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This thesis is focused on numerical modelling of high-temperature superconductors (HT'S)
for the purpose of a better understanding of the loss mechanisms which occur in alternat-
ing magnetic flelds and whose consequences still constitute one of the remaining obstacles
for practical applications of superconductivity.

The Critical State Model, developed for low temperature superconductors, only gives
a qualitative approximation of the electromagnetic behavior of high temperature super-
conductors. For precise quantitative analysis, HT'S are well described by a non linear
current-voltage characteristic, as the power law E(J) = E,.(J/J.)" assigned to super-
conductors modelled in this work. For studying HTS with such non-linear property and
with complex geometries numerical methods are necessary.

For modelling infinite long tapes with rectangular cross-sections a simple 2D integral
formulation developed by Brandt is used, which results in a stiff differential equation for
the current density. To solve it, Rosenbrock method was implemented and validated.

A extensive part of this thesis is dedicated to the coupling effect between supercon-
ductors via a resistivity matrix, for which analytical calculations are limited to a very
simple situation. Such 3D effect is modelled in superconductors with finite dimensions
using the finite element method (FEM) software Flux3D. Due to the highly non-linear
E-J law, initial tests using Flux3D showed the inefficiency of the linear system solver
used at each Newton-Raphson step. To improve the general performance of Flux3D
new iterative solvers, Gmres and Bi-CGStab, were implemented. FEM simulations were
carried out to study the coupling phenomenon in strips and slabs superconductors.

For the particular case of infinite slabs or thin discs, the 3D coupling effect can be
modelled by using a 2D formulation based on a extension of Brand’s formulation for the
sheet current in thin finite superconductors. Being simpler than FEM, this method is
found to be successful for modelling the coupling phenomenon at different applied fields,
and therefore was used to analyze the influence of different geometrical and physical

characteristics of superconductors on the coupling effect.



Contents

Acknowledgements v
1 Introduction to high-T, superconductivity 1
1.1 What is Superconductivity? . . . . . . . .. ... Lo 1
1.2 History of superconductivity . . . . . . . .. ... Lo 1
1.3 Applications of superconductivity . . . . . . .. ... oL 2
1.4 Principles of high-T, superconductivity . . . . . . . . ... ... .. ... 3
1.5 Type-Il superconductivity . . . . . . . .. ... ..o 6
1.5.1 Flux pinning, flux flow, flux creep and ¥ — J characteristic . . . . 7
1.5.2 Bean critical statemodel . . . . . ... Lo 8
1.5.3 Hysteresis in superconductors . . . . . . . . . . ... 10
1.6 Aclosses . . . . o . e 11
1.6.1 Hysteresislosses . . . . . . . . . . .o 11
1.6.2 Self-field losses . . . . . . .. . L 14
1.6.3 Coupling in filamentary composites . . . . . . . . ... ... ... 15
1.6.4 Measurement of aclosses . . . . . . . .. . . .. ... ... 17
1.7 Numerical calculation of losses . . . . . . . . . . ... ... . ... 19
2 2D Modelling of superconducting tapes 21
2.1 Imtroduction . . . . . . . . . 21
2.2 Numerical modelling of superconductors in 2D using Brandt’s method . . 22
2.2.1 Brandt’smethod . . . . .. ... ... o000 23

2.2.2  Numerical implementation for superconductors with rectangular
cross section . . .. ... L Lo 25
2.2.3 Singularity and refinement . . . . .. ... ..o 27
2.3 Numerical solution method . . . . . . . . .. . . ... 0L 27
2.3.1 7Stifl” problem . . ... 28

2.3.2 Numerical methods for Stif ODEs . . . . . . .. ... ... ... 31



CONTENTS iii

2.3.3 Rosenbrock method . . . . .. ... .. ... . 32

2.3.4 Implementation of Rosenbrock formulas . . . ... ... ... .. 33
2.3.4.1 ODEsolver RODAS . . . . ... . ... ... ...... 34

2.3.4.2 Performance of thecode . . . . . . .. ... .. ... .. 36

2.4 Results, comments and comparisons . . . . . . . . . . ..o 39
2.4.1 Results for different n-values of the # — J power law. . . . . . . . 44

2.4.2 Results for different geometries . . . . . . . . ... ... 47

2.5 Conclusion . . . . . . . 50
3 Implementation of linear systems solvers in Flux3D 51
3.1 Introduction . . . . . . . .. 51
3.2 Overview of linear systems solvers for sparse matrix . . . ... .. .. .. 52
3.3 Iterative solvers tested . . . . . . . . . ... Lo 53
3.3.1 Preconditioners . . . ... ... oL oo 53

3.3.2 Solvers . . . ... 5H
3.32.1 GMRES . . . .. . . . 56

3322 BCG ... .. . . e 57

3.3.23 BIiCGStab . . . . .. .. 58

3.3.3 Storage requirements . . . . . ... .. 59

3.4 Superconductor Problem . . . . . . . ... ... L 60
3.4.1 Description of the tested problems . . .. . .. ... ... .... 60
3.4.2 Results and comments . . . ... ... ... oo 62

3.5 Results for transient electromagnetic problems . . . . . . . .. ... ... 63
3.6 Conclusion . . . . . . . . e 65
4 3D modelling of coupling in AC magnetic field using Flux3D 66
4.1 Introduction . . . . . . . . . . e 66
42 FEM modelling . . . . ... . . ... . .. 67
4.2.1 Geometryandmesh . . . . ... ... L oL 68
4.2.2 Physical properties . . . . . . ... Lo 70
4.2.3 Solving process . . . . . ... o e 71

4.3 Results for sinusoidal B . . . . . . . ... e 71
4.3.1 Slab . . .. e 71
4.3.2 Strip . ... 76
4.3.3 Evolution of the coupling current I, . . . . . . . . ... .. .. .. 80

4331 Slab . . . 81



CONTENTS iv

4.3.3.2 Strip. . ... e 85

4.3.4 Coupling current and f, . . . . . . ... 87

4.4 Constant ramp rate B . . . . . oo 89
4.5 Limitation to implementation of £ — J power law in Flux3D formulation. 93
4.6 Conclusion . . . . . . . .. e 96

5 2D Modelling of coupling between superconductors of finite length 97

51 Introduction . . . . . . . . . e 97
5.2 Numerical formulation . . . . . . . .. ... .. ..o 99
5.3 Numerical solution . . . .. . . .. ... oo 101
54 Validation . . . . . . . . e 103
55 Results and comments . . . .. .. .. .. L 0o 106
55.1 Slab . . .. 106
552 Thindisc . . .. . . . 110
5.5.3 Critical coupling field Be . . . . . v o oo 112
5.5.4 Coupling current during a ramp field oscillation . . . . . ... .. 114
5.5.5 Influence of the length of the superconductor . . . . . .. ... .. 117
5.5.6 Influence of J, on the critical coupling field rate . . . . . . .. .. 121
5.5.7 Influence of the matrix resistivity of the superconductor. . . . . . 124
5.5.8 Influence of the matrix width . . . . . . . ... ... ... ... 126
56 Conclusion . . . . . . . 127

6 Further work and recommendations 129



Acknowledgements

First of all, I wish to express my gratitude to my supervisor, Yifeng Yang, for his support
and for his helpful guidance, comments and suggestions, essential for carrying out this

thesis. I am also grateful to Carlo Beduz for his advises and support.

I would like to thank all colleagues from the department for their help and collabo-

ration, and for the enjoyable atmosphere created during these years.
Thanks to staff members at the University for their advise in their respective areas.

Finally, many special thanks to all my family members and my friends for their

support and for all the good moments during my experience in England.



Chapter 1

Introduction to high-7,

superconductivity

1.1  What is Superconductivity?

Superconductivity is a strange phenomenon characterized by the zero resistance which

is observed in some materials when they are cooled below a certain temperature known

as critical temperature 1.

1.2 History of superconductivity

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes [26]. He was
examining the properties of the electric resistance in metals at low temperatures when
he observed that electric resistivity of the mercury cooled by liquid helium decreased
with falling the temperature and disappeared at 4.15K. In the next years, many other
metals and alloys were found to be superconducting if they are cooled at sufficiently low

temperatures, under 23 K.

Since there is not resistance at all, the superconductor can carry current indefinitely
provided that the temperature is kept low. The requirement of such extreme tempera-

tures can only be reached with some expensive gases as liquid helium.

It was in 1986 when the history of high temperature superconductivity began, when
Karl Miiller and J. George Bednorz observed superconductivity in lanthanum copper

oxides doped with barium at temperatures up to 38K [6]. One year later, in 1987,
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superconductivity was found at 93K in the compound yttrium barium copper oxide
(YBCO)[39]. At that temperature YBCO can be cooled in liquid nitrogen, more abun-
dant and cheaper than liquid helium. In the following years intense attention was put
to find other copper oxides superconductors at higher temperatures. So far, one of the
superconductors at highest temperature is the HBCCO (mercury barium calcium copper

oxide) with T, = 133K [2].

Since the discovery of high-temperature superconductors the superconductivity re-
search focused in different directions. Whereas some researches try to find supercon-
ductors at higher and higher temperatures, other people work in the improvement of
the properties of already discovered superconductors around 100 K, and investigate their

possible practical applications.

1.3 Applications of superconductivity

Superconductivity can be applied to different areas of science and engineering. As they

become more cost effective, future expansion of theses applications can be assured in

many cases.

Applications of high temperature superconductors include superconducting motors,
fault-current limiters, generators, energy storage systems, power cables, magnetic shiel-
ding devices, medical imaging systems, superconducting quantum interference devices

(SQUIDS), infrared sensors, analog signal processing devices, microwave devices, etc.

The property of superconductors to conduct electricity with high current density
and zero resistance can be exploited in the use of electrical transmission lines, where
in traditional conductors part of generated electricity is dissipated in resistive losses.
Similarly, superconducting motors and generators could be made with a weight of about
one tenth that of conventional ones of the same power, therefore at lower costs, thank

to the high currents that a HTS wire can carry.

Superconductors are used in many applications where intense magnetic fields are re-
quired since superconducting magnets are cheaper than conventional ones, more compact
and can produce higher fields. In medical applications, the superconducting magnet has
been used in magnetic resonance imaging (MRI) of many parts of the human body. The
intense magnetic fields and the uniformity in space and time needed for such applica-
tions can be reached maintaining the coils in theirs superconducting state. Similarly,

particle accelerators can increase their energy level by using superconducting magnets.
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Superconducting accelerators projects are developed in CERN laboratory in Switzerland
and Fermilab in USA.

Based on the property of magnetic field repulsion of superconductors (Meissner e-
ffect) other applications of superconductivity such as maglev exploit this unique feature
of magnetic levitation. Prototypes of high speed levitated trains have already been

constructed in Japan by using LTS with liquid helium as a refrigerant.

In the electronics industry, superconductors are used in ultra-high-performance filters.
Since superconducting wire has near zero resistance, even at high frequencies, many more
filter stages can be employed to achieve a desired frequency response. This is a great
advantage in high-congestion radio frequency applications such as cellular telephone
systems. Another electronic application is the possibility of building computers 1000
times faster than computers based on silicon chip technology. This is achieved through

the use of basic Josephson junctions.

1.4 Principles of high-7, superconductivity

Apart from the zero-resistance characteristic, another equally important property of
superconductors, related to their behavior when they are exposed to a magnetic field,
was discovered in 1933 by W.Meissner and R.Ochsenfeld [24]. They found that any
magnetic field applied to a superconductor is expelled from inside it when the material
is cooled below T.. The same effect occurs regardless whether the superconductor is
cooled below T prior or after the field is applied. Such total expulsion of magnetic field
is known as Meissner effect (figure 1.1). Macroscopic theory of London brothers [22]
and later in 1950 the theory of Ginzburg and Landau [14] propose equations to explain
this effect.

The magnetization M of the material relates to the magnetic field H and the induc-
tion B by the relation B = po(H + M). In the Meissner state B = 0 and therefore
M = —H (perfect diamagnetism).

For a given material, there is however a magnetic field sufficiently strong such that
the field penetrates into the superconductor and the normal state is restored. This field is
called the critical magnetic field (H.(T)) and depends on the temperature, being higher
for materials with high 7,. With regard to this feature superconductors are classify in

two groups: Type-I and Type-1L.
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Figure 1.1: Meissner effect in a superconductor.

Type-1 superconductors expel the applied field (Meissner effect) as it is lower than
the critical magnetic field, H.(T"). As the applied field exceeds H.(T'), penetration occurs

resulting in a transformation to normal state (See figure 1.2.(b)).

For Type-II Superconductors there are two critical fields. Field lines begin to pene-
trate into the material at H.;, converting some regions to the normal state, while others
are still superconducting. It is at a higher critical field H., when it becomes totally

normal material. This behavior is shown in figure 1.3.

Type-I superconductors are comprised of pure metals, whereas Type-II superconduc-
tors are mostly alloys or intermetallic compounds. The critical field varies enormously
between Type-I and Type-II superconductors. The maximum critical field (H,) in any
Type-I superconductor is about 2000 Gauss (0.2'T), but in Type-II materials, supercon-
ductivity can persist to several hundred thousand Gauss (H.). For Type-II supercon-
ductors, the critical fields and temperature are, in general, much higher than Type-I

superconductors, so they have much more potential for applications.

In addition to critical temperature T, and critical magnetic field H.(T'), there is
a critical current J., which is the maximum current that a superconductor can carry
without any dissipation. Whereas in Type-I superconductors J, depends only on H,,
in Type-II ones the three "criticals” are related forming a critical boundary surface

T — H — J, below which the material is superconductor.
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Figure 1.2: Critical magnetic field (a) and magnetization as a function of the applied magnetic
field H for a Type-I superconductor (b). It shows perfect diamagnetism below H, (M=-H),
then it becomes normal material.
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Figure 1.3: Critical magnetic field (a) and magnetization as a function of the applied magnetic
field H for a Type-1I superconductor (b). Above H,; flux begins to penetrate until H., when
there is no magnetization left.
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A more detailed explanation of superconductivity is found in [33], [12], [11], [38],

which have been used as references in this chapter.

1.5 Type-1I superconductivity

In 1957 A. Abrikosov [1] presented the theory about the behavior of type-II supercon-
ductors based in the Ginzburg- Landau theories. He explained the three possible states

depending on the critical temperature and critical magnetic field: normal, mixed and

superconducting states.

Below H,; all the magnetic flux is expelled and the superconductor behaves as a
perfect diamagnet (M = —H). In the mixed state between the two critical fields, the
magnetic field penetrates partially into the superconductor and normal and supercon-
ducting regions coexist. The field penetrates in the form of individual quantized flux
lines which arrange themselves into a regular pattern of Abrikosov flux lattice, forming
vortices of normal material. The vortices repel each other slightly and form a triangular
lattice. A vortex has a non-superconducting core allowing the flux to pass through it,

and is surrounded by a superconducting region as it is shown in figure 1.4.

Ha

h

Figure 1.4: Mixed state of Type-II superconductors where magnetic flux lines penetrated
the superconductor forming vortices. The vortex on the left shows the magnetic field passing
through the core surrounded by superconducting currents.
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Figure 1.5: Internal and applied field for an ideal Type-II superconductor.

The number of flux vortices increases with increasing field. Above H., the flux lines

pile and there is not space for superconductivity which is destroyed.

Figure 1.5 shows the flux density inside the superconductor as a function of the
applied field. Below H,; the flux density is zero. For applied fields well above of H, the

magnetization becomes negligibly so B &~ ugH, and goes to zero at H., where B = pgH.

1.5.1 Flux pinning, flux flow, flux creep and E —J characteristic

In a pure superconductor the vortex structure is in equilibrium, there is not force to
move them. When current flows, the flux lines experiment a force, Lorentz force, which
tries to move them (F = J x B). This movement is stopped if there are impurities or
imperfections in the material’s structure, causing the flux lines to be trapped. This effect
is known as fluz pinning. There is a certain value of the current, denominated critical
current (J.), when the Lorentz force equalles to the finite pinning force. For a higher

current density above J, the vortices start to move (fluz-flow) leading to dissipation.

For HTC superconductors at high operation temperatures flux motion may be acti-
vated by thermal fluctuation of the lattice, even below J,. This motion is slower than
flux flow and is known as fluz-creep. At low temperatures up to 18k, this phenomenon is

insignificant and the induced voltage and resistance of the conductor is essentially zero.
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But for 77 K it has to be taken into account.

Linear
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Figure 1.6: Electric field versus the current density under the influence of the thermally
activated flux motion.

Figure 1.6 shows the electric field in function of the density current at a constant
temperature showing the different states. Defining a current parameter Jy, the three
states are represented. J is defined as the J, value that would have obtained in the

absence of flux creep.

1.5.2 Bean critical state model

Electrodynamics of type II superconductors due to an applied external field can be
described by Bean’s critical state model (1962) [5]. Critical sate model postulates that
for low applied fields or currents, the outer part of the sample is in a ”critical state”
with special values of the current density and magnetic field, and the interior is shielded
from these fields and currents. In particular, in Bean’s model, the current is assumed
to flow at a critical density J,, independent of the time rate of change of the magnetic
flux. Then, only three states for the current flow are possible when the magnetic field is

applied: zero current for the regions not affected by the applied field and critical current
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Figure 1.7: Bean critical state model for a infinite slab in an applied magnetic field.
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for the rest.

As an example, consider an infinite slab of superconductor with a sinusoidal applied
field parallel to one of its sides. The field is increasing from zero to a maximum value
H,, and then is decreasing to —H,,. Figure 1.7 shows the field and current density inside

the superconductor.

When the external field is applied, the currents start to flow producing a uniform
field opposite to the applied field change. These currents flow at the critical density J,
and the field inside is given by V x H = J. At a low fleld (figure 1.7.(a)) there is a field
and current free region near the center. At H = H, the fields and currents reach the
center of the slab as shown in figure 1.7.(b). There is current flowing through the whole
slab and the field reduces to zero at the center. H, is denominated penetration field. If
the field continues increasing, since the currents have already penetrated over the whole
cross section, they can’t oppose to the increment of the field which, therefore, increases
in the whole conductor (figure 1.7.(c)). If the applied field is now decreased, the flux
does not recede completely in the reverse order since some of it is trapped inside the slab.
Currents start to flow in the outer part with reversed critical current to oppose to the
decrease, however in the part where the magnetic field has not changed yet, the current
remains flowing in the same direction (figure 1.7.(d)). This reversed current propagates
inwards as the applied field is further reduced. When the applied field reaches —H,,, the
field and current profiles are totally reversed as shown in figure 1.7.(e). Observe that
the field inside exceeds the applied field which means the flux is trapped inside. As the

applied field stars to increase again at the outer regions reversed current appears (figure

1.7.(£)).

