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This thesis is focused on numerical modelling of high-temperature superconductors (HTS) 

for the purpose of a better understanding of the loss mechanisms which occur in alternat-

ing magnetic Eelds and whose consequences still constitute one of the remaining obstacles 

for practical apphcations of superconductivity. 

The Critical State Model, developed for low temperature superconductors, only gives 

a qualitative approximation of the electromagnetic behavior of high temperature super-

conductors. For precise quantitative analysis, HTS are well described by a non linear 

current-voltage characteristic, as the power law -B(J) = assigned to super-

conductors modelled in this work. For studying HTS with such non-linear property and 

with complex geometries numerical methods are necessary. 

For modelhng inEnite long tapes with rectangular cross-sections a simple 2D integral 

formulation developed by Brandt is used, which results in a stiff diEerential equation for 

the current density. To solve it, Rosenbrock method waa implemented and validated. 

A extensive part of this thesis is dedicated to the coupling eSect between supercon-

ductors via a resistivity matrix, for which analytical calculations are limited to a very 

simple situation. Such 3D eSect is modelled in superconductors with finite dimensions 

using the hnite element method (FEM) software Flux3D. Due to the highly non-linear 

E-J law, initial tests using FluxSD showed the inefEciency of the Hneaj system solver 

used at each Newton-Raphson step. To improve the general performance of FluxSD 

new iterative solvers, Gmres and Bi-CGStab, were implemented. FEM simulations were 

carried out to study the couphng phenomenon in strips and slabs superconductors. 

For the particular case of in&nite slabs or thin discs, the 3D couphng effect can be 

modelled by using a 2D formulation baaed on a extension of Brand's formulation for the 

sheet current in thin Gnite superconductors. Being simpler than FEM, this method is 

found to be successful for modelling the coupling phenomenon at diSerent applied Gelds, 

and therefore waa used to analyze the inSuence of different geometrical and physical 

characteristics of superconductors on the coupling effect. 
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Chapter 1 

Introduction to high-7^ 

superconductivity 

1.1 What is Superconductivity? 

Superconductivity is a strange phenomenon characterized by the zero resistance which 

is observed in some materials when they are cooled below a certain temperature known 

as 

1.2 History of superconduct ivi ty 

Superconductivity wag discovered in 1911 by Heike Kamerlingh Onnes [26]. He was 

examining the properties of the electric resistance in metals at low temperatures when 

he observed that electric resistivity of the mercury cooled by liquid hehum decreased 

with falling the temperature and disappeared at 4.15 K. In the next years, many other 

metals and alloys were found to be superconducting if they are cooled at sufhciently low 

temperatures, under 23 K. 

Since there is not resistance at all, the superconductor can carry current indeGnitely 

provided that the temperature is kept low. The requirement of such extreme tempera-

tures can only be reached with some expensive gases as liquid helium. 

It was in 1986 when the history of high temperature superconductivity began, when 

Karl Miiller and J. George Bednorz observed superconductivity in lanthanum copper 

oxides doped with barium at temperatures up to 38 K [6]. One year later, in 1987, 
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superconductivity was found at 93 K in the compound yttrium barium copper oxide 

(YBC0)[39]. At that temperature YBCO can be cooled in liquid nitrogen, more abun-

dant and cheaper than Hquid hehum. In the following years intense attention was put 

to fmd other copper oxides superconductors at higher temperatures. So far, one of the 

superconductors at highest temperature is the HBCCO (mercury barium calcium copper 

oxide) with Tc = 133 K [2]. 

Since the discovery of high-temperature superconductors the superconductivity re-

search focused in different directions. Whereaa some researches try to find supercon-

ductors at higher and higher temperatures, other people work in the improvement of 

the properties of already discovered superconductors around 100 K, and investigate their 

possible practical applications. 

1.3 Applications of superconductivity 

Superconductivity can be applied to different areas of science and engineering. As they 

become more cost elective, future expansion of theses applications can be assured in 

many cases. 

Applications of high temperature superconductors include superconducting motors, 

fault-current hmiters, generators, energy storage systems, power cables, magnetic shiel-

ding devices, medical imaging systems, superconducting quantum interference devices 

(SQUIDS), infrared sensors, analog signal processing devices, microwave devices, etc. 

The property of superconductors to conduct electricity with high current density 

and zero resistance can be exploited in the use of electrical transmission lines, where 

in traditional conductors part of generated electricity is dissipated in resistive losses. 

Similarly, superconducting motors and generators could be made with a weight of about 

one tenth that of conventional ones of the same power, therefore at lower costs, thank 

to the high currents that a HTS wire can carry. 

Superconductors are used in many applications where intense magnetic helds are re-

quired since superconducting magnets are cheaper than conventional ones, more compact 

and can produce higher fields. In medical applications, the superconducting magnet has 

been used in magnetic resonance imaging (MRI) of many parts of the human body. The 

intense magnetic fields and the uniformity in space and time needed for such apphca-

tions can be reached maintaining the coils in theirs superconducting state. Similarly, 

particle accelerators can increase their energy level by using superconducting magnets. 
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Superconducting accelerators projects are developed in CERN laboratory in Switzerland 

and Fermilab in USA. 

Based on the property of magnetic Held repulsion of superconductors (Meissner e-

Eect) other applications of superconductivity such aa maglev exploit this unique feature 

of magnetic levitation. Prototypes of high speed levitated trains have already been 

constructed in Japan by using LTS with liquid hehum as a refrigerant. 

In the electronics industry, superconductors are used in ultra-high-performance filters. 

Since superconducting wire hag near zero resistance, even at high frequencies, many more 

Glter stages can be employed to achieve a desired frequency response. This is a great 

advantage in high-congestion radio frequency apphcations such as cellular telephone 

systems. Another electronic apphcation is the possibihty of building computers 1000 

times faater than computers based on silicon chip technology. This is achieved through 

the use of basic Josephson junctions. 

1.4 Principles of high-7^ superconductivity 

Apart from the zero-resistance characteristic, another equally important property of 

superconductors, related to their behavior when they are exposed to a magnetic Geld, 

was discovered in 1933 by W.Meissner and R.Ochsenfeld [24]. They found that any 

magnetic Held apphed to a superconductor is expelled from inside it when the material 

is cooled below 7 .̂ The same effect occurs regardless whether the superconductor is 

cooled below 7], prior or after the Geld is applied. Such total expulsion of magnetic Geld 

is known as e^ec( (Ggure 1.1). Macroscopic theory of London brothers [22] 

and later in 1950 the theory of Ginzburg and Landau [14] propose equations to explain 

this eSect. 

The magnetization M of the material relates to the magnetic Geld and the induc-

tion B by the relation B -H M). In the Meissner state B — 0 and therefore 

M = —H (perfect diamagnetism). 

For a given material, there is however a magnetic Geld suGiciently strong such that 

the Geld penetrates into the superconductor and the normal state is restored. This Geld is 

called the (Hc(7')) smd depends on the temperature, being higher 

for materials with high 7].. With regard to this feature superconductors are classify in 

two groups: Type-I and Type-II. 
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Figure 1.1: Meissner effect in a superconductor. 

Type-I superconductors expel the applied field (Meissner effect) as it is lower than 

the critical magnetic field, Hc{T). As the applied field exceeds Hc(T), penetration occurs 

resulting in a transformation to normal state (See figure 1.2.(b)). 

For Type-II Superconductors there are two critical fields. Field lines begin to pene-

trate into the material at Hd , converting some regions to the normal state, while others 

are still superconducting. It is at a higher critical field ifc2 when it becomes totally 

normal material. This behavior is shown in figure 1.3. 

Type-I superconductors are comprised of pure metals, whereas Type-II superconduc-

tors are mostly alloys or intermetallic compounds. The critical field varies enormously 

between Type-I and Type-II superconductors. The maximum critical field (He) in any 

Type-I superconductor is about 2000 Gauss (0.2 T), but in Type-II materials, supercon-

ductivity can persist to several hundred thousand Gauss {Hc2)- For Type-II supercon-

ductors, the critical fields and temperature are, in general, much higher than Type-I 

superconductors, so they have much more potential for applications. 

In addition to critical temperature Tc and critical magnetic field Hc(T), there is 

a critical current Jc, which is the maximum current that a superconductor can carry 

without any dissipation. Whereas in Type-I superconductors Jc depends only on H^ 

in Type-II ones the three "criticals" are related forming a critical boundary surface 

T — H — J, below which the material is superconductor. 
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Figure 1.2: Critical magnetic field (a) and magnetization as a function of the applied magnetic 
Held ^ for a Type-I superconductor (b). It shows perfect diamagnetism below % 
then it becomes normal material. 
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Figure 1.3: Critical magnetic field (a) and magnetization as a function of the applied magnetic 
field Jif for a Type-II superconductor (b). Above jfci 8ux begins to penetrate until JifcZ when 
there is no magnetization left. 
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A more detailed explanation of superconductivity is found in 

which have been used as references in this chapter. 

, [12], [11], 

1.5 Type-II superconductivity 

In 1957 A. Abrikosov [1] presented the theory about the behavior of type-II supercon-

ductors based in the Ginzburg- Landau theories. He explained the three possible states 

depending on the critical temperature and critical magnetic field: normal, mixed and 

superconducting states. 

Below Hci all the magnetic flux is expelled and the superconductor behaves as a 

perfect diamagnet ( M = —H). In the mixed state between the two critical fields, the 

magnetic field penetrates partially into the superconductor and normal and supercon-

ducting regions coexist. The field penetrates in the form of individual quantized flux 

lines which arrange themselves into a regular pattern of Abrikosov flux lattice, forming 

vortices of normal material. The vortices repel each other slightly and form a triangular 

lattice. A vortex has a non-superconducting core allowing the flux to pass through it, 

and is surrounded by a superconducting region as it is shown in figure 1.4. 

\ / \ / \ / 

Figure 1.4: Mixed state of Type-II superconductors where magnetic flux lines penetrated 
the superconductor forming vortices. The vortex on the left shows the magnetic field passing 
through the core surrounded by superconducting currents. 
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B=UoH 

Figure 1.5: Internal and applied field for an ideal Type-II superconductor. 

The number of flux vortices increases with increasing field. Above }fc2, the Bux lines 

pile and there is not space for superconductivity which is destroyed. 

Figure 1.5 shows the flux density inside the superconductor as a function of the 

applied field. Below f fd the Hux density is zero. For applied fields well above of jifd, the 

magnetization becomes negligibly so B and goes to zero at where B = 

1.5.1 Flux pinning, flux flow, flux creep and E—J characteristic 

In a pure superconductor the vortex structure is in equilibrium, there is not force to 

move them. When current Hows, the Hux lines experiment a force, Lorentz force, which 

tries to move them (F — J x B). This movement is stopped if there are impurities or 

imperfections in the material's structure, causing the Hux lines to be trapped. This eSect 

is known as /Zua: pmnmg. There is a certain value of the current, denominated 

cwrreftt (Jc), when the Lorentz force equaHes to the finite pinning force. For a higher 

current density above the vortices start to move leading to dissipation. 

For ETC superconductors at high operation temperatures Hux motion may be acti-

vated by thermal Huctuation of the lattice, even below This motion is slower than 

flux flow and is known aa y7wa;-creep. At low temperatures up to 18 k, this phenomenon is 

insignificant and the induced voltage and resistance of the conductor is essentially zero. 
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But for 77 K it has to be taken into account. 

Thermally 
activated 
resistance 

Jth • < 
Flux creep 

Thermally Activated (T#0) 
Linear 

t EaJ 

/ Non thermally 
E a exp (J/Jih) / / " activated 

Linear \ y / 
EoJ 

Flux flow 

Figure 1.6: Electric field versus the current density under the influence of the thermally 
activated Aux motion. 

Figure 1.6 shows the electric field in function of the density current at a constant 

temperature showing the diSerent states. Defining a current parameter Jf,, the three 

states are represented. Jco is dehned aa the Jc value that would have obtained in the 

absence of Hux creep. 

1.5.2 Bean critical state model 

Electrodynamics of type II superconductors due to an applied external field can be 

described by Bean's critical state model (1962) [5]. Critical sate model postulates that 

for low applied Gelds or currents, the outer part of the sample is in a "critical state" 

with special values of the current density and magnetic Geld, and the interior is shielded 

from these Gelds and currents. In particular, in Bean's model, the current is aasumed 

to Gow at a critical density Jc, independent of the time rate of change of the magnetic 

Gux. Then, only three states for the current Gow are possible when the magnetic Geld is 

applied: zero current for the regions not aGected by the applied Geld and critical current 
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(a) (b) (c) 

H 

(d) (e) (f) 

Figure 1.7: Bean critical state model for a infinite slab in an applied magnetic field. 
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for the rest. 

As an example, consider an inSnite slab of superconductor with a sinusoidal applied 

Geld parallel to one of its sides. The Geld is increasing from zero to a maximum value 

and then is decreasing to — F i g u r e 1.7 shows the Geld and current density inside 

the superconductor. 

When the external Geld is applied, the currents start to Gow producing a uniform 

Geld opposite to the applied Geld change. These currents How at the critical density 

and the Geld inside is given by V x jif = J. At a low Geld (Ggure 1.7.(a)) there is a Geld 

and current free region near the center. At jif = ^ the Gelds and currents reach the 

center of the slab as shown in figure 1.7. (b). There is current flowing through the whole 

slab and the Geld reduces to zero at the center, is denominated penetration Geld. If 

the Geld continues increasing, since the currents have already penetrated over the whole 

cross section, they can't oppose to the increment of the Geld which, therefore, increases 

in the whole conductor (Ggure 1.7.(c)). If the applied Geld is now decreased, the Gux 

does not recede completely in the reverse order since some of it is trapped inside the slab. 

Currents start to Gow in the outer part with reversed critical current to oppose to the 

decrease, however in the part where the magnetic Geld has not changed yet, the current 

remains flowing in the same direction (Ggure 1.7.(d)). This reversed current propagates 

inwards as the appGed Geld is further reduced. When the applied Geld reaches —-ffm, the 

Geld and current proGles are totally reversed as shown in Ggure 1.7.(e). Observe that 

the Geld inside exceeds the applied Geld which means the flux is trapped inside. As the 

applied Geld stars to increase again at the outer regions reversed current appears (Ggure 

1.7.(f)). 

1.5.3 Hysteresis in superconductors 

Assuming Bean's critical state model and considering M = //o — jif, observe in Ggure 

1.8 the magnetic behavior of type-II superconductors. For each value of there are 

two possible values of M hence when Tif is cycled M does not return to its initial value. 

The magnetization saturates at .ff = Hp. When the applied Geld starts to decrease, 

the magnetization does not come back in reverse path since there is flux trapped in 

the material. It returns to zero when the internal Geld is equal to the applied Geld 

= H). The energy loss in one cycle is the area enclosed by this hysteresis loop in 

the plane of the magnetization M versus the applied magnetic Geld H. 
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M 
I 

\ 
Hp \ 

I \ ^ 

Figure 1.8: Hysteresis loop of magnetization M versus applied magnetic field H. 

1.6 Ac losses 

Although since type-II superconductors were discovered many improvements were done 

and many difBculties were solved, one of the remaining barriers for large scale power 

utilization of superconductors are the ac losses. In most of the applications in power 

engineering, the superconductor material is in presence of ac currents or changing mag-

netic fields , so there will be energy losses and the consequent heating generated in the 

superconductor will require a large amount of refrigerator power for its removal. This 

amount depends on the temperature at which the superconductor operates. For exam-

ple, removing one watt of heat deposited at room temperature requires 500 — 1000 W of 

refrigeration power at 4K and 10 W at 77 K. 

There are three different mechanisms of ac losses: hysteresis losses and self-Held losses 

in the superconductor region, and eddy current losses in the normal material region. 

1.6.1 Hysteresis losses 

Hysteresis losses result from the magnetic hysteresis due to Sux pinning. When a time-

varying applied magnetic field penetrates into the superconductor and is increased, pro-

duces the constant movement of the vortices in the lattice, therefore an electric held 

is generated, and there is dissipating energy. Hysteresis losses vary depending on the 
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penetration depth of the magnetic flux. 

Assuming the Bean critical state model, analytical formulas for the losses can be 

obtained for same simple configurations. 

Usually, calculations of ac losses are done integrating t h e instantaneous power dissi-

pation E{r, t) X J(r, t) within the superconductor volume surface. This integral is easily 

calculated since by Bean's model the current is equal to and E is calculated as the 

change of the flux. 

For a superconductor in presence of a magnetic field there is another way to calculate 

losses. The total loss per unit volume in a complete cycle is the area enclosed by the 

hysteresis loop in the plane of M versus H (figure 1.8). 

For simple geometries, the critical state can be obtained exactly, as summarized next. 

Slab parallel t o t h e field 

Consider an infinite slab of thickness 2a in an applied magnetic field parallel to the slab 

as it is shown in figure 1.9. (a) . Suppose that the field is reduced from the maximum 

value Hjn to —Hm-

I::-V 
i N, f 

2a 
(a) 

Ha 

Figure 1.9: Superconducting slab in an ac applied field (a), and magnetic field profile inside 
the slab for H < Hp (b) and H > Hp (c). 

Figure 1.9.(b) shows the field profile when Hm ^ Hp- Hp is the value of the field such 
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that the magnetic Beld reaches the center of the slab and from Bean's model is equal to 

JcO. The hysteresis losses per cycle per unit volume, obtained integrating E - J over the 

volume, are 

1 /"" 2 
Q ~ ^2^ J = —^0-^? 

For the case ^ ^ the slab is saturated at the peak Held (figure 1.9.(c)), and the 

losses per unit volume per cycle Q are given by 

Q = ? ( i ) j H„ > 

The hrst factor in both previous equations is the maximum volumetric 

energy stored by the magnetic field. 

Similar to inGnite slab, results can be obtained for a cylinder in a Held parallel to its 

axis. When the applied Held is perpendicular to the cylinder is more complicated since 

the field and current proGles are not one-dimensional functions. Wilson [38] derives 

an approximate solution for low fields below full penetration which has to be solved 

numerically. 

Strip in perpendicular field 

Consider a strip of zero thickness and width 2a aa shown in Sgure 1.10.(a) with a Gnite 

critical current /c-

The power loss is determined in [9] using the integration of Mdj7. The held profiles 

in this geometry are non-hnear due to the demagnetization field occurring at the strip 

edges (Hgure l.lO.(b)). The power loss per unit length is given by : 

/") o u r / 1 1 f , -i f T^HmlCl 
Q = //o2onm/c ( hi cosh I — y I - tanh 
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Ha 

2a 

(a) (b) 

Figure 1.10: Superconducting strip in an ac applied field (a), and magnetic field profile when 
the field is decreased from to —Hm (b). 

