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Time-Domain Non-Linear Strip Theory for Ship Motions 

by Yun Tao Fan 

A new time-domain strip theory is developed in this thesis. Compared with tra-

ditional strip theory, the main difference is that the calculation is carried out in 

the time domain. Exciting forces and hydrodynamic coefficients are computed 

on the instantaneous wetted ship hull surface at each time step, which makes 

this new method possible to cope with relatively large-amplitude motions and 

non-constant forward speed problems. 

The basis of this new method lies in the strip theory of Salvesen, et af [56] 

and the early work of Westlake and Wilson [72]. The newly developed conformal 

mapping method enables the two-dimensional hydrodynamic coefficients of the 

sections with any type of shape to be computed accurately and efficiently. This 

new method is applied to calculate the hydrodynamic coefficients and motions 

of a Series 60 (Cg — 0.7) ship model in regular waves. By comparing the results 

with experimental data and numerical results provided by other contemporary 

analytical techniques, important improvements are found within a certain range 

of wave frequencies. 

The numerical schemes are carefully verified and validated in a systematic 

manner to make sure that the correct results are obtained. 
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Chapter 1 

Introduction 

Ships are built for the purpose of carrying people, material, and/or weapons 

upon the sea. In order to accomplish this mission, a ship must possess several 

basic characteristics. It must float in a stable upright position, move with suffi-

cient speed, be able to manoeuvre at sea and in restricted waters, and be strong 

enough to withstand the rigours of heavy weather and wave impact. By a sim-

ple knowledge of hydrostatics, ship is easily to be ensured floating upright in 

clam water. However ships rarely sail in calm water, therefore prediction of ship 

dynamical characteristics in a realistic seaway becomes necessary during ship 

design. Wave loadings, induced by realistic ocean waves, are the main exciting 

source of ship dynamical motions. The research of interaction between ship and 

waves is named seaAeeping. 

For more than a hundred years, many seakeeping theories and methods 

have been established. The major difficulties in seakeeping computations are the 

non-linearities, which exist in almost every phase. 

i. There are non-linearities associated with the fluid in the form of viscosity. In 

most hydrodynamic studies, viscosity is negligible compared to the inertia 

and gravity of the fluid. However, viscosity has an important effect on the 



roll motion, especially at resonance in the beam seas. 

ii. Bernoulli's equation used to compute the hydrodynamic pressure contains 

velocity squared terms. 

iii. The free-surface boundary condition is strongly non-linear containing a com-

bination of non-linear terms of unknown quantities and applied on an un-

known surface, which itself is a part of the solution. 

iv. The non-linearity exists in solving incident wave potential due to the non-

linear free-surface boundary condition. 

V. The body boundary condition imposed upon an unknown body surface in-

troduces important non-linear effects, such as the interaction between the 

steady and unsteady wave flows. 

vi. The body geometry often causes non-linear hydrostatic restoring forces. 

Fully non-linear seakeeping problem is beyond the computational state-of-the-

art at the present time. Consequently, approximations must be made in order to 

have a tractable mathematical problem. Viscosity and the velocity squared terms 

in Bernoulli's equation are the first non-linear factors to be neglected. Neumann-

Kelvin and Dawson approaches are two most commonly used methods of linearis-

ing free-surface boundary condition. The body boundary condition and hydro-

static restoring forces can be linearised by being expanded about the calm water 

surface using Taylor's series. Moreover, because of the forward speed ships al-

ways tend to be long and slender with smooth variations along their length. This 

geometric feature of typical ships is the basis of many other further approxima-

tions that have allowed various seakeeping theories to be developed. 

Recently a so-called body-exacf approach to treat the body boundary con-

dition has emerged, in which the exact body boundary condition is applied on 

the instantaneous wetted surface of the body. The body boundary condition is 



linear when it is applied on the instantaneous wetted surface. This results in a 

time varying linear system rather then a time invariant system. Except for some 

very simple cases, the body-exact problem must be solved in the time domain. 

In most of the reported works a three-dimensional method, either time-domain 

Green function method or time-domain Rankine plane method is adopted. The 

objective of this thesis is to extend the traditional frequency-domain strip theory 

into the time domain, so that the body-exact approach can be used. The hydrody-

namic coefficients and forces are able to be computed over an exact wetted body 

surface. 

The three-dimensional methods have been proved to give, in general, bet-

ter agreement with experimental data. However, strip theory is still the most 

popular theory. Beck and Reed [3] estimated that probably 80 percent of all the 

current calculations related to ships with forward speed are still made by us-

ing strip theory. This is because strip theory has distinctive benefits compared 

with three-dimensional methods. Firstly it is reliable and requires much less nu-

merical calculation than the three-dimensional methods, whilst its accuracy is 

quite reasonable for engineering applications. Secondly strip theory just requires 

the offset data on ship sections, while the three-dimensional methods need the 

three-dimensional ship surface data. This makes strip theory more feasible for 

the analysis of the seakeeping performance in the initial ship design stage. In the 

last decade, strip theory seems to be neglected, all the efforts have been focused 

on the development of time-domain three-dimensional methods, yet few works 

on refining strip theory can be found. 

Generally the steady-state time-harmonic ship motions (surge sway 2̂, 

heave ,̂ 3, roll ,̂ 4, pitch (̂ 5, yaw can be described by a set of second order equa-

tions 
6 6 6 

-t- J = 1, 2, . . . , 6, 
2=1 2=1 



where M,, is the generalised mass matrix, and are the added-mass and 

damping coefRcient matrix, Q, is the hydrostatic coefGcient matrix and ^ is 

exciting force and moment vector. In the derivation of these equations using 

strip theory [56], it is assumed that motions are small. Not only is the free-

surface boundary condition linearised about the undisturbed water surface, but 

is the body boundary condition expanded about the mean position. For large-

amplitude motions in the severe seas, the influence of the varying underwater 

part of the hull will be significant, so this linearisation of body boundary condi-

tion may not be justified. This weakness may be rectified by applying a body-

exact approach. At each time step, the exact submerged part of each section is 

extracted, hydrodynamic coefficients and forces are then calculated based on this 

instantaneous body boundary. A fully time-domain method is NOT adopted, be-

cause it requires the evaluation of convolution integrals over all previous time 

steps. This may cause strip theory to lose its numerical simplicity over other 

methods. Instead, a coupled time and frequency domain method is presented 

in this thesis from the engineering practice point of view. With the restriction of 

time-harmonic exciting forces, the equations of ship motions are assumed still to 

keep as simple form as the above equations at each time instant, but the coeffi-

cients Qi and the forces are varying. 



Chapter 2 

Literature Review 

The research of ship motions and wave loadings was started by William Froude 

[17] in 1861, studying the rolling motion of the first steam ship. Several decades 

later, Kriloff [33] studied the pitch and heave motions of ships. Froude and Kriloff 

derived differential equations of ship motion which consisted of only mass, lin-

earised restoring forces, and wave-induce force exerted on the ship. The wave-

induced force was evaluated from the pressure field of the undisturbed incident 

waves, the hydrodynamic disturbance associated with the presence of the ship 

hull was neglected. This force is now named Froude-Kriloff Force. Modern com-

putations began with two development in the 1950's. The first was the use of 

random process theory to determine the statistics of the ship responses in a sea-

way. The second was the development of linear ship motion theories to predict 

the response of the ship to regular waves. Detailed histories of the development 

can be found in many sources including Newman [45], Ogilvie [51] and Beck [3]. 

St. Denis and Pierson [60] proposed a method to predict the statistics of ship 

responses to a realistic seaway. Two critical assumptions were made: 

i. the ship can be represented by a linear system, and 

ii. the sea surface is a Gaussian random process with zero mean. 
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The linear system assumption allows the superposition principle to be used. The 

response of ship to the irregular waves could be considered as the summation of 

the response to regular waves of all frequencies. This simplifies the prediction of 

ship motions in realistic seaways into two relatively easy problems: the predic-

tion of the ship motions and loads in regular sinusoidal waves and the prediction 

of the statistical response in irregular waves using the regular wave results. The 

second assumption enables the probability density function of the ship response 

to be completely characterized by the variance, which is simply the area under the 

spectral density of the response. Once the probability density function for a given 

response is known, all the desired statistics of the response can easily be deter-

mined. The spectral density of any given response can be found by multiplying 

the incident wave spectrum by the square of the response amplitude operator of 

the desired response. St. Denis and Pierson's research indicates that seakeeping 

research could be focused on analysing solutions in regular waves only. 

In the early period, analytic techniques for predicting ship motions in reg-

ular waves were linear and two-dimensional. Lately, with the arrival of faster 

and larger computers, non-linear and three-dimensional techniques have been 

developed. 

2.1 Iwo-Dimensional Theories 

2.1.1 Thin-Ship Theory 

Thin-Ship Theory was probably the first analytic technique developed in 1950's. It 

originated from the thin-ship approximation of Michell [38] in his steady-state 

wave-resistance theory. Ships were assumed to have vanishingly small beam 

compared to length, draught, and ambient wave length (B < -Lg/iip, T, A). Michell 



realised the possibility of extending his theory to ship motions, but a promised 

paper was never published. It was Peters and Stoker [54] who extended this 

theory to include unsteady motions to find non-resonant behaviour of ship re-

sponses. A systematic perturbation procedure was adopted with the ship's beam 

and the unsteady motions assumed to be of the same small order of magnitude. 

The first-order theory was rather trivial in that the Froude-Kriloff exciting force 

was the only hydrodynamic force. Unbounded resonance existed in heave, pitch, 

and roll because of the lack of hydrodynamic damping. Newman [42] refined 

Peters and Stoker's thin-ship theory by introducing a more accurate statement of 

the boundary condition on the oscillatory ship hull and using a systematic expan-

sion in multiple small parameters. Although the unphysical motion responses 

predicted by Peters and Stoker were reconciled, the computed results from New-

man's theory did not compare well with experiments. 

2.1.2 Slender Body Theory 

Typical ship hulls are usually elongated with beam and draught of the same or-

der of magnitude and of smaller order then ship length (B,T < Lship), which are 

closer to slender bodies than thin ships. Slender-Body Theory was established in 

the aerodynamic studies of the flow around airships in the 1920's. In the 1950's it 

was applied to ships by Joosen [27], Newman [43], Newman and Tuck [48]. The 

wavelength of the incident wave or the waves radiated from the body is of the 

same order or greater than the ship's length. Unfortunately, as in the thin-ship 

theory, most non-trivial hydrodynamics effects are of higher order compared to 

the hydrodynamic restoring force and the Froude-Kriloff exciting force. More-

over, the leading-order equations of motions are non-resonant because the iner-

tial force due to the body mass is of high order. 
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2.1.3 Strip Theory 

At the same time that the slender-body theories were being studied, an alterna-

tive Strip-Theory was also being investigated. Using a combination of slender-

body theory and good physical insight, Korvin-Kroukovsky [31] and Korvin-

Kroukovsky and Jacobs [32] developed a strip-theory for predicting heave and 

pitch motions in heave waves, which was the first ship motion theory suitable 

for numerical computations and had adequate accuracy for engineering applica-

tions. Unfortunately inconsistent mathematics was found in this theory later, in 

particular it did not satisfy the Timman-Newman relationships [63]. Modified 

versions of strip theory have since been proposed, of which, that developed by 

Salvesen, Tuck and Faltinsen [56] is mostly widely used in ship design. It pro-

vides satisfactory performance in the prediction of the motions of conventional 

ships as well as computational simplicity. 

A mathematically consistent strip theory was developed by Ogilvie and Tuck 

[52] (or see Ogilvie [51]) using slender-body theory. Unfortunately, in their theory 

some integral terms over the free-surface are very dlRicult to compute. 

2.1.4 Unified Slender-Body Theory 

Strip theory is a short wavelength theory, whilst slender-body theory is a long 

wavelength theory. In order to bridge the gap between these two theories, New-

man [45] developed a unified slender-body theory which accounted for three di-

mensionality in a more consistent manner than pure strip theory and slender-

body theory. The ship beam B and draft T are restricted to be small compared 

to the length by factors of order s <c 1, ie. B = (9(6) and 

[T = 0(e). The fluid domain is divided into an inner region where (2:2,3:3) — C)(Ê ) 



and an outer region where (x2, x^) = (9(1)*. In the inner region the velocity poten-

tial is governed by the two-dimensional Laplace's equation and two-dimensional 

linearised speed-independent free-surface boundary condition, which are simi-

lar to the strip theory. In the outer region three-dimensional Laplace's equation 

governs the solution, subject to linearised speed-dependent free-surface bound-

ary condition and the radiation condition of outgoing waves at infinity. Since 

both solutions in the inner region and in the outer region are not unique, they are 

matched in a suitable overlap region s (3:2, Z3) <K 1 to solve the uniqueness. 

Unified slender-body theory was successfully applied to seakeeping of ships 

by Newman and Sclavounos [47]. Comparisons with experimental results have 

indicated improved predictions relative to strip theory predictions. Sclavounos 

[57] later extended it to the diffraction problem. This theory was further refined 

recently by Kashiwagi, et al [29]. His work shows that for a VLCC the unified 

slender-body theory and strip theory give essentially equivalent predictions for 

heave and pitch motions at various heading angles. 

2.2 Three-Dimensional Methods 

Since early 80's, due to the revolutionary advent of powerful computers, seakeep-

ing research on a complete three-dimensional numerical solution has blossomed. 

Unlike the two-dimensional theories (strip theory, slender-body theory, etc.), the 

three-dimensional methods can give detailed hydrodynamic pressure distribu-

tions over the hull surface, and can be applied to large structures which are no 

longer 'slender' in all dimensions. No restriction on the wavelength is in princi-

ple imposed by a three-dimensional method. 

*The coordinate systems are defined in §3.2.1 
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2.2.1 Green Function Method 

Green Function Method was first used to solve Neumann-Kelvin problem, where 

the body boundary condition is applied on the mean position of the exact body 

surface and the linearised free-surface boundary condition is used. By combining 

fundamental singularities with other analytic functions, it is possible to develop 

Green functions that satisfy all the boundary conditions of the problem except on 

the body surface. The solution of Neumann-Kelvin problem can then be formu-

lated in terms of integrals of free-surface Green functions over the body surface. 

Wehausen and Laitone [70] established various Green functions for wave prob-

lems. 

The difficulty of extending frequency-domain Green function to ships is due 

to the forward speed. The forward-speed free-surface Green function, involving 

single and double integrals of functions dependent on forward speed and fre-

quency of encounter, is extremely difficult to compute in the frequency domain. 

Early efforts were contributed by Chang [9], and Inglis and Price [25, 26]. Later 

developments of this method are made by Wu and Eatock Taylor [73], and Chen, 

etal [10]. 

2.2.2 Rankine Panel Method 

An alternative three-dimensional method is Rankine Panel Method which was ini-

tiated by Dawson [13]. Instead of linearising the free-surface boundary condition 

about the free-stream velocity, Dawson linearised the free-surface boundary con-

dition about the so-called douWe-Aody &w. The free-surface boundaiy conditions 

are now a function of geometrically dependent double-body flow, thus a single 

free-surface Green function is no longer applicable. To solve this boundary value 

problem, Dawson distributed Rankine sources on both the body surface and calm 
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water surface. The Rankine source ^ is define as 

1 1 
0 = 

2 7 r | f - ^ ' 

where x is the field point and f is the source point. 

Sclavounos and Nakos [59] and Nakos and Sclavounos [39] studied the nu-

merical properties of the Rankine panel method used to simulate steady and un-

steady free surface flows and developed rational stability criteria guiding the se-

lection of the panel aspect ratio as a function of the ship speed and the wave 

frequency. The implementation of these numerical algorithms to the seakeeping 

problem of realistic ships was carried out by Nakos and Sclavounos [39, 40]. 

Rankine panel method allows a more general free-surface condition to be 

used. It also removes the complexity of computing the free-surface Green func-

tion and the irregular frequency problem in the Green function method. The 

drawback is that it requires many more panels than the Green function method 

and its stability is a question. 

2.3 Time-Domain Methods 

In all the theories or methods discussed in previous sections, the problem is for-

mulated in the frequency domain leading to equations that have meaning only if 

the body motions are strictly sinusoidal in time. An alternative to the frequency-

domain approach is to formulate the problem in the time domain, which are ap-

plicable to unsteady transient problems. Cummins [12] and Ogilvie [50] first dis-

cussed the use of time-domain analysis to solve unsteady body motion problems 

in the presence of a free surface. For fully linear problems at constant or zero 

forward speed, the time-domain and frequency-domain solutions are related by 
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Fourier transforms. 

2.3.1 Time-Domain Green Function Method 

Based on the early work of Finkelstein [15], Wehausen [69] provided the rigorous 

theoretical basis for using a time-domain Green function to solve the unsteady 

ship motion problems at zero forward speed. Computations directly from this 

method for two-dimensional problems were presented by Yeung [74] and New-

man [46]. Three-dimensional computations were then given by Beck and Liapis 

[4] for the zero speed radiation problem, and by King, et al [30] for the non-zero 

forward speed seakeeping problem. Bingham, et al [5] also made similar investi-

gations and developed a technique for approximating the asymptotic of the solu-

tion, which was used to reduce the required length of the computation. 

Working in one domain or the other might have advantages for a particu-

lar problem. At zero forward speed evaluation of time-domain Green function 

requires approximately the same amount of computational effort as zero-speed 

frequency domain Green function. However in the case that the body's forward 

speed is included, time-domain Green function method is found much more 

effective than frequency-domain Green function method. This is because that 

forward-speed frequency-domain Green function is very complicated and ex-

tremely difficult to calculate, whilst forward-speed time-domain Green function 

retains the same relatively simple form as zero-speed frequency-domain Green 

function regardless of the body's velocity. 

Another important advantage of time-domain methods is that they could be 

extended to solve large-amplitude motions by applying the exact body boundary 

condition on the instantaneous wetted hull surface. If the free-surface boundary 

condition remains linearised, this body-exact approach is time variant linear. Ex-

ample of body-exact time-domain Green function method was given by Lin and 
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Yue [36]. 

2.3.2 Time-Domain Rankine Panel Method 

Like the frequency-domain Green function method, Rankine panel method can 

be extended to time domain as well. Nakos, et al [41] presented the design, im-

plementation and application of a Rankine panel method for the solution of tran-

sient wave-body interactions in three dimensions. Since the free-surface compu-

tational domain in Rankine panel method is finite, given a sufficiently long com-

putational time, the waves generated by the ship will propagate outwards and 

interact with the truncation of the free-surface computational domain. The ef-

fect of the free-surface truncation may be interpreted as reflection by a horizontal 

rigid lid laid over the free-surface, outside the computational domain. Therefore 

an artificial wave-absorbing beach was designed for avoiding wave reflection. 

Pawlowski [53] proposed a Weak-Scatter hypothesis, in which only the ship-

generated disturbances are assumed to be small and linearisable about the large 

amplitude of ship motions and incoming waves. By employing this hypothe-

sis, Kring, et al [34], Sclavounos, et al [58], and Huang and Sclavounos [23] have 

developed a body-exact time-domain Rankine panel method, in which the lin-

earisation of the ship generated wave disturbance are done around the ambient 

wave profile with a body-exact condition on the ship hull. 



Chapter 3 

Problem Formulation and Solution 

3.1 Introduction 

In seakeeping research, a ship is usually regarded as an unrestrained rigid body 

with six degrees of freedom. As long as the forces exerted on its surface by the 

water are determined, the ship's motions in sea waves may be able to predicted 

consequently by classic rigid body dynamics theory. To calculate these forces, 

the analytical representation for the fluid flow is inevitably needed. In princi-

ple, Navier-Stokes equation (conservation of momentum), continuity equation 

(conservation of mass) and energy equation (conservation of energy) suffice to 

describe the motion of all fluid flow subject only to the assumption of a New-

tonian stress-strain relationship, which is justified for all practical purposes in the 

case of most fluids, including water and air. The difficulty comes in attempting to 

solve the Navier-Stokes equations. They form a coupled system of non-linear par-

tial differential equations and have only been solved analytically for some very 

simple geometrical configurations, principally those in which the non-linear con-

vective acceleration terms UijUj can be assumed to vanish. However, we neither 

can nor want to solve Navier-Stokes equations in seakeeping research, at least at 

14 
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present. 

Therefore, the fluid flow around ships is usually considered to be poten-

tial; that is, incompressible, inviscid and irrotational. The governing equations 

of fluid flow can then be reduced to Laplace's equation and Bernoulli's equation. 

