UNIVERSITY OF SOUTHAMPTON

SPECIFYING, REFINING AND VERIFYING REACTIVE
SYSTEM DESIGN WITH UML AND CSP

By
Muan Yong Ng
M.Sc.,B.Sc.(Hons)

A thesis submitted for the degree of
Doctor of Philosophy

Faculty of Engineering,
Department of Electronics and Computer Science,
University of Southampton,
United Kingdom.

March 1, 2005

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE DEPARTMENT

Doctor of Philosophy

SPECIFYING,VERIFYING AND REFINING REACTIVE SYSTEM DESIGN WITH
UML AND CSP

by Muan Yong Ng

The strength of Formal Methods (FMs) lies in having a mathematical framework
which supports a formal and logical approach towards specifying and verifying a system.
However, the formal mathematical framework which serves as the selling point for FMs is
at the same time an offset because it requires certain degrees of expertise and familiarity in
order to use FMs. For many years, many practitioners have been reluctant to adopt FMs
in their software development process simply because they are being put off by the steep
learning curve and the complicated mathematical theories involved. With this reason in
mind, we set off to find ways to improve the use of FMs and in this, we concentrate our
effort in seeking ways to combine FMs with the intuitive graphical modelling language in

order to reap the potentials offered by both.

In this thesis, we have developed a lightweight approach which uses UML to visualize
the syntactical behaviour of CSP. We have devised a way of mapping from UML to CSP
and used UML as an entry point for system designers who wish to utilize CSP in their
design. The results is encouraging in that we allow practitioners to use CSP without
having to write the CSP themselves. We feel that this is a great step forward for system
designers who are generally not familiar with Formal Methods but would wish to exploit
the full advantage of using Formal Methods. Furthermore, we have also developed a formal
semantics model which defines the behaviour of UML state diagrams in CSP. The model
is crucial for it provides us with a set of unified semantics to work on when we design a
system using the UML state diagrams. Our work enables practitioners to design in UML
based on a set of unified semantics and later use CSP to formally check the correctness of
their design. Lastly, we have developed a prototype tool which automatically takes UML
diagrams as input and generate CSP that can be fed directly into FDR for model-checking.

Contents

Acknowledgements

List of Symbols

Chapter 1 Introduction
1.1 Background
1.2 Motivations
1.3 Outline of Our Work
14 CSP,
1.4.1 Syntax and Notations
1.4.2 Behavioural Semantics
1.4.3 Refinement Notions
1.44 Tool Support
1.5 UML..................
1.5.1 Overview
1.5.2 Class Diagram
1.5.3 State Diagram
1.6 Related Work
1.7 Thesis Structure
Chapter 2 Visualizing CSP in UML
2.1 Introduction.
2.2 Sequential Behavioural View
221 Anexample..........
2.3 Parallel Composition View
2.3.1 Initial Design
2.3.2 Simple Parallel
2.3.3 Indexed Parallel/Interleaving
2.4 Refinement Assertion View
2.5 Tool Support
2.5.1 U2CSPw!
26 Example.
2.6.1 Lift System

2.6.2 Multiplexed Buffer

ii

ix

© © 3 3 O B B W NN R = oM

— R e e
0 g = O

2.7 DISCUSSION e e e e e e e 35

2.7.1 Why State Diagrams over Activity Diagrams? 35
2.7.2 Why Class Diagrams over Other Diagrams? 35
273 ForkandJoin. 36

2.8 Comparison with Related Work 38
2.9 Conclusion e e e 40
Chapter 3 Formalizing UML State Diagrams in CSP (Part 1) 41
3.1 Introduction. e 41
3.2 Formalization Execution Mode 42
3.3 Well Formedness Rules 43
3.4 Structure of the State Diagrams. 44
3.4.1 State Configuration 44
3.4.2 Transition Configuration. 46

3.5 Basic Concepts of Formalization 47
3.5.1 Single Transition 47

3.5.2 Multiple Transitions, 48

3.5.3 Tramsition Guard Lo 49
3.5.4 State Actions and Transition Action 49
3.5.5 Multiple State Exit Actions, 53

3.6 The Mapping Function 54
3.7 Formalization for Non-Composite State 55
3.7.1 Imitial State 55

3.72 FinalState e 55

3.7.3 Simple State e 58
3.74 Choice State e 60

3.8 Possible Extensions to Support UML Identifiers 62
3.9 Formalization for Composite OR-State 63
3.9.1 OR-State e 64
Chapter 4 Formalizing UML State Diagrams in CSP (Part 2) 66
4.1 Formalization for Composite AND-state 66
4.1.1 AND-state and Subregions 69
4.1.2 Nested States L e 72
4.1.3 Restriction on AND-states 81
4.14 AnExample e 81

4.2 Tool Support e 84
4.2.1 U2CSPv2 e e 84

4.3 Miscellaneous L Lo e 85
4.3.1 Priority of Transition 85
4.3.2 Interlevel Transition 86
4.3.3 Multiple State Machines 87

4.4 Comparison with Other Work 88

il

4.5 Conclusion e e e e e 90

Chapter 5 Formal Reasoning About The UML State Diagrams with FDR 93
5.1 Compact Disc Player 93
5.1.1 Specification L 93