1.6.2 Self-field losses 

Similarly to ac hysteresis losses due to an ac applied magnetic field described before, there 

are losses in a superconductor carrying ac transport current. The ac current creates a 

self-field varying in time, which induces the magnetic hysteresis and therefore dissipating 

energy, known as the self-field losses. 

Self-field losses in a carrying current wire 

In a wire carrying transport current, the self-field induced penetrates from the exterior 

and its flux lines form concentric lines around the wire (figure 1.11). The current flows 

parallel to the axis of the wire near the edges penetrating as far as it is needed to carry 

all the current. 

In [41] an analytical formula for the loss is presented. Figure l . l l . (b ) shows the 

profile of the self-field in a wire of radio a. The losses per cycle per unit length are given 

by 

TT V I 
i < 1 

where i = Im/h, Im the current peak, and — tto^JC 
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(a) (b) 

Figure 1.11: Self field in a superconducting wire carrying a transport current I (a), and 
magnetic field profile inside tfie wire (b). 

This formula can be extended to wires with elHptic cross-section as it was calculated 

by Norris [25]. 

Self-field losses in a strip 

Norris [25] calculated the self-field hysteresis loss for superconducting thin strips. The 

profile of the field is similar to the one represented in figure l.lO.(b) for a strip in an 

external field. The losses per cycle per unit length are 

Q = ^ ( ; j 2 ( ( l _ % ) l n ( l - 2 ) + (l + z)li i(l4-z) 2 < 1 

1.6.3 Coupling in filamentary composites 

To reduce the hysteresis losses and for stability reasons, superconductors are usually 

manufactured in form of filamentary composite, that is, fine superconductors embedded 

in a normal material matrix. However, in such configurations long length filaments 

can couple under ac magnetic fields hence defeat the objective of loss reduction by fine 

filaments. 

There is a critical length Ic, for a given amphtude and frequency of the apphed field, 

such that filaments longer than that length couple together leading to resistivity losses. 
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< X >< > 
2a d 2a 

y -> 

Figure 1.12: Coupling current between two slabs separated by a normal matrix. 

Solutions to minimize theses losses are to increase the matrix resistivity or to twist the 

filaments together, with the twist-pitch length less than 2/^. 

Coupling in slab geometry 

The critical coupling length can be obtained from the simple model of two parallel 

infinite slabs separated by a normal matrix and under the assumptions of Bean's model. 

Consider two slabs with a normal conductor between them as it is shown in figure 

1.12. In presence of an AC magnetic field in the z direction, current is induced to flow 

in each slab in the a;y-planes. Assume the filaments have not resistance and all the 

voltage is across the matrix. Let I{x) be the current in one of the slabs at distance x 

from the center of the slab. Between x and x + 5x let some of this current 51 cross the 

normal matrix driven by the induced voltage, V = Supposing that B is the same 

everywhere, then V = Bdx. Therefore 

Integrating this equation with the boundary conditions I{b) = I{—b) = 0, we obtain 

7(a;) = g((26) ' -4j;^) / (8p) 
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The maximum current is at the center, a; = 0, and is limited by 2aJc, which is the 

value reached when the slabs are fully coupled and all the current is Sowing in one slab 

crossing through the matrix to the other. 

Therefore there is a critical ramp rate of the field, when the slabs are fully coupled, 

given by 

Be - 16pJ,o/(26)^ (1.1) 

and the critical coupling length is = 26c with 

(1.2) 

1.6.4 Measurement of ac losses 

There are two experimental ways to measure AC losses: calorimetrically or electrically. 

Here they will be brieHy described using as references [38] and [41]. 

The calorimetric method consists on the measurement of the volume of gas which is 

boiled away by ac loss power or the heating of the sample. Figure 1.13 shows a simple 

arrangement for calorimetric measurement using the boil-off rate of helium gas. To 

obtain a good accuracy is important to separate the cryogen boil-off due to the cryostat 

heat leak, current leads, etc..The specimen is enclosed by a bell jar which is vented to 

the Eow-measuring device, but the boil-oS due to current leads and heat leak into the 

cryostat is vented separately. Prom the measurement of the volume How rate y the mass 

Bow rate m is obtained. Then knowing the latent heat of vaporization of the cryogen A 

and its density, the power loss is easily calculated as mA = pAy. Liquid helium is suited 

for this method. 

In [4] a simple technique using the temperature increase for measurement of losses due 

to ac magnetic Gelds and transport currents is presented. The ac losses are obtained by 

comparing the temperature increase after a Exed time of unknown ac power dissipation 

with that after the same time of known dc power dissipation. 

The electrical method for loss measurement of isolated samples works by measuring of 

magnetic hysteresis using pick up coils , and for devices as coils relies on the measurement 

of the electric power supphed to them. This method is faster but more complex than 

calorimetric techniques. 



CHAPTER 1: Introduction to high-Tg superconductivity 18 

Samples: 

Magnds: 

BojkofT duv 
(n ](*SCK 
Gas flow mcler Background 

Bdl-oQ 

CTVdECn 

Power *upplic& 
fwbcn neccMary) 

AC Magnet 

Figure 1.13: Calorimetric measurement of ac-losses via the boil-off rate of the cryogen (from 
reference [41]). 
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Figure 1.14: Electric measurement of ac-losses due to ac current and external magnetic field 
(from reference [41]). 
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There are several electrical measurements that are important for determining hys-

teresis loss, self-Eeld loss, and coupling loss, aa explained in [41). The arrangement of 

coils and conductors may vary with the geometry in order to minimize measurement 

errors. Figure 1.14 shows a circuit for measurement of self-Held and external Geld losses. 

The bagic idea is to multiply current by voltage electronically and then to integrate 

the product electronically over one cycle, yielding the energy supplied to the magnet. 

Meaaurements for a tape with twisted superconducting filaments are presented in 

[40]. Electronic methods for self-Geld AC losses measurements are used in [7] for Bi-2223 

tapes and in [19] for PbBi-2223 tapes. 

1.7 Numerical calculation of losses 

Analytical formulation for loss calculation presented in section 1.6 were given for simple 

geometries based on Bean critical state model. This model does not apply satisfactorily 

for HTS where the E — J characteristic is a power law like function such as E(J) — 

For loss calculation in such caae, numerical models representing with 

accuracy the physical phenomenon produced are required. 

The aim of these thesis is to present elective numerical models to give a precise idea 

of the electric and magnetic Geld distributions inside the superconductor. In particular 

the thesis will focus in modelling high-T). superconductors in external AC-magnetic Geld. 

Integral formulations and Gnite element method (FEM) are tools commonly used for 

modelling the general physical problem. Whereas the FEM is required for 3D problems of 

superconductors with Gnite dimensions, which are solved with a large numerical effort, 

integral formulations are a better alternative for modelling 2D problems due to their 

simplicity. 

The 2D problem of inGnite long tapes in perpendicular Gelds where the current has 

only one component along the conductor is solved with Brandt's formulation, which 

consists in solving an integral equation for the current density. The implementation of a 

numerical method to solve Brandt's formulation is explained and validated in chapter 2. 

The 3D problem of Gnite superconductors is solved using a FEM software as it is 

explained in chapter 4. With this model the coupling phenomenon is well analyzed for 

strip and slab geometries. 

Chapter 5 is dedicated to modelhng of inGnite slabs and thin discs of Gnite length. In 
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this geometries the currents are restricted to a plane and have two components. Therefore 

a integration formulation can be applied. Similarly to the problem of infinite long tapes, 

the reduction to a 2D problem results in a integral equation, in this case for the stream 

function of the induced sheet current. The coupling eEect between superconductors via 

a resistivity matrix is well modelled by using this method. 



Chapter 2 

2D Modell ing of superconducting 

tapes 

2.1 In t roduct ion 

When superconductors are exposed to AC magnetic fields, high losses due to hysteresis 

are produced. In order to predict them it is important to have models to calculate the 

current and Held prohles inside the superconductors. 

Calculations of losses in 2D superconductors can be obtained analytically for su-

perconductors in the critical state with simple geometries by knowing the exact Geld 

prohles [5]. However, for Hight-T^ superconductors the critical state does not apply su-

ccessfully since the material is characterized by a non-linear ^ — J power law such as 

E(J) = which includes the Bean limit (m —» oo). Therefore, for modelling of 

losses in high-T^ superconductors or with more complex geometries numerical methods 

are required. 

Numerical simulations of this 2D problems with a E — J power law have been de-

veloped based on the Gnite element method (FEM) or in an integration formulation. 

Although FEM Gnite element method is generally utihzed ([3],[18]), because of the high 

non-hnearity, sometimes is not too e&cient and requires a large numerical eSort. Inte-

gration methods aa Brandt's method [10] are advantageous due to their simplicity. 

Brandt's formulation apphed to superconductors with rectangular cross section is 

presented in the next section. Due to the non-hnear behavior of the superconductor 
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properties, the final diEerential equation obtained is highly non-linear and stiS. The 

objective of this work is the implementation of a numerical method to solve Brandt's 

equation efficiently 

In section 3, Rosenbrock method [17] is presented as an elective method for stiS 

problems. The performance of the solver RODAS, based on a Rosenbrock method of 

order 4, is investigated and compared with other implementations. 

Finally, current and Held proGles obtained using RODAS are shown and commented 

in section 4 for partial and total penetrated superconductors. Also, it will be analyzed 

the inSuence of some parameters as the n-value of the E! — J relation and the aspect 

ratio of the superconductor in the " stiShess". 

2.2 Numerical modelling of superconductors in 2D 

using B r a n d t m e t h o d 

In order to study the electromagnetic behavior of a superconductor, Maxwell equations 

must be solved: 

V B ^ O (2.1) 

V X H = J (2.2) 

V X E = — ^ (2.3) 

V . E - p/Eo (2.4) 

Also, to describe the electromagnetic of the superconductor material requires constitutive 

law between Eux density B and the magnetic Held distribution jif. It is assumed the 

material law B = 

Relation between the electric held E and the current density J for Type-II supercon-

ductors can be expressed by a highly non-linear power-law as follow: 

E(J) - E,( J / J J " (2.5) 

It has been found that for practical superconductors a % 20 and therefore the system 

will be extremely non-linear. 

Maxwell equations plus the two laws ^ and E—J are the tool used to calculate the 

electromagnetic behavior of a superconductor of arbitrary shape when a perpendicular 
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2 6 

2a 

Figure 2.1: Superconductor cross-section model. 

arbitrary magnetic field is applied. Since the current is uniform along the tape axis, then 

a 2D model of the tape cross section can be used. 

Different numerical models in 2D have been developed in the last years. In [23] 

and [20], the problem is solved using a finite differences method. The FEM is utihzed 

in [3] and inserted in commercial software as Flux2D [18]. Brandt proposed a simpler 

formulation based in an integral equation which is presented and implemented here. 

Later, Yazawa [43] extended it to include transport current through the superconductor. 

2.2.1 Brandt 's method 

Brandt [10] proposes a 2D model for long superconductors of arbitrary cross-section in 

perpendicular field which consists on solving the Maxwell equations in an integral form. 

In that way, it avoids calculating the spatial derivatives and it is not necessary to consider 

the boundary conditions since the integral equations contain the appropriate differential 

equations plus the boundary conditions. 

The analysis considers a superconductor cross-section placed in the a:y-plane and a 

time dependent applied field Ba in the y direction (figure 2.1). This applied field induces 

current to flow along the z direction, and this current generates a magnetic field H 

without z component. 

From B — /ioH, where B — V x A is the induction, and V x H — J , then 
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J = — V X B = — V X V X A = V^A (2.6) 
Âo /̂ o 

For a uniform applied Geld in the i/ direction the associated vector potential is 

An = —a;̂ aZ and = 0. Hence (2.6) can be expressed as 

J = V % = V^(A - 2;B^) (2.7) 

The solution of previous equation is 

A(r) = - / . ( o y y Q ( r , r ' ) J ( r ' ) d / - z g a (28) 

with the internal kernel 

In Ir — r̂ l 
Q(r,r') = : ^ ^ ^ (2.9) 

The integral kernel gives information about the geometry of the superconductor, 

which connects a field point r — (a;, {/) and a source point r' = (a;',!/'). 

The relation (2.8) can be inverted as 

J(r) ^ ^ [^(r') + d / (2.10) 
1^0 J J 

The inverse Kernel satisEes ^0 Q(r', r")d^r' = (̂ (r — r") 

The induction law in the form E( J) — —A allows to obtain the equation of movement 

for J from equation (2.8), 

.E'(J(r,^))=/2o y y Q(r,r')j(r%t)d/ + a;Bo (2.11) 

Finally, to solve the time integration ,express j as a function of J and B. 

j (r , t ) = - / / Q - X r , / ) [E(J(r',t)) - d V (2.12) 
1^0 J Js ^ J 
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Note that equation (2.12) describes self and mutual inductance of a set of in&mte 

long wires according to Faraday's law: dl/d^ = 

2.2.2 Numerical implementation for superconductors with rect-

angular cross section 

Numerical solution of (2.12) can be demonstrated using the simple case of a rectangular 

conductor. Consider the model shown in Egure 2.1 of a superconductor with rectangular 

cross section in the a îy-plane, width 2a and thickness 26. 

In order to calculate numerically the solution for the final equation, equidistant points 

discretize the cross section 

= (2.13) 

% = (; - (2.14) 

By labelling the lattice points (a;̂ , g/j) by a indices A; = 1 . . . TV, being W = Wz x 

one can write the equation in a discrete form for Jk(^) = %,^) with k = 1 . . . as 

A C ^ 

j&(̂ ) = E (2.15) 

and the kernel Q as a matrix of TV x TV elements. 

^ In I r - r' 1= ^ In ((a;̂  - a;̂ )̂  + (?/( - %)^)) ^ 

= ^ + (%/« ^ %)^)) (2 16) 

The kernel diverges at r = r \ Brandt's proposed that for a grid such that dcc = 

o/7Vz di/ = 6/A^ a good accuracy is achieved letting Q. j = ^ ln(0.015da;d2/). 

Since the inverse of must satisfy " r')Q(r — r'')d^r = (̂ (r' — r''), then 
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1 = / / (̂ (r' — r " ) d V = / / d^/' / Q ^r —r')Q(r-r")d^7 
J Js J Js Js 

tl^S'^Q-lQ.jAS 
J=1 &=1 

(2.17) 

Therefore, the right kernell must be calculated as j ^ 

As the magnetic Geld is apphed in the i/ direction, the current J is symmetrical with 

respect to the a;-axis (J(a;,2/) = ^(a;, —i/)) and antisymmetrical respect to the {/-axis 

(J(—a;,;/) = — J(a:,{/)); hence in (2.15) only a quarter of the total cross section needs 

to be considered, 0 < z < o and 0 < ?/ < 6 (shown with diagonal lines in figure 2.1), 

replacing the kernel by the symmetric kernel 

0a!/m(a;, %/, a;', ?/') = Q(a;, i/, z',;/') - Q(a;, -a:', ?/') + Q(a;, a;', -i/') - Q(a;, y, - z ' , -i/') 

^ J_ ((a; - z')^ + (!/ - 2/)^) ((a; - a;')̂  + (z/ + ?/')̂ ) 

47r ^ ((a; + a;')̂  + (z/ — 2/')̂ ) ((a: + a;')̂  + (&/ + 2/0^) 
(2.18) 

Finahy, replacing in (2.15) 

N 

A S - ' A n 

k'=l 

(2.19) 

Equation (2.15) can be expressed in matrix form 

j(r, () = Q -1 E(J) - B.(()a; (2.20) 

Inserting in (2.20) the expression for an applied held sinusoidal, B(() = BaSin(w(), 

j(r,^) = Q E'r ( ^ cos(w() (2.21) 

Taking M — QjUoA "̂ then 
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M j = Ec ( ^ ) — 2:BaCJCos(wt) = f (J , () (2.22) 

2.2.3 Singularity and refinement 

Since Brandt's method requires a grid with square cells, it is necessary a very thin mesh. 

In order to get an accurate Q without a very reGned mesh it is possible to consider bigger 

cells, which are also divided in square subcells as it is explained in [42]. 

The analytical expression is 

ln((a;i — — ?/j)) 

a V Vg, 
- / / da;id% / / ^ ^ ^da:jd% (2.23) 

This allows us to consider the shape factor of each cell at the same time as the 

singularities are avoid. 

Equation (2.23) can be approximated by 

AT. % 

n = l m = l 

where is the number of subceUs and dr^ &nd dr^ the coordinates of the subcells 

relative to the cells coordinates. 

2.3 Numerical solution method 

Equation (2.22) can be formulated as a general initial value problem of the form 

M j = f (J , ( ) , J((o) = yo 

In order to solve it, in principle any numerical method could be applied. However, 

the eGciency of every method varies depending of the characteristics of the ODE to 

solve. It is therefore necessary to know which type of problem we are dealing with and 

then apply the appropriate method. 

In this section it wiU be shown that due to the high non-linearity, equation (2.22) 

belongs to a group of ODEs named "stiS" for which it is known explicit methods are not 
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eGcient. Therefore a impHcit scheme haa to be used. In particular, Rosenbrock method 

will be presented as a effective method to solve the stiff problem studied here. 

2.3.1 "St i f f ' problem 

Although there is a general intuitive meaning, there is not a precise deGnition of "stiff-

ness" . In general, an ODE system is called a stiS ODE system when explicit methods 

can not solve them. 

For high applied Gelds such that the superconductor is saturated, the problem be-

comes more stiff and di@cult to solve. The expected current and held proGles in such 

case for an infinite slab given by Bean's critical state model are shown in Ggure 2.2. 

When the magnetic Held apphed parallel to the slab is increased, it starts to penetrate in 

the superconductor and the current has two possible values: in the penetrated region 

and zero in the rest. When the field raises to the conductor is fully penetrated and 

therefore the current Hows over the whole cross section. If the applied 6eld continues in-

creasing also the total Geld in the superconductor increases, whereaa the current remains 

equal. 

(a) (b) 

Figure 2.2: Internal magnetic field (a) and current density (b) for Bean's model. 
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Figure 2.3: Profile of the current (a) and the magnetic field (b) inside a rectangular super-
conductor in an applied field B = 0.5 sm(27r50i). 

The solution of Brandt 's equation presents a similar behavior as it is shown in Figure 

2.3. The example is for a superconductor with rectangular cross section (2a — 3 • 10"^ m 

and 2b — 10~^m) in a applied field B = 0.04sin(27r50f). The E — J relation is given 

by n = 21, resulting in a very non-linear equation. Similarly to Bean's model observe 

the almost invariant profile of J ( J ~ 0) after the field has completely penetrated the 

superconductor. 