1.5.3 Hysteresis in superconductors

Assuming Bean’s critical state model and considering M = ug*B — H, observe in figure
1.8 the magnetic behavior of type-II superconductors. For each value of H there are
two possible values of M hence when H is cycled M does not return to its initial value.
The magnetization saturates at 4 = H, When the applied field starts to decrease,
the magnetization does not come back in reverse path since there is flux trapped in
the material. It returns to zero when the internal field is equal to the applied field
(g *B = H). The energy loss in one cycle is the area enclosed by this hysteresis loop in
the plane of the magnetization M versus the applied magnetic field H.
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Figure 1.8: Hysteresis loop of magnetization M versus applied magnetic field H.

1.6 Ac losses

Although since type-II superconductors were discovered many improvements were done
and many difficulties were solved, one of the remaining barriers for large scale power
utilization of superconductors are the ac losses. In most of the applications in power
engineering, the superconductor material is in presence of ac currents or changing mag-
netic fields , so there will be energy losses and the consequent heating generated in the
superconductor will require a large amount of refrigerator power for its removal. This
amount depends on the temperature at which the superconductor operates. For exam-
ple, removing one watt of heat deposited at room temperature requires 500 — 1000 W of

refrigeration power at 4K and 10 W at 77 K.

There are three different mechanisms of ac losses: hysteresis losses and self-field losses

in the superconductor region, and eddy current losses in the normal material region.

1.6.1 Hysteresis losses

Hysteresis losses result from the magnetic hysteresis due to flux pinning. When a time-
varying applied magnetic field penetrates into the superconductor and is increased, pro-
duces the constant movement of the vortices in the lattice, therefore an electric field

is generated, and there is dissipating energy. Hysteresis losses vary depending on the
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penetration depth of the magnetic flux.

Assuming the Bean critical state model, analytical formulas for the losses can be

obtained for same simple configurations.

Usually, calculations of ac losses are done integrating the instantaneous power dissi-
pation E(r,t) x J(r,t) within the superconductor volume surface. This integral is easily
calculated since by Bean’s model the current is equal to J. and E is calculated as the

change of the flux.

For a superconductor in presence of a magnetic field there is another way to calculate
losses. The total loss per unit volume in a complete cycle is the area enclosed by the

hysteresis loop in the plane of M versus H (figure 1.8).

For simple geometries, the critical state can be obtained exactly, as summarized next.

Slab parallel to the field

Consider an infinite slab of thickness 2a in an applied magnetic field parallel to the slab

as it is shown in figure 1.9.(a) . Suppose that the field is reduced from the maximum

value H,, to —H,,.

Ha

(b) (©)

Figure 1.9: Superconducting slab in an ac applied field (a), and magnetic field profile inside
the slab for H < Hy, (b) and H > H), (c).

Figure 1.9.(b) shows the field profile when H,, < H,. H, is the value of the field such



CHAPTER 1: Introduction to high-T, superconductivity 13

that the magnetic field reaches the center of the slab and from Bean’s model is equal to
Jea. The hysteresis losses per cycle per unit volume, obtained integrating F - J over the

volume, are

oL [ _ 2 5 (Hn
Q= 22& /~a JAP(x)de = B,uOHm (Hp> H,<H,

For the case H,, > H, the slab is saturated at the peak field (figure 1.9.(c)), and the

losses per unit volume per cycle Q are given by

Ll o o (He 2 (Hy
Q=125 / Jelsp(a)de = 2u0l (Hm 3<Hm> Hn> H,

The first factor in both previous equations (2ugHZ2) is the maximum volumetric

energy stored by the magnetic field.

Similar to infinite slab, results can be obtained for a cylinder in a field parallel to its
axis. When the applied field is perpendicular to the cylinder is more complicated since
the field and current profiles are not one-dimensional functions. Wilson [38] derives
an approximate solution for low fields below full penetration which has to be solved

numerically.
Strip in perpendicular field

Consider a strip of zero thickness and width 2a as shown in figure 1.10.(a) with a finite

critical current I..

The power loss is determined in [9] using the integration of MdH. The field profiles
in this geometry are non-linear due to the demagnetization field occurring at the strip

edges (figure 1.10.(b)). The power loss per unit length is given by :

21, THpn2a TH,,2a
Q) = o2aH,, 1, <m In cosh ( T > — tanh ( T >>
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Figure 1.10: Superconducting strip in an ac applied field (a), and magnetic field profile when
the field is decreased from H,, to —H,, (b).

1.6.2 Self-field losses

Similarly to ac hysteresis losses due to an ac applied magnetic field described before, there
are losses in a superconductor carrying ac transport current. The ac current creates a
self-field varying in time, which induces the magnetic hysteresis and therefore dissipating

energy, known as the self-field losses.
Self-field losses in a carrying current wire

In a wire carrying transport current, the self-field induced penetrates from the exterior
and its flux lines form concentric lines around the wire (figure 1.11). The current flows
parallel to the axis of the wire near the edges penetrating as far as it is needed to carry

all the current.

In [41] an analytical formula for the loss is presented. Figure 1.11.(b) shows the

profile of the self-field in a wire of radio a. The losses per cycle per unit length are given

by

1

Q=21 ((1—2')1n(1—z‘)+2fi) i<1

where i = I,,,/ I, I, the current peak, and I, = ma®J,.
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(b)

Figure 1.11: Self field in a superconducting wire carrying a transport current I (a), and
magnetic field profile inside the wire (b).

This formula can be extended to wires with elliptic cross-section as it was calculated

by Norris [25].
Self-field losses in a strip

Norris [25] calculated the self-field hysteresis loss for superconducting thin strips. The
profile of the field is similar to the one represented in figure 1.10.(b) for a strip in an

external field. The losses per cycle per unit length are

Q=221 (- -i)+Q+9)n1+i) —) i<l

1.6.3 Coupling in filamentary composites

To reduce the hysteresis losses and for stability reasons, superconductors are usually
manufactured in form of filamentary composite, that is, fine superconductors embedded
in a normal material matrix. However, in such configurations long length filaments
can couple under ac magnetic fields hence defeat the objective of loss reduction by fine
filaments.

There is a critical length [, for a given amplitude and frequency of the applied field,

such that filaments longer than that length couple together leading to resistivity losses.
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Figure 1.12: Coupling current between two slabs separated by a normal matrix.

Solutions to minimize theses losses are to increase the matrix resistivity or to twist the

filaments together, with the twist-pitch length less than 21..

Coupling in slab geometry

The critical coupling length [, can be obtained from the simple model of two parallel

infinite slabs separated by a normal matrix and under the assumptions of Bean’s model.

Consider two slabs with a normal conductor between them as it is shown in figure
1.12. In presence of an AC magnetic field in the z direction, current is induced to flow
in each slab in the xy-planes. Assume the filaments have not resistance and all the
voltage is across the matrix. Let I(z) be the current in one of the slabs at distance z
from the center of the slab. Between z and z + dz let some of this current ¢/ cross the
normal matrix driven by the induced voltage, V = —%‘f. Supposing that B is the same

everywhere, then V = Bdz. Therefore
61(z) = Bdz/(pd/bz)
Integrating this equation with the boundary conditions I(b) = I(—b) = 0, we obtain

I(z) = B((2b)" ~ 42°)/(8p)
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The maximum current is at the center, z = 0, and is limited by 2aJ,, which is the
value reached when the slabs are fully coupled and all the current is flowing in one slab

crossing through the matrix to the other.

Therefore there is a critical ramp rate of the field, B,, when the slabs are fully coupled,

given by
B, = 16pJ,.a/(2b)* (1.1)

and the critical coupling length is [, = 2b, with

b, = 2,/ P2
B

1.6.4 Measurement of ac losses

There are two experimental ways to measure AC losses: calorimetrically or electrically.

Here they will be briefly described using as references [38] and [41].

The calorimetric method consists on the measurement of the volume of gas which is
boiled away by ac loss power or the heating of the sample. Figure 1.13 shows a simple
arrangement for calorimetric measurement using the boil-off rate of helium gas. To
obtain a good accuracy is important to separate the cryogen boil-off due to the cryostat
heat leak, current leads, etc..The specimen is enclosed by a bell jar which is vented to
the flow-measuring device, but the boil-off due to current leads and heat leak into the
cryostat is vented separately. From the measurement of the volume flow rate V the mass
flow rate m is obtained. Then knowing the latent heat of vaporization of the cryogen A
and its density, the power loss is ecasily calculated as X = pAV. Liquid helium is suited

for this method.

In [4] a simple technique using the temperature increase for measurement of losses due
to ac magnetic fields and transport currents is presented. The ac losses are obtained by
comparing the temperature increase after a fixed time of unknown ac power dissipation

with that after the same time of known dc power dissipation.

The electrical method for loss measurement of isolated samples works by measuring of
magnetic hysteresis using pick up coils , and for devices as coils relies on the measurement
of the electric power supplied to them. This method is faster but more complex than

calorimetric techniques.
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Figure 1.13: Calorimetric measurement of ac-losses via the boil-off rate of the cryogen (from
reference [41]).

Figure 1.14: Electric measurement of ac-losses due to ac current and external magnetic field
(from reference [41]).
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There are several electrical measurements that are important for determining hys-
teresis loss, self-field loss, and coupling loss, as explained in [41]. The arrangement of
coils and conductors may vary with the geometry in order to minimize measurement

errors. Figure 1.14 shows a circuit for measurement of self-field and external field losses.

The basic idea is to multiply current by voltage electronically and then to integrate

the product electronically over one cycle, yielding the energy supplied to the magnet.

Measurements for a tape with twisted superconducting filaments are presented in
[40]. Electronic methods for self-field AC losses measurements are used in [7] for Bi-2223
tapes and in [19] for PbBi-2223 tapes.

1.7 Numerical calculation of losses

Analytical formulation for loss calculation presented in section 1.6 were given for simple
geometries based on Bean critical state model. This model does not apply satisfactorily
for HTS where the E — J characteristic is a power law like function such as E(J) =
E.(J/J.)". For ac loss calculation in such case, numerical models representing with

accuracy the physical phenomenon produced are required.

The aim of these thesis is to present effective numerical models to give a precise idea
of the electric and magnetic field distributions inside the superconductor. In particular

the thesis will focus in modelling high-T, superconductors in external AC-magnetic field.

Integral formulations and finite element method (FEM) are tools commonly used for
modelling the general physical problem. Whereas the FEM is required for 3D problems of
superconductors with finite dimensions, which are solved with a large numerical effort,
integral formulations are a better alternative for modelling 2D problems due to their

simplicity.

The 2D problem of infinite long tapes in perpendicular fields where the current has
only one component along the conductor is solved with Brandt’s formulation, which
consists in solving an integral equation for the current density. The implementation of a

numerical method to solve Brandt’s formulation is explained and validated in chapter 2.

The 3D problem of finite superconductors is solved using a FEM software as it is
explained in chapter 4. With this model the coupling phenomenon is well analyzed for

strip and slab geometries.

Chapter 5 is dedicated to modelling of infinite slabs and thin discs of finite length. In
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this geometries the currents are restricted to a plane and have two components. Therefore
a integration formulation can be applied. Similarly to the problem of infinite long tapes,
the reduction to a 2D problem results in a integral equation, in this case for the stream
function of the induced sheet current. The coupling effect between superconductors via

a resistivity matrix is well modelled by using this method.



Chapter 2

2D Modelling of superconducting

tapes

2.1 Introduction

When superconductors are exposed to AC magnetic fields, high losses due to hysteresis
are produced. In order to predict them it is important to have models to calculate the

current and field profiles inside the superconductors.

Calculations of losses in 2D superconductors can be obtained analytically for su-
perconductors in the critical state with simple geometries by knowing the exact field
profiles [5]. However, for Hight-T, superconductors the critical state does not apply su-
ccessfully since the material is characterized by a non-linear £ — J power law such as
E(J) = E.(J/J.)™ which includes the Bean limit (n — oc0). Therefore, for modelling of
losses in high-T, superconductors or with more complex geometries numerical methods

are required.

Numerical simulations of this 2D problems with a F — J power law have been de-
veloped based on the finite element method (FEM) or in an integration formulation.
Although FEM finite element method is generally utilized ([3],[18]), because of the high
non-linearity, sometimes is not too efficient and requires a large numerical effort. Inte-

gration methods as Brandt’s method [10] are advantageous due to their simplicity.

Brandt’s formulation applied to superconductors with rectangular cross section is

presented in the next section. Due to the non-linear behavior of the superconductor
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properties, the final differential equation obtained is highly non-linear and stiff. The
objective of this work is the implementation of a numerical method to solve Brandt’s

equation efficiently.

In section 3, Rosenbrock method [17] is presented as an effective method for stiff
problems. The performance of the solver RODAS, based on a Rosenbrock method of

order 4, is investigated and compared with other implementations.

Finally, current and field profiles obtained using RODAS are shown and commented
in section 4 for partial and total penetrated superconductors. Also, it will be analyzed
the influence of some parameters as the n-value of the £ — J relation and the aspect

ratio of the superconductor in the ”stiffness”.

2.2 Numerical modelling of superconductors in 2D
using Brandt’s method

In order to study the electromagnetic behavior of a superconductor, Maxwell equations

must be solved:

V-B=0 (2.1)
VxH=1J (2.2)
0B
v = 9.
V xE 5 (2.3)
V-E =p/e (2.4)

Also, to describe the electromagnetic of the superconductor material requires constitutive
law between flux density B and the magnetic field distribution H. It is assumed the

material law B = ppH.
Relation between the electric field E and the current density J for Type-I1 supercon-
ductors can be expressed by a highly non-linear power-law as follow:
E(J) = Ec(J/J.)" (2.5)
It has been found that for practical superconductors o &~ 20 and therefore the system
will be extremely non-linear.

Maxwell equations plus the two laws B— H and E— J are the tool used to calculate the

electromagnetic behavior of a superconductor of arbitrary shape when a perpendicular
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Figure 2.1: Superconductor cross-section model.

arbitrary magnetic field is applied. Since the current is uniform along the tape axis, then

a 2D model of the tape cross section can be used.

Different numerical models in 2D have been developed in the last years. In [23]
and [20], the problem is solved using a finite differences method. The FEM is utilized
in [3] and inserted in commercial software as Flux2D [18]. Brandt proposed a simpler
formulation based in an integral equation which is presented and implemented here.

Later, Yazawa [43] extended it to include transport current through the superconductor.

2.2.1 Brandt’s method

Brandt [10] proposes a 2D model for long superconductors of arbitrary cross-section in
perpendicular field which consists on solving the Maxwell equations in an integral form.
In that way, it avoids calculating the spatial derivatives and it is not necessary to consider
the boundary conditions since the integral equations contain the appropriate differential

equations plus the boundary conditions.

The analysis considers a superconductor cross-section placed in the xy-plane and a
time dependent applied field B, in the y direction (figure 2.1). This applied field induces
current to flow along the z direction, and this current generates a magnetic field H

without z component.

From B = poH, where B = V x A is the induction, and V x H=J , then
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1
J:—~V><B:~1—V><V><A:——1—V2A (2.6)
Ko Ho Ho

For a uniform applied field B, in the y direction the associated vector potential is

A, = —xB,z and V*A, = 0. Hence (2.6) can be expressed as

o = =

1 1
J=—-—V?4; = ——V*(A—-zB,) (2.7)
Ko Ho
The solution of previous equation is
A(r) = ——;LO//Q(r,r')J(r’) dr' — zB, (2.8)
with the internal kernel
Infr—r’|
Nt 2.9
Qlr,v) = = (2.9

The integral kernel gives information about the geometry of the superconductor,
which connects a field point r = (z,y) and a source point v’ = (2/, /).

The relation (2.8) can be inverted as

1 —1 r I‘/ I_/ CEI 7n/
J<r>:—;;//@ (r, ") [A(r) +2'B] d (2.10)

The inverse Kernel @' satisfies [, @7'(r,r') Q(r/,x")d*r" = §(r — r”)

The induction law in the form E(J) = —A allows to obtain the equation of movement

for J from equation (2.8),

BU(,) = o [ [ Qe x) I + B, (211)
Finally, to solve the time integration ,express J as a function of J and B.

J(e,t) = i / /S Q7 (ex) [BU,0)) - /B, 0 (2.12)
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Note that equation (2.12) describes self and mutual inductance of a set of infinite

long wires according to Faraday’s law: dI/dt = VL™*
2.2.2 Numerical implementation for superconductors with rect-
angular cross section

Numerical solution of (2.12) can be demonstrated using the simple case of a rectangular
conductor. Consider the model shown in figure 2.1 of a superconductor with rectangular

cross section in the zy-plane, width 2a and thickness 20b.

In order to calculate numerically the solution for the final equation, equidistant points

discretize the cross section

) i=1.N, (2.13)

)~  Ji=1.N, (2.14)

rO = DN
@3[9

y;=(J -

£~

By labelling the lattice points (z;,y;) by a indices k = 1... N, being N = N, x N,

one can write the equation in a discrete form for Ji(t) = J(a;,y;,t) with k=1... N as

Jult) = %5 S QrL B () - aw Ba()] (2.15)

k=1

and the kernel Q as a matrix );; of N x IV elements.

Qi,j = .2}7;111 I r—r I: *2}7;111 ((QZZ - :cj)2 + (yz - y])2)>%
= Lo — o)+ (1 - 1)) 2.16)

The kernel diverges at r = r’. Brandt’s proposed that for a grid such that dz =
a/N, ~ dy = b/N, a good accuracy is achieved letting Q; ; = 7= In(0.015dzdy).

