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ABSTRACT 
 

This report is the third in a series of five, designed to investigate the detection of 

targets buried in saturated sediment, primarily through acoustical or acoustics-related 

methods. Although steel targets are included for comparison, the major interest is in 

targets (polyethylene cylinders and optical fibres) which have a poor acoustic 

impedance mismatch with the host sediment. This particular report provides a brief 

historical overview of sediment propagation models has been presented. Two theories 

have been covered: the Biot-Stoll theory; and wave scattering from random rough 

surfaces. The debate surrounding the observations of, so-called, anomalous acoustic 

penetration has also been discussed.  

This series of reports is written in support of the article “The detection by sonar of 

difficult targets (including centimetre-scale plastic objects and optical fibres) buried 

in saturated sediment” by T G Leighton and R C P Evans, written for a Special Issue 

of Applied Acoustics which contains articles on the topic of the detection of objects 

buried in marine sediment. Further support material can be found at 

http://www.isvr.soton.ac.uk/FDAG/uaua/target_in_sand.HTM.  
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1 Introduction 

In order to investigate the possibilities for the detection of buried objects (particularly 

optical fibres) in saturated sediment1, a test tank facility (with acoustic sensors) was 

set up, and investigations made into the acoustic properties of the water and the 

sediment material used2. This investigation included measurements of sound speed 

and attenuation. For the sediment in particular, reference was made to an empirical 

model for the attenuation of sound in the seabed (see section 2.2.4 of the second 

report in the series2). Measurements of attenuation in the laboratory sand were also 

presented. Transmission phenomena at the water-sediment interface were discussed in 

section 2.2.5 of the second report in the series2, where it was noted that the 

assumption of a flat ‘fluid-fluid’ interface is often valid. It was also noted that the 

scattering of acoustic waves at a rough interface was an important issue that required 

further study. 

The transmission of sound at a rough interface is a topic of particular academic 

interest following a recent debate where previous views on acoustic penetration were 

questioned. Historically, elastic sediment models have been considered adequate in 

the 10 - 100 kHz frequency range, the range of particular interest in this investigation. 

Snell’s law states that no energy can penetrate into a sediment if it is incident below 

the critical grazing angle. However, recent measurements [1] have suggested 

anomalous acoustic penetration below the critical angle; a phenomenon that is 

inconsistent with existing models. 

The propagation of shear waves is not considered in detail in this report since it is 

widely accepted that they are more highly attenuated in sediments than compressional 

waves. This makes them less suitable for the types of detection processing that are 

                                                 
1 T G Leighton and R C P Evans, Studies into the detection of buried objects (particularly optical fibres) in 

saturated sediment. Part 1: Background. ISVR Technical Report No. 309  (2007). 

2 T G Leighton and R C P Evans, Studies into the detection of buried objects (particularly optical fibres) in 

saturated sediment. Part 2: Design and commissioning of test tank. ISVR Technical Report No. 310 (2007). 
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investigated in a subsequent report in this series3. Instead, the main focus of this 

current report is on the propagation of compressional waves within marine sediment. 

In the first section (section 2), a historical overview of sediment propagation models 

is presented. Two approaches have been considered in detail: The Biot-Stoll theory 

[2] is presented in section 3. This postulates the existence of a second compressional 

wave in addition to the ordinary compressional wave and shear wave. Rough surface 

scattering models are presented in section 4. It should be noted that roughness 

scattering is a large field of study that cannot be fully covered in this report. However, 

section 4 should give the reader some insight into the different approaches that have 

been taken, and the regimes of validity of the corresponding models. 

The debate surrounding anomalous acoustic penetration is detailed in section 5. The 

conflicting explanations (the Biot-Stoll theory and rough surface scattering) are noted. 

2 Historical 

A comprehensive review of the mechanisms affecting the propagation of acoustic 

waves in the seabed has been performed by Kibblewhite [3]. In this article it is noted 

that in both shallow and deep water environments, the seabed is often the dominant 

factor controlling propagation. An acoustically ‘lossy’ seabed causes attenuation of 

sound through compressional-wave absorption in the bottom and the excitation of 

shear waves. 

On the basis of extensive experimental evidence, Hamilton has argued that 

attenuation is linearly related to frequency over the whole range of frequencies 

encountered in underwater acoustics (from a few hertz to megahertz, the so-called ‘f1 

law’) [4]. A subset of this evidence is presented in section 2.2.4 of the second report 

in the series2, where it is established that a linear scaling law can be applied to the 

laboratory sand for the range of frequencies that are of interest in this investigation. 

However, the question of whether the attenuation in saturated, unconsolidated marine 

                                                 
3 R C P Evans and T G Leighton, Studies into the detection of buried objects (particularly optical fibres) in 

saturated sediment. Part 4: Experimental investigations into the acoustic detection of objects buried in saturated 

sediment. ISVR Technical Report No. 312  (2007). 
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sediments is accurately proportional to frequency over an extended range is still under 

debate [5, 6]. 

When sound energy passes through a saturated sediment, energy is lost through a 

number of mechanisms. Some are fundamental to the material and are referred to as 

‘intrinsic attenuation’. These are internal friction at grain-to-grain contacts [4], which 

gives rise to a linear scaling with frequency, and viscous losses due to the relative 

motion of the pore fluid and the frame [7]. Frictional losses are large when rigidity is 

large since rigidity depends on inter-particle contacts. The rigidity of sediments is a 

function of the fractional pore space. A comparison of the dependence of the 

attenuation constant on porosity and rigidity confirms this relationship [8]. The 

additional viscous loss components are responsible for any deviation from the f1 law 

in saturated sediments. 

Other factors can play a part in the attenuation process in the seabed, such as trapped 

gas bubbles and inhomogeneities that produce losses through scattering. (The 

presence of gas bubbles in the sediment is considered in section 2.1.1 of the second 

report in the series2, and a process is described to actively remove bubbles from the 

laboratory sand.) At high frequencies, where the wavelength of sound waves is close 

to the size of individual grains, scattering is the dominant loss mechanism. Energy 

conversion between compressional, shear and interface waves also leads to significant 

attenuation. The total of all these losses is referred to as the ‘effective attenuation’. 

Several theories of attenuation in granular materials have been explored over the 

years. In one approach, the sediment medium is considered to be a continuum with 

visco-elastic properties that are representative of the bulk material as a whole [3]. The 

acoustic response is then described by complex moduli and relaxation functions that 

are adjusted to give results consistent with real materials. Consider, for example, the 

Hamilton visco-elastic model. This assumes that sediments can be represented by an 

isotropic two-phase system composed of sediment grains and water [9]. Provision is 

made for velocity dispersion and a non-linear dependence of attenuation on 

frequency. The model leads to an equation for both the shear and compressional 

attenuation which is of the form: 
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( )Q
a v

f a v fa
np p

np p

− =
−

1
2 2 4π π

 
(1)

where Qa
−1 is the specific attenuation factor, anp is the attenuation coefficient, vp is the 

phase velocity and f = ω π2  is the frequency. It is also common to use the 

attenuation coefficient, αdB npa e= × 20 10log , having units of decibels per unit length. 