This assumption is reasonable since the effects of viscous damping on ship mo-

tions are small. One exception is the roll motion, where viscous damping has 

significant effects due to the periodical separation of the boundary layer from the 

hull. For accurate prediction of roll motion, viscous roll damping effect must be 

carefully considered. In practice, an empirical correction coefficient, which de-

pends on the wave frequency, the viscosity, the bilge-keel dimension and the hull 

geometry, is introduced to scale up the roll damping [56]. Laplace's equation is 

linear, and may be solved if proper boundary conditions are imposed. Once it is 

solved, Bernoulli's equation is applied to find the pressure distribution over the 

ship's hull. The pressure is then integrated to yield the total hydrodynamic forces 

and moments acting on the ship's body. 

Cartesian coordinates and index notation are used in this chapter. Vectors, 

matrices and tensors are denoted in terms of components relative to a set of Carte-

sian basis vectors %}, for example, 

3 

a; = ^ V : 
i=\ 

Whenever a lower case Latin index does not appear repeated, i.e., it is a free index, 

it is understood to take on values 1, 2 and 3, unless otherwise indicated. E.g., the 

symbolism stands for the collection zi, zg, zg. Whenever a lower case Latin 

index appears repeated once in tensors or a product of vectors, i.e., it appears 

exactly twice, then summation convention (Einstein convention) is implied over 

the repeated index. The range of summation is from 1 to 3, unless otherwise 
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indicated. Thus 
3 

z = ^ z = (3.1) 

When no confusion arises, the vectors are expressed for brevity sake as number 

triples, e.g. f = {zi, 3:2, Z3}, or simply A comma subscript denotes derivatives. 

for example, 

_ 

3.2 The Boundary Value Problem 

3.2.1 Definitions and Coordinate Systems 

For a real ship in a seaway, the fluid domain is effectively unbounded relative 

to the scale of the ship. Figure (3.1) depicts the geometry and coordinate system 

of this fluid domain used in the computation. J? represents the fluid volume 

bounded above by the free surface and body surface ;<%, below by the sea bed 

surface Sh, and at the infinity by an enclosing contour SQO. n = {ni,n2, ^3} is the 

unit normal vector of the boundary surface pointing out of the fluid domain. A 

right-handed coordinate system o(zi, zg, ^3) is fixed in space. The zi, zg-plane lies 

in the still water surface. The still water surface is the average water surface level 

or surface of the water where no waves were present, xi-axis is directed as the 

ship mean forward speed, zg-axis points vertically down. 

Figure (3.2) shows a snapshot of a harmonic sea wave defined in the coordi-

nate system 0(^1, ^2, ̂ s)- The water depth A is measured between the sea bed and 

the still water level, % is the amplitude of the harmonic wave. The horizontal 

distance (measured in the direction of wave propagation) between any two sue-
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Figure 3.1: Boundary Value Problem. 

cessive wave crests is the wave length A. The ratio of wave height to wave length 

is often referred to as the dimensionless wave steepness 2?%/A. 

-ri 

%2/ 

— — / / /t/'F 

sea bed 1 / 
X3 

1 / 
Figure 3.2: Harmonic Wave Definitions. 

Suppose that a ship is travelling horizontally with constant forward speed 

through this harmonic wave. Let o(zi,a;2,3:3) be a right-handed coordinate 

system moving in steady translation with the mean forward velocity of the ship, 

with xi,X2-plane lying parallel to the still water surface, xi-axis pointing in the 

direction of ship forward speed and xs-axis pointing vertically down as shown in 

Figure (3.3). The origin o remains at a fixed height he above the still water surface 



and is sited at the time-averaged position of the centre of gravity of the ship. It 

is helpful to define a third coordinate system 3:2, ̂ 3)' which is fixed to the 

ship and its origin d is situated at the ship's centre of gravity, z^-axis is in the 

longitudinal forward direction, i!̂  is in the lateral starboard side direction, and 

Z3 is vertically down. Thus, in the calm water, coordinate system is 

coincident with coordinate system 0(3:1, 3:3). After a time /It, 0(3:1,3:2,3:3) has 

moved a distance from the 0 along the zi-axis. 

Figure 3.3: Coordinate System. 

Within the coordinate system d{xi, ^2, ^3), the incident harmonic wave is de-

fined to have a wavelength A, an amplitude and a heading angle of relative 

to the ^i-axis (/̂  — 0 for following waves). 

Due to the presence of sea waves, the ship carries out oscillations around the 

steady translating coordinate system 0(3:1,3:2,3:3), which may be described by the 

translational motions surge 1̂, sway 2̂ and heave ,̂ 3 along the 3:1, 3:2 and 3:3 axes 

respectively, and rotational motions roll ^4, pitch 5̂ and yaw about the same 

axes respectively. 

If the oscillatory motion is small, coordinate system o(zi, ^2, ̂ 3), 0(3:1,3:2,3:3) 
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and Zg, can be related by 

z = 0 , - / 2 . 0 } + :r, ( 3 . 2 ) 

%t = ( 3 . 3 ) 

where z = {11,^2,^3}, f — {zi,3:2,3:3} and are the position 

vectors in ± e coordinate system o(;zi, 12, ̂ 3), 0(3:1,3:2,3:3) and o'(z^, Zg) respec-

tively. Viector^ = = {,̂ 1,̂ 2,̂ 3} represents the linear translations, 

and vector ^ = {^4, ,̂ 5, represents the rotational motions. 

is levz-CMfa symbol or e-f ermufadon symbol, and has values 

= < 

1 if ijk is an even permutation of the integers 123. 

— 1 if i j A; is an odd permutation of the integers 123. (3-4) 

0 in all other cases. 

3.2.2 Governing Equations and Boundary Conditions 

Governing Equations 

Assuming that the fluid is inviscid and incompressible, the fluid flow motion for 

an irrotational flow may be described using potential theory. By defining a scalar 

fluid velocity potential ^ t),i = 1, 2, 3 the continuity equation reduces to 

Laplace's equation and the momentum equations reduce to Bernoulli's equation. 

Therefore, the governing equations are 

= 0 6 ^2, ( 3 . 5 ) 

^ ^ ^ ^ ^ ^ ^ G ^2, ( 3 . 6 ) 
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where Pa is the atmospheric pressure, which is assumed constant and hereafter 

is omitted. With this formulation, the potential ^ and pressure p are uncoupled. 

Typically a solution for ^ is found by satisfying Equation (3.5) along with appro-

priate boundary conditions. Then p is easily computed using Equation (3.6). 

Boundary Conditions 

As defined in §3.2.1, the boundary of the fluid domain consists of four surfaces: 

and In the seakeeping research, sea bottom S"/! is usually assumed 

be to a horizontal flat plane and the depth of the water is usually considered as 

infinity, that is % = oo. 

On solid boundary surfaces such as the ship hull and sea bottom .9/i, a 

kinematic condition requiring no flow normal to the boundary is imposed. Since 

the flow is assumed inviscid, there is no condition on flow tangential to the 

boundary. The boundary condition for the ship hull surface is 

= "UiMi Zi E (3.7) 

where t = 1,2,3 is the velocity of the ship's wetted surface. On the sea bottom 

surface the boundary condition is. 

= <6,3 = 0 2 : 1 6 2 : 3 = 0 0 , ( 3 . 8 ) 

Suppose the free surface is defined by its elevation 3̂ = 77(̂ 1, ^2, t)- On 

this surface, the kinematic boundary condition requires that a point on the surface 

remains on the surface, that is 

+ + x . e s , , (3,9) 
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Since the position of the free surface in unknown, an additional dynamics bound-

aiy condition is necessary, that the pressure on the free surface is equal to the 

atmospheric pressure pa (which may be assumed to be zero). From Bernoulli's 

equation (3.6) it follows that 

^ ^ ^^3 = 0 E (3.10) 

Equations (3.9) and (3.10) can be combined together to give an alternative bound-

ary condition for the velocity potential on the free surface, 

^ ^ ^ (3-11) 

Finally, a radiation condition is required at infinity (on surface ) to guar-

antee an unique solution for this boundary value problem. This boundary condi-

tion may have various different mathematical forms depending on the nature of 

the velocity potential and the methods of solving this boundary value problem 

(time-domain or frequency-domain method). Hence it will be discussed later in 

§3.4.4. 

Coordinate Transformation 

It is usually more convenient to carry out the calculation in the steady-moving 

coordinate system 0(2:1,2:2,2:3). The velocity potential ^ = <̂ (a7i,̂ ), z = 1,2,3 in 

this equilibrium coordinate system is redefined in the form 

(̂ (a;,, t) = ^(z; + () = ^(^;, f), (3.12) 
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where is Kronecker delta and defined as 

if % = j. 
Sij = ^ (3.13) 

0 

Using Lorentz transformation, the governing equations (3.5) and (3.6) be-

come 

— 0 a?! E j? , ( 3 . 1 4 ) 

"I" g " ^ ( ^ 3 ^ /Z'o) = 0 a;* E j? , ( 3 . 1 5 ) 

with respect to the coordinate system o(a;i, â g, 2:3). Similarly the boundary condi-

tions ( 3 . 7 ) , ( 3 . 8 ) and ( 3 . 1 1 ) can be written as 

a:̂  E S";,, ( 3 . 1 6 ) 

(̂  3 = 0 â i E 2̂3 = 00, (3.17) 

+ ^ ^<^,3 = 0 Zt E 5"/, ( 3 . 1 8 ) 

where v^, i = 1,2,3 is the oscillatory velocity of ship relative to the coordinate 

system o(a;, z), and n,,, 2 = 1,2,3 is the unit normal vector defined same as fii, 

^ = 1,2,3 but related to the coordinate system o(a;, %/, z). The free surface Sy is 

defined by its elevation 2:3 = 77(2:1, a;2, )̂. 

3.3 The Linearised Problem 

The Laplace's equation (3.14) is linear, however, the boundary conditions (3.16) 

and (3.18) are non-linear. To solve such a system of partial differential equations 
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is rather difficult. In most of the cases, the boundary conditions (3.16) and (3.18) 

have to be linearised. 

3.3.1 Decomposition of Velocity Potential 

Three topics are of interest in ship hydrodynamics. The first topic is the steady-

state flow field due to the steady forward motion of a ship travelling in calm 

water, which is often associated with the calculation of wave resistance; The sec-

ond topic is the interactions between the incident wave and vessel which has no 

mean velocity: The third topic is the problem of ship motions in waves, which 

can be regarded as a superposition of the first and second case. Hence, the veloc-

ity potential 0 is assumed to be the sum of two components: the steady potential 

z = 1,2,3 and the unsteady potential t), z = 1,2,3, that is 

-t-<^^(3;i,t). (3.19) 

[ / i s the steady state flow potential due to the steady forward motion of the 

ship in calm water without the presence of incident waves. is unsteady flow 

potential associated with oscillatory motion of the ship in the incident waves. 

The hydro dynamic interactions that exist between (7 (p^' and cj)^ will complicate 

the more general problem. 

Based on these assumption and decomposition, it is easy to obtain the gov-

erning equations and boundary conditions for the steady velocity potential U(FP. 

It must satisfy the Laplace's equation (3.14), together with the ship body bound-

ary condition (3.16), sea bottom boundary condition (3.17) and the free-surface 

boundary condition (3.18), as follows: 

= 0 Xi E (3.20) 
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==7%1 CCi E: 5*3, (3.2! 1) 

4^3 == 0 CCi €: :%3 == CO, (3.212) 

= 0 a;, E 6"/^, ( 3 . 2 3 ) 

where 6';,̂  is the steady state position of the ship hull surface, 6}̂  is the steady 

free-surface elevation, which takes the form 2:3 = 7?s(3;i, 3:2) and is given by the 

implicit formula 
t2 

( 3 . 2 4 ) 
2^ 3:3 =7/̂ , 

which is obtained by substituting into Bernoulli's equation (3.15). 

3.3.2 Linearisation of Free-Surface Boundary Condition 

Linearisation of free-surface boundary condition (3.18) involves linearising both 

steady potential and unsteady potential 

In the theory of water waves the amplitude of the incident wave is com-

monly assumed small in comparison to the wavelength, so that the oscillatory 

motion of the ship and the surrounding fluid flow potential can be assumed 

small, and linearisation of unsteady problem can be introduced. However, lin-

earisation of the steady state potential is more complicated, because it not only 

depends on the steady forward speed of the ship, but also depends on the geome-

try of the ship. In most of the cases, the ship shape must satisfy certain conditions, 

such that perturbations of the steady state flow are small, then the linearisation of 

steady potential (f)̂  can be justified. Complete reduction of linearised free-surface 

boundary condition was given by Newman [45]. 
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Linearising only c/F 

If only oscillatory flow potential (fF is linearised, by substituting the total poten-

tial Equation (3.19) into Equation (3.18), the free-surface boundary condition can 

be written as 

+ = 0 3:̂ 6 6"/, (3.25) 

where second-order terms in are neglected, w*. % — 1,2,3 is the velocity vector 

of the steady flow relative to the moving reference frame o(xi, X2, X3), defined as 

Wi = [/(^^ — ^li). (3.26) 

This equation governs the unsteady velocity potential c/F provided that the steady 

flow velocity Wi or steady flow potential (p'̂  is known. 

Although W; can be determined by Equations (3.20 - 3.23) and (3.26), one 

problem still remains in Equation (3.25), that is the free-surface elevation Sj is 

time-variant, which is difficult to be tackled. Since the difference between Sf and 

Sfs is small, it is possible to obtain the free-surface boundary condition for cf̂  

applied on the time-invariant surface Sfs by Taylor-series expansion. The expres-

sion for the free-surface elevation Sf is 

1 kT 1 
77 = A c + - 1 ^ — -I- - ( w i w ^ - [ / ) - ! -

1 1 

(3.27) 
373=77 

= % + - + -(77 - ?7a)(w<w ,̂3) , (3.28) 
g V ut J x?,—r]K Q x^=ris Z3=% ^ X3=Vs 

where Taylor-series expansion is applied about the steady flow free-surface ele-
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vation Now the difference (77 — %) can be obtained, 

/ dd)^ \ j 
^ ) / ( p - . (3.29) 

\ C/L / / Z3=7;a 

Hence expanding all the terms in Equation (3.25) from 5"/ to 6"/̂ , and neglecting 

all the second order quantities, it follows that 

<9̂ ^̂  n / ,T\ 1 

- 2 1 
+ (^ - 7̂5) = 0 Zi 6 S'yg. (3.30) 

Linearising both and 

The steady flow field z = 1,2,3 is the m^or complexity in the free-surface 

boundary condition (3.30). Moreover, in order to obtain Wi, it is necessary to 

solve the non-linear equations of steady flow which is very difGcult. Thus, in 

almost all seakeeping theories or methods, the free-surface boundary condition 

(3.30) is further linearised. 

Suppose that certain geometry restrictions are imposed on the ship's shape, 

for example, the hull shape is restricted to be a small perturbation from a plane 

which contains the xi-axis, so that the steady state potential and its derivatives 

are small. Neglecting the perturbation of steady flow, the steady flow velocity 

becomes w* = The free-surface boundary condition (3.30) reduces to 

- 2 [ / ^ = 0 6 3:3 = /tQ. (3.31) 

The steady free-surface elevation S/s Equation (3.24) simply becomes X3 = he-

It should be noted that this assumption is not consistent with the basic as-

sumption of slender-body theory which states that the derivatives in the trans-
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verse direction are larger than the longitudinal derivatives. The assumption ap-

plied here lead to equations of motion in a form which can be quite easily solved 

numerically while the use of slender-body theory results in a similar strip theory 

but with some additional integral terms which are difficult to evaluate [52]. 

3.3.3 Linearisation of Ship Body Surface Boundary Condition 

The boundary condition on the ship hull needs to be linearised similarly. 

Considering ship as a rigid body, the unsteady ship motion Vi,i = 1,2,3 in 

the hull boundary condition (3.16) is simply defined by the unsteady translation 

% = 1,2,3 and rotation % = 1,2,3 of the ship. Since and are small, it 

has 

( 3 . 3 2 ) 

where 

CKi = 3;)̂  ( 3 . 3 3 ) 

is the local oscillatory displacement of the ship's surface, and the overdot denotes 

time differentiation in the reference frame o(zi, 2:2,3:3)-

Substitution of Equations (3.19), ( 3 . 2 6 ) and (3.32) into Equation (3.16) gives 

the boundary condition of unsteady potential (jp̂  on ship's hull, 

Z; E ( 3 . 3 4 ) 

The unit normal vector % = 1,2,3 of the body wetted surface in its in-

stantaneous position St can be expressed by that of the body wetted surface in 

its steady mean position Ŝ s through the first order contribution from the rotation 

as 

( 3 . 3 5 ) 
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The steady flow velocity Wj, z = 1,2,3 on the instantaneous hull surface can 

also be expressed by the steady flow velocity on the hull surface at steady mean 

position, 

- (wj + (3.36) 

where Taylor-series expansion is applied at the direction of a,. 

Substituting Equations (3.35) and (3.36) in Equation (3.34), and neglecting 

second order terms in and it follows that 

Ti e (3.37) 

This formula was first derived by Timman and Newman [63]. From Equations 

(3.33) and (3.37), an alternative hull boundary condition can be derived in the 

form 

2 = 1,2 , . . . , 6, E (3.38) 

where % = 1 ,2 , . . . , 6 is the generalised unit normal vector, mi, z — 1,2, . . . , 6 is 

the gradient of the steady velocity in the normal direction, defined by 

= M;, (3.39) 

(3.40) 

^1+3 = ( 3 . 4 1 ) 

777-̂ 3̂ Gijî XjTTlf̂  ~1~ G'ljĵ WjTlĵ ^ (3.42) 

where A; = 1,2,3, and G S'bg. 

Once again, the perturbation of the steady flow field due to the ship is ne-

glected giving Wi = -U5u, hence fhi reduces to 

{0,0,0,0, [/fig, —[/n'2}. 
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3.4 Solution of Unsteady Potential 

In the previous section, the linearisation of free-surface boundary condition and 

ship body surface boundary condition has been discussed. It appears that if the 

perturbation of the steady flow field can be neglected, all the terms concerning 

(j)̂  in both free-surface boundary condition and ship body surface boundary con-

dition will disappear, and leave behind only those linear terms of cjF. Therefore, 

the equations governing are linear, as follows: 

== 0 ccj (E (3.4:3) 

46̂  :=() E: :C3 == cc), 

) 1 -- = 0 scj E ccs == (3.4!5) 

46̂ %̂, == 4- 2 == 1 ,2 , . . . , 6, scj (E (3.4J3) 

where 

== {?%!, 712,7%;}, C3-47) 

{ ^ 4 , Ms, Tig} = {3:2713 - Z3M2, 2:3721 - 2;iM3,2:i7T,2 - Z271 l } , ( 3 . 4 8 ) 

{ m i , 7^2, m 3 ] = { 0 , 0 , 0 } , ( 3 . 4 9 ) 

{ ^ 4 , m s , m e ] = { 0 , (77i3, ( 3 . 5 0 ) 

3.4.1 Linear Decomposition of the Unsteady Potential 

Since the unsteady motions of the ship and surrounding fluid has been assumed 

small, linear superposition can be applied. The unsteady velocity potential prob-

lem hence can be treated as a superposition of three separate problems: the in-

cident wave potential problem; the radiation wave potential problem, where the 

ship undergoes prescribed oscillatory motions in otherwise calm water; and the 
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diffraction wave potential problem, where incident wave acts upon the ship in its 

equilibrium position. Interactions between these three first-order problems are 

of second order in the oscillatory amplitudes, and may be neglected in the linear 

theory. The radiation potential may be decomposed further, by considering sepa-

rately the six degrees of freedom defined above. In each of these modes, outgoing 

radiated waves will exist on the free surface. 

6 

91)̂  = (60 + 7̂ + ^ <6;, (3.51) 
i=l 

where 0o represents the incident wave potential, is the diffraction wave poten-

tial, and % = 1 ,2 , . . . , 6 are the potential due to the body motions surge, sway, 

heave, roll, pitch and yaw, respectively. This decomposition was first performed 

by Haskind [22], and it greatly simplifies the analysis of unsteady wave potential. 

