convention of labelling the PAS axes [25]

‘ 6:; - 6i30 |_>_| 6:153:1; - 6iso |Z| 65:; - 6iso | (436)
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There are two parameters that are used to describe the CSA: the anisotropy, Waniso,
and the asymmetry, n:

Waniso = w0(5zp; - 51230) (437)

P P
_ Oy~ Oz

In terms of irreducible spherical tensors, the CS Hamiltonian is expressed as follows:

N £

Hos == Y (~1)™Ar-mTim (4.39)

=0 m=—¢
In the high-field approximation, this reduces to:

2
Hes = — Z ATy

2=0

(4.40)

In the L reference frame, the spin-field part T of the CS Hamiltonian has the
following components:

e 15 4 1 -~

Tl = — T By= —1.B, (4.41)
3 3

ﬁ\o(L) —0

T20 = %(3.[232 - I * Bo) = \/;IZBO

The components of the space part of the Hamiltonian A have simple form in P
frame:

A(()g) = - \/5'751'50

(4.42)
3
A‘(‘ZI(:) = \/;’7(521; - 51250)
A(21;:)1 =
U]
A= A

NG
(4.43)
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The T part of the Hamiltonian includes information on the spin and the field, while

—~ (L
A includes the CSA parameters. However, the constants within the terms Too( )A(%)

—~(L
and T2()( )A.%) can be combined and moved into the spin part so that the

components of both tensors are redefined to make the expressions simpler:

T = -1, (4.44)

and

A(()f))) = —w0(5,-30 (4.4.5)
A(zf))) = _wo(ézi - 5’iso) V
P
A(Zi)l =0
A(P )

92+9 = Waniso

Then, the CS Hamiltonian can be written as
Hes = —woliso L + ASH T, (4.46)

The space component A 0 can be expressed via components in the P-frame in the

following way:

A = Z A DD (1) (4.47)

A=-2

In a rotating solid, the transformation from P to L has to be accomplished via the

intermediate reference frame R, therefore

+2
AP = Z AL D) (Qpr(£) DEY(Qar) (4.48)

m=-2m/'=-2
Finally, using expression (4.48), the CS Hamiltonian can be written as

+2
Hes = —woéml + ) Z AP DB (Qpr)DO)(Qar)T, (4.49)

m=—2m'==2
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The chemical shift can provide useful structural information on the spin’s
surroundings, for instance, for assignment purposes of molecular spin sites (see, for

instance, [26]), for studying the mobility of molecular segments [27, 23], etc.

4.9 J-Coupling

The J-coupling is also called the indirect spin-spin coupling. In contrast to the
three interactions described above (Zeeman, RF and chemical shift), this is a
two-spin interaction. This interaction arises due to the fact that the electron
density of bonding electrons is affected by the presence of the nuclear spins.
Through this mechanism, the nuclei can feel the presence of each other over several
bonds, including hydrogen bonds. The internal Hamiltonian term that describes the

J-coupling between the sites I; and I, is
HE = or ;300 (4.50)

where J i is the J-coupling tensor. Similar to the CS term, the J-coupling
interaction has isotropic and anisotropic parts. However, in contrast to the CS case,
the latter part often is of almost no importance since, even if not averaged by
molecular motion, it is often small and can usually be ignored, especially for light
nuclei. For a pair of spins I; and I with very different chemical shifts, the presence
of J-coupling gives rise to two doublets, at (relative) frequencies (€2; & 327Jj;) and
(Qg + 321 J;k) (see Fig. 4.4).

Until recently, this interaction was considered to be of little importance in
solid-state NMR because of its small scale compared to the other, much stronger,
interactions like the direct dipole-dipole and quadrupolar couplings (the typical size
of the J-coupling is <100 Hz and it is not always noticeable due to the broad
solid-state lineshape). However, in high-resolution NMR it provides valuable
information on through-bond connectivity [28]. It can also provide information on
hydrogen-bond strength [29].
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4.10 Dipole-Dipole Coupling

The dipole-dipole coupling is also called the through-space dipole-dipole coupling,
or the direct dipole-dipole coupling. It is a pairwise interaction. The magnetic spin
I; generates a magnetic field that interacts with a neighbouring spin site I, and
vice versa. Unlike the J-coupling that is mediated by the bonding electrons (and
therefore called indirect), the dipole-dipole coupling acts through space and exists
between nuclei that are geometrically in close proximity. The respective internal

Hamiltonian term is

s /.Lo’)/")/kﬁ, e RN b o b
’H%CD:_E; Jrg (3(fj'ejk)(fk'ejk)—fj'fk>
ik

o~
-

= by (3(7; - &) (Te - &) — I L) (4.51)
Here, pp is the magnetic permeability in vacuum, r;; and € are the absolute value
of the distance between two spins j and k and the unity vector indicating its
direction, respectively, and bj; is the dipole-dipole coupling constant:

Xl ﬁ,
e L (4.52)

am TSk

2n 2mh

Figure 4.4: A spectrum of two spin—% sites I; and I with scalar coupling Jy (the
case of AX system, i.e. when the chemical shift frequencies of sites I; and I are far

apart).
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The dipole-dipole coupling constant contains information on the internuclear
distance. The term in brackets in Eq. (4.51) contains information on the &

orientation with respect to the static magnetic field B,.

This interaction term contains very useful information, for example, on the
internuclear distances (both inter- and intramolecular), the degree of order in the
system, etc. It can be very large (hundreds of kHz), especially for high « values and
short distances. Being angle-dependent, it survives only in anisotropic medias like
liquid crystals and solids. However, in the solid-state NMR of powder samples it is
often undesirable because the resulting lines are very broad, leading to poor spectral
resolution. In this case it is removed by special experimental procedures (for

example magic-angle spinning) [6, 7].

4.11 Quadrupolar Coupling

In contrast to spin-% nuclei, the electric charge distribution of the nuclei with spins
I; > 1 is not spherically symmetric. Therefore, the interaction energy of these
quadrupolar nuclei with electric field gradients from the surrounding electrons
depends on the nuclear orientation. The quadrupolar Hamiltonian is written in the
following form [17]:
H) = ——A——T.-eq;- I, 4.53

QT B2l — 1)k 1 Y (4.53)
Written in components, this expression becomes very complicated. If the interaction
is small compared to ’ﬁz, the secular approximation can be used:

177 sec 36@ j
e = J

. =2 =S
J I T,

Here, e is the proton charge, @, is the electric quadrupole moment of the nucleus j,
q; is the second-rank tensor that describes the electric field gradient, and Vg is the
electric field gradient term that depends on the molecular orientation. However, in
many cases (especially for solids, but also for isotropic liquids) equation (4.54) does

not present a good approximation and more terms are necessary [30, 31].
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Quadrupolar NMR is, both practically and theoretically, more complicated than the
NMR of spins—%, but its importance is explained by the fact that the majority of
nuclear species possesses a quadrupolar moment. Knowing the quadrupolar
parameters of a site j is very useful (for instance, it allows one to determine the
local symmetry [32]).

3 3
219"
possible transitions: symmetrical (between the levels (m < —m) and satellite

For quadrupolar nuclei with half-integer spins (I = ..), there are two kinds of
(between the levels m <> (m £ 1)). The only symmetrical transition allowed by the

selection rule (Am = £1) is —3 «> 1. It is called the central transition.

Similar to the CSA interaction, the quadrupolar interaction can be described by its

anisotropy n:

P _ P
_Yer — Uy

” (4.55)

where ¢, ¢, and g, are the diagonal elements of the electric field gradient tensor

in its PAS. The quadrupolar frequency wq is defined as

2eqQ

where eq is the magnitude of the electric field gradient and the definition of ¢ is

qg=q’, (4.57)

As already mentioned, expressed in the laboratory frame, the quadrupolar
Hamiltonian looks very complicated. For nuclei with 7 = %, all the spin interactions
are small compared to the Zeeman interaction. This allows one to use the high-field
approximation and truncate the corresponding Hamiltonians to a first-order

approximation, i.e., the secular spin interaction Hamiltonian can be written as
H=HY (4.58)

For quadrupolar nuclei, however, this is not always the case, because the

quadrupolar interactions can be as large as several GHz (for example, for 27I) [33].
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For some cases, (4.58) is still valid, but if the quadrupolar interaction is strong, a
second-order term in the Hamiltonian has to be taken into account as well. Then,

the quadrupolar interaction Hamiltonian ’ﬁQ is written as:
Ho =HY +H® (4.59)

where the first and second order terms are expressed in term of the irreducible

spherical tensors in the L reference frame as follows [17]:

O = 41(‘32?? VAT (4.60)
— 2
5@ _ (21(62 }JCE . )zjo ; ( (3\/— Too — Tro(3 — 4I(I + 1))) Ao+ (4.61)

(12\@:?; — To(3 — 4I(I + 1))) Ago — (34\@:7’; — 3T00(3 — 4I(I + 1))) A40)

Here, wy is the Larmor frequency. It can be seen from equation 4.61 that in the

second-order quadrupolar Hamiltonian there is a term with £ = 4.

The components of the spin spherical tensor in the laboratory frame are defined as:

Tw=1, (4.62)
—~ 1 ~2
Too=—=(3I, —I(I+1
%0 \/6( (I+1))
—— 1 -~
T = ——=(5I> = 3I(I + 1) + 1)1,
30 \/ﬁ( ( ) )
(4.63)

The components of the space part, again in the laboratory reference frame, are:

J4
Ap = }: DY (Qrs) }: DY (Qpr)Asm (4.64)

m=—Ff n=—{

The elements Ay, are expressed via components of the quadrupolar tensor in its

PAS [17).
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The frequency of the central transition is unaffected by the first-order quadrupolar
Hamiltonian, while the satellite transition frequencies are determined by both the
first- and second-order quadrupolar Hamiltonians. The second-order Hamiltonian
H® is relatively small compared to 5, therefore the spectral line corresponding
to the central transition is relatively narrow and intense. From this peak,
information on the quadrupolar coupling of the nuclear site, such as the quadrupolar
coupling constant y = eZTqQ and the asymmetry parameter n can be obtained. For

integer spins (I = 1,2,...), all the transition lines are substantially broadened.
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Basic Techniques

5.1 Magic-Angle Spinning

The difference between liquid-state (LS) and solid-state (SS) NMR is the degree of

molecular motion.

In liquids, the molecules (or other particles) are free to perform isotropic rotational
and translational motion. Rotation is particularly important because it averages
out NMR interactions that have orientation dependence. For spin—% nuclei, the
Hamiltonians of such an interaction are proportional to (3 cos® Spr, — 1), where SBpr,
is the angle between the 2-axes of the PAS of the given interaction and the z-axis of
the laboratory frame. The isotropic average value of cos? 8py, is %, therefore,

< 3cos? Bpr, — 1 >= 0. For quadrupolar nuclei, the angular dependence is different
but it still gets averaged out by the motion. Thus, in liquids all the anisotropic
interactions (dipole-dipole coupling, CSA, quadrupole coupling) are not directly

observable. Spectral lines are narrow and relatively well-resolved.

In solid-state NMR, the situation is quite different. The rotational motions of the
molecules are restricted, so most anisotropic interactions remain. Moreover, in the
case of powder samples, that consist of a huge number of tiny crystals, each
crystallite has its own angular orientation. This results into broad spectral lines

(low resolution, low intensity).

In order to approach a liquid-like spectrum, a technique called magic-angle spinning

61
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(MAS) is used [6, 7]. The powder sample is placed in a rotor that is rotated about
an axis that is tilted by an angle of 54.7356° with respect to the z-axis of the
laboratory frame and spun at a high rotation frequency. Again, the rank-2
anisotropic interactions get averaged out to zero. This is because the average over

the rotation phase of the rotor may be shown to be [17]
< 3cos?Bpr — 1 >x< 3cos? Brr — 1 >< 3cos? Bpr — 1 > (5.1)

where Sgr and Bpg are the angle between the rotor and laboratory coordinate
frames and the angle between the PAS and rotor frame, respectively. The angle gy
is chosen to be equal to arctan /2 in order to put the term (3 cos? Bz — 1) to zero

and cancel the anisotropic interactions. This angle is called “magic angle”.