When energy losses are small, the term a v fnp p
2 2 4π  can be ignored. Thus, equation 1 

can be reduced to the following: 

Q
a v

f
a v

a
np p np p

L
− = = = =1 2

π ω
δ
π

θtan  
(2)

where δ is the logarithmic decrement, the natural logarithm of the ratio of the 

amplitudes of two successive cycles of an exponentially decaying sine wave. The 

parameter θL is the effective loss angle. In acoustics, this is equivalent to the phase 

difference between stress and strain under harmonic loading. The wave velocities, 

specific attenuation factor and logarithmic decrement are independent of frequency if 

the attenuation coefficient is proportional to the first power of frequency [9]. 

An alternative to the visco-elastic model approach assumes that wave propagation 

depends on the properties of individual constituents of the material and on the 

structural characteristics of the skeletal frame. This may be described as a physical 

model approach. 

The Biot model fits into the category of physical sediment models [10, 11]. According 

to the theory, sound energy is transported through the fluid and the frame by two 

compressional waves and a shear wave. This results in a frictional loss attenuation 

that is proportional to frequency, f, and a viscous attenuation that varies from f 2  at 

low frequencies to f1 2  at higher frequencies. (The viscous loss is introduced by 

allowing for the relative motion between the frame and pore fluid.) 

Stoll later extended Biot’s theoretical developments by treating the shear and bulk 

moduli of the skeletal frame as complex quantities [12, 13]. The model predicts slight 

velocity dispersion and a non-linear relationship between attenuation and frequency. 

However, there are some difficulties associated with the Biot-Stoll theory: 
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• It does not account for the characteristic attenuation exhibited by granular 

materials over an extended frequency range. 

• The effect of a distribution of grain sizes in the sediment cannot easily be taken 

into account. 

• It is only valid for sands composed of uniformly spherical grains, such that 

porosity is independent of grain size. 

The Biot-Stoll theory may be considered too simple to be applied to real sediments. 

However, by careful selection of parameters, the attenuation losses predicted by the 

theory can be made to fit most experimental data [7]. Exceptions to this are muddy 

sediments which have porosities that are, typically, between 60 % and 85 %. Such 

large porosities suggest that the particles are suspended in a fluid matrix rather than 

packed into a rigid skeletal frame. Sediments of this kind must be treated as fluids, 

rather than as Biot media, requiring the use of multiple scattering models [14]. The 

Biot-Stoll theory is considered in more detail in section 3. 

An entirely different model of acoustic propagation in saturated, unconsolidated, 

marine sediments has recently been proposed by Buckingham [5, 6, 15]. It is 

developed on the basis of a linear wave equation which includes a dissipation term 

representing the losses that arise from inter-particle contacts. This loss term takes into 

account the hysteresis (or ‘memory’) exhibited by granular media, by setting the 

frictional stress at inter-particle contacts equal to a temporal convolution between 

particle velocity and a material memory function. 

Two equations emerge from the analysis: one for compressional wave propagation; 

and the other for shear wave propagation. The compressional wave shows an 

attenuation that scales almost exactly with the first power of frequency, and a weak 

logarithmic dispersion in phase velocity. The shear equation admits a wave-like 

solution even though the sediment shows no elastic rigidity. The shear wave also 

shows an attenuation that scales as f1. When combined with a model of the 

mechanical properties of marine sediments, the compressional and shear wave speeds 

can be related to the grain size, porosity and density of the medium. Buckingham 

states that this analysis show close agreement with the observed geo-acoustic 

properties of many unconsolidated marine sediments. 
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A full description of the behaviour of marine sediments must also include interface 

waves at the seawater-sediment boundary [16]. Surface waves are known to exist in 

unconsolidated sediments and are sometimes used as an indirect means of 

determining the speed of shear waves. Sediments are often assumed to behave like 

elastic solids, in which case the interface waves are of the Stonely, or Scholte, type 

with speeds that are 80 - 90 % of the shear wave speed [17]. This type of wave 

process occurs at the interface between elastic and fluid half-spaces, and is 

concentrated in a layer of thickness of the order of a wavelength in the fluid [18]. In 

Buckingham’s new theory of acoustic propagation in marine sediments, a pseudo-

Scholte wave is shown to propagate with a speed that is in agreement with 

experimental measurements [17]. 

Surface roughness is also an important factor in determining the behaviour of acoustic 

waves incident on the seawater-sediment boundary, or on internal interfaces between 

sediment layers. The scattering process depends on the wavelength of the incident 

radiation and the degree of roughness of the interface, as determined by statistical 

techniques. (Since all real surfaces are rough and no two rough surfaces are identical, 

statistical techniques are usually required to describe them.) The topic of acoustic 

wave scattering from rough surfaces is considered in more detail in section 4. 

3 The Biot-Stoll Theory 

Biot developed a comprehensive theory for the static and dynamic response of porous 

materials containing compressible fluid. He considered both low and high frequency 

behaviour and included the possibility of visco-elastic or visco-dynamic response in 

various components of his model. An abbreviated derivation leading to one form of 

the Biot equations is given by Stoll [2]. This derivation helps to identify the variables 

that are used, and to visualise how the response of the sediment is modelled in a 

mathematical way. 

Biot’s theory predicts that, in the absence of boundaries, three kinds of body waves 

may exist: two compressional (dilatational) and one shear (rotational), in a fluid-

saturated, porous medium. One of the compressional waves (the ‘first kind’) and the 

shear wave are similar to waves found in ordinary elastic media. The motions of the 

skeletal frame and the interstitial fluid are nearly in phase and the attenuation owing 
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to viscous losses is relatively small. In contrast, the compressional wave of the 

‘second kind’ is highly attenuated, with the frame and fluid components moving 

largely out of phase. 

Compressional waves of the second kind become important in acoustical problems 

involving very compressible pore fluids (such as air). However, waves of the first 

kind are of principal interest in water-saturated sediments. A possible exception to 

this can occur in the case of a very gassy sediment where the effective compressibility 

of the pore fluid is greatly reduced by the presence of free or dissolved gasses [19, 

20]. 

In order to determine the velocity and attenuation in real sediments, it is necessary to 

choose realistic values for the physical parameters summarised in table 1. Following 

Stoll’s example, these can be divided into three groups: bulk; fluid motion; and frame 

response. Several of the choices are straightforward. However, a few of the 

parameters require careful consideration in order to produce meaningful predictions 

[1, 21]. 