To show the effects of "stiffness" let's apply an explicit method to a particular 

superconductor example. Consider a superconductor with rectangular cross section 

{2a = 3 • 10"^ m and 2b = 10"^m), in an applied field B = 0.01 sin(27r50t). For the 

E — J relation the exponent is n = 21. Then equation (2.22) results 

M J = 10" 
21 

0.1 • 50 cos (sot)a: (2.25) 

First, the equation was solved using a simple step-forward integration method as it 

was done in [10]. From an initial condition J ( r , to) the evolution of the current it is 

calculated in successive time steps as J„+i ~ Jn + h- ^ ( r , t n - i ) where h is the distance 

between consecutive steps. To obtain the convergence during a complete cycle time of 
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N ToZ Steps Rejected steps Accepted steps Aver, time step size 

15 10-^ 19678 148 19531 5.20 X 10-^ 
15 10-^ 19412 16 19396 5.18 X 10-^ 
20 10-"̂  35441 447 34994 2.9 X 10-^ 

20 10-^ 34613 12 34610 2.9 X 1 0 - ^ 

25 10-^ 57719 2631 55088 1.8 X 10-^ 

Table 2.1: Results for (2.25) using D0PRI5 for 0 < i < 0.0005. 

the applied Eeld, the maximum step size possible waa found = 3 - 10" .̂ This means 

that the solution converged extremely slow, a lot of steps were required and therefore 

the method became impractical. 

In contrast to the simple step-forward integration, lets try now with another explicit 

method this time with step size control, in order to avoid the extremely slow convergence. 

The method chosen is the solver D0PRI5, a explicit Runge-Kutta method of order (4)5 

due to Dormand & Prince and implemented by E. Hairer and G. Wanner [16]. We 

integrated during the Arst quarter of the cycle time 0 < ( < 1 / 4 / using the same value 

for the relative and absolute tolerances = Ato/ = ToL Table 2.1 shows the results 

for different tolerances and grid points. Observe that the number of steps used increases 

with the grid points due to stability reasons required for thirmer meshes. Notice that 

the time step size is independent of the tolerance, in fact for smaller Tof the number 

of steps required is bigger, which means that the interval selection is regulated in order 

to control the stabihty more than the precision. Since the problem is very stiff and the 

method is not stiS accurate then the time step size has to be reduced to 10"^ which is 

stiU a very slow convergence. 

The solver D0PR15 includes a process to detect stiSnesa based in the observation 

that where a non-stiE code Ends stiffness the product of the step size with the dominant 

eigenvalue of the Jacobian lies near the border of the stability domain of the method. 

This mechanism is useful in order to say when a method is not suitable and a implicit 

scheme is required. Figure 2.4 shows /2,A/3.25 where is the time step, A is the estimated 

eigenvalue and 3.25 is the approximate distance of the frontier of the stability domain 

to the origin. Observe that the value of /lA is approximately 3.25 for almost the whole 

interval of integration, and exactly 3.25 when the step size reaches the minimum values 

restricted by stability. Notice that the step size starts to increase just before the applied 

held reaches the peak, and decreases again after the peak Eeld. Observe that setting a 
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Figure 2.4: Stiffness detection with DOPRI5. 

smaller tolerance improves the stability but the step size does not change significantly. 

As it was said before, the problem becomes more stiff as the amplitude of the applied 

field is higher and the superconductor is saturated. Table 2.2 shows the step size required 

solving the equation when the applied field amplitude is Ba = 0.5 T. Notice the high 

increment of the number of steps required comparing with results in table 2.1. 

2.3.2 Numerical methods for Stiff ODEs 

Solvers for ODE systems include Runge-Kutta methods and multisteps methods [17]. 

Among the Runge-Kutta there are explicit and implicit methods. As it was shown in 

previous section explicit schemes have the advantage of being easier to implement but 
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N Steps Rejected steps Accepted steps Aver, time step size 

15 10-'^ 471400 44 471356 4.257 X 10-* 
15 10-^ 469537 13 469524 4.26 X lO-'' 

Table 2.2: Results for (2.25) with Ba — 0.5 using D0PRI5 for 0 < i < 0.005. 

poor stability properties which leads to very strict restrictions on the time step chosen. 

Implicit schemes have the advantage of being eScient but require much numerical eSort 

and therefore being more suitable for small matrices. However there is a group of "semi-

implicit" methods named Rosenbrock methods [17], which give good responses and do 

not need such computational eEort. Since they are not implicit they are simpler to 

understand and to implement. This methods have been tested in many physical problems 

as in [27], [35], [31], [30] where they were found to be eScient in terms of stability and 

computational time. Also, Rosenbrock methods are inserted in well-known calculation 

software hke Mathcad or Matlab ag stiE solvers. 

Next sections will describe the Rosenbrock method and later numerical results will 

be presented showing its performance in solving the ODE obtained with Brandt't for-

mulation. 

2.3.3 Rosenbrock method 

For an implicit non-autonomous differential equation M y 

by an s-stage Rosenbrock method is given by 

,the solution found 

yi = yo + ^ (2.26) 
i = l 

where Iq are calculated solving a hnear equations 

Mki = /if(a;o + Yo + ^ ^ Yo) 
j = l i 

i 

4- W(3:0, yo) ^ = 1 , . . . s (2.27) 

where J — is the Jacobian and f'z = 



CffAPTER 2; 2D Modei^ing of superconducdng tapes 33 

The coeEcients 'Yi, are given by 

i-l 

i=i i=i 

dij, 'Yij and 6̂  are fixed constants problem independents. They are chosen in order 

to satisfy the stability and order conditions. The method is of order p if the local error 

satishes y(a;o + — Yi = 

To reduce the number of matrix-vector multiphcations required each time step, the 

equation can be transformed. Taking 

Ui — J 7i — 7i,iKj i — 1. . . s 
j=i i=i 

\ - i 

(mi == (6i 6,) -

(Qj) == - (7^;) 

Then the equations become 

- J(a;o,yo)^ Ui = + + +7i/iC(a;o,yo) (2-28) 
j=i 

1 

+ M ^ i = 1 . . . 5 
j=i 

y(a;o + /»)== yg -f- ̂  (2.29) 
t=l 

2.3.4 Implementation of Rosenbrock formulas 

Since stiffness appears in many physical problems, typical mathematical calculation soft-

wares as Mathcad or Matlab have built-in functions for numerically solving ODBs with 

accuracy for stiS systems. Among the stiff solvers Mathcad has a function using Rosen-

brock method called STIFFR. To call this function requires as input arguments an M-



CffAPTER 2; 2D Modelling of superconducting tapes 34 

element vector-valued function containing the first derivatives of the unknown functions 

and a function which returns the n by (M +1) matrix whose 6rst column contains deriva-

tives and whose remaining rows and columns form the Jacobian matrix for the system 

of diSerential equations. A disadvantage of this implementation is that the diSerential 

equation can not be solved in implicit form. Therefore Brandt equation is expressed aa 

in (2.21), it is necessary the inversion of the kernel Q, and the Jacobian becomes a full 

matrix. 

Matlab haa a built-in solver for stiff problems baaed on a Rosenbrock method, 0DE23S, 

a modified Rosenbrock formula of order 2. Although this function has an option for sol-

ving the equations in implicit form, is formulated in a low order 2, only suitable for stiff 

problem where lower accuracy is acceptable. 

In order to avoid the disadvantages of the implementations in both softwares, a more 

efEcient solver found from hterature, RODAS, was inserted in our own library to solve 

Brandt's equations. 

2.3.4.1 O D E solver R O D A S 

RODAS of Hairer and Wanner [17] is the code in Fortran of a Rosenbrock method with 

a = 6 of order 4. It takes the parameter 'yii = 'y for all % given in equation (2.27) so only 

one factorization haa to be done each time step. The constant coeGcients required in 

the formulaa are chosen in order to obtain a stiSly accurate and A-stable method. 

For the error estimation and the step size prediction it uaes the embedded third order 

solution. Then two solutions of the form (2.29) are computed, the one of order 4 (2.29), 

and a lower order estimation ^ with other coeGicients 6̂ , 

y = + (2.30) 

The calculation of the embedded solution does not require extra cost since it uses 

the same coefRcient k; calculated for the four order solution. The only diEerence are the 

Gxed coeGcients which are chosen such that both methods are stiGly accurate and the 

embedded solution is third order. 

Then the error formula using both solutions is 
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err = 

\ 
Z ^ ( ^ ) (2.3.) 

with 

aA;̂  = AW 4- A(o/max(|yi|, |yoi|) (2.32) 

AtoZ Eind Atof denote the relative and absolute error tolerances. Normal values are 

A^o/ = — 10"^ 

If err > 1 the step is rejected, then a new step size is calculated as 

= (2.33) 

and the solution is recomputed in the same point. The parameter / a c is obtained as 

/ a c = max{yac2, m i n ( y a c l , \ / e r r ) } (234) 

with / o c l and /ac2 dehned such that 

/oc2 < < / a c l (2.35) 

If the step is accepted, err < 1, the process continues with a new size time step. In 

this case, it wiU be calculated by the Predictive controller of Gustafsson, 

/ocgua = max ^ /oc2, min ^ /ac l , ^ ^ (2.36) 

and 

= / i /moz(/ac, /aCgua) (2.37) 

If the dimension of the system is large, the computational cost is high because at each 

time step it is required: an evaluation of the Jacobian and the derivative, 6 matrix-vector 

multiplications, 6 function evaluations, and 6 linear system solutions. 
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Most of the computing time is spending for solving the linear systems specially for 

the factorization of the matrix once per step. For this task the routine 

LIN-SOL-SELF was inserted in the solver RODAS. 

LIN-SOL-SELF is a routine of the It solves a sys-

tem of hnear equations A x = b, where A is self-adjoint matrix. It needs the whole 

matrix instead to use the advantage of a symmetric matrix. The routine computes the 

factorization of A using Aasen's method. 

Usual techniques to reduce the computational cost for the hnear algebra were tried : 

to approximate several steps with the same jacobian, or to use the sparsity of the matrix. 

Despite the jacobian is a diagonal matrix, changes considerably each time step. Also, 

the matrix M is full so none of the solutions proposed have given good results. 

2.3.4.2 Performance of the code 

A more eGcient code is possible tuning the parameters / a c l and /ac2 used to calculate 

the new step size (formulas (2.34),(2.36)). Depending on their value, the step size com-

puted and the number of rejected steps vary and therefore the computing time. Some 

results are displayed in Table 2.3 and Table 2.4 obtained solving the problem in a grid 

20 X 20 for = 0.1 T. Observe that reducing the tolerance to 10"^, the number of steps 

increases. As /oc2 is chosen close to 1 and / a c l not very "small" 5) then the step 

size does not change often and the number of rejected steps decreases considerably. That 

is a good strategy to reduce computational time as far as the approximately constant 

is not very small, otherwise would take a lot more number of steps. 

Total steps Rejected s t eps Accepted steps 

/ o c l = 5, /ac2 = 0.9 1265 187 1078 
fad — 5, fac2 = 0.2 Impossible to solve 
/ o c l = 5, yoc2 = 0.99 1590 50 1540 
fad = 7, fac2 = 0.9 1261 185 1076 
/ o c l = 9, /oc2 = 0.9 1261 185 1076 

Table 2.3: Results for Rtol — Atol = 10" 
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Total steps Rejected s teps Accepted steps 

/ a c l = 5, /oc2 = 0.2 1888 446 1442 
/ o c l = 5, /ac2 = 0.9 2049 331 1718 
fad = 2, fac2 = 0.9 2060 351 1609 
/ a c l = 2, /ac2 = 0.5 1950 548 1402 
fad = 2, fac2 = 0.2 1950 548 1402 

Table 2.4: Results for Rtol = Atol ~ 10 - 5 

Observe in table 2.5 the results obtained for diSerent values of the tolerance. A 

difference with the explicit method presented in previous section, the number of steps 

increases with the tolerance in order to control the precision required. Figure 2.5 shows 

the solution at some grids points during the total cycle time. Notice how the time step 

size is relaxed at some time intervals, which are the intervals where the current J haa 

a constant value. The minimum size of time step taken was % 2 - 10"^ whereas for the 

same problem with the direct integration and with the explicit Runge-Kutta the step 

size waa found % 10^ and 10̂  times smaller respectively. 

Total steps Rejected steps Accepted steps Time (s) 

Rtol = 10 ^ 1074 50 1024 37.5 
AW = 10-^ 1840 106 1734 63.14 
Rtol = 10~® 2793 145 2648 97.56 
AtoZ - 10-* 8788 365 8423 303 

Table 2.5: Results for different values of Rtol. 

To compare the performance of RODAS and the solver STIFFR of Mathcad software 

some results are presented in table 2.6 for partial penetration = 0.01 T) and total 

StifTr Rodas 

g . - O.OIT 2280 1013 
Ba = 0.04T 4930 2360 

Table 2.6: Time in seconds for solving a complete cycle of the applied field. 
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Figure 2.5: Solution for some components of the current and step sizes calculated by Rosen-
brock method each time step. 

penetration (Ba = 0.04 T) of the superconductor. Although both solvers produced simi-

lar approximations of the solution as it is observed in figure 2.6, the computational time 

required is about double using Mathcad in both cases. Apart from possible differences 

due to the compiler dependence, the higher computational time for STIFFR is probably 

due to the fact that STIFFR cannot solve ODEs in imphcit form and therefore increasing 

the linear algebra costs. 

(a) (b) 

Figure 2.6: Profiles of the current density at ujt — 27r in applied fields with amplitudes 
Ba = 0.01 T (a) and Ba = 0.04T (b) calculated with STIFFR (red) and RODAS (gray). 
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2.4 Results, comments and comparisons 

In this section numerical results computed solving equation (2.22) with Rosenbrock solver 

RODAS will be shown. 

From the solution for J, the magnetic field components and were rapidly 

calculated as spatial derivatives of A, which is obtained by equation (2.8). 

All the results presented are for superconductors with rectangular cross sections in 

an apphed magnetic field B = Bogm(27r/() with the frequency / = 50Hz. The critical 

current density is assumed to be = 2 - 10^Am"^. 

Results will be shown only for a quarter of the total rectangular cross-section [0, a] x 

[0,6] in a grid of 20 x 20 points. 

In figures 2.7, 2.8 current and magnetic Geld profiles are presented for superconductors 

of width 2a = 0.003 m and length 26 = 0.0001m. The exponent of the — J power 

law was set n = 21. Four situations 6om the cycle time were selected to show the 

results: when the applied field reaches the positive and negative peaks (w^ = 7r/2 and 

= (3/2)7r) and when the field returns to zero after the peaks (w( = 7r and — 27r). 

Partial penetration is observed in Ggure 2.7 for a magnetic field amplitude Bo = 

O.OIT. The Geld does not Gil the total cross section. At the peak of the applied Geld, 

(Ggure 2.7.(a)), the central part is current &ee and J % in the rest. When the apphed 

Geld is removed, currents still remain trapped, there is current reversing in the outer 

zone aa it is seen in Ggure 2.7. (b). The same evolution of the Geld and the current are 

observed as the Geld decreases to a negative peak Geld and returns to the initial value 

(Ggures 2.7.(c),2.7.(d)) to complete the Geld cycle. Notice that there is a similar situation 

to Bean critical state model along the thickness with total penetration in the outer parts 

and partial penetration in the interior. A diSerence with the concentric contours of the 

current for rectangular conductors described in [25], it is observed here that the hnes 

separating the zones of diSerent values of the current form contours which meet at y = 6 

and z — 0. 

At larger amplitudes a slightly different situation is obtained. For Bg = 0.04 T 

(Ggure 2.8) the Geld soon penetrates the total cross section and continues increaaing 

over the whole superconductor with the same pattern until it reaches the maximum 

value at = 7r/2. There is not a current-free zone and J is almost equal to Jc in the 

whole superconductor (Ggure 2.8.(a)). When the apphed Geld is decreased, current in 
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Figure 2.7: Current and field profiles for Ba ~ 0.01 T. 
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Figure 2.8: Current and field profiles for i?a = 0.04 T. 
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B a - O . O I T B» = 0.04T 

Tol - 10-4 
Steps 
Rejected steps 

2686 
158 

6501 
367 Tol - 10-4 

Time (s) 659.3 1585.91 

Tol - 10-^ 
Steps 
Rejected steps 

3703 
210 

8703 
453 Tol - 10-^ 

Time (s) 921 2090.4 

T o l = 10-G 
Steps 
Rejected steps 

5624 
266 

13017 
588 T o l = 10-G 

Time (s) 1379.7 3321.5 

Table 2.7: Results using RODAS for 0 < t < 0.02. 

opposite direction appears in the outer part then J changes abruptly from Jc to -u/c 

(Egure 2.8.(b)). Similar profiles are found aa the field decreases to the negative peak and 

returns to zero (figures 2.8.(c) and 2.8.(d)). 

Respect to the performance of RODAS (figure 2.9), it is observed for both, low 

and high Ba, that the step sizes become higher as the superconductors become more 

penetrated, remaining at the same level beyond full penetration field, and, as the applied 

field has been decreased smaller steps sizes are required (figure 2.9.(a) and (c)). The 

average step size used for solving the total penetration case is smaller in comparison 

with partial penetration. Therefore for — 0.04 T the method needs a higher number 

of steps, approximately double than that for = 0.01 T, to complete the cycle time as 

it is indicated in table 2.7. Also notice that the number of steps increases with reducing 

the tolerance as it is expected for a stable solver. 

Compared to D0PRI5 method (Egure 2.9.(b)), the step sizes for RODAS vary less 

along the whole cycle time. The average step size is about 10 times higher for RODAS 

during the whole cycle time. Observe that during the Srst quarter both methods show 

a different behavior. Whereas the step size becomes higher with increasing the field for 

RODAS, for D0PRI5 the step size starts decreasing. Since we saw in figure 2.4 that the 

differential equation is very stiE during the 6rst quarter, we can say that the step size 

required by RODAS is no restricted by stiEnes, but probably decreases due to the sharp 

changes in the current density proGles from 1 to -1 as the field starts to decrease. 
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Figure 2.9: Step size required for RODAS with Tol = 10~® in an applied field Ba = 0.01 T 
(red) and Ba = 0.04 T (grey) (a). Comparison between RODAS (red) and D0PRI5 (black) for 
Ba — 0.01 T is shown in (b). Applied sinusoidal magnetic field with amplitude Ba = 0.01 T 
(red) and Ba = 0.04T (grey) (c). 



CHAPTER 2: 2D Modelling of superconducting tapes 4 4 

2.4.1 Results for different n-values of the E — J power law. 

Since the non-hnearity affects to the stiffness of the problem, it is interesting to calculate 

some results for different n-values in the E — J law (figure 2.10) in order to show the 

differences in the current and field distributions and the performance of the code. 

