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In recent years, the need for spacecraft flying formation has increased significantly. Its diverse applications 

range from synthetic aperture radar systems, like TechSat-21 to science missions such as EO-J or LISA. 

Correspondingly, many studies have been performed on the relative motion of a spacecraft with respect to a 

reference orbit. Much of the literature, building on the early work of Clohessy and Wiltshire, is focused on 

solving the relative motion between spacecraft in two closely placed circular orbits. 

Their solution works fairly well for low eccentricity missions. Recently, however, several missions have been 

proposed, designed or flown that need spacecraft flying in formation about a highly elliptical reference orbit. 

Most of these missions, such as the Cluster, have space physics science objectives, which involve at least four 

spacecraft moving in a "tetrahedron" configuration at apogee. The shape and the separation of the configuration 

are designed to resolve spatial and temporal variations. In order to be able to analyze the relative motion of such 

missions, a novel approach of analyzing spacecraft relative motion is proposed in this thesis. The new approach 

deals with the derivation of the relative coordinates of a deputy satellite with respect to a master satellite by a 

series of Euler transformations and a translation from the Earth-centered inertial frame to the spacecraft­

centered rotating frame. The equations of relative coordinates derived in this thesis are precise and can be used 

to analyze orbits of any eccentricity and of any initial separation with or without the inclusion of orbit 

perturbations. For perturbed relative orbits, a modified version of the Gauss perturbation equations using 

equinoctial variables are used to model the dynamics. Several initial conditions are simulated using the 

developed mathematical model including practical cases like spacecraft having differential drag effects. Based 

on the simulation results, the amount of fuel required for formation and station keeping is estimated for different 

formation patterns. The problems associated with formation assembly are addressed and an algorithm to find the 

orbital elements from the knowledge of relative coordinates is proposed. The assessment of the relative motion 

due to perturbations is imperative for selecting the actuators for station keeping, designing control laws and 

deciding whether to use relative or absolute station-keeping methods. 
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NOMENCLATURE 

. . . 
a - semI-maJor aXIs 
Zir - acceleration along the position vector r 

Zit - acceleration in the velocity vector direction 

Ziz - acceleration in the normal direction 

as - mean distance of the Earth from the sun 
c - speed of light in vacuum 

Cd - coefficient of drag 
e - eccentricity 
e,. - unit vector along the satellite orbit radius vector direction 

e, - unit vector along the local horizontal direction 

ez - unit vector along the orbit normal direction 

F - solar energy flux at the spacecraft 
h - angular momentum 
i-inclination 

h - geo potential coefficient representing Earth's Oblateness, J 2 = 1082.64x 10-6 

m - mass of spacecraft 
M - Mean anomaly 
n - Mean motion 
p - semilatus rectum 
R - position vector of the satellite 

re - Radius of earth, re = 6371 x 106 km, 

rs - distance of the satellite from the sun 
S - projected area of the spacecraft in the direction of motion 
t - time 
[TuinJm - transformation matrix from frame OXYZ to OPQR 

[ T Qiu Jd - transformation matrix from frame (OXYZ}d to OXYZ 

Vr, Vr, Vn - Spacecraft velocity in along-track, radial and orbit normal directions respectively 
u - argument of latitude, U = {} + OJ 

n - right ascension of the ascending node 
OJ - argument of perigee 
{}- true anomaly 

f.1 - gravitational earth constant, f.1 = 3.986 xl 014 m3 
/ S2 

c - obliquity of the ecliptic 
).,0 - ecliptic longitude of the sun 

.; - constant of surface reflection 
5a- Variation of variable ex with respect to the chief orbit 
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Subscripts 

d - refers to the deputy satellite 
m - refers to the master satellite 
o - refers to the initial conditions 

GRACE - Gravity Recovery and Climate Experiment 

GPS - Global Positioning Systems 

NASA- National Aeronautics and Space Administration 

ESA- European Space Agency 

MST- Micro Satellite Technology 

ASO-Astronomical Search for Origins 

SEC-Sun Earth Connections 

SSE-Solar System Exploration 

SEU- structure and Evolution of the Universe 

CW - Clohessy-Wiltshire 

XEUS - X-Ray Evolving Universe Spectroscopy Mission 
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1.1 Satellite Formation Flight 

Chapter 1 

Introduction 

The concept of satellite formation flying has been a topic of considerable study for well over 

a decade. In fact, Visher l was given a patent for the concept in 1983. Formation flying can be 

defined as the co-ordinated motion control of a group of vehicles where the vehicle positions 

relative to each other are important. The reasons for using a satellite cluster or formation. as 

opposed to a single larger satellite, include providing on-orbit redundancy, reliability, 

survivability, reducing cost and improved performance (or possibly enabling performance 

that cannot be accomplished via a single satellite). An example demonstrates these gains 

easily. Imagine a satellite cluster comprised of ten satellites. Each satellite within the cluster 

contributes to the overall objective of the system. If one were to fail, the integrity of the 

system is not totally lost as the remaining nine can still function to achieve mission 

objectives. While the overall capability of the system may be temporarily diminished, it is 

not completely lost. Also, if the cluster is operating with more than the required number of 

elements to perform its objectives, the mission may not experience any degradation to its 

minimum advertised capability due to the on-orbit redundancy. The above example 

illustrated continued system performance during a failure, and thus improved reliability. A 

related concept to reliability is survivability. Survivability also implies continued 

performance after the infliction of damage due to on-orbit mishaps. Concisely, the 

advantages of a satellite cluster over a single large satellite are: 

• Each spacecraft is smaller, lighter, simpler, and simpler to manufacture; 

• Economies of scale enable a cluster of many satellites to be less expenSIve to 

manufacture than a single satellite; 

• The cluster can adapt to the failure of any individual satellites, and failed satellites 

can be incrementally replaced; 
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• The cluster can reconfigure the orbits of the satellites in the cluster to optimize for 

different missions. 

Formation flying of multiple spacecraft is an enabling technology for many future space 

missions. Earth and Space scientists are just beginning to understand the full potential of 

spacecraft formation flying. For example, the current complement of Earth Science missions 

perform somewhat infrequent measurements of targeted areas of the Earth using very large, 

expensive spacecraft platforms (e.g. Landsat-7 which takes 16 days to retrace its ground 

swath). In the future, swarms of inexpensive miniature space vehicles, flying in formation, 

will replace these expensive spacecraft platforms. These spacecraft formations will provide 

continuous measurements of the processes and events affecting the Earth. Space science will 

also be significantly impacted by formation flying technology. For example, the space 

science community' s ability to understand the events and processes that occur between the 

Sun and the Earth (the so called Sun-Earth connection) is limited to a just a few spacecraft in 

various Earth and Heliocentric orbits. A significant improvement in the understanding of the 

dynamics of the magnetosphere can be accomplished if these spacecraft were replaced by a 

constellation of miniature science probes flying around the Earth and Sun in a loose 

formation. Significant improvements in space-based interferometery can be accomplished by 

flying several spacecraft in formation, increasing the number of instruments comprising the 

system & eliminating the restrictions imposed by the use of physical structures to establish 

maintain, and control instrument separation and stability. The benefits of formation flying are 

countless and there is no doubt that it is currently one of the very interesting topics in the 

space industry. 

1.2 Proposed Formation Flying Missions 

Converting the Formation flying vision into reality is a formidable task and several research 

organizations are currently involved in developing new technologies for the successful 

realization of planned missions. In fact, the first successful Formation Flying mission, 

GRACE (Gravity Recovery and Climate Experiment) mission comprising of two identical 

satellites was successfully launched in March 2002 into a 500 km polar orbit with a satellite 
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separation of 220 km. The GRACE mission aims to map the Earth's gravity fields by making 

measurements of the distance between the two satellites, using GPS (Global Positioning 

Systems) and a microwave ranging system. According to the latest information from mission 

sources, the GRACE mission has provided much more information on the earth's 

gravitational field than what was gained in over 30 years of previous study. 

Although most of the planned missions are funded by government organizations like NASA 

and ESA, a number of missions are now being planned and sponsored by various universities 

and private organizations like AeroAstro. One of such several planned Formation Flying 

programmes is the U.K. university-led technology demonstration programme proposed by 

Southampton University, Cranfield University and Astrium. The main objectives of the 

programme are to build and launch two identical satellites of approximately 10 kg mass each 

in to a 600 km, circular polar orbit, within a period of two years and demonstrate the use of 

MST (Micro Satellite Technology) in space and aspects of collaborative control. The 

programme also aims to demonstrate Formation Flight at very small distances, of the order of 

100 meters or less. There are several other university led programmes proposed in the United 

States like the 3CS (Three ComerSat). This programme is ajoint venture of three universities 

namely, The Colorado State University, Arizona State University and New Mexico State 

University. The 3CS mission has three primary objectives; Stereoscopic Imaging, Virtual­

F ormation Communications and Distributed and Automated Operations. A list of planned 

missions for this and the next decade is given in Table 1.1 

Projected Mission Name Mission Type 
Launch Year 

2007 Magnetospheric Multiscale (MMS) Space Science/SEC 

2007 Space Interferometry Mission (SIM) Space Science/ ASO 

2007 Submillimeter Probe of the Evolution of Cosmic Space Science/SEU 
Structure (SPECS) 

2007 Cold Land Processes Research Mission (EX -7) Earth Science 

2007 Vegetation Recovery Mission (EX-6) Earth Science 
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2007 Time-Dependent Gravity Field Mapping Mission Earth Science 
(EX-5) 

2007 Leonardo (GSFC) Earth Science 

2007 Soil Moisture and Ocean Salinity Observing Earth Science 
Mission (EX-4) 

2007 Global Precipitation Mission (EOS-9) Earth Science 

2007 Geospace Electrodynamic Connections (GEC) Space Science/SEC 

2008 Constellation-X Space Science/SEU 

2008 Magnetospheric Constellation (MC) Space Science/SEC 

2009 DARWIN Space Infrared Interferometer/European Space Science 
Space Agency 

2011 Laser Interferometric Space Antenna (LISA) Space Science/SEU 

2011 Terrestrial Planet Finder Space Science/ ASO 

2011 Astronomical Low Frequency Array Space Science 
(ALF A)/Explorers 

2015 MAXIM X -ray Interferometry Mission Space Science/SEU 

2015 NASA Goddard Space Flight Center Earth Earth Science 
Sciences Vision 

2015 NASA Institute of Advanced ConceptsN ery Space Science 
Large Optics for the Study 

2015 NASA Institute of Advanced Concepts Space Science 
/Structureless Extremely Large Yet Very 
Lightweight Swarm Array 

2015 NASA Institute of Advanced Concepts !Ultra-high Space Science 
Throughput X-Ray 

Table 1.1 - Representative List of Satellite Missions Utilizing Formation Flying Techniques 

1.3 Formation Accuracy Requirements 

Based on the required relative positional accuracy values, formation-flying missions can be 

categorized as 

• Coarse Formation flying missions 

• Precise Formation flying missions 
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The coarse formation flying missions are those that require relative positional accuracy of 

more than a few centimeters. One such formation-flying application is the formation of 

synthetic aperture radar such as the Astrium's TerraSAR-L 2. These types of formations are 

typically considered in LEO remote sensing missions where each satellite is an individual 

element of a large, virtual antenna formed by the formation. By sharing the individual 

measurements, the resolution of the spacecraft cluster is potentially much higher then the 

resolution of any individual craft. Remaining in a close formation would allow the satellites 

to share information and computing ability among themselves. For such missions, it might be 

unnecessary to maintain extremely precise relative positions; rather, it might be sufficient to 

know the relative position accurately, and to remain in close enough proximity to allow 

intercraft communication. Another example of coarse formation-flying is a stereo imaging 

mission like the ThreeComerSat3
. For the mission to be accomplished the locations of the 

satellites will need to be " in range" and mutually known in order for each to support its 

portion of the mission, but physical proximity is not a requirement for the formation network. 

Stereo imaging only requires a nominal spacing of tens of kilometres. The accuracy 

requirements for such missions are in the order of few metres. 

The Precise formation-flying missions are those, which require a relative positional tolerance 

of less than a millimeter to a few centimeters. Spacebome optical stellar interferometry is one 

such example. Optical stellar interferometry involves the usage of mirrors to reflect the 

collected light (wavelengths 500-900 nanometers) from a distant body to one of the 

spacecraft that will also serve as the combiner. Because of the modest collecting area, the 

faintest measurable sources will have visual magnitudes in the range 10 to 12. The 

interferometric baselines may vary in length from perhaps 50-1000 m. In order to meet the 

mission goals of such a mission, the control system must maintain the distances between 

spacecraft to within 1-2 cm, and the relative orientations of the spacecraft within 1 arcminute 

per axis. Another example of a precise formation-flying mission is the proposed X-Ray 

spectroscopy mission, XEUS 4 that aims to study black holes & intergalactic medium. The 

mission proposes to use two spacecraft in LEO with a separation distance of 50 meters. Since 

the proposed relative separation also serves the purpose of the focal length of the onboard 
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mirrors, the relative positional accuracy has to be maintained with an accuracy of less than 1 

millimetre. 

The practical applications of formation-flying missions are open to both earth-based and deep 

space-based missions. For LEO formation flying missions requiring accuracy of less than 

centimeter, such as the X-ray spectroscopy mission and the optical interferometry mission, 

the limitations come in the form of mission lifetime. The deep space missions are also 

vulnerable to perturbative accelerations caused by solar wind, planetary attraction etc and the 

magnitude of the relative drift between the spacecraft depends on the spacecraft separation, 

distance from the sun etc. Therefore missions like spaceborne optical interferometry require 

very precise sensors and large amount of fuel to maintain the relative distance to an accuracy 

of few millimeters. The success of such missions depends on the development of new 

technologies in the field of precise orbit determination and control. 

1.4 Problem Description /Objectives 

The main motivation behind this thesis was the UK university-led Technology demonstration 

programme that aimed at building and launching two nano-satellites into a circular polar 

orbit of 600 km. Although this university-led nano-Satellite programme no longer exists at 

the time of writing this thesis, it was the main motivation behind this research on Formation 

Flight Dynamics. According to the original programme, it was planned to design and fly 2 

spacecraft of 10 kg each at a separation distance of 100 meters and the universities involved 

in it were to share the tasks associated with mission design including relative trajectory 

analysis. The relative trajectory analysis was one of the first and foremost issues concerned 

with the mission design and at the time of proposal there was very little information about the 

stability and amount of fuel needed to maintain formation patterns. This motivated the author 

to pursue research on Formation flight Dynamics Analysis. 

The main objective of this thesis is to analyze the dynamics of Formation flight and to 

address the issues concerned with formation stability, propellant utilization and orbit 

establishment. Analysis of the relative dynamics will help to plan the fuel budget, select the 

optimal orbital parameters and design the controller algorithm. 
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Spacecraft Formation flying is conceptually simple, but it can pose significant 

implementation challenges, because of the complex interrelationship of the principal design 

characteristics. Most formations are inherently unstable and will drift apart with time. 

Because of the perturbative forces and lack of any long-term stability, formation flying 

necessarily represents a compromise between formation structure, accuracy, long-term 

maintenance, and propellant utilization. One of the ways to understand the relationship 

between various design parameters is by analyzing the relative trajectory of the spacecraft in 

formation. The ability to control the formation with minimum resources requires a complete 

understanding of the behaviour of the formation in the presence of perturbative forces. The 

control accuracy has a great impact on the fuel budget and that in-tum has a great impact on 

the overall configuration of the spacecraft. 

Arguably, the relative dynamics model is the most important part of a satellite formation's 

on-orbit estimator. Any inaccuracies in the dynamics model to predict the behavior of the 

formation will be returned in the form of perceived erratic behavior in the motion of the 

satellites by the filtering algorithm. On-board control mechanisms will then act upon this 

perceived erratic motion, resulting in the excessive use of station keeping fuel. This action 

would be especially unfortunate, as the erratic motion predicted may be nothing but harmless 

periodic motion. If left uncorrected this motion would show the satellites moving within a 

bounded envelope of space. With proper modeling to predict the movement of each 

spacecraft, this motion would be shown to not degrade the spacecraft's' mission and thus 

excessive maneuvering could be eliminated. 

This thesis work will firstly focus on developing a novel model for relative trajectory 

analysis that is not based on the traditional Clohessy-Wiltshire (CW) method 5 and that can 

be used to analyze relative trajectories for any given condition. The method will be limitation 

free and support non-linear analysis of the formation flight problem. Secondly, with the help 

of the developed relative-trajectory model, the thesis will show how the orbit control 

requirements of the formation impose particular constraints on the overall spacecraft design. 

To summarize. the thesis will 
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1. Develop a precise dynamical model of relative motion of formation-flying spacecraft. 

2. Provide an insight into the relative motion of formation-flying spacecraft in the 
presence of all significant perturbative forces. 

3. Identify and quantatize the secular drifts caused by the perturbative forces along all 
three axes with the developed dynamical model. 

4. Investigate the rate of change of orbital elements and will find the L1 V requirements to 
compensate for the change in relative positions. 

5. Study the behavior and stability of different formation-patterns. 

6. Investigate the effects of altitude on the L1 V requirements of formation-flying 
spacecraft. 

7. Investigate the effects of differential drag on cluster stability. 

8. Identify the effects of initial separation on the control accuracy requirements . 

9. Identify the practical technical issues concerned with Formation flight. 

10. Address some of the system design issues related to formation-flight 

11 . Address the problem of orbit establishment 

The organization and the contents of the different chapters of this thesis are shown below as a 

chart. 

• Information on Formation-Flying; 

Chapter 1 ~ • Proposed 'missions; 

• Accuracy requirements for formation flying missions; 

• ObjectiveS of this Thesis: 

U Background 

• Information on Satellite Relative motion; 
Chapter 2 ~ • Literature review on the different methods of relative trajectory 

analysis and formation flight design; 

• Discussion on ways to improve the model of relative motion 
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Chapter 3 

Chapter 4 

Chapter 5 

. Chapter 6 

Chapter 7 
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Methodology 

• Authors attempt to model precise relative motion of satellites; 

• Improvements to the model; 

• Inclusion of various perturbative forces into the model; 

• Relative trajectory simulation scheme; 

D. Properties of Spacecraft Orbits 

• Simulation of unforced and perturbed relative orbits; 

• 

• 
• 

Effects of different initial conditions on the perturbed relative 

trajectory; 

Fuel consumption prediction; 

Comparison with CWequations and other methods 

D Simulation of Other Test Cases 

• Analysis of different formation patterns; 

• Effects of Differential drag on cluster stability; 

• Fuel requirements for different test cases; 

U Practical Issues of Formation Flight 

• Discussion on orbit establishment; 

• Some practical system engineering issues concerned with spacecraft 

formation flight. 

D. Summary, Conclusions and Recommendations 

• Summary of the whole thesis 

• Conclusions 

. ' Ideas for possible future work 
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2.1 Spacecraft Relative motion 

Chapter 2 

Background 

Relative spacecraft motion has long been a problem for mISSIOn analysts who plan 

rendezvous maneuvers. These planners look to the solution devised by Clohessy and 

Wiltshire5 as their primary analysis tool. These two individuals reduced the problem of 

relative satellite motion to the familiar two-body problem by assuming circular orbits, 

linearizing the system, and then solving the resultant equations of motion. This problem was 

first looked at by Hi1l6 in 1878, but it was revisited by Clohessy and Wiltshire in the 1960' s 

and their work made it practical for engineers. While the original intent of these equations 

was to describe the relative motion of one closing spacecraft with respect to a target 

spacecraft, the Clohessy-Wiltshire (CW) solution has been the starting point of analysis for 

satellite formation dynamics. 