Frequency-independent variables 

Porosity β 

Mass density of grains ρr 

Mass density of pore fluid ρf 

Bulk modulus of sediment grains Kr 

Bulk modulus of pore fluid Kf 

Variables affecting global fluid motion 

Permeability kf 

Viscosity of pore fluid ηf 

Pore size parameter ap 

Structure factor αs 

Variables controlling frequency-dependent response of frame 

Shear modulus of skeletal frame ( ) ( )µ µ ω µ ω= +r ii  

Bulk modulus of skeletal frame ( ) ( )K K iKb br bi= +ω ω  

Table 1 Summary of the basic physical parameters required by the Biot-Stoll model. 
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The bulk parameters are the simplest to obtain. There may be slight variations in the 

values of the density and the bulk modulus of the pore fluid, but these are generally 

insignificant. The grain density can be measured from sediment samples. It is only the 

grain bulk modulus that can be difficult to measure because of the small size of the 

sediment grains. 

The fluid motion parameters can be difficult to determine. It is only the viscosity that 

is relatively simple to measure, whereas permeability can be much harder to obtain 

(especially for sediments containing flocculant particles such as silt and clay). 

Permeability can be determined from empirical relationships based on porosity and 

grain size [9, 22, 23], or through physical relationships such as the Kozeny-Carman 

equation [24]: 

3

f 2 2
0

1 βk =
KS (1-β)

⎛ ⎞
⎜ ⎟
⎝ ⎠  

(3)

where K is an empirical constant, approximately equal to 5, and S0 is the surface area 

per unit volume of the particles in the sediment. The value of S0 is defined for a 

sphere as S d0 6=  where d is the diameter. However, to be realistic the value of S0 

must be modified to account for the fact that natural sediments are not spherical and 

do not have uniform-sized grain diameters. 

The pore size parameter was introduced by Biot to describe the dependence of the 

viscous resistance to fluid flow on the size and shape of the pore. With appropriate 

values for the pore size parameter, the equations of motion for cylindrical pores can 

be applied to other pore geometries. Hovem and Ingram [25] defined it as being twice 

the ‘hydraulic radius’, which is the ratio of the volume of pore fluid to the area of the 

wetted surface. The hydraulic radius concept is applicable to any porous medium with 

interconnected pores. Hence, the pore size parameter can be determined through the 

Kozeny-Carman relation following Hovem and Ingram: 

f
p

Kka =2
β  

(4)

where K represents the same empirical constant as in equation (3).  
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The structure factor αs (also referred to as the ‘virtual mass coefficient’) is a 

dimensionless term introduced in the Biot-Stoll theory to account for the transfer of 

momentum from the fluid to the frame. It increases with the ‘tortuosity’ of the pore 

spaces, theoretically varying from a value of 1.0 for uniform pores to a value of 3.0 

for a random system of pores. In practice, the structure factor is determined 

experimentally. 

In modelling the coarser, granular materials the moduli Kb  and µ  are chosen to be 

complex constants. The ratios of their imaginary to real parts are determined on the 

basis of experimental measurements. The frame shear modulus is rarely obtained by 

direct measurement. Its real part can be calculated by the use of empirical relations. 

The imaginary part is descriptive of losses at grain-to-grain contacts and is related to 

the attenuation of shear waves. Its value can be obtained through the following 

relationship: 

µ
µ δ
πi
r s=  (5)

where µr is the real part of the frame shear modulus. The frame shear log decrement, 

δs, is a measure of the shear wave attenuation coefficient and is computed from shear 

wave attenuation measurements. 

The frame bulk modulus is the most difficult parameter to determine. There is no 

satisfactory method of direct measurement. It can be determined from the frame shear 

modulus using the standard elastic relationship for solids: 

Kbr r=
+
−

⎛
⎝⎜

⎞
⎠⎟

2
3

1
1 2

σ
σ

µ  
(6)

where σ is the Poisson’s ratio of the frame. 

The imaginary part of the frame bulk modulus is descriptive of losses at grain-to-grain 

contacts and is related to the attenuation of compressional waves. Its value can be 

determined by the log decrement of longitudinal waves, δp, which is analogous to the 

frame shear log decrement. 

It may be assumed that the wave amplitude and the logarithmic decrement are small 

so that different measures of damping may be related in a simple way. For example, 
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the quality factor, Qa, the logarithmic decrement, δ, (for both travelling waves and 

stationary vibrations) and the attenuation coefficient, αdB, may be related using 

equation (2), above. 

As noted in section 1, the Biot-Stoll theory has been used by certain authors as a 

means of explaining measurements of anomalous acoustic penetration of the seabed at 

sub-critical grazing angles. The measurements, and the issues surrounding the manner 

in which the theory was applied, are presented in section 5. 

4 Wave Scattering from Rough Surfaces 

There have been numerous attempts to model acoustic wave scattering from rough 

surfaces over the years. For example, Patterson derived a semi-empirical model [26] 

based on acoustic scattering data that assumed specular and sidelobe scattering from 

planar facets of the seawater-sediment boundary. An alternative technique was later 

developed that enabled the Helmholtz-Kirchhoff integral to be evaluated over the 

scattering interface [27]. It was assumed that the reflection coefficient was constant, 

and that multiple scattering between irregularities was negligible. 

A similar approach has been applied using a ‘composite roughness model’ [28] to 

account for surfaces that are rough on scales both large and small relative to the 

radiation wavelength. Large-scale roughness is treated as a random slope variation 

using the Kirchhoff approximation, and small-scale roughness is treated by a 

perturbation method [29]. Although composite roughness models are useful, their 

results depend on the way in which the scale of the surface roughness is partitioned, 

and they are inaccurate for scattering at low grazing angles. Therefore there has been 

much interest in developing a unified approach that spans both the Kirchhoff 

approximation and the small perturbation regimes [30]. 

The importance of scattering from below the sediment interface was suggested after 

experiments involving measurements of scattering from a rippled, sandy surface [31]. 

A strong dependence of the scattering strength on azimuthal orientation was expected 

but was not observed. This was taken as evidence of volume scattering from below 

the interface. A significant contribution to volume scattering in real sediments is made 

by trapped gas bubbles. Since this is mentioned elsewhere in this study (see section 
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2.1.1 of the second report in the series2) it will not be considered further here, other 

than to note that bubbles in resonance are very strong scatterers of sound. 

