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This dissertation presents a comparison of modelling techniques for evaluating healthcare
interventions with a focus on modelling coronary heart disease interventions. Through the
construction of decision tree, Markov and discrete event simulation (DES) models for
simple hypothetical and realistic healthcare models, the dissertation compares the respective
processes and outputs of the alternative techniques. The results are analysed and
recommendations are made for theoretical guidelines for the choice of modelling technique
according to various intervention classifications. This research is the first to compare the
modelling techniques from an empirical perspective for several intervention types and to
provide a serious comparison of the benefits or disadvantages of the modelling approaches.
In addition the models for coronary heart disease provide realistic assessment of the benefits
and costs of improved emergency response times, secondary prevention medication and
bypass surgery. The coronary heart disease models are based upon research completed by
the author as part of the UK Coronary Heart Disease Policy Model working team. In
particular much of the data have been collected by other members of the group. Furthermore
the modelling work here was done in consultation with other members of the group.

The interventions are shown to be good value for money according to a willingness to pay
threshold of £30,000 per QALY gained. Aspirin and beta blockers are the most cost
effective and have incremental cost effectiveness ratios (ICER) of less than £1000 per
QALY gained. Improving thrombolysis response times is the least cost effective with an
ICER of almost £30,000 per QALY gained. In order to achieve the targets from the National
Service Framework (NSF), the increased spending (and consequent health benefits) would
be greatest for statins and revascularisation. Implementing each of the NSF scenarios for
England over the next 20 years for these interventions would result in an average annual
extra cost of £400 million and will result in a saving of 65,000 life years and 70,000 QALY's
each year.

The choice of the preferred model will depend on the intervention or health system,
particular expertise, background and preferences of the modeller, the ease and speed of
development, the complexity of the model in terms of the number of states, and the
interconnectedness of the system. The modeller will need to make a judgement on the
necessary complexity of the model, in term of the number of states to be included. They will
need to judge whether interactions between individuals is a significant issue in the health
care system and whether queuing for resources and resource constraints are relevant to the
research question. The modeller will need to judge whether the preferred modelling
techniques will be acceptable to the users of the model. Finally the use of population-based
models and the provision of health care outcomes for the likely cost, health benefits and cost
effectiveness of the interventions is recommended.
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Chapter 1 Introduction and Outline of Thesis

Chapter 1

Introduction and Outline of Thesis

This dissertation presents a comparison of modelling techniques for evaluating health
care interventions with a focus on modelling coronary heart disease (CHD)

interventions.

In recent years economic evaluations have become increasingly common in the health
care literature and this has provided additional information for policy makers for the
equitable and efficient allocation of health care resources. There has been growing
concern about the quality of these studies and guidelines have been produced for both
reviewers and analysts for ensuring better quality. However, the choice of modelling

technique and the consequences of this choice have not been fully explored.

Through the construction of decision tree, Markov and discrete event simulation models
for simple hypothetical health care models, the dissertation compares the respective
processes and outputs of the alternative techniques. The results are analysed and
recommendations are made for theoretical guidelines for the choice of modelling

technique according to various intervention classifications.

These recommendations are considered in a wider sense by constructing realistic
models of health care interventions for coronary heart disease interventions. These
interventions cover a wide scope in their structure and range from short term acute
interventions, long term chronic interventions to resource-constrained interventions.
Coronary heart disease has been the subject of many analyses using modelling, and the

models produced within this dissertation supplement these studies.

The first section of this chapter introduces the role of health care modelling and its
importance to health care decision making. The second section discusses this modelling
within coronary heart disease. The third section outlines the key research questions and
summarises the research approaches in this dissertation. The final section outlines the

structure of the remaining chapters of the thesis.
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1.1  Modelling health care interventions

In the UK and other western countries, there is a scarcity of health care resources, such
as money, people, time and facilities. Health service providers need to make difficult

choices between different uses of these resources. Ideally these choices would be made
in an objective way based on all the latest information with regard to present and future

treatment.

One of the methods which 1s increasingly used to provide information for health care
planners is often referred to as economic evaluation (Elixhauser et al. 1993; 1998).
Economic evaluation attempts to compare the costs and consequences of alternative
courses of action (Kupersmith et al. 1994). It assesses health improvements in terms of
increased survival and / or quality of life in a single comparable measure. These
analyses often use models, for example decision tree, Markov and discrete event

simulation.

There has been increasing interest in improving the quality of these models (Halpern et
al. 2002; Davies et al. 2002; Sculpher et al. 2000; Weinstein et al. 2003; Sonnenberg et
al. 1994; McCabe and Dixon 2000; Brennan and Akehurst 2000; Weinstein et al. 1996;
Siegel et al. 1996; Russell et al. 1996; Eddy 1990). However, the choice of modelling
technique and the consequences of the choice have not been fully explored (Davies et

al. 2003; Karnon 2003; Sonnenberg et al. 1994).

This research expands the work of Karnon (2003) which compared the processes and
outputs from a Markov model and a discrete event simulation model. The models
described an economic evaluation comparing altemative adjuvant therapies for early
breast cancer. Recommendations were made for the use of the modelling techniques,
although these may not be generalisable to other modelling studies. Sonnenberg et al.
(1994) and Barton et al. (2004) provided broad recommendations for the use of models
for different model structures, although these recommendations have not been based on

analytical or empirical studies.
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Through the construction of decision tree, Markov and discrete event simulation models
for simple hypothetical health care models, the dissertation compares the respective
processes and outputs of the alternative techniques. The results are analysed and
recommendations are made for theoretical guidelines for the choice of modelling

technique according to various intervention classifications.

1.2 Modelling coronary heart disease interventions

The recommendations for choosing the type of model are considered in a wider sense by
constructing realistic, working models of health care interventions for coronary heart
disease interventions. These interventions cover a wide scope in their structure and
range from short term acute interventions, long term chronic interventions to resource-

constrained interventions.

Coronary heart disease is one of the leading causes in death in the UK. Every year, more
than 100,000 die from heart related conditions (Office for National Statistics 1999).
Patients with coronary heart disease usually have coronary arteries which have
narrowed. They may suffer from angina pectoris, a chest pain brought on by exercise. If

one of the coronary arteries become blocked a heart attack or cardiac arrest may occur.

Coronary heart disease has been the subject of many economic evaluations using
modelling (Kupersmith et al. 1995), and the models produced within this dissertation
supplement these studies. The models constructed are concerned with the treatment

rather than the prevention of CHD, ie they are populated by individuals who have CHD.

The majority of the models for Coronary Heart Disease have been developed in the US.
Many of the models have used the Coronary Heart Disease model developed by
Weinstein et al. (1987) in the mid 1980s. This model has become somewhat outdated
with the great clinical changes in CHD in the last 20 years. For example the
introduction of secondary prevention drugs such as statins and the introduction of
surgical procedures such as angioplasty. There are relatively few models for the
treatment of CHD in the UK and the majority of these have been developed to evaluate
the use of cholesterol lowering drugs (statins), for example Ebrahim et al. (1999).
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In this dissertation, models are developed for CHD to evaluate improved ambulance and

thrombolysis response times, secondary prevention drugs and surgical procedures.

The interventions for faster ambulance and thrombolysis response times are examples of
acute interventions as these will impact on the short term survival of patients who suffer
a heart attack or cardiac arrest. The interventions for secondary prevention drugs, eg
statins, aspirin, beta blockers, ACE inhibitors, are examples of continuous or chronic
interventions as these will impact on the long term survival of patients. The
revascularisation interventions are examples of resource-constrained interventions. In
these models, there are limited resources and patients are allocated according to the

severity of their health condition and other criterion.

1.3  Key research question and research approach

This thesis comprises the following related research themes:

1) Development of models for evaluating coronary heart disease interventions

11) Modelling techniques for evaluating health care interventions

This research develops models for coronary heart disease interventions. Although
models for coronary heart disease have been developed before, the UK Coronary Heart
Disease Policy model is the most comprehensive model developed for the prevention
and treatment of coronary heart disease in the UK. The author has been the main
modeller on this project for the treatment part of this model with guidance from his
supervisor and with advice from other members of the Coronary Heart Disease
modelling team. The data for the model was collected by other members of the team but
the author has carried out extensive work on deriving the parameters for use in the
model. In addition he has contributed to the structure of the model and produced all
validation and model results. The summary of shared work for the Coronary Heart
Disease Simulation Project and the agreement of work to be used in the PhD thesis is

shown in Appendix L
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In this thesis interventions for faster ambulance and thrombolysis response times,
secondary prevention drugs and revascularisation are evaluated. The modelling in this
thesis is able to model these different interventions using the same data and assumptions
for a disease which makes more these evaluations more readily comparable.
Furthermore these analyses are extended to estimate the likely costs and benefits for
increasing provision for these interventions according to the guidelines set out in the

National Service Framework for coronary heart disease.

The second key research question to be addressed is: What is the appropriate modelling
technique to be used to evaluate a given health care intervention? This question is to be

addressed for a variety of types of health care interventions.

Davies et al (2003) ‘many spreadsheet flow models are published in the medical
literature but there have been no serious comparisons of their benefits with respect to

other modelling approaches’.

This dissertation seeks to contribute to the existing knowledge on appropriate model
selection for health care interventions using the case study approach. The case study
approach is a useful method of investigating the current theory for model selection in a
practical way. In particular by building models using each of the techniques it is
possible to gain insights into the comparative ease of development and results of the
models. This research uses commonly used software for health care modelling. The
contribution of this research is the development of comprehensive models for coronary
heart disease, and the use of these models for an empirical analysis of model selection
for a variety of related health care interventions. The insights gained from this research
are used to develop a framework for choosing between the models according to the

complexity of the models and the health care intervention characteristics.

1.4 Structure of the thesis

Chapter 2 introduces the modelling methodology for evaluating health care models. It
gives a theoretical basis for the evaluation of health care interventions using modelling

techniques. It also introduces current methods commonly used for economic evaluation
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of health care interventions, such as decision tree, Markov process and discrete event

simulation models.

Chapter 3 provides a review of the literature of models for coronary heart disease
interventions in the context of the choice of modelling technique. It gives a contextual

background for subsequent chapters on modelling coronary heart disease.

Chapter 4 presents a review of methodological issues for modelling health care
interventions. It gives a summary of the best practice for building models and then
investigates the issues concerning appropriate model selection according to the
characteristics of the health care intervention.

Chapter 5 provides an empirical analysis of modelling techniques for health care
interventions. Simple models of health care interventions are constructed, using
modelling technique, for each of the main intervention structures which affect model
choice. A theoretical framework is devised for the recommendation of model choice

based on these model structures.

Chapter 6 presents the theoretical basis of a model for coronary heart disease
interventions. It presents the analysis and derivation of main parameters of the coronary
heart disease models described in this thesis. A coronary heart disease model using

these parameters is validated for the main outcomes against national data.

Chapter 7 to 9 describe models built for coronary heart disease interventions for each of
the main intervention structures previously examined. In each chapter models are built
using each technique and the results collected for the likely costs, benefits and cost
effectiveness of these interventions. Using these case studies the theoretical

recommendations for the appropriate modelling technique are examined.

Chapter 7 describes models built for the acute treatment intervention of ambulance and
thrombolysis response times. Chapter 8 describes models built for chronic treatment
interventions of secondary prevention medication. Chapter 9 describes models built for
resource-constrained interventions for coronary revascularisation. It also develops a
framework for choosing between the Markov and simulation models, according to the

complexity of the model.
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Chapter 10 concludes the dissertation. It discusses the coronary heart disease results
from chapters 7 to 9, reviews the research questions and summarises the key
contributions and limitations of this research. Finally recommendations are presented

for future research.
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Chapter 2
Health care Modelling Methodology

Abstract

This chapter reviews the current methodology of modelling health care interventions. It
aims to give a background to the current methods used for modelling health care
interventions as a basis for the research in the subsequent chapters. Economic
evaluation, such as cost effectiveness analysis, provides a method for comparing health
care interventions. These evaluations often use modelling techniques such as decision
trees, Markov processes and discrete events simulations. This chapter introduces the

concepts of economic evaluation and describes each of the modelling techniques.



Chapter 2 Health care Modelling Methodology

Chapter 2 Health care Modelling Methodology

2.1 Introduction

In the UK and other western countries, there is a scarcity of health care resources, such
as money, people, time and facilities. Health service providers need to make tough

choices between different uses of these resources. Ideally these choices would be made
in an objective way based on all the latest information with regard to present and future

treatment.

One of the methods which is increasingly used is often referred to as economic
evaluation. Economic evaluation attempts to compare alternative courses of action in
terms of both their cost and consequences. It assesses health improvements in terms of
increased survival and / or quality of life in a single numerical measure. In order to do
this, the economic evaluation uses information on the cost and effectiveness of the
courses of action, which are being compared. This information is often collected from
short term trials or pilot studies. The aim of economic evaluations is to be able to
directly compare all treatments whether they are related or not by putting them on the
same scale. Thus health care decision makers may wish to be able to compare
treatments such as coronary artery bypass surgery (CABG) with screening for breast

cancer, hip replacement and any other new or existing health technology or treatment.

The most common forms of economic evaluation are cost effectiveness analysis, cost
benefit analysis and cost utility analysis. These analyses use various models, for
example decision tree, Markov and discrete event simulation. This chapter is in two
parts. It describes the theory of economic evaluation and some of the models used are

described in more detail.
2.2 Economic evaluation

In this section basic methods of economic evaluations are defined. Although attempts

have been made at standardisation of methodology and terminology, for example Gold
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et al. (1996), differences remain. Where these differences occur, the terminology and

methodology as described by Drummond et al. (1997) is used.
2.2.1 Cost minimisation analysis

Cost minimisation cbmpares two or more programmes or strategies on the basis of cost
alone and selects the cheaper one as the most appropriate (Kupersmith et al. 1994). One
assumption made is that each of the alternative programmes have equal health care
consequences. In fact, it is unusual for the alternative programmes to have equivalent
effectiveness and so very few studies are designed from the outset to be cost
minimisation analyses (Drummond et al. 1997). Cost minimisation has been used to
compare the cost of angioplasty and bypass surgery (Hlatky et al. 1990; Cohen et al.
1993).

2.2.2 Cost effectiveness analysis

In cost effectiveness analysis, the ratio of total cost to effectiveness is calculated
(Kupersmith et al. 1994). Costs are those related to the particular medical interventions
studied (eg drugs, interventions, outpatient visits) minus savings from prevention of
events (eg stroke or MI). Indirect costs, such as costs associated with working days lost,
are not normally included. The usual measure of effectiveness is increase in years of
life. Alternatively, effectiveness may be related to number of lives saved, or more

specific outcomes such as disease free survival, or successful treatment accomplished.

A Cost
A Life expectancy

Cost effectiveness ratio =

However different treatments can only be compared if a common measure of
effectiveness is used. Thus kidney transplantation can be compared to compulsory
bicycle helmet legislation if the effectiveness is measured as years of life gained but not
if it is measured as number of bicycle accident injuries avoided (Drummond et al.

1997).

10
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2.2.3 Cost benefit analysis

In cost benefit analysis, health benefits, including human life, are given a monetary
value (Kupersmith et al. 1994). However, valuing health outcomes is not a simple
process and comes with many difficulties, for example how much is an added year of
life expectancy worth. The main method used to value health outcomes is the
willingness to pay of patients (Drummond et al. 1997). The amount a patient is willing
to pay for a health service is estimated by surveying patients or potential patients. One
difficulty of this approach is that people do not accurately predict what they are likely to
spend, especially if it is a health service they do not understand well or if they are not
directly spending the money, as is the case with treatment within the National Health
Service. For these reasons, cost benefit analysis has been used far less than cost

effectiveness analyses (Kupersmith et al. 1994; Drummond et al. 1997).

A Cost of strategy
A Cost of benefit

Cost benefit ratio =

2.2.4 Cost utility analysis

Cost utility analysis incorporates quality and quantity of life into a cost effectiveness
analysis (Kupersmith et al. 1994; Drummond et al. 1997). This is especially appropriate
for assessing treatments that only or mainly improve quality of life. Outcomes are
expressed in terms of quality adjusted life years (QALYs). Quality of life or utility is
measured as a number between 0 and 1 where O and 1 represent death and perfect health
respectively. Some health states that are considered by patients to be worse than death
itself may have negative values. The quality of life (QoL) value for each health state is
multiplied by the time in the state and then summed to calculate the number of QALYsS.
For example, if a patient with severe angina (QoL = 0.7) has a life expectancy of two

years, they will have the equivalent of 1.4 QALYs.

A Cost
A QALY

Cost utility ratio =

11
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Quality of life or utility values are subjective to patients’ perceptions of disease and
health care outcomes and are estimated by linear scales such as the category rating, the

standard gamble or the time trade off method, as described below.

Linear scale methodologies such as category rating or visual analogue scale use a
numbered line such as a 100 point scale, where death scores 0 and perfect health scores
100 (Kupersmith et al. 1994). Subjects place a mark on the scale to indicate how
desirable this health state is compared to death or perfect health.

In the standard gamble method, the subject is asked to imagine a hypothetical situation
in which he is given a choice between continuing to live in this health state and
gambling to live in either the perfect health state or to die (Kupersmith et al. 1994). For
example suppose the patient has angina pectoris and given the gamble whereby there is
95% chance of perfect health and 5% risk of dying. In this case the patient may accept
the risk. The chance of perfect health is now lowered until the point where the subject is
indifferent between choosing to take the gamble or not and this is the QoL score. For
example if this break even point was at 80% chance of perfect health and a 20% risk of
immediate death then the utility or QoL score will be equal to 0.8.

Time trade off is the more commonly used method for estimating utilities (Kupersmith
et al. 1994). Here the subject is asked how many years in perfect health would be
equivalent to a fixed longer life expectancy in the health state in question. For example
if the subject felt that 10 years living with angina would be equivalent to 7 years of

perfect health, then the QoL or utility score would be 0.7.

Utilities may be collected from the general public, patients, nurses or physicians. There
is some debate to the most appropriate source of utilities. Gold et al. (1996) recommend
using utilities based on community values, ie health state weights collected from
representative individuals from the general population. They justify this by maintaining
that patients experiencing a disease may adapt to the condition and thus rate health
states more highly than would unaffected community members. Conversely it may be
true that community members may not appreciate or understand the full impact of a
disease health state which they are not suffering from. Smith et al. (1993) recommend

collecting utilities from patients being studied in the outcome model.

12
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Davies et al. (2003) suggest some other major assumptions that QALYs make:
‘..they treat mortality and quality of life (QoL), as commensurate, so that
one can be traded off against the other.’

‘..the methods used surveys to elicit quality of life weights vary. For
example visual analogue scale, standard gamble, time trade off and person
trade off all give different values’

They conclude that
‘A prerequisite for using QALYs for a condition is that the utility for that
condition should be well established and based on sound research.

Unfortunately most health states do not have reliable QALYs’.

Nevertheless, QALY are widely used in cost effectiveness analyses. Bell et al. (2001)
has compiled a database of QoL scores used in cost effectiveness studies. A more

detailed discussion of utility theory is given by Torrance and Feeny (1989).

2.2.5 Discounting

Discounting methods are used to express future costs and benefits in terms of their net
present value. Generally people would prefer to enjoy health benefits now rather than in
the future, hence the saying ‘a bird in the hand is worth two in the bush’ (Krahn and
Gafni 1993). They would wish to delay payment of these benefits rather than having to
pay now. In addition, over the last few decades, the trend has been for positive
economic growth. This means that a dollar today would be worth a higher value in the
future (Drummond et al. 1997). For these reasons, it is widely accepted that costs and
benefits should be discounted (Davies et al. 2002; Krahn and Gafni 1993; Drummond et
al. 1997).

There is some debate amongst health economists about the discounting rate that should
be used. Furthermore some recommend equal discount rates for costs and benefits
(Olsen 1993; Fuchs and Zeckhauser 1987; Parsonage and Neuberger 1991) whilst other
recommend lower rates for benefits (Sheldon 1992; Van Hout 1998). Krahn and Gafni
(1993) present the theory behind discounting and the arguments for and against
adopting the same discount rate for costs and benefits in more detail. The Washington

panel (Gold et al. 1996) argue that costs and benefits should be discounted at an equal

13
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rate of 3%. They also note that a 5% rate has commonly been used in the medical

literature and studies should undertake sensitivity analysis for this rate.

The calculation to find net present value is as follows. If P is present value, C,, future
cost at year n, and r is the annual discount rate, then

n Cn
n=1 (1+ r)"

P=

2.2.6 Population based and cohort based models

Models built for health care modelling can be either cohort or population based models.
The cohort based method fs the most commonly described method in the economic
evaluation literature. Indeed in the literature review in chapter 3, all but five studies
used a cohort approach. In this method, a cohort that developed a particular health
impairment is studied over its lifetime. The costs and health status of the cohort are
aggregated over the cohort lifetime and this information is used to estimate the likely
benefits of introducing a new treatment for an individual patient. This method is

described in more detail in section 2.3.2.

The prevalence-based or population method estimates the costs and health status of all
in the population with a specific disease or condition during a specific year, irrespective
of how long they have had the disease. In this method, the model begins with the
prevalent diseased population which may include several subgroups or populations of
people. Each year of the model run, a new incident population of people who develop
the disease or condition will be added to the model population. The model will be run
for a short term period (eg 1,5,10 years) to show the tangible impact of the treatment in

the studied population in terms of costs and health benefits.

In general, most economic evaluation studies give a measure of the cost effectiveness of
an intervention for different subgroups or populations. Whilst this is useful for choosing
between treatments, decision makers also need to know the likely impact of introducing
the new treatment in terms of change in costs and health benefits. Mauskopf (1998)
comments that very few published economic evaluations give this information despite

its obvious benefits for health care planners and furthermore it is rarely discussed or

14
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recommended in methodological guides to economic evaluation such as Gold et al.

(1996).

Mauskopf (1998) comments that estimates of the effect of the new drug on cost and
health outcomes would be
‘very valuable in giving policy makers an understanding of the likely impact
of a new drug on the annual burden of the disease for the economy or for
their covered population’.
This would allow the health care decision maker to evaluate the expected health care
benefits and

‘insure that their budgets are sufficient to allow them to add the new drug’.

Birch and Gafni (2004) illustrate this point with the following example.

Consider the new technologies aimed at treating four different conditions in
Table 2.2.1. Each technology is described in terms of the additional effects
and additional costs as compared to the current way of treating these
conditions with the Incremental Cost Effectiveness Ratio (ICER). Suppose
the National Institute for Clinical Excellence (NICE) decides on an ICER
threshold of £50,000 per QALY as acceptable and the government provides
a budget of £20 million for new technology. Under the threshold approach
(ie ICER estimate only), NICE approves technology A but none of the other
technologies are approved. Total health benefits increase by 360 QALYs.
However technologies B and C, although failing to meet the NICE threshold
, generate 388 additional QALYs, from the same additional resources, ie
more health improvements than produced by investing the resources in
technology A. Choosing technology A, 2 million pounds remains unspent
(and hence unproductive). Even if these resources were to be used, however,
they are only sufficient to support technology D (which fails to meet the
ICER threshold) and hence generate a total health improvement of 380
QALYs. In other words, the threshold approach fails to maximise the health

improvements produced from a fixed iechnology budget.

15
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Table 2.2.1 Evaluating the efficiency of four different technologies (From Birch and

Gafni, 2004)
Technology
A B C D
Health gain (QALYSs) 360 312 76 20
Costs (£millions) 18 16 4 2
ICER (£000s per QALY) 50 51.3 52.6 100

In the literature review in chapter 3, few studies included information on the likely
impact on costs and health benefits for introducing the drug into a specific population.
Furthermore, regulatory bodies responsible for the assessment of new drugs and
treatment, advise on the inclusion of this information, for example the National Institute

of Clinical Excellence (NICE) (1999).

According to Mauskopf (1998), there is a large volume of published cost effectiveness
studies but these have
‘rarely been used to inform health care decisions’.
Indeed Russell et al. (1996) states that,
‘CEA is rarely used to inform decisions about health services in the United States’.
This view is also shared by Davies et al. (1994) and Sloan and Conover (1995) who
conducted a survey showing the low impact of this type of analysis on health care

policy.

As Mauskopf (1998) points out, this does raise the question about the usefulness of the
cost effectiveness studies. She surmises that economic evaluation studies may not be
having their intended impact because they may not be in a format that is
‘useable and/or understandable by non-economists, or researchers may be
answering questions that are from a perspective different from that of the
decision maker in terms of the range of outcomes included, the time horizon

considered, and the population included’.

Mauskopf (1998) gives several reasons for the reluctance of health care modellers to

perform population based evaluations rather than cohort based evaluations. Firstly,

16
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results from population models are specific to the size and case mix of the population
and this necessitates the collection of more data and is likely to increase the complexity
of the analysis. Secondly, within the health care community there is a tradition of
population based analyses performed retrospectively by using large databases or
observational studies, rather than prospectively at the time the new drug is first
introduced. Finally since she suggests that there may be a conscious or subconscious
reluctance to quantify prospectively the likely increase in costs associated with the new
treatment. The reluctance to perform population based evaluation is also likely to be due
to the fact that population models are more complex and less suited to Markov and
decision tree models than cohort models and there is a tradition of cohort based models

for cost effectiveness.

On the basis of the evidence in this section the first two assumptions are concluded:

Al) A population analysis provides a more comprehensive summary of the value of

the intervention for the health care planner than a cohort analysis.

A2)  The cost and health benefit outcomes of an intervention are as important an

output as cost effectiveness.

2.3 Types of models used

There are several types of models used for health care modelling (Davies 1985). These
may be either deterministic where there is no randomness or variability or stochastic
where natural variability is taken into account by the use of probability distributions.
Most of the health care models used in CHD modelling are deterministic (Halpern et al.
1998). The most commonly used models for health care evaluation are decision trees,
Markov or other state transition models and discrete event simulation models and these
are the models compared in this thesis. Other models such as system dynamics and
semi-Markov have rarely been used although this is not a criticism of their ability to
evaluate health care. Indeed Davies et al. (2003) suggests that

‘system dynamics models have been found to be particularly good for

modelling infectious diseases’.
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Due to the time needed to model each of these model types, it was decided to
concentrate on the three most common and relevant model techniques to coronary

heart disease interventions in this thesis.

2.3.1 Decision trees

A decision tree is a commonly used model for health care evaluations. According to
Sonnenberg and Beck (1993) the decision tree

‘models the prognosis of a patient subsequent to the choice of a

management strategy’.
An example of a decision tree is shown in Figure 2.3.1. The tree flows from left to right
beginning with an initial clinical choice or decision, which is represented in the tree by a

box.

As a result of the decision made, branches lead to chance nodes, which are represented
by circles. From the chance nodes there are branches representing the possible events
with their respective probabilities. The sum of the probabilities at a chance node add up
to one. These probabilities may depend on the patient characteristics as well as the

different strategies. These branches may lead to further chance nodes.

At the end of the tree, each path leads to an outcome such as survival or death at the
terminal nodes represented by a triangle in the Figure. This outcome will have a payoff
or reward associated with it. This payoff represents the net value of a particular
scenario, ie the series of events leading up to this endpoint and may be a cost or a
utility. The decision tree calculates, for each alternative action, the expected value of
the clinical outcome. This is calculated as a weighted average of all possible outcomes,

applying the path probabilities as weights.

The decision tree may be extended for more than one time period. In this way, events
that happen more than once can be modelled. Sonnenberg and Beck (1993) describes a
recursive tree where the simple decision tree is repeated at each of the terminal nodes of
the decision tree (except the dead state nodes). However, after only a few repetitions the
size of the tree may have many hundreds of terminal nodes (Sonnenberg and Beck

1993). They conclude that a recursive tree model of this type is suitable only for a short
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time horizon. Often in decision tree models, long term outcome measures such as life
years and QALY are incorporated at the terminal node of a decision tree. These long

term outcomes are average values for the cohort considered (Karnon and Brown 1998).

Die 0
0.2
Complications _ / Patient cured
08 ~ 0.6 <10
Operation Patient disabled
0.2
What is the appropriate Patient cured Lo
treatment for this patient? 02 ‘
Die
0
0.3
Medical Patient cured
O <] 1.0
0.4
Patient disabled
0.3

Figure 2.3.1 Example of decision tree

Figure 2.3.1 shows a simple example of a decision tree using the software package
TREEAGE Data 4.0. In this example, a patient with a serious acute illness has arrived at

hospital and the doctor can choose to treat him surgically or medically.

If the doctor chooses to operate, there are risks involved and the best estimate is that
there is a 20% chance of complete success. If there are complications, however, the
patient will be treated further and there is a probability of 20% he will die, 20% he will

survive but with long term complications and 60% he will be completely cured.

On the other hand, if the patient is treated medically, there is a probability of 30% he
will die, 40% he will be cured completely and 30% he will survive with long term

complications.

For each of the final outcomes shown at the terminal nodes, there is an associated
payoff which in this case is the utility of the patient. For example, after the operation if
the patient is completely cured he has a utility of 1.0 whereas if he is left disabled he has
autility of 0.5.
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The expected utility of each of the decision choices Operation and Medical is calculated
by the sum of the probabilities times the payoff for the chance nodes, working back

from the terminal nodes.

Expected value (EV) of Operation = 0.8 * EV of Complications + 0.2 * EV of Patient
cured = 0.8 * (0.2*0 + 0.6*1 + 0.2*0.5) + 0.2 * 1.0 = 0.76.
Expected value (EV) of Medical = 0.3*0 + 0.4*1.0 + 0.3*%0.7 = 0.61

In this case the expected utility value of the operation is shown to be higher than that for

the medical treatment and this would be the preferred treatment.
2.3.2 Markov models

An article by Sonnenberg and Beck (1993) gives a good overview of Markov modelling
for health care applications. In their view the Markov model provided a

‘far more convenient way of modelling prognosis for clinical problems with

ongoing risk’ (than the decision tree). |
Furthermore, Kamon and Brown (1998) state that these models are,

‘particularly suited to modelling programmes in which the events occur

over a long period of time’.
In a Markov model, patients move between health states over time. At any time they are
assumed to be in one of a finite number of states of health. A patient in a given state can
only make a single state transition during a cycle, either 1) remain in their current health
state, 2) move to another health state, or 3) die, according to the transition probabilities
per time period between the states. The cycle time is chosen according to the time
horizon being studied in the model. For example for a model for the whole of a patient’s
life time where there are few events of interest, a cycle length of one year is satisfactory

(Sonnenberg and Beck 1993).

Markov processes all obey the Markovian assumption or Markov property. According
to this assumption the model only has knowledge concerning the patients’ current health
states and would not know where they were in previous time periods. This assumption
forces the creation of separate states for each subset of the cohort that has a distinct

property or utility. The evaluation of a Markov process yields the average numbers of
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cycles (or time) spent in each state and the associated utilities and costs. If the Markov
process incorporates a decision node or different strategies, then cost effectiveness may

be calculated.

If the transition probabilities are constant over time the Markov process will be a
Markov chain. If it has an absorbing state, its behaviour over time can be found
analytically. However, in the majority of Markov processes used in health care, the
transition probabilities change over time, eg an older person has a higher risk of death
(Sonnenberg and Beck 1993). Markov process models with transition probabilities,
which are not constant over time, may be more difficult to solve analytically or may
even be insoluble. These models are often represented by the Markov cohort model

(Sonnenberg and Beck 1993).

0.83
/'\0.72
\
0.15
Well < > Disease
0.18
0.02
Dead
1.0
Figure 2.3.2 Example of Markov model
Recover

Survive Well

02

Stay sick

Disease Disease

Die
no relapse

0.85
relapse

Well
Three state Markov

Disease

Figure 2.3.3 Example of Markov model
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The Markov cohort model follows a hypothetical cohort of patients moving between
health states. Each cycle a proportion of patients move between states according to the
transition probabilities. This results in a new distribution of the cohort among the
various states for the subsequent cycle. In the subsequent cycle the age of the cohort
will have increased by the cycle period length. The model is run for enough cycles so
that the entire cohort is in the dead state. The life expectancies can be found by
summing the numbers of patients who remain alive for each cycle and dividing by the

initial cohort size.

Figure 2.3.2 shows a simple Markov model using the standard representation. Here a
circle represents each state and arrows represent transitions between states. A transition
arrow pointing back to the state from which it originates denotes that patients may
remain in the same state in consecutive cycles. The numbers along the arrows are the
transition probabilities between the states at either end of the arrow. For any state, the
transition probabilities from that state to all other states must add up to one. In the

example shown the model has a cycle time of one year.
2.3.2.1 Markov cycle tree

The TREEAGE Data 4.0 software used to build Markov models represents this system
in a different way. Figure 2.3.3 shows the same system in a graphical form that is
similar to the decision tree format and is known as a cycle tree. The cycle tree is

distinguished from the decision tree by arcs instead of straight lines.

The probabilities on the branches of the cycle tree in Figure 2.3.3 are equivalent to those
in Figure 2.3.2. The transition probability between states is the product of the
probabilities along the branches from the starting branch to the appropriate terminal
node. For example the transition probability for disease to well would be the three
uppermost branches in the cycle tree, ie 0.9%0.2 = 0.18. The values shown under the
branches immediately after the starting node are the starting proportion for each of the

states.

In this example, a cohort of people start in the states well, disease and dead. Those who

are well at the beginning may develop a disease, die or remain well. Those who have the
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disease may get better, remain ill or die. Death is known as an absorbing state, ie people

cannot move out of this state.

Each cycle a proportion of patients moves between states according to the transition
probabilities. This results in a new distribution of the cohort among the various states
for the subsequent cycle. This continues for many cycles until the entire cohort have

reached the dead state.

Each of the states will have a reward or payoff associated with it. This reward represents
whatever outcome measure is being calculated, for example costs or QALY's. For each
cycle the total payoff is calculated by multiplying the proportion of the cohort in each
state at the end of the cycle by the associated reward, and summing for all the states. In
this example the total life expectancy of the cohort is calculated. Consequently the dead

state will have a payoff of zero and the well and disease states have a payoff of 1.0.

Table 2.3.1 shows the first 10 cycles of the Markov cohort model for this example. The
life expectancy of the cohort is found by dividing the total stage reward at the end of the
model by the number in the cohort. The Markov process approximation is improved by
incorporating the half cycle correction. This is calculated by adding to the total reward
half the starting proportion of the cohort. This is done so that events occur in the middle
of the cycle time rather than at the end. In this example when the model is run for 100

cycles, the expected life expectancy is 16.5 years.

As mentioned above, different reward outcomes can be collected, for example costs and
utilities. If different scenarios are modelled using the Markov cohort method, different
life expectancies are obtained and these can be combined with cost data to derive cost

effectiveness of the scenarios.

Figure 2.3.4 shows an example where a treatment has been developed for diseased

patients. The treatment results in halving the probability that a patient will stay diseased
from one cycle to the next. The cost for this treatment is £2000 per year. In this case, the
life expectancy calculated is 24.5 years (ie increase of 8 years) at an extra cost of £9889.

The cost effectiveness of this treatment is thus £1236 per life years saved.
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Table 2.3.1  First 10 cycles for the Markov cohort model
Stage Stage Totalstage % % Well %  Reward Reward Reward
reward reward Disease Dead Disease Well Dead
0 0.5 0.5 1 0 0 0.5 0 0
1 0.9 1.4 0.72 0.18 0.1 0.72 0.18 0
2 0.82 2.22 0.54 0.28 0.18 0.54 0.28 0
3 0.76 2.99 0.43 0.33 0.24 0.43 0.33 0
4 0.71 3.70 0.36 0.35 0.29 0.36 0.35 0
5 0.67 4.37 0.31 0.36 0.33 0.31 0.36 0
6 0.63 5.01 0.28 0.36 0.37 0.28 0.36 0
7 0.60 5.61 0.25 0.35 0.40 0.25 0.35 0
8 0.57 6.17 0.23 0.33 0.43 0.23 0.33 0
9 0.54 6.71 0.22 032 0.46 0.22 0.32 0
10 0.51 7.22 0.20 0.31 0.49 0.20 0.31 0
Recover
Survive 06 Well
O Stay sick
Disease 09 Y Disease
O 04
10 Die
<] Die
0.1
no relapse
Treatment 9 Survive O 0.85 Well
Well 0.58 relapse Disease
O 0.15
0 die .
o0 <} Die
Die
<]
Should patient 0
be treated? . Recover 1 well
L] Survive O 02
Disease O o = T)l.:k Disease
10 Die .
<] Die
0.1
no relapse
o treatment Survive oss el
Well 098 relapse Disease
0.15
0 die
<] Die
0.02
Die
<
0
Figure 2.3.4 Markov cohort model comparing treatment or no treatment of diseased

patients.
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The Markov cycle tree incorporates a probability tree within each cycle. Sonnenberg
and Beck (1993) suggest that Markov cycle trees allow the analyst to

‘break up a large problem into smaller, more manageable ones’.
They suggest that this provides clarification of the problem and makes it more flexible

to change or refine.

In the example for the Markov cohort model, a probability tree could be incorporated to
describe the outcomes from relapse by splitting this state into some treatment events,
which had variable results. However, by including this probability it should be ensured

that the state transitions as set above remain unchanged.

2.3.2.2 Population based approach for Markov models

In the example shown above, the cohort method was used where a cohort is studied over
its lifetime. Although this method is useful for describing the cost effectiveness of an
intervention, it is not able to give accurate information on expected year on year costs
and benefits for a population. As mentioned above in section 2.2.6, Mauskopf (1998)
recommends the use of a prevalence based or population based approach to provide this
information. This information is important because health planners and decision makers
typically need to choose between alternative treatment on the basis of their budget

constraints as well as the efficacy of the treatments.

The population based method for Markov models uses the information from the cohort
model. It starts with a prevalent based cohort and adds an incident cohort for each of the
subsequent years. This is demonstrated in Table 2.3.2 which uses the transitions from

the cohort model in Table 2.3.1.

The cohort model calculated the proportion of the cohort in subsequent time periods and
is shown in column a. All other cohorts will change in the same proportion. The
prevalent disease cohort in column b starts with 1000 individuals and the number in
subsequent years is found by multiplying the starting population size by the proportion
in column a. Each year an incident population will start with 100 individuals (columns ¢

to h) and the numbers in the incident cohort are also found by multiplying the starting
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incident cohort size by the proportion in column a. For each year the total in the

population is the sum of each of these cohorts.

Table 2.3.2  First 5 cycles for the population based approach of the Markov model

Stage % Prevalent Incident Incident Incident Incident Incident Total

Disease Disease Disease Disease Disease Disease Disease

a b c d e f g h
1000 100 100 100 100 100
0 1 1000 1000
1 0.72 720 72 792
2 0.54 540 54 72 666
3 0.43 430 43 54 72 599
4 0.36 360 36 43 54 72 565
5 0.31 310 31 36 43 54 72 582

2.3.3 Monte Carlo simulation

A Monte Carlo simulation can also be used to represent the prognosis of a cohort of
patients. It avoids the homogeneity of the Markov cohort model or the need to create a
large number of substates to differentiate between different patients (for example old

and young).

Monte Carlo simulation uses random numbers to determine the outcome of each event.
Each patient begins in a predetermined starting state and at the end of each cycle, a
random number generator is used with the transition probabilities to determine in which
state the patient will begin the next cycle. The process is repeated a very large number
of times in order to find the expected outcome with small confidence intervals. A

Markov cycle tree may also be evaluated as a Monte Carlo simulation.

For our example shown in Figure 2.3.3, a Monte Carlo simulation was run 1000 times
and the results collected. The life expectancy was 16.46 years with a standard deviation

of 17.9. Figure 2.3.5 shows the variability or spread of the results for the life expectancy
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of the 1000 patients. It shows that roughly half of the patients had a life expectancy less
than 10 years. One of the useful characteristics of the Monte Carlo simulation is that it

is able to give indication of the variability of the outcomes.

Probability

Value

Figure 2.3.5 Probability of life expectancy for a Monte Carlo simulation with 1000

patients

In recent years there has been a development of probabilistic techniques used for
Markov modelling of cost effectiveness (Briggs 2000). These techniques define the
input parameters according some range or distribution. Monte Carlo methods are then
used to sample starting input values for the model. A distribution of the cost
effectiveness of the intervention is developed from many model runs using different
starting input values. Supporters of these methods suggest that this provides further

layers of variability which aid understanding of the cost effectiveness results.

2.3.4 Discrete event simulation (DES)

Discrete event simulations describe the flow of individuals through the treatment system
(Kamon and Brown, 1998; Davies and Davies 1994). These individuals can be given
attributes, such as age, sex and disease history, which influence their route through the
simulation and the length of time between events (Davies and Davies 1994). For each

individual, the time of their next event(s) is sampled from parametric or empirical
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distributions. These events are added to a calendar and then these events are executed
sequentially in time order. An individual’s event may be a change in their disease state
or a treatment or intervention. Depending on the outcome of this event, their subsequent

events may be resampled.

Several articles by Davies et al. describe the advantages of modelling using DES
compared to other modelling techniques (Davies 1985; Davies et al. 2003; Davies and
Davies 1994). By modelling individual patient pathways, DES avoids some of the
fundamental assumptions with Markov process models, for example that the population
moving between states is homogeneous (Davies et al. 2003). Furthermore DES is able
to take account of trends over time or resource constraints and queuing for resources
(Davies et al. 2003).
According to Davies, DES is able to
‘relate risks, survival and interventions to individuals and to their
characteristics and history without proliferating the number of states’.
DES can also be useful for determining ‘bottlenecks’ in a system (Davies and Davies
1994). Robinson (2003) comments that simulation is useful for describing the
‘performance of systems that are subject to variability, interconnectedness
and complexity’.
Interconnected systems are ones where components of the system do not work in
isolation but affect other parts of the system and the system may perform in a non

intuitive manner as a result.

These advantages provide flexibility (Karmon and Brown 1998), which allows greater
confidence in the results (Davies and Davies 1994). However it needs much data
(Robinson 2003), which is often not available (Davies et al. 2003), and many more
assumptions may need to be made. Costs and effects can be incorporated into a DES

model with respect to patient attributes or treatment events within the model.

Figure 2.3.6 shows an example of a simulation model. In this example patients develop
a disease or die from other causes. When they develop the disease they are referred to
have an operation. They are then treated and some survive and others will die. In the

activity flow diagram, the activities are represented by boxes, the queues are represented
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by circles and the resources are represented by ovals connected to a specific activity by

arrows.

At the start of the simulation a cohort of patients start who are well. It is also possible
for the simulation to start with a cohort of patients and have other patients joining the
simulation at various times. A time is sampled from probability distributions for them to
develop the disease or die from natural causes. For each patient, whichever event

happens first is then simulated. If the patient dies they experience no further events.

Patient well

v
Patient develops Patient dies
disease

Waiting
for
operation

Operation Patient has
resources operation

v

Patient cured

Figure 2.3.6 Discrete event simulation diagram of patient disease and treatment

If the patient develops the disease they are placed in a queue and will wait until the
necessary resources are available for the operation to take place. An outcome for the
operation is sampled and if it is successful they become well, otherwise they die. If it is
successful, a new time is sampled for them to redevelop the disease. Various
information can be collected from the simulation, for example expected life time of the

patients, time spent waiting for an operation, cost and so on.

In recent years, DES has become more accessible for non specialists by the introduction

of commercial visual interactive simulation packages, for example Witness, Simul8.
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These have been widely used in industry processes including health studies. In health
care systems, they have mainly been used to study resource use, for example planning
for bed allocation in hospitals or the timing and optimal use of screening. Jun et al.

(2003) provides a good overview of recent simulation studies in this area.

Figure 2.3.7 shows an example from Simul8. Patients (known in simulation as entities)
arrive at the Work entry points and are given attributes such as age and disease history.
The patients wait in the queue until the Operation Work Centre becomes free and there
are available resources for the operation to go ahead. As a result of the operation, a
patient may die and leave the simulation. Otherwise the patient will have a new time

sampled for the time of the disease recurrence and at this time will join the end of the

queue.
Resources
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Figure 2.3.7 Simul8 diagram of a discrete event simulation of patient disease and

treatment

Simul8 uses non standard terminology, for example: storage areas (queues), work items
(entities), labels (attributes), work centres (events). For the purpose of this study the
standard terminology is used, shown here in brackets. One of the difficulties of the
study of disease progression is that entities may have many future events projected.
Some packages have difficulties modelling problems of this type. Indeed, Davies et al.
(2003) suggest that these problem are better modelled using software such as POST
(Davies and O’Keefe 1988), which must be coded in a high level programming
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language, in this case Pascal. A more detailed explanation of DES can be found in

Robinson (2003).

2.4 Conclusion

This chapter reviewed the current methodology of modelling health care interventions.
It gave a background to the current methods used for modelling health care
interventions as a basis for the research in the subsequent chapters. Economic
evaluation, such as cost effectiveness analysis, provides a method for comparing health
care interventions. These evaluations often use modelling techniques such as decision
trees, Markov processes and discrete events simulations. This chapter introduced the

concepts of economic evaluation and described each of the modelling techniques.
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Chapter 3

Literature Review of Coronary Heart Disease models

Abstract

The aim of this chapter is to provide a contextual background for the subsequent
chapters. It reviews the use of models for the treatment of coronary heart disease
(CHD). The majority of the models described have been developed to assess the cost
effectiveness of different treatment strategies although they have also been used to
extrapolate clinical trials, for capacity and resource planning, or to predict the future
population with heart disease. In general the models reviewed in this chapter use
decision tree models for acute or short term interventions and Markov or state transition

models for chronic or long term interventions.
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Chapter 3 Literature Review of Coronary Heart Disease

models

3.1 Introduction

This chapter reviews the use of models for the treatment of CHD. The majority of the
models described have been developed to assess the cost effectiveness of different
strategies although they have also been used to extrapolate clinical trials, for capacity
and resource planning, or to predict the future population with heart disease. In this
chapter firstly short term interventions such as diagnostic tests, thrombolysis and
revascularisation are reviewed, then long term interventions such as secondary
prevention drugs, finally miscellaneous interventions are reviewed together with generic

CHD models.

A systematic, computerised literature search was undertaken of the Medline, Embase
and Cochrane databases for studies using decision tree, Markov and simulation models
for the treatment of coronary heart disease. Studies were excluded if they used logistic
regression methods or similar statistical techniques and more general scoring methods,
for example for patient selection for surgery. Those studies evaluating heart failure,

arrythmias, and implantable cardioverter defibrillators were also excluded.
3.1.1 Clinical aspects of coronary heart disease

Patients with coronary heart disease usually have coronary arteries which have
narrowed due to the build up of fatty materials (atherosclerosis). These narrowings or
stenoses influence the patient’s survival and may lead to them developing angina

pectoris, a heart attack or cardiac arrest.

Angina is a chest pain which is caused by not enough oxygen-containing blood reaching
the heart muscle due to the artery stenoses. The anginal pain is exacerbated when the
heart is pumping more blood around the body - such as during exercise. Patients with

angina are usually given medication to relieve their symptoms such as nitrates, beta
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blockers or calcium antagonists. If the symptoms become bad they may be referred for
further investigations such as an electrocardiogram (ECG), or angiogram. An ECG is a
non invasive test which measures the rhythm and activity of the heart. An angiogram is
a type of XRay examination which shows where the arteries are narrowed and how
narrow they have become. Often the severity of the heart disease is reported as the
number of the major arteries (from zero to three) with significant narrowings. In
addition, the patient’s health will be significantly worsened if there is narrowing to the

left main stem or the left anterior descending arteries (Figure 3.1.1).

If the patient’s arteries are sufficiently bad they may be offered surgical treatment such
as coronary artery bypass graft (CABG) or percutaneéus transluminal coronary
angioplasty (PTCA) to improve the blood supply to the heart. CABG is an operation to
bypass a narrowed section or sections of coronary arteries using veins or arteries. PTCA
is a method for widening the artery using a catheter with a small balloon at its tip. The
catheter is passed into the vein and when in place; the balloon is inflated to squash the
fatty tissue responsible for the narrowing. Many angioplasties use stents, which are tiny

metal cages inserted into the artery to hold it open; these are left in place.

Lefi Coronary
Artery

Right
Coronary |
Artery Circumdlex

Artery

Lefi
Anterior
Descending
Artery

Figure 3.1.1 Anatomy of the coronary arteries in the heart

In unstable angina, chest pain may occur at rest and may increase in severity, frequency,

or duration at low levels of activity or for no identifiable reason. Patients with unstable

angina are at a high risk of heart attack or even death and should be admitted to hospital
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urgently. At hospital they are treated with anti clotting drugs such as aspirin and may be

referred for further immediate investigation and surgical treatment.

If one or more of the coronary arteries become blocked a heart attack or cardiac arrest

may occur. A heart attack usually causes severe pain in the centre of the chest and may
last for many hours. Those who experience heart attack are a high risk of cardiac arrest
and immediate death. They are usually admitted to hospital as emergencies and treated
as soon as possible with clot busting medication (thrombolysis) and aspirin. They may

be referred for further immediate investigation and medical treatment.

Patients with coronary heart disease are increasingly offered secondary prevention
medication to reduce the risk of further coronary events. These drugs include aspirin,
beta blockers, ACE inhibitors and statins. More information on heart disease can be

found on the British Heart Foundation website: www.bhf.org.uk/hearthealth/.

3.1.2 Cost effectiveness and cost utility

The methodology of modelling and economic evaluation is described in chapter 2.
Briefly, economic evaluation concems assessing the costs and benefits of a new
technology in terms of a single measure. For different technologies, decision makers are
able to decide on the optimal choice according to the technology that is the most cost
effective. Those interventions, which are cost saving, are most desirable. These will
result in a reduction in cost, and an increase in health benefits. However, the majority of
new technologies will require an increase in health care spending. In this case, there will
be some cost effectiveness threshold above which the health care provider will be

unable or unwilling to accept the new technology.

As a guide, Goldman et al. (1992) stated that a cost effectiveness below $20 000 per
QALY gained was ‘very attractive’. Cost effectiveness values of between $20 000 and
$40 000 per QALY are consistent with other health funded cost programs such as
haemodialysis and hypertension. Values between $60 000 and $100 000 per QALY are
‘higher than most currently accepted programs’, whilst values above $100 000 are
‘unattractive’. Evans et al. (2004) discuss the origins and use of cost effectiveness

benchmarks in the literature. They state that there may be a generally accepted
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benchmark of £30 000 per QALY in the UK. Technologies below this benchmark will
be funded by the NHS and those above will not.

It would be attractive to provide an overview of the cost effectiveness results by
providing a synthesis of the studies. The US Panel on cost effectiveness in Health
recommended a reference case cost effectiveness analysis consisting of a broad standard
set of methods to serve as a point of comparison across studies (Russell et al. 1996).
However, even if these recommendations are adhered to, there are still many problems
in comparing studies. For example they may be conducted in different countries with
dissimilar health care systems, use varying fundamental assumptions and methodology,
with different datasets, costs, time horizons and durations of treatment. For these
reasons, the results between studies of the same intervention have not been synthesised,
for example by converting them to the same base year, but have been reported as they
appear in the original studies. Indeed the review in this chapter is more concerned with
the modelling process than the results of the economic evaluations per se. Nevertheless
interested readers can compare cardiovascular interventions studies up to the year 1997

using a ‘league table’ compiled by Winkelmayer et al. (2003).

3.1.3 Description of the studies

There are several types of models used for health care modelling (Davies 1985). These
may be either deterministic where there is no randomness or variability, or stochastic,
where natural variability is taken into account by the use of probability distributions.
The models most commonly used were the decision tree, Markov, Monte Carlo and
simulation models and these are described in more detail in section 2.3. Some of the
models described used a decision analytic model, which consisted of a decision tree,
and a Markov model used to calculate the life expectancy which is used as a reward at
the end of the decision tree (section 2.3.1). In this case the model is categorised as a
decision tree if the decision is not directly influenced by the Markov model, for example
if the intervention is not modelled within the Markov model. In these cases the life
expectancies could as easily been estimated by life tables, a simulation model or other

means and results from the model would be similar.
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In this study, models are categorised by whether they evaluate short term or long term
interventions. Examples of short term interventions are diagnostic tests, thrombolysis
and revascularisation and examples of long term interventions are statins and other
drugs, and long term generic population models. Examples of resource-constrained
interventions are capacity planning models for hospital surgical departments. Of the 57
specific intervention studies reviewed, 28 were considered short term interventions, 26
long term interventions and 3 resource-constrained interventions. The most popular
models used were the decision tree model (23) and Markov model (19). However there
were a further nine studies that used a state transition model similar to a Markov model.
It was unclear from the descriptions in the studies whether these models were Markov.
Four studies used thev CHD policy model ((Weinstein et al. 1987) although many more
studies used the CHD policy model to estimate life expectancies for a decision tree.
Only three studies used a discrete event simulation. All the studies reviewed are from
North America and Europe. The majority are from the USA (35), followed by the UK
(12), and Canada (3). All other studies were from Europe.

Two seminal cost effectiveness works were from Weinstein et al. (1980) and Weinstein
and Stason (1977) from Harvard School of Public Health in Boston in United States of
America. Weinstein and colleagues studied coronary heart disease in the early 1980s
(Weinstein and Stason 1982). Later they developed a computer simulation model in
coronary heart disease (CHD policy model) for the United States population (Weinstein
et al. 1987). Although this was used mostly to study prevention strategies for coronary
heart disease (Hunink et al. 1997; Tosteson et al. 1997; Hatziandreu et al. 1988; Tsevat
et al. 1991; Goldman et al. 1989) it has also been used to study the treatment of
coronary heart disease. The Harvard School of Public Health has been extremely
influential in the field of modelling the treatment of coronary heart disease and nineteen

of the studies reviewed in this chapter are from this group.