For the case of the quadrupole coupling, the quadrupolar frequency is proportional
to a sum of terms (see Eq. (4.61)) that are, in turn, proportional to Legendre

polynomials P, (cos Sgr) and Py(cos Bgrr):

Py(cosfrr) = %(3 cos® frr — 1) (5.2.)

1
Py(cos far) = (35 cos? Brr, — 30 cos® By + 3)

So, magic-angle spinning at 54.74° puts the first to zero but not the second. For the
second polynomial, an angle of 30.12° is the magic angle. Both conditions
Ps(cos Brr) = 0 and Py(cos frr) = 0 can not be satisfied simultaneously and special

techniques are used in this case [34, 35, 36].

5.2 Cross-Polarization

Many nuclei that are the subject of NMR, experiments have relatively low
gyromagnetic ratios. The lower the gyromagnetic ratio is, the lower is the

sensitivity of the nucleus (see Table 5.1).

Cross-polarization (CP) [37] transfers magnetization from nuclei with large v (often
1H) to nuclei with smaller v (for example, *C, 1°N) and therefore provides

enhanced sensitivity. The other problem connected to many nuclei with low
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gyromagnetic ratios and low natural abundance is that they tend to have
longitudinal relaxation times that are much longer than for the nuclei with high ~
and high natural abundance. CP allows one to decrease the pulse delay (the interval
between subsequent experiments or transients) by substituting the long relaxation
times of the low- nuclei by that of the high-y nuclei. In addition to these two main
tasks, CP helps to reduce background signal (from the probe) and provides

information about which spins are close in space.

A typical pulse sequence for cross polarization is shown in Fig. 5.1, a. First,
transverse magnetization on I-nuclei (those with the higher gyromagnetic ratio) is
created by applying a 90°-pulse. Then, RF fields are applied to the I and S nuclei
with different RF powers in order to satisfy the so-called Hartmann-Hann

condition [38]:
Wit = et (5.3)

To make the exact match easier to achieve, RF field applied to one of the channels
is usually ramped [39, 40, 41]. Contact time of the cross polarization is typically of
the order of several ms. As a result of CP, the magnetization of the S-nuclei is

ideally enhanced by a factor of around v;/vs (Fig. 5.1, b).

Table 5.1: Description of some of the most commonly used nuclei in NMR.

Isotope Spin Natural abundance, | Gyromagnetic ratio,
in the ground state % red
'H . 99.98 267.52x10°
13C 3 1.108 67.263%10°
BN 3 0.37 -27.116x 108
’H 1 1.5x1072 41.064x10°
19F 1 100 251.665x10°
Al 5 100 69.704x 108
170 2 3.7x1072 -36.264x10°
sip 1 100 108.289%10°
5Na 3 100 70.761 %108
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(80),
=

| |[CP), /\b

No CP CP

s [cp),

Figure 5.1: a, a typical CP pulse sequence; b, the result of applying the CP: signal

gets stronger.

If CP is applied under MAS, the Hartmann-Hahn condition (5.3) is modified:

ATARE R i 2 TN (5.4)
Here, w, is the rotation frequency and m = +1, +2 [17]. (For some systems,

polarization transfer is also possible for other m, but it is much weaker).

A simple explanation of the CP experiment is presented graphically in Fig. 5.2.
First, the same Bgrr is applied to both nuclei species. As the nutation frequency

nutS  magnetization

depends on the value of the gyromagnetic ratios, w™¥ # w
transfer is inefficient. When the ratio between Bk, and B3y is such that the
Hartmann-Hahn condition is satisfied, magnetization transfer occurs between

coupled spins, mediated by the dipolar coupling.

5.3 Heteronuclear Decoupling

MAS helps to remove the effects of anisotropic interactions. However, interaction of
S-spins with protons is usually very strong and cannot be completely removed by
MAS at any realistic rotation frequency. Residual dipolar couplings make spectral

lines broad. Therefore, heteronuclear decoupling should be used during
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Figure 5.2: When equal RF fields é{zp — éﬁp are applied to two nuclei species with
the spins I and S, respectively, magnetization exchange is inefficient because their
nutation frequencies do not match. If, however, the RF field are adjusted so that the

Hartmann-Hahn condition is met, magnetization can “leak” from I to .S species.

experiments. The simplest example of decoupling - continuous wave (CW)

decoupling - is shown in Fig. 5.3. While the signal is acquired on the S-channel, the

(90),

/
| ([P |, CW
\decouplmg

a b

S (CP), e TG
No dec. Decoupling

~

Figure 5.3: a A CP pulse sequence with CW decoupling. b The result of applying

the decoupling: spectral lines become narrower.

I-channel (proton channel) is irradiated by a strong RF field in order to decouple
the two spin species. With decoupling, the spectral lines get considerably narrower.
The RF field applied to the I-channel causes the polarization of I-spins to flip

rapidly so that the time-average of the !H-3C spin-spin interaction cancels out.
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There are also more sophisticated multiple-pulse techniques that are widely used for

heteronuclear decoupling in SS NMR. The most common onés are:

e two-pulse phase modulated decoupling (TPPM) [42]

e X-inverse-X decoupling (XiX) [43, 44]

TPPM is a sequence that consists of repeated blocks of two pulses whose phases are

(+¢) and (—). There are many variations of the TPPM decoupling scheme.

XiX is similar to TPPM. It consists of repeated blocks of two pulses with phases of
0 and 7. It has some advantages compared to the TPPM but both give comparable

performance [12].

5.4 Recoupling Techniques

Fast MAS and high-power heteronuclear decoupling help to remove the undesirable
effects of many interactions in the solid-state NMR of spin-Z systems, such as CSAs
and dipolar couplings. The resulting solid-state spectrum looks liquid-like, with

narrow, isotropic lines.

However, the structural information that the anisotropic interactions contain is very
useful and valuable. Therefore so-called recoupling sequences have been designed.
These are sequences that selectively reintroduce these interactions, allowing one to
measure distances between the neighboring atoms, estimate torsion angles, establish

correlations based upon proximity of the nuclei, etc.
Today, a great number of recoupling techniques exist. They are based on different

principles. Some of the most popular recoupling methods are:

e rotational resonance (R?) [45]

e HORROR (Homonuclear Rotary Resonance) [46] and DREAM (Dipolar
Recoupling Enhanced by Amplitude Modulation)

e REDOR [47]
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o RFDR [48]

e symmetry-based C-type and R-type sequences [49, 50, 51]

5.4.1 C- and R-type Recoupling Sequences

Both the C- and R-type sequences are based on RF irradiation with phase shifted
pulses, with an integer number /N of pulse elements fitted into integer number n of

rotor revolutions.

The difference between these two types is as follows:

e a CN! sequence consists of a number of so-called C-elements. N C-elements
fit into n full rotor revolutions. In the absence of other interactions, each

C-element returns the spins into their initial state.

The phases of the neighbouring C-elements differ by 2}{,". So, the space part of
the Hamiltonian rotates n times as the spin part rotates v times. The

meaning of the numbers in a C/V;/ sequence is illustrated in Fig. 5.4.

n rotor revolutions

,_—/\___\

CN,

n —
i N RF cycles

RF phase incrementation
by 2nviN

Figure 5.4: Meaning of the numbers in a CN} sequence.

e an RNV, sequence consists of N/2 R-blocks. Each R-block consists of two
R-elements Ry FR_g where the phase ¢ of an R-element is ¢ = T7. Each

R-element is, in general, a composite pulse that rotates the spin through 180°
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about the z-axis. N R-elements occupy the same time interval as n sample

revolutions.

C-type symmetry implies the following selection rules for the components of the
Hamiltonian [49, 50, 51]:

Hemr, = 0, if mn — pv # NZ (5.5)

where Z is an arbitrary integer. Similarly the selection rules for the R-type

sequences are formulated [49]:
_ . N
Hemau = 0, if mn — pv # EZ)‘ (5.6)

where Z, is an integer that has the same parity as A (i.e. Z, is odd if A is odd and
Z) is even if A is even). The selection rules allow one to easily predict which
interactions are allowed or forbidden by a C- or R-type sequence with certain N, n

and v numbers.

A typical pulse scheme using the C7 double-quantum filtered recoupling sequence is
shown in Fig. 5.5. During this recoupling sequence, the ramped CP enhances
transfer magnetization of the S-spins. The following Z-pulse converts it into
longitudinal magnetization. C7 sequence is then used for both excitation of the DQ
coherence and reconversion it back to z-magnetization. The following Z-pulse
creates the observable transfer magnetization. The phase of either excitation block

(white) or reconversion block (gray) is cycled to select the DQ coherence.

5.5 Phase Cycling

The desired NMR signals are often polluted by undesirable signals from spin
systems of no interest in the experiment, as well as classes of signals from the spin
system under study which are of no direct interest. The most common causes of

this are hardware and software spectrometer imperfections.

Some of the spectrometer imperfections are relatively easy to deal with. For

example, the fact that the accuracy of setting of the spectrometer phases is limited
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Figure 5.5: a - radiofrequency pulse scheme for C'7 RF pulse sequence. b - the
structure of a C7 cycle in more detail. Adapted from [52].

can be dealt with by choosing such phases that are multiples of a minimal phase
changing step. However, some of them cause a problem: imperfections in RF power,
imperfections of the quadrature receiver (i.e. such that not only a pure (-1)
coherence order is acquired). Often, one may be interested in particular NMR
signals, for example, only that coming from *C nuclei in proximity of *H nuclei, or
to only observe signals of spin pairs or clusters. In all the cases above, applied phase

cycles [8, 9] will help to solve the problem.

The main goals of the phase cycling are:

e to select signals having certain properties while canceling out the others;
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e to suppress experimental artifacts caused by phase/field/timing imperfections.

Phase cycling is performed by repeating a pulse sequence several times,
incrementing the phases of RF pulses (or blocks of pulses) in a certain way; signals
coming from each single experiment are multiplied by an appropriate complex
factor and added together. This procedure results in some signal components being
added constructively, while the others (the undesired ones) cancel out due to

destructive addition.

For a pulse sequence consisting of N pulses (or blocks of pulses), the phase of the

signal coming to a computer depends on:

e the phase of each of the pulses ¢1,ps,....,0on
e the receiver phase ¢,

e the digitizer phase g4

During the phase cycle, the values of 1, ..., YN, Vdig, Prec Tun though a set of
values. Signals are then added together. In general, an NMR signal for such a

sequence can be written as

M
Stotal (t) P1y- - -3 PN, Pdigs ‘Prec) = Z Sm(t, ‘7011717 R ‘70%7 ‘ngga SDTec) (5'7)
m=1
where M is the total number of steps in the complete phase cycle.
Stotal (£, P1, - - -, PN, Pdig: Prec) €an also be expressed as follows:
Stotal(ta P15+, PN, Pdig; Sprec) = (58)

M
Z sm(t, o' = 0,..., 0y = 0,05, =0, . = 0) - exp(—i®ps;)
m=1

where s (t, 07" = 0,..., 0% = 0,5, = 0, ¢, = 0) is a signal that would result
from this pulse sequence if all the phases 1, ..., ¢N, Pdig, Prec Were set to zero, and
@™, is the total coherence pathway phase. For the m™ cycle step, the total

coherence pathway phase is defined as:

N
ma =D Apagl + ol + gl (5.9)

n=1
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where Ap,, is the change of coherence order caused by the nt* pulse.