3.4.2 Incident Wave Potential 

By linear gravity-wave theory [61], the potential for an incident plane-progressive 

wave of constant amplitude % and a sinusoidal profile in the water of infinite 

depth satisfying the equations 

= 0 2;, E f?, (3.52) 

00,3 — 0 37; G X3 = 00, (3.53) 

^ — .9(̂ 0,3 = 0 a:, 6 3:3 — /ic, (3.54) 

is given by 

(̂ 0 = %[(̂ o(3;i)e"'='] 
(3.55) 

Wo 
ATnfzg—CO8/1—112 sin/̂ )giWEf 
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where // is the heading angle, Ko — 2%/A is the wave number, A is the wave 

length, and wo = is the wave frequency, which is related to the frequency 

of encounter a;e by 

We = Wo — c o s / ^ . ( 3 . 5 6 ) 

By definition, the incident wave potential 0o is not required to satisfy any 

boundary condition at infinity. 

3.4.3 Diffraction Wave Potential 

The diGraction wave is induced by the incident wave. It satisfies the Laplace's 

equation, the sea bottom boundary condition, and the linearised free-surface 

boundary condition, 

4̂ 7,a = 0 Xi G O, (3.57) 

= 0 G 2:3 = o o , ( 3 . 5 8 ) 

: — ^ ^^7 ,3 — 0 Z; G 2:3 — A g . ( 3 . 5 9 ) 

Meanwhile, on the ship hull surface, it has to satisfy the boundary condition 

^ 7 , i ^ i = E 'S'bs, ( 3 . 6 0 ) 

which suggests that the diffraction wave potential can be expressed in the form 

similar to the incident wave potential, 

<̂ 7 = ( 3 . 6 1 ) 

With a boundary condition at infinity (it represents outgoing waves scattered 

by the ship body), it forms a proper boundary value problem and its solution can 
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be obtained analytically or numerically. The detailed discussion of diffraction 

problem was given by Ogilvie [51], Newman [43, 45], Sclavounos [57] and etc. 

Solving the diffraction problem is of importance for some practical problems, for 

example, the prediction of the relative displacement and velocity between the 

ship and the water surface. However if the radiation problem defined in §3.4.4 

has been solved and only the total force acted on the ship hull is required, solving 

the diffraction problem can be avoided. 

3.4.4 Radiation Wave Potential 

Assuming that the vessel motion has been going on over an infinite time interval 

[—oo, t] excited by a incident regular wave, such that the transient motion has 

vanished and the ship is undertaking steady oscillation sinusoidal in time with 

the frequency of encounter Wg. Hence the ship's motions are of the form 

= 2 = 1 ,2 , . . . , 6, (3.62) 

where Ei is the complex amplitude of each oscillatory motion Naturally, the 

resulting radiation wave potential can be defined as 

2 = 1 ,2 , . . . , 6. (3.63) 

As usual, the radiation potential must satisfy the Laplace's equation, the 

sea bottom boundary condition and the free-surface boundary condition, it fol-

lows 

^ 0 G (3.64) 

^i,3 = 0 E ^3 = oo, (3.65) 
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— = 0 3 7 ^ 6 1 3 = /tQ, ( 3 . 6 6 ) 

where « = 1, 2 , . . . , 6. 

Considering Equations (3.51) and (3.60), the boundary condition for 4'i on 

the ship surface can be derived from Equation (3.46), that is 

^ = 1 , 2 , . . . , 6 , Z j E ( 3 . 6 7 ) 

A radiation boundary condition at infinity is required to ensure the existence 

and uniqueness of the potential Physically this boundary condition represents 

the energy flux of waves associated with the disturbance of the ship body and 

is directed away from the ship to infinity, the conservation of energy is to be 

satisfied. At zero forward speed, Newman [44] described the radiation condition 

in the following forms: 

i. for two-dimensional flows, 

oc a s Z2 —^ ± 0 0 , % = 1 , 2 , . . . , 6 . ( 3 . 6 8 ) 

ii. for three-dimensional flows, 

oc a s Ti! ^ 0 0 , % = 1 , 2 , . . . , 6 . ( 3 . 6 9 ) 

Here .R = + Zg, and the constants of proportionality in Equations (3.68) and 

(3.69) may depend on the remaining coordinates, but not on XI or R, respectively. 

At non-zero forward speed, the radiation condition at infinity is implicitly sat-

isfied via the use of Green's function. In fact, the diffraction wave potential $7 

should satisfy the same radiation condition as that discussed above. 
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In order to further simplify the boundary condition (3.67), the radiation po-

tentials are linearly separated into speed-independent parts and speed-

dependent parts that is 

= ^ 0 + _ L 2 = 1 , 2 , . . . , 6 , ( 3 . 7 0 ) 
•ZCc/g 

and let and <jl?f satisfy the boundary conditions 

% = 1, 2 , . . . , 6 , E ( 3 . 7 1 ) 

— vjJQTti^ i — 1, 2 , . . . , 6, Xj G Sf̂ g. (3.72) 

This separation was proposed by Salves en, et al [56]. From Equations (3.71) and 

(3.72), it can be found that 

= 0 , ( 3 . 7 3 ) 

( 3 . 7 4 ) 

( 3 . 7 5 ) 

where % = 1,2,3,4. Thus 

- — ( ^ 6 : ^ 2 2 - 1 , 2 , . . . , 6 . ( 3 . 7 6 ) 

Apart from the ship body boundary condition (3.71), must satisfy the 

Laplace's equation, the sea bottom boundary condition, the free-surface bound-

ary condition and the radiation condition at infinity, 

^ (3.77) 

^ 0 E a;3 = o o ( 3 . 7 8 ) 

- = 0 E z = A c , ( 3 . 7 9 ) 
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(po oc gus J? ()o, (3.80) 

where t = 1 ,2 , . . . , 6. Strictly speaking, the potentials are not speed inde-

pendent at this point, instead, they depend on the forward speed U through the 

free-surface boundary condition (3.79). However, it can be found later that ^ are 

approximately independent of U according to the high-frequency assumption. 

The next step is to simplify further the speed-independent potentials 01 to 

the forms suitable for numerical evaluation, by applying "strip theory" approxi-

mations, which can also be found in the work of Salvesen, et al [56]. They are so 

critical that it is worth writing out here, as follows: 

i. The ship is assumed to be long and slender, such that the component of the 

hull normal vector in the xi-direction is much smaller then the compo-

nents in the Z2- and zg-directions, Mg 3> Mi and Mg » Mi. Therefore, Mi can 

be set as Mi = 0, the three-dimensional normal components Mg and M3 can be 

replaced with M2 and M3, respectively. M2 and Bs are the components in the 

372 and 2:3 directions of the two-dimensional unit normal vector in the 12,3:3-

plane. Thus the generalised normal on the right hand side of Equation 

(3.71) becomes 

{ M l , M2, ^ 3 } = { 0 , M2, m } , ( 3 . 8 1 ) 

{M4,M5,M6} = {2:2% -a;3M2,-2:iM3,3;iM2}. (3-82) 

This implies that 

= 0, (3.83) 

^ 0 = ( 3 . 8 4 ) 

Zic^^. ( 3 . 8 5 ) 
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Consequently, only and are needed to be solved. The boundary 

condition (3.71) becomes 

2% 4" gMg — i — 2, 3, 4, Xj G Shs, (3.86) 

where g, is the generalised two-dimensional normal vector in the 

plane, 

{%, %, %, = {0, B2, m, 3;2?3'3 - 3:32)2}. (3.87) 

ii. The ship is assumed to be long and slender, such that 8/<%/ 3> /̂i9a; and 

» 5/,9T in the neighbourhood of the hull. The Laplace's equation 

(3.77) becomes 

+ ^°33 = 0 % - 2,3,4, 2:, e j?. (3.88) 

iii. The wave length is assumed to be approximately of the same order as the 

ship beam, such that the frequency of encounter cug is high, Wg [/(^/^z). 

Free-surface boundary condition (3.79) becomes approximately 

= 0 2 = 2,3,4, E z = (3.89) 

It must be emphasized that this assumption makes the theoretical justifica-

tion for the strip theory questionable in the low-frequency range. 

By examination of Equations (3.86), (3.88) and (3.89), it can be found that 

the three-dimensional problem of potential has been effectively reduced to a 

set of two-dimensional problems of potentials The solutions can be found 

analytically or numerically. Apparently the solution at each a:2,a;3-plane (cross 

section of ship body) is independent of the solutions at all other cross sections. 
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3.5 Two Dimensional Problem and Conformal Map-

ping 

It is found in §3.4.4 that three-dimensional unsteady potential can be obtained 

by solving two-dimensional potentials at each cross plane of ship body which 

are independent of ship forward speed and governed by Equations (3.86), (3.88) 

and (3.89). There are three methods commonly in use for computing these two-

dimensional potentials: 

i. The Lewis conformal mapping method, 

ii. The Tasai-Porter multi-parameter conformal mapping method, 

iii. The Frank close-fit method. 

Frank close-fit method [16] is a boundary element method, in which the ship 

section contour is represented by straight-line segments between the offset points. 

The velocity potential is obtained by distributing pulsating source singularities 

with constant strength over each of the straight segments. 

Lewis and Tasai-Porter methods are based on conformal mapping technique 

in complex analysis. Suppose that (-plane and z-plane are two complex planes 

and a velocity potential ( C ) of a fluid flow bounded by a complicated geomet-

rical boundary in (-plane is needed to be found. If there exists an analytic 

function z = / ( ( ) which maps this complicated boundary onto a simpler one 

in 2^-plane and replaces the fluid flow in (-plane with the fluid flow in z-plane, 

where velocity potential ^z{z) is known or easy to be obtained, then the poten-

tial can be obtained by analytic function theory [/(()]. Therefore, in 

order to find the first objective is to map the ship section contour in physical 

zg, zg-plane ((-plane) onto a simple contour, which is usually a semi-circle, in a 

reference plane (z-plane). 
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The Riemann mapping theorem states that this analytic function z = / ( ( ) 

and its reverse function always exist, however, they are not always 

easy to be found in practice. In the Lewis method [35], the Lewis mapping func-

tion can only map a Lewis form, which is used to mathematically represent the 

geometrical shape of a ship section and only has the same beam, draught and 

cross sectional area as the given section, onto a semi-circle. Therefore, it usu-

ally can not be applied, for example, to sections with large bulbs or to sections 

with very small sectional area. However, for many common ship section forms, 

this method is fast and quite accurate. In the Tasai-Porter method [55, 62], the 

ship sections are conformally mapped onto a circle by applying a mapping func-

tion with many more coefficients than Lewis mapping function in order to get 

the desired close-fit accuracy. A bibliography of conformal mapping techniques 

was provided by Conceigao, et al [11] and the various methods of obtaining the 

transform coefficients were discussed by Bishop, et al [6]. 

Westlake and Wilson [71] developed a conformal mapping function similar 

to that of Tasai and Porter. The difference lies in the iteration procedure used to 

compute the coefficients of the conformal mapping function. By employing "line 

length method" to relate the assumed angles in the z-plane to the angles 

subtended by the points mapped by function ( = (z) in the (-plane, Westlake 

and Wilson's method allows the mapping of almost any section shape including 

re-entrant sections. 

Since only the force exerted on ship section by water flow is eventually 

needed, it can be found later on that the explicit solution of in physical Z2,13-

plane is not necessary. The force can be evaluated in the reference z-plane by 

coordinate transformation. This fact means that the reverse function ( = 

is more important than the function z = itself. 
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In accordance with Westlake and Wilson's work, the mapping function ( = 

/ ^ (z) takes the form 

( 3 . 9 0 ) 

k=0 

where ( = zg + is in the physical 2:2, zg-plane ((-plane), 2 — is in the 

reference plane (z-plane), and c, are the complex transformation parameters, 

c = Q + ct = ot + The coordinate systems are depicted in Figure (3.4). 

R e f e r e n c e z - p l a n e Phys i ca l ^ -p lane 

N̂pt ^1 

A 
\ r 

/ ^ 2 
/ ^ 3 

' N p t Ci 

C2 

C3 

X3 
^=x2+ix;3 

Figure 3.4: The Coordinate Systems of Conformal Mapping. 

As only the region 0:3 > 0 is considered, this transformation can be simplified 

by assuming the 0:2-axis is a line of symmetry The symmetry relation is 

(3.91) 

where the overline indicates a conjugate operator. Using this relationship it can 

be shown that 6 = 0 and 6̂  = 0, A: = 0 ,1 ,2 , . . . , 00. If the real and imaginary parts 

are separated, Equation (3.90) may then be expressed as 

= a;2(r, ?9) 
00 

+ y^(—1)^ = a< r 81111 cos 2W + , sin(2A; + l)i9 
\2A: 

k=:0 
2fc4-l 

(3.92) 



ajr co8i9 + sin 2W - cos(2A; + I)?)] }. 
A;=0 

^ 

2:3 = 3:3(7-, i9) 
0 0 

9 _ L \ " r _ n 4 f ( ! ^ . i n 9 w _ ^ 

In practice the series has to be truncated to TVcm terms. 

Normally the definition of a ship section takes the form of a set of discrete 

points j = 1 ,2 , . . . , If a section is mapped onto a unit semi-circle*, 

for each definition point there exists a corresponding point Zj{l,'&j) in z-plane. 

Hence the conformal mapping coefRcients o, (Z(2k), ̂ (2̂ +1) are determined by, 

Nc, 
372̂  = a 4- ^(-l)'°[G(2t) cos2Wj 4- G(2&+i) siii(2A; + 1)!̂ ]̂ j , (3.94) 

/c=0 

= G< cosî ^ + ^(—l)'^[a(2k) 8in2Wj — 0(2&+i) cos(2A; + 1)1̂ ;] k (3.95) 

Usually points (1(^21, Z31) and are on the waterline, ie. Z31 = 0, 

= 0, and they are mapped onto points (l,7r/2) and (1, —7r/2) respectively. 

Since trivial solutions exit at these two positions, only 2Npt — 2 non-linear equa-

tions are available for solving 27Vcm 4- 3 unknown transformation coeGicients and 

/Vpt - 2 unknown angles . The number of offset points and the number JVcTn 

must satisfy the relationship 

2iVpi — 2 > 2Ncm 4-3 4- Npt — 2 (3.96) 

or 

A ^ t > 2 A r ^ 4 - 3 . ( 3 . 9 7 ) 

*Only the underwater part of the section is mapped onto the unit semi-circle, so points Q are 
those on the underwater part of the section. 
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Now consider a ship cross section at any particular position Since (̂ 9 is 

irrelevant to coordinate zi, by defining 

= = ( 3 . 9 8 ) 

Equations (3.86), (3.88) and (3.89) can be rewritten as 

^1,22 4- ^t,33 — 0 (2:2,2:3) G ( 3 . 9 9 ) 

#i,2?}2 + # 1 , 3 % = (3:2, 2:3) E iFba, ( 3 . 1 0 0 ) 

= 0 ( 3 : 2 , 3 : 3 ) 6 2:3 = ( 3 . 1 0 1 ) 

where t = 2,3,4, is the wetted ship cross section contour, g is the two-

dimensional fluid domain bounded by free-surface {Fy, {S'tg, sea bed (2:3 = 00) 

and a virtual enclosing contour Soo at the infinity, as shown in Figure (3.5). The 

boundary condition on sea bottom Equation (3.78) remains unchanged, however, 

the three-dimensional radiation condition at infinity Equation (3.80) should be 

replaced with the two-dimensional one, 

oc as Z2 — ± 0 0 , % = 2,3,4, (3.102) 

The boundary condition (3.100) can also be expressed in terms of stream function. 

Suppose that is the conjugate stream function of the potential #«, it has 

# = # ( x . . X 3 ) e 5 . , . (3.103) 

where i is the arc length along the curve Sbs, n is the unit normal vector {%, %} 

shown in Figure (3.5), which can be defined as 

m (3.104) 
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2)3 = ( 3 . 1 0 5 ) 

Therefore, 

<9̂ 3 

82:2 
— ZWe 

r 
= -2We X2- + 23' J 

i^2) ^3) ^ Si]s, 

(32,33)56^^ 

After integration, the stream functions ^ can be written in the form 

= %Wea;3 + C2(() 

^3 = — + C3(() 

^ ^3) + C'4(̂ ) 

(3:2, 2:3) E 

(3:2, 3:3) E (S'bg, 

(3:2, 373) E 

( 3 . 1 0 6 ) 

( 3 . 1 0 7 ) 

( 3 . 1 0 8 ) 

( 3 . 1 0 9 ) 

( 3 . 1 1 0 ) 

( 3 . 1 1 1 ) 

where 62, Q , and Q are the integration constants, which may depend on the 

time t. 

Figure 3.5: Two-Dimensional Boundary Value Problem. 
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Using the conformal mapping Equations (3.92) and (3.93), cross section (gbg 

is mapped onto a unit semi-circle in the reference plane, the fluid flow of veloc-

ity potential in Z3-plane is replaced with the fluid flow of velocity poten-

tial <^i in the reference plane. By applying the same mapping transformation to 

Equations (3.78), (3.101), (3.99), (3.102), (3.109), (3.110) and (3.111), the governing 

equations for can be obtained^ 

= 0 

= 2We (â s -t- Cg 

^4 — ^[^2 + (^3 + 

UJ. 

% 

+ P = 0 

= 0 
2̂:3 

(p, OC 

^ ( " 2 ' ^ ^ + 0 0 ] , 

TT TT 
'2' 2 

, r 

TT 
, r E ( 1 , -1-00] 

as ccs —» 0 0 , 

as aza —̂  ±0x3, 

(3.112) 

(3.113) 

(3.114) 

(3.115) 

(3.116) 

where 2 = 2,3,4, and are the conjugate stream functions of potentials 

Ursell [65, 66] derived a potential flow solution, which satisfies the Laplace's 

equation (3.99) and the boundary conditions (3.100) and (3.101), for a circular 

cylinder oscillating harmonically with arbitrary frequency in the free surface. 

Eatock Taylor and Hu [14] gave a generalised version of Ursell's solution, which 

can be applied to both floating and submerged bodies. 

Similar to the Ursell's method but in complex plane, the velocity potential 

is also composed of a source potential, a dipole potential and a series of linear 

tThe origin of the coordinate system used in the conformal mapping (3.92) and (3.93) is lo-
cated on the still water surface. However, the origin of the coordinate system used in Equation 
(3.78), (3.101), (3.99), (3.102), (3.109), (3.110) and (3.111) is located at the centre of the gravity of 
the ship, which is ha metres above the still water surface, therefore it has to be moved down to 
the still water surface before using the conformal mapping. 
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multipole potentials, 

OO 

= :PiOyO 4- + : P i ( 2 ; + l ) ^ ( 2 j + l ) ) , ( 3 . 1 1 7 ) 

j=l 

where (̂ o and ipi are the potentials of a source and of a dipole situated at the 

origin, and y(2j+i) are the multipole potentials, 

^0 = 
0 

r (3118) 
y + P 
0 

OO 

V + P (3.119) 

B . ) - z ( - : r 2A;a (2t) 
. ,3,20) 

8 i n [ ( 2 ; + 2A;)^)'] _ ^ l)(%(2jk+i) + 2A; + l ) ? ) ] 

(2; + 2A;)(r)2;+2A: ^ ^ ^"''̂ 'X2; + 2A: + l)(r)2;+2k+i 

fc=0 

cos[(2j + 2k +1)^] . . . sin[(2j +2k + 2)i3] 
(2; + 2A: + l)(r)2j+2/:+i ^ ^ ^ 2)(r)2;+2t+2j 

(3.121) 

where is the wave number of encounter wave, 

K, = ^ (3.122) 
9 

All the above potentials satisfy the Laplace's equation (3.112), the free-surface 

boundary condition (3.114), the sea bottom boundary condition (3.115) and the 

radiation condition at infinity (3.116). The complex valued unknown constants 

P̂ o, :Ci(2j) and P,(2j+i) are chosen such that the boundary condition (3.113) 

is satisfied. In practice, the infinite series (3.117) in the multipole expansion is 
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truncated to a finite number N^p. 