— r 
I 
I 
I 
I 
I 
I ; 
I : 

// 
! 

Figure 2.10: E — J power law for different n-values. 

Figure 2.11 shows the current and field profiles obtained for n = 5, 21, and 61. 

Observe the profile of the current density when n = 5 (figure 2.11.(a)). It reaches the 

maximum value in the zone close to the edges where is % 1.48 Jc, and decreases smoothly 

to zero towards the current-free region. When n — 21 (figure 2.11.(b)), the maximum 

value of J is slightly over {J ~ 1.1 Jc)- And for n = 61 (figure 2.11.(c)) J = Jc in the 

penetrated part and J = 0 in the non-penetrated region with a sharp change to pass for 

one value to the other similarly to Bean's model which is the case when n = oo. Observe 

in the field profiles the dependence of the penetration depth on n. 

Computational results are seen in table 2.8 and in figure 2.12. As it is expected 

for problems very "stiff ' , n = 61, the number of rejected steps increases significantly 

since the time step sizes required during the integration have to be small in order to 

keep stability (figure 2.12.(c)). The average time step size is 1.1 x 10~® for n = 5, 

about double of the value 5 x 10^® when n — 21 and about four times the average size 
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Figure 2.11: Current density and field profiles at cut = 7r/2 for n = 5 (a), n = 21 (b) and 
n — 61 (c). 
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Figure 2.12: Step size required for different n-values. 
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Total steps Rejected steps Accepted steps Time (s) 

71 = 5 1891 64 1827 461 
n, = 21 4221 231 3990 1013 
n = 61 6349 334 6015 1583 

Table 2.8: Results for different n-values of the E — J law. 

3.32 X 10-G for n = 61 . 

2.4.2 Results for different geometries 

In this section Brandt's formulas were solved for superconductors with different aspect 

ratio (a/b). The width was set 2a = 0.002 m. Three configurations were considered: the 

strip (26 = 0.0001m), the square (26 = 0.002 m) and the slab (26 = 0.02 m). 

Figure 2.13 shows current and field profiles for the three geometries at different 

amplitudes of the applied held such that in aU the three cases at the first peak B % Bp, 

being Bp the held of total penetration when there is not current-free region. As it is 

expected for the strip, due to demagnetization effects the low field amplitude Bo = 0.03 T 

is enough to fully penetrate the superconductor, value close to Bp = 0.032 T given by the 

theoretical formula shown in [10] for superconductors with 6 a. For the slab (hgure 

2.13.(c)) Ba was set equal to 0.32 T, value higher than the theoretical prediction for total 

penetration Bp = 0.25 T giving in [10] for 6 :$> o. Observe in figure 2.13.(c) that at the 

peak held the slab is already full penetrated since the density current J is almost 

for the whole cross section and the held is slightly bigger than zero at the center of the 

superconductor. Similar situation is seen in hgure 2.13.(b) for the square superconductor 

with Ba — 0.24 T, whereas from theoretical formula it wag calculated Bp = 1.18 T. 

The diSerent behavior of strips and slabs are clearly seen in the profiles of |B|. For the 

strip geometry |B| does not vary much along the thickness a diSerence with the square 

and slab. Another difference observed is due to the demagnetization effect found in the 

square and more evident in the strip where the value of the held in the edge is higher 

that the applied one reaching values of B^ % 0.04 T. However for the slab the magnetic 

held is equal to the apphed held as it is expected for this geometry. The non-linearity 

of the held prohle in the strip is clearly observed (hgure 2.13. (a)) in contrast with the 

constant slope of the held proGle for the slab (hgure 2.13.(c)). 

Due to the non-linearity observed for the strip prohles is it expected more difhculty 
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Figure 2.13: Current density and filed profiles for b/a = 0.05 (a), 1(b), 10(c) at u)t = ^/2. 
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Figure 2.14: Step size required for Rosenbrock with Tol = 10 ® for different applied field 
amplitudes. 
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Total steps Rejected steps A c c e p t e d steps Time (s) 

o/6 = 20 8509 448 8061 2100 
ajh = 1 2936 109 2827 777 
ajh ~ 0.1 2110 59 2051 563 

Table 2.9: Results for different geometries. 

for RODAS in order to maintain the stability of the integration for this geometry. That 

is proved in table 2.9 where the results indicate that a higher number of steps is required 

aa the aspect ratio (a/6) increases, about four times more for the strip than for the slab 

which is quite considerable in terms of computational speed. Figure 2.14 represents the 

step sizes A taken along the integration interval. In accordance with the results displayed 

in table 2.9, it was found an average value of = 9.8 - 10"^ for the slab, = 7.1 - 10"^ 

for the square and = 2.4 - 10"^ for the strip geometry. 

2.5 Conclusion 

A numerical method for the solution of 2D Brandt's equations for modelling supercon-

ductors with rectangular cross sections wag described in this chapter. Due to the high 

non-hnearity of the E' — J power law inserted in Brandt's formulation, the resulting 

differential equation is stiff. 

The solver RODAS for stiE ODEs was presented and compared with other solvers. 

RODAS is based on the semi-implicit Rosenbrock method of order 4. Being simpler than 

other stiS solvers as imphcit Runge-Kutta methods, it was found to be very efficient in 

terms of accuracy and computational costs and compared to other implementations of 

Rosenbrock methods. 

Possible improvement of the method is to utihze an adaptive mesh such that the 

number of grid points is reduced in the part of the superconductor cross-section where 

the current remains constant the whole cycle time. For that, the integral kernel Q of the 

Brandt's equation must be changed, taking into account the different area of each cell. 

At the end of the chapter, some current and Seld profiles were shown in different 

situations. StiEness was found "stronger" in geometries with b a, for fully penetration 

situations and for high n-values of the E — J power law. 



C h a p t e r 3 

Implemen ta t ion of l inear sys tems 

solvers in FluxSD 

3.1 Introduction 

In chapter 4, superconductors are modelled using FluxSD, which is a finite element 

method software package for electromagnetic calculations developed by CEDRAT. FluxSD 

has a special superconductor module for handhng non-linear — J power-law. 

The numerical computation is performed with the T — $ formulation, which uses the 

electric vector and the magnetic scalar potentials and whose general state equations are 

V x H = J = V x T 

H = T - V $ 

V x E = - B - - ^ W ( T - V 0 ) ) (3.1) 

The solution of (3.1) is calculated for aU the nodes on the FEM mesh at each time 

step. When E is calculated using non-linear characteristics such as the power-law for 

superconductors, Newton-Raphson method is required to obtain the solution, which 

consists in solving a series of linear systems until converges to the solution. 

One of the diSiculties found during the calculation process waa the cost required 

to solve each hnear system at each Newton-Raphson step. The method utihzed, Bi-

conjugated Gradient with Incomplete Gauss factorization (IGBCG) [21], is expensive 
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in terms of computing time and for ill-conditioned matrices can diverge easily. Tricks 

like increasing the number of time steps or changing the coefficient of relaxation for the 

Newton-Raphson method were helpful in order to obtain the convergence in some pro-

blems, but failed in others cases. Hence to continue with calculations in FluxSD it was 

concluded that new linear system solvers should be implemented. 

In modelling of superconductors, the high non-linearity of the superconducting law 

leads to particularly ill-conditioned matrices. The problem accentuates as more difficult 

geometries or thinner meshes are included and therefore robust hnear systems solvers 

are needed. 

Two new iterative solvers, the preconditioned Generalized Minimal Residual method 

(GMRES) [29] and the preconditioned Biconjugated gradient stabilized method (Bi-

CGStab) [37] were tested and compared with IGBCG. Both new methods were found to 

be robust and show better performance than IGBCG. 

With the introduction of a preconditioner before solving the iterative process the 

convergence can be reached easily and the total computational cost reduced. Incomplete 

LU factorizations with variations were implemented as preconditioner for the new solvers 

[28]. It has been observed that for having a good method the main task is to Gnd an 

effective preconditioned. 

In the first part of the chapter the solvers are presented. Then performance of each 

method in superconductor's problems are compared. Finally, the solvers are tested in 

other transient magnetic problems modelled with Flux3D software [18]. 

3.2 Overview of linear systems solvers for sparse ma-

trix 

Methods to solve linear systems are classiEed in 2 groups: direct and iterative me-

thods [44]. Direct methods give the exact solution after a finite number of operations. 

Although they are robust, when large systems are being solved the growing errors can 

become so large and so the results obtained are unsatisfactory. In addition, sometimes, 

a sparse matrix becomes full matrix when the factorization is done and then the storage 

requirement becomes unacceptable. There are some direct methods that avoid this using 

permutation of rows and columns in order to reduce the 611 in. 

Iterative methods start with an approximate solution and using a recurrence formula 
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calculate another approximations. This formula is applied again successively until the 

successive sequence converges to the solution. Iterative methods are easier to implement 

and for 3D simulations are recommended since they do not require too much memory 

comparing with direct schemes. The inconvenient of these methods is that when the 

matrix is not well conditioned the convergence is slow or not reached. 

One of the techniques in order to improve the convergence of iterative methods is 

to use a preconditioner and apply the iterative formula to the new better-conditioned 

matrix. Experience has demonstrated that a good preconditioner is the key to an elective 

iterative solver. A typical one for general problems is based on incomplete factorization 

LU. The elimination is performed on A, but entries outside a certain sparsity pattern 

or below a cut-oE numerical value are simply discarded during the factorization. The 

approximate LU factors then de6ne the new system matrix. In that sense, iterative 

solvers can be considered as a union between direct and iterative methods. 

For linear systems generated by FEM modelling in 3D, the matrix dimension is very 

high and therefore direct methods are not applicable due to the storage requirements. 

Among the iterative methods two solvers have been chosen to be tested and compared 

with IGBCG: 

1. GMRES, Generalized Minimum Residual from Y.Saad [29], and 

2. BiCGStab, Bi-conjugated gradient stabilized from H.A. Van Der Vorst [37]. 

Recent reports consider both methods to be the most suitable for bad conditioned 

problems with a similar performance. 

3.3 I t e ra t ive solvers t e s t ed 

The aim of the methods presented here is to obtain the solution of a linear system of the 

form Aa; = 6 where A is TV x TV matrix and 6 and a; are vectors of dimension Â . 

3.3.1 Precondi t ioners 

In order to a^ccelerate the iterative process Preconditioners are used. The idea of "precon-

ditioning" consists on transforming the original linear system into another one with the 

same solution but which is easier to solve by an iterative method. If the matrix M is the 

preconditioner which approximates A , then the transformed system, Af'^Aa; = 

(left preconditioner) or AM"^(Ma;) = 6 (right preconditioner) has the same solution as 

the original system but the properties are more favorable. The preconditioners used with 
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the solvers presented in this chapter are briefly described next. 

L D U preconditioner for IGBCG: 

The Gauss incomplete factorization is the preconditioner used for IGBCG method [13]. 

It uses the same principle of a full LDU factorization , but , in order to save the sparsity 

of the matrix it only computes the elements corresponding to the non-zero structure of 

A. It consists on calculating a matrix M — where are approximations of 

the lower triangular ,diagonal and upper triangular matrices computed by the fuU LDU 

factorization algorithm. 

Hut preconditioner: 

The simple Hut preconditioner is baaed in an incomplete factorization of the original 

matrix, that is taking M = where Z, and are triangular matrices, with a dual 

dropping strategy. This allows us to keep the sparsity of the matrix and control the 

storage requirements. The dual dropping strategy of Hut consists on two steps. Suppose 

we are in step A; of the factorization. First all the elements calculated which value is less 

than a tolerance chosen ToZ are dropped. Then only the largest elements in the 

row A; of Z, are kept and the same for the row A; of [/. The hmits the number of 

elements of the preconditioned matrix. Storage cost is now known in advance. 

It is difBcult to 6nd the best values of the parameters for a particular problem. ToZ 

depends on the value of the elements and level of GU, can be chosen like +1, 

where Mnz is the number of non-zero coeScients and n the number of equations but it 

is not always the best choice. 

Observe in tables 3.1 and 3.2, how the preconditioner a&ects to the solver. As To( 

decreases, less coeScients are dropped, the factorization will be more accurate, then the 

method will converge faster reducing time inverted in the iterative process but increasing 

the time for the factorization. Therefore the optimal choice of ToZ and is when the 

increment of preconditioning time by using smaller tolerances or larger levels of hlling 

is compensated with the reduction of the time required by the iterative solver. Notice 

in Table 3.2 how the execution time for performing the Hut factorization increases with 

At the same time the execution time for Gmres decreaaes as it could be expected, 

however observe that at / i f = 80 it requires more steps than for lower values of 

It is not always clear which are the best parameters for the preconditioner in order to 

transform the matrix into one with good conditioning properties and therefore accelerate 

the convergence. Generally, "low" fy/zZ, and "high" ToZ, are not good proposals. 
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ToZ Hut time (s) Gmres time (s) Precision Iters Storage for Hut 

0.0001 6 70 9.89.10-* 349 4795449 
0.00001 8 66 9.85.10-* 348 4838205 
0.000001 11 67 9.98 -10-* 332 4851249 

Table 3.1: Results for a system with 30307 equations and 1752105 non-zeros, using Gmres 
(80) +Ilut {Tol, 40) for different values of To/. 

Hut time (s) Gmres time (s) Precision Iters Storage for Hut 

20 3 135 9.89 -10-» 815 2464163 
30 4 82 9.90. 10-^ 454 3640719 
40 6 70 9.89.10-^ 349 4795449 
60 8 84 9.88. 10-^ 349 7025163 
80 11 91 9.95. 10-^ 382 9144861 

Table 3.2: Results for a system with 30307 equations and 1752105 non-zeros, using Gmres 
(80) -fllut (0.0001,161) for different values of Lfil. 

It is di&cult the comparison of iterative solvers because of their dependence on a 

large number of parameters. Also, they depend on the preconditioner used, and the same 

preconditioner can work poorly for a set of parameters but it can give good performance 

for different ones. 

3.3.2 Solvers 

The iterative methods tested in this work belong to the group of "projection methods" 

baaed on the "Krylov subspaces". 

A projection method for solving the linear system /la; = 6 is a method which seeks 

an approximate solution from an subspace Zo + A'm of dimension m, by imposing the 

condition, 6 — -L 1,^, where 2,^ is another subspace of dimension m. a;o represents 

an arbitrary initial guess of the solution. 

A Krylov subspace method is a method for which the subspace A'm is the Krylov 

subspace = gpon{ro, Aro, A^ro,... for ro = 6 — Aa;. Depending on 

the choice for there are different Krylov subspace methods. 
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3.3.2.1 G M R E S 

The Generalized Minimum Residual Method (GMRES) is a projection method based on 

taking and 1,^ = where A'm is the m-th Krylov subspace with 

0̂ = ro/||ro||. 

Gmres minimizes the norm of the residual ||6 — Aâ mll in to obtain the m-th 

approximation to the solution The Krylov subspace is made orthogonal by the Gram-

Schmidt procedure, known as an Arnoldi process when applied to a Krylov subspace. 

Algorithm for GMRES: 

1. Set an initial guess a;o. 

2. Arnoldi method. 

Compute residual ro = Aa;o — 6, /) = ||ro 1, f i = ro/^ 

Define a matrix with dimension (m + 1) X m. Set H = 0 

For % = 1 , 2 . . . m do 

Wi — Ar, 

For j = 1 , 2 . . . W o 

end do 

if = 0, set m — % and go to 3 

Vi+l = j 
end do 

3. Solve GMRES minimization problem 

# Compute such that minimizes ||/)ei — 

* ~t" ̂ raym 

All the vectors computed in the orthogonal sequence have to be retained. This su-

pposes a lot of memory requirements and computer time when m becomes large. The 
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usual way to overcome this limitation is by restarting the iteration. After a number of 

iterations fixed (zm), the accumulated data are cleared and the intermediate approxi-

mations are used as the initial data for the next im iterations. This is repeated until 

convergence is achieved. 

A l g o r i t h m for R e s t a r t e d G M R E S {im): 

1. Set an initial guess Zo 

2. Arno ld i m e t h o d . 

3. Solve GMRES minimization problem and compute new 

4. R e s t a r t 

If satisGed stop else and go to 2. 

There are many possible variations of the restarted Gmres. A very "small" value of 

zm can result in a very slow convergence or even no convergence (see table 3.3). But a 

larger value involves excessive work and uses a lot of storage. Exactly, the space required 

for Gmres (zm) is given by (A/̂ 4-3) x (%m + 2) + (%m + l) x%77i/2 where TV is the dimension 

of the system. For the tests in problems with superconductors it was found that with 

= 80, Gmres converges easily. 

im Gmres time Precision iters 

20 54s 9.6.10-" 457 
40 gs 7.4.10-8 70 
60 6s 8.3 -10-* 55 
80 6s 8.3.10-* 55 

Table 3.3: Results for Gmres(«m) with Ilut(130,10 ®). 

3.3.2.2 B C G 

The Biconjugated Gradient method (BCG) is a Kyrlov subspace method with 
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I'm = apoM {wo, A'̂ wo, (A'^)^wo,... ^wg} 

The vector wo is arbitrary, provided (ro,Wo) ^ 0, but is often chosen to be equal to 

ro/||ro||. 

A dlEerence with GMRES, instead to one orthogonal sequence of the residuals, the 

BCG method builds two mutually orthogonal sequences of residuals without providing 

a minimization. Although the length of these sequences can become large, only a small 

number of vectors need to be kept in memory. 

A l g o r i t h m for B C G : 

1. Compute residual ro — Aâ o — 6 

Choose fo such that (ro,f|)) ^ 0 

2. Set po ^ ro, % = fo 

3. For % = 0 , 1 , . . . until convergence do 

<3!̂  - (n,f^)/(Api,%) 

— Xi ttiPi 

n+1 = n - a^Apt 

= n - a^A'̂ Pi 

A (r i+ i ,n+i ) / (n ,n) 

Pi+l = n+l + 

A+i = n+i + A A 

end for 

3.3.2.3 B iCGStab 

The Bi-Conjugate Gradient Stabilized method from H.A. Van Der Vorst [37], was deve-

loped to improve the convergence of BCG. 

BiCGStab produces iterates which residuals vectors are calculated of the form — 

'̂ j (A)<^j(A)ro in which is the residual polynomial associated with the BCG algo-
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rithm and ^j(() is a new polynomial which is deSned recursively at each step with the 

goal of "stabilizing" the convergence behavior of the original algorithm. 