In order for the NMR signal to add constructively (Fig. 5.6, a), the total coherence
pathway phase for the desired pathways pgesires should be kept constant (e.g. 0)
through out the phase cycle. On the other hand, all the unwanted signal
components coming from pypgesirea should add destructively (Fig. 5.6, b) in order to

vanish. The following selection rule applies:

0 otherwise

NPLS
b/mﬁ\@ d@@

Figure 5.6: Behaviour of NMR, signals during a phase cycle. a, for the desired signal

M-1 .
1 f S esiTe
1 —i®(p)™ ):{ £ p € {Paesirea} (5.10)

components, the total pathway phase is kept constant and signal adds up, b, for other

signal components, the signal cancels out.

For the pulse sequence shown in Fig. 5.7, the coherence pathway phase is

®path = Apapa + Apppp + Apcc + Prec + Pdig = (5.11)
(_1)9014 + 2903 -+ (_2)906‘ + Prec t+ Pdig

where Apa, App and Ape are the changes in the coherence order caused by the

respective pulses. Usually, either ... or g, is cycled.

A simple, realistic two-step phase cycle is shown in Fig. 5.8. Here, the CP block on
the 'H channel is cycled with phase according to the list: 0, . The receiver phase

Prec is adjusted so that to keep @, constant, while the digitizer phase g, is kept




CHAPTER 5. BASIC TECHNIQUES 72

unchanged. Such pulse phases cause the part of the 3C magnetization, that is
cross-polarized from protons, to change sign. The receiver phase cycle lets this
signal add up constructively. On the other hand, for the carbon signals arising from

the nuclei situated far from protons, the two signals cancel.

5.5.1 Nested Phase Cycling

In conventional, or nested, phase cycles, the phases of the pulses (or blocks of pulses

in more advanced pulse sequences) are chosen according to:

gpfl:—i—il, el N (5.12)
Here, [ is the cycle counter for the phase cycle of the nt* pulse, [ =0,..., (L, — 1),
and £, is the number of steps of the cycle for this pulse or block. The number of
cycle steps for each RF pulse is determined by the desired coherence order change
and may be chosen by the spectroscopist. In Fig. 5.9, RF pulses A and B cause the
coherence order to change by (41), each. Pulse A, being cycled in 3 steps, selects
not exclusively the (+1)-order but (+1 £ 3 x k), where k is a positive integer:
k=1,2,3,.... Therefore, coherences of (-2) and (+4)-order will survive this cycle

Pa P Pe

Mec

FAB =1__ ----------- =

=)

Figure 5.7: A pulse sequence consisting of three pulses.
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Figure 5.8: CP pulse sequence and the appropriate phase cycle to cancel out the *C
signal from carbons that are not in close proximity to *H nuclei. The table shows
phase values required to perform the phase cycle. (In fact, two coherence pathways
{0 — £1} are selected).

(high order coherences are normally neglected as they are only important in case of
larger spin systems and are usually difficult to excite). The pulse B has a 3-step
cycle, which, in addition to the desired (+2) coherence order, would let the (-1)
coherence order through. This coherence order can be excited easily in any spin
system (by RF pulse imperfections, for instance). Therefore, the number of steps
should be increased in order to get rid of it. If £Lz=5, the only coherence orders
that will go through are (+2) and (-3) (not taking higher orders into account).
Thus, the number of phase steps for the RF pulse is selected depending on the

selection requirements, while the pulse phase follows equation (5.12).

While the cycle on the A pulse is being completed, the phases of all the other pulses

are kept constant. Either g, or ¢.ec is cycled together with ¢4 to maintain a
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Figure 5.9: A pulse sequence needed to select the coherence pathway 0 — +1 —
+2 — —1.

constant value for ®;uzq;:
(5.13)

Pdig/rec — ”'ApA‘PA ==k
The phase scheme during the cycling of the pulse A phase is summarized in

Table 5.2.
In the conventional (nested) phase cycles [8, 9], the phases of the RF pulses are

incremented one at a time. While one pulse phase is cycled, the phases of all the
other pulses are kept constant. The receiver and digitiser phases, e and g, are
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adjusted in order to keep the total coherence pathway phase ®,4, constant. When
the phase cycle on the first pulse is completed, the phase of the next one is
incremented by one step, and the first one goes through its cycle again, and so on.
For a sequence of N pulses (or pulse blocks), with the number of steps of the pulse
phase cycle of the n* pulse being equal to L,, the total number of phase cycle steps

M=T]£n (5.14)

Therefore, one usually tries to keep the number of steps for each pulse as low as

possible.

5.5.2 Cogwheel Phase Cycling

In cogwheel phase cycling [53], the phases of all the pulses are incremented
simultaneously, each with its own phase increment v,. The phase of the n*® pulse

©n, is incremented according to:

27y

(1071_ M

m, m=0,...,(M—=1) (5.15)

The number of steps in the phase cycle, M, is now common for all the pulses.
When the phase cycle is completed, the phase of the nt* pulse will have turned by
an angle equal to %M = 27vy, i.e. it will have accomplished v, full rotations.

These numbers v, are known as winding numbers.

Table 5.2: Pulse and spectrometer phases while cycling the A pulse in Fig. 5.9.

Step number | Counter m4 ©a Dree ©B we Pdig
= A%[_Zma
1 0 0 0 constant | constant | constant
2;' —%’r constant | constant | constant
3 2 2. %” -2 2—3’5 constant | constant | constant
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If a pulse sequence consists of three pulses: A, B and C (Fig. 5.10), and the
coherence pathway, as usual, starts with z-magnetization (i.e. (0)-coherence order)
and ends with (—1)-order, in the case of ideal quadrature signal acquisition, then

the desired coherence pathway is:
Pdesired = {0 — pap — ppc — —1} (5.16)

Here, pap and pgc denote the coherence orders between the corresponding pulses.
In the cogwheel method, the absolute coherence order, rather then the change in

the coherence order as in conventional procedure, is used.

Pa Pg Pc

A B C

i
©

0 ~AB

>
D

Figure 5.10: A pulse sequence needed to select the coherence pathway 0 — +1 —

+2 = —1.

The total pathway phase is expressed as follows:

)+ Apepl? + plm) + o) = (5.17)

(valpa + vsApp + velpe) + ¢im) + o)

o™ = Apap™ + Appply
2mm

M
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Here, Ap4, App and Apc are the changes in coherence order caused by pulse A, B
or C respectively. It is convenient to introduce quantities Avap and Avgc, the

differences between the corresponding winding numbers:

Avap =vg — Va4

AI/BC = Vg — Vp (518)
Using these notations, equation (5.17) may be written as

27rm €51T€ esire
@;Z?h T(_AVAB(Z)AB phsiredy _ Avpe(ppe — pisired)). (5.19)

plsired here denotes the desired coherence order between the pulses X and Y. As
usual, @;’;)h should remain constant for all m only for the desired coherence

pathways in order to add them constructively:

M-
— Z (—i®patn) = (5.20)
M ot
if (Avappas + Avpeppc) = (Avapp%simed + Avpep%sired) + M x integer
otherwise

The equation

Avap(pas — pi5"™") + Avsc(pec — PEE™)+ (5.21)
=0, if pE p{desu‘ed}

# 0, otherwise

M x integer {

is the object for numerical search. Solutions can also be proved graphically [53].

A cogwheel phase cycle is specified by the value of M and the combination of the
winding numbers which satisfy (5.21) for all significant coherence transfer pathways.
For a sequence of N pulses, a cogwheel phase cycle consisting of M steps and

winding numbers vy, ..., vy can be denoted as COGM (v, ..., UN; Vrec, Vaig)-
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5.5.3 CTP Selection By Field Gradients

Another method of suppressing experimental artifacts and selecting a desired
coherence pathway is by using pulsed field gradients (PFGs) [54, 55]. Normally, the
static magnetic field By is made as homogeneous as possible by adjusting the two
sets of shims. Gradients make the field inhomogeneous. A gradient along z-axis has

the following linear dependence:
By(z) = By + G2 (5.22)

where G, is the strength of the gradient and z is the position in the field along the
z-axis. Because the precession frequency of the nuclei is directly proportional to the
magnetic field applied, the frequency will vary between the top and the bottom of
the sample: magnetization vectors in the upper part will rotate faster, and in the
lower — slower than they would at constant By. Therefore, the magnetization
vectors at each time point form a helix. The number of magnetization vector
revolutions per unit length depends on the strength of the field gradient, G,. By
later applying the same magnitude of gradient, but with the opposite sign:

Bo(z) = By — G,z (5.23)

one unwinds the magnetization vectors and signal can be recorded. The degree of
twisting depends not only on the gradient strength but also on the coherence order
Q. Coherences precess at a frequency w(Q) x QG,z, i.e. double-quantum
Coherences (with Q=+2) rotate twice as fast as single-quantum coherences (with
Q=+1), and zero-quantum coherences (p=0) do not twist at all. In order to select a
certain coherence pathway {0 — Q4 — Qp — Qc¢} by this method, the strength of
gradients applied after pulses A, B and C should satisfy the following condition:

Q4G4 + QpGP + Q:G¢ =0 (5.24)

where G4, G2 and G¢ are the strength of the respective field gradients.

This method is popular with liquid-state NMR spectroscopists but is usually not
used in SS NMR.
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5.6 Simulation of NMR Experiments

There are several computer programs available for numerical simulation of an NMR
spectrum, for instance ANTIOPE [56], GAMMA [57] STARS (58, 59],
SIMPSON [10], etc.

The SIMPSON program that is used for the numerical simulations in this thesis, is
specially designed for solid-state NMR. experiments [10].

All the information that is necessary for the computer simulation of an NMR
experiment, such as description of the spin system (i.e. atomic species, parameters
describing their chemical shifts and spin-spin interactions between them),
experimental parameters (static and RF magnetic field strength, spinning frequency,
angle between the rotor axis and the static field direction, sampling rate, etc),
description of the pulse 'sequence (positions, durations and phases of the RF pulses,
phase values for the phase cycle and so on), acquisition and procession parameters,

are included in the input file that is written in the T'¢/ computing language.

All the spin dynamics calculations are performed inside the SIMPSON environment.
The program returns an FID that can be processed either within the SIMPSON

environment or with the help of any other convenient program.

A scheme of a SIMPSON simulation is shown in Fig. 5.11.
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Figure 5.11: A scheme illustrating the process of computer simulation of an NMR

spectrum using the SIMPSON program.



Chapter 6
Multiplex Phase Cycling

Often, the duration of an NMR experiment is determined by the necessity to
complete a phase cycle, not by the need to obtain a desired signal-to noise ratio. In
the case of a multidimensional experiment, the NMR experiment can take a very
long time, especially if the relaxation time of the sample is long, requiring long

pulse delays.

The multiplex method is a new procedure for obtaining a pure-absorption signal,
with frequency discrimination. This method is based upon the SHR method where
two amplitude-modulated data sets are collected. However, due to the fact that
signals coming from two different coherence pathways are collected simultaneously
and the phase factor is applied afterwards, the minimal required number of

transients for obtaining a pure-absorption spectrum can be decreased.

Using the multiplex phase cycling method, it is possible to reduce the minimal total
number of scans per £; increment by a factor of (25—%1) for the @-quantum spectrum,
which is especially significant for large values of Q, leading to substantial savings in

experimental time.

6.1 Theoretical Description

During a multidimensional experiment, a conventional phase cycle is combined with

a method for obtaining a pure-absorption spectrum with frequency discrimination.