5.1.2 Design 94

5.1.3 Refinement Checking with FDR 95

5.2 Barrier System 97
5.2.1 Modelling with State Diagrams and CSP 97

5.2.2 Verification with FDR 103

5.3 Conclusion e e 110
Chapter 6 Analysis 111
6.1 Comparison between Approach AandB 112
6.1.1 Table of Comparison 112

6.1.2 Experiment 113

6.2 Comparison between CSP and UML-CSP 117
6.2.1 An Experiment 118

6.3 Comparison between Our Formalization Model and the OMG Model . . . 121

Chapter 7 Conclusions 122
7.1 Conclusions v v v i i e 122
7.2 Further Works 124

Bibliography 125

Appendix A Examples 130
Al Lift System e 130
A.2 Multiplexed Buffer oo oo 132

Appendix B CSP Listing 134
B.1 Compact Disc Player e 134
B.2 Barrier System L e 136
B.3 Taking Classes (based on Approach A) 139
B.4 Taking Classes (based on Approach B) 140

iv

List of Figures

1.1
1.2
1.3
1.4

1.5
1.6

1.7
1.8

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

2.10
2.11
2.12
2.13

2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

Elements in a Class Diagram
A state diagram with two states.
An AND-state with subregions Sland S2.
Composite state S1 containing substates S2 and S3 and their corresponding
entry actions. L
State and Transition Actions. o L.
The exit action for all the substate will be carried out starting with the
inner most substate and finishes with the composite state exit action.

An example of conflicting transition. L.
Step Execution.

Representing SKIP and STOP in UML.
Mapping CSP to UML.
An example of representing CSP internal and external choices in UML.
Representing “P=Q O R” and “P=Q M R”.
Representing “P(i) = Q@+ 1)” in UML
A simple counter. L
An initial approach to visualize the parallel composition of CSP.
Initial attempt to visualize parallel composition involving more than two
PLOCESSES. « « v v v e v e e e e e
Visualizing the parallel compositionin CSP.
Visualizing Figure 2.8 using a better alternative.
Modelling in UML (a) Indexed Parallel, (b) Indexed Interleaving
Visualizing CSP refinement assertion in UML
The tools involved in generating CSP specification from a UML model for
model checking.o
An example of a UML model in the Rational Rose Environment.
State diagram for (a) lift (b) floor door and (c) emergency button

The parallel composition between the CSP Processes
The refinement assertion Lo
Modeling the abstract behaviour of the System.
An overview of the lift system in UML.

The static relationships for processes in the multiplexed buffers system.

14
14

15

15
16

28

2.22 The refinement relationship in the multiplexed buffers system. 35

2.23 An example of a component 36
2.24 Using forks and Joins 37
2.25 A representation of parallel processes in [10]. 38

3.1 An example of a cross-boundary incoming transition which is not allowed

inourmodel. L 44
3.2 An Example of a composite-AND-state. 45
3.3 State hierarchy corresponds to a tree. 46
34 Anexample.. 47
3.5 Transitions with multiple source. 50
3.6 State with do-activity. 51
3.7 Transition Events and Actions L. 52
3.8 Multiple State Exit Transition. 53
3.9 This state diagram is equivalent to the state diagram in Figure 3.8(b). . . 53
3.10 Anexample. 54

3.11 (a) A final state F' without any outgoing transition where H(M, F) =
SKIP, (b) A final state F with outgoing transitions where H(M,F) =
((event(ty) — S1)0(event(ta) = S3))>Sa. . v v v v v v i v i 56

3.12 Some possible scenarios for a final state. o8

3.13 The completion event generated by X can only trigger transition i but not j. 58

3.14 Transition K-E. 59
3.15 Comparing a choice state with a normal state. 60
3.16 A choice state acting as a pseudostate between normal states. 61
3.17 The accessibility scope for an event parameter in the State Diagram. . . . 62
3.18 An example of a choice state. L. 63
3.19 A composite OR-state 64
3.20 Simple state A nested in Sl and S2. 65
3.21 S1 has two possible start states: AorB. 65
4.1 A composite-AND-state with transition crossing the AND-state border. . 67
4.2 'Transitions A-E, A-G, B-H, B-F, S-C and S-D may trigger an exit out of S. 69
4.3 A simple state X enclosed by an AND-state S. 72
4.4 Final states X! and X2 enclosed by an AND-state S. 78
4.5 A nested AND-state D within an AND-state S. 81
4.6 Formalizing the behaviour of a composite-AND-state. 82
4.7 (a) A standard representation of the UML composite-AND-state S. (b) An
alternative representation of state S in Rational Rose. 84
4.8 Transition conflict due to (a) a single event, (b) multiple events. 85
4.9 Cross Border Incoming Transition. 86
4.10 Multiple State Machines, M1 and M2. 87
4.11 Anexample. e 89
4.12 Transitions triggered by implicit events. 92

vi

5.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Al

The specification model. o L. 93
FDR confirms that the specification model is free of deadlock and livelock. 94
The design model. e 94
The counter example in FDR shows the extra trace (displayed under the

column “Performs”) found in the design model which is not specified in the

specification model. L 95
The modified specification model. 96
An example of a barrier system. 97
A barrier system with five parallel components. 98
The basic requirements of a barrier system. 98
A Detector 99
A Barrier Mechanism. 99
A Barrier Display. 100
A Control Unit. 101
The message passing between different components. 102
A Control Unit (version 2). i 103
A Detector (version 2). 104
A Control Unit (version 3). 105
A Detector (version 3). 106
A Detector (version 4). L 107
Verification results from FDR. 109
The message passing between different components (updated version). . . 109
Taking two laboratory sessions. L. 114
Carrying out a term project. oo 114
Sitting foratest. L 114
LAB, PROJECT and TEST are sharing channels pass,fail and dropOut. . 115
Modelling the COURSE example with Approach B. 116
Taking Buses e 120
FDR proves that the two specifications are equal. 120
State Diagrams for the Multiplexed Buffer System. 133