Since the inverse of Q; ; must satisfy [, @ '(r —r')Q(r — r”)d*r = §(r' — "), then
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1= /Jé S(r' —1r")d*" = //Sd%“"/SQ_l(r —1)Q(r —r")d’r

=D ASY QiiQuAS (2.17)
k=1

=1

Therefore, the right kernell must be calculated as Q;‘;l = Q. ;AS -2

As the magnetic field is applied in the y direction, the current J is symmetrical with
respect to the z-axis (J(z,y) = J(z, —y)) and antisymmetrical respect to the y-axis
(J(—z,y) = —J(z,y)), hence in (2.15) only a quarter of the total cross section needs
to be considered, 0 < z < @ and 0 < y < b (shown with diagonal lines in figure 2.1),

replacing the kernel by the symmetric kernel

st‘m(xa Y, 33/, yl) = Q(xa Y, x/a y/) - Q(x: Y, _-:E/a y,) + Q(xa Y, xla _y/) - Q(CC: Y, ‘—il'/, “Z//)
L) (@—a)+(y— y'§2> E(x ~2P+ (y+y)) (2.18)

i (e + -y (e + 27+ W+v))

Finally, replacing in (2.15)

‘ AS X .
) = 253 QELIE(L) — 2w Ba(t)]
Ho
-1 N )
= A5 S0t B - o Balt)] (2.19)
Fo k/=1 )

Equation (2.15) can be expressed in matrix form

. 1
J(r,t) =

Q™ [E(J) - Ba(t)x} (2.20)

Inserting in (2.20) the expression for an applied field sinusoidal, B(t) = B, sin(wt),

(1) = uoi s [E‘ (-})n _ 2B cos(wt)} (2.21)

Taking M = QueAS then
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MJ = E, (—;—) — zBywcos(wt) = £(J,t) (2.22)

2.2.3 Singularity and refinement

Since Brandt’s method requires a grid with square cells, it is necessary a very thin mesh.
In order to get an accurate () without a very refined mesh it is possible to consider bigger

cells, which are also divided in square subcells as it is explained in [42].

The analytical expression is

sz/éﬁm@/ﬁfﬂ%ﬂ@:@_%»mmb (2.23)

This allows us to consider the shape factor of each cell at the same time as the

singularities are avoid.

Equation (2.23) can be approximated by

Ns N

Qi = Z Z Q(r; — dry,,r; —dr,) (2.24)

n=1 m=1

where N, is the number of subcells and dr,, and dr,, the coordinates of the subcells

relative to the cells coordinates.

2.3 Numerical solution method

Equation (2.22) can be formulated as a general initial value problem of the form
MJ=£(3,t), J(t) =y,

In order to solve it, in principle any numerical method could be applied. However,
the efficiency of every method varies depending of the characteristics of the ODE to
solve. It is therefore necessary to know which type of problem we are dealing with and

then apply the appropriate method.

In this section it will be shown that due to the high non-linearity, equation (2.22)

belongs to a group of ODEs named ”stiff” for which it is known explicit methods are not
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efficient. Therefore a implicit scheme has to be used. In particular, Rosenbrock method

will be presented as a effective method to solve the stiff problem studied here.

2.3.1 7Stiff” problem

Although there is a general intuitive meaning, there is not a precise definition of ”stiff-

ness”. In general, an ODE system is called a stiff ODE system when explicit methods

can not solve them.

For high applied fields such that the superconductor is saturated, the problem be-
comes more stiff and difficult to solve. The expected current and field profiles in such
case for an infinite slab given by Bean’s critical state model are shown in figure 2.2.
When the magnetic field applied parallel to the slab is increased, it starts to penetrate in
the superconductor and the current has two possible values: J, in the penetrated region
and zero in the rest. When the field raises to H, the conductor is fully penetrated and
therefore the current flows over the whole cross section. If the applied field continues in-

creasing also the total field in the superconductor increases, whereas the current remains

equal.

(2) (b)

Figure 2.2: Internal magnetic field (a) and current density (b) for Bean’s model.
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Figure 2.3: Profile of the current (a) and the magnetic field (b) inside a rectangular super-
conductor in an applied field B = 0.5 sin(2750¢t).

The solution of Brandt’s equation presents a similar behavior as it is shown in Figure
2.3. The example is for a superconductor with rectangular cross section (2a = 3-1073m
and 2b = 107*m) in a applied field B = 0.04sin(2750¢). The E — J relation is given
by n = 21, resulting in a very non-linear equation. Similarly to Bean’s model observe
the almost invariant profile of J (J ~ 0) after the field has completely penetrated the

superconductor.

To show the effects of "stiffness” let’s apply an explicit method to a particular
superconductor example. Consider a superconductor with rectangular cross section
(2a = 3-107%m and 2b = 107*m), in an applied field B = 0.01sin(2750¢). For the
E — J relation the exponent is n = 21. Then equation (2.22) results

J
2-108

21
MJ =10"* ( ) — 0.1 -50cos(50t)x (2.25)

First, the equation was solved using a simple step-forward integration method as it
was done in [10]. From an initial condition J(r,%p) the evolution of the current it is
calculated in successive time steps as J,4o1 = Jp + h - %(r, tn—1) where h is the distance

between consecutive steps. To obtain the convergence during a complete cycle time of
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| N | Tol | Steps | Rejected steps | Accepted steps | Aver. time step size |

15| 107* | 19678 148 19531 5.20 x 1077
15 | 107 | 19412 16 19396 5.18 x 1077
20 | 107% | 35441 447 34994 2.9 x 1077
20 | 107% | 34613 12 34610 2.9 x 1077
25 | 10~ | 57719 2631 55088 1.8 x 1077

Table 2.1: Results for (2.25) using DOPRIS for 0 < ¢ < 0.0005.

the applied field, the maximum step size possible was found A = 3 - 107% This means
that the solution converged extremely slow, a lot of steps were required and therefore

the method became impractical.

In contrast to the simple step-forward integration, lets try now with another explicit
method this time with step size control, in order to avoid the extremely slow convergence.
The method chosen is the solver DOPRIS, a explicit Runge-Kutta method of order (4)5
due to Dormand & Prince and implemented by E. Hairer and G. Wanner [16]. We
integrated during the first quarter of the cycle time 0 < ¢ < 1/4f using the same value
for the relative and absolute tolerances Rtol = Atol = T'ol. Table 2.1 shows the results
for different tolerances and grid points. Observe that the number of steps used increases
with the grid points due to stability reasons required for thinner meshes. Notice that
the time step size is independent of the tolerance, in fact for smaller Tol the number
of steps required is bigger, which means that the interval selection is regulated in order
to control the stability more than the precision. Since the problem is very stiff and the
method is not stiff accurate then the time step size has to be reduced to 1077 which is

still a very slow convergence.

The solver DOPRI5 includes a process to detect stiffness based in the observation
that where a non-stiff code finds stiffness the product of the step size with the dominant
eigenvalue of the Jacobian lies near the border of the stability domain of the method.
This mechanism is useful in order to say when a method is not suitable and a implicit
scheme is required. Figure 2.4 shows h\/3.25 where h is the time step, A is the estimated
eigenvalue and 3.25 is the approximate distance of the frontier of the stability domain
to the origin. Observe that the value of hX is approximately 3.25 for almost the whole
interval of integration, and exactly 3.25 when the step size reaches the minimum values
restricted by stability. Notice that the step size starts to increase just before the applied
field reaches the peak, and decreases again after the peak field. Observe that setting a



CHAPTER 2: 2D Modelling of superconducting tapes 31

1.0 4

0.5 A

hlA/ 3.25

—— Rtol=Atol=10 ™
—— Riol=Atol=10 ®

1 L Il

1e-5 o
< tes

1e-7 -

0.01 A

@ 0.00 -+

-0.01 -+

0.000 0.005 0.010 0.015 0.020

t, s

Figure 2.4: Stiffness detection with DOPRI5.

smaller tolerance improves the stability but the step size does not change significantly.

As it was said before, the problem becomes more stiff as the amplitude of the applied
field is higher and the superconductor is saturated. Table 2.2 shows the step size required
solving the equation when the applied field amplitude is B, = 0.5T. Notice the high

increment of the number of steps required comparing with results in table 2.1.

2.3.2 Numerical methods for Stiff ODEs

Solvers for ODE systems include Runge-Kutta methods and multisteps methods [17].
Among the Runge-Kutta there are explicit and implicit methods. As it was shown in

previous section explicit schemes have the advantage of being easier to implement but
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| NT Tol | Steps | Rejected steps | Accepted steps | Aver. time step size |

15 ] 107 | 471400 44 471356 4957 x 1078
15 | 107% | 469537 13 469524 4.26 x 1078

Table 2.2: Results for (2.25) with B, = 0.5 using DOPRI5 for 0 < ¢ < 0.005.

poor stability properties which leads to very strict restrictions on the time step chosen.
Implicit schemes have the advantage of being efficient but require much numerical effort
and therefore being more suitable for small matrices. However there is a group of ”semi-
implicit” methods named Rosenbrock methods [17], which give good responses and do
not need such computational effort. Since they are not implicit they are simpler to
understand and to implement. This methods have been tested in many physical problems
as in [27], [35], [31], [30] where they were found to be efficient in terms of stability and
computational time. Also, Rosenbrock methods are inserted in well-known calculation

software like Mathcad or Matlab as stiff solvers.

Next sections will describe the Rosenbrock method and later numerical results will
be presented showing its performance in solving the ODE obtained with Brandt’t for-

mulation.

2.3.3 Rosenbrock method

For an implicit non-autonomous differential equation My = f(y,z) ,the solution found

by an s-stage Rosenbrock method is given by

yi=yo+ Y bk (2.26)
i=1

where k; are calculated solving s linear equations

i—1

Mk; = hf(zo + ouh, yo + Z a; ki) + v Z Rt (20, o)
=1 ;
+ hI(20,50) D sk  i=1,...8 (2.27)

j=1

where J = gf/ is the Jacobian and f’, = g—i-.



CHAPTER 2: 2D Modelling of superconducting tapes

33

The coeflicients «y, v;, are given by

i—-1 %
Q= E Qg i = E Vi
=1 =1

oj, Vi; and b; are fixed constants problem independents. They are chosen in order

to satisfy the stability and order conditions. The method is of order p if the local error

satisfies y(xg + h) — y1 = O(hP™).

To reduce the number of matrix-vector multiplications required each time step, the

equation can be transformed. Taking

i i
U; = E OZZ'J Yi — E KYi,jKj i=1...5
j=1 j=1

(ai;) = (au) (7)™
(my...... ms) = (by...... be) - (i)t
(Cy) = diag(yy' ... Yoo ) = (i)™

Then the equations become

i~1

1
<h7~M — J(zo, yo)> u; = f(zg + ash,yo + Zai,juj) + vhf (20, ¥,)
(13 ]:1
g1 C
+ MZ —}%uj i=1...s

y(@o+h) =yo+ Y miu;

=1

2.3.4 Implementation of Rosenbrock formulas

(2.28)

(2.29)

Since stiffness appears in many physical problems, typical mathematical calculation soft-

wares as Mathcad or Matlab have built-in functions for numerically solving ODEs with

accuracy for stiff systems. Among the stiff solvers Mathcad has a function using Rosen-

brock method called STIFFR. To call this function requires as input arguments an n-
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element vector-valued function containing the first derivatives of the unknown functions
and a function which returns the n by (n+ 1) matrix whose first column contains deriva-
tives and whose remaining rows and columns form the Jacobian matrix for the system
of differential equations. A disadvantage of this implementation is that the differential
equation can not be solved in implicit form. Therefore Brandt equation is expressed as

in (2.21), it is necessary the inversion of the kernel @), and the Jacobian becomes a full

matrix.

Matlab has a built-in solver for stiff problems based on a Rosenbrock method, ODE23S,
a modified Rosenbrock formula of order 2. Although this function has an option for sol-
ving the equations in implicit form, is formulated in a low order 2, only suitable for stiff

problem where lower accuracy is acceptable.

In order to avoid the disadvantages of the implementations in both softwares, a more
efficient solver found from literature, RODAS, was inserted in our own library to solve

Brandt’s equations.
2.3.4.1 ODE solver RODAS

RODAS of Hairer and Wanner [17] is the code in Fortran of a Rosenbrock method with
s = 6 of order 4. It takes the parameter v; = ~ for all 7 given in equation (2.27) so only
one factorization has to be done each time step. The constant coefficients required in

the formulas are chosen in order to obtain a stiffly accurate and A-stable method.

For the error estimation and the step size prediction it uses the embedded third order
solution. Then two solutions of the form (2.29) are computed, the one of order 4 (2.29),

and a lower order estimation § with other coefficients l;i,

¥ =yo+» bk (2.30)
=1

The calculation of the embedded solution does not require extra cost since it uses
the same coefficient k; calculated for the four order solution. The only difference are the
fixed coeflicients b;- which are chosen such that both methods are stiffly accurate and the

embedded solution is third order.

Then the error formula using both solutions is
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(2.31)

with

sk; = Atol + Rtol max (|yil, [yo;]) (2.32)

Atol and Rtol denote the relative and absolute error tolerances. Normal values are

Atol = Rtol = 107°

If err > 1 the step is rejected, then a new step size h is calculated as
hnpew = h/ fac (2.33)

and the solution is recomputed in the same point. The parameter fac is obtained as

fac = max {facZ, min (facl, v, err) } (2.34)
with facl and fac2 defined such that

fac2 < h/hpey, < facl (2.35)

If the step is accepted, err < 1, the process continues with a new size time step. In

this case, it will be calculated by the Predictive controller of Gustafsson,
fac max ¢ fac2,min < facl ot of €171 (2.36)
us = ac2, mi | —— :
g hy erry

Pnew = h)mazx(fac, facgus) (2.37)

and

If the dimension of the system is large, the computational cost is high because at each
time step it is required: an evaluation of the Jacobian and the derivative, 6 matrix-vector

multiplications, 6 function evaluations, and 6 linear system solutions.
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Most of the computing time is spending for solving the linear systems specially for
the factorization of the matrix (%M — J) once per step. For this task the routine
LIN-SOL-SELF was inserted in the solver RODAS.

LIN-SOL-SELF is a routine of the IMSL Fortran 90 MP Library. It solves a sys-
tem of linear equations Ax = b, where A is self-adjoint matrix. It needs the whole
matrix instead to use the advantage of a symmetric matrix. The routine computes the

factorization of A using Aasen’s method.

Usual techniques to reduce the computational cost for the linear algebra were tried :
to approximate several steps with the same jacobian, or to use the sparsity of the matrix.
Despite the jacobian is a diagonal matrix, changes considerably each time step. Also,

the matrix M is full so none of the solutions proposed have given good results.

2.3.4.2 Performance of the code

A more efficient code is possible tuning the parameters facl and fac2 used to calculate
the new step size (formulas (2.34),(2.36)). Depending on their value, the step size com-
puted and the number of rejected steps vary and therefore the computing time. Some
results are displayed in Table 2.3 and Table 2.4 obtained solving the problem in a grid
20 x 20 for B, = 0.1 T. Observe that reducing the tolerance to 1075, the number of steps
increases. As fac2 is chosen close to 1 and facl not very ”small” (=~ 5) then the step
size does not change often and the number of rejected steps decreases considerably. That
is a good strategy to reduce computational time as far as the approximately constant h

is not very small, otherwise would take a lot more number of steps.

| Total steps | Rejected steps | Accepted steps |

[ facl =5, fac2 =0.9 ] 1265 | 187 1078
facl =5, fac2 = 0.2 Impossible to solve
facl =5, fac2 = 0.99 || 1590 50 1540
facl =7, fac2 = 0.9 | 1261 185 1076
facl =9, fac2 = 0.9 || 1261 185 1076

Table 2.3: Results for Rtol = Atol = 1074,
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[ Total steps | Rejected steps | Accepted steps |

facl =5, fac2 = 0.2 || 1888 446 1442
facl =5, fac2 = 0.9 || 2049 331 1718
facl = 2, fac2 = 0.9 || 2060 351 1609
facl = 2, fac2 = 0.5 || 1950 548 1402
facl = 2, fac2 = 0.2 || 1950 548 1402

Table 2.4: Results for Rtol = Atol = 1075,

Observe in table 2.5 the results obtained for different values of the tolerance. A
difference with the explicit method presented in previous section, the number of steps
increases with the tolerance in order to control the precision required. Figure 2.5 shows
the solution at some grids points during the total cycle time. Notice how the time step
size is relaxed at some time intervals, which are the intervals where the current J has
a constant value. The minimum size of time step taken was ~ 2 - 10~® whereas for the
same problem with the direct integration and with the explicit Runge-Kutta the step

size was found &~ 10% and 10! times smaller respectively.

| Total steps | Rejected steps | Accepted steps [ Time (s) |

Rtol = 107 | 1074 50 1024 37.5
Rtol =107° || 1840 106 1734 63.14
Rtol = 107° || 2793 145 2648 97.56
Rtol = 107% || 8788 365 8423 303

Table 2.5: Results for different values of Rtol.

To compare the performance of RODAS and the solver STIFFR of Mathcad software

some results are presented in table 2.6 for partial penetration (B, = 0.01T) and total

| Stiffr | Rodas |

B, =0.01T | 2280 1013
B, =0.04T | 4930 2360

Table 2.6: Time in seconds for solving a complete cycle of the applied field.
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Figure 2.5: Solution for some components of the current and step sizes calculated by Rosen-
brock method each time step.

penetration (B, = 0.04 T) of the superconductor. Although both solvers produced simi-
lar approximations of the solution as it is observed in figure 2.6, the computational time
required is about double using Mathcad in both cases. Apart from possible differences
due to the compiler dependence, the higher computational time for STIFFR is probably
due to the fact that STIFFR cannot solve ODEs in implicit form and therefore increasing

the linear algebra costs.

.

X, mm

(a) (b)

Figure 2.6: Profiles of the current density at wt = 27 in applied fields with amplitudes
B, =0.01T (a) and B, = 0.04T (b) calculated with STIFFR (red) and RODAS (gray).
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2.4 Results, comments and comparisons

In this section numerical results computed solving equation (2.22) with Rosenbrock solver

RODAS will be shown.

From the solution for J, the magnetic field components B, and B, were rapidly

calculated as spatial derivatives of A, which is obtained by equation (2.8).

All the results presented are for superconductors with rectangular cross sections in
an applied magnetic field B = Bysin(27 ft) with the frequency f = 50Hz. The critical

current density is assumed to be J, = 2 103Am™2,

Results will be shown only for a quarter of the total rectangular cross-section [0, a) x

[0,5] in a grid of 20 x 20 points.