81
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If the SHR procedure is used to obtain a clear absorption peak line shape, cosine-
and sine-modulated signals should be acquired. For each, a full phase cycle has to
be completed. (This takes the same total time as using the TPPI method, for which
only one data set is acquired but the size of the ¢; incrementing step is halved and

their number doubled, see Fig. 6.1).

t, -
4Q@ 4Q 4Q 4Q 4Q
SHR o——o ° ° °
1/sw,
\ J

Number of increments in t, N,

20 20 2@ 2@ 2Q
® ° ° ® . ©®
TPPI 2Q | 2@ 2@ 2q 2Q
’ @ ’ ’ [ 11} ’
1/2sw,
\N J

Number of increments in t, N,

Multiplex 2Q+1 2Q+1 2(2+1 zc:+1 zc:+1

1/sw,
. /

Number of increments in t, N,

Figure 6.1: Minimum number of transients in the ¢; dimension necessary to obtain
a Q-quantum, pure-absorption spectrum with frequency discrimination for the SHR,
TPPI and multiplex methods is 4Q, 2 x 2Q = 4Q and (2Q + 1), respectively.

Cosine- and sine-modulated signals are added as the phase cycle is completed:
M-1
S (t1, 23 Py 3 PN Precs Paig) = Y, 5 (b1, b5 0T -, Gt P, ) (6.1)
m=0

M-1
Ssm(tla t2; P15+ PN Precs Sodig) = Z S:;Ln(t:l’ t2; Qorln, ey 90,/7\?7 QD:.TZ;C, QDIiT:g)
m=0

where N is the number of pulses, and M is the total number of steps in the phase

cycle. The signal is then processed and combined according to the SHR method.
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Both (+Q) and (—Q) coherence orders are needed in order to obtain the cosine-
and sine-modulated Q-quantum signal. This is performed by using an L-step phase
cycle in the conventional phase cycling procedure (here, £ is the number of steps in

the phase cycle for the pulse that selects the Q-quantum coherence, £ = 2Q).

Alternatively, one can obtain cosine- and sine-modulated (—Q) and (+Q) coherence
orders separately and then add them together by applying a minimum

(2Q + 1)-step phase cycle. In this case, the coherence order of —(Q + 1) will
accompany the Q-quantum coherence, and the (Q + 1)-quantum coherence will
come through together with the (—Q) coherence order. If this is undesirable, the
presence of the unwanted coherence orders can be avoided by increasing the number

of steps in the phase cycle.

This is, of course, not a good idea as it more than doubles the number of scans
needed to complete the phase cycle. However, one set of experimental data can be
used for obtaining both the sine- and cosine-modulated signals, using the multiplex
phase cycling method. The basic principle of multiplex phase cycling is shown in
Fig. 6.2.

For the Q-quantum experiment in Fig. 6.2, a, a conventional phase cycle is used.
Both coherence pathways are selected using a 2Q step phase cycle, cycling either
the pulse or block of pulses that excites the (+Q)-quantum coherence (excitation
block) or the pulse or block that converts it down to the observable (—1) coherence

order (reconversion block).

In Fig. 6.2, b, the multiplex procedure is used, with the phase cycle consisting of

L = (2Q +1). In this case, the two desired coherence pathways are p# = 3. p2,
where p/ = {0 & Q+ kL — —1} and p? = 3, p¥, where

p? ={0—> —Q+ kL — —1}, where k is an integer. Here, instead of applying the
Prec and g4 to the NMR signals during acquisition while incrementing pulse phase
and then adding up the obtained signals, both ¢4y and ¢y, are kept constant
(zero). Individual signals are not immediately combined together but rather stored
individually in the computer memory. After the experiment is completed, an

appropriate post-acquisition numerical factor ¢, is applied. It is calculated
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according to either
q)path ol Pnum = Apezcit(Pezcit il Prec =t (Pdig = COTLSt (62)

(Pexcit (Preconv (Pexcit (Preconv (Pexcit (Preconv

+Q+1 ;
+Q

+1 .1/ \ / \
0 \ : ;
R

11

9
b
+
-
B

Q-
-Q-1

TPPI, SHR Multiplex

a 1o

Figure 6.2: Two ways to select coherence pathways p+¥ = {0 - +Q — —1} and
p=9 = {0 - —Q — —1} while suppressing all the lower-order coherence pathways
pP={0=0=o-1},p* ={0=s 1> =1},..,pHEV ={0 5 +(Q-1) =
—1} inbetween. a, in conventional phase cycling (combined with either TPPI or
SHR methods for pure-absorption spectrum) the two pathways pt+9) and p-9 are
selected simultaneously. b, using the multiplex phase cycling procedure, one selects
p*? and p~9 coherence pathways separately; the p{+2*1) and p(~9~1 (dashed

lines) pathways come though as well.



CHAPTER 6. MULTIPLEX PHASE CYCLING 85

or

Dpath + Pnum = APrecony Precony + Prec + Pdig = Const (63)

depending on which pulse block, reconversion or excitation, is used for selecting the
Q@-order coherence. This can be written in the following way: for a family of
coherence pathways p?°e¢ (which in the case of the pulse sequence shown in

Fig. 6.2) and with a pulse phase cycle of £ = (2@ + 1) cycle steps is either

p4 =Y .p or p? =) . p?, the phase equations to be satisfied are:

L1 : A desired
1 ' 1 fp*ep
Z ez: €xp ( - 'L((I)Path(e) + gpﬁum(f))) = { 0 if pA ¢ pdesired (64)
=0
and
£-1 i '
1 ' 1 if pB c pdesz'red
Z ze:exp ( - 'L((I)path(g) + prum(g))) = { 0 if pB ¢ pdesi'red (65)

From these equations it follows that different coherence pathway contributions may
be extracted from the same signal by being multiplied by different complex factors.

When the signals s79(t1,t5) and s~(¢,, t2) from the coherence pathways p# and p?

are combined in the following way, cosine- and sine-modulated signals are obtained:

1 .
5% (t1, 1) = §(S_Q(t1, t) + s (t1, t2)) (6.6)
, 1
Ssm (tl, tg) = (S_Q(tl, tg) — S+Q(t1, tg))

2
that are then treated according to the SHR procedure in order to obtain the

pure-absorption two-dimensional spectrum.

The multiplex procedure can also be used to obtain more then two coherence
pathways in a MQ experiment [60]. By applying appropriate digital phase factors it
is possible to select pathways {0 - +3 =+ +1 = —1}, {0 > £3 - —1 — —1} and
{0 -5 £3 =5 0 —» —1} from the same experimental data that leads to a gain of 3 in

experiment time.
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6.2 Advantages and Disadvantages

Multiplex phase cycling has both advantages and disadvantages compared to
conventional phase cycling procedures in the context of pure-absorption

two-dimensional spectroscopy.

The reduction in the minimum experiment duration is a very important advantage.
The factor of 2%,% less spectrometer time for the @-quantum experiment
corresponds to a 37.5% time saving for 2Q, 41.7% for 3Q, approaching 50% for
large coherence orders. This is especially valuable for multi-dimensional NMR

experiments with long pulse delays that may take days to acquire.

Another big advantage of the multiplex procedure is that there are cases when the
conventional phase cycle simply would not work, but the multiplex method does.
An example of such a case is an expé}iment, where, in a cluster of 3 spins, a set of
coherence pathways {0 — +1 — —1} is to be selected while suppressing

{0 —>0— -1}, {0 &> +£2 — 1}, and {0 — +3 — —1} (see Fig. 6.3). There is no
way to do this by a conventional phase cycle but it is straightforward to perform
using the multiplex phase cycling procedure. The pathway

{0 = £3 — (£1,0) — —1} is another example of a case that is not possible to deal
with using the conventional phase cycling procedure. (To do either of these
experiments, each single pathway should be selected separately and then all of them
should be added together to obtain the desired result).

However, there are some disadvantages of these method that should be mentioned.
First of all, the computer memory occupied by the NMR data obtained using the
multiplex phase cycling procedure is larger by a factor of &;1 compared to that
occupied by data acquired using traditional methods (SHR or TPPI). This is due to
the fact that the signals are stored individually, while incrementing the pulse phase.

This is not a major problem since memory is becoming less expensive.

The second disadvantage is that multiplex signal processing is somewhat more

complicated compared to the traditional methods.
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6.3 Experimental Demonstration

The multiplex phase cycling procedure is demonstrated on a two-dimensional
experiment using the double-quantum recoupling pulse sequence C7. The pulse
sequence is shown in Fig. 6.4. It consists of two blocks: excitation and reconversion.
The first one excites the double-quantum coherence, and the second one converts it

down to the observable (—1)-coherence.

The resulting signal comes from two coherence pathways: p*+? ={0 — +2 — —1}
and p(~? = {0 — —2 — —1}. The signals coming from the pathways

p©® ={0 - 0— —1} and p*Y = {0 — £1 — —1} are to be suppressed by the
phase cycling procedure. Pathways p*%, p(*4) and so on, that involve coherence
orders (£3), (£4) and higher, are not taken into account as they are usually
difficult to excite in systems of spins-z. In the case of triply-labeled U-'*C-L-alanine
(Fig. 6.6), the highest coherence order present in the system is (£3) if

intermolecular interactions are neglected.

+3 momme e s
+1 %
-1 ‘ >

IS "

Figure 6.3: An example of a coherence pathway that cannot be selected by the con-
ventional phase cycling procedure but can be by the multiplex phase cycling method.
The set of coherence pathways p*! = (0 — £1 — —1) (bold blue line) can not be se-
lected by the conventional phase cycle if the triple-quantum coherence is present and
important (a). If the multiplex phase cycling procedure is used instead, the pathways
pi™” = (0 = +1 = —1) and p™® = (0 - —1 — —1) can be selected separately,
and all the other coherence pathways (p(?, p{*? and p*?) can be suppressed (b).
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Both pathways {0 — £2 — —1} are necessary to obtain a pure-absorption 2D
spectrum. The set of desired coherence pathways p*red = {p(+?) p(=2} may be
selected by a 4-step phase cycle, according to Table. 6.1. The minimal number of
transients per ¢; increment required for completing the phase cycle was 4, which,
with the necessity to acquire both sine- and cosine-modulated signals, gives 8 cycle

steps.

Using multiplex phase cycling with the phase values listed in Table. 6.2, five
different signals, s1(t1,%2), 82(t1,t2), 8a(t1,t2), s4(t1,%2) and ss(t;, t2), were acquired
and stored separately. The further procedures are illustrated in Fig. 6.5. The
numerical phase factors goﬁ{‘;?,z and gagﬁf,z by which these signals should be multiplied
to select (+2)- and (—2)-coherence orders, are summarized in Table 6.3. Then the
signals s(*2(¢1,%,) and s{=2)(;,¢;) were combined into cosine- and sine-modulated

signals and treated according to the SHR method.

NMR spectra of 98% triply-labeled U-L-*3*C-alanine (Fig. 6.6) were acquired on a
Chemagnetics Infinity-200 NMR, spectrometer at a static magnetic field Bo=4.7 T

(corresponding to 200 MHz in proton precession frequency) and a spinning

i

= e
. H CcP Ccw Ccw
5 [TTTITTTTT] [T
C CP C7 excitation C7 reconversion
L LT
i} Toxch t1 Treconv [ tz
3
0 = e —
B e = o I MO : -
-2 |
-3 |

Figure 6.4: Pulse sequence for the double quantum 2D C7 recoupling pulse sequence.

Both coherence pathways p(*? and p(*? have to be selected.
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Table 6.1: The phase values for the conventional phase cycle combined with the SHR,

method, for a double-quantum C7 pulse sequence.

M | Pegeit | Preconv | Prec | Pdig
cos | 0 0 0 0 0
cos | 1 0 & 0 | -=
cos | 2 0 228 0 |-2&
cos | 3 0 3%’ 0 -3%{
sin | 0 | =% 0 0 0
sin | 1| -5 | & 0o -Z
sin | 2 | % | 2% | 0 |-2%
sin | 3 | —% 3%” 0 3—2;171

frequency of 9.5 kHz, using a 4 mm zircon rotor. The spectra were acquired using
the pulse sequence in Fig. 6.4, using the C7 sequence for both excitation and
reconversion of the double-quantum coherence. The contact time during
cross-polarization was 850 us, and 'H and '3C nutation frequencies during CP were
48 and 53 kHz, respectively. The 'H RF field during the strong Z-pulse prior to the
spin lock corresponded to an 81 kHz proton nutation frequency. The excitation and
reconversion times were 451.2 ps and 210.6 us, respectively [51]. Continuous wave
proton decoupling was used during both the C7 sequences and acquisition, with
proton nutation frequencies of 99 and 91 kHz, respectively. The reconversion

interval 7., was chosen to be shorter then the excitation time 7ez. in order to

Table 6.2: The phase values for a multiplex phase cycle combined with the SHR

method, for a double-quantum C7 pulse sequence.