There has been a rapid increase in the number of cost effectiveness analyses published
in the medical literature in recent years (Elixhauser et al. 1993; Elixhauser et al. 1998).
Many of those for coronary heart disease (CHD) have been reviewed by Kupersmith
(1994; 1995a; 1995b). In additionai, systematic reviews of stable angina (Sculpher et al.
1998), diagnostic tests (Mowatt et al. 2004), stenting (Meads et al. 2000; Hill et al.
2004), thrombolysis (Boland et al. 2004), clopidogrel (Main et al. 2004) and statins
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(Ebrahim et al. 1999) have previously been undertaken in the form of Health
Technology Assessments for NICE. Many of the studies described in this chapter have
also been reviewed by the Centre for Reviews and Dissemination at University of York

(http://www.york.ac.uk/inst/crd/index.htm).

3.2 Diagnostic strategies for CHD

3.2.1 Initial diagnosis of CHD

The successful diagnosis of coronary heart disease in individuals presenting with chest
pain has a significant bearing on their future treatment and prognosis. Many individuals
may present with chest pain similar to symptomatic CHD but after diagnostic tests have
no evidence of CHD. Conversely, there may be many individuals with no chest pain

who have CHD.

Diagnostic tests can be either non invasive, for example exercise electrocardiogram,
nuclear scan or echocardiogram, or invasive, for example angiogram. Exercise
electrocardiogram (Ex ECG) or treadmill testing records the electrical activity of the
heart during exercise. Radionuclide tests (including thallium scans) involve an injection
of a small amount of radioactive isotopes into the blood. A scanning machine takes
pictures of the gamma rays sent out by the isotope from the heart. The pictures show the
blood flow to the heart muscle. Positron Emission Tomography (PET) and single
photon emission computed tomography (SPECT) are common nuclear scans. An
Echocardiogram (ECHO) uses ultrasound waves to show pictures of the heart muscle. It
gives information about the condition of the heart muscle and may be performed during
exercise or with a stress-inducing drug. An angiogram consists of a catheter inserted
into the leg artery and passed into the heart. A dye is inserted into the catheter, which
shows up on special XRays, and any narrowings will be shown. Generally, Ex ECG is a
cheaper test, but with a lower specificity and sensitivity than the other tests. Mowatt et
al. (136) present a systematic review of the clinical evidence for each of the diagnostic

tests.
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The cost effectiveness of diagnostic strategies for people with chest pain has been
assessed by several studies (Garber et al. 1999; Jacklin et al. 2002; Kuntz et al. 1999;
Lieu et al. 1997, Patterson et al. 1995; Kim et al. 1999; Lee et al. 1988; Maddahi and
Gambhir 1997; Mowatt et al. 2004), see Table 3.2.1. The studies use similar methods;
they use a decision tree to model the initial diagnostic process and then use either life
expectancy data (Maddahi and Gambhir 1997, Patterson et al. 1995; Lee et al. 1988) or
a Markov model (Garber and Soloman 1999; Kuntz et al. 1999; Kim et al. 1999;
Mowatt et al. 2004) to derive the long term prognoses of these patients still alive at the
terminal nodes of the decision tree. Quality of life improvements result from the
successful treatment of angina pectoris and prevention of coronary events, such as MI or
death. They reach similar conclusions, namely that the recommended test strategy is
dependent upon the pre-test likelihood of coronary heart disease, with cheaper tests such
as exercise ECG for low pre-test probability, ranging to immediate angiography for very
high pre-test probability. This probability varied according to age, sex, type of chest
pain and a number of other risk factors. Kuntz et al. (12) is described in more detail as

an example.

Kuntz et al. (1999) extended earlier work completed by Doubilet et al. (1985). They
constructed a decision tree and Markov cycle tree model to evaluate the following
strategies 1) no testing, 2) Ex ECHO with angiography if test results are positive, 3) Ex
ECHO with angiography if test results are positive, 4) Ex SPECT with angiography if
test results are positive, and 5) routine angiography without previous non invasive

testing.

The decision tree follows the patients according to choice of diagnostic test,
angiography or otherwise. Patients who do not undergo diagnostic testing will not
receive revascularisation.

All patients are stratified by vessel disease. Those patients who have a positive result
from a diagnostic test will undergo angiography and receive CABG for LMS or 3 vessel
disease and PTCA for 1 or 2 vessel disease. Lifetime costs and quality-adjusted life
expectancy were estimated for the patients at each of the terminal nodes using Markov
models. The model was run with different cohorts corresponding to different age groups

(40-70), sex and severity of chest pain.
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As mentioned above, this study concludes that Ex ECG or Ex ECHO resulted in
reasonable cost-effectiveness ratios for patients at mild to moderate risk for CHD in
term of age, sex and type of chest pain. Ex ECG was more cost effective than Ex ECHO
and SPECT. Coronary angiography without previous non invasive testing resulted in

reasonable cost effectiveness for patients with a high pre-test probability of CHD.

There were slight differences between the studies with respect of the choice of test for
low or medium pre-test probability of CHD. Garber and Soloman (1999) and Kim et al.
(1999) concluded that Ex Echo was the most cost effective diagnostic test whilst
Maddahi and Gambhir (1997) concluded that patients with low pre-test likelihood of
CHD should initially undergo Ex ECG and the positive responders would require
nuclear cardiology testing while patients with intermediate pre-test likelihood of CHD
should have direct referral to nuclear cardiology testing. For low and medium pre-test
likelihood of CHD, Patterson et al. (1995) concluded that PET is the most cost
effectiveness test, although Garber and Solomon (1999) claim that this is due to several
assumptions favouring PET, for example larger prognostic and quality of life benefits
from treatment of CHD than found in randomised trials. Mowatt et al. (2004)
recommended the use of SPECT based strategies for the diagnosis of CHD in patients
with low or medium risk and Ex ECG and CA strategies in those with higher risk.

Many of the differences between the studies can be explained by the choice of data. For
example Maddahi and Gambir’s preference for nuclear cardiology testing can be
explained by the higher values used for sensitivity and specificity of the testing; for
example for SPECT sensitivity is 91% compared to 88% and specificity is 89%
compared to 77%. Similarly, the choice of cost data and assumptions accounts for much
of the differences between Garber and Soloman (1999) and Kuntz et al. (1999), for
example Kuntz et al. (1999) assumes an annual cost for patients with angina depending

on the severity of their disease, whereas Garber and Soloman (1999) does not.
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Models used for analyses for diagnostic tests for CHD (Terminology used: CE cost effectiveness; LYS life years saved; CHD Coronary heart

disease; LVEF left ventricular ejection function; CHF Chronic heart failure; Ex exercise; ECG electrocardiogram; Echo Echocardiogram; PET positron

emission tomography; SPECT single photon emission computed tomography; CASS Coronary Artery Surgery Study)

Study Strategy Data; time Mode] used / Risk Results

horizon factors
Garber and CE of alternative approaches to 30 years Decision tree; age, For men with 50% pre-test probability of CHD, CE per QALY
Soloman al. the diagnosis of CHD compared likelihood of angina compared to Echo was, Ex ECG $8600, thallium $20 700,
1999 USA to angiography. SPECT $40 300, Angio $55 200, PET $86 300.

Jacklin et al. CE of preoperative PET before 1 year Decision tree CE of PET before CABG compared to medical treatment was
2002 UK CABG in patients with poor £77 000 per LYS. PET may be cost effective to select patients
ventricular function with poor left ventricular function for CABG.

Kim et al. CE of strategies to diagnose CASS, 35 Decision tree; For 55 year old women with probable angina (pre test

1999 USA CHD in women. Ex ECG vs Ex  years Likelihood of angina probability 0.31), CE per QALY of Ex ECG vs no test was
Thalium vs Ex Echo vs $4300. CE per QALY compared to Ex ECG was Ex Echo ($15
angiogram only, 500), Angiogram ($27 000), thallium ($54 000).

Kuntz et al. CE of using various tests for the CASS; Decision tree; Age (40-  CE per QALY for 55 year old man: Angiography compared

1999 USA diagnosis of CHD in patients lifetime 70), sex, chest pain with Ex ECG was $36 400 for typical angina. Ex Echo
with chest pain. characteristics compared with Ex ECG was $14 900. Ex ECG compared with

no testing was $57 700.
Kuntz et al. CE of routine angiography after ~GUSTO Decision tree + Markov;  Patient subgroups with severe post infarction angina or a
1996 USA MI trial; LVEF, age sex, co- strongly positive Ex ECG had CE between $17 000 and $50
lifetime morbidity, CHF, EX 000 per QALY.
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Lee et al. 1988
USA

Maddahi and
Gambhir 1997
USA

Mowatt et al.
2004 UK

Patterson et al.

1995 USA

CE of screening for left main

coronary artery disease

CE of nuclear cardiology testing
for diagnosis of CHD and
angiography.

CE of SPECT for the diagnosis
and management of angina and

MI

CE of exercise ECG, SPECT,
PET and angiography.

CASS;

lifetime

Testing

period

25 years

10 years

ECG result, previous
M]I, angina severity.
Decision tree;
prevalence of left main

vessel disease

Decision tree; Severity

of chest pain, age, sex
Decision tree;

prevalence of CHD

Decision tree; age, sex,

likelihood of angina

Compared with a strategy of observation unless symptoms
worsened, initial Ex ECG followed by angiogram in patients
with >= 2 mm of ST segment change had CE per LYS of
$6500 to 12 400 for 40 to 70 year old patients.

Patients with a low or intermediate pre-test probability of CHD
should undergo Ex ECG and SPECT or PET. Patients with high
risk of CHD should have angiogram.

For the diagnosis of CHD in a low / medium risk population
(<75% prevalence) SPECT based strategies are likely to be cost
effective compared to EX ECG. For higher prevalence these
strategies are less cost effective than those of Ex ECG and CA.
PET is most suitable for low and medium pretest likelihood of

CHD. Angiography is best for high probability.
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Lee et al. (1988) evaluated the cost effectiveness of screening strategies for left main
coronary heart disease in patients with stable mild chest pain without evidence of left
ventricular dysfunction or prior myocardial infarction at different ages. They compared
strategies of observation, exercise test or immediate angiography. There were three
strategies of exercise testing defined where those with >= 1,2 or 3 mm of ST segment
depression undergo coronary angiography. The study showed derived data of the
probability of exercise test findings in patients with different severity of CHD and ST
segment change. Screening patients with an exercise test is shown to be more cost
effective than either angiography or observation. Performing angiography for patients
with >=1 or 2 mm of ST segment change is more cost effective than for >= 3 mm and
the study recommends >= 2 mm because there will be benefits for other vessel disease

not accounted for within the study.

3.2.2 Discussion about diagnostic tests

Most of the studies were unable to perform the diagnostic tests more than once although
Mowatt et al. (2004) allowed for patients who had been wrongly diagnosed and
assumed that

‘everyone would be correctly diagnosed over a 10 year period either as a

result of an additional scan or as a result of a non fatal M.
Those models that use long term life expectancies assume that the risk associated with
the extent of coronary disease persisted long term, ie patients’ disease state remains
constant over time. Those with long term Markov models were unable to model further
revascularisation after the initial decision tree. Kim et al. (1999) cite lack of data on
repetitive test referral rates and recurrent angina after CABG or PTCA. In practice,
those patients who receive an initial negative chest pain diagnosis may present at a later
date with more severe pain. Others who have an initial diagnosis of mild angina may
progress to more severe angina and so the assumptions taken within the decision tree
may no longer be appropriate. Some or all of these problems may be overcome with the
use of more complex techniques, for example DES or Markov cohort models but it is
unclear whether the results yielded would be significantly different. In chapter 5
decision trees for short term interventions are considered. It is concluded that decision
trees would provide a reasonable estimate of the cost effectiveness of acute

interventions even if this intervention happened more than once.
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3.2.3 Diagnostic strategies after MI

Kuntz et al. (1996) assessed the cost effectiveness of routine coronary angiography after
acute myocardial infarction using a decision tree for the angiography and
revascularisation short term pathway and a Markov cycle tree for long term survival.
The decision model follows the patients according to whether they have angiography or
not for different cohorts of different characteristics. If so and they have anatomically
confirmed CHD, they will have CABG or PTCA,; otherwise they will be treated
medically. They assumed that age, gender, history of prior MI, exercise test result, post
infarction angina and left ventricular ejection fraction influenced coronary anatomy and
long term survival. The Markov cycle tree model follows the patients’ long term
survival. They are able to change to different levels of angina, develop congestive heart
failure, have subsequent MI or revascularisation or die. The study recommended
coronary angiography for patient subgroups with severe post infarction angina, a

strongly positive Ex ECG or who had had a prior ML

3.2.4 Diagnostic strategies for CABG for patients with left ventricular

dysfunction

Jacklin et al. (2002) developed a decision tree model to assess the cost effectiveness of
diagnostic strategies for patients with left ventricular dysfunction for three strategies: 1)
CABG for all patients, 2) using PET to select candidates for CABG, those without
hibernating myocardium remaining on medical therapy, and 3) medical therapy for all
patients. The model estimated that using PET resulted in lower costs and increased
effectiveness compared to using CABG for all patients. The cost effectiveness ratio
compared to medical therapy only was £77 000 per life year saved and based on this
they considered the treatment cost effective. This seems unlikely to be considered cost
effective based on the cost effectiveness ratios discussed in section 3.1.2. However the
time horizon chosen for the model was short and given a more appropriate time horizon,

the treatment may be cost effective.
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3.3 Strategies of reperfusion therapy

Thrombolysis and angioplasty are both effective methods of reperfusion for acute
myocardial infarction accompanied by ST segment elevation by re-opening the
occluded artery. Tissue plasminogen activator (tPA) and strepokinase (SK) are forms of
thrombolysis therapy or clot buster drugs, which are more effective the quicker they are
administered (for example GISSI (1986), ISIS-2 (1988), GUSTO (1993), FTT (1994),
and Boersma et al. (1996)). These drugs thin the blood and are not suitable for some
patients if there is a large risk of bleeding elsewhere. An alternative to thrombolysis is
to use primary angioplasty (see section 3.4). A recent health technology assessment
(Boland et al. 2004) examined the clinical and cost effectiveness of available drugs for
early thrombolysis and concluded that the benefits of the drugs were similar and
therefore

‘streptokinase is the most cost effective drug, judged by virtue of its lower

price’.

Several studies have assessed the cost effectiveness of different aspects of thrombolytic
therapy (Krumbholz et al. 1992; Fendrick et al. 1994; Lieu et al. 1997; Parmley 1999;
Kellett and Clarke 1995; Kalish et al. 1995; Castillo et al. 1997; Laffel et al. 1987,
Steinberg et al. 1988), see Table 3.3.1. The studies use similar methods; they use a
decision tree to model the initial intervention and then use either data on life expectancy
(Kalish et al. 1996; Castillo et al. 1997), life expectancy estimated from the Coronary
Heart Disease Policy model (Krumholz et al. 1992; Lieu et al. 1997; Parmley 1999) or a
Markov model (Kellett and Clarke 1995) to derive the long term prognoses of these
patients still alive at the terminal nodes of the decision tree. Laffel et al. (1987) and
Steinberg et al. (1988) both calculated the cost per additional life saved, rather than cost
per life year saved, by assessing the lives saved during the first year and the hospital

admission respectively.
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Models used for analyses for thrombolytic therapy for acute MI.

(Terminology used: CE cost effectiveness; ICER incremental cost effectiveness ratio; LYS life years saved; CHD Coronary heart disease; SK streptokinase;

tPA tissue plasminogen activator; ISIS International Study of Infarct Survival trial; GUSTO Global Utilization of Streptokinase and t-PA for Occluded

Coronary Arteries trial; GISSI Gruppo Italiano per lo Studio della Streptochinasi nell'Tnfarto Miocardico; FTT Fibrinolytic therapy trial )

Study Strategy Data sources / time Model used Results
horizon
Castillo et al. 1997  CE of thrombolysis Fibrinolytic therapy Decision tree model; CE of thrombolytic therapy per LYS was §14
USA trial; hospital discharge  age, time to presentation  438. For patients treated within 6 hours of
and 1 year MI, CE was $11 788 per LYS.
Fendrick et al. To quantify population health 1 month Decision tree model; 4000 additional lives could be saved per year
1994 USA consequences of increased age, time to treatment if thrombolysis used for all those for whom it

Kalish et al. 1996
USA

Krumholz et al.
1992 USA

Kellett and Clarke
1995, Ireland

Laffel et al. 1987
USA

thrombolytic use in the US.

CE of SK vs tPA

CE of thrombolysis with

streptokinase in elderly patients

CE of SK vs tPA.

CE of thrombolytic and

interventional strategies in acute

GUSTO; 1 month, 1
year, lifetime

GISSI, ISIS - 2; lifetime

GISSI-2, ISIS-3,
GUSTO; lifetime

GISSI; 1 year

Decision tree model,
age, time to treatment

Decision tree model; age

Decision tree; age,
symptoms, CHD
history, infarct size
Decision tree model;

time to treatment, infarct

is recommended.

CE of tpa is $30,300 per additional QALY
compared to SK.

CE of thrombolysis for an 80 year old patient
was $21,200. For patients treated within 6
hours, CE was $11 788.

CE of tpa is $5900 per additional QALY
compared to SK.

Thrombolysis adminstration more CE for

intravenous than intracoronary. Thrombolysis
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Lieu et al. 1997
USA

Parmley, 1999
USA

Steinberg et al.
1988 USA

MI
CE of primary angioplasty for

acute MI vs thrombolysis

CE of rt-PA or SK vsno
thrombolysis in acute MI

GISSI-2,3, ISIS-3,4,
GUSTO, FTT; lifetime

GISSI, hospital
discharge

size
Decision tree model;
patient (in)eligibility for

thrombolysis

Decision tree model

for large infarcts much more CE than small
infarcts.

Primary PTCA saved money compared with
thrombolysis and CE of $12 000/ QALY
compared with no intervention. CE increased
sharply if <150 patients with MI per centre.
CE per life saved was $52,800 for SK and
$56,900 for tpa versus no thrombolysis
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Laffel et al. (1987) and Steinberg et al. (1988) were completed before the widespread
use of thrombolytic therapy and much of the cost and efficacy data has now changed.
Laffel et al. (1987) compared intravenous and intracoronary thrombolytic therapy with
standard non thrombolytic therapy and concluded thrombolysis was cost effective and
that intravenous thrombolysis was more cost effective than intracoronary thrombolysis.
Steinberg et al. (1988) estimated the number of additional angioplasty and CABG
procedures needed due to the increased use of thrombolysis, assuming its adoption.
They also concluded thrombolysis was cost effective. Castillo et al. (1997) compared
thrombolytic therapy with ‘standard non thrombolytic therapy’ (therapy given not
described) and concluded that thrombolysis was significantly more cost effective,
especially if treated quickly. Krumholz et al. (1992) showed that thrombolysis remained
cost effective in elderly patients. Fendrick et al. (1994) estimated the lives saved from
increased thrombolysis for the US. Kellet and Clarke (1995) and Kalish et al. (1996)
compared the cost effectiveness of tPA with SK. Both studies found SK to be more cost
effective. Lieu et al. (1997) compared primary angioplasty with thrombolysis. They
concluded that primary angioplasty was more cost effective than thrombolysis if
provided by hospitals that already have fully supported cardiac catheterisation
laboratories but was cost ineffective otherwise. Kalish et al. (1996) is presented in more

detail.

Kalish et al. (1996) used a decision tree to assess the cost effectiveness of tPA vs SK.
tPA is more expensive than SK but also more beneficial both for 30 day and 1 year
survival (GUSTO 1993). In the model, patients presenting within six hours after onset
of symptoms may be treated with tPA or SK. Patients initially have a certain probability
of death or disabling stroke. If patients neither die, nor suffer disabling stroke, they may
suffer any combination of the following: non disabling stroke, re-infarction, severe
hypotension and anaphylactic reaction to thrombolytic therapy, or have a CABG, and
the probabilities of these events are assumed to be independent of each other. Each of
these short term complications has a cost and quality of life utility attached. A patient is
assumed to be exposed to the risk of these complications only once. Life expectancies
were calculated for those patients who survived for one year according to whether the
patients had suffered a stroke or not using the Declining Exponential Approximation of
Life Expectancy (DEALE) method (Beck et al. 1982). The study estimates that for the
baseline cohort, tPA has an incremental cost effectiveness of $27,400 per QALY
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compared to SK. Sensitivity analyses showed that the cost effectiveness improved for

younger patients.

Kellett and Clarke (1995) found tpa to be relatively more beneficial, compared to SK,
than Kalish et al. (1996). They incorporated a risk for congestive heart disease into their
model which was higher for SK than for tpa. Those patients with congestive heart
disease were more likely to die. In addition they assumed that the risk reduction of tpa

over SK was greater than Kalish et al (1996).

3.3.1 Discussion about thrombolysis studies

Each of the studies is unable to assess the impact of repeated thrombolytic procedures
for subsequent MI. For example, thrombolysis may have additional benefit on each of a
patient’s subsequent MI. As mentioned above, some or all of these problems may be
overcome with the use of more complex techniques, for example DES or Markov cycle
tree but it is unclear whether the results yielded would be significantly different. In
chapter 5 decision trees for short term interventions are considered. It is concluded that
decision trees would provide a reasonable estimate of the cost effectiveness of acute

interventions even if this intervention happened more than once.

3.4 Revascularisation

A coronary artery bypass graft (CABG) is an operation that bypasses blockages in the
heart arteries with veins removed from the leg or chest. Percutaneous transluminal
coronary angioplasty (PTCA) is a method of using a balloon to reduce the arterial
narrowings (stenoses). An artery is inserted into the artery at the top of the leg and
directed into the coronary artery using XRay control. Once the balloon catheter is in
position the balloon is blown up. Often a metal mesh cage, called a stent, is embedded
into the artery wall and holds the artery open. Drug eluting stents are stents coated in a

drug which is slowly released into the blood and protects the arteries from restenosis.

Several studies have looked at the benefits and cost effectiveness of revascularisation

(Cohen et al. 1994; Wong et al. 1990; Schwicker and Banz 1997; Cleland and Walker
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1997; Kwok et al. 2001; Cleland and Walker 1998; Williams 1985; Weinstein et al.
1982; Yock et al. 2003), see Table 3.4.1. Several of the studies were before large scale
trials had been completed, (Williams 1985; Wong et al. 1990; Weinstein and Stason
1982) and the results may have to be treated with caution. The studies for CABG used a
decision tree combined with long term life expectancy (Weinstein and Stason 1982), a
Markov model (Kwok et al. 2001), state transition model (Cleland and Walker 1997,
Cleland and Walker 1998) and simple calculation methods (William 1985) and the
studies for angioplasty and stenting used a Markov cycle model (Wong et al. 1990;
Yock et al. 2003) or a decision tree with a Markov model (Cohen et al. 1994;
Schwicker and Banz 1997). The studies found that CABG was suitable for patients with
more severe symptomatic and anatomical disease whilst angioplasty was more suitable
for less severe indications. Stents were a reasonably cost effective alternative to balloon

angioplasty.
3.4.1 Coronary artery bypass graft

Weinstein and Stason (1982) evaluated the cost effectiveness of CABG surgery versus
medical treatment for 55 year old males with varying severity of CHD. They used
operative mortality rates and pooled long term mortality rates from trials to estimate the
survival after 6 years for 1, 2, 3 vessel disease and left main stem for patients operated
for CABG and those treated medically. They then estimated the life expectancies of the
two groups using the life table method. They assumed that the mortality rates for
medical and surgical treatment are identical after 6 years and that they are the same as
those obtained from United States life tables for males. Their analyses showed that for
patients with severe angina, surgery was cost effective for left main stem and 3 vessel

disease but less so for 1 or 2 vessel disease.
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Models used for analyses for revascularisation and medical therapy, and other miscellaneous studies

(Terminology used: CE cost effectiveness; ICER incremental cost effectiveness ratio; LYS life years saved; CHD Coronary heart disease; CASS Coronary

Artery Surgery Study; SAPAT Swedish Angina Pectoris Aspirin Trial; 4S Scandinavian Simvastatin Survival Study; Benestent Belgium Netherlands Stent;

VACS Veterans Aging Cohort Study; BARI Bypass Angioplasty Revascularisation Investigation; VA Veterans Administration; ECSS European Coronary

Surgery Study )
Study Strategy Data sources / Model used Results
time horizon
Cleland and CE of revascularisation vs ~ Yusufetal (1994)  State transition For patients with severe angina, 3 vessel disease or poor LV
Walker, 1997, medical treatment Sapat, 4S, CASS; model; severity of function, CE of surgery is £5500 - £6200 per QALY
1998 UK 10 years angina, LVEF compared with medical treatment and aspirin. For those

Cohen et al. 1994
USA

Kong et al. 2004
USA

Kwok et al. 2001
USA

Schwicker and

Banz, 1997

CE of PTCA vs primary
stenting in symptomatic 1
vesse] disease

Cost of drug eluting stents

in a medical centre

Simulated trial of CABG vs
medical therapy.

CE of stenting vs PTCA
and CABG

BENESTENT 1,
STRESS; 6 months,
lifetime

5 years

Yusuf et al. (1994)

5, 10 years

Literature review,

BENESTENT II

Decision tree +
Markov model; age,
restenosis
Population disease

state model (5 states)

Markov model (5
states), age. vessel
disease

Decision tree /

Markov model; age

with mild angina, CE is £11,400 per QALY.
CE of stenting compared with angioplasty is $23,600 per
QALY.

Drug eluting stents will divert >$25M from a medical centre
over a five year period. May cause financial crises for many
medical centres.

Advances in the treatment of chronic stable angina have

improved outcome for medical and surgical patients.

Cost per event free survival 25-30% lower for stents than

PTCA and CABG.
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Europe
Weinstein and
Stason, 1982
USA

Williams, 1985
UK

Wong et al. 1990
USA

Yock et al. 2003
USA

CE of CABG vs medical
therapy

CE of CABG

CE of CABG, angioplasty

and medical therapy.

CE of CABG versus
stenting in patients with

multi-vessel disease

VA Co-op Study,
ECSS, CASS;
lifetime

Expert opinion;
lifetime

CASS, VACS;

lifetime

BAR]I, lifetime

Markov (2 states);
age, severity of
disease

Simple calculation;
severity of disease
Markov (73 states),
age, gender,
symptoms, vessel
disease

Decision tree +

Markov

For patients with severe angina, CE of CABG per QALY
ranges from $3800 in left main disease to $30 000 in one
vessel disease.

More cost effective for severe angina, three vessel disease
and left main stem.

In patients with severe angina, CE for angioplasty ranged
from $6000 to $11 000 per QALY depending on ventricular
function and vessel disease. For patients with mild angina,
CE are > $41 000 for all patients.

Bypass surgery results in better outcomes than angioplasty

in patients with multi-vessel disease and at a lower cost.
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Williams (1985) assessed the cost effectiveness of CABG for differing severities of
angina. They used a simple calculation method based on three cardiologists’ opinion to
estimate the likely value of QALY lifetime gain from the surgery. Cleland and Walker
(1997, 1998) used a spreadsheet state transition model to estimate the costs and benefits
of medical treatment versus revascularisation in a hypothetical trial of 100 patients.
They compared the treatment arm to the results of the medical arm to include aspirin
and statins, assuming that none of the treatment arm would be on these drugs. Kwok et
al. (2001) simulated a CABG trial for 5 year and 10 year outcomes using a Markov
model to incorporate drugs developed since these trials. They found improved outcomes
for both surgically and medically treated patients of similar magnitude and so the

fundamental conclusions of the original bypass trials were unchanged.
3.4.2 Percutaneous transluminal coronary angioplasty

Wong et al. (1990) developed a Markov cycle model to compare CABG, PTCA and
conservative medical therapy. They grouped patients according to age, gender, coronary
anatomy, ventricular function and the presence of mild or severe angina. In the model,
each year a cohort of patients could die from cardiac or non cardiac causes or progress
to either the angioplasty, bypass surgery or no procedure sub tree that modelled
prognosis for the next year. Patients were assumed to not have had revascularisation
before but the model simulated repeat operations due to procedural failure or symptom
recurrence. They concluded that the most cost effective form of management depended
on the patient’s baseline clinical characteristics. They recommended that angioplasty is
likely to be more cost effective than CABG as long as complete revascularisation is
possible, which may not be feasible in patients with 3 vessel disease. Furthermore,
revascularisation was shown not to be cost effective unless symptoms were severe or

there were other indications of severe ischaemia or severe multi-vessel disease.
3.4.3 Stents

Cohen et al. (1994) developed a short term decision tree combined with a Markov
model for long term outcomes to evaluate the cost effectiveness of stenting as a
treatment for symptomatic single vessel coronary disease using SMLTREE. They

considered only percutaneous revascularisation techniques as the initial intervention.
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The compared the following strategies: 1) angioplasty, 2) stenting, 3) initial angioplasty
followed by coronary stenting for symptomatic restenosis (secondary stenting). In the
first two strategies they assumed that patients with symptomatic restenosis would be
treated by repeat balloon angioplasty. The decision tree follows patients during the six
months after the procedure. Patients can either have an abrupt closure of the artery or
failure to dilate, in which case they would receive an emergency stent or bypass graft,
die from the operation, or have initial success. Those patients who have successful
procedures have risk of thrombosis, which could result in a fatal MI or emergency
angioplasty or bypass graft, or restenosis, which would require them to have repeat
revascularisation. Patients had a maximum of three PTCA attempts before undergoing
bypass surgery. Long term outcomes of the patients were evaluated in the Post Revasc
Markov model. During each 6 month cycle of the model, patients could die, suffer a
myocardial infarction, undergo angioplasty or CABG after developing symptomatic
restenosis. They concluded that

‘despite its higher cost, elective coronary stenting may be a reasonable cost

effective treatment for selected patients with single vessel coronary disease’.
The results are very sensitive to the relative stenosis rates and the difference in costs

between the procedures.

Schwicker and Banz (1997) developed a similar model to Cohen et al. (1994) to
compare the cost effectiveness of stent, balloon angioplasty and bypass surgery for
single and multi vessel coronary artery disease study in five European countries over
three years. The study uses event free survival (EFS) and cost per EFS as an outcome
measure. EFS includes the absence of death, MI and revascularisation procedures. Each
of the outcomes have equal weight in the outcome measure. The authors justify the use
of EFS by stating that the death and MI rates are ‘practically equal’ between strategies.
Data for multi vessel disease were based on medical opinion. They concluded that stents
had a 25-30% lower cost per EFS for single vessel disease. Yock et al. (2003)
developed a Markov model based on the BARI trial to compare the cost effectiveness
for stenting for CABG in patients with multi-vessel disease. They used a decision tree
for the initial revascularisation and associated in hospital events until the fourth year of
follow up. Surviving patients entered a Markov model that ran in 3 monthly cycles.
Patients could have repeat revascularisation in the Markov model. The study found that

CABG was more effective and less costly than stenting.
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3.4.4 Drug eluting stents

Kong et al. (2004) developed a population disease state transition model to investigate
the likely impact of drug eluting stents on a typical medical centre over five years. In
each year a new cohort of patients presenting at angiography entered the model. In the
baseline case there were four treatment options: Medical treatment, CABG, bare metal
stenting and balloon angioplasty. In each year patients who had the treatments were
either relieved of their symptoms and left the model or developed recurrent symptoms
that required additional treatment in later years. Patients were simulated individually. In
the scenario, a proportion of patients received drug eluting stents as suggested by a
panel of cardiologists. The study concluded that the cost of introduction of these drug
eluting stents will be considerable and if current funding is not increased is likely to

cause financial difficulties for many of the medical centres.

3.4.5 Discussion about revascularisation studies

We consider revascularisation to be a short term intervention because it happens over a
relatively short time period. However in contrast to the studies for diagnostic tests and

thrombolysis described above, many of the studies use Markov models. The reason for
this is that they have decided to model future revascularisation which would not be

feasible with a decision tree model.

3.5 Secondary prevention drugs: Statins

3-Hydroxy-3Methylglutaryl-Coenzyme A (HMG-CoA) Reductase Inhibitors or ‘statins’
have been shown in several recent trials, for example WOSCOPS (Shepherd et al.
1995), AFCAPS (Downs et al. 1998), 4S (1994), CARE (Sacks et al. 1996), LIPID
(1998), to reduce the production of cholesterol in the liver, and so reduce the risk of
both initial or primary CHD events and recurrent or secondary CHD events. The most
common statins are atorvastatin, fluvastatin, pravastatin, simvastatin, lovastatin and

cerivastatin.
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The cost effectiveness of statins has been assessed by many studies (Tsevat et al. 2001,
Prosser et al. 2000; Russell et al. 2001; Goldman et al. 1991; Huse et al. 1998;
Johanesson et al. 1997; Pharoah and Hollingworth 1996; Elliott and Weir 1999; van
Hout and Simoons 2001; Muls et al. 1998; Cobos et al. 1999; Maclaine et al. 2001;
Ganz et al. 2002; Grover et al. 1998, 1999; Pickin et al. 1999; Ebrahim et al. 1999;
Ashraf et al. 1996; Palmer et al. 2003; Scuffham and Chaplin 2004), see Table 3.5.1.
Most of these studies use a Markov cohort model (also called the life table method) to
estimate the long term or life time prognosis of patients for those on statins compared to
those on placebo or no treatment. In contrast Cobos et al. (1999), Maclaine et al. (2001)
and Palmer et al. (2003) have used short term models to measure the success of patients
reaching desired levels of cholesterol. Most of the studies measured the outcome of life
years saved, rather than quality adjusted life years saved. The quality of life of patients

on statins was assumed to be not statistically different to those not on statins.

Several of the studies have compared the cost effectiveness of individual statins
(Russell et al. 2001; Huse et al. 1998; Elliott and Weir 1999; Cobos et al. 1999;
Maclaine et al. 2001; Palmer et al. 2003) with each other (section 3.5.1). Other studies
use one statin or other, often according to the statin used in a particular trial, to assess
the effectiveness of statins. As mentioned above, statins reduce cholesterol levels and
this in turn reduces the risk of CHD events. Some of the studies have calculated the
reduction in cholesterol levels and applied survival equations (Russell et al. 2001; Huse
et al. 1998; Maclaine et al. 2001; Elliott and Weir 1999; Goldman et al. 1991; Grover et
al. 1998, 1999; Johanesson et al. 1997) for example the Framingham equations, while
others have used a risk reduction applied to the CHD event rate (Ashraf et al. 1996,
Ebrahim et al. 1999; Ganz et al. 2000; Muls et al. 1998; Pharaoh and Hollingworth
1996; Pickin et al. 1999; Tsevat et al. 2001; Van Hout and Simoons 2001). Several
studies have simulated and then extended clinical trials, for example the CARE trial
(Tsevat et al. 2001; Van Hout and Simoons 2001), PLAC I & II (Ashraf et al. 1996;
Muls et al. 1998), 4S (Johannesson et al. 1997; Van Hout and Simoons 2001), LIPID
(Van Hout and Simoons 2001), LIPS (Scuftham and Chaplin 2004). All of the studies
conclude that statins represent good value and the higher the risk of the patient of CHD
events, the more cost effective statins are. Furthermore, the general consensus was that
statins should be considered for individuals with coronary heart disease and individuals

without CHD but who are at high risk of developing CHD.
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Table 3.5.1 Models used for cost effectiveness (CE) analyses for cholesterol lowering strategies and other secondary prevention drug therapies
(Terminology used: CE cost effectiveness; ICER incremental cost effectiveness ratio; LYS life years saved; CHD Coronary heart disease; ATV atorvastatin;
FLV fluvastatin; CRV cerviastatin; LV A lovastatin; PRV pravastatin; SMV simvastatin; PLAC pravastatin limitation of atherosclerosis in the coronary
arteries trial; WOSCOPS West of Scotland Coronary Prevention Study; 4S Scandinavian Simvastatin Survival Study; AFCAPS Air Force/Texas Coronary
Atherosclerosis Prevention Study; LIPID Long-Term Intervention with Pravastatin in Ischemic Disease; CARE Cholesterol and Recurrent Events; LIPS

Lescol Intervention Prevention Study )

Study Strategy; drug used Data sources / Model used / Risk factors Results

time horizon

/ no. of health states

Ashraf et al. CE of pravastatin for secondary

prevention of CHD.

Ebrahim et al.
HTA 1999 UK

CE of statins in preventing CHD
at different CHD risk levels

Ganz et al. 2000 CE of statins in older patients
with M1, pravastatin (40 mg)
Goldman et al. CE of statins for secondary

prevention of CHD

Grover et al. CE of statins in patients with

PLACI PLACII
Framingham; 10
years
WOSCOPS,
AFCAPS, 48,
CARE, LIPID;
lifetime

CARE; Lifetime

Framingham heart

study; Lifetime

48, Framingham

Markov (3 states); age,

severity of disease

Life table method (2
states); CHD event risk, age

Markov model (six states);
age,

CHD policy model;
cholesterol level, age, drug
dosage, blood pressure,
smoking, weight

Markov model; age, sex,

CE for CHD patients treated with pravastatin
varied from $7,124 to $12,665 per LYS (for 1 to 3
risk factors).

CE (£/LYS) at annual total mortality rate of 1.5%
7240, 3% 4730, 6% 2480. For 3% annual
mortality, atorvastatin (10 mg) 2188, simvastatin
(27mg) 6096, pravastatin (40mg) 7721.

CE of statin therapy of patients of age 75-84 with
previous MI was $18,800 per QALY

CE of lovastatin (40 mg), Men $8600 - $38 000
per LYS; Women $29 000 - $49 000 per LYS

CE of statin ranged from $4487 to $8532 per LYS
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1999 Canada
Grover et al.
1998 Canada
Johannesson et
al. 1997

Sweden

Muls et al. 1998
Belgium

Pharaoh and
Hollingworth,
1996 UK

Pickin et al.
1999 UK
Prosser et al.

2000 USA

Scuffham and

CVD disease, simvastatin (27.2

mg)

CE of simvastatin treatment to
lower cholesterol level for
patients with CHD. simvastatin
(27.2mg)

CE of pravastatin for secondary

prevention of CHD for Belgium.

CE of statins in lowering serum
cholesterol concentration in
patients at varying risk.

simvastatin (27.2mg)

CE of statins in preventing CHD
at different CHD risk levels

CE of cholesterol lowering
therapies including diet
according to different risk
factors; simvastatin (27.2mg)

CE of fluvastatin versus no

Study, Lipid
Research Clinics
Program; Lifetime

48S; Lifetime

Uses model as in
Ashrafetal; 10
years

4S, WOSCOPS,
population of
typical district
health authority; 10
years

48S; lifetime

4S; 30 years

LIPS, 10 years

cholesterol level

Markov model (4 states);
age, sex and cholesterol

level

Life table method (2 states),

age, sex, cholesterol level

Life table method (2
states); CHD event risk, age
CHD policy model, blood
pressure, smoking, age,

cholesterol level

Markov model (six states)

in high risk men and $5138 to $8389 for women.

CE ranged from $3800 per LYS for an 70 year old
man to $27,400 per LYS for a 35 year old woman,

with only direct costs.

CE for CHD patient treated with pravastatin varied
from $13,274 (3 risk factors) to $24,359 (1 risk
factor).per LYS

CE for patients aged 45-64 year old with pre-
existing CHD cholesterol concentration > 5.4

mmol/l was £32 000 per LYS.

CE (£/LYS) at CHD event risk were 4.5%: £5100;
3%: £8200; 2%: £10,700; 1.5%: £12,500

CE per QALY ranged for male from $1800 for 45
to 54 years of age to $9900 for 75 to 84 years of
age and for female from $8100 (45-54 years) to
$40 000 (35-44 years.

CE per QALY gained was £3207 for fluvastatin
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Chaplin 2004 statins for SP of cardiac events

UK following successful PTCA

Tsevat et al. CE of pravastatin therapy for

CARE; Lifetime

Markov models; (2 states; 7

compared to no statins

CE per QALY of $16 000 to $32 000. More

2001 USA survivors of myocardial states) age < 60, > 60; LDL  favourable for patients > 60 years old and patients
infarction; pravastatin (40mg) level with LDL cholesterol levels > 125 mg/dL.

Van Hout and CE of statins in preventing CHD WOSCOPS, State transition model (5 CE per LYS was 9970 Euros (CARE), 8028 Euros

Simoons 2001 at different CHD risk levels AFCAPS, 4S, states); age, sex (LIPID), 6695 Euros (4S).

Holland CARE, LIPID;

lifetime

Comparison of individual statins

Cobos et al. CE of alternative statins in Catalan Nutritional ~ Stochastic simulation CE (pesetas per LYS) were

1999 Spain Spain for patients at different Survey; 2 years, model; age, smoking, FLV (233,800 ; 266,480), LVA (279,778; 271
risk levels (FLV, LVA, Delea et al. Kong et hypertension, cholesterol 400), PRV (270, 900; 369 400); SMV (245 100;
PRV,SMV) al level 298 400) for Delea et al. and Kong et al.

respectively.
Elliott and Weir  CE of different statins (ATV, 48S; Lifetime Markov cohort simulation;  CE of ($ per LYS) was
1999 USA CRV, FLV, LVA, PRV, SMV) age ATV 5421, FLV 5790, CRV 6158, PRV 8575,

Huse et al. 1998
USA

CE of alternative statins in

secondary prevention ATV
(10mg), FLV (20mg), LVA
(20mg), PRV (20mg), SMV

Russell et al.
2001 Canada

Framingham Heart

Study; Lifetime

Markov model (seven
states); age, diabetes,

smoking, hypertension

SMV 9232, LVA 15073.

CE of statins ($ per LYS) ranged from 65 yr old
with high LDL cholesterol to 45 year old with low
LDL cholesterol: ATV (10 600 —- 35 900), SMV
(13 000 — 43 100), FLV (14 700 — 47 400), PRV
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Maclaine et al.

2001 UK

Palmer et al.

2003 UK

(10mg)

CE of alternative statins to
achieve target cholesterol,
atorvastatin, SMV, CRV, FLV
and PRV

CE of rosuvastatin for patients
reaching target cholesterol vs

other statins

Meta analysis; 1

year

STELLAR, 1 year

Decision tree; cholesterol

level

Decision tree model;

cholesterol level

(15900 —51 800), LVA (20 099 - 63 614).
Mean annual cost per patient to reach target LDL
cholesterol was atorvastatin (£383), SMV (£431),
CRV (£501), FLV (£820) and PRV (£1213.).

CE with fluvastatin, incremental cost per
additional patient to target for rosuvastatin was

£24 using LDL-C and £83 using total cholesterol.
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Pickin et al. (1999) examined the cost effectiveness of statin treatment in subgroups of
the population at different levels of absolute CHD risk to incorporate both primary and
secondary prevention cohorts. The CHD risk was defined as definite and probable fatal
and non fatal coronary events. The life table method (often called Markov cohort
simulation) was used in cohorts of patients based on the 48 trial for secondary
prevention (average age 58 years). The mortality of men on placebo during the 5.4 years
of the 4S trial was 1.74 times that of men age 58-64 in the UK general population and
that ratio was assumed to remain constant for life. The annual probability of dying in
any given cohort treated with simvastatin was calculated by multiplying the annual
probability in the placebo by the relative risk of all cause mortality observed for treated
men in the 48 trial, ie 0.66, and this was assumed to remain constant for life. For each
year, a number of the cohort will die. Health service savings on procedure and
admissions were estimated by reducing UK hospital treatment costs in the same
proportion as seen in the 4S trial. Pickin et al. (66) estimate that cost per life year saved
is £5100 for the secondary prevention cohort who have an annual event risk of 4.5%.
Pickin et al. (1999) recommended that all CHD patients and those with a CHD event
risk of greater than 3% per year should be treated with statins. However they estimated
that the total annual cost would be about £885 million in England and this cost was
‘equivalent to 25% of the present expenditure on community prescribed

medicines’.

Ebrahim et al. (1999) used the same model as described above in Pickin et al. They
pooled data from 23 published RCTs for cholesterol lowering to give a relative risk
reduction of CHD mortality of 27%. Pharoah and Hollingworth (1996) used a similar
life table model for 10 years to estimate the cost effectiveness for cohorts in a health
authority population for a range of ages and risk of fatal CVD disease. They also
estimated the likely cost for the health authority population of using statins in different
subgroups over 10 years, for example this would be £11.1 million to give statins to
patients with CHD aged 45-64 years old. Van Hout and Simoons (2001) simulated each
of the major trials over the trial period and then extended them for a further five years
and for the cohorts’ lifetimes. Ganz et al. (2000) modelled the cost effectiveness of
statins for patients aged over 75 years with myocardial infarction. Tsevat et al. (2001)
determined the cost effectiveness of pravastatin for survivors of myocardial infarction

with average cholesterol levels by constructing two pairs of Markov models based on
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recurrent event data, from the CARE trial. Ashraf et al. (1996) and Muls et al. (1998)
modelled the cost effectiveness of statins with a Markov model which used the recurrent
CHD events reductions from the PLAC I & I trials. Similarly, Johanesson et al. (1997)
used a Markov model for patients in the 4S trial. Scuffham and Chaplin (2004) used a
Markov model to investigate the cost effectiveness of statin use after successful PTCA

procedure using the LIPS trial.

Goldman et al. (1991) and Prosser et al. (2000) both used the CHD Policy Model to
evaluate the cost effectiveness of statins according to different risk factors, such as age,
pre-treatment cholesterol level, drug dosage, blood pressure, weight and smoking.
Grover et al. (1998, 1999) used the Cardiovascular life expectancy model to estimate
the benefits of statins based on the 48 trial. The Cardiovascular life expectancy model
describes the yearly transitions to secondary CVD end points such as nonfatal MI,
congestive heart failure and stroke as well as fatal CVD events using multivariate
logistic regression equations from patient’s characteristics such as age, sex, blood

pressure, smoking and cholestero] levels.

3.5.1 Comparison of individual statins

Several studies have compared the cost effectiveness of individual statins (Table 3.5.2).
Huse et al. (1998) developed a Markov model to compare the cost effectiveness of
different statins. Different doses of each of the drugs were allocated which in turn
reduced the cholesterol level of the cohort. Elliott and Weir (1999) used a Markov
model for a cohort of 60 years of age and simulated them with annual cycles until age
85 or they died. They used doses for each of the drugs necessary to provide a 35.57%
reduction in LDL cholesterol as in the 4S trial or the maximum possible dosage if the

reduction was not possible.

Maclaine et al. (2001) and Palmer et al. (2003) used decision tree models to estimate the
relative cost effectiveness of the statins to achieve a target LDL-C level during a year.
The model aims to represent the drug management process of a hypothetical cohort.
Patients with initial high cholesterol are assigned to initiate treatment and reviewed after
12 weeks. If they have met their target they stay on this dosage and will not be reviewed

again, if not they receive a higher dosage. They are reviewed several more times during
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the year. The models assume that patients are always started on the lowest dose of the

drug.

Cobos et al. (1999) used a stochastic simulation model to estimate all the patients’

percentage reduction in their cholesterol during a two year period using different doses

and drugs. They used two different statin effectiveness trials which gave different
ordering for the cost effectiveness of the statins (Table 3.5.2).

Table 3.5.2 Relative cost effectiveness of statins

Drug Huse  Russell Elliottand Maclaine Coboset Cobos  Palmer
ranking et al. et al. Weir et al. al. (1) 2) et al.
(1998)  (2001) (1999) (2001) (1999) (1999) (2003)

1 Atorva.  Atorva. Atorva. Atorva. Fluva. Fluva.  Rosuva.

2" Simva. Lova. Fluva. Simva. Simva. Lova. Atorva.
3™ Fluva.  Simva. Ceriva. Ceriva. Prava. Prava. Simva.
4" Prava. Fluva. Prava. Fluva. Lova. Simva. Fluva.
5t Lova. Prava. Simva. Prava. Prava.

6™ Lova.

Cobos (1) uses Delea et al. Cobos (2) uses Kong et al

3.6 Secondary prevention drugs: Other therapeutic drugs

In addition to statins, several other drugs have been shown to have beneficial effect for

either symptom relief or prognostic gain for coronary heart disease patients. Beta

blockers act to slow the heart rate and lower blood pressure by blocking the effects of

adrenaline. Calcium antagonists (also called calcium channel blockers), such as

Amlodipine, act to expand the arteries, making it easier for the blood to flow.

Angiotensin converting enzyme (ACE) inhibitors block an enzyme normally present in

the body and so cause the blood vessels to relax. Antiplatelet drugs, such as aspirin and

clopidogrel, help to stop the blood clotting by reducing its viscosity.
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The cost effectiveness of medical therapies have been assessed by several studies
(Phillips et al. 2000; Doyle et al. 2002; Gaspoz et al. 2002; Lindgren et al. 2004; Tsevat
et al. 1997; Thaulow et al. 2002), see Table 3.6.1. Philips et al. (2000) and Gaspoz et al.
(2002) both used the Coronary Heart Disease Policy model to evaluate beta blocker use
after M1, and aspirin and clopidogrel respectively. Lindgren et al. (2004) used a Markov
model and Main et al. (2004) used a decision tree to evaluate clopidogrel for patients
with acute coronary syndromes. Tsevat et al. (1997) used a Markov model to evaluate
captopril therapy after myocardial infarction. Doyle et al. (2002) used a Markov model
to evaluate the use of amlodipine. Thaulow et al. (2002) used a decision tree to evaluate

amlodipine in patients undergoing angioplasty procedures.

3.6.1 Beta blockers

Philips et al. (2000) investigated two strategies: one cohort of MI survivors in 2000
followed up for 20 years (single cohort) and 20 successive annual cohorts of all first MI
survivors in 2000-2020 (multi cohort). They assumed that the beta blockers would have
the maximum relative risk reduction for coronary events for the first three years
compared to those not taking the drug, declining to a 7% risk reduction for the next
three years, followed by a 1% risk reduction in the remaining 14 years. The single

cohort had a cost per QALY gained of $4500 and the multi cohort was cost saving.

3.6.2 Aspirin and clodipogrel

Three studies have assessed the use of clopidogrel for patients with acute coronary
syndromes such as unstable angina or MI. Gaspoz et al. (2002) assessed four strategies:
1) aspirin for all eligible patients, ii) aspirin for all eligible patients and clopidogrel for
those ineligible, iii) clopidogrel for all patients, 1v) aspirin for all eligible and
clopidogrel for all patients. The authors found that aspirin was a cost effective treatment
but because of its higher cost, clopidogrel had an unattractive cost effectiveness ratio,
unless its use is restricted to patients who are ineligible for aspirin. It is interesting that
beta blockers were found to be more cost effective than aspirin even though aspirin is

much cheaper than beta blocker and yet they have similar risk reductions in coronary
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events, and the benefit for beta blocker lasted only short term. One of the reasons for

this is that Gaspoz et al. (2002) includes health costs for non coronary heart disease.

Lindgren et al. (2004) and Main et al. (2004) evaluated clopidogrel used in combination
with aspirin in comparison with aspirin only. They assumed that clopidogrel would only
be used for 12 months. Lindgren et al. used a Markov model and Main et al. used a
decision tree model for the first year and a Markov model with four states thereafter. In
contrast to Gaspoz et al.(2002) both studies found clopidogrel to be cost effective. As
Lindgren et al. notes, Gaspoz et al. assumes 25 years of treatment with clopidogrel

which leads to less favourable outcomes.

3.6.3 ACE inhibitors

Tsevat et al. (1997) used the actual all cause mortality data for years 1 to 4 from the
SAVE trial stratified by age group to evaluate captopril therapy after MI with low
ejection fraction. Survival beyond the fourth year was simulated in a Markov model,
which distinguished between coronary heart disease related mortality and other cause
mortality. For each age group, they developed a ‘/imited benefit’ model (ie benefits of
captopril only lasts 4 years) and a ‘persistent benefit’ model (ie benefits persists). The
cost effectiveness of captopril ranged from $3600 per QALY gained for 80 year old
patients to $60,800 per QALY gained for 50 year old patients using the limited benefit
model. In the persistent benefits model, the cost effectiveness ranged from $3700 to

$10,400 per QALY depending on age.
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Models used for cost effectiveness (CE) analyses for other secondary prevention drug therapies (not statins)

(Terminology used: CE cost effectiveness; ICER incremental cost effectiveness ratio; LYS life years saved; CHD Coronary heart disease; PREVENT

Prospective Evaluation of the Vascular Effects of Norvasc Trial; CURE Clopidogrel in Unstable Angina to Prevent Recurrent Events; CAPARES Coronary

Angioplasty Amlodipine Restenosis Study; SAVE Survival and Ventricular Enlargement Trial)

Study Strategy Data sources / Model used Results
time horizon

Doyle et al. 2002 CE of treating patients PREVENT;3  Markov (eight Use of amlodipine resulted in fewer hospitalisations and
Sweden undergoing PTCA with years states), age invasive surgery in the short and long term and is a cost

amlodipine saving therapeutic strategy (SEK 800 per patient over 3

years).

Gaspoz et al. 2002 CE of aspirin, clopidogrel Framingham CHD Policy model;  Increased aspirin use has CE of $11 000 per QALY gained.
USA for secondary prevention of heart study; cholesterol level, Use of clopidogrel for ineligible (for aspirin) patients cost

CHD lifetime age, blood pressure,  $31 000 per QALY.

smoking, weight

Lindgren et al. 2004 CE of clopidogrel in CURE trial, Markov (six states),  CE per QALY gained for clopidogrel (for 1 year) and
Sweden patients with acute Lifetime age, sex aspirin compared with aspirin only was €1365.

coronary syndromes
Main et al. 2004 UK CE of clopidogrel in Lifetime Decision tree CE per QALY gained for clopidogrel (for 1 year) and

Phillips et al. 2000

patients with acute
coronary syndromes

CE of beta blocker use after

National Co-

CHD Policy model;

aspirin compared with aspirin only was £6078.