2.1.1 Clohessy and Wiltshire Equations 

Although the CW solution is not used for formation dynamics-analysis in this thesis, a brief 

description is warranted to highlight the reasons why it was necessary to develop a new 

method for relative trajectory analysis. As mentioned previously, the CW equations are the 

solution to the linearized circular orbit problem and in its simplest form, no perturbations are 

modeled. The differential form of the CW equations5
, for an earth-based scenario, is derived 

below; 

Consider the situation in figure 2.1.1. The coordinate system 0 - x - y - z moves with the 

origin (0) in a circular path at radius R with the axes so that x is along the radial direction 

and z is orthogonal to the orbit plane and y is in the along-track direction. The angular rate is 

related to the radial distance by 0)2 R3 = f-l . 
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z 

FIGURE 2.1.1 HILL FRAME 

Now consider a master satellite, point 0, moving in a circular orbit of radius R such that the 

xyz coordinate system moves along with it. In the xyz frame, x is the radial direction, y is the 

along-track direction of motion and z is perpendicular to the plane of orbit. The relative 

position of a deputy satellite a is 

p = xi + y] +zk (2.1.l.1 ) 

The relative velocity is 

p=xi+y]+zk (2.1.1.2) 

The relative acceleration is 

(2.1.1.3) 

Now 

- -
R=Ri 
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Transformation of p yields 

- 2 - 2-R = -OJ R = -OJ Ri 

r = R+ p 

r = R + p + 2iiJ x P + iiJ x P + iiJ x (OJ x p) 

Now the equation of motion for a two-body problem in the inertial frame is 

.. Ji -
r = --r+ J(t) r3 

From the geometry of the problem 

~ = R(t) + pet) = - Ji 3 [R(t) + p(t)]+ l(t) 
IIR(t) + p(t)ii 

IIR(t) + p(t)f = ([R(t) + p(t)].[R(t) + p(t)]r3/2 

= ([ R.R] + 2[ R.p] + [p.p]) 

= _1 (1 + [R.p] + [P.p]]-3/2 
R3 R2 R2 

Expanding the left hand side of the expression by binomial theorem yields 

(2.1.1.4) 

(2.1.1.5) 

(2.1.1.6) 

(2.1.1.7) 
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r-3 = R-3 (1 ~[2 [k~] + LD.~]] + ...... J 
2 R R 

Since R» p 

Substitution of the above equation in equation 2.1.1. 7 yields, 

F = R(t) + pet) = - ; [ R(t) + pet) - ;2 (kp)R + ..... J + let) (2.1.1.8) 

Assuming the reference orbit to be circular 

::. f1 - 2-;" 
R=--R=-OJ Rl 

R3 
(2.1.1.9) 

Substitution of equation 2.1.1.9 in equation 2.1.1.8 and then comparing it with equation 

2.1.1.6, gives 

(x- x2", y- ",' X)I + (y+ 2", x- ",2 y)] + ; k = _",2 [.0(1) - :' (R.p)R +.} J(t) 

(.x- x2", y- ",' x)I + (y+ 2m x- ",2 y)] +; k = -",' [.0(1) - :' (R.p)R + .... } J(t) 

(.x- x2", y- ",' x)I + (y+ 2m x- ",' y)] + ; k = -""(xi + y] + zk - :' R 2 xi ) + 1(t) 

C;- x20J y- OJ2 x)i + Cy+ 2mx- m2y)] +; k = _OJ
2 &] + zk - 2xi)+ lCt) 

(2.1.1.10) 

The acceleration term !(t) in equation 2.1.1.10 can be due to thrust force, aerodynamic 

force or a gravitational force from a third body. 

Comparing i, j and k components on both the sides, the components of relative motions are 

(2.1.1.11a) 
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y + 2(1)x -3(02y = f 
y 

(2.1.1.11b) 

(2.1.1.11c) 

where (0 is the mean motion (0 = 

and Rradius is the distance from the center of the earth to the target vehicle in circular orbit. 

The standard reference frame is a radial, orbit normal, and in-track frame (Figure 2.1.1). Any 

perturbations to be included within this set of equations would be modeled as acceleration 

terms on the right hand side of equations 2.1.1.11 a, 2.1.1.11 b and 2.1.1.11 c. 

If these equations are set to zero (i.e. no non-central force effects), then the resultant motion 

can be described as free motion. These equations can either be solved via the standard 

eigenvalue-eigenvector approach or through a simpler approach if one utilizes simple 

harmonic motionS. The unforced solutions to equations 2.1.1.11a-2.1.1.11c are 

. 2· . 
x(t) = 2(2xo + Yo )-(3xo + Yo )cosmt + Xo sin wt (2.1.1.12a) 

w w w 

2· . 2· . 
y(t) = (Yo -~)-3(2Xo + Yo )mt +~cosmt+ 2(3xo +2 Yo )sinmt (2.1.1.12b) 

w w w w 

Z(t) = Zo cos(Ot+ Zo sin(1)t (2.1.1.12c) 
OJ 

The coefficients xo' xo , etc in (2.1.1.12a-2.1.1.12c) represent initial values of position and 

velocity. 

The Clohessy-Wiltshire equations were developed for the rendezvous problem that is of short 

duration and has frequent thruster firings. Consequently, the long-term accuracy of the 

equations of motion is not as important in the rendezvous problem as in the formation-flying 

problem. However, CW equations are derived with assumptions like the reference orbit is 

circular, the Earth is spherically symmetric, and the target orbit is very close to the reference 

orbit such that there is no external perturbing force and the nonlinear terms in the relative 

motion can be neglected. The assumptions made in the derivation of the solution deteriorate 
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the usefulness of the same and result in errors that are unacceptable for an accurate prediction 

of relative motion needed for formation flying satellites. A precise analytic solution for the 

relative motion of and formation flying satellites is needed to minimize fuel consumption and 

maximize lifetime. Also, the CW solution is being used for purposes other than its original 

intent. Thus, improvement in the relative dynamics model is key in the effort to find fuel­

optimized solutions for satellite formation flight. 

2.2 Improvement of the Relative Motion Equations 

The CW equations have been the basis of study of relative dynamics of satellites since 1960. 

Several authors have since then proposed their own methods of analysis or have tried to 

make the CW equations more precise and useful. In this section, the work of several authors 

in connection to this problem will be reviewed. 

London7 improved the CW method by assuming that the satellites were influenced by a 

quadratic gravity field. His method of successive approximations was based on the 

approximation of the non-linear CW differential equations and the linear solutions to the CW 

equations. The resulting solutions were more accurate than the linearized solutions but were 

only accurate enough for a few orbits of the reference satellite. This was due to the presence 

of secular terms in the solutions that limited the time interval of integration. 

Anthoni further improved the work of London by solving the relative equations of motion 

with slight eccentricity. Again a quadratic gravity field, similar to that used by London was 

considered and any higher order terms of eccentricity were ignored while solving the 

equations. A similar approach was used in solving the non-linear equations and the resultant 

solutions were only accurate for a few orbital revolutions. 

Werlwas9 also obtained solutions to the linearized equations of motion. His solutions differed 

to those obtained by others for the fact that he considered the reference frame to be in the 

satellite rather than a point on a reference orbit. The equations of motion were linearized with 

Ph.D Thesis 26 Balaj i Shankar Kumar 



Dynamics of Spacecraft Formation Flight 

respect to this configuration. This formulation lead to a complicated, although accurate 

solution. A limitation of the solution was that there could be no initial out of plane 

displacement, although an initial velocity out of plane is allowable. The form of the solution 

also depends on the initial conditions, which is a disadvantage as well. 

Berreen 10 improved the CW equations by considering the relative motion of a satellite with 

reference to an elliptical reference orbit. The solutions, he obtained to the linearized 

equations were based on the assumption that the two orbits were coplanar. However, most 

applications of interest, such as intercept or rendezvous, will in general have two vehicles in 

non-coplanar orbits, so this restriction is a disadvantage when considering practical 

problems. 

Garrison II also derived solutions to the relative motion of a satellite with reference to an 

elliptical orbit. The linearized solutions were plotted for several sets of initial conditions and 

were found to be accurate for up to two revolutions of the reference orbit. However the 

results were not as good for large separations of the satellites. A study was also conducted to 

understand the error induced by the linear representation of the dynamics as well as the 

effects of a non-spherical central body and other perturbations that were ignored in the 

model. It was determined that the error made by the linearization is much greater than that of 

the perturbations over the course of two revolutions of the reference orbit. 

Meltonl2 developed a linear set of relative motion equations for an elliptical reference orbit. 

The equations developed included second order eccentricity terms in approximation. The 

solution was also give as a function of time and not as a function of true anomaly unlike 

previous solutions for the case of elliptical reference orbits. The solution was presented in 

both rectangular and cylindrical co-ordinates, and can include the effects of certain forms of 

perturbations through a convolution integral. The cylindrical co-ordinate representation was 

found to be more accurate than the rectangular co-ordinate solution. Secular terms are present 

which limits the time interval over which the solution will he valid. 
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Recently, Gim and Alfriend 13 proposed a method for relative position analysis known as the 

Geometry method. Based on the transformation and the state transition matrix for the relative 

orbital elements, the geometric method gives a precise solution in closed form to 1 st order for 

the non-circular reference orbit with mean and osculating orbital elements under the 

existence of the gravitational perturbation J2 . In the geometric method, the relationship 

between the state vector and relative variables is obtained in matrix form instead of directly 

solving the differential equations of relative motion. The state vector of the relative position 

and the relative velocity for a satellite, called the Deputy, and a set of equinoctial orbital 

elements for a reference satellite, called the Chief, are defined as e =(a,e,i,ql'q2,nl and 

X =(x,x,y,y,z,zl. By a Taylor series expansion about the chief 13, the relative variables for 

the deputy are represented by & 

The Geometric transformation is then given by 

XU) = [A(t) + aBCt)]be(t) 

where a = 3J2R; and Re is the radius of earth, A(t) and B(t) are the transitional matrices. 

The general idea is to represent the relative motion in 2 parts, one having the J2 term (B(/)) 

and the other without (A(t)). The same approach was used by Garrison II with a different set 

of variables but without h. 

The general relation ship between X(t) and beCt) is 12 

R ~ (R2 ( . e e] ~e (2Raq] R2 cose]a (2Raq2 R2 Sine]a -ua+ - Q]Slll -Q2COS u - + Q]- + Q2 
a p p p p p 

Rae + Rcosian 
R(sin eai - cos e sin ian) 

(2.2.1) 

where 

Where Q] = e cos OJ and Q2 = e sin OJ 
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The effects of J2 in equation 2.2.1 can be represented through the variations m orbital 

elements due to J2 . Gim 12 describes the derivation of the above equations in a detailed 

manner. Although the geometry method provides a precise solution to the relative dynamics 

problem with the inclusion of reference satellite eccentricity and .h dynamics, it does possess 

some limitations 12. Due to the neglected nonlinear terms, the relative positional errors have 

been found to increase with the increase in the magnitude of spacecraft separation and orbit 

eccentricity. The equation of relative coordinates for an unperturbed orbit is given as 13 

(2.2.2) 

In the above equationBis the argument oflattitude and not the true anomaly. In this thesis, 

the argument of latitude is represented as u 

Another recent development is the COWPOKE (Cluster Orbits With Perturbations of 

Keplerian Elements) equations developed by Sabol 14
. The COWPOKE equations also use the 

differences in the orbital elements of two satellites to determine their relative motion and 

support analysis of elliptical reference orbits. According to Sabol 14
, the equations should 

provide sufficient accuracy for low-fidelity simulation applications, although they are 

inadequate for high precision analyses. The cowpoke equations are also derived as a solution 

to the geometry of the formation-flying problem but in a different way. Sabol 14 uses the 

geometry of the formation to find the angle between the deputy spacecraft and the master 

spacecraft with respect to the center of earth. Once this angle is found, it is then multiplied 

with the projection of the radius in the required plane to yield the arc length. The x, y and z 

coordinates are quite precise for a close formation where the angles between the spacecraft 

are very small. The COWPOKE equations are given as 14 
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1 + (e + &)cos(M + 2e sin(M) + Sv) 1 + ecos(v) 

[(SUI + Sv)cos(Si) + 6Qcos(i)] 

[ . 6Q . ( (SUI . ( Sv s:-. s:- • s:--2sm-sm i)cos UI+-+M +2esm M)+-)+uism(UI+uUl+M +2esm(M)+uv)] 
2 2 2 

r 

(2.2.3) 

where br, a and fJ correspond to radial, along-track and cross-track angular separations and 

r is the position vector of the spacecraft and v is the true anomaly. All other orbital elements 

are same as the classical orbital elements defined in the nomenclature of this thesis. In the 

above equations, the orbital elements of the deputy spacecraft are represented as sum of the 

orbital elements of the master and the difference in the orbital elements. For example the 

RAAN (ascending node) would be represented as Qd = Q+bn where Q is the RAAN of 

the master spacecraft and bn is the difference in the ascending node. Also the true anomaly 

is represented as v = M + 2e sin(M) . 

Rewriting Equation 2.2.3 in terms of x, y and z and the orbital elements of the master and the 

deputy yields 

Rd -Rm 

Rd [ (bOJ + bv) cos( b i) + cosCim)bn] 

Rd (-2 sin ( ~) SinCim)Cos( (OJm + V m) + (bOJ; bV)) + bi sin(OJd + vd)) 

Substitution of Rd - Rrn = bRand bOJ + bv = bu, the argument of latitude in the above 

equation and assumption of cos b i ::::; 1 for small separation distances reduces the x and y 

coordinates of the above equation to the following; x = bRand y = Rdbu + Rd cos irnbn 

Similarly for small separation distances sin Q ::::; Q and cos ud ::::; cos( urn + bu). This reduces 
222 

The COWPOKE equations then become 
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(2.2.4) 

It can be seen that the COWPOKE equations (equation 2.2.3) with some modifications 

(equation 2.2.4) are similar to the Gim and Alfriend Equations (2.2.2) although the 

derivations are different. So both the methods converge well when the relative separation 

between the spacecraft is very small (a few hundred meters). 

2.3 Relative Motion Equations and Satellite Formation Flight 

Relative motion equations have been useful in the design and optimization of satellite 

formation geometry, as well as for developing control algorithms to maintain these 

formations. Sabol 15 analyzed different formation patterns with the help of the CW equations. 

He used the DSST orbit propagator to simulate different formation patterns and estimated the 

fuel requirements of different formations based on the results of the simulation. He found out 

that the Circular and projected formation patterns were very costly in terms of fuel and orbit 

maintenance. 

Badeshal6 modified the CW equations to include atmospheric drag forces to investigate the 

deployment and initialization of a cluster of six satellites in an in-track formation. The 

investigation focused on determining possible collision scenarios between the satellites 

during the deployment phase and the effects of error in the deployment velocity as well as 

error in the time spacing between subsequent deployments. No study was conducted to 

determine the effect of error in the deployment direction. A procedure was outlined for 

determining the amount of fuel needed to initialize the formation. 

Chichkal7 used a relative motion solution to characterize the relative orbits of satellite 

formations that appear to have a constant distribution from an observer located on the 

planetary surface. A more detailed study was then conducted in order to ascertain the error 

made in the linearized study. 
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Schweighartl8 analyzed the effects of J2 on a spacecraft relative motion by adding a 

linearized form of J2 onto the right-hand side of the Hill's equations. The linear equations 

were compared against the mean variation of the orbital elements, where the linear equations 

captured the variation in 5 out of 6 elements. The missing variation was due to the fact that 

the linearized equations did not incorporate the geometry of the orbital planes. 

A technique for controlling satellite formations, based on relative motion equations, is found 

in Vadali 19. This technique used the relative motion equations to design periodic relative 

orbits of a deputy with respect to a chief. A control was then developed in order to cancel a 

simple gravity perturbation model in such a way that the average fuel consumption of each 

satellite is minimized. 

2.4 Conclusions 

The review of literature on relative trajectory analysis shows that all existing methods of 

analysis have certain types of limitations like limitation on orbit eccentricity, simulation 

duration, initial separation of satellites etc. These limitations are a consequence of several 

assumptions made in the derivation of the relative motion equations. The geometric method 

by Gim 12 was found to be more precise than the CW method but has limitations on spacecraft 

separation. There exists no method that is valid for all conditions. The purpose of the 

research described in this thesis is to develop a generalized method that is not based on the 

traditional CW method and that can be used to analyze relative trajectories for any given 

condition. The method should be with the minimum of limitations and support non-linear 

analysis of the formation flight problem. 

The research work presented in this thesis has also been presented as published 

papers20
,21,22,23,24. In the following chapters, a dynamical model to analyze relative trajectory 

of spacecraft in elliptical orbits for any initial separation will be developed. This model will 

be then used to study the dynamics of spacecraft formation flight as discussed in the 

objectives of this thesis. 
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Chapter 3 

Methodology 

The purpose of this chapter to develop a precise method to analyze the relative motion of 

satellites that is valid for any type of Formation pattern without the limitations of the CW 

method. Firstly, the preliminary method developed during the initial stages of this research 

work is presented. The final method is a further development of the preliminary method that 

can be only used to analyze one of the basic configurations of formation flight, the Leader­

Follower formation pattern. 

3.2 The preliminary method 

The motivation behind this thesis was the UK-University led programme that aimed to 

design and develop two satellites of 10 kg mass each and launch them into a leader follower 

formation pattern with a separation distance of 100 meters. To understand the relative 

dynamics of such a formation, the author initially developed a method based on the geometry 

of the problem and then used low-propulsion flight theor/5 to understand the dynamics of 

such a formation. This method will be hereafter referred to as the Preliminary method. With 

the new model, it was possible to analyze elliptical reference orbits, a feature that the CW 

equations fail to provide. But the disadvantage of the model was that it could be only used to 

analyze planar cases and any out of plane motion had to be ignored. This was not a problem 

for designs like Leader-Follower configuration but was certainly a big issue for other types of 

Formation patterns that had satellites in all planes. Also, the initial method had low­

propulsion flight theory as the basis of relative dynamics analysis, which made modeling of 

perturbative forces, normal to the orbit, very difficult to accomplish. The idea behind 

incorporating the low-propulsion theory was that the perturbative forces were assumed to be 

of a very small magnitude and constant in nature. By assuming the perturbative accelerations 

to be similar to that of the effect of a low thrust propulsion system like plasma thrusters, one 

can get a picture of the dynamics of the satellites 111 a perturbative field. But the main 

Ph.D Thesis 33 Balaj i Shankar Kumar 



Dynamics of Spacecraft Formation Flight 

drawback of the low-thrust propulsion theory is that it assumes constant micro thrust acting 

on the spacecraft whereas in a real scenario the spacecraft would experience different 

perturbative accelerations in different points of the orbit due to different perturbative 

accelerations like J2 and Solar Radiation Pressure. However the low-propulsion flight model 

can be used to model atmospheric drag by assuming that the acceleration caused by 

atmospheric drag remains constant for the same altitude, which is only true for a small 

change in altitude. 

The drawbacks of the preliminary method led to the advent of a new approach that could 

accommodate analysis of any perturbative accelerations acting on any type formation pattern. 

3.2.1 Mathematical modeling of the leader-follower pattern using the preliminary method 

The most basic configuration in which spacecraft can fly in formation is that of leader and 

follower shown in Fig.3.2.1. In this configuration, the orbital elements of each spacecraft are 

identical except for the true anomaly, meaning that the spacecraft follow the same orbital 

path at different times. 

J 
! / 
'-.-/ 

FIGURE 3.2.1 LEADER-FoLLOWER FORMA nON 
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An example of Leader-follower formation of two spacecraft (namely A and B) separated by a 

distance of 100 meters and located at an altitude of 600 kilometers is considered and is 

shown in fig.3.2.2. The orbits of the spacecraft are assumed to be circular and only the 

planar case shall be investigated. It can be seen further in this thesis that orbits with 

eccentricity could also be subjects of such a model. 

The equations of motion are derived as a solution to the geometry of the system, where the 

origin of the system 0 coincides with the earth's centre. The OYaxis lies along the line that 

connects the center of the earth with the equator and OX axis lies along the line that connects 

the center of earth with its north pole as shown in figure 3.2.2. Firstly, the OXY system is 

transformed to system OPQ by rotating the axis by BA to align with the local co-ordinate 

system of the reference spacecraft. In our case, spacecraft A will act as the reference 

spacecraft. Then the origin of the OPQ system is translated to the centre of mass of the 

reference spacecraft oxy from the centre of earth. In the new system, x-axis is the radial 

f 
/ 

./ 

B 

x 

FIGURE 3.2.2 RELATIVE MOTION OF SATELLITES IN POLAR CO-ORDINATES 

direction of motion of the spacecraft with respect to the centre of earth and y-axis points in 

the direction of the velocity vector. 

The coordinates of spacecraft B in OPQ frame can be mathematically represented as 

Ph.D Thesis 35 Balaji Shankar Kumar 



Dynamics of Spacecraft Formation Flight 

Where To is the transfonnation matrix and is given as 
.4 

(3.2.1.1 ) 

(3.2.1.2) 

B A is the true anomaly of spacecraft A. Further, co-ordinates Xs, Ys can be represented as 

[
COSBB 

Where To = 
B sinBB 

(3.2.1.3) 

(3.2.1.4) 

B Ii is the true anomaly of spacecraft B. Substituting equations 3.2.1.3 in 3.2.1.1 gives 

sin BA] [cos BB 
cosBA sinBB 

(3.2.1.5) 

Now translating frame OPQ to Oxy gives us the coordinates in the spacecraft body-centered 

frame 

[
x] [COSBA 

Y - -sinB
A 

Expansion of equation 3.2.1.6 gives 

sinBA.l[cOSBB 

cosBA J sinBH 

[
x] = [(COS(BA ) COS(BH) + sin(BA ) sin(BH))· rH - rA: 
y ( - sine BA ) cos( Bli ) + cos( BA ) sine B H» . r/i 

(3.2.1.6) 

(3.2.1.7) 

In the above equations rA , rs are the position vectors of spacecraft A and B respectively 

Equation (3.2.1.7) can be used to analyze reference orbits of elliptical nature as the equations 

are given as a function of the position vector r. There is no relative drift if both the 

spacecraft experience perturbative accelerations of the same magnitude as the orbits of both 
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the spacecraft decay at the same rate. However, If the pertubative accelerations differ in 

magnitude, the orbits decay at different rates and there arises a relative drift due to the 

difference in positions of both the spacecraft. In the next subsection force models will be 

included in equation (3.2.1.7). 