In figures 2.7, 2.8 current and magnetic field profiles are presented for superconductors
of width 2a = 0.003m and length 2b = 0.0001 m. The exponent of the £ — J power
law was set n = 21. Four situations from the cycle time were selected to show the
results: when the applied field reaches the positive and negative peaks (wt = 7/2 and

wt = (3/2)7) and when the field returns to zero after the peaks (wt = 7 and wt = 27).

Partial penetration is observed in figure 2.7 for a magnetic field amplitude By =
0.01T. The field does not fill the total cross section. At the peak of the applied field,
(figure 2.7.(a)), the central part is current free and J & J, in the rest. When the applied
field is removed, currents still remain trapped, there is current reversing in the outer
zone as it is seen in figure 2.7.(b). The same evolution of the field and the current are
observed as the field decreases to a negative peak field and returns to the initial value
(figures 2.7.(c),2.7.(d)) to complete the field cycle. Notice that there is a similar situation
to Bean critical state model along the thickness with total penetration in the outer parts
and partial penetration in the interior. A difference with the concentric contours of the
current for rectangular conductors described in [25], it is observed here that the lines
separating the zones of different values of the current form contours which meet at y = b

and z = 0.

At larger amplitudes a slightly different situation is obtained. For By = 0.04T
(figure 2.8) the field soon penetrates the total cross section and continues increasing
over the whole superconductor with the same pattern until it reaches the maximum
value at wt = 7/2. There is not a current-free zone and J is almost equal to J. in the

whole superconductor (figure 2.8.(a)). When the applied field is decreased, current in
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| B.=001T |B,=004T |
Steps 2686 6501
Tol = 1074 Rejected steps | 158 367
Time (s) 659.3 1585.91
Steps 3703 8703
Tol = 107° Rejected steps | 210 453
Time (s) 921 2090.4
Steps 5624 13017
Tol = 107 Rejected steps | 266 588
Time (s) 1379.7 3321.5

Table 2.7: Results using RODAS for 0 <t < 0.02.

opposite direction appears in the outer part then J changes abruptly from J, to —J,
(figure 2.8.(b)). Similar profiles are found as the field decreases to the negative peak and
returns to zero (figures 2.8.(c) and 2.8.(d)).

Respect to the performance of RODAS (figure 2.9), it is observed for both, low
and high B,, that the step sizes become higher as the superconductors become more
penetrated, remaining at the same level beyond full penetration field, and, as the applied
field has been decreased smaller steps sizes are required (figure 2.9.(a) and (c)). The
average step size used for solving the total penetration case is smaller in comparison
with partial penetration. Therefore for B, = 0.04 T the method needs a higher number
of steps, approximately double than that for B, = 0.01 T, to complete the cycle time as
it is indicated in table 2.7. Also notice that the number of steps increases with reducing

the tolerance as it is expected for a stable solver.

Compared to DOPRI5 method (figure 2.9.(b)), the step sizes for RODAS vary less
along the whole cycle time. The average step size is about 10 times higher for RODAS
during the whole cycle time. Observe that during the first quarter both methods show
a different behavior. Whereas the step size becomes higher with increasing the field for
RODAS, for DOPRIS5 the step size starts decreasing. Since we saw in figure 2.4 that the
differential equation is very stiff during the first quarter, we can say that the step size
required by RODAS is no restricted by stiffnes, but probably decreases due to the sharp

changes in the current density profiles from 1 to -1 as the field starts to decrease.
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Figure 2.9: Step size required for RODAS with T'ol = 107% in an applied field B, = 0.01T
(red) and B, = 0.04 T (grey) (a). Comparison between RODAS (red) and DOPRI5 (black) for
B, = 0.01T is shown in (b). Applied sinusoidal magnetic field with amplitude B, = 0.01T
(red) and B, = 0.04T (grey) (c).
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2.4.1 Results for different n-values of the £ — J power law.

Since the non-linearity affects to the stiffness of the problem, it is interesting to calculate
some results for different n-values in the £ — J law (figure 2.10) in order to show the

differences in the current and field distributions and the performance of the code.

n=11
g == n0=21
n=61

E/E,

xxx  rex-axattinm

0.6 0.8

JiJ

0 - X ExX& ERAT OXAK  XME  XuX
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c

Figure 2.10: E — J power law for different n-values.

Figure 2.11 shows the current and field profiles obtained for n = 5, 21, and 61.
Observe the profile of the current density when n = 5 (figure 2.11.(a)). It reaches the
maximum value in the zone close to the edges where is ~ 1.48.J,, and decreases smoothly
to zero towards the current-free region. When n = 21 (figure 2.11.(b)), the maximum
value of J is slightly over J, (J =~ 1.1J.). And for n = 61 (figure 2.11.(c)) J = J, in the
penetrated part and J = 0 in the non-penetrated region with a sharp change to pass for

one value to the other similarly to Bean’s model which is the case when n = co. Observe

in the field profiles the dependence of the penetration depth on n.

Computational results are seen in table 2.8 and in figure 2.12. As it is expected
for problems very "stiff’, n = 61, the number of rejected steps increases significantly
since the time step sizes required during the integration have to be small in order to
The average time step size is 1.1 x 1075 for n = 5,

keep stability (figure 2.12.(c)).
about double of the value 5 x 107® when n = 21 and about four times the average size



CHAPTER 2: 2D Modelling of superconducting tapes 45

(a) n=5

0.015
o = o010
- pre-
= 2}
0.005
0.000
(b) n=21
0.015
= P oow0
= D
0.005
0.000
X, mm X, mm
(c) n=61
0.015
= = oot
S Y
0.005
0.000
X, mm X, mm

Figure 2.11: Current density and field profiles at wt = 7/2 for n = 5 (a), n = 21 (b) and
n =61 (c).
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[ Total steps | Rejected steps [ Accepted steps | Time (s) |

[n=5 [ 1891 64 1827 461
n = 21 || 4221 231 3990 1013
n =61 | 6349 334 6015 1533

Table 2.8: Results for different n-values of the E — J law.

3.32 x 1078 for n = 61 .

2.4.2 Results for different geometries

In this section Brandt’s formulas were solved for superconductors with different aspect
ratio (a/b). The width was set 2a = 0.002m. Three configurations were considered: the
strip (20 = 0.0001 m), the square (20 = 0.002m) and the slab (2b = 0.02m).

Figure 2.13 shows current and field profiles for the three geometries at different
amplitudes of the applied field such that in all the three cases at the first peak B ~ B,
being B, the field of total penetration when there is not current-free region. As it is
expected for the strip, due to demagnetization effects the low field amplitude By = 0.03T
is enough to fully penetrate the superconductor, value close to B, = 0.032 T given by the
theoretical formula shown in [10] for superconductors with b < a. For the slab (figure
2.13.(c)) B, was set equal to 0.32 T, value higher than the theoretical prediction for total
penetration B, = 0.25T giving in [10] for b > a. Observe in figure 2.13.(c) that at the
peak field the slab is already full penetrated since the density current J is almost J.
for the whole cross section and the field is slightly bigger than zero at the center of the
superconductor. Similar situation is seen in figure 2.13.(b) for the square superconductor

with B, = 0.24T, whereas from theoretical formula it was calculated B, = 1.18 T.

The different behavior of strips and slabs are clearly seen in the profiles of |B|. For the
strip geometry |B| does not vary much along the thickness a difference with the square
and slab. Another difference observed is due to the demagnetization effect found in the
square and more evident in the strip where the value of the field in the edge is higher
that the applied one reaching values of B, ~ 0.04 T. However for the slab the magnetic
field is equal to the applied field as it is expected for this geometry. The non-linearity
of the field profile in the strip is clearly observed (figure 2.13.(a)) in contrast with the
constant slope of the field profile for the slab (figure 2.13.(c)).

Due to the non-linearity observed for the strip profiles is it expected more difficulty
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[ Total steps | Rejected steps | Accepted steps | Time (s) |

a/b=20 | 8509 448 8061 2100
a/b=1 2936 109 2827 777
a/b=0.11 2110 99 2051 963

Table 2.9: Results for different geometries.

for RODAS in order to maintain the stability of the integration for this geometry. That
is proved in table 2.9 where the results indicate that a higher number of steps is required
as the aspect ratio (a/b) increases, about four times more for the strip than for the slab
which is quite considerable in terms of computational speed. Figure 2.14 represents the
step sizes h taken along the integration interval. In accordance with the results displayed
in table 2.9, it was found an average value of A = 9.8 - 1076 for the slab, h = 7.1.1076
for the square and h = 2.4 - 107% for the strip geometry.

2.5 Conclusion

A numerical method for the solution of 2D Brandt’s equations for modelling supercon-
ductors with rectangular cross sections was described in this chapter. Due to the high
non-linearity of the £ — J power law inserted in Brandt’s formulation, the resulting

differential equation is stiff.

The solver RODAS for stiff ODEs was presented and compared with other solvers.
RODAS is based on the semi-implicit Rosenbrock method of order 4. Being simpler than
other stiff solvers as implicit Runge-Kutta methods, it was found to be very efficient in
terms of accuracy and computational costs and compared to other implementations of

Rosenbrock methods.

Possible improvement of the method is to utilize an adaptive mesh such that the
number of grid points is reduced in the part of the superconductor cross-section where
the current remains constant the whole cycle time. For that, the integral kernel @) of the

Brandt’s equation must be changed, taking into account the different area of each cell.

At the end of the chapter, some current and field profiles were shown in different
situations. Stiffness was found ”stronger” in geometries with b < a, for fully penetration

situations and for high n-values of the £ — J power law.



Chapter 3

Implementation of linear systems

solvers in Flux3D

3.1 Introduction

In chapter 4, superconductors are modelled using Flux3D, which is a finite element
method software package for electromagnetic calculations developed by CEDRAT. Flux3D

has a special superconductor module for handling non-linear & — J power-law.

The numerical computation is performed with the T — ® formulation, which uses the

electric vector and the magnetic scalar potentials and whose general state equations are

VxH=J=VxT
H=T-V®
VXE:—Bz-%WMT—VQ) (3.1)

The solution of (3.1) is calculated for all the nodes on the FEM mesh at each time
step. When E is calculated using non-linear characteristics such as the power-law for
superconductors, Newton-Raphson method is required to obtain the solution, which

consists in solving a series of linear systems until converges to the solution.

One of the difficulties found during the calculation process was the cost required
to solve each linear system at each Newton-Raphson step. The method utilized, Bi-

conjugated Gradient with Incomplete Gauss factorization (IGBCG) [21], is expensive
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in terms of computing time and for ill-conditioned matrices can diverge easily. Tricks
like increasing the number of time steps or changing the coefficient of relaxation for the
Newton-Raphson method were helpful in order to obtain the convergence in some pro-
blems, but failed in others cases. Hence to continue with calculations in Flux3D it was

concluded that new linear system solvers should be implemented.

In modelling of superconductors, the high non-linearity of the superconducting law
leads to particularly ill-conditioned matrices. The problem accentuates as more difficult

geometries or thinner meshes are included and therefore robust linear systems solvers

are needed.

Two new iterative solvers, the preconditioned Generalized Minimal Residual method
(GMRES) [29] and the preconditioned Biconjugated gradient stabilized method (Bi-
CGStab) [37] were tested and compared with IGBCG. Both new methods were found to
be robust and show better performance than IGBCG.

With the introduction of a preconditioner before solving the iterative process the
convergence can be reached easily and the total computational cost reduced. Incomplete
LU factorizations with variations were implemented as preconditioner for the new solvers
[28]. It has been observed that for having a good method the main task is to find an

effective preconditioned.

In the first part of the chapter the solvers are presented. Then performance of each
method in superconductor’s problems are compared. Finally, the solvers are tested in

other transient magnetic problems modelled with Flux3D software [18].

3.2 Overview of linear systems solvers for sparse ma-
trix

Methods to solve linear systems are classified in 2 groups: direct and iterative me-
thods [44]. Direct methods give the exact solution after a finite number of operations.
Although they are robust, when large systems are being solved the growing errors can
become so0 large and so the results obtained are unsatisfactory. In addition, sometimes,
a sparse matrix becomes full matrix when the factorization is done and then the storage
requirement becomes unacceptable. There are some direct methods that aveid this using

permutation of rows and columns in order to reduce the fill in.

Iterative methods start with an approximate solution and using a recurrence formula
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calculate another approximations. This formula is applied again successively until the
successive sequence converges to the solution. Iterative methods are easier to implement
and for 3D simulations are recommended since they do not require too much memory
comparing with direct schemes. The inconvenient of these methods is that when the

matrix is not well conditioned the convergence is slow or not reached.

One of the techniques in order to improve the convergence of iterative methods is
to use a preconditioner and apply the iterative formula to the new better-conditioned
matrix. Experience has demonstrated that a good preconditioner is the key to an effective
iterative solver. A typical one for general problems is based on incomplete factorization
LU. The elimination is performed on A, but entries outside a certain sparsity pattern
or below a cut-off numerical value are simply discarded during the factorization. The
approximate LU factors then define the new system matrix. In that sense, iterative

solvers can be considered as a union between direct and iterative methods.

For linear systems generated by FEM modelling in 3D, the matrix dimension is very
high and therefore direct methods are not applicable due to the storage requirements.

Among the iterative methods two solvers have been chosen to be tested and compared

with IGBCG:

1. GMRES, Generalized Minimum Residual from Y.Saad [29], and
2. BiCGStab, Bi-conjugated gradient stabilized from H.A. Van Der Vorst [37].

Recent reports consider both methods to be the most suitable for bad conditioned

problems with a similar performance.

3.3 Iterative solvers tested

The aim of the methods presented here is to obtain the solution of a linear system of the

form Az = b where A is N X N matrix and b and z are vectors of dimension N.

3.3.1 Preconditioners

In order to accelerate the iterative process Preconditioners are used. The idea of " precon-
ditioning” consists on transforming the original linear system into another one with the
same solution but which is easier to solve by an iterative method. If the matrix M is the
preconditioner which approximates A , then the transformed system, M~'Az = M~
(left preconditioner) or AM~Y(Mz) = b (right preconditioner) has the same solution as

the original system but the properties are more favorable. The preconditioners used with
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the solvers presented in this chapter are briefly described next.
LDU preconditioner for IGBCG:

The Gauss incomplete factorization is the preconditioner used for IGBCG method [13].
It uses the same principle of a full LDU factorization , but , in order to save the sparsity
of the matrix it only computes the elements corresponding to the non-zero structure of
A. It consists on calculating a matrix M = LDU, where L,D,U are approximations of
the lower triangular ,diagonal and upper triangular matrices computed by the full LDU

factorization algorithm.
Ilut preconditioner:

The simple Ilut preconditioner is based in an incomplete LU factorization of the original
matrix, that is taking M = LU where L and U are triangular matrices, with a dual
dropping strategy. This allows us to keep the sparsity of the matrix and control the
storage requirements. The dual dropping strategy of Ilut consists on two steps. Suppose
we are in step k£ of the factorization. First all the elements calculated which value is less
than a tolerance chosen Tol are dropped. Then only the largest L fil elements in the
row k of L are kept and the same for the row k& of U. The L fil limits the number of

elements of the preconditioned matrix. Storage cost is now known in advance.

It is difficult to find the best values of the parameters for a particular problem. 7ol
depends on the value of the elements and level of fill, Lfil, can be chosen like nnz/n+1,
where nnz is the number of non-zero coefficients and n the number of equations but it

is not always the best choice.

Observe in tables 3.1 and 3.2, how the preconditioner affects to the solver. As Tol
decreases, less coefficients are dropped, the factorization will be more accurate, then the
method will converge faster reducing time inverted in the iterative process but increasing
the time for the factorization. Therefore the optimal choice of T'ol and L fil is when the
increment of preconditioning time by using smaller tolerances or larger levels of filling
is compensated with the reduction of the time required by the iterative solver. Notice
in Table 3.2 how the execution time for performing the Ilut factorization increases with
Lfil. At the same time the execution time for Gmres decreases as it could be expected,
however observe that at L fil = 80 it requires more steps than for lower values of L fil.
It is not always clear which are the best parameters for the preconditioner in order to
transform the matrix into one with good conditioning properties and therefore accelerate

the convergence. Generally, "low” L fil, and "high” Tol, are not good proposals.
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| Tol | Ilut time (s) | Gmres time (s) | Precision | Iters | Storage for Ilut |
0.0001 6 70 9.89-107% | 349 [ 4795449
0.00001 | 8 66 9.85-107% | 348 | 4838205
0.000001 | 11 67 9.98-107% | 332 | 4851249

Table 3.1: Results for a system with 30307 equations and 1752105 non-zeros, using Gmres
(80) +Ilut (Tol, 40) for different values of Tol.

| Lfil | lut time (s) | Gmres time (s) | Precision | Iters | Storage for Ilut |

20 3 135 9.89-1078 | 815 | 2464163
30 4 82 9.90-107% | 454 | 3640719
40 6 70 9.89-107% | 349 | 4795449
60 8 84 9.88-107% | 349 | 7025163
80 11 91 9.95-107% | 382 | 9144861

Table 3.2: Results for a system with 30307 equations and 1752105 non-zeros, using Gmres
(80) +Ttut (0.0001,Lfil) for different values of L fil.

It is difficult the comparison of iterative solvers because of their dependence on a
large number of parameters. Also, they depend on the preconditioner used, and the same
preconditioner can work poorly for a set of parameters but it can give good performance

for different ones.

3.3.2 Solvers

The iterative methods tested in this work belong to the group of ”projection methods”

based on the "Krylov subspaces”.

A projection method for solving the linear system Az = b is a method which seeks
an approximate solution ,, from an subspace zy + K, of dimension m by imposing the
condition, b — Az, L L,,, where L,, is another subspace of dimension m. xz, represents

an arbitrary initial guess of the solution.