M | Pegcit | Preconv | Prec | Pdig
0] 0 0 0|0
1| 0 Z 0] 0
21 0 22 1 0 | 0
310 33 10 | 0
41 0 42 1 0 | 0
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sq(t,)exp(i- (P1(+2)) |
H"'S,«,, _E: 8,(tut2)exp(i-94¢2)
stul)exp(i-, ") — = +2)
ww«-— L) o S
S,(te,tz) _E: sy(tut)exp(i-e,?) e o ) 3 s(tt) ™
Sa(tvtz)eXp(i'(Pa(u)) =]
Sa(tutz) _E: Ss(tst)exp(i¢4t?)
oy e » s(ty,t2)
_[: (t1:t2)eXp(f (Paf2 )) b s(tyts) 2 _ |
hl (bits Sa(tnt2)exp(ie4*)
wm' ss(tut2)exp(i-ps ) —
Ss(tots) _z Ss(tt)exp(i-gs™®) ——

Figure 6.5: Schematic presentation of the DQ experiment using the multiplex phase

{sin)

cycling procedure. Five signals s (1, t2) - s5(t1, t2) are acquired and stored separately.
Then, after the required phase factors have been applied to the signals, they are

combined to generate amplitude-modulated signals.

eliminate indirect peaks [51]. The evolution interval ¢; was incremented in 128 steps
with a duration of 83.3 us each. The 3C RF strength during the strong % pulses
and during the C7 sequences corresponded to 69.5 and 66.5 kHz '3C nutation

Table 6.3: Numerical phase factors 90;2,27)1 and gogﬁf,z. that must be applied in order to

select the p*? and p(~? coherence pathway, respectively.

Signal (,0%,27); 505””27);
s1(t1,t2) 0 0
sa(ty,t2) | 3% | -&
s3(t1,t2) | 6% | 2%
si(ti,ta) | 9% | -3%&
ss(ty,t2) | 128 | 42
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frequencies, respectively.

Fig. 6.7, a, shows the real part of the 2D double-quantum *C spectrum of
U-13C-L-alanine, obtained using the SHR procedure. Both sine- and
cosine-modulated spectra were acquired using 20 scans per t; point. The 4-step
phase cycle was applied according to Table 6.1. The total number of transients per
t, increment was 40. Fig. 6.7, b, shows the real part of the analogous *C DQ
spectrum, obtained using the multiplex method. The pulse phase cycle was applied
according to Table 6.2. Five signals, acquired with 8 scans per ¢; increment, were
stored separately. Then (as seen in Fig. 6.5), signals were multiplied by the
numerical phases exp(z’cpgﬁ,)z) and exp(ipiha) according to Table 6.3. The signals
were added together to give s=2(¢;,%,) and st (t;,t;). These signals were
combined into cosine- and sine-modulated signals and treated as in SHR method.
In practice, when obtaining the sine-modulated signal in Spinsight, division by i was

performed by phasing the respective signal by 7.

Both spectra were acquired during an equal amount of time (11.4 h) and an equal

D

Figure 6.6: The chemical structure of a single molecule of the amino acid L-alanine.
In the crystalline form there is one molecule per unit cell. Color notation: blue —

nitrogen, green - carbon, white — hydrogen, red — oxygen.
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number of scans per step in ¢; (40).The spectra show the equivalence of the results
given by the two different methods. The signal-to-noise ratio is equal, and all the
peak intensities are the same for the two spectra. The minimum number of
transients per increment in the ¢; dimension is equal to 8 (2 h. 20 min.) in the case
of the SHR method, while for the multiplex procedure it is 5 transients (1 h. 25
min). These are sufficient for selecting the desired coherence pathway and for

obtaining spectra in pure-absorption mode.
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Figure 6.7: Pure absorption DQ spectra of polycrystalline U-3C-L-alanine. Experi-
ments were performed in a magnetic field of 4.7 T, at a spinning frequency of 9500
Hz. a, 13C spectrum obtained using the SHR method. Sine- and cosine-modulated
signals were obtained using the phase cycle shown in Table 6.1 with 20 transients per
t, increment. b, *C spectrum was obtained using the multiplex procedure, with a
5-step phase cycle according to Table 6.2. Each signal was acquired with 8 transients
per t; increment. The phase factors in Table 6.3 were applied to the signals and
then treated as described above. As can be seen from the spectra, the signal-to-noise

ratios are comparable.



Chapter 7

Improvement of TOSS/PASS Pulse

Sequences

7.1 Spinning Sidebands

In liquid-state NMR, spectral lines are narrow because the orientation-dependent
interactions are averaged out by rotational motion of the molecules. In solid-state
NMR, a sample is most often in powder form. It consists of a huge number of small
crystallites (the finer the better — for more stable spinning and for better averaging
of the anisotropic interactions by sample spinning). In the static case, spectral lines
are very broad and the intensity is low, because the anisotropic interactions within
each crystallite have different Euler angles ()p;, and therefore contribute at

different frequencies (Fig. 7.1).

Magic-angle spinning can average out the anisotropic interactions (except the
second-order quadrupolar interaction) if the spinning speed is larger than the
powder linewidth, (Fig. 7.2, a). Otherwise, so-called spinning sidebands appear in
the spectrum at frequency (wis, + kw,), where k is the order of a sideband (k = 0
for the centreband) (Fig. 7.2, b).

The presence of spinning sidebands can be explained as follows. For an isolated

94
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spin-3, the spin Hamiltonian consists of the Zeeman and CS parts:

Hspin =Hz+Hes =

+2 +2
woly —wobisols + 3 Y AL DE) (QpR) DR Qs ()], =
m=—2m'==2
+2 +2 Ex e
Wi+ 3. > MDD (Qpr) D QRN = w(Qpr®) ],
m=—2m/'=-2

Here, the following notation is introduced:
43" 0 8
w(Qpr() =wiso+ D D Ao D (Qpr) Dy (Qn (£))
m=—2m'=-2
w(Qpr(t)) can also be written as the following sum
2

w(Qpp(t)) = Z W™ (Qpg) exp (imw,)

m=-2

where the Fourier components w(™ (Q0pr) are expressed as

2
W (Qpr) = Y AL, DS (Qpr)dZ(Brr) exp (—imady) + Smowiso

m'=-2

Here, 4,0 is the Kronecker symbol. The Fourier components have the following

symmetry properties:

95

(7.1)

(7.2)

(7.3)

(7.4)

Figure 7.1: A broad spectral line produced by a static powder sample.
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o w™(Qpp) = (W™ (Qpr)*)
o w™ (Qpr) = w™ (apr, Bpr,0) exp (imypr)

As can be seen from Eq. (7.3), CS frequency is modulated by the factor exp (irmw,)

that explains the presence of the spinning sidebands.

Q

fast MAS
O,
Q.0

slow MAS

Figure 7.2: Solid-state powder spectra under a, fast MAS, i.e. when spinning fre-
quency is higher then the static linewidth, and b, slow MAS.
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7.2 Methods for Sideband Manipulation

There are a number of methods that have been designed for the manipulation of
spinning sidebands. They can be divided into two groups, according to their effect

on the sideband pattern:
e methods for suppression of spinning sidebands. The result of their application

is (ideally) a spectrum with centerbands only

e methods for separation of spinning sidebands. These are
pseudo-multidimensional experiments. They include methods for separating
the spinning sidebands into different slices according to either their order or

the chemical site they belong to.
The first group includes:

e Total Suppression of Spinning Sidebands (TOSS), a sequence of strong
m-pulses that suppresses spinning sidebands by putting their amplitudes to
zero [61]

e Sideband Elimination by Temporary Interruption of the Chemical Shift
(SELTICS) that gives the same result as TOSS, but can use less RF power by

using longer weaker pulses [62]

e Variable-Low-Speed Sideband Suppression (VIABLE), which uses a variable
spinning frequency to reduce the sideband amplitudes [63, 64, 65]

The second group includes methods that are designed to separate spinning

sidebands by their order, among them:

e Phase-Altered Separation of Sidebands (PASS) [66],
e Five m Replicated Magic Angle Turning (FIREMAT) [67, 68|

e Isotropic Rotation Sequence (IRS) [69]
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7.3 Sideband Suppression

Often the presence of spinning sidebands is not desirable because they greatly
complicate the peak assignment. If there are many sites present, the spinning
.sidebands make the NMR. spectrum very crowded. Therefore, there is a need for

methods for sideband suppression.

TOSS was invented by Dixon [61]. Originally, it was a sequence of four 7-pulses
that occupied two rotation periods, applied after the CP sequence. Due to carefully
designed timing of the pulses, the magnetization components are prepared in such a
way that sidebands are suppressed. There have been many modifications of TOSS.
Today, there are TOSS sequences with a number of pulses from four up to nine,
with sequence durations between 0.72 and 4 rotation periods [70, 71, 72, 73, 74]. All
of them can be designed using available theory and give more or less comparable
results. One disadvantage of TOSS is that the centreband intensity does not
correspond to the one obtained without TOSS at the same ‘spinning frequency and
may even be negative. In Fig. 7.3, the 1¥C CP MAS spectra of 1-1*C-Glycine are
presented, with and without TOSS (a and b, respectively).

7.3.1 Theory of TOSS

TOSS and PASS sequences consist of N 7-pulses with carefully chosen timings [74]
(Fig. 7.4). The duration of the TOSS/PASS sequence is denoted as 7. If the start
of acquisition is time point ¢t = 0, then the TOSS/PASS sequence starts at ¢t = —7'.
The 7m-pulses are situated at time-points (—7" + t,). The beginning and the end of
the n®® pulse coincide at the time point (—7 + t,), as the 7-pulses are considered to
be infinitely short. The TOSS/PASS sequence is applied to the spin system after

the excitation of the transverse magnetization, prior to acquisition.

Using a traditional carousel picture [74] for describing TOSS, a rotating powder
sample can be imagined to consist of a large number of carousels. Each carousel is a
set of sites that have the same isotropic chemical shift and the same angles
(apr,Bpr). They have different angles ypgr(t) but pass though all of them during

rotation.
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a
£ I\
210 £ 0 5 10
(0/27), kHz
b
10 5 0 5 10
(0/27), kHz

99

Figure 7.3: 13C spectra of 1-13C-Glycine (99%) at a spinning speed of 2 kHz; a, simple

CP MAS and b, CP MAS followed by a TOSS sequence [72].

-T “T+t, -Tit, 0
=T+, -T#+, -T+t,

SE MN‘WW

Figure 7.4: A TOSS pulse sequence consisting of N = 5 7-pulses.
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The chemical shift frequency of a carousel member is:

+2
w(Qpp(t) = Z W™ (Qpg) exp (imw,t) (7.5)

m=-—2
where the Fourier components w(™ (Qpy(t)), as defined above in equation ( 7.4), are
w(m) QPR Z AP ’Dmm QPR) g%(ﬁm) exXp (—ima?{L) + 6m0wis,, (76)
mi=—2

As can be seen from the expression (7.5), the time and angle dependences are

separated.