3.2.2 Equations of Motion in a Perturbative Field 

It is possible to simulate the dynamics of relative motion in the presence of perturbative 

forces using equation 3.2.1.7 if the evolution of the position vectors ra and rb with time due to 

disturbances is known. One of the methods is the Low propulsion method by Ehricke25 . His 

method gives an analytical expression for finding the position vector of spacecraft in circular 

or elliptical orbits acted upon by perturbative forces with respect to time. In his method, as 

described in Spacecraft Dynamici5
, he derives analytical expressions for position vector and 

velocity assuming the perturbative forces to be of constant magnitude for a short period of 

time ( a few orbits). The perturbative forces are treated as micro-thrust forces accelerating or 

decelerating the spacecraft. 

Ehricke, in his method, assumes the perturbative forces to be of very small magnitude, 

compared to the local gravitational force, and applies the so-called "small perturbation 

method,,25. 

If the tangential force is a small thrust F that can accelerate or decelerate then the position 

vector as a resultant of the perturbative forces, for departure from a slightly elliptical orbit by 

Ehricke's method is given as, 

(3.2.2.1) 

Where the subscript 0 refers to the initial orbit, mo is the angular velocity of the original orbit 

and Va is the initial orbital velocity of the spacecraft. 

The Velocity as a function of time is given as 
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2 
f.1/r, F r, v . f.1/r, 

vet) =vO +-2-0 {_-.Jl..-[(_O __ 2){jV+ 2smuV]-vo(1--2-0 )(1 +cosuV)} (3.2.2.2) 
vo m Vo f.1/ ro Vo 

It is also imperative to derive the relation between the angular velocity of the spacecraft and 

the pertubative acceleration acting on it to simulate the dynamics in equation 3.2.1.7. 

From the energy equation we have 

V(t)2 f.1 f.1 
----:=--

2 r 2a 

Rearranging and observing that Vo 
2 

= f.1 , 
r 

~ = 2_(V(t»)2 
a Vo 

From kepler's third law T2 oc a 3 . Thus the period of given ratio v(t) / Vo is 

3 

T2 +-( V;:) )T 
Where To is the Time period of the initial orbit. So, ifv(t) = Vo - L1v, then 

2ff 
The angular velocity (j)(t) = --

T(t) 

And the true anomaly e(t) is e(t) = eo + f{j)(t)dt 

(3.2.2.3) 

(3.2.2.4) 

(3.2.2.5a) 

(3.2.2.5b) 

(3.2.2.6) 
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(3.2.2.7a) 

(3.2.2.7b) 

Where Bo is the initial position ofthe spacecraft and v(t} as given in equation 3.2.2.2. The true 

anomaly at any point t is found by numerically integrating equation 3.2.2. 7b with a step size 

of dt to epoch time t. 

Now, having all these results, it wouldn't be difficult to model the specific case of motion 

where the formation flying spacecraft are in a Leader follower formation as shown in 

figure.3.2.2 and are initially separated by distance d. 

If the spacecraft are acted upon by external forces which oppose their motion, then the 

velocity of spacecraft A and B at any time t can be written as va(t} and Vb(t}. The true 

anomalies of spacecraft A and B at any time can be written as 

Substituting for wa(t} and lVb(t}, 
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Ba(t)=Bao + flUa(t)·dt 

Bh (t) = BhO + flUh (t). dt 
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(3.2.2.8a) 

(3.2.2.8b) 

(3.2.2.9) 

(3.2.2.10) 
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The position of spacecraft A and B at any time t from equation (3.2.2.1) can be written as 

(3.2.2.11 ) 

(3.2.2.12) 

Where the subscripts ao and bo refer to initial conditions of spacecraft A and spacecraft B 

respectively. 

The perturbed relative co-ordinates of spacecraft B with respect to spacecraft A can then be 

found by substituting equations (3.2.2.9), (3.2.2.10), (3.2.2.11) and (3.2.2.12) in equation 

(3.2.1. 7). The resultant equation is given in Appendix B 

3.2.3 Advantages and Discrepancies of the Preliminary method 

The method developed in the preceding sections is a closed form solution to the relative 

motion problem for planar case of a formation-flying scenario. Equation 3.2.1.7 that is 

represented as 

[
x] = [(COS(BA)COS(BH)+sin(BA)sin(BH))·rH -rAJ 

y (-sin(BA ) cos(Bn) + COS(BA) sin(BH))· rB 

is a direct solution to the relative motion problem based on the geometry of the formation. 

Moreover, since the equations have the position vector, the inclusion of eccentricity becomes 

a very easy task. This allows us to study relative orbits that are elliptical in nature. This is a 

significant development as no other method allows treatment of elliptical reference orbits 

precisely. The methods that allow treatment of elliptical orbits like Melton26
, Berreen10 have 

tnmcated eccentricity terms of higher order that make them valid for only small eccentricity 

values. Also there is no limitation on the initial spacecraft separation like in the traditional 

CW method where the spacecraft separation is assumed to be very small when compared to 

the radius of earth. The above equations also can be derived as a function of time by 

representing the true anomaly as a function oftime27. 
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au) = M(t) + 2e(t)sin(M(t)) +2e2 (t)sin(2M(t)) +~e\t)(13sin(3M(t)) - 3sin(M(t))) 
4 12 

Although the preliminary method was helpful to model forces like drag with the help of low 

propulsion flight theory, it was not helpful where modeling of radial and out of plane forces 

was essential. Also the incorporation of J2 in to the relative co-ordinate equations was very 

difficult. It was still possible to analyze some issues like differential drag effects with the 

above model. Figure 3.2.3 shows the effect of differential drag on a formation of two 

satellites one following the other. The trailing satellite is assumed to have 10% more surface 

area than the leading satellite. Figure 3.2.3 was plotted with some approximations made on 

the time dependent terms in equation 3.2.2.2. This was to ease the burden of the program 

used for numerical integration. 
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Along-track sepdration,m 

FIGURE 3.2.3 - EFFECTS OF DIFFERENTIAL DRAG AREA OF 10% SIMULATED FdR 1 ORBIT AT 

600-KM ALTITUDE 

The explanation to the figure is as follows. Dissipation of kinetic energy into heat through 

drag decreases the orbital velocities of the both the spacecraft, causing them to slow initially. 

But as the spacecraft enter a circular inward spiral trajectory, their angular velocities increase 

thereby causing them to approach slowly but steadily. Since the trailing satellite has more 

drag area than leading satellite, It loses height more rapidly and as a result, the offset in the x 
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(radial) direction increases. At the same time, there is also a steady increase of the offset in 

the y (along-track) direction. 

3.3 Improved method 

The equations for the relative coordinates are again derived as a preCIse solution to the 

formation geometry problem with the definition of orbital frames and orbital elements as 

shown in Figure 3.3.1 28
• The reference satellite will be considered as the master satellite 

(subscript m) and the satellite to be observed as the deputy (subscript d) hereafter. It should 

be noted that there could be many deputy spacecraft for a specific mission. But in our case it 

will be assumed that the formation consists of only two spacecraft namely the master and the 

deputy. 

The origin of the spacecraft centered co-ordinate system is assumed to be at the master 

satellite's centre of mass. The origin of the coordinate system OXYZ is at the center of the 

earth with the XY plane coinciding with the Earth's equatorial plane and X-axis pointing in 

the direction of vernal eqinox y. The Z-axis points in the direction of the North Pole and the 

Y-axis is normal to the XZ plane and completes the right-handed frame of system. 

The origin of the system OPQR also lies at the center of the earth with the P axis pointing in 

the direction of the master satellite's Centre-of-Mass. 

The unit vector of P is defined as 

r 
P=GI (3.3.1) 

where r is the radius vector of the spacecraft 

The P-axis originates from the center of earth and lies along the points that connect the center 

of earth with the center of mass of the spacecraft, R-axis also originates from the center of 

earth, lies in the orbital plane and is perpendicular to the P-axis and Q axis originates from 

the center of the earth and lies perpendicular to the orbital plane. 
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F IGURE 3.3.1 - ORBITAL FRAMES AND ELEMENTS 

The origin of the oxyz system lies at the master satellite's center of mass and its unit vectors 

are 

x = P, y = Q, z = R (3 .3.2) 

From Figure 3.3.1, XYZ axes can be transformed to PQR axes by 3 successive rotations as 

follows : 

1. Rotation about the Z axis by + .Q 

2. Rotation about the X axis by + i 

3. Rotation about the Z axis by + u (u = aJ + ()) 

All the greek symbols and the italicized alphabets are standard notations for the orbital 

elements namely () representing the true anomaly, .Q representing right ascension of 

ascending node (RAAN), aJ representing argument of perigee, u representing the argument 

of latitude and i the inclination. 

The new coordinates can now be represented as 
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(3.3.3) 

Where l cosum SlllUm 

m~ 
0 o rosom sinQm 

~1 [TuiOJm ~ -s~um cosum cosim sini:n -sinQm cosQm 
0 -SIll 1m cos 1m 0 0 

(3.3.4) 

The coordinates of the deputy spacecraft (from equation (3.3.3) in the OPQR system are 

(3.3.5) 

The Coordinates X d' Yd , Z d can also be represented by the Matrix as given below 

(3.3.6) 

[COSOd -sinQd 

~l 
1 0 0 [COSUd -SlllU

d 

~l Where [T OiJd ~ sin; d cosQ
d 0 cosid -sinid SlllUd cosud 

0 0 sinid cosid 0 0 

(3.3.7) 

Substituting equation (3.3.6) in equation. (3 .3 .5) yields the Coordinates X d' Yd , Zd in the 

OPQR frame as 
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(3.3.8) 

Now shifting the origin of the OPQR frame to the master satellite's Centre-of-mass gives the 

relative coordinates of the deputy spacecraft with respect to the master spacecraft in the OXYZ 

frame. 

Combining the two transformations in to one then gives 

All A12 A13 

where [A] = [TuiOJm -[ TOiu Jd and [A] = A:21 A:22 A:23 

A31 A32 A33 

All = cUm -cOm ·cOd 'CUd -CUm ·eOm 'SOd 'eid 'SUd -SUm ·eim ·sOm ·eOd 'CUd 

+SUm . eim . Sam . SOd' eid . SUd + CUm' Sam . SOd' CUd + CUm - Sam . COd' cid . SUd 

+SUm . eim . cOm' SOd' CUd + SUm' eim . cOm' COd' cid . SUd + SUm' sim . Sid' SUd 

A]2 = -CUm' cOm -COd' SUd - CUm' cOm' SOd' eid - CUd + SUm' eim . Sam . COd' SUd 

+SUm ·cim ·sOm 'SOd ·cid 'CUd -CUm ·sOm 'SOd -SUd + CUm ·sOm -COd ·eid 'CUd 

-SUm -eim . cOm' SOd' SUd + SUm' eim -cOm' COd' cid - CUd + SUm' sim . Sid' CUd 

Al3 = cOm ·sOd . Sid 'CUm -SOd -Sid 'SUm ·cim ·sOm -cOd ·sOm . Sid 'CUm 

-COd' Sid' SUm' cim . cOm + SUm' sim . cid 

(3.3.9) 

(3.3.10) 
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A21 =-sum ·dlm ·cOd ·cud +sum ·cOm ·SOd ·cid ·SUd -cum ·cim ·sOm ·cOd . CUd 

+CUm . cim . sOm . SOd· cid . SUd - SUm· sOm . SOd· CUd - SUm· sOm . COd· cid . SUd 

+CUm . cim . cOm· SOd· CUd + CUm· cim . cOm· COd· cid . SUd + CUm· sim . Sid· SUd 

An = SUm· cOm· COd· SUd + SUm· cOm· SOd· cid . CUd + CUm· cim . sOm . COd· SUd 

+CUm . cim . sOm . SOd· cid . CUd + SUm· sOm . SOd· SUd - SUm· sOm . COd· cid . CUd 

-CUm· cim . cOm· SOd· SUd + CUm· cim . cOm· COd· cid . CUd + CUm· sim . Sid· CUd 

An = -cOm· SOd· Sid· SUm - SOd· Sid· CUm· cim . sOm + COd· sOm . Sid· SUm 

-COd ·sid . CUm ·cim ·cOm +CUm ·sim ·cid 

A31 =sim . Sam ·cOd . CUd -sim ·sOm . sOd ·cid ·SUd -sim . Cam ·SOd . CUd 

-sim . cam· cOd· cid . SUd + SUd· Sid· cim 

A32 = -sim . sam· COd· SUd - sim . sam· SOd· cid . CUd + sim . cam· sOd· SUd 

-sim . cam· cOd· cid . CUd + CUd· sid· cim 

where the sine and cosine functions are represented as sand c for simplicity. 

The equations of the coordinates of the deputy spacecraft relative to the master spacecraft in 

xyz frame are 

x = (cum ·cOm ·cOd ·CUd -CUm ·cOm ·SOd ·cid ·SUd -SUm ·cim ·sOm ·cOd ·CUd 

+SUm . cim . sOm . SOd· cid . SUd + CUm· sOm . SOd· CUd + CUm· sOm . COd· cid . SUd 

+SUm ·cim ·cOm ·SOd . CUd + SUm ·cim ·cOm ·cOd ·cid ·SUd +SUm ·8im . Sid ·sud)·Rd -Rm 

(3.3.11 a) 

y = (-SUm· cOm· COd· CUd + SUm· cOm· SOd· cid . SUd - CUm· cim . sOm . COd· CUd 

+CUm . cim . sOm . SOd· cid . SUd - SUm· sOm . SOd· CUd - SUm· sOm . COd· cid . SUd 

+CUm ·cim ·cOm ·SOd . CUd + CUm ·cim ·cOm . COd ·cid ·SUd + CUm ·sim · Sid ·SUd )· Rd 

(3.3.11b) 
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Z = (sim ·sOm ·cOd . CUd -sim · Sam 'SOd ·cid 'SUd -sim ·cOm 'SOd 'CUd 

-sim ·cOm ·cOd 'cid 'SUd + SUd . Sid ·cim)·Rd 

(3.3.11b) 

The above three equations are the generalized form of the coordinates of the deputy 

spacecraft with respect to master satellite. Substitution of R = am' (1- em 

2

) and 
m l+em .cosBm 

Rd = ad' (1- e/) in equations (3.3.l1a - 3.3.11c) yields a set of equations with the orbital 
l+ed ·cOS Bd 

properties of both the master and deputy satellites including the master satellite eccentricity, 

a parameter that was neglected in the CW equations. This resultant equation is given as 

x = (cum ·cOm ·cOd 'CUd -CUm ·cOm ·sOd 'cid . SUd -SUm ·cim ·sOm ·cOd 'CUd 

+SUm . cim . Sam . sOd' cid . SUd + CUm' Sam . sOd' CUd + CUm' Sam . cOd' cid . SUd 

. n n . n n' . . ) ad .(1-e/) 
+SUm 'Clm ·C1>l.m ·S1>l.d . CUd +SUm 'Clm ·C1>l.m ·C1>l.d 'Cld 'SUd +SUm 'Slm 'Sld 'SUd .----"'-----------=--

l+ed'cosBd 

am .(1-em
2

) 

1+em ·cosBm 

y = (-SUm ·cOm ·cOd . CUd + SUm ·cOm 'SOd 'cid ' SUd -CUm ·cim ·sOm ·cOd 'CUd 

+CUm . cim . Sam . SOd' cid . SUd - SUm' Sam . SOd' CUd - SUm' Sam . COd' cid . SUd 

. n n . n n . . . ) ad' (1- e/) 
+CUm 'Clm ·C1>l.m ·S1>l.d . CUd + CUm 'Clm ·C1>l.m ·C1>l.d 'Cld . SUd + CUm 'Slm . SId 'SUd .----"'-----------"--

l+ed 'COS Bd 

(3.3.12) 

Equation 3.3.12, can be used to analyze any type of formation pattern with any number of 

satellites acting as the deputy. 
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3.3.1 Verification of the Results 

To verify the consistency of the derived relative co-ordinate equations, simulations are 

performed for different initial conditions. The technique behind the verification procedure is 

as follows. 

For verifying the consistency of the x co-ordinate that represents the radial direction, all the 

orbital elements of the master satellite and the deputy satellite except for the altitude of the 

orbit are assumed to be the same. If the derivation for x is consistent with the derived 

equations then the simulation should start with an initial value of x that represents the 

difference in altitudes. Also because of the difference in altitudes the y co-ordinate should be 

expected to change for the simulated time due to the difference in the orbital periods. The 

value of the z co-ordinate should remain zero throughout the simulated time. 

For verifying the consistency of the y co-ordinate, all the orbital elements of the master and 

the deputy satellites except for the true anomaly are assumed to be the same. If the derivation 

for y is consistent with the derived equations then the simulation should start with an initial 

value ofy that equals the product of the radius of the orbit and the difference in true anomaly. 

This is illustrated in figure 3.3.2. Also the values of the other coordinates namely x and z 

should remain zero throughout the simulated time. 

D 

R 

FIGURE 3.3.2 RELATIONSHIP BETWEEN THE ANGLE SUBTENDED AND THE DISTANCE OF 
SEPARATION 
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For verifying the consistency of the z co-ordinate, two different simulations are performed. In 

both the simulations the equator is considered as the starting point of the simulation. In the 

first simulation, the value of all other orbital elements of the master satellite and the deputy 

satellite except for the inclination are assumed to be the same. If the derivation of the z co­

ordinate is consistent then the simulation should start with zero value of z and should 

increase progressively for one fourth of the orbit and then decrease to zero at exactly half of 

the orbital revolution. This is because of the plane of the orbits intersecting at the equator. In 

the other simulation, the value of all other orbital elements except for the RAAN is assumed 

to be the same. If the derivation of the z co-ordinate is consistent then the simulation should 

start with value of z that is equal to the product of the difference in RAAN and the radius of 

the orbit. It should then decrease progressively for one fourth of the orbit and then increase to 

its initial value at exactly half of the orbital revolution. This is because of the plane of the 

orbits intersecting at the poles. 

The results of the simulations are shown in figures 3.3.3 - 3.3.6 Figure 3.3.3 shows the result 

of the first simulation, where the consistency of the x co-ordinate is verified. The satellites 

are assumed to be in two different altitudes with a difference in altitude of 100 m. All the 

other orbital elements are assumed to be the same. The value of the x co-ordinate is 100 

meters in the simulation and therefore indicates that the derivation for x is consistent with the 

derivation. The increasing y value is due to the difference in time periods that arises as a 

result in the difference of altitude. The value of z is zero throughout the simulation. 
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- - 600 

t- - 800 

- 1000 

o 0 . 2 0.4 0.6 0 . 8 1 
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Tirne(Nurnber of Orbits) 

FIGURE 3.3.3 SrMULA TION TO CHECK THE CONSISTENCY OF X CO-ORDINATE 
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Figure 3.3.4 shows the result of the second simulation, where the consistency of the y co­

ordinate is verified. In this simulation, the satellites are assumed to have a small difference in 

true anomalies . All the other orbital elements are assumed to be the same. The value of the 

difference in true anomaly is selected as 8.219 x 10-4. This corresponds to an initial 

separation of 100 meters for a 600-km altitude orbit. 

1----------L--------~----------~--------~--------~ 0 

-

-

-

r-- -20 

I- -40 

I- -60 

r-- -80 

I- -100 

r-- -120 

r-- -140 

I- -160 

I- -180 

-i------------,----------,----------,-------,------------t- -200 

o 1 
x(radial) -- y(along- track) ---- z(cross-track) 

Tirne(Nurnber of Orbits) 

FIGURE 3.3.4 SIMULA nON TO CHECK THE CONSISTENCY OF Y CO-ORDINATE 

As expected, the simulation starts with a value of the y that is a product of the difference in 

true anomaly and the radius of the orbit. The negative sign indicates that the deputy satellite 

is 100 meters behind the master and remains at that distance. This proves the consistency of 

the y co-ordinate derivation. The other coordinates namely x and z remain at a zero value 

throughout the simulation. 