vii

List of Tables

5.1 Event traces from FDR. e 103
5.2 Event traces from FDR. e 104
5.3 Event traces from FDR. 105
5.4 Event traces from FDR. 107
6.1 Comparing Approach AandB, 113

viii

Acknowledgements

First and foremost I would like to thank my supervisor Michael Butler who has introduced
me to the subject and guided me throughout until the completion of this thesis. You have
been a superb supervisor in providing great suggestions and guidance, and at the same
time giving me the freedom and supports to express my own ideas. I would also like to
thank my external examiner, Helen Treharne who has done a superb job in examining

my work and providing valuable feedbacks in improving this thesis.

A big thank you to my parents and family, who are always behind me during all these
years when I am far from home. I will not have gone this far without your supports and
loves. Thanks to my twin sister too, Muan Hong, for putting me up in every situation,
you have been great! A big thank you also to all of you in the Southampton Chinese
Christian Church, I truly value your prayers, friendships and loves. Thank you to Yue
Teng, who has been my main confidant and support especially when things are not going
well. Also, a big thank you to all my collegues in DSSE, who have made my stay in ECS

a pleasant and memorable one.
Last but most importantly, I would like to thank my God Jesus Christ, who has

blessed me graciously since I embarked on this work, and given me the right focus to
complete this thesis.

ix

List Of Symbols

Smr
S (ss)
SM(cs)
Sn(is)
Sm(fs)
SM(choice)
SM(region)
SM(o)
S (cos)
SM(cas)
Tm
T'rt(exp)
Trr(imp)
Eym
En(ezp)
Em(imp)
Anr
IMM(S
ENCL(S

label (S

)

)

)

)
S)
doActivity(S)
)

)

)

)

)

exit

(
(
(
entry(S
(
(
source(T
target(T
event(T
guard(T

action(T

The set of state identifiers found in state machine M.

The set of simple state identifiers found in state machine M.

The set of composite state identifiers found in state machine M.

The set of initial state identifiers found in state machine M.

The set of final state identifiers found in state machine M.

The set of choice state identifiers found in state machine M.

The set of subregions found in state machine M.

The top state of state machine M.

The set of composite-OR-state identifiers found in state machine M.
The set of composite-AND-state identifiers found in state machine M.

The set of outgoing transition identifiers found in state machine/state M.

The set of explicitly triggered outgoing transitions for state machine/state M.

The set of implicitly triggered outgoing transitions for state machine/state M.

The set of event identifiers found in state machine M.

The set of explicit event identifiers found in state machine M.
The set of implicit event identifiers found in state machine M.
The set of action identifiers found in state machine M.

The immediate enclosing state for state S.

The set of enclosing states for state S.

The label for state S.

The state entry action for state S.

The state exit action for state S.

The do-activity for state S.

The source state for transition T.

The target state for transition T.

The trigger event for transition T.

The boolean guard expression for transition T.

A sequence of actions for transition T.

Chapter 1

Introduction

1.1 Background

A software process is a set of activities which leads to the production of a software
product [68]. There are different software process models to cater for different system
engineering needs. Among the more common models are: the Waterfall Model [68], the
Evolutionary Development [68], the Reused-Based Development [68] and the Formal Sys-
tem Development [68]. Our work seeks to concentrate on the last model. The Formal
System Development is based on the formal mathematical transformation process of a
system specification to an executable program. The system requirement specification is
specified in a formal specification which is expressed in a mathematical notation. The
formal specification is then refined, through a series of transformation into a program.
In the transformation process, the formal mathematical representation is systematically
converted into a more detailed system representation, and each refinement is verified to
ensure the newly refined representation still satisfies the requirements stated in the former
representation. The transformation process will continue until the formal specification is
converted into an equivalent program. The main advantage of this approach is that
it renders an incremental step from specification to implementation, therefore increases

the accuracy of the final product in satisfying the requirements stated in the specification.

In general, there are four fundamental activities which are defined in the Formal
System Development. There are

1. Software Specification - which defines the requirement, functionality and constraint
of the software.

2. Software Design and Implementation - which produces the software that meets the
specification using a chosen implementation language.

3. Software Validation - which validates the software to ensure that it meets the cus-
tomer requirement.

4. Software Evolution - which enhances the software to accommodate for the changing

customer requirements

Our work deals mainly with the software specification and design stage of the Formal

System Development cycle.

1.2 Motivations

One of the key issues we need to address in software engineering is the correctness of
use for software systems in the safety critical situation. One only has to consider the
risks inherent in the use of software to control nuclear power stations, chemical plants,
aircraft and so on to recognize the need to be able to check and certify that the software is
reliable. Perhaps there is nothing formal that can be done to prove that the specification
for a program is correct. However, in theory, it is now possible to provide formal proof
that an implementation of a specification in the form of software meets the specification,
if the specification is drawn up in a fully logical and formal way. This is where Formal
Methods [11, 79] comes into picture.

Based on the definition given by Formal Method Europe !, Formal Methods (FMs) are
mathematical approaches to software and system development which support the rigorous
specification, design and verification of computer systems. FMs have precise notations
and semantics which can be used to express system requirements and specification (what
a system should do) in an exact and unambiguous manner. Specifying the system proper-
ties using FMs very often helps designers to uncover many implicit aspects in the stated
requirements at an early stage in the design cycle. This greatly enhances the understand-
ing of a system and even contributes towards significant time and cost saving in producing

more accurate software.