Since, for all the carousel members, the angles (apg,Spr) are common and they
only differ by vpg, it is possible to use w™(ypgr) = W™ (7) instead of w™(Qpg)

for simplicity.
The NMR signal arising from a site is proportional to
s(t;7) o exp (1@ (¢, 0; 7)) exp (iv)) (7.7)

where ®(t;,t,;7) is a phase that is acquired during a period 7, = (¢, — t,) and ¢ is
the phase of the magnetization component at the start of the acquisition in

TOSS/PASS sequence that may depend on . ®(t;,1,;y) can be expressed as
123
Bltn tai ) = [ wlti)dt = (79)
ta
wO (ty, — ta) + (£(te; ) — E(tas 7))

Here, the function £(¢;y) is defined as follows [74]:

m=12 (m) ( tmwrt m=+2 (m) imwrt+y

) — w™ (y)e _ w'™(D)e

(= >, STy 0F (7.9
m=—2,m#0 m=—2,m#0 T .

The phase of the signal of this site at t = 0 (the start of acquisition, see Fig. 7.4) is

equal to
Y(7) =20, T +t5;7) — D(-T + t5,—T + tg;7)+ (7.10)

O(=T +t4, =T + t3;7) — (=T +t3, - T + t2;7)+
Q(—T +to, —T + t1;7) — ®(-T + t1, -T; )
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If the phase 1(7) obeys the following condition:
B(y) = £(0;7) + w07 (7.11)
5
Tseqg =1 + Ztn(—l)” =0
n=1

the intensity of all the sidebands except the centreband will be zero.

This can be shown in the following way. A function f is defined:

(v + wrt) = exp(i(2; 7)) (7.12)

Then, the signal of the site can be written as:

s(7,8) = F(7 + wrt) f*() exp (i) exp(iw 1) - (718)
It will now be shown that if the signal was just

s(v + wrt) = F(y + wrt) exp(iw®t) (7.14)

i.e. if the following would be valid

f*(e, B,7) exp(i) = 1 | (7.15)

all the sidebands would be suppressed.

The intensity of the sideband at w(® + kw, is given by Fourier transformation of the

signal s(t):

) = [ S expthu) o, 7+ ) expli9(0)) (0 5,7) =
Flasenim) [ Liesr)onl-ky -0 =
(@ Bim) exp(ib() exp (k1) [ 5T F(a B, expl—ik) (7.16)

27

The following notation has been introduced:

=t | (7.17)
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Now, let us use notation:

2w /

Fe,)= [ Ghf87)expl=ik)

Then,

Iy, = f*(a, B,7) exp(ith()) exp (iky) Fi (e, B)

For a powder sample, integration over the angles v should be performed:

2m ’
o= [ 58 @ 8y) expliw(n) exp (i) Feles )
When
f*(a, B,7) exp(ipp(7)) = 1

the intensity of the k** sideband for a powder sample would be

2 ﬂFk(a"B) = Fk(ahﬁ)z: = Fk(aaﬁ) ifk=0

I a, — 0 27 ) : 2n
k( ,B) { — Fk(a,ﬁ)%(ezlﬂﬂ’ _ e’lk‘o)% =0 - ifk ?é 07

so that there is only one peak that corresponds to the isotropic frequency.

From expressions (7.11), five TOSS equations are derived:

5
br+2> Ou(-1)" =0
n=1
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(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

Here 8,, = w,t, and 67 = w,T. In equation (7.23), four equations are comprised:

this has to be true for real and imaginary parts for both m =1 and m = 2. Solved

simultaneously, the five equations above give the positions of the 7-pulses,
0 = (01, 65,0s,04,05), that obey the TOSS equations.
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7.4 Methods for Sideband Separation

2D PASS (Phase-Altered Separation of Sidebands) [61] is, as well as TOSS, a
sequence of strong 7m-pulses that is applied after the main sequence; the timings of
the pulses are carefully chosen and vary with each ¢; step (see Fig. 7.5) so that the
PASS equations (described later in this chapter) are satisfied, making a 2D
experiment with sidebands that are separated by their order (see Fig. 7.6); after
2D-Fourier transformation all the central bands come to the same slice while the
sidebands of order (£1) appear in the two neighbouring slices and so on. In Fig. 7.6,

a 13C 2D PASS spectrum is shown, with spinning sidebands separated by order.

The FIREMAT (five 7 replicated magic angle turning) sequence [67, 68] is similar
to PASS in the sense that the spinning sidebands are separated, but instead of
separating sidebands by order, this method allows one to obtain spectra with the
sideband pattern for each site separated by its isotropic chemical shift. The *C 2D
FIREMAT spectrum of erythromycin-A, a molecule containing 36 carbon sites, is
shown in Fig. 7.7 (adapted from [68]). In one dimension, peaks appear at their
isotropic frequencies, in the other, the sideband pattern for each of the nuclear sites

is produced.

There is one more method, called TRS (Isotropic Rotation Sequence) [69] that
allows one to identify the sideband pattern coming from a particular site, by

turning out-of-phase all the peaks coming from other sites.

7.4.1 Theory of PASS

In a similar way to the TOSS equations derivation, the following PASS equations

are obtained:

5

F=2) ™ (-1)"+1+¢mOHr) =g (7.25)
n=1
5

br+2) 6.(—1)"=0 (7.26)
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where © is the pitch of the PASS sequence, an additional phase that is acquired by
the sidebands. The positions of the m-pulses depends on the pitch ©. For the PASS

DECOUPLE
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Figure 7.5: 2D PASS sequence for spinning sideband separation (from ref. [74]).
Variation of the 7-pulse timings along the trajectories shown creates the ¢;-dimension.
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Figure 7.6: 3C 2D PASS spectrum of penniciline-V powder at a spinning frequency
1.030 kHz and static magnetic field corresponding to a carbon-13 precession frequency
of 50.3 MHz (adapted from [74]).

slice with pitch ©, the k" sideband acquires the following phase shift

b = —k©O (7.27)
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Figure 7.7: 3C FIREMAT spectrum of Erythromycin-A at a spinning frequency of

0.5 kHz and static magnetic field corresponding to 400 MHz in proton frequency

(adapted from [68]).
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that results in the sidebands being separated by their orders. In the 2D PASS
experiment, the pitch © varies in a two-dimensional data acquisition scheme
(Fig. 7.5).

7.5 The 7-Pulse Duration

The TOSS and PASS equations usually neglect the duration of the m-pulses. This
assumption is reasonably valid if the pulses are very short compared to the rotation
period. However, as the available rotation frequency has increased in magnitude, so
has the necessity for faster spinning because of larger spectrometer fields. However,
the available RF power has remained limited. Experimentally, at higher :—f ratios
the spinning sidebands are not ideally suppressed, and the situation deteriorates as
this ratio increases. Therefore, it is necessary to take into account the pulse
duration in the TOSS and PASS equations in order to improve the sideband

suppression or separation.

If the pulse duration is (2A6), meaning that the g** pulse starts at time (6, — Af)
and ends at (6, + A6), the TOSS equations (Eq. (7.23) ) transform into the
following [75]:

F'= Z(exp (im (0, — AB)) + exp (im (0, + A))(-1)1+1=0 (7.28)

g=1
The fifth TOSS equation (Eq. 7.24) does not change.

For PASS, the equations change in a similar way:

F' =) "(exp (im(6; — AB)) + exp (im (6, + A8)))(—1)? + ™OH01) = 0 (7.29)

q=1
with the fifth PASS equation unchanged.

These equations can be either solved numerically for any given pulse duration 2A8,
or solved approximately by means of expanding the equations with respect to the
pulse duration, and retaining the linear part. As pulse duration relative to the rotor

period depends on both the RF power and rotation frequency, the exact solutions
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will only be valid for a specific set of these parameters. On the other hand, if the
shifts of the pulse timings can be calculated algebraically given A#, this can be
implemented in the pulse program. In this case, the adjustment of the pulse timings

will change automatically with RF power and/or rotation frequency.

7.5.1 Approximate Solution of Finite-Pulse TOSS/PASS

Equations

Solutions of the TOSS/PASS equations with finite durations of the 7-pulses
(0~1, e 5;) differ somewhat from those for the original TOSS/PASS solutions

(61,...,05). A new parameter €, can be introduced:
e =0, — 0, (7.30)

Thus, there are two small parameters - Af and ¢, - that can be used for expansion.

im(8g+A8)

For small A8, the exponent e can be expanded in a Taylor series. Keeping

the terms up to second order in A#, the approximation yields:

eim(6a=06) | gim(0g+00) _ gimfa im(=88) | im(+20)) _ gimby (9 _ 2 AG?) (7.31)

Thus, the function ¥’ in TOSS equations can be approximated for small A#:

5
F' =Y (-1)%2 - m*Af%)e™ + 1 = (7.32)
g=1
5 .
F - m’A6*(-1)%™ = F + 6F

q=1

As already mentioned above, roots of F’ would be found close to those of F':

9~q =0,+¢ (7.33)
Expanding the function F’ around zero values of F', and keeping only the first order
terms in ¢, we get:

5 _
~ ~ oF'(6y,...)
F'6,,..)=F'(6,,... _— .
61, ) =F' (61, )+ Y o5t (7.34)

=1
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which can be further simplified to

5 _
~ ) _ OF (6. ..
F@,..) =F(01,...)+5F(91,---)+Z%5q

q

g=1

(7.35)

Here, terms with 0F'(6y,...)88, are not included, as they will be of the next order
in the expansion, containing A#%. Thus the simultaneous equations for €, can be

written down:
5 o 5 o
=3 (-1)TmP A0 ™ 4> "(—1)92ime e, = 0 (7.36)
g=1 g=1

allowing calculation of the shift of the pulse positions that is needed to compensate

for their non-zero length. From the fact that 6, are roots of F' it follows that:

5 s 1
> (~1)tem =2 (7.37)
g=1
This simplifies the equations for €, down to
1 5 s
5mAez +2) (—1)%e™he, =0 (7.38)
q=1
or
5 . 1
2i ) (—1)%e™ae, = ——mAp? 7.39
(1) = —gm (739)

These are the four equations. The fifth equation is given by the requirement on the

total phase acquired during the evolution:
5
br+2) (-1)%, =0 (7.40)
g=1
As it is satisfied for 6, the equation for €, should be reduced to

2 i(—l)qeq =0 (7.41)
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Table 7.1: Positions of the m-pulses for TOSS-5, given in fractions of a rotation period

Tr.
Pulse number | Pulse position

1 0.2029

2 0.3258

3 0.5000

4 0.6742

5 0.7971

Thus, five equations for five values of € are obtained in the form

e

A€ = bAG? (7.42)

This means that the shifts of the m-pulses from the positions in an ideal TOSS
sequence (with infinitely short pulses) are proportional to the square of the pulse
length. The simultaneous linear equations above can be solved ezactly, to give the

proportionality factors.

For the specific case of the symmetric TOSS-5 sequence [76] occupying one rotor
period with the m-pulse positions for ideal pulses according to Table 7.1, the system
of the five simultaneous equations reduces to only two independent ones. Because of
the symmetry of the sequence around its centre e3 = 0 (the central pulse does not
shift), €, = —e5, €2 = —€4 (pulses shift symmetrically with respect to the centre of
the TOSS-5 sequence, with the shift value depending on the 7-pulse duration).
Substituting the pulse positions in the ideal sequence 1, ..., #; into the first

equations of 7.42 the pulse shifts ¢; and e, are found:

€1 = 0.0404A6? (7.43)
€2 = 0.021A6° ‘
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Table 7.2: Positions of the m-pulse centres for TOSS-5, given in fractions of a rotation
- period 7, for ideal TOSS (column 1) and for the sequence adjusted for the finite 7-

pulse durations, in the case of 2A8 = 0.17, (columns 2 and 3, respectively).