A l g o r i t h m for B i C G S t a b : 

1. Compute ro = 6 — Aa;o for an initial guess â o, arbitrary. 

2. po = ro 

3. For 2 = 0 , 1 , . . . until convergence do 

= (n,fo)/(Api,fo) 

Si = Ti — OZt Api 

Wi = (Ag{,gi)/(Ag:,Agi) 

= a;, + 

Ti+i = 8i — AS( 

ft = T S r > = S 

Pt+1 = n+1 + A(Pt — WjApi) 
end for 

3.3.3 Storage requ i rements 

A important point to have into account for comparing numerical methods is their storage 

requirements. This can be calculated in advance by knowing the size of the matrix. 

Knowing the parameters: 

N= Number of equations, and 

NNZ= Number of non-zero elements of the matrix. 

the number of reals needed in each method is calculated with the formulas presented in 

the following table, 
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Symmetric case Non- symmetr i c case 

I G B C G 5 X TV -t- 2 X 7 X AA + 4 X jVTVZ 

Gmres +I lut 2(2i}/zZ 4- 1)W -1- 37V -1- 7V#z -t- (n -t- 3)(%m -1- 2) 4- -t- l)%m/2 

Gmres(80)+I lut 4- 87)7V 2 7 V + 3486 

B i C G S t a b SAT + (iy/zZ + 1) . Â  + 3 # 

Clearly, as it will be shown in the tests, unless the dimension of the matrix is "large" 

and the if/zZ chosen for the preconditioner very "small", Gmres will take more memory 

space. 

3.4 Superconductor Problem 

The difEculty found in the solving process of FluxSD for modelhng superconductors, is 

due to the highly non-linear E—J property, = % (J/ Jc)", which leads to hnear systems 

with ill-conditioned matrices which are diGcult to solve. Newton-Raphson method is 

applied each time step and at each iteration of Newton-Raphson a hnear system is 

solved . All this together means a very long calculation process. A faat and robust hnear 

system solver becomes very important. 

3.4.1 Descr ip t ion of t h e tes ted problems 

In order to test the solvers, they were applied to two diEerent problems with supercon-

ductors. 

P r o b l e m 1 

This model, shown in Bgure 3.1, consists of 2 parallel long slabs with a normal matrix 

between them in a sinusoidal applied Geld B — Boam(27r/t) with w = 10 Hz and = 

0.7T. The non-linear E—J power law for the superconductors is given by the parameters: 

n = 21, Jc = 2 -10^ Am"^, and E'c = 0.001 Vm"^. 

P r o b l e m 2 

The second model (Figure 3.2) represents several superconductor fUaments in a silver 

matrix. The non-hnear property is given by n, = 16.8, Jg — 1.61 - 10^ Am"^, and E'c — 

0.001 Vm"^. A current source / = 5.928in(27r50^) is imposed. 
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PROBLEM 1 

Figure 3.1: Geometry and mesh of problem 1. 

X 

Figure 3.2: Geometry of problem 2. 
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3.4.2 Resul t s and comments 

Since the problems are non-linear, each time step the Newton-Raphson method is applied 

and therefore the consequent linear systems have to be solved. As examples two of them 

were chosen of each problem (System 1 and System 2). 

The characteristics of the matrix for Problem 1 are: 

# Dimension: 37703 

* Number of non-zeros in the matrix: 2579157 

The results obtained are presented in the next table: 

System 1 System 2 

Storage 

' 10^) 

Time(s) Storage 

- 10^) 

Time(s) 

I G B C G 8.148 1430 8.148 Diverges 

G M R E S 23.591 184 23.591 320 

B i C G S t a b 10.161 173 10.161 129 

Characteristics of the matrix for Problem 2: 

# Dimension:29739 

# Number of non-zeros in the matrix: 1441607 

The results found were: 

System 1 System 2 

Storage 

-10^) 

Time(s) Storage 

- 10^) 

Time(s) 

I G B C G 5.144 8379 5.144 Diverges 

G M R E S 10.653 780 10.653 720 

B i C G S t a b 22.194 857 22.194 773 

Observe that there are linear systems in both problems which could not be solved 

using IGBCG. For all the other cases, GMRES and BiCGStab have converged much 
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faster than IGBCG. It is clear then the better performance of the solvers GMRES and 

BiCGStab for superconducting problems, despite the disadvantage of higher memory 

requirements. 

3.5 Results for transient electromagnetic problems 

Apart from the superconducting problems, the new solvers were tested in other transient 

electromagnetic problems solved with FluxSD. In some of them the matrices arisen in 

the solving process are very bad conditioned, whereas other ones were not so difhcult to 

solve but they were used to compare the performance of the different solvers in terms of 

computational speed and storage requirements. 

The results in table 3.4 show the performance of the three methods in solving the 

hnear system of the 6rst time step. When the problem is not linear the results correspond 

to the second iteration of Newton-Raphson process. 

In terms of computational time, it is observed that when the matrix of the system A 

is symmetric IGBCG is faster, however for non-symmetric matrices both GMRES and 

BiCGStab converge sooner, a fact which becomes more evident as the size of the hnear 

system increases (test 9 and test 10). Respect to the memory requirements, notice that 

IGBCG uses less memory size in all the problems. 

In conclusion, we can say that for linear systems with symmetric matrices the three 

solvers are robust being IGBCG more convenient in order to save memory space. With 

non-symmetric matrices, although all the methods reach the convergence, GMRBS and 

BiCGStab do it easily. 
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Storage 
-10^) 

Time(s) 

Teat j I G B C G 2296 15 
Non-gym G M R E S 3014 13 

B i C G S t a b 1633 19 

Teaf g I G B C G 2420 6.5 
Non-sym G M R E S 3028 6 

B i C G S t a b 2275 7 

Test 3 I G B C G 1919 7 
Non-sym G M R E S 2403 6 

B i C G S t a b 1753 7 

Test 4 I G B C G 4909 24 
Sym G M R E S 9459 28 

B i C G S t a b 6515 26 

Test 5 I G B C G 2955 52 
Non-sym G M R E S 8042 11 

B i C G S t a b 3097 12 

Test 6 I G B C G 4519 24 
Sym G M R B S 9828 30 

B i C G S t a b 4379 36 

r e s t 7 I G B C G 3855 20 
Sym G M R E S 8279 25 

B i C G S t a b 5666 28 

Teat g I G B C G 4500 67 
Non-sym G M R E S 9272 89 

B i C G S t a b 5013 75 

Test 9 I G B C G 8148 1430 
Non-sym G M R E S 23591 184 

B i C G S t a b 10161 173 

Test 10 I G B C G 5144 8379 
Non-sym G M R E S 10653 780 

B i C G S t a b 22194 857 

Table 3.4: Results for 10 different test of transient magnetic problems. 
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3.6 Conclusion 

The purpose of the tests presented is this chapter was to compare diEerent hnear systems 

solvers, Gmres, IGBCG and BiCGStab, in terms of computation time and memory 

requirements for problems modelled with a FEM software. 

For the problems with superconductors, Gmres and BiCGStab resulted to be more ef-

fective since IGBCG not always converges. For problems in 3D transient electromagnetic 

problems in which all the three solvers converge, it was observed that whereas Gmres 

and BiCGStab give better results in terms of solving process time, are less elective with 

respect to the memory space requirements. Only in particular cages when the matrix is 

symmetric IGBCG has faster convergence. 

The performance of the linear systems solvers are strongly influenced by the precon-

ditioner used. A good performance of the solvers Gmres and BiCGStab in problems 

where IGBCG fails, is the outcome of a good election of the parameters used for the 

preconditioner Hut. For each problem there is an optimal level of fill and tolerance which 

is di&cult to predict. Sometimes the linear system can only be solved with a big level 

of 511, increasing considerably the memory space used. 

In conclusion, the results of the tests shown in this chapter have proved the robustness 

of Gmres and BiCGStab solvers for 3D transient electromagnetic problems, being more 

effective than IGBCG solving systems with non-symmetric matrices. 



C h a p t e r 4 

3D model l ing of coupling in AC 

magne t ic field using F luxSD 

4.1 In t roduc t ion 

In presence of an ac magnetic Geld, the movement of vortices in the superconductor 

produces energy dissipation, that is, hysteresis losses. In order to reduce them, the 

superconductor is divided into fine filaments embedded in a normal matrix. Such strategy 

is only elective providing that the filaments are uncoupled. Filament coupling in long 

lengths conductors is prevented by twisting the Glaments at a short pitch [38]. 

Loss reduction in twisted multiSlamentary superconductors is not achieved if the 

filaments are coupled easily. The coupling phenomenon is influenced by parameters such 

aa the changing rate of the magnetic field, the metal matrix resistivity, the critical current 

density, and the size and geometry of the hlaments. 

It is known qualitatively that for a very small ramp rate of the applied Geld, B % 0, 

the ^laments behave independently. But aa B increases to a very high value, B —» oo, 

the induced voltage in the normal matrix allows all the current to cross from one Glament 

to the other and the superconductors are acting as a single larger one. Figure 4.1 shows 

the corresponding Held proBles to both limiting cases. 

Theoretical quantitative prediction of this effect is limited to the case of two fully 

penetrated slabs and under the assumptions of the critical state model [41]. For studying 

more complicated geometries involving Gnite dimensions, and for magnetic fields only 
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(a) (b) 

Figure 4.1: Sketch of the magnetic field profiles of two filaments uncoupled (a) and fully 
coupled (b). 

partially penetrating the superconductor, an accurate 3D model is necessary. Numerical 

models based on the finite element method, FEM, has been widely used for calculation 

of field and current distributions [3, 34]. 

In this chapter the FEM software Flux3D [18] was used to model the coupling eSect 

between hnite superconductors due to the presence of an ac magnetic field. First a 

brief description of the FEM is given, followed by detailed results for strip and slabs 

geometries in an sinusoidal magnetic Held, in order to show the capability of the FEM 

to calculate the coupling effect. An approximation of the critical coupling Geld Be is 

obtained for both geometries, and compared with existing theoretical models. Finally, 

the coupling phenomenon is investigated in superconductors of diSerent geometries in 

an applied Geld with constant ramp rate. 

4.2 F E M modell ing 

Thank to the rapid progress on computing power, modelling using the Enite element 

techniques is nowadays a common task for 2D and 3D electromagnetic calculations. FEM 

for modelling superconductors has been developed by some authors [3], and inserted in 

commercial packages as Flux3D [18]. 

Results shown in this chapter have been obtained using Flux3D. The basic 2D model 

in Flux2D for superconductivity was modified with new formulations later introduced 

into the 3D model developed for Flux3D. This model allows the introduction of more 
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complicated geometries and characteristics like the non-linear E — J power law. 

The 5 steps followed in order to model a problem in FluxSD are: description of the 

geometry, mesh, physical properties description, solving processor and analysis of the 

results. 

4.2.1 G e o m e t r y and mesh 

The model studied consists on two slabs/strips with normal matrix between them, and 

two more slabs/strips, one on the top and another at the bottom. The cross section 

is shown in Egure 4.2. Due to the symmetries respect to the main planes, %y, YZ 

and ZX, only one eight of the total volume will be considered reducing the mesh size 

and therefore the computational costs to solve the problem. In Hgure 4.2 the right 

upper quarter modelled is enclosed by short dashed red lines. Then two volumes of 

superconductor material and one of normal conductor are built, all of them inside a 

volume representing the air region. Dehning parameters and geometrical transformations 

building the geometry is an easy task in FluxSD. To take into account the exterior it 

is sufEcient to describe an air box of a size important enough so that the effect of the 

infinite assimilation is negligible. There is also the possibility to describe an "infinite 

box" which links the open domain with a closed one by a spatial transformation and 

giving better approximations. 

In order to mesh the studied domain in finite elements the whole box was constructed 

using eight volumes in order to have diEerent meshes in each of them. Finer ones were 

used for the parts close to the boundaries of the superconductor, and bigger size meshes 

for the unchanging parts. For the superconductor, the matrix and the air volumes close 

to them a mapped mesh extruded waa used along the length of the superconductor. Then 

the volumes are composed of hexahedrons and their faces in rectangles. The extrusion 

mesh is advantageous since allows to take into account thin geometries without increasing 

the number of elements much. For the remaining parts, it was used an automatic mesh 

which creates triangles covering the faces and the volumes are divided in tetrahedrons. 

Figures 4.3 and 4.4 show the geometry and the meshes chosen. 
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(a) (b) 

Figure 4.2: Sketch showing the cross-section of the geometry used for modelling strips (a) 
and slabs (b). The area enclosed by red dashed lines represents the region used for calculations 
in FluxSD. 

/ - : I::/ 

Figure 4.3: Geometry and mesh for modeUing slabs with FluxSD. 

Figure 4.4: Geometry and mesh for modelling strips with FluxSD. 
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4.2.2 Physical p roper t ies 

The constitutive equations are assigned to the diEerent materials, which are associated 

to diEerent regions created associating diSerent volumes of the geometry. 

For the superconducting material, the B — Tif property is described in FluxSD by 

B = /̂ oH which is a good approximation of type-II superconductors when > ^ci-

The E — J relation inserted is the non-linear — J power law E = (|J|/Jc)" The 

normal metal is defined by E — 

As boundary condition it was imposed a held varying in time over the entire modelled 

device in the z direction. 

The numerical method is based on solving Maxwell equations. There are diEerent 

ways to formulate them [36]. The A — y formulation uses Ampere's law as a state 

equation which is expressed as 

V X — V X A = (;(E). E 

with 

E = - v y . 

The T — 0 formulation consists on taking electromagnetic potentials T and $ as 

state variables. T is the electric vector potential, J = V x T, and $ the scalar magnetic 

potential, H = T — V0. Then the equations became 

V x H = J = V x T 

H = T — V $ 

V X E = - B = - ^ ( ^ (T - V $ ) ) 

The T — $ formulation is used in FluxSD. It has a better convergence behavior since 

it uses E(J) characteristics instead of J(jE'), which is particularly suited for Newton-

Raphson iteration, implemented in Flux 3D. 
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4.2.3 Solving process 

The solving process consists on two main tasks: 

- Integration of the sub-matrices and the sub-vectors belonging to each element and 

aasembly through the non-linear Gnite element system. 

- Solving of this non-linear system using Newton Raphson method. 

Newton-Raphson is an iterative method to solve non-linear equations /(a:) = 0. It 

builds a succession of linear systems until converges to the solution. Prom a given a:o the 

next steps are calculated as: 

° " 7W) 

In order to improve the method a coe@cient of relaxation is introduced. 

To solve those linear systems generated in (4.1), diSerent iterative numerical methods 

can be used in Flux3D for symmetric and nonsymmetric matrices respectively. Detailed 

explanation about numerical methods to solve the linear equations is given in chapter 3. 

4.3 Results for sinusoidal B 

The results presented in this section were calculated with the models described in pre-

vious section (figures 4.3 and 4.4) with the physical properties given by the parameters: 

Jc — 2 X 10^ Am"^, Ec = 10"^ Vm"^ and n = 21. The resistivity of the normal matrix is 

p = 10"^ ilm. The calculations were performed for an external sinusoidal applied Geld, 

= /^o^aSin(w(), perpendicular to the superconductor. 

Since the main interest is in the coupling between the superconductors, it will be 

shown the result only for the two superconductors in parallel joined by the normal 

matrix. Due to the symmetries respect to the main planes, only a quarter of the total 

model will be represented (See Egure 4.2). For the profiles in the whole model, have 

into account that they are symmetric for the magnetic Geld and antisymmetric for the 

current. 

4.3.1 Slab 

Consider Gnite slabs of width a = 3 mm, height 6 = 10 mm and length / — 20 mm. The 

width of the normal matrix between them is w — 0.5 mm. The amplitude of the applied 
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0.1 

Figure 4 .5; Magnetic field in slabs at u>t = 7r/2 for fXoJ^a — 0.7 T and / 1 Hz. 
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Figure 4.6: Induced current in slabs at ut = 'k/2 for ^loHa - 0-7 T and / iHz. 
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Figure 4.7: Magnetic field in slabs at cot = 7t/2 for noHa — 0.7 T and / — 200 Hz. 
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Figure 4.8: Induced current in slabs at cot = 7r/2 for noHa — 0.7T and / — 200Hz. 
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Figure 4.9; Magnetic field (a) and induced current (b) in slabs at ut = •k/2 for ixoHa = 0.7 T 
and f = 1 Hz. 
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Figure 4.10: Magnetic field (a) and induced current (b) in slabs at ut = - k / 2 for iMoHa = 0.7T 
and / = 200 Hz. 
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field is iioHa = 0.7 T. 

Results in Egures 4.5 and 4.6 show the Eeld aji current proGles respectively for a 

low frequency of the applied field, / = 1 Hz. Observe that the superconductor is fully 

penetrated by the applied Geld, hence the current is flowing through the whole device. 

The slabs are uncoupled and therefore the proEles for each one are similar to those for a 

single one, current Hows around each superconductor as it is indicated with the arrows 

in the current proEle (figure 4.6), and the Geld in the matrix is equal to the appHed Seld 

(figure 4.5). 

The situation is diSerent for coupled slabs. Figures 4.7 and 4.8 are solutions for a 

higher frequency, / = 200 Hz. The current is now flowing in the same direction inside 

the superconductor, crossing the normal matrix and coming back through the other one. 

Then the two slabs behave as one superconductor (figure 4.8). Notice the Geld in the 

matrix region is now decreasing from the outer part to the center (Ggure 4.7). 

The coupling eSect can be seen in more detail restricting to the a:i/-plane the profiles 

of the held and the induced current along the conductor, aa it is shown in figures 4.9 and 

4.10. Figure 4.9 corresponds to the case of uncoupled slabs ( / = IHz). Notice that the 

field in both sides of the superconductor is equal to the apphed Geld since there is not 

coupling currents crossing the matrix. The superconductors behave as 2 independent 

ones. These results for each superconductor isolated are similar to the predicted by 

Bean's model for infinite slabs [5]. The Geld in the superconductors decreases linearly 

form the borders to the middle with slope given by V x = J. Increasing the frequency, 

the currents start to cross the matrix, shielding its interior from the magnetic Geld as 

it is shown in Ggure 4.10 for / = 200 Hz. Observe that the Geld in the normal matrix 

decreaaes from the exterior to the inner part (Ggure 4.10.(a)). Note that almost aU the 

current is now Bowing in the same direction through the superconductor. Only in the 

inner part there is a small portion of current returning (Ggure 4.10.(b)). 

The decrease of the magnetic Geld in the normal matrix with increasing frequency 

is observed plotting the magnetic Geld along the {/-axis as in Ggure 4.11. The Geld in 

the normal matrix region is constant, reducing with increasing the frequency and being 

almost zero for a very high frequency ( / = 160Hz). Observe in the superconducting 

part the linear proGles with constant slope similarly to Bean's model predictions (See 

section 1.5.2). 
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Figure 4.11: Magnetic field along ^-axis for a slab at fioHa = 0.7 T and for different frequen-

cies. 