Each FM is supported by a specification language with which a system specifica-
tion can be described formally. Examples of the specification languages include the B
method [2, 34, 61], Z-notation [40, 69] and CSP [31, 59, 60]. Each specification language
has a unique set of notation and mathematical paradigm to work with and they may be
supported by tools such as animator, model checker and theorem prover. Instances of
these are Atelier-B [16] and the B-Toolkit [36] for B , ZANS [58] for Z and FDR [75] for
CSP.

Adopting FMs in the system development requires knowledge of mathematical model
notations, understanding of the underlying principles and having good experience will be
an added advantage. However, all these demand proper training and significant invest-
ment of time to get familiar with a method. Due to lack of resources and support, the
industry is often discouraged from adopting the use of FMs in their system development.
More often, the use of FMs is restricted within the context of academic and research

purposes.

With these reasons in mind, we set out to look at ways to improve the use of FMs in

the software system development, especially in the industry. Along this, we observe that

!Formal Method Europe is an independent body made up of different individuals, academic and gov-
ernment bodies which aim to promote and support the industrial use of FMs for computer system devel-
opment.

there is a need to make FMs more accessible to their users, especially to those who are
already working in the development cycles but are often FMs novices.

1.3 Outline of Our Work

In order to make FMs more accessible to their potential users, we began our work by
proposing the idea of using graphical notations as the front end for system engineers to
utilize FMs in designing and verifying the correctness of their work.

We have restricted our work by just looking at one of the FMs. For this, we choose
to work with CSP (Communicating Sequential Processes). CSP is a specification lan-
guage that is used to describe concurrent systems whose components interact with one
another and also with other components from other systems. CSP provides a useful way
to reason about and design parallel systems which are traditionally seen as complex and
trouble-prone. Also, the fact that CSP is well-supported by model checkers such as FDR
and animators such as ProBE [44] have further elevated the status of CSP from being a
white board language to a concrete language and this enhances its potential in dealing

with real problems.

In order to make CSP more appealing to the system designers, we propose to use
UML (Unified Modeling Language) (3, 4, 5, 17, 24, 57] as a graphical front end that al-
lows system designers to use the graphical notations for design, and subsequently, use
CSP to verify the correctness of the design. In achieving this, we have formalized a map-
ping strategy that allows CSP to be represented in UML. We choose to use UML because
it has been proposed by OMG 2 as the standard modelling language for the industry and
UML has received increasing attention from the industry in recent years.

In addition, we have also developed an automated tool that will take in a design in
UML and generate the corresponding CSP specification. The automated tool will not
only provide a transparent platform for system designers to work indirectly with CSP,
more importantly, the tool serves as a ground for us to experiment with the proposed

mapping strategy in a consistent manner.

The work we have achieved in visualizing CSP in UML has opened the possibility
for us to match UML constructs with those of CSP. The discrepancy of UML is that it
is a semi-formal language which has an extensive set of constructs with good structural
semantics but lacks of a formal behavioural semantics. For this reason, the second part
of this thesis is devoted to developing a formal semantics for UML State Diagrams by

2The Object Management Group, Inc (OMG) is an international organization comprises system ven-
dors, software developers and users that set out to establish the industry guidelines and object management
specifications to provide a common framework for the application of object-oriented technology in software
development. In doing so, OMG has adopted the UML specification as the standard modelling language
for the industry in order to reduce any confusion over many modelling notation. OMG has also resumed
the responsibility of pursuing further the development of UML standard and produced [54].

inferring from the OMG informal semantics and Harel’s semantics [22, 27, 28, 29, 30] on
statecharts. We then express the derived semantics in CSP.

To restrict the scope of our work, we only limit ourselves to considering reactive

systems. According to Harel [30], the typical characteristics of a reactive system are:

e It usually has more than one process interacting with one another in parallel.

e Its operations and responses to inputs are often time-critical (The issue of time-
critical will not be addressed in this phd work).

e It can interact with the environment via its inputs and outputs. These inputs and
outputs could occur at any point of time and they are often asynchronous with the
running process.

e It will respond to any interrupt which is regarded as a high-priority event at any
point of time even when the system is busy.

e There could be different behavioural outcomes from a system and these depend on
the system past history, the current input values and also the current operation

mode.

Examples of reactive systems include a telephone, a lift system, a barrier control
system, an avionics systems, a VLSI circuits and the machine interface to typical desktop

software.

1.4 CSP

1.4.1 Syntax and Notations

CSP is a notation for describing concurrent systems whose components, which are called

processes, interact with each other and with the environment by communication.

A process is defined in terms of events, which are the basic elements of CSP. An
event may be initiated either by the process itself or by some agents external to the pro-
cess. These external agents include other processes in the system with which the system
interacts. In other words, events are interfaces through which a process interacts with
its environment. The occurrence of an event is assumed to be instantaneous. More than
one process may be involved in the performance of an event. When this happens, the
event will only take place when all its participants are ready to execute. Processes may
be indexed to allow parameterized definitions while identifiers may be introduced into the

system via input attached to an event, in a manner to be described next.