A Krylov subspace method is a method for which the subspace K, is the Krylov
subspace K,,(A,ry) = span {ry, Arg, A%rg,... A" lrg}, for ro = b — Ax. Depending on

the choice for L, there are different Krylov subspace methods.
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3.3.2.1 GMRES
The Generalized Minimum Residual Method (GMRES) is a projection method based on
taking K,, = K,.(4,v) and L,, = AK,, where K,, is the m-th Krylov subspace with
vo = 7o/||roll-

Gmres minimizes the norm of the residual [|b — Az,,| in K, to obtain the m-th

approximation to the solution z,,. The Krylov subspace is made orthogonal by the Gram-

Schmidt procedure, known as an Arnoldi process when applied to a Krylov subspace.

Algorithm for GMRES:

1. Set an initial guess zg.
2. Arnoldi method.

Compute residual ry = Axzg — b, 8 = ||roll, v1 = 10/8
Define a matrix H,, with dimension (m+1) xm. Set H =0
Fori=1,2...mdo
W; = A’Ui
For j=1,2...ido
Hiji = (wi, v5)
W; = W; — hj’i’Uj
end do
hivii = |lwsl]
if hip1, =0, set m = ¢ and go to 3
Vip1 = wi/hi+l,i
end do
3. Solve GMRES minimization problem

e Compute ¥, such that minimizes ||fe; — Hpyl|

® I, = Tyt mem

All the vectors computed in the orthogonal sequence have to be retained. This su-

pposes a lot of memory requirements and computer time when m becomes large. The
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usual way to overcome this limitation is by restarting the iteration. After a number of
iterations fixed (im), the accumulated data are cleared and the intermediate approxi-

mations are used as the initial data for the next im iterations. This is repeated until

convergence is achieved.

Algorithm for Restarted GMRES (im):

1. Set an initial guess xg
2. Arnoldi method.

3. Solve GMRES minimization problem and compute new z,,

4. Restart
If satisfied stop else zq = ., and go to 2.

There are many possible variations of the restarted Gmres. A very ”small” value of
im can result in a very slow convergence or even no convergence (see table 3.3). But a
larger value involves excessive work and uses a lot of storage. Exactly, the space required
for Gmres (im) is given by (N +3) X (im+2)+ (im-+1) xim/2 where N is the dimension
of the system. For the tests in problems with superconductors it was found that with

im = 80, Gmres converges easily.

} im j Gmres time } Precision | iters ]

20 | 54s 9.6-107% | 457
40 | 8s 7.4-1078 | 70
60 | 6s 8.3-107% | 55
80 | 6s 8.3-107% | 55

Table 3.3: Results for Gmres(im) with Ilut(130,1079).

3.3.2.2 BCG

The Biconjugated Gradient method (BCG) is a Kyrlov subspace method with
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Ly, = span {wo, ATWO; (AT)zwm e (AT)m_lwo}

The vector wy is arbitrary, provided (rg,wp) # 0, but is often chosen to be equal to
ro/l|7oll-

A difference with GMRES, instead to one orthogonal sequence of the residuals, the
BCG method builds two mutually orthogonal sequences of residuals without providing
a minimization. Although the length of these sequences can become large, only a small

number of vectors need to be kept in memory.

Algorithm for BCG:

1. Compute residual ry = Azg — b
Choose 7y such that (rg,7g) # 0

2. Set Po = To, ﬁo = 7:0

3. For i =0,1,... until convergence do
a; = (ri,7:)/ (Api, i)
Tip1 = Ty + Qqp;
Tiy1 = Ty — o Ap;
i1 = 7 — 0, AT,
Bs = (Tig1, Tig1)/ (13, 74)
Pit1 = Tiy1 + Oips
Pit1 = Tiy1 + BiDs
end for

3.3.2.3 BIiCGStab

The Bi-Conjugate Gradient Stabilized method from H.A. Van Der Vorst [37], was deve-

loped to improve the convergence of BCG.

BiCGStab produces iterates which residuals vectors are calculated of the form r; =

¥;(A)p;(A)ro in which ¢;(t) is the residual polynomial associated with the BCG algo-
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rithm and ;(¢) is a new polynomial which is defined recursively at each step with the

goal of "stabilizing” the convergence behavior of the original algorithm.

Algorithm for BiCGStab :

1. Compute 19 = b — Az for an initial guess xg, 7o arbitrary.

2. Po=To

3. For ¢ =0,1,... until convergence do
a; = (13, 7o)/ (Api, To)
i =T — o Ap;
w; = (As;, 8;)/(Asi, Asy)
Tip1 = Ty + QqPi + Wi
Tiv1 = 8 — wiAs;

B, = (riz1.70) o, o
¢ (7i,70) w;

Dir1 = Tiy1 + Gi(pi — wiAp;)
end for

3.3.3 Storage requirements

A important point to have into account for comparing numerical methods is their storage

requirements. This can be calculated in advance by knowing the size of the matrix.

Knowing the parameters:

N= Number of equations, and

NNZ= Number of non-zero elements of the matrix.

the number of reals needed in each method is calculated with the formulas presented in

the following table,
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Symmetric case l . N onésymr”netri‘é case
IGBCG  |5xN+2xNNZ Tx N+4x NNZ
Gmres +1lut | 2(2Lfil + 1)N + 3N + NNz + (n+ 3)(ém + 2) + (im + 1)im/2
Gmres(80)+Tlut (4L fil + 87T)N + 2N NZ + 3486
BiCGStab SN + (Lfil +1) - N + 3N

Clearly, as it will be shown in the tests, unless the dimension of the matrix is "large”

and the L fil chosen for the preconditioner very ”"small”, Gmres will take more memory

space.

3.4 Superconductor Problem

The difficulty found in the solving process of Flux3D for modelling superconductors, is
due to the highly non-linear £—J property, F = Fy (J/J,)", which leads to linear systems
with ill-conditioned matrices which are difficult to solve. Newton-Raphson method is
applied each time step and at each iteration of Newton-Raphson a linear system is
solved . All this together means a very long calculation process. A fast and robust linear

system solver becomes very important.

3.4.1 Description of the tested problems

In order to test the solvers, they were applied to two different problems with supercon-
ductors.

Problem 1

This model, shown in figure 3.1, consists of 2 parallel long slabs with a normal matrix
between them in a sinusoidal applied field B = Bysin(27 ft) with w = 10Hz and B, =
0.7T. The non-linear £ —J power law for the superconductors is given by the parameters:

n=21,J,=2-1°8Am™2 and E, = 0.001 Vm™1.

Problem 2

The second model (Figure 3.2) represents several superconductor filaments in a silver
matrix. The non-linear property is given by n = 16.8, J. = 1.61- 108 Am™2, and E, =
0.001 Vm~1. A current source I = 5.92sin(2750¢) is imposed.
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PROBLEM 1

Figure 3.1: Geometry and mesh of problem 1.

Figure 3.2: Geometry of problem 2.
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3.4.2 Results and comments

Since the problems are non-linear, each time step the Newton-Raphson method is applied
and therefore the consequent linear systems have to be solved. As examples two of them

were chosen of each problem (System 1 and System 2).

The characteristics of the matrix for Problem 1 are:

e Dimension: 37703

e Number of non-zeros in the matrix: 2579157

The results obtained are presented in the next table:

System 1 System 2
Storage Time(s) Storage Time(s)
(N°real - 10%) (N°real - 109)
IGBCG 8.148 1430 8.148 Diverges
GMRES | 23.591 184 23.591 320
BiCGStab| 10.161 173 10.161 129

Characteristics of the matrix for Problem 2:

e Dimension:29739

e Number of non-zeros in the matrix:1441607

The results found were:

System 1 System 2
Storage Time(s) Storage Time(s)
(N°real - 10°) (N°real - 109)
IGBCG 5.144 8379 5.144 Diverges
GMRES | 10.653 780 10.653 720
BiCGStab| 22.194 857 22.194 773

Observe that there are linear systems in both problems which could not be solved

using IGBCG. For all the other cases, GMRES and BiCGStab have converged much
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faster than IGBCG. It is clear then the better performance of the solvers GMRES and
BiCGStab for superconducting problems, despite the disadvantage of higher memory

requirements.

3.5 Results for transient electromagnetic problems

Apart from the superconducting problems, the new solvers were tested in other transient
electromagnetic problems solved with Flux3D. In some of them the matrices arisen in
the solving process are very bad conditioned, whereas other ones were not so difficult to
solve but they were used to compare the performance of the different solvers in terms of

computational speed and storage requirements.

The results in table 3.4 show the performance of the three methods in solving the
linear system of the first time step. When the problem is not linear the results correspond

to the second iteration of Newton-Raphson process.

In terms of computational time, it is observed that when the matrix of the system A
is symmetric IGBCG is faster, however for non-symmetric matrices both GMRES and
BiCGStab converge sooner, a fact which becomes more evident as the size of the linear
system increases (test 9 and test 10). Respect to the memory requirements, notice that

IGBCG uses less memory size in all the problems.

In conclusion, we can say that for linear systems with symmetric matrices the three
solvers are robust being IGBCG more convenient in order to save memory space. With
non-symmetric matrices, although all the methods reach the convergence, GMRES and

BiCGStab do it easily.
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Storage Time(s)
(N°real - 10°)
Test 1 IGBCG 2296 15
Non-sym GMRES | 3014 13
BiCGStab| 1633 19
Test 2 IGBCG 2420 6.5
Non-sym GMRES | 3028 6
BiCGStab| 2275 7
Test 3 IGBCG 1919 7
Non-sym GMRES | 2403 6
BiCGStab| 1753 7
Test 4 IGBCG 4909 24
Sym GMRES | 9459 28
BiCGStab| 6515 26
Test 5 IGBCG 2955 52
Non-sym GMRES | 8042 11
BiCGStab| 3097 12
Test 6 IGBCG 4519 24
Sym GMRES | 9828 30
BiCGStab| 4379 36
Test 7 IGBCG 3855 20
Sym GMRES | 8279 25
BiCGStab| 5666 28
Test 8 IGBCG 4500 67
Non-sym GMRES | 9272 89
BiCGStab| 5013 75
Test 9 IGBCG 8148 1430
Non-sym GMRES | 23591 184
BiCGStab| 10161 173
Test 10 IGBCG 5144 8379
Non-sym GMRES | 10653 780
BiCGStab| 22194 857

Table 3.4: Results for 10 different test of transient magnetic problems.
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3.6 Conclusion

The purpose of the tests presented is this chapter was to compare different linear systems
solvers, Gmres, IGBCG and BiCGStab, in terms of computation time and memory

requirements for problems modelled with a FEM software.

For the problems with superconductors, Gmres and BiC(GStab resulted to be more ef-
fective since IGBCG not always converges. For problems in 3D transient electromagnetic
problems in which all the three solvers converge, it was observed that whereas Gmres
and BiCGStab give better results in terms of solving process time, are less effective with
respect to the memory space requirements. Only in particular cases when the matrix is

symmetric IGBCG has faster convergence.

The performance of the linear systems solvers are strongly influenced by the precon-
ditioner used. A good performance of the solvers Gmres and BiCGStab in problems
where IGBCG fails, is the outcome of a good election of the parameters used for the
preconditioner Ilut. For each problem there is an optimal level of fill and tolerance which
is difficult to predict. Sometimes the linear system can only be solved with a big level

of fill, increasing considerably the memory space used.

In conclusion, the results of the tests shown in this chapter have proved the robustness
of Gmres and BiCGStab solvers for 3D transient electromagnetic problems, being more

effective than IGBCG solving systems with non-symmetric matrices.



Chapter 4

3D modelling of coupling in AC
magnetic field using Flux3D

4.1 Introduction

In presence of an ac magnetic field, the movement of vortices in the superconductor
produces energy dissipation, that is, hysteresis losses. In order to reduce them, the
superconductor is divided into fine filaments embedded in a normal matrix. Such strategy
is only effective providing that the filaments are uncoupled. Filament coupling in long

lengths conductors is prevented by twisting the filaments at a short pitch [38].

Loss reduction in twisted multifilamentary superconductors is not achieved if the
filaments are coupled easily. The coupling phenomenon is influenced by parameters such
as the changing rate of the magnetic field, the metal matrix resistivity, the critical current

density, and the size and geometry of the filaments.

It is known qualitatively that for a very small ramp rate of the applied field, B =~ 0,
the filaments behave independently. But as B increases to a very high value, B — o,
the induced voltage in the normal matrix allows all the current to cross from one filament
to the other and the superconductors are acting as a single larger one. Figure 4.1 shows

the corresponding field profiles to both limiting cases.

Theoretical quantitative prediction of this effect is limited to the case of two fully
penetrated slabs and under the assumptions of the critical state model [41]. For studying

more complicated geometries involving finite dimensions, and for magnetic fields only
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(a) (b)

Figure 4.1: Sketch of the magnetic field profiles of two filaments uncoupled (a) and fully
coupled (b).

partially penetrating the superconductor, an accurate 3D model is necessary. Numerical
models based on the finite element method, FEM, has been widely used for calculation

of field and current distributions [3, 34].

In this chapter the FEM software Flux3D [18] was used to model the coupling effect
between finite superconductors due to the presence of an ac magnetic field. First a
brief description of the FEM is given, followed by detailed results for strip and slabs
geometries in an sinusoidal magnetic field, in order to show the capability of the FEM
to calculate the coupling effect. An approximation of the critical coupling field B, is
obtained for both geometries, and compared with existing theoretical models. Finally,
the coupling phenomenon is investigated in superconductors of different geometries in

an applied field with constant ramp rate.

4.2 FEM modelling

Thank to the rapid progress on computing power, modelling using the finite element
techniques is nowadays a common task for 2D and 3D electromagnetic calculations. FEM
for modelling superconductors has been developed by some authors [3], and inserted in

commercial packages as Flux3D [18].

Results shown in this chapter have been obtained using Flux3D. The basic 2D model
in Flux2D for superconductivity was modified with new formulations later introduced

into the 3D model developed for Flux3D. This model allows the introduction of more
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complicated geometries and characteristics like the non-linear £ — J power law.

The 5 steps followed in order to model a problem in Flux3D are: description of the
geometry, mesh, physical properties description, solving processor and analysis of the

results.

4.2.1 Geometry and mesh

The model studied consists on two slabs/strips with normal matrix between them, and
two more slabs/strips, one on the top and another at the bottom. The cross section
is shown in figure 4.2. Due to the symmetries respect to the main planes, XY, YZ
and ZX, only one eight of the total volume will be considered reducing the mesh size
and therefore the computational costs to solve the problem. In figure 4.2 the right
upper quarter modelled is enclosed by short dashed red lines. Then two volumes of
superconductor material and one of normal conductor are built, all of them inside a
volume representing the air region. Defining parameters and geometrical transformations
building the geometry is an easy task in Flux3D. To take into account the exterior it
is sufficient to describe an air box of a size important enough so that the effect of the
infinite assimilation is negligible. There is also the possibility to describe an ”infinite
box” which links the open domain with a closed one by a spatial transformation and

giving better approximations.

In order to mesh the studied domain in finite elements the whole box was constructed
using eight volumes in order to have different meshes in each of them. Finer ones were
used for the parts close to the boundaries of the superconductor, and bigger size meshes
for the unchanging parts. For the superconductor, the matrix and the air volumes close
to them a mapped mesh extruded was used along the length of the superconductor. Then
the volumes are composed of hexahedrons and their faces in rectangles. The extrusion
mesh is advantageous since allows to take into account thin geometries without increasing
the number of elements much. For the remaining parts, it was used an automatic mesh
which creates triangles covering the faces and the volumes are divided in tetrahedrons.

Figures 4.3 and 4.4 show the geometry and the meshes chosen.
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Figure 4.2: Sketch showing the cross-section of the geometry used for modelling strips (a)

and slabs (b). The area enclosed by red dashed lines represents the region used for calculations
in Flux3D.

Figure 4.3: Geometry and mesh for modelling slabs with Flux3D.

Figure 4.4: Geometry and mesh for modelling strips with Flux3D.
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4.2.2 Physical properties

The constitutive equations are assigned to the different materials, which are associated

to different regions created associating different volumes of the geometry.

For the superconducting material, the B — H property is described in Flux3D by
B = uoH which is a good approximation of type-II superconductors when H > H.
The E — J relation inserted is the non-linear £ — J power law E = E, (|J|/J.)" 7{: The
normal metal is defined by E = p,,J.

As boundary condition it was imposed a field varying in time over the entire modelled

device in the z direction.

The numerical method is based on solving Maxwell equations. There are different
ways to formulate them [36]. The A — V formulation uses Ampere’s law as a state

equation which is expressed as

VxLVxA=oE)E
Ho

with A
E=—-——0 -VV.
ot

The T — & formulation consists on taking electromagnetic potentials T and & as
state variables. T is the electric vector potential, J = V x T, and & the scalar magnetic

potential, H = T — V®. Then the equations became

VxH=J=VxT
H=T-Vd
VXE:—B:—%WMT—V@)

The T — ® formulation is used in Flux3D. It has a better convergence behavior since
it uses E(J) characteristics instead of J(E), which is particularly suited for Newton-

Raphson iteration, implemented in Flux 3D.
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4.2.3 Solving process

The solving process consists on two main tasks:

- Integration of the sub-matrices and the sub-vectors belonging to each element and

assembly through the non-linear finite element system.

- Solving of this non-linear system using Newton Raphson method.

Newton-Raphson is an iterative method to solve non-linear equations f(z) = 0. It
builds a succession of linear systems until converges to the solution. From a given g the
next steps are calculated as:

Tiv1 = T; — 75—~

f'(@:)
In order to improve the method a coefficient of relaxation is introduced.

To solve those linear systems generated in (4.1), different iterative numerical methods
can be used in Flux3D for symmetric and nonsymmetric matrices respectively. Detailed

explanation about numerical methods to solve the linear equations is given in chapter 3.

4.3 Results for sinusoidal B

The results presented in this section were calculated with the models described in pre-
vious section (figures 4.3 and 4.4) with the physical properties given by the parameters:
Jo=2x100Am™2 E,=10"3Vm™! and n = 21. The resistivity of the normal matrix is
p = 1078 Qm. The calculations were performed for an external sinusoidal applied field,

poH = poH, sin(wt), perpendicular to the superconductor.

Since the main interest is in the coupling between the superconductors, it will be
shown the result only for the two superconductors in parallel joined by the normal
matrix. Due to the symmetries respect to the main planes, only a quarter of the total
model will be represented (See figure 4.2). For the profiles in the whole model, have
into account that they are symmetric for the magnetic field and antisymmetric for the

current.