Figures 3.3 .5 and 3.3.6 show the results of the third simulation, where the consistency of the 

z co-ordinate is verified. For figure 3.3.5, all the orbital elements of the satellites are same 

except for the difference in RAAN that is chosen to be 0.005 degrees. This should 

correspond to an initial cross-track separation of approximately 608 meters for a 600-km 

altitude orbit ifthe z co-ordinate were to be correct. This is because the cross-track separation 

in this case is nothing but the product of the radius of the orbit and the difference in RAAN. 

Note that in the simulation, the initial cross-track separation starts with a value of 608 meters 

and decreases progressively to zero value. This point corresponds to the point of intersection 
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of the orbital planes of the satellites as discussed earlier. And then the cross-track separation 

starts to increase until it reaches the maximum value of 608 meters at exactly half of the 

orbit. For figure 3.3.6, all the orbital elements of the satellites are same except for the 

difference in inclination that is chosen to be 0.005 degrees. This corresponds to an initial 

cross-track separation of zero as the orbital planes intersect at the equator. Note that in the 

simulation the initial cross-track separation starts with a value of zero and increases 

progressively to a value of approximately 608 meters. This point corresponds to the point of 

maximum separation of the orbital planes of the satellites. And then the cross-track 

separation starts to decrease until it reaches the zero at exactly half of the orbit. 
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3.3.2 Dynamical Modeling of Perturbative Forces using Gauss Equations 

The equations for the relative coordinates derived in the previous section contain all the 

orbital properties of both the master and the deputy spacecraft making it a very useful tool in 

predicting the exact relative trajectory in the presence of external forces, if the rate of change 

of the orbital elements is known. 

In the earlier developed preliminary method, the low-propulsion flight theory was used to 

study the dynamical behavior of the relative motion equations. Now, the Gauss perturbation 

equations will be used to study the rate of change of orbital elements. The Gauss perturbation 

equations are a group of equations that describe the change of all orbital elements with time 

in the presence of perturbations. They are well suited to study long-term evolution of orbital 

elements under perturbation influence29
. The Gauss equations can also be used to study the 

effect of perturbative forces in all three directions making it a better method than the low­

propulsion flight method. The Gauss perturbation equations are given as29 

da 

dt 

2esinB 2ax 
---ar+--al nx nr 

de = xsinB a +~(a2x2 -rJa 
dt na r na2 e r I 

di rcosu 

dt na2x 
az 

dO rsmu 

dt 
2 . . az na xsml 

- = a + - sm + a - a dO) xcosB p [. B(l 1 )] rcotisinu 
dt nae r eh 1 + e cos B I na2 x z 

dM 1 (2r x
2 J x

2 

( r). --=n-- ---cosB ar--- 1+-
2 

smBal 
dt na a e nae ax 

where 

ar , al ,az = Perturbing accelerations along the position vector r, along the 

velocity vector direction and normal to the orbit plane respectively. 

(3.3.2.1 ) 
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8= True anomaly, n = mean motion, x = ~, u = OJ +8, P = a(1-e 2
), h = .JIlP 

The Gauss perturbation equations can be used to study the effects of perturbations for long 

time intervals if the perturbing forces are small compared to those that produce the two body 

motion 30. 

3.3.3 Improved Version ofthe Gauss equations 

The Gauss's Perturbation equations 29, defined with the classical orbital elements in the 

above subsection, can be used to find the variation of orbital elements only for orbits without 

zero eccentricity and zero inclination as one or more equations have eccentricity and 

inclination terms in the denominator. To remove the singularities for circular and equatorial 

orbits one can use non-singular equinoctial elements. The equinoctial orbital element set is 

defined by Battin27 as the semi major axis, a, unnamed elements, PI, P2, QI, and Q2, and the 

mean longitude, I. Some authors refer to these elements as a, h, k, P, q and /L The non­

singular equinoctial elements are defined in terms of the classical elements as 27: 

a a 

PI e sinw 

P2 e cosw 

QI tan ( i12) sinQ 

Q2 tan ( i/2) cosQ 

1 w+ M (3.3.2.2) 

where w, the longitude of peri center, is defined as 

ill = Q+{J) 

In addition to the mean longitude, I, the true longitude, L, is defined as 

L=w+8 

The reverse transformation is given by: 
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a = a 

e = (p/ + pi/12 

(3.3.2.3) 

The Gauss Perturbation equations in terms of the non-singular equinoctial orbital elements 

then become 31 : 

dl r {[_a (p)(~ sinL+P2 cosL)+ 2bJar +_a (1+ P).} 
-=n-- a+b r a a+b r 
dt h 

(~ cos L - P2 sin L )at + (QI cosL -Q2 sin L)az 

where b is the semi minor axis and 

h=nab 

b = a)l- ~2 - P2
2 

p = 1 + ~ sin L + P2 cos L 
r 
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r h 
=---------

and ar , at ,az as defined in equation 3.3.2.1 

The relative trajectory equations can similarly be modified with the equinoctial variables to 

make it compatible with the Gauss's equation with equinoctial variables. This can be done by 

substituting the classical orbital elements in the relative motion equations (3.3.11 a - 3.3.11 c ) 

with their respective equinoctial variable substitutes from equation (3.3.2.3). 

3.3.4 Relative Trajectory Simulation Scheme 

The Gauss perturbation equations relate the change of the orbital elements with time in the 

presence of any acceleration components. The components of the perturbative accelerations 

if substituted in the Gauss equations should provide the value of the rate of change of 

elements with time. So at any time t, the value of any orbital element can be found out from 

the following equations. 

Id 
aU) = aCto) + f~· dt 

I dt 
o 

IdQ 
QU) = Q(to) + f-· dt 

I dt 
o 

Id 
e(t) = e(to) + f~· dt 

I dt 
o 

Id 
met) = w(to) + f~· dt 

10 dt 

i(t) = i(to) + fdi . dt 
I dt 
o 

IdM 
M(t) = M(to) + f-·dt 

I dt 
o 

(3.3.4.1) 

In the above equations, the sUbscript '0' refers to the initial conditions. The initial values 

depend on the type of formation pattern and the altitude of the formation. Equations (3.3.4.1 ) 

can be either evaluated for the master or the deputy with the respective subscripts and then 

when substituted in Equations (3.3.11 a - 3.3 .11 c) yield the relative coordinates of the deputy 

spacecraft, at any time t, in the presence of the perturbative forces. The relative coordinates 

generalized for n spacecraft is given below The first subscript m denotes the master 

spacecraft and the second subscript d denotes the deputy spacecraft. 
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xmAt) = (cum(t)· cOm(t)· cOd(t)· CUd(t) - cUm (t)· cOm (t)· SOd(t)· cid(t)· SUd(t) 

-SUm (t)· cim (t)· Sam (t). cOd(t)· Cud(t) + SUm (t)· cim (t)· sam (t) . SOd (t). cid (t). SUd (I) 

+CUm (t)· sOm(t)· SOd(t)· CUd(t) + CUm(t)· sOm(t)· cOd(t)· cid(t)· suit) 

+sUm (t)· cim (t). cOm (t). SOd(t)· Cud(t) + SUm (t) ·cim(t)· cOm(t)· cOd(t)· cid(t)· Sud(t) 

+sUm (t) . sim (t). Sid (t). SUd (t)). Rd (t) - Rm (t) 

YmAt) = (-SUm (t)· cOm (t). cOd(t)· CUd(t) + SUm (t). cOm (t). SOd(t)· cid (t). SUd(t) 

-CUm (t)· cim (t)· Sam (t)· COd (t)· CUd (t) + CUm (t). cim (t)· Sam (t)· SOd (t). cid (t). SUd (t) 

-SUm(t)· Sam (t)· SOd(t)· Cud(t) - SUm (t). Sam (t). cOd(t)· cid(t)· Sud(t) 

+cum (t)· cim(t)· cOmU)· SOd(t)· Cud(t) + Cum(t)· cim (t). cOm (t). cOd(t)· cid(t)· SUd(t) 

+CUm (t). sim (t). sid(t)· SUd(t))· Rd(t) 

Zmd(t) = (sim (t)· Sam (t). cOd(t)· Cud(t) - sim(t)· sOm(t)· SOd(t)· cid(t)· Sud(t) 

-sim(t)· cOm (t)· SOd(t)· CUd(t) - sim (t). cOm (t). cOd(t)· cid(t)· SUd(t) 

+SUd (t) . Sid (t)· cim (t)). Rd (t) 

In the above equations m, d = 1.. n & m::F d 

represent the radius vectors at any time t and 

are the equations for the argument of latitude. 

(3.3.4.2) 

Equation 3.3.4.2 is the same as 3.3.l1 except that it is represented as a function of time and 

generalized for n number of master or deputy spacecraft. 

The true anomaly can be found from the solutions of Kepler's equations27 
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em(t) = M m (t) + 2em(t) sin(M m(t)) + %em 2(t) sin(2M met)) + 1 ~ em

3 
(t)(13 sin(3M met)) - 3 sin(M m (t))) 

ed(t) = Md(t) + 2eAt) sin(Md(t)) + 2e/(t) sin(2Md(t)) +_1 e/(t)(13sin(3Md(t)) -3 sin(M d(t))) 
4 12 

It should be noted that the above solutions to the Kepler's equations work well for only small 

values of eccentricities because they contain values of eccentricity only up to the third order. 

For large eccentricity values (e>O.OOl), the higher order tem1S should also be considered 27. 

In the actual simulations that accompany the discussions in this thesis the Kepler's solutions 

have 6th order eccentricity terms. 

For a FSeplerian case, only u ( e + (j)) is a function of time. All other orbital elements are 

constants. For perturbed orbits, all the orbital elements become functions of time. The change 

in each orbital element for every step size simulated is calculated by the Gauss Perturbation 

equations. These orbital elements are updated every second and hence we see the evolution 

of x, y, z as a function of time. 

In a real formation flying mission, equations 3.3.4.2 can be used for finding the relative 

trajectory of the deputy with respect to master by using onboard Global Positioning Satellite 

(GPS) receivers. With the help of GPS receivers, fitted on the deputy and the master 

spacecraft, the position and the velocity of the satellites can be found in the Geo-Centric 

frame of reference. This can be converted to the Orbital elements with a standard 

transformation29 and once the orbital elements are calculated, they can be substituted in 

equations 3.3.4.2 to calculate the instantaneous positions in the master spacecraft frame of 

reference. 

There are two mam properties associated with relative orbits considered m the Master 

satellite's frame of reference. They are 

where TI == x,y,z 
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This means that if we consider an array of 5 spacecraft in the Master satellite's frame of 

reference" the along-track separation distance between spacecraft 1 and spacecraft 5 can be 

written as 

Similarly the radial separation and the cross-track separation can be written as 

3.3.5 Orbit Integrator and Numerical integration 

Runge-Kutta Fehlberg (6th order method) has been used to numerically integrate the Gauss 

perturbation equations. This method was found to be 102 -103 times more accurate than the 

traditional Runge Kutta method. This was found by comparing the error estimates that they 

yield for various step sizes. The Runge-Kutta Fehlberg method and also has an optimum step 

size control for any assigned tolerance. This means that the Runge-Kutta Fehlberg Algorithm 

continuously checks the errors and decreases the step size automatically to match with the 

assigned tolerance value. The decrease in step size is done by decrements of 0.1 sec. The step 

size used in all simulations is 1 second. In the simulations, the tolerance control value was 

assigned as 10-4. This was to effectively reduce the simulation time. The total time taken for 

1 complete orbital simulation clocked at an average of 15 minutes for a perturbed case and 2 

minutes for a Keplerian case. MathConnex, a visual simulation program, has been used to 

perform the simulations. Mathconnex is a product of MathCad that has many inbuilt 

functions and is being used by many millions of people worldwide. The product is known for 

its simplicity, flexibility and accuracy of its inbuilt functions. The best feature of 

Mathconnex is its ability to check the compatibility of units within the terms of a general 

equation. 

The whole mathematical model was optimized for accuracy and not for the time of 

simulations. Efforts were taken to decrease the loss of accuracy in the simulations by using a 

standard 4 decimal input and output format for both the master and deputy's orbital elements. 
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This is also true for any constants declared in the initial conditions. This considerably helps 

to reduce the loss of accuracy due to rounding errors. This was particularly important with 

the calculation of the true anomaly of the master and the deputy spacecraft as different 

input/output formats would result in an unwanted secular drift caused due to the difference in 

evolution of the absolute orbits. The simulation code is written to accommodate zero 

eccentricities and zero inclinations by converting all the classical orbital elements to 

modified equinoctial elements. The effects of perturbative forces like Atmospheric drag, 

Solar radiation pressure, J2, J3, J4 and J5 have been effectively modeled into the simulation 

algorithm. The mathconnex interface allows the user to select or disengage any force 

component during the simulation process. The effect of these perturbative forces is discussed 

in section 4.3 of the next chapter. The algorithm for the Runge-Kutta Fehlberg method is 

given in Appendix A. 

Ph.D Thesis 59 Balaji Shankar Kumar 



Dynamics of Spacecraft Formation Flight 

Chapter 4 

Properties of Spacecraft Relative Orbits 

The first part of this chapter deals with orbits of an unforced nature (without perturbations) 

and the second part deals with orbits with various perturbations. 

4.1 Equations of Relative Coordinates For Closely Placed Formation Flying Spacecraft 

Firstly, the equations for relative coordinates for a closely placed Formation-Flying scenario 

using equations (3.3.11a - 3.3.11c) will be derived. For closely placed Formation-Flying 

spacecraft bn = Qm - Qd' 5i = im - id , 5u = um - ud and 5i, 5u and bn are very small and 

so it can be assumed that the sine's of the angles 5i ,5u and bn are equivalent to their 

argument and their cosines equivalent to one. 

By rearranging the terms in equation (3.3.11a) and by considering bn = Q m -Qd 

x = cUm· (CUd· cbn + cid . SUd· sbn) + SUm· (sim . Sid· SUd +cim . (Cid . SUd· cbn -CUd· sbn))· Rd - Rm 

:::::> X = (CUm ·CUd + SUm ·sud ·sim . sid + SUm ·sud ·cim .cid )· Rd -Rm 

:::::>x=c5u·Rd -Rm =Rd-Rm =5R :::::>x=5R (4.1.1) 

Similarly equation (3.3 .11 b) becomes 

y = (-sum ·CUd . cQd -cim . CUm· (CUd· sbn -cid . SUd· cbn) + SUd· (sim . Sid· CUm - cid . SUm· sbn))· Rd 

:::::> y = (-SUm ·CUd -cim . CUm· CUd ·bn +cim ·CUm ·cid ·SUd + SUd· sim . Sid ·CUm - SUd· cid . SUm· bn)· Rd 

Assumption of cos im ~ cos id yields 

:::::> y = (-sum . cUd + cUm . sUd ·c5i +cim ·bn·c5u)· Rd 

:::::> y = (sin 5u + cosim . bn· cos5u)· Rd 

and finally equation (3.3.11c) can be written as 

Z = (SUd ·sim ·cid -CUd ·sim ·bn-cim ·sud .sid)·Rd 
:::::> Z = (sin ud ·5i -sinim . cosu

d 
. bn)· Rd 
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So for a Close Formation flying scenario, the relative coordinates of the deputy spacecraft 

can be represented as 

(4.1.4) 

or assuming cos 5u ~ 1 and sin 5u ~ 5u for small values of 5u and Rd - Rm = 5R 

(4.1.5) 

It is interesting to note that the above equation for relative coordinates is the same as 

equation (2.2.2) for an unperturbed orbit derived by Giml2 using a transformation matrix and 

expanding it with Taylor series. It should be noted that 5B = au in equation 2.2.2. 

4.1.1 Validity ofthe results for the Close formation flying Scenario 

Equation 4.1.5, for a closely placed formation-flying scenario, was derived from the general 

relationship for the relative coordinates namely equations (3.3.12). Since the derivation 

involved many simplifications, it is obvious that the resultant formulae are only valid for a 

closely placed formation-flying scenario. Now the unanswered question is how close should 

the satellite formation be to obtain errors of insignificant magnitude? To answer this question 

and to understand the accuracy of the derived formulae, a strategy was developed. According 

to the strategy, it was decided to gradually increase the satellite separation using one of the 

orbital elements, namely the right ascension of the ascending node (RAAN) and then find the 

difference in the relative coordinates using equations (3.3.12) and the equation 4.1.5 for 

different separation distances. Theoretically, the difference is nothing but the error arising as 

a result of the assumptions and simplifications made in equation 4.1.5. A very small error in 

the order of a few millimeters indicates that the equation 4.1.5 is still accurate and valid for 
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that separation distance. For all the simulations, the spacecraft altitude was assumed to be 

600 km. 

Plots 4.1.1 - 4.1.3 show the variation of errors for three different values of separation 

distance. The orbital elements used in both the methods are the same. Figure 4.1.1 is plotted 

for 100 orbits and for a difference in RAAN of 5x10-5 degrees. The corresponding cross­

track separation distance is 6.08 meters. The errors are in the order of 10-6 m in the radial 

direction, 10-8 m in the along-track direction and 10-13 m in the cross-track direction over 100 

orbits .. Figure 4.1.2 is plotted for 100 orbits and for a difference in RAAN of 5x 1 0-3 degrees. 

The corresponding cross-track separation distance is approximately 608 meters. The errors 

are in the order of 10-2 m in the radial direction, 10-3 m in the along-track direction and 10-7 m 

in the cross-track direction over 100 orbits. 

Figure 4.1.3, like figures 4.1.1 and 4.1.2 is plotted for 100 orbits and for a difference in 

RAAN of 10-1 degrees. The corresponding cross-track separation distance is 61 km. The 

errors are in the order of approximately 265 m in the radial direction, 10m in the along-track 

direction and 0.7 m in the cross-track direction over 100 orbits. 

It is evident from the simulations that the accuracy of equation 4.1.5 deteriorates with time 

and the initial separation distance due to the simplifications made in the derivations .. For a 

60-km cross-track separation, the errors of predicting the initial relative coordinates were 

found to be hundreds of meters for the radial direction and tens of meters for the along-track. 

However, the errors were in the magnitude of 1O-7m - 10-9 m for very closely placed 

spacecraft. Therefore it is wise to conclude that the usage of equation 4.1.5 is only limited to 

very closely placed spacecraft where the initial displacement is in the order of a few tens or 

hundred of meters. For accurate prediction of relative coordinates for any separation, 

equations (3.3.12) should be used instead. 
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4.2 Free Spacecraft Relative Orbits 

In this section, the dynamics of satellite relative motion will be studied for the case when the 

motion of satellites is purely keplerian. i.e., no perturbative forces disturb the orbits. To start 

with, a case is considered where the satellites are in the same plane, i.e. 8Q= 0, 8i = 0. 

Equation (4.1.4) then becomes 

(4.2.1) 

From the above equation, it is clear that 

(4.2.2) 

From equation 4.2.2, it is evident that the relative trajectory is a circle if Rm and Rd are 

constant throughout, i.e. when the orbits of the master and deputy are circular with equal or 

different altitudes. On the other hand, when both Rm and Rd are variable, i.e. when the orbits 

of the master and deputy are elliptical, the relative trajectory is a moving circle placed in a 

circular band of variable radii This is because the origin and the radius of the circle changes 

periodically. To test this and other possible conditions, the following test cases are 

simulated; 

1. Both Master and Deputy satellites are in a circular orbit and 

• The orbits have same/different altitudes and 

• Lie in the same plane 

• Lie in different planes 

2. Both Master and Deputy satellites have elliptical orbits and the orbits 

• Lie in the same plane 
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The corresponding orbital elements for the different graphs plotted based on the above 

defined conditions of simulation are given in table (4.2.2) below. 

Fig. Fig. Fig. 

4.2.1 4.2.2 4.2.3 

am, km 6971 6971 6971 

Om, deg 10 10 10 

i m , deg 90 90 90 

(Om, deg 0 0 0 

em 0 0 0.005 

ad,km 6981 6971 6971 

Od, deg 10 10.005 10 

id, deg 90 90 90 

(Od, deg 0 0 0 

ed 0 0 0.001 

Table 4.2.1 Simulation conditions for the master and the deputy for the unforced case 

Figure 4.2.1 corresponds to a case where there is an initial radial separation of 10km. There 

is no along-track or cross-track separation. Figure 4.2.2 corresponds to a case where there is 

an initial cross-track separation due to a difference in RAAN of 0.005 degrees. There are no 

initial radial or along-track separations. Figure 4.2.3 corresponds to a case where both the 

master and the deputy have elliptical orbits of different eccentricities and both the spacecraft 

have no initial separation in all the three directions. The first of the plots shows the 

simulation of relative orbits with only radial separation and is given in the next page. 

Ph.D Thesis 67 Balaji Shankar Kumar 



\ , 

\ 

\ 

", 
~ 

o 

.~ 

\., 

\ 
\ 
\ 

\ 

\ 

\ 

o 

Ph.D Thesis 

Dynamics of Spacecraft Formation Flight 

1/ 
/- ..., 

1 
/ 

, 

, 

I 

! 