CE per QALY gained for beta blocker use after M1 is
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USA

Thaulow et al. 2002
Norway, Canada
Tsevat et al. 1997
USA

MI

CE of using amlodipine in

patients undergoing PTCA.

CE of captopril therapy
after MI.

operative
Cardiovascular
Project;
lifetime
CAPARES
trial; 4 months
SAVE;

lifetime

Age (> 65; <65 yrs)
cholesterol level,
age, blood pressure,
smoking, weight
Decision tree model;
age

Markov (3 states);

age

$4,500. Increased use of beta blockers after MI would lead

to cost savings and impressive gains in health.

Amlodipine was cost saving over a 4 month period,
resulting from improved clinical outcomes.

CE of captopril ranged from $3,600 to $60,800 per QALY
depending on age in the limited benefit analyses and $3,700
- $10,400 in the persistent benefit analyses.
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Models used for analyses for other miscellaneous studies

(Terminology used: CE cost effectiveness; ICER incremental cost effectiveness ratio; LYS life years saved; CHD Coronary heart disease)

Study Strategy Data sources / Model used Results
population
Davies et al. 1994 Planning services for CHD 5 years Discrete event With the hospital specific lengths of stay and demand for
UK patients in a hospital department ) simulation treatment, the resource bottlenecks were found to be the
number of cardiology beds.
Groothius et al. Capacity planning for 1 day Discrete event The results of the simulation experiments give valuable
2000 Holland catheterisation in a hospital simulation information how to optimise the use of the
department catheterisation room.
Harper et al. Planning services by geographical 1 year Discrete event The model helped health care planners evaluate the
2004, UK location for increased simulation consequences of different geographical distributions and
revascularisation organisations of their services.
Krumholz et al. CE of smoking cessation after MI  Lifetime Decision tree; age A nurse-managed smoking cessation program after acute
1993 USA myocardial infarction has CE of $220 per LYS.
Lowensteyn et al. CE of exercise training for Lifetime Cardiovascular CE of exercise training for CHD patient ranges from
2000 USA primary and secondary prevention disease life $341 for 55-64 year old male (unsupervised) to $42,367
expectancy model, for 35-54 year old female (supervised).
age, sex
Nichol et al. 1998  CE of public access defibrillation =~ Medical Decision tree CE of public access defibrillation was $44 000 per
USA literature; QALY by lay responders and $27 200 per QALY by
lifetime police.
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Tosteson et al. CE of coronary care unit for Multicenter Decision tree CCU had CE of < $50 000 per QALY if probability of
1996 USA emergency department patients Chest Pain MI was > 29%. .
with chest pain. Study; lifetime
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3.6.4 Amlodipine

Thaulow et al. (2002) used a decision tree model to find the total expected cost per
patient for a 4 month period following an initial angioplasty for those treated with
amlodipine or placebo. The model used clinical data from CAPARES and clinical
experts were used to quantify health care resources used for each clinical outcome. The
use of amlodipine decreased the rates of MI and revascularisation. The study did not
calculate cost per life year or QALY saved but surmises that the placebo group had a
higher total cost than the treated group, thus the amolodipine as an adjunct to PTCA
was found to be cost saving. Doyle et al. (2002) constructed a Markov cohort model
over 3 years with six month cycles. Patient level data from PREVENT was used to
populate the model. They commented that

‘the constantly changing health status of the subjects observed during

PREVENT was ideally suited for analysis using Markov modelling

techniques due to the ability to incorporate time dependency into the

transitional probability of entering any given health state.’
They found no significant improvement in health but fewer hospitalisations which

resulted in a slight cost saving for those treated with amlodipine.

3.6.5 Discussion about studies for drug interventions

One of the difficulties with extrapolating beyond the end of a trial is that it is not
possible to exactly predict the benefit of the treatment after the end of a trial. It may be
there is no continuing benefit of the treatment after the trial, or that the benefit continues
after the trial with a continual separation of the survival curves beyond the trial period,
or indeed something between these extremes (eg Philips et al. 2000). The studies
discussed in this section make varying assumptions with regard to the continuing effect
of treatment. Several of them assume that there will be no continued benefit after the
trial end point or a coronary event, for example Tsevat et al. (2001), Johanesson et al.
(1997), Muls et al. (1998), Ashraf et al. (1996). Others assume that treatment benefits
will continue indefinitely (Pharaoh and Hollingworth 1996; Van Hout and Simoons
2001; Ganz et al. 2000; Pickin et al. 1999; Ebrahim et al. 1599). One solution is to

provide results on both possible extremes, for example Tsevat (1995).
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Several of the studies attempted to simulate clinical trials and this may lead to biases
due to the trial, for example the CARE and PLAC I trial did not result in a statistically
significant difference in mortality whereas the 4S and LIPID trial did, but on the other
hand they avoid assumptions about the generalisability of the trial to different
populations. Several of the models, for example Pharaoh and Hollingworth (1996),
Pickin et al. (1999), Ebrahim et al. (1999), assume that non fatal events and health cost
savings are proportional to the mortality benefit seen. As mentioned above, most of the
studies measured the outcome of life years saved, rather than quality adjusted life years
saved. This is likely to result in worse cost effectiveness values than calculating cost per
QALY. Only two authors justified the modelling technique used. Scuffham and Chaplin
(2004) commented,

‘A Markov model was chosen because the differential timing of events can

be modelled explicitly’
As shown in Table 3.5.1, most of the Markov models have fewer than seven health
states and based on the work in this thesis the Markov model is likely to be the optimal

model for these studies.

3.7 Miscellaneous studies

3.7.1 Coronary care units

Tosteson et al. (1996) assessed the cost effectiveness of coronary care units (CCU)
compared to an intermediate care unit (ICU) using a decision tree for the first 48 hours
after arrival and combined this with an estimate of their life expectancy (Table 3.7.1).
Within the first 48 hours, patients could either have a diagnosed MI or not, die or
survive. The probability of death in first 48 hours depends on whether they have a MI
and whether they are referred to ICU or CCU. Those with MI who are referred to ICU
instead of CCU have a 15% increase in mortality. Patients who survive 48 hours are
classified according to the level of disease severity. During the remainder of the
hospitalisation, patients remain at risk of developing complications or dying and these
events are assume to depend on their initial survival, myocardial infarction status, initial

triage site and worst complication during the hospitalisation. The study concluded the
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CCU should be used for patients with a moderate (> 21%, depending on age)

probability of M1, ie patients with ECG changes of ischaemia or recent infarction.

3.7.2 Smoking cessation

Krumholz et al. (1993) assessed the cost effectiveness of a nurse-managed smoking
cessation program after myocardial infarction using a decision tree combined with
patient life expectancies. The study estimated a cost effectiveness of $220 per year of

life saved.

3.7.3 Public defibrillators

Nichol et al. (1998) assessed the cost effectiveness of public access defibrillation using
a decision tree combined with life expectancy data. A patient who experienced a sudden
cardiac arrest either died before hospital, died in hospital or lived to discharge. If the
emergency medical system was supplemented by public access defibrillation by lay
responders then patients who experience sudden cardiac arrest in a public place
potentially benefited from enhanced defibrillation. The authors concluded that public

access defibrillation was potentially cost effective and recommended a trial.

3.7.4 Exercise training

Lowensteyn et al. (2000) assessed the cost effectiveness of exercise training using the
Cardiovascular Disease Life Expectancy model (Grover et al. 1998). They used
randomised controlled trials to provide estimates for the reduction of CHD risk factors
of individuals assigned to exercise training. The model followed cohorts over their
lifetime. Adherence to the exercise program was estimated to be 50% for the first year,
and 30% for all remaining years. They assumed individuals who stopped exercise
stopped accruing benefits and their risk factors reverted back to the original values.
They assessed supervised and unsupervised programmes and found that exercise
training for both was found to be highly cost effective for men with CVD. Exercise

training was less cost effective in women.
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3.7.5 Capacity planning

Davies (1994) developed a discrete event simulation (DES) to predict the resource use
and costs for patients with CHD in a hospital department. Patients arrived into the
model, according to a specified demand, if they are referred for angiography. After
angiogram, they are referred to angioplasty, bypass surgery or medical treatment, and
patients will join treatment queues if appropriate. The simulation dynamically models
the use of beds, catheter labs and theatres. The level of demand and resources were

varied to assess the bottlenecks in the system.

Groothius et al. (2001) developed a DES to optimise the use of catheterisation capacity
in a hospital department. Their simulation is similar to Davies et al. (1994) although it
does not model the survival of patients after procedures or the effect of different
strategies on the treatment waiting lists, instead looking at the effects of different
scheduling procedures on throughput and efficiency of the resources. Harper et al.
(2004,2005) developed a discrete-event geographical location-allocation simulation
model for evaluating various options for the provision of cardiac services within the
Eastern region of the UK. In particular they modelled patient travel times to a variety of

possible health care centres in order to increase existing revascularisation services.
3.8 Generic models

Several studies have conétructed generic or system models for CHD (Bonneux et al.
1994; Weinstein et al. 1987, Bensley et al. 1995; Cooper et al. 2002) (See Table 3.8.1).
These models model the wider CHD disease process, not only that specific to a

particular intervention.

Hunink et al. (1990) describe the CHD Health Policy model as a computer simulation
state transition model of CHD in US residents aged 35 through 84 years without
coronary heart disease. The model projects the future CHD incidence, prevalence,
mortality and resource costs under alternative assumptions about preventative and
therapeutic interventions. Relative risk coefficients and CHD incident rates were based

on data from the Framington Heart Study. The model has been used extensively to study
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strategies for primary prevention (Goldman et al. 2001; Tsevat et al. 1991; Edelson et
al. 1990; Goldman et al. 1989; Tsevat 1992) and treatment strategies of CHD, for
example use of statins (Prosser et al. 2000, Goldman 1991), aspirin (Gaspoz et al. 2002)
and beta blocker (Philips et al 2000). It has also been used to provide estimates of life
expectancy for other decision analytic models, for example for statins (Tsevat 2001),
thrombolysis, (Krumholz et al. 1992; Lieu et al.1997; Parmley 1999), stents (Cohen et
al. 1994), angiography (Kuntz et al. 1996), and ACE inhibitors (Tsevat et al. 1997).

The model includes risk factors for age, sex, smoking status, diastolic blood pressure,
serum cholesterol and relative weight. The model consists of three integrated sub
models: the demographic-epidemiologic, the bridge and disease history sub models

(Figure 3.8.1).

The demographic epidemiologic model predicts CHD incidence and non-CHD mortality
among subjects without CHD stratified by age, sex, blood pressure, smoking status,
cholesterol. After development of CHD, the bridge sub model characterises the initial
CHD event and the subsequent events in the next 30 day period. The Disease History
model predicts the subsequent CHD events, revascularisation procedures, CHD
mortality and non-CHD mortality among patients with CHD and history of myocardial
infarction, cardiac arrest and CABG and PTCA. The patients move between the twelve
states at the end of each model year according to any events that have occurred in that
year. For modelling interventions, risk factors are adjusted by a relative amount (eg,
10% reduction in cholesterol) or absolute amount (eg a 5 mm HG decrease in diastolic
blood pressure) or the mean value is redefined (eg change the mean number of
cigarettes smoked per day from 12 to zero) for any or all cells. Secondary prevention is

simulated by reducing the DH probabilities.
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Generic policy models

(Terminology used: CE cost effectiveness; ICER incremental cost effectiveness ratio; LYS life years saved; CHD Coronary heart disease; GPRD General
Practitioners Research Database; UKHAS United Kingdom Heart Attack Study)

Study

Bensley et al. 1995
UK

Bonneux et al. 1994
The Netherlands

Cooper et al. 2002 UK

Weinstein et al. 1988
USA

Strategy

Prediction of resource use
and CHD population
Prediction of CHD
population including

congestive heart failure

Prediction of CHD
population

Prediction of CHD
population, various cost

effectiveness analyses

Data sources / time
horizon

1 year

Framingham heart

study; lifetime

GPRD, UKHAS, Until
age 85.
Framingham heart

study; lifetime

Model used / Risk
factors
Spreadsheet deterministic

model

Markov simulation
model; cholesterol level,
age, drug dosage, blood
pressure, smoking, weight
Discrete event simulation;
vessel disease, age, sex
Markov simulation
model; cholesterol level,
age, drug dosage, blood

pressure, smoking, weight

Results

Estimate of likely resource use for different
referral rates and event rates.

Declining mortality and incidence and increase
in health care demands is shown to be consistent

by the model.

Predicts national CHD morbidity and mortality
levels as a result of different interventions.

Has been used to calculate cost effectiveness of
various prevention and treatment interventions
and predict realistic target levels of mortality and

morbitity as a result of these interventions.
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Inputs Model Outcomes

Demographic-

Initial Population Free of CHD ——»| Eplidemiolagic

Mode!
Incoming 35-Year-Olds Fres of CHD —» gg: (35-84y) |, 85.vear-Old Survivors
Distribution and Mean of Risk Factors ——» ggp — Non-CHD Deaths
HDL
Primary Prevention —| LDL

SMK
(BMI)

Framingham Risk Funclion ——q}CHD Incidence

Bridge Model
Age (35-84 y)
Sex

Angina

Mi

Treatment —» — Acute CHD Deaths

Arrest
CABG
PTCA

I Survivors

initial Population With CHD -——— Disease History —|—> 85-Year-Old Survivors

Model
Incoming 35-Year-Olds With CRD ——| 598 G584Y) 1 2010 cip peatns
) Angina
Secondary Prevention ——» Ml {—— Chronic CHD Deaths
+  Arrest
Treatment —| CABG -
PTCA — Non-CHD Deaths

Figure 3.8.1 Overview of the coronary heart disease (CHD) policy model by Hunink
et al. (1990).

The model was written in FORTRAN. It is based on a derivation of the Framingham
risk equations (Anderson et al. 1991) for the US population and uses data obtained from
a literature review, hospital discharge data, US nation-wide health surveys and ongoing
clinical trials. The model is inflexible with restrictive assumptions about transitions
between states. The model assumes, for example, that the progress of any patient in any
state is independent of how they arrived there (Markov assumption). This approach
causes the number of strata to be very large (5400 strata in DE model, 1200 in DH
model). Risk factors have to be independently distributed in the population, rather than
correlated. In addition the model does not consider congestive heart failure or PTCA.
Nevertheless, the model achieves its aim in forecasting CHD and led to a number of
studies using the model. In addition it has been largely replicated (with one or two

alterations) by Bonneux (1994).
Bonneux et al. (1994) attempt to ‘forecast the plausible evolution of heart disease

morbidity’ using a state transition model with a similar structure to that of the Coronary

Heart Disease Model as described by Weinstein et al. (1987). The model excludes

76



Chapter 3 Literature Review of Coronary Heart Disease models

cardiac arrest as a prevalent state and includes congestive heart failure. Most of the
limitations of the Weinstein model also apply to Bonneux. The model projects heart
disease from 1985 — 2010 for different levels of decrease in incidence. The model]
predicts that morbidity will decrease among the young and middle aged but increase

among the elderly.

Bensley et al. (1995) constructed a simple spreadsheet flow model of the need for
cardiology services. The spreadsheet model is deterministic and can be seen to be
similar to an arithmetical bookkeeping exercise. The population is aged 35-74 and starts
from a state of health with a risk of angina and acute coronary events. Patients’ progress
is then modelled through diagnostic tests (exercise tests and angiogram), surgical
(CABG and PTCA) and medical treatment (Aspirin, thrombolysis, beta blocker). At
each stage of the model the total population is subdivided into smaller populations to
reflect the number of people using the associated resources. The model includes no risk
factors, not even age or sex, no demographic change, and no specific risk factors. The
model can be used to predict the likely number of CABG, PTCA, angiogram and deaths

for different event and referral rates.

A discrete event simulation model for CHD treatment in the UK was developed (Cooper
et al. 2002). It modelled patients who have had a coronary event, through their treatment
pathways and subsequent coronary events. The main interventions modelled were
CABG and PTCA, ambulance and thrombolysis response times, cardiac rehabilitation,
and secondary prevention drugs such as statins, beta blockers, ACE inhibitors and
aspirin (Davies et al. 2003). The main risk factors in the model are age, sex, history of
previous events and the extent of the coronary vessel disease. By modelling using
discrete event simulation, we were able to avoid many of the limitations imposed by the

Markov assumption in the Weinstein model (see section 9.6).

3.9 Discussion

Many of the studies that model a specific intervention have not estimated the overall

cost effectiveness of a population for that intervention, instead concentrating on a base
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case cohort with sensitivity analyses for other cohorts with different risk factors.
Although the range of cost effectiveness for different risk cohorts is interesting, the
policy maker may also be interested in the absolute impact (ie costs and benefits) of the
intervention to a population. For example, Pickin et al. (1999) conclude that the statins
are a very cost effective drug but if they were to be prescribed to all individuals with
CHD or a greater than 3% annual risk of coronary events, this will entail treating 8% of
the adult UK population at a cost equivalent to 25% of the present expenditure on
community prescribed medicines! Clearly the decision to implement the intervention in

this case would be largely influenced by the expenditure available.

Very few of the studies reviewed had been validated in a tangible form and relied
instead upon ‘face validity’. Part of the difficulty in validating the models may be that
studies normally use a single incident cohort of patients through the model, rather than
repopulating the model each year according to recurrent events from a prevalent

population (Davies et al. 2003).

Based on the literature review in this chapter, the reporting in many of the studies of the
modelling was of a poor standard. The quality of economic evaluation reports is
discussed in more detail in section 4.2. Clearly there is limited space for description of
the model in journal articles but in many cases the authors did not include diagrams of
the models and the modelling methodology described was unclear. The description of
the models should be sufficient for a competent modeller to reproduce the models and

all too often this would not have been possible.

3.10 Conclusions

A literature review of Coronary Heart Disease treatment models has been conducted to
provide a contextual background for the subsequent chapters. The majority of the
models described have been developed to assess the cost effectiveness of different
treatment strategies. The most commonly used models were decision tree models for
short term interventions and Markov or state transition models for chronic or long term
interventions. Virtually all studies used cohort based models rather than population

based models and so few estimate the likely total costs and benefits for a population.
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Chapter 4

Methodology Issues for Modelling Health care Interventions

Abstract

There has been much debate in the recent health economic literature concerning the
quality of health economic modelling studies and a summary of the recommendations
for best practice for building models is presented. The optimal choice of modelling
technique is investigated, according to the characteristics of the health care intervention.
Several guidelines are identified from a review of the modelling literature and others are

presented as hypotheses which will be explored in later chapters.

It is concluded that the optimal model will be the simplest that adequately captures the
disease condition or health care system. The use of population-based models and the
provision of health care outcomes for the likely cost, health benefits and cost
effectiveness of the intervention is recommended. The choice of the preferred model
will depend on the likely ease and speed of development, the complexity of the model
in terms of the number of states, and the interconnectedness of the system. The modeller
will need to judge whether interactions between individuals is a significant issue in the
health care system and whether queuing for resources and resource constraints are

relevant to the research question.
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Chapter 4 Methodology Issues for Modelling Health care

Interventions

4.1 Introduction

Economic evaluation attempts to compare health care interventions as a basis for Health
service decision makers. An overview of economic evaluation and some of the

modelling techniques used has been presented in Chapter 2.

There has been much debate in the recent health economic literature concerning the
quality of health economic modelling studies and a summary of the recommendations
for best practice for building models is presented. The optimal choice of modelling
technique is investigated, according to the characteristics of the health care intervention.
Several guidelines are identified from a review of the modelling literature and others are

presented as hypotheses which will be explored in later chapters.

4.2  Quality of models

In recent years, economic analyses have become increasingly common in the medical
literature. Elixhauser et al. (1993, 1998) estimate that 1897 cost benefit analyses or cost
effectiveness analyses have been reported between 1979 — 1990, rising to 2274 between
1991 and 1996. This increase in the number of economic evaluations has led to a greater

willingness to use the results as a basis for allocating scarce resources.

However, there has been much doubt concerning the validation, quality and
comparability of cost-effectiveness studies (Udvarhelyi et al. 1992; Gerard et al. 2000;
Adams et al. 1992; Jefferson and Demichelli 1994; Evans et al. 1995; Neumann et al.
1997; Luce et al. 1996; Jefferson et al. 2002; Neumann et al. 2000). Indeed an editorial
in BMJ (Drummond and Jefferson 1996) states:

‘although coverage of economic evaluation has been limited and the tools

used for quality assessment have varied, the overall conclusions show that
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there is a long way to go before economic evaluations can be regarded as

good enough to justify their use in decision making’.

Neumann et al. (2000) evaluated the quality of 228 cost utility analyses. They
concluded that reporting practices in cost-utility analyses have varied considerably.
They noted that the quality of published analyses improved slightly over time and was
higher in general clinical journals and in journals that published more of these studies.
Many other reviews have also shown similar methodological flaws (Udvarhelyi et al.

1992; Gerard et al. 1999; Adams et al. 1992; Neumann et al. 1997; Briggs and Sculpher
1995)

Kaissirer and Angell (1994) writing in an editorial of the New England Journal of
Medicine (NEJM) argued that
‘because of the discretionary nature of the methods used to analyse cost
effectiveness and the increasing importance of such analyses, it is
incumbent on the authors, journal editors and the funders of these studies to

minimise any source of bias’.

Russell et al. (1996) cite similar concerns:

'studies vary widely in the health effects and costs included and in the way
these are valued and combined, so that studies of the same intervention can
produce very different cost effectiveness ratios; potential users may be
confused and suspicious that cost effectiveness analyses can be manipulated

to support any conclusion.’

Sheldon (1996) cites many examples of technical error and biased results, as well as
poor practice in eliciting expert opinion and, in the analysis of uncertainty, to construct
an almost irrefutable case for the poverty of current practice in cost effectiveness
modelling. One of his main conclusions is that

‘until a clear structure for critically appraising decision models is

developed, models which produce unrealistic and biased results will

continue to be published’.
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In answer to these criticisms there have been efforts from the research community to
improve the quality of submitted and published economic articles by setting guidelines
for economic evaluation and defining ‘best practice’. The British Medical Journal set up
a working party to study economic evaluation, which subsequently published guidelines
for economic evaluation which could be understood by specialist and non specialist
readers, and 32 point checklists for use by referees, authors and editors (Drummond and

Jefferson 1996).

In 1993, The US Public Health Service convened the Panel on Cost Effectiveness in
Health and Medicine to develop recommendations to improve the quality and
comparability of studies. They subsequently published recommendations for the use of
the reference case and the reporting of cost effective analyses (Weinstein et al. 1996;
Siegel et al. 1996; Russell et al. 1996). In the late 1990s, the International Society for
Pharmacoeconomics and Outcomes Research (ISPOR) set up a task force made up of
‘experienced developers or users of models who worked in academia and industry, and
came from several countries in North America and Europe’. The task force
subsequently published their findings on the criteria for assessing the quality of health
care models (Weinstein et al. 2003). A recent Health Technology Assessment has
reviewed these guidelines and produced a synthesised guidance for good practice
(Philips et al. 2004). It is likely that these guidelines will be used by referees to judge
the quality of economic evaluation modelling studies submitted to journals although the
authors emphasise that these guidelines are

‘specific to decision-analytic modelling in economic evaluation and do not

cover more general attributes of good practice in economic evaluation’.

This section presents a summary of recommendations for best practice for building
models for economic evaluation as developed by Halpern et al. (1998), Davies et al.
(2003), Sculpher et al. (2000), Weinstein et al. (2003) and others (Sonnenberg et al.
1994; McCabe and Dixon 2000; Brennan and Akehurst 2000; Weinstein et al. 1996;
Siegel et al. 1996; Russell et al. 1996; Eddy 1990), and some of the more common
errors to avoid (Sonnenberg et al. 1994; Buxton et al. 1997).
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4.2.1 What makes a ‘good’ model?

In an article which attempted to establish some major principles of good modelling
practice for health care modelling, Sculpher et al. (2000) proposes that

‘the purpose of decision models is to inform decision making at a particular

point in time’.
They suggest that a better decision will be made using the model at a point in time than
not using a model. Furthermore, the model could be tested, by

‘randomly allocating decision makers to use and not use the model’.
In this test, the model is deemed useful or valid if the group using the model made the
better decisions. This view is shared by Sonnenberg et al. (1994) who comment,

‘validity refers to the ability of a decision model to recommend optimal

decisions’.
They go on to point out the obvious difficulties with this,

‘short of a clinical trial of a decision model, validity of a recommended

decision cannot be assessed because there is no gold standard for the

quality of a decision’.
However comparisons between the model and clinical trials, observational studies and
other models is still a useful process (Sculpher et al. 2000). They conclude that the
accuracy of the model to portray reality is somewhat less important than its ability to
improve decision making. All models are ‘wrong’ in term of their predictions but the
level of use of the models may be a more appropriate test of their validity. However
there are various techniques used to validate the model and these are discussed in more
detail later.

‘Describing what is a ‘good model’ is a difficult undertaking’, Sculpher et al.

(2000)
acknowledges,

‘Such a description needs to be sufficiently generic to apply across diseases,

interventions and model types but to avoid being too general and hence of

little value in any given context’.
They stress the importance that the analyst adequately describes the model and provides
a

‘clear and honest justification’
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for their approach. This will enable users to make a more informed judgement about

whether the results are credible or informative.

Dallenbach (1994) gives an overview of operational research / management science
methodology for developing and implementing models. Simon (1982) describes the
process of modelling. Halpern et al. (1998) and Weinstein et al. (2003) propose a list of
recommendations for ‘good practice’ to help model designers and reviewers to focus on
the key criteria during the development / evaluation process in health outcomes
research. These recommendations are described below together with complementary
views from other authors. Although the recommendations are directed toward health

care modelling, the principles described hold true for different modelling applications.

4.2.2 General guidelines

Little (1970) describes in general terms that for a mathematical model to be useful it
should be
i. Simple - easily understood by the decision maker
ii. Complete - all significant aspects of the problem that affect the measure
of effectiveness should be included
iii. Easy to manipulate - possible to obtain answers from the model with a
reasonable amount of computational effort.
iv. Adaptive - reasonable changes in the structure of the problem situation
do not completely invalidate the model
v. Easy to communicate with - easy for the analyst and / or user to prepare,
update and change inputs and get answers quickly
vi. Appropriate for the situation studied - model produces relevant outputs
at the lowest possible cost and within the time required for effective decision
making
vii. Relevant - able to produce information that is relevant and appropriate for

decision making

In addition Akehurst et al. (2000) state further properties including internal consistency,
reproducibility and exploration of uncertainty. Davies et al. (2003) suggest that a model

may have all or many of the above characteristics and still provide poor predictions.
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4.2.3 Study question

Before development of a model begins, there should be a clear definition of the purpose
of the model (Sculpher 2000; McCabe and Dixon 2000; Halpern et al. 1998; Nuijten et
al. 1998; Soto 2002). According to Halpern et al. (1998), this ‘study question’ includes
the disease or condition, interventions, populations and the perspectives of the study.
Furthermore they state that the study question should be examined for reasonableness,
for example is it clinically relevant and feasible, and is modelling the most appropriate
approach? This assessment of clinical relevance may require the involvement of
clinicians and policy makers. The study question may be better answered by using

available retrospective data or in a prospective clinical trial or observational study.

Buxton et al. (1997) suggest that modelling is most appropriate for the following
purposes:

— Extrapolating beyond the data observed in a trial

Linking intermediate clinical endpoints to final outcomes

Generalising to other settings

Synthesizing head to head comparisons where relevant trials do not exist

Informing decisions in the absence of hard data

Halpern et al. (1998) also suggests modelling may be appropriate in some cases where it

can provide a cheaper and quicker alternative to other methodologies.

4.2.4 Design of model

After deciding to use a model the next step is to conceptualise the study question in a

theoretical structure (Sculpher et al. 2000). They state that this structure should include
‘all clinically and economically relevant events’.

Furthermore, they state, in order for the model to be manageable and comprehensive to

the user, constraints and model boundaries need to be specified. The analyst should be

able to justify the assumptions made to incorporate these constraints. Weinstein et al.

(2003) urges that the structure of the model be as simple as possible while still

‘capturing underlying essentials of the disease process and interventions’.
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4.2.5 Model boundaries

The model boundaries need to be determined at the onset of the study (Akehurst et al.
2000). The analyst needs to decide ‘what to include and what to exclude’ (Davies et al.
2003). These include the

‘time frame, population / sub-populations, perspective, comparators,

Setting, country or region, payment system, index patients or disease

characteristics and other factors that will determine the type and extent of

costs and events to include in the model’ (Halpern et al. 1998).

The boundaries of the model will depend on the disease or condition and intervention
under study (Sonnenberg et al. 1994). Model perspective also needs to be determined
and clearly stated. Many believe that a societal perspective should be used (Gold et al.
1996), however the perspective should agree with the purpose of the model. The
Washington Panel makes recommendations for many of these boundaries (Weinstein et

al. 1996; Russell et al. 1996; Siegel et al. 1996).

4.2.6 Complexity of model

The analyst should aim to produce a model that is as simple as possible (Sculpher et al.
2000, Akehurst et al. 2000; Weinstein et al. 2003; Halpern et al. 1998; Buxton et al.
1997). However the model should include the underlying essentials of the disease
process and interventions (Weinstein et al. 2003). Weinstein comments further,

‘it is not necessary to model the full complexity of a disease if the decision

can be informed by a more aggregated structure, in terms of disease states

or population subgroup’.
The simplifications that are made should be justified by the analyst who should explain
how these assumptions are unlikely to have a

‘material impact upon the results of the model’ (McCabe and Dixon 2000).

4.2.7 Transparency

Several authors (Sculpher et al. 2000; Akehurst et al. 2000; Buxton et al. 1997; McCabe
and Dixon 2000; Halpern et al. 1998; Weinstein 2003) urge transparency in the
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reporting on the data use and the structure of the model. Halpern et al. (1998)
recommends that information be available for a review process. They state this
information should be presented in a

‘clear and easy to understand fashion’.
For published articles, limited in length by the journals, they recommend the use of
technical appendices for additional information such as data sources, assumptions, event
probabilities, health care resource utilisation, utilities and costs and perspective. Siegel
et al. (1996) recommends including a diagram of the event pathways of the model to aid
understanding. The model should be reproducible from the information available, ie an
independent competent analyst should be able to obtain the same results by replicating

the model (Akehurst et al. 2000).

4.2.8 Data sources

Models are often built where the ‘best’ available data is less than ideal, but this does not
invalidate the model (Weinstein 2003; Sculpher et al. 2000). Weinstein et al. (2003)
recommend that a systematic review should be conducted of the literature on the key
model inputs. Often the data needs be manipulated to obtain estimates of effectiveness,
cost and preferences and the methods used for this should be given (Siegel et al. 1996).
Sources of data used for model parameters include event probabilities, health care

resource utilisation, utilities and costs.

Clearly, the model should use the ‘best’ data available. Halpern et al. (1998)
recommends the use of epidemiologic studies, randomised controlled trials (RCTs), or
observational studies. Retrospective data and expert opinion are also often used in
models. Each of the sources of data has potential biases. The quality and relevance of
the data should be evaluated and inclusion should be justified (Halpern et al. 1998).
They state that the evaluation of prospective data quality should include importance of
study, sample size, year, length and degree of patient follow up and methods of data
collection (eg doctor diagnosis, patient self reported). However Davies et al. (2003)
highlight that although the data may be of good quality and internally consistent, the
limitations of this type of data should be recognised. For example, data may not be
available for all the categories required by the model and it may be necessary to make

extrapolations from data from other, less appropriate studies. In addition, randomised
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trials and observational studies may exclude particular categories of patients, such as the

elderly or those at risk of complications of an intervention.

4.2.9 Costs

By definition, all economic models include costs or charges. The costs used in the
model will depend upon the perspective adopted, eg patient, society or hospital. Russell
et al. (1996) recommend the societal perspective should be used for cost effectiveness
analyses, in order to facilitate comparison between interventions and patient. Costs from
different sources should be standardised by updating to a particular year. For long term

projections, results should be discounted (see section 2.2.5).

4.2.10 Assumptions

The validity of models often depends on the reasonableness of their assumptions (Gold
et al. 1996) and the discrepancy observed between models is often due to differences in
assumptions. As such, model assumptions require a high degree of transparency and
need to be stated clearly (Akehurst et al. 2000; Nuijten et al. 1998; Soto 2002).
Assumptions having even minor impact on model parameters may have substantial

effects on projected outcomes.

4.2.11 Treatment of intervention strategies and outcomes

When designing the model, the analyst should take care not to exclude important
treatment or intervention strategies (Halpern et al. 1998). This should be based on a

review of published literature and clinical trials as well as on expert consultation.

Similarly models should include all relevant outcomes,

‘including negative consequences of health care interventions’ (Halpern et

al. 1998).
They suggest the following outcomes may be included: initial success and failure of an
intervention, relapse, adverse events, discontinuation or non compliance or death. They
note that a failure to include all relevant outcomes could result in

‘incomplete evaluation of treatment strategies, producing biased results’.
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Halpern et al. (1998) stress the need for models to provide outcomes, which will be
comparable to other treatments or interventions. They state that,

‘intermediate outcomes often do not provide sufficient information’
to be able to make these comparisons. For example a model evaluating strategies for the
reduction of cholesterol associated coronary heart disease is less interested in the short
term change in serum cholesterol rather than the incidence of coronary heart disease.
Halpern et al. (1998) recommends that

‘models generally include long term or final outcomes’.

4.2.12 Internal consistency

The model should have internal consistency, or mathematical correctness (Akehurst et
al. 2000). Sculpher et al. (2000) recommend that the model be regularly checked using
internal tests (or ‘debugging’) by the analyst to reveal errors with model code or the use
of data. Weinstein et al. (2003) and Sculpher et al. (2002) recommend that the analyst
provide evidence that the model has been tested in this way. The best method for
checking mathematical correctness is by numerically checking the results by hand for a
sufficiently wide range of inputs (Daellanbach 1994). The correctness of all numerical

constants should be verified.

Other techniques to test for internal consistency include movement of results in
sensitivity analysis (including analysis of extreme values) to see if they follow
expectations or checking that all probabilities range between 0 and 1. The model can be
run under simplifying assumptions for which true characteristics are known or can be

easily computed (Davies and Davies 1986).

Halpern et al. (1998) state that all steps in a Markov model should be feasible. They

also say,
‘the model should be symmetric in that the modelled prognosis must be the
same for the same condition / treatment combinations in different sections of
the model’.

The model can also be tested for internal consistency by building another model using

the same data but within a different software package (Sculpher et al.2002).
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4.2.13 Sensitivity analysis

According to Weinstein et al. (2003),
‘all modelling studies should include extensive sensitivity analyses of key
parameters’.

Sensitivity analysis involves running the model with a range of values for the model

parameters and evaluating the impact on the model output (Halpemn et al. 1998).

The simplest form of sensitivity analysis is uni-dimensional where one variable is -
altered at a time. However multi-dimensional analysis permits greater exploration of the
variability of the parameters and their interaction. Results of multi-dimensional
sensitivity analysis are harder to derive and interpret and may require specialist software
packages (Halpern et al. 1998). They state that

‘Where the number of parameters is large, an infeasible number of

iterations may be required’.
They suggest reducing the number of iterations by varying only correlated parameters.

In all cases, an explanation of selected sensitivity parameter values should be provided.

Recently there has been much research into the best practice for sensitivity analysis for
economic evaluation. For example, researchers have attempted to develop an indication
of the confidence of the cost effectiveness results in a similar way to confidence
intervals for trials. This has led to the introduction of cost effectiveness acceptability
curves which represent the probability that the cost effectiveness will be within a certain
range. Sensitivity analysis and uncertainty has been described in more detail elsewhere,
for example Briggs (1994), Briggs and Sculpher (1994). These analyses often require
the use of Bayesian methods (Briggs 2000).

4.2.14 Verification and validation
Weinstein et al. (2001) defines verification as demonstrating that the model’s inputs and
outputs are

‘comsistent with known facts and that it is functioning properly in a

technical sense’.
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In other words, the results should seem realistic for the study question (McCabe and
Dixon 2000; Weinstein et al. 2003, Soto 2002; Halpern et al. 1998). Several methods of

verification have been discussed in section 4.2.12.

Often the model will need to be calibrated against real data to make the results of the
model more realistic. Weinstein et al. (2003) recommend the model is calibrated, where
possible, using a data source

‘independent of the data used to estimate input parameters in the model ".
A description of the calibration process should be included in any report about a model

conveyed to decision makers.

Validation involves assessing whether the model projections represent real-world
outcomes. Pidd (1996) suggests that validation is best regarded as

‘an ideal towards which we must strive whilst recognising that it may be

limited .
The validation can be completed on two levels: as a black box validation and open box

validation (Law and Kelton 1991).

According to Pidd (1996), black box validation is where the outputs of the model are
compared with the reference system without looking at the internal construction. He
states,

‘the aim is to test whether the two sets of observations are close enough to

be confident that the model has adequate validity .
Smith et al. (1993) states,

‘What is or is not a close enough approximation is largely a question of

judgement’.
The answer may depend on the purpose of the model and the intended use of its

solution.

According to Pidd (1996), open box validation concerns the detailed internal
comparison of the model with the reference system. He states,
‘this may present difficulties because the reason for building the model may

be to help understand the structure of the reference system’.
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Nevertheless it is possible to check a number of key features. If any probability
distributions are employed are they reasonable, given the phenomena being modelled?
Does the model apply what is believed to be the appropriate theory? A more detailed

description of issues related to validation and validity can be found in Zeigler (1976)

Halpern et al. (1998) point out that there are likely to be difficulties with comparing
model outcomes with actual events at the time of the model development. However the
model may be compared to a previous time period by altering some of the parameters. It
is often difficult to get good historical data (Davies et al. 2003). They suggest that when
the validation process produces a poor match with the reference system,

‘it may not be clear why this has happened and how to address it’.

4.2.15 Common modelling errors

Eddy (1990) identifies the following key limitations in modelling. First it does not
provide new observations. If based on incorrect clinical judgement, modelling will
perpetuate any of these errors (rubbish in — rubbish out). Models can be poorly
designed. For example oversimplification by omitting important variables, squeezing
the problem into a familiar or convenient mathematical form or assuming the outcomes
assessed by the model are the only ones of interest. Finally results can be misinterpreted
and decision makers may fail to appreciate the degree of uncertainty in the results.
Buxton et al. (1997) and Sheldon (1996) raise several similar concerns about modelling.
They warn against the incorrect use of clinical and observational data, which may
produce unrealistic results. They also note the difficulties from extrapolating from data
and potential biases, which may be hidden within the models because of lack of

transparency.

Sonnenberg et al. (1994) listed the following common errors in model construction that

reviewers should look for:

—Invalid model syntax, eg probabilities of the branches of a chance node of

a decision tree not summing to one.
—Conditioning of action on unobservable states, ie modelling the presence

of a disease before a diagnostic test has been undertaken.
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—Violations of symmetry in modelling disease prognosis

—Failure to link variables that are inherently related

—Failure to apply consistent bias, ie making assumptions which favour one
strategy over another

—Incorrectly modelling a treatment

4.3 Choice of modelling technique

In this section the choice of the modelling technique is examined. This question has
been addressed, in particular, by Karnon and Brown (1998) and Barton et al. (2004).
Based on their and other authors’ work assumptions (A1-A4) and hypotheses (H1-H6)
concerning the choice of modelling technique are developed which will be examined in

more detail in subsequent chapters.

The choice of modelling technique used will depend on the particular expertise,
background and preferences of the modeller, data available, funding and the structure
and complexity of the disease and health care intervention to be studied. In turn, the
model chosen will

‘influence the assumptions that can be made and hence may impact on the

output’. (Davies et al. 2003).

According to Sculpher et al. (2000), the analyst should select

‘the simplest format possible that adequately reflects the disease’.
Halpern et al. (1998) recommends the use of deterministic models in most
circumstances as

‘the additional time, expense, and complexity involved in stochastic

modelling are not worth the gain in precision’.
The analyst should ensure that this simplicity does not restrict the model by making
unreasonable simplifying assumptions (Sculpher et al. 2000). According to Karnon and
Brown (1998)

‘the trade-off between the simplicity of use of a methodology and the necessary

accuracy of the portrayal of reality is subjective’.
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They also suggest that
‘the choice of the decision model should be based on an assessment of the
incremental benefits, in terms of increased confidence in the model, which
are gained at the expense of the incremental costs of moving to a more

complicated modelling methodology’.

In section 2.2.6, the use of population and cohort models was discussed. It was
concluded that
Al) A population analysis provides a more comprehensive summary of the value of

the intervention for the health care planner than a cohort analysis.

A2)  The cost and health benefit outcomes of an intervention are as important an

output as cost effectiveness.

4.3.1 Acceptance by model users

Olson et al. (2003) conducted a survey of the perceived value and understanding of
Pharmacoeconomic models among decision makers in the USA by interviewing 20
Pharmacoeconomic research scientists from various pharmaceutical and
biotechnological companies. They identified factors that determine whether a model is
well received by decision makers.
‘The most frequently mentioned factor was (1) ease of understanding (ie
model simplicity and transparency) (19 of 20)".
There was no consensus to which modelling format was most effective, with a variety
of methods mentioned including regression models and spreadsheet models.
‘However, two participants specifically mentioned that Markov models were
not well received because of the lack of understanding associated with this

modelling technique’.

Model acceptance is often very important in determining whether a model is widely
used after development or not. Anecdotal evidence suggests that spreadsheet models are
more readily accepted than simulation models because of familiarity of the software.
Furthermore simulation models may appear to be ‘black box’ and their results may not

be readily trusted.
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Melao and Pidd (2003) conducted a survey among potential business process simulation
users to investigate the usage of simulation. These people were engaged in modelling
activities and were the people

‘most knowledgeable about the realities of modelling and simulation of

business processes’.
They concluded that the number of simulation users was low even within a group who
might be expected to be favourable disposed to simulation. Process mapping and
spreadsheet modelling were much more popular and when asked why they stressed
factors such as simplicity, ease of use, quick development and ease of communication.
This low usage of simulation has also been reflected by other studies of simulation

application areas, for example Hollocks (1992).

Stanbridge (1999) discusses some ideas that may help overcoming barriers to the

acceptance of the use of simulation in health care delivery application. He suggests,
‘Make sure that the information provided by the simulation model has more
value than the information provided by an expected value analysis that can

be implemented on a spreadsheet’.

4.3.2 Ease and speed of model development

Karnon (2003) constructed Markov and DES models for the evaluation of the
alternative adjuvant therapies for early breast cancer in the context of a stochastic
evaluation, which described probability distributions around the outputs of the models.
He constructed the Markov process using Excel using a risk analysis programme add-in

(Crystal Ball), and the DES using Simul8.

He constructed the models as cohort analyses. There were minor structural differences
between the two models but the pathways of the two models were identical. He
commented that the DES model was able to

‘represent the available data in a more intuitive manner.
He used a cycle length of one month for the Markov model and a minimum time period
of one month for the DES model. The cohort consisted of patients aged between 50 and
59 years on entry for the model and the model was run until all patients had died or

were aged 100 years old.
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The cost and effectiveness outputs from the DES model had higher values than the
Markov model. The cost outputs varied by less than 6%, and the QALYs and life years
saved varied by less than 2%. Furthermore the cost effectiveness estimates were 3%
higher for the DES than the Markov model. He commented that
‘it would appear to be good fortune that the divergences between the models
acted in opposite directions that almost cancelled each other out’.
He concluded that both model results would lead to the same resource allocation

decision.

Karnon (2003) noted that the DES provided the more precise results because it handles
time to event in a more flexible way and parameter values were linked to time spent in a
state in a more accurate way. However in this case, these advantages of DES do not
outweigh

‘the far greater time to develop and evaluate the DES model’,

and he concluded that the Markov model would be the more appropriate technique.

In general DES models are more difficult and take longer to develop than Markov and
decision trees. Karnon and Brown (1998) and Davies et al. (2003) comment that
because of the complexity of DES, they require specialist expertise to develop. Often
the development of a DES must be coded in a high level language rather than using an
off the shelf package, requiring computer programming skills. Karnon and Brown
(1998) state

‘DES increases the demand for time and finance. Time refers to the time

required to develop the model, rather than running time, which is limited to

the speed of modern computers’.

They developed Markov process and DES models for breast cancer. They found that
‘the final analysis of the two models took one hour and three days for the
Markov process and simulation model. However the time to analyse not
only includes the final correct experimentation with the models but the
whole process of verification and validation which required significantly
more time than the final experimentation phase (weeks in the case of the

DES model, days for the Markov process) .
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Barton et al. (2004) also concludes that the running time of the DES will be longer than
for the Markov models because the modeller will need to run many replications of the

model to ensure statistical significance in the results.

On the basis of the literature reviewed in this section it is concluded:
A3)  DES models are more difficult and take longer to develop than Markov and

decision trees.

4.3.3 Data requirements

Robinson (2003) provides a good overview of simulation modelling. He comments
‘most simulations require a significant amount of data. This is not always
immediately available and where it is much analysis may be required to put
it in a form suitable for the simulation’.

Davies et al. (2003) agrees, stating,

‘in general, a simpler model requires more aggregated data and is thus
easier to populate and use, but it must on the other hand, make more

extensive assumptions about how the system works’.

On the basis of the literature reviewed in this section it is concluded:

A4)  DES requires more data than other models.

4.3.4 The use of time in models

Sonnenberg et al. (1994) suggest that the model should

‘reflect the time dependence of events being modelled’.
Decision trees are most suitable for modelling scenarios where events occur over a short
time period or do not occur more than once (Karnon and Brown 1998; Sonnenberg et al.
1994) or evaluations which use an intermediate outcome measure (Karnon and Brown
1998). Markov process models allow longer time periods to be modelled, in which risk

of events is continuous, and the timing of the events are uncertain (Sonnenberg and
Beck 1993).

97



Chapter 4 Methodology for Modelling Health care Interventions

The following hypotheses are presented based on the modelling literature. In chapter 5,
the use of decision trees, Markov and simulation models is investigated in more detail

and the following hypotheses are examined:

H1) If the system modelled involves time related transitions between health states,

DES will most accurately mode] these transitions.

H2) If short term interventions are modelled, and this intervention happens only once

in a patient’s lifetime decision trees would be an appropriate modelling technique.

H3) If short term interventions are modelled, and this intervention happens more
than once in a patient’s lifetime, decision trees will underestimate the total costs and

health benefits incurred.

H4) Decision trees are an inappropriate choice of modelling technique for long term

or chronic interventions.

4.3.5 Complex and dynamic systems

Sonnenberg et al. (1994) recommend the use of simulation for models where the system
is too complex for a Markov model, for example

‘Where the action of one patient affects another, or in problems where

specific resource ‘bottlenecks’ may exist in the treatment of a disease’.
Karnon and Brown (1998) states that

‘the biggest advantage of DES is that it allows more complex and dynamic

systems to be modelled, as well as permitting experimentation that might not

be feasible otherwise, or that can not be predicted’.
In addition, simulation represents a stochastic system and can thus reflect the effects of
variability in demand and provision (Davies et al. 2003). These views are summarised
by Robinson (2003) who states

‘because it is difficult to predict the performance of systems that are subject

to any one of variability, interconnectedness and complexity, it is difficult, if

not impossible, to predict the performance of operations systems that are

potentially subject to all three. Simulation models, however are able
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explicitly to represent the variability, interconnectedness and complexity of

a system’.

Thus simulation is ideally suited to model more complex and dynamic systems. Some

of the features of these complex and dynamic systems are discussed in more detail.

4.3.6 Interconnectedness

Robinson (2003) describes an interconnected system as one in which components of the
system affect one another, with a change in one part of the system forcing an often
unforeseen change in another part. In a health care system, there are often situations
where an individual patient will affect other patients. For example, patients may

compete for scarce resources or they may infect other patients with a disease.

Davies (1985) reviewed models describing treatment for kidney patients within renal
units. She concluded that a major failing of the Markov and deterministic models were
that they were unable to reflect the resource use of the system. In particular they could
not constrain resource availability or model in detail the varying extent to which
resources are used during different stages of a patient’s treatment. She concluded that
only discrete event simulation was able to include all the important elements of the

system and so be useful for health planners.

DES has been widely used in manufacturing, health care and other industries because of
its ability to model queues and the use of resources within a system. For example Jun et
al. (1999) review the use of DES in health care clinics where it has been used for patient
scheduling and admissions, patient routing and flow schemes, scheduling and
availability of resources. Davies and Davies (1994) concludes that

‘DES is particularly suitable for problems at an operational level where the

use of resources is dependent on decisions about individuals’.

Barton et al. (2004) considered the independence of individuals within health care
models. They considered this issue to be fundamental in the choice of modelling

technique. They concluded that
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‘in cases where there is a significant interaction between individuals and a
need to work at an individual level, a DES approach is the only way to

represent the system adequately’.

On the basis of the review of the literature the following hypothesis is presented which

1s examined in chapters 5 and 9:

H5)  For dynamic systems which involve constraints or where patients compete for

resources, DES is the most appropriate technique.

4.3.7 Proliferation of states

As mentioned in section 2.3.2, the Markovian assumption forces the creation of extra
states within the Markov model in order to model distinct properties or characteristics of

the cohort. For more complex systems, this may involve a huge number of states.

Weinstein et al. developed a state transition model for prevention and treatment of
coronary heart disease. The Coronary Heart Disease Policy model, describes coronary
heart disease in a population according to their physical and clinical characteristics. The
population is stratified into the following categories: 50 ages, 2 sexes, 2 smoking
statuses, 3 blood pressure levels, 3 cholesterol levels, 3 relative weights. Thus the model
is stratified into a total of 5400 sub groups. The authors comment that the main problem
of their model is dimensionality.

‘Constraints on computing time and costs forced us to restrict the number of

risk factors and disease history states and to make numerous independence

assumptions. We are currently struggling with the issue of how to

incorporate coronary angioplasty into the model without doubling the size

of the disease history model’.

DES is ideal for modelling complex systems of this type as it is able to model
individuals who carry an unlimited number of physical and clinical attributes with them.
For example a similar model to Weinstein was developed for coronary heart disease
prevention by Babad et al. (2002). It consisted of a population described in terms of sex,

smoking (3 categories), and a continuous range of age, blood pressure and cholesterol.
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As a comparison to Weinstein, suppose that a state transition model modelled the
continuous variables to the nearest whole number. Then in order to have a similar
accuracy as the simulation model the following categories are needed: Sex (2), age
(60), smoking (3), blood pressure (140), cholesterol (12), which consists of over
600,000 sub groups! The prevention model was linked to a treatment model (Cooper et
al. 2002) which consisted of a further 60 sub categories.

On the basis of the review of the literature the following hypothesis is presented which

is examined in chapter 9:

H6)  For complex systems where the Markov assumption forces the creation or

proliferation of states, DES should be considered.

Decision tree Markov process Discrete event simulation
Short time period Long time period Long time period
Markov assumption Entity ‘memory’
Cheap Expensive
Transparent ‘Black box’
Simple Complex
Less accurate Accurate
Static Dynamic
Rigid Flexible
Cohort Tndividual

>

Figure 4.4.1 Differences between the models

4.4 Discussion

In the preceding sections the major strengths and weaknesses of the model techniques

have been outlined. These are represented in Figure 4.4.1.
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Modelling problem

System dynamics
model

Is interaction between
individuals important?

Is individual-level
modelling needed?

Discrete event
simulation

Can patient pathways be
represented adequately
by probability trees?

Decision tree

Can a Markov model
be built without
needing an excessive
number of states?

Markov model

Individual sampling model

Figure 4.4.2 Selecting an appropriate model type (Barton et al. 2004)

Barton et al. (2004) presented a guide to the choice of the model, Figure 4.4.2. The

Figure distinguishes between system dynamics (SD), discrete event simulation, decision
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tree, Markov model and individual sampling model. System dynamics models have
been described elsewhere (Lane et al. 2000; Dangerfield 1999). Barton et al. (2004)
define an individual sampling model as a model

‘in which the ability to track individuals is an essential part of the model

structure, but in which only one individual is modelled at a time’.

This definition includes the modelling of discrete event simulation or Monte Carlo

simulation.

They considered only cohort models and stated that,
‘the key initial consideration is whether the individuals in the model may be
regarded as independent. Where interaction is not thought to be an
important issue then the choice is between decision trees, Markov models or
individual sampling models. Where interaction is a significant issue in

modelling, methods such as DES and SD are required.’

Based on the review of the literature the most appropriate model to be used is shown in
Table 4.4.1. The modeller will need to make a judgement on the complexity of the
model, in terms of the number of different states to be included, the significance of
interaction between individuals and the necessity to model queues and constraints on
the system. If the model is sufficiently complex that the Markov assumption forces the
proliferation of states DES should be considered. It is concluded that there is some
threshold level above which a DES model becomes the preferred choice and this

threshold is examined in more detail in subsequent chapters.

Table 4.4.1 Guidelines for model choice

Simple Complex
Acute intervention Chronic intervention
Population Markov model Markov model DES
Cohort Decision tree Markov model DES
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4.4.1 Assumptions and Hypotheses

As part of this chapter on modelling methodology, assumptions and hypotheses
concerning the modelling techniques characteristics are outlined as shown below. The
assumptions have been concluded from a review of the literature as reported in this
chapter and chapter 2. The hypotheses are examined in more detail in subsequent

chapters.