It appears that the integrals in Equations (3.118) and (3.119) converge very 

slowly when they are calculated in a numerical way. They are usually replaced 

with the following power series expansion, 

where 

n=l 

(3.123) 

j<:e8in(pa:3) - pcos(pa;3) 
Kl + p^ 

_ Ssin(j<"e|a:2|)] — 8iii(j^e|a;2|), 

C08(pa;3) + P sm(pa;3) ^ 

^ + ^ (3.124) 

= e"^^''^[Qsin(Ke|a;2|) - "S"cos(A'ea;2)] + C08(Kea;2) 

Q - 7 + ln(jir,B) + ^^Y—co8(M%), (3.125) 

_ _ 7?̂  
5' = % + ^—^^—sm(M%), (3.126) 

nln 
n=l 

% —arctanf^—Y (3.127) 
^2:3/ 

A = -̂ 3;̂  + cĉ , (3.128) 

7 = Euler's constant. (3.129) 

By means of the Cauchy-Riemann relations, the corrugate stream function of 

the potential function (3.117) can be obtained. 

= :PiÔ O + + :Pi(2j+l)^(2j+l)), (3.130) 
J=1 
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where i/'o, and i/'(2j+i) are the corrugate stream functions of the potentials 

^0, yi, ^(2;) and ^(2;+i) respectively, defined as follows, 

OO 

(3.131) 

3=2 ̂  0, 
OO 

- V + /) 
0 

azs 
j<̂ p(cco + z0) (3.132) 

= e ^ '̂̂ [̂Qco8(ĵ ea;2) + '9sin(jCe|a:2|)]+27re ^^^^cos(A'ea;2) 

2:3 
+ a:.q)' eV'̂ 2 

^cm 

2A;a (2k) 
t=o (3.133) 

cos[(2; + 2A:)̂ ?] _|_ sin[(2j + 2A; + l)i)] 
(2;+2A;)(r)2:,+2A: ' ^ ^ ^"''+'%2;+2A; + l)(r)2;+2W 

2A:a(2t) 

8in[(2^+2A: + l)i9] co8[(2j + 2A; + 2)?9] 
(2; + 2A; + l)(r)2;+2t+i + -ija(2w) ^ 2)(r)2j+2t+2 

(3.134) 

Suppose that A; = 1 ,2 , . . . , are arbitrary angles and -7r/2 < < 

7r/2. On the surface of the circular cylinder, % must satisfy the boundary condi-

tion (3.113), this gives linear equations for each of ^i, z = 2,3,4, 

AT̂P 

:PioQok + :P:(2j+l)0(2;;+l)A) = &A, (3.135) 
.7 = 1 
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where 

QoA: =;^o(l,i9/c) -^o(l,7r/2), 

Qit = i)t) - 7r/2), 

Q(2j+1)A: = '^(2j+l)(l,1^k) — ^(2j+l)(l,7r/2), 

E2A: = %wa;3(l,2)k), 

&A: = -%w[a;2(l,i9k) - 0:2(1,7r/2)], 

:R4k = ^ [ ^ 2 ( 1 , — 3:2(1,'7r/2) + 3:3(1, 2a;^(l,'^t)W 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

(3.140) 

(3.141) 

(3.142) 

The number of angles nan must be greater then 2nmp + 2 to ensure there are suf-

Acient equations for solving the coefficients fm, and fi(2j+i)- Usually 

3> 2A^p + 2, the coefficients are solved in a least square sense. 

3.6 Hydrodynamic and Hydrostatic Forces 

Once the velocity potential cj) is solved, pressure p can be obtained by Bernoulli's 

equation (3.15). The forces and moments acting on the ship can be calculated by 

integrating the pressure p over the ship wetted hull surface Sbs, 

= - g 
. <% (3.143) 

Sbs 

2 ^ 5 : JLg 
j — 1, 2,... 6, 

where f i , 7 ,̂ and ^3 are the forces and ^4, are the moments. The second 

integral in Equation (3.143) is a steady force component and will be exactly offset 



^ 

by the steady propulsive force, for it is assumed that the perturbations occur in a 

system which is otherwise in equilibrium. 

Neglecting the steady pressure terms and the high-order terms in (jĴ  and 

in the Bernoulli's equation, the forces and moments (3.143) can be evaluated as 

— - g / / — ^(^3 — /Z'C) 
' (3.144) 

where F j are the forces and moments due to incident wave, F-^ are the forces 

and moments due to diffraction wave, are the forces and moments due to 

radiation wave produced by six degrees of ship body motion, and Ff are the 

ordinary buoyancy restoring forces and moments, 

^(2w,^o _ (3.145) 

^ ( 3 . 1 4 6 ) 

^ % = 1, 2 , . . . , 6, (3.147) 

Sbs 

= gg (3:3 - /iG)MjG(g. (3.148) 

6̂, 

3.6.1 Radiation Forces and Hydrodynamic Coefficients 

The details of calculating radiation forces and moments Fj^ can be found in the 

work of Salvesen, et al [56]. 



49 

6 ^ ( —XUJqQ + g —gc/ y 
:ŜhjQ l9krf. 

I -%Jeg Titp̂ Mjcgg + p[/ y y 5̂j5'̂ (̂ iM3dg 

'S'ba 'S'ba 
( 3 . 1 4 9 ) 

- g[/ yy - p[/ y , 
Sbs 

where % = 1 , 2 , . . . , 6 , S'baa refers to the underwater contour of the aftermost section 

of the ship. Considering Equation (3.76), Equation (3.149) can be expressed as 

6̂a "̂ba "S-bs 

%U. 2Wp 
5|;, 

2 /- /-
y y y y ^ ^ ^ 2 ( ^ 5 + 4 / 6 , ^ y y 2̂̂ 2̂ (5 

'S'ba 'S'ba 

( 3 . 1 5 0 ) 

%Wp 2W. 
§hs( 

where %, j = 1 ,2 , . . . , 6. Completely complying with the "strip theory" assump-

tions in §3.4.4, the surface integrals of in Equation (3.150) can be computed 

as 

Sbs 

0 

1 

1 
—zpwgy 

6̂a 

2̂ Wg 

^ = 1 

; = 2 , 3 , 4 

= 

IQUJ^ 
ZgWe / j = 5 

y ^-%gWey^m2C^)3;ida;i ) = 6 

6̂. 

( 3 . 1 5 1 ) 



5 0 

-tgWgy 

6̂. 

-zgWg y 

gb. 

ẐWg 
%gWe / d^jzida;! 

6̂a 

2gWe 
â/iip 

1 
gbs 

2̂ )Wg 
—2gWe / Iẑ cfa;! 

L gb. 

2gWe 

zpWg 

y ^-2gWey ^2%c )̂3;icga;i 

—ZgWê  

^ship 
1 

L 6̂a 

IQOJ^ 
-ZgCUe / #3%^^ kiCfZi 

1 
!̂ 63 

ZgWg / 

L 6̂« 

0 

J, — 2,3,4, 

= 2,3,4, ^ = 5, 

j = 2,3,4, 2 = 6, 

j = 5, 2 = 2,3,4, 

.7', % = 5, 

; = 5, 2 = 6, 

_; = 6, 2 = 2,3,4, 

'̂ = 6, 2 = 5, 

2 = 6, 

2, j = all other values, 

where 2 = 2,3,4 are the two-dimensional velocity potential at each cross sec-

tion, Z/g/iip is the ship length, is the underwater part of the contour of each cross 

section, and 2 = 2,3,4 is the generalised normal vector in the cross section 

plane (%2, Z3-plane). It is now clear that the three-dimensional radiation forces 

(3.150) eventually are the functions of the two-dimensional integrals 

-2Weg y 

By applying the conformal mapping Equations (3.92) and (3.93), those integrals 

can be computed as 



i. for j = 2, i = 2, 3,4, 
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-2Weg / #1(̂ 3:3 

Sbs 

2 

— VuJqQ / 

(3.152) 

ii. for = 3,2 = 2,3,4, 

/ f 
6̂a 

= zwgg / ^i(fz:2 

Sbs 

2 

— '^^eQ I ^ 

i9a;? 
r = l 

(3.153) 

iii. for j = 4, % = 2,3,4, 

-2Weg / = 2Weg / 0. 

36, 

022 , 023 

ZCJeg y #i(3:2(fZ2+23(fa;3) 

6̂6 

— / %' 
0%2 , / , , ^023 

, ^ 2 ^ + (^3 + A G ) ^ di9. 
r = l 

(3.154) 

be considered as the velocity potential due to the unit amplitude 

oscillatory motion of a cross section in the ith mode. Let be the hydrody-



^ 

namic forces acting on a cross section, it follows 

4 „ 

( 1 1 5 5 ) 
4 

= — y ^ ( — W g A j i + 
2=2 

where the integrals are separated into real and imaginary parts. The coefficients 

Bji are real and correspond, respectively, to the force components due to 

acceleration and velocity of the section. So that Aji are two-dimensional added-

mass coefRcients and are two-dimensional damping coefficients of a section. 

Similarly, radiation forces (3.150) can be expressed in terms of their real 

and imaginary parts as well, 

= — ( — = 1, 2 , . . . , 6 , ( 3 . 1 5 6 ) 

where Aji and Bji are three-dimensional added-mass and damping coefficients, 

and correspond to the force components due to acceleration — a n d veloc-

ity of the ship respectively. By Equations (3.150), (3.151) and (3.155), the 

non-zero three-dimensional hydrodynamic coefficients Aji, Bji can be computed 

from two-dimensional hydrodynamic coefAcients Aji, as follows: 

i. for j = 2,3,4 

/ A j i c f z i 2 — 2 , 3 , 4 , ( 3 . 1 5 7 ) 

L, 

B , i = / + 2 = 2 , 3 , 4 , ( 3 . 1 5 8 ) 

A j s — — ^ ^ ^ ^ ( 3 . 1 5 9 ) 

'e 
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-Bj s - y + y (3.160) 

Aj6 = / -| T / "I—2 ^^2' (3.161) 
V w' y wg wg 

^j6 — y Zî j2G(3;i — [/ y Aj2Ĝ 3;i + (3.162) 

-^a/iip ^aAip 

ii. for j = 5, 6 

v45: = — / ^ / 53:da;i-| ?-^r^3: 2 = 2,3,4, (3.163) 

â/iip â/iip 

g5̂  = - y TiB3(d3;i-[/ y A3,d3:i-[/Xr^^, 2 = 2,3,4, (3.164) 

â/iip â/iip 
, , 

^55 ~ I 3̂3(̂ 3:1 4 g / A33dzi )^^33 (3.165) 
^e J ^e ^e 

^a/iip âktp 

-855= y 2:2^33^^1+— y 533^^1+[/(%2)^Agg+—%2 ^33, (3.166) 

â/iip â/iip 

^56 = — / 2;̂ A32(fa;i ^ / 3̂2Ĝ 3;i -| (̂%2)̂ B32 ^^1^32, (3.167) 

â/iip â/iip 

-B56 = — / ];̂ B32d]:i ^ / BsgtZa;! — (7(Ar°)̂ A32 ^-^1^32; (3.168) 

âkip â/iip 

A6i= / W 2 , c ( i : i - - ^ / 2 = 2,3,4, (3.169) 
V w2 y w2 

âWp âkip 

^6 ,= y 3;ig2i(fzi + [/ y A2 (̂fzi + [/X^A^, 2 = 2,3,4, (3.170) 

â/itp â/iip 

.2. . -/̂ 65 — — / Z:iA23G(3;i — — y A23dzi + —(%")^^23 ^ ^-^1-^23; (3-171) 
e 

âAtp â/ttp 

-065 — — / ^ / 2̂3(̂ 3:1 — ^(^r)^-(423 ^^1^23; (3.172) 
J ^e J 
â/itp â/iip 

^66 = / 3;2A22G(a;i -I ^ / 2̂2(̂ 3:1 (̂%^ )^^22 "I 2'^^^22; (3.173) 
e 

''a/lip ^a/iip 
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^66= y 3:̂ 522̂ %! + ^ y + + (3-174) 

where Aj^ and refer to the added-mass and damping coefficients of the after-

most section, and is the position of the aftermost section on xi-axis. 

3.6.2 Exciting Forces 

Incident wave forces j = 1 ,2 , . . . , 6 and diffraction forces j = 1 ,2 , . . . ,6 

are the exciting forces concerned in seakeeping research. 

Introducing the incident wave potential (3.55) into the expression of the in-

cident wave forces and moments (3.145) gives 

-J 

; = 1, 

J — 2, 3,4, 

= < 

^ship 

L, 

gTyoe'""" / j = 5, 

-/a/itp 

; = 6 , 

(3.175) 

where the "strip theory" assumptions in §3.4.4 are used, F- are the sectional inci-

dent wave forces given by 

= gg-«;^o%ico8f; y j = 2 , 3 , 4 . (3.176) 
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As has been discussed earlier, the explicit solution for the diffraction wave 

potential is not always necessary. By using Haskind relationship, Salvesen, ef a7 

[56] gave the computation of diffraction force, in the form 

Sbs 

J J ' 'i'^e J 

VV ^ %We ^ ^ (3.177) 

= + — e 
VV ^ %We %Je 
Sbs 

=ge'̂ ':* - ^(^y)(2?22 sin/^ + 723)̂ 0(̂ 0(̂ 5 

H e 
2Wp 

6̂a 

Using Equations (3.73-3.75), as well as the same "strip theory" assumptions, the 

diffraction forces (3.177) becomes 

?D 

mo 

-^0 

g?7o 

f , 
u Do 

( z i f f + — ' ' ) d 2 ; i + — " 
2Ci,̂g 2Ct̂g 

(a:if^ + — F f ")(fzi + — X r f f " 
ZWg m/e 

J =0, 

; = 2,3,4, 

; = 5, 

; = 6, 

(3.178) 

-'a/lip 
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where F f are defined as sectional diffraction forces, and given by 

y ; = 2,3,4. (3.179) 

refers to ^ evaluated at the aftermost section. 

3.6.3 Hydrostatic Restoring Forces 

Newman [44] has given the expressions for the hydrostatic forces Ff. Applying 

Gauss's theorem to Equation (3.148) and considering the forces and moments 

separately yields 

/ (3.180) 

' Vi,, 

y / / ( 3 . 1 8 1 ) 

where % = 1,2,3 are unit base vectors of coordinate system o(zi, zg, zg), is 

the displaced volume of ship body enclosed by the surface and plane 2:3 = /zc. 

Since the centre of gravity moves with the ship, it is convenient to replace 

the moment in Equation (3.181) by the moment about the origin of the 

body-fixed coordinate system 2:3), 

== [<^(-3;2 + 6 ) + (3.182) 

The volume integral in Equation (3.182) can be evaluated in terms of the body-

fixed coordinate system d{x[, ig, x'^), in which the volume can be decomposed 

into the static volume VQ beneath the plane = ho and the thin layer bounded 



^ 

by the planes 2:3 = and zg = /ic- Thus 

[̂ (—3:2 — + <̂ 43:3 — 64/Z'G) + ^(3:1 + — 65/̂ G " 663:2)]ĉ '(̂  

V' 

+ ^̂  / / [̂ (—3:2 — + 1̂ 43:3 — 64/̂ 0) + ^(3:1 + 65Z3 — ŝ/Z-G 

0̂ 

- 66a;2)](6 + 644 -

= [̂ (—3:2 — + <̂ 43:3 — 64/Z'G) + 1̂ (3:1 + (̂ 53:3 — 65/̂ G — '̂ 63:2)](̂ '(̂  

V' 

+ PP [ ^ ( — + (̂<633:1 + '̂ 43;iZ2 — 65a;̂ )]da;̂ d3;2 

0̂ 

= g a ' % k p [ ^ ( — & ) + <%(̂ f — & + -^f 65)] 

+ <5"̂  3̂ — <5"̂  & + 65) + 3̂ + 4̂ — '5'ĵ  65)], 

(3.183) 

where V^p is the displaced volume, 5" '̂ and 5" '̂ are the waterplane moments 

defined as 

^ //a;^dz^(fa;2, (3.184) 

S'o 

^ y / (3.185) 

si -'0 

and is the centre of buoyancy. 

x f = (3.186) 
Kiap 

0̂' 
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Similarly, in Equation (3.180) can be computed in the form 

f (<̂ 3 + 4'^4 - a;i,̂ 5)G(a;iG(z2 

^( — ^ 3 — & + g5''S'ĵ  ̂ s) IV', -rW 

(3.187) 

where 5" '̂ denotes the waterplane area. 

For convenience the force and moment due to the weight of the ship body 

are usually incorporated into hydrostatic force and moment. The force associated 

with the body weight is {0,0, mgi}, where m is the ship body mass. The corre-

sponding moment is given by the vector 

—-̂ 1̂  + 5̂, 0}, 'G' 

where is the centre of gravity. 

By defining hydrostatic force coefficient matrix Cji as 

0 0 0 

0 0 0 

0 0 

0 

0 

Cji = < 
0 0 gg'S'22 +)7ig^3 

0 

0 

0 

0 

0 

B' 
} , 

0 0 

0 0 0 

-gg'S'iz' gg'S'ii' + 

0 0 0 

(3.188) 

the total hydrostatic force (3.148) can be expressed in the form 

= 2,; = 1 ,2 , . . . ,6 . (3.189) 
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3.7 Ship Motion Equations & Time-Domain Method 

If the ship is considered as a rigid body with six degrees of freedom, with respect 

to the moving coordinate system o{x, y, z), its motions can now be determined by 

Newton's Second Law of motion, 

z,; = 1 ,2 , . . . , 6, ( 3 . 1 9 0 ) 

where is the generalised mass matrix for the ship, 

= 

0 0 0 

0 0 0 

0 0 772 0 

0 — hi / 1 2 / l 3 

0 hi -^22 ^23 

0 hi ^ 3 2 ^33 

( 3 . 1 9 1 ) 

where is the location of centre of gravity with respect to the coordinate system 

o(a;i, a;2,3:3), are the moments of inertia, 

hj = Qship^^ij^k^k XiXj^dv ̂  ( 3 . 1 9 2 ) 

y, 

denotes the volume of ship and is ship mass-density. 

By combining Equations (3.62), (3.156), (3.177), (3.178) and (3.189), the ship 

motion Equation (3.190) turns into 

[—cUg (A/jj + Aji) + lujeBji + Cji]:zi = Fj + i, j = 1, 2 , . . . , 6. (3.193) 

There are six simultaneous linear equations, which can be solved for the body 
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motions Ei by standard matrix-inversion techniques. 

It can be noticed that all the forces (3.145 - 3.147) are computed by integrat-

ing pressure over the steady-state wetted surface Sts, which is the underwater 

part of the hull when the ship is advancing in the calm water at speed U. This 

surface is assumed to keep unchanged throughout the calculation. When a ship 

is in severe seas, the underwater part of the hull may vary significantly with the 

time, which may result in significant differences between the quantities, such as 

added-mass and damping coefGcients, calculated on 56, and those calculated on 

instantaneous wetted surface. This accounts for an important reason that the 

present linear seakeeping theories fail to give satisfying prediction of a ship's 

motion in severe seas. It is only in time domain that the forces and hydrody-

namic coefficients could be possibly calculated on exact wetted surface. Lin and 

Yue [36] extended time-domain Green function method to calculate large motions 

and waves loads of ships in severe seas, where the exact body boundary condi-

tion was used at any instantaneous time. Meanwhile Kring, ef a/ [34] extended 

time-domain Rankine panel method. Both of these methods still have numeri-

cal difficulties and are very much time-consuming even when used in powerful 

computers. Therefore, the objective of this thesis is to extended traditional "strip-

theory" from frequency domain to time domain, so that, not only all the added-

mass, damping coefficients, and forces can be computed on the actual underwater 

part of the hull surface, but also the computation time can be saved. 

Equation (3.193) has to be rewritten in the time-dependent form 

(M,, + + % = %(M f;^) 2,; = 1 ,2 , . . . , 6. (3.194) 

A time-stepping scheme, e.g. Newmark-/? direct integration scheme, can then be 

employed to solve these equations. The incident wave forces Fj at each time 

step can be obtained straightforwardly by replacing the integral surface Sbs in the 
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Equation (3.177) with the instantaneous wetted surface because the incident 

wave potential (̂ o is irrelevant to the underwater hull surface. 

On the instantaneous wetted surface Sb, the diffraction wave potential ^7 

must satisfy the same boundary as that on Sbs Equation (3.60) without any doubt. 

Meanwhile, Newman [45] has pointed out that the hull boundary condition for 

unsteady wave potential Equation (3.46) can be applied either on % or with 

the difference 0(o!^). Hence the formulation in §3.4.4 should remain unchanged 

if Sbs is replaced with Sb in every equation, that means <Pj can be computed by the 

same set of equations. Therefore, at any instantaneous time the diffraction force 

and the radiation forces (added-mass and damping coefficients) can be 

calculated by the same equations. Equation (3.177) and Equation (3.150) respec-

tively, as long as is replaced with S";, in those equations. 