I 
/ 

// 
'. 

100 200 300 400 
Number of Orbits 

, 

\ 

\ J 

\ 
, 

/ 
\ 
\ 

\ 

\ 
\ 

\ , 
, 

, 
'--.. / 

100 200 300 400 
Number of orbits 

o 

-7000 

500 

-

-

-

-

500 

68 Balaj i Shankar Kumar 



c 
o 

Dynamics of Spacecraft Formation Flight 

, -
, ,-, 

/~ '. 
/' 

/' 
, 

,/' '. 

/ 
'. J 

/ 
I 

I 

I 

! 
i 
I 

, 

\ 

" 

\ 
\ 

\, 
/ , 

'\. 

"-
'. , 

-, 
, 

-6981 -4189 -1396 1396 4189 

Along-track direction, Km 

10 

-

-2. 7ge-<OO6 

-

, 

-O.581e+006 

-

-8.37'1e+OOS 

~ 

-1 .116e+007 

-

-1 .395e+007 

6981 

FIGURE 4.2.1 EVOLUTION OF RELATIVE TRAJECTORY FOR MASTER AND DEPUTY SEPERA TED BY 

10 KM RADIAL SEPERATION 

In figure 4.2.1 , the deputy spacecraft has an initial radial separation of 10 km and no along­

track separation. Both the master and the deputy spacecraft are in circular orbits and the 

master spacecraft has an altitude of 600 km. Since the deputy spacecraft has a radial 

separation of 10 km, its circular velocity is less than that of the master. The difference in the 

orbital velocities results in a difference of time period of the master and the deputy spacecraft 

by 12.47 seconds. This difference of orbital time periods causes the deputy spacecraft to fall 
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behind the master after every orbital revolution. After 115 orbits the spacecraft are 90 

degrees apart with respect to the center of the earth and this is the maximum along-track 

separation distance (radius of the spacecraft + separation distance = 6971 + 1 0 == 6981). The 

radial separation distance also increases in the negative direction. After 230 orbital 

revolutions, the spacecraft are 180 degrees apart from one another and so they are separated 

by the distance of their radiuses whereas the along-track direction is zero because of the 

considered frame of reference. The whole cycle repeats and the spacecraft come back to their 

original positions after 460 orbits. 

Figure 4.2.2 shows the evolution of relative trajectory of a formation that is located in 

different orbital planes for 1 orbit. The trajectory in the cross-track direction is periodical. 

This is due to the intersection of the orbital planes at the poles. A small difference in the 

RAAN results in an initial cross-track separation. This cross-track separation decreases as the 

orbit progresses and becomes zero at exactly one fourth of the orbital period due to the 

intersection of the orbital planes at the poles. The cross-track separation then increases and 

reaches the maximum value, the same as the initial separation at the equator. This cycle 

repeats as the spacecraft move towards the poles again. The values of the along-track and the 

radial separations remain constant. 

~----------~--------~----------~--------~----------4- 1000 

800 

E 600 

! ----- ------ -------- - ~ 

~ j -t-----------.--------------.----.----+-f ~ 
o 1 

x(radial) -- y(along-track) z(cross-track) 
TifTle(NufTlber of Orbits) 

FIGURE 4.2.2 EVOLUTION OF RELATIVE TRAJECTORY FOR MASTER AND DEPUTY LOCAT ED 

IN DIFFERENT ORBITAL PLANES 
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Figure 4.2.3 shows the relative trajectory evolution when both the master and deputy are in 

elliptical orbits with different eccentricities. The relative trajectory is circle of periodically 

varying radii . This can be predicted from equation 4.2.2. It can be seen that the spacecraft 

return back to the same initial position after several orbital revolutions, if not perturbed by 

external forces. 

4-~--~---+----~----~--~-----I~--~----1-----~---+- 1OO0 

E --\-----,--I ~--+----------+----------I_--------__+____O_-----+-- -325) 

:l-

e: 
o 

+'" 
o 
Q) -l----"'-- -'-----+----------+----------I_---------j----------+- -7500 

L.. 

'0 
-ro 
'0 
ro 

-

-

rt:: -j----------+-----------t------------+----------t------------t-- -1 .175&-t004 

-

-j-----,-----+-------,------t-------,------j-----,----t-------,-------t-- -1 Be+004 

-9000 -5400 -1800 1800 5400 9000 

Along-track direction, km 

FIGURE 4.2.3 EVOLUTION OF RELATIVE TRAJECTORY WITH THE DEPUTY AND MASTER 

SATELLITES BOTH IN ELLIPTICAL ORBITS OF DIFFERENT ECCENTRICITIES 
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4.3 Perturbed Formation-Flying Orbits 

The simulations generated with the relative motions equations in the previous section were 

for the unforced case in which the formation flying spacecraft were considered to follow 

keplerian motion. But in a real scenario, each spacecraft in a formation would experience 

perturbations of different magnitudes, in different directions, from several forces. This would 

then cause the spacecraft to deviate from their original trajectory and to behave in a manner 

that is directly dictated by the magnitude of the perturbation forces. The variation in 

magnitudes of forces experienced by the spacecraft depends on factors like spacecraft 

separation, orbit altitude, spacecraft orientation and formation configuration. The effect of 

each of the above said factors on spacecraft relative motion will be investigated individually. 

For this, a simple case like the Leader-Follower pattern will be considered and the effects of 

various forces with different test conditions will be simulated. The main perturbation forces 

considered for simulation are discussed in the following subsections. 

4.3.1 Jz Perturbations 

The most significant of gravity harmonics is h. J2 is related to Earth equatorial oblateness 

through earth rotation, and the estimated difference between the polar radius and equatorial 

radius is 22 km. The zonal harmonic J2 is responsible for the secular rates of the right 

ascension of the ascending node n, the argument of perigee OJ, and a small correction to the 

mean motion of the orbit. The motion of the node n occurs because of the added attraction of 

the earth's equatorial bulge, which introduces a force component towards the equator. The 

resultant acceleration causes the satellite to reach the equator short of the crossing point for a 

spherical earth. The orbit thus regresses and this effect is often regarded as gyro dynamic 

precession. This thesis will study the effects of J2 - J5 only as the higher order perturbations 

are insignificant given the general accuracy of the model. The perturbing accelerations due 

to J2 may be given in the spherical coordinate system as 29. 

4 

- 3J2J1re [- (0 5 1 5 . 2· • 2 ) - • 2· . - •. .. ] a}" = - 4 er · - • SIn 1 SlIl U + et SIll 1 SlIl U cos U + ez SIll 1 cos 1 SlIl U 
2 r 

(4.3.l.1) 
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where ,Ll = 3.986x 1014 m3 I i is the gravitational earth constant, J 2 = 1 082.64x 1 0~6 , 

re = 6371 x 106 km, r is the distance between the satellite and earth-center, er is the unit 

vector along the satellite orbit radius vector direction, e; is the unit vector along the local 

horizontal direction and ~ is the unit vector along the orbit normal direction. 

It can be seen from Equation (4.3.1.1) that the J2 perturbation acceleration has components 

along all three directions of the spacecraft trajectory. Since the components of the J2 

perturbation acceleration are dependent on the values of u, the argument of latitude, and i, the 

inclination of the spacecraft, any difference of these values between the master and the 

deputy spacecraft results in a relative motion along all the three coordinates. Generally, one 

can calculate the earth non-sphere perturbation accelerations by differentiating the 

corresponding disturbing potentials. 

The perturbation acceleration can be found as follows32 

- \-IU (aUn aun • .• B) - aun •· B - aUn . -
a J = V n = --+--SllllSlll ·er +--SllllCOS ·e/ +--COSl·e

7 

. n ar az az aZ" 
where n = 3, 4, 5 .. 

for n = 3 

aU3 = ,LlJ3r} (15Z2r~7 _ 3r~5) 
az 2 

Z = r sin i sin B and J3 = -2.5 X 10-6 

(4.3.1.2) 

The perturbation acceleration expressions for J4 and J5 can be found in a similar way. For J4 

where J4 = -1.6 X 10-6 
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aU4 = _ JlJ4re

4 

(-315Z 4r-1O + 21OZ2r-8 -15r--6) 
ar 8 

where J5 = -0.23 X 10-6 

aU5 

ar 

(4.3.1.4) 

Substituting the above results in equation (4.3.1.2), one gets J3, J4 and J5 perturbation 

accelerations 

4.3.2 Solar Radiation Pressure 

The perturbing acceleration of an earth satellite due to solar radiation pressure effects can be 

computed with the following equation. 

a
SRP 

= ~ :i SRP ( a,. J2 
m rs 

(4.3.2.1) 

where: 

~ is a constant whose value depends upon the reflective properties of the surface 

r, is the distance of the satellite from the sun, 

as is the mean distance of the Earth from the sun, 

S is the area of the satellite, 

m is the mass of the satellite. 
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F is the solar energy flux at the spacecraft 

and c is the speed of light 

The components of Solar-radiation pressure can be expressed as 33. 

-- =COS -cos - - (A -u-Q)-sm -sm - - (A -u+Q) {So(()} 2 i 2 & {cos} . 2 i . 2 & {cos} 
'Fa (() 2 2 sin 0 2 2 sin 0 

- ~ sin isill £[ t~: }(A0 -u)-{:~: } (-A0 -u)] 
_sin2~cos2!!....{cos}(_A -u+Q)-cos2~sin2 & {COS}(_A -u-Q) 

2 2 sin 0 2 2 sin 0 

Wo =sinicos2 ~ sin(Ao -Q)-sinisin2 ~ sin(Ao +Q)-cosisin&sinAo (4.3.2.2) 

where So ((), To (() and Wo are direction cosines in the satellite orbit radius vector direction, 

local horizontal direction and orbit normal direction respectively. The parameters, i, u and Q 

are orbital elements, & denotes the obliquity of the ecliptic, and Ao ' the ecliptic longitude of 

the sun. The quantities &, Ao and airs (in equation.(4.3.2.2) can be computed with sufficient 

accuracy from the expressions 30 

d = MJD-15019.5 

&=2T44 

as / rs = [1 + 0.01672cos(Mo + r.92sinMo)]/ 0.99972 

where MJD is the modified Julian day. The modified Julian day = Julian day- 2400000.5 
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The effects of SRP can then be studied by substituting the direction cosines in the following 

equations. 

(4.3.2.3) 

4.3.3 Aerodynamic Drag 

When the orbit perigee height is below 1000 km, the atmospheric drag effect becomes 

important. Drag, unlike other perturbative forces, is a non-conservative force and will 

continuously take energy away from the orbit. Thus the orbit semi major axis and the period 

gradually decrease because of the effect of drag. This causes the orbital velocity to increase 

in order to satisfY the kepler's law (J1 = n2 a3 = canst). This is sometimes known, as the 

'Drag Paradox': the effect of atmospheric friction is to speed up the motion of the satellite as 

it spirals inward. 

The aerodynamic drag, D, of a satellite orbiting the earth is given by equation: 

( 4.3.3.1) 

Where f) is the density of the atmosphere, V is the velocity of the spacecraft, Cd is the 

coefficient of drag, and S the projected area of the spacecraft in the direction of motion. 

The drag deceleration a, may be written as 

2 
C d"Sp·V 

a-----
2. m (4.3.3.2) 

where m is the mass of the spacecraft. 

Unlike other perturbative forces, Drag force has components only along the negative velocity 

vector direction. 
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4.4 Forced Spacecraft Relative Orbits 

As discussed in section 3.3.4, the relative trajectories of spacecraft with the effects of orbit 

perturbations can be modeled with the aid of the Gauss perturbation equations. These 

equations help to evaluate the rates of change of orbital elements of individual spacecraft 

acted upon by perturbations. The values of rates of change of orbital elements can then be 

used to find the values of the actual orbital elements which when substituted in the relative 

motion equations will provide the coordinates of the deputy spacecraft in consideration. This 

technique will be used to analyze the Leader-Follower formation pattern for 600-lan circular 

orbit altitude with an initial separation of 100 meters. This follows from the motivation by 

the UK University-led Technology demonstration programme that proposed to build and 

launch two identical satellites of approximately 10 kg mass each in to a 600 lan, circular 

orbit. The Leader-Follower formation pattern will be considered as the case study for the 

relative motion analysis. 

The most basic configuration in which spacecraft can fly in formation is that of leader and 

follower shown in figure (4.4.1). In this configuration, the orbital elements of each spacecraft 

are identical except for the true anomaly, meaning that the spacecraft follow the same orbital 

path at different times one behind the other. To understand the dynamics of such a formation, 

simulations were performed with the use of the newly developed Orbital element method 

with the inclusion of all significant perturbative forces. The simulation conditions for the test 

case are given in Table (4.4.1) 

FIGURE 4.4.1. LEADER FOLLOWER FORMATION PATTERN 
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Parameter Master Spacecraft Deputy Spacecraft 

Perigee Altitude, km 600 600 

Eccentricity 0.0001 0.0001 

Inclination, deg 98 98 

RAAN,deg 10 10 

Argument of 0 0 
perigee, deg 

True anomaly, deg 8.219 x 10-4 0 

Initial separation, ill 100 (Deputy Spacecraft behind) 

Table 4.4.1. Initial conditions for the Master and Deputy Spacecraft for Leader-Follower Pattern 

In the calculations for drag and solar radiation pressure the normal drag-area of the satellites 

is taken as 0.0625 m2 (25 cm x 25 cm) and the drag coefficient Cd =1.8. Both the Master and 

the Deputy satellites are assumed to be identical and weighing 10 kg each. The value of 

atmospheric density is taken as 10-13 kg/m3 for 600 km altitude and is assumed to be the same 

for small changes in altitude. The solar flux incident on the spacecraft is assumed to be 

constant and the shadow conditions are not taken into account. The integration step size is 1 

second and the simulations are performed for a few successive orbits. 

In table 4.4.1 all the orbital elements have arbitrary values except for the true anomalies that 

depend on the assigned along-track separation distance. For a given along-track initial 

separation distance, the true anomalies of the master and the deputy spacecraft are calculated 

using the equations that are given below. The method of finding the correct true anomalies of 

the master and the deputy satellites is very important for the correct prediction of evolution 

of relative motion. It is imperative that the resultant orbits are energy matched as a small 

difference in the energy of the orbits of the master and the deputy satellites will lead to a drift 

in the separation distance. For the Leader-Follower case, Equation 4.2.1 is used to calculate 
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the orbital elements. Equation 4.2.1 was specially derived for a planar case and is only valid 

for orbits in the same plane. If the orbits are not coplanar then equation 6.2.1.1 c should be 

used that is derived for a general case. 

From equation 4.2.1, y = Rd sinou 

(4.4.1) 

(4.4.2) 

Expanding the Left-hand side of equation 4.4.2 gives 

(4.4.3) 

(4.4.4) 

Equation 4.4.4 is the general equation to calculate the initial true anomaly of the master 

spacecraft from the given initial data that includes the along-track separation distance y, the 

initial true anomaly of the deputy, semi major axis of the deputy spacecraft, argument of 

perigees of the master and the deputy spacecraft. 

For selecting energy matched orbits this is the only condition that should be satisfied; 

This follows from the Energy equation that is given as E = - ~. In the simulations that 
2a 

follow this discussion, the same technique is used to calculate the initial true anomaly values 

for any specified initial along-track separation distance. 

In a real Leader-follower formation-flying scenario, there are possibilities to have slight 

differences of the semi-major axis of the master and the deputy satellites. This can be due to 

the spacecraft having small differences in the velocities after separation or due to the effects 
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of perturbations. The first of the above said causes can be avoided by careful planning of the 

spacecraft separation procedure and by using active control techniques. The effects of 

perturbations also cause differences in semi-major axis and depend on the various factors like 

initial separation distance, spacecraft dimensions, shadow conditions, etc. For example, the 

magnitude of the J2 acceleration is dependent on the latitude of the sub-satellite point. So 

spacecraft separated by a distance will experience different magnitudes of gravitational 

acceleration that will in turn change the time period of the orbits thereby causing a difference 

in the semi-major axis. 

The simulation interface is designed in such a way that relative orbits can be analyzed with or 

without the effects of perturbations. For the Keplerian case (without perturbations), the initial 

orbital elements of the master and the deputy spacecraft are entered and the progression of 

time is set through the changing true anomaly of the master and the deputy spacecraft. For 

the perturbed case, once the initial orbital elements are entered and the simulation started, the 

effects of the perturbations based on the different factors like initial separation distance, 

spacecraft dimensions, type of orbit etc are calculated and applied from the first second of 

simulation. The effects are modeled through the change in orbital elements that the 

perturbations produce and these updated orbital elements are fed to the main equations 

(equations 3.3.4.2) to find the relative position of the deputy spacecraft with respect to the 

master spacecraft. 

The simulations with perturbations in the thesis are performed for osculating elements as the 

short-term effects of perturbations can be visualized better with osculating elements than 

with the mean elements. The short-term effects are particularly interesting for formation 

flying as they help us to assess the magnitude of oscillations within one orbital period and 

thereby providing a better understanding of the control accuracy requirements. Mean 

elements could also be used with the orbital element method and they are helpful in 

determining the long-term evolution of relative orbits. 

Before starting the actual simulations, the Leader follower formation pattern as given in table 

4.4.1 was simulated for 100 orbits for a Keplerian case. This was to ensure that the master 

and the deputy spacecraft had same energy orbits. The plots are given below as figures 4.4.2. 
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FIGURE 4.4.2 Sl1\IULA TION OF THE LEADER-FoLLOWER FORMATION PATTERN AT 600 KM 

, SEPA~TION AND 100 METERS SEPARATION FOR A J(EPLERlAN CASE 

4.4.1 Simulation Results 

Figure 4.4.2 shows the results of simulation of the Leader-Follower formation pattern in the 

presence of drag, solar radiation pressure and J2 to J5 . The drifts caused by the perturbative 

forces are plotted against the number of orbital revolutions for 30 orbits with a step size of 1 
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second. The magnitude of secular drifts induced by all forces including J2 was found to be 

approximately 0.06 mlorbit in the along-track direction. There was no secular drift in the 

radial direction and the cross-track direction. Periodic oscillations were also recorded in the 

along-track and the radial directions. The maximum amplitude of oscillation in the Along­

track direction was 0.25 mlorbit. The periodic variations of amplitude in the radial direction 

seem to increase with time and were only 0.05 cm after 30 orbital revolutions but there were 

no secular drifts recorded. The increase of amplitude in the radial direction can be attributed 

to the secular drift caused by h in the along-track direction. The main cause of the 

oscillations and secular drifts were found to be due to earth's oblateness and this was verified 

by running the simulations without J2 - J5 . For an oblate shaped earth, the magnitude of the 

gravitational acceleration is dependent on latitude and longitude of the sub satellite point. 

Hence satellites passing different locations at the same time experience different magnitudes 

of the gravitational acceleration. This in turn causes minor changes in the orbital period and 

therefore causes oscillations. Apart from these oscillations, the J2 perturbations cause a 

secular drift in the longitude of the ascending node and argument of perigee and change the 

mean anomaly rate. The differential change in the mean anomaly rate causes relative drift in 

the velocity vector direction. 

A careful examination of the plots will reveal 2 cycles of oscillations in the along-track and 

radial directions. This is because the gravitational acceleration decreases as the spacecraft 

move from the equator to the poles and the gravitational acceleration increases as they move 

from the poles to the equator. This cycle repeats again within one full orbital revolution. For 

slightly elliptical orbits like in the case simulated, the amplitude of oscillations within one 

full orbital revolution varies due to the eccentricity. 
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It was decided to investigate the effect of different initial conditions on the magnitude of 

secular drifts and the amplitude of oscillations induced by earth's oblateness and possible test 

cases were identified for analysis, in particular, 

• Altitude of the orbit 

• Satellite separation 

• Type of orbit (Circular or elliptical) 

• Nature of the orbit (Equatorial, Polar, etc.) 

Firstly, to understand the effect of altitude of the orbit on the magnitude of secular drifts and 

the amplitude of oscillations, a test case was simulated for 800-km altitude with the same 

orbital elements and the initial separation of the previous test case. Figure 4.4.3 shows the 

results of simulation for the 800-km test case. 