Al) A population analysis provides a more comprehensive summary of the value of

the intervention for the health care planner than a cohort analysis.

A2)  The cost and health benefit outcomes of an intervention are as important an

output as cost effectiveness.

A3) DES models are more difficult and take longer to develop than Markov and

decision trees.

A4) DES requires more data than other models

H1) If a short term intervention is modelled, and this intervention happens only once

in a patient’s lifetime decision trees would be an appropriate modelling technique.

H2) If a short term intervention is modelled, and this intervention happens more than
once in a patient’s lifetime, decision trees will underestimate the total costs and health

benefits incurred.

H3)  If the system modelled involves time related transitions between health states,

DES will most accurately model these transitions.

H4) Decision trees are an inappropriate choice of modelling technique for long term

or chronic interventions.

H5) For dynamic systems which involve constraints or where patients compete for

resources, DES is the more appropriate technique.
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H6)  For complex systems where the Markov assumption forces the creation or

proliferation of states, DES should be considered.

4.5 Conclusion

In the preceding sections the major strengths and weaknesses of the model techniques
have been outlined based on the modelling literature. Based on this information, a series
of assumptions and hypotheses concerning the model techniques characteristics have

been developed. These hypotheses will be explored in subsequent chapters.

According to the review of the modelling literature, the modeller should strive for
simplicity and transparency. The choice of the preferred model will depend on the likely
ease and speed of development, the complexity of the model in terms of the number of
states, and the interconnectedness of the system. The modeller will need to judge
whether interactions between individuals is a significant issue in the health care system
and whether queuing for resources and resource constraints are relevant to the research
question. Finally, the modeller will need to judge whether the preferred modelling

techniques will be most acceptable to the users of the model.
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Chapter 5

Comparing Health Care Modelling Techniques:

Simple experimental models

Abstract

In this chapter the choice of modelling technique is explored through the construction of
simple models. In particular the hypotheses set out in the previous chapter are
investigated. Simple decision tree, Markov and simulation models are constructed for
short term and long term interventions. The results are compared and the hypotheses are
tested empirically. The models use hypothetical data to make the comparison between

the models easier to interpret.

It is concluded that for short term interventions, where the intervention happens more
than once in a patient’s lifetime, decision trees will underestimate the total costs and
health benefits incurred compared to the other modelling techniques. When modelled
using the same data and assumptions, the Markov and simulation models give similar
results which converge as the cycle time of the Markov model decreases. It is shown
that the cohort and population-based approaches will yield different results and the
population-based approach will give a worse cost effective ratio compared to the cohort-
based approach. The appropriate choice of time horizon for the model is critical to the

model results and conclusions.
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Chapter 5 Comparing Health Care Modelling Techniques:

Simple experimental models

5.1 Introduction

In this chapter the choice of modelling technique is explored through the construction of
simple models which use hypothetical data. The use of these simple models facilitates
interpreting the results from the different modelling methodologies compared with
using more realistic models because you can fix all the parameters in an illustrative
model and more complex models may have several underlying processes happening.
Using these simple models, the hypotheses in the previous chapter are investigated. The
conclusions from this chapter will be verified with more complicated and realistic
models in chapters 7 through 9. Simple decision tree, Markov and simulation models

are constructed for short term and long term interventions. Population and cohort based

approaches are discussed. Finally resource-constrained models are investigated.

Unless indicated otherwise, the results for the models are shown in terms of cost (£),
effectiveness (years of life saved) and cost effectiveness (incremental cost effectiveness
ratio, ICER, £/life years saved). The incremental cost effectiveness ratio is shown as the
difference in cost between the intervention scenario and baseline divided by the
difference in effectiveness between the intervention scenario and baseline. The model
results are compared by assessing whether the ‘error’ between the results is within an

acceptable range.

5.2 Short term interventions: all models

In this section the decision tree, Markov and simulation models are compared for short
term interventions. The simple model is in a similar format to the ambulance and

thrombolysis model which is developed later in chapter 7.
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Individuals are at risk from an unspecified hypothetical disease. Those who have an
acute event of this disease have a risk of dying from it. If they survive they will have a
chance of further events in the future. They can also die from non related causes. A new
intervention is assessed in the treatment scenario which improves their chances of

surviving the disease event.

The baseline data used for the simple models is shown in Table 5.2.1. The simple
models use an age dependent distribution for the annual probability of an event chosen

arbitrarily to be p(event) = ¢™*86*003

, where x is the age of the individual. As is often
the case in health care examples, it assumes that older patients are at a greater risk of an
event than younger patients and this risk increases exponentially with age. The
probability of death from this event is taken to be 0.3 for all ages. The probability of
death from other causes is shown in Table 6.4.3. The data used for the treatment
scenario is shown in Table 5.2.2. The only change is a reduction in the probability of

dying from an event with a cost of £150 for each intervention.

Table 5.2.1  Baseline data used for annual probability of event

Age (years) 40 50 60 70 80
Annual probability of event (€*>*°"%%)  0.034 0.046 0.062 0.083 0.112
Probability of dying from event 0.3 0.3 0.3 0.3 0.3
Cost of intervention (£) £0

Table 5.2.2 Treatment scenario data used for annual probability of event

Age (years) 40 50 60 70 80
Annual probability of event (€***%)  0.034 0.046 0.062 0.083 0.112
Probability of dying from event 025 025 025 0.25 0.25
Cost of intervention (£) £150

Figures 5.2.1-3 show the decision tree, Markov and simulation models for the simple
example. The modelling methodology for these techniques is described in more detail in

section 2.3.1-2.3.3.
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Figure 5.2.1 Decision tree model of short term intervention

The decision tree model is shown in Figure 5.2.1. It uses rewards at the terminal nodes

for the cost and life expectancy. The first value is the cost and the second value is the

life expectancy which 1s 0 for those patients that die and life_expectancy[age] for event

survivors. This reward is dependent on the starting age of the cohort. These rewards

represent the survival time for an individual who had survived the disease event. The

parameters Death[age] and Scenario[age] are the probability of dying from the event for

the baseline and treatment scenarios which are related to the age of the individual at that

time.
Survive .
Event 4 Alive
Death
pEvent Disease, deathfoge] Disease death
: isease_( age
Alive Survive .
<] Alive
Non disease death i
Simple markov model <] Non disease death

Q)

Non disease death

0
Disease death

pNondiseaseDeath[age]

Figure 5.2.2 Markov model of short term intervention

The baseline scenario for the Markov model is shown in Treeage notation in Figure

5.2.2. It consists of three states: Alive, Non Disease death and Disease death where Non

Disease death and Disease death are absorbing states. A cohort of individuals is run
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with a cycle length of one year until they have all died. The treatment scenario is

similar to this but with different values for the Disease death[age] parameters.

Cohort of diseased
patients
7 A
Disease Non
event fatal
Disease death Non disease death

Figure 5.2.3 Simulation model of short term intervention

The simulation samples times to non disease death and acute disease event for each
individual in the cohort. For each individual, whichever event happens first will be
executed, ie either they will have a disease event or die of non disease cause. If they die,
they will have no further events. If they have an event and survive it, a new time will be
sampled for their next event. The time to the next disease event is sampled from a
Gompertz distribution (Appendix V). The time to the next non disease event is sampled
from a cumulative probability distribution of the non disease probability using the

inverse transform method.

The simulation models in this thesis are run for enough iterations so that there is
sufficient confidence in the accuracy of the output data. The confidence in the accuracy
of the output data is calculated using the confidence interval method (Robinson 2004)
with a significance level of 95%. In this case, confidence intervals are calculated that
give a 95% probability that the value of the true mean (obtained if the model is run for
an infinite period) lies within that confidence interval. In this thesis we estimated that a
confidence interval that deviated by less than 1% from the mean was acceptable. Often
the models are run for more iterations than was necessary to achieve this deviation for
even greater accuracy. Finally the model resuits were checked by running one of the age

bands with a much larger numbers of iterations.
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The simulation results for this example had confidence intervals that deviated by less
than 1% of the mean with 50 iterations and a cohort of 1000 individuals for all age
bands. The deviation from the mean varied from 0.8% for the 40 year age band to 1%
for the 80 year age band. For even more accuracy, the simulation was run with a cohort

of 1000 individuals for 100 iterations.

For comparison purposes it is assumed that the start point in the models is immediately
before the acute disease event. However, practically the Markov and simulation model
start immediately after the acute event with the proportion who survive the acute event

(ie who start in the model).

As mentioned above, the life expectancy rewards at the terminal nodes of the decision
tree are the survival times for individuals who have survived the event. These can either
be calculated from the Markov or the simulation models by having 100% of the cohort
in the Alive state at the start of the run. Table 5.2.3 shows the life expectancy for all
survivors of an event from the Markov and simulation models. The life expectancies for
the simulation model are slightly longer than those for the Markov model. The reasons

for the differences between these life expectancies are discussed later.

Table 5.2.3 Life expectancy (years) for individuals who survive disease event

Age (years) 40 50 60 70 80
Markov (M) 29.35 22.85 16.82 11.42 7
Simulation (S) 29.35 22.90 16.91 11.53 7.13
Difference in LE (S — M) 0.00 +0.05 +0.09 +0.11 +0.13
‘Error’ between model results, % 0 +0.2 +0.5 +1.0 +1.8

Table 5.2.3 shows the difference in the results between the simulation and the Markov
models and this difference is shown as a percentage ‘error’. The error ranges from 0%
for the 40 year old cohort to 1.8% for the 80 year old cohort. Over all the age bands
there is a mean error of 0.7%. In this dissertation the mean error is used as a measure of

the difference between the models’ results. In Table 5.2.3 the error was positive for each
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of the age cohorts. In the cases where there are both positive and negative errors the

mean absolute error is calculated.

Clearly the results from the two models are not identical but are they similar enough for
us to accept either set of results? On the other hand are the results significantly different
so that we would choose one set of results in preference to the other? In other
disciplines such as scientific experimentation, statistical tests such as t-tests are often
used to test hypotheses these results. However in these experiments the samples must be
independent random samples. Unfortunately the model run results do not meet these
requirements and so statistical tests cannot be used. Consequently the discrepancy
between model results and its significance must be answered subjectively within the

context of modelling for health care interventions.

Generally there is a large potential error involved with modelling health care
interventions. Often the data are unreliable or not available and many assumptions have
to be made to fit the model. Furthermore many more assumptions need to be made
when predicting future treatments, resource use and patients prognoses. As seen later in
this chapter the current tendency to use cohort based models rather than population
based models may introduce significant errors into the model results. Finally the use of
the time horizon is critical to the results and conclusions. If too short or long a time

horizon is adopted, the cost effectiveness results may be significantly erroneous.

The following descriptive ranges of model error have been developed as an indication
of the extent of the discrepancy between the model results and the consequence of this
difference. These ranges are useful because they will be used for all the comparative
analyses in this thesis as the basis of deciding how significant the differences in model
results are. These ranges are based on the idea of confidence intervals, for example it is
possible to choose to accept different confidence intervals (eg 95%, 99%) and the

choice of confidence interval may vary between researchers and experiments.
In this context, the following is recommended for the comparison of the model results

for life expectancy and cost:

Error<1 % Results not significantly different
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Error <5%  Results different but acceptable error between results so that conclusions
from results not materially affected by error

Error > 5%  Results significantly different

The following is recommended for the comparison of the model results for cost
effectiveness ratio:

Error <2 %  Results not significantly different

Error <10% Results different but acceptable error between results so that conclusions
from results not materially affected by error

Error > 10% Results significantly different

Note that in the above recommendations we refer to results being significantly different
but this is not necessarily statistically significantly different according to a statistical
test but rather as an indication of how different the results are. A larger error is accepted
for cost and effectiveness than for the cost effectiveness ratio for two reasons. Firstly
cost and effectiveness are primary outcomes whereas cost effectiveness is a secondary
outcome. Secondly cost effectiveness is a less tangible outcome than cost and
effectiveness. As discussed in section 3.1.2, the threshold bands for accepting or
rejecting treatments on the basis of their cost effectiveness ratio are very wide and often

not made public by decision making bodies such as NICE.

Each of the models is run with the baseline and treatment scenario for all different age
cohorts. The decision tree model is run with both the life expectancies shown in Table
5.2.3, as calculated by the Markov and simulation models. The results in Table 5.2.4-
5.2.7 show the cost and health benefits associated with each of the runs. The increased
cost and health benefits for the treatment scenario are calculated and then the cost

effectiveness is calculated.
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Table 5.2.4 Results from the Markov model for baseline and treatment scenario runs

Age (years) 40 50 60 70 80
Life expectancy Baseline 20.55 15.99 11.77 7.99 4.9
Life expectancy Treatment 23.17 18.02 13.237 8.95 5.457
Increase in LE 2.62 2.03 1.467 0.96 0.557
Cost 376.6 357.6 332.3 300.4 265.4
ICER 144 176 227 313 476

Table 5.2.5 Results from the simulation model for baseline and treatment scenario

runs

Age (years) 40 50 60 70 80
Life expectancy Baseline 20.51 15.99 11.81 8.05 4.98
Life expectancy Treatment 23.13 18.04 13.28 9.02 5.53
Increase in LE 2.63 2.05 1.47 0.97 0.55
Cost 3754 356.1 330.2 297.8 261.4
ICER 143 173 225 307 471

Considering Table 5.2.4 and 5.2.5, the results from the Markov and simulation are not
significantly different. The mean absolute error between the Markov and simulation
model results for increase in life expectancy, cost and ICER are 0.6%, 0.8% and 1.3%
respectively. The differences between these runs are considered in more detail in the

next section 5.2.1.

Table 5.2.6 Results from the decision tree model for baseline and treatment scenario

runs (with life expectancies from Markov model)

Age (years) 40 50 60 70 80

Life expectancy Baseline 20.55 15.99 11.77 7.99 4.9
Life expectancy Treatment 22.02 17.14 12.62 8.57 5.25
Increase in LE 1.47 1.15 0.85 0.57 0.35
Cost 150 150 150 150 150
ICER 102 131 178 261 429
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Table 5.2.7 Results from the decision tree model for baseline and treatment scenario

runs (with life expectancies from simulation model)

Age (years) 40 50 60 70 80

Life expectancy Baseline 20.55 16.03 11.837 8.07 4.99
Life expectancy Treatment 22.02 17.18 12.68 8.65 5.35
Increase in LE 1.47 1.15 0.85 0.58 0.36
Cost 150 150 150 150 150
ICER 102 131 178 260 420

Furthermore the results from each of the decision tree runs with the life expectancies
estimated from the Markov and simulation models are also similar. However, there is a
large difference between the results from the decision tree and the other model
techniques. The results from the decision tree model are lower for cost, benefit and cost
effectiveness. The mean absolute difference between the simulation model and the
decision tree results for increase in life expectancy, cost and ICER are 42%, 53% and

20% respectively. These results are explored in more detail in section 5.3.

5.2.1 Markov versus simulation model

In this section the following hypothesis is considered:

H1) If the system modelled involves time related transitions between health states,

DES will most accurately model these transitions.

5.2.1.1 Cycle length

The reasons for the differences are due to the way that each of the models deals with
times to event. In particular, only one event is able to happen in the Markov model in
any cycle whereas in the simulation model, more than one event may happen in this
time period. Thus it is expected that the results from the Markov model will converge to
those of the simulation modei by reducing the cycle length. This is shown to be the case

in Table 5.2.8 which shows the results for a further run of the Markov model with a
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cycle length of 6 months. This shows that simulation can be considered the more

accurate technique for modelling time related transitions between states.

Table 5.2.8 Life expectancy with all probabilities and each probability separately for

the Markov model
Age (years) 40 50 60 70 80
Markov (one year cycle) 20.55 15.99 11.77 7.99 4.9
Markov (half year cycle) 20.52 15.98 11.78 8.02 4.96
Simulation 20.51 15.99 11.81 8.05 4.98
5.2.1.2 ‘Error’ between Markov and simulation model runs

The Markov and simulation models predict events in a slightly different manner. The
events in the Markov model will be independent but those from the simulation model

will not be.

Consider two fatal events A and B. The Markov model will independently assign a
proportion of the cohort to have event A and a further proportion to have event B. On
the other hand the simulation model will assign times to the events A and B. In this
case, whichever event happens first will occur and the other will not. Thus the
occurrence of either event is dependent on whether the other event already happened.
Furthermore there will be a difference between the event rates for the two models which
is equivalent to the probability of both events occurring. This is demonstrated in the

following example.

The probability of fatal events A and B in one cycle are p(A) = P(B) = 0.05.
Now p(A NB) =0.05 * 0.05=0.0025.

Markov model

Events: A = 0.05; B = 0.05. Total Events = 0.1.
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Simulation model

When both events are scheduled in the same cycle, ie p(A NB) = 0.0025, only the first
is scheduled.

Now half the time, A happens first, half the time B happens first.

Events: A =0.05 —(0.0025/2) = 0.04875; B = 0.04875. Total events = 0.0975.

The difference between the models is 2.5% (ie equal to p(A NB).

This simple example demonstrates that there will be a difference between the simulation
and Markov models when using the same data. In fact the error occurs because the data
has not been parameterised correctly for the simulation model. The data should be
adjusted to take into account the dependency of the events. In practice this is often
ignored as it is non trivial. In this case, the Markov model will predict more fatal events
than the simulation and hence a lower life expectancy. The differences between the

models will increase as the event probabilities increase.

5.2.1.3 Discussion

It has been shown in this section that the Markov model gives a good approximation to
the simulation model for life expectancy, cost and cost effectiveness for the short term
interventions, although these outcomes are underestimated by the decision tree model.
Furthermore, by running the Markov model with cycle lengths of six months instead of
a year, the Markov model gave estimates for life expectancy within 0.5% of those for
the simulation model for all ages. It has been demonstrated that the simulation will most

accurately model time related transitions between health states (Hypothesis 1).

117



Chapter 5 Simple experimental models

5.3 Short term interventions: The decision tree model

In this section the following hypotheses are considered:

H2) If a short term intervention is modelled, and this intervention happens only once

in a patient’s lifetime decision trees would be an appropriate modelling technique.

H3) If a short term intervention is modelled, and this intervention happens more than
once in a patient’s lifetime, decision trees will underestimate the total costs and health

benefits incurred.

In this section, the decision tree model is examined in more detail. Simplistic data are
used as shown in Table 5.3.1 and 5.3.2 and the results for the decision tree are
compared to that from a Markov model. The data for these models are similar to shown
in Table 5.2.1, with the exception that the annual probability of an event increases

linearly with the age of the individual.

Table 5.3.1 Baseline data used for annual probability of event
Age (years) 40 50 60 70 80
Annual probability of event 0.050 0.100 0.150 0.200 0.250
Probability of dying from event 0.3 03 03 0.3 0.3

Cost of intervention (£) 0

Table 5.3.2 Treatment scenario data used for annual probability of event

Age (years) 40 50 60 70 80
Annual probability of event 0.050 0.100 0.150 0.200 0.250
Probability of dying fromevent  0.25 025 025 0.25 0.25
Cost of intervention (£) £150
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The decision tree model (Figure 5.2.1) uses rewards at the terminal nodes of the life
expectancy of event survivors and these are taken from the life expectancies calculated
by the Markov model. These rewards represent the survival time for an individual who

had survived the disease event (Table 5.3.3).

Table 5.3.3  Life expectancy (years) for all who survive disease event

Age  Life expectancy (years)

40 21.73
50 16.12
60 11.89
70 8.42
80 5.51

5.3.1 Single intervention

In the first experiment, the case where the intervention can happen only once is
considered, for example if an individual has an appendix operation. In this case, the

Markov and the decision tree models are the same and the results will be the same.

Table 5.3.4  Cohort life expectancy, increase in life expectancy and cost, and cost

effectiveness (ICER) for patients of different ages for the decision tree and Markov

' models
Age (years) 40 50 60 70 80
Life expectancy Baseline 15.21 11.28 8.33 5.89 3.86
Life expectancy Treatment 16.30 12.09 8.92 6.31 4.13
Increase in LE 1.09 0.81 0.59 0.42 0.28
Cost 150 150 150 150 150
ICER 138 186 252 356 544
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In the decision tree, a proportion of the cohort will survive the event. This proportion
will have a life expectancy as predicted by the Markov model (see Table 5.3.3). In the
Markov model, the starting proportion in the Alive state will be the survivors of the
event and these survivors will also have a life expectancy as shown in Table 5.3.3.
Thus, if short term interventions are modelled, and this intervention happens only once

in a patient’s lifetime decision trees would be an appropriate modelling technique.
5.3.2 Multiple interventions

The models are now run with no restriction on the number of interventions. This only
affects the Markov model, since the decision tree can only model a single intervention.

Table 5.3.5-5.3.7 shows the comparative results for the decision tree and Markov

models for the baseline and treatment scenario.

Table 5.3.5 Life expectancy for patients of different ages for the decision tree (DT)

and Markov (M) models
Age (years) 40 50 60 70 80
Baseline (DT) 1521 1128 833 5.89 3.86
Baseline (M) 1521 1128  8.33 5.89 3.86

Treatment (DT) 1630 12.09 892 631 4.13
Treatment (M) 17.71 1325 978 687 444

Table 5.3.6  Increase in life expectancy and cost for patients of different ages for the
decision tree (DT) and Markov (M) models between the baseline and treatment scenario
Age (years) 40 50 60 70 80
Increase in LE (DT) 1.09 0.81 0.59 042 0.28
Increase in LE (M) 250  1.96 145 0.98 0.58
Increase in cost (DT) 150 150 150 150 150
Increase in cost (M) 492 477 448 403 346
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Table 5.3.7  Cost effectiveness for the treatment scenario compared to the baseline for

the decision tree (DT) and Markov (M) models

Age (years) 40 50 60 70 80
Decision tree 138 186 252 356 544
Markov 197 243 309 412 593

The baseline life expectancy for patients having an event is the same for the decision
tree and the Markov model (Table 5.3.5). The increase in cost and life expectancy

between the baseline and the treatment scenario is greater for the Markov model than
the decision tree across all ages (Table 5.3.6). This happens because the decision tree

only assessed one intervention compared to multiple interventions in the Markov model.

In this example, the cost of the intervention is independent of how old the patient is or
how long it will be before they die. For this case, the cost effectiveness (ICER) of the
intervention is lower for the decision tree model than the Markov for all ages (Table
5.3.7). The proportional difference in the ICER between the Markov model and the
decision tree is greater in the cohorts with the youngest starting age. For example the
ICER of the 40 year old cohort is 43% larger for the Markov model than the decision
tree whereas the ICER of the 80 year old cohort is only 9% larger for the Markov model

than the decision tree.

Table 5.3.8 Number of interventions for the treatment scenario run with cohorts of

different ages

Age (years) 40 50 60 70 80
Decision tree 1.00 1.00 1.00 1.00 1.00
Markov 3.28 3.18 2.99 2.69 2.31

Table 5.3.9 Increase in life expectancy per intervention for the treatment scenario for

the first intervention compared to subsequent interventions

Age (years) 40 50 60 70 80
1* intervention 1.09 0.81 0.59 0.42 0.28
Subsequent interventions 0.62 0.53 0.43 0.33 0.24
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The reason for the lower cost effectiveness for the decision tree was then examined.
Table 5.3.8 shows the number of interventions for the treatment scenario run for each of
the models. Table 5.3.9 shows the relative benefit of the interventions for the first
intervention compared to subsequent interventions. It shows that the increase in life
expectancy for the first intervention is greater than for subsequent interventions.
Clearly the benefit of the intervention is related to the patient’s life span remaining. By
definition, the initial intervention will always be before subsequent interventions and
the patient will be younger at the time of this intervention. Thus the initial intervention
will always have a larger increase in life expectancy than subsequent interventions. In
this example, all interventions are assumed to cost the same and so as a subsequent
intervention produces a smaller increase in life expectancy than the initial intervention,
the ICER will always be lower for the decision tree. (This assumes that the cost

effectiveness is positive.)

5.3.3 Discounting

The results presented in the preceding sections were undiscounted. The results are now
discounted. In the case of the decision tree the intervention happens at the start of the
run and so the costs of the intervention are undiscounted whilst the benefits of the
intervention will be discounted. For the Markov model, the costs and benefits occur
throughout the life of the cohort and so both the costs and benefits are discounted.
Results from the discounting for the decision tree and Markov models are shown in

Table 5.3.10-5.3.11 where costs and benefits are discounted at 3%.

Table 5.3.10 Discounted cost effectiveness (ICER) results from the Decision tree

model for baseline and treatment scenario runs with benefits discounted at 3%

Age (years) 40 50 60 70 80

Increase in life expectancy  0.67 0.56 0.45 0.35 0.24
Increase in cost 150 150 150 150 150
ICER 223 267 330 433 622

122



Chapter 5 Simple experimental models

Table 5.3.11 Discounted cost effectiveness (ICER) results from the Markov model for

baseline and treatment scenario runs with costs and benefits discounted at 3%

Age (years) 40 50 60 70 80
Increase in life expectancy 1.42 1.25 1.02 0.75 0.49
Increase in cost 348.9 370.4 373.8 357.2 322.4
ICER 245 297 368 475 661

With the use of an equal discount rate of 3% for cost and benefits, the ICER is worse (or
higher) for the two models in each of the age groups compared to the undiscounted case.
As before the ICER is lower for the decision tree than for the Markov model but in this
case the ICER results between the models are less variable than before especially for the
younger age cohorts. The difference between the ICER results from the Markov model
and decision tree varied by 10% for 40 year old cohort and 6% for 80.year old cohort.
As mentioned above in section 5.2, the modeller will have to decide if this level of
‘error’ is acceptable but we consider in this dissertation that it is acceptable and that this

error is unlikely to significantly alter the conclusion from the results.

5.3.4 Sensitivity analysis

In this section sensitivity analyses are performed and the conclusions from sections 5.3
— 5.3.3 are examined by looking at examples with higher and lower event rates. Thus in
the higher event rate example, there will be more interventions in the cohort than in the
example above. Similarly in the lower event rate example, there will be fewer
interventions in the cohort. The data used for these examples are shown in Table 5.3.12

and 5.3.13.

In any year the probability of experiencing a disease event and dying from that event
will be the product of the annual probability of the event itself and the probability of
dying from it. In both of the sensitivity analyses this probability will be as shown in
Table 5.3.1 and 5.3.2. In the sensitivity analysis with more interventions, the annual
probability of an event is doubled (Table 5.3.12). Conversely, in the sensitivity analysis

with fewer interventions, the annual probability of an event is halved (Table 5.3.13).
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Table 5.3.12 Baseline and treatment scenario data used for more interventions

Age (years) 40 50 60 70 80

Annual probability of event 0.1 0.2 0.3 0.4 0.5
Probability of dying from event (baseline) 0.15 0.15 0.15 0.15 0.15
Probability of dying from event (treatment) 0.125 0.125 0.125 0.125 0.125

Table 5.3.13 Baseline and treatment scenario data used for fewer interventions

Age (years) 40 50 60 70 80

Annual probability of event 0.025 0.05 0.075 0.100 0.125
Probability of dying from event (baseline) 0.6 0.6 0.6 0.6 0.6
Probability of dying from event (treatment) 0.5 0.5 0.5 0.5 0.5

In these examples the differences between the results from the two models are increased
for the run with more interventions. This is shown in Table 5.3.14 for the 60 year old

cohort.

Table 5.3.14 Percentage change in cost and life years saved for the sensitivity analyses

and the original run for the Markov model compared to the decision tree for the 60 year

old cohort
% More Original Fewer
interventions interventions
Life years saved 334 144 50
Cost 463 200 66

Figure 5.3.2 compares the percentage increase in cost effectiveness for different event
rates for the Markov model compared to the decision tree. For the higher event rate, the
difference is greatest between the Markov model and the decision tree model. As seen
in previous sections there is a greater difference between the models for the younger age
groups, but it was shown in section 5.3.3 that if the results are discounted, the

differences between the models will be similar for all age groups.
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Figure 5.3.2 Comparison of undiscounted cost effectiveness for different event rates;

proportional increase of Markov model compared to decision tree

5.3.5 Discussion

In the preceding sections the use of models for short term interventions has been

considered. It has been shown that:

H1) If the system modelled involves time related transitions between health states,

DES will most accurately model these transitions.

H2) If short term interventions are modelled, and this intervention happens only once

in a patient’s lifetime decision trees would be an appropriate modelling technique.

H3)  If short term interventions are modelled and this intervention happens more than
once in a patient’s lifetime, decision trees will underestimate the total costs and health

benefits incurred.

It has also been shown that the decision tree models will underestimate the cost
effectiveness and this underestimate will be exacerbated by more frequently occurring
events. Furthermore if the probability of the event is related to age then there will be a
bias such that the relative ICER underestimate is greatest in the younger age bands.

However with equal discount rates, the relative difference in ICER for the decision tree
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compared to the Markov model is similar for all age bands. For the example used, cost

effectiveness was underestimated by about 10%.

In the literature review in chapter 3 many of the studies used decision tree models. None
of these studies justified why they used decision tree models. Some of the studies, for

example those for diagnostic tests, may have considered that interventions for diagnosis
would not be likely to happen very often. Others such as for thrombolysis are not able to

make such an assumption because it is likely that there will be several interventions.

This study has shown that the decision tree may underestimate the cost effectiveness
compared to the Markov and simulation models. However, an underestimate as shown
in our example is unlikely to materially affect the conclusions for the recommendation
of the intervention or otherwise. This conclusion will be reviewed for a more realistic

model of ambulance and thrombolysis response time in chapter 7.

5.4 Long term intervention models

In this section models for long term intervention are considered. A long term
intervention is defined to be one which has a continued added benefit over a long time
period, for example, a course of medication which may reduce the risk of serious health

consequences for a particular disease over a long term horizon.

The simple models are in a similar format to the secondary prevention drug model
which is developed in chapter 8. The models are similar to those used for short term
intervention models and the models are represented by the same Figures

5.2.1-3. Individuals are at risk from a disease event and when they experience this event
they have a risk of dying from it. If they survive, they will have a chance of a further
event. The intervention reduces the chances of suffering an event. Individuals can also

die from non related causes.

The simple model uses an age dependent distribution for the annual probability of an

-4.586+0.03x

event, where p(event) = e , where x is the age of the individual. This
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distribution is chosen as it is similar to that seen for long term MI survival, see section
6.5. It assumes that older patients are at a greater risk of an event than younger patients
and this risk increases exponentially. The probability of death from this event is taken
to be 0.3 for all ages. The probability of non disease death is taken from the Office of

National Statistics (see section 6.4.3).

The treatment scenario uses a reduction in the probability of suffering an event of 25%
with a cost of £300 per year per person for each intervention. The simulation models

were run for 1000 individuals for 100 iterations.

As seen in Figure 5.2.1, it is not possible to use a decision tree model for long term
interventions. In order to model this using a decision tree the life expectancy needs to be

known for the group on the treatment compared to the group not on the treatment.

In Figure 5.2.1, the probability of dying from a disease event is the same for the
treatment scenario and the baseline. Thus the difference between the baseline and
treatment scenario is merely the estimate of life expectancies. Life expectancy[age] will
be a function of the non disease death rate and the disease death rate. In the treatment
scenario, there will be a different disease death rate but the non disease death rate will
stay the same and so it will not be possible to estimate the overall life expectancy

without using a Markov model or a simulation model. Thus it has been shown:

H4) Decision trees are an inappropriate choice of modelling technique for long term

or chronic interventions.

The undiscounted and discounted results from each of the Markov and simulation
model runs are shown in Table 5.4.1-5.4.4. As with the short term models, the
simulation and Markov models give similar results. The life expectancies and ICERs are
slightly higher for the simulation model than for the Markov model for each of the age
groups. The mean absolute errors between the models for undiscounted treatment life
expectancy, cost and ICER are 1%, 2.7% and 3.5% respectively. The mean absolute
errors between the models for discounted life expectancy, cost and ICER are 6.6%, 4%

and 2% respectively.
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Table 5.4.1 Patient life years, cost and cost effectiveness (ICER) results from the

Markov mode] for baseline and treatment scenario runs

Age (years) 40 50 60 70 80
Life expectancy Baseline 29.4 22.8 16.8 11.4 7.0
Life expectancy Treatment 31.7 24.7 18.1 12.2 7.4
Increase in LE 24 1.8 1.3 0.8 0.4
Cost 9515 7399 5428 3663 2226
ICER 4032 4080 4261 4637 5287

Table 5.4.2 Patient life years, cost and cost effectiveness (ICER) results from the

simulation model for baseline and treatment scenario runs

Age (years) 40 50 60 70 80
Life expectancy Baseline 29.6 23.1 17.1 11.6 7.1
Life expectancy Treatment 31.9 24.8 18.3 12.4 7.5
Increase in LE 2.3 1.8 1.2 0.7 0.4
Cost 9418 7296 5332 3544 2105
ICER 4077 4169 4370 4855 5689

Table 5.4.3  Patient life years, cost and cost effectiveness (ICER) results from the
Markov model for baseline and treatment scenario runs; results discounted at 3% for

costs and benefits

Age (years) 40 50 60 70 80
Life expectancy Baseline 18.2 15.5 12.4 9.2 6.0
Life expectancy Treatment 19.3 16.4 13.2 9.7 6.4
Increase in LE 1.0 0.9 0.8 0.5 0.3
Cost 5775 4921 3952 2907 1909
ICER 5621 5320 5239 5415 5914
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Table 5.4.4  Patient life years, cost and cost effectiveness (ICER) results from the
simulation model for baseline and treatment scenario runs; results discounted at 3% for

costs and benefits

Age (years) 40 50 60 70 80
Life expectancy Baseline 18.3 15.6 12.6 9.3 6.2
Life expectancy Treatment 19.3 16.5 13.3 9.6 6.4
Increase in LE 1.0 0.9 0.7 0.5 0.3
Cost 5649 4795 3832 2778 1782
ICER 5593 5362 5320 5592 6167

5.5 Cobhort versus population approach

In the previous sections in this chapter, decision tree, Markov and simulation models
have been compared using the cohort approach. In other words the models started with a
homogeneous cohort and followed them until they all had died. In the population
approach, this cohort is combined with an incident population, which join each year.
The population is followed for a predefined time. The population approach is explained

in more detail in section 2.2.6.

The same model is used as previously described in section 5.4. In this section only the
simulation model is used. Initially the differences between the approaches were shown
using the 60 year old cohort with the simulation model. Each of the models was run for
1000 individuals for 100 iterations. The population model was run for 100 years with an

incident population of 60 each year.

Table 5.5.1 and 5.5.2 show the results for the cohort and population runs where the
results are undiscounted and discounted at 3% for costs and benefits. The results from
the two approaches are more meaningful in slightly different formats. The cohort run
shows the life years saved and cost per individual who had the treatment. On the other
hand the population run shows the life years saved and cost for the population. The
population run results can be averaged across all individuals in the population to give

the results per individual.
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Table 5.5.1 and Table 5.5.2 show the increase in cost and life expectancy for individuals
for the two approaches. The increase in costs and life expectancy for the population runs
is less than for the cohort approach. This is because in the population runs there are still
many individuals alive at the end of the run who have not received their full benefit
from the intervention. Nevertheless the cost effectiveness (ICER) of the two approaches
is similar. The ICER from the cohort approach is less than the population approach by
9% and 4.5% in the undiscounted and discounted cases respectively. Table 5.5.3 shows

the life years saved and increase in cost for the population simulation.

Table 5.5.1 Results from the cohort simulation runs shown for each individual,

discounted results are discounted at 3% for costs and benefits

Increase in life  Increase in ICER
expectancy cost
Undiscounted 1.22 5332 4379
Discounted 0.72 3833 5320

Table 5.5.2 Results from the population simulation runs shown for each individual;

discounted results are discounted at 3% for costs and benefits

Increase in life  Increase in ICER
expectancy cost
Undiscounted 1.05 5054 4818
Discounted 0.3 1684 5569

Table 5.5.3 Results from the population simulation shown for each year; discounted

results are discounted at 3% for costs and benefits

Increase in life  Increase in ICER
expectancy cost
Undiscounted 73.5 354290 4818
Discounted 21.2 118028 5569
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Figure 5.5.1 Population size over time for the cohort population

Figure 5.5.1 and Figure 5.5.2 show the size of the population over time for the cohort
and population populations. The Figures are not directly comparable as in the cohort
simulation the population all dies within 40 years whereas in the population simulation
the population remains fairly static. However Figure 5.5.2 would be more useful to the
health care planner as it shows the likely change in population over time, and shows that
there is a long term benefit to the population. In contrast, the cohort population will be
the same size after 40 years for the baseline and the treatment scenario ie zero. Over this
time period the treatment scenario will always have a larger population alive than the

baseline.
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Figure 5.5.2 Population size over time for the population simulation
5.5.1 Comparing the cohort and population runs for all ages
The analysis in section 5.5 was now extended for all ages. Table 5.5.4 shows the

number of patients who joined the population run each year. These numbers were

chosen so that the population size remained fairly static for each age.

Table 5.5.4 Number of patients who joined the population run each year for different

ages
Age 40 50 60 70 80
Patients 30 45 60 80 120

Table 5.5.5 and 5.5.6 show the life years saved per individual and the increase in cost
for the cohort and population runs respectively for the discounted and undiscounted
cases. For all runs, the life years saved per individual and the increase in cost is lower in
the population runs than the cohort simulation. The relative difference between the

outcomes for the two approaches is slightly higher for the cost than the life years saved.
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Table 5.5.5 Life years saved per individual for the cohort and population runs

Age (years) 40 50 60 70 80

Cohort Undiscounted 2.31 1447 1.22 0.73 0.38
Cohort Discounted 1.01 0.89 0.72 0.50 0.29
Population Undiscounted 1.85 1.43 1.05 0.68 0.36
Population Discounted 0.49 0.40 0.32 0.21 0.11

Table 5.5.6 Increase in cost per individual for the cohort and population runs

Age (years) 40 50 60 70 80
Cohort Undiscounted 9418 7296 5332 3544 2105
Cohort Discounted 5649 4795 3833 2778 1782
Population Undiscounted 8301 6629 5060 3567 2294
Population Discounted 2828 2201 1744 1196 764
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Figure 5.5.3 Undiscounted ICER for all ages

Figure 5.5.3 and 5.5.4 show the results for the cost effectiveness (ICER) for the
treatment scenario for the undiscounted and discounted cases respectively for all ages.
The figures show that the percentage difference between the cost effectiveness (ICER)
for the population and cohort is similar for all ages. In all cases, the ICER for the
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population runs is greater than for the cohort runs. For the undiscounted results, the
ICER for the population runs is greater than the cohort runs by between 8 and 12%. For
the discounted results, the ICER for the population runs is greater than the cohort runs
by between 3 and 8%. In addition the ICER is similar across all ages. For example, the
ICER for the discounted population runs varies between £5550 and £6700.
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Figure 5.5.4 Discounted ICER for all ages, costs and benefits discounted at 3%

The reason for higher ICER for the population runs is clear and is illustrated by Figure
5.5.5. Briefly the benefits from the intervention lag behind the cost of the intervention.
This Figure shows how the ICER changes over time for a simulation run with a cohort
of 60 years old. Initially the ICER is much higher but after about 40 years the ICER has
levelled out. For the cohort simulation, the benefit of the intervention will be shared
between the whole of the cohort. In the population simulation there will always be many
patients still alive who have not received all the benefits from the intervention. Clearly
the population runs will always contain a proportion of people who have been in the
simulation less than 40 years. Therefore the ICER for these people will be higher than
the cohort simulation and so therefore the ICER for the population simulation will
always be higher than the cohort simulation. For the population simulation, the ICER
continues to decrease for many years. Thus, the ICER in this case is £6000 after 40
years, £5525 after 100 years and eventually stops decreasing after about 250 years at
£5450.
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Figure 5.5.5 Cost effectiveness (ICER) for the population and cohort simulation runs

with a cohort of age 60 years with costs and benefits discounted at 3%
5.5.2 Sensitivity analyses

Sensitivity analyses were performed by using treatment scenarios where the
intervention had a higher and lower benefit than the scenarios described above. In the
higher and lower benefit scenario, the intervention reduced the probability of suffering
an event by 40% and 10% respectively. The sensitivity analyses were run for all ages
for the cohort and population approaches and the results are shown in Figure 5.5.6 for

the 60 year old age group.

The results from the sensitivity analyses were similar to the results seen for the original
runs. The cost effectiveness (ICER) results for the population approach is higher than
for the cohort approach. The ICER results for the population approach are roughly 10%
higher than the cohort for all runs.

Further sensitivity analyses were conducted with different event rates and death rates.
The difference between the ICER for the population and cohort models was similar to

that seen in the analyses above.
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Figure 5.5.6 Discounted (with costs and benefits discounted at 3%) and undiscounted
ICER for cohort of age 60 years, for an intervention with higher and lower efficacy than

the original (O)

5.5.3 Time horizon

In the results shown in the previous sections, the cost effectiveness for the cohort
approach for model runs has been calculated over a patient’s lifetime, and for the
population approach for model runs of 100 years. However as shown in the literature
review in chapter 3, many other time horizons are chosen. The time horizon is critical to
the results and conclusions. If too short a time horizon is adopted, the cost effectiveness
may appear much worse than expected. However, if a long time horizon is chosen, there
may be difficulties in making assumptions about interventions beyond the length of
known evidence. In addition new technologies may be introduced in subsequent years

which would affect the assumptions made in the model.

Figures 5.5.5 and 5.5.7 show the effect of varying the time horizon for the cost
effectiveness of the long and short term interventions, assuming that the effectiveness of
the intervention remains the same throughout a patient’s lifetime. In both cases, the
ICER is much more favourable over longer time horizon. For example in Figure 5.5.7,
time horizons of 5, 10 and 20 years would overestimate the ICER by 230%, 50% and

9% respectively, compared to the lifetime ICER. One solution would be to present a
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range of time horizons, or present ICER for the time horizon likely to be of interest to

the health decision maker, for example 10-20 years.
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Figure 5.5.7 Discounted cost effectiveness ratio for the short term intervention; costs

and benefits discounted at 3%

5.5.4 Discussion

Using the population approach the health care planner can ascertain not only whether a
new treatment is cost effective, but what the costs and health outcomes are likely to be
in the population of interest, and for this reason its use is recommended above that of
the cohort analysis. Thus it has been shown that a population analysis provides a more
comprehensive summary of the value of the intervention for the health care planner than
a cohort analysis. In addition, the cost and health benefit outcomes of an intervention

are as important an output as cost effectiveness.

5.6 Resource-constrained interventions

In this section resource-constrained interventions are investigated. Resource-constrained

interventions are those for which there may be some decision rules concerning the
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allocation of the resources and these are typified by the referral and subsequent waiting
of patients for elective hospital procedures. It is investigated whether:
H5) For dynamic systems which involve constraints or where patients compete for

resources, DES is the most appropriate technique.

Experiments are conducted using the population simulation model described in section
5.5. Instead of using a scenario where patients take a drug that reduces their risk of
future disease events, in this model patients can have an intervention which stops them
having any further disease events. Thus they only die from non disease death. It is
assumed that all patients who have a disease event are referred for the intervention.
They wait on a queue until such time as there are the resources available for them to
have the intervention. All other parameters are as described in section 5.5. The
intervention costs £30,000. There is a prevalent population of 1000 patients and an
incident population of 60 patients of starting age of 60 years. The simulation is run for

100 iterations for 40 years.

Table 5.6.1 shows the results from the simulation runs. As can be seen from the table
when there are 4 and 5 interventions per month the average waiting time is very short at
only 56 and 20 days respectively. When there are only 3 interventions per month there
is amuch longer waiting time of over 2% years. In this case there are 12% fewer
interventions performed and the cost effectiveness ratio is almost 20% lower for the

scenario with the longest waiting time.

Table 5.6.1  Average annual costs (£000s), patient life years and cost effectiveness

ratios for the simulation runs with queues; discounted ratios at 3% for costs and benefits

Interventions / month

Baseline 3 4 5
Cost 1079 1216 1212
Patient Life years 1196 1278 1313 1312
Undiscounted ICER 13236 10401 10502
Discounted ICER 16000 13176 13360
Waiting time (months) 30.9 1.8 0.6
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So it is concluded that in this scenario modelling the waiting time was significant to the
results of the interventions. However the intervention can also be modelled without
using a queue but merely building a waiting lag in the model. A comparative model was
built without queues where patients wait for a set time period equivalent to the average
queuing time shown in Table 5.6.1. This waiting lag could have been estimated using an
analytical queuing model or from an observation of the real life system. The results are
shown in Table 5.6.2. There is little difference between the results and those in Table
5.6.1. Certainly the inclusion of queues has not materially affected the results. Thus a
resource-constrained intervention has been modelled without the use of queuing and so

systems with a queue system can be modelled effectively without the need for DES.

Table 5.6.2  Average annual costs (£000s), patient life years and cost effectiveness
ratios for the simulation runs with no queues; discounted ratios at 3% for costs and

benefits

Interventions / month

Baseline 3 4 5
Cost 1156 1209 1211
Patient Life years 1196 1284 1311 1311
Undiscounted ICER 13194 10575 10506
Discounted ICER 16421 13456 13375
Waiting time (months) 30.9 1.8 0.6

5.7 Conclusions

In this chapter the choice of modelling technique was explored through the construction
of simple models. In particular the hypotheses set out in the previous chapter were
investigated. Simple decision tree, Markov and simulation models were constructed for
short term and long term interventions. The results were compared and the hypotheses
tested empirically. The models used hypothetical data to make the comparison between

the models easier to interpret.
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As aresult of testing the hypotheses H1-HS, it has been concluded that for short term
interventions, where the intervention happens more than once in a patient’s lifetime,
decision trees will underestimate the total costs and health benefits incurred compared
to the other modelling techniques. When modelled using the same data and
assumptions, the Markov and simulation models give similar results which converge as
the cycle time of the Markov model decreases. It has been shown that the cohort and
population-based approaches will yield different results and the population-based
approach will give a worse cost effective ratio compared to the cohort-based approach.
The appropriate choice of time horizon for the model is critical to the obtaining the
suitable results and conclusions. Finally a resource-constrained intervention can be
modelled without the use of queuing and so systems with a queue system can be

modelled effectively without the need for DES.
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Chapter 6

The Development of Models for Coronary Heart Disease

Abstract

This chapter presents the development of models for Coronary Heart Disease which will
be used in the subsequent chapters. The key parameters are outlined, for example CHD
incidence and prevalence rates, in and out of hospital death rates and non cardiac death
rates. The long and short term risks of myocardial infarction are derived from available
data. A CHD model using these parameters is developed that is validated for death rates

and heart attack against published national data and shows a good match.

141



Chapter 6 The Development of Models for Coronary Heart Disease

Chapter 6 The Development of Models for Coronary

Heart Disease

6.1 Introduction

This chapter describes the development of models for coronary heart disease. These
models are described in more detail in chapters 7 to 9. Although the models describe
different interventions with different structures, the underlying disease process is
similar. The underlying clinical process is described and the main parameters are

explained and derived. Finally the model is validated against national datasets.

6.2 Clinical aspects of coronary heart disease

The clinical aspects of coronary heart disease are described in more detail in section
3.1.1. Briefly, patients with coronary heart disease usually have coronary arteries which
have narrowed due to the build up of fatty materials (atherosclerosis). These narrowings
or stenoses influence the patient’s survival and may lead to them developing angina

pectoris, a heart attack or cardiac arrest.

Angina is a chest pain which is exacerbated during exercise or stress. Patients with
angina are usually given medication to relieve their symptoms such as nitrates, beta
blockers or calcium antagonists. If the symptoms become bad they may be referred for
further investigations such as an electrocardiogram (ECG), or angiogram. If the
patient’s arteries are sufficiently bad they may be offered surgical treatment such as
coronary artery bypass graft (CABG) or percutaneous transluminal coronary

angioplasty (PTCA) to improve the blood supply to the heart.

In unstable angina, chest pain may occur at rest and may increase in severity, frequency,
or duration at low levels of activity or for no identifiable reason. If onie or more of the
coronary arteries become blocked a heart attack or cardiac arrest may occur. Those who

experience heart attack are a high risk of cardiac arrest and immediate death. They are
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usually admitted to hospital as emergencies and treated as soon as possible with clot
busting medication (thrombolysis) and aspirin. They may be referred for further

immediate investigation and medical treatment.

Patients with coronary heart disease are increasingly offered secondary prevention
medication to reduce the risk of further coronary events. These drugs include aspirin,

beta blockers, ACE inhibitors and statins.

6.3 Modelling the treatment of heart disease

The models built in this chapter are based upon research completed by the author as part
of the UK Coronary Heart Disease Policy Model working team (Appendix I). In
particular much of the data have been collected by other members of the group and is
described in more detail in the Stable angina, Unstable angina and Myocardial
Infarction Working papers (Chase et al. 2003). Furthermore the modelling work here

was done by the author in consultation with other members of the group.

New patient

\ 4

CHD patients
Heart
attack
Y
CHD death Non CHD death

Figure 6.3.1 A simple population model of the treatment of coronary heart disease
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The basis of the population models of coronary heart disease treatment described in
chapters eight and nine are shown in Figure 6.3.1. They consist of a prevalent pool of
patients with varying severity of coronary heart disease, for example some of these may
suffer from anginal symptoms and others may have had a heart attack in the past. Over
the course of the model runs, the prevalent population will be added to by new CHD
patients who have no previous history of CHD. These patients may suffer a heart attack
at any time and the length of time until they have a heart attack will be related to their
risk factors, for example age, history of heart attack, severity of diseased arteries. Some
of the heart attacks will be fatal. The CHD patients may also die from causes not related
to CHD.

The cohort models in chapter 7 are also illustrated using the same Figure but in this case

there will be no new patients entering the models.

6.4 Parameters for coronary heart disease models

The parameters for the coronary heart disease models are explained in more detail in the
next sections. The parameters were age dependent, for example the prognosis for older
patients is worse than for younger patients, and in some case is gender specific, for
example the incidence and prevalence is higher for males than females. In addition,
patients who had a history of heart attack or myocardial infarction (MI) were at greater
risk of further coronary events and the prevalence of CHD is shown according to three
classifications: Angina only, angina and history of ML, history of MI. The parameters

derived assume independence of events.

6.4.1 Incidence of new patients

The population models generate new patients with stable angina, unstable angina and
MI who have not had previous coronary events. The incidence was taken from the
Bromley Heart Study (Sutcliffe et al. 2003). These data were broken down by age and
sex. Unfortunately, no Bromley data were available for men and women for the age

band 75-84 and so data had to be found from other sources and related to the Bromley
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data. The Framingham data (Lerner and Kannel 1986) set was used to estimate the
stable angina and MI incidence and the Finished Consultant Episodes (1998) were used

to estimate unstable angina in the older age group (Table 6.4.1).

In each of the population models, the annual incidence in each age group for each
gender is the product of the incidence and the total population of that age (see Appendix
II). For example there are about 3.9% of the total population who are males of age 65-
74. For a total population of one million, there would be an annual incidence of about

255 for angina only.

Table 6.4.1 Incidence of new coronary heart disease patients (% of total population
in age band) (Data from Sutcliffe et al. 2003 and *Lemer et al. 1986; Table from
Cooper et al. 2003)

Angina Unstable angina Myocardial infarction
Ageband  Male Female Male Female Male Female

35-44 0.06 0.01 0.02 0 0.06 0.01
45 - 54 0.238 0.098 0.043 0.029 0.225 0.03
55-64 0.548 0.357 0.08 0.03 0.359 0.165
65 - 74 0.655 0.33 0.19 0.039 0.71 0.236
75 - 84 0.3 0.6 0.21 0.048 1.01 0.59

85+* 0.34 0.47 0.21 0.048 0.18 0.53

6.4.2 Prevalence of CHD patients

The population models begin with a prevalent CHD population. The prevalence was
taken from the General Practitioners Research Database (GPRD 1998). The National
dataset was stratified by age and sex. However the models needed the data to be broken
down further by history of previous MI. The GPRD data have been obtained for the

West Midland area with prevalence stratified by age, sex and disease state.

Overall, the CHD prevalence for the West Midlands was 4% higher than for England
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and Wales. The West Midland data were adjusted so that the total CHD prevalence is
the same as the England and Wales estimate for each of the age and sex bands (Table

6.3.2).

In each of the population models, the prevalence in each age group for each gender is
the product of the prevalence and the total population of that age (see Appendix II). For
example there are about 3.9% of the total population who are males of age 65-74. For a
total population of one million, there would be a prevalence of about 4095 for angina

only.

