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Chapter One 

INTRODUCTION 

1.1 Aim of the Research 

Introduction 

'Uentification is the determination, on the basis of input and output, of a .rystem within a 

classified class of .rystems, to which the .rystem under test is equivalent. " 

-L. Zadeh, (1962) 

The study of system identification in signal process111g is huge with a vast 

literature and methodology ranging from the totally standard (e.g. frequency response 

function estimation for linear time-invariant and parametric estimation) to innovative and 

developing techniques. 

In this thesis the term system identification addresses the generalised process of 

obtaining useful information to describe the system characteristics from the relationships 

between the measurable input-output data sets within the system's boundary. The 

primary mathematical tool we use in order to accomplish this task is the classical 

Principal Component Analysis (PCA) technique. 

Disturbances 

Inputs Outputs 

SYSTEM 

Figure 1.1 Illustration of a generic system to be identified. 
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Introduction 

peA, created over 60 years ago, is one of the most powerful statistical 

multivariate data analysis techniques. It has been widely used for a variety of applications 

in different fields ranging from natural and social sciences to several branches of 

engineering. The aim of this method is to introduce parsimo'!Y to the investigation by 

reducing the dimensionality, without any explicit assumptions on the probability density 

characteristics of the data set. With the use of peA, an original set of independent 

variables are transformed into a possibly smaller set of uncorre!ated virtual variables that 

are easier to understand and treat for further analysis. Eigen-Value Decomposition 

(EVD) of the measurement covariance matrix forms the basis of this technique. 

Our work focuses on developing PeA-based data processing/analysis strategies 

in order to be able to extract the features of various forms of physical systems under 

investigation. It has been shown that, when the data to be analysed through the use of 

peA consists of the measured input(s) and the output(s), the eigenvalues and the 

eigenvectors of the associated covariance (or spectral correlation) matrix give a direct 

indication of the degree of linearity with respect to the system's transfer characteristics. 

This crucial observation forms the primary novel contribution of our research. 

Originating from this fundamental aspect, we demonstrate how eigen-analysis can be 

used as an effective practical procedure for the identification and/ or interpretation of the 

properties of different types of systems including linear/non-linear time-invariant, pure 

delay and non-stationary. 
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Introduction 

1.2 Scope and Contents of the Thesis 

The necessary theoretical background and mathematical preliminaries for 

fundamental signal processing concepts and statistical methods covered in this thesis are 

summarised in Chapter 2. These include an overview of signals and systems theory in the 

context of transfer function estimation as well as the basic principles of the Least Squares 

Method and PCA. 

In Chapter 3, a detailed analytical review and statistical assessment of the existing 

Single-Input-Single-Output (SISO) system transfer function estimation methods are 

presented. The performances of the three standard least squares estimators are compared 

both theoretically and computationally on the basis of a generic measurement system 

exhibiting various cases of uncorrelated additive noise contamination on the input 

and/ or output signals. Furthermore, a generalised Total Least Squares (TLS) estimation 

scheme is proposed from a geometric viewpoint allowing one to readily interpret the 

relationships between these estimators. 

Chapters 4 and 5 introduce the concept of PCA-based input-output investigation 

with reference to Linear Time-Invariant (LTI) systems considered in both time and 

frequency domains. Work presented in this part of the thesis forms the foundations of 

our overall signal analysis/processing strategy which is later extended to other types of 

systems with appropriate modifications. Initially, the methodology is described in terms 

of gain estimation in SISO and Multi-Input-Single-Output (MISO) systems based on real 

variables (Chapter 4) for simplicity and hence providing a clear picture of the associated 

procedures. The problem of Frequency Response Function (FRF) estimation in the 

corresponding dynamical systems is covered in detail in Chapter 5 where it is also shown 

that the SISO PCA and TLS FRF estimators are equivalent for the special case of equal 

input-output measurement noise. In addition to the above, a statistical inference based 

approach is considered for SISO FRF estimation through the use of the principle of the 

Maximum Likelihood (ML) leading to a novel development of a generalised PCA/TLS 

regime. The theoretical material covering the work contained in these chapters is 

validated by computational simulations whose results are also used in order to give a 

direct comparison between the existing and the proposed techniques. 

3 

Chapter 1 



Introduction 

Chapter 6 deals with the application of PCA to non-linear processes with 

particular reference to linear equivalent transfer function estimation and non-linearity 

detection. By using the eigenvalues and the eigenvectors of the input-output covariance 

(or spectral correlation) matrix, a form of linearization of the non-linear system is 

considered. It is shown analytically that the EVD of the data set leads to the derivation of 

a parameter, equivalent to the virtual coherence function. Computational simulations are 

undertaken for the performance assessment of the proposed approximation procedure in 

a typical Duffmg oscillator model. An experimental investigation for fault detection of a 

typical multi-output rotating machine is studied where measured system output pairs for 

several operating conditions are analysed using the PCA-based coherence, the so called 

Non-Linearity Detection Ratio (NDR), and the Ordinary Coherence Function (OCF). 

In Chapter 7, non-dispersive time-delay detection in several forms of single- and 

multi-path systems using EVD-based input-output analysis is introduced. The merit of 

carrying out the data processing in the time domain as opposed to frequency domain is 

verified analytically. In essence, the procedure implemented differs from those in the rest 

of the thesis with respect to the formation of statistical information matrices: An array of 

negative and positive lag input-output covariance matrices are formed whose eigenvalues 

are subsequently computed and observed for further interpretation. The results of 

computational simulations demonstrate the robustness of the proposed delay detection 

scheme under extreme Signal-to-Noise Ratios (SNRs). 

Chapter 8 introduces the proposed Short-Term Spectral PCA (STSPCA) for 

time-varying transfer function estimation. Data processing strategy is based on moving­

segment EVD of a series of spectral correlation matrices formed by simultaneous 

truncation of the input-output signals of a non-stationary system. The results of 

computational simulations on a Single Degree of Freedom (SDOF) system with time­

varying natural frequency proves the procedure to be a practical and effective alternate to 

the classical Short-Time Fourier Transform (STFT) spectrogram technique. 

General conclusion of the thesis and considerations for future research are given 

in Chapter 9. 
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Statistical Methods for Signal-Based System Identification 

Chapter Two 

STATISTICAL METHODS FOR SIGNAL·BASED 

SYSTEM IDENTIFICATION 

2.1 Introduction 

This chapter presents the necessary theoretical background for vanous 

fundamental signal processing concepts, the problem of transfer function estimation and 

the two commonly used statistical multivariate data analysis techniques that are referred 

to in this thesis. 

The next section covers the conventional methodology of trans fer/ frequency 

response function introducing the concepts such as system/data classification, 

power/ cross spectral densities and the ordinary coherence function. 

Section 2.3 introduces the widely used statistical technique, the so called the Least 

Squares Method, whose more detailed coverage is presented in Chapter 3 in the context 

of existing gain and Frequency Response Function (FRF) estimators. 

In the last section the primary statistical technique on which our work has been 

based on, the so called Principal Component Analysis (PCA), is covered giving its basic 

principles, mathematical description and geometrical interpretations which is helpful in 

order to follow the rest of the thesis both conceptually and mathematically. 
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Statistical Methods for Signal-Based System Identification 

2.2 Transfer Function Estimation 

In the simplest form, a system may have only one input and one output. Such 

systems are called single-input single-output (SISO) systems as depicted in the block diagram 

in Figure 2.1. 

input output 

.. .... s .. -

Figure 2.1 Block Diagram of a single-input single-output (SISO) system. 

In the more general case, systems have several inputs and outputs. Such systems 

are said to be multivariable and called multi-input multi-output (MIMO) systems. These can 

be represented by a block diagram of the type shown in Figure 2.2. 

input 1 ... ... .. output 1 -input 2 .. S ... 
output 2 .. 

_ .... .... input 3 ... 

Figure 2.2 Block Diagram of a multi-input mUlti-output (MIMO) system. 

A system is said to be static if its response at any time depends only on the 

present value of its excitation. Such a system may also be regarded as memoryless or 

constant as in the case of the relationship between the input x and the outputy of a SISO 

system that is given by 

(2.1 ) 

where t is the time index. 
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Statistical Methods for Signal-Based System Identification 

A system is said to be qynamic if its response depends on the past as well as the 

present values of its excitation. Such systems may also be regarded as having a memory. 

An example for this class of systems can be defined by the input-output relationship 

dy = x ~ yet) = fx(t)dt + constant 
dt 

(2.2) 

In this case, the system operates as an Integrator and does not forget the past values of 

the input ever. 

A system is said to be linear if it obeys the principle of superposition. Superposition 

requires the property of additiviry and the property of homogeneiry. A system is said to be 

non-linear if it does not meet the requirements of superposition. In practice, no real 

system component is completely linear, however, frequently the range of operation is 

such that linearity can be assumed. 

A system is time varying if its the behaviour and characteristics are fluctuating over 

time and is time invariant if its behaviour and characteristics are fixed over time. 

System signals e.g. inputs and outputs are functions of time and records of them 

are referred to as time histon·es. Although signals can be classified in many different ways, 

they may be divided into two main categories, namely, deterministic or random. 

Deterministic signals are able to be predicted or deduced whereas random signals are not 

exactly predictable. Deterministic signals may also be divided into two main groups: 

periodic or non-periodic. Non-periodic signals can be either transient or almost periodic. Non­

deterministic (random) signals can be either stationary or non-stationary. 

The problem of Transfer Function Estimation relies on the analysis of the 

relationship between input and output signals. If both input and output are measurable 

then this can be carried out by applying some specific controlled input signal to the 

system under investigation (unless there is already a naturally occurring measurable 

input), measuring the resulting response, and subsequently determining the transfer 

function using the appropriate mathematical manipulation. 

x(t) 

~ h(t) 

yet) 

Figure 2.3 SISO Linear Time-Invariant System 
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The dynamic characteristics of a Linear Time-Invariant System, that is also 

assumed to be stable and causal such as depicted in Figure 2.3, can be described by its 

impulse response (or weighting) function h(t) which is defined as the output of the 

system at any time to a unit impulse (delta function) input applied a time t before. The 

theoretical relationship between its input and output is given by 

y(t) = h(t) * x(t) (2.3) 

i.e. the convolution (*) of the system impulse response h(t) and the system input x(t) is 

the system outputy (t). Commonly the solution to the problem of estimating the transfer 

function of a linear time-invariant system is considered in the frequenry domain. The 

convolution form of the time domain is very much simplified when the Fourier 

Transform is applied and the frequency domain equivalent of the above relationship is 

given by 

Y (f) = H (f). X (f) (2.4) 

The transformation from the time domain into the frequency domain for any time 

history art) is defined as 

'" 
A(f) = fa(t)e-j2nft dt (2.4a) 

1.e. Y(f) is the Fourier Transform of the output, X(f) is the Fourier Transform of the 

input and H(f) is the Fourier Transform of the system impulse response called the 

Frequency Response Function at each frequency j 

However, when traditional experimental response testing procedures are involved 

difficulties arise: in particular the measurements can often be violated by various factors 

such as non-linear system behaviour, change of system characteristics with time, 

instability and most commonly the contamination by additive measurement noise on the 

data to be analysed. This can affect either the input or output, or both. 

If a time-invariant, stable linear system is driven by a stationary random process 

the output is also stationary random. Figure 2.4 illustrates the generic measurement SISO 

system in the presence of additive measurement noise when the input is a stationary 

random process and forms the basis for the general signal-based estimation problem for 

the FRF where all signals are also represented by their Fourier Transforms (FT) i.e. in the 

frequency domain. 

8 

Chapter 2 



Statistical Methods for Signal-Based System Identification 

I 
x(t)+-'7X(j) .. 

nput--~--~r---~ 

Input Noise ,.~ 
n,(f)HN/!) T 
Measured Y 

Input xJt) <>)(,(j) 

y(t) ~ Y(j) ~ Output 

l~tput Noise 
'1 nrCt)<:->N/!) 

~ 
Ym(t)~Ym(j) 

Measured 
Output 

Figure 2.4 Generic Measurement Diagram of a Linear Time-Invariant SISO System with uncorrelated 
additive measurement noise 

In practice, taking a finite length of data results in truncation of input and output 

i.e. a sample time history of length T, and a relationship between the input and output in 

the frequency domain is given by 

YT(f) >::; H(f)· XT(f) (2.5) 

where ¥T(f) is the Fourier Transform (FT) of the finite length realization of the output 

and XT(f) is the Fourier Transform of the finite length realization of the input. Also from 

Figure 2.4 it is clear that 

Xm (f) = X(f) +Nx(f) 

Ym(f) = Y(f) + Ny (f) 
(2.6a,b) 

It is central to the problem of statistical estimation that the relationships between 

the time domain descriptors (mean, covariance etc.) and the frequency domain 

descriptors (spectral density functions) are clearly emphasised since they form the basis 

of the whole process. Spectral density functions can be defined in various ways [1, 2] e.g. 

through the correlation functions or the finite Fourier Transforms or the flltering­

squaring-averaging operations. In its most commonly used form (through the finite F.T.), 

the two-sided power spectral density function of a finite length realization XT(t) is given 

by 

Su(f) = lim~E~Xk(f,T)12] 
T-wJ T 

(2.7) 

where T is the record length of the kth data segment,jis the frequency, Xk(f,T) is the 

F.T. of the segmented data and E[] denotes the expectation operator (see (2.13)). 
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This is the frequency composition of a random function described in terms of the 

spectral density of its mean square value (average power in the time domain). In practice the 

length of the data segment and the number in the ensembles over which the averaging 

operation is taken will always be finite. This formula is normally implemented by the Fast 

Fourier Transform (FFT) available in most of the software packages and analysers that 

are commonly in use today. Similarly, the two-sided cross-spectral density function of the 

finite length realizations Xy(t) and yy(t) is given by 

(2.8) 

where' * ' denotes the complex conjugate operator. 

An extremely important property of the cross-spectral density function is that it 

is bounded by the cross-spectrum inequality (see also the corresponding cross-correlation 

inequality, [1, 2, 3]) and this is given by 

(2.9) 

This result relates to the property of the ordinary coherence junction (sometimes called the 

coherenry squared function) which is defined as 

(2.10) 

which by (2.9) satisfies the condition 

(2.11) 

for all frequencies. This function can be described as the measure of the degree of linear 

association between two signals. If the system under investigation is linear the coherence 

function can be considered as the fractional proportion of the mean square value at the 

output which is contributed by the input at the given frequency. Hence for the ideal case 

such as given in Figure 2.3, the coherence function will be unity for all frequencies. 

However, if the coherence function has the value between zero and unity, it should be 

expected to have one or more of: extraneous measurement noise, non-linear system 

behaviour or outputy(t) due to the input x(t) as well as other inputs. 
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2.3 The Method of Least Squares 

It is very often of great importance in the statistical analysis of data to know 

whether a relationship exists between two or more variables. In the case of two variables, 

data is then termed bivariate i.e. there are two observations or measurements associated 

with each item. Suppose, an experiment has been carried out and pairs of data (xiJlJ have 

been observed for values, i= 1, ... ,N. These data may be regarded as controlled variable 

input x and dependent (response) variable output y. It should be noted that this input­

output notion is not necessary. In more usual situations some relation between two 

variables is sought i.e. it is suspected that there is some relationship between x andy. The 

likely relationship between these two variables can be easier to see on a scatter diagram 

where the controlled (independent) variable x is normally plotted on the horizontal axis. 

Having established some relationship by eye on the plotted scatter diagram between x 

and y, a more quantified relationship needs to be specified in order to be able to answer 

some questions about the problem. For example one might seek a linear relationship 

between the variables. The main concept in such a linear regression problem is that using 

the sample data in the problem, the resulting sample regression line is estimated in order to 

give the best approximation to the assumed theoretical or population regression line. 

There are a number of possible ways in order to be able to obtain a line 

adjustment to best-fit the scatter of points. In the above example, if it is assumed that a 

linear relationship between x and y is expected to be in the form of y=ax, then three 

different types of error can be defined in the measured data as the consequence of 

additive measurement noise. These are listed as below and also shown in the Figure 2.5. 

Case I 

Case II 

CasellI 

e y : errors are defined in output data Yi' assuming input data Xi are 

error-free; 

ex: errors are defined in input data Xi' assuming output data Yi are 

error-free; 

et : error line is normal to the best-fit line assuming errors to be 

present in both input and output data. 
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y 

• 

. . 

• , 
'e il"i 

.. e: . .... J:-. Regression Line 

x 

Figure 2.5 Possible types of error defined in the measured bivariate data. 

The principle that is widely used in linear curve-fitting, is the method of least 

squares and is also an approach to the transfer function (gain or FRF) estimation 

problem with no assumptions on the probability distributions of the data sets. The basic 

principle of the method is that, for a given set of data an estimator that minimizes the 

total squared error (distance) from a central location i.e. the sum of square errors for 

each item (point), is chosen. For the above example given by the linear relationship y=ax, 

this criterion is obtained by the minimization of a measurement error cost function with 

respect to the unknown variable a. If one minimises the sum of the squared vertical 

errors (e y) between the fitted line and the data points then the estimator at or HI(/) is 

obtained, whereas if the sum of the squared horizontal errors (ex) is the quantity to be 

minimised then the estimator a2 or H 2(/) results. Whereas if it is the sum of the 

perpendicular errors (e t ) that is minimised then the Total Least Squares (TLS) estimator 

ctn.s or HJ!) is realised (see Chapter 3 for more details). 
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2.4 Principal Component Analysis 

Principal Components Analysis (PCA) is one of the most effective Multivariate 

Data Analysis Techniques which focuses on inter-object correlations and depends upon 

the fact that at least some of the variables in the original data set are mutually con-dated. 

No assumptions on the probability distributions of the data sets are required. It is closely 

related to the Karhunen-LOtSve and the Hotelling transforms. 

Each variable forming the original data set can be considered as an axis of 

variability. PCA transforms the original axes in order to represent the same amount of 

the variability i.e. the total variance contained in the original variables in such a way that 

the fIrst principal component (axis) accounts for the maximum proportion of the total 

variance, the second principal component (axis) accounts for the maximum proportion 

of the remaining variance and so on. New linear combinations are ordered according to 

their variation and the fust few of the new axes represent the most of the variation 

contained in the original variables. 

With this technique, a large number of correlated variables can be reduced into a 

smaller set of uncorrelated variables that is easier to understand and treat for further 

analysis. For a single random vector the uncorrelatedness condition between its components is 

defIned as its covariance matrix being an n x n diagonal matrix where n is the number of 

components i.e. for a random vector x 

(2.12) 

where Jlx is the mean vector and E[ ] denotes the expectation operator. For any real 

single-valued continuous function g(x) of a random vector x the expected value is 

defIned by [4] 

+«> 

E{g(x)}= fg(x)Px(x)dx (2.13) 

where A(x) is the probability density function of x and the integral is computed over all 

the components which are random variables. There is usually no knowledge of the 

probability density of a random vector although a set of N samples are available and the 

expectation can be estimated using the formula [4]. 

1 N 
E{g(x)} ~ -Ig(Xj) 

N j~l 
(2.14) 
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The principal component method searches for the uncorrelated linear 

combinations of the variables in the original data set which contains most of the 

information. An original p-dimensional set of variables can be characterised as a 

p-dimensional random vector, x =(xp x 2, ••• ,x) that can be linearly transformed by 

y=a/x/+ar2+ ... +apxp into a one dimensional variable y. 

In algebraic terms the first principal component is a linear combination of this 

p-dimensional random vector x i.e. 

where i= 1,2, ... ,p and its variability is maximised with the constraint that the sum of the 

squared weights is one i.e. 

p 

Ia/ =1 

The variance of the second principal component 

is maximised with the constraint dlat it is orthogonal to the fIrst principal component i.e. 

uncorrelated, and it involves determining a secondary weighting factor. This process can 

be continued in order to obtain as many principal components as possible according to 

the number of the variables in the original data set. Normally the first few principal 

components represent the main proportion of the total variance of the original variables 

and are of great importance. Each weighting factor obtained is associated with one 

principal component and its variance. 

The set of original variables for each o~ject is the data arrery to be analysed where 

the variables are taken as the columns and the objects are taken as the rows or vice versa. 

The dependencies of variables and the objects are defIned relative to some central point 

because the possible major weight differences between certain variables raises the 

requirement of scaling them. This can be done by centring, normalisation or standardisation. 

Although in many cases the measured original variables are in the same units the variance 

of each measured variable may differ from another one by a considerable amount. 
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Geometrical interpretation of the principal components is very appropriate and 

particularly for the two variable case, is quite simple to visualise and draw. Suppose an 

experiment has been carried out with n observations in the two dimensional variable 

space forming a scatter of points recorded as in the linear regression problem given by 

Figure 2.5. For the reason that there is some positive correlation between these two 

variables the dots lie in an ellipsoidal band extending from lower left to upper right 

instead of being scattered randomly over the whole graph. 

y o 
~ 

Figure 2.6 Projection onto the principal axis. 

x 

The projections of the points on the first axis are to be as stretched as possible 

and this means that the variance of the projections are maximised such as that shown in 

Figure 2.6 where D is the data point, a is the distance of data point from the origin, b is 

the distance of data point from the principal axis and c is the projection of the position 

vector of D onto the principal axis. By Pythagoras' Theorem 

for the single data point the distance a is constant, therefore in order to obtain the best 

choice of the principal axis, b is minimised while c is maximised. For the sampled 

population of the data points the sum of the squared errors is obtained by the 

summation of the same operation over all points. The first new axis is drawn through the 

points and in this case the first principal component is the line of the closest fit to the 

scatter of points minimising the sum of the squared deviation of the n number of 
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observed data from the sample mean i.e. the estimator (principal component) for y=ax. 

Similarly, the second principal component is the line of closest fit to the residuals from 

the first principal component and is orthogonal i.e. being at right angles to the first. The 

two principal components together constitute a best fitting plane defining the locations 

of the scatter of points. 

Derivation of principal components is based on a straightforward geometric 

technique. Since the problem is to define the relationship between the original axes and 

the principal axes i.e. to describe the trangormation of one co-ordinate !)lstem to another, the 

solution to the problem is illustrated below in Figure 2.7 [5] where XI and X 2 are the 

original axes, Y I and Y2 are the principal axes, and D is a single data point. () denotes the 

angle between the original axes and the principal axes. 

Ji2 

..... 

/.11 

................ 

.... 
.... 

, , , , 

( . .> 

................... 

Figure 2.7 Transformation of one co-ordinate system to another. 
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The origin, 0, is defined at the intersection point of the mean values of the two 

original variables i.e. at the point (f1I>f1~. This means that the variables have been centred 

to have zero means. The co-ordinates of the data point D can be defined as (X1-f1"Xrf1~ 

or as the deviations from the mean i.e. (XI , x~. It can also be clearly seen that the co­

ordinates of the data point D can be given in terms of the principal components (Y" y~. 

Using trigonometric relationships one can show that [5] the principal components are 

given by 

(2.15a) 

and 

(2. 15b) 

These relationships can also be written in matrix form 

[y, ] = [co.se sineI x, ] 
Y2 -sme cose X 2 

(2.16) 

or 

y=Ax (2.17) 

and hence 

X= A-'y (2.18) 

where A is an orthogonal matrix i.e. AT=Al. Therefore the transformation of the original 

co-ordinate system to principal axes is an orthogonal transformation that with each 

vector x in the real vector space K' such a transformation assigns a vector y in the vector 

space K'. This is simply the plane rotation through the angle e and it can be shown that 

any orthogonal transformation in the plane or in the three-dimensional space is a 

rotation [6]. Now, assume that the variables XI and X z given above are mutually 

correlated. If a set of N objects are measured on these variables then one can form a 

2xN (or Nx2) matrix defining the data array to be analysed such that 

Xi=[XIi], for i=1,2, ... ,N 
X 2i 
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The 2x2 covariance matrix of the variables Xl and X 2 can be defined as 

(2.20) 

where Xi = [(Xli - f.11)] = [Xli], for i=1,2, ... ,N; the operator "-" denotes the average over 
(X2i - f.12) X 2i 

the sample population of N objects. The 2x2 matrix Rxxis symmetric i.e. RxxT=Rxxand it 

has an orthonormal basis of 2 eigenvectors. The transformation of the uncorrelated 

virtual variables Y, and Y2 to the original correlated variables x, and X2 can be defined by 

x=Ty (2.21) 

where y = [;~] with Yl and Y2 are mutually uncorrelated i.e. the orthogonal principal axes 

and T is the transformation matrix. So (2.20) can be written as 

(2.22) 

where yyT=Ryy i.e. the covariance matrix of the new variables. Therefore the above 

expression takes the form of 

Rxx =TRyyTT 

(2.23) 

From Similarity Transformation and Diagonalisation Theorem of Matrices [6], it can be 

shown that the matrix Ryy= A is diagonal with the eigenvalues (,,1,1' ,,1,2) of the covariance 

matrix (Rxx) of the original variable as the entries on its main diagonal and T is the 

orthonormal transformation matrix, i.e. T-I=TT, containing the corresponding 

eigenvectors as its columns. Multiplying both sides of (2.23) by T from the right gives 

(2.24) 

or 

~] (2.25) 
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From this result one can verify that the orthogonal transformation preserves the value of 

the inner product of vectors and hence the sum of the eigenvalues is equal to the total 

variance of the original variables. i.e. for the two variable case above 

(2.26) 

where (J'i
2 denotes the variance of the ztl1 variable. This result is of great importance and 

will be looked at in detail in the following chapters since it forms the basis for the 

application of the method in system identification. 
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2.5 Summary 

This chapter has presented the necessary theoretical background for the statistical 

principles and multivariate data analysis techniques used in the following chapters in the 

context of signal-based system identification through input-output relationships. 

In the next chapter the conventional transfer function estimators based on the 

least squares approach are analysed and in Chapter 4 the application of the method of 

principal component on time series for the gain estimation in memoryless systems is 

investigated in detail both analytically and computationally leading to Chapter 5 which 

covers the extension of the same approach in the frequency domain for the Frequency 

Response Function (FRF) estimation in dynamical systems. 

Application of PCA to the problem of system identification is further 

investigated and several novel approaches are introduced in the Chapters 6, 7 and 8 for 

linear equivalent transfer function estimation, non-linearity detection, delay detection and 

non-stationary data analysis respectively. 
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Chapter Three 

LEAST SQUARES TRANSFER FUNCTION 

ESTIMATORS 

3.1 Introduction 

This chapter presents the analysis of the existing transfer function estimators 

based on the least squares error minimisation techniques for Single-Input Single-Output 

(SISO) systems in the contexts of gain estimation and frequency response function 

estimation respectively. The primary reason to include this review is that, in Chapters 4 

and 5 the problem of transfer function estimation will be presented through an approach 

using Principal Component Analysis (PCA) forming a part of this thesis in terms of 

original contributions. The background information from this chapter will be used in 

order to give a direct comparison between the existing and the proposed techniques. 

In the fIrst part (Section 3.2) a simple gain system is considered and the 

derivations of various least squares estimators are given with corresponding cost 

functions describing the optimisation landscape for each procedure. Noisy conditions 

under which these estimators exhibit biasing effects are also shown. 