There was a secular drift of 0.05 mlorbit in the along-track direction. There was no secular 

drift in the radial direction and the cross-track direction. Periodic oscillations were also 

recorded in the along-track and the radial directions. The maximum amplitude of oscillation 

in the Along-track direction was 0.24 mlorbit. The maximum amplitude of oscillations in the 

along-track and radial directions was slightly less than that of the 600-km test case. So, it was 

found that the magnitudes of drifts and oscillations decrease with the increase in the altitude 

of orbits for the same initial separation and inclination of orbits. This can be attributed to the 

decreasing magnitude of the gravitational acceleration experienced by the satellites and the 

differential J2 effect decreases with the increase in altitudes. 
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Leader-Follovver Pattern at 800 krn and 1 00 rn separation 
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The next test case was to find the effect of initial separation on the magnitude of drifts and 

orbital oscillations. Figure 4.4.4 shows the results of simulation of a test case at 600-km 

altitude but for I-km initial separation in the along-track direction. Results of the simulation 

show that the magnitude of the secular drift and the oscillations increases with the increase in 

the along-track separation distance. This is because of the growing differences of the 

gravitational accelerations experienced by the spacecraft with the increase in separation 

distances. As the along-track separation increases, the difference in the gravitational 

acceleration experienced by spacecraft increases and this causes the amplitude of oscillations 

to increase. In this case, the amplitude of oscillations in the along-track direction was found 

to be approximately 2.5 meters in the along-track direction. The secular drift induced by the 

differential J2 effect was 0.5 m after 1 orbital revolution and 20 m after 10 orbital 

revolutions. There is no secular drift in the radial direction although the magnitude of 

periodic variations increases with time. 

Figures 4.4.5 shows the evolution of relative trajectory for a case where both the master and 

deputy are in circular orbits. Simulations show that the magnitude of the oscillations and the 

drift is almost similar to that of the original case that considers near-circular orbits of the 

master and the deputy spacecraft. In the circular case, the oscillations within one orbital 

revolution are equal in the along-track direction. 
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Figures 4.4.6, 4.4.7 and 4.4.8 show the results of simulation of the test case to study the 

effect of inclination on the magnitude of drifts and oscillations. All the initial conditions are 

the same as given in table 4.4.1 except for the inclinations of the master and the deputy that 

are considered as 90 degrees, 45 degrees and 0 degrees. 

It can be seen from Figures 4.4.6, 4.4.7 and 4.4.8 that the magnitude of the drifts and 

amplitude of oscillations decrease with the decrease in the inclination of orbits and become 

zero for equatorial orbits. The reason for this is the fact that the acceleration components 

induced by h in all directions have the sine of the inclination in the numerator (equation 

4.3.1) and as the inclination decreases, the magnitude of acceleration decreases in all the 

three directions. In reality, equatorial orbits also suffer from the effects of Earth's oblateness 

due to the presence of J22 components that are due to the ellipsoidal nature of the Earth's 

equator. The effects of J22 are not modeled in this thesis. 
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In all the most of the above test cases, the simulations were performed with drag, solar 

radiation pressure and h-J5 for identical formation flying spacecraft. The effects of earth's 

oblateness were analyzed for different test cases having different initial conditions. Now, the 

J2-J5 model will be disengaged and the effects of the other two forces, namely drag and solar 

radiation pressure will be studied. 

Atmospheric drag, unlike J2 is a non-conservative force and constantly depletes energy from 

the orbit. This causes orbits to decay and the rate of decay depends on several factors like the 

altitude of the orbit, mass of the spacecraft and surface area of the spacecraft. For identical 

formation flying spacecraft, drag does not induce any relative motion as long as the orbits of 

both the spacecraft decay at the same rate assuming drag is not a function of latitude and 

longitude. The effects of drag on relative motion for dissimilar formation flying spacecraft 

will be studied later in this thesis. 

Solar radiation pressure also has an influence on the change of orbital parameters of any 

spacecraft. This influence is very significant for spacecraft orbiting at altitudes higher than 

800 km. The effects of solar radiation pressure on satellite orbits depend on many factors like 

the surface area properties of the spacecraft, the time of year (as the solar flux varies at 

different times of year), time of the day, surface area, nature of orbit, etc. For identical 

formation flying spacecraft, the rates of change of orbital elements due to SRP are the same 

and hence there is no relative motion between spacecraft. However the SRP causes minor 

periodic variations and these variations are shown in figure 4.4.9. All other perturbative 

forces were disengaged from the model to get an insight of the effect of SRP on relative 

motion. 

It can be seen from figure 4.4.9 that there is no secular drift due to differential solar radiation 

pressure effects and the amplitudes of oscillations for the 600-km altitude range from 10-4 m 

in the along-track direction and 10-6 m in the radial direction. Variations in the cross track 

direction due to solar radiation pressure was found to be very insignificant for the 600-km 

polar orbit and was in the order of 10-9 m in 1 orbit. The simulations were done for an initial 

spacecraft separation of 100 meters. 
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4.5 Fuel Consumption Prediction 

In this section, the amount of LI V required for station keeping purposes for the proposed 600-

km circular polar orbit is estimated. This is done by calculating the amount of LI V required to 

compensate for any secular drifts caused by the perturbing forces for a particular length of 

time and then integrating the value for one year. Note that these fuel requirements only 

provide a rough estimate of what will be needed and the real values entirely depend on 

formation keeping error bounds, precision of propulsion systems and navigational accuracy. 

The along-track error growth induced by the various perturbing factors can be controlled via 

small adjustments in the semi major axis of the satellites. From Gauss's variation of 

parameter equations for keplerian elements in the normal tangential plane, the amount of LI V 

required to compensate for a change in semi major axis can be found from the relation 27 

(4.5.1) 

where the changes in semi major axis Lla and velocity LlVare assumed small compared to the 

nominal values. From Equation.(4.5.1), it can be shown that, to change the semi major axis 

by 1 cm, a velocity impulse of 0.0005424 cm/sec is required for a 600 km altitude near­

circular orbit. 

Table 4.5.1 shows the LI V requirements for 1 year based on the frequency of thruster firings 

that are done at the end of an orbital revolution. It can be deduced from the table that the 

more the frequency of formation keeping, the less the total fuel expenditure. This is due to 

the fact that the drifts induced by the perturbative forces follow a non-linear pattern and their 

magnitudes vary after every single orbital revolution. 

It should be noted that the values would vary for different types of formation patterns based 

on the altitude, nature of orbit etc. The general idea is based on the logic that LI V 

requirements are calculated from values of drifts induced by the perturbative forces at the end 

of each orbit. In a real scenario, the values will depend on the control accuracy value as 

required for a specific mission. 
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LtVrequirements for 1 year, m1sec 

Frequency of formation keeping 600-km altitude 800-km altitude 

1 orbit 0.021 0.016 

5 orbits 0.023 0.021 

1 day 0.026 0.024 

2 days 0.029 0.027 

Table 4.5.1 L1Vrequirements of the Leader-Follower formation pattern for 2 different altitudes for 1 
year 

Apart from formation keeping expenses, there might also be station-keeping expenses and a 

preliminary assessment shows a requirement of 1 m1sec for the proposed 600 km altitude and 

0.15 m1sec for the 800 km altitude. Figures 4.5.1 and 4.5.2 show the altitude loss due to 

atmospheric drag for 600-km and 800-km altitude. The rate ofloss in altitude in Figures 4.5.1 

and 4.5.2 does not account for the density variation as a result of seasonal changes, solar­

activity, change of latitude and longitude etc but could be programmed into the simulation 

with appropriate data. Infact, for the 600 km altitude, the atmospheric air drag is such a 

strong function of solar activity that the real loss of altitude may be 100 times greater that 

that shown in figure 4.5.1 
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4.6 Comparison With Closhessy-Wiltshire Equations and Other Methods and the Main 

Sources of Errors in the Orbital Element method 

There are two different approaches in deriving the analytical solutions for Relative trajectory 

analysis. One is based on the dynamics of motion and the other on the geometry. 

The dynamics method (CW method) uses the physics of motion to represent the relative 

motion. By doing so, the relative accelerations along the different coordinates are derived 

with respect to a rotating frame of reference. The analytical solutions of the relative positions 

are then obtained by solving the linearized differential equations. 

In the Geometry methods (Orbital element, Gim and Alfriend and COWPOKE) the relative 

positions are directly obtained either by transforming the coordinates to the rotating master­

spacecraft body frame or by direct relations from spherical trigonometry. 

A close examination of the solutions of the CW method (equations 2.1.1.12a-2.1.1.12c) 

shows the cross coupling of the x and y coordinates with the xo' Yo' io and Yo terms. This is 

very characteristic of the CW solutions as this cross-coupling property shows the 

consideration of the rotating frame of reference with the different accelerations such as the 

coriolis and the Euler that are characteristics of a rotating frame of reference. 

In the Geometry methods, the xo, Yo terms are also present in the solution but are represented 

by the orbital elements. The initial value of the y coordinate is represented in the geometry 

methods including the orbital element method as a difference in the true anomalies of the 

master and deputy spacecraft. The true anomaly terms are present within the argument of 

latitude terms of the master and the deputy spacecraft, u (u = () + OJ) where () is the true 

anomaly and OJ is the argument of perigee. The initial value of the x coordinate is 

represented as a difference in the Radius of the master and deputy spacecraft Rm and Rd 

respectively. The initial velocity values in the Geometry methods including the Orbital 

element method are represented through the change of orbital elements. For example an 

initial velocity in the tangential direction can be represented as a change of semi-major axis 

and the eccentricity of the deputy spacecraft. Similarly any initial velocity in the radial 

direction can be represented as a change of argument of perigee and a change of eccentricity 
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of the deputy spacecraft. So a 1 mls initial velocity in the along-track direction of the deputy 

spacecraft can be represented in the orbital element method by considering an initial 

eccentricity value of 2.645xl0-4 of the deputy spacecraft. Since the eccentricity and the 

resultant change of the semi-major axis terms are present in both the x and y coordinates, a 

cross-coupling like that of the CW method is obtained 

The dynamics method (CW method) and the Geometry methods (Orbital element, Gim and 

Alfriend and COWPOKE) are two different methods in approach but produce same results 

when simulated for a keplerian case with the same initial conditions. This has been verified 

analytically and is given in the plots below. The initial conditions for the simulations are 

given in table 4.6.1. 

The simulations are carried for three different test cases. In the first of the two test cases, a 

velocity impact in the tangential direction is analyzed. A small velocity offset in the 

tangential direction causes the mechanical energy of the orbit to increase, which then causes 

the spacecraft to drift in the along-track direction. This type of relative motion is often related 

to thruster firings. The third test case is analyzed for periodic relative motion. There are two 

conditions where the relative motion can be periodic. The first condition is when both the 

master and the deputy have slight elliptical orbits whose eccentricities are the same but have 

their apogees and perigees 180 degrees apart. The second condition is when the master is in a 

circular orbit and the deputy is in an elliptical orbit or vice versa but their energies are 

matched (semi-major axes equal). This type of trajectory is often called as the Hill's 

trajectorl. For the first and the second test case, the deputy spacecraft is assumed to be 

deployed from the master spacecraft with an initial velocity of 0.001 mlsec and 0.03 m/sec 

respectively. For the third test case, the deputy spacecraft is assumed to be in a slightly 

elliptical orbit and the master spacecraft is assumed to be in a circular orbit but they have 

equal semi-major axis of 600 km. Due to the same energy of the orbits, the relative motion is 

an ellipse of 2 x 1 ratio as shown in figure 4.6.3. The initial conditions translated to 

appropriate orbital elements is given in table 4.6.1 
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The increase in velocity changes the deputy satellite's eccentricity. The eccentricity of the 

resultant orbit can be calculated from equation 4.6.1. 

(4.6.1) 

where Rperigee is equal to the initial radius of 600 krn and a is the semi-major axis of the 

elliptical orbit. Equations 4.6.2 and 4.6.3 can be inturn used to calculate a, the semi-major 

aXIs. 

-Ji 
a=-

2E 
(4.6.2) 

E = (Va +5V +5V*)2 Ji 

2 Rperigee 

(4.6.3) 

In equation (4.6.3), Va is the initial velocity of the deputy spacecraft, 5V is the added velocity 

in the along-track direction and 5V' is the velocity that is due to perturbations like J2, Drag 

or Solar radiation pressure. In reality 5V' -::j:. 0 as there are always perturbations present at any 

epoch time. But since a keplerian case is considered for simulations, 5V* is assumed to be 

zero. For a perturbed case, it is quite difficult to translate the addition of velocities in to exact 

change of orbital elements due to the presence of additional unknown velocity terms that are 

caused due to perturbations and this can be considered as one of the limitations of this model. 

This is also one of the sources of error in this model. Velocities are easier implement in the 

CW method than the Orbital element method and this can be attributed to the actual objective 

of derivation of the CW method; to solve the Spacecraft Rendezvous problem. 

The other major source of error identified in the Orbital element method is the representation 

of true anomaly as a function of time. This is due to the fact that an approximated solution to 

the Kepler's equations is used in the simulations. The solutions to the Kepler's equations are 

gIVen as 

(J(t) = M + 2esin(M ·f) +2.e2 sin(2M) + ~e3 (13sin(3M) - 3 sin(M)) 
4 12 

(4.6.4) 
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Where M = rP.f 
~~ 

It can be seen that the true anomaly is expressed as a power series in terms of eccentricity. 

The higher the terms of eccentricity considered the more accurate is the resultant 

approximation. The simulations performed in the thesis have eccentricity terms of 6th order to 

reduce the errors in the resultant approximation of the solutions to the Kepler's equations. 

Nevertheless, this is a source of error in the simulations. To improve the accuracy of the 

simulations, the Newton's method of successive approximations could be used which is 
. 27 

gIven as 

E = E _(Ei -esinEi -MJ E = M 
1+1 lIE ' a -ecos i 

The true anomaly then could be found from equation 

tan () = tan E ,Jl + e 
2 2 l-e 

(4.6.5) 

(4.6.6) 

Since the successive estimates of E can be obtained only iteratively, the above technique was 

not used, as it doesn't provide a closed form solution to the Orbital element method. 

As mentioned earlier, the effect of a radial impulse can be represented in the Orbital element 

method as a change of eccentricity and a change in the argument of perigee. A radial impulse 

will change the ellipticity of the orbit and the point at which the impulse is applied becomes 

one of the two points in the orbit that are the endpoints of the latus rectum. The impulse also 

changes the apogee that occurs 90 degrees from the point of the impulse (() = 90 degrees), 

and perigee occurs 270 degrees from the point of the impulse (w = 270 degrees). The 

change of orbital elements can be found using the algorithm given below. 

After the radial impulse is applied the new velocity vector magnitude, V, is given 

(4.6.7) 

The new specific mechanical energy is 

E = V0
2 
+8V/ J.1 

2 Rper;gee 

(4.6.8) 
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The new semi-major axis is 

-Jl 
a=-

2E 
(4.6.9) 

and the eccentricity of the new orbit is 

(4.6.10) 

It has to be noted that for a perturbed case, it is quite difficult to translate the addition of 

velocities in to exact change of orbital elements due to the presence of additional unknown 

velocity terms in the radial direction that are caused due to perturbations. This was 

mentioned earlier when the translation of tangential impulse in to appropriate orbital 

elements were calculated. 
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Initial Conditions for CW Equations 

Xo Xo Yo Yo Zo 20 OJ 

Fig. 4.6.1 Om o rnIsec Om 0.001 rnIsec Om o rnIsec 0.062 deg/sec 

Fig. 4.6.2 Om o rnIsec Om 0.03 rnIsec Om Om/sec 0.062 deg/sec 

Fig. 4.6.3 -697.1m o rnIsec Om 0.38 rnIsec Om o rnIsec 0.062 deg/sec 

Initial conditions as Orbital elements 

im .om 0Jm em 8m am 

FigA.6.1 90 deg 10 deg o deg 0 o deg 6971 km 

Master Fig.4.6.2 90 deg 10 deg o deg 0 o deg 6971 km 

FigA.6.3 90 deg 10 deg o deg 0 o deg 6971 km 

id .Qd OJd ed 8d ad 

Deputy Fig.4.6.1 90 deg 10 deg o deg 2.645xl0- 1 o deg 6971.002 km 

Fig.4.6.2 90 deg 10 deg o deg 7.935x10-6 o deg 6971.055 km 

FigA.6.3 90 deg 10 deg o deg 0.0001 o deg 6971 km 

Time of SImulatIOn: 30 orbits 

Table 4.6.1 Initial conditions for the comparison of the CW equations with the orbital elements 
method. 
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Simulation with the Orbital element method 
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FIGURE 4.6.4. IMMEDIATE CONSEQUENCES OF A VELOCITY INCREMENT OF O.OOIM/S TO THE 

RELA TIVE MOTION 

Figure 4.6.4 shows the immediate effects of adding a velocity impulse to the deputy 

spacecraft. The deputy spacecraft starts to move ahead of the master spacecraft for some time 

due to the velocity increment and then starts to drift behind the master spacecraft due to the 

slight eccentricity of its orbit. 

The Geometry method and the COWPOKE methods also converge well with the orbital 

element method with some assumptions. In the Geometry and the COWPOKE methods, the 

solutions to the relative motion are derived with the assumption that the master and the 

deputy are closely placed to one another. 

In the Geometric method by Gim and Alfriend, the deputy's orbital elements are expressed as 

a Taylor series expansion about the master satellite ' s orbital elements. This is under the very 

assumption that the initial separation distances are small and hence any orbital element of the 

master can be represented as l3 

(4.6.4) 
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The same is true for a transfonnation 

The functions are then expanded by Taylor series that reads as 

f(x+8x) = x+ ................ . 

(4.6.5) 

The solutions of the Geometric method also show sign of assumptions. This can be 

particularly seen from the angles. The solutions to the Geometric method are l3 

[: t[ (ou+coS~:.In)-Rd 1 
z J (sinud ·8i-sinim ·cosUd .bn).RdJ 

(4.6.6) 

The COWPOKE method is derived in a different way. The angles subtended by the master 

and deputy satellites due to their initial positional differences are calculated and are 

multiplied by the projection of the positional vectors to give the solutions to the relative 

coordinates. The solutions are given as 14 

(4.6.7) 
1 + (e + 5e)cos(M + 2esin(M) + 5v) 1 + ecos(v) 

[(beV + 5v)cos(5i) + bQcos(i)] 

[ 
. bQ . ( 50J . 5v s::. s:: 

-2sm-sm i)cos(OJ+-+ M + 2esm(M) + -) +uism(OJ + uOJ+ M + 2esin(M)+ 5v)] 
222 

r 

The COWPOKE method is also derived for small angular separations of the master and the 

deputy. An error analysis was presented in Section 4.1 of this thesis where the relative errors 

were plotted for different initial separations by changing only one orbital element, namely 

RAAN. In the following pages, the relative accuracy between the Orbital element method 

and the Geometry and the COWPOKE methods will be examined by changing more than one 

orbital element. 
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For the analysis, three different sets of orbital elements were selected and the initial relative 

coordinates were calculated using the COWPOKE equations (equation 4.6.7), the Orbital 

element method (equations 3.3.11) and the Geometry method (equation 4.6.6). The results 

are given in Table 4.6.3. Table 4.6.2 represents the initial conditions and Table 4.6.3 

represents the results. 

Master 

Test case 1 Test case 2 Test case 3 

am, km 6971 6971 6971 

Om, deg 10 10 10 

im, deg 90 90 90 

rom, deg 0 0 0 

em' deg 0 0 0 

em 0 0 0 

Deputy 

ad, km 6972 6981 7071 

Od, deg 10.00005 10.005 10.5 

id, deg 90.00005 90.005 90.5 

rod, deg 0 0 0 

ed' deg 0.008218 0.082 0.82 

ed 0 0 0 

Table 4.6.2 Test conditions for comparison of different methods 
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Test Case 1 
Orbital element COWPOKE Geometry Method 
method method (Eqn. 4.6.6) 
(Eqn.s 3.3.11a- (Eqn.4.6.7) 

3.3.11c) 
x, meters 999.928 1000 1000 

y, meters 1000.123 1000.123 1000.123 

Z, meters 6.078 6.078 6.078 

Test Case 2 

x, meters 9992.790 10000 10000 

y, meters 10014.144 10014.147 10014.378 

z, meters 609.421 608.547 609.421 

Test Case 3 

x, meters 997230 100000 100000 

y, meters 101425.17 101428.650 101432.151 

z, meters 625100 624214.278 625100.824 

Table 4.6.3 Results of the comparison of different methods 

The results show that the relative errors between the Orbital method and the other two 

compared methods increase with the separation distance. For a separation of a hundred 

kilometers, the relative errors are in the order of a few kilometers in the radial direction, a 

few hundred meters in the along-track direction and a few hundred meters in the cross-track 

direction. It should be noted that Table 4.6.3 only represents the relative errors calculated for 

initial positions. The magnitude of the relative errors is subject to increase with the 

progression of time. 

Since the COWPOKE and the Geometry methods are represented as a function of the orbital 

elements similar to the orbital element method, the inclusion of h dynamics is easily 

achieved by substituting the mean rate of change of orbital elements due to h perturbations. 