A single event may contain more than one piece of information. The information can
be the kind of event they are, the entity the events are concerned with, the communication
channel they are on, or the message they carry. In this case, we call the event together

(138}

with all its information a compound event. A dot operator separates each piece of

information in a compound event. For example, gate.open is a compound event with gate

being the entity and open being the kind of action associated with the entity. A family
of compound events makes up a channel, for instance gate.open and gate.close can be
grouped under a channel such as channel gate: open | close. On the other hand, we could
also use compound events to model the input(?) and output(!) mode of a communication.
For instance, a?z : T' means channel ¢ is inputting an element z of type T while blz : T

means channel b is outputting an element z of type 7.

If a is an event and P is a process, a — P is a process that is initially ready to engage
in @ and when a occurs, the process will subsequently behave as P. STOP is the simplest
process in CSP which does nothing. It is frequently used to represent a deadlock in a
system. SKIP, on the other hand, denotes successful termination and it is identified as
v/ = STOP. / is a special event in CSP that represents the act of terminating success-
fully.

More than one process may be synchronized to execute the same event, and we use

a parallel operator to represent this. The parallel composition, e.g. P || @ shows that
{a}

processes P and () are executed in parallel, that is they synchronize over event a and
interleave in executing all other events. Interleaving(|||) is a special case of parallel
composition where P ||| Q means P interleaves with @ and there is no synchronization

between their events.

Sequential composition is a different process combination, whereby P; @ means once
P has completed, the system control is passed on to Q. Hence, the execution of P and Q
is in sequence, starting with P and followed by Q. B&P is a guarded expression where
B is a Boolean guard such that process P will only be executed provided B is true.

There are two types of choice in CSP: deterministic choice([J) which is resolved by
the environment and nondeterministic choice(N) which is decided by the process itself.
If P and @ are processes and a and b are events, for a process a — PO b — @, the
environment may choose to engage in either a or b, which then causes the subsequent
process to behave either as P or @) respectively. On the other hand, for a process P M @,
the process will choose internally whether to behave as P or as). In this case, the choice

belongs to the process itself and the environment has no control over it.

Process hiding e.g. P\S, allows a process to behave like P except all the events in set
S are removed from its interface and become internal to the process. Consequently, the

process will have no synchronization with other components over all the events in S.

CSP has a time-out construct, denoted as >. In the context of untimed CSP where
time is not explicitly modelled, given a process (z — A) > (y — B) with z and y being
the CSP events and A and B being the CSP processes, this means that if z is not offered

at all, y will be offered eventually 3. The interrupt operator, denoted as A, on the other

hand, may be used as the name suggests to interrupt a process that is going on.

Finally, CSP allows generalisation of the binary operators over indexed sets of pro-
cesses, €.g.
e || z: X@P(z) is an indexed parallel composition of all processes P(z)
e ||| y: Y@QP(y) is an indexed interleaving composition of all processes P(y)
e O2z:ZQP(z)is an indexed external choice which means one process P(z) may
be chosen out of the range Z of process P by the environment.
e Mz:ZQP(z)is an indexed internal choice which means one process P(z) may

be chosen out of the range Z of process P by the system internally.

1.4.2 Behavioural Semantics

CSP is a notation and calculus that assists us in understanding the interaction between
components of a concurrent system. The behaviour of a CSP process is usually defined

in terms of its traces, failures and divergences [59].

A trace of the behaviour of a process is a sequence of events which the process performs
and they are recorded in the order of their occurrence. There are different traces repre-
senting the different behaviour of a system, where the behaviour differs according to its
interaction with its external environment. A function t¢races(P) is used to define a set of
all possible traces for process P. For example, if P=a — b — STOP O ¢— d - STOP,
traces(P) = {(), (a), (a,b), (c), (c,d)}. The traces in the set tells us the progress of P and
also the different possibilities of the behaviour of P, i.e. P might start by doing an “a”
followed by “b”, or it might choose to do “c” then followed by “d”. The set of traces is

prefix closed.

A failure for a process is a pair of (¢, R) whereby ¢ is a trace being observed after
which all the events in the set R may be refused by the process, even if offered by the
environment. The set R is called a refusal. Suppose we have a deterministic process
P=a— STOP O b— STOP and a nondeterministic process @ = a — STOP N b —
STOP. P and @ share the same set of traces, i.e. { (), (a), (b)}. However their failure
behaviour are different in that at the initial stage of the process P, P is always willing to
engage in either a or b (depending which is being offered by the environment) ; whereas
@ may initially refuse to do either a or b (as a result of some internal nondeterministic

choice). Hence, their failure sets differ from each other where

failures(P) = {((), {}), ({a), {a, b}), ((b), {a, b})}
failures(Q) = {(O’ {a})a (()s {b})a ((a), {a" b})a ((b), {a’ b})}

%In the timed CSP model whereby time is modelled explicitly, if x does not occur after a defined unit
of time, y will be executed.

From this, we can see that failures model is useful in identifying if a process is determinis-
tic. As demonstrated by the example, a process is said to be deterministic if it can never

refuse any event which is being offered at each point of the process.

For the divergence behaviour of a process, a divergence component is a set of traces
after which the process becomes livelocked. Divergence behaviour is normally encountered
when hiding is used where a process may perform infinitely many hidden events and the
environment has no way of interrupting the process. It is assumed that once a process
can diverge, it can then perform any trace or refuse anything and can always diverge on
any later trace. Therefore, the function divergences(P) contains not only the traces s on
which P can diverge, but also all extensions st of such traces. To observe accurately
what a process can do after it has already been able to diverge is difficult and it is not
worth the effort. So, in general, divergence is undesirable and hence need to be identified

and removed from a design. This is where the divergence model is useful.