The generalised mass matrix Mji must also be calculated at each time step, 

since the centre of gravity is moving in the coordinate system o(a;i, 3:2,3:3). All 

the moments of inertia Iji remain, because the ship is no longer symmetric about 

zi-axis all the time. 

It seems that the ship motion equations (3.194) are ready to be solved now. 

However, it must be pointed out that these equations have been derived assum-

ing the motions are sinusoidal in time, as evidenced by the fact that the added-

mass Aji and damping coefficients Bji depend on the frequency Wg. It can not be 

directly extended to the case where the time-dependence is more general. Thus, 

the exciting forces and ship motions are restricted to be sinusoidal in time in this 

thesis. 



Chapter 4 

Hydrodynamic Coefficients 

4.1 Introduction 

In the previous chapter the theory {Time-Domain Strip Theory) for predicting the 

ship's motions in the time domain has been established. This chapter presents 

the hydrodynamic coefficients computed using the program developed in ac-

cordance with the time-domain strip theory. A numerical scheme of extracting 

underwater hull is also presented. Two-dimensional (sectional) added-mass and 

damping coefficients are computed using Westlake and Wilson's multi-parameter 

conformal mapping method [71], and the results are compared with those com-

puted by the Lewis conformal mapping method. The program is verified by 

comparing the numerical results of three-dimensional added-mass and damp-

ing coefficients with the experimental data and with the results produced by a 

Green function method program. The influences of heel angle on both the sec-

tional hydrodynamic coefficients and the total three-dimensional hydrodynamic 

coefficients are accessed. 

62 
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4.2 Numerical Description of a Ship's Hull 

The ship's hull is usually represented by a number of parallel sections that are 

perpendicular to the longitudinal line, and each section is defined by a number 

of offsets. Sections may be positioned arbitrarily along the ship length. There 

are usually more sections at ship's fore and aft body then at mid body. Since the 

Simpson's integration rule is used to calculate the three-dimensional hydrody-

namic coefficients from sectional hydrodynamic coefficients, the sections have to 

be equally spaced. Firstly a specified number of waterlines are interpolated from 

the definition of each section. The waterlines are not equally spaced, but closer 

to keel are more concentrated in order to capture the rapid change of hull pro-

file there. From there waterlines the equally spaced sections are created simply 

by interpolation. It usually uses 21 sections in the traditional frequency-domain 

strip theory. However, the program developed with this thesis does not impose 

any limit on the number of sections as long as the computer has enough memory. 

In theory the more sections that are used, the more accurate results will be given, 

but the more computational time is needed as well. 

Figure (4.1) presents the Series 60 hull form of block coefficient Cb = 0.70 

[64]. The original data is given by Hudson [24] in shipshape s HFG file format*. 

Eight waterlines and twelve sections, together with stem and stern profiles, are 

defined. Series 60 hull form represents traditional cruiser-stern commercial ships. 

It has sections of various typical shapes, e.g. rectangular, round and fine. Hence it 

is used in this chapter to validate conformal mapping program. Figure (4.2) is the 

rationalised Series 60 hull form with 21 equally spaced sections (between fore and 

aft perpendiculars), and for the sake of clarity only twelve waterlines (including 

keel and deck line) are shown. The number of waterlines are usually much more 

then twelve in real computation. Hull form is truncated at aft perpendicular. 

*A commercial software for defining, fairing and drawing a set of ship's lines, developed by 
the Wolfson Unit for Marine Technology and Industrial Aerodynamics. 
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Table (4.1) presents the principal particulars of Series 60 hull form. 

Figure 4.1: Original Series 60 Hull Form. 

4.3 Extraction of Wetted Hull 

Sections are usually defined in the body-fixed coordinate system In 

the frequency-domain strip theory, the underwater part of the hull is indepen-

dent of time and extracted at equilibrium position, where the coordinate system 

is identical to the equilibrium coordinate system o(a;i,2:2,3:3). The 

integration along the ship length therefore can be replaced with the integration 

along the xi-axis (see Equation (3.151) in §3.6). However, in time-domain method 

the body-fbced coordinate system and the sections are oscillating 

with respect to the equilibrium coordinate system 0(2:1,3:2,2:3), sections are no 

longer perpendicular to the xi-axis. The forces and hydrodynamics coefficients 

may have to be computed in the non-equilibrium coordinate system z^), 

then transformed into equilibrium coordinate system o(xi, X2, Zg). This proved to 
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Figure 4.2: Rationalised Series 60 Hull Form. 

Quantity Symbol Value 

Length (between perpendiculars) L'ship 3.048m 

Beam B 0.435m 

Draught T 0.174m 

Displacement ^dsp 0.1616m^ 

Block Coefficient Cg OJO 

Centre of Buoyancy (fwd. of midship) 0.015m 

Longitudinal Centre of Gravity (fwd. of midship) ivCG 0.015m 

Vertical Centre of Gravity (above keel) y c G 0J^6m 

Metacentric Height GMX 0.30m 

Table 4.1: Principal Particulars of the Series 60 Hull Form. 
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be very difficult. An alternative method is to replace the original sections with 

some equivalent sections, which are perpendicular to the a;i-axis at each time 

step. The sectional hydrodynamic coefficients and forces are calculated on those 

equivalent sections. The three-dimensional hydrodynamic coefficients and forces 

with respect to the equilibrium coordinate system o(zi, zg, 2:3) can then be com-

puted in the same way as the frequency-domain strip theory that is by integrating 

those sectional hydrodynamic coefficients and forces along the zi-axis. 

In order to find the equivalent sections, a number of reference planes have 

to be set up in the coordinate system o(a;i, 3:2,2:3) at first, such that the reference 

planes are perpendicular to the xi-axis and pass through, respectively, the inter-

section points of a^-axis and the the original sections. The zth reference plane can 

be described by 

( 4 . 1 ) 

where is position vector of the intersection point Pi in the coordinate system 

o(xi, X2, X3), shown in Figure (4.3). The equivalent sections are the intersections 

of these reference planes with the ship hull. 

i th original section 

I th reference plane 

Figure 4.3: Reference Planes in Equilibrium Coordinate System. 

The reference planes can also be defined with respect to the body-fixed coor-
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dinate system Zg, by the equation 

AT'. ( f - = 0, (4.2) 

where , 0,0} is position vector of the intersection point ^ in the body-

fixed coordinate system and jV' is the normal vector of the reference 

planes in the body-fixed coordinate system Zg, 

N' 

cos 5̂ COS 6̂ 

sin ,̂ 4 sin 5̂ cos ,̂ 6 — cos ,̂ 4 sin 

cos 4̂ sin 5̂ cos 6̂ + sin 4̂ sin 

(4.3) 

For computational simplicity, the intersections of the hull and references planes 

are calculated in the body-fixed coordinate system (/(2:1, a;̂ ), then transformed 

into the equilibrium coordinate system o(a;i, a;2,373) using the following equation, 

Xl COS (5 COS ,̂ 6 sin ̂ 4 sin ̂ 5 cos ,̂ 6 cos ̂ 4 sin ̂ 5 cos ,̂ 6 a;; 
/ 

6 

- cos ,̂ 4 sin ̂ 6 + sin ̂ 4 sin 

372 > = < COS 5̂ sin ,̂ 6 sin ,̂ 4 sin ̂ 5 sin ,̂ 6 cos <̂4 sin ̂ 5 sin ̂ 6 > < 3=2 > + < 6 > (4.4) 

4- cos ̂ 4 cos ̂ 6 - sin ̂ 4 cos ,̂ 6 

3:3 - s i n (5 sin ̂ 4 cos ,̂ 5 cos ̂ 4 cos 5̂ 6 

After the equivalent sections are found, the wetted part of each section can 

be extracted easily. In the present investigation, this is defined to be the part of 

each section which is below the undisturbed free surface â s = /ic-

The rationalised hull can be considered as a mesh, which is composed of 

points and line segments. Meshes are widely used in geometric modelling in 

computer graphics or finite-element analysis. Finding the intersection of two ar-

bitrary meshes is an important research topic in computer graphics. Fortunately, 
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only the algorithm for finding the intersection of a mesh and a plane is needed in 

this thesis. Let (%, Qt+i) denote a line segment with end points Q& and Qt+i in 

the hull mesh, and let Ql be the intersection point of this line segment and the ith 

reference plane defined by Equation (4.2), 

% = (1 - (7*)Qt + (rlQt+i for some e [0,1]. (4.5) 

Substituting (4.5) into the plane Equation (4.2) and solving for d leads to 

. (Q, -
0"i, = (4.6) 

The line segment (Q ,̂ Qt+i) intersects the %th reference plane if TV' - (Qt — ) > 0 

and - (Qt+i - % '̂') < 0, or if - (% - J^ '̂) < 0 and TV' - (Q^+i - X^̂ ') > 0. The 

special case is that TV' - (Qt — = 0 and TV' - (Qt+i — ^ ^ ) = 0, which means the 

line segment lies entirely in the reference plane, and this is treated individually 

in the program. 

All the intersection points Ql are transformed into the equilibrium coordi-

nate system o(zi, 2:2,3:3) by Equation (4.4), which then forms the 2th equivalent 

section of ith original section. Figure (4.4) shows the intersection of the refer-

ence plane and ship hull with a 20° yaw angle. The original sections are shown 

as solid lines and the intersections are shown as dashed lines. The program has 

been tested and verified extensively with a pitch and /o r a yaw angle ranging 

from 0° to 50°. The algorithm has been proved very robust. More examples can 

be found in Appendix A, Figures (A.l - A.5). Some of the cases, for example 

5̂ = 50° and/or = 50°, will never occur in reality, but they are presented there 

to demonstrate the robustness of the program. It is understood that the trans-

lational motions 1̂, 2̂, 3̂ and roll angles <̂4 have no significance for testing the 

program, they are therefore omitted. 
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(a) Top View 

(b) Starboard View 

I II 

(c) 3D View 

figure 4.4; Infersecdons ofHu77 and Planes (̂ 5 = 0°, (e = 20°). 
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4.4 The Conformal Mapping 

The versatility of conformal mapping technique has been demonstrated by West-

lake and Wilson [71]. By a suitable choice of the conformal mapping coefficient 

number Ncm, a large number of ship-shaped sections may be mapped to the de-

sired degree of accuracy. Figures (6-9) in [71] are of particular interest, which 

prove Westlake and Wilson's conformal mapping method is capable of mapping 

re-entrant sections {e.g. a bulbous section heeled to an angle 15") with as many as 

48 mapping coefficients. For simple sections, it is not advisable to choose a very 

large number of mapping coefficients because they demand excessive computa-

tions. The actual number of mapping coefficients is usually ascertained on a trial 

and error basis. In this section, three typical sections (Section 10, 18 and 20) of a 

rationalised Series 60 hull form are chosen to determine a reasonable mapping co-

efficient number Section 10 is a rectangular section with small round bilge, 

Section 20 is a fine section, and Section 18 is roughly close to a round section. 

Figures (4.5 - 4.8) show the mapping results of these sections with 5, 8,11 and 

14 coefficients respectively. The contour curve generated by the multi-parameter 

conformal mapping does not necessarily pass through all the given offset points 

but the curve does fit the given data as closely as possible. This is contrary to 

the contour generated by Lewis mapping which always passes through the coor-

dinates of the draught and beam of the section. The mapped points of all three 

sections move closer to the given offset points as the number of coefficients in-

creases. It shows that the rectangular Section 10 can be mapped very accurately 

with as few as 8 mapping coefficients. However, for the fine Section 20, it may re-

quire 11 or more coefficients to accurately map the bottom perimeter. Comparing 

Figure (4.7) and Figure (4.8) shows that further increase of conformal mapping 

coefficients brings no improvement of mapping accuracy. 

Figures (4.9-4.12) illustrate the mapping results of the same sections, how-
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ever they are heeled to an angle 20°. Once again, it shows that 11 coefficients are 

sufficient to achieve reasonable mapping accuracy even for asymmetric sections. 

When a ship is undergoing motions in six degree of freedom, the underwater part 

of a section can be of arbitrary shape. It is impossible to check the mapping re-

sults of all the cases. However, from the results shown in these figures, it may be 

safe to claim that 14 to 20 conformal mapping coefficients are adequate for Series 

60 hull form. 

For a large number of mapping coefficients, extra points may have to be in-

terpolated between each pair of successive given offsets to give a sufficient num-

ber of equations. Using too many mapping coefficients not only results in unnec-

essary computations, but also creates unpredictable numerical instability. Figure 

(4.13) illustrates the conformal mapping with a large number of coefficients (26, 

27 and 28 coefficients), which provides an accurate fit at the section definition 

points of Section 10, but a poor fit between them. Figure (4.14(a)) shows nu-

merical instability occurs with a further increase of the number of coefficients, 

where both the section definition points and the points between them can not be 

mapped. A test curve, which is created by mapping the randomly chosen points 

(1, i9i) in the reference plane into physical plane, is drawn in each figure to ensure 

the points between the given section offsets are correctly mapped. It seems that 

evenly distributing section definition points around the contour can greatly im-

proved the numerical stability. Figures (4.14(b)) and (4.14(c)) show the Sections 

18 and 20, which have a more even distribution of points defining section than 

Section 10, can still be mapped very accurately with 30 mapping coefficients. 

Figures (4.15) and (4.16) compare the mapping results obtained by the Lewis 

method and those obtained by the multi-parameter method. The data needed 

in the Lewis mapping are given in Table (4.2)1', in which B is sectional beam 

at the waterline, T is draught, A is the sectional area under waterline, H is the 

^The beam, draught and area for all other sections can be found in Appendix B, Table (B.l). 



72 

beam/draught ratio, and a is the section area coefficient, 

B A 
H = 

T'' 
a = ( 4 . 7 ) 

The area coefficient of Section 18 is within the permissible range of Lewis map-

ping, while the area coefficients of Section 10 is slightly greater the upper limit 

and that of Section 20 is out of the lower limit [37]. 

Section B T A H a 

10 0.4350 0.174 0.07353 2.5000 0.9715 

18 0.3424 0JJ4 0.04012 L9680 0.6734 

20 &1576 0JJ4 0.01077 0.9057 0.3927 

Table 4.2: Lewis Mapping Data of Section 10, 18 and 20 of the Series 60 Hull 
form. 

It shows multi-parameter method has great advantages over Lewis method, 

especially of mapping the fine section in Figure (4.15(c)), where Lewis mapping 

even fails to distinguish the basic characteristic of the original section. For those 

asymmetric sections in Figure (4.16), the contours generated by Lewis method are 

still symmetric as expected from the theory. 
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Figure 4.5: Conformal Mapping of the Sections of Series 60 Hull Form (10 wa-
terlines and 5 mapping coefficients). 
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Figure 4.6: Conformal Mapping of the Sections of Series 60 Hull Form (10 wa-
terlines and 8 mapping coefficients). 
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Figure 4.7: Conformal Mapping of the Sections of Series 60 Hull Form (10 wa-
terlines and 11 mapping coefficients). 
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Figure 4.8: Conformal Mapping of the Sections of Series 60 Hull Form (10 wa-
terlines and 14 mapping coefficients). 
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Figure 4.9: Conformal Mapping of the Heeled Sections of Series 60 Hull Form 
(JO wakriines, 5 mapping coe^cients and Aedingangie 20°j. 



78 

o Original Offsets 
X Mapped Offsets 

Test Curve 

-0.25 -0 .2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 

(a) Section 10 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

o Original Offsets 
X Mapped Offsets 

Test Curve 

o Original Offsets 
X Mapped Offsets 

Test Curve 

1 
-0.25 -0 .2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 

(b) Section 18 

0 

0.05 

0 .1 

0.15 

0.2 

0.25 

\ : 

: , 

o Original Offsets 
X Mapped Offsets 

Test Curve 

o Original Offsets 
X Mapped Offsets 

Test Curve 

i i i i 
-0.25 -0 .2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 

(c) Section 20 

Figure 4.10: Conformal Mapping of the Heeled Sections of Series 60 Hull Form 
('jO waferJImes, 8 mappmg and AeeYing ang/e 20°/ 
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Figure 4.11: Conformal Mapping of the Heeled Sections of Series 60 Hull Form 
(^0 waferL'nes, j J mapping coe^denfs and Aeejingangie 20°/ 
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Figure 4.12: Conformal Mapping of the Heeled Sections of Series 60 Hull Form 
(JO waferiines, mappingcoe^denfs arid Aeeiingang/e 20°). 
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Figure 4.13: Multi-Parameter Mapping with a Large Number of Coefficients. 
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Figure 4.14: Numerical Instability of the Multi-Parameter Conformal Mapping 
with a Large Number of Coefficients. 
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Figure 4.15: Comparison of Two Mapping Methods for the Symmetric Sections 
(14 coefficients used in multi-parameter mapping). 
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Figure 4.16: Comparison of Two Mapping Methods for the Asymmetric Sections 
(14 coefficients used in multi-parameter mapping). 
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4.5 Two Dimensional Hydrodynamic Coefficients 

In this section, the two-dimensional hydrodynamic coefficients and i.j = 

2,3,4 of Sections 10, 18 and 20 of Series 60 hull form are presented over a wide 

range of frequencies. The influences of both the number of conformal mapping 

coefficients and the heel angles are accessed. The hydrodynamic coefficients plot-

ted in the figures are non-dimensionalised using the factors given in Table (4.3), 

and denoted as a* and b*j respectively, g in the table is fluid density. The values 

of the beam B and area A of each section are given in Appendix B, Table (B.l). cj* 

in the figures is the non-dimensional frequency coefficient, 

w* = w(B/2^)^/^ (4.8) 

where u is the wave frequency*. 

Coefficient Units Dimensions Factor 

^22, ^33, -623, ^32 M/^ 

^22, ^33, ^23, ^32 A;g!/(m-5) 

-̂ 44 Mz: M B ' 

gAg'(2p/B)i/' 

^24, ^42, -̂ 434, -(443 M 

^24, ^42, ^34, &3 A;5r-?7%/(m g) M/T 

Table 4.3: Factors Used to Render the Sectional Hydrodynamic Coefficients 
Non -Dimensional. 

^It is understood that w should be the frequency of encounter, in the case of calculating two-
dimensional hydrodynamic coefficients of sections of a ship with forward speed. 
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4.5.1 Effiects of Mapping Coefficient Number 

Bishop, et al [6] computed the hydrodynamic properties of a variety of symmetric 

sectional shapes {e.g. chine, bulbous bow and rectangular) for heave motion using 

multi-parameter conformal mapping technique, and compared the results with 

those of the Lewis mapping method and the Frank close-fit method, as well as 

with the experimental data. The hydrodynamic properties of the same symmetric 

sections for sway and roll motion were given by Bishop, et al [7]. Therefore, in 

this section those comparisons will not be repeated, instead the attention will be 

focused on the influence of the number of conformal mapping coefficients. 

Figures (4.17 - 4.28) present the non-zero hydrodynamic coefficients of Sec-

tions 10,18 and 20. Generally speaking, the mapping coefRcient number has more 

effect on the damping coefficients than on the added-mass or added-moment of 

inertia, which suggests the damping coefficients are more sensitive to the shape 

of the under water part of the section compared with added-mass or added-

moment of inertia coefficients. It is hard to find any difference between the re-

sults determined by the mapping with 11 coefficients and those determined by 

the mapping with 14 coefficients, except for the non-dimensional added-moment 

of inertia 6%̂  of Section 18 in Figure (4.24(b)), where very little difference can be 

found. Meanwhile, it can also be observed that the curves determined by multi-

parameter mapping method move closer to those curves determined by Lewis 

mapping method when the number of multi-parameter mapping coefficients de-

creases. These not only echo the conformal mapping results in Section §4.4, but 

also indicate a satisfactory convergence of the calculations. 