In the second part (Section 3.3) the generalisation of the Total Least Squares 

(TLS) gain estimation is introduced from a geometric point of view. A single error 

distance between the measured data and the true input-output transfer relationship is 

defIned which is dependant on an angle that allows one to interpret the relationships 

between the standard least squares based estimators by selecting its value appropriately. 
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Section 3.4 covers the least squares transfer function estimation scheme in the 

frequency domain where the commonly used Frequency Response Function (FRF) 

estimators have been covered, revealing their most significant properties, advantages and 

disadvantages under different conditions followed by computational simulations for 

assessing the statistical behaviours of these estimators. A summary and outline of the 

concluding remarks are given in Section 3.5. 
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3.2 Least Squares Gain Estimators 

It is crucial to the problem of FRF estimation that the most appropriate statistical 

estimation procedure is followed in order to obtain an accurate estimate for the 

identification of the system under investigation (see Figure 2.4). There are two classical 

transfer function estimators commonly in use; these estimators are based on least squares 

optimisation methods and are commonly referred to as HJJ) and HiJ). Both of these 

methods are commonly regarded within the framework of least squares estimation, 

which assumes that any noise is present on only one of the measured signals. An 

alternative technique, in which noise is assumed on both signals, is based on the concept 

of TLS and is commonly referred to as HJJ). All three methods have been widely 

applied and are integral to many analysis tasks. The above standard transfer function 

estimators can be derived by regression analysis based on the observation that in the 

absence of noise the input-output relationship of a linear time-invariant system is given 

by (2.4) [7]. The problem is to estimate the function Hif) based on N observations 

corresponding to the Fourier Transforms (FTs) of each segment, i.e. Xmn (j) and Ymn (j) 

for n=1, ... ,N. In the next three subsections, in order to visualise these estimators we 

shall temporarily consider that Xmn (j) and Ymn (1) are real valued and describe the 

procedure in terms of the transfer function estimation of a simple gain system. Figure 2.5 

shows a set of measured points and various error measures that can be adopted and the 

minimisation procedures could be based on. The measured system input and the 

measured system output are defined as 

(3.1a) 

and 

(3.1b) 

where x is system input,y is system output, XIJ1 is measured input,Ym is measured output, 

nx is additive input measurement noise and ny is additive output measurement noise. If 

the system under investigation is considered as a pure gain of the true value a then the 

resulting system output can be written as 

Y,J1 = a.x + ny (3.2) 
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From hereon in this chapter it is assumed that the signals within the system's boundary 

are stationary random time histories i.e. each consists of a mean value and a zero mean 

random variable such that 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where f1 denotes the mean value and r denotes the zero mean random variable. For each 

l' sample data of the time histories, the zero mean random variable r;is assumed to have 

some probability distribution from which the sample value of r is drawn. 
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3.2.1 Optimal Estimator for Output Noise 

With reference to Figure 2.5, if it is assumed that the errors are defined as 

occurring in they-direction i.e. for the case of additive measurement noise on the system 

output, then for each data point the error distance can be given by the relationship 

(3.7) 

where a1 is the estimator for the slope of the best-fit linear regression line in the presence 

of the errors defined in the output data and i is the sample index. Using the least squares 

approach one can form a cost function for the sum of the squared errors i.e. for the 

deviations from the central location y=a1x such that 

(3.8) 

where N is the number of the data points observed. The above expression is a quadratic 

function of a1, with respect to which minimising the cost function 11 can be obtained 

from the solution of 

(3.9) 

from which a1 is given by 

(3.10) 

where the numerator represents the cross-correlation between the two variables and the 

denominator represents the variance of the variable x i.e. this estimator uses the ratio of 

the cross-correlation between input x and outputy and the power of input x. (N.B. the 

division N may be used in numerator and denominator as appropriate). 
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Considering the system given by Figure 2.4 as a pure gain with the input-output 

relationship y=ax , if it is assumed that nx =0 and n)'AJ, one can rewrite the cost function 

given by (3.8) using the expectation operator in order to minimise the sum of the squared 

errors over the samples such that 

(3.11 ) 

where i denotes the sample index. 

Using the relationships given from (3.1) to (3.6) and substituting the symbol a 2 

as appropriate to denote the signal variance, (3.11) is rearranged to give 

(3.12) 

which can be plotted as a function of the estimator a1 at the fixed value of the true gain 

a=3 such as that shown in the Figure 3.1 showing that the true value of the gain factor at 

the local minimum of the error surface is at a1 =3 when only the output data is noise 

contaminated. 
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Figure 3.1 Theoretical Cost Function for the Noise on the Measured Output for zero mean signals with 
input variance 64 and noise variance 16 (Output SNR: 15dB). 
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In the presence of additive measurement nOlse on the system input the 

computational expression (3.10) defining estimator al (assuming a theoretical average) 

takes the form 

(3 .13) 

which can be simplified for zero-mean signals and written as 

(3.14) 

This means that estimator al IS always biased when used for the cases where the 

measured system input is noise contaminated regardless of the mean value of the signals. 

Figure 3.2 shows the results from computational simulations which illustrates this biasing 

effect for zero-mean signals by giving a comparison with the true gain of value a=3. 
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Figure 3.2 Comparison between the true gain a=3 and its estimate a1 for zero mean signals in the 
presence of additional measurement noise on the system input derived from the Computational Cost 
Function of a single set of 100 normally distributed random data for the Noise on the Measured Input 
with input variance 64 and noise variance 4 (Input SNR: 12dB). 

27 

Chapter 3 



Transfer Function Estimators Based on the Least Squares Approach 

3.2.2 Optimal Estimator for Input Noise 

In the case of additive measurement noise on the input (Figure 2.5, Case II), 

errors are defined in the measured data in the x-direction and the error distance for each 

data point is given by the relationship 

(3.15) 

where a2 is the estimator for the slope of the best-fit linear regression line in the presence 

of the errors defined in the input data and i is the sample index. One can form the 

quadratic cost function for the sum of the squared errors i.e. for the deviations from the 

central location y=ax such that 

(3.16) 

The value of a2 minimising the cost function J2 can be obtained from the solution of 

(3.17) 

from which a2 is given by 

(3.18) 

where the numerator represents the variance of the variable y and the denominator 

represents the cross-correlation between the two variables. In contrast to Estimator a j 

this uses the ratio of the power of the output and the cross-correlation between the input 

and output. 

For the gain system given in the previous section if it is assumed that nx:;C:O and 

ny=O, one can rewrite the theoretical cost function given by (3.16) in a similar way for the 

case of additive measurement noise on the system input as 

(3.19) 

which can be rearranged using the relationships (3.6) to (3.11) to give 
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(3.20) 

As in the previous example the above expression can be plotted as a function of the 

estimator az at the fixed value of the true gain a=3 such as that shown in Figure 3.3. Also 

for this case it can be seen from the curve whose shape differs from the parabola shown 

in the previous case that minimizing the cost function will lead to the true gain factor i.e. 

the local minimum occurs at az=3. 
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Figure 3.3 Theoretical Cost Function for the Noise on the Measured Input for zero mean signals with 
input variance 64 and noise variance 16 (Input SNR: 6d8). 

In the case of output nOlse the computational expresslOn (3.18) defining 

Estimator az can be expanded as 

(3.21) 

which for zero-mean signals take the form 

(3.22) 
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The above expressions show that this estimator always gives biased results for output 

noise. Results from the computational simulations are illustrated in Figure 3.4 for the 

case of zero-mean signals verifying the biasing effect on this estimator when output data 

is noise contaminated. 
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Figure 3.4 Comparison between the true gain a=3 and its estimate a2 for zero mean signals in the 
presence of additional measurement noise on the system output derived from the Computational Cost 
Function of a single set of 100 normally distributed random data for the Noise on the Measured Input 
with input variance 64 and noise variance 4 (Output SNR: 21dB). 
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3.2.3 Optimal Estimator for Input & Output Noise 

In the case of the additive measurement noise on both the input and output, the 

error is defined as normal to the best-fit line assuming errors to be present in both input 

and output data such as that shown in Figure 2.5. For each data point, the error distance 

normal to the regression line can be given by 

ei _ Yi - aTLSxi 
T - ~l +aTLS

2 
(3.23) 

where arLS is the estimator for the slope of the best-fit linear regression line in the 

presence of the errors defined in both input and output data. Similarly, using the least 

squares approach one can form a cost function for the sum of the squared errors i.e. for 

the deviations from the central location y=~ x such that 

(3.24) 

The expression (3.24) is a non-quadratic function of aru; and therefore one can expect to 

obtain more than one extreme value by differentiating the cost function h with respect 

to ~ and equating to zero from the solution of 

(3.25) 

It can be shown that the Estimator arLS is given by the positive signed root of (3.25) and 

thus 

[~(yi2 -xn
2 +4~(XiYJ] 

ans=~--------~~~=-------~----~ 
2L.,XiYi 

(3.26) 

For the gain system such as that given in Sections 3.2.1 and 3.2.2 if it is assumed 

that nx-:FO and ny-:FO, one can rewrite the theoretical cost function given by (3.24) for the 

case of additive measurement noise on both the system input and the system output as 
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(3.27) 

Using the same relationships given from (3.6) to (3.11) and after some algebra the above 

expression can be rearranged to give 

(3.28) 

and plotted as a function of the estimator arr.s at the fixed value of the true gain a=3 

such as that shown in Figure 3.5. This cost function has two extreme values and the 

optimisation is based on the minimum value at arr.s=3 that is equal to the true gain factor 

only for the case where the variances of input and output noise are equal although at 

reasonable Signal-to-Noise Ratios (SNRs) the difference between noise variances cause 

slight biasing effects tending towards overestimation of the true value for higher output 

noise and towards underestimation for higher input noise. 
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Figure 3.5 Theoretical Cost Function for the Noise on both the Measured Input and the Measured 
Output for zero mean signals with input variance 64 and noise variances 16 (Input SNR: 6dB ; Output 
SNR: 15dB). 
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3.2.4 Comparison of Least Squares Gain Estimators 

In an attempt to compare the biasing effects of the least squares gain estimators, 

computational procedures have been carried out and the estimator means and variances have 

been calculated. The method used is based on ensemble averaging over 1000 sample 

populations (ensembles) each consisting of also 100000 randomly generated set of data 

points representing the stationary random processes within the boundary of the model 

system under investigation. The true gain factor has been set to 3 in order to give a direct 

comparison between various estimator performances. All the signals used for 

computations have Gaussian probability distributions. Eight different cases for various 

additive measurement noise and signal mean conditions have been covered and these are 

Case 1 Output Noise / Zero Mean Signals 

Case 2 

Case 3 

Case 4 

Case 5 

Case 6 

Case 7 

Case 8 

Input Noise / Zero Mean Signals 

Equal Input & Output Noise / Zero Mean Signals 

Input Noise> Output Noise / Zero Mean Signals 

Input Noise < Output Noise / Zero Mean Signals 

Output Noise / Non-Zero Mean Signals 

Input Noise / Non-Zero Mean Signals 

Input & Output Noise / Non-Zero Mean Signals 

Input variance and the noise variance for the corresponding cases are set to 64, 16 and 9 

respectively whereas for the cases of equal input-output noise both noise variance have 

been set to 16. The results are presented in Tables 3.1 and 3.2. It can be clearly seen that 

the mean of the estimator aru takes values in the range [ a1 , az ] and is optimal when 

both input and output noise are present in the measured signals whereas for output noise 

the estimator a1 and for input noise the estimator az gives the best results for the true 

gain factor respectively. It should be noted that the most accurate estimates obtained 

using the TLS estimator is for Case 3 where the input-output measurement noises have 

equal variance. 

In the next section, the derivation of the above estimators is given through a 

different approach that allows one to be able to generalise the least squares based 

estimation procedure and validates the computational results of this subsection 

analytically. 
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Case 1- Output Noise / Zero Mean Signals 

Table 3.1 Estimator means for various cases. 

34 

Chapter 3 



Transfer Function Estimators Based on the Least Squares Approach 

Case 1- Output N oise / Zero Mean Signals 

Var(auJ = 2.62e-6 

Case 2 - Input Noise / Zero Mean Signals 

Case 3 - Equal Input & Output Noise / Zero Mean Signals 

Case 4 - Input Noise > Output Noise / Zero Mean Signals 

.. Sft!h =9 / flx = 0 / flnoise = 0 

Var(az,! = 2.S3e-S Var(an.sY = 2.S6e-S 

Case 5 - Input Noise < Output Noise / Zero Mean Signals 

Var(arr.sY = 1.48e-S 

Case 6 - Output Noise / Non-Zero Mean Signals 

Var(aJ = 1.34e-6 Var(arr.sY = 1.20e-6 

Case 7 - Input Noise / Non-Zero Mean Signals 

Case 8 - Input & Output Noise / Non-Zero Mean Signals 

=16 / flx = 8/ flnoise = 4-

Var(~-r.sY = 6.73e-6 

Table 3.2 Estimator variances for various cases. 
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3.3 Generalisation of TLS Gain Estimation 

In View of the theoretical and computational reView of the gam estimators 

presented in the previous section, here we seek to develop a generalised approach for the 

least squares estimation scheme from a geometric viewpoint. As has already been 

explained in detail, for the basic memoryless input-output linear relationship y=ax, the 

least squares optimisation is obtained by the minimisation of a cost junction, that is the sum 

of the squared measurement errors, with respect to the unknown gain a. To summarise, 

with reference to Figure 2.5, if one minimises the sum of the squared vertical errors 

between the fitted line and the data points then the estimator a j is obtained, whereas if 

the sum of the squared horizontal errors is the quantity to be minimised then the 

estimator a2 results. When the sum of the perpendicular errors is minimised then the TLS 

estimator Cln.s is realised. From the statistical performance assessment of these estimators 

we have also seen that the TLS gain estimator always gives results between the 15t and the 

2nd least squares estimators. 

Our motivation here is that by using geometric relationships we can obtain a 

genera! term for the least squares error distance to be minimised from which it would be 

possible to derive each of the individual estimators presented above by appropriate 

manipulation. For our analysis, let us first define a new measurement error distance 

between the true input-output line and the data points such that its position vector with 

respect to the corresponding data point is at an angle e to the vertical distance (e y) that 

is associated with the estimator a j • This is illustrated in Figure 3.6 where (Xi~J gives the 

co-ordinates of the data point, ee is the new error distance and e( is the perpendicular 

TLS distance. Using trigonometric relationships (angles in radians for convenience) we 

get 

e, = Sin( 7r2 -If!) = cos If! 
Yi -axi 

(3.29) 

Since tan l.f/ = a , then 

e, (3.30) 
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and hence the TLS error distance is 

y -ax e = I I 

'~ 
(3.31) 

The relationship between the perpendicular (standard TLS) error distance and the new 

(generalised TLS) error distance is given by 

From Figure 3.6 it can be clearly seen that 

y 

; 
~ 

; 
; 

~ 

(x; , y;) 

y;- ax; (nl2-¢) 

ax; 

Figure 3.6 Generalisation of TLS. 
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Therefore, 

sin¢ = sin[Yz + (B -If!)] = cosCB -If!) = cosBcoslf! + sin B sin If! (3.34) 

and since 

. a 
SIll If! = r:-? 

\l'1+a 2 
& 

(3.34) can be rewritten as 

. do cos () + a sin () 
sm 'I' = -----===--
~ 

and the new error distance is given by 

y. -ax· 
e - I I 
e-

cosB+asinB 

1 
(3.35a,b) 

(3.36) 

(3.37) 

Using the expression (3.37), we can obtain the standard error distances ey' ex and e( 

corresponding to the three basic least squares estimators at> az and au..s respectively, as 

follows: 

1. If B=O then eo = Yi -axi ~ ey hence a~al (3.37a) 

If B=~ Yi hence (3.37b) 11. then eo =--xi ~ ex a ~a2 
a 

If B=1f! 
th Yi -axi hence a ~ aTLS (3.37c) ill. en eo = ~~e( 

1+a 2 

As can be seen from the three cases above, by spanning the angle B between 0 and nl2 

we get the error criteria for the standard least squares estimators. 
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3.3.1 Computational Expression 

Now, let e be some other angle that is fixed and independent of a (note that in 

the third case given above where the error criterion leads to the TLS solution, e is not 

independent of a since the error minimisation criterion is based on e = If/). Then from 

(3.37) we get 

y -ax· e - I I 

e - cose(l + a tan e) 
(3.38) 

and forming the corresponding cost function as 

(3.39) 

the value of a can be obtained from the solution of 

cUB =2£ (Yi-axiX-X,.) _2£ (Yi-axYtanB =0 

da N i=1 cos 2 B(l + a tan BY N i=1 cos 2 B(l + a tan BY 
(3.40) 

from which using (J" as appropriate and after some algebra ae is given by 

(3.41 ) 

In accordance with (3.37a,b,c), when we consider some specific values for the angle e, 
the gain estimator given by (3.41) leads us to the following cases 

1. If then (3.41a) 

11. If then (3.41 b) 

ill. If then (3.41 c) 
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Therefore, we can see that the third case corresponding to the angle e = % 
leads to an estimator between the least squares estimators, at and az, that is algebraically 

much simpler than the standard TLS gain estimator given by (3.26). We would expect 

this estimator to be equally optimal with the TLS estimator in the special case of equal 

input-output measurement errors with the true gain factor being unity for which the 

distance eo would be geometrically dividing two equal right-angle triangle. However 

when either of these errors were dominant than the result obtained using the above 

expression would be biased whose degree would depend on the ratio of the input-output 

n01se powers. 

Figure 3.7 gives a direct numerical companson between ans and au over 1 

million-sample noisy zero-mean stationary random input-output data for a true gain 

factor of 3 and e = %. (3.37c) describes the TLS optimisation landscape as based on 

e = If and hence in this case the tangent of both will be equal to 3 whereas for Go the 

angle () is effectively considered rt / 4. Input variance is 64 and both noise variances are 

16 corresponding to Case 3 of Section 3.2.4. As can be clearly seen from the direction of 

the corresponding arrows indicating the slope of each estimator, there is a difference 

between the two results by a factor of lO-t • ~u is computed as 2.92 and Go is 2.82. This 

is due to the fact that, despite noise variances being approximately equal over the data 

samples, the fitted line has a larger slope than 1 and hence () = % does not lead to the 

optimal error distance to be minimised for Go· 

1~r---~----~----~----~----~~---

100 

50 

% 0 
o 

-50 

· 100 

-15?sL
O 
----~-40::-------!:20,------:-0 -----:20C:---------:-~0;:------;:60 

In"", 

Figure 3.7 Comparison of standard and the generalised (3.41c) TLS gain estimators for equal input­

output noise. Dots: Noisy input-output scatter points; Red Arrow: Qo ; Green Arrow: Qn s' 
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3.3.2 Theoretical Analysis 

In order to further investigate the significance of our approach to the TIS input­

output problem described above, consider the cost function given by (3.39), this time 

analytically, by including noise terms on both the measured input and the output as 

(3.42) 

where 

and therefore 

(3.43) 

which shows that Je is a function of ax , a , a ,a and (). Furthermore, if we 
nx ny 

modify the expression for the estimator ae accordingly accounting for noise, we get the 

corresponding theoretical expression 

(3.44) 

that can be rewritten as 

(3.45) 

If we let 

a 2 

& Noise Ratio, ~ = r 
a nx 

(3.46a,b) 
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Substituting (3.46a,b) into (3.45) we obtain 

ap(l +a tane)+r tane 

ao = p(l+atane)+l 
(3.47) 

Furthermore, the theoretical expression given by (3.47) can be appropriately manipulated 

in order to verify the performances of three standard least squares estimators. With 

reference to Figure 3.6 and the relationship given by (3.37c) when e = If/, tane is simply 

equal to the true gain a, describing the standard TLS solution representing the case of 

input-output noise. Therefore if we let r =1, (3.47) can be rewritten as 

(3.48) 

showing that the TLS estimator is equal to the true gain factor for equal input-output 

noise. In order to represent the case of input noise only, we let r =0 and e = 7T / 2, 

leading to 

(3.49) 

Similarly, for the case of output noise only, we let p = r = 00 and e = 0 to give 

ap a 
ao =--=--~a 

p+l l+! 
p 

(3.50) 

Now, let us look at a special case in an attempt to examine the behaviour of (3.47) for 

varying the angle e. We consider the true gain factor and the output noise to input noise 

ratio are equal to unity i.e. 

a = 1 & r=l 
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Substituting the above into (3.47) and after some algebra we get 

p(l + tane)+ tane 
a -~~----~----
0- p(l + tane)+ 1 

(3.51) 

Figure 3.8 illustrates the relationship between the estimator (3.51) and the input SNR p 

for e equal to 0, J[ / 2 and J[ / 4 respectively. When e is 0, (3.51) reduces to 

p 
a ~-­

o 1+ p 

and hence as the input SNR is improved it converges towards the true gain factor 1 (see 

top-left plot of Figure 3.8) although it will remain biased as there is always some noise on 

both input and output (recall (3.37a) and (3.41a)). Note that starting from around 0.5 

associated with the ° dB input SNR, it always gives underestimated results for the true 

gain factor. Ifwe select e as n/2 then the estimator (3.51) can be rewritten as 

p+1 1 
ao ~--=1+-p p 

corresponding to the input noise optimal case (recall (3.37b) and (3.41 b)). As can be seen 

from the top-right plot of Figure 3.8, in this case the estimator has a similar exponential 

behaviour but in a decreasing fashion. Again, it converges towards the true gain factor 

asymptotically although the overall performance is less accurate with higher biasing effect 

compared to that of the previous case. Finally, when we look at the case of e is equal to 

n/4 (recall (3.37c) and (3.41c)), the expression (3.51) reduces to 

2p + 1 -1 
ao~---

2p+1 

indicating that using e = J[ / 4 is sensible as it will coincide with the standard TLS scheme 

for the case of equal input-output noise and hence is unity for all p (Figure 3.8, bottom 

plot). 
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Figure 3.8 Theoretical expression for the generalised TLS Estimator (3.45) for the special case of (3.51) 
plotted versus Input SNR (i.e. for a = r= 1). Top-Left: ()= 0; Top-Right: ()= n12 ; Bottom: ()= n14. 

It is also possible to generalise the estimator Go with respect to certain 

conditions of the parameters r, p and e under which its estimate gives the exact value 

of the true gain factor a. Simply, substituting G for Go in (3.47) we get 

a = rtane (3.52) 

which shows that when the product" r tan e" equals the true gain factor, this estimator 

always gives the exact result. This means that for specific values of the true gain factor 

there is no better estimator than Go' This can be demonstrated through a simple example 

as follows: 
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Let us assume that the true gain factor and the noise ratio are given as 

a=2 & r=2 

If we consider the case corresponding to estimator ai' we let () = 0 from which (3.47) 

takes the form 

(3.53) 

which shows that a 1 is biased for low input SNR although it converges towards the true 

gain factor as p is increased. Secondly, let us consider the case corresponding to 

estimator a2 in which we let () = 7r / 2 and subsequently (3.47) becomes 

4p+2 1 
ae =az =--~2+-

2p P 
(3.54) 

Also in this case the estimate is biased for low input SNR and approaches the true value 

as p tends to infinity. The corresponding standard TIS estimator is based on the 

criterion tan() = 2 using which the expression (3.47) is rewritten as 

_ _ 2p(1+4)+4 2 4 
a() -aTLS - ~ +--

p(1+4)+1 5p+l 
(3.55) 

verifying the biasing effect. Finally, if we look at the case of () = 7r / 4, (3.47) takes the 

form 

a() = 2p(1+2)+2 = 2{p(1+2)+1} ~ 2 
p(1 + 2) + 1 p(l + 2) + 1 

(3.56) 

from which it can be seen that the estimator ao is unbiased for all p and therefore is the 

best estimator for this specific case. 
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3.3.3 Summary 

Above analysis is based on the geometrical interpretation of the newly defined 

error distance (3.37) in terms of the measured input-output data position vector and a 

fixed angle () that is also a function of the transfer characteristics of the data point. It 

has been shown that by choosing the angle () according to the signal and noise 

characteristics, the generalised TLS estimator (3.41) can be appropriately manipulated in 

order to obtain an accurate estimate of the true gain factor. For the special cases of the 

angle () being equal to 0, nl2 and \j1 (see Figure 3.6); the equivalent least squares 

estimators a1, az and ~ (for equal input-output noise) can be derived respectively. 

Under certain conditions, the generalised TLS estimation scheme gives the exact true 

gain factor for all input and output SNRs unlike the corresponding standard least squares 

forms. Although this is of no practical use as its verification relies upon a priori 

knowledge of the true gain factor, it is an interesting observation revealing the superior 

behaviour of the proposed estimation scheme. 

In the next section we cover the corresponding frequency domain versions of the 

standard least squares estimators given above. 
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3.4 Least Squares FRF Estimators 

3.4.1 FRF Estimators H1 and H2 

HI and H2 are the two classical transfer function estimators based on the least 

squares approach for additive output measurement noise and for additive input 

measurement noise, respectively, whose derivations in the time domain (using real valued 

data in order for easy visualisation) are given in Sections 3.2.1 and 3.2.2, in relation to the 

estimation of the transfer characteristics of a gain system. With reference to Figure 2.4 

these can be defined as [2, 7] 

(3.57) 

and 

(3.58) 

~ 

where Sab (/) is an estimator for the cross-spectral density between a(t) and b(t) and if 

a(t) =b(t) then this spectrum is referred to as an auto-spectral density or a power spectrum 

(see Appendix A for the methodology of corresponding derivations using complex 

valued data in the frequency domain). Assuming the system under investigation is truly 

linear and the two additive measurement noises nJt) and ~,(t) are mutually uncorrelated 

and uncorrelated with the input signal, the statistical behaviour of these two FRF 

estimators in the presence of additive measurement noise is well established. The 

important results can be summarized as for the case of measurements with only output 

noise, estimator HI if) is unbiased; whereas for the case of measurements with only input 

noise, estimator H 2 if) is unbiased; and when noise is present on both the input and 

output both HI if) and H 2if) are biased (see computational results in Section 3.2.4). In 

the latter case one can further show that [2] 

(3.59) 
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where E[ ] denotes the expectation operator. This result allows one to approximately 

bracket the correct result by computing both transfer function estimators. It should be 

noted that (3.59) is developed using the theoretical values for HI and Hz and there is no 

guarantee that for finite data lengths it will hold true. A more correct fashion by which to 

bound estimates of the transfer function is, to use the concept of a confidence interval. 

For example, it can be shown [2,7] that the confidence interval for the magnitude of a 

transfer function estimated via HI is given by 

(3.60) 

where h,N-2(/J) is the inverse cumulative distribution of the F-Distribution with "2, N-2" 

degrees of freedom (for large N f2,N_z(I3)::::;-log(1-13)) and Y~myJf) is the ordinary 

coherence function between the measured variables which is given in its most general 

form by (2.10). 
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3.4.2 FRF Estimator Hs (or Hv) and Hw 

Besides the above most commonly used transfer function estimators HI and H2 

there exists an alternative estimator based upon the concept of Total Least Squares (TLS) 

whose time domain version has been given in Section 3.2.3 in the context of gain 

estimation with reference to a.w,. Although it has various derivations in the literature that 

are slightly different from each other [8,9,10,11] in its most widely used form the TLS 

Estimator Hs is defined as 

Hs(f) = SYmYm (f)-sSXmXm (f) + {sSXmXm (f)-SYmYm (f)r +4s1SXmYm (f)1
2 

2SYmXm (f) 
(3.61) 

and s is a scale factor that allows one to manipulate the FRF estimates. By letting s = ° 
one obtains Hij) and the case where 

S~OO 

is best addressed by defining 

&= Ys 
by writing (3.61) in terms of &(f) and letting 

then after some algebra it can be easily shown that 

Hence, if one varies s over the range [0,00] the estimator H/j) takes values in the range 

whereas the case of s=1 defines an additional FRF estimator, namely HJj) [8,9,11,12]. 
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An alternative approach to FRF estimation that has been considered by White, 

Tan and Hammond is that of statistical inference [13] where the principle of Maximum 

Likelihood has been applied to derive optimal estimators for the FRF (see Chapter 5 for 

details). The resulting algorithm corresponds to the established Hi!) FRF estimator, with 

the parameter s equated to the ratio of the measurement noise spectra and the estimator 

Hwis given by 

Hw(f) = SYmYm (f)-K(f)SxmxJf) + {SxmxJf)K(f)-SYmYm (f)r +4ISxmyJf)r K(f) 

2SYmXm (f) 

in which K(f) represents the ratio SIlylly (f) I . 
ISnxnx (f) 

(3.62) 

The primary outcome of the methodology adopted in the above paper is that ML 

estimators are guaranteed to be unbiased and asymptotically efficient [14,15]. Therefore, 

this estimator is unbiased in the presences of both input and output noise and for large 

data sets one can be confident that the ML estimator approximately satisfies the Cramer­

Rao Lower Bound (CRLB) ensuring that, asymptotically, no unbiased estimator will 

achieve a better performance than an ML estimator. The analysis of the ML approach for 

FRF estimation will be seen in detail in Chapter 5. 
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3.4.3 Statistical Assessment of Least Squares FRF Estimators 

In an attempt to investigate the performances of the FRF estimators covered in 

this chapter, computational statistical behaviour assessment procedures at a single 

frequency for a fixed gain factor have been carried out computing the estimator means and 

estimator variances. These quantities have been plotted at each value of the ratio of the 

standard deviation of the output noise to the standard deviation of the input noise from 

o to 2 using 801 sample points (0.0025 step size) whose sequence is given by 

(Yny [0 0.01 7.99 8] 9 - = -,-, ... ,-,- = [0,0.0025,0.005, ... ,1.9 75,2.0] 
(Yn, 4 4 4 4 

This means that there is always additive measurement noise on the system input with a 

variance of 16 which is kept constant as the standard deviation of the noise on the 

system output varies from 0 to 8. For each FRF estimator, 100 realisations each 

consisting of 100 samples have been computed and averaged for the corresponding noise 

ratio. 

In Figure 3.9 the means of the FRF estimators Hlf), Hlf), Hv(f) and Hw(f) are 

shown. Since the input noise level is kept constant for each computation, estimator HI (f) 

is severely biased throughout the whole range of the noise ratio. Estimator H2(f) is equal 

to the true gain factor when there is only input noise and gets biased gradually as the 

output noise is introduced and its level is increased. Hv(f) starts slightly biased when there 

is only input noise and it meets the estimator Hw(f) where the noise ratio becomes 1 i.e. 

equal amount of input and output noise. The ML estimator H\v(f) appears to be the most 

optimal and hence unbiased for any noise ratio having the closest values to the true gain 

factor throughout. 