It is usual to consider the problem of scattering separately for surface roughness and 

volume reverberation [32]. However, the contributions to the total scattered field from 

these two types of irregularity are difficult to separate. Experimental measurements 

have failed to provide conclusive evidence to determine whether volume or interface 

scattering is the dominant effect [29, 33]. More recently, researchers have begun to 

show interest in a unified approach to surface roughness and volume reverberation 

scattering based on small volume perturbations [32, 34]. In this case, roughness can 

be considered as a specific kind of volume perturbation near the mean, flat interface. 

The following sections follow the approach to scattering from random rough surfaces 

taken by Ogilvy [35]. (This approach mainly deals with the back-scattering of 

acoustic energy into the water column. However, the back-scattering of incident 

energy is necessarily paired with the transmission and conversion of energy into the 

sediment [36].) Scattering from surfaces where the dominant roughness is periodic is 

also considered. This is a separate topic to scattering from random surfaces, where 

techniques can be used that exploit the periodicity of the scatterer. Such surfaces give 

rise to ‘grating modes’, i.e., energy scattered strongly into specific directions that are 

determined by the wavelength of the periodicity compared with the wavelength of the 

incident wave [35]. 

Periodic rough, or ‘rippled’, sediment surfaces occur naturally as a result of the flow 

of water at the water-sediment interface [37]. Ripples are better described as a series 

of corrugations that are, typically, spaced a few centimetres apart. In plan view, ripple 

patterns show considerable variety. There is a tendency for straight ripples to form in 

deep water or at low current speeds, and for more complicated, three-dimensional 

ripples to form in shallower water and higher speeds. 

In the study of cables buried at a typical sea depth of 1 000 m, and at frequencies in 

the 10 - 100 kHz range, scattering from sediment grains (having a length-scale ~ mm) 

is of greater importance than scattering from ripples (having a length-scale ~ cm). 

This is because, typically, the deep sea floor is a tranquil environment. Only certain 

areas are known to be affected by currents that are strong enough to rework the 

bottom sediment and create ripple patterns [38]. It should be noted that the sand used 
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in the laboratory tank was chosen on the basis that it was similar to the sediment 

material at the sea depth of interest. 

An experiment is described in reference [61], in which scattering was measured for 

both small-scale, and large-scale, roughness over the surface of the sediment in the 

laboratory tank. In that experiment, the granular roughness was similar to that found 

over the surface of a naturally-occurring ‘medium’ sand, according to the Wentworth 

grain size classification [39]. (It should be noted that the particle size distribution 

measurement, presented in section 2.1.2 of the second report in the series2, showed 

that the sediment material was a ‘very fine sand’. This discrepancy arises from the 

uncertainty associated with the height variation measurement in the experiment). The 

large-scale roughness was more representative of the ‘worst-case’ that could be 

expected to occur naturally in the field. 

A similar experiment is documented in the literature [40]. Pace and Ceen conducted a 

series of measurements of the spatial dependence of waveforms generated by water-

borne parametric arrays. In these measurements, the source volume was truncated by 

a water / sand interface. The results consisted of the acoustic signals received on a 

hydrophone buried in the sand. It was noted that when the water / sand interface was 

sinusoidal there existed the possibility that a range of signals would arrive at the 

receiver. This was, in fact, observed to be the case; several additional directive 

sources, which were described as being multiple images of the directive source 

located at the transducer, were recorded at the hydrophone. It was also suggested that 

when the interface was non-planar, more acoustic energy would reach the sand-borne 

hydrophone than when it was plane. 

4.1 The Rayleigh Criterion 

Wave scattering from real, rough surfaces was first studied by Rayleigh who 

considered the problem of a plane monochromatic wave incident normally onto a 

sinusoidal surface. This work led to the development of the ‘Rayleigh criterion’ for 

determining the degree of roughness of a surface [41]. 

Consider a plane monochromatic wave incident at some angle, θ1, onto a rough 

surface. For waves scattered into the azimuthal plane at some angle, θ2, the phase 

difference between two rays scattered from separate points on the surface is given by 
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( )( ) ( )( )[ ]∆θ = − + + − −k h h x x1 2 1 2 2 1 1 2cos cos sin sinθ θ θ θ  (7)

where k is the modulus of the incident (and scattered) wave vector and the scattering 

points are located at x1 and x2. 

 

Figure 1 The general, two-dimensional scattering geometry for fluid-borne acoustic 

waves incident on a rough, elastic boundary. 

 

The heights of the scattering points relative to the reference plane are h1 and h2. For 

specular scattering (θ1 = θ2) the phase difference becomes 

∆θ ∆= 2 1k hs cosθ  (8)

where ∆hs = h1 - h2. The interference between these rays depends on the magnitude of 

the phase difference compared with π. For ∆θ << π the two waves will be almost in 

phase and will constructively interfere. However, for ∆θ ~ π the waves will 

destructively interfere, leading to no contribution to the scattered energy in the 

specular direction. The ‘Rayleigh criterion’ states that if ∆θ < π/2 then the surface is 

smooth rather than rough. If this restriction is averaged across a surface then ∆h may 

be replaced by σh, where this is the surface rms deviation from the reference plane, 

and the criterion becomes 

Ra <
π
4

 (9)
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where Ra, known as the ‘Rayleigh parameter’ [41], is given by 

R ka h= σ θcos 1  (10)

The Rayleigh criterion for dividing surfaces into ‘rough’ or ‘smooth’ is quite 

arbitrary. However, it does illustrate the point that the roughness of any scattering 

surface is not an intrinsic property of that surface, but depends on the properties of the 

wave being scattered. Both the frequency and angle of the incident wave determine 

how rough any surface appears to be. A surface appears to be rougher the smaller the 

incident wavelength, or the closer the angle of incidence is to surface normal. 

4.2 Random Rough Surfaces 

A rough surface is usually described in terms of its deviation from a smooth reference 

surface [42]. The shape and location of the reference surface are chosen according to 

the long-range behaviour of the rough surface. For example, a description of a rough 

cylinder would involve measurements of height deviations from a cylindrical 

reference surface, whereas the profile of a rough sea would be measured from a flat 

reference plane. 

There are, essentially, two aspects to the nature of a random rough surface: the spread 

of heights about the reference surface; and the variation of these heights along the 

surface. A variety of statistical distributions and parameters are used to describe these 

properties [35], including: the ‘structure function’, defined as the mean square of the 

difference in surface height; the ‘characteristic function’, defined as the Fourier 

transform of the height probability density function; and the power spectral density, 

defined as the Fourier transform of the surface covariance function. Higher order 

properties are also of interest [43], both in the theory of wave scattering from random 

rough surfaces and in the classification of measured surface profiles. 

Surface height distribution and correlation functions are considered, below, as these 

are the surface functions that most commonly appear in theories of wave scattering. 