4.3.1 Slab

Consider finite slabs of width ¢ = 3 mm, height b = 10mm and length [ = 20 mm. The

width of the normal matrix between them is w = 0.5 mm. The amplitude of the applied



CHAPTER 4: 3D modelling of coupling in AC magnetic field using Flux3D 72

Figure 4.5: Magnetic field in slabs at wt = /2 for poH, =0.7T and f = 1Hz.
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Figure 4.6: Induced current in slabs at wt = 7/2 for poH, = 0.7T and f = 1Hz.
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3.2

Figure 4.7: Magnetic field in slabs at wt = 7/2 for poHg = 0.7T and f = 200 Hz.
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Figure 4.8: Induced current in slabs at wt = /2 for poH, = 0.7T and f = 200 Hz.
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Figure 4.9: Magnetic field (a) and induced current (b) in slabs at wt = 7/2 for uoH, = 0.7 T

and f = 1Hz.
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Figure 4.10: Magnetic field (a) and induced current (b) in slabs at wt = 72 for pgH, =0.7T

and f = 200 Hz.



CHAPTER 4: 3D modelling of coupling in AC magnetic field using Flux3D 75

field is poH, = 0.7T.

Results in figures 4.5 and 4.6 show the field an current profiles respectively for a
low frequency of the applied field, f = 1Hz. Observe that the superconductor is fully
penetrated by the applied field, hence the current is flowing through the whole device.
The slabs are uncoupled and therefore the profiles for each one are similar to those for a
single one, current Hows around each superconductor as it is indicated with the arrows
in the current profile (figure 4.6), and the field in the matrix is equal to the applied field
(figure 4.5).

The situation is different for coupled slabs. Figures 4.7 and 4.8 are solutions for a
higher frequency, f = 200Hz. The current is now flowing in the same direction inside
the superconductor, crossing the normal matrix and coming back through the other one.
Then the two slabs behave as one superconductor (figure 4.8). Notice the field in the

matrix region is now decreasing from the outer part to the center (figure 4.7).

The coupling effect can be seen in more detail restricting to the zy-plane the profiles
of the field and the induced current along the conductor, as it is shown in figures 4.9 and
4.10. Figure 4.9 corresponds to the case of uncoupled slabs (f = 1Hz). Notice that the
field in both sides of the superconductor is equal to the applied field since there is not
coupling currents crossing the matrix. The superconductors behave as 2 independent
ones. These results for each superconductor isolated are similar to the predicted by
Bean’s model for infinite slabs [5]. The field in the superconductors decreases linearly
form the borders to the middle with slope given by V x H = J. Increasing the frequency,
the currents start to cross the matrix, shielding its interior from the magnetic field as
it is shown in figure 4.10 for f = 200Hz. Observe that the field in the normal matrix
decreases from the exterior to the inner part (figure 4.10.(a)). Note that almost all the
current is now flowing in the same direction through the superconductor. Only in the

inner part there is a small portion of current returning (figure 4.10.(b)).

The decrease of the magnetic field in the normal matrix with increasing frequency
is observed plotting the magnetic field along the y-axis as in figure 4.11. The field in
the normal matrix region is constant, reducing with increasing the frequency and being
almost zero for a very high frequency (f = 160Hz). Observe in the superconducting
part the linear profiles with constant slope similarly to Bean’s model predictions (See

section 1.5.2).
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Figure 4.11: Magnetic field along y-axis for a slab at pugH, = 0.7T and for different frequen-
cies.

4.3.2 Strip

For studying the strip geometry consider superconductors of width a = 3mm, height
b = 1mm, and length [ = 20 mm separated by a normal matrix of width w = 0.5mm.
The applied field has an amplitude poH, = 0.7 T which is high enough to penetrate the
strips completely at the peak field.

In perpendicular geometry demagnetization effects have to be taken into account. For
the uncoupled example, figures 4.12 and 4.13 show the situation of two isolated strips
similar to the one described for the slab. For a high frequency, f = 160 Hz, (figures 4.14
and 4.15) the superconductors are fully coupled with current flowing through the matrix

and the inner part of the normal matrix shielded from the external field.

Observe in the field profile in the zy-plane (figure 4.16) the demagnetization effect.
The field in the air and matrix regions increases as it approaches to the edges of the
superconductor. Another difference observed respect to the slab is that the magnetic
field increases in the borders from the back to the middle of the superconductor. In

figure 4.16 it is seen that the field in the matrix decreases in the outer part but it
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Figure 4.12: Magnetic field in strips at wt = 7/2 for poH, = 0.7T and f = 1Hz.
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Figure 4.13: Induced current in strips at wt = /2 for poH, = 0.7T and f = 1Hz.




CHAPTER 4: 3D modelling of coupling in AC magnetic field using Flux3D

78

©l

Figure 4.14: Magnetic field in strips at wt = 7/2 for pgH, = 0.7T and f = 160Hz.
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Figure 4.15: Induced current in strips at wt = m/2 for poH, = 0.7T and f = 160 Hz.
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Figure 4.16: Magnetic field (a) and induced current (b) in strips at wt = 7 /2 for pugH, = 0.7T
and f = 1Hz.
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Figure 4.17: Magnetic field (a) and induced current (b) in strips at wt = 7/2 for pgH, = 0.7T
and f = 160 Hz.
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Figure 4.18: Magnetic field along y-axis for a strip at pgH, = 0.7 and for different frequencies.

remains almost constant in the interior of the matrix region, a difference with the slab

where the field decreases, due to coupling, gradually along the length.

The profile of the field along y-axis is shown in figure 4.18. The coupling increases
with increasing frequency being the strips fully coupled for f = 160 Hz and the profile is
similar to that of a strip of larger width (2a +w). That is the reason of the higher value
of the field in the right edge of the superconductor at high frequencies since it depends
on the aspect ratio (a/b). Another particular characteristic of strips observed here is the
non-linear profile of the field and its increment towards the edges of the superconductor

similar to the analytical solutions given by Norris [25] for infinite long strips.

4.3.3 Evolution of the coupling current I,

Although superconductors are made as filamentary composites to reduce hysteresis losses,
with increasing f the coupling current between filaments raises considerably leading to
high losses in the normal matrix. Therefore, for practical applications it is necessary to
have a previous quantitative knowledge of the coupling phenomenon in order to develop

strategies to keep the filaments uncoupled.
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Numerical calculations are presented here for different frequencies of the sinusoidal
applied field poH = poH,sin(wt) including two different situations: small field am-
plitudes poH, such that the superconductor is partially penetrated at the peak field
(poH, < woH,), and for amplitudes higher that the total penetration field (uoH, >

poHp).

The coupling evolution through a whole field cycle time will be explained by e-
xamining two kind of quantities: the evolution of the coupling current calculated as
Leoup f 1 Jy(2,0,2)dA, where A is the cross section of the normal matrix in the zz-
plane, and the magnetic field integrated over the normal matrix region volume B,, =

fVm B.(z,y,2)dV,,.
4.3.3.1 Slab

Results for the slab geometry are presented in figure 4.19 for partial penetration (pugH, =
0.1T < poH,). The amplitude of the coupling current (figure 4.19.(a)) increases with
frequency as it is expected. At low frequencies the maximum coupling current is reached
soon since is more determined by the decay of dB/d¢, however, with increasing f the
peak moves to the right becoming sinusoidal. Observe that for f = 160 Hz the coupling
current profile is in phase with the applied field, and its maximum corresponds to the
total current flowing in the slab. The different amplitudes of the current profiles at
different frequencies are observed in more detail in figure 4.19.(b). Notice that when the
applied field returns to zero at wt = 7 and wt = 27 there is coupling current in the

opposite direction.

The magnetic field in the normal matrix is represented in figure 4.19.(c). Observe
that when the slabs are uncoupled at a low frequency, the field in the normal matrix
follows a similar profile to the sinusoidal applied field one (shown in the figure with
black line). Notice that its maximum value for f = 1Hz is higher than the amplitude
of the applied magnetic field poH, due to demagnetization effects. With increasing f
the peak value reduces and moves to the right since the slabs become more coupled
and the interior of the normal matrix is initially shielded from the external field, up to
wt = 7/2 and trapped upon field reductions. At wt = 7,27, although the applied field
has returned to zero there is still some field trapped in the matrix.

The field profile along y-axis is shown in figure 4.21 at wt = 7 when the applied field
has returned to zero. For low frequencies (f = 1Hz) there is not coupling, hence the

superconductors behave as two isolated ones and the field profile is equal in both edges
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Figure 4.19: Coupling current (a) and magnetic field in the normal matrix (c) for a slab
during a cycle time of an applied field of amplitude poH, = 0.1 T. For comparison at different
frequencies, the coupling current is divided by its maximum (b).
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Figure 4.20: Coupling current (a) and magnetic field in the normal matrix (c) for a slab
during a cycle time of the applied magnetic field of amplitude poH, = 3.5T. For comparison
at different frequencies, the coupling current is divided by its maximum (b).
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Figure 4.21: Magnetic field profiles along y-axis in the center of the slab at wt = 7 for
;,L()Ha =0.1T.

of the superconductor similar to the expected by Bean critical state model. However at
higher f the field in the normal matrix does not return to zero since is trapped. Notice

that the field in the matrix does not change monotonically with frequency.

For saturated slabs (poH, = 3.5T > poH,) the results are shown in figure 4.20. Si-
milarly to the partial penetration situation the coupling current increases with frequency.
However the coupling current saturates quickly, and then decreases faster to the negative
minimum upon field reduction. For very high frequencies, when the slabs are totally
coupled, the coupling current reaches the maximum /. at poH, = poH, and continues
almost constant until the field peak poH = poH, at wt = /2. When the applied field
is reduced, the coupling current decreases and reaches the minimum exactly when the
applied field has been decreased 2p0H, T.

At lower frequencies, the coupling current does not reach the maximum coupling current
because the slabs are only partially coupled, and starts to decrease just after the peak
determined by dB/dt. Notice that, although the peak of the coupling current moves to
the right with increasing frequency, for very high values (f = 80) the coupling current
saturates before. In figure 4.20.(b) observe that at wt = m and wt = 27 the coupling

current is maximum a difference with the partial penetrated slabs.
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Figure 4.22: Magnetic field profiles along y-axis in the center of the slab at wt = 7 for
,LL()HG = 3.5/,

The field in the normal matrix is shown in figure 4.20.(c). As for the partial pene-
tration situation, the field follows the same profile as the applied field for low frequen-
cies, but as f is increased the peak is reached later and there is some field trapped at
wt = m,27. A difference from the partial penetrated situation is that the profiles do not
vary much for different f since after full penetration even for high fields the minimum
field is poH, — poH,, and when the field decreases to zero again, the maximum trapped
flux is poH,. Observe this fact in the field profile along y-axis at wt = 7 (figure 4.22).

Notice that the field in the normal matrix increases with frequency.

4.3.3.2 Strip

For the strip, the evolution of the coupling current at B, = 0.15 T is similar to the one for
partially penetrated slabs as it is observed in figure 4.23. The coupling current increases
with frequency becoming sinusoidal for higher f ( figures 4.23.(a), 4.23.(b)). Respect to
the field in the normal matrix, similarly to partially penetrated slabs at low frequencies
the profile follows the same profile at the applied field and reduces with increasing f,
being finite when the applied field reduces to zero.

The plot of the field along y-axis (figure 4.24) shows clearly the field trapped at

wt = 7. As a consequence of the demagnetization effect in strips the field in the right
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Figure 4.23: Coupling current (a) and magnetic field in the normal matrix (c) for a strip
during a cycle time of the applied magnetic field of amplitude poH, = 0.15T. For comparison
at different frequencies, the coupling current is divided by its maximum (b).
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edge is lower than the applied field. Observe that the field in the normal matrix increases

with frequency and changes the slope at very high frequencies.
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Figure 4.24: Magnetic field profiles along y-axis in the center of the strip at wt = =« for
woH, = 0.15T.

4.3.4 Coupling current and f.

The only existing theory of the coupling effect is given for two saturated infinite slabs
under the assumptions of Bean’s model. For such geometry there is a critical ramp rate
of the magnetic field B, = 2apJ./1? such that the superconductors are totally coupled
[41].

For other geometries and in the case of partial penetrated superconductors numerical
predictions are necessary. In this section a quantitative approximation of the coupling

effect will be given for finite strips and slabs.

So far the evolution of the coupling current was analyzed during a whole cycle time

and for different frequencies of the applied field. Now for a fixed wt, the increment of
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the coupling current with increasing frequency is observed in order to obtain the critical

frequency f. indicating the onset of coupling, for a given amplitude poH,.

The coupling current is shown as a function of f for different poH, at wt = m/4
in figures 4.25.(a) and 4.26.(a) for the slab and strip respectively. Similarly for both
geometries, for a given amplitude B, the coupling current increases with increasing
frequency and saturates when the superconductors are totally coupled and the maximum

current flowing through the superconductor is crossing the matrix.

The critical frequency f, may be considered as the frequency at which the coupling
current curves change the slope to become flat. The peaks of the curves indicated by
the arrows in figures 4.25.(b) and 4.26.(b) correspond to such values. Observe that for
high fields the coupling starts before, that is, at a lower f. Notice that for strips the
peak at the same field, ugH, = 0.3 T, is reached later than for the slabs indicating that

the coupling starts at a higher f.

10000 O wgH=01T

e
. 1000 T ‘~~<>~‘~
. e i R ¢
=5 ¢ i

Egeesir Thi
P T P T
- ) W
100

1 10 100 1 10 100

Figure 4.25: Coupling current for different frequencies (a) and approximated value of the
critical coupling frequency f. (b) for the slab geometry.
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Figure 4.26: Coupling current for different frequencies (a), and approximated value of the
critical coupling frequency f. (b) for the strip geometry.

4.4 Constant ramp rate B

As it was seen in previous section, in sinusoidal applied fields the evolution of the coupling
current has to be analyzed having into account not only the change in time of B but
also the variation of dB/d¢, which makes it more complex. In this section the coupling
effect between superconductors is studied when a external magnetic field is applied and

raised with a constant ramp rate poH,(t) = ,uoHat.

The model consists on 2 finite superconductors joined by a normal matrix. Three
different geometries are considered : the slab, the strip and the square superconductor.
The width of the superconductor is 2¢ = 1.4 mm and the length is / = 8 mm. For the slab
the height is b = 10 mm and for the strip is b = 0.1 mm. The width of the normal matrix
is w = 0.15mm. The physical properties are given by the parameters: J, = 10® Am~2,

E,=10"*Vm! and n = 21.

It is known by theory that superconductors with different aspect ratios (a/b) have
different field and current profiles and therefore a different coupling behavior is expected.
Figure 4.27 shows those differences due to the demagnetization effects in the field profiles
along y-axis at z = & = 0. It is clear the non-linear profile of the field in the strip similar

to that calculated analytically for infinite flat superconductors, and the linearity in the
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Figure 4.27: Magnetic field profiles in superconductors of different aspect ratio in an external
field ramping at B, = 10Ts™! to pugH = 0.02'T.

case of the slab analogous to the profiles of Bean’s model for infinite slabs. In the slab
geometry the magnetic field is equal in the whole air region whereas for the square and
the strip the field increases at the superconductor’s edges reaching a higher value for the
strip. Another difference due to the different aspect ratios is the penetration depth. At
B, = 0.02T the strip is fully penetrated whereas the square is only partially penetrated

and in the slab the penetrated area is even smaller.

Observe in figure 4.27 that the field in the normal matrix part has decreased more
in the slab geometry than in the square or the strip, which are more penetrated at the
same applied field and for the same ramp rate, indicating the influence of the penetration

depth on the critical coupling field rate B,.

In order to obtain the critical coupling field rate B., calculations were carried out
increasing the applied field beyond full penetration at different ramp rates. In this section

B, is defined as the ramp rate for the onset of total coupling, that is, when all the current
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flowing in one superconductor crosses the normal matrix.

B, is plotted in figure 4.28 for the three geometries. The critical coupling field B, in
the slab (figure 4.28.(a)) increases linearly with the applied field to reach a maximum
just before full penetration field. At higher fields beyond full penetration, B, decreases

to a constant value equal to 25 Ts™!.

For the square (figure 4.28.(b)) a similar profile is found. As for the slab, the peak
(B, = 400 Ts™") is reached just before full penetration, and then decreases to a value

31 Ts™! higher than that obtained for the slab at saturation fields.

Figure 4.28.(c) shows B, for the strip. A difference with the other two geometries,
B, increases slowly with the applied field, and after total penetration reduces slightly to

a constant value in contrast to the pronounced decrease for the other two geometries.

In order to compare the three cases in figure 4.28.d the curves are plotted all together
as a function of the penetration depth. Observe that the strips couple faster al low fields,
however when the superconductors are saturated, the critical field ramp rate is more than

double of those for the square and the slab, which has the lowest B,.
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Figure 4.28: Critical coupling field rate B, for slab (a) square (b) and strip (c) superconduc-
tors and as a function of the applied field. The corresponding B, is shown in (d) as a function

of the flux penetration depth.
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4.5 Limitation to implementation of £ —J power law
in Flux3D formulation.

In HTS the J(E) property can be described by the power law:

o-n, ()72 »

The non-linear resistivity of the superconductor is given in Flux3D formulation by

p = p1 + po, where

pi([E]) = (4.3)
(B =5 ED
with y
o (|E|) = = |E|}/n"! 4.4)
{(B) = 7Bl (
and po is a resistivity added to the resistivity p; in order to avoid -g%%—’{ = oo for

|E| = 0. This additional resistivity po may be interpreted from a physical point of view

as the thermally activated resistance at 77 K.

The current density J is written as a function of the electric field F as

E|

(1/7)
ECJC [E|1-1/n) 4 py

] = (4.5)

When |E| =~ 0, then |J| = %)E}
and for |[E[ >0, |J| = J. (IEI/EC)I/"

This E — J relation is shown in figure 4.29 for different values of pg. Notice that the

value pg = 10713 is too large and for py = 107! and py = 1071% the curves do not differ

much.

The non-linear formulas in Flux3D are solved using the Newton Raphson method.
For a good convergence of the iterative process is very important to choose an appropriate
value of pg. Solution for the magnetic field and density current are shown in figure 4.30
for different py . The plots represent the profiles along the y-axis at z = 0 and z = 0.