Figure 3.10 shows the results of the computations for the comparison between 

the variances of each FRF estimator. It is clear to see that Hw(f) has a relatively high 

variance with Hz(f) and Hv(f) compared to HI (f). All of the four estimators tend to have 

increasing variances as the level of the output noise is increased. Starting from the region 

where there is only input noise Hw(f), I I2(f) and Hv(f) demonstrate almost identical 

behaviours although H2(f) gets more erroneous than the other two with increasing 

variability as the effect of output noise becomes dominant. For the highest levels of 

output noise Hz(f) has the maximum variance followed by Hv(f) whose value gradually 

deviates from Hw(f) starting from the equal input-output noise region. 
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Estimator Means for a fixed Gain Factor "3" at a Single Frequency 
3.6 ,-----.-----.-----.-----,-----,----,,----,,----,-----,-----. 

3.4 

3.2 H2 starts unbiased 

Hv meets Hw 

2.6 
H1 biased as there is always some Input Noise 

/ 
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Noise Ratio - std(Output) / std(lnput) 

Figure 3.9 Means of FRF estimators computed at each noise ratio for a fixed gain factor of 3 at a single 
frequency. Red/Solid line - H1(f) , Blue/o - H2(f), Blackl+ - Hv(f) , Red/x - Hw(f) . 

Estimator Variances for a fixed Gain Factor "3" at a Single Frequency 
0.07 ,-----,-----,-----,----,,----.-----.-----.-----.-----.-----. 
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Noise Ratio - std(Output) / std(lnput) 

Figure 3.10 Variances of FRF estimators computed at each noise ratio for a fixed gain factor of 3 at a 
single frequency. Green/Dotted line - H1(f), Blue/o - H2(f) , Blacklx - Hv(f) , Orange/Dotted line - Hw(f) . 
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3.5 Summary 

This chapter has covered the estimators already in use for the transfer function of 

a system with stationary random inputs and additive measurement noise. Conventional 

FRF Estimators based on the least squares approach have been presented and their 

specific noise sensitivities have been analysed in order to form a solid background for the 

introduction of the new work and its comparison with the existing methods which are 

given in the Chapters 4 and 5 of this thesis. 

With reference to Figure 2.5, which shows a set of measured data (representing 

the input-output scatter points) and various error measures that can be adopted, if one 

minimises the sum of the squared vertical errors (e) between the fitted line and the data 

points then the estimator H l if) is obtained, whereas if the sum of the squared horizontal 

errors (eJ is the quantity to be minimised then the estimator H2if) results. In addition, if 

it is the sum of the perpendicular errors (e) that is minimised then the TLS estimator 

Hvif) is realised. 

The important results can be summarised as: for the case of measurements with 

only output noise, estimator H J if) is unbiased; whereas for the case of measurements 
aJ\ ./a.~~' 0..""'0'"''' ~ o-\-

with only input noise, estimator H2if) is unbiased; and when~oise is present on both the 

input and output both H J if) and Hzif) are biased but Hvif) is unbiased. A generalised 

TLS scheme has been introduced from a geometric viewpoint allowing one to readily 

interpret the relationships of the existing least squares estimators in the time domain. 

The proposed approach utilizes the minimization of an error distance dependant on an 

angle that may be appropriately varied in order to suit the relevant measurement/ analysis 

conditions on the basis of a priori knowledge of the noise/ system characteristics. It has 

been shown that the generalised TLS estimator ae gives completely unbiased results for 

the true gain factor for all input and output SNRs under certain conditions. 

Chapters 4 and 5 further discusses the transfer function estimation problem and 

explains how PCA can be used as a tool to solve this problem in the time and frequency 

domains respectively, including extensive computational simulations to provide 

comparisons with the existing techniques. 
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Chapter Four 

GAIN ESTIMATION USING peA 

4.1 Introduction 

It has been shown in the previous chapter that the conventional FRF estimators 

for SISO systems based on the least squares approach can be derived from a geometric 

standpoint, relying upon the fact that in the frequency domain the problem of estimating 

a transfer function is a linear regression problem. These interpretations are powerful 

intuitive tools allowing one to readily identify the merits of the corresponding algorithms. 

The drawback of such an interpretation is that it adds little to the mathematical 

underpinning. 

The aim of this chapter in conjunction with Chapter 5 is to demonstrate that one 

of the most effective multivariate data analysis techniques, the so called Principal 

Component Analysis (PCA) , can be employed to solve transfer function estimation 

problems providing a novel mathematical viewpoint and that the result from this 

approach can also be generalised to MIMO systems. 

In essence, this chapter forms the theoretical background of our PCA FRF 

estimation approach introducing the fundamental mathematical procedures on the 

relatively simple gain estimation problem in the time domain in order to provide a 

comprehensive reference for the concepts covered in the next chapter where the results 

presented here will be extended to the frequency domain applications with slight 

modifications and the corresponding verifications will also be given through extensive 

computational simulations. 
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4.2 Gain Estimation in Memoryless SISO Systems 

This section aims to discuss how peA can be used to estimate gains of SISO 

measurement systems. The application of the method of principal components to the 

problem of gain estimation of a memoryless SISO System is based on carrying out the 

analysis on the covariance matrix of the measurement vector which contains information 

on second-order statistics of the measured input and the measured output data. By this 

technique, a set of correlated measured variables are linearly transformed into a new set 

of uncorrelated (virtual) variables, the so called principal components, which in total 

exhibit the same variability as the original variables (recall (2.26)). These components are 

ordered according to the proportion of the total variance they account for. This 

approach also allows one to identify components of low power that may be removed 

from the data set without significantly affecting the data, thus producing a dimensionally 

reduced form of the original data. The aim of the method is to introduce parsimo'!) to the 

analysis. The analysis is carried out on the covariance matrix of the observed variables in 

the form of an Eigen-Value Decomposition (EVD) in which the direction of each 

eigenvector represents the direction of each component and these are weighted 

according to the values of the corresponding eigenvalues. 

In order for the above technique to be applied to SISO system identification, the 

procedure is required to be carried out on the input-output covariance matrix. Physical 

interpretation and the details of the mathematical procedures on which our approach is 

based are given in the upcoming subsections 
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4.2.1 Physical Interpretation of peA Gain Estimation 

With reference to a SISO gain system we first define the vector transformation 

from the correlated observed variables x (input xm and output yJ into the uncorrelated 

principal components z (Zl and z;) through the transformation matrix T as 

z=Tx (4.1) 

which can be rewritten as (recall (2.21) ) 

(4.2) 

From the above relationships, one can effectively consider representing the 

system input-output relationship in two different ways and these can be described as the 

actual SISO process involving the original variables (Figure 4.1) and the virtual Two­

Input-Two-Output (rITO) process involving both the original variables and the new 

uncorrelated variables (Figure 4.2). In this virtual system the principal components are 

the inputs and the original signals are the outputs. peA solves the inverse problem by 

finding the transformation that maps the two correlated variables into two uncorrelated 

variables in the following way: 

--~~~I __ G __ A_IN __ ~--.~ 
Original Input Original Output 

Figure 4.1 Actual SISO Gain Process involving 2 variables. 

Using the form given by (2.22) we can extend (4.2) and define the input-output 

covariance matrix leading to its corresponding EVD solution as 

(4.3) 
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where R zz is a diagonal matrix conta11l11lg the ranked eigenvalues of R"x and the 

orthonormal transformation matrix TT is the matrix containing the corresponding 

eigenvectors as its columns i.e. TT = T-I = [tIl 
t21 

tI2]. Expanding (4.2) we obtain 
t22 

(4.4) 

and it can be easily seen that both input and the output are made up of parts of the 

uncorrelated virtual variables. For the measured input, the part due to Z1 is tll z1 whereas 

for the measured output, the part due to Z1 is t21 Z 1. Since Z1 is the first principal 

component representing the total or the majority of the total variance (depending on the 

degree of linear association between the original variables) it is logical to use the ratio of 

its corresponding eigenvector as the estimate of the transfer function linking the original 

(actual) variables x and y and hence the gain related to Z1 is given by the ratio t21 /tll' 

Uncorrelated Va riable 1 Meas ured Input 
_ ... ... ... .... 

T-1 
.. .. 

Uncorrelated Va riable 2 .... Me~ ured Output 

Figure 4.2 Virtual TITO Process involving 4 variables which illustrates the inverse problem through 
which the principal components are transformed into the measured variables. 

Therefore, it is proposed that the peA is carried out on the input-output 

covariance matrix and the values of its eigenvalues are observed. If the system is purely 

linear and the measured variables are noise-free, one would expect only one non-zero 

eigenvalue whose value is equal to the sum of the powers of the measured variables. The 

ratio of the two values in the associated eigenvector determines the gain factor i.e. the 

slope of the eigenvector corresponding to this eigenvalue would give information about 

the system's transfer characteristics. 
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However it should also be noted that for the cases where the measurements are 

noise contaminated and/or the input-output relationship is not completely linear then 

both eigenvalues will be non-zero as some part of the total variance contained in the 

measured variables will be represented by the weighting factor of the second principal 

component. In this case, if the noise power and/or the effect of potential non-linearity is 

low compared to the variance of the original signals and the input-output linear 

association respectively there will be a great difference between the numerical values of 

the eigenvalues and we can still consider the gain factor obtained by PCA from the 

eigenvector corresponding to the larger eigenvalue as a realistic approximation to the 

transfer characteristics of the system. 

In the next subsection the derivation of the generalised theoretical expression for 

the SISO PCA gain estimator is presented. 
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4.2.2 Derivation of 5150 peA Gain Estimator 

The general theoretical expression defining the peA gain estimator for the above 

SISO gain system with uncorrelated additive measurement noise on both input and 

output can be derived as follows: 

The input-output covariance matrix between the measured input and the 

measured output is given using (2.20) as 

J] = [ E[x~ J E[xmY m J] 
Y m; E[ J E[ 2 J Ym Xm Ym 

in which the time domain measurement vector for each sample is given by 

Xj =[xm;], for i=1,2, ... ,N 
Ym j 

(4.5) 

over N samples and the measured system input and output are defined by (3.1a,b). 

Assuming that the system is a pure gain of the true value a, we can use the relationships 

(3.2) to (3.6) and substituting the symbol d as appropriate to denote the signal variance, 

in the case of noise on both input and the output, the matrix given by (4.5) can be 

rewritten as 

(4.6) 

In order to find the eigenvalues and the eigenvectors of the matrix Rxx one solves the 

equation 

Rxx' ti = Ai . ti (4.7) 

1.e 

(4.8) 

for i= 1 ,2; where i is the eigenvalue index and ti is the eigenvector corresponding to the lh 

eigenvalue Ai' The above gives the simultaneous equations 
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In order to solve for the eigenvectors, we need the eigenvalues Ai' These follow from 4.7 

and written as 

(4.10) 

By Cramer's Theorem this has a non-trivial solution if and only if its coefficient 

determinant is zero i.e. the characteristic equation of the system is 

det~ - AI) = 0 (4.11) 

This can be written as 

(4.12) 

which can be expanded 

(4.13) 

The roots of this quadratic equation are 

(4.14) 

and after some algebra the ratio of the components of the theoretical expression for the 

eigenvector corresponding to the largest eigenvalue, say AI which corresponds to the 

addition case in (4.15) describes the estimate for the system gain obtained by using the 

method of Principal Components i.e 

(4.15) 

which in practice can be simply computed from the EVD of the correlation matrix 

between the measured variables given by 4.5. 

In an attempt to give a clearer mathematical insight to the above described gain 

factor estimation procedure and in order to form a solid foundation for the extension of 

the method to MIMO cases, in the next section, we will consider a particular case for the 

analysis of the system under investigation. 
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4.2.3 Zero Eigenvalue and peA 

With reference to the SISO gain system given in the previous section, let us 

assume that the measurements are noise-free. Then the input-output covariance matrix 

between the correlated variables given by (4.6) takes the form 

R = [ 0" x 2 aO" x 2 ] 
xx 2 2 2 

aO"x a o"x 

(4.16) 

and the simultaneous equations given by (4.9) are replaced by 

(4. 17 a) 

and 

(4.17b) 

In accordance with the procedure described from (4.10) to (4.12) and after some algebra 

we get the eigenvalues 

(4.18) 

from which the corresponding eigenvectors can be simply derived as 

(4.19) 

(Note that the above forms of the eigenvectors emphasize the ratio of their components 

symbolically and hence in practice they would be normalized) 

As it has already been explained in Section 4.2.1, the results (4.18) and (4.19) 

clearly indicate that if the correlated signals contained in the input-output covariance 

matrix are related through a purely linear process and are completely noise-free, it is 

possible to obtain the exact value of the system's gain factor from the ratio 

of the components of its eigenvector corresponding to the non-zero eigenvalue whereas 

the remaining eigenvalue must be zero. 
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The zero eigenvalue has an important interpretation in terms of peA. It can be 

easily seen that the components of the eigenvector corresponding to the zero eigenvalue 

may also be used in order to derive the exact value of the gain factor using the ratio 

If there is an eigenvalue equal to zero then this means that the variance of the projections 

on the corresponding eigenvector is zero and the corresponding principal component is 

reduced to zero. In the case of the analysis having carried out on the covariance matrix 

then the data to be analysed have been centred and the zero eigenvalue creates an 

opportunity in order to form linear combinations of the original variables with the 

components of the corresponding eigenvector as its coefficients. This indicates that the 

input is a perfect linear function of the output and hence they are perfectly correlated. 

This implication can be simply illustrated for the above bivariate case as follows: 

Equation (4.7) can be expanded (assuming sample by sample eigen-decomposition of the 

covariance between the variables) using the notation for the measured input and the 

output as 

(4.20) 

where Ai is the l' eigenvalue and 

is its corresponding eigenvector. If Ai=O then (4.20) becomes 

(4.21) 

and since it is assumed that 
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then this has a non-trivial solution 

(4.22) 

which can be expanded as 

(4.23) 

forming a homogeneous linear system with the coefficients tli and t2j" Therefore we can 

conclude that if the values of these coefficients can be determined from the EVD of the 

SISO input-output covariance matrix then one can also simply derive each potential gain 

factor relating pairs of correlated input-output variables from the ratio of the components 

of the eigenvector corresponding to the zero eigenvalue using (4.23) such as 

Ym =-~ 
Xm t2i 

(4.24) 

The analysis given from (4.16) to (4.24) shows that if one of the eigenvalues of 

the covariance matrix is equal to zero then this is an indication of the existence of a 

collinearity condition between the original variables and the corresponding eigenvector 

can also be used in order to obtain the associated relationship in accordance with the 

procedure given above. We will use this result for the application to the time domain 

multi-variate cases in Section 4.3 and to the frequency domain multi-variate cases in 

Chapter S. It is noted that the above conclusion can also be justified starting from the 

equation (4.1) and assuming Z2 to be zero corresponding to the zero eigenvalue. 
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4.2.4 peA and the TLS Solution 

In the previous subsections we have shown that peA can be employed to solve 

problems involving gain estimation of SISO systems through an approach providing a 

more solid mathematical foundation compared to that of the standard methods based on 

linear regression. As a matter of fact the application of peA leading to the solution for 

the above problem given by the theoretical expression (4.15) is equivalent to the methods 

based on the concept of Total Least Squares (TIS). This is not a surprising result since 

the TLS solution can be obtained from an eigenvalue decomposition of the spectral 

correlation matrix [16], which is exactly the same mechanism used to compute the peA 

estimate i.e. evidently this estimator is exactly that associated with the TIS solution, 

namelyarLS (see equation (3.26) ). The interesting observation is the novel viewpoint that 

this result provides, the advantage being that it allows one to simply obtain the same 

result from the EVD of the input-output covariance matrix rather than using the TLS 

algebra. The mathematical verification of the above result can be easily obtained as 

follows: 

The estimate of the input-output covariance matrix def111ed by (4.5) can be given without 

expanding the measured variables and using summation operator over N samples 

(i=l, ... ,N) as 

r 

N 

, 1 LX;, 
R =_ ;=1 

XX N N 

~Ym,Xm, 

(4.25) 

Now, let us rewrite (4.25) in terms of b, c and d representing the corresponding averaged 

coefficients for simplicity 

where 

d _ 1 ~ 2 
- N~Ym, 

1 N 1 N 

c=-"x Y =-"y x N f:t m, m, N f:t m, m, 
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This time from (4.7) we get the simultaneous equations in the form 

(4.27 a) 

and 

(4.27b) 

for k= 1,2 ; where k is the eigenvalue index and tk is the eigenvector corresponding to the 

kin eigenvalue Ak • In accordance with the procedure given by (4.10) and (4.11) the 

characteristic equation associated with (4.26) can be written as 

{
b-.?c c] de =0 

C d-.?c 
(4.28) 

from which the eigenvalues are obtained 

(4.29) 

and the eigenvector corresponding to the largest eigenvalue, say Al which corresponds to 

the addition case in (4.29) gives the estimate for the system gain 

Substituting (4.26a,b,c) into (4.30) we get 

(d-b)+~(d-b)2 +4C 
2c 

~(Y;I -x;)+ [~(y;1 -x;} +4~(Xm,Ym} ] 
apCA = 

and hence comparing (4.31) with (3.26) it can be concluded that 
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4.3 Gain Estimation in Memoryless MIMO Systems 

In this section we extend the above described application of peA for the SISO 

system gain estimation to the linear time-invariant memoryless MIMO systems whose 

general schematic diagram is shown in Figure 4.3. Our theoretical analyses here are based 

on the noise-free cases in order to emphasize the significance of the zero-eigenvalue 

although as will be seen in the upcoming subsections as long as the system under 

investigation is assumed to be linear and time-invariant the estimation procedures for the 

MIMO systems can also be simply carried out in the same way for the relatively low 

power input and/or output noise cases relying upon the selection of the most 

appropriate eigenvector. 

x .. ... 
~ ~ y 
.. .. .. .. 
.. .. .... .. 
.. .. .... .. 

Yn 

Figure 4.3 Multi-Input-Multi-Output System with input vector x and output vector y. 

In order to illustrate the presentation and for easy visualisation we shall consider 

a Two-Input-Single-Output crISO) system although the corresponding mathematical 

procedures followed can be readily extended to multi-channel systems with more 

complex structures in the similar form by considering each of the outputs in turn within 

the associated analysis. 
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4.3.1 Multi-Input-Single-Qutput Systems 

Figure 4.4 shows the noise-free TrSO measurement system on which our 

investigations are based. This is a memoryless system relating the input XI to output Y 

through the gain a and relating the input X z to outputy through the gain b in the form 

y = ax, + bX2 (4.33) 

Assuming the system inputs to be stationary random signals, the analysis proceeds in the 

same way as in the srso system covered in the previous section based on the EVD of 

the measurement covariance matrix which in this case will be of the size 3x3. 

~I a ~ 
y 

~I ~ b 

Figure 4.4 Memoryless TISO system with the gain 'a' between X1 & Y and the gain 'b' between X2 & y. 

This time the measurement vector contains three components and given by 

(4.34) 

and using the form (4.5) the corresponding covariance matrix is derived as 

(4.35) 
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Expanding (4.2), defining the transformation of principal components to the measured 

variables, for the above T1SO system we get 

(4.36) 

If we now associate the relationships between the measured signals and the 

virtual signals in accordance with our interpretation for the S1SO peA gain estimation 

presented in Section 4.2.1, we can easily see that the corresponding gain factors relating 

the outputy to the input Xl and to the input X z would be defined as 

respectively (using the components of the eigenvector corresponding to the non-zero 

eigenvalue for the purely linear system with noise-free signals or corresponding to the 

largest eigenvalue for the linear system with some parasitic effects on the measured 

signals). However from the relationship (4.33) we know that the output y is made of 

weighted sums of the inputs Xl and x2 and if we express y in terms of the proportions of 

the original signals represented by the principal virtual signal we obtain 

(4.37) 

Hence the above ratios are equal to 

& !1l=a~+b (4.38a,b) 
t21 t11 

showing that for such a system, the separate gain factors cannot be derived without 

biasing effects from the relationships between the components of the eigenvector 

corresponding to the largest eigenvalue. 
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Also it is important to note that as the number of original variables increase, the 

total variance are distributed over the principal virtual signals with different weights 

according to the degree of correlation between the original variables and thus one 

principal component may not always be enough to describe the actual process. For the 

bivariate case, however, there is only one main component representing the total power 

shared by the input and the output which is effectively originating from the original 

process associated with the first principal component i.e. the input signal and thus the 

above approach is appropriate. 

The EVD of the multivariate case glven above can be carried out using the 

matrix (4.35) which substituting the symbol (J' as appropriate to denote the signal auto­

and cross-correlation estimates and after some algebra takes the form 

(4.39) 

aO"xx +bO"x
2 

12 , 

and from 

(4.40) 

a 0" x x + b O"x
2 

12 , 

the eigenvalues of (4.39) are given by the roots of the cubic equation 

and the corresponding eigenvectors can be computed accordingly. Note that for the 

special case of uncorrelated inputs, (4.41) reduces to 

(4.42) 

As it can be clearly seen from (4.41) and (4.42), the EVD of the multi-input covariance 

matrix of a general system described by the linear form (4.33), results with one of the 

eigenvalues equal to zero. 
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Therefore ill Vlew of our preVlous comments regarding the eigenvector 

corresponding to the largest eigenvalue being inappropriate for MIMO transfer 

characteristics estimation, we may as an alternative, consider using the components of 

the eigenvector corresponding to the zero eigenvalue to derive the separate gain factors 

in accordance with the result of the bivariate case given by (4.24). In accordance with the 

form given by (4.20), we can modify (4.22) for the three-variable case which seeks the 

linear combinations of the original variables as, 

(4.43) 

and expanding we get 

(4.44) 

from which it can be easily seen that the ratio of each pair of coefficients ti will result in 

each scale factor and hence the input-output gain factor relating the two dimensions of 

the corresponding eigenvector such as 

& L = _!i1. ~ b (4.45) 
X 2 ti3 

From the above theoretical analysis we can see that for a memoryless noise-free 

TISO system the use of peA provides accurate estimates of the gain factors relating the 

corresponding parts of the output to each input through the ratios of the components of 

the eigenvector corresponding to the zero eigenvalue. In practice, these estimators can be 

derived using the form (4.7) for the above system 

(4.46) 

and thus for Ai = 0 , we get the computational expressions 

-- 2-
til x2xt • YX2 - x2 . yx, 

- ti3 = (~,X2) _X,2 .x; 
& (4.47a,b) 
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It is immediately obvious from (4.47a,b) that, when both inputs are tmfy uncorrelated 

with each other, the multi-channel PCA estimators reduce to the least squares estimator 

a l between each input-output pair as 

& (4.48a,b) 

which can also simply be derived by forming the input-output pair cross-correlation e.g. 

Therefore we conclude that, in essence, a l can also be used as the optimal 

estimator in order to determine the individual gain factors of the uncomlated-multi-input 

system configuration, if applied as in the SISO-based form. However as we shall see in 

the next chapter in the context of the corresponding FRF estimation scheme, when finite 

data are involved the use of the computational PCA expression is superior to the 

equivalent least squares estimators. This is due to some form of scaling influence of the 

non-zero input-input cross-correlation terms when measured/generated data sample 

populations are used for their estimations. 

X1 

~ ~ 
Y1 

X2 M Y2 

X3 Y3 

Figure 4.5 Multi-Input-Multi-Output mixing process. 

The above result can be readily extended to any memoryless linear time-invariant 

MIMO system e.g. for a Three-Input-Three-Output system such as that shown in Figure 

4.5 where the inputs Xl' x2 and X3 and the outputs Yl' Y2 and Y3 are related to the inputs 

through a mixing matrix 

(4.49) 
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y=Mx 

YI = ax l +bx2 +CX) 

Y2 = dx l +ex2 + Ix) 

Y) = g:xl + hx2 + lex) 
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(4.50) 

(4.51) 

(4.52) 

i.e. each coefficient of the mixing matrix M being equal to the gain factor relating a 

proportion of each output to one of the inputs. In this case if we are to analyse the input­

output relationship according to the procedure described above then we simply form the 

covariance matrix by using all the inputs and only one of the outputs at a time e.g. 

(4.53) 

By taking the outputs in turn and proceeding the analysis in the same way as before we 

obtain the coefficients of the mixing matrix and hence each gain factor between relevant 

signal pairs. In fact the estimation of the coefficients of the mixing matrix of a MIMO 

process such as that described above is a widely known Blind Analysis problem in Signal 

Processing when the only measurable signals are the outputs and under certain 

conditions has a solution by the well-established technique of Blind Source Separation 

(BSS) using Independent Component Analysis (lCA) [4]. The fundamental assumption in 

ICA-based source separation is that the original signals to be estimated are statistically 

independent. Statistical independence which requires the joint probability density 

function of the associated random variables to be factorizable is a much stronger 

condition than uncorrelatedness (recall (2.12)). An intuitive and important estimation 

principle of ICA is to exploit non-Gaussianity in the components to be estimated. This 

relies on the fact that according to Central Limit Theorem [17] the mixtures (i.e. linear 

combinations of the original variables) are closer to Gaussian than the original variables. 

72 

Chapter 4 



Gain Estimation Using peA 

4.4 Concluding Remarks 

The analytical results presented in this chapter form the fundamental 

mathematical and physical concepts of the application of PCA to the problem of 

estimating the transfer characteristics of SISO/MIMO systems in the frequency domain 

which will be covered in detail in Chapter 5. 

We have shown that PCA provides a unique approach through the interpretation 

of the eigenvalues and the eigenvectors of the input-output covariance matrix to solve 

the gain estimation problem in memoryless systems and the resulting gain estimator apCA 

defined for the basic linear time-invariant SISO system is equivalent to the Total Least 

Squares estimator aTLS . It has also been demonstrated analytically that our approach 

originating from the basic SISO case can be appropriately extended to a specific form of 

MIMO systems in which the output is a linear combination of a number of independent 

inputs. To summarise, if the system under investigation is assumed to be linear and time­

invariant: 

1. for the case of noise-free measurements, the components of the eigenvectors 

corresponding to the distinct and/ or the zero eigenvalue; 

11. for the case of noisy measurements, the components of the eigenvectors 

corresponding to the largest and/or the smallest eigenvalue; 

can be used in order to calculate the transfer characteristics of the system between 

associated input-output pairs in accordance with the procedures described for the SISO 

and MIMO processes in the relevant sections above respectively. In the next chapter the 

PCA FRF estimation problem will be covered in detail using the same methodology as in 

this chapter with slight modifications in order to suit the mathematical procedures to 

complex-valued data in the frequency domain. 
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Chapter Five 

FREQUENCY RESPONSE FUNCTION 

ESTIMATION USING PCA 

5.1 Introduction 

In this chapter we investigate the applications of Principal Component Analysis 

(PCA) for Frequency Response Function (FRF) estimation in Linear Time-Invariant 

(LTI) dynamical systems. The mathematical procedures for the transfer characteristic 

estimation scheme are based on the extensions of our approach introduced in the 

previous chapter for the gain estimation problem since the associated concepts can be 

readily considered appropriate for the analysis of complex-valued signals in the frequency 

domain obtained through Fourier transformations. 

In the next section, the PCA FRF estimation approach for the basic linear time­

invariant SISO measurement system in the presence of additive measurement noise on 

both input and output measurements is presented. It is shown that the PCA based FRF 

estimator H pCA is equivalent to the TLS FRF estimator Hs (for the special case of 

measurement noise with equal variance on both input and output and hence HJ. 

Following this result, FRF estimation is also cast as a problem in statistical inference and 

it shown that the use of the principle of Maximum Likelihood (ML) leads to a novel 

development of a generalised TLS scheme. Performance assessment and comparison of 

the proposed estimator with the existing estimators based on the least squares approach 

are also given through computational simulations on an artificial system. 
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Section 5.3 presents the generalised applications of the same technique for 

dynamical MIMO systems whose fundamental principles have also been covered in 

Chapter 4. The procedure is described for a basic form of Two-Input-Single-Output 

(TISO) system on which the direct comparison between the existing and the proposed 

methods are demonstrated. Computational simulations have also been carried out on 

artificial systems for both noise-free and noisy cases, the results of which verify that the 

use of PCA for multi-channel FRF estimation in general provides more accurate 

estimates of both magnitude and phase responses relative to the methods based on the 

least squares approach. 

Section 5.4 gives a brief summary of the results presented in this chapter, 

pointing out the concluding remarks with relation to our work in the upcoming chapters 

of this thesis. 
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5.2 FRF Estimation in Dynamical 5150 Systems 

The problem of estimating the dynamic characteristics of a linear time-invariant 

SISO system (e.g. its transfer function or impulse response) from measurements of its 

input and output is of long standing interest in many areas of engineering. In most real­

life applications the solution to this problem is realised in the frequency domain, leading 

to the estimation of the system's Frequency Response Function (FRF). It is crucial to the 

problem of FRF estimation that the most appropriate statistical estimation procedure is 

followed in order to obtain an accurate estimate for the transfer characteristics of the 

system under investigation. 