4.2.1 Height Probability Distribution 

The deviation of a surface from the smooth reference surface is represented here by 

the function hs(r), where hs is the height of the surface from reference surface and r is 
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the position vector of the point of interest on the reference surface. The surface is thus 

assumed to be part of a continuous random process, hs. The distribution of surface 

heights is described by the statistical height distribution p(hs), where p(hs)dhs is the 

probability of any surface point being at a height between hs and hs + dhs away from 

the mean surface. It is usual to ensure that h satisfies 

( )h h p h dhs s s s s= =
−∞

∞

∫ 0  
(11)

where 〈...〉s denotes the process of spatial averaging, i.e., averaging across the surface. 

This assumption has the advantage of simplifying most theories of wave scattering 

from rough surfaces. Measurements of surface profiles may always be adjusted to 

ensure equation (11) is satisfied by a suitable choice of the reference surface. The rms 

height of the surface is then equal to the standard deviation and is given by 

σh s s
h= 2  (12)

Much of the literature on rough surfaces assumes that height distributions are 

Gaussian. For a surface satisfying equation (11) the distribution is then given by 

( )p h h
s

h

s

h

= −
⎛
⎝
⎜

⎞
⎠
⎟

1
2 2

2

2σ π σ
exp  (13)

The distribution is symmetrical about zero, so that Gaussian surfaces have an equal 

number of surface points above and below the reference surface. 

4.2.2 Surface Correlations 

The specification of a height distribution and rms height does not discriminate 

between surfaces having different ‘length scales’, i.e., the characteristic length over 

which height changes occur along the surface. 

Such surfaces may be distinguished by their correlation functions, defined as 

( )
( ) ( )

C
h hs s s

h

R
r r R

=
+

σ2
 

(14)

As R increases, C(R) will usually decay to zero, with the shape of this decay being 

dependent on the type of surface and with the rate of decay being dependent on the 
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distance over which points become uncorrelated. This will not be true, however, for 

surfaces that are not truly random. For example, the correlation function of a 

sinusoidal surface takes the form of a cosine function, reflecting the periodic nature of 

the surface. Only if there is some finite distance over which the surface profile is truly 

uncorrelated will the correlation function decay to zero. 

The theory of wave scattering from rough surfaces often assumes that surface 

correlation functions are Gaussian and may be given by 

( )C R R
= −

⎛
⎝
⎜

⎞
⎠
⎟exp

2

0
2λ

 
(15)

In equation (15), λ0 is usually called the ‘correlation length’ [35], this being the 

distance over which the correlation function falls to 1/e. The spatial variable, R, has 

been replaced by R since the statistics of the surface are assumed to be independent of 

direction. (Anisotropy can be introduced into the statistical description of rough 

surfaces by using different correlation lengths in two perpendicular directions along 

the surface.) 

4.3 Kirchhoff Theory 

Kirchhoff theory (also known as tangent plane or physical optics theory) is the most 

widely used theory in the study of scattering from rough surfaces [44]. It provides an 

approximation to the wave field on the surface of a scatterer. Any point on a scatterer 

is treated as though it were part of an infinite plane, parallel to the local surface 

tangent. An integral formula is used to give an expression for the scattered field at 

some distance from a scatterer in terms of the approximated field surface. The integral 

formula depends on the nature of the wave field. The theory is exact for an infinite, 

smooth, plane scatterer. 

The simplest form of Kirchhoff theory arises when a plane, monochromatic, scalar 

wave is incident onto a rough surface with a reflection coefficient that is independent 

of position along the surface. Complications may be added to the theory, such as 

varying surface reflection coefficients and finite-width beams, but only at the expense 

of the ease of solution. 
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Consider the field quantity, ψ, which represents a scalar wave potential. In the 

presence of a scatterer the total field ψ(r) may be taken to be composed of the 

incident field ψi(r) and a field arising from the interaction of the incident field with 

the scatterer, ψs(r): 

( ) ( ) ( )ψ ψ ψr r r= +i s  (16)

When the surface of the scatterer, S0, is closed (i.e., the surface encloses a finite 

volume) then the total field at any point r is given exactly by the Helmholtz interior or 

exterior scattering formula [35]: 

( ) ( ) ( ) ( ) ( ) ( )
ψ ψ ψ

∂
∂

∂ψ
∂

r r r
r r
n

r r
r

n
S

S
= + −

⎡

⎣
⎢

⎤

⎦
⎥∫i s

sG
G d0

0

0
0

0

0
0

0

,
,  

(17)

where r is inside a closed volume containing no sources of ψi(r) or ψs(r) (interior 

formula) or outside a volume that contains all the field sources (exterior formula). In 

equation (17), integration is over S0 (the surface of the scatterer), n0 is the unit surface 

normal pointing towards the source and G(r, r0) is the acoustic Green’s function [45] 

representing the effect at r0 of a point force at r. From scattering from surfaces of 

finite dimensions, the free-space Green’s function can be used: 

( ) ( )
G

ik
r r

r r
r r

,
exp

0
0

04
=

−

−π
 

(18)

where r0 is on the scattering surface and r is some distance from the scatterer. 

When the surface S0 is closed then the scattered field, ψs(r0), appearing in the 

integrand in equation (17) is interchangeable with the total field, ψ(r0). (When the 

scatterer is a rough surface it is often true that the surface is not closed. However, the 

surface may always be closed for mathematical purposes with the aid of a 

hypothetical surface obeying appropriate boundary conditions.) The field scattered 

from a surface may therefore be written as 

( ) ( ) ( )

( ) ( ) ( ) ( )
ψ ψ ψ

ψ
∂
∂

∂ψ
∂

s i

G
G d

r r r

r
r r
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⎡
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(19)
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For scattering from rough surfaces the accuracy of the theory is affected by both the 

shape and dimensions of the mean surface and by the roughness of the surface. The 

accuracy of Kirchhoff theory is considered in section 4.5, along with the other 

approaches to rough surface scattering that are dealt with in the following section. 

4.4 Perturbation Theories 

If a rough surface deviates only slightly from a reference surface and has sufficiently 

small slopes, the scattered field can be calculated (approximately) using the ‘method 

of small perturbation’ (MSP) [42]. The total field in the presence of a scatterer may be 

written as the sum of the incident field, ψi(r), and the scattered field, ψs(r), as given 

by equation (16), above. The fields themselves may be taken to represent the 

displacement (or velocity) potential. 