Table 6.4.2 Prevalence of CHD patients (% of age band) (Data from GPRD 1998;
Table from Cooper et al. 2003)

% in age band Angina, no MI Angina, previous MI  MI, no angina

Age Band Male  Female Male Female Male Female
35- 44 0.3 0.15 0.1 0.02 0.1 0.02
45 - 54 1.6 1.1 0.6 0.2 0.8 0.1
55-64 5.1 3.8 2.5 0.5 1.9 0.5
65-74 10.5 8.2 5.1 1.7 2.8 1.3
75 -84 12.0 11.6 6.6 3.1 4.5 2.0

85+ 9.7 10.9 3.6 2.4 3.6 24

6.4.3 Non cardiac death rate

The mortality statistics were taken from ONS Death and population statistics (see
appendix III), for 1998 for England and Wales. These statistics are broken down for
different categories including coronary heart disease deaths. CHD deaths are those with
International Classification of Diseases (ICD) codes 410-414. It was assumed that the
non cardiac death rate for patients with no coronary heart disease was the same as that
for those with coronary heart disease. The non cardiac death rates for male and females
have been averaged to give a combined annual probability. There were no population
data available on the number of people above the age of 0 and so these data have been

estimated by assuming a continual increase in non cardiac probability.
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Table 6.4.3  Annual probability of non cardiac death (NCD) for male and females of
different age (Office of National Statistics, 1998)

Age P(NCD) Age P(NCD)
45 0.0018 75 0.0319
46 0.0019 76 0.0361
47 0.0020 77 0.0391
48 0.0022 78 0.0416
49  0.0025 79 0.0489
50  0.0027 80  0.0527
51 0.0028 81  0.0582
52 0.0034 82  0.0645
53 0.0036 83  0.0718
54 0.0040 84  0.0806
55 0.0045 8  0.0879
56 0.0047 86 0.0995
57 0.0053 87  0.1077
58 0.0060 88  0.1204
59 0.0064 89 0.131
60  0.0070 90 0.14
61  0.0077 91 0.15
62 0.0086 92 0.16
63 0.0094 93 0.17
64 0.0105 94 0.18
65  0.0114 95 0.19
66 0.0127 96 0.2
67 00143 97 0.21
68  0.0155 98 0.22
69  0.0178 99 0.23
70 0.0200
71 0.0221
72 0.0245
73 0.0270
74 0.0298
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For each age, the annual probability of non cardiac death was calculated by dividing the
number of non cardiac deaths at a particular age by the total number of people of that

age in the population.

For the Markov models, the transition probability for non cardiac death is simply that
specified by the age and sex of the patient as shown in Table 6.4.3. For the simulation
models, a cumulative probability distribution was generated starting from the current
age of the person until age 100. The model samples from this cumulative probability
distribution to find a time to non cardiac death, using the inverse transform method. The
cumulative probability that a person of age n, will have died by age x where x>n is the
combined probability that the person will have died by age x-1 or he/she will die in the
current year. The cumulative probability that a person of age n, will have died by age x

where x>n is

1 — (1-p(n+1)).(1-p(n+2)).....(1-p(x-1)).(1-p(x)).

6.4.4 Death from heart attack

Patients who have a myocardial infarction are at a high risk of CHD death and this may
happen either out of hospital or in hospital. This risk is influenced by the timeliness of
ambulance and thrombolysis response. The models in Chapter 7 evaluate improvements
in ambulance and thrombolysis response times in reducing the out of hospital and in

hospital deaths respectively.
The data for out of hospital and in hospital deaths were taken from UKHAS (Norris

1998). There were no values available for ages above 75 years. These ranges were

estimated using the Nottingham study (Brown et al. 1997).
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Table 6.4.4 Out of hospital and in hospital death rates, % (Norris 1998 and * Brown

et al. 1997)
Ageband  Out of hospital In hospital
35- 44 20 2
45 -54 255 4.1
55-64 29.2 15
65 -74 37 253
75+%* 50 46

6.4.5 Myocardial infarction

In the models in chapters seven to nine, myocardial infarctions are sampled from fitted
probability distributions. Patients who suffer a myocardial infarction may die in or out
of hospital as described in section 6.4.4 from that myocardial infarction and it was
assumed that all patients that die from coronary heart disease first suffer a myocardial

infarction.

Table 6.4.5 Derived annual probability of MI (x is age of patient) (Cooper et al.

2003)
Patients Annual probability of MI
Angina only 0.0107exp™ %
History of MI: first year after MI 0.0325exp® 37
History of MI: after first year after MI 0.01 59exp°'°3"

The EMMACE dataset (Lawrance et al. 2001) and the British Regional Heart Study
(BRHS) (Lampe et al. 2000) are used to estimate the rates of myocardial infarctions.
According to these datasets, the probability of death is significantly higher in the first
year than in subsequent years and the probability of coronary events is significantly
higher for patients with a history of MI than for those with angina only. Accordingly,
probability distributions were derived for three categories: probability of MI for patients
with angina only, probability of MI for patients with history of MI in the first year after
M1, probability of MI for patients with history of MI after first year after MI. These
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probabilities are shown in Table 6.4.5. The derivation of these parameters is shown in

Appendix IX.

6.4.6 Discussion

The data derived in the preceding sections and in Appendix IX relates to the model for
coronary heart disease presented in chapters seven to nine. In particular there is an
extensive explanation of the derivation of the probability distributions for myocardial
infarctions. These derivations were necessary, because the best available data, the
EMMACE data, did not show the proportions of patients who had fatal or non fatal MI

within the trial - only those who died from all causes in the five years of follow up.

The probability distributions presented are in the form of annual risk of MI in the next
year, according to the present age of the patient. The Markov models will use this
probability in this form in the models, to determine if the patient suffered an MI in that
year. For the simulation models, it is more complex. Although a lookup table could
have built and sampled from to find the time to event, it is more mathematically
appealing to construct a probability distribution with the same annual risk values and

sample from this. The derivation of this distribution is shown in the appendix V.

6.4.7 Unstable angina rate

Unstable angina is a serious complication for CHD patients and is costly in terms of the
use of resources, however the data concerning unstable angina occurrence were poor
and so several assumptions have been made. Unstable angina may occur from any state.
It was necessary to predict times to event for unstable angina for different patient ages,
disease state and vessel disease. The distribution of time to unstable angina was
assumed to follow a Gompertz distribution in as similar manner to MI. The age gradient

was used as shown for stable angina.

There was no evidence for influence of gender, previous MI or vessel severity on
progression to unstable angina. There were data for the rate of patients progressing to
unstable angina from the RITA 2 trial (1997). The trial was predominately made up

from patients with single or two vessel disease. From these results it was estimated that
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a 58 year old CHD patient with no previous history of MI with one or two vessel
disease had an annual risk of unstable angina of 3.49%. Using the age gradient in the
section above, it was estimated that the progression to unstable angina was 0.0141e%015%
, Where t is age in years, giving an event rate at age 55 of 3.33% and an age gradient

between 55 and 70 years of 1.26

6.5 Validation of the derived data

In this section a validation of a model using the derived probability distributions for MI
is presented compared to the original EMMACE data. The probability distributions
derived in Appendix IX contain several assumptions and it was possible to test the

validity of these assumptions.

A Markov cohort model was constructed using the simple model shown in Figure 6.3.1.
Cohorts of 1000 individuals for five age bands who had survived a MI (as in the
EMMACE study) were followed for five years with a cycle length of one year. The data

for the transitions between the states have been described above.

[ Markov / Fit
EMMACE

within 5 years

, o I

40 50 60 70 80

Proportion of cohort dying

Age of cohort

Figure 6.5.1 Comparison between EMMACE data and Markov run results for all

cause mortality over five years
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The results are shown in Figure 6.5.1. This shows the proportion of the cohort who
suffered all cause mortality during the five year follow up for the EMMACE dataset and
the Markov model. The Markov shows a good fit for all ages with the exception of the
70 year old year group. The model results differ from the EMMACE data on average by
about 4%. A possible reason for the difference for this age group is that there were
fewer deaths in the EMMACE dataset for the 70 year old age group than one might

have expected.

6.6 Validation of the CHD model

One advantage of the population approach over the cohort approach is that the former is
easier to validate. The population model imitates what is happening or what will happen
in the wider population. The results can be compared to National Statistics or other
large observational datasets, particularly for end points such as death. On the other
hand, the cohort model presents a more unnatural environment and is more problematic
to validate, unless there is a trial which has been carried out which is similar to the

model setting,

In this section, a validation of the population model is presented. The model uses the
parameters derived in the preceding sections and has been described in sections 6.2 and
6.3. The model used for the validation was a simulation model and has been run for a
population of 125,000 for 100 iterations. The model uses the baseline parameters for
ambulance and thrombolysis response times, secondary prevention and
revascularisation as described in chapters seven, eight and nine respectively. The
baseline case uses parameters and a baseline scenario from before the National Service
Framework was introduced. The CHD Modelling team estimated that the results from
the model at the start of the simulation run would simulate real life population from the

year 1998 onwards.

Validation data are available in several forms: 1) routinely collected data such as death

certificates and in-patient episodes, 2) published studies such as incidence and
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prevalence estimates and 3) research databases. In attempting to validate the model,
data were used from different sources from those used in the model. The model has
been validated for coronary heart disease events. The CHD events are validated by year

and by age breakdown.

6.6.1 CHD deaths

CHD deaths in the model were validated against mortality data from the Office for
National Statistics, based on death certificates. Compared to these data, the model
underestimated total deaths by an average of 4.5% in 1998 (see Figure 6.6.1) and is
within 5% of the total deaths for the years 1998 — 2001 (see Figure 6.6.2).
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Figure 6.6.1 CHD deaths, ICD codes 410-414, for 1998 for a population of
125,000; model estimates compared to the Office of National Statistics data.
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Figure 6.6.2 CHD deaths, ICD codes 410-414, per year for a population of 125,000;

6.6.2 Out of hospital myocardial infarction

model estimates compared to the Office of National Statistics data.

Myocardial infarctions in the model were validated against the United Kingdom Heart

Attack Study (UKHAS). The study did not include people over the age of 75 so the 75-

85 age group has been extrapolated from the Framingham study. Overall the model

overestimates the total occurrence of myocardial infarction by 3.6% (see Figure 6.6.3).

160
140
120
100
80
60
40
20
0

Number of events

74

\\
N

R

o
N

N
TN

RN
i,
>,

X
.

TR
q\i&%;\;\: NN
R

N

75-84

71 Model
#® UKHAS

Figure 6.6.3 Myocardial infarctions, for 1998 for a population of 125,000; model

estimates compared to the United Kingdom Heart Attack Study data.
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6.6.3 Myocardial infarction hospital admissions

Myocardial infarctions in the model were validated against the Hospital Episode
Statistics (HES). The data were not stratified according to the age ranges used in the
model, and it was assumed that 10% of admissions were for persons aged less than 45
and over 85, based on the HES data for unstable angina. Overall the model
overestimates the occurrence of myocardial infarction admissions between 6 and 12%

between 1998 and 2000 (see Figure 6.6.4).
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Figure 6.6.4 Myocardial infarction admissions, for a population of 125,000; model

estimates compared to the Hospital Episode Statistics data.

6.7 Conclusion

This chapter has presented the development of models for Coronary Heart Disease
which will be used in the subsequent chapters. The underlying clinical process for
coronary heart disease has been described. The key parameters were outlined, for
example CHD incidence and prevalence rates, in and out of hospital death rates and non
cardiac death rates. The long and short term risks of myocardial infarction were derived
from available data. A CHD model using these parameters has been developed that was
validated for death rates and heart attack against published national data and shows a

good match.
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The collection of relevant and accurate data for modelling purposes is problematic.
Nevertheless, validation against different datasets showed an excellent fit for cardiac

death and MI.
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Chapter 7

Acute Treatment Interventions:

Models for Ambulance and Thrombolysis Response Time

Abstract

In this chapter decision tree, Markov and simulation cohort models are built to evaluate
the costs and benefits from faster ambulance and thrombolysis response times for
coronary heart disease patients experiencing MIs. The choice of modelling technique is
investigated for acute (short-term) treatment interventions using the case study
approach. Some of the conclusions from chapter 5 for the simple experimental models

are tested for a more complex and realistic model to see if they still hold true.

The models results show that improving ambulance response times is likely to be a cost
effective intervention but improving thrombolysis response times is much less cost
effective. The decision tree, Markov and simulation models estimate an incremental
cost effectiveness ratio of between £3750 and £4160 per life years saved for the
ambulance intervention. The decision tree model estimates an incremental cost

effectiveness ratio of £21,800 per life years saved.

Using these models it is concluded that decision tree models are an appropriate
technique for modelling the cost effectiveness of short term interventions. However, as
shown in chapter 5, when the intervention occurred more than once in a patient’s
lifetime the decision tree underestimated the total costs and benefits. For more accurate
life time costs and benefits for the intervention a Markov or simulation model should be
used. Using the models developed in this chapter, interventions for faster ambulance
response are shown to have a favourable cost effectiveness ratio, whereas those for

faster thrombolysis response time have a much less favourable cost effectiveness ratio.
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Chapter 7 Acute Treatment Interventions:

Models for Ambulance and Thrombolysis Response Time

7.1 Introduction

In Chapter 3 it is concluded that decision trees were often used to estimate the cost
effectiveness of short term interventions, although none of the studies had justified their
use of this modelling technique. In Chapter 5, simple models for short term
interventions were examined. It was shown that the decision tree was an appropriate
technique to use if the modelled short term intervention happens only once in a patient’s
lifetime. It was also shown that decision trees underestimated the cost and health
benefits incurred if the intervention happened more than once. It was concluded that
decision trees may be an appropriate technique for cost effectiveness if the results can
be shown to be similar to those of the Markov and simulation model and their use does
not materially bias the conclusion of the study. In this chapter some of these hypotheses
and conclusions are examined with a real life example from Coronary Heart Disease for

interventions for faster ambulance and thrombolysis response times.

Unless indicated otherwise, the results for the models are shown in terms of cost (£),
effectiveness (years of life saved) and cost effectiveness (incremental cost effectiveness
ratio, ICER, £/life years saved). The incremental cost effectiveness ratio is shown as the
difference in cost between the intervention scenario and baseline divided by the

difference in effectiveness between the intervention scenario and baseline.

7.2  Ambulance and Thrombolysis response times

This models built in this chapter are based upon research completed by the author as
part of the UK Coronary Heart Disease Policy Model working team (Appendix I). Some
of the results from the UK CHD Policy Model have been submitted to a journal (Chase
et al. 2005) but those results have not been presented in this chapter. In particular much

of the data have been collected by other members of the group and is described in more
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detail in the Model Parameters Working paper (Cooper et al. 2003). Furthermore the

modelling work here was done in consultation with other members of the group.

Individuals who suffer an out of hospital heart attack or cardiac arrest are at
considerable risk of mortality. Studies have shown that survival after a cardiac arrest is
improved if an ambulance arrives at the scene quickly (Cobbe et al. 1991). Furthermore,
the survival after a heart attack (myocardial infarction) is improved if the patient is
treated quickly with an anti-blood clotting drug known as thrombolysis upon hospital
arrival (FTT 1994 and Boersma et al. 1996).

The UK government has set guidelines for the treatment of Coronary Heart Disease in
the National Service Framework (DOH 2000). These guidelines included a target of
75% of calls to be reached within 8§ minutes by ambulances and for 75% of eligible

individuals to receive thrombolysis within 30 minutes of hospital arrival.

In this chapter models are built which evaluate the health gains and costs associated
with moving to these targets. These gains are compared to a baseline ambulance and

thrombolysis response for the year 2000.

7.2.1 Description of the models

The ambulance and thrombolysis cohort model follows individuals who have had an out
of hospital MI. Some of these may die out of hospital or in hospital. The remainder of
the cohort will have a probability of dying from a non-cardiac death or suffering a

further MI. The model will follow the cohort until they have all died.

Life years are calculated by summing the number of CHD patients in the cohort for each
year over the whole model run. Life years saved were the difference between the total

number of patient life years associated with each intervention and the base run.

The parameters used in the model are event rates for MI and non cardiac death, out of
hospital and in hospital death rates for patients suffering MI and costs. In the following
sections, the out of hospital and in hospital death rates are derived for faster ambulance

response (sections 7.2.2-7.2.4) and faster thrombolysis response (sections 7.2.5-7.2.7).
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The cost parameters are described in section 7.2.8. Finally the models are described in

more detail in section 7.3, including the event probabilities.

7.2.2 Parameters for the ambulance scenarios

The Scottish Heartstart study (Cobbe et al. 1991) provided data on the survival rate after
cardjac arrest until hospital discharge for different ambulance response times (Table

7.2.1).

Table 7.2.1  Survival data for cardiac arrest patients who survive to hospital discharge

from HeartStart, 1991-8 (Table from Cooper et al. 2003)

Time Number Cum. Cum. % %
(Mins) ofcalls No.calls of total discharged
0-1 37 37 0% 32
1-2 99 136 2% 18
2-3 343 479 5% 13
3-4 626 1105 12% 14
4-5 911 2016  22% 11
5-6 1022 3038 34% 10
6-7 983 4021 45% 9
7-8 957 4978 55% 7
8-9 868 5846 65% 5
9-10 685 6531 72% 7
10-11 606 7137 79% 4
11-12 438 7575 84% 4
12-13 390 7965 88% 4
13-14 278 8243 91% 6
14-15 178 8421 93% 2

At the time of the study, the survival rate was better than the national average for
England. These data were used to estimate a new ambulance response distribution, by

‘ {

moving the 75% percentile of ambulance response to 8 minutes as described below. For

each of these scenarios a new survival rate to hospital for cardiac arrest patients is
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calculated. It is assumed that survival in hospital was worse for cardiac arrest survivors

than for other MI patients.

The data are for 9028 cardiac arrest patients, of whom 7.9% survive to hospital
discharge. The mean ambulance arrival time is 8.3 minutes after call for help and the
median ambulance arrival time is 7.5 minutes. The inter-quartile ranges are 5.2 and 10.4

minutes; the 90% percentile is 13.6 minutes.
7.2.3 Estimation of a new ambulance scenario

The new ambulance scenario was estimated by moving the 75% quartile of ambulance
response times from 10.4 to 8 minutes. There are many ways that this could be done.
For example for an optimistic ‘best’ scenario, many of those call response times which
are reduced to less than an 8 minute response time could have a response time of 0-2
minutes. On the other hand, for a pessimistic ‘worse’ scenario, many of those call
response times reduced to less than 8 minutes response time could have a response time
of 7 — 8 minutes. A more realistic scenario was attempted as follows. Table 7.2.2 shows
how the frequency of calls changes from the baseline to the scenario for the different

time bands.

Table 7.2.2  Changes to the baseline ambulance response times for the improved

ambulance scenario

Time for ambulance response (mins)

Baseline Scenario

<38 Same as baseline
8 -10.4  Response times < 8 minutes

>10.4  All baseline response times reduced by 2.4 minutes

For the middle category in Table 7.2.2 the new response times are estimated to have the
same distribution as that in the baseline < 8 minutes time band. Figure 7.2.1 below
shows the estimated distribution of ambulance response times. Table 7.2.3 below shows

a summary of the ambulance response times.
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Table 7.2.3 The frequency of the estimated ambulance response times in each time
band, % (Table from Cooper et al. 2003)
Mins Baseline Scenario
0-4 12 22
4-8 43 53
8-12 29 17
»12 16 8
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Figure 7.2.1 Frequency distribution of the ambulance response times for each

scenario (Figure from Cooper et al. 2003)

7.2.4 New MI mortality rates from improved ambulance response times

The data from the HeartStart study for cardiac arrest and UKHAS (Norris 1998) for MI

are combined in order to estimate the new mortality rates for patients suffering an out of

hospital MI using simple mathematics. These patients will include those who had

suffered a cardiac arrest and those who had only suffered a MI.

Of all cardiac arrests C, a proportion are witnessed c,, and the rest are not witnessed c,.

cwtcy=1
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Of those witnessed, the survival rates s; to discharge depend on the timing band j. If the
proportion of the witnessed cardiac arrests in each time band is c,; then the baseline
overall survival rate of all cardiac arrests, S, assuming all unwitnessed cardiac arrests
die is
S= cw.zl c,;-5;+0.c,
j:

The survival rates are calculated in this way for the baseline, Sg and the intervention (

Sh).

The UKHAS data (see section 6.4.4) gives the in hospital death rate (d;) of those
persons who survive a cardiac arrest. From this the out of hospital death rate (d,) for

persons who have cardiac arrest is calculated.
The number of patients with cardiac arrest who die out of hospital = C.d,,
Those who die in hospital = C(1 — d,).d;

And those who survive to hospital discharge = C.(1 -~ d,) — C(1 —d,).d; = C.S.

1-do—(1-do)di=S

(I-do).(1-dy)=S
S

(-4
S

=l

Thus d,, the out of hospital death rate for patients with cardiac arrest, has been
calculated. According to UKHAS, all deaths out of hospital are due to cardiac arrest. It
is assumed that there is the same in hospital death rate for cardiac arrest survivors as for
those who had a MI, and the baseline out of hospital death rate, d, and the out of

hospital death rate, d,,;, for a scenario are calculated. A relative risk for the effect of the

. : . o d
intervention on cardiac arrest mortality is calculated to be —%- . Thus the old out of
o0
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hospital MI mortality rate is multiplied by this relative risk for each age band to find the

new MI mortality rate.

However, in UKHAS, those patients who had a MI who survived an out of hospital
cardiac arrest were four times as likely to die in hospital than those who had not had an
out of hospital cardiac arrest. If more of these out of hospital cardiac arrest patients
survive to hospital then the overall death rate in hospital will increase for all M1

patients.

Let the number of patients who suffer a cardiac arrest outside hospital and survive be
Cy, those who die in hospital Cq4, those who merely have a MI but do not suffer a cardiac

arrest outside hospital be My, and of these those who die in hospital be Mg.

The total number of deaths in hospital is C4 + My

. .. (Ci+M : : .
The death rate in hospital is M , the in hospital death rate for cardiac arrest

h+ h

) . C, : : :
patients is —— and for non cardiac arrest patients is
h h

Now if more cardiac arrest patients survive c;', to hospital then the new overall death

(C, +M,)

rate is -
(Cy +M,)

. . C,.C
If fact c4' is an unknown but can be estimated by —2=%
h

Those patients who survived an out of hospital cardiac arrest were four times as likely

to die in hospital than those who had not had an out of hospital cardiac arrest,
M
C, =4C,'. =%
Mh

(C,'+M)

So the formula for the out of hospital death rate is ;
(Cy +M,)
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AC'M
K Ci %NM”
(C, +M,)

_ M, (4G +M,)
M,(C,' +M,)

It is assumed that patients who subsequently survive a cardiac arrest because of faster
ambulance response times have the same long term prognosis as post MI patients. The
derived out-of-hospital death rate for patients who suffer an out of hospital MI is shown

in Table 7.2.4 for the baseline and faster ambulance response time scenario.

Table 7.2.4 Derived out of hospital MI mortality rate, %

Ageband Baseline Ambulance

35-44 20 19.4
45-54 25.5 2477
55-64 29.2 28.3
65-74 37 359
75-84 50 48.5

7.2.5 Parameters for the thrombolysis scenarios

Faster thrombolysis administration also results in better survival for patients suffering
acute MI. Estimates of thrombolysis efficacy were taken from the Fibrinolytic Therapy
Trialists’ Collaborative Group (FTT group) meta-analysis (FTT 1994). The data for
efficacy was related to the time from onset of symptoms. Data on contra-indications to
thrombolysis and current use of thrombolysis was taken from UKHAS (Norris 1998)
and a West Midlands audit for baseline data (Birkhead et al. 1997). The FTT study used
data from large trials (>1000 patients). An alternative study by Boersma et al (1996)
incorporated other studies that the FTT group considered too small to include. The
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relative risk reduction associated with faster thrombolysis administration is shown in

Table 7.2.5.

Table 7.2.5 Weighted relative risk associated with thrombolytic therapy onset to
thrombolysis (Table from Cooper et al. 2003)

Time from Relative risk Time from Relative risk
symptoms to FTT symptoms to Boersma et al
thrombolysis (hours) thrombolysis (hours)

0-1 0.73 0-1 0.52

2-3 0.77 | >1-2 0.6

4-6 0.84 >2-3 0.73

7-12 0.87 >3-6 0.73

13-24 0.95 >6-12 0.84

>12-24 0.9

It is difficult to say whether the FTT or the Boersma paper provides the better estimate
for the benefits of thrombolysis (Chase et al. 2005). The FTT paper is more
methodologically sound. It only includes trials of 1000 patients or more. It is well
known that smaller studies are more likely to suffer from bias. However, the Boersma
paper could be said to address the question better. The smaller trials included in this
paper included many more patients who received thrombolysis much earlier and the
findings, showing much greater benefit in the initial hour, are backed up by other
experimental studies. For the purpose of this study the FTT has been taken for the

benefits and sensitivity analyses have been conducted with the Boersma data.

The National Service Framework target is to reduce the time from hospital arrival to
thrombolysis administration. As mentioned above, the target was for 75% of eligible
patients to receive thrombolysis within 30 minutes and this target would be further

improved to 75% within 20 minutes.

The West Midlands data consisted of 16000 patients who had out of hospital MI. The

times between onset of symptoms, hospital arrival and thrombolysis administration,
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together with their survival was recorded. Table 7.2.6 shows the frequency distribution
of people who received thrombolysis in hospital for different times from hospital arrival
to thrombolysis administration. These patient times were adjusted for faster hospital
arrival to thrombolysis administration to obtain a new distribution for the time from
symptom onset to thrombolysis administration. Using these data, new in-hospital

mortality rates were calculated.

Table 7.2.6  Original ‘door to needle’ response distribution from the West Midlands
dataset (Birkhead et al. 1997; Table from Cooper et al. 2003)

Time Frequency % Cum. %
(mins)
0-10 227 3.7 3.7
10-20 642 10.5 14.2
20-30 951 15.6 29.8
30-40 819 13.4 432
40-50 702 11.5 54.7
50-60 539 8.8 63.5
60-70 390 6.4 69.9
70-80 327 5.4 75.3
80-90 273 4.5 79.7
90-100 211 3.5 83.2
100-110 206 34 86.6
110-120 114 1.9 88.4
120-180 388 6.4 94.8
180 — 240 147 2.4 97.2
240 — 480 121 2.0 99.2
480 - 720 18 0.3 99.5
720 - 960 7 0.1 99.6
960 — 1200 4 0.1 99.6
1200 - 1440 3 0.0 99.7
1440 - 9645 19 0.3 100.0
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There is a slight mismatch between the government target which attempts to reduce the
time from hospital arrival to thrombolysis administration (so called ‘door to needle
time’) and the benefits of thrombolysis which are related to the time since pain started.
In practice, many people may wait several hours before calling for an ambulance and
even speedy thrombolysis may have little effect because of this delay. So for our model
it is necessary to incorporate this delay whilst also evaluating the benefits of moving to

the new targets.

UKHAS (Norris, 1998) estimated that about 50.2% of patients who arrived at hospital
after a MI actually had thrombolysis. The majority of the other patients would have

been refused treatment for various medical reasons.
7.2.6 Estimation of a new Thrombolysis scenario

Using the in hospital times, the new in-hospital thrombolysis scenario is estimated by
moving the 75% quartile to 30 minutes. As for the ambulance scenario, this could be
done in several ways that would give a range of scenarios from highly optimistic to

pessimistic. A realistic method was chosen.

The baseline data has a mean hospital arrival to thrombolysis time of 73 minutes,
median of 45 minutes and 75% quartile of 80 minutes. Each of the individual patients is
given a new time from hospital arrival to thrombolysis by multiplying their current time
by the target time / the baseline 75% quartile time, ie 30/80 for the 30 minute scenario
(Table 7.2.7 and Figure 7.2.2).

Table 7.2.7 ‘Door to needle time’ response distributions for thrombolysis

Response time Baseline, % of  Improved scenario,

(mins) patients % of patients
0-29 29.8 75.3
30-59 33.7 18.1
59-119 24.9 49
120 - 239 8.8 1.1
> 240 2.5 0.6
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The time from onset of symptoms to thrombolysis is now recalculated by using the

newly calculated time from hospital arrival to thrombolysis added to the original time

from onset of symptoms to hospital arrival (Table 7.2.8).
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Figure 7.2.2 Estimated ‘door to needle’ thrombolysis response distributions (Figure

Table 7.2.8

from Cooper et al. 2003)

Time from onset of symptoms to thrombolysis (using time bands as for

FTT study) (Table from Cooper et al. 2003)

Time (hrs) Baseline

30 minute target

20 minute target

0-1 9.8 20.5 24.3
2-3 46.1 46.1 44 4
4-6 27.2 19.5 17.7
7-12 12.2 10.1 9.9
13-24 4.6 39 3.7
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7.2.7 New MI mortality rates from improved response times for thrombolysis

Using the new frequency distribution for the thrombolysis response times, new

mortality rates are derived using simple mathematics.

For patients arriving at hospital after a MI, a proportion, 8, will receive thrombolysis
and the rest, n, will not. Those patients that have thrombolysis will have an increased
survival rate and this is also influenced by the response time. There is an overall relative
risk, 1j, between thrombolysis and non thrombolysis patients, which is different for each

time band j. If the proportion of the patients thrombolysed in each time band is 6;, then

the overall relative risk, r, compared to patients not thrombolysed is Zé)jrj .
Allg

If the patients who are not thrombolysed have a mortality rate of m, and those who are

thrombolysed have a mortality rate of my then the overall mortality rate, m is

m = fmyr + nm, = mu(dr + n)

" (Gr+n)

s My =rm

For a different scenario, the new overall mortality rate for thrombolysed and non
thrombolysed patients m' is calculated. First the relative risk for using thrombolysis (r*)

is calculated as shown above, then the new mortality rate for thrombolysis,

and so as before the total mortality can be expressed in terms of the proportions of non

thrombolysed and thrombolysed patients,

1 1. L 1
m=0'm,~+nm,
¥
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Table 7.2.9 shows the baseline and 30 minute ‘door to needle’ in hospital mortality rates

for MI patients.

Table 7.2.9  In hospital mortality rates for MI patients for FTT study, %

Age band Baseline 30 minutes for

(years) ‘door to needle’
35-44 2.0 2.0
45 -54 4.1 4.0
55-64 15 14.8
65 -74 253 25.1
75 — 84 46 45.7

7.2.8 Cost parameters

Published studies by the Review of Ambulance Performance Standards (RAPS) (NHS
Executive, 2000) and Fischer et al. (2000) have estimated the cost of improving
ambulance response rates for England (excluding London) and the Surrey Ambulance

Service respectively.

The Review of Ambulance Performance Standards estimated the cost for attaining a
75% ambulance response time within 8 minutes as £15m, (£18m if grossed up to
include London). This was estimated in 1994/5 when the national average proportion of
calls met in 8 minutes was around 45%. The RAPS data excluded London, which is
likely to have higher costs and has the lowest proportion of calls reached in 8 minutes of
any service. The RAPS report, which was supported by two reports by ORHealth, was
before national targets were imposed (DOH, 1995). The Department of Health has
subsequently used the RAPS estimates for the cost of meeting the new standards. If
these costs are updated to 2000 prices this corresponds to £390,100 per million
population. The year 2000 was used as this is the same year used for the baseline

scenario for the ambuiance and thrombolysis response times.
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Fischer et al. (2000) estimated the expected decrease in response time and increase in
cost by adding one ambulance to the number currently used by Surrey Ambulance
Service. They estimated that there would be an increase in ambulance costs of £28,000
per second gained in response time for a population of 1.25 million for the Surrey
Ambulance Service. If these costs are updated to 2000 prices this corresponds to

£2,335,400 per million population for the 75% target.

The Department of Health estimated the increased spending required to improve
ambulance response times and to provide relevant equipment for CHD in England to be
£48.4 million from the end of 1999 to the end of 2002. This consists of:

e £21m for additional staffing and vehicles

e £3.4 million for satellite navigation,

e £24 million for ECGs and defibrillators.

Thus it seems that £48.4 million is the cost of improving the proportion of priority calls
reached within 8 minutes from the figure of 47% in 1999 to the target of 75% by 2002.
The sustained cost to meet the target in subsequent years will be £18m per year or very

close to the grossed up RAPS estimate.

The two published studies provide boundary estimates and indications of the problems
involved with estimating costs. Fischer’s work is limited to one service, which if
extrapolated nationally implies a cost increase of £112m. The RAPS report, which has
the benefit of explicitly addressing the cost for England (but excluding London) puts the
cost of meeting the 75% target at £15m. The CHD modelling team adopted the RAPS
figures extrapolated to include London and updated to the year 2000 (Chase et al. 2005)

and these figures are also used in this chapter.
7.2.9 Costing issues in thrombolysis
The costs to improve the thrombolysis response times have not yet been published.

However several papers have reported that the targets can be achieved with extra nurse

training and recruitment, for example (Qasim et al. 2002; Wilmshurst et al. 2000).
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The CHD modelling team estimated a range of costs to meet the target equivalent to an
increase of between one and five nurses of grade G for each A&E department which
treats MI (Chase et al. 2005) and these costs are also used in this chapter. The MINAPS
report (Birkhead 2003) lists 215 A&E departments in England. This works out at
between 4.3 and 21.5 extra nurses per million population needed. The yearly cost of a G
grade nurse with 40% added for overheads is £35,000. Thus the cost per million
population for extra nurses is between £150,500 and £752,500. For the purposes of this
study a midpoint cost of £451,500 is taken.

7.3 Modelling cohorts

Each of the models use homogeneous cohorts of the same age. In sections 7.2.8 and
7.2.9, the cost for the ambulance and thrombolysis scenarios was described per million
population, however it is necessary to estimate the cost per individual. The cost for the
ambulance scenario was split between all those that have an out of hospital MI, which
was taken from UKHAS (Norris 1998), see table 7.3.1. The cost per individual who has
a MI was estimated to be about £150. The cost for thrombolysis was split amongst the
cohort and is estimated to be about £175 per person who have a MI (or £275 per person
with MI who arrives at hospital).

Table 7.3.1 Frequency of out of hospital MI and survivors to hospital from UKHAS

scaled to a million population

Ageband Cohortstart Number of Number of MI who

(years) age MI survive to hospital
35-44 40 69 55

45-54 50 283 211

55-64 60 522 370

65-74 70 897 565

75-84 80 864 432

Total 2635 1633
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7.3.1 The decision tree model

Decision tree methodology has been described in detail in section 2.3.1. The ambulance
and thrombolysis decision tree is shown in Figure 7.3.1. The original analysis consists
of two scenarios: original (or baseline) and ambulance scenario where 75% of

ambulance arrivals at scene are within 8 minutes.

0/ (life_expectancy[age])

Original response 0/0

Ambulance mode! with simple L ML dealhfages ]
age=60
XiraAmbCost=150
XtraThrombCo...

XtraAmbCost / (life_expectancy[age]

Survive
In hospital death
Amb75[age;2)

XtraAmbCost / 0

Out of hospital death

XtraAmbCost / 0
Amb75(age;1]

Figure 7.3.1 Decision tree for the ambulance model

The probabilities relating to out of hospital death and in hospital death in the various
scenarios and the methodology used to derive them are described in section 7.2 and the
parameters are shown in Tables 7.2.4 and 7.2.9. Those patients who survive to hospital
discharge are assigned a life expectancy appropriate for their disease and age, whilst
those who do not survive have a life expectancy of zero. The life expectancies have
been calculated using a simple Markov model in Treeage as described below. For the
scenarios, each person in the cohort will incur the cost of the strategy just once. None of
the future MIs will be costed and equally none of the future benefits of improved
treatment incorporated. The cost of the strategies is shown at the end of each of the
branches. This equates to the total extra money spent on this strategy divided by the
number of people who had an out of hospital MI and is estimated to be £150 for each

out of hospital MI for the ambulance scenario.
7.3.2 Life expectancy model
The simple life expectancy model is shown in Figure 7.3.2. Markov models are

described in section 2.3.2. The simple model consists of three states Survive, Non

cardiac death or CHD death where the death states are absorbing states. The simple life
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expectancy model calculates the life expectancy from the point of hospital discharge
after a non fatal MI. The model incorporates a higher death rate for CHD death in the
first year, which is seen in the EMMACE data, see Appendix IX. The data for non CHD
death are described in section 6.4.3. Life expectancy was calculated for male and female

combined (Table 7.3.2).

Survive

- Survive
Survive f Non cardiac death
O <]

Non cardiac death
1.0 pNonChdDeath([age]
Simple life expectancy calculato: / Non cardiac death \CHD death

T
HD death
age=start_ag... @ 0 q pChd... q C
pChdDeath=0
start_age=50 CHD death pChdDeath

0

Figure 7.3.2 Simple Markov model used to calculate life expectancy for MI survivors

Table 7.3.2  Life expectancy (age at death) for M1 survivors estimated by a simple

Markov model and used in the decision tree

Age Male and female

40 66.6
50 69.4
60 72.7
70 77.6
80 83.8

7.3.3 The Markov model

The ambulance and thrombolysis Markov model is shown in Figure 7.3.3. The model
consists of four states, Post MI I* year, Post MI subsequent years, Cardiac death, and
Non cardiac death. Cardiac death and non cardiac death are absorbing states.
Individuals who survive a MI have an increased risk of a further M1 in the first year
than in further years. In each cycle individuals can move between the states or remain in
the same state. If an individual has a MI in a cycle then they will move to the Cardiac

death state if the M1 is fatal or the Post MI I* year if the MI is non fatal. Those
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individuals who are in the Post MI I* year state will move to the Post MI subsequent

years state if they do not have a MI in the next cycle.

Post MI
1st year

Post MI
subs
years

Cardiac
death

10

Non
cardiac
death

Figure 7.3.3 States of the Markov model for the ambulance and thrombolysis model

The transitions in the model (numbered on diagram) are as follows:

1) Patient has non fatal MI during 1st year post MI

2) Patient has fatal MI during 1st year post MI

3) Patient has Non cardiac death during 1st year post MI

4) Patient has no events during 1st year post MI and joins post MI subs years state
5) Patient has non fatal MI during subs years post MI

6) Patient has fatal MI during subs years post M1

7) Patient has Non cardiac death during subs years post MI

8) Patient has no events during subs years post MI

9) Non cardiac death (Absorbing state)

10) Cardiac death (Absorbing state)

The simple model for calculating life expectancy in section 7.3.2, describes the
transition to the cardiac death state by the probability of dying from a sudden cardiac
death from the EMMACE dataset. In contrast, the Markov mode! described here
describes transition to the cardiac death state by means of the probability of an MI and

then the conditional probability of dying from it. This annual probability of the fatal or
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non fatal MI rate has been derived from the EMMACE data (Lawrance et al. 2001) as
described in Appendix IX. Thus the probabilities of cardiac death used in the simple life

expectancy model in section 7.3.2 can be considered to be more accurate in representing

the EMMACE data than the model in section 7.3.3.

Table 7.3.3 Transition probabilities for the Markov model for the ambulance and
thrombolysis model (Death rate DR in or out of hospital from UKHAS Table 6.4.4,
ONS = Office of National Statistics Table 6.4.3)

Transition Data source / derived equation Value for age 40
1) 0.0325exp’"*™*0.641*(1 - DR in out hosp) 0.062
2) 0.0325exp®?*"#0.641*(DR in out hosp) 0.017
3) ONS 0.0013
4) 1-T1-T2-T3 0.92
5) 0.0159exp®?**0.641*(1 — DR in out hosp) 0.0264
6) 0.0159exp”9***0.641*(DR in out hosp) 0.0074
7) ONS 0.0013
8) 1-T5-T6-T7 0.965
9) 1

10) 1

The probability of MI or death in 1¥ year is 0.0325exp” ™ and in subsequent years is
0.0159exp®%* where x is the age of the individual. The non cardiac death rate is taken
from the Office of National Statistics (1998) (section 6.4.3) and the MI death rate for an
individual is taken from the UKHAS (section 6.4.4). The EMMACE dataset had a
combination of secondary prevention drugs, which was equivalent to a risk reduction of
0.641 seen in the EMMACE dataset. The transition probabilities are shown in Table
7.3.3 for an individual of age 40.

The model is shown in Figure 7.3.4 as a Treeage model. It includes some of the
branches from the decision tree for in and out of hospital death. For the ambulance and
thrombolysis scenarios, the changes to out of hospitai or in hospital death rate will

affect the transition probabilities.
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Figure 7.3.4 Treeage diagram of the ambulance and thrombolysis Markov model

In order to compare the Markov model with the decision tree of the ambulance and

thrombolysis scenarios the Markov model was set up so that it starts immediately after

the initial MI. To do this the initial proportions in the Post MI 1* year state is set to be

the proportion of MI survivors (ie 72% at age 50) and set the proportion of initial CHD
death to be those who had fatal MI (ie 28% at age 50) from the initial MI. The same

data have been used and the same assumptions made as for the decision tree model.
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7.3.4 The simulation model

Simulation and Simul8 models have been described in section 2.3.3. The Simul8 screen
shot of the model 1s shown in Figure 7.3.5. It consists of four activities and starting and

ending queues.

The cohort is set up in a queue area where each of the individuals have their original
characteristics set, ie age, time to MI, time to non cardiac death. The cohort proceeds
immediately to the Next health event. In order to avoid individuals queuing for this
event, the function in Simul8 is replicated many times. Simul8’s so called ‘Visual logic’
is used to set up a mini calendar and the individual’s first occurring event is chosen and
the individual is routed to the appropriate health event. The individual will wait in this
activity until the time of the next event. This is executed by setting the service time of

the event to be that of the time to the next event.

If the next event is a M1, the individual proceeds to the Heart attack event. At this
event, some will have a fata] MI and proceed to CHD death. The remainder will have a

time set for their next MI and will proceed back to the Next health event.

If the next event is a non CHD death, the individual proceeds to the Non cardiac death

work centre at the appropriate time.

Heart aftack crb geath
0 0
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4--'/ ’
.-—’//
Next heatth evert.—"
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Figure 7.3.5 Simul8 diagram of the ambulance and thrombolysis simulation model
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The model uses the ONS data for non cardiac death, EMMACE data for fatal or non
fatal MI rate and the UKHAS data for the MI death rate as described in section 6.4.4.
The model is run with a cohort of 1000 patients.

As for the Markov model, the cohort starts immediately after their initial ML To do this
the initial time of the next MI event is set to be 0 so that all patients proceed
immediately to the Heart attack event. The same data and assumptions have been made

as for the decision tree model and the Markov model.

7.4 Results from the three models

The models were run for cohorts of different ages who have an initial MI. The
simulation model was run for a cohort of 1000 individuals for 50 iterations. The
confidence intervals for the runs deviated from the mean by < 1% for each of the age

bands.

Table 7.4.1 shows the life expectancy of MI patients of different ages for the different
scenarios. Table 7.4.2 shows the increase in life expectancy of the patients for the
improved ambulance scenario. The increase in life expectancy varies according to the

age of the cohort.

Table 7.4.1 Life expectancy (years of life remaining) of MI patients for the decision
tree (DT), Markov (M) and simulation (S) models

Age (years) 40 50 60 70 80

Baseline (DT) 20.85 13.86 7.64 3.58 1.03
Ambulance (DT) 20.99 13.99 7.70 3.61 1.03
Baseline (M) 20.92 13.80 7.79 3.70 1.15
Ambulance (M) 21.16 13.98 7.87 3.74 1.16
Baseline (S) 21.12 13.91 7.90 3.78 1.16
Ambulance (S) 21.31 14.07 7.98 3.82 1.16
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Table 7.4.2 Increase in life expectancy (years)

Age (years) 40 50 60 70 80

Decision tree 0.142 0.125 0.056 0.029 0.006
Markov 0.240 0.184 0.083 0.038 0.008
Simulation 0.198 0.160 0.082 0.043 0.006

Table 7.4.3 shows the increase in cost for the different age cohorts for the models.
Using the costs shown above the cost effectiveness is calculated. The gains in life
expectancy are largest for the younger age groups and consequently the cost
effectiveness is best in these groups (Table 7.4.4). Table 7.4.5 shows the cost

effectiveness with costs and benefits discounted at 3%.

Table 7.4.3 Increase in cost (£)

Age (years) 40 50 60 70 80
Decision tree 150 150 150 150 150
Markov - 356 315 267 224 185
Simulation 351 311 264 222 183

Table 7.4.4  Cost effectiveness (£/LYS) with no discounting

Age (years) 40 50 60 70 80

Decision tree £1056  £1200 £2655 £5226 £26,316
Markov £1480  £1715 £3230 £5860  £23,751
Simulation £1773 £1939 £3210 £5120 £30,431

Table 7.4.5 Cost effectiveness (£/LYS) with costs and benefits discounted at 3%

Age (years) 40 50 60 70 80

Decision tree £1990 £1838 £3380 £5899 £27,533
Markov £1908 £2109 £3874 £6749 £26,447
Simulation £2035 £2217 £3688 £5862 £30,605
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In this case, it may be unethical or unpractical to adopt the ambulance intervention for
some age groups and not others so the cost effectiveness of the whole population may
be of more relevance. To calculate this, each of the age bands’ cost effectiveness ratios

are weighted according to the prevalence of M1 in that age band (Table 7.4.6).

Table 7.4.6  Annual frequency of MI in a population of one million (Norris 1998)

Age band 35-44 45-54 55-64 65-74 75-84 Total

Frequency of MI 69 283 522 897 864 2635

For a million population, the increase in cost for each age group will be the increase in
cost in Table 7.4.3 multiplied by the prevalence of MI in Table 7.4.6. The total cost will
be the sum of all the age group costs. This is shown in Table 7.4.7. In a similar way the
increase in life expectancy for a million population for each of the age groups is

calculated.

Table 7.4.7 Increase in cost (£) for a million population

35-44 45-54 55-64 65-74 75-84 Total

Decision tree 10350 42450 78 300 134550 129600 395250
Markov 24543 89117 139374 201287 159408 613729
Simulation 24225 87897 137830 199164 158016 607 131

Table 7.4.8  Increase in life expectancy (years) and cost effectiveness (£/LYS) for a

million population
35-44  45-54 55-64 65-74 75-84 Total ICER
Decision tree 10 35 29 26 5 105 £3752
Markov 17 52 43 34 7 153 £4011
Simulation 14 45 43 39 5 146 £4157

The cost effectiveness for the population is found by dividing the total increase in cost

for the population by the total increase in life expectancy, and ranges from £3752 for the
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decision tree model to £4157 per life year saved for the simulation model. If the costs
and benefits are discounted at 3% the cost per life year saved for the population is

£5005 for the decision tree, £5074 for the Markov and £4954 for the simulation model.

The results from these runs follow a similar pattern to the simple models in section 5.3.
In this case more complex data have been used. For patients in this model there is a
higher risk of a repeat event in the first year than in subsequent years. In the decision
tree model described here, the parameters used for the life expectancy was calculated
without using event rates for MI (section 7.3.2). In contrast, for the Markov model and
simulation model further assumptions were necessary in order to estimate the event rate
for MI as described in Appendix IX. These assumptions may have introduced some
further inaccuracies such that, in this case, the life expectancy estimated for the decision

tree may be more accurate than those estimated for the Markov and simulation models.

The results for the simulation model are similar to those from the decision tree and
Markov models. Table 7.4.1 shows the average life expectancy for cohorts of different
ages for each of the models. The Markov and simulation models have increased benefits
from future interventions but also increased cost compared to the decision tree (Table
7.4.2 and Table 7.4.3). However, the undiscounted and discounted cost effectiveness is

similar for each of models (Table 7.4.4 and Table 7.4.5).
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Figure 7.4.1 Increase in life expectancy between the baseline and ambulance

scenarios
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The undiscounted cost effectiveness is highest in the simulation model, followed by the
Markov model and the decision tree model. The reasons for this have been discussed in
detail in section 5.2 and 5.3. The mean absolute error between the ICER results from the
decision tree and the simulation models is 10%. However when the model results are
discounted at 3% the cost effectiveness is very similar between each of the models with

a difference of only £120 (or <3%) between the most and least cost effective.

7.4.1 Discussion

The three models give similar results for the cost effectiveness of the ambulance
scenario. The decision tree model is not able to evaluate any benefit or costs from any
recurrent MI and would underestimate the future costs and benefits of the intervention
(hypothesis H2). However, in this case, the decision tree estimates slightly better (or
higher) undiscounted cost effectiveness compared to the other models but the

discounted cost effectiveness is consistent between all three models.

In the literature review in chapter 3, the decision tree with a Markov model, to estimate
life expectancy at the end of the tree’s branches, is most commonly used to evaluate
short term interventions. The decision tree model was the simplest and quickest model
to build and did not need extra analysis to estimate the MI rate. As concluded in chapter
5, the decision tree will underestimate the total costs and benefits but is still able to
provide a reasonable estimate of the cost effectiveness. Based on the results seen for the
initial analyses and the ambulance scenario a decision tree model was chosen for the

rest of the ambulance and thrombolysis scenarios.

7.5 Further results and sensitivity analyses

Further results and sensitivity analyses were performed using the decision tree model.

The results and sensitivity analyses are as follows:
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7.5.1 Ambulance response times:

The following analyses were compared with the baseline and ambulance (‘Ambulance

75”) scenarios as described above in section 7.4.

1. ‘Best’” ambulance scenario. The distribution for ambulance response time gives
the same target response time as for the ambulance 75 scenario, ie 75% of calls reached
within 8 minutes. The distribution was altered from that shown in Figure 7.2.1 to one

with more responses in the quicker time bands, ie the distribution is skewed to the left.

2. “Worst” ambulance scenario. The distribution for ambulance response time gives
the same target response times but the response times were moved the minimal amount

possible to achieve that target, ie in the 7-8 minute time bands.

3. Ambulance 90 scenario. 90% of ‘life threatening’ calls to receive an ambulance
response within 8 minutes. The distribution for ambulance response is calculated in a

similar way to that for the ambulance 75 scenario.

4, Ambulance and thrombolysis scenario. The Ambulance 75 scenario is combined

with the Thrombolysis 30 FTT scenario.

7.5.2 Thrombolysis response times:

The following analyses were compared with the baseline as described above in section

7.4.

1. Thrombolysis 30 FTT scenario. 75% of eligible patients to receive thrombolysis
within 30 minutes of hospital arrival using the FTT study (FTT 1994) for the relative
mortality risk of thrombolysis.

2. Thrombolysis 20 FTT scenario. 75% of eligible patients to receive thrombolysis

within 20 minutes of hospital arrival using the FTT study for the relative mortality risk

of thrombolysis.
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3. Thrombolysis 30 BMA scenario. 75% of eligible patients to receive
thrombolysis within 30 minutes of hospital arrival using the Boersma study (Boersma et

al. 1996) for the relative mortality risk of thrombolysis.
7.5.3 Data for the scenarios
The scenarios were run with the data in Tables 7.5.1-7.5.3. The extra cost for the

scenarios were £150 for the Ambulance 75 scenarios, £480 for the Ambulance 90

~ scenario and £175 for the Thrombolysis scenarios, see section 7.2.8.

Table 7.5.1  Out of hospital (OH) and in hospital (IH) mortality rates (%) for the

baseline and ambulance 75% scenarios

Cohort Baseline Ambulance 75
age OH IH OH IH
40 20 2 19.4 2.1
50 25.5 4.1 24.7 421
60 29.2 15 28.3 15.41
70 37 253 359 25.99
80 50 46 48.5 47.26

Table 7.5.2  Out of hospital (OH) and in hospital (IH) mortality rates (%) for the

ambulance scenarios

Cohort Best Amb 75 Worst Amb 75 Ambulance 90 Ambulance and

age thrombolysis
OH IH OH IH OH IH OH IH
40 19 2.1 19.8 2 19.0 2.1 19.4 2.0

50 242 4275 25.2 4.065 242 431 247 4.18
60 27.7 1575  28.85 15.07 277 15.78 28.3 15.30
70 352 26.575  36.5 25.45 352 26.61 35.9 25.81
80 47.4 4845 49.3 46.34 475 48395 485 46.93
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Table 7.5.3  Out of hospital (OH) and in hospital (IH) mortality rates (%) for the

thrombolysis scenarios

Cohort Thrombolysis Thrombolysis Thrombolysis
age 30 FTT 20 FTT 30 BMA

OH IH OH IH OH IH

40 20 2.0 20 2.0 20 1.9

50 25.5 4.0 25.5 4.0 25.5 4.0

60 29.2 14.8 29.2 14.8 29.2 14.7

70 37 25.1 37 25.0 37 249

80 50 45.7 50 45.6 50 45.4

7.5.4 Results from the Ambulance scenarios

The results from the ambulance scenarios are shown in Table 7.5.4 —7.5.6. Table 7.5.4

shows the benefit in life years for the 60 year old cohort compared to the baseline

scenario. Tables 7.5.5 and 7.5.6 show the cost effectiveness for each of the age bands,

both undiscounted and discounted at 3%.

Table 7.5.4 Undiscounted increase in life expectancy for the 60 year old cohort

compared to the baseline scenario

Ambulance 75 Ambulance 75

'Best'

"Worst'

Ambulance 75 Ambulance and Ambulance

thrombolysis 90

0.056 0.093

0.031

0.066 0.086

Table 7.5.5 Undiscounted cost effectiveness (£/LYS) for the ambulance scenarios

Age (years) 40 50 60 70 80

Ambulance 75 1056 1200 2660 5226 26316
Ambulance 75 'Best' 625 691 1613 3538 37500
Ambulance 75 'Worst' 2830 2459 4839 7009 18750
Ambulance 90 2008 2341 5581 11881 120000
Ambulance and thrombolysis 2241 2500 4924 8690 27083
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Table 7.5.6  Cost effectiveness (£/LYS) for the ambulance scenarios with benefits

discounted at 3%

Age (years) 40 50 60 70 80

Ambulance 75 1990 1838 3386 SEH AT E
Ambulance 75 'Best’ 1179 1060 2055 3993 39234
Ambulance 75 'Worst' 5329 3763 6159 7910 19618
Ambulance 90 3789 3591 7110 13411 125549
Ambulance and thrombolysis 4223 3829 6271 9808 28339

The results for the Ambulance 75 scenarios are seen to be very sensitive to how the

distribution of calls is chosen. For example for the 60 year old age cohort, the increase

in life expectancy varies between 0.03 and 0.09 years for the best and worse scenarios

years and the undiscounted cost effectiveness varied between £1610 and £4840 per life

years saved.

Figure 7.5.1 shows the overall cost effectiveness for the whole population for the

ambulance scenarios. The ambulance 90 scenario and ambulance and thrombolysis

scenarios are less cost effective than all the ambulance 75 scenarios.