The mean rate of change of Orbital elements due to h is given as29 
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M· 3nRe2J2~(2 3· 2.) 
= 2 - mn 1 

4p 

(4.6.8) 

The mean rate of change of orbital elements can be used to predict the long-term evolution of 

relative orbits due to the effects of J2• 

In the following pages, a direct comparison of the COWPOKE equations, as presented by 

Catlin34
, is made with the orbital element method, for a perturbed case with the same initial 

conditions. The relative orbits are simulated with the mean rate of change of elements due to 

J2 in the both the methods. The resultant plots are consistent with the ones given by Catlin34 

and are shown in plots 4.6.5 and 4.6.6. Plots 4.6.5 are the ones simulated with the orbital 

element method and plots 4.6.6 are the ones simulated by Catlin34
. 
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Radial Separation using Orbital Element Method 
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The plots below were extracted from CatlinSS and shows the simulation with COWPOKE 
equations using mean rate of change of orbital elements 
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Below is the table with the initial conditions used for simulation of the above plots. 

Master satellite Difference 

Semi major axis, km 7178.1363 0 

Eccentricity 1O-11 6.964463 x 10-) 

Inclination, deg 45 0.00691260 

RAAN,deg 0 1.4 x 10-0 

Argument of perigee, deg 0 270.02484058 

Mean Anomaly, deg 0 89.97515845 

.. 
Table 4.6.1 CondItIOns for SImulatIon usmg the COWPOKE equatIOns 

4.7 Numerical Integration off Differential Equations for Relative Trajectory Analysis 

So far, In this thesis only the analytical methods for relative motion analysis of spacecraft 

were discussed. These analytical methods provide closed form solutions with or without 

perturbations and are useful for quite a number of applications like the fuel optimization 

problem. The amount of fuel needed to compensate the drifts caused by perturbations can be 

directly related to one another through closed form analytical solutions and in this way 

optimization of fuel is possible. Also the analytical solutions help to visualize the properties 

of possible relative trajectories even without having to simulate the analytical expressions as 

shown in section 4.2. This is quite impossible if we were to follow some type of numerical 

integration method. Infact before any of the analytical methods came in to existence, people 

were analyzing relative trajectories with numerical methods based on integrating relative 

motion equations. This method is based on integrating the differential equations of motion 

for both the satellites in the Earth Centered Frame and transforming the position and velocity 

vectors to the orbital frame of a reference orbit or the master satellite orbit and then by 

differencing them to obtain position and velocity vectors. This method of analysis is quite 
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straightforward and provides the relative position and velocities with a good level of 

accuracy. The level of accuracy depends only on the step size and the type of numerical 

method of integration used. 

Gim and Alfriend 12 have done some comparisons of their method with the numerical method 

and the results show that their method is quite as accurate as the numerical method for the 

perturbed and the unperturbed case (with h). Their results also show that the Hill's equations 

when compared to the numerical method yield errors that are of significant magnitude for the 

perturbed and the unperturbed cases. 

In this thesis, in section 4.1.1, the accuracy of the geometric method by Gim and Alfriend 

was compared with the orbital element method and it was shown that the Geometric method 

converged well with the orbital element method for conditions that had spacecraft close to 

each other. For large separation distances, the geometric method seemed to generate errors 

that were of significant magnitude. 

The orbital element method developed in this thesis is consistent with the geometric method 

and that intum has been shown to be consistent with the numerical method. This leads to a 

direct conclusion that the orbital element is indeed consistent with the numerical method of 

analysis and should provide the same or better level of accuracy than the geometric method. 

The comparison of the Geometric method with the numerical method and the Hill's method 

with the numerical method as of Gim and Al fri end 12 is shown in the plots below. 
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Below is a table that compares the various models available for spacecraft relative dynamics 

analysis. 

CW Cowpoke Geometry Orbital 
method method method Element 

Method Section Section (2.2.2) Section (2.2.2) method 

(2.1.1) 

Is it a Nonlinear No Yes Yes Yes 
method of Analysis? 

Is the master's No Yes Yes Yes 
spacecraft 

eccentricity included? 

Is it valid for any No No No Yes 
separation distance? 

Is it valid for longer No No No Yes 
simulation times? 

Can all the No Yes Yes Yes 
perturbative forces be 
included with ease? 

Has it got any Yes Yes Yes Yes 
simplifications in its 

derivation? 

Can it be used to Yes No No No 
analyze effects of 
initial velocities in 

different directions? 

Has it got a closed Yes Yes Yes Yes 
form solution for 

non-keplerian orbit 
analysis? 

Table 4.7.1 Comparison of different formation flying mathematical models 
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5.1 Introduction 

Dynamics of Spacecraft Formation Flight 

Chapter 5 

Simulation of Other Test Cases 

In the previous chapter, the Leader follower pattern was investigated and the behaviour of 

spacecraft in the presence of different forces was characterized. In this chapter, a few other 

formation patterns will be studied and the effects of differential drag on formation stability 

will be analyzed. 

5.2 Formation Design Patterns 

There are two general formation design configurations; 

1. Formations that have spacecraft in the same orbital plane 

2. Formations that have spacecraft in different orbital planes 

An example of the first formation design configuration is the Leader-Follower pattern. The 

leader follower configuration has the satellites in the same plane and hence there is no cross­

track separation of satellites. The second category of the formation design patterns is the one 

that has satellites in different orbital planes. The cross-track separation that arises as a result 

of the separation of the orbital planes can be attributed to two different individual conditions. 

• Cross-track separation due to a difference in ascending nodes of the spacecraft 

• Cross-track separation due to a difference in the inclination of the spacecraft 

The maximum cross-track separation due to a difference in ascending nodes in achieved at 

the equator and due to an inclination difference is achieved at the poles. This is due to the 

intersection of orbital planes at the poles for the ascending node case and at the equator for 

the inclination difference case. 

One of the practical implications of the formation with the difference in ascending node is 

the In-track formation. The In-track formation has two or more satellites orbiting in slightly 

different orbital planes and separated by shifts in true anomaly, 58, and right ascension, bY). 

Ph.D Thesis 118 Balaji Shankar Kumar 



Dynamics of Spacecraft Formation Flight 

The value of 5£1 orients the orbits so that the spacecraft in the formation share the same 

ground track. This is especially good for remote sensing missions that plan to pass over the 

same point above the ground for close surveillance. The mathematical expression for such a 

Formation pattern would be 

(5.2.1) 

where OJe and 5t are the angular velocity of the earth and difference in time between satellite 

ground passes respectively. 

Formations that have a cross-track separation due to a difference in the orbital inclinations, 

6i, can be named as Formation pattern with an inclination difference. Formations patterns 

such as circular formation flying pattern that has satellites in different planes can be designed 

with an inclination or ascending node difference. Figure 5.2.1 shows the in-track and 

inclination difference patterns. 

In-track pattern InclInation dIfference pattern 

FIGURE 5.2.1. IN-TRACK AND INCLINATION DIFFERENCE FORMATION PATTERNS 

5.3 Simulation Conditions of the Test Cases 

To analyze the stability of the formations with a cross-track separation, test cases were 

simulated for the in-track and the inclination difference formation patterns using the orbital 

elements method. All the test cases were again considered to be near circular and polar with 

5£1 = 0.0005 deg, for the in-track formation and 6i = 0.0005 deg, for the formation with an 
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inclination difference. The initial separation of the satellites was considered as 100 meters in 

the simulations and that corresponds to a 58 = 8.219 x 10-4 deg. Table 5.3.1 gives the 

summary of orbital elements of both the master and deputy spacecraft for the simulation test 

cases. 

In-Track Inclination Difference 
Orbital element 

master/deputy master/deputy 

a,km 600/600 600/600 

e 0.0001 /0.0001 0.0001 /0.0001 

i, deg 98/98 98/98.0005 

Q,deg 1011 0.0005 10110 

8,deg 8.219 x 10-4/0 8.219 x 10-4/0 

0), deg 0/0 0/0 

Table 5.3.1 Orbital elements of the Deputy and master satellites 

5.4 Simulation Results 

The results of the numerical simulation of the in-track formation pattern are presented as 

figure 5.4.1. Figure 5.4.1 shows the along-track, radial and cross-track drifts for a period of 

30 orbital revolutions. For the considered initial orbital elements the initial along-track 

separation is 108.45 meters. The magnitude of the drift and the amplitude of oscillations 

induced by J2 to J5 are almost similar to that obtained in figure 4.4.2 (leader-follower test 

case with 100 meters separation). The only difference is the periodic change in the cross­

track separation distance and that is due to the intersection of the orbital planes at the poles. 

There are no secular drifts in the radial and cross-track directions for this formation pattern 

and the secular drift in the along-track direction is approximately 0.06 m!orbit. 
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FIGURE 5.4.1. RELATIVE TRAJECTORY EVOLUTION FOR THE IN-TRACK PATTERN WITH A 

DIFFERENCE IN RAAN OF 0.0005 DEGREES 
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Figure 5.4.2 shows the evolution of relative trajectory for the formation pattern with the 

inclination difference of 0.0005 deg. The magnitude of the drifts in the along-track and the 

radial directions are the same as the formation pattern with a difference in ascending node. 

However unlike the formation pattern with the difference in the ascending node, there is a 

slight drift in the cross-track direction that gradually increases with time. This is due to the 

slow drift of the orbital planes from each other. J2 induces a drift of the orbital planes and 

that is in tum caused by the differential rates of change of RAAN as shown in figure 5.4.3. 

The rate of change of RAAN was found to be 5Q = 1.25 x 10-4 deg/day for an initial 

inclination difference of 0.0005 degrees. This corresponds to a 0.0456 degrees relative 

RAAN difference for a period of one year. 
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Change of RAAN for an inclination difference of 0 .0005 degrees 
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FIGURE 5.4.3 RAAN DIFFERENCE CHANGE FOR THE [NCLINATION DIFFERENCE PATTERN 

The velocity impulse required to compensate for a change in argument of the ascending node 

Q and inclination i , can be found from the following relation 29 

II V = 2V sin 112A 

where 

V is the circumferential velocity at the point of correction; 

llA = The total plane change and is given by 29 

(5.4.1) 

llA = cos-l(sin~ sini2 cos(02 -O}) + cos~ cosi2) (5.4.2) 

Subscripts 1 and 2 refer to conditions before and after the impulse respectively and in the 

simulation case it refers to the difference in change of inclination and ascending node 

respecti vel y. 

Using the above fonnulas, it was calculated that the LiV required to correct the cross-track 

separation for 1 year is approximately 6 m/sec/year for the selected test case. It should be 
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noted that the value obtained is dependent on the initial conditions and is definitely set to 

vary with the initial angular difference of the planes. The LtV requirements for in-track and 

the inclination difference patterns are almost the same as the leader follower pattern for a 

given separation distance for 1 year. This is based on the assumption that satellites pass 

through regions of the same atmospheric density. If the motion were to be modeled such that 

the atmospheric density not only varies with altitude but also with the latitude and longitude 

of a place then there would be some drift due to the difference in drag conditions. 

5.5 Differential Drag Effects 

In a practical formation-flying scenario, there is always a possibility of some drag area 

difference due to technical requirements like antenna pointing. Even a small difference in 

drag area will contribute to a significant secular change in distance between the satellites in a 

constellation. There are now plans to use small inspector or Escort satellites35 to perform 

visual and thermal imaging of a Chief-target satellite. This enables diagnosis for repair in the 

case of a breakdown and helps to identify problems for similar missions. The relative 

trajectory of the escort satellite around the target would depend on the difference in drag area 

between the escort and the target, difference in masses and the altitude of their orbits. Also 

the difference in the ballistic coefficients caused due to any uneven depletion of fuel for 

formation or station keeping would cause a similar effect like the differential drag effect. So 

test cases with a difference in surface areas of the formation flying spacecraft will be 

considered. In particular the effects of altitude and differential drag on the station keeping 

requirements will be investigated. 

Two test cases were simulated namely for the Leader-follower pattern at 600-km and the 

400-km altitude with an initial separation of 100 m and the difference in drag was considered 

to be 10%. All the other perturbative forces were disengaged from the model and only 

atmospheric drag was simulated. Figures 5.5.1 and 5.5.2 represent the evolution of relative 

trajectory with differential drag for 600-km and 400-km altitudes respectively. 
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FIGURE 5.5.2 EFFECTS OF A 10% DIFFERENTIAL DRAG AREA ON THE EVOLUTION OF RELATIVE 

TRAJECTORY FOR A LEADER-FOLLOWER PATTERN AT 400-KM ALTITUDE 
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It can be seen from the figures that there is a considerable amount of radial and along-track 

drifts due to differential drag effects. As one can predict, the 400-krn altitude has the 

maximum magnitude of drifts in both the directions. It is also interesting to note that the 

magnitude of the secular drifts induced by atmospheric drag for the 600 krn altitude was 

found to be almost similar to the ones obtained with the preliminary method and shown in 

figure 3.2.3 

It was decided to simulate a test case to find out the effects of SRP on the relative motion 

with a differential drag area. This is because of the fact the acceleration induced by SRP is 

directly proportional to the surface area and the surface properties of the satellites. So all 

other forces were disengaged from the model and only the SRP was simulated. Figure 5.5.3 

shows the evolution of relative 
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FIGURE 5.5.3 EFFECTS OF SRP ON THE EVOLUTION OF RELATrvE TRAJECTORY FOR A LEADER­

FOLLOWER PATTERN AT 600-KM ALTITUDE WITH A 10% DIFFERENTIAL DRAG 
AREA 

trajectory for a leader follower pattern at 600 km altitude and 100 meters separation with 

10% differential drag area. It can be seen that SRP causes a drift of approximately 11 meters 

in the along-track direction and 0.4 meters in the radial direction for a 100 meters initial 
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separation in the along-track direction. For a 1000 meters along-track separation, the drifts 

would be more. Having analyzed the individual effects of atmospheric drag and the SRP, it 

was decided to analyze the combined effects of atmospheric drag and SRP on satellite 

relative motion with a differential drag area. The result of the simulation is shown in figure 

5.5.4. The total drift due to the combined effects of SRP and atmospheric drag was found to 

be 28 meters in the along-track direction and 1 meter in the radial direction for a differential 

drag area of 10% for 10 orbital revolutions. 
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FIGURE 5.5.4 EFFECTS OF A 10% DIFFERENTIAL DRAG AREA ON THE EVOLUTION OF RELA TlVE 

MOTION FOR A LEADER-FOLLOWER PATTERN AT 600 KM ALTITUDE WITH DRAG 

ANDSRP 

It should be noted that in a practical formation flying scenario, there is wide range of 

possible differences in drag area ranging anywhere from 1 % to even 200%. The simulations 

showed that the drifts were proportional in magnitude to the difference in drag area assumed. 

So considering this in mind, an effort was made to calculate the Ll V required to compensate 

for the drifts induced by a differential drag area of 1 % and the results are presented in table 

5.5.1. The reason that lower frequencies of formation keeping require more fuel follows from 

the fact that the drift induced by Drag and SRP follows a nonlinear pattern. The magnitude of 

secular drifts increase with the orbital revolutions and is not proportional with time. So it is 

economical to fire thrusters more frequently than allowing a considerable growth of the 

secular drift before any thruster firings are done. In the above case considered, the magnitude 
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of secular drift after one orbital revolution is almost 30 times less than the magnitude of 

secular drift after 10 orbital revolutions in the along-track direction. 

LtV requirements for 1 year, mlsec 

Frequency of formation keeping 600-km altitude 400-km altitude 

1 orbit 0.44 5.32 

5 orbits 0.49 11.20 

1 day 1.2 23.62 

Table 5.5.1 L1Vrequirements for the Leader-Follower pattern with a differential drag of 1% 
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Chapter 6 

Practical Issues of Formation Flight 

6.1 Introduction 

In this chapter, the system engineering issues of formation flight including issues concerning 

orbit establishment will be discussed. 

6.2 Orbit Establishment for Formation Flying Spacecraft 

The issue of assembling multiple spacecraft into a desired formation is the first challenge 

involved in a real formation-flying mission. For this, Mission planners need to know the 

orbital elements of each participating spacecraft based on their positional data in the 

formation. The method of determination of orbital elements for formations such as the 1n­

plane fonnation pattern is simple and straightforward but complex for 3-dimensional 

formation patterns such as the triangular or circular formation pattern. There exists no direct 

method that gives the value of orbital elements from the initial relative positional data. 

However, without the knowledge of orbital elements of the spacecraft in formation, tasks 

such as orbit establishment, maintenance and orbit simulation is impossible. Here, in this 

section, the orbital elements will be represented as a function of the relative coordinates. This 

will be done for a closely placed formation scenario and will use three pieces of information, 

namely 

1. The orbital elements of one of the spacecraft in formation 

2. The initial values of relative displacement and 

3. The formation geometry (if appropriate) 

Once the orbital elements of all the spacecraft 111 formation are known the necessary 

maneuvers to establish a desired configuration pattern can be planned ahead. 
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6.2.1 Orbital Elements as a Function of Relative coordinates 

The relationship between the orbital elements and the relative coordinates can be established 

by making the following assumptions in Equation (4.1.4). 

• at = 0; 

• cosl5u :::::: 1 & sinl5u ::::::15u 

• cos UdZCOS Um 

The first assumption follows from the fact that formation patterns with an inclination 

difference tend to be more expensive than the other formation patterns in terms of fuel 

consumption due to the differential drift of orbital planes. The second and the third 

assumptions are true for closely placed formation patterns when the relative displacement is 

very small compared to the distance of the spacecraft from the center of earth. Similarly, &- Z 

o & OJ Z 0 for closely placed spacecraft and that leaves us to find the other three significant 

orbital elements namely, the semimajor axis, RAAN and the true anomaly. By considering 

the above mentioned assumptions and rearranging terms in equation (4.1.4), 

an = ____ -_z ___ _ 
(x+Rm)sinim cosum 

au = ysinim cosum +cosimz 
(x + Rn,) sin im cos Um 

(6.2.1.1a) 

(6.2.1.1b) 

(6.2.1.1c) 

The above equations for the angular orbital elements when evaluated and substituted in 

equations nd = nm - m, ud = urn - 8u yield the orbital elements of the deputy spacecraft. 

The above equations can also be simplified for specific cases as shown in table. (6.2.1). 
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xy plane, z=O xz plane, y=O yz plane, x=O x,y,z =0 

R= d x+Rm x+Rm Rm 0 

an= 0 -z -z 0 

(x+Rm)sinim cosum Rrn sinirn cos urn 

au= y sin im cos um cosimz Y sin irn cos urn + cos irn z 0 

(x + Rm)sin im cos urn (x + Rm) sin irn cos urn Rrn sin irn cos urn 

Table 6.2.1 Formulas of orbital elements pertaining to different cases 

6.2.2 Validation of the Results 

It should be noted that the above results are not very accurate due to several assumptions 

made in their derivation. Nevertheless they can be used to predict the values of the orbital 

elements of the deputy spacecraft and with some iteration they can be also made to provide 

accurate results. This will be shown in the following paragraphs by considering the following 

formation-flying scenario. 

It has been planned to use 2 spacecraft with the master spacecraft having the following 

orbital elements; 

Rm = 6971 km, em= 10-4
, im = 90 deg, 12m = 10 deg, OJm = 0 deg, Bm= 0 deg and 

The initial relative coordinates of the deputy are; Xo = -1 km, yo = -1 km, Zo = 1 km 

The objective is to find the orbital values of the deputy spacecraft with the above known 

parameters. It will be shown in the following paragraphs that the problem of finding the 

accurate values of the orbital elements is an iterative process 
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FIGURE 6.2.1 GEOMETRICAL REPRESENTATION OF A PRACTICAL FORMATION-FLYING SCENARIO 

Figure (6.3.1) is the geometrical representation of the formation pattern. By substituting the 

known values in Equations.( 6.2.1.1 a-6.2.1.1 c), 

Rd= 6970 km (599 km altitude), 5Q= 8.347 x 10-3 deg, 5u = 8.22 X 10-3 deg, 

Ud= -0.0082 deg 

Now as discussed earlier, these values are just approximate values due to the several 

assumptions made in Equation (4.1.4). The difference can be estimated by substituting the 

obtained orbital element values in relative coordinate equations C3.3.11a -3.3.11c). The 

difference between the actual values of the orbital elements and those obtained with the 

formulas becomes higher with the increase in the values of the relative coordinates. 

In our case, by substituting the orbital elements in equations (3.3.1la-3.3.11c), 

x = -1000.146 m, y = 999.958 m, Z = -1015.408 m 

It can be seen that the cross track displacement differs by approximately 15 meters from its 

actual value and to correct it, the difference in RAAN might have to be reduced slightly. 