Figures (4.17), (4.20), (4.23) and (4.26) show that the hydrodynamic proper-

ties of Section 10 calculated by Lewis mapping method closely match those cal-

culated by multi-parameter mapping method, only minor differences exit in the 

damping coefficients within the frequency range, approximately, 0.5 < w* < 2.0. 
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This is because Section 10 can be mapped quite accurately by Lewis method com-

pared with other two sections. It also appears that the hydrodynamic properties 

(144, 024(̂ 42) and 624 (%) of Section 10 are much smaller, respectively, then 

those of Sections 18 and 20, which may mean that the area ratio a is a very impor-

tant factor which influences the hydrodynamics properties associated with roll 

motion. The hydrodynamic coefficients of Section 20, as shown in Figures (4.19), 

(4.22), (4.25) and (4.28), vary significantly with the number of conformal mapping 

coefficients, which exactly reflects the conformal mapping results of this section 

(see Figures (4.5(c)), (4.6(c)), (4.7(c)), (4.8(c)) and (4.15(c))). It confirms that, in or-

der to achieve the desired accuracy many more coefficients are needed for fine, 

bulbous or triangular sections than those sections within the permissible range of 

Lewis mapping. 

Sway Hydrodynamic Properties 

Both the non-dimensional added-mass and damping coefficient 632 of Section 

10 and Section 18 computed by multi-parameter mapping method are in close 

agreement with those computed by Lewis mapping method, and the number of 

the coefficients of multi-parameter mapping has little effect on the results, shown 

in Figures (4.17) and (4.18). Significant discrepancies are found in both the added-

mass (122 and the damping coefficient 632 of Section 20, as illustrated in Figure 

(4.19). The multi-parameter mapping method suggests higher added-mass and 

damping values compared with the Lewis conformal mapping solution. The dis-

crepancy in added-mass persists over the whole range of the non-dimensional 

frequencies, whereas the discrepancy in the damping 622 vanishes as 622 tends to 

zero in both the low and high frequency range. 
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Heave Hydrodynamic Properties 

As shown in the Figures (4.20(a)), (4.21(a)) and (4.22(a)), the non-dimensional 

heave added-mass coefficients 3̂3 of all sections obtained by multi-parameter 

mapping method are almost identical to those obtained by Lewis conformal map-

ping method respectively, confirming that the heave added-mass A33 is essen-

tially the function only of section area coefficient a and beam/draught ratio H. 

Small local differences in the section shape have very little influence on the re-

sults. The heave added mass is generally of the same order as the displaced mass 

qA and rises towards infinity at zero frequency. Section 10 has the largest value 

of G33, since it has the largest values of and <%. And of Section 20 is smallest, 

because both jif and cr of this section are the smallest. 

In contrast to the added-mass, substantial disparities are observed between 

the damping coefficient results of multi-parameter mapping method and those of 

Lewis mapping method, shown in Figures (4.20(b)), (4.21(b)) and (4.22(b)). The 

number of coefficients of the multi-parameter conformal mapping has significant 

influence on the non-dimensional heave damping coefficients 633 of Section 18 

and Section 20. The multi-parameter mapping with 14 coefficients gives a higher 

damping value on Section 10 and lower damping values on Sections 18 and 20, 

which agrees with the results presented by Bishop, et al [6] for a rectangular sec-

tion, a fine section and a bulbous section. The disparities decrease while the 633 

tends to zero at very high frequencies, which was not shown in the results of 

Bishop, ef a7. 

Roll Hydrodynamic Properties 

Figures (4.23 - 4.25) show the calculated hydrodynamic coefficients. The non-

dimensional added-moments of inertia 044 of Section 10 and Section 18 are much 

smaller than that of Section 20. The of Section 20 calculated using the multi-
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parameter mapping method are greater than that found with the Lewis method, 

and the solution of 5 parameters mapping are much closer to the solution of Lewis 

mapping then that of 14 and 11 parameters mapping. The convergence of the 

calculations is demonstrated once again. 

Great disparities are found between the damping results given by Lewis 

mapping method and those given by multi-parameter mapping, as well as be-

tween the damping values computed by multi-parameter mapping with differ-

ence coefficients, as shown in Figures (4.23(b)) (4.24(b)) and (4.25(b)). For Sec-

tion 18, the multi-parameter mapping with 5 coefficients gives lower damping 

then Lewis mapping, particularly in the region near resonance frequency, where 

it gives the damping values as low as 50% of that given by Lewis mapping. 

Whereas, compared with Lewis method, the multi-paramter mapping with 8, 11 

and 14 coefficients give slightly smaller damping values at the frequencies lower 

then resonance frequency and much higher damping values at the frequencies 

higher then resonamce frequency. For Section 20, in the region u* < 1.2, the dif-

ferences between the results produced by multi-parameter mapping with differ-

ent number of coefficients are small, and they become greater when u* increases 

in the region u* > 1.2. Again dramatic disparities are found between curve of 

Lewis mapping results and those of multi-parameter mapping results in the fre-

quency region near the resonance. 

From the discussion above, it can be concluded that the damping coefficient 

is extremely sensitive to the section shape. 

Sway-Roll(Roll-Sway) coupling Hydro dynamic Properties 

The coupling hydrodynamic coefficients 0̂ 4(̂ 12) 624(̂ 42) plotted in Fig-

ures (4.26 - 4.28). The discrepancies between the results, no matter whether 

they are calculated by Lewis mapping method or by multi-parameter mapping 
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method with different number of coefficients, follow the same pattern as that of 

and 6^, except that the values of difference are reversed for Secdon 20, e.g. the 

624(642) calculated using the multi-parameter mapping method are lower than 

that found with the Lewis method. 

4.5.2 Ef^cts of Heel Angle 

The correct calculations of two-dimensional hydrodynamic coefficients are vital, 

since they are the foundation of calculating three-dimensional hydrodynamic co-

efficients. The purpose of this section therefore is to provide another check on 

the calculations of two-dimensional hydrodynamic coefficients and ensure that 

the hydrodynamic coefficients of asymmetric sections can be computed correctly 

as well. When a ship is heeled to a angle, sections are no longer geometrically 

symmetric about the 2:3-axis, hence it is expected that hydrodynamic coefficients 

calculated by Lewis method and those calculated by multi-parameter mapping 

method will be much different, especially for those cross coupling coefficients. 

It should be noticed that the coupling between the coefficients is related to the 

non-symmetry of the shape of the underwater part of the section rather than just 

the angle of heel. For example, at zero heel angle, all cross coupling coefficients 

of the rectangular Section 10 between symmetric and antisymmetric motions are 

zero but, in general, at angles of heel the coupling coefficients are non-zero. How-

ever it is possible for this section to be heeled such that the underwater hull form 

returns to be symmetric (e.g. become a triangular shape), and the coupling coef-

ficients are again zero. So, for avoiding confusion, only Section 20 is chosen as a 

sample in this section to assess the influence of heel. 

Figures (4.29 - 4.32) illustrate the computed hydrodynamic coefficients of 

Section 20 heeled to angles 0°, 10° and 20°. Despite that the immersed sections 

are asymmetric about zg-axis, the cross coupling hydrodynamic coefficients still 
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retain their symmetry in the sense that and 6^ = 6*̂ , t, j = 2,3,4. 

It is very obvious that the hydrodynamic coefficients vary significantly with 

the heel angle, however the results produced by multi-parameter mapping and 

those produced by Lewis mapping still keep the similar trends {e.g. the damp-

ing coefficients b*j tend to zero at both high and low frequencies), except in 

Figure (4.31(a)), where the results at heel angles 10° and 20° produced by multi-

parameter mapping rise sharply when the frequency is approaching zero in con-

trast to the corresponding Lewis mapping's results. 

For those asymmetric sections the cross coupling hydrodynamic coefficients 

(̂ 23/<̂ 32' should not be zero, which are shown in Fig-

ures (4.33) and (4.32). The mapped section by the Lewis conformal mapping is 

always symmetric, no matter what shape the original section is, therefore, the re-

sults calculated by Lewis mapping method remain zero. At larger heel angle, for 

example 20°, it can be found in the figures that 0 ^ 3 / i s of the same order as Ggg 

and <233, O43 and 643 is even 2 - 3 times as large as 0%̂  and 6%̂  respectively, which 

means they can not be neglected, in other words, Lewis mapping can not be used 

with time-domain strip theory. 
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Figure 4.18: Sway Hydrodynamic Coefficients of Section 18 of Series 60 Hull 
Form without Heel Angle. 
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4.6 Three-Dimensional Hydrodynamic CoefAcients 

The three-dimensional hydrodynamics coefficients are compu ted by the strip the-

o ry developed by Salvesen, et al [56]. This st r ip theory has been commonly used 

and has been p roved to be able to accurately calculate the hydrodynamics coef-

ficients and predict ship mo t i on and sea loads. The purpose of the section is to 

verify the time-domain strip theory program developed with this thesis by com-

par ing the results w i t h those obtained by exper iment and by f requency-domain 

Green func t ion method. Since the p rog ram deals w i t h asymmetr ic underwater 

h u l l fo rms at most of the t ime, it is preferred to ve r i f y the p rog ram us ing the ex-

per imenta l data f r o m those ship models w i t h asymmetr ic underwater h u l l shape. 

Unfor tuna te ly no such exper imental data is available. Hence on ly the computed 

hyd rodynamic coefficients of a ship at equ i l i b r i um pos i t ion can be compared 

w i t h exper imenta l data. The computed h y d r o d y n a m i c coefficients o f a ship at 

any other posi t ions m a y be accessed qual i ta t ive ly t h r o u g h analysing the hydro-

dynamic coefficients o f a heeled ship. 

The exper imental data o f the Series 60 {Cb = 0.70) sh ip mode l are adopted to 

ve r i f y the program. This h u l l f o r m mode l has been tested by Gerr i tsma [19] and 

Gerr i tsma and Beukelman [20]. I n addi t ion, Chang [9], Ing l is and Price [25], and 

Hudson [24] have given numerical results using frequency-domain Green func-

t i on method. Meanwh i l e L iapis [28], Beck and L iapis [4], and K ing, etal [30] have 

presented numerical results using time-domain Green function method. Figures 

(4.35 - 4.42) i l lustrate the hydrodynamics coefficients o f the Series 60 {Cb — 0.70) 

mode l t rave l l ing at a Froude number o f 0.2. The h y d r o d y n a m i c coefficients are 

shown i n non-d imens iona l f o r m as a func t ion o f non-d imens iona l f requency o f 

encounter w*, 

^ (4'9) 
'e * 

where Wg is the frequency of encounter, Lship is the model length between per-
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pendiculars. The factors w h i c h are used to render the hyd ro dynamic coefficients 

non-dimensional are given in Table (4.4), in which g is the fluid density and 

is the mode l displacement. 

Coeff icient Uni ts D imens ions Factor 

'/̂ 22, -^33 M Q^dsp 

A44, Agg, AgG 

^35, -^53, -^26, ^62 MZ, Q^dspL ship 

^22, ^33 W 'S M / T Q^e^dsp 

^44, ^55' -^66 

^35, ^53, ^26, ^62 ^dspLghip 

Table 4.4: Factors Used to Render the Hydrodynamic Coefficients of the Series 
60 (Cg 0.70j 

4.6.1 Symmetric Hydrodynamic Coefficients 

Figures (4.35 - 4.38) show the symmetr ic hyd rodynamics coefficients. Four sets 

of data are presented. The black d i amond markers represent the exper imental 

results o f Gerr i tsma and Beukelman[20] for a Froude number o f 0.2. The curves 

w i t h circle markers are the results computed us ing s t r ip theory and Lewis confor-

m a l m a p p i n g to solve two-d imens iona l prob lem. The curves w i t h t r iangle mark-

ers are the results calculated us ing str ip theory and mul t i -parameter conformal 

m a p p i n g to solve two-d imens iona l problem. The results compu ted by frequency-

doma in Green func t ion me thod are shown as curves w i t h square markers. The 

p rog ram of f requency-domain Green func t ion m e t h o d was p r o v i d e d by Dr. D. A . 

H u d s o n i n School of Engineer ing Sciences, Un ive rs i t y o f Southampton. 

I t is ve ry obvious that the str ip theory indeed gives m u c h smoother results 

than the f requency-domain Green func t ion me thod over the who le range of fre-

fg UBRAHY 
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quency. I t also appears that s t r ip theory results are in m u c h better agreement w i t h 

experimental data, especially the coefAcients A33, A55, and % match the 

exper imenta l results ve ry we l l . This is the reason that s t r ip theory is s t i l l the most 

c o m m o n l y used method in engineer ing design, a l t hough Green funct ion methods 

or Rankine panel methods appear mathemat ica l ly m o r e consistent. Two sets o f 

data computed by str ip theory are very m u c h close, o n l y a m ino r discrepancy o f 

added-mass X33 is found in the high frequency range, cuj > 2.5. In Section §4.5.1, 

i t has been shown that for sectional added-mass coeff ic ient agg Lewis m a p p i n g 

me thod and mul t i -parameter m a p p i n g method indeed g ive very s imi lar predic-

t ions. A l t h o u g h great dispari t ies are f o u n d among the d a m p i n g coefficients 633 

of sections near b o w and stern, the overal l symmetr ic hyd rodynam ic coefficients 

of the mode l are not affected, since they are domina ted b y m i d body sections (e.g. 

Section 10), where d a m p i n g coefficients computed b y Lew is method and mu l t i -

parameter method are similar. 

4.6.2 Anti-Symmetric Hydrodynamic Coefficients 

Figures (4.39 - 4.43) show the ant i -symmetr ic hyd rodynam ics coefficients. Same 

as symmetr ic hydrodynamics coefficients, fou r sets o f data are presented, except 

that the exper imental results were measured by van L e e u w e n [67] for the Series 

60 (Cb = 0,70) ship mode l at a Froude number o f 0.2 w i t h a rudder attached 

(but w i t h o u t a propel ler). The or ig ina l data were measured w i t h respect to the 

body- f i xed coordinate system, but can be t rans formed to equ i l i b r i um coordinate 

system by means o f the t ransforms p rov ided by Bailey, et al [1]. The t ransformed 

data are used to p lo t the figures here. 

A g a i n str ip theory a lways gives smoother results than the Green funct ion 

me thod does. Agreement between the computed s w a y hyd rodynamic coeffi-

cients A22, B22 and the exper iment data are fa i r l y good. Str ip theory gives better 



n 3 

prediction of in the high frequency range, w* > 3.5, whereas Green function 

method performances better in the frequency range near resonance, 1.5 < w* < 

3.5, where ^22 is over-predicted by strip theory. In the case of % , strip theory 

has better performance over the entire frequency range. Osci l lat ion appears i n 

the results of Green func t ion me thod i n the h igh f requency range. Green func t ion 

method also tends to under-predict Bgg in the frequency range 2.5 < w* < 5.0, 

particularly at the frequency of resonance. Results computed by two strip theo-

ries are ve ry m u c h close, m ino r differences exist on l y at the frequencies very near 

resonance. 

H y d r o d y n a m i c coefficients of y a w m o t i o n are i l lus t ra ted in Figures (4.40) 

and (4.41). Added-mass coefficient AIQ predicted by Green funct ion method ap-

pears i n better agreement w i t h the exper imental results that those computed b y 

str ip theory, par t icu lar ly i n the f requency range 1.5 < u* < 3.5. A t the h igh 

frequencies, w* > 4.0, Bgg are well predicted by strip theory, while at other fre-

quencies, bo th Green func t ion me thod and st r ip theory fa i l to give good enough 

predict ions. 

A m o n g the cross coup l ing coefficients o f sway a n d y a w mot ions, 5|g are ac-

curately predic ted by bo th st r ip theory and Green func t i on method, as shown i n 

Figure (4.41(b)). However , for the rest of the coefficients, on l y the same qual i ta-

t ive trends as the experiments are achieved by bo th methods. The discrepancies, 

however are not signif icant, between the results compu ted by t w o st r ip theories 

can be seen in a l l the cross coup l ing coefficients. 

The hyd rodynamic coefficients associated w i t h the pure ro l l mo t i on of Se-

ries 60 (Cg — 0.70) ship model are shown in Figure (4.43). Great disparities can 

be seen in both added-mass coefficient and damping coefficient The val-

ues of given by strip theories are much higher then those given by Green 

func t ion method. Due to lack of exper imenta l results, i t is d i f f i cu l t to jus t i f y 
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w h i c h are more accurate. Results computed by t w o s t r i p theories fo l l ow the same 

trends, t hough the difference is substantial. Figures (4.23 - 4.25) show that the h y -

d rodynamic coefficients associated w i t h ro l l are dom ina ted by the sections near 

bow and stem (e.g. Section 20), where the results of sectional computed by 

mul t i -parameter m a p p i n g are h igher then those g iven by Lewis mapping. There-

fore, i t is not surpr is ing to see that the three-d imensional added-mass in Fig-

ure (4.43(a)) predicted by st r ip theory us ing mu l t i -parameter conformal m a p p i n g 

are h igher then that predicted by st r ip theory us ing Lew is conformal m a p p i n g 

method. 

For the roll damping coefficient the experimental data by Vugts [68] 

are included^. Figure (4.43(b)) shows that Green func t i on method substant ial ly 

under-est imates the ro l l damping , w h i c h can be exp la ined as a consequence o f 

the potent ia l f l o w assumptions. I t seems that no g o o d reason to explain w h y 

str ip theory gives such higher d a m p i n g values, compared w i t h Green funct ion 

method, w h i c h is w o r t h fur ther invest igat ion. Meanwh i l e , i t has to be po in ted 

out that the accuracy of exper imenta l data is somewhat doubt fu l , since contra-

dict ions are f o u n d in the t w o figures of B44 p rov ided b y H u d s o n [24], where the 

exper imenta l data was taken f rom. 

4,6.3 Hydrodynamic Coefficients of a Heeled Series 60 {Cb = 

0.70) Model 

Figures (4.44 - 4.47) show the hyd rodynamic coefficients associated w i t h vert ical 

plan motions of the Series 60 (Cg = 0.70) ship model. The results suggest that 

the heel has l im i t ed inf luence on the to ta l hyd rodynam ic coeff icient values, espe-

cial ly for the heave p i tch cross coup l ing coefficients. N o mat ter w h a t the method 

is used to compute sectional hyd rodynamic coefficients and no mat ter wha t the 

^This was taken from Hudson [24]. 
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heel angle is, the results are quite close to each other, except for those com-

pu ted by st r ip theory w i t h Lewis conformal m a p p i n g i n Figure (4.35(a)), w h i c h 

are in f luenced by heel angle in the h i gh frequency range, but the results f o l l o w 

exact same trend. 

Same conclusion can be d r a w n f r o m the results o f the hydrodynamic co-

efficients associated w i t h lateral p lane mot ions, as s h o w n i n the Figures (4.48 -

4.51). ylgg ^62 more likely influenced by heel angle. The magnitude of Agg 

computed by mul t i -parameter m a p p i n g are larger t hen that computed by Lewis 

m a p p i n g method, however they f o l l o w that same t r e n d w h e n the heel angle in-

creases. I n the case of dispari t ies are shown at the h i g h frequencies. For other 

coefficients, m i n o r influences on ly appear near the f requency range of resonance. 

Figures (4.52 - 4.55) show that heel angle has s t rong inf luence on the hy -

d rodynamic coefficients associated w i t h ro l l mot ion , w h i c h is expected since i n 

Section §4.5.2, i t has been shown that the sectional h y d r o d y n a m i c coefficients as-

sociated roll motion are strongly influenced by heel angle. Compared with 

vlgg, and ^22, % respectively, 4̂̂ 4 and clearly are of small order, even at larger 

heel angles, and the same is t rue for and w h i c h indicates that heel angle 

may not have strong inf luence on sh ip mo t i on of s w a y and y a w mode. H o w -

ever, Figures (4.52), (4.53) and (4.54) show that the hyd rodynam ic coefficients 

cont r ibu t ing to sh ip ro l l mo t i on compu ted by mu l t i -parameter m a p p i n g method 

are of same order, par t icu lar ly at large heel angles, a n d they are ve ry st rongly 

affected by the heel angle in the l o w frequency range. Therefore the ro l l mot ions 

predic ted by t rad i t iona l str ip theory and by t ime -doma in s t r ip theory m a y be o f 

s igni f icant difference. A l l the curves i n Figures (4.52 - 4.55) are very smooth and 

curves of each coefficient for the di f ferent heel angles f o l l o w the same trends. This 

indicates that the results p roduced by the p rog ram are rel iable. 