Pulse number | Ideal TOSS pulse | Exact pulse | Approximate pulse
positions positions positions
1 0.2029 0.1984 0.1990
2 0.3258 0.3233 0.3237
3 0.5000 0.5000 0.5000
4 0.6742 0.6767 0.6763
5 0.7971 0.8016 0.8010

7.6 Experimental Results

In Appendiz A, a part of the pulse program for the symmetrical TOSS-5 sequence,

corrected for finite pulse durations, is shown.

Experimental 3P spectra of ammonium hypophosphite (NH4H;PO,) are shown in
Fig. 7.8. The spectra were acquired at a spinning frequency of 7000 Hz and static
magnetic field of 9.4 T. The duration of the m-pulse was 14.2 us, corresponding to
0.17,. For the spinning sideband suppression, the TOSS-5 sequence was used, with
values for the ideal TOSS (i.e. with infinitely short pulses) according to Table 7.1,
and for the TOSS-5 adjusted according to Table 7.2.

This sample has a large CSA (about 50 ppm) providing spinning sidebands at a
relatively high rotation frequency (Fig. 7.8, b). Fig. 7.8, ¢ and d, present *'P
spectra of NHy;H2PO- acquired by applying CP followed by a TOSS pulse sequence.
At the spinning frequency of 7 kHz, the 14 us-long m-pulse occupyies 0.17,.

Comparison of ¢ and d shows the improvement of the sequence performance.

In Fig. 7.9, two 3'P TOSS spectra of the ammonium hypophosphite are shown. In
both cases, the positions of the 7-pulses in the TOSS sequence are adjusted (with
respect to the ideal TOSS timings, given in the first column of Table 7.2) for the
finite m-pulse duration: in Fig. 7.9, a, the exact solutions of the TOSS equations

with finite pulse length of 0.1 7, were used (given explicitly in the second column of
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Table 7.2), and in Fig. 7.9, (b), — the approximate ones, calculated using equation

x50

C

NN

d A
NN S
-30 20 10 0 10 20 30

o/21t,kHz

Figure 7.8: 3P spectra of NH,H,PO, (ammonium hypophosphite). a, the static
spectrum (x50). In b, ¢ and d, MAS spectra are shown at the same vertical scale.
b, a simple CP spectrum, ¢, a spectrum where CP is followed by a standard TOSS-5
prior the acquisition, d, a spectrum where the TOSS sequence used is compensated
for the final m-pulse duration (that was equal to 14.2 us, or 0.17;). During all MAS

experiments the rotation frequency was 7 kHz, the static magnetic field was 9.4 T.
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(7.43) (given in the third column of Table 7.2). The performance of both sequences
is practically undistinguishable, i.e. the approximation is good enough to use

experimentally.

a b

L—

Nl v NS
30-20-10 0 10 20 30 -30-20-10 0 10 20 30
w/21t,kHz

Figure 7.9: 3P TOSS spectra of NH4H,PO, (ammonium hypophosphite). (a) and
(b) TOSS pulse sequences that take into account the w-pulse duration exactly and

approximately, respectively. The experimental conditions are the same as in Fig. 7.8.

At slower spinning frequencies, there is a smaller difference between the -
performance of the ideal TOSS sequence and the one that takes the finite m-pulse

duration into account.

The 2D PASS experiment can be modified in a similar way, to compensate it for the
finite pulse durations. As a PASS experiment cannot be symmetric, five different

coefficients (€3, ..., €5) have to be calculated for each of the 16 slices.



Chapter 8

Quadrupolar TOSS

Spinning sidebands are even more troublesome in the case of quadrupolar spins,
where strong quadrupolar couplings lead to broad MAS spectra even at very high
spinning frequencies. Such spectra, with broad, overlapping peaks, are particularly

difficult to analyze.

8.1 Sideband Suppression for Half-Integer

Quadrupolar Nuclei

Because the quadrupolar frequency wg is modulated by the spinning frequency, wy,
spinning sidebands occur under MAS. These may overlap, and the information that
can be extracted from the powder lineshape (the quadrupolar coupling constant and

the asymmetry parameter) is then obscured.
Suppression of the spinning sidebands for quadrupolar nuclei can be achieved by
applying a sequence of N m-pulses prior to signal acquisition [70, 77]. The positions

0, = w,t, of the pulses must satisfy the following equations:

F=2) ™ —1=0 (8.1)
n=1
9

Or+2 0.(-1)" =0 (8.2)
n=1
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Figure 8.1: Collection of four existing QTOSS pulse sequences (QTOSS pulses are

shown in cyan). QTOSS sequences, shown in a and b, have been described in [70]
and the one in ¢ — in {77]. The QTOSS sequence shown in d has larger separation

between the m-pulses then the other three.

where m =1,...,4 (in the case of spins—%, TOSS equations are similar, with

m = 1,2). Quadrupolar TOSS (QTOSS) pulse sequences for sideband suppression
in quadrupolar samples have been described [70, 77]. The minimal number N of
m-pulses that are required in order for the system of nine equations (8.1-8.2) is nine.
(In fact, the first two QTOSS pulse sequences [70] consisted of eight 7-pulses only,
since Eq. (8.2) was ignored). Today, there are three QTOSS pulse sequences (see
Fig. 8.1, a-c¢). The durations of these sequences are 2.32202 7., 2.35294 7, and 1 7,

respectively, with 7 being a rotor period.

The first two of these sequences, shown in Fig. 8.1, a and b, can only be used in a
limited spinning regime as the minimal distance between the centres of two
subsequent m-pulses is very short: 0.03472 and 0.03671 7,, respectively. For the
sequence shown in Fig. 8.1, ¢, the minimal distance between the m-pulses is larger:
0.0649 7.

In contrast to spins—%, the nutation frequency of the quadrupolar spins wy,; depends

on the RF field strength applied, w; = %’)’[BRF. For the hard-pulse excitation
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regime (i.e. for wy > wg), wWnut = wy, as for spin—% nuclei. For soft-pulse excitation
(i.e. w1 <€ wg), wnut = (I + $)wr. In the case of a compound with several
quadrupolar sites, the soft-pulse excitation is recommended [78, 33] for its uniform
excitation. On the other hand, the use of high spinning frequencies is desirable in
order to average out other anisotropic interactions. This conditions limits the
spinning regimes at which the QTOSS sequences can be implemented. A QTOSS
sequence described below, with m-pulses being more widely separated, can be used

at higher spinning frequencies.

8.2 Experimental Demonstration and Discussion

Solutions of the equations (8.1,8.2) can be found numerically, for example in
FORTRAN. For a fixed 77, the pulse positions 71, ..., 79 are found by the fastest
descent method. As the sequence duration 7r gets incremented and new solutions
are found, the minimal distance between the 7-pulses is computed. For T’ = 2.757,,
the least distance between the m-pulses is 0.0997,. and such a sequence will tolerate
relatively high spinning frequencies. The pulse positions for QTOSS are shown in
the Table 8.1. This QTOSS differs from the published ones [70, 77] by a larger
separation of the m-pulses. Therefore the QTOSS described in the Table 8.1 can be

used at higher spinning frequencies without the pulses colliding.

27A1 NMR of aluminium acetylacetonate, AI(CH;COCHCOCHj;);3 (see Fig.9.5 in
Chapter 9 for structural formula) was used for the experimental demonstration. In
Fig. 8.2, a and b, two experimental 27Al spectra are shown that were acquired at a
spinning frequency of 1100 Hz and a static magnetic field of 7.05 T. In a, a MAS
spectrum is shown, with many overlapping spinning sidebands. In b, the QTOSS
sequence with the positions of the m-pulses as in Table 8.1 was applied before the
signal acquisition; all the sidebands are suppressed. In Fig. 8.2 ¢ and d, two spectra
simulated in SIMPSON [10] are shown, at conditions that repeat the experimental
ones, and with the parameters of the quadrupolar interactions (x=3 MHz and
n=0.0) described in [79] (here, x is the quadrupolar coupling constant: x = 6’rZT"Q)
An example of SIMPSON input file for the quadrupolar TOSS is given in Appendiz
B. The m-pulse duration in the QTOSS pulse sequence was 22 us.
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Table 8.1: Positions of the m-pulses for QTOSS, given in fractions of a rotation period

7. QTOSS occupies 2.757;.

Pulse number

Pulse position

1

0.0869

0.3719

0.6397

0.7850

1.4532

1.5767

1.8297

2.1694

OO (||| k=W

2.2684
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a L C MJW
2 4 6 8 10

10 8 -6 4 -2 0 -0 8 6 4 -2 0 2 4 6 8 10

w/2n,kHz w/2n,kHz
b d )
-;0 -é -;5 -l4 -é EJ é 4 é l8 1I0 -; 0 -8 -6 -.4 -é EJ 2 4 6 8 1‘0
w/2n,kHz w/2n,kHz

Figure 8.2: a and b, experimental 2”Al spectra of aluminium acetylacetonate. In a,
the spectrum is acquired after applying a 7-pulse, and in b, the QTOSS sequence
with the positions of the m-pulses according to the Table 8.1. Both spectra have been
obtained at a spinning frequency of 1100 Hz and a static magnetic field of 7.05 T.
The m-pulse duration during the QTOSS sequence was 22 us. ¢ and d present the

corresponding SIMPSON-simulated spectra (at the same experimental conditions).



Chapter 9

Application of Cogwheel Phase
Cycling to Sideband Manipulation

9.1 Coherence Pathway Selection

The TOSS and PASS pulse sequences consist of a number of carefully timed
m-pulses. Originally, the number of 7-pulses was four. Today, there are TOSS and
PASS sequences consisting of up to nine 7m-pulses. These sequences, as many others,
are sensitive to pulse imperfections, as may be expected for experiments where the
phase of the transverse magnetization must be controlled. Imperfect 7-pulses lead
to coherence transfer between all possible coherence orders in the spin system. This,
in turn, leads to imperfect suppression (for TOSS) or separation (in the case of
PASS) of the spinning sidebands. This problem is usually dealt with by applying a
phase cycle (see Section 5.5).

For a system of isolated Spins——%7 the only significant coherence orders are 0, +1. In
order to select a coherence pathway {0 - +1 — —1 — ... —» —1} (for odd number
of pulses N) or {0 & —1 — +1 — ... — —1} (for even N) using the conventional
phase cycling procedure, each of the pulses has to be cycled in 3 steps. Therefore,
for a sequence of N pulses, the total number of the phase cycle steps is M = 3V.
Popular modifications of TOSS and PASS sequences consist of five m-pulses,

therefore a 3° = 243-step phase cycle is traditionally used and every m-pulse is

- 119
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cycled. It is possible to cut down the number of steps if the phase cycle is applied
not to every pulse but only to every second one [80] (see Fig. 9.1) and select the
desired CTP with a 75-step phase cycle.

74
= -
1 § “‘ “‘ ’:
0 o
-1 >

O (e
&

3

Figure 9.1: Selection of the coherence pathway {0 - +1 — —1 — +1 —» -1 —
+1 — —1} by a 75-step cycle; every other pulse only is cycled. Grey marks a
pulse block that initiates the (+1)-order coherence. Solid line indicates the desired
coherence pathway, dashed lines indicate other coherence pathays that do not survive

the phase cycle.

Cogwheel phase cycling can reduce the number of necessary cyéle steps even more.
For the TOSS/PASS sequence consisting of five m-pulses, the desired change in the

coherence order is as follows:
Apgesired —= +1 (91)

~desired desired desired __
Ap§ , Ap; , Aps = -2
desired desired __
Ap2 ) Ap4 - +2
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where Apgesired ig the coherence order change caused by the preparation pulse that
excites (+1)-order (this is usually CP). The coherence orders between the pulses
are: pgfsired — pggsired — pggsired — _|_1, ptli;sired — pgzsired =—1. Therefore, the

cogwheel equation to be solved is:

Al/m (pgl — ].) + Al/lz(p12 — (—1)) + Al/zg(ng — ].) + Al/34(p34 — (—1)) (92)
= if p € pdesired)

+Ay, — 1) + M x integer
45(Pas — 1) & { # 0 otherwise)

The equation (9.2) is solved, for instance by numerical search in FORTRAN, and a
number of solutions are found, with a minimum M = 11 for which the suitable

cogwheel phase cycle is COG11(0,1,0,1,0,1;0,6). The winding numbers are found
numerically and @re, @aig are adjusted so that ®,4, is kept constant. This solution

is illustrated in Fig. 9.2.