Cost effectiveness (£/LYS)

Amb 75 Amb 75
'Best'

e

Amb 75
'Worse'

Amb 90 Amb and
throm

‘ d Undiscounted @ Discounted at Sﬂ

Figure 7.5.1 Cost effectiveness for the ambulance scenarios estimated for the whole

popuiation
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7.5.5 Results from the thrombolysis scenarios

The results from the thrombolysis scenarios are shown in Tables 7.5.7 - 7.5.9. A ‘worse’
intervention for the thrombolysis 30 FTT scenario was performed in a similar way to
the two Ambulance 75 interventions. The results were similar to the Thrombolysis 20

FTT scenario but are not shown here,

Table 7.5.7 Undiscounted increase in life years for the 60 year old cohort for the

thrombolysis scenarios

Thrombolysis 30 Thrombolysis 20 Thrombolysis 30
FTIT FTT BMA
0.014 0.016 0.023

Table 7.5.8 Undiscounted cost effectiveness (£/LYS) for the thrombolysis scenarios

Age (years) 40 50 60 70 80

Thrombolysis 30 FTT 21875 14583 12500 17500 29167
Thrombolysis 20 FTT 19444 13462 10938 14583 25000
Thrombolysis 30 BMA 15909 10938 7609 9722 14583

Table 7.5.9 Cost effectiveness (£/LYS) for the thrombolysis scenarios with benefits

discounted at 3%

Age (years) 40 50 60 70 80

Thrombolysis 30 FTT 41128 22299 15906 19745 30516
Thrombolysis 30 BMA 29913 16726 9683 10971 15259
Thrombolysis 20 FTT 36559 20584 13918 16455 26157

The results were sensitive to the study used for the mortality relative risk estimates. For
example, for the 60 year old cohort, benefits from the thrombolysis intervention varies
between 0.014 (FTT) and 0.023 (Boersma) years while the undiscounted cost
effectiveness varies between £12500 (FTT) and £7600 per life years saved (Boersma).

189



Chapter 7 Acute Treatment Interventions

There was little additional benefit seen by the Thrombolysis 20 FTT scenario. For these
analyses it was assumed that the cost for the 20 minute scenario was similar to the 30

minute scenario which may not be the case.

Figure 7.5.2 shows the estimated cost effectiveness for a population. As discussed in
section 7.2.8 the cost used for these scenarios was the mid point from a range of cost
estimates. Using these costs, the thrombolysis scenarios were less cost effective than the
ambulance scenarios. If the full range of cost estimates for thrombolysis are used the
results are much more varied. The Thrombolysis 30 FTT varied between £5000 and
£25000 using the range of cost estimates for thrombolysis.

25000

20000

15000 -

@ Undiscounted
Discounted at 3%

10000 ~

5000 -

Cost effectiveness (£/LYS)

Throm 30 Throm 20 Throm 30
FTT FTT BMA

Figure 7.5.2 Cost effectiveness (£/LYS) for the thrombolysis scenarios estimated for

the whole population

7.5.6 Discussion on the ambulance and thrombolysis scenarios

The results from the ambulance and thrombolysis scenarios indicate that improving
ambulance response times is likely to be a cost effective intervention. The intervention
for thrombolysis response time is much less cost effective. Furthermore little benefit is
seen from moving from the 30 minute to the 20 minute thrombolysis target. This is
likely to be because there are often long delays between the onset of pain and when the

patient calls for an ambulance.
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The models for ambulance and thrombolysis presented in this chapter estimate the cost
effectiveness of reaching the NSF targets. However there are several potential
limitations to the models. Firstly, the models assume an average effect across England
and Wales. Clearly there will be wide variation in the ability of individual ambulance
services to achieve the NSF targets. The figures presented here assume that hospital
units will achieve the targets based on the extra NHS spending allocated. There has
been much speculation in the popular press on the reliability of ambulance response
targets which are measured by the individual ambulance services. Further the
thrombolysis costing was based upon expert opinion as changes to the implementation

of thrombolysis were still at an experimental stage.

7.6 Conclusions

In this chapter complex models for short term interventions have been developed to
describe faster ambulance and thrombolysis response times. The models results show
that improving ambulance response times is likely to be a cost effective intervention but
improving thrombolysis response times is much less cost effective. The decision tree,
Markov and simulation models estimate an incremental cost effectiveness ratio of
between £3750 and £4160 per life years saved for the ambulance intervention. The
decision tree model estimates an incremental cost effectiveness ratio of £21,800 per life

years saved for the thrombolysis intervention.

Using these models it has been shown that decision trees models are an appropriate
technique for modelling the cost effectiveness of short term interventions. In our
example the cost of the intervention is constant over time, and there is a more optimistic
undiscounted estimate of the cost effectiveness of the intervention by the decision tree
model compared with the simulation and Markov models. However the discounted cost
effectiveness for the decision tree was similar to those estimates from the Markov and

simulation model.

Where the study is interested in the long term benefit (eg patient lifetime) of the

intervention, the decision tree is particularly effective where the intervention is only
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likely to occur once (Hypothesis 1). It has been shown that if the intervention occurs
more than once in the long term, the decision tree will only give the cost and benefits
from the first of these interventions. This led to an underestimate of the actual lifetime
costs and benefits for this intervention. For more accurate estimates of the true lifetime

costs and benefits a Markov or simulation model should be used (Hypothesis 2).

The decision tree model is also useful for evaluations which use an intermediate
outcome measure or where the data are not in the required format for the Markov and
simulation models. For example in our model, the data gave longer term death rates
after MI; however there was no information on future MI event rates. Thus it was easier
(and probably more accurate) to estimate the life expectancy of these patients rather

than to derive the MI event rates needed for the Markov and simulation models.
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Chapter 8

Chronic Treatment Interventions:

Models for Secondary Prevention Drugs

Abstract

In this chapter Markov and simulation cohort and population models are built to
evaluate the costs and benefits from secondary prevention drugs for coronary heart
disease patients. The choice of modelling technique for chronic (long-term) treatment
interventions is investigated using the case study approach. Some of the conclusions
from chapter 5 for the simple experimental models are tested in a more complex and

realistic model to see if they still hold true.

It was estimated that the additional annual cost of expanding the use of secondary
prevention drugs according to the National Service Framework for Coronary Heart
Disease would be about £250 million for the UK. The secondary prevention drugs
would save an estimated 6000 lives per year and 60 000 patient life years. Increasing
aspirin and beta blocker usage would be excellent value for money with ICER of £690
and £740 respectively. Increasing ACE inhibitor and statin use would also be good
value for money with ICER of £3080 and £5400 respectively.

Using these models it is concluded that in the first instance the Markov model was the
most suitable model to be used. However, the realism of the models is increased by
introducing more assumptions and parameters and the simulation model became the
most suitable model to use. Furthermore it was more complex to build the population-
based than the cohort model. It is concluded that there was a threshold complexity level
below which the Markov was the most appropriate and above which the simulation

should be chosen.
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Chapter 8 Chronic Treatment Interventions:

Models for Secondary Prevention Drugs

8.1 Introduction

In this chapter, long term interventions are studied, in particular the use of secondary
prevention drugs in coronary heart disease. DES and Markov models are developed for

secondary prevention drugs.

In Chapter 3 it was concluded that Markov models were most often used to estimate the
cost effectiveness of long term interventions although none of the studies justified the
use of this modelling technique. Furthermore, virtually all of the studies used the cohort
rather than population approach. In Chapter 5, simple Markov and simulation models
for long term interventions were examined. The results were compared and were similar
for the two models. The results were compared for the population and cohort approach
and it was concluded that the population based approach provided a more
comprehensive summary of the value of the intervention for the health care planner than
a cohort analysis. In this chapter some of these hypotheses and conclusions are
examined with a real life example from Coronary Heart Disease for secondary
prevention drugs. Markov and simulation based models are built using the population

and cohort approaches.

Unless indicated otherwise, the results for the models are shown in terms of cost (£),
effectiveness (years of life saved) and cost effectiveness (incremental cost effectiveness
ratio (ICER, £/life years saved)). The incremental cost effectiveness ratio is shown as
the difference in cost between the treatment scenario and baseline divided by the

difference in effectiveness between the treatment scenario and baseline.
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8.2 Secondary prevention for Coronary Heart Disease

This models built in this chapter are based upon research completed by the author as

part of the UK Coronary Heart Disease Policy Model working team (Appendix I). In
particular much of the data have been collected by other members of the group and is
described in more detail in the Secondary Prevention Working paper (Roderick et al.

2003). Furthermore the modelling work here was done in consultation with other

members of the group.

Secondary prevention treatment has been shown to lead to significant reductions in
CHD mortality and events. Secondary prevention refers to the use of drugs and other
treatments which reduce the risk of recurrent coronary heart disease events in patients
with existing coronary heart disease. It includes drug therapy (eg aspirin, beta blockers,
ACE inhibitors and statins) and lifestyle change (eg cardiac rehabilitation). In the
studies in this chapter only the benefits of drug therapy are considered.

3-Hydroxy-3Methylglutaryl-Coenzyme A (HMG-CoA) Reductase Inhibitors or ‘statins’
reduce the production of cholesterol in the liver, and so reduce the risk of both initial or
primary CHD events and recurrent or secondary CHD events. The most common statins
are atorvastatin, fluvastatin, pravastatin, simvastatin, lovastatin and cerivastatin. Beta
blockers act to slow the heart rate and lower blood pressure by blocking the effects of
adrenaline. Angiotensin converting enzyme (ACE) inhibitors blocks an enzyme
normally present in the body and so causes the blood vessels to relax. Antiplatelet
drugs, such as aspirin and clopidogrel, help to stop the blood clotting by reducing its

viscosity.

The Government in the United Kingdom planned to increase considerably the resources
spent on patients with coronary heart disease (CHD) (Department of Health, 2000).

The National Service Framework proposed higher secondary prevention interventions,
including 80-90% of patients using aspirin, statin and beta blocker after a myocardial
infarction (MI). We evaluated the health gains and costs associated with increasing the
provision of secondary prevention drugs in line with the National Service Framework

targets using discrete event simulation and Markov models.
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8.2.1 Other studies for secondary prevention drugs

The other studies that have evaluated secondary prevention drugs are described in more

detail in section 3.5 and 3.6.

8.2.1.1 Statins

The cost effectiveness of statins has been assessed by many studies (Tsevat et al. 2001;
Prosser et al. 2000; Russell et al. 2001; Goldman et al. 1991; Huse et al. 1998;
Johanesson et al. 1997; Pharoah and Hollingworth 1996; Elliott and Weir 1999; van
Hout and Simoons 2001; Muls et al. 1998; Cobos et al. 1999; Maclaine et al. 2001;
Gangz et al. 2002; Grover et al. 1998, 1999; Pickin et al. 1999; Ebrahim et al. 1999;
Ashraf et al. 1996; Palmer et al. 2003; Scuffham and Chaplin 2004), see Table 3.5.1.
Most of the studies measured the outcome of life years saved, rather than quality
adjusted life years saved. The quality of life of patients on statins was assumed to be not

statistically different to those not on statins.

Several of the studies have compared the cost effectiveness of individual statins
(Russell et al. 2001; Huse et al. 1998; Elliott and Weir 1999; Cobos et al. 1999;
Maclaine et al. 2001; Palmer et al. 2003) with each other (section 3.5.1). Other studies
use one statin or other, often according to the statin used in a particular trial, to assess
the effectiveness of statins. As mentioned above, statins reduce cholesterol levels and
this in turn reduces the risk of CHD events. Some of the studies have calculated the
reduction in cholesterol levels and applied survival equations (Russell et al. 2001; Huse
et al. 1998; Maclaine et al. 2001; Elliott and Weir 1999; Goldman et al. 1991; Grover et
al. 1998, 1999; Johanesson et al. 1997) for example the Framingham equations, while
others have used a risk reduction applied to the CHD event rate (Ashraf et al. 1996;
Ebrahim et al. 1999; Ganz et al. 2000; Muls et al. 1998; Pharaoh and Hollingworth
1996; Pickin et al. 1999; Tsevat et al. 2001; Van Hout and Simoons 2001). Several
studies have simulated and then extended clinical trials, for example the CARE trial
(Tsevat et al. 2001; Van Hout and Simoons. 2001), PLAC I & II (Ashraf et al. 1996,
Muls et al. 1998), 4S (Johannesson et al. 1997; Van Hout and Simoons 2001), LIPID
(Van Hout and Simoons 2001), LIPS (Scuffham and Chaplin 2004). All of the studies
conclude that statins represent good value and the higher the risk of the patient of CHD
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events, the more cost effective statins are. Furthermore, the general consensus was that
statins should be considered for individuals with coronary heart disease and individuals

without CHD but who are at high risk of developing CHD.

8.2.1.2 Other secondary prevention drugs

The cost effectiveness of medical therapies have been assessed by several studies
(Phillips et al. 2000; Doyle et al. 2002; Gaspoz et al. 2002; Lindgren et al. 2004; Tsevat
et al. 1997; Thaulow et al. 2002), see Table 3.6.1. Philips et al. (2000) and Gaspoz et al.
(2002) both used the Coronary Heart Disease Policy model to evaluate beta blocker use
after M1, and aspirin and clopidogrel respectively. Lindgren et al. (2004) used a Markov
model and Main et al. (2004) used a decision tree to evaluate clopidogrel for patients
with acute coronary syndromes. Tsevat et al. (1997) used a Markov model to evaluate
captopril therapy after MI. Doyle et al. (2002) used a Markov model to evaluate the use
of amlodipine. Thaulow et al. (2002) used a decision tree to evaluate amlodipine in
patients undergoing angioplasty procedures. Each of the secondary prevention drugs

were found to be cost effective.

8.2.2 Parameters for the secondary prevention models

Secondary prevention drugs have been shown to lead to significant reductions in CHD
mortality and events. For the purpose of the model, parameters for the efficacy of the
drugs are required in terms of their reduction in coronary heart disease events and the
current use of the drugs by CHD patients. The efficacy data have been derived from
randomised control trials and systematic overviews with meta-analyses. The current use
of the drugs has come from observational surveys and audits. The following clinical

evidence has been researched by the UK CHD Modelling Team (Roderick et al. 2003.)
8.2.2.1 Clinical evidence for Aspirin
The Antiplatelet trialists Collaboration (1994) completed an overview of aspirin usage

in approximately 40 000 patients with a history of MI and other cardiovascular disease.

They concluded that the risk of fatal and non fatal events would be reduced by
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approximately 25%. The reduction in CHD mortality risk was less than that for non

fatal MI.

‘The overview included all published or unpublished trials by 1990 and provided
conclusive evidence for the effectiveness of aspirin in secondary prevention of CHD.
Most trials included were of a relatively short duration and the authors were not able to
comment on the optimal duration of treatment. The weighted average duration of trials,
post MI, was 27 months. The consensus is that treatment with aspirin should be life-
long for people with CHD who have no contra-indications and who can tolerate
treatment. The APTT information was extended with publication of ATT analysis in
2002. This included 287 trials to 1997 involving 135,000 patients. The effect of aspirin
was similar regardless of sex, age group or co-morbidity with hypertension or

diabetes.” (Roderick et al. 2003).

The APTT study reported a non compliance rate of 20% at one year. Campbell et al

reported 8.5% of patients had contra-indications to aspirins due to ulcer or allergies.

8222 Clinical evidence for Beta blockers

The use of beta blockers reduces the relative risk of mortality after an MI by 23% with a
similar relative risk reduction for non-fatal re-infarction (Freemantle et al. 1999). There
is no current evidence that there is a prognostic benefit for beta blockers in treating
stable angina. The use of beta blockers is limited by the proportion of CHD patients
with contra-indications to their use. This was approximately 29% in one study but other
authors have suggested contra-indications as low as 10%. Withdrawal rates of 24% are

quoted in trials (Campbell et al. 1998).

8223 Clinical evidence for ACE inhibitors

ACE inhibitors were initially used after an MI only in people with overt heart failure
after benefits were shown in the AIRE trial (1993). The SAVE (1992) and TRACE
(Kober et al. 1995) trials have shown benefits for patients without heart failure after MI.
A meta-analysis of these trials and others showed a reduction in deaths of 26% and non

fatal MI of 20% (Flather et al. 2000). The HOPE trial (Yusuf et al. 2000) showed
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similar benefits in those at risk of CHD which includes patients with no history of MI.
Non compliance was 40% by 18 months in the AIRE trial and 29% in the HOPE trial.

Contra-indications ranged between about 2% and 11% in the trials.

8.2.2.4 Clinical evidence for Statins

There have been several trials which have demonstrated the benefits of statins, for
example 4S (1994), CARE (Sacks et al. 1996), LIPID (1998), and WOSCOPS (1997).
The MRC/BHF (2002) study showed statins to be effective in reducing coronary events
in all ages, both sexes, at any level of baseline cholesterol and were independent of
other secondary prevention treatments. The trial estimated that statins reduced the risk
of non fatal MI and CHD death by 27% over five years. Five per cent of the trial had

contra-indications and 18% were non compliant at five years.

8.2.2.5 Summary of clinical evidence

Table 8.2.1 shows the relative risk reductions of CHD deaths derived from these trials.
Aspirin was found to have a higher relative risk reduction for non fatal MI than for
CHD mortality. In the models in this chapter, the conservative assumption is made that
the relative risk reduction was the same for MI as for deaths because the model treats

MI and deaths together.

Table 8.2.1 Relative risk of death compared to those not taking the drugs. (Sources:
1) APTT (2000) 2) Freemantle et al (1999) 3) Flather et al (2000) 4) MRC/BHF (2002)
(Table from Roderick et al. 2003)

Aspirin Beta ACE Statin
Blocker Inhibitor
Angina, no MI 0.75' 1 0.8 0.73"
After MI 0.75! 0.77* 0.8’ 0.73*

Each of these types of drug has side effects for somie people, and so there is a proportion

of people for whom they are contra-indicated. It is assumed that the impact of each
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drug was independent of the others and that the probability of a person suffering side
effects from one drug was independent of the probability of them suffering side effects

from the others.

8.2.3 Use of secondary prevention drugs

The models in this chapter use estimates for the current drug use. These data are
stratified according to patient age, health state (angina, MI) and the patient arrival status
(prevalent or new). Table 8.2.2 shows the current percentage of patients who are already
taking the secondary prevention drugs, (derived from recent audits) or are prescribed to
them when they present as new patients. Where possible the most recent and more
representative studies have been chosen. These estimates were from Health Survey for
England (Eren et al. 1999), North West Anglia Audit (2001), PRAIS (Collinson 2000),
and SHIP (Jolly et al. 1999), MINAP (2001) and UKHAS (Norris 1998).

Table 8.2.2  Patients currently taking drugs used for secondary prevention (Sources 1)
HSE, 2) NWAHA, 3) SHIP, 4) MINAP, 5) PRAIS, 6) UKHAS; Table from Roderick et

al. 2003)

% Aspirin  Beta ACE Inhibitor Statin
Blocker

Prevalent CHD patients
Angina —no MI 40" 28! 13! 16’
Angina — post MI 70° 27! 31! 23!
No angina — post MI 707 17! 24! 18!
New CHD patients
Stable angina 76> 41° 13! 16'
Myocardial 88* 41° 308 308
infarction
Contra-indications 10 10 5 5
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8.2.4 Costs

A more detailed discussion of the data for coronary heart disease costs can be found in
the UK Coronary Heart Disease Policy Model Working paper on Costs (Raftery et al.
2003). A full list of the derived costs for coronary heart disease is shown in Appendix
VI. The estimated cost per patient is £368 per year which includes GP and cardiology
appointments and non secondary prevention drugs costs (such as nitrates and calcium
channel blockers). The estimated cost per MI admission is £2,200 which includes the
cost of the hospital stay, CCU, thrombolysis and the ambulance. This cost includes the
cost of unstable angina which is assumed to happen at the same rate as MI. The
estimated cost for revascularisation is £5.4 million per million population and is

assumed to be unchanged by any of the secondary prevention scenarios.

The model includes the effects and costs of drugs at class rather than individual drug
level. The cost of drugs is based on Defined Daily Dosages (DDDs) obtained from the
Prescription Pricing Authority (PPA) (Raftery et al. 2003). Table 8.2.3 shows the

estimated annual cost for each patient for each of the secondary prevention drugs.

Table 8.2.3 Secondary prevention drug costs

Aspirin  Beta Blocker ACE Inhibitor  Statin

Cost per patient per year, £ 20 52 95 237

8.3 Description of the models

The Markov and DES models in this chapter are developed, as far as possible, to be
identical to each other. Accordingly, they use the same parameters for transitions

between states and costs.
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8.3.1 The simulation model

Figure 8.3.1 shows the CHD discrete event simulation model for statins. The model
starts with a prevalent population of CHD patients who have angina but no history of
previous M, angina and previous MI, and MI but no angina. Individuals with no
previous CHD enter the model with new cases of angina, MI and unstable angina each
year. For each individual, times are sampled from distributions for their time to MI and
this may be either fatal or non fatal. Each of the health states have different distributions

for their time to MI. They may also die from a non CHD cause.

The model and the general CHD parameters are described in more detail in section 6.3.
The prevalence and incidence data are taken from the General Practice Research
Database (Lawrance et al. 2001) and the Bromley study (Sutcliffe et al. 2003) and are
shown in section 6.4 (Table 6.4.1 and 6.4.2). The non cardiac death rates are from ONS
and are shown in Table 6.4.3. The annual probabilities of a MI for the different states
have been derived from EMMACE in appendix IX and are shown in Table 8.3.1. The in
and out of hospital death rates are from UKHAS and are shown in Table 6.4.4.

New angina New MI

patient patient
A 4 A
CHD patients
y /
MI
v
CHD death Non CHD death

Figure 8.3.1 The discrete event simulation model of the treatment of coronary heart

disease for secondary prevention drugs
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Table 8.3.1 Derived annual probability of MI (x is age of patient)

Patients Annual probability of MI
Angina only 0.0107exp” "
History of MI: first year after M1 0.03256xp0'0337"
History of MI: after first year after MI 0.0159exp” 9

In the model, individual patients are allocated randomly to each of the secondary
prevention drugs. Prevalent patients and new patients are initially allocated drugs
according to the Table 8.2.2. Patients who have a MI will be re-allocated drugs

according the new MI arrivals in this Table.

A patient’s risk of MI will be changed according to the product of all the relative risks
of the secondary prevention drugs to which they have been allocated. For each
secondary prevention drug, the relative risk for the population, RRp is

1/(1 - previ(1 - RR;))
where prev; 1s the proportion of people on that drug and RR; is the relative risk for a
person on that drug. As mentioned above, each of the drugs work in a slightly different
way to reduce coronary events and there has been some evidence from studies that their
effects are independent. Thus it is assumed independence between the benefits of the
drugs, and so the overall effects of the drugs on the population is the product of the

relative risk for the individual drugs on the population.

The discrete event simulation is a simpler version of that developed by Davies et al
(2003a). It does not include other treatments, such as revascularisation, ambulance and
thrombolysis or cardiac rehabilitation. In addition it does not model unstable angina
occurrence. However the costs from these events are modelled in relation to the number
of patients in the model. For example, the ambulance and thrombolysis and unstable
angina costs are added in relation to the number of MIs, and the revascularisation costs
are added in relation to the total population modelled. The costs are described in more

detail in the Appendix VI.
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Post Mi
1st year

Post Ml
subs
years

Cardiac
death

N

Non
cardiac
death

Figure 8.3.2 The Markov model of the treatment of coronary heart disease for

secondary prevention drugs

8.3.2 The Markov model

The Markov model is shown in the Figure 8.3.2 with the 14 possible transitions between
the states. The model shown in the diagram is the cohort model. The population based
model follows a prevalent starting cohort and then new cohorts are added each year.
The cycle length is one year. The prevalent starting states are Angina only and Post M1
subs years, and incident patients begin in Angina only and Post MI 1% year. The method
for the population analysis for the Markov model is shown in more detail in section
2.2.6. It uses the information from the Markov cohort model. This consists of a cohort
model for six ten-year age bands for each of the three possible starting states. The

transition rates between the states have been described above for the simulation model.

The transitions in the model (numbered on diagram) are as follows:
1) Post MI patient has non fatal MI during 1st year post MI

2) Post MI patient has fatal MI during 1st year post MI
3) Post MI patient has Non cardiac death during 1st year post MI
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4) Post MI patient has no events during 1st year post MI and joins post MI subs years
state

5) Post MI patient has non fatal MI during subs years post MI

6) Post MI patient has fatal MI during subs years post MI

7) Post MI patient has Non cardiac death during subs years post M1
8) Post MI patient has no events during subs years post MI

9) Angina patient has non fatal MI

10) Angina patient has fatal MI

11) Angina patient has Non cardiac death

12) Angina patient has no events

13) Non cardiac death (Absorbing state)

14) Cardiac death (Absorbing state)

Table 8.3.2 Transition probabilities for the Markov model for the secondary
prevention model (with baseline relative risks RR1 = 0.84, RR2 = 0.7; Death rate DR in
or out of hospital from UKHAS Table 6.4.4; ONS = Office of National Statistic Table

6.4.3)

Transition Data source / derived equation Value for age 40

1) 0.0325exp” "*™*RR2*(1 - DR in out hosp) 0.068

2) 0.0325exp”*™*RR2*(DR in out hosp) 0.019

3) ONS 0.0011

4) 1-T1-T2-T3 0.91

5) 0.0159exp”®**RR2*(1 — DR in out hosp) 0.029

6) 0.0159exp”®**RR2*(DR in out hosp) 0.0079

7) ONS 0.0011

8) 1-T5-T6-T7 0.952

9) 0.0107exp®?'***RR1*(1 — DR in out hosp) 0.013

10) 0.0107exp”?*>**RR1*(DR in out hosp) 0.0036

11) ONS 0.0011

12) 1-T9-T10-T11 0.98

13) 1

14) 1
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The Markov model was written in Excel because it was desirable to use software which
is widely available to non health economists. In addition, current versions of TREEAGE
are more suitable for cohort analyses and the population analysis has to be calculated
from this in Excel. By using Excel, the scenarios are completely interactive, whereas all
the scenarios computed in TREEAGE would have to be copied into EXCEL for starting

state and age group (ie 18 times for each scenario).

The Markov model took six weeks to write in Excel compared to the two weeks it took
to build the simulation model, although the simulation model is similar to that
developed by Davies et al (2003a) which reduced the time to build it. Clearly the time to
build the models is dependent on the expertise of the modeller and other people may
have taken more or less time for either of the models. The time taken is also dependent
on the ﬂexibilify of the software used. For example if there were a version of
TREEAGE that calculated population analyses then the model build time would likely

be much shorter.

8.4 Cohort versus population simulation model

In this section the results are compared between the cohort and population based
method for the simulation model. Simple cohort and population based models were
compared in section 5.5 and it was shown that the cohort and population-based
approaches will yield different results and the population-based approach will give a
worse (or higher) cost effective ratio compared to the cohort-based approach. In this
section this is extended to more realistic models. The simulation model described above
was run with a scenario of increased statin usage and compared to the baseline scenario
for the cohort and population based method. The model was run for 40 years for the
CHD prevalence from a population of 125,000 for all age bands. For the cohort
simulation, the model started with the prevalent population and for the population
simulation, the model started with the prevalent population and had an incident

population entering the simulation each year.
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In the baseline run, new patients entering the model are allocated statins according to
the rates specified in Table 8.2.2. In the intervention run, 80% of all new individuals are
allocated to statins. Prevalent patients who have CHD at the beginning of the simulation

runs take the drug as shown in Table 8.2.2.

The results from the runs are shown in Tables 8.4.1 for the cohort based runs and Table
8.4.2 for the population based runs. As before in section 5.5, the cost effectiveness for
the population based runs is roughly 11% and 19% worse than the cohort runs for the

discounted and undiscounted cases respectively.

Table 8.4.1 Results from the cohort simulation shown for whole population over
patient lifetimes for a scenario with increased statin use; discounted results are

discounted at 3% for costs and benefits

Increase in life Increase in cost Cost effectiveness

expectancy (yr.) (£ Million) (£/LYS)
Undiscounted 3358 9.9 2950
Discounted 2119 7.2 3420

Table 8.4.2  Results from the population simulation shown for 40 years for
population for a scenario with increased statin use; discounted results are discounted at

3% for costs and benefits

Increase in life Increase in cost Cost effectiveness

expectancy (yr.) (£ Million) (£/LYS)
Undiscounted 7908 279 3520
Discounted 4191 15.9 3800
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8.5 Models for secondary prevention drugs

In this section, the differences between the Markov and simulation models are
investigated for the secondary prevention drugs using the population approach. The
models use estimates for the current drug use. These data are stratified according to
health state (angina with no previous MI, post MI). Table 8.5.1 shows the current
percentage of patients who are already taking the secondary prevention drugs, (derived
from recent audits). For these models, the drug uptake has been simplified from that
shown in Table 8.2.2 and used by Davies et al (2003a). For these models in this section,
the proportion of people on the drugs remains constant throughout the runs whereas in
the model by Davies et al (2003a) the proportion of people on the drugs increased over
time as might be expected in reality. The models were simplified in order to avoid a
large increase in the number of states in the Markov model and this is discussed in more

detail in later sections.

Table 8.5.1 Patients currently taking drugs used for secondary prevention (Sources 1)

HSE (Eren et al. 1999), 2) NWAHA (2001))

% Aspirin Beta Blocker  ACE Inhibitor Statin
Angina —no MI 40" 28! 13 16'
Post MI 70 23! 28! 21!

Table 8.5.2 Increased usage scenario for secondary prevention

% Aspirin  Beta Blocker  ACE Inhibitor Statin
Angina — no MI 80 28 80 80
Post MI 80 80 80 80

8.5.1 Results

The models were run for 40 years with a population of 125,000. The simulation model

was run with 200 iterations. A baseline run using the drug prevalence in Table 8.5.1 was
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compared to a statin scenario using increased statin usage shown in Table 8.5.2. Note

that there is no increase in the use of any of the other drugs.

Table 8.5.3  Average results over 40 years from the Markov (M) and simulation (S)

models for the statins scenario compared to baseline

CHD Life Year Cost Inc Cost All CHD ICER
patients Saved (£000s) (£000s) deaths deaths (£/LYS)

BaselineM 4,205 3,079 400 229
Statin M 4,403 198 3,775 696 394 211 3520
Baseline S 4,245 3,147 399 226

Statin S 4,436 190 3,850 703 393 208 3690

Table 8.5.4 Relative (%) error for the Markov model compared to the simulation
model for the results shown in Table 8.5.3
CHD patients Life Year Cost Inc Cost ICER
Saved
Relative Baseline 0.9 2.2
Relative Statin 0.7 -3.8 1.9 0.9 4.5

The results are shown in Table 8.5.3 and 8.5.4 and Figures 8.5.1-4 for the statin
scenario. Note the axes for each of the graphs have been truncated. The average number
of patients is higher in the simulation model than the Markov (Figure 8.5.1). Similarly
the average cost is higher in the simulation model than the Markov model. The
corresponding number of CHD deaths (Figure 8.5.3) and all cause deaths are higher for
the Markov model than for the simulation model. The reason for the higher event rate

has been discussed in the simple models chapter (section 5.2.1.2).

The differences between the results from the two models cannot be explained by the
variability of the simulation run results. The variance of the simulation runs was
caiculated and the 95% confidence intervals for CHD patients and costs are +/- 2 and

£1.5 respectively. The 95% confidence intervals for life years saved and increase in cost
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were +/- 0.5 and £1 respectively. In section 5.2.1.2, it was demonstrated that if the data
are interpreted in the same way for the two models, they would yield marginally
different results and this is confirmed in this example. Furthermore according to the
discussion in section 5.2 on acceptable error between the models, the model results are
different to each other (Table 8.5.3) however it is not expected that the differences
between the results is large enough to lead to different conclusions from the results from

each model.
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Figure 8.5.1 CHD patients for Markov (M) and simulation (S) models for the baseline

and scenario (Note truncated y axis)
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Figure 8.5.2 Costs (£000s) for Markov (M) and simulation (S) models for the baseline
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Figure 8.5.3 CHD deaths for Markov (M) and simulation (S) models for the baseline

and scenario (Note truncated y axis)

8.5.2 Scenario analysis

Several scenarios were conducted for varying levels of statin use for the angina and MI
cohorts and this was compared to the baseline with no one allocated to the drug (Table
8.5.5). The reasons for the differences between the results for the two models were
examined, in particular to investigate whether the differences were influenced by the
drug use chosen. As before the simulation runs were for 125000 people for 200

iterations for 40 years. No patients were allocated to any of the other drugs.

Table 8.5.5 Parameter values used for statin scenarios

% Baseline 20% 60% 80% 100%
Angina — no MI 0 20 60 80 100
Post M1 0 20 60 80 100
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Table 8.5.6  Average results over 40 years from the Markov model for the statins
scenario compared to baseline
CHD Lifeyears Cost Inc Cost ICER
patients  saved (£000s) (£000s) (£/LYS)

0 3,883 2,690

20% 3,952 69 2,887 197 2850
60% 4,096 213 3,302 613 2870
80% 4,171 288 3,521 832 2890
100% 4,248 365 3,748 1,058 2900

Table 8.5.7  Average results over 40 years from the simulation model for the statins
scenario compared to baseline
CHD Lifeyears Cost Inc Cost ICER
patients saved  (£000s) (£000s) (£/LYS)

0 3,913 2,734

20% 3,987 74 2,948 214 2910
60% 4,131 218 3,375 642 2940
80% 4,202 289 3,588 855 2950
100% 4,271 358 3,795 1,062 2970

Table 8.5.8 Relative (%) error for the Markov model compared to the simulation

model for the results shown in Table 8.5.7

CHD  Life years

% patients saved Cost Inc Cost ICER
0 0.8 1.6

20% 0.9 6.1 2.1 7.9 2.0
60% 0.8 2.2 2.2 4.5 2.4
80% 0.7 0.5 1.9 2.7 22
100% 0.5 -2.0 1.2 0.3 23
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The results from these the Markov and simulation model runs are shown in Table 8.5.6
and 8.5.7 and the relative difference between the results is shown in Table 8.5.8. As
before in section 8.6.2, the run results are similar in both the models. In particular the
‘error’ for cost effectiveness between the models is less than 2.4% for all runs.
However, the error for the 20% scenario for the increases in life years saved and cost

appear to be larger than for the other scenarios. The reasons for this were investigated.

The simulation model identifies those individuals in the population who have been
allocated to the drugs as the simulation follows individuals within the model. In
contrast, the Markov model allocates the proportion on the drug in the first cycle and
assumes that this proportion remains constant over the run. In fact, people not on the
drug will die quicker, on average, than people on the drug and so the actual proportion
on the drug will change throughout the simulation run. In order to accurately estimate
the correct proportion on the drug, in the Markov model, it would be necessary to

introduce extra states for ‘on drug’ and ‘not on drug’.

Table 8.5.9 shows the actual proportions on the drugs averaged over the 40 years for
each of the scenarios. For each of the scenarios 20% to 80%, there are about 2% more
people on the drug for the simulation than for the Markov model. Thus for the Markov

model, there will be an underestimate of the cost and the prevalence of disease.

Table 8.5.9  Average proportion of population on statins for each of the scenarios for
the Markov and simulation models for a 40 year run, %

Markov Simulation Difference (S-M)

0% 0 0 0
20% 20 21.8 1.8
60% 60 62.6 2.6
80% 80 81.8 1.8
100% 100 100 0

Using this information, the error can be calculated for the case if extra states for ‘on

drug’ and ‘not on drug’ were built (Table 8.5.10). As shown in Table 8.5.10, with these
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states the differences between the models is within 2.4% error for all categories and
scenarios. When adjusting for these errors in the Markov model, the relative error

between the Markov and simulation is similar across all scenarios.

Table 8.5.10 Relative (%) error for the Markov model compared to the simulation
model for the ‘new’ results
CHD Life Year
patients Saved Cost Inc Cost ICER

0% 0.8 1.6

20% 0.7 -2.1 1.5 0.1 2.1
60% 0.6 -1.9 1.4 0.6 24
80% 0.6 -1.7 14 0.6 2.2
100% 0.5 -2.0 1.2 0.3 23

8.5.3 More scenarios

Further analyses were conducted for increased statin use for either the angina or MI
cohorts and this was compared to the baseline with no one allocated to the drug (Table
8.5.11) to investigate whether this introduced differences in the results from the two

models. As before the simulation runs were for 125000 people for 200 iterations for 40

years.
Table 8.5.11 Parameters used for statins scenarios
% Baseline Angina MI
only only
Angina — no MI 0 100 0
Post MI 0 0 100
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Table 8.5.12 Average results over 40 years for the statins scenario for the Markov (M)
and simulation (S) models
CHD Life Year Cost Inc Cost ICER
patients Saved (£000s) (£000s) (£/LYS)

Baseline M 3,883 2,690
Anginaonly M 4,061 178 3,441 751 4210
MI only M 4,080 197 3,015 325 1650
Baseline S 3,913 2,734
Anginaonly S 4,086 173 3,487 754 4370
Ml only S 4,109 195 3,058 324 1660

Table 8.5.13 Relative (%) error for the Markov model compared to the simulation
model for the results shown in Table 8.5.12
Patients LYS Cost Imc Cost ICER

Baseline 0.8 1.6
Anginaonly 0.6 33 1.3 0.4 3.6
MI only 0.7 -0.7 1.4 -0.1 0.6

The results for the two models are shown in Table 8.5.12-8.5.13. The MI only scenario
is more cost effective than the angina only strategy. For the MI only scenario the
increased cost of the scenario is much lower than for the angina only scenario as fewer

patients are on the drug; however there is a similar increase in patients’ life years saved.
8.5.4 Results from the other drugs
In this section the simulation and Markov models are compared for each of the

secondary prevention drugs. The simulation and Markov models were run for 40 years

for the scenarios for the secondary prevention drugs as shown in Table 8.5.1 and 8.5.2.
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Table 8.5.14 Average results over 40 years from the Markov model for the secondary
prevention scenarios compared to baseline
CHD Life Year Cost Inc Cost ICER All CHD
patients Saved (£000s) (£000s) (£/LYS) deaths deaths

Baseline 4,205 3,079 4,205

Statin 4,403 198 3,775 696 3520 4,403 198
Aspirin 4,282 77 3,122 43 560 4,282 77

Beta B 4,288 &3 3,138 60 720 4,288 &3

ACE 4,343 138 3,367 289 2090 4,343 138

Alldrugs 4,651 446 4,214 1,135 2550 4,651 446

Table 8.5.15 Average results over 40 years from the simulation model for the
secondary prevention scenarios compared to baseline
CHD Life Year Cost IncCost ICER All CHD
patients Saved (£000s) (£000s) (£/LYS) deaths deaths

Baseline 4,245 3,147 4,245

Statin 4,436 190 3,850 703 3690 4,436 190
Aspirin 4,318 73 3,186 39 540 4,318 73

Beta B 4,326 80 3,206 58 730 4,326 80

ACE 4,378 132 3,436 289 2180 4,378 132

Alldrugs 4,672 426 4,282 1,134 2660 4,672 426

Table 8.5.16 Relative (%) error for the Markov model compared to the simulation

model for the results shown in Tables 8.5.14 and 8.5.15

CHD Life Year All CHD
patients Saved Cost Inc Cost ICER deaths deaths
Baseline 0.9 2.2 0.9
Statin 0.7 -3.8 1.9 0.9 4.5 0.7 -3.8
Aspirin 0.8 -5.8 2.0 -9.4 -3.4 0.8 -5.8
Beta B 0.9 -3.6 2.1 -2.3 1.3 0.9 -3.6
ACE 0.8 -4.3 2.0 0.0 4.2 0.8 -4.3
All drugs 0.4 -4.6 1.6 0.0 43 0.4 -4.6
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The results shown in the Tables 8.5.14-8.5.15 are similar for both of the models with an
acceptable error between them (Table 8.5.16). For all the drugs the cost effectiveness
results are about 5% worse for the simulation model than the Markov model. Each of
the drugs have similar errors between the two models except aspirin and beta blocker.
The differences in the results between the Markov and simulation models for these two
drugs is affected by the fact that the proportions allocated to the angina and MI groups
are quite different. For aspirin, the baseline proportion on the drug is much lower for the
angina group than the post MI group. For beta blocker, the scenario proportion on the

drug is much higher for the post MI group than the angina group.

The undiscounted results from the models have been discussed in this section. The
discounted results show a similar pattern to the undiscounted results in terms of the
differences between the models. The discounted cost effectiveness results for the two

models are shown in Figure 8.5.4.
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Figure 8.5.4 Cost effectiveness results for secondary preventions interventions
for the Markov and simulation models for 40 year runs, with costs and benefits

discounted at 3%
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8.6 Discussion

8.6.1 Fixed-age cohort models

The Markov model described in this chapter has been built for cohorts of the same
starting age which advance by a year in each time period, ie it is an age-dependent
cohort model. An alternative method would have been to construct a fixed-age cohort
model. This approach would have modelled the whole ten-year age group together with
a single transition probability for the whole age band rather than for individual ages. In

each year a proportion of the age band would progress to the next age band.

The fixed-age cohort model is simpler than the age-dependent cohort model but is less
accurate. For example, the non cardiac death rate is specified at each age and an average
of the age band will introduce some inaccuracies, particularly because the non cardiac
death rate increases non linearly with respect to age. Furthermore, the proportion who
move from one age band to the next may not be the same for each age band in any time

period.

In this case the Markov model using the age-dependent cohort approach was
constructed, because this seemed the more intuitive method. However it would have
been possible to build a fixed-age cohort model and compare the simulation model to
this. In this case the simulation would have had to be built in a similar way to the

Markov with fixed age cohorts to represent the age bands.

If the models had been built in the same way, similar differences between the two
models would be expected using the fixed-age cohort to that seen using the age-
dependent cohort. The simulation model is much more flexible to changing between
these two approaches. Indeed it would be a simple matter to change in the simulation
model whereas in the Markov model built here, it would be necessary to start building

the model from scratch.
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8.6.2 Flexibility

The differences between the Markov and simulation model results were small and were
not large enough to lead to different conclusions from each of the models. For example
the difference in the ICER estimates differed by less than 5% for all drugs between the
two models. The time to build each of the models was similar and consequently the
choice of preferred model was based on the perceived simplicity and transparency of the

models and so the Markov model was the preferred model.

In the models constructed, the proportion of the population allocated to the drug was
kept constant over the whole run. In reality, the proportion of the population on the drug
will increase over time. In order to replicate the same circumstances with the Markov
model, it would be necessary to subdivide the population for each of the drugs to
identify those ‘not on the drug’ and ‘on drug’ and this would mean.increasing the
number of states by a factor of 16. In this case it was considerably simpler to use the
simulation model and so it was decided to model the final section using only the

simulation model.

Thus in this chapter in the first instance for simple models with a small number of
health states, the Markov model should be used. At some point, as the complexity of the
model and the number of health states increases it becomes considerably easier and
more practical to use a simulation model. The threshold for selecting the appropriate

model will be explored in the next chapter.

8.7 Evaluating secondary prevention drugs

In this section the population simulation mode! was run as described above to evaluate
all the secondary prevention drugs using the simulation model. The secondary
prevention drugs evaluated are aspirin, statins, ace inhibitors and beta blockers. The
base values are shown in Table 8.2.2. It was assumed that the uptake of drugs for new
patients is higher than the drug use of current patients and in this way the preportion of

drug users in the population will increase over time. In the scenarios, there is the same
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starting proportion of patients on the drugs as in the base case but the uptake of drugs
for all new patients will be 80%. In the case of aspirin, some categories of new patients
had an uptake of greater than 80% in the base case and this was assumed to be the same
in the scenario. Patients are assumed to take these drugs indefinitely and to continue to
benefit from them. A general secondary prevention scenario was considered first where
the uptake of all drugs is increased and then each of the secondary prevention drugs

were considered in turn.

The CHD patients come from a population of 125 000 and the simulation was run for 40
years (averaged over 200 iterations). The cost effectiveness results are shown over this
40 year period. Many of the other results are shown over 20 years as this time period is
likely to be of more interest to health care planners. The results are scaled up for a

population of one million.

8.7.1 Results for increasing uptake of all secondary prevention drugs

As a result of secondary prevention drugs, many MI and death events are avoided and
so the number of CHD patients increases. There are 6% more patients due to the

increased secondary prevention use after 20 years in the scenario compared to baseline

(Figure 8.7.1).
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Figure 8.7.1 CHD patients in a population of one million with secondary prevention

scenario for a simulation run for 20 years (Note truncated y axis)
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In the baseline scenario, the number of annual CHD deaths is predicted to fall by 19%
after 20 years compared to present rates. Increasing secondary prevention usage reduces

the number of CHD deaths by a further 9% after 20 years (Figure 8.7.2).
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Figure 8.7.2 CHD deaths in a population of one million with secondary prevention

scenario for a simulation run for 20 years
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Figure 8.7.3 Undiscounted CHD costs in a population of one million with secondary

prevention scenario for a simulation run for 20 years
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Figure 8.7.3 shows the undiscounted increase in cost for CHD treatment for the two
scenarios for a population of one million. In the base case, the total cost remains
roughly constant over the 20 years. The total cost is predicted to continue to increase in
the scenario. After 20 years, the annual cost for the scenario is predicted to be 26%
greater for the scenario than for the baseline. Figure 8.7.4 shows the increase in drug use

prevalence for each of the scenarios for statins.
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Figure 8.7.4 Drug use prevalence for statins with secondary prevention scenario for a

simulation run for 20 years with a population of one million

8.7.2 Cost effectiveness

The total costs of all events, drugs and interventions were calculated for each year for
each of the scenario runs. Costs and benefits were discounted at 3%. Table 8.7.1 shows
the cost effectiveness for 10, 20 year and 40 year runs. The cost effectiveness is best for
the 40 year runs. As noted in chapter 5, the time horizon chosen makes a significant
difference to the cost effectiveness ratios calculated for the interventions. For example
the discounted cost effectiveness for the 10 year run is 50% higher than for the 40 year
run. The scenario produced an annual increase in patient life years of 1009 per year for
a million population averaged for the first 20 years. This resulted in an annual increase

in cost of £4.1 million for a million population for the first 20 years. The increase in
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cost to provide this secondary prevention for England and Wales would cost in the

region of an extra £200 million each year.

Table 8.7.1 Undiscounted and discounted (costs and benefits discounted at 3%) cost

effectiveness from the simulation runs for 10, 20 and 40 years

Scenario ICER (£/LYS) ICER (£/LYS) ICER (£/LYS)

10 year run 20 year run 40 year run
Undiscounted 5320 4100 3330
Discounted 5390 4210 3510
8.7.2.1 Cost effectiveness of individual drugs

The results from the simulation runs for a population of 125,000 for each of the
secondary prevention drugs are shown in Table 8.7.2, with the results scaled to a
population of one million. The cost effectiveness estimates are from a run of 40 years

and the other outcomes are from a run of 20 years (Table 8.7.3).

Table 8.7.2  Results for a population of one million for an average year

CHD Life All All cause
patients  years  deaths deaths

saved prevented
Baseline 35010 3200
Statins 35513 504 3150 50
ACE 35386 376 3162 37
Aspirin 35066 56 3194 6
Beta
Blockers 35222 212 3181 19
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Table 8.7.3  Cost effectiveness (£/LYS) of the individual secondary prevention drugs;

discounted results are 3% for costs and benefits

Discounted Un- Discounted Un-
discounted discounted
20 years 40 years

Statins 5400 5560 4230 4500

ACE 3080 3150 2470 2600

Aspirin 690 680 660 670
Beta

- Blockers 740 740 770 770
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Figure 8.7.5  Annual drug costs (£000s) for a million population averaged over 20

years,

Each of the individual drugs increases the number of CHD patients in the population
and reduces the number of cardiac and all cause deaths (Table 8.7.2). The benefits of
each of the drugs are similar (Table 8.3.1). The absolute benefits gained are higher for
statins and ACE inhibitors as these drugs have the largest increase in uptake compared
to the baseline. These drugs are more expensive as well and the extra cost for these
drugs are considerable (Figure 8.7.5). Furthermore the cost effectiveness of the
individual drugs (Table 8.7.3) is betier for the cheaper drugs, for example aspirin. The

cost effectiveness of the drugs for different time horizons are shown in Table 8.7.4.
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According to the guidelines for cost effectiveness, aspirin and beta blocker present
excellent value for money (see section 3.1.2) and ACE inhibitors and statins present
very good value for money. However, despite this the implementation of the CHD NSF
guidelines for the increase in secondary prevention drugs will put considerable strain
upon the NHS. According to the results in this section the iﬁcreased annual spending for

drugs will be in the order of £250 million above pre-NSF spending for the UK.

8.8 Discussion

In this chapter, Markov and simulation models were built to evaluate secondary
prevention drug interventions for coronary heart disease. Using these models, the costs
and benefits of increased secondary prevention provision was estimated. The models
were used as case studies to investigate the choice of modelling technique for chronic
(long-term) treatment interventions. Some of the conclusions from chapter 5 for the
simple experimental models were tested in 2 more complex and realistic model to see if

they still held true.

It was estimated that the additional annual cost of expanding the use of secondary
prevention drugs according to the National Service Framework for Coronary Heart
Disease would be about £250 million for the UK. The secondary prevention drugs
would save an estimated 6000 lives per year and 60 000 patient life years. Increasing
aspirin and beta blocker usage would be excellent value for money with ICER of £690
and £740 respectively. Increasing ACE inhibitor and statin use would also be good
value for money with ICER of £3080 and £5400 respectively.

As reported in earlier chapters, the population based approach provided a more
comprehensive summary of the value of the intervention for the health care planner than
a cohort analysis (Assumption 1 and 2). In addition, the cost effectiveness measure from
a population analysis relates more realistically to the population and time period

studied. In the analysis in this chapter the cohort model underestimaied the discounted

cost effectiveness by about 10%. However, the population models built in this chapter
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were more complicated and took longer to build than the cohort models. The time
horizon chosen was shown to be critical to the cost effectiveness outcome. For shorter
time periods, the cost effectiveness will be significantly worse for the population and
cohort models. For example, in an analysis of the combined cost effectiveness of all the
drugs, the discounted cost effectiveness for the 10 year run was 50% higher than for the

40 year run.

The differences between the Markov and simulation model results were small and were
not large enough to lead to different conclusions from each of the models. The time to
build each of the models was similar and consequently the choice of preferred model
was based on the perceived simplicity and transparency of the models and so the
Markov model was the preferred model. In order to make the models more realistic so
that the prevalence of drug users increased over time, some more assumptions (and
states) were introduced. The number of states in the Markov model would have
increased by a factor of 16. In this case it was considerably simpler to use the simulation
model. Therefore in the first instance for simple models with a small number of health
states, the Markov model should be used. At some point, as the complexity of the model
and the number of health states increases it becomes considerably easier and more
practical to use a simulation model. The threshold for selecting the appropriate model

will be explored in the next chapter.

226



Chapter 9 Resource-Constrained Interventions

Chapter 9

Resource-Constrained Interventions:

Models for Revascularisation

Abstract

In this chapter Markov and simulation cohort and population models are built to
evaluate the costs and benefits from coronary artery bypass grafting (CABG) and
percutaneous transluminal coronary angioplasty (PTCA) for coronary heart disease
patients. The choice of modelling technique is explored for resource-constrained
treatment interventions. Resource-constrained interventions are those for which
resources are limited and there may be some decision rules concerning the allocation of
resources. These are typified by the referral and subsequent waiting of patients for

elective hospital procedures.

CABG is more cost effective for more severe coronary disease (ie triple vessel disease
and left main stem) and PTCA is more cost effective for less severe coronary disease (ie
single and double vessel disease). Compared to medical treatment, CABG and PTCA
are good value for money with ICER of £4900 for PTCA for 1 VD, £6100 for CABG
for 3 VD and £5300 for CABG for left main stem. Increasing the provision of
revascularisation according to the National Service Framework would cost an additional

£180 million per year and would gain over 22 000 QALY per year for UK.

Traditionally, discrete event simulation has been regarded as the technique of choice for
modelling resource-constrained queuing systems. However, using these models it was
concluded that the results were not significantly affected by modelling the resources
without using queues and concluded that DES is not necessarily the most appropriate
technique. As in chapter 8, the choice of model was determined by the overall
complexity of the model in terms of ease of development and the DES model became

the most appropriate when the number of states in the model became sufficiently large.
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Chapter 9 Resource-Constrained Interventions:

Models for Revascularisation

9.1 Introduction

In this chapter, the modelling of resource-constrained interventions is investigated.
Resource-constrained interventions are those for which resources are limited and there
may be some decision rules concerning the allocation of resources. These are typified
by the referral and subsequent waiting of patients for elective hospital procedures.
These differ from those interventions modelled in chapters 7 and 8. In chapter 7, all
patients who had a MI would have been eligible for emergency ambulance and
thrombolytic treatment. Similarly, in chapter 8, for secondary prevention medication, all
patients in each health state were equally eligible for the medication. Simple models
were developed for resource-constrained interventions in Chapter 5. A resource-
constrained intervention was modelled without the use of queuing and it was concluded
that systems with a queue system could be modelled effectively without the need for

DES.

In this chapter revascularisation procedures are modelled, using Markov and simulation
models. The following hypotheses are examined: firstly whether for dynamic systems
which involve constraints or where patients compete for scarce resources, DES is the
more appropriate technique (HS). Secondly if the Markov assumption forces the
creation or proliferation of states, or if using a homogeneous population is likely to

materially bias the results, DES should be considered (H6).