The surface height function, hs(x, y), must satisfy the following restrictions for 

perturbation theory to be used in the study of wave scattering: 

( )
( )

k h x y

h x y
s

s

,

,

<<

∇ <<

1

1
 

(20)

The first of these restrictions arises from assuming that quantities that are functions of 

the surface height may be expanded as a Taylor series about their value on the mean 

scattering surface. Formulation of perturbation theory almost always assumes that this 

mean scattering surface is a plane. If the mean plane is taken to be the z = 0 then the 

Taylor expansion becomes 

f x y h f x y h f x y
z

h f x y
zs s

s( , , ) ( , , ) ( , , ) ( , , )
= + + +0 0

2
02 2

2
∂

∂
∂

∂
K  

(21)

If the boundary condition on the surface of the scatterer is known, equation (21) may 

be used to derive an approximate boundary condition on the mean plane, z = 0. This 

gives an expression for the unknown scattered field on the mean plane in terms of 

known quantities. An integral formula may then be used to give the scattered field at 

some distance from the scatterer in terms of an integral over the mean surface of the 

scatterer. Therefore, the formulation of perturbation theory depends on the boundary 

condition satisfied at the scattering surface. 
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Rayleigh was the first to use the MSP in his work on the scattering of sound at 

sinusoidally-corrugated rough surfaces [42]. The basic principle of the method is to 

write the unknown scattered field as a sum of outgoing plane waves and to determine 

the unknown coefficients in this sum by satisfying the boundary conditions on the 

surface. The main restrictions are that no multiple scattering effects are included, 

owing to the assumption of only outgoing scattered waves, and that series 

convergence is only achievable if the surfaces are ‘slightly rough’. 

Rayleigh theory is found to be good in the limit of corrugations that are shallow 

compared with the incident wavelength which is a wider range of validity than 

perturbation theory. 

4.5 Summary for scattering theory 

Kirchhoff theory is exact for surfaces that are infinite, smooth and planar. For all 

other scatterers it is an approximation. Kirchhoff theory is valid for Gaussian surfaces 

when λ0 > λ and angles of incidence and scattering are small enough to ensure that 

grazing of the surface does not occur. Non-Gaussian surface statistics lead to 

reductions in the regimes of validity of this theory. 

The accuracy of perturbation theory depends on the validity of the restrictions given 

by equation (20) and the order of terms retained in the expansion. First-order 

perturbation theory is usually accurate when kσh << 1. An additional restriction, 

kλ0 ≤ 1, is needed for scattering angles away from specular for Gaussian surfaces, as 

second-order terms may not be small compared with first-order terms. 

Perturbation theory does take some account of multiple scattering effects, to an extent 

dependent on the order of the theory. However other effects, such as shadowing, 

combine to reduce the accuracy of the perturbation approach. These effects become 

more marked as the angles of incidence and scattering increase away from the mean 

surface normal (i.e., shallower grazing angles). 

The following section describes a number of measurements made by other researchers 

that have shown anomalous acoustic penetration into water-saturated sediments at 

sub-critical grazing angles. These researchers have proposed the use of the Biot model 

as a means of describing the phenomenon. However, there is some debate in academic 
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circles as to whether this use of the Biot model is valid. Other authors have used 

rough surface scattering models in an attempt to describe the phenomenon. The 

applicability of the different approaches to modelling rough surfaces, which have 

been described in this section, are considered in section 5. 

5 Anomalous Acoustic Penetration 

It is generally accepted that at sub-critical grazing angles and for sufficiently high 

frequencies only evanescent waves are transmitted into the seabed, and these cannot 

penetrate to any significant depth [46]. This behaviour is consistent with elastic 

models of acoustic propagation which are widely recognised as being applicable to 

propagation in sandy sediments (although there are relatively few measurements in 

the literature to support this). 

In a series of experiments, however, Chotiros observed the transmission of acoustic 

energy in the 10 - 100 kHz frequency band at grazing angles less than the critical 

angle [1]. He conducted two field experiments and a laboratory experiment4 over 

water-saturated, unconsolidated sandy sediments. Above the critical grazing angles, it 

was stated that compressional wave speeds were in the region of 1 700 m s-1, the 

normally accepted value in water-saturated sand. (In the two field experiments, the 

measured wave speeds were found to be 1 743 m s-1 ± 300 m s-1 and 1 729 m s-

1 ± 200 m s-1. In the laboratory experiment, a wave speed of 1 675 m s-1 was 

measured, although no estimate of the associated error was provided). 

In contrast, it was stated that compressional wave speeds were measured to be in the 

region of 1 200 m s-1 at sub-critical grazing angles. Also, the directions of wave 

propagation within the sediment were consistent with Snell’s law of refraction for the 

speeds observed. Unfortunately, Chotiros did not provide any estimates of the errors 

associated with the measurements obtained at either of the two field sites or in the 

laboratory. This makes it difficult to compare his results with those of other authors. 

                                                 
4 Chotiros’ laboratory tank contained a 1 m thick layer of riverbed sand under a 3 m water column. An array of 

sensors was buried in the sand to detect acoustic signals and an omni-directional projector was suspended from 

a motorised platform at a height of 0.5 m above the sand. Chotiros stated that short, 60 kHz pulses were 

transmitted by the projector, and the acoustic signal at each sensor was recorded. 
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Since Chotiros’ original observations, anomalous acoustic penetration of the seabed 

has been reported in a separate study [47]. Two possible explanations for the 

phenomenon have been proposed: the existence of a Biot slow wave in the bottom 

[48]; and forward-scattering at the rough seawater-sediment interface [49]. Chotiros 

has advocated the Biot slow wave although his calculations, which were based on the 

formulation of Stern et al. [50], required some radical changes to previously accepted 

parameters in order to match the observations. 

The Biot parameters for a range of water-saturated sandy sediments have been 

obtained from results published by other researchers. These, and the parameters 

determined by Chotiros from the results of his laboratory experiment, have been 

evaluated to obtain a range of values for fast, slow, and shear wave speeds. This 

evaluation was performed using a freely-available computer program, which is 

described below. 

A number of issues related to the use of the Biot model have been raised by other 

researchers. These are discussed later in this section, along with the possibility that a 

roughness scattering model would be more appropriate. 

Schmidt developed the SAFARI computer program (Seismo-Acoustic Fast-field 

Algorithm for Range-Independent environments), for modelling seismo-acoustic 

propagation in horizontally-stratified isovelocity fluids and isotropic elastic media 

[51]. SAFARI can also model scattering from rough elastic interfaces using first-order 

perturbation theory. Later versions of the program were given the name OASES 

(Ocean Acoustics and Seismic Exploration Synthesis) [52]. As well as having 

improved numerical efficiency, the OASES program is capable of modelling acoustic 

propagation in poro-elastic layers, as described by the Biot theory [53]. In principle, 

therefore, OASES should be capable of predicting the acoustic behaviour of a wide 

range of sediment types, provided that the parameters input to the model have been 

determined correctly. 

Biot parameters (porosity, grain density, etc., as summarised in table 1) have been 

determined for a range of naturally-occurring water-saturated sandy sediments in a 

number of separate studies. The parameters determined in five of these studies [12, 

25, 50, 54, 55] are listed in table 2. In each case, values for compressional and shear 
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wave speeds as functions of frequency were determined from the corresponding Biot 

parameters using the Biot equations (as described in section 3). 