4.3.2 S t r ip 

For studying the strip geometry consider superconductors of width a = 3 mm, height 

b = 1 mm, and length I = 20 mm separated by a normal matrix of width w = 0.5 mm. 

The applied field has an amplitude jioHa = 0.7 T which is high enough to penetrate the 

strips completely at the peak field. 

In perpendicular geometry demagnetization effects have to be taken into account. For 

the uncoupled example, figures 4.12 and 4.13 show the situation of two isolated strips 

similar to the one described for the slab. For a high frequency, / = 160 Hz, (figures 4.14 

and 4.15) the superconductors are fully coupled with current flowing through the matrix 

and the inner part of the normal matrix shielded from the external field. 

Observe in the field profile in the xy-plane (figure 4.16) the demagnetization effect. 

The field in the air and matrix regions increases as it approaches to the edges of the 

superconductor. Another difference observed respect to the slab is that the magnetic 

field increases in the borders from the back to the middle of the superconductor. In 

figure 4.16 it is seen that the field in the matrix decreases in the outer part but it 
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Figure 4.12: Magnetic field in strips at ujt — 7r/2 for /xo-ffa = 0.7T and / = IHz. 
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Figure 4.13: Induced current in strips at cut = ixjl for = 0.7 T and / = 1 Hz. 
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Figure 4.15: Induced current in strips at ujt = tt/2 for /loHa = 0.7T and / — 160Hz. 



CHAPTER 4: 3D modelling of coupling in AC magnetic field using FluxSD 79 

CO 

E < 

2e+8 

1e+8 

- 1e+8 

-2e+8 

(a) (b) 

Figure 4.16: Magnetic field (a) and induced current (b) in strips at wt = tt/2 for fioHa = 0.7 T 
and / = 1 Hz. 
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Figure 4.17: Magnetic field (a) and induced current (b) in strips at = 7r/2 for /j.oHa = 0.7 T 
and / = 160 Hz. 
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Figure 4.18: Magnetic field along y-axis for a strip at fJ.oB'a = 0.7 and for different frequencies. 

remains almost constant in the interior of the matrix region, a difference with the slab 

where the field decreases, due to coupling, gradually along the length. 

The profile of the field along y-axis is shown in figure 4.18. The coupling increases 

with increasing frequency being the strips fully coupled for / = 160Hz and the profile is 

similar to that of a strip of larger width (2a + w). That is the reason of the higher value 

of the field in the right edge of the superconductor at high frequencies since it depends 

on the aspect ratio (a/b). Another particular characteristic of strips observed here is the 

non-linear profile of the field and its increment towards the edges of the superconductor 

similar to the analytical solutions given by Norris [25] for infinite long strips. 

4.3.3 Evolution of the coupling current Ic 

Although superconductors are made as filamentary composites to reduce hysteresis losses, 

with increasing / the coupling current between filaments raises considerably leading to 

high losses in the normal matrix. Therefore, for practical applications it is necessary to 

have a previous quantitative knowledge of the coupling phenomenon in order to develop 

strategies to keep the filaments uncoupled. 
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Numerical calculations are presented here for diEerent frequencies of the sinusoidal 

applied Held = /^oA'aSin(wt) including two diEerent situations: small held am-

plitudes such that the superconductor is partially penetrated at the peak held 

(/^o^a < and for amplitudes higher that the total penetration held > 

The coupling evolution through a whole held cycle time will be explained by e-

xamining two kind of quantities: the evolution of the couphng current calculated as 

ĉoup = z)dv4, where A is the cross section of the normal matrix in the a;z-

plane, ajid the magnetic held integrated over the normal matrix region volume = 

•fvm 2/l 

4.3.3.1 Slab 

Results for the slab geometry are presented in hgure 4.19 for partial penetration = 

O.IT < The amplitude of the couphng current (figure 4.19.(a)) increases with 

frequency as it is expected. At low frequencies the maximum couphng current is reached 

soon since is more determined by the decay of dB/dt, however, with increasing / the 

peak moves to the right becoming sinusoidal. Observe that for / == 160 Hz the coupling 

current prohle is in phase with the applied held, and its maximum corresponds to the 

total current flowing in the slab. The diEerent amplitudes of the current prohles at 

different frequencies are observed in more detail in hgure 4.19.(b). Notice that when the 

applied held returns to zero at wt — vr and wt = 27r there is coupling current in the 

opposite direction. 

The magnetic held in the normal matrix is represented in hgure 4.19.(c). Observe 

that when the slabs are uncoupled at a low frequency, the held in the normal matrix 

follows a similar proGle to the sinusoidal applied held one (shown in the hgure with 

black line). Notice that its maximum value for / = IHz is higher than the amphtude 

of the applied magnetic held /io^o due to demagnetization eSects. With increasing / 

the peak value reduces and moves to the right since the slabs become more coupled 

and the interior of the normal matrix is initially shielded from the external held, up to 

wt = 7r/2 and trapped upon held reductions. At wt = 7r, 27r, although the applied held 

haa returned to zero there is still some held trapped in the matrix. 

The held prohle along y-axis is shown in hgure 4.21 at = vr when the apphed held 

has returned to zero. For low frequencies ( / — 1 Hz) there is not couphng, hence the 

superconductors behave as two isolated ones and the held prohle is equal in both edges 
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Figure 4.19: Coupling current (a) and magnetic field in the normal matrix (c) for a slab 
during a cycle time of an applied field of amplitude HoHa = 0.1 T. For comparison at different 
frequencies, the coupling current is divided by its maximum (b). 
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Figure 4.20: Coupling current (a) and magnetic field in the normal matrix (c) for a slab 
during a cycle time of the applied magnetic field of amplitude ^oHa — 3.5 T. For comparison 
at different frequencies, the coupling current is divided by its maximum (b). 
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Figure 4.21: Magnetic field profiles along y-axis in the center of the slab at ut = ii for 
l-ioHa = 0.1 T. 

of the superconductor similar to the expected by Bean critical state model. However at 

higher / the field in the normal matrix does not return to zero since is trapped. Notice 

that the held in the matrix does not change monotonically with frequency. 

For saturated slabs {f^oHa = 3.5T > fioHp) the results are shown in figure 4.20. Si-

milarly to the partial penetration situation the coupling current increases with frequency. 

However the coupling current saturates quickly, and then decreases faster to the negative 

minimum upon field reduction. For very high frequencies, when the slabs are totally 

coupled, the coupling current reaches the maximum Ic at fioUa — l^oHp and continues 

almost constant until the field peak /ioH = fioHa at cot = tt/2. When the applied field 

is reduced, the coupling current decreases and reaches the minimum exactly when the 

applied field has been decreased 2fj,oHp T. 

At lower frequencies, the coupling current does not reach the maximum coupling current 

because the slabs are only partially coupled, and starts to decrease just after the peak 

determined by dB/dt. Notice that, although the peak of the coupling current moves to 

the right with increasing frequency, for very high values ( / = 80) the coupling current 

saturates before. In figure 4.20.(b) observe that at tot = tt and ut = 27r the coupling 

current is maximum a difference with the partial penetrated slabs. 
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Figure 4.22: Magnetic field profiles along y-axis in the center of the slab at cot — it for 
fj,oHa = 3.5 T. 

The field in the normal matrix is shown in figure 4.20.(c). As for the partial pene-

tration situation, the field follows the same profile as the applied field for low frequen-

cies, but as / is increased the peak is reached later and there is some field trapped at 

uit = vr, 27r. A difference from the partial penetrated situation is that the profiles do not 

vary much for different / since after full penetration even for high fields the minimum 

field is iJ,oHa — fioHp, and when the field decreases to zero again, the maximum trapped 

fiux is fioHp- Observe this fact in the field profile along y-axis at = vr (figure 4.22). 

Notice that the field in the normal matrix increases with frequency. 

4.3.3.2 Strip 

For the strip, the evolution of the coupling current at Ba = 0.15 T is similar to the one for 

partially penetrated slabs as it is observed in figure 4.23. The coupling current increases 

with frequency becoming sinusoidal for higher / ( figures 4.23.(a), 4.23.(b)). Respect to 

the field in the normal matrix, similarly to partially penetrated slabs at low frequencies 

the profile follows the same profile at the applied field and reduces with increasing / , 

being finite when the applied field reduces to zero. 

The plot of the field along y-axis (figure 4.24) shows clearly the field trapped at 

ojt = TT. As a consequence of the demagnetization effect in strips the field in the right 
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Figure 4.23: Coupling current (a) and magnetic field in the normal matrix (c) for a strip 
during a cycle time of the applied magnetic field of amplitude /Uoi?a = 0.15 T. For comparison 
at different frequencies, the coupling current is divided by its maximum (b). 
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edge is lower than the applied field. Observe that the field in the normal matrix increases 

with frequency and changes the slope at very high frequencies. 
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Figure 4.24: Magnetic field profiles along y-axis in the center of the strip at cot — tt for 
fioHa = 0.15 T. 

4.3.4 Coupling current and fc 

The only existing theory of the coupling efi'ect is given for two saturated infinite slabs 

under the assumptions of Bean's model. For such geometry there is a critical ramp rate 

of the magnetic field Be = 2apJc/P such that the superconductors are totally coupled 

[ 4 1 ] . 

For other geometries and in the case of partial penetrated superconductors numerical 

predictions are necessary. In this section a quantitative approximation of the coupling 

effect will be given for finite strips and slabs. 

So far the evolution of the coupling current was analyzed during a whole cycle time 

and for different frequencies of the applied field. Now for a fixed cot, the increment of 
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the coupling current with increasing frequency is observed in order to obtain the critical 

frequency fc indicating the onset of coupling, for a given amplitude [loHa-

The coupling current is shown as a function of / for different fioHa at Lut = 7r/4 

in figures 4.25.(a) and 4.26.(a) for the slab and strip respectively. Similarly for both 

geometries, for a given amplitude Ba the coupling current increases with increasing 

frequency and saturates when the superconductors are totally coupled and the maximum 

current flowing through the superconductor is crossing the matrix. 

The critical frequency fc may be considered as the frequency at which the coupling 

current curves change the slope to become flat. The peaks of the curves indicated by 

the arrows in figures 4.25.(b) and 4.26. (b) correspond to such values. Observe that for 

high fields the coupling starts before, that is, at a lower / . Notice that for strips the 

peak at the same field, fĴ oHa = 0.3 T, is reached later than for the slabs indicating that 

the coupUng starts at a higher / . 
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Figure 4.25: Coupling current for different frequencies (a) and approximated value of the 
critical coupling frequency fc (b) for the slab geometry. 
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Figure 4.26: Coupling current for different frequencies (a), and approximated value of the 
critical coupling frequency fc (b) for the strip geometry. 

4.4 Constant ramp rate B 

As it was seen in previous section, in sinusoidal applied fields the evolution of the coupling 

current has to be analyzed having into account not only the change in time of B but 

also the variation of dB/d( , which makes it more complex. In this section the coupling 

effect between superconductors is studied when a external magnetic field is applied and 

raised with a constant ramp rate = fioHat. 

The model consists on 2 finite superconductors joined by a normal matrix. Three 

different geometries are considered : the slab, the strip and the square superconductor. 

The width of the superconductor is 2a = 1.4 mm and the length is / = 8 mm. For the slab 

the height is 6 = 10 mm and for the strip is 6 = 0.1 mm. The width of the normal matrix 

is w = 0.15 mm. The physical properties are given by the parameters: = 10® Am~^, 

Ec = 10"4 Vm~^ and n = 21. 

It is known by theory that superconductors with different aspect ratios {a/b) have 

different field and current profiles and therefore a different coupling behavior is expected. 

Figure 4.27 shows those differences due to the demagnetization effects in the field profiles 

along y-axis at z = x = 0. It is clear the non-linear profile of the field in the strip similar 

to that calculated analytically for infinite flat superconductors, and the linearity in the 
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Figure 4.27: Magnetic field profiles in superconductors of different aspect ratio in an external 
field ramping at Ba = 10 Ts~^ to /uolf — 0.02 T. 

case of the slab analogous to the profiles of Bean's model for infinite slabs. In the slab 

geometry the magnetic field is equal in the whole air region whereas for the square and 

the strip the field increases at the superconductor's edges reaching a higher value for the 

strip. Another difference due to the different aspect ratios is the penetration depth. At 

Ba = 0.02 T the strip is fully penetrated whereas the square is only partially penetrated 

and in the slab the penetrated area is even smaller. 

Observe in figure 4.27 that the field in the normal matrix part has decreased more 

in the slab geometry than in the square or the strip, which are more penetrated at the 

same applied field and for the same ramp rate, indicating the influence of the penetration 

depth on the critical coupling field rate Be. 

In order to obtain the critical coupling field rate Be, calculations were carried out 

increasing the applied field beyond full penetration at different ramp rates. In this section 

Be is defined as the ramp rate for the onset of total coupling, that is, when all the current 
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Sowing in one superconductor crosses the normal matrix. 

Be is plotted in hgure 4.28 for the three geometries. The critical coupling field in 

the slab (hgure 4.28.(a)) increases linearly with the applied field to reach a maximum 

just before full penetration held. At higher fields beyond full penetration, decreases 

to a constant value equal to 25 Ts"^. 

For the square (hgure 4.28.(b)) a similar prohle is found. As for the slab, the peak 

(Be = 400 Ts"^) is reached just before full penetration, and then decreases to a value 

31 Ts"^ higher than that obtained for the slab at saturation Belds. 

Figure 4.28. (c) shows Be for the strip. A difference with the other two geometries, 

Be increases slowly with the applied field, and after total penetration reduces slightly to 

a constant value in contrast to the pronounced decrease for the other two geometries. 

In order to compare the three cases in figure 4.28.d the curves are plotted all together 

as a function of the penetration depth. Observe that the strips couple faster al low fields, 

however when the superconductors are saturated, the critical field ramp rate is more than 

double of those for the square and the slab, which has the lowest Be-
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Figure 4.28: Critical coupling field rate Be for slab (a) square (b) and strip (c) superconduc-
tors and as a function of the applied field. The corresponding Be is shown in (d) as a function 
of the flux penetration depth. 
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4.5 Limitation to implementation of ^ —J power law 

in Flux3D formulation. 

In HTS the J(E) property can be described by the power law: 

J 

The non-linear resistivity of the superconductor is given in FluxSD formulation by 

p = Pi + Po, where 

with 

"•(1̂1) = ( 4 . 4 ) 
he 

and po is a resistivity added to the resistivity pi in order to avoid ^ = oo for 

|E| = 0. This additional resistivity po may be interpreted from a physical point of view 

ag the thermally activated resistance at 77 K. 

The current density J is written 85 a function of the electric field E as 

When |B| « 0, then |J| % -^|E| 
I I ) I I PO I ' 

and for |E| » 0, |J| % (|E|/EJ^/" 

This ^ — J relation is shown in Ggure 4.29 for diEerent values of po. Notice that the 

value po = 10"^^ is too large and for po = 10"̂ '̂  and po = 10"^^ the curves do not diSer 

much. 

The non-linear formulas in FluxSD are solved using the Newton Raphson method. 

For a good convergence of the iterative process is very important to choose an appropriate 

value of Po. Solution for the magnetic field and density current are shown in figure 4.30 

for diSerent po . The plots represent the profiles along the ^-axis at z = 0 and a; = 0. 

Observe the wrong profiles for large values of the resistivity po 10"^^ Qm. 
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Figure 4.29: E — J law with Jc ~ 2 x 10® A/m^, Ec = 10 3 V/m and n = 21, varying the 
initial resistivity po. 

The value of po depends on the parameters Ec and n of the material. The optimal 

value is determined by po < IQ^'^EcjJc ([34]). 

In old versions of fluxSD the definition of J (E) is characterized by the conductivity 

instead the resistivity value ci-(|E|) = The initial conductivity is then required 

(To( |E | ) — . In calculations with such characteristic gq = 10® S/m was enough for a 

good convergence. Observe in figure 4.30 that the result obtained for this value of ctq is 

similar to those calculated using the resistivity with po -C 10"® Jim. 
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Lot = tt/2 for fioHa = 3.5 T and / = 1T. 
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4.6 Conclusion 

In this chapter the FEM software FluxSD was utihzed to model the coupling eSect 

between superconductors when they are in presence of an external applied magnetic 

held. 

DiEerences in the current and held profiles for slabs and strips due to demagnetiza-

tion effects were found ag expected, probing the capability of the FEM method for 3D 

modelling. 

Under a sinusoidal magnetic held the increment of the coupling current with increa-

sing the frequency / waa observed. The evolution of the coupling current through a cycle 

time waa explained for strips and slabs at different applied fields. An approximation to 

the critical couphng frequency /c kr the onset of coupling was given for different held 

amplitudes. It was observed in both slab and strip geometries, that increasing /loJfa the 

coupling starts at a lower / . 

At the end of the chapter the couphng effect was investigated for slabs, strips and 

square superconductors in an applied field with constant ramp rate. The critical coupling 

held Ac was given at different values of the applied held including from low penetration to 

saturation. For the slab and the square superconductor it was found a strong dependence 

of Be on the applied Geld. For such geometries Be increases with to a maximum 

at the held of total penetration then decreases to a constant. However, in the 

strip Be increases slower with //o^o and after having reached total penetration there is 

only a small decrease to a constant. Below partial penetration the strips couple before 

than the slab and square superconductors, however when they are saturated the total 

couphng starts before in the slabs. 



C h a p t e r 5 

2D Model l ing of coupl ing between 

superconduc to r s of f ini te length 

5.1 Introduction 

Minimization of AC losses in high temperature superconductors is one of the main task 

required for their application in electric power devices. In order to reduce the hysteresis 

losses and have better stability properties, superconductors are made of thin filaments 

imbedded in a normal matrix. Such strategy is only elective if the Glaments remain 

uncoupled when the applied Geld is changed at a suGiciently slow ramp rate. However 

when the ramp rate of the field is increased, the Eeld penetrated into the matrix produces 

an emf which can drive the current through the normal matrix. There is a critical ramp 

rate of the applied field such that the emf is suSicient to drive the critical current of 

all the filaments across the normal matrix and, therefore, in terms of ac losses the 

multifilamentary superconductor behaves as a single larger one [38, 41]. 

In spite of conceptual understanding of the coupling phenomenon, theoretical pre-

diction for critical coupling Geld rate is limited to the case of fully saturated infinite 

slabs where demagnetization eEects are negligible, whereas quantitative solution for the 

coupling eEect is lacking between partially penetrated superconductors or with Snite 

geometrical dimensions. 