In Chapter 3 the details of the most familiar FRF estimators based on the least 

squares method, the so called Hjif), Hzif) and H/j) (or Hyif)), have been covered. The 

most significant statistical behaviours of these estimators can be summarised as: for the 

case of measurements with only output noise, estimator H j if) is unbiased; whereas for 

the case of measurements with only input noise, estimator Hi!) is unbiased; and when 

noise is present on both the input and output both H j if) and Hi!) are biased but Hyif) 

is unbiased. It has also been shown in Chapter 3 that the above FRF estimators can be 

derived from a geometric standpoint, relying upon the fact that in the frequency domain 

the problem of estimating a transfer function is a linear regression problem. 

In Chapter 4 we have described in detail how PCA can be used as a tool to solve 

the transfer function (gain) estimation problem in the time domain and in this section we 

further reconsider the problem of FRF estimation for a SISO system using PCA in 

accordance with the mathematical procedures described in the previous chapter. In the 

next subsection we seek to demonstrate how PCA can be employed to obtain a FRF 

estimate. 
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5.2.1 peA and Transfer Function Estimation 

As has already been explained in Chapter 2 the problem of transfer function 

estimation relies on the analysis of the input-output measurements of the system under 

investigation and the traditional experimental response testing procedures are subject to 

several potential confounding factors. In particular the measurements can often be 

undermined by various factors including non-linear system behaviour, change of system 

characteristics with time, instability and, most commonly, the contamination of the data 

by additive measurement noise. Figure 2.4 depicts the generic problem of FRF 

estimation in the presence of uncorrelated additive measurement noise in block diagram 

form which forms the focus for this section. Note that in this figure Fourier transform 

pairs are indicated by the symbol B. 

The application of the method of principal components to the problem of gain 

estimation of a memoqless SISO System whose input-output relationship is of the from 

yet) = ax(t) in the time domain is based on carqing out the analysis on the covariance 

matrix of the measurement vector (see Chapter 4 for details) which contains information 

on second-order statistics (time domain descriptors) of the measured input and the 

measured output data. When we move on to the frequency domain in order to use the 

same technique for the FRF estimation of a dynamical SISO measurement system, the 

time domain convolution of the impulse response function with the system input is 

mapped to multiplication by the Fourier transform leading to the input-output 

relationship Y(f) = H(f)X(f) and hence the original variables to be analysed becomes 

complex and the gain a is now replaced by the FRF of the system. In this case the 

complex-valued signals involved are required to be described by means of the relevant 

spectra (frequency domain descriptors) and the analysis is to be carried out on the 

spectral correlation matrix which again contains information on second-order statistics of 

the measured signals this time in the frequency domain. Therefore in order to describe 

the PCA estimation procedure in the frequency domain one first needs to consider the 

estimation of the spectra involved. One can employ a variety of spectral estimation 

techniques, but for the purposes of this analysis we shall assume the use of a direct 

(segment averaging) technique. 
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In direct spectral estimation algorithms the measured signals xm(f) and Ym(t), such 

as that shown in Figure 2.4, are first partitioned into overlapping segments of equal 

length, a window is then applied and the estimate of, say the cross-spectrum, is defined 

as 

N 

SXmYm (J) = ~ I x:" (J)Ym" (J) 
n=! 

(5.1) 

in which X m (f) and Ym (f) are the Fourier Transforms (FTs) of the nIh (windowed) 
" n 

segment of xm(t) and Y,/~ respectively, N is the total number of segments. From hereon, 

it is tacitly assumed that the length of each window is sufficiently large so that the biasing 

effects of the window can be neglected. The next section presents the derivation of SISO 

peA FRF estimator on the basis of the above principles. 
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5.2.2 Derivation of 5150 peA FRF Estimator 

The derivation of principal components for such processes in the frequency 

domain can be given as follows: Form an array of measurement vectors en (/) 

containing the FTs of the input and output data 

(5.2) 

The spectral correlation matrix Rif) is defined as 

(5.3) 

where A is a diagonal matrix containing the ranked eigenvalues of Rif) and the 

orthonormal transformation matrix Q is the matrix containing the corresponding 

eigenvectors as its columns and H denotes the conjugate transpose (Hermitian). The 

principle components z" of the data en (/) are defined through a transformation matrix 

T as 

(5.4) 

If peA is carried out on the noise-free input-output data then in addition to the actual 

SISO process involving X m (/) and Ym (f) (as shown in Figure 2.4) one can also 
11 11 

consider representing the system by a virtual Two-Input-Two-Output (rITO) process, 

depicted in Figure 5.1. 

Q 

Figure 5.1 Virtual Two-Input-Two-Output system representing the inverse transformation from principal 
components to the measured variables. 
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In this virtual system the principal components ZI (j) and Z2(j) are the inputs and 

the original signals X m (f) and Y,n (f) are the outputs. peA solves the inverse 
n n 

problem by finding the transformation that interprets the two correlated variables as 

having come from two uncorrelated variables. If the system is linear, so that 

then only one non-zero eigenvalue exists whose value is equal to the sum of the powers 

of the inputs. The ratio of the two values in the associated eigenvector determines the 

scale factor p. To estimate a transfer function, this procedure is applied frequency bin by 

frequency bin. The spectral correlation matrix is estimated using 

(5.5) 

The eigenvalues and the eigenvectors of the above given matrix can be computed leading 

to 

A = SXmXm (I) + SYmYm (I) ± (SXmXm (I) - SYmYm (I) r + 41 SXmYm (1)1
2 

1,2 2 (5.6) 

and 

{
!JL} = SMm (J)-SVm (J)±)(Sxm:m (J)-SMm (J)r +4ISXmYm (J)r (5.7) 

t2,k H2 2SYmXm (J) 

where {~) are the elements of the transformation matrix T. The eigenvector associated 

with the largest eigenvalues corresponds to the addition case in (5.6) and it is this ratio 

that represents an estimate of the transfer function, H peA (f). 

(5.8) 
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Evidently this estimator is exactly that associated with the TLS solution, namely Hv (I), 

see equation (3.33) with s=l. As it has already been mentioned in Chapter 4 this is not a 

surprising result since the TLS solution can be obtained from an Eigen-Value­

Decomposition (EVD) of the spectral correlation matrix [16], which is the same 

mechanism used to compute the PCA estimate. 

In order to verify the physical significance of the above result mathematically one 

can consider the basic case of noise-free measurements which leads to the spectral 

correlation matrix given by (5.5) to be rewritten as 

(5.9) 

in terms of the input auto-spectral density and the FRF estimates whose eigenvalues can 

be easily calculated as 

(5.10a,b) 

If we now derive the corresponding eigenvectors (see Appendix B) we get the forms 

(which in practice would be normalised as for the case of (4.19)) 

and (5.11a,b) 

respectively, from which it can be easily seen that the ratio of the components of both 

eigenvectors (corresponding to zero/non-zero eigenvalues) can be used in order to 

determine the scale factor (or FRF) relating the input-output pairs. Again it should be 

noted that here the important observation is the novel approach and physical 

interpretation leading to this result. 
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5.2.3 Statistical Interpretation of peA Transfer Function Estimation 

In this section we shall present a statistical inference based approach to FRF 

estimation leading to the estimator Hjj) [13] that has been considered by White, Tan 

and Hammond. The methodology adopted is that of an ML estimator; the primary 

reason for this is that ML estimators are guaranteed to be unbiased and asymptotically 

efficient [14,15]. Therefore, for large data sets one can be confident that the ML 

estimator approximately satisfies the Cramer-Rao Lower Bound (CRLB) ensuring that, 

asymptotically, no unbiased estimator will achieve a better performance than a ML 

estimator. 

With reference to Figure 2.4 let us assume that the spectra of noise processes 

S (I) and S (I) are known for the purposes of the initial discussion. In this case 
nxnx nyny 

the problem of estimating the transfer function from input-output data involves only two 

unknown variables and these are the FRF H(j) and the input spectrum 5xx(j) since the 

output spectrum 5JY(j) can be inferred from the knowledge of H(j) and 5xx(j). It is 

assumed that all the signals are Gaussian and that X(j), N)j) and ~(j) are mutually 

uncorrelated. The assumption of Gaussianity is not very restrictive, since even if the time 

series x(t) is non-Gaussian, then the act of taking a Fourier transform involves linear 

combinations of the data, which, by virtue of the Central Limit Theorem, tends to make 

the Fourier coefficients closer to Gaussian [17]. 

In our probabilistic framework the data vector is represented as a bivariate 

complex Gaussian whose Probability Density Function (PDF) is 

(5.12) 

The spectral correlation matrix can be expressed in terms of the two unknowns, the true 

FRF and the input spectrum, as 

(5.13) 
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If one has a set of N measurement vectors, denoted by 0
11 
(f), and assuming the 

individual measurement vectors to be uncorrelated then the PDF of 0 n (f) is given by 

(5.14) 

In the Maximum Likelihood approach probability density function Pr{0 n (/)} is 

regarded as a function of the unknown parameters and is maximised with respect to 

those unknowns. Since the logarithmic function is monotonic then one can equivalently 

maximise L = log {Pr {0 n (/)}}. Therefore the problem is to solve the following 

equations to obtain the two unknown parameters, 

~=o and 
8H(f) 

8L =0 
8Sxx (f) 

(5.15) 

Taking logarithms of (5.14) leads to the log likelihood function L being written as 

L=-NIog(TC)-Nlog(IR(J)I)--1 (1 )1.fSn(f)HRSn(f) 
R f n=l 

(5.16) 

where R is the adjoint of R(j). The derivative of this function with respect to an 

arbitrary parameter, denoted here as a, can be written as 

aL = 1 2 aIR(J)I{fSn(f)HRSn(f)-NIR(J)I}-_1_fSn(f)H aRSn(f) (5.17) 
au IR(J)I au n=l IR(J)I n=l au 

The ML estimate of a is given by the value that renders this derivative zero, implying 

that 
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In this problem where there are a pair of unknown parameters one needs to solve a pair 

of equations of the form (5.19). These two equations have identical right hand sides so 

the following equation must be satisfied 

(5.19) 

After some algebra this equation reduces to 

(5.20) 

ill which K(f) represents the ratio Sn,n, (f) I . The solutions of this quadratic 
ISn,n, (f) 

equation are 

Sy J' (f)-K(f)Sx x (f)± f{sx x (f)K(f)-Sy Y (f)}2 +4lsx Y (f)1
2 

K(f) (5.21) H(f)= mm mm V mm

A 

mm mm 

2S
YmXm 

(f) 

In order to address the question of which sign to take in (5.21) one needs only to 

consider the limiting cases for K(f). The choice of the positive sign corresponds to the 

TLS solution and represents the solution where L is maximised whereas the negative sign 

indicates a worst case solution, i.e. least likelihood solution. This indicates that the ML 

estimator Hj!) is equivalent to the H/!) estimator with the parameter s equal to K(f). 

Note that whilst the problem was originally defined obtaining estimates for two 

unknowns, Hif) and Sxxif), in fact these two elements decouple, so that the problem of 

estimating the true FRF does not require one to estimate the true input spectrum. Such a 

decoupling is extremely useful but could not be readily justified prior to the above 

analysis. The noise spectra, knowledge of which has been assumed throughout this 

derivation, only enter the solution through the parameter K(f). Thus it is necessary to 

know the ratio of the noise spectra in order to select appropriate value of the parameter 

s, but it is not necessary to estimate the absolute levels of the noises. 
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The observation that the FRF estimators based on TLS and PCA are equivalent 

to ML solutions of appropriate problems is not only of academic interest. The wealth of 

available knowledge pertaining to ML estimators also applies to the TLS and PCA 

estimators in this case. More specifically, it is well known that ML estimators are [14] 

z. Unbiased. 

zz. Asymptotically efficient, that is to say that for large N the ML estimators achieve 

the CRLB. 

zzz. Are distributed according to Gaussian statistics. 

Combining these properties one can conclude that the error associated with the 

ML estimators are approximately distributed as N(O,(T), where d is the CRLB. 

Therefore this analysis also provides a framework within which one can compute 

asymptotic expressions for the variance of such estimators i.e. in addition to the above, it 

can be shown that (see Appendix C) by exploiting the general properties of ML 

estimators an expression for the variance of the Hij) estimator is given by 

(5.22) 
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5.2.4 Performance Assessment of 5150 peA FRF Estimator 

A series of simulation studies have been undertaken to illustrate the results of the 

theoretical analyses presented. These simulations have all been based on estimating the 

FRF of a simple digital system containing two poles and two zeros. In particular the 

poles and zeros were all located at a radius of 0.95, with the poles being located at angle 

of ±n/ 4 and zeros at ±3n/4. The system was excited by Gaussian white noise (with unit 

variance) and the simulated input and output measurements were corrupted using 

independent, additive Gaussian noise. In each trial 1000 realisations of the processes 

were constructed, with the FRF magnitudes being estimated using various methods and 

the means and variances being computed across these realisations. Each realisation 

consisted of 1 million samples and the spectra were estimated using segment averaging 

based on FFTs of 256 samples and employing a Hann window. This regime allowed us 

to compute the mean and variances of the FRF estimators with a high degree of 

accuracy. It should be noted that the phase information contained in the existing and the 

proposed estimators is identical and hence we have not included here any simulations for 

the phase estimates of the FRF. 

Figure 5.2 illustrates the mean of the three FRF estimators: Hl if) , Hl!) and 

HI/if). The measurement noises were unit variance, white and Gaussian. The estimator 

H 1if) yields a biased estimator of the true FRF. Since the input SNR is constant the bias 

in Hl if) is a constant multiplicative factor, which appears as a constant offset on a 

decibel scale. The behaviour of the Hi!) estimator is more complex because the SNR of 

the output measurement varies as a function of frequency, due to shaping effects of the 

system. Consequendy when the output signal level is low, e.g. at frequencies near the 

zeros (like the anti-resonance in the high frequency region of our example FRF) , the 

SNR is correspondingly low and the bias is large. Conversely where the output signal's 

amplitude is large, e.g. at frequencies near the poles (like the resonance in the low 

frequency region of the example FRF) , the SNR is large and the bias is small. In tlUs 

case the estimator Hvif) yields an (almost) unbiased estil11.ate of the FRF. Note Hvif) 

corresponds to HpulfJ or Hsif) with K(f) set to unity, which is the appropriate value 

for this simulation. The small disparities between the theoretical FRF and mean of the 

estimator Hvif) are due to the effect of the window. 
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Figure 5.2 Mean of the FRF estimators; computed using white measurement noise. a}Estimator H1(t), b} 
Estimator H2(t) c} Estimator Hv(t) or HpCA(f) - Theoretical FRF shown as a dotted line, estimator shown 
as the solid line (White, Tan and Hammond). 
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Figure 5.3 depicts the variance of the estimator Hvif) and Hpc-lfJ computed 

across the 1000 realisations of the processes and as predicted by equation (5.22). The 

theoretical prediction can be seen to be good in the region where the SNR is large, but 

the variance is poorly predicted in the high frequency region, where the SNR is low. 

This is a consequence of the approximation for the evaluation of CRLB (Appendix C) 

used in deriving (5.22) becoming invalid. 

The fInal simulation study used coloured measurement noises, the colouration 

being realised by @tering with low order FIR filters. The spectra of the two noise 

processes are shown in Figure 5.4. Figure 5.5 illustrates the behaviour of the three FRF 

estimators H J if) with s ~ K(f) , H2if) and Hsif) whereas the comparison between the 

theoretical and measured variances of the ML estimator is shown in Figure 5.6. In this 

case it is necessary to use the estimator Hsif) (or H w (f)) since K(f)::j:. 1. The general 

behaviour of Hl if) and H 2if) remains consistent, so that H J if) has a large bias when the 

input SNR is low and H 2if) has a large bias when the output SNR is low. Clearly the 

estimator Hsif) remains very nearly unbiased. Once again small deviations from the 

theoretical predictions are due to the fInite window size. The theoretical prediction of the 

variance is quite inaccurate almost over the whole frequency range except for the vicinity 

of the resonance in the low frequency region where the SNR is relatively large. 
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Figure 5.4 Measurement noise spectra. a} Input noise, b} Output noise (White, Tan and Hammond). 
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5.3 FRF Estimation in Dynamical MIMO Systems 

In this section we extend the application of the PCA FRF estimation scheme to 

LTI dynamical MIMO measurement systems. The basic form of multi-channel case 

which has been considered as for the PCA gain estimation problem covered in Chapter 4 

comprises a Two-Input-Single-Output (fISO) system with an output in the form of a 

weighted sum of the inputs, each of which is fIltered through a LTI system. 

Investigations take into account the potential presence of additive measurement noise on 

all signals. The theoretical procedure is developed through a generalised model in the 

form of an EVD of the input-output spectral correlation matrix, the results of which 

have been validated by computational simulations using artifIcially generated signals and 

systems. The components of the eigenvector corresponding to the zero eigenvalue are 

used for estimating the associated FRFs as for the gain estimation procedure detailed in 

the previous chapter. 

For the initial derivations of the eigenvalues, the measured signals are considered 

to be noise-free in order to point-out the existence of a zero eigenvalue. Subsequently, it 

is shown that general computational parameters developed can be appropriately used for 

the cases where measured signals are noise contaminated. This is based on the fact that, 

although parasitic effects lead to the values of the eigenvalues to converge, we can still 

use the dimensions of the relevant eigenvector (associated with the smallest eigenvalue) 

for our proposed transfer function estimation scheme. 

The performance assessments of the proposed method has also been provided 

through direct comparisons with the standard FRF estimators based on the least squares 

approach. The methods introduced in this section can be easily extended to cases where 

the identification of more complex linear time-invariant dynamical systems with similar 

forms of input-output structures is involved. 
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5.3.1 Multi-Input-Single-Qutput Systems 

Figure 5.7 shows the block diagram of a dynamical TISO measurement system 

which forms the basis for the examination of the multi-channel system in this section. 

Based on the corresponding multi-channel PCA gain estimation scheme presented in the 

previous chapter, the model we shall use consists of two stationary random time histories 

representing the original inputs Xl and X 2 filtered through the FRFs Hif) and Hb(f) 

leading to an original output y which is the sum of both above filters' individual outputs. 

In the generic model all the measured signals (Xml' X m2 and yJ are assumed to be 

contaminated by additive measurement noise (nxl' nx2 and ny) which are uncorrelated with 

the input-output signals and each other. 

Xm1 

Ym 

X2 

Xm2 

Figure 5.7 Dynamical Two-Input-Single-Output system with uncorrelated inputs and uncorrelated 
additive measurement noise. 

In order to derive the PCA FRF estimator for the above case the spectral 

correlation matrix we shall use to describe the system based on the measured signals will 

be formed similarly to the one of Section 5.2.2 but this time using three variables (2 

inputs and 1 output) and hence will be of the size 3x3 and given by 

(5.23) 
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The analysis proceeds in the same way as described in Section 4.3.1 which is 

based on the EVD of the measurement covariance matrix although this time the 

statistical information matrix we use is complex owing to the fact that all signals are now 

represented by their Fourier Transforms (FTs). If it is assumed that the measurements 

are noise-free i.e. 

and thus 

X ml =x1 

xm2 =x2 

Ym =Y 

(5.24a) 

(5.24b) 

then it can be shown after some algebra (see Appendix D) that the eigenvalues of the 

above spectral correlation matrix are given by the roots of the cubic equation 

A~2 - ~HJ + 1~x,x, + ~Hb12 + 1~x2x2 +2Re(H;HbSX.J~+~HJ +IHbI
2 
+ l~x,x,Sx,x, -~HJ +IH bI

2 
+ l)Sx,xJ}= 0 

(5.25) 

which reduces to 

(5.26) 

for the special case of uncorrelated inputs. In accordance with the corresponding results 

given in the previous chapter (see (4.41) and (4.42)), it can be clearly seen that for the 

above system input-output configuration there is one zero eigenalue whose 

corresponding eigenvector can be used for deriving the FRF's, relating each input with 

the corresponding part of the output, which follows from the description of the 

proposed SISO FRF estimation scheme given in Section 5.2.2. Therefore we seek to 

define the eigenvector corresponding to the zero eigenvalue, and use the associated ratios 

of its components describing each FRF. In accordance with the frequency domain 

version of (4.46) we get 
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(5.27) 

which leads to the estimators 

(5.28a) 

and 

(5.28b) 

Although the above FRF estimators for the Two-Input-Single-Output system 

have been derived on the basis of the assumption that all measurements are noise-free, as 

described in the previous chapter, these forms can be readily used for the cases where 

measurements are also noise contaminated as long as the corresponding signal-to-noise­

ratios are not too poor i.e. for the cases where noise power is low compared to the signal 

power. This means that for the cases of noise-free measurements, the components of the 

eigenvector corresponding to the zero eigenvalue whereas for the cases of noisy 

measurements, the components of the eigenvector corresponding to the smallest 

eigenvalue is used in the above described forms to derive the FRF's. 

As has already been mentioned in the previous chapter, the least squares 

estimator HI (f) (or its time domain equivalent a l ) can be considered as the optimal 

estimator for uncorrelated-multi-input system configuration when derived on the basis of 

single input-output pairs. Also from (5.28a,b) we can clearly see that for truly 

uncorrelated inputs their cross spectra is effectively zero and thus the PCA estimators 

reduce to the corresponding least squares version. In the next section performance 

assessment of the above estimators is presented through computational simulations on 

artificial systems providing a direct comparison with the standard estimators based on 

the least squares approach. The results verify that even if the inputs are uncorrelated 

when finite lengths of data are involved, the input-input cross spectral estimates are not 

exactly zero and the PCA estimators in general give better results relative to HI (f) . 

93 

Chapter 5 



FRF Estimation Using peA 

5.3.2 Performance Assessment of Tlsa peA FRF Estimator 

Computational simulations have been undertaken in order to assess the 

performance of the Trso PCA FRF Estimator HpCA(f) whose theoretical analysis has 

been presented in the previous section. System FRF's Ha(f) and Hb(f) such as that 

illustrated in Figure 5.7 have been simulated using simple digital systems one of which is 

identical to that used for the statistical assessment study in Section 5.2.4. The second 

artificial model, a low-pass filter, has been chosen to represent a lightly damped system in 

order to allow one to be able to clearly visualise/ compare the potential bias errors on the 

computed FRF estimates. Figures 5.8 and 5.9 illustrate the zero-pole locations of these 

systems on the z-plane. 
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Figure 5.8 Zero-Pole locations of the system representing the FRF Ha(f) in the TI80 system shown in 
Figure 5.7. 
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Figure 5.9 Zero-Pole locations of the system representing the FRF Hb(f) in the TI80 system shown in 
Figure 5.7. 

94 

Chapter 5 



FRF Estimation Using peA 

The model system under investigation has been excited by independent Gaussian 

white noise input signals with variances of 64 and 36 respectively. Two particular cases of 

trials have been considered and these are the noise-free and noise on both input and 

output cases. For the noisy case input and output signals have been corrupted using 

independent, additive Gaussian noise. The corresponding power and cross spectra have 

been estimated using segment averaging based on FFT's of 1024 samples and a Hann 

window of 512 points with no overlapping segments with each realisation consisting of 1 

hundred thousand samples. FRF magnitude and phase responses for the estimators 

HpCA(f), H j (f), H2(f) and Hw(f) have been computed following the above regime. Here it 

should be noted that the peA estimator used is in the form (5.28a,b) described above 

whereas the least squares estimators computed for the comparisons have been based on 

measured input-output pairs and hence represent the SISO equivalent case i.e. in their 

standard forms but considering each pair of input-output signals associated with the 

corresponding part of the system at a time. 

Figures 5.10 and 5.12 illustrate the magnitude estimates of the FRF's Ha(f) and 

Hb(f), respectively, for the noise-free case obtained using the four estimators. Despite 

zero noise levels on the measured signals H2 (f) gives extremely inaccurate results over 

almost the whole frequency range for both filters. The main reason for this is due to the 

fact that this estimator is strongly dependent on the output power spectral density (see 

(3.30» which in the case of the system under investigation is a function of the outputs 

from each digital filter and hence both inputs. Therefore if we compute H2 (f) using the 

first input and the total output, the influence of the second input on the measured output 

will cause a strong parasitic effect as additive output noise and large deviations on the 

estimate compared to the true FRF and vice versa when computed using the second 

input and the total output. In Figure 5.10 this negative effect gets reinforced by the lower 

SNR towards the mid to high frequency region due to the decreasing gain factor of the 

first filter whereas for the FRF estimate of the second filter such as that shown in Figure 

5.12 H2(f) is strongly affected by the shaping characteristics of the first filter which is 

most noticeable in the low frequency region. 

The behaviour of the estimator Hw(f) 1S also quite complex with inaccurate 

behaviour over the whole frequency range but this being less severe compared to that of 

H2(f) in the fIrst filter's estimates although in the case of the second fliter H2(f) and Hw(f) 

give similar results in the low frequency region. Despite being optimal for both input and 
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output noise for the SISO FRF estimation problem as shown in Section 5.2, when 

applied to the multi-input-single-output case of the above form, Hw(/) results in highly 

biased estimates of the FRF's. Again this estimator is dependent on the power spectral 

density of the output (see (3.34)) and although the magnitude estimate obtained using 

this estimator such as that shown in Figure 5.10 can be considered as slightly improved 

compared to that of Hz(/) around the anti-resonance region, there is severe biasing effects 

in the low frequency region of both Figures 5.10 and 5.12 due to the high gain 

characteristics of each FRF in these regions. 

Both Hz(/) and Hw(/) reveal fluctuating bias errors rather than constant offset 

effects, which is related to the variations in the gain factors of the FRF's Ha(/) and Hb (/) 

and hence causing irregular changes in the corresponding SNR's. The magnitude 

estimate of Ha(/) calculated using the estimator HI(/) is relatively good and hence is 

almost unbiased. This is a result of this estimator being a function of both input-output 

cross-spectral density and the input power spectral density (see (3.29)). Theoretically, in 

the case of uncorrelated noise-free inputs the cross spectrum is not affected by the 

second input although the slight variability that can be observed by eye on the HI (/) 

estimator in the high frequency region of Figure 5.10 is mainly due to the input signals 

not being truly uncorrelated as a result of windowing effects and secondarily due to the 

limitation of using finite length data and hence a limited number of windows. The 

estimate of the FRF Hb (/) derived using HI(/) as shown in Figure 5.12 has more irregular 

behaviour in the region corresponding to the resonance frequency of the first filter which 

is again a consequence of the above effects but this time to a higher degree as the larger 

gain factor of the first system in this region makes the input-output cross spectrum 

slightly more dominant on the input power spectral density. In this case it can be clearly 

seen from the Figures 5.10 and 5.12 that the estimator H pcA (/) yields unbiased estimates 

of the FRF's. Note that the PCA estimator is not a function of the output power 

spectrum and consequently its computation is not influenced by the parasitic effect 

induced by the second input. 

Although, theoretically, for uncorrelated inputs the expressions (5.26a,b) defining 

the PCA estimators effectively reduce to HI (/)' as it has been mentioned above the 

estimates obtained using these two estimators are not identical as the result of the input 

signals being slightly correlated due to windowing effects in the computations. We can 

conclude that the extra terms contained in HpcA (/) reduces the random variability errors 

96 

Chapter 5 



FRF Estimation Using peA 

on the estimate as a smoothing operator and hence are beneficial. It should be noted that 

if the input signals are truly uncorrelated these two estimators give exactly the same 

results. 
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Figure 5.10 Comparison of various estimator magnitudes of the FRF Ha(f) of the TISO system illustrated 
in Figure 5.7 for noise-free measurements. 
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Figure 5.11 Comparison of various estimator phase angles for the FRF Ha(f) of the TISO system 
illustrated in Figure 5.7 for noise-free measurements. 
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Comparison of Estimator Magnitudes for Hb(f) 
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Figure 5.12 Comparison of various estimator magnitudes for the FRF Hb(f) of the TISO system 
illustrated in Figure 5.7 for noise-free measurements. 
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Figure 5.13 Comparison of various estimator phase angles for the FRF Hb(f) of the TISO system 
illustrated in Figure 5.7 for noise-free measurements. 
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Figures 5.11 and 5.13 illustrate the phase estimates of the FRF's Hi!) and Hb(f), 

respectively, obtained using four estimators for the noise-free case as defined in the 

above paragraph. We have mentioned in Section 5.2.4 that for the SISO case the phase 

information contained in the least squares estimators and the peA estimator is identical. 

However for the TISO case if there exists some amount of correlation between the input 

signals, phase estimate from the peA estimator may well be different from that of the 

least squares estimators again due to the extra information contained within the terms 

relating to the cross-spectra between both inputs and between the output and the 

remaining input respectively (see (5.26a,b)). Furthermore this behaviour can be easily 

observed with the least squares estimators having a significantly high variability both in 

the low and high frequency regions for the second and the first filter estimates 

respectively whereas the peA estimator being completely unbiased overlapping the true 

FRFs. 