Observe the wrong profiles for large values of the resistivity py ~ 107°, 107, 10712 Om.
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Figure 4.29: E — J law with J, = 2 x 108A/m?, E. = 1073V /m and n = 21, varying the
initial resistivity po.

The value of py depends on the parameters J,, E, and n of the material. The optimal
value is determined by py < 1072E,/J, ([34]).

In old versions of flux3D the definition of J(E) is characterized by the conductivity
instead the resistivity value o(|E|) = m. The initial conductivity is then required
oo(|E|) = Z(ad—ED‘ In calculations with such characteristic oo = 10° S/m was enough for a
good convergence. Observe in figure 4.30 that the result obtained for this value of oy is

similar to those calculated using the resistivity with py < 107° Qm.
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Figure 4.30: Influence of py in the profile of the magnetic field (a) and current density (b) at

wt =7/2 for poH, =3.5T and f =1T.
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4.6 Conclusion

In this chapter the FEM software Flux3D was utilized to model the coupling effect
between superconductors when they are in presence of an external applied magnetic

field.

Differences in the current and field profiles for slabs and strips due to demagnetiza-

tion effects were found as expected, probing the capability of the FEM method for 3D

modelling.

Under a sinusoidal magnetic field the increment of the coupling current with increa-
sing the frequency f was observed. The evolution of the coupling current through a cycle
time was explained for strips and slabs at different applied fields. An approximation to
the critical coupling frequency f. for the onset of coupling was given for different field
amplitudes. It was observed in both slab and strip geometries, that increasing pgH, the

coupling starts at a lower f .

At the end of the chapter the coupling effect was investigated for slabs, strips and
square superconductors in an applied field with constant ramp rate. The critical coupling
field B, was given at different values of the applied field including from low penetration to
saturation. For the slab and the square superconductor it was found a strong dependence
of B, on the applied field. For such geometries BC increases with pgH, to a maximum
at the field of total penetration uoH, and then decreases to a constant. However, in the
strip B, increases slower with poH, and after having reached total penetration there is
only a small decrease to a constant. Below partial penetration the strips couple before
than the slab and square superconductors, however when they are saturated the total

coupling starts before in the slabs.



Chapter 5

2D Modelling of coupling between

superconductors of finite length

5.1 Introduction

Minimization of AC losses in high temperature superconductors is one of the main task
required for their application in electric power devices. In order to reduce the hysteresis
losses and have better stability properties, superconductors are made of thin filaments
imbedded in a normal matrix. Such strategy is only effective if the filaments remain
uncoupled when the applied field is changed at a sufficiently slow ramp rate. However
when the ramp rate of the field is increased, the field penetrated into the matrix produces
an emf which can drive the current through the normal matrix. There is a critical ramp
rate of the applied field such that the emf is sufficient to drive the critical current of
all the filaments across the normal matrix and, therefore, in terms of ac losses the

multifilamentary superconductor behaves as a single larger one [38, 41].

In spite of conceptual understanding of the coupling phenomenon, theoretical pre-
diction for critical coupling field rate is limited to the case of fully saturated infinite
slabs where demagnetization effects are negligible, whereas quantitative solution for the
coupling effect is lacking between partially penetrated superconductors or with finite

geometrical dimensions.

In chapter 4, finite element method software Flux3D [15] is demonstrated to be
successfully applied for such problems. However integrations methods with simpler for-

mulations such as Brandt‘s formulation for 2D models (see chapter 2) would be desirable
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Figure 5.1: Geometry of the slab (a) and the thin disc (¢). Model of a sandwich of two slabs
(b) and two thin discs (d) with a normal matrix in between. The contour shown in (b) indicates
the flow pattern of the induced current when the conductors are coupled.

for an easier and faster implementation. In this chapter extension of Brandt’s formu-
lation for the sheet current in thin finite superconductors [32, 8] is used to investigate
the coupling effect. The formulation consists of the solution by time integration of a
non-linear diffusion equation for the stream function of the induced sheet current g. In
this way the 3D problem is reduced to a 2D problem and it is not necessary to take into

account the boundary conditions.

The formulation is applied to the two limiting situations shown in figure 5.1, thin
discs and infinite slabs, in order to obtain a quantitative understanding of the coupling
between finite superconductors through a normal matrix (light grey region in figures
5.1.(b) and (d)). Results will be given not only for saturated superconductors but also,

and for the first time, at applied fields that penetrate the superconductors only partially.

Calculations modifying some of the parameters such as the resistivity of the normal

matrix, the critical density current or the distance between superconductors, were carried
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out to investigate their influence in the coupling phenomenon. For all the cases an

approximation of the critical field ramp rate B, will be given.

At the beginning of this chapter, the formulation is explained and validated for iso-
lated thin discs and infinite slabs. Then, the results for the coupling effect are discussed
with the help of the field and current density profiles, comparing the two geometries and

for different values of the parameters influencing the coupling effect.

5.2 Numerical formulation

The induced current in superconducting infinite slabs and thin discs of finite length in
ac magnetic field is confined in the plane perpendicular to z along which the magnetic

field is applied.

For an infinite slab, J(z,y) is independent of z since is the same everywhere along
the direction of the applied field and can be expressed by a scalar function g(z,y), the

local magnetization, as

J(z,y) = -2 x Vyg(z,y) =V x 2g(z, y) (5.1)

The lines g(x,y) = const are the streamlines of the current and divJ = 0 is guaran-
teed.

For a thin disc of thickness d <« a, it is necessary to use the sheet current defined
as o(x,y) = fflc/liQJ(:c,y, z)dz. As o(z,y) is independent of z, it can be expressed as
o(z,y) = =2 x Vg(z,y). When d — 0, the sheet current density o(z,y) =J-d=1/a-d
is finite and a defined critical sheet current density of o. = I./a - d for a given transport

critical current I,.

From Biot-Savart law the potential vector can be written for a current density J(z)

as

H(r) = 151V x (“04—17F/ ]:(_rz,]dr') _ Zl;/v'-;—:l-}-,-! < I (5.2)

In the case of thin discs, the magnetic field at r = (x,y) generated by current loops

lying in the xy-plane and centered at r’ = (2/,y') is obtained from (5.2) and (5.1) as
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H(r) = 1/\7—1— X (V' x 2g(x'))d%

|r — 1’|

B /vl ( v]r_lr’|> — 2g(r") (v%vlrjr/l) a2

- 47 g(r')-(V-(V’,rEr/J)er' (5.3)

Similarly for the infinite slab, from (5.2) and (5.1), the magnetic field at r = (z,y,0)

generated by sheet current cylinders of infinite height along the z-axis is

H(r) = 1/V~——1——— (=2 x V'g(x") d*’

P
i oG+ o
- ———(—2)/ng(137"’

_ // - /l3ngz da'dy’ = ——z/( ) ”/IQngQ’

1 1
—— S 2 A 2 (- A 7 Rwii o AA2
——47rz/ V'in|p - p'|V'gd —-—47rz/29(p)v V1n|p p'|dp

~ 2 [ 9(e)3lp - ) (5.4)

where p = (z,y) and p’ = (2, 3')

Therefore, we have obtained a relation between the stream function g(z,y) of the
induced current and the field distribution by a scalar function Q(z,y,2’,y") = Q(r,r')

as
= H, +/Qr r') g(r') d?y/ (5.5)

Equation (5.5) can be inverted and therefore for a given field distribution the stream

function can be found as

= [ @) () - H) (5.6)

with
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= Ir—lr'13 thin disc

Q(r,r') = (5.7)
o(r—1r') infinite slab

The electric field is given by a non-linear resistivity E = p(|J|) for the infinite slab
and by the sheet resistivity E = p(|o|) in the case of the thin disc, but it can be expressed

as a unified function of the stream function g,

E = —p(|Vg|)2 x Vg(z,y) (5.8)

Since B = 2B, = -V x E, then

B. =V p(|Vg)(Vg) (5.9)

Substituting in (5.6) taking the time derivative, the final equation of motion for

g(z,y) is reduced to

o= [ @) [vwf’ﬂ;ﬁ—g'lw(r',ﬁ)) _mwlaer (a0

For a given time varying applied field H,(¢) and an initial distribution of the stream
function g(r,%y), the evolution of the stream function can be determined by solving

equation (5.10).

5.3 Numerical solution

Numerical solution of g can be obtained readily by time integration, tabulating the
functions in a grid with points r; = [x;, ;] covering the total area transverse to the
applied field. From g, H,, = Q9;, + Hy, Jo, = (S—Z)i and J,, = -(%)i are obtained,
according to (5.5) and (5.1). Note that the kernel is calculated only once for a particular

geometry but every time step spatial derivatives must be computed.

One of the main points in this formulation is the evaluation of the kernel for the
diagonal elements which are singular according to (5.7). For thin discs, as shown in [32],
the field in a point (z,y, 2) of a tiny current loop with center in (0,0,0) and axis along

Z 18:
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1 222 —22 — 92

Hz y Y - .
(2,y,2) 47 (22 4 y? + 22)5/2 (5.11)
Hence, the constant function Q(r,r’) for all the grid points is given by :
1 322 — d?
N T n -
Qr,r’) = ppm il_l’)% @5 ) (5.12)

where d is the distance between r and r’.

Approximating () by (5.12) and using its Fourier expansion with as many points as in
the spatial grid, Brandt ([32],[8]) shows that the singularity is avoid without significant

errors. The expression for Q is

1
Q(r,r') = = Z Z Qs ey e b, SN (Ko x) sin(kyy) sin (kg a') sin(kyy') (5.13)

ka ky K K,

This kernel can be evaluated with better accuracy and without singularities for dia-

gonal elements by using current loops uniformly distributed over the whole cell [42].

In the case of the slab where Q(r, r’) = §(r—1’), since [ [, §(r—r/)é(r—r") d*r'd*" =
1, then Q7 *(r,r’) = 6(r—1’) and the final equation (5.10) is simplified to a local equation

without any singularities:
. p ~
o(r,t) = V- (LVg(r,0)) - Fa(t) (5.14)
Ho

Arbitrary non-linear resistivity p = £/J can be inserted in this formulation. In this
work power-law £ — J characteristic for superconductors is used, i.e. £ = E, - (J/J.)"
with the parameters J, = 108 Am~2 E, = 107*Vm™! and n = 21. For the thin disc,
the sheet critical current density is o, = 10* Am~2, corresponding to d = 10™*m for
J. = 108 Am~2. To model the coupling behavior between superconductors (figures 5.1.(b)
and (d)), a normal conductor is considered with a constant resistivity ,e.g. that of copper
at liquid nitrogen temperatures p = 2 - 107° Qm and the correspondent sheet resistivity

of ps = p/d =2 1075 Qm.
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5.4 Validation

The formulation was applied to two simple situations for validation: a square thin disc
and a square infinite slab (figures 5.1.(c) and 5.1.(a) respectively). Because of symmetries
the results shown below correspond to a quarter of the total model, 0 < 2 < a,0 <y < b,

with 2a = 2b = 4 mm being the width and the length of the square.

a1

The field profiles for the slab shown in figure 5.2 are similar to Bean’s model [5],
where the field decreases linearly in the penetrated area, from the edges to the center,
with slope poJ, given by VxzZH = J. Another characteristic to compare is the field value
poH, at which the magnetic flux has penetrated to the center of the slab. According to
Bean’s model this value is calculated as poH, ~ pgJe.a = 0.257T for an slab of infinite
length, compared to poH, =~ 0.27T for the square slab shown in figure 5.2. Further

increase of the applied field results in a finite field at the center.

The stream function g of the induced current has the shape of a typical roof. The
streamlines, g = const., represent the lines of the current flow which is restricted to the
penetrated area (figures 5.2.(a) and 5.2.(b)). As expected, the lines are straight and turn

sharply in the corners to pass by 90° from one direction to the other.

For the thin disc (figure 5.3) the field profile is non-linear. The streamlines have
a rectangular shape in the penetrated part where the current is ¢ = o, and become
circular in the inner part unpenetrated by the flux. Current flow in field free regions is
due to the zero thickness of the disc similar to that in a infinite thin strip. At the value
poH, ~ 0.02T the disc is fully penetrated, which is about double of the theoretical
value 19 H, for an infinite strip [25], as shown in the corresponding field profile along the
lines z = 0 and y = 0 (figure 5.3.(c)). For a longer superconductor, b = 1.6 mm, (figure
5.3.(d)) the saturation field is reduced to that predicted for infinite strip. The significant

scattering at corner due to the approximation of ) does not seem to affect the result

within the conductor.
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Figure 5.2: Streamlines of the induced current in a square slab for the applied fields poH, =
0.16 T (a) and poH, = 0.4 T (b), and corresponding magnetic field profile (c).
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Figure 5.3: Streamlines of the current in a square disc, for applied fields poH, = 0.01T (a)
and poH, = 0.019T (b), and corresponding magnetic field profile (c). Magnetic field profile
for a thin disc of length 8 mm (d). Analytical field profile for a infinity disc of the same width
is shown (e).
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5.5 Results and comments

As the formulation applies satisfactorily to isolated thin discs and slabs as shown in
previous section, it is reasonable to extend it for modelling the coupling between two
superconductors through a matrix. It is sufficient to consider the non-linear resistivity in

the superconducting region and a constant resistivity for the normal conductor region.

Then taking

E=E, . (J/J)" superconducting region
r(IVgl) = (5.15)
constant p matrix region

and given an initial distribution of the stream function ¢g(r,t) = 0, the evolution of

the stream function can be determined by solving equation (5.10).

We have performed the calculations for slabs and thin discs with width 2a = 1.4 mm
and length 2b = 8§ mm with a normal matrix w = 0.3 mm wide. Again, due to symmetries,

only the quarter [0,2a + d/2] x [0,b] of the model will be used (see figure 5.1).

5.5.1 Slab

Figures 5.4 and 5.5 show the coupling phenomenon produced at different ramp rates of
the field B. Plots are represented for two possible states: partial penetration, H, < H,
(figure 5.4) and full penetration, H, > H, (figure 5.5). At partial penetration and small
ramp rate of the applied field (B = 0.63 Ts™!) the slabs are uncoupled (figure 5.4.(a)).
Their behavior is similar to that for two independent slabs where the current is flowing
inside the superconductors in rectangular loops only in the penetrated area. At higher
ramp rate (B = 100Ts™!) the current starts to cross the matrix, there is no current
returning within the same superconductor, and the center of the matrix is shielded from
the magnetic field (figure 5.4.(b)). The total coupling current is equal to the total current

along the slab in the penetrated area.

Similarly, increasing the applied field the slabs remain uncoupled at low B (figure
5.5.(a)) and coupled at high B (figure 5.5.(b)). It should be noticed that the full pene-

tration field of coupled slabs is double than that for uncoupled ones.

The field profile along z-axis at y = 0 is presented in figure 5.6.(a). For a given

applied field, with increasing B the field in the matrix decreases. Notice that for a small
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(b)

Figure 5.4: Streamlines and magnetic field profiles of partially penetrated slabs in an applied
field poH, = 0.04 T ramping at B = 0.631 Ts™! (a) and B = 100 Ts™! (b).
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Figure 5.5: Streamlines‘and magnetic field proﬁ!e of fully penetrated slabs in an applied field
HoH, = 1T ramping at B = 0.631 Ts™! (a) and B = 100 Ts~* (b).
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Figure 5.6: Magnetic field profile along the z-axis in the middle of the slab (a) and the thin
disc (b) at different ramp rates of the applied field.

applied field (uoH, = 0.04T), at total coupling the field decreases to zero in the normal
matrix, however for fully coupled saturated slabs (uoH, = 1.59T) the field reduces to a

finite value.

In figure 5.6.(a) we can see that at B = 25 Ts™! for uoH, = 0.04 T the slabs are fully
coupled, whereas for ugH, = 0.1 T clearly only partially coupled and for pgH, = 1.59T
nearly fully coupled, indicating a higher B, for puoH, =~ poH,p.
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Figure 5.7: Streamlines and magnetic field .proﬁle of partially penetrated thin discs in an
applied field ramping at B = 1Ts™! (a) and B = 100Ts™! (b) to uoH, = 6.325- 1073 T.

5.5.2 Thin disc

As expected the coupling between thin discs increases with increasing B (figures 5.7 and
5.8). In contrast to slabs, the field profile is non-linear in both uncoupled and coupled
cases. It should be noted that the applied field is smaller than that used for the slabs,
due to a smaller full penetration field (0.02T). At partial penetration, the field free
region of fully coupled discs also has induced current,due to the zero thickness of the
discs, which flows across the normal matrix from one disc to the other (figure 5.7.(b)).
For higher fields it is difficult to model the coupling since it would require a more fine

mesh to represent with accuracy the field profile for such cases.
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Figure 5.8: Stregmﬂines and magnetic field profile of totally penetrated thin disc in an applied
field ramping at B = 1Ts™! (a) and B = 100 Ts~! (b) to uoH, = 0.013T.
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The field profile along z-axis at the center (y = 0) is shown in figure 5.6.(b). Similarly
to the slab, the reduction of the field in the normal conductor with increasing f is
observed. However, a difference with the slab, notice that the field in the matrix is not
constant and changes from a positive gradient to a negative one as the superconductors

become coupled.

5.5.3 Critical coupling field B,

The objective of the modelling presented in this chapter is to obtain quantitative infor-
mation about the coupling phenomenon for the whole range of the applied field. It is
particularly important for practical applications the obtention of the critical coupling
field rate B., defined as the ramp rate of the field which induces all the current in the
superconductor to cross through the matrix to the other superconductor. The only theo-
retical model developed to predict B, is given for two fully penetrated infinite slabs [41]

where
B. = 16pJ.a/(2b)? (5.16)

We have now obtained for the first time a quantitative determination of B, for par-

tially penctrated slabs.

In figure 5.9, the coupling current (J, integrated at = 0 along y-axis) is plotted
against the applied field and the ramp rate for discs and slabs. Given a particular ugH,,
the coupling current increases with B until the critical value B, is reached, then becomes
constant with further increase of B. The level of full coupling current increases with the
applied fleld pi9H, before full penetration, and reaches saturation at puoH, > poH,.