Figures (4.56-4.64) present those hyd rodynamic coeff icients w h i c h are zero 
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when ship is in up right position. Obviously, only the strip theory with multi-

parameter are able to be predict them when the model is heeled. The magnitudes 

of the coefficients increase with the heel angle and curves are smooth. Once again 

it indicates the program is trustworthy. 
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Figure 4.35: Comparison of the Predicted and Measured Heave Hydrodynamic 
Coefficients of Series 60 Ship Model 
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Figure 4.36: Comparison of the Predicted and Measured Pitch Hydrodynamic 
Coefficients of Series 60 Ship Model. 
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Figure 4.37: Comparison of the Predicted and Measured Heave-Pitch Coupling 
Hydrodynamic Coefficients of Series 60 Ship Model. 
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Figure 4.38: Comparison of the Predicted and Measured Pitch-Heave Coupling 
Hydrodynamic Coefficients of Series 60 Ship Model. 
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Figure 4.39: Comparison of the Predicted and Measured Sway Hydrodynamic 
Coefficients of Series 60 Ship Ship Model. 
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Coefficients of Series 60 Ship Model. 
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Chapter 5 

Motion Prediction in Regular 

Seaways 

5.1 Introduction 

This chapter focuses on the prediction of ship motions in regular sea waves. In 

the forgoing chapters, ship motion equations (3.194) are derived and the methods 

of calculating hydrodynamic coefficients are discussed. This chapter, therefore, 

discusses the excitation forces and the solution of those five coupled equations*. 

The numerical method adopted in this chapter to solve the equations is Newmark 

[3 direct integration method, which is widely used in structural dynamics analysis 

[2, 8]. In general, Newmark method is applied to the system of linear differential 

equations of second order with constant coefficients. However, in time-domain 

strip theory method the coefficients of ship motion equations (3.194) are not con-

stants, rather time-varying. The generalized mass matrix added-mass coef-

ficients damping coeiRcients and hydrostatic restoring coefficients all 

vary at each time step. In order to ensure numerical stability, the unconditionally 

*The surge motion is usually ignored. 
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stable parameters are used in Newmark method. 

The Series 60 hull form with a block coefRcient Cg = 0.7 is one of a system-

atic series of hull forms that represent traditional cruiser-stern commercial ships. 

It has been tested extensively in towing tanks, so that it is chosen again as a test 

case. Both predicted forces and motions are compared with experimental data 

and the results of other calculations. 

5.2 Froude Kriloff Forces 

Froude-Kriloff forces are computed using Equations (3.175) and (3.176). Since 

the incident wave potential is explicitly known with respect to the coordinate 

system o(xi,X2,X3), the sectional Froude-Kriloff forces (3.176) can be computed 

directly as follows, 

Npt—2 

i = l 

^=2 ,3 ,4 , (5.1) 

where 

= f ! i ± p ! ± i ) (5.2) 

xS = (5.3) 

= 3:2(1+1) — 2:21, (5.4) 

Zlzsi — 3:3(1+1) — 3:31, (5.5) 

B,. = (5.6) 

— ZlZ2t 

' " • )-+'{Ax,.r 



== (̂ 2̂+1) " ^ ^5.9) 

(z2i, Z3i), i = 1,2,..., Npt, are section definition points, which have to be in the 

order such that 3:2(1+1) > is the coordinate of the centre of the gravity of 

the ship in the coordinate system o(xi, X2,23), which is considered as the rotating 

centre of each section. It could be understood that the distance Aii between two 

consecutive section definition points must be small enough in order to achieve the 

desired integration accuracy. However, this could not always be guaranteed by 

the hull rationalization method introduced in Section §4.2 for those ships without 

or with just a little floor rise, e.g. Section 10 of Series 60 {Cb = 0.7) model shown 

in Figures (4.5(a) - 4.8(a)), where the distances between the points next to the keel 

are too large to be acceptable. The numerical accuracy is poor unless extra points 

are interpolated. 

Alternatively by using the conformal mapping Equations (3.92) and (3.93), 

the integration in Equation (3.176) can be performed with respect to variable 

"T" 2 
-tKoxicos/j. f ^Ko{ix2 sm/j,-X3+hn) ^^3 (5.10) 

r=l 

^ 2 
pi _ _g^-iKoxicosfi J (iX2 sin fi-xa+ha) 

a?) 
2 

(5.11) 
r=l 

^ gA'o(t3:2 8in/:-a:3+/iG) 

^2 

+ (3:3 — ) 

a?) 
(5.12) 

This method generally gives much better results, provided that the conformal 

mapping is accurate. Unlike the distribution of section definition points (%, x^i) 

on the section contour, which is subject to the rationalisation process, can be 

distributed evenly and for an arbitrary number of values over range [—7r/2,7r/2]. 



^ 

Figure (5.1) shows the amplitude of the heave and pitch Froude-Kriloff forces 

of a Series 60 (Cg = 0.7) model travelling with forward speed = 0.2 in si-

nusoidal head waves. F^* and Fi* are non-dimensional forces, wj is the non-

dimensional frequency of encounter, 

H ' = - ^ 4 ^ - (5.14) 
Q9Vo^dsp 

Lghip/g, (5.15) 

where % is the amplitude of the Incident wave, is the model length between 

perpendiculars, g is the fluid density, and Vdsp is the model displacement. Figure 

(5.2) provides the corresponding phase angles of the heave and pitch forces. 

Surprisingly, not only the amplitude of the forces but also the phase angles 

predicted by strip theory are extremely close to those computed using frequency-

domain Green function method, even though much less information of the hull 

is required in strip theory compared with Green function method. 

5.3 Diffraction Forces 

Equations (3.177), (3.178) and (3.179) are used to compute the diffraction forces. 

It has to resort to the conformal mapping equations to compute the sectional dif-

fraction forces (3.179), since the potentials $ j is unknown in the coordinate system 

o(a;i,a;2,a;3). After applying the conformal mapping Equations (3.92) and (3.93), 

§j can be replaced by Equation (3.179) becomes 

r = l 
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ĈCq 
r = l 

sin j = 2, 3, 4. (5.16) 

Figure (5.3) depicts the ampl i tude o f the heave and p i t ch d i f f ract ion forces, 

the corresponding phase angles are i l lust rated i n F igure (5.4). Di f f ract ion forces 

are shown in the same non-d imens iona l f o r m as the Froude-Kr i lo f f forces, 

jpDlr, 
(5.17) 

I pD] 
fcT* = --l-Jl-L.-. (5.113) 

Presently nei ther the d i f f rac t ion forces measured by exper iment nor the re-

sults computed by other seakeeping programs are avai lable for comparison, i n 

the Figures (5.3) and (5.4) on ly the d i f f rac t ion forces pred ic ted by t ime-domain 

st r ip theory are presented. However , compar ing the tota l forces computed b y 

t ime-doma in str ip theory w i t h those computed by Green func t ion me thod ind i -

cates that the signi f icant differences exist between the d i f f rac t ion forces calculated 

by these t w o methods. Figure (5.5) i l lustrates the amp l i t ude o f the tota l heave and 

p i tch exci t ing forces, where the exper imental results were measured by Gerr i tsma 

[18] on the Series 60 {Cb = 0.7), ship mode l t rave l l i ng i n regular s inusoidal head 

waves w i t h a Froude number of 0.20. The non-d imens iona l exci t ing forces are 

obtained by 

QQVo^dsp 
jr; = 1̂ 3 (s icq 

j?* = ^5 (5.20) 
Q9V(Mdsp 

The heave exci t ing forces predicted by the st r ip theory and the Green func-

tion method are in fairly close agreement, except in the frequency range 4.2 < 

uj* < 5.6, where s t r ip theory seems to g ive s l igh t ly better predic t ion. Signif i-
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cant discrepancies between the p i tch exci t ing forces can be seen clearly in F ig-

ure (5.5(b)), however, the result given by strip theory and that given by Green 

func t ion me thod f o l l o w the same trend. Since jus t a f e w experimental results 

are avai lable over a l i m i t e d frequency range, i t is qu i te d i f f i cu l t to obtain a fa i r 

j udgement . Compared w i t h exper imental data, s t r ip theory gives a l i t t le bit bet-

ter pred ic t ion then Green func t ion method on the resonance frequency. In the 

f requency range near the resonance, the results o f s t r ip theory are higher then the 

exper imenta l data, w h i l e the results g iven by Green func t ion method are lower 

then the exper imenta l data. 

Figure (5.6) i l lustrates the phase angles of heave and p i tch excit ing forces. 

Since no exper imenta l results are available at present, i t is impossible to j udge 

w h i c h method, s t r ip theory or Green func t ion method , gives more accurate pre-

d ic t ion of phase angles. Appa ren t l y str ip theory and Green func t ion method g ive 

qui te d i f ferent predict ions i n the h igh frequency range, w* > 3.0 for heave excit-

ing force, and w* > 4.0 for p i tch exci t ing force. However , those h igh frequencies 

are not of impor tance i n pract ical ship design. 

5.4 Newmark Direct Integration Method 

There are m a n y methods for advanc ing the so lu t ion o f (3.194) i n t ime, e.g. the 

Central Difference M e t h o d and the Imp l i c i t L inear Accelerat ion M e t h o d [2, 8], 

The me thod considered here is Newmark- /? Direct In tegra t ion M e t h o d w h i c h is 

proposed by N e w m a r k [49] for the so lu t ion of s t ruc tura l dynamic problems. Dur -

ing the past decades it has been applied to the dynamic analysis of many practical 

engineer ing structures. I n addi t ion, i t has been m o d i f i e d and i m p r o v e d by many 

other researchers. 

The N e w m a r k me thod can be der ived i n a n u m b e r of ways, and can be found 
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i n m a n y texts. The t ime d imens ion is represented b y a set o f discrete points each 

a t ime increment At apart. The system is solved at each o f these points in t i m e 

us ing as data the so lu t ion at a previous t ime. The va lue of a funct ion ^ at t ime t 

and t will be denoted by ,̂ (̂ ) = and (̂ (( + respectively. The 

standard forms of N e w m a r k ' s equations for p rob lem (3.194) are 

+ ( 1 _ , ( 5 . 2 1 ) 

^ . ( 5 . 2 2 ) 

where e and f3 are parameters that can be de te rm ined to obta in integrat ion accu-

racy and stability. When e = 1/2 and = 1/6, relations (5.21) and (5.22) corre-

spond to the l inear acceleration method. 

I n add i t ion to (5.21) and (5.22), for so lu t ion o f the displacement, velocit ies 

and accelerations at t ime t + At, the ship m o t i o n equat ions (3.194) at t ime t + At 

are also considered. 

where are the exci t ing forces, 

pE(t+At) _ ,^^pI{t+At) pD[t+At)^ 24) 

Solving Equation (5.21) for in terms of and then substituting for 

(5,22) gives 

The substat ion o f Equat ions (5.21) and (5.25) into the Equat ion (5.23) prov ides an 
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expression f r o m w h i c h the displacement at the t ime t + At can be determined, 

2!__: J 2!_ r ' .. 

rMjf + eBif 1 , rn (e -

+ 
r( l -2;3)(Af, ' ."+4') (e-2/3)zltB,'."-

20 2/3 
e f . (5.26) 

Since and in Equation (5.23) are unknown at the time 

t + At, they are replaced by and respect ively when der iv ing the 

Equation (5.26). and can also be calculated using Equations (5.21) 

and (5.22), after obtaining 

The N e w m a r k method is second order accurate and depends on two real 

parameters e and /?. The parameter values are d i rec t ly l i nked to accuracy a n d 

stabi l i ty o f N e w m a r k in tegrat ion me thod (Figure (5.7)). The classical values are 

given by Ba±e [2] and Burnett [8]: 

i. {3 = 0, e = 1/2: N e w m a r k me thod is ident ica l to the central difference 

me thod (condi t ional ly stable); 

i i. P = 1/4, e = 1/2: This choice of parameters corresponds to a t rapezoidal 

ru le (uncondi t ional ly stable me thod i n l inear analyses). I t leads to a con-

stant average acceleration; 

i i i . (3 = 1/6, e = 1/2: N e w m a r k me thod is ident ica l to the l inear acceleration 

me thod (condi t ional ly stable); 

iv. /? = 1/12, e = 1/2: N e w m a r k me thod is ident ica l to F o x - G o o d w i n method, 

w h i c h is f ou r th order accurate (condi t ional ly stable). 

The stabi l i ty o f an in tegrat ion m e t h o d is de te rm ined by examin ing the be-

hav iour of the numer ica l so lu t ion for arb i t rary in i t i a l condi t ions. A n in tegrat ion 
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Figure 5.7: Stability of Newmark Direct Integration Method. 

method is uncond i t iona l l y stable i f the so lu t ion f o r any in i t ia l condit ions does 

not g r o w w i t h o u t b o u n d for any t ime step At. The m e t h o d is on ly cond i t iona l ly 

stable i f the above on ly ho lds p rov ided that At is smal ler than a certain value, 

usua l ly called the stabi l i ty cr i t ical t ime step Atcr- A s men t ioned before, the coef-

ficients of the ship m o t i o n equations (3.194) are not constants and therefore i t is 

d i f f i cu l t to determine the cr i t ical t ime step Atcr i n advance. Therefore, to ensure 

the numerical stability, parameters ^ = 1/4, e = 1/2 are used. Bathe and Wilson 

[2] also proved that the method corresponding to ^ = 1/4, e = 1/2 has the most 

desired accuracy characteristics. 

I f cond i t iona l ly stable parameters such as /? = 1 /6 , e = 1 / 2 are employed, 

the t ime step size At, and hence the number o f t ime steps for a g iven t ime range 

considered, is determined by the cri t ical t ime step Atcr , and not m u c h choice is 

available. However , us ing uncond i t iona l l y stable parameters, the t ime step At 

has to be chosen to y i e l d an accurate and effective solut ion. The errors i n the 



in tegrat ion can be measured i n terms of pe r iod e longat ion and ampl i tude decay. 

The relationships between the errors and the the time step zlt are obtained by 

compar ing the exact so lu t ion w i t h the numer ica l so lut ions. However, only f o r 

some s imple problems, can the exact solut ions be f o u n d . Therefore, the unforced 

heave and p i tch m o t i o n equations (5.27) and (5.28) are considered here, 

(m, + 7133)̂ 3 + 3̂3̂ 3 + C33̂ 3 + /I35& + -B35& + C'35'̂ 5 = 0, (5.27) 

(-̂ 22 + -̂ 55)& + -B55& + C'ssCs + + -853̂ 3 + C53̂ 3 = 0. (5.28) 

For a Series 60 (Cg = 0.7) ship mode l advanc ing i n a head wave w i t h a speed 

= 0.2, the values of the coefficients i n the Equat ions (5.27) and (5.28) are s h o w n 

in Table (5.1). The wave frequency is chosen as wo = 5.2 racf/a. 

Coefficient Value Coefficient Value 

1.6564e-01 -̂ 22 8.5001e-02 

^33 1.4308e-01 -̂ 55 5.1314e-02 

^33 2.4269e-01 - B 5 5 1.8727e-01 

1.0413e+01 C'ss 5.4837e+00 

^35 -3.9861e-03 ^53 3.8454e-03 

- 8 3 5 2.4093e-01 ^53 -7.2330e-02 

6.4735e-01 (̂ 53 6.4735e-01 

Table 5.1: Values of the Coefficients of the Heave and Pitch Motion Equations. 

The exact solut ions for the o rd inary d i f ferent ia l equat ions (5.27) and (5.28) 
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are not d i f f i cu l t to be f o u n d as 

3̂ =C2 e' -0.37272( [-0.010407 cos(5.5641t) + 0.15536 8iii(5.5641t)]+ 

-0.37272t [-0.0104078iii(5.5641^) - 0.16536 co8(5.5641()]-j-

Cfe--0.69242t [0.046407 C08(6.5434t) + 0.057606 8iii(6.5434^)]-h 

-0.69242t [0.0464078iii(6.5434^) - 0.057606 co8(6.5434^)], 

(5 -0.37272t [0.073579 co8(5.5641^) - 0.038696 siii(5.5641^)]+ 

-0.37272( [0.073579 8in(5.5641() 0.038696 co8(5.5641()]+ 

0.69242( [-0.013762 008(6.5434^) + 0.13005 8iii(6.5434t)]+ 

-0.69242f [-0.0137628in(6.5434^) - 0.13005 co8(6.5434^)], 

(5.29) 

(5.30) 

where , C2, and Cg are constants determined by initial conditions. The exact 

and numer ica l solut ions w i t h in i t ia l condi t ions ^3 = 0.1, & = 0, ^5 = 0, ^5 = 0 are 

d r a w n i n Figure (5.8). The per iod e longat ion and amp l i t ude decay increase w i t h 

the in tegrat ion t ime step At. I n order to achieve the desired accuracy At has to 

be as smaU as O.Ols, in the other words, < T/lOO (T is the period), which is 

used as a cr i ter ia for sett ing the in tegrat ion t ime step i n the t ime-doma in m o t i o n 

program. 

5.5 Motion Prediction in Head Seas 

For ship w i t h lateral symmet ry h u l l f o r m advanc ing i n regular head waves, rol l , 

sway and y a w are absent and the mot ions are conf ined to surge, heave and pi tch. 

Surge m o t i o n is independent of al l the other mo t ions and therefore usual ly ig-

nored i n seakeeping calculations. The heave and p i t c h equat ions are coupled, 

(m 4- ̂ 433)1̂ 3 -t- ̂ 33̂ 3 + C33̂ 3 -t- ̂ 35̂ 5 + 3̂5̂ 5 + (^35^ = (5.31) 

(-̂ 22 + -̂ 55)& + -B55& + + ^53& + -̂ 53̂ 3 4- = 3%(_P̂  4- f ^ ) , (5.32) 
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Figure 5.8: Solutions of Unforced Motions. 



so that heave mot ions are inf luenced by p i tch and v ice versa. 

The outputs o f the t ime-domain s t r ip theory p r o g r a m are the history ( t ime 

series) of displacement, ve loc i ty and acceleration o f each mot ion. Figure (5.9) 

shows the examples of displacement histories of heave and pi tch mot ion o f a 

Series 60 {Cb = 0.7) mode l t rave l l ing w i t h f o r w a r d speed = 0.2 in a head 

wave (wo = 4.0 The model is at rest (,̂ 3 = 0, ̂ 3 = 0, ,̂ 5 — 0, ̂ 5 = 0) at ^ = 0. 

I t is clear that both heave and mo t i on are s inuso ida l i n t ime and reach steady 

osci l latory state rough l y after 4 cycles. The transient pe r i od is short, wh i ch m a y 

be because the t ime convo lu t ion te rm is omi t ted i n the equations of motions, so 

that the in i t ia l cond i t ion can not effect ively affect the mot ions afterwords. The 

results are very stable so that their ampl i tudes and phases can be f o u n d by be ing 

f i t ted w i t h s inusoidal funct ions. 

5.5.1 Curve Fitting with Sinusoidal Function 

I n this section the cosine funct ion, 

^(^) = A + B co8(we^ +1?), (5.33) 

is f i t ted to the displacement, ve loc i ty and acceleration h is to ry of each mot ion. 

Since the ship mot ions are o f the same frequency as the exci t ing forces, the angu-

lar f requency i n the cosine func t ion (5.33) is a lways the f requency o f encounter 

Wg. A is the height f r o m abscissa to mean value, B is the ampl i tude , and 13 is phase 

shi f t - distance i n radians f r o m ^ = 0 to star t ing po in t o f the func t ion new cycle. 

The phase shi f t can be removed by us ing t r igonomet r ic i d e n t i t y 

^(^) = v4 -I- C COs(We() -t- D C08(cUe )̂, (5.34) 
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where 

C = B cos 

D = —Bsini), 

i) = arctaii(—D/C), 

+ D2. 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

Let (̂ 1, î), z = 1 ,2 , . . . , be data points in a given motion history (displace-

ment, ve loc i ty or acceleration), the coefficients A, C a n d D o f the fitted curve fo r 

this m o t i o n h is tory are determined such that the to ta l s u m of the squares of the 

residuals, 

'S'r = ^(Z/i - ^ COs(Weti) + D COs(We(,) - (5.39) 
1=1 1=1 

is m in im ized . Tak ing par t ia l der ivat ive of Sr w i t h respect to each of the u n k n o w n 

coefficients, and sett ing each resul t ing equat ion to zero gives three no rma l equa-

tions to solve for coefRcient A, C and D, 

Nth C08(Wĝ i) 

8in(Weti) COs(We(i) 8ill(Wê , 

\ / ^ \ 

cos(u;e î) sin(wet 

8iii^(u;e(,) y 
/ - \ 

COs(Wê )̂ Vt=:l 

c 

. (5.40) 

This is k n o w n as the least squares technique. 