Chotiros determined three sets of Biot parameters for the sediments corresponding to 

the field and laboratory experiments described in [1]. (The ways in which he derived 

some of these parameters have been subject to discussion by other authors. This is 

commented upon further, below). The parameters he determined for the sediment used 

in his laboratory experiment are also listed in table 2. He then used the Biot equations 

to evaluate fast, slow and shear phase speeds from his own parameters, and compared 

them with the speeds obtained from the five studies noted above. 

 Units Stoll and 
Kan [12] 

Hovem and 
Ingram [25] 

Stern et al 
[50] 

Ogushwitz 
[54] 

Turgut et al 
[55] 

Chotiros [1] 

Porosity … 0.47 0.36 0.47 0.383 0.40 0.40 
Grain 
density 

kg m-3 2650 2650 2650 2650 2650 2650 

Liquid 
density 

kg m-3 1000 1000 1000 1000 1000 1000 

Grain bulk 
modulus 

Pa 3.60 × 1010 3.60 × 1010 3.60 × 1010 4.00 × 1010 3.60 × 1010 7.00 × 109 

Liquid bulk 
modulus 

Pa 2.00 × 109 2.25 × 109 2.00 × 109 2.25 × 109 2.30 × 109 2.25 × 109 

Permeability kg m-1 s 1.00 × 10-10 1.01 × 10-10 1.00 × 10-10 6.49 × 10-12 1.00 × 10-11 4.99 × 10-11 
Viscosity m2 1.00 × 10-3 1.00 × 10-3 1.00 × 10-3 1.00 × 10-3 1.00 × 10-3 1.00 × 10-3 
Pore size m 1.00 × 10-5 3.07 × 10-5 1.00 × 10-5 1.84 × 10-5 5.00 × 10-5 4.99 × 10-5 
Structure 
factor 

… 1.25 1.00 1.25 1.62 1.25 1.75 

Frame shear 
modulus 

Pa 2.61 × 107 1.00 × 108 2.61 × 107 1.19 × 108 5.00 × 107 2.61 × 107 

Shear log 
decrement 

… 0.15 0.00 0.15 0.10 0.063 0.15 

Frame bulk 
modulus 

Pa 4.36 × 107 1.00 × 108 4.36 × 108 1.99 × 108 1.08 × 108 5.30 × 109 

Bulk log 
decrement 

… 0.15 0.00 0.15 0.10 0.063 0.15 

Table 2 Biot model parameters that have been applied to various grades of water-

saturated sandy sediments. 

 

In this report, the values appearing in table 2 were evaluated using the OASES 

program. (It is noted, above, that OASES is capable of modelling acoustic 
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propagation using the Biot theory). The resulting phase speeds5 are shown in figure 2. 

 

Figure 2 Wave speeds as a function of frequency using the parameters shown in table 

2 (computed using the OASES program). The curves correspond to the parameters of: 

Chotiros (black, solid) [1]; Stoll and Kan (blue, solid) [12]; Hovem and Ingram (red, 

solid) [25]; Stern et al (black, dotted) [50]; Ogushwitz (red, dotted) [54]; and Turgut 

and Yamamoto (blue, dotted) [55]. 

 

It is difficult to make useful comparisons between the results in figure 2, since 

estimates of uncertainty were not provided by any of the authors for the parameters 

used in the Biot model. However, although the results from each data set are of 

                                                 
5 OASES provides estimates of the complex sound speed, c, which is related to the complex wave number by 

k = ω / c. The phase speed of a travelling wave, cp, can be obtained from the real part of the complex wave 

number since k = k – ianp and cp = ω / k [56]. 

Original in colour 
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limited value when they are considered individually, it is possible to estimate valid 

ranges for the fast, slow and shear waves when the results are considered together. 

When using the first five parameter sets in the Biot model, valid ranges of phase 

speeds were estimated to be between 1 550 and 1 850 m s-1 for the fast wave, between 

100 and 400 m s-1 for the slow wave, and less than 300 m s-1 for the shear wave in the 

10 - 100 kHz frequency range. The major difference exhibited by the model when 

using Chotiros’ parameters is that the slow wave speed was predicted to be 

significantly higher, being around 1 200 m s-1 at a frequency6 of 100 kHz. 

Chotiros’ model parameters are unconventional in that the grain bulk modulus is 

significantly lower (by a factor of 5) and the frame bulk modulus is significantly 

higher (by at least one order of magnitude) than in all previous estimates. Formerly it 

has been assumed that the grain bulk modulus of quartz sand is the same as that of 

quartz crystals. In contrast, Chotiros asserts that laboratory measurements have shown 

that sand grains are, in fact, much more compressible than quartz crystals. He also 

suggested that the method of calculating the frame bulk modulus from known elastic 

moduli, described in section 3, may be inappropriate since the equations of elastic 

deformation are ill-conditioned for values of Poisson’s ratio close to 0.5. 

The values of grain and frame bulk moduli, critical to Chotiros’ results, have been 

examined in detail by Hickey and Sabatier [57]. They accepted that one of the major 

problems with the Biot theory is the difficulty in determining the necessary elastic 

parameters. A fundamental requirement of the theory is the assumption of an 

‘equivalent homogeneous solid’. For a heterogeneous matrix material, this assumption 

implies that the matrix will undergo the same strain as the pores in an unjacketed test 

[2], i.e., a rock composed of the heterogeneous matrix material will behave as if it 

were an equivalent homogeneous rock. In modelling his observations, Chotiros used 

values that are incompatible with this requirement. 

Further objections to the new values of grain and frame bulk moduli have been raised 

by Stoll [58]. He stated that, in his opinion, Chotiros was not justified in his claim that 

                                                 
6 It has been noted that no estimates of uncertainty were available for Chotiros’ parameters, which made it hard to 

determine the validity of the results. Many of the concerns raised in the debate surrounding Chotiros’ 

predictions involve the validity of the assumptions made for the different Biot parameters. 
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a Biot slow wave with a speed of 1 200 m s-1 had been detected in water-saturated 

sand. Although the values chosen for the elastic moduli force the Biot equations to 

predict a slow wave speed that matched the observations, they were not representative 

of the material being modelled. Therefore, Stoll asserts. they should not have been 

used to substantiate the interpretation of field measurements. 

Stoll’s opinion was based on a series of calculations, including the compressional 

wave speed and the value of Poisson’s ratio of the dry frame. The wave speed 

obtained from the new values was considered to be too large for any granular material 

confined at low effective stress levels. Also, Chotiros’ value of Poisson’s ratio, which 

was close to 0.5, was regarded as being questionable by Stoll. (Stoll noted that 

Poisson’s ratio is usually less than about 0.2 for dry granular materials). 