Initially a simple example is modelled comparing medical treatment, coronary artery
bypass surgery (CABG) and percutaneous transluminal coronary angioplasty (PTCA)
using Markov cohort and simulation models for patients with more serious coronary
disease, as in Yock et al. (2003). Then the complexity of the models is increased in
order to make the models more realistic and intuitive. The Markov and simulation
models are compared and a decision is taken on the preferred model to build at various

stages. Finally a more realistic population model is described to assess the likely costs
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and benefits of increasing the capacity of revascularisation in the UK from its current
level as recommended by the National Service Framework for CHD (Department of

Health 2000).

Unless indicated otherwise, the results for the models are shown in terms of cost (£),
effectiveness (QALY's gained) and cost effectiveness (incremental cost effectiveness
ratio, ICER, £/QALY gained)). The incremental cost effectiveness ratio is shown as the
difference in cost between the treatment scenario and baseline divided by the difference

in effectiveness between the treatment scenario and baseline.

9.2 Bypass surgery and angioplasty for coronary heart disease

The models built in this chapter are based upon research completed by the author as part
of the UK Coronary Heart Disease Policy Model working team (Appendix I). In
particular much of the data have been collected by other members of the group and is
described in more detail in the Stable Angina Working paper (Chase et al. 2003a).
Furthermore the modelling work here was done in consultation with other members of

the group.

Patients with angina pectoris suffer from recurring pain or discomfort in the chest.
Revascularisation procedures such as coronary artery bypass grafting (CABG) and
percutaneous transluminal coronary angioplasty (PTCA) improve the symptoms of
angina. A coronary artery bypass graft (CABG) is an operation that bypasses blockages
in the heart arteries with veins removed from the leg or chest. Percutaneous transluminal
coronary angioplasty (PTCA) is a method which uses a tiny balloon to reduce the
arterial narrowings (stenoses) by inserting a catheter in the upper leg and moving it until
it is in the heart. Often a metal mesh cage, called a stent, is embedded into the artery

wall and holds the artery open.
Patients are categorised by their symptom severity and their clinical classification.

Symptom severity is assessed by the use of exercise electrocardiogram (ECG) and is

measured. There are several classifications of the severity of the symptoms, for example

229



Chapter 9 Resource-Constrained Interventions

the Canadian Cardiovascular Society classification (2002) and the New York Heart
Association classification (1994). Patients with more severe symptoms may then be
referred for an angiogram, which is able to give an accurate assessment of the severity
of the arterial stenoses. Unfortunately symptom severity is not a perfect indication of
poor clinical classification and so not all those with poor clinical prognosis will be
referred for an angiogram. Similarly many patients with less severe clinical
classification will be referred for an angiogram. Clinical classification is defined as the
number of major vessels with significant narrowings (0-3 vessels). In addition, if the left
main stem (LMS) vessel is stenosed the prognosis is particularly bad. The current
guidelines suggest that patients with lower severity of vessel disease (1 or 2 VD)
receive angioplasty, whilst patients with more severe vessel disease (3 VD or LMS)

receive CABG (SIGN 1998; European Society of Cardiology 1997).

Revascularisation is useful for relieving patients’ angina symptoms and thereby
improving their quality of life. There are risks of revascularisation, including death or
myocardial infarction (MI). After the revascularisation, patients may develop angina
again and require further revascularisation. The repeat revascularisation rate for PTCA
is particularly high in the first year although this has been improved by the advent of

stents.

9.2.1 Other modelling studies of revascularisation

Other modelling studies for revascularisation have been reviewed in detail in section
3.4. Several studies have looked at the benefits and cost effectiveness of
revascularisation (Cohen et al. 1994; Wong et al. 1990; Schwicker and Banz 1997,
Cleland and Walker 1997; Kwok et al. 2001; Cleland and Walker 1998; Williams 1985;
Weinstein et al. 1982; Yock et al. 2003), see Table 3.4.1. Several of the studies were
before large scale trials had been completed, (Williams 1985; Wong et al. Weinstein
and Stason 1982) and the results may have to be treated with caution. The studies for
CABG used a decision tree combined with long term life expectancy (Weinstein and
Stason 1982), a Markov model (Kwok et al. 2001), state transition model (Cleland and
Walker 1997; Cleland and Walker 1998) and simple calculation methods (William
1985) and the studies for angioplasty and stenting used a Markov cycle model (Wong et
al. 1990; Yock et al. 2003) or a decision tree with a Markov model (Cohen et al. 1994;
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Schwicker and Banz 1997). The studies found that CABG was suitable for patients with
more severe symptomatic and anatomical disease whilst angioplasty was more suitable
for less severe indications. Stents were a reasonably cost effective alternative to balloon

angioplasty.

9.2.2 Parameters used in the revascularisation models

Many of the parameters used for the revascularisation model have been derived in
consultation with other members of the UK Coronary Heart Disease Policy Model
working team. Furthermore much of the data for these parameters have been collected
by other members of the group and is described in more detail in the Stable Angina
Working paper (Chase et al. 2003a).

As mentioned in section 9.2, patients with more severe vessel disease have a worse
prognosis. This is represented as a relative risk of suffering a MI or cardiac death
compared to patients with single vessel disease (Table 9.2.1). These relative risks are
obtained from the death rates of the medical arms of trials comparing CABG against
medical treatment in a meta-analysis by Yusuf et al. (1994). The mortality rates in
Yusuf et al. were for all cause mortality. The rates were adjusted by subtracting the
deaths from non cardiac causes, assuming that non CHD deaths in the UK population
were distributed in a similar way to the Yusuf trial for the same age group. This
adjustment provided the CHD death rates for each of the vessel disease subgroups,

which was used to estimate the relative risk.

Table 9.2.1 Relative risks for patients with different vessel disease (Data from Yusuf

et al. 1994; Table from Cooper et al. 2003)

Vessel disease Relative

(VD) risk
1VD 1
2VD 1
3VD 1.78
LMS 4.19
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Patients undergoing bypass surgery and angioplasty are at risk of immediate events
from the procedure. The mortality and non fatal M1 rates for bypass surgery and
angioplasty are taken from national audits (Keogh and Kinsman 1998; de Belder 1998)
and are shown in Table 9.2.2. Although event rates vary widely according to age, prior

intervention and other factors, average event rates have been assumed.

Table 9.2.2  Event rate of patients undergoing surgical procedures (Data from Keogh
and Kinsman1998 and de Belder 1998; Table from Cooper et al. 2003)
CABG, % PTCA, %

MI 5 32
Death 23 0.9

There are some anomalies between the clinical evidence for angioplasty and CABG. In
trials comparing PTCA with medical treatment (Rita 2 1997), there was no significant
difference in prognostic benefit between the groups. In trials comparing PTCA with
CABG (Pocock et al. 1995), there was no significant difference between the groups.
Finally, in trials comparing CABG with medical treatment there was a significant
benefit in the CABG group (Yusuf et al. 1994). Based on the available studies the CHD
working team decided there was no prognostic benefit for PTCA compared to medical
treatment (Chase et al. 2003a). Further, there was prognostic benefit for patients with
multi-vessel disease but not those with single or double vessel disease. A recent health
technology assessment (Hill et al. 2004) reached the same conclusion after analyzing
the results from several recent CABG vs PTCA trials. They commented that

‘Although none of these results is individually significant, the trend is clearly

consistent with a steady shift in the balance of mortality risk in favour of

CABG after an initial disadvantage’.

Over the longer term, revascularisation may provide prognostic benefits, as well as
symptomatic relief. Table 9.2.3 shows the relative risks of each of the vessel disease
classifications compared to patients on medical treatment. The relative risks describe the

risk of a future MI. Thus a patient with triple vessel disease would have their risk of a
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further MI reduced by 42% by a successful CABG procedure. The relative risks for
CABG are taken from the Yusuf et al. meta analysis. There is little evidence that PTCA
provides a prognostic benefit compared to medical treatment (Rita 2 1997; Bucher et al.
2000). PTCA was assumed to provide symptomatic relief but no long term prognostic

benefits on survival.

In the trials for CABG versus medical treatment, patients had an increased survival rate
after CABG for multi-vessel disease for the first 12 years compared with the medical
group. The survival benefit of the CABG operation diminishes after about five years.
This diminishing of benefit is probably due to patients returning to angina (stable or
unstable), or having events such as MI and death. Patients were assumed to have
prognostic benefits from the bypass surgery until they suffer a coronary event, such as

unstable angina or M1, but no benefits thereafter.

Table 9.2.3  Relative risks of revascularisation compared to medical treatment (Data

from Yusuf et al. 1994; Table from Cooper et al. 2003)

Vessels CABG PTCA
stenosed  Relative risk Relative risk
0 1 1
1 1 1
2 1 1
3 0.58 1
LMS 0.32 1

Revascularisation is primarily used to treat the symptoms of angina. However often the
angina recurs and the patients may need to be referred for repeat revascularisation. This
is especially common for patients receiving a PTCA who have a high risk of angina
recurrence within the first four to six months after a PTCA, although with the advent of
stents and new drugs, the restenosis rate has fallen by about 40%. The repeat recurrence
rates estimated by Yock et al. (2003) from the BARI trial (1996) and more recent stent
trials, for example the Stent restenosis Study (SoS 2002) and the Belgian Netherlands
Stent Study (Serruys et al. 2001), for PTCA using stents are shown in Table 9.2.4. In the
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BARI trial 8% of patients, who had an initial CABG, had repeat revascularisation

within five years and after this time the annual rate of repeat revascularisation was 5%.

Table 9.2.4  Probability of repeat revascularisation using stents estimated by Yock et

al. (2003)
0—-6 months 6—12 months 1248 months [Each year after
after PTCA after PTCA after PTCA 48 months
Probability 0.19 0.09 0.16 0.05

Not all patients whose anginal symptoms recur have immediate revascularisation. The
proporﬁon of patients receiving repeat revascularisation was estimated using a survey
by the British Cardiac Society (see Table 9.2.5), consultation with a cardiologist at
Southampton General Hospital and data from the Scottish Health Service (Table 9.2.6).
Combining these data it was estimated that around 20% of patients with non fatal MI
and 60% of patients with unstable angina received repeat revascularisation. There is a
high proportion of repeat revascularisation in the first year after a PTCA over and above
the natural recurrence of angina through acute coronary incidents (ACI) (see Table
9.2.4). It was estimated that in addition to the recurrence through ACI, 23% of patients
who have PTCA receive repeat PTCA within the first year.

Table 9.2.5  Acute referrals for diagnostic tests for patients with unstable angina or

MI (Survey from British Cardiac Society)

% As inpatients Within 6 weeks Never receive
of discharge one
Patients with non fatal MI who 55 25 20

have exercise ECG*
Patients with unstable angina 55 25 20

who proceed to angiogram

*Of those receiving exercise testing, 45% go on to have angiography

234



Chapter 9 Resource-Constrained Interventions

Table 9.2.6  Proportion of patients referred from angiography to revascularisation for

different vessel disease (Scottish Health Service data)

1or2VD 3VD LMS
Patients with stable angina or MI 60 55 70
Patients with unstable angina 85 70 70

9.2.3 Quality of life (QoL) measures

As mentioned above, revascularisation often improves the quality of life of patients.
Several studies have attempted to quantify the level of quality of life for CHD patients
but the values used vary widely. For a more extensive list of QoL scores from which the
studies below are obtained see Bell et al. (2001). These studies have used quality of life
analyses and in some cases adapted them for their own uses or derived them from a
panel of experts. The QoL estimates can be calculated using several methods, including

the rating scale, standard gamble and time trade off (section 2.2.4).

There is a wide variation between the utility methods described. Kuntz et al. (1999)
described how they used the Nease et al. (1995) study results for the standard gamble
method to give the following scores: No chest pain 0.87, mild angina 0.81, and severe
chest pain 0.67. This is in general agreement with other studies; some of the ranges are

also shown.

Good quality of life: Asymptomatic (history of CHD) 0.902 (Stinnett et al. 1996),
NYHA functional class IT angina 0.9 (Levin et al), stable and asymptomatic after
surviving an MI 0.9 (Hummel et al. 1997), Post MI with no angina, no congestive heart
failure 0.93 (Kuntz et al. 1996). Mild chest pain 1.0 (Doubilet et al. 1985), NYHA
functional class I angina 1.0 (Levin et al. 1992).

Intermediate quality of life: Mild angina 0.8 (Hummel et al. 1997), mild angina in
sedentary person 0.8 (Pliskin et al. 1981), CHD 0.8 (Halziandreu et al. 1988), angina
(no congestive heart failure) 0.84 (Stinnett et al. 1996). Angina 0.75 (Danese et al.
1996), angina 0.9 (Salkield et al. 1997).
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Poor quality of life: Severe angina 0.7 (Wong et al. 1990), severe chest pain 0.7
(Doubilet et al. 1985), severe angina (Cohen et al. 1994), NYHA functional class I/IV
angina 0.7 (Levin et al. 1992). Severe angina 0.0 (Pliskin et al. 1981), Post MI with

severe angina, no congestive failure 0.82 (Kuntz et al. 1996).

Table 9.2.7  Studies that have used QoL scores (1) Standard gamble — SG, time trade

off — TTO, author/clinical judgement A/CJ (Table from Davies et al. 2003a)

Study Definition Pref. Method
score
Levin et al. 1992 NYHA functional class I angina 1.0 -
Kuntz et al. 1999 No chest pain 0.87 SG
Stinnett et al. 1996 Asymptomatic (history of CHD) 0.902 TTO
Levin et al. 1992 NYHA functional class IT angina 0.9
Hummel et al. 1997 Stable and asymptomatic after 0.9 ACJ
surviving M1
Kuntz et al. 1996 Post MI with no angina, no 0.93 TTO
congestive heart failure
Kuntz et al. 1999 Mild angina 0.81 SG
Doubilet et al. 1985 Mild chest pain 1.0 ACJ
Hummel et al. 1997 Mild angina 0.8 ACI
Pliskin et al. 1981 Mild angina in sedentary person 0.8 SG
Hatziandreu et al. CHD 0.8 ACI
1988
Stinnett et al. 1996 Angina (no congestive heart failure)  0.84 TTO
Danese et al. 1996 Angina 0.75 ACJ
Salkeld et al. 1997 Angina 0.9 TTO
Wong et al. 1990 Severe angina 0.7 -
Doubilet et al. 1985 Severe chest pain 0.7 ACJ
Cohen et al. 1994 Severe angina 0.7 TTO/ ACJ
Levin et al. 1992 NYHA functional class III/TV 0.7
Pliskin et al. 1992 Severe angina 0 SG
Kuntz et al. 1996 Post MI with severe angina, no CHF  0.82 TTO
Kuntz et al. 1999 Severe angina 0.67 SG
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Most of the studies shown in Table 9.2.7 have derived their QoL scores from different
studies. Several of these studies, for example Kuntz, cite Nease et al. (1995). This study
investigated attitudes towards their angina symptoms in a representative sample of 220

patients using the rating scale, time trade off and standard gamble utility methods.

The patients were categorised by Canadian Cardiovascular Society (CCS) class (I-1V)
according to the severity of their symptoms assessed by his or her cardiologist, with
class I being the least severe. Table 9.2.8 shows the patient utilities for each of the

utility methods.

Table 9.2.8 Median patient utilities by measurement metric and Canadian
Cardiovascular Society class (CCS) (Data from Kuntz et al. 1999; Table
from Davies et al. 2003a)

Class I Class 11 Class III/IV
Proportion in class, % 18 51 31
Rating scale 0.89 0.78 0.59
Time trade off 1 0.997 0.929
Standard gamble 0.965 0.97 0.875

Table 9.2.9  Patient utilities by measurement metric and selected criterion measure

(Data from Kuntz et al. 1999; Table from Davies et al. 2003a)

How would you describe your ~ Rating scale Time trade off  Standard

angina discomfort on average? gamble
Very mild, mild or moderate 0.832 0.999 0.878
Severe or very severe 0.558 0.967 0.833

Melsop et al. (2003) measured the quality of life in patients who had previously
received revascularisation as part of the Bypass Angioplasty Revascularisation
Investigation (BARI) Study of Economics and Quality of Life. They measured quality
of life measures, such as Duke Activity Status Index and angina class, together with a

time trade off utility assessment on average of 7.3 years after random assignment. Of
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those 458 questioned, 400 did not have angina after 7.3 years. Those without angina had
median TTO scores of 9.95 (mean = 8.7) and those with had median TTO scores of 8.5

(mean = 7.03). Some of the results are shown in table 9.2.10.

Table 9.2.10 Patient utilities by measurement metric and Canadian Cardiovascular

Society class (CCS) (Data form Kuntz et al. 1999; Table from Davies et

al. 2003a)
Class I Class II Class III Class IV
Number in class 14 29 11 4
Median 9.79 9 8.5 0.5
Mean 8.18 7.4 6.7 1.25

The study by Melsop et al. (2003) shows that the quality of life of people after
revascularisation is excellent. Indeed the majority were still free from angina after over
7 years. The mean quality of life utility for Melsop et al. (2003) was similar to those
reported in Kuntz et al. (1999).

On the basis of the study shown here for quality of life measures, it was assumed that
the major benefits to quality of life are seen after revascularisation and these will remain
whilst the angina symptoms are controlled. The CHD modelling team used the mean
TTO scores for those with and without angina after revascularisation from Melsop et al.
(2003), i.e. the quality of life scores vary in the range of 0.7 to 0.87 (Davies et al.

2003a) and the same values are used in the models in this chapter.

9.2.4 Costs

A more detailed discussion of the data for coronary heart disease costs can be found in
the UK Coronary Heart Disease Policy Model Working paper on costs (Raftery et al.
2003). A full list of the derived costs for coronary heart disease are shown in Appendix
VI. The estimated cost per patient is £368 per year, which includes GP and cardiology
appointment and non secondary prevention drugs costs (such as nitrates and calcium
channel blockers). The estimated cost per MI admission is £1,465, which includes the

cost of the hospital stay, coronary care unit, thrombolysis and the ambulance. The
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estimated cost per unstable angina admission is £741. The estimated cost for CABG and

PTCA is £6215 and £3346 and these include the cost of angiogram.

9.3 Description of the revascularisation models

The Markov and DES models in this chapter are developed, as far as possible, to be
identical to each other. Accordingly they use the same parameters for transitions

between states and costs. The initial models constructed are cohort models for patients

ﬂ

No event
aﬁer PTCA

with previous history of ML

9.3.1 Markov model

No event
after initial
revasc

Cardlac
death

Non
cardiac
death

17

Non
eligible
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Figure 9.3.1 Simple revascularisation Markov cohort model

A simple Markov cohort model for revascularisation is shown below in Figure 9.3.1. It
conststs of six states: No event after initial revasc, PTCA, no event after PTCA, Non
eligible symptomatic, Cardiac death and Non cause death. The model has a cycle length
of one year. A cohort of patients begins with an initial revascularisation and will start in
the No event after initial revasc state. A proportion of these patients will have angina

recurrence and these will either have further revascularisation (PTCA), or will be Non
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eligible symptomatic. PTCA has an increased repeat revascularisation rate in the first
year as shown in Table 9.2.4; those surviving this year will enter the No event after

PTCA state. Patients may die from any state.

In this model, it is assumed that angina recurrence is as a result of acute coronary
events, such as unstable angina and MI. The recurrence of angina symptoms is also
related to the severity of vessel disease and the individuals with more severe vessel
disease are more likely to have a recurrence of angina symptom as shown by their
relative risks in Table 9.2.1. The risks of unstable angina and MI have been derived in
section 6.4.5 and 6.4.6 and Appendix IX. The risk of unstable angina is

0.0141Rexp”" 6% where x is the age of the individual and R is the relative risk as shown
in Table 9.2.1. The risk of MI is 0.006Rexp”®* where x is the age of the individual and

R is the relative risk as shown in Table 9.2.1.

Those with the more severe vessel disease have a higher risk of long term mortality and
morbidity according to the relative risks shown in Table 9.2.1. Thus, patients with triple
vessel disease are almost twice as likely to experience a MI as those with single vessel
disease. There are also greater benefits from CABG for the more severe vessel disease,
while patients remain in the state No event after initial revasc, and these are shown in
Table 9.2.3. Thus those with triple vessel disease have their risk of a MI almost halved
after a CABG. The operative risks for the procedures are incorporated in the model for
PTCA and CABG and these are shown in Table 9.2.2. For each vessel disease
classification, the proportion of those with recurrent symptoms who have repeat

revascularisation is assumed to be the same.

Not all patients whose anginal symptoms recur have immediate revascularisation. The
proportion of patients receiving repeat revascularisation was 20% of patients with non
fatal MI and 60% of patients with unstable angina received repeat revascularisation.
There is a high proportion of repeat revascularisation in the first year after a PTCA over
and above the natural recurrence of angina through acute coronary incidents (see Table
9.2.4). It was estimated that in addition to the recurrence through ACI, 23% of patients
who have PTCA receive repeat PTCA within the first year.
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Those who have repeat revascularisation are assumed to have 3 months of anginal
symptoms until they are relieved. In addition those patients in state Non eligible
symptomatic are assumed to have the lower quality of life. The model was constructed

in Treeage and run with a population of age 60 years with long term MI.

The transitions in the model (numbered on diagram) are as follows:

From No event after initial revasc

1) Patient has ACI and is referred for repeat revascularisation (PTCA)
2) Patient has ACI but is not eligible for repeat revascularisation

3) Patient has cardiac death

4) Patient has non cardiac death

5) Patient has no ACI after initial revascularisation

From PTCA

6) Patient has ACI after repeat PTCA and is referred for further PTCA

7) Patient has ACI after repeat PTCA but is not eligible for repeat revascularisation
8) Patient has cardiac death

9) Patient has non cardiac death

10) Patient has no event after repeat PTCA

From No event after PTCA

11) Patient has ACI and is referred for repeat revascularisation (PTCA)
12) Patient has ACI but is not eligible for repeat revascularisation

13) Patient has cardiac death

14) Patient has non cardiac death

15) Patient remains event free

From Non eligible symptomatic
16) Patient has cardiac death
17) Patient has non cardiac death

18) Patient ineligible for revascularisation does not die

19) Cardiac death (absorbing state)
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20) Non cardiac death (absorbing state)

Table 9.3.1

Transition probabilities for the Markov model for the revascularisation

model. Values for patient of age 60 with triple vessel disease for the CABG scenario.

(ONS = Office of National Statistics (Table 6.4.3); p(NFMI) = probability of non fatal

MI; p(UA) = probability of unstable angina; RRp is prognostic relative risk for vessel

disease (Table 9.2.1); RRb i1s surgical benefit for vessel disease (Table 9.2.3);

PTCA_mort = probability of mortality from PTCA, Death rate DR in or out of hospital

from UKHAS, (Table 6.4.4)).

Transition Data source / derived equation Value for
age 60
1) (0.2*p(NEMI) + 0.6*p(UA))*RRb 0.027
2) (0.8*p(NFMI) + 0.4*(UA))*RRb 0.035
3) 0.0066exp” ™ **RRp*RRb*(DR in out hosp) 0.016
4) ONS 0.007
5) 1-T1-T2-T3-T4 0.915
6) 0.23 + 0.2*p(NFMI) + 0.6*p(UA) 0.277
7) 0.8*p(NFMI) + 0.4*(UA) 0.06
8) 0.0066exp”**RRp* (DR in out hosp) + PTCA mort  0.037
9) ONS 0.007
10) 1-T6—-T7-T8-T9 0.619
11) 0.2*p(NFMI) + 0.6*p(UA) 0.047
12) 0.8*p(NFMI) + 0.4*(UA) 0.06
13) 0.0066exp”***RRp* (DR in out hosp) 0.028
14) ONS 0.007
15) 1-T11-T12-T13-T14 0.858
16) 0.0066exp”**RRp* *(DR in out hosp) 0.028
17) ONS 0.007
18) 1-T16-T17 0.965
19) 1 1
20) 1 1
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9.3.2 Results

The simulation model was constructed in a similar way to the Markov model and run
for 100 runs of 40 years. The results from the runs of the Markov and simulation models
are shown in Table 9.3.2 and 9.3.3. Both of the CABG and PTCA strategies are
compared to medical therapy. The results from each of the models are similar. The
mean absolute errors between the two models for cost, QALY and ICER are 1.8%,

0.7% and 5.5% respectively. In both cases, CABG is most cost effective for the more

severe vessel disease and PTCA for the less severe vessel disease.

Table 9.3.2  Costs, life expectancies and cost effectivenesé ratios for CABG and
PTCA for different severity of disease for the Markov model
lor2VD 3VD LMS
Medical CABG PTCA Medical CABG PTCA Medical CABG PTCA
Cost 6862 14463 12667 6209 14234 12342 5233 13712 11664
QALY 11.0 124 12.6 8.8 11.2 98 5.4 8.6 5.8
ICER 5114 3585 3266 5876 2667 15517

Table 9.3.3 Costs, life expectancies and cost effectiveness ratios for CABG and
PTCA for different severity of disease for the simulation model
lor2VD 3VD LMS
Medical CABG PTCA Medical CABG PTCA Medical CABG PTCA
Cost 6821 14400 12496 6182 14058 12120 5137 13329 11213
QALY 109 12.5 126 8.8 112 99 5.5 8.6 6.0
ICER 4914 3473 3293 5620 2685 12965

As mentioned above, there is some debate as to whether there is the same prognostic
benefit from CABG as that from PTCA. In the case where there is no prognostic benefit
from CABG, similar to PTCA, the cost effectiveness ratio for 3 vessel disease is £7800
and for left main stem is £18 G00. In this case, PTCA would be the preferred treatment

for all treatments.
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9.3.3 Modelling revascularisation for patients with angina

The models were expanded to estimate the cost effectiveness of patients without a
history of ML In this case the number of states in Figure 9.3.1 increase from six to ten.
Each of the non death states would be either angina only or MI. Patients can pass from
the angina states to the MI states if they have a non fatal MI. Patients with angina only
had a risk of MI of 0.0089Rexp’"*** where R is the relative risk of the individual’s

vessel disease and x is their age.

Table 9.3.4  Costs, life expectancies and cost effectiveness ratios for CABG and
PTCA for different severity of disease for the Markov model with angina and MI
patients
lor2VD 3VD LMS
Medical CABG PTCA Medical CABG PTCA Medical CABG PTCA
Cost 7677 15494 13540 7201 15450 13809 6168 14957 13312
QALY 127 146 148 10.8 13.6 123 7.1 10.7 79
ICER 4136 2832 2946 4319 2415 8505

Table 9.3.5 Costs, life expectancies and cost effectiveness ratios for CABG and
PTCA for different severity of disease for the simulation model with angina and MI
patients
lor2VD 3VD LMS
Medical CABG PTCA Medical CABG PTCA Medical CABG PTCA
Cost 7641 15393 13540 7144 15207 13510 6071 14496 12769
QALY 128 14.7 149 10.9 13.6 124 7.2 10,6 7.9
ICER 3975 2814 2927 4247 2491 9245

The results from the runs of the Markov and simulation models are shown in Table
9.3.4 and 9.3.5. The results from each of the models are similar for all analyses. In both

cases, CABG is most cost effective for the more severe vessel disease and PTCA for the
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less severe vessel disease. In each analysis, the procedures are more cost effective for

angina patients (Table 9.3.4 and 9.3.5) than MI only patients (Table 9.3.2 and 9.3.3).

9.3.4 Discussion

The models in this section took a similar time of roughly three weeks to build and the
results from the Markov and simulation models were simulation. Consequently the
choice of preferred model was based on the perceived simplicity and transparency of the
models and so the Markov model was chosen as the optimal model to build. Thus a

resource based intervention has been modelled without using queues.

The results from this model show the cost effectiveness of revascularisation techniques
using cohort analyses. In previous chapters the advantages were shown of population
based analyses in order to estimate the likely costs and benefits for a population. In the
next section the models are extended and built as population based models. Based on
the experiences building population models in chapter 8, it was decided that it would be
more difficult to build a Markov population model than extend the simulation model

and so the population based model is built as a simulation model.

9.4 A population-based simulation model for revascularisation

In this section, a population-based simulation model is built. In order to do this, some
new parameters are introduced which describe the proportion of the CHD population

with different vessel disease.

9.4.1 Parameters for the population-based model

In the population-based model, the vessel distribution amongst CHD patients needs to
be used. This is needed in order to estimate the need for revascularisation for each of the
severity of heart disease. The vessel disease distribution for prevalent patients was
determined from a 1970s observational study by Jones (1972). The data were broken

down by whether or not patients suffered a previous MIL. This study was the only one
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found to be a survey of all patients with CHD, rather than those selected for
angiography (Table 9.4.1).

In practice, patients’ vessel disease will change as they age. However, in this model, as
with the UK CHD Policy model (Davies et al. 2003a), it is assumed that patients keep
the same vessel disease throughout the simulation. As those with more severe vessel
disease have shorter life expectancies the numbers of patients with more severe vessel
disease would decrease as the simulation progresses. In order to avoid this and keep the
proportions of patients with different vessel disease constant over time, the vessel
disease profile of incident patients was adjusted. The vessel disease make-up of unstable

angina patients was taken from the FRISC II study (1999) (Table 9.4.2).

Table 9.4.1 Vessel disease make-up of prevalent CHD patients (Data from Jones
1972; Table from Cooper et al. 2003)

No. of vessels  Stable angina Previous MI

stenosed % of patients % of patients
0 52.0 5.0
1 16.5 24.2
2 8.0 14.1
3/2+LAD 20.7 50.5
LMS 2.8 6.2

In any group of people, the risk of LMS is assumed to be proportional to the number of
vessels diseased. Thus in groups with more triple vessel disease, there would be a
subsequent higher number with left main stem. Using this assumption, the likely
proportion of the CHD population with LMS was calculated for the patients in the
Yusuf et al. meta analysis (1994), see Appendix VII. Yusuf et al. (1994) showed that the
prognosis for persons with 2 vessel disease (VD) and left anterior descending disease
(LAD) is similar to that of persons with 3 VD whilst for persons with 2 VD and no

LAD the prognosis was similar to that for person with 1 VD. Those with 2 VD and
LAD will be treated the same as those with 3 VD, and those with 2 VD and no LAD
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will be treated the same as those with 1 VD. Yusuf (1994) showed that half of 2 VD
patients had LAD, thus half of 2 VD patients were categorised as 3VD patients within
the model.

Table 9.4.2  Vessel disease make-up of incident CHD patients (Stable angina and
previous MI values adjusted as described above) (Data from FRISC II 1999; Table from
Cooper et al. 2003)

No. of vessels  Stable angina Post MI Unstable angina
stenosed % of patients % of patients % of patients
derived* derived®

0 445 1.0 14.0
1 13.0 16.2 29.0
2 7.5 12.0 13.0
3/2+LAD 28.5 58.0 36.0
LMS 6.5 12.8 8.0

* The parameters in these columns have been derived in order to keep the vessel

disease stable at the prevalent proportion shown in 9.4.1

The simulation was run for prevalent and incident patients of a particular vessel disease.
The number of patients with that disease is proportional to the vessel disease make-up
described in Table 9.4.1 and 9.4.2 and the prevalent and incident rates described in
Table 6.4.1 and 6.4.2. As with the previous models, the model in this section was not

run with patients with zero vessel disease.

In this model, (but not in the UK. CHD policy model) it is assumed that none of the
prevalent patients have had a previous CABG or PTCA operation and will only be
eligible for a PTCA if they have a non fatal ACI. New incident MI and unstable angina
patients have the same revascularisation rate as that reported above, ie 60% of unstable
angina patients and 20% of MI patients have revascularisation respectively. In a similar

manner, 50% of new stable angina patients will have revascularisation.
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Patients who have survived an MI are at a higher risk of further MI in their first year
after MI. The risk of MI is 0.013Rexp”***”* where x is the age of the individual and R is

the relative risk as shown in Table 9.2.1.

9.4.2 Results

The simulation model was run for a population of 125,000 for 40 years with 100
iterations. Table 9.4.3 shows the results for the costs, life expectancies and cost
effectiveness ratios. Table 9.4.4 shows these results discounted at 3% for costs and
benefits. As seen 1n earlier results, PTCA 1s more cost effective for 1 or 2 vessel

disease, and CABG more cost effective for 3 vessel disease and left main stem.

Table 9.4.3  Average annual costs, life expectancies and cost effectiveness ratios for
CABG and PTCA for different severity of disease for the simulation model
lor2VD 3VD LMS
Medical CABG PTCA Medical CABG PTCA Medical CABG PTCA
Cost (£000s) 550 902 824.8 717.1 1230.71125.7 1125 216.2 194.6
QALY 831 889 892 939 1034 1003 105 127 111
ICER 6044 4463 5423 6419 4701 13259

Table 9.4.4  Average annual discounted costs, life expectancies and cost effectiveness
ratios for CABG and PTCA for different severity of disease for the simulation model;
costs and benefits discounted at 3%

lor2VD 3VD LMS
Medical CABG PTCA Medical CABG PTCA Medical CABG PTCA
Cost (£000s) 322.6 529.8 4843 4162 719 658.6 656 126.7 1145
QALY 487 519 520 544 594 579 61 73 65
ICER 6609 4916 6059 6919 5271 13740
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As shown in previous chapters, one of the advantages of running a population model is
that it produces estimated total costs and benefits of introducing the intervention. If the
results are scaled up to a population of one million, then Table 9.4.5 shows the number
of operations for each category. Thus if the optimal procedure is chosen in each case
about 510 CABG and 1170 PTCA will be performed per million population (Table
9.4.5). This policy will save 1425 quality adjusted life years per year at an extra cost of
£7.1 million per million population, compared with treating patients with medical
treatment only. This corresponds to an undiscounted and discounted cost effectiveness

ratio of £5000 and £5560 per QALY gained.

Table 9.4.5 Number of operations for CABG and PTCA for different vessel disease

for a scaled population of one million

CABG PTCA
1VD 3VD LMS 1VD 3VD LMS
Initial procedure 306 429 84 306 429 84
Subsequent PTCA 274 426 87 346 544 111

Table 9.4.6 shows the CHD prevalence and coronary events for the medical and optimal
revascularisation scenarios. For the revascularisation scenario there will be a marginal
increase in the CHD prevalence and a small decrease in the number of coronary events

between the scenarios.

Table 9.4.6  Average number of coronary events and CHD prevalence for medical
treatment and optimal revascularisation policy for the simulation runs for a scaled
population of one million
Medical Revasc % Diff
Alive 21425 21649 1.0%
MI ad 1788 1735  -3.0%
UA 1681 1581  -6.0%
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9.4.3 Sensitivity analysis

In the simulation model described in this section the number of people who received
repeat revascularisation has been constrained by merely allocating a set proportion of
the patients to the procedure. There is no queuing process explicitly modelled. In
practice patients with stable angina would be referred by their GP to a cardiology clinic
where, after assessment, they may be referred for angiography and thereafter for
revascularisation. At each stage, there would be a waiting list of some kind which
would influence the time that it takes for an appointment. This is also the case for
patients who experience acute coronary events, although their referral process may

differ slightly in priority for treatment and waiting time.

In this section we investigate whether this method of allocating resource instead of the
use of queues leads to erroneous results:
H5)  For dynamic systems which involve constraints or where patients compete for

resources, DES is the more appropriate technique.

The simulation model was modified to include a queue for patients who are referred for
arepeat PTCA. The runs were completed for patients with triple vessel disease for the
CABG procedure scenario. Patients are added to the queue when they are referred to
have a repeat PTCA. At the beginning of each simulated month, patients are taken from
the front of the queue according to the number of procedures to be completed each
month. The results are shown for three possible resource levels: four, five and six PTCA
per month. This results in average waiting times of 1.24 years, 0.46 years and 0.19 years
for each of the resource levels. In the comparative model without queues, patients will
wait for a set time period equivalent to the average queuing time from the queuing

model before they have the repeat PTCA procedure.

The results from the runs are shown in Table 9.4.7 and the average error between the
two models is shown in Table 9.4.8. There is little difference between the results from
the two model runs with less than 1.4% ‘error’ between the cost, QALY and cost
effectiveness ratios. Certainly the inclusion of queues has not materially affected the
results. However, in this case the results were largely unaffected by the increase in

waiting time. For example the cost and QALY are only 2% and 1% lower for the
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longest waiting time scenario (4 PTCA / month) compared to the shortest waiting time
scenario (6 PTCA / month) and the cost effectiveness ratio is only 2.4% better. The
number of repeat PTCA completed is 47.8 and 55 per year for the longest and shortest

waiting time scenario respectively.

Table 9.4.7 Average annual costs, life expectancies and cost effectiveness ratios for
CABG with triple vessel disease for the simulation models with and without PTCA

queue

4 PTCA / month 5 PTCA / month 6 PTCA / month

Medical Queue No queue Queue No queue Queue No Queue

Cost £000s  717.1 12123 1198.2 1230 1222.8 1238.9 1233.2
QALY 938.8  1029.1 1027.4 1033.1 1032.3 1036.3 1033.9
ICER 5484 5430 5444 5411 5353 5430

Table 9.4.8  Error between simulation runs with and without PTCA queue, %

PTCA / month
% 4 - 5 6
Cost 1.2 0.6 0.5
QALY 0.2 0.1 0.2
ICER 1.0 0.6 -1.4

9.4.4 Discussion

The results from the population based simulation model show the cost effectiveness and
likely costs and benefits of revascularisation. The resource-constrained interventions
have been modelled without queues and unconstrained. Thus for a dynamic system
involving constraints or where patients compete for resources, DES is not necessarily

the most appropriate technique (Hypothesis 5).
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One assumption that is made is that patients receive revascularisation, irrespective of
their need. For example, 60% of patients with unstable angina receive revascularisation,
irrespective of whether they have 1 VD or left main stem. In practice, those with the
more serious vessel disease are treated with greater urgency while those with less
serious vessel disease will wait much longer. Furthermore it was assumed that patients
with recurrent symptoms will receive a repeat PTCA. In practice it would be possible
for patients to receive CABG as treatment for recurrent symptoms. However patients
will not be able to have more than two CABG operations. In a simulation model this
constraint can be easily incorporated by recording the number of CABG procedures
completed for each patient and ensuring that it does not exceed two. In a Markov model,
this would require extra states according to the number of CABG procedures completed,
eg zero CABG, one CABG, two CABG, and the number of states would expand
appropriately.

In order to estimate the likely costs and benefits of increasing the revascularisation rates
from the pre-NSF rates to NSF targets, the benefits can be estimated more accurately by
including this information in the modelling process. The UK CHD policy model used
queues to model revascularisation. In the next section the costs and benefits of greater

revascularisation are estimated using this model.

9.5 Parameters for the UK CHD Policy model

The UK CHD policy model simulates individual patients through their elective and
acute treatment pathways (see Figure 9.5.1). Patients who present with new disease
usually present at their GP for stable angina symptoms and hospital for MI or unstable
angina. The model describes the referral of stable angina patients to their GP, to
cardiology consultation for initial investigation, such as exercise ECG, to angiography
and finally revascularisation. Acute patients with unstable angina and myocardial
infarction follow a similar (but more urgent) referral process. Patients who are referred
to angiography and revascularisation join queues and then must wait their turn for the

procedures. There is different priority given according to the severity of the patients’
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condition. In this modelling exercise the effect of increasing the volume of

revascularisation from the pre-NSF rates to the NSF targets is estimated.

9.5.1 Referral to angiogram for patients with stable angina patients

In general, there is a large variation in the treatment of patients according to their age,
and the CHD modelling team (Davies et al. 2003a) attempted to build this variation into
the referral pathways. Referral to angiogram was derived from a trial of incident and
prevalent patients, Gill et al. (1999), which reported a referral to outpatients of incident
patients of 59% in three years. Bucher et al. (2000) reported that approximately 10% of
medically treated patients experienced sufficient worsening of symptoms to require
revascularisation over a year. Martin et al. (2002) extrapolated these data to allow for
the interest in referrals rather than revascularisations and used 15% as the annual

proportion of prevalent patients who present for hospital investigations.

The CHD modelling team combined these three studies. If patients do not get referred
initially (ie within 3 years) they will be subject to an annual referral probability of 15%.
Dudley et al. (2002) and Macleod et al. (1999) have shown that there is a strong bias for
referral according to age. Furthermore Macleod showed that patient referral from acute
MI in hospital over two years was heavily influenced by age but the referral process

from angiogram to revascularisation was much less influenced by age.

Clarke (1994) reported that 28% of incident stable angina patients were referred to
angiogram from GP within 3 years. However this study dates from 1994 and the referral
rates have increased since it was written. The CHD modelling team assumed a higher
rate of 36% to account for this increase in the number of angiograms performed in the

intervening years.
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In the UK CHD policy model, there is a two stage referral process for patients with
stable angina. They will be referred from initial diagnosis at the GP state to cardiac
clinic or rapid chest pain clinic (for exercise ECG) and from there to angiogram.
Patients will be referred on the basis of both age and clinical vessel disease. Many of the
patients with zero vessel disease will be sifted out before they have an angiogram as
happens in practice. The proportion of patients referred to have an angiogram will be
the same for 1, 2, 3 and LMS. The filtering algorithm and referral rates used are
explained in more detail in the Appendix VIII. Table 9.5.1 shows the actual proportion

of patients referred from diagnosis of CHD to angiogram for stable angina patients.

Table 9.5.1 Proportion of patients referred from diagnosis of CHD to angiogram by

age
Base Case (Pre — NSF) Target scenario
0VD Other All 0VD Other All
vessel patients vessel patients
Age (years) disease disease
35-45 20% 82% 51.0% 29% 96% 62.5%
45 -54 20% 82% 51.0% 29% 96% 62.5%
55-64 20% 82% 51.0% 29% 96% 62.5%
65 - 74 11% 43% 26.5% 22% 68% 45.1%
75 -84 2% 9% 5.3% 7% 23% 15.0%

9.5.2 Referral to angiogram for patients with unstable angina and MI

In a similar way, patients who experience unstable angina or non fatal MI events often
receive an exercise ECG during their hospital stay and many of these who have positive
exercise ECG will have an inpatient angiogram and go on to have a non elective

revascularisation.
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For the base case, the PRAIS (Collinson 2000) observational dataset was used for the
referral of patients with acute unstable angina to inpatient angiogram. PRAIS estimated
that 10% of patients who had an unstable angina event had an inpatient angiogram. For
the target scenario, a British Cardiac Society survey on resource use after acute MI and
unstable angina was used (see Table 9.2.5). Fewer older patients are referred to inpatient

angiogram than younger patients based on the study by Macleod et al. (1999).

The UK CHD policy model refers unstable angina patients for an inpatient angiogram
according to table 9.5.2. All remaining patients are referred for an outpatient
appointment within 6 weeks and these patients will be referred for angiogram in the

same way as those for stable angina referred from outpatient clinic to angiogram.

Table 9.5.2  Proportion of unstable angina patients in hospital who have inpatient

angiogram, % (Data from PRAIS 2003; Table from Cooper et al. 2003)

Age band (years) 45 -54 55-64 65 -74 75 -84 Total

Base case 20 15 7.5 1.5 10

Target scenario 90 70 40 8 55

As for unstable angina, the British Cardiac Society Survey was used for the target
scenario for the referral of patients with non fatal MI to inpatient angiogram (Table
9.2.5). UKHAS (Norris 1998) was used for the base case. UKHAS estimates that 8% of
patients have an inpatient angiogram. Fewer older patients will be referred to inpatient

angiogram than younger patients, based on the study by Macleod et al. (1999).
The model refers surviving MI patients to inpatient angiogram according to table 9.5.3,

with roughly 20% receiving an inpatient angiogram. A further 40% are referred to

outpatient appointment within 6 weeks.
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Table 9.5.3  Proportion of MI patients in hospital who have inpatient angiogram, %
(Data from Norris 1998; Table from Cooper et al. 2003)

Age band (years) 45 - 54 55 - 64 65 - 74 75 — 84 Total

Base case 20 15 7.5 1.5 10

Target scenario 60 45 25 5 20

9.5.3 Allocation of revascularisation resources after angiogram

As mentioned in the previous section, patients with more severe vessel disease who
have had an angiogram are likely to be referred for revascularisation. Patients are
referred to either urgent or elective waiting lists, depending on the severity of their
disease. Acute MI and unstable angina patients may also be referred to emergency

waiting lists.

In the UK CHD policy model, emergency and urgent waiting lists have priority over
elective waiting lists. People on emergency and urgent waiting list will receive
revascularisation as soon as the resources become available. They would in practice
remain in hospital until the revascularisation could be performed. Those patients on an

elective waiting list will wait considerably longer.

Older patients may have different referral rates to younger patients and those who have
acute unstable angina may have different referral rates to stable angina patients or those

who have acute MI.

The referral pathways to revascularisation for post MI patients are similar to those of
stable angina patients, but different for post unstable angina patients, who are assumed
to have more PTCA resources. The CHD modelling team expected that fewer older
patients would be referred from angiogram to receive revascularization; however the
data do not seem to support this assumption. Tables 9.5.4-9.5.7 show revascularisation
data from Scotland (Smith 2004). In the model runs in this section it is estimated that a
third of those with triple vessel disease and two thirds of those with left main stem are

seen urgently.

257



Chapter 9 Resource-Constrained Interventions

Table 9.5.4  Allocation of revascularisation resources after angiogram for stable

angina and post MI patients under the age of 70 (Smith 2004)

Treatment, % Vessels stenosed

0 1 2 3 LMS
CABG queue 4 6 17 31 56
PTCA queue 13 59 44 24 12
Medical treatment &3 35 39 45 32
Total 100 100 100 100 100

Table 9.5.5 Allocation of revascularisation resources after angiogram for stable

angina and post MI patients over age of 70 (Smith 2004)

Treatment, % Vessels stenosed

0 1 2 3 LMS
CABG queue 14 11 27 41 45
PTCA queue 17 51 34 16 15
Medical treatment 69 38 39 43 40
Total 100 100 100 100 100

Table 9.5.6  Allocation of revascularisation resources after angiogram for unstable

angina patients under age of 70 (Smith 2004)

Treatment, % Vessels stenosed

0 1 2 3 LMS
CABG queue 4 4 14 36 64
PTCA queue 20 78 66 40 19
Medical treatment 76 18 20 24 17
Total 100 100 100 100 100
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Table 9.5.7  Allocation of revascularisation resources after angiogram for unstable

angina patients over age of 70 (Smith 2004)

Treatment, % Vessels stenosed

0 1 2 3 LMS
CABG queue 6 6 27 35 48
PTCA queue 28 79 55 35 23
Medical treatment 66 17 18 30 29
Total 100 100 100 100 100

9.5.4 Resources available

In the UK CHD policy model the maximum number of resources is set. Each week this
will be the maximum number of patients who can receive angiogram, PTCA and CABG
procedures, if there are patients on the waiting lists. Those patients on the waiting lists
will continue to wait until the procedures become available. If more resources are made
available, the waiting lists will decrease and more patients will have their angina

symptoms controlled by revascularisation.

The base case usage of angiogram, CABG and PTCA was based on the British
Cardiovascular Intervention Society (de Belder 1998) and The Society of
Cardiothoracic Surgeons of Great Britain and Ireland, London 1998 (Keogh and
Kinsman 1998), Table 9.5.8.

In the UK CHD policy model, patients who have CABG are given a different vessel
disease from their original and would take the prognosis of that different vessel disease
category. Furthermore, these patients’ vessel disease also changes when the angina
recurs or if the patient has an unstable angina attack or MI. According to Bottner et al.
(1989), there is little evidence that the vessel disease of PTCA patients changes and thus
for PTCA, patients vessel disease remains unchanged after PTCA and when their angina

recurs.
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Table 9.5.8 Resources available (Data from Keogh and Kinsman 1998, De
Belder 1998; Table from Cooper et al. 2003)

Resources, no. per Base case NSF targets

year (per million) (pre- NSF)

Angilogram 2385 3200%*

CABG 435 750

PTCA 437 750

* No target set in NSF; this is suggested value.

9.5.5 Results

The simulation was run for a population of 500,000 for 40 years with 50 iterations. The

following scenarios were compared. The referral rates and revascularisation resources

are shown in Tables 9.5.1, 9.5.2, 9.5.3 and 9.5.8.

1) Medical treatment only. No angioplasty or revascularisation procedures.

2) Base case. Pre — NSF revascularisation rates.

3) NSF Target revascularisation rates.

4) NSF Target revascularisation rates (Increased PTCA). Increased number of
angioplasty procedures to 1000 per million population, number of CABG

operations remains at pre-NSF level.

Table 9.5.9 shows the results for the simulation runs for a population of one million
averaged for the first 20 years for the Pre-NSF scenario compared to no
revascularisation. The Table shows that revascularisation only has slight improvements
in patient survival with only 30 life years saved per year and 7 deaths prevented per
million population. If the cost effectiveness is only calculated on the basis of life years
saved, the cost effectiveness ratio is over £250,000 per life year saved which would not
be considered cost effective. However, as mentioned before the main benefit of
revascularisation is the improvement in quality of life. Indeed there will be 779 QALYs
saved per year per million population and revascularisation will be considered cost

effective.
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Table 9.5.9  Annual results for a population of one million per year averaged over 20

years; discounted cost effectiveness ratios at 3% for cost and benefits

Scenario All Cost/ ICER
CHD cause year ICER (£/QALY
patients deaths (£000s) QALY (£/LYS) gained)

Medical treatment 30,781 2,312 12,213 21,861
Base case: Pre-NSF 30,811 2,305 18,135 22,640 251,000 8100

Table 9.5.10 shows the results for the simulation runs for the NSF scenarios compared
to the Pre-NSF base case. In this case, the NSF target with equal revascularization rates
for CABG and PTCA results in increased patient survival and reduced all cause deaths
compared to the base case. In contrast the NSF target with increased PTCA results in
reduced patient survival and increased all cause deaths. Interestingly, the PTCA
scenario has a negative cost effectiveness ratio for life years saved but is still slightly
more cost effective than the NSF target with equal CABG and PTCA rates for QALY's
saved. The increased annual cost for the NSF target and increased PTCA NSF target are

£3 million and £2 million per million population compared to the base case (Pre-NSF).

Table 9.5.10 Annual results for a population of one million per year averaged over 20

years; discounted cost effectiveness ratios at 3% for cost and benefits

Scenario All Cost / ICER
CHD cause year ICER (£/QALY
patients deaths (£000s) QALY (£/LYS) gained)

Base case: Pre NSF 30,811 2,305 18,135 22,640

NSF Target 30,829 2,302 20,994 23,014 191,000 8200

NSF: Inc PTCA 30,796 2,306 20,147 22,938 -149,000 7100
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9.5.6 Discussion

The models built in section 9.3 and 9.4 did not use queues for patients waiting for
revascularisation resources, in contrast to the UK CHD policy model described in
section 9.5. The UK CHD policy model was able to simulate a more realistic flow of
patients and would have been able to identify bottlenecks in the system and constrain
resource use by only allowing a maximum number of procedures in any time period.
For example Davies (1994) and Hilton (2001) show that angiography is a bottleneck. In
order to build the patient flows in the UK CHD policy model, much data for patient
referral needed to be collected and referral algorithms derived. In fact the models in
section 9.3 and 9.4 were able to constrain the level of revascularisation procedures
completed by the proportion of patients referred for repeat revascularisation after acute
coronary events. For example in the example in section 9.4, 1700 procedures were
completed per million population; if fewer procedures were expected the referral rates
could be reduced. In this example a national scenario was modelled with event rates and
resources available according to a national average. In this case, the use of queues is not

as necessary for evaluating the resource-constrained intervention.

In the preceding sections in this chapter models were built for revascularisation and
investigated whether systems which involve constraints or where patients compete from
resources, should use DES and conclude that there may be many instances where it is

not necessary.

In section 9.3, simple Markov and simulation cohort models were built to investigate
the cost effectiveness of revascularisation procedures for patients with different vessel
disease. It was concluded that the models gave similar results and that the Markov
model would have been easier to build and so is the preferred model. In section 9.4, this
model was extended to a population based approach in order to estimate the actual costs
and benefits from the population. Based on our experiences in chapter 8 it was decided
that simulation would be the preferred model to build. However, this decision was not
made on the basis of constraints or competition for resources but on the complexity of
the model and the ease and time taken to develop the models. As mentioned in the
section above, resources may be modelled without the use of queues and this may not

still answer our research question without making compromising assumptions.
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However, it is certainly the case where dynamic systems are modelled which involve
interactions between individuals, such as infectious disease modelling, or where it was
desired to describe the patient flow through the system, for example to identify any
bottlenecks DES would be more appropriate. In the cases where patients compete for
resources, modellers should identify whether the variability of the system is likely to
materially affect the results. However, as for a local scenario where the variability in the
system would benefit from the use of queues, for example Davies (1994) used a

simulation model to describe a local cardiology unit.

An example of this is a local system where the resources are allocated according to
highly variable demand. Davies and Davies (1994) concludes that
‘DES is particularly suitable for problems at an operational level where the

use of resources is dependent on decisions about individuals’.

9.6 Complex systems: Dimensionality

The Markov model forces the creation of extra states as the model becomes more
complicated. As more and more parameters are introduced the number of states can
proliferate. As an example consider the model built by Weinstein et al. (1987). This is a
state transition model for coronary heart disease developed in FORTRAN in the 1980s.
It consists of the development of heart disease in the healthly population and their

subsequent survival.

The disease progression of people in the Weinstein model is dependent on their risk
factors parameters (50 ages, 2 sexes, 2 smoking statuses, 3 blood pressure levels, 3
cholesterol levels, 3 relative weights). Thus the model is stratified into a total of 5400
sub groups. A simulation model is also able to generate the same model with these risk
factors, however the total number of parameters increase in an additive way rather than
multiplicative (Table 9.6.1). The authors comment that one of the biggest problems with

the model was dimensionality:
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‘Constraints on computing time and costs forced us to restrict the
number of risk factors and disease history states and to make
numerous independence assumptions. We are currently struggling with
the issue of how to incorporate coronary angioplasty into the model
without doubling the size of the disease history model’ (Weinstein et
al. 1989).