However , i f the Nth data points are equispaced at intervals o f At and w i t h 



the total time length of T = = 27r/we, it has 
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1 

1 

^8in(we^^) = 0, 
2=1 

iV, th 

C08(Wê i) = 0, 
i=l 

1 • 2 / \ 1 

— 2 ^ sm = - , 

1 1 
— g c o s ^ M O = - . 

%=1 

N, t/l 
sill(Weti) C08(Weti) = 0. 

i=l 

Thus for equispaced data points Equat ion (5.40) becomes 

0 0 ^ 

0 Ar(;,/2 0 

y 0 0 Ar,^/2y 

C 

\^J 

/ x). \ 

Z^i=i y« 

E%1 C0s(cJe4) 
%/i 8in(LJe^^) y 

( 5 . 4 1 ) 

( 5 . 4 2 ) 

( 5 . 4 3 ) 

( 5 . 4 4 ) 

( 5 . 4 5 ) 

( 5 . 4 6 ) 

and coeGicients A, C and D are easily solved. 

Figure (5.10) shows the displacement histories o f heave and p i tch mo t i on 

and the corresponding fitted cosine curves for a Series 60 (Cg == 0.7) model mov-

i ng w i t h f o r w a r d speed — 0.2 i n a head wave. The f requency of encounter 

We = 5.78401 ro(f/g. The values of the coefficients v4, B and are listed in Table 

(5.2). Since on ly the amp l i t ude and the phase angle o f steady state osci l lat ion 

are o f importance, the transient process is excluded f r o m cu rv i ng f i t t ing, e.g. the 

f i rst 4 cycles i n Figure (5.10(a)). I t can be seen that e q u i l i b r i u m posit ions of bo th 

heave and p i t ch mo t i on are not at 0, this is because the sh ip m o d e l is not perfect ly 

balanced i n ca lm water w i t h the in i t ia l data g iven i n the i n p u t f i le {e.g. draught , 

we igh t and centre of grav i ty) . Howeve r i t br ings no error in to the f ina l results of 

amp l i t ude and phase angle. 
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1 7 0 

M o t i o n B (rad.) 

Heave Displacement 

Pitch Displacement 

0.3435e-02 0.4077e-01 0.2637e+01 

0.1737e-02 0.5160e-01 0.6281e+00 

Table 5.2: Values of the CoefGcients of the Fitted Curves of the Motion Histories 
of tAe Senes 60 (Dg = 0.7j Modei IraveJIfng with forward Speed 

= 0.2 m Head Waves (wo = 4.0 rad/aj. 

5.5.2 Phasing of Displacement, Velocity and Acceleration 

Phasing of displacement, velocity and acceleration niay be used as a criteria to 

access the qua l i t y o f predicted ship mot ions. Figure (5.11) shows displacement, 

ve loc i ty and acceleration h is tory o f predic ted heave a n d p i t ch mo t ion o f a Series 

60 (Cg — 0.7) model in a head wave (wg = 4.0 racZ/a). The forward speed is 

2.1232 knots {Fn = 0.2). The displacement results are scaled u p by a factor of 5, 

wh i l s t the acceleration results are scaled d o w n by a factor o f 5, so that they can 

be readi ly compared w i t h the ve loc i ty results. Table (5.3) shows the values of the 

phase angles, where 9̂̂  and represent the phase angles of displacement, 

velocity and acceleration respectively. 

Phase Ang le (rad.) 

& - 0 . 2 
Heave 

Pitch 

2.637 4.183 -0.493 -1.546 -4.676 

0.628 2.238 3.786 -1.610 1.548 

= 0.3 
Heave 

Pitch 

1.530 3.099 4.679 -1.569 1.580 

0.081 1.667 3.223 -1.586 1.556 

Table 5.3: Phase Angles of the Motions of the Series 60 (CB = 0.7) Model 
Travelling with Forward Speed = 0.2 in Head Waves (UQ = 4.0 

The results demonstrate that the correct phasing o f each m o t i o n is achieved. 

The acceleration a lways leads the ve loc i ty by about 7r/2, w h i l s t the displacement 
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m 

lags the velocity by about 7r/2. This also further proves that the time stepping 

scheme (Newmark-^ integration method) is accurate. 

5.5.3 Comparisons with Experimental Data 

Here the exper imental data of a Series 60 {Cb = 0.70) sh ip mode l is chosen to va l -

idate this t ime-domain st r ip theory method, because Series 60 hu l l f o r m has been 

extensively s tud ied numer ica l l y and exper imenta l ly a n d a large amount of data 

is available. Figure (5.12) shows the comparisons of p i t c h and heave mot ion o f a 

Series 60 {C b = 0.70) ship mode l t rave l l ing at a F roude number of 0.2 i n regular 

head waves. The exper imental data measured for t w o d i f ferent wave ampl i tudes 

= ^a/i:p/100 and % = ^a/iip/80) were given by Gerritsma and Beukelman [21]. 

The numer ica l results w i t h legend "Calculat ion o f Ger r i t sma" are also taken f r o m 

the w o r k of Gerr i tsma and Beukelman [21]. Three-d imens iona l numer ica l results 

are presented w i t h legend "Green Funct ion M e t h o d " , w h i c h are produced b y 

f requency-domain Green func t ion method [24] us ing 510 panels. Incident wave 

amp l i tude % is set to be L^/jip/lOO i n the compu ta t i on us ing t ime-domain s t r ip 

theory. ^3 and are non-d imens iona l heave and p i t c h mot ion , w* is the non-

d imens iona l f requency of encounter, 

6 = (5.47) 

S = (5.48) 

I-'ship/91 (5.49) 

where Lghip is the ship length between perpendiculars, % is the amp l i t ude of the 

incident wave, and is wave number. 

For the heave motion shown in Figure (5.12(a)), predictions given by time-

doma in st r ip theory are extremely close to the exper imenta l data over who le fre-



quency range, and s l ight ly better than the results o f Gerr i tsma and Beukelman i n 

the low frequency range, i.e. w* < 3.5. Three-dimensional Green function method 

gives much worse predictions in the frequency range near resonance. 

Figure (5.12(b)) shows t ime-domain st r ip theo ry does not give as good pre-

dict ions for p i tch m o t i o n as those for heave mo t i on . I t tends to under-predic t 

a round the resonant f requency wh i l s t Green func t i on me thod very much over-

predicts. This m a y be due to the difference in pred ic t ions o f damp ing coefficient 

B55. Figure (4.36(b)) shows that in the low frequency range (w* < 4.0) the damp-

i ng coefficients B55 g iven by t ime-domain st r ip theo ry are always higher than 

exper imenta l data, wh i l e those g iven by Green func t i on me thod are lower t han 

experimental data. 

A t a Froude number of 0.3, t ime-domain s t r ip theory st i l l gives excellent 

predict ions of heave m o t i o n as shown i n Figure (5.13(a)). I n the l o w frequency 

range, t ime-doma in s t r ip theory obv ious ly per fo rms m u c h better then the s t r ip 

theory used by Gerr i tsma and Beukelman. Figure (5.13(b)) shows that theoretical 

results and exper imental data o f p i tch mo t i on are i n reasonable close agreement. 

Resonance can be found near the frequency w* % 3.5 — 3.7. 

General ly speaking, the predict ions of p i t ch m o t i o n g iven by t ime-domain 

st r ip theory are not as good as the predict ions o f heave m o t i o n at bo th speeds. 

However , i n the h igh f requency range the pred ic t ions are excellent, w h i c h con-

Arms that strip theory indeed is a short wave length theory. The reason can be 

f o u n d i n §3.4.4, where in order to s imp l i f y the ca lcu lat ion o f rad ia t ion wave po-

tential the frequency of encounter Wg is assumed to be hight, Wg » [/(^/^z). 
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5.5.4 Effect of the Incident Wave Amplitude 

The essential objective o f this thesis is to extend the t rad i t i ona l l inear str ip theory 

to deal w i t h large-ampl i tude mot ions by encompassing the changing shape o f 

the we t ted hu l l . Therefore RAOs o f ship mot ions are expected to va ry w i t h the 

inc ident wave ampl i tude. 

Figures (5.14) and (5.15) show heave and p i t ch RAOs of a Series 60 sh ip 

mode l m o v i n g i n head waves w i t h f o r w a r d speed = 0.2 and = 0.3, re-

spectively. Non-l inear i t ies, a l though not ve ry p rom inen t , can be f ound in b o t h 

heave and p i t ch mot ions, par t icu lar ly i n the resonant f requency range. 

5.6 Motion Prediction in Oblique Seas 

I n obl ique waves the ship mot ions are no longer con f ined to the vert ical plane. 

Roll, sway and y a w mot ions also occur. However , the ver t ica l plane equations 

of m o t i o n for the symmetr ica l ship are independent o f those for the lateral plane. 

So the lateral plane mot ions in obl ique waves of sma l l amp l i t ude w i l l have no 

effect on the ver t ica l plane mot ions and these may therefore be considered i n 

isolation. Suppressing rol l , sway and y a w mot ions, heave and p i tch mot ions 

predic ted by t ime-doma in str ip theory, together w i t h the exper imenta l data, are 

shown i n Figure (5.16). The inc ident wave amp l i t ude % = -^'s/itp/100, and the 

heading angle n = 135°. 

The predic t ions of lateral plane mot ions in the t ime d o m a i n seem qui te prob-

lematic. One o f the impor tan t reasons is the lack of res tor ing forces for the sway 

and y a w mot ions. Small per turbat ions i n these mot ions w i l l result i n the ship 

being dev ia ted f r o m its or ig ina l course. I f there are no means to correct this false 

action, the p rog ram eventual ly w i l l mal funct ion. For a Series 60 (Cg = 0.7) ship 
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model advancing in oblique sea (wg = 4.0 and heading angle /z = 135°), this 

process is clearly illustrated in Figures (5.17(a)) and (5.17(e)). The drift of yaw 

mot ion results in the change of heading angle. Therefore osci l latory ampl i tude o f 

ro l l mo t i on increases qu ick l y after a short per iod o f s imu la t ion t ime, meanwh i le 

amp l i tude of p i t ch m o t i o n decrease gradual ly. This is s h o w n in Figure (5.17(c)) 

and Figure (5.17(d)) respectively. Figure (5.17(b)) indicates that heave mot ion is 

not as sensitive to the heading angle as ro l l and p i t ch mot ions. 

Figure (5.18) shows the mot ions o f the same ship mode l in beam waves. 

Dr i f ts of sway and y a w m o t i o n are inevitable. I n contrast to the trends in quar-

ter ing waves, the amp l i tude of ro l l m o t i o n decreases after transient per iod a n d 

the ampl i tude o f p i tch mo t i on increases. 

Salvesen, ef a7 [56] pointed out that, in the case of sway, yaw and roll mo-

t ion, the added-mass and d a m p i n g coefficients are s ign i f icant ly affected by v is-

cosity, especially the roll-damping coefficient B44 even in the absence of bilge 

keels. Hence, the necessary correct ion o f r o l l - d a m p i n g coefficient mus t be made 

to take account of the viscous effect. However, it needs an iterative computa-

t iona l process w h i c h is d i f f i cu l t to imp lement i n the t ime s tepp ing scheme. So the 

ro l l mot ions s h o w n in al l figures are computed w i t h un corrected r o l l - damp ing 

coefficient. Undoubted ly , the pred ic t ion does not agree w e l l w i t h reality. 
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Chapter 6 

Concluding Remarks 

6.1 Summary of Investigation 

In this thesis a new time-domain strip theory, based on the traditional strip the-

ory of Salvesen, Tuck and Faltinsen [56], is developed. The so-called body-exact 

approach is used. This body-exact approach is similar, but not entirely the same, 

as those previously seen in three-dimensional seakeeping computation methods. 

The free-surface boundary condition is still linearised about the undisturbed fluid 

flow, while the body boundary condition is applied on the instantaneous sub-

merged hull surface. This new method not only captures certain non-linearities 

associated with the body boundary condition, but also retains numerical simplic-

ity compared with the three-dimensional methods. Heave and pitch predicted 

motions of a Series 60-ship model were presented for regular head waves. Com-

parison of the new predictions with experimental data and numerical results 

(produced by other techniques) indicate significant improvements in the low fre-

quency range and at higher forward speeds, e.g. = 0.3. Predicted motions 

at different incident wave amplitudes were compared and non-linearities were 

found in the region of the resonant frequency. 
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The practical utility of this new time-domain strip theory method must be 

demonstrated by the validity and accuracy of its prediction. This is the focus of 

much of the work presented in this thesis. The developed computer program has 

been verified to demonstrate that the code is "reasonably" bug free and the out-

put is numerically correct. The program has been validated through comparison 

of the numerical predictions with physical results. Verification and validation are 

carried out systematically on each of the four key stages of the program, namely: 

® Extraction of instantaneous submerged hull surface at each time step, 

• Conformal Mapping of sections of various shapes, 

® Calculation of two- and three- dimensional hydrodynamic coefficients, 

® Predictions of motions in regular head waves. 

Accurate extraction of instantaneous submerged hull surface is the basis of 

all the following computations. Base on the techniques of computational geom-

etry an efficient and robust algorithm was developed in §4.2. The program was 

verified extensively to ensure satisfying performance, which were demonstrated 

in Section §4.2 and Appendix A. 

A ship undergoes oscillatory motions of six degrees of freedom during the 

simulation, which means the wetted sections can vary continuously and assume 

quite distinct shapes. The degree of geometric variation means that the Lewis 

mapping is not applicable for computing two-dimensional hydrodynamic coef-

ficients and forces. A multi-parameter conformal mapping method was used to 

replace the Lewis mapping. The selected Westlake and Wilson [71] conformal 

mapping technique is able to map sections with asymmetry, but requires further 

verification and systematic validation. In Section §4.4 this was achieved by exten-

sively investigating the sections of the Series 60 cargo ship with and without heel 

angle. Numerical instability under certain conditions was identified. Measures 



necessary to improve numerical accuracy and reduce instability have been pro-

vided. Computational effort was also assessed; guidelines for selecting number 

of coefficients were suggested. 

Section §4.5 continues the validation of the multi-parameter conformal map-

ping technique by addressing the sensitivity of the numerical methods to the 

number of mapping parameters and the heel angle. Convergent computations 

were successfully achieved. 

Three-dimensional hydrodynamic coefficients computed by the time-domain 

strip theory were compared in Section §4.6 with both experimental data and pre-

dictions based on a three-dimensional frequency-domain Green function method. 

Desired accuracy and better performance over the Green function method were 

demonstrated. Once again the sensitivity of the three-dimensional hydrodynamic 

coefficient to the number of mapping parameters and the heel angle was ad-

dressed. Convergent computations were achieved again, by which the program 

was validated. 

In the last chapter new methods of computing hydrodynamic forces were 

presented. This provided exciting forces in better agreement with experimental 

data and three-dimensional results. The Newmark-/5 direct integration method 

was used to solve the coupled equations of ship motions. The influence of the in-

tegration time step was studied and a preferred step size was recommended. Pre-

dictions for pitch motion were extremely good in both head waves and oblique 

waves. Although the predictions for heave motion were not of the same quality 

as those for pitch motion, they were still in fairly good agreement with the exper-

imental data and clearly better then those given by three-dimensional frequency-

domain Green function method. Non-linearities were found when comparing the 

predicted motions at different incident wave amplitudes, which evidenced that 

a portion of important non-linearities was captured by this time-domain strip 
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theory method. 

Finally, motion histories of a Series 60 ship model advancing in an oblique 

wave were presented. The results were meaningful and incredibly stable except 

for the expected drifting that occurred in sway and yaw motions. 

6.2 Future Developments 

Although the results obtained so far are quite encouraging, there are a number of 

areas needing further research. 

Correct extraction of wetted hull surface is crucial for time-domain methods. 

Present method was designed for ships with transom stern and so lacks gener-

ality. By resorting to computer graphic theory, more general algorithms may be 

able to be developed to accommodate various ship hull forms. However, it might 

not be considered as seakeeping research. 

Diffraction forces need to be validated. Great disparities between the phase 

angles given by time-domain strip theory and three-dimensional Green function 

method have to be carefully examined. 

The affect of changing the underwater part of the hull surface is not promi-

nent. Non-linearities are only found in the resonant frequency range. This may 

be due to the incident wave amplitude not being large enough. More computa-

tions on other hull forms are needed. For example, the NPL monohull is quite 

different from the Series 60 hull form. 

The predictions of lateral motions in oblique seas are not yet effective. The 

methods for inhibiting sway and yaw drift need to be developed. Application of 

a virtual rudder moment might be an effective method. Methods for correcting 

the roll-damping coefficient in the time domain should be investigated. 
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In addition, since the eventual objective of this work is to predict the large -

amplitude motions of a ship in large seaway, the free surface elevation might not 

be negligible. The instantaneous wetted surface may have to be extracted relative 

to the instantaneous free surface instead of the calm water surface. 



Appendix A 

Intersection of Reference Plane and 

Ship Hull 

In this appendix additional examples are presented to demonstrated the robust 

performance of the numerical algorithm which computes the intersection of ref-

erence plane and ship hull (see §4.2). The original sections are shown as solid 

lines and the intersections are shown as dashed lines. The hull form chosen to 

test this algorithm was a frigate, which has already been used by Westlake and 

Wilson [72]. In order to simplify the calculation, the sections are extrapolated 

to the maximum depth of the ship, and the phantom offsets above the deck are 

added. 
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(a) Top View 

(b) Starboard View 
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(c) 3D View 

Figure A.2: Intersections of Hull and Reference Planes 



(a) Top View 
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(c) 3D View 
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Figure A.5: Intersections of Hull and Reference Planes 



Appendix B 

Geometric Data of the Sections of a 

Rationalised Series 60 Hull Form 

This appendix contains the geometric data (Draught T, Area A and Beam B ) of 

each section of a rationalised series 60 (Cg = 0.7) ship model at heel angles 0° and 

20°. These data are necessary for computing Lewis mapping coefficients, which 

in turn act as initial value for computing multi-parameter conformal mapping 

coefficients (see §4.4). 
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Section 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

B 

O.OOOe+00 

8.604e-02 

1.901e-01 

2.884e-01 

3.596e-01 

3.946e-01 

4.285e-01 

4.306e-01 

4.328e-01 

4.350e-01 

4.350e-01 

4.350e-01 

4.350e-01 

4.349e-01 

4.263e-01 

4.165e-01 

3.796e-01 

3.424e-01 

2.590e-01 

1.576e-01 

6.049e-02 

& = 
T 

O.OOOe+00 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

1.740e-01 

2.800e-02 

A 

O.OOOe+00 

1.253e-02 

2.789e-02 

4.334e-02 

5.563e-02 

6.317e-02 

7.051e-02 

7.152e-02 

7.253e-02 

7.353e-02 

7.350e-02 

7.345e-02 

7.266e-02 

7.184e-02 

6.693e-02 

6.179e-02 

5.097e-02 

4.012e-02 

2.537e-02 

1.077e-02 

7.395e-04 

B 

3.436e-04 

9.365e-02 

2.072e-01 

3.112e-01 

3.840e-01 

4.201e-01 

4.550e-01 

4.577e-01 

4.603e-01 

4.629e-01 

4.629e-01 

4.629e-01 

4.623e-01 

4.617e-01 

4.488e-01 

4.359e-01 

3.977e-01 

3.614e-01 

2.875e-01 

1.902e-01 

7.979e-02 

,̂ 4 = 20° 

T 

2.800e-02 

1.653e-01 

1.740e-01 

1.853e-01 

1.964e-01 

2.066e-01 

2.166e-01 

2.193e-01 

2.221e-01 

2.248e-01 

2.247e-01 

2.245e-01 

2.213e-01 

2.180e-01 

2.092e-01 

2.003e-01 

1.895e-01 

1.787e-01 

1.705e-01 

1.652e-01 

2.800e-02 

/I 

2.901e-07 

1.272e-02 

2.845e-02 

4.430e-02 

5.681e-02 

6.425e-02 

7.142e-02 

7.239e-02 

7.335e-02 

7.431e-02 

7.428e-02 

7.423e-02 

7.345e-02 

7.263e-02 

6.814e-02 

6.338e-02 

5.322e-02 

4.275e-02 

2.773e-02 

1.210e-02 

1.016e-03 

Table B.l: The Series 60 Hull Form Sectional Geometric Data 
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