Similarly the value of the true anomaly needs to be slightly adjusted to tally the difference in 

the y direction. After a few iterations the correct values of RAAN and true anomaly of the 

deputy spacecraft corresponding to the desired values of x, y, z were found to be Q d = 

10.0082203 deg and Ud= -0.0082203 deg. The same algorithm can be used to find the orbital 
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elements of any number of deputy spacecraft with just the knowledge of their positional data 

with respect to the master spacecraft. 

6.2.3 Assembly and Control of Spacecraft Formation 

In the previous subsections, the relationship between the orbital elements and the formation 

geometry was discussed. It was shown that the orbital elements of the deputy spacecraft 

could be determined with the knowledge of the formation geometry and the orbital elements 

of the master spacecraft. The next question that needs attention is the strategy involved in the 

actual assembly of the spacecraft into a formation. Different formations will need different 

strategies for spacecraft deployment and assembly. Also the total time taken for the assembly 

would depend on the final separation distance of the spacecraft, the complexity of the 

formation and the fuel budget. For formation patterns that have all spacecraft in the same 

orbital plane, the strategy for assembly should be relatively simple and straightforward when 

compared to complex formations with spacecraft in different orbital planes. Choosing the 

fuel optimal strategy is one of the main problems involved in spacecraft formation assembly 

and this is very important especially for nanosatellite formation assembly. 

Let us consider a simple case of a proposed leader-follower formation-flying mission. Two 

spacecraft are planned to have an initial separation distance of 1000 meters. It is proposed to 

seek a strategy to assemble the spacecraft with the minimum amount of fuel spent and within 

a specified time. One of the possible strategies would be to eject one of the spacecraft with an 

excess velocity in the along-track direction relative to the other. The slight excess velocity 

would then cause the spacecraft to drift in the along-track direction. Once the desired 

separation distance is obtained, a drift stop maneuver can be performed to stop the relative 

drift between the spacecraft. To avoid any final radial separation distances, it is better to 

perform the drift maneuver at the perigee altitude where the radial separation will be the 

least. To execute this strategy, one needs to know three parameters in advance. These are the 

initial spacecraft distance, time for formation assembly and the velocity increment needed for 

the drift. In practice, two of the parameters are dictated by the mission requirements namely 

the initial separation distance and the formation assembly time. The third parameter, namely 
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the required velocity increment can be found from the algorithm developed by the author of 

this thesis and is given below. In the algorithm the deputy spacecraft is assumed to have the 

velocity increment. 

The along-track separation distance, from equation 4.1.2 is given as 

y = (sin5u +cosim ·8::).·cos5u)· Rd 

For spacecraft lying in the same orbital plane, the above equation can be written as 

y =sin5u.Rd 

:::::>5u = sin-I L 
Rd 

2rrt 2rrt . -I Y 
:::::>---=sm -

Tm Td Rd 
(6.2.3.1) 

Where t in the above equation is the time, Rd is the perigee radius and T is the Time period. 

Subscripts m and d refer to the master and the deputy spacecraft respectively. 

In the above equation, parameters Rd, Tm and yare known and Td is the unknown parameter. 

Equation 6.2.3.1 can be rewritten as 

2rrt-T sin-1 L 
1 m R 

:::::>_= d 

Td 2rrtTm 
(6.2.3.2) 

:::::> Td = 2 rrt Tm 

2 T · -I Y rrt- sm -
m R 

d 

(6.2.3.3) 

substituting T" ~ 2" J a;' in the above equation gives 

Ph.D Thesis 135 Balaji Shankar Kumar 



Dynamics of Spacecraft Formation Flight 

ad tTm f£------;; = 21ft - T sin -I L 
m R 

Substituting ad = RdO in equation 6.2.3.4 gives 
1-e 

3 

d 

RdO tTm 
-~-=----"'------

,u(1-e)3 21ft-T sin-I L 
m R 

d 

(6.2.3.4) 

(6.2.3.5) 

In the above equations, RdO refers to the perigee radius of the deputy spacecraft just before 

the addition of velocity increment. Also RdO = Rm 

2 

( 21ft - Tm sin -I :d J 3 

e=1- Rm 
1 (6.2.3.6) 

In the above equation t can be represented as t = n . Tm where n is the number of orbits of the 

master spacecraft. So equation 6.2.3.6 can be written as 

2 

( 2JrnTm - Tm sin -, :. J 
-
3 

e =1-
Rm 

1 
nTmTm -

,u3 

2 

(2Jrn-Sin-' :J 3 

~e=1-
Rm 

nTm 
1 

J13 

(6.2.3.7) 
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Equation 6.2.3.7 can be used to detennine the resultant eccentricity of an orbit, which gives a 

drift of y after n orbits of the master spacecraft. The value of e can be then used to find the 

magnitude of the velocity increment needed for the specified conditions. For that the semi­

major axis ad of the deputy spacecraft can be found with the help of e obtained from equation 

6.2.3.8. 

Rperigee a -----'-------'-'--
d - l-e (6.2.3.8) 

where Rperigee is equal to the initial radius of the deputy spacecraft before the velocity 

increment. The energy equation is written as. 

(6.2.3.9) 

The required velocity increment can then be found by rearranging the tenns in equation 

6.2.3.9. In Equation 6.2.3.9, VdO refers to the initial velocity of the deputy spacecraft just 

before the velocity increment and is equal to V lib the velocity of the master spacecraft. 

(6.2.3.10) 

Substitution of equations 6.2.3.8 and 6.2.3.7 in equation 6.2.3.10 gives the final equation 

5V = ----'--Jl_ 
Rperigee 

I 

2 

(6.2.3.11) 

The above algorithm can be used to find the velocity increment needed to achieve an along­

track drift of y meters in n orbits. An example is illustrated below to demonstrate the validity 

of the above algorithm. 
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FIGURE 6.2.2 SIMULA nON SHOWlNG THE CONSISTENCY OF THE ALGORITHM WITH THE DERTVED 

FORMULAE TO PREDICT THE REQUlRED 5V 

It is necessary to determine the 5V to achieve an along-track separation of 1000 meters afterl 

orbital revolution of the master for a 600-km initial altitude. Using the given data, the 

eccentricity of the resultant orbit can be found from equation 6.2.3 .7. The eccentricity 

computes to l.522 x 10-5
. The 5V can then be found from equation 6.2.3.10 and equals 0.058 

m/sec. The results are then substituted in equations 3.3.11a-3.3 .11 b and the simulated plot is 

shown as figure 6.2.2. It can be seen that for the specified velocity increment, the along-track 

separation is 1000 meters after one orbit. This shows that the algorithm is valid and 

consistent with the derived formulas for the specified conditions. It should be noted that the 

algorithm presented is only valid for velocity increments made in the along-track direction. 

The above algorithm could also be used in the controller algorithm for fuel optimal formation 

reconfiguration with appropriate data from relative co-ordinate determination sensors. It 

should be noted that the algorithm presented might not represent the optimal method to 

assemble the formation but is just one of the possible ways to assemble a formation . 

6.3 System Engineering Issues 

Formation flying is undoubtedly a revolutionary concept that has many useful implications. 

However, to accomplish a successful mission using this concept, a number of challenges 

have to be overcome in the field of sensing, actuating and controlling of the spacecraft 
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involved. These challenges are a part of the requirements for a good systems design. In this 

section, the current status of the main focus areas of system design is discussed. 

6.3.1 Formation Flying Sensors 

Many of the currently proposed formation flying mISSIOns plan to use spaceborne GPS 

technology for determining and controlling the relative positions of the satellites. Several 

teams, including NASA, JPL and ESA, are working with university and industry partners to 

move this technology to the forefront36
. Current GPS technology can provide inforn1ation 

about the relative positions of the satellites to an accuracy of a few centimeters. It is expected 

to take three generations of receiver developments to achieve the GPS (transmit/receive) 

spacecraft cross-link sensor that is needed for future formation flying missions36
. An 

alternative to GPS technology is the vision-based navigation (VISNAV) system under 

development by Texas A&M University. VISNAV has an optical sensor made up with a 

Position Sensing Diode (PSD) placed in the focal plane of a wide-angle lens. When the 

rectangular silicon area of the PSD is illuminated by the energy from a beacon, it generates 

electrical currents that are processed to determine position co-ordinates. The advantage of 

such a sensor is that the light sources can be put at the end of a deployed boom of a single 

spacecraft for determining alignment, or on other spacecraft in a formation to detern1ine 

position and attitude. 

6.3.2 Formation Flying Actuators 

Formation control puts high demands on spacecraft actuators. New technologies are 

necessary to ensure sufficient resources are available onboard to maintain the forn1ation. 

These technologies must support higher pointing constraints, provide greater precision thrust 

capability and significantly improve use of propellant expendables since a greater 

manoeuvring frequency can be expected to maintain precision relative positioning. Several 

initiatives that are of particular interest are micro-reaction wheels and micro-thrusters. These 

could be used to support very small micro and nanosatellites as well the extremely fine 

pointing needed to achieve the requirements for formation flying missions such as planet 

finder, interferometry, synthetic aperture radar, and relativity. Colloid microthrusters (with 
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thrust in the milli-Newton range) are a promising new technology in the field of small 

spacecraft propulsion. Because of their small size and low weight these devices are 

particularly interesting to missions incorporating formation flying and nanosatellites. 

There are also proposals of using drag panels to control relative separation of spacecraft for 

coarse formation flying missions. This is achieved by creating a differential drag effect by 

either opening or closing the drag panels on the master or the deputy spacecraft. 

C.L.Leonard37 proved in his paper that it is feasible to use differential drag as the means for 

controlling the spacecraft relative position. This is an advantage especially when different 

spacecraft in a formation have different masses due to uneven spending of fuel for formation 

and station keeping. However there are some limitations like the cross-track drifts are often 

not controllable. 

6.4 Some General Issues Concerning Formation Flying 

The costliest of all formation patterns in terms of fuel is the formation with the inclination 

difference. This is due to the fact that formation patterns with spacecraft in different orbital 

planes need additional fuel for compensating the cross-track secular growth error. It is also 

very expensive to maintain formations at low altitudes due to the atmospheric drag effects. 

For example it was found that the semi major axis decayed at a rate of 41 m/orbit for 400-km 

altitude. The worst case would be to have a differential drag-area that would require 

additional fuel for formation keeping. The effects of differential drag increase with the 

decrease in satellite altitude. Satellites flying in formation are likely to develop dissimilarities 

in mass during their entire lifetime due to the expulsion of mass as propellants. The quantity 

of the propellants used by each satellite directly depends upon the attitude accuracy 

requirement as defined by the mission and the frequency of formation maneuvering. The 

depletion of mass as fuel increases the ballistic coefficients of the satellites thereby 

increasing their drag deceleration. The extent of relative motion directly depends upon the 

difference in mass between the formation flying satellites. The greater the difference in mass, 

the more the satellites drift or come close to each other depending upon their positions in the 

formation. The dissimilarities in mass of the formation flying satellites, at different instances 
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of time, during the mission is variant as the satellites bum up fuel in different ratios as 

required by the mission control. The effects of dissimilarities in mass are almost identical to 

the effects of difference in drag area, as both the factors tend to change the net drag 

deceleration and the solar radiation pressure on the satellites. The effects of difference in 

mass can be reduced by the proper planning of the fuel usage between the satellites or by 

using drag panels as actuators for formation maneuvering and correction. For nano-satellite 

formation flying, it is desirable to use higher altitudes to reduce any differential drag effects 

and consequently minimize fuel spending. 

Apart from the fuel expenses for formation keeping, station keeping and formation 

maneuvering, spacecraft may also need to carry extra fuel for any correction of velocity or 

position offsets that may arise after separation from the launch vehicle. The magnitude of the 

L1 V to compensate the velocity offset depends on the accuracy of the satellite deployment or 

separation mechanisms and also the direction of the velocity offset and can constitute a few 

meters/second if the velocity of offset is in the orbit normal direction. 
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Chapter 7 

Summary, Conclusions and Recommendations 

The main purpose of this thesis was to study and analyze the dynamics of spacecraft 

formation flight. In the first two chapters of this thesis, the concept of spacecraft formation 

flight and the different approaches available for the study of formation dynamics were 

discussed. The literature review in chapter-two reveals the fact that the existing methods are 

generally based on the CW equations and considerable improvement to the dynan1ics is 

needed for an accurate prediction of the relative positions of the spacecraft that will 

consequently minimize fuel consumption and maximize lifetime. Many of the existing 

methods also suffer from limitations like on eccentricity of the reference orbit, initial 

separation distance and simulation time. Chapter Three deals with the development of the 

mathematical model for the analysis of spacecraft formation flight dynamics. The method is 

based on a geometrical transformation of the coordinates from the Earth-centered co-ordinate 

frame to the spacecraft centered co-ordinate frame. The resultant is a system of relative 

coordinates dependant on the orbital elements of the reference spacecraft and the target 

spacecraft. This feature also allows dynamical modelling of perturbative forces with the help 

of the Gauss equations that relate the change of orbital elements as a function of the 

perturbations. The model is then improved to accommodate zero values of inclination and 

eccentricity by converting the classical orbital elements to modified equinoctial orbital 

elements. This model is then used to predict the dynamical behavior of spacecraft in different 

formation patterns under the influence of perturbative forces like .h - '/5, Solar Radiation 

Pressure and Atmospheric Drag. The effects of the different initial conditions like spacecraft 

separation, type and nature of orbit are studied. Based on the values of drift predicted, an 

estimate of the L1V needed to compensate for the drifts for different frequencies of thruster 

firings is calculated. The effect of differential drag on the stability of the formation is 

analyzed for different altitudes. Analysis of different formation patterns show that the 

differential ./2 effects induces short time periodic variations in all the directions and these 
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periodic variations are dependent on the initial conditions. For example, the initial along­

track separation of the formation pattern is one of the factors that affect the magnitude of the 

periodic variations. Another factor that influences the periodic variations caused by J2 is the 

inclination of the orbits. It was found that the spacecraft in high inclination orbits were most 

affected by the differential J2 effects than the spacecraft located in low inclination orbits. The 

maximum magnitude of oscillations induced by differential h was in the range of 0.5% of 

the initial separation distance. So a control accuracy value of ± 0.5% of the initial separation 

distance would not incur any fuel expenditure due to the differential J2 effects This is 

however not true for formation patterns having spacecraft with different orbital inclinations. 

The differential J2 effects also induce secular drifts in the along-track direction that needs to 

be corrected. The magnitude of the secular drifts again depends on the initial conditions and 

the formation patterns with spacecraft located in different inclinations need more fuel for 

formation keeping than the formation patterns that have spacecraft located in the same orbital 

plane. A study is conducted to compare the results of the orbital element method with the 

CW method and the COWPOKE equations. 

Finally, in chapter six, the equations of the relative coordinates and the geometry of the 

formation are utilized to predict the orbital elements of the deputy spacecraft for the 

formation assembly problem. This is done with the help of the simplified version of the 

relative coordinate equations for a closely placed formation scenario. Also in chapter six, 

some of the system engineering issues related to practical formation flying are discussed. 

7.2 Recommendations 

Due to the scope of this thesis, there are many interesting questions that have been identified 

as possible case studies for future research. They are listed in order below. 

• Inclusion of tesseral harmonic coefficients and modelling gravitational perturbations as a 

function of the latitude and the longitude of the sub-satellite point as only zonal harmonic 

coefficients are modeled in this thesis. The zonal harmonic coefficients are only 

dependent on the latitude of the sub-satellite point. 

• Modeling and the inclusion of third body perturbations like lunar and solar perturbations. 
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• Extend the relative motion equations for analysis of formation flying missions for deep 

space missions with the sun as a central attracting body. This will include analysis of 

relative motion with parabolic or highly elliptical reference orbits. 

• Development of controller algorithm using the relative motion equations and finding fuel 

optimal trajectories for formation keeping and reconfiguration. 

• Assembly of complex spacecraft formations and the dynamics of separation 

• Modelling the dynamics with Brower's equations rather than Gauss perturbation 

equations. In this way the method of formation flight dynamics analysis can be made 

fully analytical. 

The method of analysis of spacecraft formation flight dynamics presented in this paper is 

based on a semi-analytical method where the actual dynamics is analyzed using the Gauss 

perturbation equations that require numerical integration. Instead of using the Gauss 

perturbation equations, the Brower's 38 equations can be used to make the method fully 

analytical. However the Brower's equations are only approximate solutions to the Lagrange's 

planetary equations and only show the change of orbital elements due to the effect of.h 

At the time of writing this thesis, one of the research students of the Astronautics Research 

group, namely Riaz Ahmed has proposed a method based on the basic concept of the method 

developed in this thesis but with some differences. Instead of using the Gauss perturbation 

equations to simulate the effect of perturbative forces, he proposes to use Cowell's method to 

include perturbations. The idea of his method is to find the rate of change of orbital elements 

using the Cowell's method of orbit propagation and then substitute the values of the orbital 

elements in equations 3.3.11 a-3.3.11 c of this thesis. The advantage of using the Cowell's 

method is that there is no need to worry about any singularities in eccentricity and inclination 

occurring like in the standard version of the Gauss perturbation equations. The only 

disadvantage is that it needs the prior knowledge of the relative coordinates x, y, z in terms of 

the Geo-centric coordinates X Y, Z and that requires some computational effort. This method 

is currently being evaluated for its accuracy and consistency with the method given in this 

thesis. 
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7.3 Conclusions 

This thesis investigates the dynamics of formation-flying spacecraft by analyzing their 

relative trajectory in the presence of perturbative forces. In order to be able to analyze the 

relative trajectory, a novel method otherwise known as the orbital element method has been 

developed in which the equations of relative coordinates are dependent on the orbital 

properties of the formation flying spacecraft. The derivation of equations is a result of a 

series of Euler transformations and a translation from the Earth centered body fran1e to 

spacecraft centered rotating frame. 

Traditionally, CW equations have been used to simulate relative trajectories of spacecraft. 

The CW equations are a linearized solution to the Hill's differential equations and are only 

accurate for a very short period of time. Also the CW method does not support analysis of 

elliptical reference orbits unlike the orbital element method developed in this thesis that 

supports analysis of any type of reference orbits. 

The orbital element method incorporates all the orbital elements of the deputy and the master 

spacecraft, allowing easy dynamical modeling with the help of Gauss perturbation Equations. 

For maximizing the mission lifetime and minimizing fuel consumption, precise 

determination of coordinates is imperative and the orbital element method provides the 

necessary solution. The orbital element method also provides closed form analytical solutions 

that can be used for fuel optimization, analysis of trajectories without actual simulations and 

determining the orbital elements from the geometry of the formation pattern. 

There are other methods like the Geometry method by Gim l2 and the COWPOKE method by 

Sabol 14 that are better than the CW method and can used to analyze the relative trajectory but 

they also suffer limitations due to the various assumptions made in their derivation. The 

Geometry and the COWPOKE methods include the effects of master spacecraft eccentricity. 

which the CW equations fail to consider but have limitations on spacecraft separation as they 

are derived with the assumption that the spacecraft in a formation are closely placed to one 

another. The orbital element method is derived with the least of assumptions and can be used 

to analyze any type of formation thus giving a general approach to the problem of formation 
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flight dynamics. With proper modeling, the approach presented in this thesis can be utilized 

to analyze behaviour of any formation patterns and their stability in the presence of 

perturbative forces. The orbital element method can also be used for designing the orbit 

controller algorithm and for finding the optimal orbit transfer for reconfiguration of 

formation flying satellites using appropriate formation flying sensors. 
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Appendix A 

The following is the Algorithm for the Runge-Kutta Fehlberg Method. 

Each Runge-Kutta-Fehlberg step requires the use of the following six values: 

( 
3 3 9) 

ko = h f tj + - h, Yj + - kl + - kt 
. 8 32 32 

12 1932 7200 7296) 
k4 = h f (tj + - h, Yj + -- kl - -- kt + -- kl 

13 2197 2197 2197 

439 3680 845) 
ks = h f (tj + h, Yj + - kl - 8 kt + -- kl - -- k4 

216 513 4104 

1 8 3544 1859 II 
k6 = h f (tj + - h, Yj - - kl + 2 kt - -- k~ + -- k4 - - ks) 

2 27 2565 4104 40 

Then an approximation is made using a Runge-Kutta method of order 4: 

25 1408 2197 1 
Yj+l = Yj + - kl + -- k, + -- k4 - - ks 

216 2565 4104 5 

And a better value for the solution is determined using a Runge-Kutta method of order 5: 

16 6656 28561 9 2 
Zj+l = Yj + - kl + -- k2 + -- k4 - - ks + - k6 

135 12825 56430 50 55 

The optimal step size sh can be determined by multiplying the scalar s times the current step 

size h. The scalar s is 

3- ( eh )l/4 = 0.840896 ( eh )l/4 
- 2 I Zj+l - Yj+l I I Zj+l - Yj+l I 

where e is the specified error control tolerance. 
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Appendix B 

Section 3.2.2 (Page 42) 
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