Figures 5.14 to 5.17 show the results of our second simulation study for the case 

of noisy measurement with SNR's of 6 dB for the inputs and 10 dB for the output. It can 

be seen from Figure 5.14 that the magnitude estimates obtained for the first filter using 

HI (f) and HpcA(f) are both biased in the form of a constant multiplicative factor in the low 

to mid frequency region with the HI (f) having higher variability particularly in the high 

frequency region as in the noise-free case. Hz(f) reveals the most inaccurate behaviour 

among the four estimators with the biasing effect reaching high values over the whole 

frequency range except for around the first resonance whereas Hw(f) also yields a severely 

biased estimate but with relatively consistent results particularly in the anti-resonance 

region compared to that of Hz(f). The above observed behaviours of the four estimators 

become more significant for the magnitude estimates of the second filter for the noisy 

case such as that shown in Figure 5.16, this time Hw(f) and Hz(f) giving almost identical 

results with slight differences in the low frequency region. HI (f) and HpcA(f) are again 

biased which appears as a constant offset on a logarithmic scale. As in the previous case 

HpcA(f) has less variability and hence gives more accurate results compared to HI (f). 

Figures 5.15 and 5.17 show the phase estimates obtained for the filters in the case of 

noisy measurements from which it can be easily seen that all four estimators reveal 

similar behaviour with slight variations in their random errors that become more 

noticeable in the regions where corresponding SNRs are low. 
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Comparison of Estimator Magnitudes for Ha(1l 
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Figure 5.14 Comparison of various estimator magnitudes of the FRF Ha(f) of the TISO system illustrated 
in Figure 5.7 for noisy measurements (SNRxm1=SNRxm2=6dB, SNRYm=10dB). 
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Figure 5.15 Comparison of various estimator phase angles of the FRF Ha(f) of the TISO system 
illustrated in Figure 5.7 for noisy measurements (SNRxm1=SNRxm2=6dB, SNRYm=10dB). 
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Comparison of Estimator Magnitudes for Hb(O 
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Figure 5.16 Comparison of various estimator magnitudes of the FRF Hb(f) of the TISO system illustrated 
in Figure 5.7 for noisy measurements (SNRxm1=SNRxm2=6dB, SNRYm=10dB). 

Comparison of Estimator Phase Angles for Hb(O 

_4 '-:--__ -'-:-__ --=-''-:--__ -'-:-__ --=-''-:--__ -''-:-__ --=-' ____ -''-:-__ --=-' ____ -'-__ --' 
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Frequency (Hz) 

Figure 5.17 Comparison of various estimator phase angles of the FRF Hb(f) of the TISO system 
illustrated in Figure 5.7 for noisy measurements(SNRxm1=SNRxm2=6dB, SNRYm=10dB) . 
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5.4 Concluding Remarks 

Applications of PCA for the estimation of FRF's of linear time-invariant 

dynamical systems have been presented in detail which follows our proposed technique 

introduced through the gain estimation problem in Chapter 4. The first part of this 

chapter has covered the PCA FRF estimation problem on a basic linear time-invariant 

SISO measurement system whereas in the second part the application has been extended 

to a generic form of uncorrelated-multi-input system. Both investigations have been 

verified through computational simulations on artificial system for noise-free and noisy 

measured signal cases. 

It has been shown that the use of PCA FRF estimation scheme for a SISO 

measurement system is equivalent to the solution based on the Total Least Squares (TLS) 

approach for the special case of the scale factor s being equal to unity and hence equal 

variance measurement noise on both input and output. Furthermore, it has also been 

shown in the same context that the use of principle of Maximum Likelihood (I\1L) results 

in a generalised TLS procedure in which the scale factor s is replaced by the ratio of the 

power spectra of the measurement noises. When both input and output measurements 

are noise contaminated the use of estimators HpCA(f) (or Hv(f)) and Hw(f) (or Hs(f)) are 

unbiased for the cases of equal variance noise on measured signals and different variance 

noise on measured signals respectively. 

The extension of the proposed PCA FRF estimation procedure to multi-input 

systems works relatively well and demonstrates a significant improvement on the FRF 

estimates compared to that of obtained through the standard methods based on the least 

squares approach. Although the multi-channel PCA estimator is also biased to a certain 

degree for the noisy case, especially the shape of the FRF magnitude is estimated with 

high accuracy and very low variability. Analytical and computational procedures carried 

out has been based on a basic form of Two-Input-Single-Output (TISO) system with 

which in practice can be readily extended to multi channel systems with more complex 

structures of similar form. If the input signals are truly uncorrelated the computational 

expression for multi-channel HpCA(f) reduces to the corresponding Hj(f) although the 

extra terms contained in the PCA estimator has a smoothing effect on both magnitude 

and phase estimates compared to that of H j (f) when there is some amount of correlation 
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between the inputs due to computational errors. Multi-channel FRF estimates obtained 

using the estimators Hlf) and Hw(/) are severely biased over the whole frequency range 

and can be of no practical use for this purpose. 

In the next chapter we introduce the application of PCA for the detection and 

interpretation of non-linearities in measurement systems. In essence, also the upcoming 

application follows the concepts introduced here and in the previous chapter for linear 

systems, however, this time our approach leads us to a form of linearisation of the 

potentially non-linear system under investigation and hence estimating the linear 

equivalent transfer characteristics by analysing the relationships between the eigenvalues 

of the measurement covariance or spectral correlation matrix in the time or frequency 

domains respectively. 
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Chapter Six 

peA FOR NON·LINEAR SYSTEMS 

6.1 Introduction 

In Chapters 4 and 5, the use of PCA in the problem of estimating the transfer 

characteristics of linear time-invariant SISO /MIMO systems has been investigated in 

detail both in the time and frequency domains. It has been shown that in the case of 

uncorrelated additive noise on measured signals, the PCA transfer function estimator 

gives results which make it a useful alternate to the standard estimators originating from 

the least squares approach. 

The aim of this chapter is to investigate the use of PCA for the detection and 

interpretation of system non-linearities with a view to introduce an approximation 

procedure for determining the linear equivalent transfer characteristics. The method 

proposed is assessed both theoretically and through examples involving numerical 

simulations on both memoryless and dynamical non-linearity. In addition, experimental 

investigations have been carried out for the fault diagnosis of a rotating machine in order 

to assess the performance of the proposed non-linearity detection technique on real data. 

In the next section, methods that are proposed for linear equivalent transfer 

function estimation in both time and the frequency domains are presented respectively. 

Section 6.3 introduces the derivation of the Virtual Coherence Function from a different 

viewpoint than that of the conventional approach in the form of a Non-Linearity 

Detection Ratio and referred to as NDR whereas Section 6.4 covers an experimental 

study for the performance assessment of this parameter. Section 6.5 gives a summary of 

this chapter and outlines the concluding remarks. 
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6.2 Linear Equivalent Transfer Function Estimation 

Our main motivation for seeking to develop a linear equivalent transfer function 

estimation scheme using PCA is based on the need to analyze the behaviour of non­

linear systems, which may be come across in various forms in many engineering 

applications, in a generalised and relatively simple way. This originates from the fact that 

every system is non-linear except for some limited operation ranges. The well-established 

linear system theory allows one to understand the behaviours of all linear (time-invariant) 

systems although no such unified results exist to aid the analysis of non-linear systems. 

Unlike the linear case, in general different types of non-linear behaviour require different 

methods some of which may be exact and some may be approximate. 

One commonly used approximate method to deal with a non-linear system is 

based on linearisation. This involves using the gain factor of the non-linear term(s) in the 

vicinity of an operation point as the gain of a linear term. Our proposed approach based 

on PCA also leads to a form of linearisation of the system in the above form through the 

EVD of the input-output covariance (or spectral correlation) matrix when the input is 

stationary random. This is carried out by using the components of the eigenvector 

corresponding to the principal component leading to a system's transfer characteristics in 

accordance with the procedures presented in Chapters 4 and 5. 

It has been shown in our analysis for the SISO linear gain estimation problem 

covered in Chapter 4 that PCA provides an effective approach to its solution through the 

interpretation of the eigenvalues and the eigenvectors of the input-output covariance 

matrix. More specifically, in the cases where the system input-output relationship is 

purely linear and the measured signals are noise-free, there is only one non-zero 

eigenvalue whose value is equal to the sum of the powers of the measured variables and 

the ratio of the components of the corresponding eigenvector determines the associated 

gain factor. Following this result we have also come to the conclusion that for the cases 

where lTleasurelnents are noise contaminated and/or thc input-output rc1ationship is not 

completely linear then both eigenvalues will be non-zero as the result of some part of the 

total variance of the process being contained within the second principal component 

which is orthogonal to the first one by definition. If this potential parasitic effect is not 

dominant over the undistorted/linear behaviour of the system under investigation, then 
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one would expect a great difference between the numerical values of the eigenvalues and 

the gain estimate obtained using PCA through the above procedure will be a good 

approximation to the system's transfer characteristics. This result has been verified by 

simulations for the FRF estimation problem presented in Chapter 5 where the potential 

parasitic effects were assumed to be caused by uncorrelated additive measurement noise 

on the signals. Here, we extend the application of the same result to systems where the 

above parasitic effects are caused by non-linearity. 

In the first part of this section the method proposed has been applied to a system 

with memoryless cubic non-linearity. In the second part, a dynamical system has been 

considered with a well-established form of non-linearity (Duffing's Form) leading us to 

the use of the method in the frequency domain through Fourier based transformations. 

In each case the theoretical results have been verified through computational simulations 

for the estimation of the transfer characteristics of the associated system for varying 

some key parameters such as the variance of the input excitation and the coefficient of 

the non-linear term. 
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6.2.1 Memoryless Non-Linearity 

In this subsection we consider the problem of estimating the linear equivalent 

gain of the system whose input-output relationship is of the form 

y=ax+b:x! (6.1) 

With reference to the SISO PCA gain estimation procedure presented in Chapter 4, let us 

recall the form (4.2) defining the linear transformation of the principal components to 

the measured variables but this time substituting the noise-free input-output 

measurement vector X = [x y Y for the original variables. If we expand this 

transformation in accordance with (4.3) and (4.4) we get 

(6.2a) 

(6.2b) 

and hence for the equivalent linear system the gain relating the output to the input 

through the principal component is given by the ratio 

From this result it is logical to conclude that if a large proportion of the total power of 

the whole process is represented by the principal component the ratio given above can 

be considered, in some sense, as a good approximation to the system's actual gain 

characteristics. This form of linearisation applied to the memoryless non-linear SISO 

system given above allows us to reduce the dimensionality by transforming the 

measurement vector x representing the set of original variables, into each one 

dimensional index Zi (each principal component) i.e. by multiplying both sides of (4.2.) 

with T=TT from left and expanding we obtain 
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So that each component is a linear combination of those parts of the original variables 

weighted according to the variability in each original axis. As before, the solution to the 

problem of determining the principal components of the measured variables can be 

obtained analytically from the EVD of the measurement covariance matrix as follows: 

The computation of the noise-free variance-covariance matrix, 

for the input-output form given by (6.1), involves the fourth and the sixth moments of 

the input signal. Note that the central moments for the Gaussian probability distribution 

are given by [2] 

if n is an odd integer (6.4a) 

m2n = Ix 3 x 5 x ... x (2n -1). (72n for n = 0, 1,2,3, ... (6.4b) 

where 0- denotes the standard deviation of the variable. Therefore if it is assumed that 

the input signal of the above system is a Zero-mean Gaussian random variable then from 

the relationships (6.4a,b) one can easily obtain 

(6.4c,d) 

Using (6.4c,d), the theoretical noise-free input-output covariance matrix can be derived as 

(6.5) 

and it can be shown after some algebra that its eigenvalues are 

whose corresponding eigenvectors can be computed accordingly. 
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In an attempt to assess the performance of the method numerically, theoretical 

curves derived from (6.1) have been plotted against the gain estimates obtained from the 

EVD of the input-output covariance matrix estimate using a stationary random 

(Gaussian white) excitation for varying input variance and the coefficient of the non­

linear term, b. The LHS plot in Figure 6.1 shows the curve (6.1) for the case of a=3 and 

b=O.l with the gain estimates for the input variances 0.1 and 9, respectively. As can be 

seen, when the input variance is low the system is completely dominated by its linear 

behaviour and the peA gain estimate gives the result equivalent to the slope of the linear 

part of the theoretical curve i.e. the coefficient of the linear term being approximately 

equal to 3 which can also be verified from the eigenvalues and the eigenvectors calculated 

as 

and 

t =[0.31] 
I 0.94 

& t =[0.94] 
2 -0.31 

However when the input variance is increased to 9, despite the coefficient b still being 

relatively small compared to the coefficient a, the non-linear effect within the system 

becomes more significant and the peA gain estimate also increases to around 6.5, 

tending towards a linear equivalent slope describing the behaviour of the part of the 

curve for large x in which case the eigenvalues and the eigenvectors have been computed 

as 

A, = 344 & /t 2 1 .14 

and 

t =[0.15] & t = [ 0.98 ] 
I 0.98 2 - 0.15 

Figure 6.1 RHS illustrates the corresponding results for the case of a=3 and b=l with the 

gain estimates for the input variances 0.1, 1 and 9. Again, as can be clearly seen, the 

influence of increasing the input variance results in the increase of the gain estimate 

obtained using peA due to the non-linear effect being less dominated by the linear part 

and hence the slope of the eigenvector corresponding to the principal component 

tending towards the behaviour of the theoretical curve in the asymptotic region. 
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Figure 6.1 Comparison of (6.1) for a=3, b=0.1 and input variances 0.1 & 9 (LHS plot) and for a=3, b=1 
and input variances 0.1, 1 & 9 (RHS plot) with the corresponding PCA gain estimates. 

As covered in detail in Chapters 2 and 3, the principle which is widely used in 

problems that are involved with error minimisation and/ or statistical estimation is known 

as the method of least squares. In order to apply this technique to the above problem in 

terms of determining the optimum equivalent linear gain (in the least squares sense) one 

can define a cost function for the error distance between the actual output of the system 

given by (6.1) and its least squares estimate (LSE), to be minimised in accordance with 

the standard procedures described in Chapter 3. 

The optimisation landscape for this procedure is depicted in block diagram form 

in Figure 6.2 where x is the original input, y is the original output, y is the LSE of the 

system output and e is the deviation between the actual output and the estimate that is to 

be minimised. It can be clearly seen from this diagram that the error distance is given by 

e=y-y (6.7) 

where y = G LSE X and G LSE is the gain obtained from least squares method. Substituting 

ax+b:x! and C LSE into (6.7) we get 

e= ax+b:x!-CLSEX (6.8) 

and form a cost function such that 

2 1 ~ 2 1 ~ ( 3 ) 2 J=E[e ]~- L.J(e) =- L.J\Qx+bx -GLSEx 
N ;; 1 N ;; 1 

(6.9) 

which can be expanded and rewritten as 
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(6.10) 

and after some algebra it can be shown that (assuming Gaussianity of x) 

(6.11) 

Above expression is a quadratic function of the parameter CLSE' and its minimisation can 

be obtained from the solution of 

~=o 
dG LSE 

and after some algebra one can obtain (6.12) as the least squares linear approximation to 

the system gain i.e. 

GLSE =3ba~ +a (6.12) 

In order to compare the theoretical results obtained usmg peA and LSE 

techniques we have calculated the gain estimates using the matrix given by (6.4) and the 

expression given by (6.12) respectively for the values of the input variance in the range 

0.1 to 10 and plotted against each other such as that shown in Figure 6.3 for the cases of 

b is 0.1 (LHS plot) and 1 (RHS plot) respectively. Within the [0.1,1.0] variance range of 

the input excitation, i.e. when the influence of the non-linear term is much smaller 

compared to the influence of the linear term contained in the system descriptor function, 

peA and LSE gives almost exacdy the same results. However the results obtained for the 

[1,10] variance range of the input excitation show that if the effect of non-linearity is 

increased the two methods start to give significandy different results with the noticeably 

lower values of the LSE method compared to that of peA. 
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Figure 6.2 Schematic diagram of the optimisation landscape for linear equivalent gain estimation using 
LSE. 
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Figure 6.3 Comparison between the slopes representing the gain estimates using PCA and LSE for 
varying input variance for a=3 & b=O.1 (LHS plot) and for a=3 & b=1 (RHS plot). 
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6.2.2 Dynamical Non-Linearity 

Here, we extend the application of our proposed approach presented in the 

previous section to the frequency domain for the analysis of a dynamical non-linear 

system. The equation of motion for a single-degree-of-freedom (SDOF) system that 

exhibits a classical non-linear behaviour is the modified form of the Duffing's Oscillator 

x+2~aJox+(aJ~ +cx2)x=aJ~F(t) (6.13) 

with cubic non-linearity contained in the stiffness term, which will be used in this part of 

our study in order to represent the characteristics of the model system whose Simulink 

block diagram is given in Figure 6.4. In the above expression, x is the displacement, ~ is 

the viscous damping coefficient, aJo is the undamped natural frequency (for the linear 

equivalent form) and P(t) is the excitation force. Our motivation is, as in the case of the 

linear equivalent gain estimation problem, to try to establish a method for the 

identification of the system characteristics statistically, using the relationship between the 

measured input and the measured output data when the system is excited by a Gaussian 

stationary random process. The SISO PCA linear equivalent FRF estimation procedure 

which we will follow is based on the EVD of the input-output spectral correlation matrix 

such as that described in Chapter 5 leading to the estimator HpCA(j) given by (5.8). The 

effects of non-linearity on the FRF computations of the above typical system have been 

investigated using the existing and the proposed estimators through simulations by 

varying some key parameters such as the variance of the excitation force and the strength 

of the nonlinearity through the constant factor c. In essence, three extreme cases 

involving various combinations of noise and non-linearity effects have been considered 

for the performance assessment procedures and for each case magnitude and phase 

responses of the FRF estimators H J (j), H 2(j), Hw(j) and HpCA(j) have been calculated. 

Power and cross spectral densities have been estimated using 200 seconds long input 

(force) and output (acceleration) data sampled at 100 sps (samples per second) with 512 

point Hann window zero padded to 1024 points and Fourier transformed. The 

undamped natural frequency of the system has been set to 5 Hz and the damping 

coefficient has been set to 0.05 to ensure that the resolution at the resonance frequency is 

sufficiently fine. 
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Figure 6.4 Simulink block diagram of the Duffing's Oscillator given by equation (6.13) . 

Figure 6.5 shows the results obtained for the case of zero non-linearity and noise­

free case. Clearly, FRF magnitude and phase estimates obtained using H l , H 2, H pCA and 

Hw give the same results over the whole frequency range as expected in accordance with 

the results from the simulations presented in Chapter 5 for the comparison of these 

estimators on a linear time-invariant (LTI) system. System response is typical of a linear 

time-invariant SDOF behaviour with resonance around the undamped natural frequency. 
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Figure 6.5 Comparison of various FRF estimator magnitude (LHS plot) and phase (RHS plot) responses 
of the system described by (6.13) for zero non-linearity and noise-free case. 
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The second case we have considered is a high level of non-linearity with noise­

free measurements. Note that, also an increase in the system excitation reinforces the 

significance of any potential non-linearity in the system response as well as the increase in 

the coefficient of the non-linear term itself. When both the non-linear coefficient (&=10) 

and the input variance is high (equal to 100), the estimates of the equivalent FRF 

magnitudes obtained using various estimators give noticeably different results such as 

those shown in Figure 6.6. As has already been mentioned previously all of the above 

estimators contain identical phase information and hence it is the magnitude estimates 

that are of primary interest in order to give a direct comparison between their 

behaviours. 

The estimators Hl and H 2 are significantly different relative to the other 

estimators in the low and the high frequency regions respectively. The behaviour of H p CA 

and Hw can be considered most accurate over the whole frequency range if we take the 

FRF curve of the equivalent linear system (Figure 6.5) as a reference. Also it is interesting 

to observe that all of the estimators indicate some systematic irregularity on both the 

magnitude and the phase responses at a frequency that is approximately a multiple of the 

first resonance i.e. possibly a harmonic of the non-linear resonance. Assuming that the 

actual system response tends to increase and/or change around this frequency, the 

magnitude estimate derived from H2 reflects this behaviour most clearly. Considering its 

robustness for LTI transfer function estimation, the performance of Hl in the low 

frequency region, in particular around the first resonance, is surprisingly poor again with 

reference to the linear equivalent FRF given in Figure 6.5. 
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Figure 6.6 Comparison of various FRF estimator magnitude (LHS plot) and phase (RHS plot) responses 
of the system described by (6.13) for high non-linearity, high input variance and noise-free case. 
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For the case of high non-linearity, high input vanance and nOlse (input 

variance=4 and output variance=l) on both input and output (Input SNR=14 dB and 

Output SNR=18dB), the FRF magnitude estimate curves derived in Figure 6.7 using 

various estimators reveal major differences. At low frequencies especially around the 

resonance, the magnitude estimate obtained using Hl is much lower compared to those 

of HpcA, Hw and H2 whereas in the mid and high frequency region H2 gives 

overestimated results compared to HpCA' Hl and Hw as in the previous case but in a more 

amplified fashion. Despite this we have some amount of additive measurement noise on 

both the input and the output, due to the gain characteristics of this system especially in 

the mid to high frequency region output noise becomes dominant and hence the 

behaviour of H2 is understandably poor in this region. However compared to the 

previous case (high non-linearity & noise-free) the magnitude estimate obtained from Hl 

is almost identical except with higher variability over the whole frequency range. 

Considering the overall results from the three extreme cases, the behaviour of H pCA and 

Hw may be interpreted as more consistent in terms of statistical reliability when the 

measurements are violated by noise contamination and the system is highly non-linear. 

Comparison of Estimators Magnitudes C~arison of Estimator Phase Responses 

H1 , Hpca. Hw 
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Figure 6.7 Comparison of various FRF estimator magnitude (LHS plot) and phase (RHS plot) responses 
of the system described by (6.13) for high non-linearity, high input variance and noisy case, 
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6.2.3 Discussion of Results 

In view of the analytical and numerical results presented in this section we can 

conclude that peA linear equivalent gain/transfer function estimation regime offers a 

logical and consistent interpretation to the above problem and leads to a form of 

linearisation of the system. This regime gives results that differ from those obtained by 

the standard least squares optimisation technique especially for the cases of noisy 

measurements with high non-linearity. For the memoryless non-linear system, in the case 

of the amount of the non-linear effect in the system descriptor function being much 

smaller than that of the linear effect, the peA gain estimates obtained results in an 

approximation to the slope of the linear region in the input-output curve of the system 

whereas if the amount of the non-linear effect is increased the estimates tend to give the 

line with a slope best-fitting the associated asymptotical part of the same function. The 

increasing trend of the slope of the first principal component as the non-linear effect is 

increased is an indicator of the consistency of this estimator showing that its results lead 

us to reliable approximations to the system's linear equivalent behaviour not only widUn 

a locally limited input excitation region but over the whole potential operation range. For 

the dynamical non-linear system, FRF estimates obtained using the peA approach give 

consistent results with reference to the FRF of the equivalent linear system over the 

whole frequency range, being more robust to additive measurement noise compared to 

the estimators H j and H 2 . In contrast with the conventional describing function 

approach, the main advantage of this approximate signal-based method can be 

considered to be its flexibility in terms of being able to be applied simply to any input­

output data pairs without the requirement of prior knowledge/assumption of the form of 

the non-linearity/input excitation of the system. 
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6.3 Non-Linearity Detection 

In this section we will extend the linear equivalent transfer function estimation 

procedures described above based on PCA to develop a virtual coherence function 

which can be used to detect potential non-linearities within a system and/or between 

signal pairs. 

As has already been mentioned in Chapter 2, the ordinary coherence function 

(OCF) given by the expression (2.10), is a measure of the degree of linear association 

between two signals. It is a function of frequency with values between 0 and 1 that 

indicates how well a signal (which may be the input) corresponds to another signal 

(which may be the output) at each frequency. With reference to Figure 2.4 given Xm and 

Ym as the measured input and the measured output time histories respectively, expanding 

the transformation of principal components to the measured variables defined (6.2a,b) 

we obtain 

where x~ is that part of xm that is linearly related to ZI; 

X~ is that part of xm that is linearly related to Z2; 

y~ is that part of Y m that is linearly related to ZI; 

y~ is that part of Y m that is linearly related to Z2' 

(6.14a) 

(6.14b) 

leading to the virtual TITO process in the time domain illustrated in Figure 4.2. From the 

above relationships, the variance of the PCA interpretations of the measured signals can 

be simply written as 

Var[Xm] = Var[x~] + Var[x~] = tl21 Var[zl] + t(2Var[zz] 

Var[y m] = Var[y~] + Var[y~] = til Var[zl] + ti2Var[z2] 
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i.e. in terms of the sum of the variances of those parts of each signal related to the first 

and the second principal components. In Chapter 2, it has been shown that with the use 

of PCA an original set of correlated variables are linearly transformed into a set of 

uncorrelated variables, the so called, principal components where the first components 

accounts for the maximum proportion of the total variance, second component accounts 

for the maximum proportion of the remaining variance and so on. It has also been 

shown that the sum of the eigenvalues of the measurement covariance matrix of interest 

is equal to the total variance (power) contained in these original variables and each 

corresponding eigenvector represent the direction of the variability of each component. 

Therefore in accordance with the procedures introduced in Sections 5.2.1 and 5.2.2, the 

frequency domain version of the above relationships can be logically derived as 

S, +S2 =ltll·Sz,+lt1212.Sz2 
Xm Xm 

S, +S, =lt2l·Sz, +lt2l·sz, 
Ym Ym 

(6.16a) 

(6.16b) 

in terms of the parts of the actual signal power spectral densities, virtual signal power 

spectral densities and the magnitudes of associated components of complex eigenvectors 

where SZI and SZ2 are effectively the first and the second eigenvalues of the spectral 

correlation matrix given by (5.5). Furthermore, in view of the interpretations given above 

we can conclude that the output power of the actual non-linear process consists of two 

main parts which can be defined as 

1. Output Power due to the Primary Virtual Input, 

(6. 17 a) 

11. Output Power due to the Secondary Virtual Input, 

S, =lt2l·Sz 
Ym 1 

(6.17b) 

This means that the linear association between the output power due to the primary 

virtual input and the output power due to the secondary virtual input can also be 

considered as a coherence function linking these signals through the fraction o(Ym that is 

linearly related to X m,. More specifically, the ratio between the primary output power and 

the total output power is effectively the virtual coherence function linking the measured 

system outputYm and the primary virtual signal Z1' the so called first principal component. 
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Here this parameter forms an alternative notion in terms of the detection of potential 

non-linearity which can be appropriately interpreted as a Non-Linear Detection Ratio 

(NDR) and is given by 

(6.18) 

It should also be mentioned that when the effect of potential non-linearity is low 

compared to that of linearity in the original process the difference between the 

eigenvalues will be high whereas for the cases in which non-linearity becomes less 

dominated by the linear effect this difference will tend to decrease and hence the two 

virtual processes will be required to be treated as contributing to equivalent amount of 

the total power rather than being considered as primary and secondary. It is clear to see 

that although the above result has been obtained considering the measurement data as 

input-output pair of a system, the form of NDR given by (6.18) can be readily used to 

investigate the linear association between any signal pairs since the relative values of the 

eigenvalues and the eigenvectors of the spectral correlation matrix of interest will lead to 

a direct indication of the significance of non-linearity between these signals. In fact 

application of this result is shown through our experimental study presented in Section 

6.4 demonstrating that the use of NDR on the output signal pairs of a rotating machine 

for fault diagnosis is useful in terms of the detection of fault induced non-linearity. 

For the performance assessment of the proposed parameter relative to the 

conventional OCF, computational simulations have been undertaken on the SDOF 

Duffing system covered in Section 6.2 whose input-output relationship is given by (6.13). 

As before, stationary random signals have been used to represent the input excitation and 

additive measurement noise. Power and cross spectral densities have been estimated 

using the exact procedure described in Section 6.2.2. OCF curves have been derived 

from the expression (2.10) whereas for ND R the corresponding spectral correlation 

matrix have been formed using the input-output power/ cross spectra and the expression 

(6.18) have been derived from the EVD of this matrix. 
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Figure 6.8 Comparison of NOR and OCF for the case of purely linear noise-free measurements. 

Figure 6.8 illustrates the comparison between the NDR and the OCF for the 

purely linear case (i.e. the non-linearity coefficient & is set to zero with the input variance 

set to 10) and noise-free measurements. NDR and OCF curves give almost exacdy the 

same results overlapping each other, both being equal to unity over the whole frequency 

range. 