In his argument, Stoll made the additional point that (according to the Biot theory) the 

amount of energy partitioned into slow waves should have been very small, and 

attenuation should have been high. This is contradictory to the high amplitude of the 

arrival that Chotiros identified as being a slow wave. 

Chotiros published a response to Stoll’s criticisms [59] in which he agreed that the 

main issue lay with the values of the grain and frame bulk moduli. He asserted that 

although, historically, the frame moduli of dry and saturated sand have been assumed 

to be the same, the moduli values for the dry and saturated conditions are, in fact, 

quite different. The restricted flow of fluid between grains in the saturated condition 

acts to reinforce the frame, producing an increased bulk modulus. The shear modulus 

is also affected by the presence of the pore fluid. A similar argument was applied to 

the grain bulk modulus: If the frame is fluid-reinforced then a small part of the pore 

fluid becomes an integral part of the frame. This results in an apparent reduction of 

the bulk modulus of the frame material and, hence, a reduction in the operative value 

of the grain bulk modulus. 

A second explanation for anomalous acoustic penetration, that of forward-scattering 

at the rough seawater-sediment interface, has also been proposed. In a recent paper by 

Thorsos, a rough surface approach was used in an attempt to explain the anomalous 

sub-critical penetration mechanism [60]. The sediment was modelled as a fluid, 

supporting only compressional waves. It was assumed that for sandy sediments the 

coupling of acoustic energy into shear waves would be negligible. 
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Figure 3 Pressure fields calculated above and below a water-sediment interface 

using the exact integral equation method: (a) flat surface; and (b) rough surface. The 

incident field comes from the left at a grazing angle of 20° and the critical angle is 

27.8°. (This figure was reproduced from [60] with the permission of E I Thorsos.) 

 

Thorsos presented a model for the penetrating field in two dimensions at a 1-D rough 

interface, using an exact integral equation method [32]. The speed of sound 

propagating in the sediment was taken to be 1 700 m s-1, and roughness was defined 

to be kσh = 0.66 (where k was the acoustic wave number in the water and σh was the 

rms height of the interface). The ratio of the sound speed in the water to the sound 

Original in colour 
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speed in the sediment was taken to be 1.13, which gave a critical angle of 27.8°. (In 

addition, the ratio of the density of the water to the density of the sediment was 2.0 

and the attenuation coefficient was 0.5 dB m-1 kHz-1).  

The pressure field obtained by Thorsos using the integral equation method for both a 

flat and a rough surface are shown in figure 3. The mean water-sediment interface is 

at 0.0 cm on the vertical scale and the colour display is linear in pressure. A 20 kHz 

plane wave of unit magnitude is incident from the left at a grazing angle of 20°, which 

is well below the critical angle of 27.8°. The incident wave has been omitted to 

simplify the field structure. 

In figure 3 (a), the surface is flat and the phase fronts of the reflected wave can be 

seen moving up and to the right above the interface. The field in the sediment is 

evanescent, i.e., it decreases exponentially with depth, having a significant magnitude 

for only about a wavelength of depth into the sediment. 

In figure 3 (b), energy can be seen to radiate down into the sediment at relatively 

steep angles. It is to be expected that acoustic penetration into the sediment can occur 

at regions along the surface where the local grazing angle exceeds the critical angle. 

In the simulation, however, acoustic penetration occurs even if this condition is not 

met anywhere on the surface. 

These results show the potential for a rough interface to couple sound into the 

sediment at sub-critical grazing angles. To see if this mechanism could explain the 

acoustic penetration results reported by Chotiros, it was necessary for Thorsos to 

model the three-dimensional experiments. However, the integral equation approach 

was too computationally intensive to be extended to a full 3-D geometry. Therefore, a 

model based on perturbation theory was developed and used to simulate one of the 

two field experiments conducted by Chotiros. The model was shown to be valid for a 

2-D geometry and, thus, it was expected to be valid for the 3-D geometry as well. 

The surface roughness spectrum was not measured by Chotiros which made it 

difficult to perform a comparison between the roughness scattering model and the 

experimental data. Thorsos was able to estimate the roughness spectrum from data 

obtained in the same region at an earlier time. Acoustic waves were observed to 

propagate in the sediment with speeds in the 1 200 - 1 500 m s-1 range, depending on 
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the form of the spectrum. (The actual wave speed was 1 700 m s-1 in every case. The 

lower wave speeds were measured in the apparent direction of propagation of 

acoustic waves. The speed differences were the result of a purely geometrical effect). 

It was also noted that, with an appropriate selection of hydrophones from the buried 

sensor array, the acoustic wave attenuation could be made to fit Chotiros observed 

attenuation of around 30 - 40 dB m-1 at 20 kHz. This result required that the analysis 

was restricted to a sub-set of the hydrophones closest to the water-sediment interface, 

i.e., near to the evanescent wave zone. 

Thorsos concluded that scattering from a rough water-sediment interface was a viable 

hypothesis for sub-critical penetration into sediments. In his opinion, however, further 

experiments were necessary to clarify whether the observed sub-critical penetration 

was due to the Biot slow wave mechanism, the interface roughness mechanism, or 

some other mechanism entirely. 

6 Summary 

In this report, a brief historical overview of sediment propagation models has been 

presented. Two theories have been covered: the Biot-Stoll theory (see section 3); and 

wave scattering from random rough surfaces (see section 4). The current debate 

surrounding the observations of, so-called, anomalous acoustic penetration has also 

been discussed (see section 5).  

The next report in this series3 discusses the detection of buried objects, with the 

apparatus arranged as described in section 4 of the second report in the series2, and 

with the sediment surface being nominally smooth (i.e., having an rms height of 

< 1 mm). Recall that, according to the Rayleigh criterion (see section 4.1), the 

interface appears rougher at higher grazing angles. (Although, as noted by Thorsos 

[60], the small difference in wave speeds between the water and sediment tends to 

reduce the apparent roughness of the surface for the transmission problem). Therefore 

the higher-angle arrangement, described in section 4 of the second report in the 

series2, will ‘see’ a rougher sediment surface than was the case for the smooth surface 

in the experimental results associated with this report (see figure 8 of reference [61]). 
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The results presented in this current report and the associated paper [61] indicate that 

the signal processing system, described in a subsequent report3, must be robust 

enough to cope with high levels of clutter in the received signals. Similarly, the 

apparent increase in the background noise level, observed in Figure 9 of reference 

[61], means that the detection system must also be insensitive to increased levels of 

background noise. 

This material formed the basis of the PhD of RCPE [62-65]. 
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