1.4.3 Refinement Notions

In general, refinement is a process whereby several levels of specifications are produced,
with each specification being derived from the specification before and each specification
fulfills the properties of its predecessor. The goal of refinement is that the lowest level

specification will possess the structures that closely reflect the implementation.

In CSP, refinement is a relationship between two processes such that if the behaviour
of B is a subset of the behaviour of A (i.e. B satisfies the behaviour properties of A), then
we say B is a refinement of 4 and this is expressed as A C B (pronounced A refined by B).

There are three levels of refinement in CSP: traces, failures and failures/divergences
refinement. Given processes A and B, if traces(B) C traces(A), then we say B is a
traces refinement of A (A Cr B). If failures(B) C failures(A) then we can say B is a
failures refinement of A (A Cr B). Similarly, if divergences(B) C divergences(A) and
failures(B) C failures(A) , then A Cpp B such that B is a failures-divergences refinement
of A.

Therefore, if A Cpp B is true, this implies that A Cp B is also true. Since A Cp B
suggests that failures(B) C failures(A) which in turns implies that ¢races(B) C traces(A),
from here, we may also deduce that A Cp B is true.

1.4.4 Tool Support

The fact that CSP is supported by tools has greatly enhanced its potential in solving
industrial problems. FDR (stands for Failure Divergence Refinement) is the first com-
mercially available tool for model-checking CSP. It carries out two types of check, one on

refinement assertions and another on individual processes.

We start by looking at the refinement assertion check. When FDR checks for the re-
finement assertion between two processes, it bases its check on one of the three behaviour
models: traces model, failures model or failures-divergences model. For the traces model,
FDR will check for the refinement based on the trace property such that if process B
refines A, it ensures that all the possible sequences of communication which B can do
are also possible for A. Hence, if we consider A as a specification that determines all
the possible safe traces of a system, when A Cp B is satisfied, this proves that B is a
safe implementation, with no wrong events possible. Therefore, traces refinement may
be used when we need to determine the safety property of a system. The failures model,
on the other hand, allows us to make better distinction between processes based on their
permitted executed traces and the corresponding refusals. Under the failures refinement
check, if B refuses some events, A should also be able to refuse them (after performing
some events). FDR will identify an error as a deadlock if B refuses some events which
are not possibly refused by A after performing a similar trace. The failures-divergences
model provides further strength as compared to the failures model. Besides checking for
deadlock, the failures-divergences model can also be used to analyze a system which has
the potential of never executing a visible event. A failures-divergences refinement check

fails if the design model contains a livelock which is not possible in the specification model.

In essence, FDR allows a concrete design description to be compared with an abstract
specification in order to check if the refinement properties (mentioned above) are satis-
fied. If the properties are not satisfied (thus the refinement check fails), FDR will generate

counter examples that could be used to pin point the failure.

Apart from checking refinement assertions, FDR may also be used to perform checks on
individual processes. Three types of behavioural properties could be checked for a single
process : deadlock, livelock and determinism. Determinism check is meant for processes
which contain internal choices. The check detects if the processes behave in an nonde-

terminism manner since the external environment has no control over the internal choices.

ProBE is an animator for CSP which has received considerable attention. In contrast
to FDR’s automatic checking of properties, ProBE is an interactive animator which allows
users to control the resolution of non-determinism and the choice of actions, hence enables
users to watch a process evolves in response. Both FDR and ProBE are products of Formal
Systems [75]. Our work adopts the use of FDR, both for the availability and also for the

ease of use.

1.5 UML

1.5.1 Overview

UML (stands for Unified Modeling Language) is a graphical modelling language comprises
a collection of graphical notations(diagrams) illustrating different aspect of a software sys-
tem. It has an extensively structured set of constructs with a structural semantics but
lacks a comprehensive behavioural semantics, that is to say there is no formal definitions
for how a diagram which is made up of several constructs may behave. Since it has a
formally defined syntax and structural semantics but an informally specified dynamic se-

mantics, it is also termed as a semi-formal language.

The methodology of UML is that it is object-oriented and it promotes an iterative
and incremental design process. By using an iterative and incremental approach, we
can better manage the complexity of a system as well as incorporate requirements and
technologies changes as the design evolves over time. Beyond this, UML offers different
diagrams to model different aspects of a system. These diagrams are categorized into a

few groups according to their functionality, as follows:

e Use Case View.

The use case view describes the different functionalities of a program. It is generally
used to capture the basic requirements of a system and to provide the basis for the
construction of other views. A use case diagram may be used in this view to
depict the functionality of a system.

o Static Model View.

It is also called a structural or design view. This view describes the logical struc-
tures which support the functional requirements expressed in the use case view. It
contains the program components which are principally classes and describes the
functionality for each components. This view is particular useful when we need to
gain an overall picture of how a system is made up of. A class diagram depicts the
static structure of a system using relationships between classes and general concepts
such as class attributes and operations.

o Dynamic View.

This view illustrates the behavioural aspect of a system in terms of its executable
threads and processes. There are a few diagrams available, as follows:

- A sequence diagram consists of actors, messages and a timeline. It is used to
show interactions between actors/objects through sending and receiving of messages
arranged in a time sequence.

- A collaboration diagram is similar to a sequence diagram except it has sequence
numbers to replace the timeline. A collaboration diagram is useful to show the
actual objects involved and the structural relationships between them but it is
weaker when it comes to showing the interactions between those objects as a time-

ordered sequence of events.