The results of the second case is given by Figure 6.9 for which the measurements 

are still noise-free but this time non-linearity is introduced by setting & to 10 and input 

variance to 100. NDR and OCF curves have similar behaviour although they are not 

identical. In the low frequency region especially around the resonance of the system, 

NDR's dip gets much narrower compared to that of OCF. Below the resonance 

frequency OCF gives noticeably lower results than NDR, which appears like a biasing 

effect increasing towards the resonance frequency. In the mid frequency region there is a 

significant dip in both curves which coincides with a frequency that is approximately 

equivalent to the multiple (harmonic) of the first resonance frequency and is associated 

with a second non-linear resonance region. As can be remembered from the linear 

equivalent transfer function estimation results given in Section 6.2.2, this harmonic of the 

resonance frequency was also detected by various FRF estimators. 
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Figure 6.9 OCF and NOR for the case of high non-linearity and noise-free measurements. 

Figure 6.10 shows the NDR and OCF curves derived for the case of noisy 

measurements (input and output SNRs 20 dB and 18 dB respectively) and the same 

amount of non-linearity (with & equal to 10 and the input variance equal to 100). Due to 

the shaping effects of the system causing noticeably different SNR's in the low and the 

high frequency regions, results obtained for this case vary dramatically compared to those 

of the previous equivalent non-linear case with no noise. Although in the low frequency 

region the narrow behaviour of NDR is still obvious, towards the high frequency region, 

as the gain characteristics of the system decreases estimates for both parameters are 

severely affected by the noise with results approaching nearly zero. In addition, NDR has 

less variability in the low frequency region compared to OCF. 
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Figure 6.10 OCF and NOR for the case of high non-linearity and noisy measurements. 
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The above results show that the EVD of the measured input-output spectral 

correlation matrix of a non-linear system leads to the direct indication of the existence of 

non-linearity. In particular the proposed ratio NDR is useful for measuring the degree of 

linear association between the input and the output and it can be considered as an 

effective alternative to the OCF although its performance is degraded in the presence of 

measurement noise. In the next section the application of the above procedure to signal­

based fault diagnosis of rotating machinery is studied experimentally through the use of 

output signal pairs. 
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6.4 Fault Detection in Rotating Machinery 

It is inevitable that faults occur during operation of rotating machinery that may 

damage or totally destroy the system. One of the most important areas of interest in 

condition monitoring of rotating machinery is that of vibration. Non-linear distortions of 

a vibrational signal can be used as a very sensitive indicator of damage and/or faults 

occurring within a rotating system. Despite the fact that, even in the absence of any form 

of faulty condition, signals from such machinery exhibit inherent quadratic non-linearity 

due to unbalance of the rotating part(s), the overall effects of nonlinear distortions on the 

measured signals get even more complex when faults exist. 

It is possible to detect and locate major faults such as cracked shafts, shaft bow, 

rub condition and mass unbalance by the measurement and analysis of the vibration of 

rotating machinery. Today, signal-based monitoring systems for fault diagnosis are widely 

used as the result of recent developments in condition monitoring technologies. These 

techniques are most useful when it is impossible to model the transfer characteristics 

between the input(s) and output(s) of the system under investigation. 

The aim of this section is to assess the practical applicability of our proposed 

method based on a non-parametric fault diagnosis approach using PCA whose detailed 

description has been given in the previous section. More specifically, the use of NDR on 

a real-world blind fault detection problem has been studied on a multi-output 

measurement system. Experimental investigations have been carried out on a compact 

model of a rotating machine, such as that shown in Figure 6.11, which simulates a 

number of categories of lateral shaft vibration. The rotor kit could be set up in various 

configurations in order to simulate a variety of machinery conditions e.g. mass 

unbalance, preload, shaft rub etc. although our measurements and analyses have focused 

on the detection and interpretation of shaft rub condition. 

In an attempt to detect the existence of non-linearity induced by rub condition 

introduced within the rotor kit, PCA has been carried out on the measured XY Probe 

outputs data in accordance with the procedure described in the previous section. NDR 

curves have been computed for various cases and compared to the curves derived using 

the OCF method. 
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Our motivation here is that by analysing the degree of linear association between 

output pairs over a certain frequency range for various cases we can establish an indicative 

knowledge on the faulty condition of the machinery operation. The experimental layout 

is given in Appendix E. The model kit measures the vibration characteristics with 

proximity transducers positioned in purpose-built sensor mountings. The two probes ex 
and Y) are used in order to monitor the relative displacements in the x and y axes. The 

motor speed control of the rotating machine is a feedback controller which uses pulses 

from a probe observing a 20-notch wheel mounted on the rotor kit. The speed control 

compares this signal to the set-point signal and the difference is used for the adjustment 

of the motor voltage in order to maintain the set speed. A rub condition of the desired 

degree can be obtained by adjusting the screw in the rub housing until the screw is in 

contact with the shaft. Four different pairs ex and Y probes) of data sets, each being 10 

seconds long, have been acquired by a frequency analyzer at a sampling rate of 16384 sps 

in order to represent various operational speeds and faults combinations and used for 

further post-measurement analysis and these are: 

1. 250 RPM with no Rub Condition 
11. 250 RPM with moderate Rub condition 

111. 2500 RPM with no Rub Condition 
lV. 2500 RPM with moderate Rub Condition 

Bua 

AdJulbible SBle SlIpport 

Sately COVllr 

Keyphalore f>to~ 

Mounung BIDCk for 
Probe and Rub Screw 

8e,rfIIg Siock 
I 

Figure 6.11 Main components of the rotor kit (Bently Nevada). 
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Spectral densities of the acquired time histories have been estimated usmg 

segment averaging technique based on 8192 point Hann window zero padded to 16384 

points and Fourier transformed subsequently. In Figure 6.12 each single window size of 

time records from the XY Proximity Probe outputs are given for the case of 250 RPM 

rotational speed and no fault condition whilst their corresponding PSDs are shown in 

Figure 6.13. As it can be clearly seen, time domain signals representing the relative 

displacements are periodic and the majority their energy is concentrated below around 

200 Hz. Closer examination on the PSD plots reveal that the peak amplitudes of the 

frequency components occur at approximately every 4 Hz i.e. the fundamental frequency 

and it harmonics corresponding to the 250 RPM rotational speed. OCF and NDR curves 

(Figures 6.14) have almost exactly the same behaviour for the lowest frequency region up 

to 25 Hz where the signal levels are highest. Within this region there is an almost 

completely linear association between the signals that suddenly starts decaying and 

reaches its minimum values from 100 Hz onwards at irregular intervals in both curves 

although in the OCF plot these dips are more noticeable. This significantly low degree of 

linearity between signals over the major proportion of the frequency range, even for the 

case of no rub condition, is due the inherent non-linearity in the vibrational 

characteristics of rotating machinery. Both plots reveal different results in the mid to 

high frequency region. In general, the OCF curve has a higher variability and 

demonstrates a lower linear association between signals whereas for the NDR the 

variability is relatively low and linearity is higher. This less pessimistic behaviour of NDR 

can be interpreted as a more realistic representation of the non-faulty condition. 
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Figure 6.12 X-Probe (LHS) and V-Probe (RHS) output time histories for slow speed and no rub 

condition. 
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Figure 6.13 PSO estimates of the X-Probe (LHS) and V-Probe (RHS) output time histories shown in 
Figure 6.12. 
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Figure 6.14 OCF and NOR plots for slow speed and no rub condition. 

Figure 6.15 shows the signals for the case of 250 RPM and moderate rub 

condition. Signals are still periodic but this time with significant non-linear distortions. 

Again, the main proportion of the energy is approximately between 0-200 Hz region (see 

Figure 6.16). Due to the introduction of rub condition, the overall linear association 

between the signals is lower compared to the previous case for both OCF and NDR 

such as that shown in Figure 6.17. Curves show different behaviours over the whole 

frequency range other than very low frequencies. Most significantly, with the 

introduction of the fault there is an isolated highly linear region appearing somewhere 

around 180-200 Hz which is broader and of larger magnitude in the NDR plot. This 

linear region corresponds to the relatively low energy section of the spectra. OCF seems 

to be severely biased in general but this time with slightly lower variability. Also for this 

case NDR shows relatively lower non-linear effect compared to OCF although overall it 

is highly non-linear considering its corresponding non-faulty case. 
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Figure 6.15 X-Probe (LHS) and V-Probe (RHS) output time histories for slow speed and moderate rub 
condition. 
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Figure 6.16 PSO estimates of the X-Probe (LHS) and V-Probe (RHS) output time histories shown in 
Figure 6.15. 
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Figure 6.17 OCF and NOR plots for slow speed and moderate rub condition. 
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In Figure 6.18, the outputs are given for the case of 2500 RPM rotational speed 

and no rub condition, and their PSDs are shown in Figure 6.19. Frequency contents of 

the signals have slightly increased showing spiky periodic behaviour. High amplitudes in 

the PSD plots appear around every 40 Hz corresponding to the fundamental frequency 

and the harmonics associated with the rotational speed. Time histories reveal a low­

frequency amplitude-modulated almost periodic waveform with minor non-linear 

distortions. OCF and NDR (Figure 6.20) have similar fluctuations although OCF gives 

lower results over the whole frequency range. In contradiction with Cases 1 and 2, there 

is no almost continuous completely linear region however at discrete frequencies 

associated with the harmonics coherence clearly reaches maximum values for both 

parameters. From 100-200 Hz region upwards curves get significantly different with the 

NDR revealing much less non-linear behaviour. Also the variability of NDR is 

considerably higher in the mid to high frequency region. 
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Figure 6.18 X-Probe (LHS) and V-Probe (RHS) output time histories for fast speed and no rub 
condition. 

Power Spectral Density of X-PROBE 
lO'.-----~~~-~~~~-~~--, 

10./i O!---;O;;,OO'-----;;200=--;;O;300;--;'=OO ---;0;500;;--;.=00 ~70;;-0 ---,800;;;;;------;C900~, 000 

Frequency (Hz) 

10' .----~~~p-owec-S~P.ctn>-'~"'"""-OfY~.P-ROB~E _~~--, 

10£OL-"""1OO'--'200"CC---'"-,OO'---',=-OO --c-'500~800~-='7ooCO--800=--CC900~'000 
FrecpJency (Hz) 

Figure 6.19 PSD estimates of the X-Probe (LHS) and V-Probe (RHS) output time histories shown in 
Figure 6.18. 
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Frequency (Hz) 

Figure 6.20 OCF and NOR plots for fast speed and no rub condition. 

Time histories from the proximity probe outputs for the case of 2500 RPM 

rotational speed and moderate rub condition are shown in Figure 6.21. Time domain 

signals representing the relative displacements reveal the same low-frequency amplitude­

modulated almost periodic waveforms with much higher non-linear distortions 

compared to the corresponding non-faulty case. The significance of these non-linear 

distortions are more noticeable in the time record obtained from the Y-Probe output 

whereas the low-frequency modulation behaviour is more noticeable in the time record 

obtained from the X-Probe output. In this case, the coherence at the harmonics has 

decreased dramatically for both NDR and OCF (Figure 6.23). The behaviour of the 

computed parameters can be investigated in two separate distinctive regions which are 0 

Hz to 200 Hz and 200 Hz to 1 kHz. Over the whole frequency range the OCF has a 

slight downward shift which can be considered a biasing effect although not as 

significant as in the previous cases. In the low frequency region the linear association 

between two measured outputs and the variability is lower except for the 180-200 Hz 

bandwidth as for the corresponding results of Case 2. This behaviour is believed to be 

rather surprising to occur only when there is a faulty condition and can be used as the 

main indicator of a problematical operation. Note that NDR is broader and higher at this 

linear region as it was for Case 2. In the mid to high frequency region both curves are 

very low down to values within the range 0 to 0.3 with densely packed fluctuations and 

high variability although OCF again gives lower results. 
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Figure 6.21 X-Probe (LHS) and V-Probe (RHS) output time histories for fast speed and moderate rub 
condition. 
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Figure 6.22 PSO estimates of the X-Probe (LHS) and V-Probe (RHS) output time histories shown in 
Figure 6.21. 
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Figure 6.23 OCF and NOR plots for fast speed and moderate rub condition. 
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6.5 Concluding Remarks 

It has been shown that the use of PCA offers a simple and unified approach to 

SISO equivalent linear FRF estimation. The eigenvalues and the eigenvectors of the 

input-output spectral correlation matrix give a direct indication of the existence of non­

linearity within the system. When the input-output relationship is non-linear the 

proposed method leads to a form of linearisation of the system which differs from the 

conventional describing function approach conceptually, but offers a logical and consistent 

interpretation. The relative strengths (eigenvalues) of the principal components is a direct 

indicator of the significance of the non-linearity and the eigenvectors give the features of 

the equivalent linear system following from the results presented in Chapters 4 and 5. 

Simulations show that NDR is useful in terms of measuring the degree of linear 

association between signal pairs, however, its performance is degraded in the presence of 

measurement noise and further work is required in order to eliminate the noise masking 

effects. 

An experimental investigation has been carried out for fault (rub condition) 

diagnosis in rotating machinery in order to assess the applicability of the proposed 

method for non-linearity detection through the analysis of outputs only. Results show 

that OCF and NDR curves vary significantly in various frequency regions for several 

operating conditions and the latter has proved to be an alternate notion in terms of 

revealing the degree of linear association between pairs of data sets obtained from real 

applications. Analysis of the measured output time history pairs show that, when there is 

a faulty condition both OCF and NDR gives a continuous almost linear region between 

180-200 Hz which is broader and higher in the EVD based technique. This interesting 

result can be used as an indicator of the existence of rub condition in rotating machinery 

following further research for its generalisation. 
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Chapter Seven 

DELAY DETECTION USING PCA 

7.1 Introduction 

So far in this thesis, the applications of the principal component method to the 

identification of the transfer characteristics based on the gain or frequency response of 

various forms of linear/non-linear time-invariant systems in the time or the frequency 

domains have been considered through the analysis of the zero-lag covariance (or 

spectral correlation) matrix of input-output signals respectively. 

Our objective in this chapter is focused on the detection of a non-dispersive time 

delay relationship between the two signals using PCA. The method proposed in this 

chapter may also be considered as an extension of the previous procedures in terms of 

generalised linear characterization for input-output relationships although this time 

instead of utilizing the statistical relationships between the measured signals using their 

zero-lag covariance (or spectral correlation) matrix only, we propose an extended time 

domain based approach which considers the EVD of the array of covariance matrices for 

a number of negative and positive time-lag (shift) values. 

It is shown for both noise-free and noisy cases that, PCA, when carried out on 

the array of measurement covariance matrices for a sufficient number of positive and 

negative time-lag values of the corresponding non-dispersive single/multi path time delay 

system, the amount of the delay between the signals can be successfully detected by 

simply observing the behaviour of the series of associated eigenvalues. In the case of 

noise-free measurements the detection procedure gives the exact value of the time delay 

whereas for the cases in which the measurements are corrupted even by very high 
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amount of additive noise only slight deviations of the detection from the actual value 

occur. 

Our work presented here can also be used as a reference by investigators who 

have been using peA for a variety of applications, by means of interpreting their results 

by taking into account the influence of the potential time delay relationship within their 

data sets on the eigenvalues/eigenvectors and/or the principal components. 

In the next section the basis of our approach and its associated mathematical 

derivation are presented showing the fundamental difference between the time and the 

frequency domain analysis in terms of the applicability of the proposed procedure whose 

description is given in Section 7.3 in the context of time delay detection for both single 

and multi path problems. In Section 7.4 a series of computational simulations are 

presented which has been undertaken in order to validate the analytical results and to 

give a direct comparison between the proposed technique and the conventional cross­

correlation method for time delay detection. In the last section a summary of this chapter 

is given with concluding remarks. 
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7.2 Signals with Pure Delay and peA 

We have presented in our previous analyses (see Chapters 4 and 5) that when the 

EVD is carried out on the measurement covariance (or spectral correlation) matrix of a 

linear time-invariant SISO or uncorrelated-multi-input system, if the observations are 

noise-free then there must be at least one zero-eigenvalue. If all eigenvalues are non-zero 

then this is associated with the existence of various parasitic elements such as additive 

measurement noise or non-linear system behaviour (see Chapter 6). It has also been 

shown that in terms of the estimation of transfer characteristics (gain or FRF) the effect 

of relatively low power noise or low non-linearity could be eliminated by choosing the 

components of the eigenvector corresponding to the larger eigenvalue in order to 

approximate the system's gain/FRF characteristics. More specifically, EVD has been 

carried out on the zero-lag covariance (or spectral correlation) matrix of the measured 

variables resulting in the new uncorrelated virtual variables, the so called principal 

components which are ordered according to the amount of their variances. It has been 

shown on the SISO application that for the noise-free and purely linear case when one of 

the eigenvalues is zero, the non-zero eigenvalue gives the strength of its corresponding 

eigenvector which is interpreted as a representation of the transfer characteristics of the 

system under investigation whereas for the noisy and/or non-linear case the eigenvector 

corresponding to the largest eigenvalue can be used accordingly. Subsequendy the 

extension of the above procedure to uncorrelated-multi-input systems have led us to the 

use of the components of the eigenvector corresponding to the zero-eigenvalue 

appropriately in order to derive the transfer characteristics. 

Although the derivations and fundamental principles were introduced in the time 

domain for simplicity, the main part of the above analysis was considered in the 

frequency domain in an attempt to relate our generalised approach to practical 

measurement situations of various engineering applications. In neither of the transfer 

function analysis work mentioned above, the existence of potential time delay between 

the input(s) and output(s) of the corresponding system under investigation was 

considered. It should be noted that even if two signals are identical i.e. completely 

linearly related to each other with the only exception that one of them is a 

delayed/ shifted version of the other, then the above linear characterization will result in 
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misleading results where the EVD of the time domain input-output measurement 

covariance matrix is carried out. This is because the estimate of the covariance matrix 

obtained from the sample populations of an original signal and its delayed version would 

give false information on the second order statistics of the data set which is fundamental 

to PCA. Consequently, this would result in two non-zero eigenvalues whose numerical 

values are relatively close to each other and hence confusing the actual linear association 

between the associated segments of the signals. 

Therefore once again we emphasize that if two signals exhibit a completely linear 

association with each other the only time we get one of the eigenvalues of their 

covariance matrix equal to zero is when this matrix is formed for zero time lag. However 

this shortcoming of the above approach is of no concern if the data is stationary random 

and that the analysis is carried out on the spectral correlation matrix formed through 

Fourier-based transformations in order to estimate the system FRF. This is because once 

the data is linearly transformed into the frequency domain, despite its statistical 

properties are preserved, its shift in time becomes no longer significant in terms of 

correlations between its coherent parts. This is due to the fact that its power (variance) 

representation in the frequency domain is obtained using segments or ensembles that are 

ergodic. 

Mathematically, the above observation can be simply verified on a linear time-

invariant single path pure delay system with input x(t) and output y(t)=x(t-I::,,) where I::" 

denotes the amount of the delay introduced by the system such as that shown in Figure 

7.1. The EVD of the time domain and frequency domain measurement covariance 

matrix can be obtained as follows: In the time domain the measurement vector over N 

samples is given by 

(7.1) 

whose corresponding zero-lag (i.e. 't'=O where 't' denotes time/shift lag) covariance matrix 
will be 

1 N [ x(t) ] R=-L . [x(t) x(t-~)] 
N n=l x(t-~) 

(7.2) 

which can be expanded USing averagmg operator for computations over a sample 
population as 

136 

Chapter 7 



Delay Detection Using peA 

[1.3) 

and rewritten as 

[1.4) 

where (J~ denotes the input variance and Rxx(l1) is effectively the auto-correlation 

function of the input for a time delay of 11. In order to calculate the eigenvalues of (7.4) 

we need to solve 

[1.5) 

which can be expanded as 

(7.6) 

and 

(7.7) 

Hence we can expect the two non-zero eigenvalues 

(7.8) 

from which it can be seen that in general there are two non-zero eigenvalues except 

when 11 = 0 in which case one of the eigenvalues is zero. 

If we carry out the same procedure this time ill the frequency domain the 

measurement vector takes the form (7.9) over the sample realisation index K using the 

Fourier transform (FT) versions of the input and the output given by (7.1) 

(7.9) 
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where X(f5 is the FT of input and Y(f5 is the FT of output being equal to XI.!.(f5 indicating 

that the input has been delayed by ~ and transformed into the frequency domain. Since 

the relationship between the input and the output in the frequency can be written as 

(7.10) including the phase factor in polar form 

Y(f) = e-J27rj
l::.. X(f) (7.10) 

then the estimation of the spectral correlation matrix 

R(J) =[~X< (J) ~yx(J)l 
Sxy(J) Syy(J) 

(7.11) 

can be expanded in accordance with (5.9) to give 

(7.12) 

Similarly, the eigenvalues of (7.12) can be obtained from the solution of 

(7.13) 

which can be rewritten as 

(7.14) 

and after some algebra the eigenvalues are computed as 

(7.15) 
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(7.15) shows that as opposed to carrymg out the eigen-analysis in the time 

domain, if we seek to use the same strategy on the spectral correlation matrix, the 

resulting eigenvalues do not give any useful information on the existence of a delay 

relationship between the signals. Therefore, from the comparison of (7.8) to (7.15) we 

can conclude that for a pure delay system if the input-output data is transformed into the 

frequency domain we would have one zero eigenvalue from EVD of the spectral 

correlation matrix verifying the system's linearity whereas if the same procedure is carried 

out on the zero-lag covariance matrix in the time domain then we would expect to have 

two non-zero eigenvalues although the system is purely linear. However it should be 

noted that if we continue the above procedure for estimating the FRF of the input­

output in accordance with the procedure described from (5.9) to (5.11) in Chapter 5, the 

ratio of the components of the corresponding eigenvectors leads us to the time delay 

information as contained in the phase factor of the transfer function. 

In the upcoming section we show the exact procedure for time (shift) delay 

detection based on this observation. 
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7.3 Method Described 

From the analyses presented in the previous section we can clearly see that if the 

linear time-invariant system under investigation is a pure delay with stationary random 

input, the EVD carried out on the covariance matrix (i.e. using time histories) and the 

spectral correlation matrix (i.e. using FTs of the time histories) would give two different 

results one of which would be misleading in terms of linear characterisation. In view of 

this result we propose that the former case would be utilized in order to apply peA for 

the detection of potential time delay(s) introduced by the system under investigation. 

In an attempt to illustrate the basic form of proposed method let us first consider 

the simple pure delay system with no noise contamination in any of the measured signals 

such as that shown in Figure 7.1 where for a time-lag r the relationship between the 

input and the output can be rewritten as 

y(t) = x(t+ r-Lt) (7.16) 

and the covariance matrix on which the eigenvalue-eigenvector decomposition will be 

carried can be modified accordingly including the time-lag such that 

R=[ l\x(O) l\x(r-I'J.)] 
l\x(r-I'J.) ~(O) 

(7.17) 

where Rxx (0) = E[x 2 (t)] i.e the auto-correlation function of the input which is also 

equal to its variance and can be denoted by (J' 2 ; 

Rxx (r -~) = Rxy (r) = E[x(t)y(t + r)] = E[x(t)x(t + r - ~)] 1.e. the cross-correlation 

function between the input and the output for lag r. 

-~·I,--_~_~-... 
Input, x(t) Output, y(t) 

Figure 7.1 Linear time-invariant single-path-pure-delay system where Ll is the time delay introduced to 
the input. 
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Based on (7.8), we can study the behaviour of the eigenvalues of the input-output 

covariance matrix for the system given in Figure 7.1, analytically. Suppose, x(t) has an 

auto-correlation function of the form 

R () 2 -a!.! 
xx r =(J'x· e (7.18) 

where (J'~ is the signal variance and a is a constant scale factor. Then the input-output 

cross-correlation function of the above system for time lag r is 

(7.19) 

The corresponding eigenvalues of the pure delay covariance matrix between the original 

signal and its delayed version are given by 

~ = (J' ~ (1 + e -a!.-L'l! ) ~ 2(J'~ 
~ (J'2 

x 

A2 = (J'~ (1- e -a!.-L'l! ) ~ 0 
~ (J'2 

x 

for 

for 

for 

for 

(7.20a) 

(7.20b) 

from which we can clearly see that when the time delay is equal to the time-lag one of the 

eigenvalues is zero whereas when the delay tends to infinity both eigenvalues converge 

1 -!.-L'l! 
towards each other. This means that, if the ratio + e! ! of the eigenvalues are plotted 

1- e - .-L'l 

for a series of negative and positive time lags the behaviour of the resultant curve is in 

the form such as that shown in Figure 7.2, indicating the value of the time delay at 

!J.=r. 

Ratio of Eigenvalues 
100r----r---.----.---~____,,-.--_____.-___.__-~-r____. 

90 ~ 
Time Delay & Time-lag "equal" 

80 Ratio goes to Infinity 

70 

60 

50 

40 Time Delay & nme-Leg "diverge" 
Ratio tends to Unity 

30 

10 / 20 

Time Delay & Time-Leg Mdiverge" 
Ratio tends to Unity 

\ 
Figure 7.2 Theoretical eigenvalue ratio of SISO pure delay system. 
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Therefore the delay detection procedure can simply be undertaken by forming 

the input-output covariance matrix in the time domain and computing its eigenvalues for 

a series of positive and negative lags such as that shown in Figure 7.3. We can then 

observe the lag value at which a zero eigenvalue is obtained which would be considered 

as the delay introduced to the input signal. In addition, if the signals are noise 

contaminated then the time lag at which the numerical difference between the 

eigenvalues is largest will give the delay accordingly. 

,= -3 
1 ,,=-2 

I , = -1 

I 
R (, = 0) [ 

POSi~[ 

, = 1 
,,=2 

I ,=3 

[ 
1 1 

] 
Figure 7.3 Array of positive and negative lag input-output covariance matrices to be computed for peA 
Delay Detection Technique. Egienvalues are to be observed in order identify the lag value 
corresponding to the amount of delay introduced on the input signal. 

This application can also be generalised to various forms of multi-path systems 

such as that shown in Figures 7.4 and 7.5. In the first case a single input is @tered 

through two separate pure delay systems ~1 and ~2 to produce the two outputs y(t} and 

z(t}. Similar to the bivariate case presented in the previous paragraph also for this single­

input multi-path system the EVD is to be carried out on the array of 3x3 negative and 

positive lag input-ouptut covariance matrices whose eigenvalues can be observed and this 

time two of the eigenvalues are expected to have one zero-crossing each of which are 

equal to the time delays ~1 and ~2 at the corresponding lag values respectively. The multi­

path input-output covariance matrix for the case in Figure 7.4 can be obtained as follows: 

Forming the measurement covariance matrix for three signals as 
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[

X(t)] 
R = J.-i: yet) [x(t) y(t) z(t)] 

N n=1 z(t) 

(7.21) 

and 

(7.22) 

which can be expanded 

r x'(t) 
x(t)x(t - ~1) x(t)x(t - A,) j 

R = x(t - ~1 )x(t) x2(t) x(t - ~1)XU - ~2) 

xU - ~2 )x(t) xU - ~2)X(t - ~1) x2(t) 

(7.23) 

and rewritten as 

r rr' 
RXX(~l) R~(LI,) ] 

R = RXX(~l) (5'2 Rxx(~l -~2) x 

RXX(~2) RXX(~l -~J (5'2 
x 

(7.24) 

.. ~1 ... Output 1, y(t)=X(t-Ll1) 

.. 
Input, x( t) 

.... 

~I 
~ Output 2, z(t)=X(t-Ll2) 

Figure 7.4 Linear time-invariant multi-path single-input-two-output pure-delay system where ~1 and ~2 
are the time delays introduced to Input x(t) to produce Output 1 and Output 2. 

In Figure 7.5, a variation of the above single-input-two-output multi-path system 

is illustrated where a single output is produced as the sum of the two pure delay filters ~l 

and ~2 and hence a convolutive mixture of the original input is obtained with no 

amplitude weighting (gain) factor. This model can be considered as a simple simulation 

of signal propagation in a dispersive medium. In this case the input-output covariance 

matrix can be derived from 

143 

Chapter 7 



and 

which can be expanded as 

R = ~ ±[X(t)][X(t) yet)] 
N n=! yet) 

Delay Detection Using peA 

(7.25) 

(7.26) 

(7.27) 

and the array of 2x2 input-output covariance matrices will be based on the form 

Input 

x(t) 

~1 

(7.28) 

Output 

y(t)=X(t-~1 )+X(t-~2) 

Figure 7.5 Linear time-invariant multi-path-pure-delay system where ,:1,1 and ,:1,2 are the time delays 
introduced to the input. 

In the next section, computational simulations for the performance assessment 

of the above described technique are presented. Both single path and multi path systems 

have been considered for noise-free and noisy measurements and the delay detection 

results obtained using the eigenvalues of the array of covariance matrices such as that 

defined above have been compared to those from the conventional input-output cross­

correlation technique. 
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7.4 Performance of peA Delay Detector 

In an attempt to assess the performance of principal components method for the 

detection of a potential time delay relationship between signal pairs a nwnber of 

simulation studies have been undertaken. The schematic diagram of the signal generation 

mechanism used is given in Figure 7.6 where a stationary random input is first low-pass 

filtered in order to form a band-limited signal x(t) and zero padded at both ends 

increasing the total sample to allow a shift (time delay) to be introduced and then passed 

through a single or multi path delay system of one of the forms such as that described in 

the previous section (see Figures 7.1, 7.4 and 7.5) producing the corresponding output(s). 