Even more drastic time saving can be demonstrated for the TOSS/PASS sequences
consisting of nine 7-pulses (see Chapter 10). In order to select the coherence
pathway

plsired = {0 5 +1 3 -1 +1 51— +1— -1 +1 31— +1 > —1} using
the conventional method, the minimal number of cycle steps is M = 3° = 19683.
Reduced cycle (i.e. with only every second w-pulse being cycled) requires

M = 3-5% = 1875 phase cycle steps. Using the cogwheel phase cycling procedure, it
is possible to select the desired phase cycle with 19 steps only.

9.2 Experimental Demonstration

9.2.1 Sideband Suppression for Spins—%

Experimental *H-decoupled *C-spectra of 99% labelled powdered [1-3C]-Glycine
are shown in Fig. 9.3. The spectra were obtained at a spinning frequency of

2900 Hz and a static magnetic field of 7.05 T, using the TOSS-5 pulse sequence [76].
In Fig. 9.3, a, CP-MAS sequence is used, and the sidebands are present. In Fig. 9.3,
b, ¢ and d, the TOSS-5 sequence has been applied after CP in order to suppress the




CHAPTER 9. APPLICATION OF COGWHEEL PHASE CYCLING it

spinning sidebands: without the phase cycle, with the conventional phase cycle and

with the cogwheel phase cycle, respectively.

In the spectrum in Fig. 9.3, b, the amplitudes of the spinning sidebands are
significantly reduced. They are not perfectly suppressed, however, because of the
m-pulse imperfections. Fig. 9.3, ¢ and d show spectra with about the same sideband
suppression performance. In the case of a conventional phase cycle, a minimum of

75 transients is required, compared to 11 scans for the cogwheel cycle.

=

+6
-1 +5
+4
+3
+2
%]
M=110
-2
-3
-4
-0

n " n1,n n-1,n

Figure 9.2: Cogwheel diagram for the cogwheel phase cycle COG11(0, 1,0,1,0,1;0,6).
The desired coherence pathway pgesires = {0 & +1 = -1 = +1 -1 — +1 — —1}

is shown as a bold line.
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9.2.2 Sideband Separation for Spins-%

Experimental ®C-spectra of powdered L-tyrosine hydrochloride with natural
abundance of 3C are shown in Fig. 9.4. The spectra were obtained using the 2D
PASS pulse sequence [66], at a spinning frequency of 1750 Hz and a static magnetic
field of 7.05 T. The flip-angle of the 7m-pulses was deliberately misset to 0.787. In
Fig. 9.4, a, where no phase cycle was used, there is imperfect separation of the
spinning sidebands. b — with the conventional phase cycle, and ¢ — with the
cogwheel phase cycle — demonstrate a good separation of the spinning sidebands by
their order. Although the minimum number of scans needed was 75 for the
conventional cycle and 11 for the Cogwheel cycle, the spectra have been acquired
with 300, 300 and 297 transients per © increment for the spectra a, b and c,
respectively, in order to get a good signal-to-noise ratio. The spectra demonstrate

that the two phase cycling schemes give equally good results.

9.2.3 Sideband Suppression for Quadrupolar Half-Integer
Spins

27Al NMR of aluminium acetylacetonate (C;5Hg1 AlQg) (structure formula shown in
Fig. 9.5) was used for an experimental demonstration. The QTOSS pulse sequence
described in Chapter 8 consisting of nine m-pulses and occupying 2.757, has been

used (where 7, is the rotation period of the sample).

For both QPASS and QTOSS, the desired coherence pathway is:
p={0--1-+4+1—--1—-+4+1— -1 —+1 > -1 = +1 — —1}. Therefore, a
the conventional phase cycle (with every other pulse being cycled [80]) would
require a minimum of 1875 steps. Using a cogwheel phase cycle, the desired
pathway can be selected by only 19 steps. Results for QTOSS are presented in

Fig. 9.6. Experiments were performed at a spinning frequency of 1100 Hz and at a
static magnetic field of 7.05 T. In Fig. 9.6, a, the 2" Al spectrum shown was acquired
by applying a 7/2-pulse (total number of scans was 1876). The spectra shown in
Fig. 9.6, b and ¢, were obtained using the QTOSS sequence, with conventional and

cogwheel phase cycling procedures, respectively. The number of transients was 1875
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and 1881. In the case of quadrupolar nuclei, however, the signal-to-noise ratio
usually is small, and the number of transients is often determined by the necessity

to increase it rather than by the phase cycle.
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Figure 9.3: 3C spectra of 1-'3C-Glycine (99%) at a spinning frequency of 2900 Hz.
The static magnetic field was 7.05 T. a, simple CP MAS spectrum (76 transients
in total); b, spectrum acquired using the TOSS-5 pulse sequence [76] with no phase
cycle applied (76 transients); ¢, spectrum acquired using the TOSS-5 sequence with
the conventional 75-step phase cycle (75 transients); d, spectrum acquired using the
TOSS-5 sequence with the cogwheel 11-step phase cycle (sum of 77 transients =
7 repetitions of the 11-step phase cycle). All the spectra are plotted on the same

vertical scale; in b, ¢ and d, expanded regions of the spectra are presented.
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(o, /27)/KHZ

Figure 9.4: 2D PASS 3C spectra of powdered L-tyrosine hydrochloride (natural
abundance) at a spinning frequency of 1750 Hz and a static magnetic field of 7.05 T.
a, spectrum acquired with no phase cycle applied (300 transients per © increment);
b, spectrum acquired using the conventional 75-step phase cycle (300 transients per
O increment, i.e. 4 repetitions of the phase cycle); c, spectrﬁm obtained with the
cogwheel 11-step phase cycle (297 transients per pitch © increment — 27 repetitions

of the 11-step phase cycle). All spectra are plotted on the same vertical scale.
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Figure 9.5: Structure of aluminium acetylacetonate a.k.a. aluminium 24-

pentanedionate (C;5Hg AlOg).
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8 4 0 4 8
o,kHz

Figure 9.6: 2" Al-spectra of aluminium acetylacetonate. a shows spectrum obtained by
applying a Z-pulse directly followed by acquisition. b and ¢ show spectra obtained
by using QTOSS after the Z-pulse, with conventional and cogwheel phase cycle,
respectively. Spinning frequency was 1100 Hz and static magnetic field was 7.05 T.




Chapter 10
Summary

In this thesis, the following results are presented:

e a new phase cycling method, called multiplex phase cycling, is described. The
acquired data can be reused for obtaining signals coming from different
coherence pathways. This is done by applying different numerical complex
factors to the stored NMR signals. In many cases, the multiplex phase cycling
can provide significant saving of experimental time. Situations exist when it is
problematic to select desired coherence pathways using conventional phase

cycling methods but easy using the multiplex method.

e an improvement to the TOSS and PASS sequences is proposed. Taking the
finite m-pulse duration into account in the TOSS and PASS equations leads to
a shift in the pulse positions. Experimental TOSS spectra are shown where
the sequence with shifted m-pulses demonstrates a better performance

compared to the original one,

e application of the cogwheel phase cycling method is demonstrated for sideband

suppression and separation sequences, both for spin—% and quadrupolar nuclei.

e a new QTOSS pulse sequence for sideband suppression in the spectra of
half-integer quadrupolar nuclei is proposed and experimental results are
shown. This sequence of five m-pulses occupies 2.75 rotor periods. Because the

time intervals between the 7-pulses in this sequence is larger than in

129
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previously described QTOSS sequences, it can be used at higher rotation

frequencies.




Appendix A

Pulse Program for TOSS

Accounting for Pulse Duration

Below, a part of a pulse program for the symmetrical TOSS-5 sequence [76], that is
compensated for finite m-pulse duration, is presented. Approximate solutions of the

TOSS equations were used for adjusting the m-pulse positions.

In the pulse program, apart from the standard notations used in the Spinsight pulse
programs — pwl180X for the m-pulse duration on the 3P channel, tM X for the
mixing time and ad for the acquisition delay — the following notations are used: el
and e2 stand for the ; and e, parameters, dy for the m-pulse duration expressed in
fractions of a rotor period (denoted as TM), and

TMa, TM2, TM3, TM4, TM5, TM6 correspond to the six free evolution periods.

62 TM = (1.0/(1000.0%*speed));

63

64 delta_theta = (pwl80X/TM/2.0)%*2.0%Pi;
65 el = 0.0404*delta_theta*delta_theta;
66 e2 = 0.0211*delta_theta*delta_theta;

67

68 TMa = (((0.2029 - el) * TM) - (pwl80X/2.0) - tMX);

69 TM2 = ((((0.32578 - e2) - (0.2029 - el))* TM) - pwl80X - tMX);
70 TM3 = (((0.5 - (0.32578 - e2)) * TM) - pwl80X - tMX);
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71 TM4 = (((0.5 - (0.32578 - e2)) * TM) - pwi180X - tMX);
72 TM5 = ((((0.32578 - e2) - (0.2029 - el))* TM) - pwi80X - tMX);
73 TM6 = (((0.2029 - el)* TM) - (pwl80X/2.0) - ad);




Appendix B

SIMPSON Input File for
Simulation of QTOSS Experiment

Below, a SIMPSON input file for simulation of the 2" Al QTOSS spectra of
aluminium acetylacetonate is shown. The parameters of the quadrupolar interaction

used here were taken from [79].

spinsys {
channels 27Al1
nuclei 27A1
quadrupole 1 2 3.0e6 0.0 0 0 O

}

par {
spin_rate 1100
gamma_angles 10
sw 20000
crystal_file zZcw232
np 2048

start_operator Ilz
detect_operator Iilc
method direct
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proton_frequency 300.0e6

verbose

proc pulseq {} {

global par

maxdt .5

1101 -

set tdwell [expr 1.0e6/$par(sw)]

set thetal
set theta2
set theta3
set theta4
set thetab
set theta6
set theta7?
set thetal8
set thetad
set thetall

[expr
[expr
[expr
[expr
[expr
[expr
[expr
[expr
[expr

[expr

pulseid 5 50000 0

delay $thetal
pulse 22.0 7575.7576 0O

delay $theta2
pulse 22.0 7575.7576 0

delay $theta3
pulse 22.0 7575.7576 0

O O O O O O O O O o

.0869e6/8$par (spin_rate)
.2850e6/$par (spin_rate)
.2678e6/$par (spin_rate)
.1453e6/$par (spin_rate)
.6682e6/$par (spin_rate)
.1235e6/$par (spin_rate)
.2530e6/$par (spin_rate)
.3397e6/$par (spin_rate)
.0990e6/$par (spin_rate)
.4816e6/$par (spin_rate)

11

11

.0]
22,
22,
22.
22.
22,
22.
22.
22,
.0]

0]
0]
0]
0]
0]
0]
0]
0]
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delay $thetad
pulse 22.0 7575.7576 0

delay $thetab
pulse 22.0 7575.7576 0

delay $theta6
pulse 22.0 7575.7576 0

delay $theta?
pulse 22.0 7575.7576 0

delay $theta8
pulse 22.0 7575.7576 0

delay $thetad
pulse 22.0 7575.7576 0

delay $thetall

acq

for {set i 1} {$i < $par(np)} {incr i} {
delay $tdwell

acq

}

proc main {} {
global par tsw
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set f [fsimpson]

fsave $f $par(name).fid
fzerofill $f 4096 .
faddlb $f 100 0

fft $f

fsave $f $par(name).spe
funload $f
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