At a fixed B there are differences in the profiles between slabs and thin discs. For the
slabs there is a stronger dependence of the coupling on the applied field. The coupling
current increases with the field and saturates at the value of the coupling current induced
by that ramp rate. For the disc at low field the situation is different, the current reaches

the maximum value immediately as soon as the field is applied.

The critical coupling field rate B, can be obtained identifying in figure 5.9 when
the coupling current reaches saturation for a given applied field. For the slabs (figure
5.10.(a)), B, increases linearly with the applied field to reach a pronounced maximum
of ~ 190 Ts~! just before full penetration. At higher fields beyond full penetration B,
reduces to a constant value of B, &~ 34 Ts™!, in agreement with that ~ 35 Ts~! obtained

with the formula (5.16) for saturated slabs.
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Figure 5.9: Coupling current for thin discs (a) and slabs (b) as a function of the applied field
and its ramp rates B.
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Figure 5.10: Critical coupling filed rate B, as a function of the applied magnetic field for a
slab (a) and for a thin disc (b). Corresponding B, as a function of the flux penetration depth
().
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For think discs, the critical coupling field rate also increases linearly with the applied

field at low fields until reaches saturation of B, = 40 Ts™! when is fully penetrated.

In figure 5.10.(c) the coupling field is compared between slabs and thin discs as a
function of depth of field penetration. As expected the coupling between thin discs is
produced much sooner at small penetration, however for total penetration at high fields

the critical current field rates are similar.

5.5.4 Coupling current during a ramp field oscillation

In most of practical applications, superconductors are in oscillating magnetic fields. As
it was shown in previous chapter, the time evolution of the coupling effect in sinusoidal
fields is complex due to the continuous variation of dB/d¢. To consider a simpler model
and to continue with the calculations shown in previous section, here it will analyzed the
coupling effect during a cycle of a ramp field, poH, = poHyt. The applied field, plotted
in figure 5.11.(b), is raised to a maximum poH,, higher than total penetration field poH,

then is reduced to —pugH,, and returns to zero to finish the cycle time.

The coupling current profiles are shown in figure 5.11. Since the time intervals vary
at different ramp rates, the results are plotted against ¢ - B. The coupling current
increases in time to saturate before the peak field poH,,. According to figure 5.10.(a),
at | B |= 25T/s slabs are totally penetrated only at low fields, hence the coupling
current at the beginning of the cycle is equal than that for higher ramp rates, however
at higher fields increases slower to saturate later. At | B |= 158.5T/s, the slabs are
totally coupled for the whole range of the applied field (see figure 5.10.(a)) and therefore
the coupling current increases faster to saturate when pogH = poH, at the maximum
coupling current. Consistent with the values of B, in figure 5.10.(a), observe in the
profile for | B |= 63.1T/s that at about uoH, the coupling current is not maximum yet,
however for higher fields the slab are fully coupled.

The coupling current decreases with reducing the applied field to reach a minimum, and
then remains constant until the applied field has decreased to —ugH,,. Notice that for
high ramp rates the minimum is reached when the field has reduced 2uH, from the

positive peak. Observe that the profiles from peak to peak become linear for high ramp

rates.
With respect to the applied field in the matrix shown in figure 5.11.(b), it is observed

that the field increases with reducing B as expected. For a low ramp rate, the matrix is

shielded at the beginning and then starts to increase with the applied field since the slabs
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Figure 5.11: Coupling current evolution (a) and magnetic field in the normal matrix (b) for
a cycle time.
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Figure 5.12: Profile of the relative penetrated flux, as given in the text.

are not coupled. For higher B, since the slabs are totally coupled, the field is shielded
before total penetration field, and then increases at the same rate as the applied field.
Notice that after field reductions the field in the normal matrix continues increasing for
a period of time before reducing with the same slope as the applied field, leading to field

trapped in the normal matrix when the applied field has returned to zero.

A detailed plot of the first quarter of the cycle time is seen in figure 5.12. To compare
the coupling for different ramp rates, it is represented the relative penetrated flux, AB
in the normal matrix, defined as the penetrated flux divided by the applied field for
t < H,/H, that is, before full penctration. For ¢ > H,/H (full penetration), having into
account that a increment of the applied field beyond full penetration leads to a finite field
in the normal matrix, the relative penetrated flux is defined as (B—(uoHo—poH,))/ toHp.
Observe that the field increases more for low ramp rates since the slabs are not totally
coupled. The field decreases after total penetration situation according to figure 5.10.(a)

where it was seen a reduction of B, after total penetration.
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Figure 5.13: Magnetic field profile along the Figure 5.14: Magnetic field profile along the
r-axis in the middle (y =z = O) of the slab at z-axis in the middle (y =g= O) of the thin disc
noH, = 0.158 T and ramp rate 100 Ts L. at puoHy, = 0.01 T and ramp rate 25.119 Ts— 1,

5.5.5 Influence of the length of the superconductor

It is known by theory (equation (5.16)) that for infinite saturated slabs in the critical
state, the critical field ramp rate increases with reducing the length of the supercon-
ductor. In this section B, is calculated numerically for infinite slabs and thin disc of
different lengths including partial and total penetration cases. The objective is to find a

relation between length and B, and compare it with the theoretical prediction.

Observe first the plot of the magnetic field profiles along z-axis in figures 5.13 and
5.14 for the slab and thin disc respectively with lengths 4 and 8 mm. At the same ramp
rate B, the field in the normal matrix differs for the different lengths indicating different
coupling behavior. Whereas for the longest slab the field is almost zero in the normal
matrix since it is almost fully coupled, for the short one, has not decreased so much
(figure 5.13) and the coupling is only partial. The same effect occurs for the thin disc
(figure 5.14) where it is observed that the field has decreased more for the long one. We
can confirm therefore the expected increment of B, with reducing the length in both

geometries.

The quantitative values of B, are shown in figure 5.15.(a) for slabs at different applied
fields. The increase of B, with reducing the length is found for the whole range of the
applied field. To compare with formula (5.16), in figure 5.15.(b) it is plotted B.(2b)? as a

function of the applied field. For small fields just before full penetration, exactly inverse
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Figure 5.15: Critical field ramp rate as a function of the applied‘magnetic field for slabs of
different lengths (a). To compare with formula (5.16), it is shown B.(2b)? (b).
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Figure 5.16: Critical field ramp rate as a function of the applied magnetic field for thin discs
of different lengths (a). To compare with formula (5.16), it is shown B.(2b)? (b).
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quadratic dependence of B, on the slab length is found, the same as in formula (5.16).

At higher fields, H > H,, the dependence varies a little but is almost B, ~1 /4b2.

For the thin disc, B, is shown in figure 5.16. As expected, the critical ramp rate of
the field is higher for the short thin disc. However, a difference with the infinite slab,

there is not a inverse quadratic relation (figure 5.16.b).

Slabs with length b < 2a

So far we have studied slabs with different lengths 2b such that b > 2a. In such cases,
at saturation field, H,, the slab is totally penetrated along the width (figure 5.17.(a)).
However, when the slab is shorter than wide, the field reaches the center first along the

length as it is shown in figure 5.17.(b), and therefore current will flow along the slabs in

the y-direction only in a small region.

0.24 1

0.20 1

0.16

(@) (b)

Figure 5.17: Magnetic field profile of saturated slabs in and magnetic field ramping at
398.107 Ts~! to poH, = 0.251 T with length 2b = 4mm (a) and 2b = 1 mm (b).

The critical ramp rate as a function of the applied field is seen in figure 5.18. For
comparison with long slabs it is also represented an example of b > 2a, 2b = 4mm.
Similarly to the plot shown for long slabs in figure 5.15, B, increases linearly with
the applied field to reach a maximum just before full penetration, and further increase
of the applied field beyond full penetration results in a reduction of B, to a constant
value (figure 5.18.(a)). As the length of the slab is reduced the total penetration is
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Figure 5.18: Critical field ramp rate as a function of the applied‘magnetic field for slabs of
different lengths (a). To compare with formula (5.16), it is shown B.(2b)? (b).

produced before, hence the peaks in the curves are reached at lower fields. Compare the

pronounced jump after the peak for 2b = 4 mm with the reductions on B, for shorter

slabs with b < 2a.

With respect to the influence of the superconductor length on B,, it is seen that
at low fields when the slabs are only partially penetrated, there is a inverse quadratic
relation between B, and the length (figure 5.18.(b)) as it was found for longer slabs.

However for saturated slabs that relation is B, ~ 1 /2b for b < 2a a difference with longer

slabs (observe in 5.18.(b) the case 2b = 4mm).

For a more precise analysis of the behavior of fully coupled slabs observe the field
and current profiles shown in figure 5.19 for a short saturated slab with 2b = 1 mm.
The streamlines of the induced current (figure 5.19.(a)) indicate that all the current is
flowing in the y direction along the slab in the outer part and then turns to cross the
normal matrix. Since the width of the carrying current part in the y-direction is equal
to half length of the superconductor b, the coupling current in the matrix becomes very
large and therefore it has to increase in the outer part as it is shown by streamlines in

figure 5.19.(a). As a consequence of that, notice that the field in the normal matrix has
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Figure 5.19: Streamlines (a) and magnetic field profile (b) for a penetrated slab of length
2b = 1mm.

decreased more than in the superconductors when they are fully coupled 5.19.(b). With
reducing the length of the slab the coupling current in the normal matrix becomes higher

and therefore more voltage is required, and B, increases as it was seen in figure 5.18.

5.5.6 Influence of J. on the critical coupling field rate

In this section the coupling effect is investigated for different values of the critical current
density. For infinite saturated slabs, equation (5.16) establishes a proportional correspon-
dence between this parameter and the critical ramp rate B,. For the investigation we
have considered values of J, = 10% and 2 - 108 Am~2 for the slab and o, = 10® and

2108 Am~! for thin discs.

According to Bean’s model, for infinite slabs the field penetrates into the supercon-
ductor with a slope given by V x H = J, and therefore the depth of flux penetration
is inversely proportional to the critical current density. In figure 5.20, with the field
plotted along z-axis at y = 0, it is seen that the penetration in the superconductor with

J, = 108 Am~2 is double than that for J, = 2-10® Am~2.

At low applied fields (figure 5.20.(a)), with increasing the ramp rate the field in
the matrix part has been reduced to the same value, indicating independence of the

coupling effect respect to J.. However, at applied fields higher than the full penetration
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field (figure 5.20.(b)), at the same ramp rate the slab with lower J, is already totally

coupled whereas for double J, there is still current returning inside the slab.
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Figure 5.20: Magnetic field profile along the z-axis in the middle (y = z = 0) of the slab at:
(a) poH, = 0.1T and ramp rate 39.811 Ts™ %, and (b) uoH, = 1T and ramp rate 25.119 Ts~L.

For thin discs, the depth of flux penetration increases with reducing o, as it is ex-
pected (figure 5.21). Similarly to the slab, the field along z-axis in the normal matrix
region is independent of o, (5.21.(a)) at low fields, but varies at higher fields (figure
5.21.(b)).

Detailed evaluation of the influence of J. at different applied fields is represented in
figure 5.22 where B, is plotted as a function of the applied field. Observe for the slab
(figure 5.22.(a)), at low fields before total penetration, the unexpected independence of
the critical ramp rate on J.. However at higher fields, just after the superconductor with
J. = 2-10® Am~? has reached full penetration, there is a dependence on J,. Specifically,
B, is almost double for J, = 2 - 108 Am~2 than for J, = 108 Am~2 when the slabs are

saturated in agreement with formula (5.16).

For the thin disc (figure 5.22.(a)) similarly to the slab, B, is independent of J, for
low fields but as the applied field is increased it is observed a stronger influence being

B, at full penetration double for o, = 2 - 10* Am™! than for o, = 10* Am™!.
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Figure 5.21: Magnetic field profile along the z-axis in the middle (y = z = 0) of the thin disc
at: (a) poH, = 5.024 - 1073 T and ramp rate 39.811Ts™ !, and (b) poH, = 0.02T and ramp
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Figure 5.22: Critical field ramp rate as a function of the applied magnetic field for different
critical current density J. of the slab (a) and for different o, of the thin discs (b).
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5.5.7 Influence of the matrix resistivity of the superconductor

Another parameter which is expected to affect to the coupling effect is the resistivity of
the normal metal between the slabs and the sheet resistivity of the normal metal between
thin discs. According to equation (5.16) the critical field ramp rate B, is proportional
to the resistivity. Figures 5.23 and 5.24 show the field profiles along z-axis for partial
penetrated slabs and thin discs respectively. As expected, it is seen less field in the normal

matrix and therefore more coupling with reducing the resistivity in both geometries.
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Figure 5.23: Magnetic field profile along the Figure 5.24: Magnetic field profile along the

z-axis in the middle (y = z = 0) of the slab at 2-axis in the middle (y = z = 0) of the
poH, = 0.1T and ramp rate 39.811 Ts™L. thin disc at poH, = 6.325mT and ramp rate

25.119 Ts~ L.

The exact values of B, at different applied fields uoH, are presented in figure 5.25.(a)
for the slab. At any applied field, if the resistivity of the normal metal is reduced, the

total coupling produces at a lower ramp rate. The same situation is found for the thin

disc, as shown in figure 5.26.(a).

In relation with equation (5.16), the critical ramp rate is plotted divided by the
resistivity in figures 5.25.(b) and 5.26.(b) for the slab and thin disc respectively. For
the thin disc, B, is directly proportional to the resistivity of the normal matrix. For
the infinite slab we found the same relation for both partially penetrated and saturated

slabs in accordance with the formula, only for applied fields just after full penetration,
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Figure 5.25: Critical field ramp rate for a slab as a function of the applied magnetic field for
different resistivity of the normal matrix (a). To verify equation (5.16), the critical ramp rate
is divided by the resistivity (b).
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Figure 5.26: Critical field ramp rate for a thin disc as a function of the applied magnetic field
for different resistivity of the normal matrix (a). To compare to equation (5.16), the critical
ramp rate is divided by the sheet resistivity (b).
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the increment of B, with increasing p is found more pronounced.

5.5.8 Influence of the matrix width

According to equation (5.16) given for infinite saturated slabs there is not influence of

the matrix width on the critical magnetic filed ramp rate B,. However numerical results

obtained here for w = 3mm and w = 5mm show differences even for the infinite slab,
as it can be observed looking at the plots of the field in figures 5.27 and 5.28. Notice

that the field in the normal matrix has decreased more for slabs or thin discs separated

by thinner matrices indicating that the superconductors couple easily.

[
|
| | == w=0.3mm
. ; =<  w=0.9 mm
|
|
|
- |
X |
m |
0.04 1 |
|
|
|
|
= =S e I
0.00 -_}.L +
0.0 05 1.0 1.5
X, mm

Figure 5.27: Magnetic field profile along the
z-axis in the middle (y = z = 0) of the thin slab
at poH, = 0.1T and ramp rate 39.811 Ts~1.
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Figure 5.28: Magnetic field profile along the
z-axis in the middle (y = 2z = 0) of the
thin disc at poH, = 6.325mT and ramp rate
25.119 Ts™1.

This effect is observed not only for low fields but for the whole range of the applied
field, as shown in figure 5.29. For both slab and thin discs, the behavior of B, as a

function of the applied field is found similar for the different matrix widths, but always

requiring a higher B, for the model with wider matrix.
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Figure 5.29: Critical field ramp rate as a function of the applied magnetic field for different
widths of the normal matrix between slabs (a) and thin discs (b).

5.6 Conclusion

In this chapter an integral method was described for calculating the ac response of
thin discs and infinite slabs of finite length. This formulation was extended to study
the coupling between two superconductors through a normal matrix. Calculations were
carried out in order to obtain B, for infinite slabs and thin discs, as a function of the
applied field. The results not only show good agreement with the theoretical prediction
for fully penetrated slabs, but also provided previously unknown correlations for partially
penetrated superconductors. In the case of the slab, we have found a strong dependence
of the B, on the field penetration at low fields. B, increases linearly with the applied
field until the slab is saturated, then reduces to a constant equal to the value given by
theory. For the thin disc, although B, also increases with the applied field, it does not
reach such a high peak as the slab. Although it was expected a lower B, for thin discs
due to demagnetization effect, for high fields we found similar values in both geometries.
This is due to the increase in the resistance between the discs compared with the slabs.
It should be noted that the situation is the reverse for twisted conductors, where the

coupling current flows along the direction of the applied field.
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Quantitative analysis of the influence on the critical coupling field rate of parameters
such as the critical current density, the length of the superconductors and the normal
matrix resistivity, was given. Whereas results varying such parameters showed an agree-
ment with theoretical prediction for infinite saturated slabs, it was found that the width
of the normal matrix influences B, in disagreement with the independence between both

parameters expected by theory.

Despite the simplicity of the formulation it has been very effective for modelling both
geometries considered here. Further work could be done in order to refine the formulation

and apply it to finite superconductors of finite height.



Chapter 6

Further work and recommendations

Integration formulation can be used for modelling infinite slabs and thin discs with finite
length in an ac applied field, as it was shown in chapter 5. Since in both geometries
the induced current is restricted to a plane, it is possible to obtain the integral equation
for the stream function g of the current density (J(z,y) = —Z x Vyg(z,y)) satisfying
divJ = 0.

The same formulations could be extended to model superconductors with finite di-
mensions proved that the induced current has not component in the direction of the
applied field and therefore the current is restricted to a plane. Figure 6.1 shows the

geometry of the superconductor indicating the profile of the induced current.

Figure 6.1: Sketch of the induced currents in a finite superconductor under an ac applied
field.
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The profile of the different components of the induced current in the zy-plane at
z = b/2, being 2b = 10mm the height of the superconductor, was calculated with
Flux3D and is shown in figure 6.2. Observe that the z-component of the current is

negligible compared to the other ones.

Figure 6.2: Profiles of J; (a), Jy (b) and J, (c), obtained with Flux3D in a finite supercon-
ductor under an ac applied field.

The stream function g(z,y, z) varies in z due to the finite height and relates to the
current by
J(&,1,2) = -2 % Vg(a,y,2) = @2 _ g5 (6.1)
Oy oz
Similarly to the infinite slab, it is necessary to find a relation between the stream
function g and the field distribution given by a scalar function @, corresponding to the

magnetic field generated by sheet current cylinders of finite height.

Tabulating the functions in a volume with points r = (z,y,2) covering the total

volume the solution could be easily obtained.
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