Zero-pole map, impulse response and frequency response functions of the AR(1) 

low-pass filter is given in Figure 7.7. Figure 7.S shows a typical stationary random time 

history and its corresponding auto-correlation function. Signals within the boundaries of 

the model systems under investigation have been considered for both noise-free and 

noisy cases. Noisy cases have been particularly chosen to have very poor signal to noise 

ratios (SNRs) in order to examine the robustness of the method under conditions with 

extreme measurement errors. 

Input x(t) .. L11 r---. ... 
... LP 

Filter L1i .. 
Figure 7.6 Schematic diagram of low-pass filtered and delayed signal for delay detection computations. 

The first simulation study involves a noise-free single-path problem where the 

output signal being delayed by 50 sample points relative to its corresponding input. 

Figure 7.9 LHS shows the signals and their cross-correlation function from which it can 

be clearly seen that the maximum of the correlation function occurs exactly at the time 

lag equal to the delay of 50 points. In Figure 7.9 RHS the eigenvalues of the array of 

covariance matrices and their ratios are plotted against the corresponding time lag values 

verifying that for the covariance matrix computed for the time lag equal to the delay the 

difference between the two eigenvalues reaches a maximwn where one of them equals to 

zero and hence the ratio of the larger one to the smaller one at that point goes to inflnity. 
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Figure 7.7 Zero-Pole Map (top), Impulse Response (bottom-left) and the Frequency Response (bottom­
right) of the AR(1) digital low-pass filter. 

Aulo Cofr"eI,IUon Ft.nctloo of Origi",1 Sgnll 
7or--~-~-~-~----=''''''':~-~-----, 

Figure 7.8 Time history and auto-correlation function of typical stationary random data used as original 
signal for computations. 

146 

Chapter 7 



600 

·200 

~--~.,~~~.,oo~-.~~ --~O--~~~~'~OO --='~--~200 
TmtlUiIl 

Delay Detection Using peA 

! 

l\ 
\ 

\ 
...... -.-............. ..... 

. ~--~.,~,-~,OO~~.~~~O--~~,OO~-'~~~200 _Lo, 

RllioolE~ 

20 

" 

Figure 7.9 LHS: Noise-free original and delayed (50 points) signals and their cross-correlation. RHS: 
Eigenvalues of the array of covariance matrices and their ratios for corresponding time lag values. In the 
top figure, solid and dotted curves illustrate each of the eigenvalues respectively. 

In addition to the above noise-free case Figure 7.10 LHS shows the input-output 

signals of the same single-path system (i.e. output delayed by 50 points) and their cross­

correlation function estimate this time for the case of both signals with high amount of 

noise contamination with SNRs of approximately -5dB. Also for this case the maximum 

of the cross-correlation function detects the time delay with considerable accuracy 

occurring at the time lag value only slighdy lower than 50. The eigenvalues of the array of 

input -output covariance matrices and their ratios are illustrated in Figure 7.10 RHS. It 

can be clearly seen from this figure that although both eigenvalues are non-zero at the 

time lag value of around 50 due to parasitic effects induced by severe noise, the 

difference between the eigenvalues reaches its maximum value and hence the time delay 

has been detected using our PeA-based approach as accurately as the cross-correlation 

method. 
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Figure 7.10 LHS: Noisy version of the signals and their cross-correlation given in Figure 7.9. RHS: 
Eigenvalues of the array of covariance matrices and their ratios for corresponding time lag values. In the 
top figure, blue and green curves illustrate each of the eigenvalues respectively. 

The second set of simulation studies we have considered are for a single-input 

multi-path system such as that illustrated in Figure 7.4, i.e. the output index shown in 

Figure 7.6 is 2. The outputs of the above low-pass f.tlter have been delayed by 50 and 125 

points respectively and the PeA-based delay detection technique applied this time on the 

array of 3x3 input-output covariance matrices formed using the three signals in 

accordance with the form given by (7.21) to (7.23). Figure 7.11 LHS shows the input­

output signals and the cross-correlation estimates of each delayed output with the 

original input signal for the noise-free case. Maximum values of the cross-correlation 

estimates occur exactly at the time lag values 50 and 125 respectively corresponding to 

the time delays introduced on each signal. From Figure 7.11 RHS, it can be easily seen 

that, as expected from our analytical results given in the previous section, this time one 

of the eigenvalues is equal to zero for the time lag values of 50 and another eigenvalue is 

equal to zero for the time lag value of 125. When each of these eigenvalues have zero 

values in turn, one of the other two remaining eigenvalues reaches the overall maximum 

value and hence verifying that the associated input-output pair has a total collinearity. 
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Figure 7.11 LHS: Noise-free original and delayed (50 and 125 points) signals and their cross-correlation 
based on the system given by Figure 7.4. RHS: Eigenvalues of the array of covariance matrices for 
corresponding time lag (x-axis) values, Each of red , blue and green solid lines represent one of the 
eigenvalues. 

Further investigations on the same system are carried out for the case of high 

nOlse on all three signals with SNRs around 1dB. Figure 7.12 LHS shows the noisy 

signals and the corresponding cross-correlation estimates. As for the noise-free case the 

maxima of the correlation functions indicate the amount of the time delays introduced to 

the corresponding signals with substantial accuracy. From the eigenvalue plots of the 

corresponding covariance matrix array (Figure 7.12 RHS) one can see the considerable 

irregularity on their behaviour compared to the corresponding noise-free case although 

both time delay values can be easily detected observing the time lag values at which the 

maximum difference between eigenvalue pairs occur. 
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Figure 7.12 LHS: Noisy version of the signals and their cross-correlation given in Figure 7.11 . RHS: 
Eigenvalues of the array of covariance matrices for corresponding time lag (x-axis) values. Each of red, 
blue and green solid lines represent one of the eigenvalues. 

The final set of simulations is based on the system model shown in Figure 7.5 

where a single-input multi-path system gives a single-output as the sum of two separately 

delayed signals (50 and 125 points respectively). Figure 7.13 LHS shows the noise-free 

input and the output signals and their cross-correlation. The eigenvalues of the input­

output covariance matrices and their ratios for the noise-free case of the mixing system 

shown in Figure 7.13 RHS indicate that unlike the previous noise-free cases there is no 

zero-eigenvalue due to the corruption of the original waveform by the summation of the 

individual outputs. Consequently this leads to less-correlated signals contained in the 

measurement vector although at the lag values equal to the individual delays the 

difference between two eigenvalues reach their highest values. The corresponding noisy 

case is illustrated in Figure 7.14. Despite low SNRs, also in this case the greatest 

difference between the eigenvalues occur at the exact values of the delays showing that 

the proposed method is also suitable for additive multi-path delay detection as described 

by the form (7.25) to (7.27). 
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the eigenvalues respectively. 
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Figure 7.14 LHS: Noisy version of the signals and their cross-correlation given in Figure 7.13. RHS: 
Eigenvalues of the array of covariance matrices and their ratios for corresponding time lag values. In the 
top figure , solid and dotted curves illustrate each of the eigenvalues respectively . 
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7.5 Concluding Remarks 

In this chapter the use of the linear transformation technique of peA as a delay 

detector has been investigated through a novel approach in terms of the use of the 

technique over an array of covariance matrices for a series of time lags between the 

signals within the data set under investigation which can be bivariate or multivariate of 

various forms. 

Our motivation for the work presented above originates from the basic fact that 

if the data set to be analysed using PeA-based EVD exhibits simply mutual pure delay 

relationship, then in the time domain one would get the maximum difference between 

the associated eigenvalues only for the covariance matrix which is formed for the time 

lag value equal to the amount of the delay by which the signals are related to each other. 

Otherwise, for all other time lag covariance matrices, the low cross-correlations between 

the signals would lead to relatively close-valued eigenvalues and hence the consequent 

information based on low degree of linear association between the signals would be 

obtained from the analysis. 

We have also shown that if the above analysis is carried out in the frequency 

domain, the cross-correlation information between the coherent parts of the signals is 

lost as a result of Fourier transformation based on segmentation or ensemble techniques 

and subsequently the potential time delay(s) cannot be detected through the observation 

of the corresponding eigenvalues. 

This chapter is considered to be extremely useful in terms of introducing an 

application of peA to a form of input-output relationship of linear time-invariant 

systems from a different viewpoint compared to the rest of the thesis. 
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Chapter Eight 

PCA FOR TIME-VARYING PROCESSES 

8.1 Introduction 

The use of peA for signal-based system identification has been investigated by 

means of several forms in the previous part of this thesis. Applications have included 

gain/FRF estimation of linear time-invariant systems, linear equivalent transfer function 

estimation of non-linear systems as well as detection of time delay introduced by various 

pure delay systems. In all cases mentioned above we have considered the system inputs 

as stationary random time histories and most importantly the system characteristics as 

not changing with time, leading us to the corresponding outputs that are also stationary 

random. 

The basis of our analysis has comprised the EVD of the input-output covariance 

matrix and the observation of the associated eigenvalues and eigenvectors in order to 

establish the degree of linear association between these signals. This procedure and its 

variations (originating from the same basic approach) provided us with the opportunity 

to interpret the relevant results in different ways with the restriction that the system 

properties were constant. 

In real life, however, especially in many engineering applications one may come 

across a variety of data whose statistical structure change with time, the so called non­

stationary processes. Regardless of the statistical properties of their input(s), the output(s) 

of time-variant systems always exhibit non-stationary behaviour of some form. Non­

stationary processes may arise from linear or non-linear time variant systems as well as 

non-linear time-invariant systems. 
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A set of common methods used for the investigation of non-stationary processes 

are based on timejrequenry analYsis such as the short-time Fourier transform (STFT), 

Wigner-Ville distribution, wavelet transform etc. These subjects are beyond the scope of 

this thesis except for the STFT which will be briefly described and used in several signal 

spectrogram computations for comparison purposes. 

In this last part of our study we introduce a procedure for the preliminary 

detection of non-stationary signals/systems through the use of PCA in a view to provide 

useful information for further analysis. The method proposed is based on a conceptually 

different approach from the rest of the thesis in terms of the formation of the pairs of 

bivariate data sets on which the EVD is carried out although the basic principle remains 

the same i.e. the extraction of the degree of collinearity between data sets using second 

order statistical information. 

Section 8.2 gives an overview to the problem of non-stationarity detection using 

PCA in terms of the analysis principles on which our approach is based on. In Section 

8.3, the short-term PCA for time-varying gain detection in the time domain is introduced 

whereas Section 8.4 presents the details of the extension of this method for the 

estimation of non-stationary dynamics using moving segment EVD of spectral 

correlation matrices, the so called short-term spectral PCA (STSPCA). Both sections also 

include results from a number of computational simulations for the performance and 

applicability assessments of the methods. Concluding remarks are summarised in Section 

8.5. 
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8.2 Non-Stationarity and peA 

A stochastic signal is said to be non-stationary if its statistical structure changes as 

a function of time e.g. the mean, variance, correlation etc. may vary with time and 

consequendy the joint probability density relating the values of signal x(~ at times '1' '2' '3' 

... , also varies under a shift in time. Signals which may not be considered stricdy random 

can also display a structure that can also be described as non-stationary e.g. chirp signal 

which has a changing frequency. Either deterministic or stochastic, non-stationary 

processes with numerous forms of varying structures such as that described in the first 

paragraph, often arise in the physical world. Examples include birdsong, speech, noise 

and vibration signals from accelerating traffic, Doppler shifted sound, vibration response 

of machinery undergoing operational changes and so on. It has long been an interest for 

the analysis of non-stationary signals in statistical signal processing since it is crucial for 

many fields of engineering being able to detect, interpret and model potential non­

stationarities within measurement systems and/or hidden in observed data sets in order 

to identify the system characteristics and/or for further prediction/ analysis purposes. 

The main proportion of our research has been involved with the application of 

peA for linear characterisation of multivariate data. This has been carried out through 

the observation of the eigenvalues and eigenvectors of the corresponding input-output 

measurement covariance (or spectral correlation) matrix which allowed one to readily 

identify components of low power (or one component whose power is represented by a 

zero eigenvalue for the ideal linear time-invariant system) that may be removed from the 

data set without significandy affecting the data. Subsequendy the principal components 

have been related to the original variables via a virtual process in order for the linear 

(equivalent) transfer characteristics to be derived. We have shown that this procedure 

could be used as an effective tool for the estimation and/or detection of gain, FRF, delay 

or non-linearity when the data sets forming the covariance matrix to be analysed consist 

of system input(s) and output(s). 

The basic principle of our previous system input-output relationship analyses for 

the above given cases was based on the EVD of the ensemble (or segment) averaged 

measurement correlation matrix direcdy i.e. with no pre-processing perhaps only except 

for standardisation (centring and scaling). This measurement matrix was assumed to be 
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formed between data sets that are assumed to be related through a constant scale factor and 

hence having time-invariant statistical structure. Therefore increasing the sample size of 

each segment would reduce any biasing and/ or variability effects consistently resulting in 

the assumption that for two stationary random signals whose time domain measurement 

vector for each ensemble (segment) realisation given by 

X
k 

=[Xm'l' for k=1,2, ... ,K; 
Ym, 

the covariance matrix (for zero-mean variables) can be simply estimated from 

N N 

[ E[x! J E[Xm,Ym.l] 1 LX~; LXm;Ym; 
R = k ~-

i=l i=l (8.1) 
xx E[y mk xmk ] E[Y~k] k=l K N N N 

LYm;xm; LY~; 
i=l i=l 

where E[ ] denotes the expectation operation and the sample index is defmed by 

i=l, ... ,N. Above procedure relies on the assessment of the degree of linear association 

between signal pairs using the eigenvalues and their corresponding eigenvectors. Here we 

propose to extend this approach to extract some useful information about the time­

varying structure of the data set with particular reference to varying mean and/or 

variance in the time domain and varying frequency content and/ or energy distribution in 

the frequency domain by applying a modified PCA procedure. If we assume that a non­

stationary system is excited by a stationary random input then the output signal will be 

non-stationary. Therefore, in this case, using the procedure for the computation of the 

measurement correlation matrix such as that described by (8.1) would be conceptuallY 

incomct because the input and the output would have different statistical properties being 

related through a varying scale factor and hence the second order statistical information 

contained in the covariance matrix would be useless. Note tl1at the covariance matrix 

estimator given by (8.1) is valid if the variables have constant probability densities i.e. 

which do not vary under a shift in time. However we would of course still get some 

results from the EVD of the covariance matrix in question above although the direction 

of the principal component would lead us to a form of averaged gain factor relating the 

input and the output rather than extracting any potential time varying characteristics 

within the corresponding parts of the signals. The mathematical verification of this 

restriction is as follows: 
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Consider the specific example where the memoryless SISO system gIven ill 

Figure 8.1 is assumed to be linear and time-variant with gain a(f) which varies in a 

deterministic fashion with the input-output relationship of the form (8.2) so that one can 

expect the system output to be a stochastic non-stationary process. 

y(f) = a(f).x(f) (8.2) 

I 
a(t) • 

x(t) ---.!.L-__ ----lf----+ y(t) 

Figure 8.1 Linear Time Varying Memoryless SISO Gain System. 

Using the expectation operator for the estimation of a local input-output covariance 

matrix for the segment k we get 

R (I) = E[ x
2 
(I) a(l)x

2 
(I) ] 

.u a(l)x 2 (t) a2 (t)x 2 (t) k 

(8.3) 

and expanding (8.3) by substituting the symbol d as appropriate to denote the signal 

variance, we obtain 

(8.4) 

whose eigenvalues can be derived from the solution of 

(8.5) 

from which 

(8.6) 
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which shows that despite the fact that the gain is time-varying in the global sense if it's 

local value is assumed to be constant within the limits of the segment k, one of the 

eigenvalues will be zero and the principal component power will be contained within the 

non-zero eigenvalue whose corresponding eigenvector's direction after some algebra can 

be derived as 

t 
~= aCt) 
t} 

(8.7) 

Note that (8.7) represents the slope of the instantaneous gain between the input and the 

output. However if we now consider carrying out the EVD on the covariance matrix 

formed using the summation operator, 2:, rather than the expectation operator then this 

matrix would be of the form (also including the time (or sample) index i = 0, 1,2, ... , N) 

(8.8) 

from which it can be clearly seen that the time-varying term a(~ which has a deterministic 

non-stationary nature would be contained within the averaging process over the data 

length N and we would expect from the EVD of the above matrix that both of the 

eigenvalues to be non-zero as a result of the parasitic effect caused by the variation of the 

probability density function of the elements of the matrix and the gain factor obtained 

from the direction of the eigenvector corresponding to the larger eigenvalue would be 

equal to the mean (average) value of the varying gain. 

The above mathematical manipulations and our interpretations have also been 

verified computationally. We have generated a zero-mean white Gaussian process of 

1000 samples with a variance of 64 representing the input of the system given in Figure 

8.1 and filtered this input through a time-varying gain in the form of 

aCt) = c +sinQ·t (8.9) 

where Q is set to 0.016 and the constant c is 2, in order to generate an amplitude­

modulated stationary random process which would effectively be non-stationary (with 

fluctuating variance) such as that shown in Figure 8.2 (LHS). 
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The EVD of the input-output covariance matrix of the form (8.8) has been carried out 

and the averaged gain factor has been derived using the eigenvector corresponding to the 

larger eigenvalue. The values of the eigenvalues have been calculated as 331.4 and 4.6 

verifying that there are two non-zero eigenvalues. In the RHS of Figure 8.2, the 

comparison between the computational and theoretical first eigenvalues is given revealing 

the significance of using different covariance matrix EVD procedures i.e. ensemble 

averaging vs time (or sample) averaging whereas Figure 8.3 shows the input-output 

scatter plot and the equivalent gain estimates derived using these two different 

techniques. 

InpU! SIgnal Fittered Througl ShinNBriart Gain 
60r-~-~~---"---~-'-=-~-~~-~----, 

40 

~ f 
&400 .' 
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\1 
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-00 200 
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Figure 8.2 LHS: Stationary random input (blue solid line) filtered through a deterministic non-stationary 
gain (green solid line) forming the random non-stationary output (red dotted line) ; RHS: Comparison 
between the theoretical and computational versions of the first eigenvalues of the covariance matrix 
between the signals whose scatter plot is given in Figure 8.3. Dotted line shows the theoretical varying 
eigenvalue whereas the solid line shows the computational averaged eigenvalue. 

It is clear from the above eigenvalue plots that if the analysis carried out is based 

on the covariance matrix of the form (8.8), we would end up with a single gain factor 

whose direction is shown by the red arrow, that is the arithmetic average value of the 

original time varying art) which in fact has a sinusoidal behaviour. Here it should be 

noted that the direction of the principal component is given by the average slope of the 

input-output correlation behaviour whose gain spans the values between 1 and 3. 

Furthermore, the theoretical time-varying eigenvectors corresponding to the first 

eigenvalues such as that plotted in Figure 8.2 (RHS) would lead us to the time-varying 

slopes. A number of direction representations of the actual gain factors have also been 

illustrated by the green arrows in Figure 8.3 shown below. 
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Theoreticai vs COrTtputBtional Eigenvectors 
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Figure 8.3 Input-Output Scatter plot (dots) of the system given in Figure 8.1, the gain estimate (red 
arrow) obtained using peA based on simplified covariance matrix computation as defined by (8.1) and 
the theoretical gain estimates (green arrows) obtained using the eigenvectors defined by (8.7). 

In the next two sections we present the details of our proposed non-stationary 

system identification techniques based on the modified versions of the measured 

covariance matrix EVD in the time and the frequency domains respectively. The first 

case considers the analysis of short-term input-output segments in order for the 

estimation of potentially time-varying gain characteristics. The second case will look at 

the extension of this procedure using short-term adjacent input-output spectral 

correlation matrices of a dynamical system with oscillating natural frequency. The 

applicability and performance of each method has also been examined by computational 

simulations. 
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8.3 Short-Term peA for Non-Stationary Gain Estimation 

In view of our comments on the applicability of the standard form of PCA to the 

time-varying processes as presented in the previous section, here we seek to develop an 

EVD procedure such that when carried out on a set of input-output data with a varying 

gain relationship we can determine the transfer characteristics from the interpretation of 

the principal component(s) of their covariance matrix. 

From our above analysis it is obvious that even if the system input-output 

relationship is completely linear, the existence of a time-varying @tering results in two 

non-zero eigenvalues from the EVD of their covariance matrix which is misleading with 

respect to the accurate estimation of the true transfer characteristics of the system under 

investigation. Considering the implications of this limitation, we propose to analyse the 

short-term covariance matrices of an input-output data pair, the output of which has a 

non-stationary time structure and thus the direction of the principal components of each 

covariance matrix can be used in order to identify the gain characteristics along the whole 

time history. 

If we employ short-term averaging when forming the associated input-output 

covariance matrix of a pair of long time histories with potentially time varying transfer 

relationship, depending on the window length of the averaging operation relative to the 

rate of change of the system's gain characteristics, it would be possible to obtain small­

range estimates for the actual gain factor and hence repeating this operation as a moving 

average EVD process for a series of covariance matrices along the whole available time 

series we can determine the varying structure of the gain factor. This procedure is 

illustrated in Figure 8.4 where 

[R.t.Jk=I.2.3 .... .K 

represents the array of short-term input-output covanance matrices for succeSSlVe 

segment pairs. From the PCA of each matrix we can simply obtain the local gain factor 

of the corresponding segment in accordance with the procedures introduced in Chapter 

4 i.e. using the slope of the principal component associated with the largest eigenvalue. 
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Consequently, combining the values obtained from the EVD of each covariance 

matrix results in the overall gain curve linking the input-output time histories along the 

data length. It should be noted that, instead of using adjacent segments without common 

sample points such as that shown in this figure, which is mainly for visual simplicity, it 

would also be appropriate to carry out the analysis on a series of overlapping consecutive 

segments which could also lead us to accurate results for the gain estimates depending on 

the fluctuation nature of the time history. As can be clearly seen, the selection of the 

length of each segment is crucial in order to obtain a good estimate for the associated 

transfer characteristics. If the gain factor is a slowly varying function of time then 

relatively long segments with zero-overlap would be sufficient to describe its 

approximate behaviour although for the cases where this gain changes rapidly then too 

long segments would result in average values within the window range of each segment 

that are not very useful. 

40 

[Rxx LI 

Input Signal Filtered Through Shift-Variant Gain 

300 

[R xx L2 

.. 
I 
I 
I 
I 
I 
I 
I 

. ;;: 

i;: ;" 

4~0 500 600 
I Sample Number 

[R xx L3 

700 

... 
I 
I 
I 
I 
I 
I 
I 

800 gpO 1000 

[RJk:K 

Figure 8.4 Illustration of short-term moving average EVD in order to estimate the local gain factors from 
a non-stationary input-output relationship through a time-varying gain (of Figure 8.2 LHS) over the 
segments k=1 ,2,3 ... ,K. 
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In an attempt to provide a clear illustration and to assess the performance of this 

technique, a number of simulation studies have been undertaken the results of which are 

presented in Figure 8.5. We have analysed the same artificial input-output signals as 

introduced in Section 8.2 by using the above technique. Four different lengths of 

overlapping segments of 10, SO, 100 and 150 sample points have been considered for 

simultaneous covariance matrix computations over the whole input-output time histories 

whose total sample numbers are 1000 each. 

Estimates of the computed gain curves and the system's true gain are plotted on 

the same axes as shown in the LHS of Figure 8.5. It can be easily seen from this figure 

that using different segment lengths lead to dramatically different results for the time­

variant gain estimates. For the shortest segment length (10 sample points) used the 

accuracy of the gain estimate is extremely high having almost identical values with the 

true gain verifying the consistency of our approach introduced above although as the 

number of points used for each covariance matrix window is increased the gain estimate 

becomes severely biased tending towards an average value as described in detail in 

Section 8.2. From the curves derived from the first and the second eigenvalues for the 

shortest segment estimates as illustrated in the RHS of Figure 8.5, we can see that due to 

the use of sufficiently small-range covariance matrices, the input-output pairs behave as if 

their relationship is completely free from any parasitic effects and hence one of the 

eigenvalues is always zero whereas the non-zero eigenvalue has an irregular fluctuating 

nature. 

From the results of the above numerical procedure we can see that by the EVD 

of local input-output covariance matrix of a memoryless non-stationary system it is 

possible to obtain accurate estimates of the small-range transfer characteristics. In 

addition, it has also been shown that by computing a series of local scale factors from the 

array of these local covariance matrices, one can build the global structure of changing 

system characteristics. In the next section we extend the above procedure to a more 

general case of time-varying transfer function estimation of dynamical systems through 

the application of a modified version of our data processing technique in the frequency 

domain. 
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Figure 8.5 LHS: Effect of varying segment length on short-term moving average EVD procedure for the 
local gain factor estimation from a non-stationary input-output relationship. RHS: Eigenvalues of the 10-
point segment short-term peA. 
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8.4 Short-Term Spectral peA for Input-Output Analysis 

Investigating the inherent non-stationarity of the dynamics of physical systems 

and/ or exploring the internal structure of non-stationary processes using time-frequency 

descriptions has been commonplace to the engineering world for a long time. The 

fundamental requirements of signal-based non-stationary system analysis are to be able to 

determine the spectral components contained in measured signal(s) within the boundary 

of such systems and/or to obtain information about the time intervals at which certain 

frequencies occur i.e. when specific frequency components make their dominant 

contribution to the measured time history. 

Conventional Fourier transforms do not assign spectral components to time and 

hence only partly solves the above problem by giving an indicative estimate of the average 

power/ cross spectra of the whole signal analysed. The most commonly used classical 

method of time-frequency analysis is the short-time Fourier transform (STFT) whose 

basic concept is very simple. The time record is multiplied by a sliding window (which 

suppresses the signal outside a certain region) and the Fourier transform of the 

consecutive windowed segments are computed resulting in a series of local spectra. STFT 

of a continuous-time signal is obtained from, 

00 

S(t,aJ) = f x(t')w(t-t')e-JOJt' dt' (8.10) 
-00 

where t is the time, aJ is the angular frequency and x(t') & wct - t') are the truncated 

signal and the corresponding window centred at time t'respectively. A widely used 

method for displaying the STFT is called the spectrogram (or penodogram) and is derived 

from the squared magnitude of (8.10) to give 

(8.11 ) 

This quantity is plotted as a function of t and aJ, forming a three-dimensional 

representation of the signal which crude!J illustrates the distribution of its energy over 
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time and frequency. Despite being empirical in terms of providing estimates of 

potentially changing spectra from window to window, it has been established as a very 

useful preliminary analysis tool for time-varying signals. 

As detailed in Chapter 2, a Linear Time-Invariant (LTI) system is characterised by 

its time-invariant impulse response junction h(t) , leading to the theoretical relationship 

between the input x(t) and the output yet) in the form of a convolution (2.3) which is 

also very much simplified when an integral transform (Fourier or Laplace) is taken. Note 

that when the system is LTI, the impulse response function is defined as the output of 

the system at any time to a unit impulse input applied a time t before. This relationship 

can be used to construct the time-invariant response to an arbitrary input at, say t 1 , 

through the convolution integral as 

t 

yet) = f h(t - t1 )x(t1 )dt1 (8.12) 

by using the substitution, t - t1 = T, (8.12) can be written in an alternative form, i.e. 

co 

yet) = fh(T)X(t-T)dT (8.13) 
o 

However, if the system is time-varying then the above relationship based on a constant 

impulse response function is no longer valid since the system characteristics change with 

time and hence for a fixed input the corresponding output also varies with time. 

In order to represent the time-varying characteristics theoretically, we can modify 

the above relationship considering the impulse response function as changing with time 

in the form 

co 

yet) = fh(t, T)X(t - T)dT (8.14) 
o 

with a view to describe a time variable transfer function. Since the input (assumed to be 

stationary random) can be written using the Fourier integral (in the frequency domain) as 

co 

X(t-T) = fX(w)ejllJ(t-r)dw (8.15) 
-co 

then substituting (8.15) into (8.14) we get 
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co co 

yet) = f h(t, r) fejaJ(t-T) X(m)dmdr 
T=O aJ=--<:O 

which can be rewritten as 

and 

"' ...... ..------- ........ , 
/ " / \ 

00 1 00 , 

yet) = f e jmt ( fh(t, r)e-jaJT dr}X(m)dm 
aJ=-CO \ T=O I 

" ,,/ 
" / " ~ ......... --r--- ... 