< Interface Class C

‘ opl0) = Class

Association

Realize Relation

1
Class ~
1
1

[a B |
Class Operation
\A op10) ‘ op10) Package

8§ op20

Package

Figure 1.1: Elements in a Class Diagram

A state diagram comprises states and events that show how a system changes
from one state to another via different response to the current status condition and
also events being offered by the environment.

An activity diagram is similar to a state diagram except it is activity-oriented
rather than state and event-oriented.

Component View.

A component diagram illustrates how the different components in a system are
connected. A component is a physical and replaceble part of a system that could
be representing a source file, an activeX control, a Java servlets and so on. A
component comprises many classes and interfaces which show how each component
is related to one another in the system.

Deployment View.

A deployment diagram shows the physical hardware (such as a PC) on which the
software system will execute, and how the software is deployed on the hardware. It
consists of nodes which each of them represents a physical hardware. Each node
contains components representing the software system residing in the physical node.
The relationship between two nodes shows that there is a connection between the

two nodes.

Among all the UML diagrams being offered, we only consider state diagrams and class

diagrams in this work. We will further elaborate on these two diagrams in the following

sections.

1.5.2 Class Diagram

In the UML context, class diagrams are used to describe the types of objects in the system
and the various kinds of static relationships that exist among them. Figure 1.1 shows the
the various graphical representations for different elements in a class diagram which are
used in this work. The main entity in a class diagram is the class. Each class has its
own attributes and operations. An interface class is a variation of the normal class. It
is a class that acts as a template for other classes and no instances of it can be created.

Package, on the other hand, is a general purpose model element that organizes other

10

elements such as classes into a group.

The principal kind of static relationship between classes is the association. Each
association has two ends with each end being attached to one of the classes in the as-
sociation. Another type of relationship that exists between two entities is the realize
relation. It is a dotted arrow line showing a class realizing the operations offered by the
other entity (pointed by the arrow head).

1.5.3 State Diagram
Basic Feature

A UML state diagram is used to describe a system behaviour in terms of its events and
state changes. Its notation and semantics are substantially those of Harel’s Statechart
[22, 27, 28, 29, 30] except it is an object-based variant of Harel’'s. A UML state diagram
specifies the states a system may reside in and the transitions from one state to another.
In addition, it also specifies what causes activities to start and stop, and how the system
responds to various trigger events. Based on the informal behavioural semantics defined
by OMG [54], an event is an observable occurrence that may be generated by the system
itself by doing an action or by the environment surrounding the system. A state diagram
contains exactly one state machine that describes an object, which could be a class, a use

case, a subsystem or the entire system.

The semantics of state diagrams specifies that an object being modelled is always in
one of the finite set of states when it is in sequential operation, or it can occupy simulta-
neously several states within a composite state when it is in concurrent operation. When
the object receives an event, it will response by moving from the current state to another
state. We may have actions attached to a transition or nested within a state. The OMG
defined informal semantics does not state clearly the differences between events and ac-
tions. However, the Harel’'s semantics provides some insights where it defines an event
being the receiving of a signal or the effect of an operation call, and an action being the

sending of a signal or the call of an operation.

The basic syntax of a state diagram consists of rounded rectangles that represent
states, filled circles for the initial states, bull’s eyes for the final states, diamonds for choice
states and finally, the arrow showing the path between states for the transitions. The syn-
tax for a transition label has three parts, all of which are optional: Event/Guard]/Action.

A guard is a logical condition and a guarded transition may only occur if the guard is true.

For example, suppose we have a simple cassette player mechanism that may reside
in one of the two states: PAUSE and PLAYING, as shown in Figure 1.2. The initial
start state(filled circle) and the stop state(bull’s eye) indicate the start and the end of
the system respectively. When state PAUSE is active, if event play occurs, it triggers the
action turn_on_player and also a transition that brings the system to state PLAYING.

11

play/turn_on_playe

Figure 1.2: A state diagram with two states.

Note that although there are two transitions in the diagram that may be triggered by
the event play, i.e. one which emanates from the initial state and the other from the
PAUSE state , only the later transition is triggered because PAUSE is active at the time
play is offered. Only the active state can response to any live event that is offered by
the environment. In state PLAYING, if event pause is offered, it will trigger an opposite
transition that brings the system back to the state PAUSE, whereas if stop is offered,
the system will reach the end state and terminate successfully. In this case, we can see
that PLAYING has two possible outgoing transitions. For a state with more than one

outgoing transition, only one transition can be fired at the point of exiting the state.

State

A state is a situation during the lifetime of an object when it waits for some events to
take place or it performs some actions/activitities. A state may be passed through in-
stantaneously or not instantaneously. Each state machine has a top state that encloses

all the states in the state machine.

A simple state is a state which does not have substates whereas a composite state
is a state that contains other state vertices. These states that are enclosed within a
composite state are called the substates of the composite state. There are two types
of composite states: OR-state (which is also called a sequential state) and AND-state
(which is sometimes called a concurrent state or an orthogonal state). An OR-state is a
composite state which contains substates that are OR-ed together such that only one of
the substates can be active at one time. On the other hand, an AND-state is a composite
state which contains subregions that are AND-ed together, in that when the enclosing
AND-state is entered, all the subregions become active at the same time. Figure 1.3 shows
an example of an AND-state with two subregions S! and S2. Each subregion contains
states that may not be shared with other subregions. Each subregion must include an
initial and an end state. A transition to the AND-state signifies an entry to all the initial
states of all the subregions. A transition to the final state of a subregion represents the
completion of the activity for the subregion. The activity of an AND-state is assumed to

complete only when all the subregions have completed their activities.