In chapter 4, finite element method software FluxSD [15] is demonstrated to be 

successfully appHed for such problems. However integrations methods with simpler for-

mulations such as Brandt's formulation for 2D models (see chapter 2) would be desirable 
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Figure 5.1: Geometry of the slab (a) and the thin disc (c). Model of a sandwich of two slabs 
(b) and two thin discs (d) with a normal matrix in between. The contour shown in (b) indicates 
the flow pattern of the induced current when the conductors are coupled. 

for an easier and faster implementation. In this chapter extension of Brandt's formu-

lation for the sheet current in thin finite superconductors [32, 8] is used to investigate 

the couphng effect. The formulation consists of the solution by time integration of a 

non-linear diffusion equation for the stream function of the induced sheet current g. In 

this way the 3D problem is reduced to a 2D problem and it is not necessary to take into 

account the boundary conditions. 

The formulation is applied to the two limiting situations shown in figure 5.1, thin 

discs and infinite slabs, in order to obtain a quantitative understanding of the coupling 

between finite superconductors through a normal matrix (light grey region in figures 

5.1.(b) and (d)). Results will be given not only for saturated superconductors but also, 

and for the first time, at applied fields that penetrate the superconductors only partially. 

Calculations modifying some of the parameters such as the resistivity of the normal 

matrix, the critical density current or the distance between superconductors, were carried 
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out to investigate their inGuence in the coupling phenomenon. For all the cases an 

approximation of the critical field ramp rate will be given. 

At the beginning of this chapter, the formulation is explained and validated for iso-

lated thin discs and inGnite slabs. Then, the results for the coupling effect are discussed 

with the help of the field and current density profiles, comparing the two geometries and 

for diSerent values of the parameters influencing the coupling eEect. 

5.2 Numerical formulat ion 

The induced current in superconducting in&nite slabs and thin discs of Gnite length in 

ac magnetic field is conHned in the plane perpendicular to z along which the magnetic 

field is applied. 

For an inGnite slab, is independent of z since is the same everywhere along 

the direction of the apphed field and can be expressed by a scalar function ?/), the 

local magnetization, as 

J(a;, 1/) == - z X Vg(a;, i/) = V x i/) (5.1) 

The lines ;/) — coMat are the streamhnes of the current and divJ = 0 is guaran-

teed. 

For a thin disc of thickness d a, it is necessary to use the sheet current deGned 

as J(a;, %/, z)dz. As <7(3;, ?/) is independent of z, it can be expressed as 

<7(3;, ?/) = —z X Vai(2;, 1/). When d —» 0, the sheet current density (7(3;, ?/) = J (f = f / a d 

is Enite and a deEned critical sheet current density of dc — fc /o d for a given transport 

critical current fc-

From Biot-Savart law the potential vector can be written for a current density J (z) 

as 

H(r) = X I = 1 1 X J(OdV (5.2) 

In the case of thin discs, the magnetic field at r — (z,?/) generated by current loops 

lying in the a;i/-plane and centered at r' — (a;',?/') is obtained from (5.2) and (5.1) as 
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H ( r ) = i / V j ^ X ( V X % ( r ' ) ) d V ' 

= hl^' ("»!''') • ̂ l7^) " ( '̂ • 
/ 9 ( r ' ) ^ ( v . ( v ' j ^ ) ) d V (5 .3) = Z-

47r 

Similarly for the inAnite slab, from (5.2) and (5.1), the magnetic Geld at r — (a;, ?/, 0) 

generated by sheet current cyhnders of inGnite height along the z-axis is 

H ( r ) = •— [ V-j -7 X (—z X V'g{r')) d^r' 
47r y |r - r'l 

' f M i v g d ' r ' 
47r ./ | r — r \ 

v \ 1 /• „ „/ 
j2 / 

= - ^ z y 2 V ' h i | p - p ' | V ' ^ d Y = ^ z y 2 p ( p ' ) V ' V ' h i | p - / | d Y 

= z y ^ ( / ) ( ^ ( p - / ) d ^ / (5.4) 

where p = (a;, i/) and p' — (a:% ?/') 

Therefore, we have obtained a relation between the stream function ^(a;,;/) of the 

induced current and the Geld distribution by a scalar function Q(a;, i/, a;', y') = Q(r, r') 

ag 

Hz(r) = H a + / Q(r ,r ' )g(r ' )d^/ (5.5) 

Equation (5.5) can be inverted and therefore for a given Geld distribution the stream 

function can be found ag 

9(r) = / [^z(rO - d V (5.6) 

with 
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1 1 thin disc 47r |r—r̂ p 
(5.7) 

(̂ (r — r') inHnite slab 

The electric field is given by a non-linear resistivity E = p(|J|) for the infinite slab 

and by the sheet resistivity E = pdo-j) in the case of the thin disc, but it can be expressed 

as a uniGed function of the stream function g, 

E ^ - p ( | V g | ) z X Vg (3; ,^) (5.8) 

Since B = zB^ = —V x E, then 

Bz = V.p( |Vp | ) (Vp) (5.9) 

Substituting in (5.6) taking the time derivative, the final equation of motion for 

g(a;, 2/) is reduced to 

g(r,t) = / Q 
J A /̂ O 

d r' (5.10) 

For a given time varying applied field (() and an initial distribution of the stream 

function p(r, to), the evolution of the stream function can be determined by solving 

equation (5.10). 

5.3 Numerical solution 

Numerical solution of g can be obtained readily by time integration, tabulating the 

functions in a grid with points = [a:,,!/:] covering the total area transverse to the 

applied Geld. From g, ^ = (§g)i and = - ( ^ ) i are obtained, 

according to (5.5) and (5.1). Note that the kernel is calculated only once for a particular 

geometry but every time step spatial derivatives must be computed. 

One of the main points in this formulation is the evaluation of the kernel for the 

diagonal elements which are singular according to (5.7). For thin discs, as shown in [32], 

the field in a point (a;, t/, z) of a tiny current loop with center in (0,0,0) and axis along 

z is: 
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Hence, the constant function Q(r, r') for all the grid points is given by : 

= (5-12) 

where (f is the distance between r and r'. 

Approximating Q by (5.12) and using its Fourier expansion with as many points ag in 

the spatial grid, Brandt ([32],[8]) shows that the singularity is avoid without signiGcant 

errors. The expression for Q is 

^ E E sin(A;̂ a;) sin(A:̂ 2/) sin(A;^a;') sin(A:y) (5.13) 

This kernel can be evaluated with better accuracy and without singularities for dia-

gonal elements by using current loops uniformly distributed over the whole cell [42]. 

In the case of the slab where Q(r, rQ = (5(r—r'), since (^(r—r')(^(r—r'') d^r'd^r" = 

1, then ^0 = i5(r —r') and the 6nal equation (5.10) is simpliRed to a local equation 

without any singularities: 

g ( r , t ) - V . ( ^ V p ( r , t ) ) - ^ . ( ( ) (5.14) 
\/Zo / 

Arbitrary non-linear resistivity p = jG/ J can be inserted in this formulation. In this 

work power-law E — J characteristic for superconductors is used, i.e. = Ec - (J/Jc)" 

with the parameters Jc = 10^ Am"^, Ec = 10"^ and it = 21. For the thin disc, 

the sheet critical current density is CTg = 10^ Am"^, corresponding to d — 10"'̂  m for 

Jc = 10^ Am"^. To model the coupling behavior between superconductors (Ggures 5.1.(b) 

and (d)), a normal conductor is considered with a constant resistivity ,e.g. that of copper 

at liquid nitrogen temperatures p = 2 - 10"^ dm and the correspondent sheet resistivity 

of Pa = p/d = 2 -10"^ Qm. 
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5.4 Validation 

The formulation wag apphed to two simple situations for validation: a square thin disc 

and a square infinite slab (Hgures 5.1.(c) and 5.1.(a) respectively). Because of symmetries 

the results shown below correspond to a quarter of the total model, 0 < a : < a , 0 < ? / < 6 , 

with 2o = 26 = 4 mm being the width and the length of the square. 

The 6eld profiles for the slab shown in 6gure 5.2 are similar to Bean's model [5], 

where the Geld decreases linearly in the penetrated area, from the edges to the center, 

with slope given by V x z / f = J. Another characteristic to compare is the Eeld value 

at which the magnetic Aux haa penetrated to the center of the slab. According to 

Bean's model this value is calculated as = 0.25 T for an slab of inGnite 

length, compared to — 0.27 T for the square slab shown in Hgure 5.2. Further 

increase of the applied Geld results in a Gnite Geld at the center. 

The stream function g of the induced current has the shape of a typical roof. The 

streamhnes, g = const., represent the hnes of the current flow which is restricted to the 

penetrated area (Ggures 5.2.(a) and 5.2.(b)). As expected, the lines are straight and turn 

sharply in the comers to paas by 90° from one direction to the other. 

For the thin disc (Ggure 5.3) the Geld proGle is non-linear. The streamhnes have 

a rectangular shape in the penetrated part where the current is cr — (7̂  and become 

circular in the inner part unpenetrated by the Gux. Current Gow in Geld free regions is 

due to the zero thickness of the disc similar to that in a inGnite thin strip. At the value 

2:̂  0.02 T the disc is fully penetrated, which is about double of the theoretical 

value for an inGnite strip [25], as shown in the corresponding Geld proGle along the 

lines a; — 0 and 2/ = 0 (Ggure 5.3.(c)). For a longer superconductor, 6 == 1.6mm, (Ggure 

5.3.(d)) the saturation Geld is reduced to that predicted for inGnite strip. The signiGcant 

scattering at corner due to the approximation of Q does not seem to affect the result 

within the conductor. 
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Figure 5.2: Streamlines of the induced current in a square slab for the applied fields noHa 
0.16T (a) and = 0.4 T (b), and corresponding magnetic field profile (c). 
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Figure 5.3: Streamlines of the current in a square disc, for applied fields /UoBa = 0.01 T (a) 
and /Jo-H'a = 0.019 T (b), and corresponding magnetic field profile (c). Magnetic field profile 
for a thin disc of length 8 mm (d). Analytical field profile for a infinity disc of the same width 
is shown (•). 
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5.5 Resul ts and comments 

As the formulation applies satisfactorily to isolated thin discs and slabs as shown in 

previous section, it is reasonable to extend it for modelling the coupling between two 

superconductors through a matrix. It is sufBcient to consider the non-hnear resistivity in 

the superconducting region and a constant resistivity for the normal conductor region. 

Then taking 

E — .Be - (J/Jc)" superconducting region 
XlVgt) = { (5.15) 

constant p matrix region 

and given an initial distribution of the stream function (/(r, = 0, the evolution of 

the stream function can be determined by solving equation (5.10). 

We have performed the calculations for slabs and thin discs with width 2a = 1.4 mm 

and length 26 = 8 mm with a normal matrix w — 0.3 mm wide. Again, due to symmetries, 

only the quarter [0,2a + d/2] x [0,6] of the model wiU be used (see figure 5.1). 

5.5.1 Slab 

Figures 5.4 and 5.5 show the couphng phenomenon produced at diSerent ramp rates of 

the field B. Plots are represented for two possible states: partial penetration, ^ 

(hgure 5.4) and full penetration, > jifp (Egure 5.5). At partial penetration and small 

ramp rate of the appHed Geld (B = 0.63 Ts'^) the slabs are uncoupled (Ggure 5.4.(a)). 

Their behavior is similar to that for two independent slabs where the current is flowing 

inside the superconductors in rectangular loops only in the penetrated area. At higher 

ramp rate (B — 100 Ts"^) the current starts to cross the matrix, there is no current 

returning within the same superconductor, and the center of the matrix is shielded from 

the magnetic Geld (Ggure 5.4.(b)). The total coupling current is equal to the total current 

along the slab in the penetrated area. 

Similarly, increasing the applied Geld the slabs remain uncoupled at low A (Ggure 

5.5.(a)) and coupled at high B (Ggure 5.5.(b)). It should be noticed that the full pene-

tration Geld of coupled slabs is double than that for uncoupled ones. 

The Geld proGle along a;-axis at %/ = 0 is presented in Ggure 5.6.(a). For a given 

applied Geld, with increasing B the Geld in the matrix decreases. Notice that for a small 
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Figure 5.4: Streamlines and magnetic field profiles of partially penetrated slabs in an applied 
field fioHa = 0.04 T ramping at S = 0.631 (a) and B = 100Ts'^ (b). 
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Figure 5.5: Streamlines and magnetic field profile of fully penetrated slabs in an applied field 
IJ,oHa = 1T ramping at B ^ 0.631 Ts"^ (a) and B = 100Ts"^ (b). 
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Figure 5.6: Magnetic field profile along the x-axis in the middle of the slab (a) and the thin 
disc (b) at different ramp rates of the applied field. 

applied field — 0.04 T), at total coupling the field decreases to zero in the normal 

matrix, however for fully coupled saturated slabs (/io^a = 1-59 T) the field reduces to a 

finite value. 

In figure 5.6.(a) we can see that dX B = 25Ts~^ for jioHa — 0.04 T the slabs are fully 

coupled, whereas for = 0.1 T clearly only partially coupled and for /Ĵ oHa — 1.59 T 

nearly fully coupled, indicating a higher Be for /xo-^a ~ l^oHp. 



CHAPTER 5: 2D Modelling of coupling between superconductors of finite length 110 

X, mm 

(a) 

0.012 ' 

D.004 

0.000 

X, mm 

(b) 

Figure 5.7: Streamlines and magnetic field profile of partially penetrated thin discs in an 
applied field ramping at 5 = 1 Ts~^ (a) and B = 100 Ts~^ (b) to HoHa = 6.325 • 10"^ T. 

5.5.2 T h i n disc 

As expected the coupling between thin discs increases with increasing B (figures 5.7 and 

5.8). In contrast to slabs, the field profile is non-linear in both uncoupled and coupled 

cases. It should be noted that the applied field is smaller than that used for the slabs, 

due to a smaller full penetration field (0.02 T). At partial penetration, the field free 

region of fully coupled discs also has induced current,due to the zero thickness of the 

discs, which flows across the normal matrix from one disc to the other (figure 5.7.(b)). 

For higher fields it is difficult to model the coupling since it would require a more fine 

mesh to represent with accuracy the field profile for such cases. 
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Figure 5.8: Streamlines and magnetic field profile of totally penetrated thin disc in an applied 
field ramping at B = lTs~^ (a) and B = 100 Ts"^ (b) to i^oHa = 0.013 T. 
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The Held prohle along a;-axi8 at the center (?/ = 0) is shown in hgure 5.6.(b). Similarly 

to the slab, the reduction of the held in the normal conductor with increasing / is 

observed. However, a difference with the slab, notice that the held in the matrix is not 

constant and changes from a positive gradient to a negative one as the superconductors 

become coupled. 

5.5.3 Cri t ical coupling field Be 

The objective of the modelling presented in this chapter is to obtain quantitative infor-

mation about the coupling phenomenon for the whole range of the apphed held. It is 

particularly important for practical apphcations the obtention of the critical couphng 

field rate Be, dehned aa the ramp rate of the held which induces all the current in the 

superconductor to cross through the matrix to the other superconductor. The only theo-

retical model developed to predict is given for two fully penetrated infinite slabs [41] 

where 

B, = 16/)Jca/(26)^ (5.16) 

We have now obtained for the first time a quantitative determination of B^ for par-

tially penetrated slabs. 

In hgure 5.9, the coupling current integrated at a; = 0 along iZ-axis) is plotted 

against the apphed Geld and the ramp rate for discs and slabs. Given a particular 

the coupling current increases with B until the critical value Be is reached, then becomes 

constant with further increase of B. The level of full coupling current increases with the 

applied held before full penetration, and reaches saturation at ^ /̂ o^p-

At a hxed B there are differences in the prohles between slabs and thin discs. For the 

slabs there is a stronger dependence of the couphng on the applied held. The coupling 

current increases with the held and saturates at the value of the couphng current induced 

by that ramp rate. For the disc at low held the situation is diEerent, the current reaches 

the maximum value immediately as soon as the held is applied. 

The critical coupling held rate Be can be obtained identifying in hgure 5.9 when 

the couphng current reaches saturation for a given apphed held. For the slabs (hgure 

5.10.(a)). Be increases hnearly with the apphed held to reaxji a pronounced maximum 

of 190 Ts"^ just before full penetration. At higher helds beyond full penetration Be 

reduces to a constant value of Be % 34Ts"\ in agreement with that % 35 Ts'^ obtained 

with the formula (5.16) for saturated slabs. 
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(a) (b) 

Figure 5.9: Coupling current for thin discs (a) and slabs (b) as a function of the applied field 
and its ramp rates B. 

PoHg.T MoHa, T 
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Depth of flux penetration, mm 
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Figure 5.10: Critical coupling filed rate Be as a function of the applied magnetic field for a 
slab (a) and for a thin disc (b). Corresponding Be as & function of the flux penetration depth 

(cX 
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For think discs, the critical coupling Held rate also increases linearly with the applied 

held at low helds until reaches saturation of Be = 40 when is fully penetrated. 

In hgure 5.10.(c) the couphng Geld is compared between slabs and thin discs as a 

function of depth of held penetration. As expected the coupling between thin discs is 

produced much sooner at small penetration, however for total penetration at high helds 

the critical current held rates are similar. 

5.5.4 Coupl ing cur ren t dur ing a r a m p field oscillation 

In most of practical applications, superconductors are in oscillating magnetic Gelds. As 

it was shown in previous chapter, the time evolution of the coupling eSect in sinusoidal 

Gelds is complex due to the continuous variation of dB/dt. To consider a simpler model 

and to continue with the calculations shown in previous section, here it will analyzed the 

couphng eEect during a cycle of a ramp Geld, The applied Geld, plotted 

in Ggure 5.11.(b), is raised to a maximum higher than total penetration Geld 

then is reduced to — & G d returns to zero to Gnish the cycle time. 

The coupling current profiles are shown in Ggure 5.11. Since the time intervals vary 

at diEerent ramp rates, the results are plotted against t - B. The coupling current 

increases in time to saturate before the peak Geld According to Ggure 5.10.(a), 

at I B 1= 25T/s slabs are totally penetrated only at low Gelds, hence the coupling 

current at the beginning of the cycle is equal than that for higher ramp rates, however 

at higher Gelds increases slower to saturate later. At | .8 |= 158.5 T/s, the slabs are 

totally coupled for the whole range of the apphed Geld (see Ggure 5.10.(a)) and therefore 

the coupling current increases faster to saturate when the maximum 

couphng current. Consistent with the values of in Ggure 5.10.(a), observe in the 

proGle for | B |= 63.1 T/s that at about /Zo-Hp the couphng current is not maximum yet, 

however for higher Gelds the slab are fully coupled. 

The coupling current decreases with reducing the apphed Geld to reach a minimum, and 

then remains constant until the apphed Geld has decreased to — N o t i c e that for 

high ramp rates the minimum is reached when the Geld has reduced from the 

positive peak. Observe that the proGles from peak to peak become linear for high ramp 

rates. 