I 
I 
I 
I 

~_t~, 
~ " 

00 / \ 

yet) = fejaJt('H(t,m)'}¥(m)dm 
\ I 

0)=-00 \ I ' ..... _-_ ... '" 

(816) 

(8.17) 

(8.18) 

From (8.17) and (8.18) it can be seen that the time-varying transfer function (or FRF) i.e. the 

system's approximate response to frequency m at time t, is embodied in the expression 

co 

H(t,m) = fh(t,r)e-jaJTdr (8.19) 
o 

Therefore, the input-output relationship in the frequency domain can be given by 

Y(t,m) = H(t,m)X(m) 

from which one can also derive the corresponding pair 

Syy(t,m) = jH(t,m)j2 Sxx(m) 

SXy(t,m) = H(t,m)Sxx(m) 

(8.20) 

(8.21 a) 

(8.21b) 

defining the time-varying FRF in terms of the power and cross spectral densities of the 

input and the output. 
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Following from the methodology introduced in the previous section, here we 

consider the frequency domain extension of our approach, the so called short-term 

spectral PCA (STSPCA) in order to estimate the time-varying transfer characteristics of a 

dynamical non-stationary system. The above analysis given from (8.12) to (8.21) justifies 

that the problem of approximating the time-varying transfer function can be considered 

on the basis of estimating the time-varying output power and input-output cross spectral 

densities as accurately as possible. The calculation of H (t, OJ) is difficult because 

obtaining h(t, r) is difficult. However we might conceive of some approximate approach 

to this when the time variation is slow. In this case we may conceive of a frozen time 

dependant transfer function as parameters of the system vary. The use of short-time 

Fourier analysis essentially builds on this idea. Accordingly, we can consider using short­

time Fourier-based methods to derive approximations to H(t,OJ). Our proposed input­

output analysis procedure is based on the moving segment EVD of the signal pair as 

depicted in Figure 8.2, but this time through the adjacent spectral correlation matrices i.e. 

the array of matrices to be analysed will be replaced by 

rR(f)l~ = [~xmxm (f) ~YmXm (f)] 
l J,2,3, ... ,K S (f) S (f) 

XmYm YmYm k=l 23 K 

(8.22) 

for each segment pair k of which will contain the power and cross spectral density 

estimates of the measured signals. In accordance with the standard procedure described 

for the time-varying gain estimation problem, the slope of the eigenvector corresponding 

to the largest eigenvalue of each matrix will give a local transfer function estimate (see 

Chapter 5 for the details of SISO PCA FRF estimation). Furthermore, by undertaking 

the exact procedure over the whole length of the time record one can obtain a series of 

transfer functions which can be defined as 

H(t,f) = lim{H(k,f)k~J2 3 K} Ik l--7O ' .... , (8.23) 

i.e. is a function of both frequency f and the segment index k. 
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Therefore, from (8.23) it can also be seen that in principle it is possible obtain the 

true time-varying transfer function as the segment length Ikl tends to zero i.e. as 

segments get smaller, intuitively we are closer to H(t, f) . Note that by using the same 

segment length for different types of non-stationary systems, depending on the rate of 

change in each system's characteristics with time, one may end up with transfer function 

estimates exhibiting various degrees of accuracy from system to system. In this context 

we have two fundamental assumptions on which our frequency domain approach for the 

above problem is based on and these are: 

1. in terms of the statistical reliability (or consistency) of the spectral estimates 

obtained from truncated parts of the time records: the duration of each segment 

is sufficiently long with a high sampling rate that will allow the necessary 

averaging operations over a number of Fourier transformed windows so that 

each estimate will have a converging behaviour (reducing variability) with good 

frequency resolution Oow bias); 

11. in terms of accurate time dependant representations of the frequency content of 

adjacent signal segments: the non-stationarity in each truncated part of the time 

record is a slowly varying function of time for each frequency that will result in 

largelY accurate averaged spectral estimates and hence will allow one to observe 

the true variations in the energy distributions from segment to segment. 

In essence, the above assumptions suggest that for each input-output segment 

pair the system under investigation will be considered as having almost stationary transfer 

characteristics. Although this seems to be a strong (and hence restrictive) condition, it 

can be appropriately met to a certain extent for the vast majority of non-stationary data one 

may come across in real-life engineering applications. 

However it should be noted that, considering the input excitation to be stationary 

random, for the cases in which the rate of variation in the system's non-stationarity is 

relatively high, shorter segments will be required in order to represent a minimum 

amount of fluctuations of the energy components contained in the output power and the 

input-output cross spectra. This will help to obtain improved time resolution but at the 

expense of poor frequency resolution and hence increased bias on the spectral estimates. 

Therefore, the overall accuracy of the analysis will heavily rely on the trade-ojfbetween the 

choices of better time and frequenry information for which the signal analyst will need to 

make a decision according to the application and/ or the available data. 
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In an attempt to demonstrate the applicabilitiy of the proposed STSPCA time­

varying transfer function estimation technique, a series of computational simulations 

have been undertaken. The non-stationary dynamical SDOF system we consider is a 

second order oscillator given by the form 

y(t) + 2~wo (t)j;(t) + w; (t)y(t) = w; (t)x(t) (8.24) 

where yet) is the displacement, S is the viscous damping coefficient, x(t) is the 

excitation force and Wo (t) is the time-varying undamped natural frequency in the form 

of a frequency modulated (FM) signal oscillating between 100 Hz and 900 Hz 

(completing one full cycle in 1 second) i.e. is centred on 500 Hz with a 400 Hz sinusoidal 

FM. The approximate frozen Oocal) transfer function of the above system can be defined 

using the Laplace transformation as 

(8.25) 

where s is the Laplace variable. The model system is excited by a zero-mean broad-band 

stationary random (Gaussian white) process for 20 seconds at a sampling rate of 105sps 

and the resulting displacement is recorded as the system output to be analysed. The 

damping coefficient ~has been set to 10-5• 
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Figure 8.6 Input-Output time histories of the system described by (8.14) and their corresponding 
probability density function estimates. 
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Figure 8.6 shows the input and output time histories and their computed 

probability density function (PDF) estimates from the recorded data sets each of which 

consists of 2 million sample points. Clearly, the output signal reveals significant time­

varying structure with non-stationary variance whose fluctuations are not systematic. It is 

also interesting to observe the major difference between the two PDF estimates as the 

output signal has a super-Gaussian distribution with a kurtosis of around 9.5. Note that 

we have used the whole signal to come up with this answer i.e. treating the output as 

stationary. 

In order to explore the internal structures of the measured signals in the time­

frequency plane, their spectrograms are calculated initially, using Hann windows with no 

overlapping. In Figure 8.7 is shown the spectrograms of the input and the output, with 

the output signal image plotted within various frequency ranges for visualisation 

purposes. The amplitudes of the signals are displayed by using a typical colour-map scale, 

hot colours reflecting higher values. 

The input spectrogram (top-left) is not of much interest as the signal is white 

Gaussian and hence contains all the frequencies up to the half of the sampling rate with a 

homogeneous distribution along the both axes. The output spectrogram plotted within 

the full frequency range (top-right) shows that the main proportion of the signal energy is 

concentrated at the low frequencies from which we can conclude that the system is 

acting like a typical time-varying narrow-band @ter. As the axis ranges of the plot is 

reduced (centre and bottom figures) the time-frequency varying patterns on the output 

signal becomes more noticeable with sinusoid high energy regions (indicating the 

oscillating resonance frequencies) progressing along the time axis. 

Note that the window size used for the spectrogram calculations is 2048 points 

which is also zero-padded to the length of 4096 points FFT. This means that each 

segment covers approximately 0.02 seconds of data which gives a reasonably good time 

resolution allowing one to visualise the complete cycle of resonance frequencies in 1 

second centred at 500 Hz, spanning between 100 Hz and 900 Hz. However the 

frequency resolution is approximately 25 Hz and consequently the vertical spreading of 

the dominant energy in the frequency axis causes the extended spiky display of the 

resonant regions towards the minimum and maximum values. This spreading behaviour 

becomes more significant towards the higher frequencies as with a fixed damping 

coefficient the resonance bandwidth increases with frequency. 
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Figure 8.7 Spectrograms of Input and Output signals. 

20 

In Figures 8.8 and 8.9 are shown the striking results of STSPCA-based time­

varying transfer function estimation. Moving segment EVD procedure is carried out on 

adjacent spectral correlation matrices formed between 104 point input-output signal pairs 

with no overlapping i.e. each matrix containing statistical information on 0.1 second data. 

Power and cross spectral estimates are calculated using standard segment averaging 

technique based on 2048 point windows (Hann) zero-padded to 4096 point FFT. The 

magnitude of the slope of the eigenvector corresponding to the largest eigenvalue of each 

spectral correlation matrix is used to form a series of adjacent local FRF gain factors. 
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Top plots of this figure illustrate the input-output relationship using spectrogram­

like display, based on colour-map scale magnitude representations. In the bottom figures 

the corresponding results are displayed using three-dimensional waterfall plots in order to 

further explore the internal structure of the transfer functions and hence significant 

variations on its changing characteristics from segment to segment. Both representations 

are plotted for several frequency/ time ranges. From STSPCA Map plots it can be clearly 

seen that the patterns formed by high and low energy regions is almost identical to that 

of the output spectrogram concentrated within the OHz-lkHz band. LHS waterfall plot 

of Figure 8.8 shows that the varying resonant frequencies are distributed over this 

frequency range with densely packed amplitude variations. Closer examination of the 

adjacent local FRFs reveals that (RHS waterfall plots of Figures 8.8 and 8.9) there is a 

distinguishable peak amplitude for each local transfer function where the maximum 

response between the input-output pair occurs. In comparison to the spectrogram plots 

given above, here the time resolution is lower although reasonably sufficient to give a 

clear picture of the variation in the energy distribution. 

STSf~ Map of Time-Varying Transfer Function STSPCA Map of Time-Varying Transfer Functior 
5 

4 
N 
I 
~3 

~ 
c 
v 
5-2 
~ u.. 

1 

5 10 
Time(s) 

15 

Adjacent Local STSPCA FRFs 

100 

~ 0 
2 
'c 
~ -100 
:E 

-200 
5 

X 10' 

Frequency (Hz) o 0 Time(s) 

20 

20 

1000 

800 
N 
~ >- 600 
u 
c 
V 
::l 
C" 
~ u.. 

400 

200 

150 

v 100 
"C 
2 'c 50 
en 
~ 0 

-50 
1000 

5 10 
Time(s) 

15 

Adjacent Local STSPCA FRFs 

Frequency (Hz) o 0 Time (s) 

20 

20 

Figure 8.8 STSPCA Map and Waterfall Plots of the time-varying transfer function . LHS Top: OHz-50kHz 
STSPCA Map; LHS Bottom: OHz-50kHz STSPCA Waterfall Plot; RHS Top: OHz-1kHz STSPCA Map; 
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Figure B.9 Magnified versions of STSPCA Map and Waterfal l Plots of time-varying transfer function . 

Originating from the above described processing strategy based on segment-wise 

power/ cross spectral estimation, one can also consider visualising a time-varying 

coherence (OCF) between the input and the output signals. Figure 8.10 illustrates this 

concept using three-dimensional shaded surface (LHS) and two-dimensional colour-map 

(RHS), representing the z-axis coherence values between 0 and 1 across the time­

frequency plane. The most interesting feature of the LHS plot is its almost flat high 

linearity platforms corresponding to the low energy regions of the STSPCA map given in 

Figure 8.9. In the valleys between these flat surfaces there are regions of very low 

linearity associated with the concentration of resonant energy. Towards the higher 

frequencies (from 900 Hz upwards) the degree of linear association tends to increase. 

This is due to the signals having very low energy resulting in the spectral estimates being 

dominated by the windowing effects and subsequently the computed quantity effectively 

starts to reflect the coherence between the window functions rather than the signals. 
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Figure 8.10 Time-varying ordinary coherence function (OCF) between the input and the output. 
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8.5 Conclusion 

In this chapter, PCA-based movmg segment EVD techniques have been 

introduced for the input-output analysis of time-varying systems in the time and the 

frequency domains. Proposed methods provide very useful background both 

theoretically and computationally with reference to the application of EVD to Non­

Stationary Data Analysis. 

The results obtained from the short-term PCA method in the time domain 

demonstrate that by the use of optimal length segments with respect to the dynamic 

structure of the data set in order to ensure that both time and frequency resolutions are 

sufficiently fine, one can obtain accurate estimates of the time-variant gain introduced by 

a non-stationary system. The application of the STSPCA technique for time-varying 

transfer function estimation proves to be a logical and reliable alternate to the classical 

STFT spectrogram in terms of its practicality and input-output feature extraction 

property. However, care has to be taken to choose the duration of the segments in order 

to best represent the structure of the time-varying transfer function on the time­

frequency plane. The exact procedures can be easily applied to any form of input-output 

data from a variety of applications. 
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CONCLUDING REMARKS 

9.1 Summary of Results 

Concluding Remarks 

In essence, this research introduces a new approach for the use of the statistical 

multivariate data analysis technique Principal Component Analysis (PCA). The standard 

Eigen-Value Decomposition (EVD) procedure is applied to the covariance or spectral 

correlation matrix constructed from the input(s) and the output(s) of a physical system in 

the time or the frequency domain. Subsequent observation and interpretation of the 

eigenvalue-eigenvector behaviour provide various forms of linear characterisation of the 

system under investigation, with a view to extract the unknown transfer features. 

Originating from this core principle, it is demonstrated that the analysis strategy leads to 

an expansion of the proposed methodology to several subgroups of signal-based system 

identification applications. Original contributions of this thesis can be summarised as 

follows: 

In the context of analytical and numerical review of the existing transfer function 

estimators based on the least squares approach (Chapter 3), a generalisation 

scheme for the Total Least Squares (TLS) estimation in the time domain 1S 

introduced from a geometric viewpoint. The input-output relationship 1S 

established by the minimisation of an error distance that is defined with respect 

to a variable angle. The main benefit of this result is to allow one to readily 

interpret the relationships between the three standard least squares estimators 

and hence verify analytically that the value of an~ is bound by the estimators a1 
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and a2• It is also shown that the resulting estimator gives the exact true gain factor 

for all input and output SNRs under certain conditions. Despite the fact that this 

is not of immediate practical use as its verification relies upon the prior 

knowledge of the true gain factor, it is an interesting observation revealing the 

superior behaviour of the proposed scheme. 

Single-Input-Single-Output (SISO) Linear Time-Invariant (LTI) system 

Frequency Response Function (FRF) estimation problem is formulated using 

PCA through the EVD of bivariate input-output spectral correlation matrix 

(Chapters 4 and 5). The proposed approach leads to the development of a SISO 

PCA FRF estimator that is equivalent to the SISO TLS FRF estimator for the 

special case of equal input-output additive measurement noise. The fact that PCA 

can be employed to solve such transfer function estimation problems provides an 

important fundamental background for the physical interpretation of eigen­

analysis. 

The Multi-Input-Single-Output (MISO) LTI system FRF estimation problem is 

formulated using PCA through the EVD of multivariate input-output spectral 

correlation matrix (Chapters 4 and 5). The proposed approach leads to the 

development of a MISO PCA FRF estimation scheme. Computational 

simulations undertaken using uncorrelated input signals verify that the proposed 

estimator gives results with substantial accuracy in the presence of additive 

measurement noise on all signals in comparison to the SISO-based least squares 

estimators. 

With reference to the application of PCA-based linearization to SISO non-linear 

time-invariant (NLTI) systems (Chapter 6): The derivation of a non-linearity 

detection ratio (NDR), as a function of the eigenvalues and the components of 

the eigenvectors of the bivariate input-output covariance (or spectral correlation) 

matrix, is introduced. This quantity is equivalent to the virtual coherence 

function. In addition to the above, following from the results introduced in the 

context of SISO PCA FRF estimation, the same approach provides a logical 
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approximation procedure for linear equivalent transfer function estimation of 

memoryless / dynamical non-linear systems; 

A PCA-based delay detection method for non-dispersive single- and multi-path 

systems is developed (Chapter 7) in the time domain. Multi-path systems 

considered include both single- and multi-output configurations. Utilising the 

relationship between the eigenvalues of each matrix in the array of positive and 

negative lag input-output covariance matrices, forms the basis of the processing 

strategy. This approach originates from the fact that, if the data set to be analysed 

exhibits a pure delay relationship, then in the time domain one would get the 

maximum difference between the associated eigenvalues only for the covariance 

matrix for the time lag value equal to the time delay. Work presented here 

introduces an application of PCA to a form of input-output relationship of linear 

time-invariant systems from a different viewpoint compared to the rest of the 

thesis. 

Time-varying transfer function estimation problem is considered adopting a 

moving segment EVD process on a series of adjacent spectral correlation 

matrices. Proposed Short-Term Spectral PCA (STSPCA) technique for input­

output analysis proves to be a logical and consistent procedure which is also a 

superior alternate to the conventional non-stationary signal analysis tool, Short­

Time Fourier Transform (STFT) spectrogram. Results provide very useful 

background both theoretically and computationally with reference to the 

application of EVD to non-stationary data analysis. 
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9.2 Future Research 

MISO LTI system gain/PRF estimation is considered in Chapters 4 and 5 for the 

special case of un correlated input signals. The comparisons between the results from the 

multi channel PCA technique and the existing methods are limited with the 

corresponding SISO bivariate-based forms of the least squares estimators. In an attempt 

to give a more objective performance assessment of the proposed estimator, it would be 

useful to consider the optimisation landscape for the least squares estimation scheme in a 

multi-dimensional space and hence to develop the associated estimators with respect to 

the modified error criteria. 

The work presented ill Chapter 6 forms an important background for the 

application of PCA to non-linear systems in the form of a linear approximation 

procedure. With respect to the multi-output fault detection problem, one may consider 

an extension of the procedure by using Independent Component Analysis (lCA) and 

further research may lead to the generalisation of the method to be applied for various 

mechanical and/ or structural condition monitoring and/ or fault diagnostic systems. 

Chapter 7 introduces the concept of PCA as a function of time lag between the 

variables. Our approach is based on the observation that, the results of the conventional 

EVD procedure is strongly dependant on the potential time delay relationship involving 

the signals to be analysed. Extending from this fundamental nature of the signal-based 

eigen-analysis, it would be interesting to see whether or not there would be any inherent 

implications on the interpretation of the results from PCA-based investigations that have 

been undertaken in other fields. 

STSPCA for the estimation of time-varying transfer functions is considered in 

Chapter 8, with reference to SISO systems. Another interesting investigation would be 

based on combining the idea of multi-channel PCA (Chapters 4 and 5) with the moving 

segment EVD processing strategy in a view to develop a generalised Multi-Input-Multi­

Output (MIMO) time-varying transfer function estimation scheme. 
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APPENDIX A 

Methodology for Derivations of 5150 Least Squares FRF Estimators 

In the context of gain estimation of memoryless SISO systems, the methodology for 

deriving the least squares estimators in the time domain is detailed in Section 3.2 from a 

geometric viewpoint involving real bivariate data. To summarise, with reference to Figure 

2.5 we define an error distance between the measured data and a regression line in the 

form 

y =ax (A. 1) 

which reflects the assumed linear relationship between input x and outputy through the 

gain a, and furthermore form a cost function that is the sum of the squared errors over a 

number of samples. Then this cost function is minimised with respect to the unknown 

gain factor in an attempt to obtain an optimal estimate. However when we consider using 

the same optimisation procedure for the Frequency Response Function (FRF) estimation 

of dynamical SISO systems the corresponding input-output relationship given above 

becomes 

Y(f) ~ H(f)X(f) (A. 2) 

through Fourier-based transformations of finite length signals. Consequently the original 

variables to be analysed becomes complex and the gain a is now replaced by the FRF of 

the system with real and imaginary parts corresponding to its gain and phase factors 

respectively. 

180 

Appendix A 



Methodology for Derivations of SISO Least Squares FRF Estimators 

Note that in the time domain the linear gain relationship we are based on is between 

sample pairs whereas in the frequency domain the equivalent relationship is obtained 

over sets of stationary random data pairs at a single frequency i.e. segments (or 

ensembles) of input-output pairs. This effectively means that for each segment pair we 

will have an approximate complex transfer function with real and imaginary parts. In 

accordance with the procedure used in the gain estimation problem, this time we define a 

complex error distance expressed at a single frequency based on the required criteria e.g. 

Case 1, 2 or 3 in Section 2.3 (Chapter 2). Say, we are looking at Case 1, then the 

associated frequency domain error criterion for an input-output segment pair is given by 

(A. 3) 

in whichXn (/) and Yn (/) are the Fourier Transforms (FTs) of the k'h (windowed) 

segment of x(!) and yet) respectively, over a total number of K segments. Therefore the 

corresponding cost function equivalent to the magnitude of the error criterion (A.3) to 

be minimised will be of the form 

(A.4) 

where' * ' denotes complex conjugate. Note that the expectation operator E[] indicating 

the theoretical average is replaced by the summation operator L as appropriate in 

practice. (A.4) can be expanded as 

(A.S) 

and minimising (A.S) with respect to HI (/) can be obtained from the solution of 

(A.6) 
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Since the above cost function is now complex its differentiation must be carried out with 

respect to both the real and the imaginary parts of the FRF. Expanding (A.S) we get 

(A.7) 

(where f's in brackets indicating the frequency domain have been omitted for brevity) 

which can be rewritten in terms of the real and the imaginary parts of the FRF as 

assummg 

H, = Re[H,J+ jIm[H,J 

H; =Re[H,J- jlm[HIJ 

(A.9a) 

(A.9b) 

Therefore by equating the partial derivatives of (A.S) with respect to the real and the 

imaginary parts of the FRF to zero, one can simply obtain 

and substituting (A.10a,b) into (A.9a) the FRF estimator HI (f) is given by 

H (f) - ~ ~ X;(f)~(f) 
1 - K ft X; (f)X

k 
(f) 

(A.1I) 

which can be rewritten in terms of the relevant auto and cross spectra estimates as 
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(A.12) 

The exact procedure described above can be undertaken for the error criteria defined by 

Cases 2 and 3 in Section 2.3 (Chapter 2) and the corresponding FRF estimators 

H 2 (f) and H v (f) can be easily derived respectively. 
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APPENDIX B 

Eigen-Value Decomposition of the SISO System Spectral Correlation Matrix 

The eigenvalues ( Ai) and eigenvectors ( t i ) of the noise-free spectral correlation matrix 

(5.9) are obtained (for i=l, 2) from the solution of 

which can be expanded as 

leading to the simultaneous equations 

{s X< (f)}. tli + {II" (f). S Lt (f)}. tZi = Ai . tli 

{H(f)· Sx./f)}· tli + {H(f)12 . Sn(f)}· t2i = Ai . t2i 

Using Cramer's Theorem in order to solve for the eigenvalues 

det{R(f) - A' I}= 0 

we get 
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(B.S) 

This can be expanded as 

{S xx (f) - A}. ~H(ft S xx (f) - A}- {Ii(f)S xx (f)}· {Ii' (f)S.u (f)}= 0 (B.6) 

and after some algebra the eigenvalues are given by (5.1 Oa,b) from which substituting 

into (B.3) we get 

{S xx (f)}. tli + {H* (f) . S xx (f)}. t2i = 0 (B.7a) 

{Sxx(f)}·t 1i +{H*(f).S.u(f)}·t2i = {Sxx(f)+IH(ff S.u(f)}·t 1i (B.7b) 

and the corresponding eigenvectors are given by the forms (5. 11 a,b). 
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APPENDIX C 

Variance of the Maximum Likelihood FRF Estimator 

Following from (5.21) with the corresponding properties of the Maximum Likelihood 

(ML) estimators it is concluded that the error associated with the ML estimators are 

approximately distributed as N(O, d), where d is the CRLB. This observation can be 

exploited to allow one in order to define the confidence intervals for the ML estimator 

by computing the Cramer-Rao Lower Bound (CRLB). Since estimation of Hif) and 

S,,-xif) decouple then one is essentially dealing with a single (complex valued) parameter 

estimation problem. Furthermore, rather than treating the problem as one of estimating a 

single complex parameter, Hif), we can consider it as a problem in two real valued 

parameters, namely 

(C.1a,b) 

It is well known that the CRLBs for multi-parameter problems are given by the diagonal 

elements of the Jl, where J is the Fisher information matrix defined by 

(C.2) 

where ap and a q are the parameters being estimated. For Gaussian problems, like the one 

we consider, it can be shown that [19] 
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Jp,q = E[ 8L 8L 1 = N Tr{R(/)-1 8R(/) R(/)-l 8R(/)} (p,q) E (1,2) (C3) 
8a p 8aq 8ap 8aq 

where a 1 = H R (I) and a 2 = HI (I)· From the definition of spectral correlation matrix 

it is simple to show that 

(C4a) 

(C.4b) 

Substituting these expressions into (C3) and after some algebra one can show that 

(CS) 

and 

in which H = [H R (/)H I (I) Y and CRLBs can be evaluated, with the aid of the matrix 

inversion lemma (Woodbury's Identity) [20], one can show that 

For large Signal to Noise Ratios (SNRs), i.e. Su(/),Syy(/»> Snxnx (/),Snyny (I); (C7a,b) 

can be significantly simplified by neglecting quadratic terms in the noise spectra, so that 
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in which case the CRLBs become 

CRLB{H Cf)}=CRLB{H Cf)}~ IHCf)1
2 

{SnynyCf) + SnxnxCf)} (C.9) 
R f N Syy(f) SuCf) 

Therefore, the approximate CRLBs are proportional to the sum of the inverse SNRs on 

the input and the output. It should also be noted that the 1/ N factor in (C.9) indicates 

that the ML estimator is consistent. The assumption invoked in approximating (C.7a,b) 

by (C.9) also imposes the independence of HRif) and H[if). It has already been 

mentioned in Section 5.2.3 that ML estimators are distributed according to Gaussian 

statistics. By virtue of this property, then the random variable 

(C.10) 

is a chi-squared random variable with 2 degrees of freedom and hence the variance of 
S~'-4t oL """~.:Y" \.l-v J.. ~ c.-\- I-k ~ 

theL,estimator H~ Cf) is given by C5.22). This allows one to write the confidence 

interval for the squared magnitude of Hij) as 

(C.ll) 

where the fact that the 100P percentile of a chi-squared distribution, with 2 degrees of 

freedom is given by log(P) has been exploited. The equivalence between (C.ll) and (3.60) 

can be shown by assuming large N (so that N-2~N) and noting that for the case of 

output noise only then Sllxll
x 
(1) = 1- Y~mYm (1) . 
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Variance of the Maximum Likelihood FRF Estimator 

In order that (Cll) can be used in practice one needs to first estimate the input 

power spectrum Sxxlf), from which Syylf) can simply be obtained. This could be 

approached in various ad hoc fashions, herein we retain the philosophy of ML and solve 

(5.17), with a = Sxx(f) , and replacing Hlf) by its ML estimate (5.21). Again after some 

algebra one can obtain the optimal estimator of S,:Jf) as 

S (f) = StmXm (f)K(f) + SYmYm (f) 

.U K(f) + /HJf)/2 
(C12) 

This estimate of the input spectrum only depends upon the ratio K(f) and not on the 

absolute levels of the noise spectra. 

By using (Cll) and (C12) in conjunction one can obtain confidence intervals for 

the squared magnitude of the transfer function estimator Hslf). Notice how, whilst the 

estimators of Hlf) and Sxxlf), (5.21) and (C12) respectively, only require the knowledge 

of the ratio of the noise spectra, in order to compute the confidence intervals one 

requires the absolute levels of the noise spectra, i.e. values for Snxn
x 
(f) and Snyn

y 
(f) . 
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Eigen-Value Decomposition of the TISO System Spectral Correlation Matrix 

APPENDIX D 

Eigen-Value Decomposition of the TISO System Spectral Correlation Matrix 

The eigenvalues ( Ai) and eigenvectors ( t; ) of the noise-free spectral correlation matrix 

(5.23) are obtained (for i=l, 2,3) from the solution of (5.27) which can be expanded as 

(omitting! 's in brackets for brevity) 

Using Cramer's Theorem in order to solve for the eigenvalues 

det{R(f) - A· I}= 0 (D.2) 

we get 

(D.3) 

Expanding (D.3) and after some algebra we get the expressions (5.25) and (5.26) defIning 

the eigenvalues for the cases of correlated and uncorrelated inputs, respectively. Note 

that, in both cases there a two non-zero eigenvalues and one zero eigenvalue. 
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Experimental Layout - Fault Detection in Rotating Machinery 

APPENDIX E 

Experimental Layout - Fault Detection in Rotating Machinery 

x -Probe 

Y - Probe 

Rub 
Screw 

Figure E.1 XY Probe mount and the typical rub screw set up (Bently Nevada). 
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Experimental Layout - Fault Detection in Rotating Machinery 

MOTOR SPEED CONTROL & 
PROXIMITOR ASSEMBLY 
POWER SUPPLY 

ROTOR KIT 
(Bently Nevada) 

o 
o 

CH 1 

FREQUENCY ANALYZER 
Input 1 

Input 2 

Figure E.2 Equipment and the experimental layout. 
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