Table 9.6.1 Number of states needed for the Markov and simulation models as

modelled by Weinstein et al. (1987)

Markov Simulation

Age (50) 50 50
Gender (2) 100 52
Smoking (2) 200 54
Blood pressure (3) 600 57
Cholesterol (3) 1800 60
Weight (3) 5400 63

DES is ideal for modelling complex systems of this type as it is able to model
individuals who carry a very large number of physical and clinical attributes with them.
For example a similar model to Weinstein’s was developed for coronary heart disease
prevention by Babad et al. (2002). It consisted of a population described in terms of sex,
smoking (3 categories), and a continuous range of age, blood pressure and cholesterol.
As a comparison to Weinstein, suppose that a state transition model modelled the
continuous variables to the nearest whole number. Then in order to have a similar
accuracy as the simulation model the following parameters are needed: Sex (2), age
(60), smoking (3), blood pressure (140), cholesterol (12), which consists of over 600
000 sub groups. The prevention model was linked to a treatment model (Cooper et al.
2002) which consisted of a further 60 sub categories.

Improvements in computing power since 1987 may now make the dimensionality of

Weinstein’s modei less of a problem. Indeed Thomas et al {1995) built a model with

81,000 states. These systems with large numbers of states have been modelled using
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sophisticated matrix multiplication software or written in computer languages such as
FORTRAN or C although there is little evidence of their use for disease modelling. The
case studies in this thesis have used widely available and popular software such as
EXCEL and TREEAGE. As Thomas et al. (1995) discusses there are still problems with
the ‘curse’ of dimensionality which restricted their ability to formulate and solve
problems quickly and efficiently. As shown in Table 9.6.1 the number of states for the
Markov models will increase much more dramatically than for the DES as the
complexity of the model increases (in terms of constraints and competing for resources

etc). And thus we have shown:

H6)  For complex systems where the Markov assumption forces the creation or

proliferation of states, DES should be considered.

9.7 Model complexity

In section 4.3, the choice of modelling technique was discussed. It was stated that the
choice of modelling technique will depend upon factors such as acceptance by model
users, ease and speed of model development, type of intervention, and the complexity of
the system. Some of these factors have been explored in subsequent chapters. Other
factors also influence this decision such as the experience and expertise of the modeller
and the software available. In this section the choice of model is examined with regard

to the complexity of the model.

In section 8.6.2 it was noted that there was a point at which the complexity of the model
was such that the author preferred the use of DES to a Markov model on the basis of a
shorter development time. For each of these models developed in this thesis a
judgement was made for the preferred model based on the model’s complexity and the
expected or actual development time. In this section, the judgement for each of these
models is discussed and an attempt is made to quantify the complexity of the models so
that this measure can be used as a basis for choosing between the Markov and
simulation models. In this context, the complexity of the model includes the number of

states and transitions and whether the model is a cohort model or population.
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The number of states and transitions for each of the models built in the thesis are shown
in Table 9.7.1. The number of transitions relates to the number of non zero transition
probabilities between the states. It is estimated that by building a population model, the
complexity of the model increases in proportion to the number of starting states. In the
secondary prevention drugs model in chapter 8, there were three prevalent starting states
for angina only, Post MI I* year and Post MI subsequent years. In addition there were
two incident states: new angina and new MI. The incident patient cohorts are calculated
from the prevalent starting cohort models of angina only and Post MI subsequent years.
Thus, in order to calculate the total number of patients in the Markov model, individual
cohort models are needed for each of the starting states. In this case the statins cohort
model has a total of five states. It is estimated that the population model has an
additional complexity equivalent to 15 states where 5 is the number of states in the
cohort model and 3 is the number of prevalent starting states. The number of transitions

between the states for the population model can also be estimated in a similar manner.

In Table 9.7.1 the complexity of the models has been estimated by incorporating the
number of states or transitions in the cohort model together with the number of
prevalent starting states in the population model. In each of the chapters 7 - 9,
comparative models were built for each intervention. The results were compared and in
each case the results were found to be sufficiently similar to choose the simplest and
easiest model to build. In chapter 7, a cohort model for ambulance and thrombolysis
interventions was developed. The model consisted of only 4 states and in this case the
decision tree model was the easiest model to build. In chapter 8, a simple population
model was built for secondary prevention drug interventions. Although it took longer to
build the Markov model than the simulation model, this was mainly due to the similarity
of the simulation model to the UK CHD Policy model (Cooper et al. 2002) and was it
not for this, the Markov model would have been simpler and easier to build. However
for a more complex secondary prevention model with 16 times the number of states, the
extra complexity would have been much simpler to incorporate with the simulation
model than the Markov model. This was also the case with the revascularisation model

built in chapter S.
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Table 9.7.1 Summary of models built and preferred modelling technique chosen

based on ease of development

Intervention Markov Markov Model ‘Preferred’
states transitions type model

Cohort Popn Cohort Popn

1) Ambulance and 4 0 10 0 Cohort Decision tree
thrombolysis or Markov
2) Secondary 5 15 14 42 Population Markov
prevention simple
3) Secondary 50 150 194 582  Population  Simulation
prevention complex
4) Revascularisation 14 0 Iz 0 Cohort Markov
simple
5) Revascularisation 14 42 32 156  Population  Simulation
complex
100
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80
70
&
% 60
2]
S 50 & Population
1%
€ 40 O Cohort
= [
Z 30
20
10
0 .
Amb SP simple  SP complex Revasc Revasc
simple complex

Figure 9.7.1 Number of states for each of the models built
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Based on the information shown in Table 9.7.1, a level of complexity is chosen above
which the simulation would be chosen in preference to the Markov model. This level of
complexity is in the range of 20 to 56 states and 56 to 208 transitions. If the mid point
of these ranges is chosen then the modeller would be advised to choose to use a
simulation model once the total number of Markov states exceeds about 35 or the total
number of Markov population transitions exceeds about 140 based on the ease of

development. These recommendations are illustrated graphically in Figures 9.7.1 and

072
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| m® Population
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Amb SP simple  SP complex Revasc Revasc
simple complex

Figure 9.7.2 Number of transitions for each of the models built

9.7.1 Discussion

The suggestions on model complexity were a subjective assessment based on a small
number of models for coronary heart disease interventions. Clearly the complexity
threshold may vary for other modellers and disease applications. As the number of
different studies and modellers grow so this threshold will become more objective,
nevertheless it may be used as a guide to choose between the model types on the basis

of complexity.
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Figure 9.7.3 Schematic of choice of model type for evaluating health care interventions
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The suggestions on model complexity refer to disease models. It has been shown how
resource-constrained models can be built without the need for queues. We have not
considered the effects of variability in these systems or the interaction between
individuals such as in infectious disease modelling. These factors are likely to be more
significant in organisational planning and complex problems of this nature lend

themselves well to DES (Davies et al. 1985; Davies and Davies 1994; Fone et al. 2003).

The guidelines for selection for model type are shown in Figure 9.7.3. As indicated in
this thesis, the choice of model type will be influenced by model appropriateness, model

error, model acceptance and ease and speed of model development.

9.8 Conclusions

In this chapter the choice of modelling technique was explored for resource-constrained
treatment interventions. Resource-constrained interventions are those for which there
may be some decision rules concerning the allocation of the resources and these are
typified by the referral and subsequent waiting of patients for elective hospital
procedures. Markov and simulation cohort and population models were built to evaluate
the costs and benefits from coronary artery bypass grafting (CABG) and percutaneous

transluminal coronary angioplasty (PTCA) for coronary heart disease patients.

CABG is more cost effective for more severe coronary disease (ie triple vessel disease
and left main stem) and PTCA is more cost effective for less severe coronary disease (ie
single and double vessel disease). Compared to medical treatment, CABG and PTCA
are good value for money with ICER of £4900 for PTCA for 1 VD, £6100 for CABG
for 3 VD and £5300 for CABG for left main stem. Increasing the provision of
revascularisation according to the National Service Framework would cost an additional

£180 million per year and would gain over 22 000 QALY per year for UK.

Using these models it is concluded that the results were not significantly affected by

modelling the resources without using queues and concluded that DES is not necessarily
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the most appropriate technique. As in chapter 8, the choice of the preferred model was
determined by the ease and speed of model development. As the overall complexity, in
terms of the number of states, became sufficiently large the DES model became the
preferred model. For model choice based on ease and speed of development time, a
relationship was developed between the complexity of the model in terms of number of

states and the preferred model to build.
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Chapter 10

Summary of results and conclusions

The final chapter reviews the results from the coronary heart disease analyses, discusses
the aims and findings of this research, considers limitations to this research and suggests

further research.

The first aim of this research was to develop a variety of models to evaluate coronary
heart disease interventions. These models were developed to evaluate faster ambulance
and thrombolysis response times, secondary prevention drugs and revascularisation. In
addition to evaluating the cost effectiveness of each of the interventions, analyses have
also been carried to estimate the likely costs and benefits of improving treatment for
these interventions according to guidelines suggested by the National Service

Framework for Coronary Heart Disease.

The second aim of this research was to examine the appropriate modelling technique to
be used to evaluate a given health care intervention. This question was addressed for a
variety of types of health care intervention. The research aims were achieved by
constructing many health care models for different health care intervention types. A set
of hypotheses were tested by the analysis of these models. A framework for choosing
between the models according to the complexity of the models and the health care

intervention characteristics was then developed.
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Chapter 10 Summary of results and conclusions

10.1 Introduction

The final chapter reviews the results from the coronary heart disease analyses, discusses
the aims and findings of this research, considers limitations to this research and suggests

further research.

The first aim of this research was to develop a variety of models to evaluate coronary
heart disease interventions. These models were developed to evaluate faster ambulance
and thrombolysis response times, secondary prevention drugs and revascularisation. In
addition to evaluating the cost effectiveness of each of the interventions, analyses have
also been carried to estimate the likely costs and benefits of improving treatment for
these interventions according to guidelines suggested by the National Service

Framework for Coronary Heart Disease.

The second aim of this research was to examine the appropriate modelling technique to
be used to evaluate a given health care intervention. This question was addressed for a
variety of types of health care intervention. The research aims were achieved by
constructing many health care models for different health care intervention types. A set
of hypotheses were tested by the analysis of these models. A framework for choosing
between the models according to the complexity of the models and the health care

intervention characteristics was then developed.
10.2 Results for the Coronary heart disease interventions

In chapter 7 models were built to evaluate faster ambulance and thrombolysis response
times for out of hospital MI. In chapter 8 models were built to evaluate secondary
prevention drugs for CHD patients. In chapter 9 models were built to evaluate
revascularisation for CHD patients. In this section the results from each of the

interventions are reviewed.
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A comparison of these results demonstrates the difficulties of comparing modelling
results from different studies. For example the ambulance response and thrombolysis
interventions used cohort models, whilst those for secondary prevention drug and
revascularisation interventions used population models. The differences in results
between the cohort and population models have been discussed in previous chapters in
this thesis. It was concluded that although cohort models are more commonly used in
the health care modelling literature, population models provide a more comprehensive
evaluation of the intervention. For comparison purposes, the cohort based models were
compared with population model runs of 40 years, as this represents a reasonable
estimate to the average life time of the combined cohorts. As noted earlier, the time
horizon chosen is critical to the results of the model, and 20 year run results are also

shown as these are likely to be of greater interest to health care providers.

The results from all the model runs are shown in Table 10.2.1 and 10.2.2 and Figures
10.2.1 - 10.2.4. They show the cost, benefits and cost effectiveness ratios of each of the

interventions for 20 and 40 years.

Table 10.2.1 Average annual results for the CHD interventions for 40 years for a

population of one million

ICER ICER Increased QALY

(£/LYS) (£/QALY) cost (§M) LYS gained
Ambulance 5000 6300 0.395 105 84
Thrombolysis 22 000 27500 0.461 25 20
Statins 4500 5600 3.837 906 725
ACE Inhibitor 2600 3200 1.616 673 539
Aspirin 700 800 0.04 115 92
Beta Blocker 800 1000 0.211 320 256
PTCA 1VD -59 300 4900 2.19 -56 491
CABG3VD 72 800 6100 4.11 158 758
CABG LMS 10 300 5300 0.83 120 177
NSF Revasc 108 500 6800 2.8 31 445
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Table 10.2.2 Average annual results from the CHD interventions for 20 years for a

population for one million

ICER ICER Increased QALY

(£/LYS) (£/QALY) cost (£M) LYS gained
Statins 5600 7000 279 504 403
ACE Inhibitor 3200 3900 1.17 376 301
Aspirin 700 900 0.02 56 45
Beta Blocker 700 900 0.16 212 170
PTCA 1VD -45 100 5900 2.31 -42 420
CABG 3VD 33 800 7500 4.28 70 609
CABG LMS 8000 6600 0.85 82 140
NSF Revasc 190 600 8200 2.9 18 375

20
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10

ICER, (£000s/QALY gained)

o N D O @

Amb  Thromb Statins ACE  Aspirin BB PTCA CABG CABG NSF
1VD 3vD LMS Revasc

B 20 years (140 years

Figure 10.2.1 Discounted cost per QALY gained for the interventions with costs and

benefits discounted at 3%

Revascularisation is primarily concerned with increased quality of life; the results have
been synthesized by comparing the cost effectiveness as cost per QALY gained rather
than cost per life year saved. The average quality of life score is assumed to be 0.8 for

the CHD population for the ambulance and thrombolysis and secondary prevention
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interventions. The ambulance, thrombolysis, secondary prevention and NSF
revascularisation scenarios represent the costs and benefits of increasing from health
levels and resource levels before the NSF to the NSF targets for each of these
interventions whereas the revascularisation scenarios (PTCA 1VD, CABG 3 VD,
CABG LMS) show the cost and benefits of these interventions compared to medical

treatment only.
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Figure 10.2.2 Average annual QALY gained for a population of one million
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Figure 10.2.3 Average increased intervention cost for a population of one million
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Figure 10.2.4 Average life years saved for a population of one million

According to estimates of the estimated ‘willingness to pay’ threshold (section 3.1.2) all
the CHD interventions are cost effective except thrombolysis. Aspirin and beta blockers
are very cost effective and have ICER of less than £1000 per QALY. To achieve the
targets set in the NSF, statins and revascularisation are the most expensive to implement
and would each cost an extra £3 million per million population per year. Aspirin and
beta blocker targets are very cheap to implement and would only cost an extra £20 000
and £160 000 per million population per year. The most QALY gained would be from
the statins and revascularisation interventions. There would be little QALY gained from

the ambulance, thrombolysis or aspirin scenario.

Implementing each of the NSF scenarios for England over the next 20 years for these
interventions would result in an average annual extra cost of £400 million and will
result in a saving of 65,000 life years and 70,000 QALY's each year. Statins and
revascularisation account for about 80% of the costs and 60% of the benefits (QALY).

10.3 Conclusions from the research

This dissertation has developed a variety of models to evaluate coronary heart disease
interventions. This research advanced the knowledge in coronary heart disease

modelling because the UK Coronary Heart Disease Policy model is the most
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comprehensive model developed for the prevention and treatment of coronary heart
disease in the UK. In addition the modelling in this thesis is able to model several
different interventions using the same data and assumptions for a disease which makes
more readily comparable. In this thesis interventions for faster ambulance and
thrombolysis response times, secondary prevention drugs and revascularisation are
evaluated. The modelling in this thesis is able to model these different interventions
using the same data and assumptions for a disease which makes more these evaluations
more readily comparable. Furthermore these analyses are extended to estimate the likely
costs and benefits for increasing provision for these interventions according to the
guidelines set out in the National Service Framework for coronary heart disease. A

summary of these results have been shown in section 10.2.

In general the interventions have been shown to be good value for money according to a
willingness to pay threshold of £30,000 per QALY gained. Aspirin and beta blockers
are the most cost effective and have ICER of less than £1000 per QALY gained.
Improving thrombolysis response times is the least cost effective with ICER of almost
£30,000 per QALY gained. In order to achieve the targets from the National Service
Framework, the increased spending (and consequent health benefits) would be greatest
for statins and revascularisation. Implementing each of the NSF scenarios for England
over the next 20 years for these interventions would result in an average annual extra
cost of £400 million and will result in a saving of 65,000 life years and 70,000 QALY

each year.

This dissertation has contributed to existing knowledge on appropriate model selection
for health care interventions. The primary contribution of this research is an
examination of the theory of model selection using the case study approach. This
approach was a useful method of investigating the current theory in a practical way, for
example by building models using each of the techniques it is possible to gain insights
into the comparative ease of development and results of the models. The insights gained
from this research have been used to develop a framework for choosing between the
models according to the complexity of the models and the health care intervention

characteristics.
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From a review of the health care modelling literature in Chapter 3, it was apparent that
the two most commonly used modelling techniques are decision tree and Markov
models. Generally decision tree models have been used to evaluate acute health care
interventions and Markov models have been used to model chronic health care
interventions. Models fbr resource-constrained interventions were also modelled
without queuing using Markov models. A small number of studies used simulation

models for complex and resource-constrained interventions.

According to the review of the modelling literature, the modeller should strive for
simplicity and transparency although this should not be achieved by making restrictive
and unrealistic assumptions of the disease condition or health care system. The choice
of the preferred model will depend on the likely ease and speed of development, the
complexity of the model in terms of the number of states, and the interconnectedness of
the system. The modeller will need to judge whether interactions between individuals is
a significant issue in the health care system and whether queuing for resources and
resource constraints are relevant to the research question. The modeller will need to
judge whether the preferred modelling techniques will be most acceptable to the users
of the model. Finally the use of population-based models and the provision of health
care outcomes for the likely cost, health benefits and cost effectiveness of the

interventions was recommended.

A set of hypotheses concerning the modelling techniques were examined using the case
study approach. Initially hypothetical simple models were constructed to examine the
hypotheses and then they were further examined using more complex and realistic
health care models for CHD. It was concluded that decision tree models are an
appropriate technique for modelling the cost effectiveness of acute interventions.
However when the intervention happens more than once in a patient’s lifetime, decision
trees underestimate the total costs and health benefits incurred compared to the other
modelling techniques. For more accurate costs and benefits for the intervention, a

Markov or simulation model should be used.

When modelled using the same data and assumptions, the Markov and simulation
models give similar results which converge as the cycle time of the Markov model

decreases. It was shown that the cohort and population-based approaches yield different
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results, and the population-based approach gives a worse cost effectiveness ratio
compared to the cohort-based approach. The population-based model was more
complex to build than the cohort model. The appropriate choice of time horizon for the

model is critical to the obtaining suitable results and conclusions.

Traditionally, discrete event simulation has been regarded as the technique of choice for
modelling resource-constrained interventions. However, in the literature review and also
through constructing models, it was concluded that the results were not significantly
affected by modelling the resources without using queues and thus DES is not
necessarily the most appropriate technique. These suggestions on model complexity
refer to disease models. We have not considered the effects of variability in these
systems or the interaction between individuals such as in infectious disease modelling.
Several authors in literature suggested that these factors are likely to be more significant
in organisational planning and complex problems of this nature lend themselves well to

DES (Davies et al. 1985; Davies and Davies 1994; Fone et al. 2003).

Finally the choice of the preferred model was determined by the overall complexity of
the model in terms of the number of states and transitions. For each of the models built
in the case studies, the results from the models were similar and the preferred choice of
model was based on the ease and speed of model development. This complexity was
related to the number of states and transitions in the models and whether the model was

a cohort or population model.

10.4 Limitations of the research

As with all modelling, the models built for coronary heart disease in this thesis have
been based on a number of assumptions. These have been necessary to simplify the real
world situation or where there is an absence of data. Often the data were difficult to
obtain and it would have been preferable to have the individual datasets so that
individuals’ risk factors could be examined to determine the quantitative relationship
between their risk factors. For example, the models would have been more credible if

the relationships between age, gender, vessel disease, previous CHD and other patient
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characteristics and risk factors were better understood. Furthermore although severity
of vessel disease is recognised as being a major factor for prognosis, the underlying
theory into the development of vessel disease and evidence for its prevalence for
different health states was poor. This required a series of assumptions about vessel
disease distribution in different states and the effect of vessel disease on prognosis. The
secondary prevention model has assumed that the secondary prevention drugs act
independently of each other and that individuals who fail to take the drugs because of
side effects, or other reasons, are independently distributed for each drug. In practice,
individuals who have problems with taking one drug are likely to have problems with
another and therefore there will be some correlation. The models do not include stroke

as a disease outcome and the benefits of secondary prevention will be underestimated.

(Davies et al. 2003)

The models in this thesis have answered national policy questions for treatment
interventions. In this case, local variations are not considered rather an aggregated
average approach has been assumed. For example in chapter 7, the ambulance and
thrombolysis models assume an average effect across England and Wales. Clearly there
will be wide variation in the ability of individual ambulance services to achieve the NSF
targets. The figures presented here assume that hospital units will achieve the targets
based on the extra NHS spending allocated whereas it may be the case that it is not
feasible for some urban ambulance services to meet this target. The recommendations
on model selection from these analyses may be different for smaller scale models for
example for the individual ambulance services where the variability of the system is a

larger factor.

The recommendations in this dissertation for preferred model selection have been based
partly on a review of the literature and partly by examining the theory using the case
study approach. Only the most commonly used techniques for disease modelling were
used, namely decision tree, Markov and discrete event simulation. Other models such as
system dynamics and semi-Markov were used more rarely and were not evaluated in

this thesis due to the time constraints of this thesis.
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Chapter 10 Summary of results and conclusions

The model choice for the threshold of complexity for choosing between Markov and
simulation models has been based upon the ease and speed of building the coronary
heart disease models. This was a subjective judgement made according to a low number
of different interventions. This judgement was made according to the expertise of the
author and was influenced by the suitability, flexibility and usefulness of the modelling
software used. The case studies in this thesis have used widely available and popular
software such as EXCEL and TREEAGE. For example the judgement of ease of
development was biased towards Markov modelling as the software, TREEAGE, had
been built especially for health care modelling whereas the simulation software,
SIMULS had not and had certain limitations for example the modelling of concurrent

activities.

The more realistic models in this dissertation have been built for the treatment of
coronary heart disease. Whilst these models have backed the conclusions from the
simple model analyses in chapter 5, it may be these conclusions may have been biased

or influenced by the nature of a disease such as coronary heart disease.

10.5 Further research

This thesis has made recommendations for the choice of models for short term, long
term and resource constrained interventions for disease treatment. More research is
needed on the choice of modelling techniques for evaluating other interventions, for
example prevention interventions such as screening. The suggestions on model
complexity refer to disease models and the interventions in this thesis have answered
national policy questions. Further research is needed for the choice of modelling
technique for organisational planning for health care. In this thesis, local variations are
not considered rather an aggregated average approach is taken. Further research is
needed on interventions for small scale operations such as individual hospitals or health

clinics where the variability in the system is likely to be significant.

More research is needed to test the generalisability of the conclusions of this research

for different health conditions. The suggestions on model complexity were a subjective
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Chapter 10 Summary of results and conclusions

assessment based on a small number of models for coronary heart disease interventions.
Furthermore these suggestions have been based upon the ease of development of
building the models according to the author’s expertise and his perception of the
suitability, flexibility and usefulness of the modelling software used. These conclusions
would be more objective if more research were completed by authors with varying

backgrounds and expertise.

The acceptance of modelling technique has been identified as an important factor in the
selection of the modelling technique. More research is needed to examine the perception
of users on the modelling techniques of the advantages and disadvantages of these
techniques. Finally this research has compared decision tree, Markov and simulation

models. Research is needed for other modelling techniques such as system dynamics.
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Appendix T Summary of shared work for the Coronary Heart Disease Simulation Project and agreement of work to

be used in the PhD thesis (Davies. 2003)

Coronary Heart Disease Simulation Project

Topic Who did the work Who wrote what Use in PhD Actual use
Model Ruth, Paul, Keith all contributed | Ruth wrote the Final Report Will need to describe in own words, | Model structure described
structure to the structure. Keith did the section. making it clear that it is joint work. | in my own words and
coding with suggestions and Diagrams should be acknowledged | referenced accordingly.
advice from Ruth. Ruth as being joint work and where
sketched the diagrams with help relevant referenced (e.g. Final
from the group and Keith drew report).
in Excel or Ruth in other
software.
HCMS paper ‘Mainly Keith, Ruth, Paul Keith wrote initial version. All | Can be referenced and quoted from | Referenced
(Cooper et al. contributed. Ruth largely but not cut and pasted.
2002) rewrote the whole paper.
Data sources | Debbie, Paul and Marcus did Paul did final versions of Can be referenced. Referenced

most of the work.

working papers.

Parameter

Keith did much of this work —

Keith wrote most of working

Can use text from earlier version of

Parameter derivation
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derivation which was substantial — with paper for Phase 1 and initial relevant working paper but will need | described in thesis from
advice from Ruth and Paul. draft for Phase 2. Ruth rewrote to adapt to needs of PhD subject (i.e. | original text written by
Ruth and Keith did maths on much of it for Phase 2. Ruth will need to be shortened!). Keith. Gompertz
Gompertz and redid derivations | wrote section in Final Report. Gompertz and its implementation referenced from Final
for time to death. can be referenced from HCMS report.

paper.

Screens Keith designed them and edited | Instructions handbook written by | Can be used but unlikely to be Not used
them after feedback from Ruth Keith. Criticism and suggested | relevant.
and others. Ruth and Keith edits by Ruth.
discussed batch runs and Keith
implemented them.

Variance Ruth and Keith discussed these | Ruth wrote section in Final Can be referenced in Final Report if | Not used

reduction based on Ruth’s earlier work. Report. needed.
Keith implemented it in code.

Sensitivity Keith did univariate analyses. Ruth and Marcus wrote section | Could use univariate analysis but if | Not used

analysis Ruth and Marcus did in Final Report. discussing multivariate analysis

multivariate with help from

Keith and Paul.

would need almost to start again as
there is a lot of interesting work to
do here and we barely scratched the

surface. Would need to acknowledge
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Marcus’s contribution

Ambulance Keith worked on logic and Debbie wrote paper with help Can use description of calculations. | Description of calculations
and decided how to implement in from everyone. Keith wrote Can not cut and paste from BMJ used from appendices
thrombolysis | program with help from group. appendices — with advice from paper but can use appendices. written by Keith.
Keith produced results. Ruth and James.
Validation Mainly Keith. Final report chapter — written by | Could use. Validation used
Keith, edited by Ruth.

Costs Mainly James. Both Keith and | James wrote working paper with | Could reference Cost Working Final report referenced
Marcus spent some time on help from Marcus, Ruth and paper.
deriving and listing costs. Keith | Keith.
implemented structure in
program.

QALYs Keith reviewed literature and Mainly Ruth. Keith wrote short | Could build on this. Would have to | New method used for
made initial suggestions for paper about literature. acknowledge method currently used | QALY. Original review
implementation. Group made as being developed by group and written by Keith used.
further suggestions Ruth worked would have to write own text.
out how to implement them.

Keith implemented them for
some scenarios.
Results Keith designed spreadsheets for | Keith drafted material and Ruth | Would need to write in the context Results produced from
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the analysis. Keith produced

results after discussion with

rewrote material to go in Final

Report.

of PhD theme.

models built for PhD.

group.

Linkage Keith in discussion with Ruth Ruth wrote section in Final Scope for PhD to develop this. Not used
designed linked structure. Keith | Report.
implemented code and made
program work.

Cloning Mainly Colin Colin Might need to relook at cloning Not used

issues if discussing linkage.
Discussion Paul and Ruth wrote section in Not used

Final Report — mainly Paul.
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Appendix II Mid-1999 population estimates for England and Wales

(Office of National Statistics, 1999)

MEN WOMEN

England Wales England Wales
0-4 1557400 87800 1480700 83500
5-9 1671400 97400 1590100 93100
10-14 1640600 101500 1556400 96300
15-19 1564700 96700 1478300 93100
20-24 1496600 85900 1425500 77300
25-29 1843000 97900 1742600 950700
30-34 2074500 107800 1973800 103900
35-39 2021700 107500 1935800 106100
40-44 1698500 95700 1673000 95800
45-49 1589600 95300 1585200 95800
50-54 1678900 101200 1685600 102000
55-59 1306600 82300 1323400 839500
60-64 1168800 74300 1209400 76900
65-69 1029300 66700 1126300 73300
70-74 8789500 58500 1063300 70900
75-79 710000 46400 1017000 66700
80-84 349700 22900 630300 41800
85+ 262600 15900 713200 44200
All 24542900 1441700 25210000 1495300
Ages
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Appendix II1 Deaths by cause, sex and age, 1998, United Kingdom
(Office of National Statistics, 1999)

All ages Under 35-44 45-54 55-64 65-74 75&

35 over
All causes Men 298,767 10,860 6,822 15,720 33,518 75,390 156,457
Women 327,384 5,547 4,283 10,381 20,730 53,927 232,516
Total 626,151 16,407 11,105 26,101 54,248 129,317 388,973
Coronary heart Men 74,542 148 1,004 3971 9,795 21,622 38,002
disease Women 62,611 40 180 837 3,080 11,167 47,307
(410-414) Total 137,153 188 1,184 4,808 12,875 32,789 85,309
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Appendix IV MI and sudden death with relation to age (Cooper et
al. 2003)

The risk of death and MI was assumed to increase with age. Furthermore, the relative

risk of death increases exponentially with age.

The annual probability of death or MI can be represented by the Gompertz distribution
in which f(t) = exp(at + b), where f(t) is the annual probability of death or MI of a
person of age t and a and b are constants.

Calculating the age gradient

Suppose that a person of age 50 years has an event risk of 0.0718 and that a person of

age 70 years is 1.562 times more likely to have event than one of age 50 years.

f(t) = 0.0718 at age 50 and
f(70) = 1.562 f(50).

These equations can be solved, f(t)=at+Db

For age 50, f(50) = exp(50a + b) = 0.0718 (1)

For ages 50 and 70, f(70) = 1.562 f(50)

SO exp(70a+b) = 1.562 exp(50a + b)
exp(70a — 50a) = 1.562
a=0.0223 (@)

Now if (2) is substituted into (1),  exp(50a+b)=0.0718
exp(1.115 +b) = 0.0718
=-3.749

Thus the Gompertz distribution for post MI re-infarction is e*%2 =374,
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Appendix V Mathematical model of the risk of MI or death
(Cooper et al. 2003)

‘We are assuming that the probability of death or MI from CHD causes increases
exponentially with age, g(t) = exp(a(d+t)+b), dis age, t is time and a and b are
constants. g(t) is the hazard function. In order to find the probability of death at any
age, we need to know a and b. The relative risk of k different effects e.g. vessel disease,
aspirin are denoted r1,v,, ...ry. The overall probability of an MI or death at age d (i.e.
the hazard function) is r;r,. ...ryexp(a(d+t)+b). This is:
8(0) = exp(a(d-+y) +b+in(ryy +Infry +...In(r)
Let In(r;) +in(ry +...In(ry)) =R

These relative risk are not all applied immediately but may be added or removed as
time goes by, changing the projected date of MI or death. We need thus to determine

how it is to be sampled and re-sampled.

The survivorship function S(t) = 1- F(t), where F(t) is the cumulative distribution

Sfunction.

-jg(x)dx
o

S@) = e

'
—Jexp(a(x+d)+b+R)dx
= e 0

= exp(-(1/a)[exp(a(t+d)+b+R)-exp(ad+b+R)]

= exp((-exp(ad+b+R)/a)(exp(at)-1))
Take a random number u = 1-F(t) = S(t)
In(u) = (-exp(ad+b+R)/a)(exp(at)-1)

exp(at) = I-a In(u)/exp(ad+b+R)
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t = (1/a) In(1-a In(u)/exp(ad+b+R))

If you were to resample using a new random number, then you would use the same

formula but you would have to recaculate with the new R' and the new d'.

The current projected time to death has to be extracted and replaced. However, in
order for the patient to have a consistent risk, we want to re-use the same random
number. It has to be scaled to take account of the fact that random number values less

that F(T) have been ‘used up’.

Suppose that u was the last adjusted random number, the new number

u' =u/(1-F(T))

T is the current time and F(T) is the distribution value based on the previous risk and

age.

u' = u/ (exp((-exp(ad+b+R)/a)(exp(aT)-1))

This means that each time you change risk, you need to retain information about age
and previous risk and the previous random number - 3 attributes. This enables you to
calculate the new random number. You then calculate the new time to event using the

new risk and age.’
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Appendix VI Costs used in the UK CHD policy model (Raftery et
al. 2003)

The costs used in the UK CHD Policy model are shown in this appendix as described in
Raftery et al. (2003).

‘General Practice

All patients in the UK are under the care of a General Practitioner (GP) and CHD
patients are likely to be more demanding than most. We have little information about
attendance but assumed that: an initial visit by a patient with CHD is likely to comprise
both a GP and a nurse consultation (either concurrent or subsequent). Thereafter
patients are assumed to see their GP at six monthly intervals and have repeat

prescriptions monthly (the recommended period between the issuing of prescriptions).

The cost of drugs is based on Defined Daily Dosages (DDDs). Although BNF/MIMs
are often used to calculate drug costs, this requires assumptions on drug dosages.
DDDs by contrast use standardised international assumptions on dosage. Data on Net
Ingredient Cost (NIC) cost per DDD was obtained from the Prescription Pricing
Authority (PPA). The cost of dispensing the drugs is added in.

Outpatient visits

Outpatient visits are related to particular events in the simulation. Most patients are
referred from their GP to a chest pain clinic or cardiac outpatient clinic. We assume
that the cost will include an exercise ECG and pathology tests. This will be followed up
by, on average, two further outpatient appointments. We assume that patients will have
a similar set of outpatient appointments after an admission for: an angioplasty,

unstable angina, MI or after a patient, formerly without angina, but with a history of MI

is referred with a prospective diagnosis of stable angina.

Those having a bypass graft are assumed to attend the cardiothoracic outpatients

before the procedure and to have follow-up appointments twice afterwards.
Angiograms and revascularisation

Elective patients receive an angiogram before having revascularisation. Those having
angiograms in hospital would normally have an angioplasty at the same time as an

angiogram if it were needed.
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Inpatient episodes

The inpatient HRG costs are for finished consultant episodes. The assumptions we

made are discussed in detail in the working paper (T9). In summary, the cost of the use

of a critical care unit or A&E and the cost of any angiograms and/or revascularisation

done in hospital following an unstable angina attack or MI are added to the cost or the

inpatient stay. The cost of thrombolysis is also added to the cost of an MI, where

relevant.

Table A6.1  Unit costs to be used in CHD treatment model, England 2000/1 (Raftery
et al. 2003)

Type of case

HRG/reference/use

Unit cost (£)

Comment

Primary care costs

GP first consultation (one Netten & Caurtis £30 Assume cost of GP and nurse

off)

Follow-up consultation Netten & Curtis £20. Assume all CHD patients have

(continuous) six monthly visit. Includes CHD
clinics and providing repeat
prescriptions

Drug regimens — GP (all f/pattyear

continuous)

Calcium channel blockers DDDs 130 Proportion of all patients.

Beta-blockers DDDs 52 Proportion of all patients for
symptoms, of post-MI patients
for secondary prevention.

ACE inhibitors DDDs 95 Proportion of all patients.

Antiplatelet (aspirin) DDDs 20 Proportion of all patients.

Nitrates DDDs 78 Proportion of patients

Statins DDDs 237 Proportion of all patients.

Dispensing cost All GP prescriptions 24 £2/dispensation, monthly.

Outpatient visits (one off or o

limited number)

Assessment visits or chest E090p plus E130p &4 First outpatient visit for

pain clinic assessment, Includes exercise
ECG and pathology test.

Follow up Attendance Elé6op 54 Use for all follow-ups OP
attendances, assume 2 per first
visit.

Cardiothoracic surgery first OPF170 131 Assume prior to CABG
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outpatient

Cardiothoracic surgery OPFU170 95 Assume two follow up

follow up attendance attendances for all CABGs

Day and inpatient episodes-

all one off

Angiogram E14 day case 657 This figure used for all
angiograms (in practice 63% are
day case).

CABG EO04 elective 5,483 Add cardiothoracic outpatients
above.

E04 non-elective 5,558 For those with unstable angina or
MI.

PTCA E15 elective 2,428 As for CABG. Includes costs of
stents and drugs.

E15 non-elective 2,689 For those with unstable angina or
MI.

AMI E12 nelip 909 Add one day CCU/AE admission
ward for all, plus thrombolysis
for proportion and angiogram/
PTCA/CABG (?) where needed

Unstable Angina E33 nelip 741 Add CCU and angiogram/ PTCA
as for AMI. No thrombolysis
cost to be included.

CCU/A&E cC7 298 Assuming all MI and UA
admissions via this route. £399
(less thrombolysis cost of
£202/2)

Thrombolysis, 202 83% streptokinase at £85.45 per

Streptokinase, alteplase dose and 17% alteplase at £770
per dose, as per UKHAS study.

Other services

Ambulance Scenario Ambulance costs have been
based on increase in annual
funding 1997-2003 of £18m pa

Cardiac Rehabilitation HTA report £486 /course Assume offered to all CHD

patients post hospital. Different
take up rates for AMI for UA,
CABG and PTCA. See working
paper T10 for further details.
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Appendix VII Calculation of proportion of patients with left

main stem disease (Cooper et al. 2003)

We have assumed that the proportion of patients with left main stem is proportional to
the number of vessels they have diseased.  In a population of patients with vessel
disease, if x; is the number of patients with 1 VD, x; is the number of patients with 2
VD, x3is the number of patients with 3 VD where each of these parameters include

patients with LMS then the total numbers of patients is x; + X, + X3,

For one vessel disease patients, a proportion p will have LMS, for two vessel disease
patients, a proportion 2p will have LMS, and for three vessel disease, 3p will have
LMS.

Thus if the total number of LMS patients within the population is Y then,

Y =p(x1) + 2p(x2) + 3p(x3)

and so by rearrangement, the proportion of people with 1 VD that have LMS is,

Y
X, +2x, +3x;

p:

If we use the Yusuf et al [9] study:

10.2 1VD
32.4 2VD
50.6 3 VD
6.6 LMS
p =0.029

Thus we can calculate the propoertion of the population who have LMS for the groups

with stable angina and post MI.
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Appendix VIII Filtering algorithm (Cooper et al. 2003)

‘We have assumed that patients with more severe underlying vessel disease will be
referred for angiogram in a greater proportion than those with less severe disease who
are more likely to receive medical treatment. This takes account of the association of
disease severity with exercise test abnormalities and past history both of which will
influence referral to angiography. In general, there is a large variation in the treatment
of patients according to age, so we attempted to build this variation into the referral
pathways. We have not at this stage modelled referral by gender though it is recognised

that the yield of prognostic vessel disease is less in women.

In the simulation, referral is a two stage process, with patients first going from the
initial diagnosis (initial GP state) to cardiac clinic or rapid chest pain clinic and from
there to angiogram. The two stage process is influenced both by age and whether
patients have significant vessel disease in one or more vessels. Patients with 0 vessel
disease are sifted out at both stages of the process but, for simplicity, the age weighting
takes place at the second stage only. Tables AS.1 and A8.2 show the individual and
combined effects of the first two stages. Prevalent patient, not referred to an outpatient

clinic in the first 3 years, were assumed to be referred at a rate of 15% a year.
In devising the “most recent scenario” we assumed that the advent of rapid chest pain

clinics and the increase in revascularisation would increase the referral of all patients

to angiogram but, in particular, more of those with no vessel disease and more elderly.’
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Table A8.1 Proportion of patients referred to cardiac and chest pain clinics and from

there to angiogram. Note: all the age difference is taken account of in the second part of

the process.

Transition from Base Case “Most Recent scenario”
diagnosis to OP 0VD Other All 0VD Other All
clinic vessel patients vessel patients
disease disease
All ages 35% 85% 60% 50% 100% 75%
Transition from OP Base Case “Most Recent scenario”
Clinic to angiogram 0VD Other 0VD Other
vessel vessel
disease disease
Age 35 - 45 years 58% 96% 58% 96%
Age 45 — 54 years 58% 96% 58% 96%
Age 55 — 64 years 58% 96% 58% 96%
Age 65 — 74 years 34% 57% 44% 68%
Age 75 — 84 years 7% 12% 14% 23%

Table A8.2 Proportion of patients referred from diagnosis of CHD to angiogram, includes

both transitions shown in Table A8.1

Base Case “Most Recent scenario”
0VD Other All 0VD Other All
vessel patients vessel patients
disease disease
Age 35 - 45 years 20% 82% 51.0% 29% 96% 62.5%
Age 45 — 54 years 20% 82% 51.0% 29% 96% 62.5%
Age 55 — 64 years 20% 82% 51.0% 29% 96% 62.5%
Age 65 — 74 years 12% 48% 26.5% 22% 68% 45.1%
Age 75 — 84 years 2% 10% 53% 7% 23% 15.0%
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Appendix IX Derivation of probability of myocardial infarction

(Cooper et al. 2003)

As mentioned in section 6.4.5, the post MI rate for re-infarction is calculated using the
EMMACE dataset. This assumes different rates for first year and subsequent years after
infarction. The myocardial infarction rate for stable angina patients is also calculated
from the EMMACE data using an adjustment for non MI patients from British Regional
Heart Study (Lampe et al. 2000).

The EMMACE dataset (n =2196) provides post MI mortality rates over 5 years. The
cumulative post discharge all cause mortality rates for males and females are similar.
Patients in EMMACE were prescribed secondary prevention drugs on discharge; 42%
received beta blockers, 38% ace-inhibitors, 86% aspirin and 8% statins. The data were
adjusted to estimate CHD mortality, by age group and year. Further adjustments were
made using UKHAS data (Table 6.4.4) to estimate the myocardial infarction rate.

The British Regional Heart Study (BRHS) is a study of the natural history of prevalent
ischaemic heart disease in middle aged men. It followed a group of 7735 men and
recorded the association of the disease groups with coronary heart disease event
outcomes over a ten year follow up. It did not provide data related to the time since
patients had had a previous MI. Although the BRHS data only related to men, there is
no data to suggest that men and women would not have similar survival probabilities
and the association between groups of risk of MI was assumed to be similar for men and

women.

The risk of myocardial infarction was derived in the following steps (see sections A9.1-

9.6):

1) EMMACE data were split into first year and subsequent years data

2) EMMACE data were adjusted to exclude non cardiac death using ONS data
(1999)

3) The CHD death rate was adjusted to estimate the cardiac mortality associated

with natural history (ie no secondary prevention drugs)
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4) A conditional probability was used to estimate the MI infarction rate using
UKHAS sudden death data (Norris 1998).

5) The resulting survival data are fit to two probability distributions, one for the
probability of a re-infarction in the first year and one for subsequent years

6) The probability of MI for angina only patients was derived from the BRHS data

A9.1 EMMACE data split into first year and subsequent years data

The EMMACE dataset is shown in Table A9.1. It shows the cumulative probability of
all cause mortality in the five years following an MI for 10 year age bands, relating to
the age of patients when they had the MI. Males and females were grouped together as

they had similar survival probabilities.

Table A9.1 Cumulative all cause mortality data from EMMACE for males and
females following MI
Years 1 2 3 4 5
35-44 0.018 0.036 0.036 0.055 0.055
45-54  0.033 0.044 0.055 0.094 0.099
55-64 0.085 0.106 0.127 0.160 0.181
65-74 0.117 0.184 0.226 0.274 0.323
75-84  0.264 0382 0.463 0.534 0.612

Clearly, for each of the age bands, the probability of death was much higher for the first
year than for any of the subsequent years. In the years following the first year, there are
small numbers of deaths and in some cases no deaths. In addition the proportion of
deaths in any one year (after the first) is similar. Thus it was assumed that the long term
probability of death in any year after the first is not related to the time since the MI and
aggregated the data for years 2 to 5. For each age group, the smoothed annual long term

probability of mortality in years 2 to 5, was thus estimated to be

[l-ms]O.ZS
1-
1-m,
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where m; is the cumulative probability of mortality at the end of year 1. This 1s shown in

Table A9.2.

Table A9.2  All cause mortality data from EMMACE, smoothed so that probabilities
of death are equal in years 2 to 5 following MI
Years 1 2 3 4 5
35- 44 0.018 0.009 0.009  0.009 0.009
45 - 54 0.033 0.018 0.018 0.018 0.018
55-64 0.085 0.028 0.028  0.028 0.028
6574 0.117 0.064 0.064 0.064 0.064
75 -84 0.264 0.148 0.148  0.148 0.148

A9.2 EMMACE data adjusted to exclude non cardiac death using ONS data
(1999)

The ONS non CHD death rates were subtracted from the EMMACE data in Table A9.2
by age and sex. The non CHD death rates for the age at the mid point of each age band
were subtracted for the year | EMMACE death rates in Table A9.2. Similarly the non
CHD death rates for the age at the mid point plus two years were subtracted from the
death rates for years 2 to 5. The non CHD death rates are shown in Table A9.3. This
gave an estimate of the first year and subsequent year CHD mortality probabilities

(Table A9.4).

Table A9.3 Non CHD death rates from ONS
Years 1 2to5
35- 44 0.001 0.001
45 - 54 0.003  0.003
55-64 0.007  0.009
6574 0.020  0.025
75 -84 0.053 0.065
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Table A9.4 CHD death rates from EMMACE with ONS non CHD deaths excluded
Years 1 2to5

35- 44 0.017  0.008

45 - 54 0.030 0.014

55-64 0.078  0.019

65 —-74 0.097  0.041

75 -84 0.211  0.088

A9.3 The CHD death rate adjusted to estimate natural history (ie in the absence

of secondary prevention drugs)

In the EMMACE study, many of the CHD patients used secondary prevention
medication to reduce their risk of further coronary events. In order to study the effects
of increased secondary prevention medication it is helpful to derive the natural history
of patients who do not take any secondary prevention drugs. The CHD rate was adjusted
to take account of the level of secondary prevention drug usage in the EMMACE

dataset.

For each secondary prevention drug the overall relative risk for the population is
L-p(1-1)

where p is the proportion of people on that drug and r is the relative risk for a person on

that drug. The death rates are adjusted to that of the natural history by dividing by the

overall relative risk shown here.

The drugs work in different ways in order to improve a patient’s prognosis and thus
independence between the benefits of the individual drugs is assumed. The overall
effect of the drugs on the population is the product of the relative risk for the individual
drugs on the population. In this case, patients in EMMACE were prescribed secondary
prevention drugs on discharge; 42% received beta blockers, 38% ace-inhibitors, 86%

aspirin and 8% statins. Table A9.5 shows the natural history calculations.
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Table A9.5 Natural history (NH) calculations for secondary prevention drugs in the

EMMACE dataset
Aspirin  ACE Inhibitor  Beta blockers Statins
Prevalence, p 0.86 0.38 0.42 0.08
Relative risk, r 0.75 0.8 0.77 0.73
Overall risk, 1-p(1-1) 0.79 0.92 0.9 0.98
Adjustment for NH 1.27 1.08 1.11 1.02

The adjustment for secondary prevention is the product of the bottom row of Table
A9.5,1e 1.56. The EMMACE CHD mortality rates in Table A9.4 were multiplied by
this value (Table A9.6).

Table A9.6  Estimated natural history CHD mortality rates from EMMACE
Years 1 2to5

35- 44 0.027 0.013
45 - 54 0.048 0.022
55-64 0.121 0.030
65 —74 0.151 0.063
75— 84 0.330 0.138

A9.4 Conditional probability used to estimate MI infarction rate

The EMMACE dataset does not give any information on the number of non fatal MI
suffered by patients before they died. However for the purposes of the ambulance and
thrombolysis model in chapter sever, it is desirable to generate the rate of myocardial
infarctions whilst maintaining the correct overall CHD mortality. The MI infarction risk

was estimated using a conditional probability.
UKHAS gives values for the probability of dying from a MI for all patients who had an

out of hospital MI, ie (P(Death | MI). This information was used to estimate the
infarction rate (P(MI)) from the cardiac mortality rate (P(Death)) as shown.
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P(Death) = P(MI) * P(Death | MI)

P(Death)

By rearranging, P(MI)=————
Y ging, F( P(Death| MI)

Table A9.7 Probability of dying from an out of hospital MI (UKHAS)

Ageband P(Death | MI)

35. 44
45 - 54
55— 64
65 — 74
75 — 84

0.22
0.28
0.4
0.54
0.65

The resulting probability of MI is shown in Table A9.8.

Table A9.8 Probability of MI from EMMACE

Years 1 2toS
35- 44 0.121 0.057
45 - 54 0.170 0.079
55-64 0.303 0.074
65 — 74 0.280 0.117
75 -84 0.507 - 0212
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A9.5 The resulting survival data were fit to two probability distributions, one for

the probability of a re-infarction in the first year and one for subsequent years

The probability of MI as shown in Table A9.8 were fitted to exponential distributions
across the age groups for the first year and the subsequent years. The Excel exponential
distribution fitting function was used and this is shown in Figure A9.1 and A9.2. Thus
annual probability rates for M1 for patients with history of MI have been derived as
shown in Table 6.4.5.

A9.6 The probability of MI for angina only patients was derived from the BRHS
data

As mentioned above, The British Regional Heart Study is a study of the natural history
of prevalent ischaemic heart disease in middle aged men. The 10 year follow up data for

patients with prevalent angina but no previous myocardial infarctions was used.

‘The BRHS gives major coronary events related to patients years survived per year. The
risk of an event in those with angina was 24.2% in the first 10 years (1980 to 1990) for
males, who started with an average age of 53.8 years. It was assumed that the average
age during the 10 years was 58 years and that females would have similar rates to

males.

The BRHS Newsletter at http://'www.ucl.ac.uk/primcare-
popsci/brhs/Newsletter/News40.htm indicates that 32% of men who had events before
1985 and 53% who had events between 1985 and 1989 were taking aspirin. The event
rate was modified to give the natural history event rate as if patients were taking no
drugs. It was assumed that beta blockers had no effect on event rates for patients who
had not had an MI, and the multiplying factor was 1.087 (see section A9.3 for more
details on natural history conversion). This gave the age 58 event rate to be 26.3%

within 10 years.

The patient’s risk of death or infarction increases with age. The BARI study (1996)
gives mortality rates for a CABG / PTCA trial for younger patients (mean 55.7 yrs)

relative to that of older patients (mean 70.6 years). The relative risk for cardiac
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mortality was 1.98 for the older versus the younger. > (Cooper et al. 2003)

However this relative risk for older patients may be partly explained by the fact that
there is an age gradient for sudden death in or out of hospital for patients who have an
MLI. For sudden death in or out of hospital, older patients (mean age 70.6 years) are 1.57
times more likely to die from an MI than the younger patients (mean age 55.7 years).
Independence was assumed between the relative risk of infarction and the relative risk
of sudden death in or out of hospital for older versus younger patients. The relative risk

for older patients compared to younger patients was 1.98/1.57 = 1.26.

The annual probability of death or MI was represented by the Gompertz distribution in
which f(t) = exp(at + b), where f(t) is the annual probability of death or MI of a person
of age t and a and b are constants. Using the point estimate for the probability of MI at
age 58 and the age gradient between two ages the annual probability of MI for angina

0.0155x

only patients was derived to be 0.0107exp (see Appendix IV for age gradient

calculations).
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Glossary of medical terms

ACE inhibitor (Angiotensin-converting enzyme inhibitor) A drug that blocks one of
the body’s enzymes, causing the blood vessels to relax.

Amlodipine  calcium antagonist drug

Angina pectoris Chest pain caused by a lack of blood to the heart due to
narrowed arteries

Angiogram  Xray examination of the heart and coronary arteries

Aspirin Drug that thins the blood and helps reduce clotting

Atherosclerosis The build up of fatty deposits in the arteries

Beta blocker Drug that slows the heart rate by ‘blocking” adrenaline '
Calcium antagonist  Drugs that relax arteries by reducing calcium in the artery walls
Cardiac arrest A heart attack when the heart stops beating

Clopidogrel  Anti-platelet drug similar to aspirin.

Coronary Artery Bypass Graft (CABG) Surgical procedure to bypass narrowed
arteries

Defibrillator Equipment to give electric shocks to correct abnormal heart beat or
restart the heart after cardiac arrest

Electrocardiogram (ECG)  Recording of the electrical activity of the heart
Echocardiogram (ECHO)  Pictures of the heart muscle generated by ultrasound
waves

Ejection fraction The portion of blood that is pumped out of a filled ventricle as
a result of a heartbeat

Heart failure (or congestive heart failure) Damage to the heart muscle such that the
heart cannot pump blood as strongly as the body demands it

Ischaemic heart disease Inadequate blood supply usually caused by narrowed
arteries

Myocardial infarction (MI) Blockages in the heart arteries (heart attack)

Positron Emission Tomography (PET) Radionuclide test to show pictures of the
heart

Percutaneous Transluminal Coronary Angioplasty (PTCA) Procedure to reduce

narrowing in arteries
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Revascularisation ~ Repair of the coronary arteries using CABG or PTCA
procedures

Reperfusion  The restoration of blood flow to an organ or tissue

Single photon emission computed tomography (SPECT)  Radionuclide test to show
pictures of the heart

Statin Cholesterol reducing drug, eg simvastatin

Stenosis Narrowing

Stent Metal cage inserted into the artery during PTCA

Thrombolysis Administration of drug clotting drugs such as tPA or SK

Unstable angina More serious form of angina where chest pain occurs erratically
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