With respect to the applied Geld in the matrix shown in Ggure 5.11.(b), it is observed 

that the Geld increases with reducing B as expected. For a low ramp rate, the matrix is 

shielded at the beginning and then starts to increase with the applied Geld since the slabs 
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Figure 5.11: Coupling current evolution (a) and magnetic field in the normal matrix (b) for 
a cycle time. 
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Figure 5.12: Profile of the relative penetrated flux, as given in the text. 

are not coupled. For higher B, since the slabs are totally coupled, the field is shielded 

before total penetration field, and then increases at the same rate as the applied field. 

Notice that after field reductions the field in the normal matrix continues increasing for 

a period of time before reducing with the same slope as the apphed field, leading to field 

trapped in the normal matrix when the applied field has returned to zero. 

A detailed plot of the first quarter of the cycle time is seen in figure 5.12. To compare 

the coupling for different ramp rates, it is represented the relative penetrated flux, AB 

in the normal matrix, defined as the penetrated fiux divided by the applied field for 

i < Hp/H, that is, before fuU penetration. For t > Hp/H (full penetration), having into 

account that a increment of the applied field beyond full penetration leads to a finite field 

in the normal matrix, the relative penetrated flux is defined as (B—{jj,oHa—fJ-oHp))/iJ,oHp. 

Observe that the field increases more for low ramp rates since the slabs are not totally 

coupled. The field decreases after total penetration situation according to figure 5.10.(a) 

where it was seen a reduction of Be after total penetration. 
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Figure 5.13: Magnetic field profile along tfie 

x-axis i n the middle (y = z = 0) oi the slab at 

fioHa = 0.158 T and ramp rate 100 T s ~ ^ 

Figure 5.14: Magnetic field profile along the 

x-axis in the middle {y — z = 0) of the th in disc 

at fJ-oHa — 0-01T and ramp rate 25.119 Ts~^. 

5.5.5 Inf luence of t h e length of t h e supe rconduc to r 

It is known by theory (equation (5.16)) that for infinite saturated slabs in the critical 

state, the critical field ramp rate increases with reducing the length of the supercon-

ductor. In this section Be is calculated numerically for infinite slabs and thin disc of 

different lengths including partial and total penetration cases. The objective is to hnd a 

relation between length and Be and compare it with the theoretical prediction. 

Observe first the plot of the magnetic field profiles along x-axis in figures 5.13 and 

5.14 for the slab and thin disc respectively with lengths 4 and 8 mm. At the same ramp 

rate B, the field in the normal matrix differs for the different lengths indicating different 

coupling behavior. Whereas for the longest slab the field is almost zero in the normal 

matrix since it is almost fully coupled, for the short one, has not decreased so much 

(figure 5.13) and the coupling is only partial. The same effect occurs for the thin disc 

(figure 5.14) where it is observed that the field has decreased more for the long one. We 

can confirm therefore the expected increment of Bf. with reducing the length in both 

geometries. 

The quantitative values of Be are shown in figure 5.15. (a) for slabs at different applied 

fields. The increase of Be with reducing the length is found for the whole range of the 

applied field. To compare with formula (5.16), in figure 5.15.(b) it is plotted 5c(2&)^ as a 

function of the applied field. For small fields just before full penetration, exactly inverse 
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Figure 5.15: Critical field ramp rate as a function of the applied magnetic field for slabs of 
different lengths (a). To compare with formula (5.16), it is shown Bc{2b)'̂  (b). 
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Figure 5.16: Critical field ramp rate as a function of the applied magnetic field for thin discs 
of different lengths (a). To compare with formula (5.16), it is shown Bd^b)'^ (b). 
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quadratic dependence of on the slab length is found, the same as in formula (5.16). 

At higher fields, H ifp, the dependence varies a little but is almost ~ 1/46^. 

For the thin disc, B^ is shown in figure 5.16. As expected, the critical ramp rate of 

the field is higher for the short thin disc. However, a difference with the infinite slab, 

there is not a inverse quadratic relation (figure 5.16.b). 

Slabs with length b <2a 

So far we have studied slabs with different lengths 26 such that b )#> 2a. In such cases, 

at saturation field. Hp, the slab is totally penetrated along the width (figure 5.17.(a)). 

However, when the slab is shorter than wide, the field reaches the center first along the 

length as it is shown in figure 5.17.(b), and therefore current will fiow along the slabs in 

the ^-direction only in a small region. 

(a) (b) 

F igure 5.17: Magnetic field profile of saturated slabs in and magnetic field ramping at 

3 9 8 . 1 0 7 t o fJ.oHa = 0.251 T w i th length 2b = 4 m m (a) and 2b = 1 m m (b). 

The critical ramp rate as a function of the applied field is seen in figure 5.18. For 

comparison with long slabs it is also represented an example of 6 > 2a, 2b = 4 mm. 

Similarly to the plot shown for long slabs in figure 5.15, Be increases linearly with 

the applied field to reach a maximum just before full penetration, and further increase 

of the applied field beyond full penetration results in a reduction of Be to a constant 

value (figure 5.18.(a)). As the length of the slab is reduced the total penetration is 
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F igure 5.18: Cr i t ical f ield ramp rate as a funct ion of the applied magnetic field for slabs of 

different lengths (a). To compare w i t h formula (5.16), i t is shown Sc(26)^ (b). 

produced before, hence the peaks in the curves are reached at lower fields. Compare the 

pronounced jump after the peak for 26 = 4 mm with the reductions on Be for shorter 

slabs with b < 2a. 

With respect to the influence of the superconductor length on Be, it is seen that 

at low fields when the slabs are only partially penetrated, there is a inverse quadratic 

relation between Be and the length (figure 5.18.(b)) as it was found for longer slabs. 

However for saturated slabs that relation is ^ 1/25 for b < 2a & difference with longer 

slabs (observe in 5.18.(b) the case 2b = 4mm). 

For a more precise analysis of the behavior of fully coupled slabs observe the field 

and current profiles shown in figure 5.19 for a short saturated slab with 26 = 1mm. 

The streamlines of the induced current (figure 5.19.(a)) indicate that all the current is 

flowing in the y direction along the slab in the outer part and then turns to cross the 

normal matrix. Since the width of the carrying current part in the y-direction is equal 

to half length of the superconductor 6, the coupling current in the matrix becomes very 

large and therefore it has to increase in the outer part as it is shown by streamlines in 

figure 5.19.(a). As a consequence of that, notice that the field in the normal matrix has 



CHAPTER 5: 2D Modelling of coupling between superconductors of finite length 121 

X. mm 

0U2 

(a) (b) 

Figure 5.19: Streamlines (a) and magnetic field profile (b) for a penetrated slab of length 

26 = 1 mm. 

decreased more than in the superconductors when they are fully coupled 5.19.(b). With 

reducing the length of the slab the coupling current in the normal matrix becomes higher 

and therefore more voltage is required, and Be increases as it was seen in figure 5.18. 

5.5,6 Inf luence of Jc on t h e critical coupl ing field r a t e 

In this section the coupling effect is investigated for different values of the critical current 

density. For infinite saturated slabs, equation (5.16) establishes a proportional correspon-

dence between this parameter and the critical ramp rate Be- For the investigation we 

have considered values of Jc = 10® and 2 • 10® Am~^ for the slab and (Jc — 10® and 

2-10® Am~^ for thin discs. 

According to Bean's model, for infinite slabs the field penetrates into the supercon-

ductor with a slope given by V x H = J, and therefore the depth of fiux penetration 

is inversely proportional to the critical current density. In figure 5.20, with the field 

plotted along x-axis at y = 0, it is seen that the penetration in the superconductor with 

Jc = 10® Am~^ is double than that for Jg = 2 • 10® Am"^. 

At low applied fields (figure 5.20.(a)), with increasing the ramp rate the field in 

the matrix part has been reduced to the same value, indicating independence of the 

coupling effect respect to Jc- However, at applied fields higher than the full penetration 
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field (figure 5.20. (b)), at the same ramp rate the slab with lower Jc is already totally 

coupled whereas for double Jc there is still current returning inside the slab. 
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cd'̂  
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J = 2 - 1 0 ® A - m - 2 

0 4 0 8 

X. mm 

(a) 

1̂  

I -

— Jc=10^A-m-2 
••• Jp=2-10 ̂  A-m-2 

X. mm 

(b) 

F i g u r e 5 .20: Magnetic field profile along the z-axis in the middle (y = 2 = 0) of the slab at: 
(a) jJLoHa = 0.1 T and ramp rate 39.811 Ts~^, and (b) = I T and ramp rate 25.119Ts"^. 

For thin discs, the depth of flux penetration increases with reducing Uc as it is ex-

pected (figure 5.21). Similarly to the slab, the field along a;-axis in the normal matrix 

region is independent of CTc (5.21.(a)) at low fields, but varies at higher fields (figure 

5.21.(b)). 

Detailed evaluation of the influence of Jc at different applied fields is represented in 

figure 5.22 where Be is plotted as a function of the applied field. Observe for the slab 

(figure 5.22.(a)), at low fields before total penetration, the unexpected independence of 

the critical ramp rate on Jc- However at higher fields, just after the superconductor with 

Jc = 2 -10® Am~^ has reached full penetration, there is a dependence on Jc- Specifically, 

iic is almost double for Jc = 2 • 10® Am^^ than for Jc = 10® Am~^ when the slabs are 

saturated in agreement with formula (5.16). 

For the thin disc (figure 5.22.(a)) similarly to the slab. Be is independent of Jc for 

low fields but as the applied field is increased it is observed a stronger influence being 

Be at full penetration double for (Tc = 2 • 10^ Am^^ than for ac = 10^ Am~^. 
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Figure 5.21: Magnetic field profile along the a;-axis in the middle (y = z = 0) of the thin disc 
at: (a) fxoHa — 5.024 • 10"® T and ramp rate 39.811 Ts~^, and (b) /xo-ffa = 0.02 T and ramp 
rate 63.096 Ts'^^. 
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Figure 5.22: Critical field ramp rate as a fimction of the applied magnetic field for different 
critical current density Jc of the slab (a) and for different CTc of the thin discs (b). 
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5.5.7 Inf luence of t h e ma t r i x resist ivi ty of t h e supe rconduc to r 

Another parameter which is expected to affect to the coupling effect is the resistivity of 

the normal metal between the slabs and the sheet resistivity of the normal metal between 

thin discs. According to equation (5.16) the critical field ramp rate Be is proportional 

to the resistivity. Figures 5.23 and 5.24 show the field profiles along z-axis for partial 

penetrated slabs and thin discs respectively. As expected, it is seen less field in the normal 

matrix and therefore more coupling with reducing the resistivity in both geometries. 
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p=2-10 ' a m 

9 P=410 n m 

p=8-10nm 

X, mm 

I -

E 

oa'' 

= 2 - 1 0 

p=4 10 O m 
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Figure 5.23: Magnetic field profile along the 

z-axis i n the middle (y = 2; = 0) of the slab at 

yUo-̂ a = 0.1 T and ramp rate 39.811 Ts~^. 

Figure 5.24: Magnetic field profile along the 
z-axis i n the middle (y = z = 0) of the 
th in disc at fioHa = 6.325 m T and ramp rate 
25.119TS-1. 

The exact values of Be at different applied fields fioHa are presented in figure 5.25. (a) 

for the slab. At any applied field, if the resistivity of the normal metal is reduced, the 

total coupling produces at a lower ramp rate. The same situation is found for the thin 

disc, as shown in figure 5.26.(a). 

In relation with equation (5.16), the critical ramp rate is plotted divided by the 

resistivity in figures 5.25. (b) and 5.26. (b) for the slab and thin disc respectively. For 

the thin disc, B^ is directly proportional to the resistivity of the normal matrix. For 

the infinite slab we found the same relation for both partially penetrated and saturated 

slabs in accordance with the formula, only for applied fields just after full penetration, 
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Figure 5.25: Critical field ramp rate for a slab as a function of the applied magnetic field for 
different resistivity of the normal matrix (a). To verify equation (5.16), the critical ramp rate 
is divided by the resistivity (b). 
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Figure 5.26: Critical field ramp rate for a thin disc as a function of the applied magnetic field 
for different resistivity of the normal matrix (a). To compare to equation (5.16), the critical 
ramp rate is divided by the sheet resistivity (b). 
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the increment of Be with increasing p is found more pronounced. 

5.5.8 Inf luence of t h e ma t r i x w id th 

According to equation (5.16) given for infinite saturated slabs there is not influence of 

the matrix width on the critical magnetic filed ramp rate Be- However numerical results 

obtained here for w = 3 mm and w = 5 mm show differences even for the infinite slab, 

as it can be observed looking at the plots of the field in figures 5.27 and 5.28. Notice 

that the field in the normal matrix has decreased more for slabs or thin discs separated 

by thinner matrices indicating that the superconductors couple easily. 
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0.00 ' i" ' • I 
0,5 1.0 
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0.0 0.5 1.0 

X, mm 

Figure 5.27: Magnetic field profile along the 

z-axis in the middle {y = z = 0) of the th in slab 

at noHa = 0.1 T and ramp rate 39.811 Ts"^ . 

Figure 5.28: Magnetic field profile along the 
z-axis i n the middle (y = 2; = 0) of the 
th in disc at j ioHa = 6.325 m T and ramp rate 
25.119TS-1. 

This effect is observed not only for low fields but for the whole range of the applied 

field, as shown in figure 5.29. For both slab and thin discs, the behavior of B .̂ as a 

function of the applied field is found similar for the different matrix widths, but always 

requiring a higher B^ for the model with wider matrix. 
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F igure 5.29: Cr i t ical f ield ramp rate as a funct ion of t l ie applied magnetic field for different 

widths of the normal mat r ix between slabs (a) and th in discs (b). 

5.6 Conclusion 

In this chapter an integral method was described for calculating the ac response of 

thin discs and infinite slabs of finite length. This formulation was extended to study 

the coupling between two superconductors through a normal matrix. Calculations were 

carried out in order to obtain for infinite slabs and thin discs, as a function of the 

applied field. The results not only show good agreement with the theoretical prediction 

for fully penetrated slabs, but also provided previously unknown correlations for partially 

penetrated superconductors. In the case of the slab, we have found a strong dependence 

of the Be on the field penetration at low fields. Be increases linearly with the applied 

field until the slab is saturated, then reduces to a constant equal to the value given by 

theory. For the thin disc, although Be also increases with the applied field, it does not 

reach such a high peak as the slab. Although it was expected a lower Be for thin discs 

due to demagnetization effect, for high fields we found similar values in both geometries. 

This is due to the increase in the resistance between the discs compared with the slabs. 

It should be noted that the situation is the reverse for twisted conductors, where the 

coupling current flows along the direction of the applied field. 
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Quantitative analysis of the inSuence on the critical coupling Geld rate of parameters 

such as the critical current density, the length of the superconductors and the normal 

matrix resistivity, waa given. Whereas results varying such parameters showed an agree-

ment with theoretical prediction for inEnite saturated slabs, it wag found that the width 

of the normal matrix influences Be in disagreement with the independence between both 

parameters expected by theory. 

Despite the simphcity of the formulation it has been very elective for modelling both 

geometries considered here. Further work could be done in order to refine the formulation 

and apply it to Gnite superconductors of finite height. 



Chapter 6 

Further work and recommendations 

Integration formulation can be used for modelling inGnite slabs and thin discs with finite 

length in an ac applied Geld, aa it was shown in chapter 5. Since in both geometries 

the induced current is restricted to a plane, it is possible to obtain the integral equation 

for the stream function g of the current density = —z x Vg(a:,2/)) satisfying 

divJ = 0. 

The same formulations could be extended to model superconductors with Gnite di-

mensions proved that the induced current has not component in the direction of the 

applied Geld and therefore the current is restricted to a plane. Figure 6.1 shows the 

geometry of the superconductor indicating the proGle of the induced current. 

Ha 

X 

y - • 

Figure 6.1: Sketch of the induced currents in a finite superconductor under an ac applied 
Geld. 



CHAPTER 6: Further work and recommendations 1 3 0 

The profile of the different components of the induced current in the xj/-plane a t 

z = 6/2, being 26 = 10 mm the height of the superconductor, was calculated wi th 

FluxSD and is shown in figure 6.2. Observe that the z-component of the current is 

negligible compared to the other ones. 

(a) (b) (0) 

F i g u r e 6 .2: Profiles of (a), Jy (b) and Jz (c), obtained w i t h FluxSD in a finite supercon-
ductor under an ac applied field. 

The stream function g{x, y, z) varies in z due to the finite height and relates to the 

current by 

(6.1) 1/, z) =: - z X V9(z, 2/, z) = 

Similarly to the infinite slab, it is necessary to find a relation between the stream 

function g and the field distribution given by a scalar function Q, corresponding to the 

magnetic field generated by sheet current cylinders of finite height. 

Tabulating the functions in a volume with points r = (x, y, z) covering the total 

volume the solution could be easily obtained. 
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Cu'O s2/s(e)M, Phys.B 64 (1986), 189-93. 

[7] C. Beduz, E. Cereda, B. Dutoit, C. M. Friend, G. F. de la Fuente, T. Hughes, L. Le 

Lay, R. Navarro, D. M. Spiller, Y. Yang, and S. Zanella, E/ec(ncaZ v4C (oss mea-

surements o/ (apes, pe7/o)7ne(f under (Ae B)i(e ^ura)i Aesearc/i programme 

^ylCf.4, Physica C 310 (1998), 67-70. 

[8] E. H. Brandt, 6'guare a)id rectangular (Am superconductors m a transuerse magnetic 

_̂ e/d, Phys.Rev.Lett. 74 (1995), no. 15, 3025. 

[9] E. H. Brandt and M. Indenbom, T^pe-// superconductor st)ip wtA current m a 

pe/pendzcu^ar magnetic yZefd, Physica Review B 48 (1993), no. 17, 12893-12906. 



BIBlfOGRAPEY 132 

[10] E.H. Brandt, 0 / ( A % c / m e a a m a peyyen(f%cu/ar mogne^ic yie/& 

s^ripg (mcf a/a6a, Phys. Rev. B 54 (1996), no. 6, 4246. 

[11] R. J. Creswick C. P. Poole, H. A. Farach, 5'uperco72(fuc(%w% Academic Press, Lon-

don, 1995. 

[12] W. J. Carr, .Ac /oaa ond macmacopz'c ^Aeon/ o/aupercoMd^ic(ors, Gordon and Breach 

Science Publishers, New York, 1983. 

[13] K. Fujiwara, T. Nakata, and H. Fusayasu, v4cce/era(%om o/con?;e/geMce c/iomc(ensit%c 
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