12

—(=@
ggnnnmmm oo
° — o ®

Figure 1.3: An AND-state with subregions S1 and S2.

Pseudostates are transient points in the state machine which are typically used as
notational symbol to indicate a special point (such as the initial state) or connect multiple
transitions to more complex state transition paths. Because pseudostates are intermediate
or transient states between two states, self-transitions (e.g. transitions which originate
from and terminate at the same point) are not allowed on pseudostates. Examples of
pseudostates are initial states, history states, joins, forks, junctions and choices. Here, we

choose to only elaborate on those which are used in our work.

1. Initial state represents the source for a single transition to the default/start state of
a composite state. The well formedness rules defined by the OMG group [54](p2:157)
states that an initial state can have at most one outgoing transition and no incoming
transitions.

2. Final state cannot have any outgoing transition. A final state within a composite
state signifies that the enclosing state is completed. If the enclosing state is a top
state, then the final state indicates that the entire state machine has completed.

3. Choice state allows a transition path to be split into more than one branch. The
choice of which path to take will depend on the trigger event that is offered by
the environment and the guard to be satisfied if it is present. Only one path may
be activated at one time. In the event where more than one path is enabled, one

transition will be chosen, based on a priority rule to be discussed later.

A state can be active or inactive during execution. A state becomes active when it is
entered as a result of some transition and it becomes inactive if it is exited as a result of
a transition. A state may contain an entry action, an exit action and a do-activity which
is made up of a sequence of actions. When a state in entered, the entry action is carried
out before any other actions are executed. Conversely, the exit action is carried out prior

leaving the state.

The state activity takes place upon the completion of the entry action. The do-activity
may be carried out when the state is active. In the situation when the trigger event oc-
curs before the do-activity completes, the activity will be aborted and the exit action
takes place prior to the state exit. On the other hand, if the do-activity finishes before
any trigger event occurs, the state will raise a completion event such that if there is an

outgoing transition, the state will be exited.

For a composite state, an incoming transition that terminates on the outside edge of
the state indicates the entry to the state. In Figure 1.4, for example, the transition £1 to

13

S1 /enterS1
S2/enterS2
S3/enterS3
t 12 3 07

Figure 1.4: Composite state S1 containing substates S2 and S3 and their corresponding entry actions.

the edge of the composite state SI indicates an entry into S1. The entry action of the
composite state i.e. enterS1! will be carried out before the transition to the default initial
substate S2. Similarly, after 52 is entered, enterS2 is carried out. Each time, the entry
action of the substate is executed after the execution of the composite state entry action.

This rule is performed recursively until the transition terminates at a direct substate.

Transition

A transition is enabled if and only if

e its source state is the current active state, and
e the event that is being offered matches the trigger for the transition, and

e the conditions for the transition guard (if it exists) is satisfied.

For a simple transition from the source state to the target state, the transition is
activated when the trigger event occurs, following which the exit action of the source
state will be carried out. In the case where the transition is attached with an action,
the transition action is executed before the entry action of the target state is carried out.
Looking at Figure 1.5, assuming the system is in S, when ev occurs, ezitS is carried out,

followed by a before enterT takes place.

S ev/a T
fexitS /enterT

Figure 1.5: State and Transition Actions.

Once the transition originating from the border of a composite state is activated, it
will trigger an exit from the composite state and also all the active substates within the
composite state. The exit action for all the active substates will be carried out starting
with the inner most active substate and finishes with the composite state exit action. In
Figure 1.6, for instance, when transition ¢! is triggered, if S0, SI and S2 are active, the

exit actions are carried out in the following order: exitS0, exitS1, exitS2.

OMG defines some rules to resolve the firing priority of conflicting transitions, i.e.
when more than one transition is activated by an event but which only one transition is
allowed to occur. An example is shown in Figure 1.7. If the current state is S with C
and D being active, if event a is offered, a conflict arises of whether transition D-E or S-F

14

S2/exitS2
S1/exitS1 t]

(S0/exitS0) ‘ —

Figure 1.6: The exit action for all the substate will be carried out starting with the inner most substate and finishes
with the composite state exit action.

should proceed. OMG defines a transition priority scheme such that the internal transi-
tion will always have priority over the higher level transition. In our case, the priority
relation resolves to choosing the lower level transition D-E over S-F. However, if event ¢
is offered instead, the conflict between C-H and D-G cannot be resolved in UML since
both their source states C and H are in the same level of the state hierarchy.

Figure 1.7: An example of conflicting transition.

In a simple transition with a guard, the guard is evaluated before the trigger event
occurs. For a multiple transitions such as those originating from a choice point, the order

in which the guards are evaluated is undefined.

Event Processing

Before we illustrate how a UML state diagram processes an event, we need to first discuss
the Harel’s statecharts. Harel first invented statecharts [29, 30] with a vigorious seman-
tics [28] and it is supported by a tool called STATEMATE [22]. As mentioned before, the
UML state diagram semantics and notations are substantially those of Harel’s statecharts
except the former is an object-based variant of the Harel’s. In our work, we have chosen
to refer to Harel’s statecharts semantics in places where the UML informal semantics is
found to be lacking.

For event processing, Harel proposes the idea of step execution, where a system ex-
ecutes a step when it performs all relevant reactions whose triggers are enabled. The
activity being executed within a step is assumed to take zero time. Let us illustrate with
some examples. Figure 1.8 shows two cases, each consisting of an execution scenario that
is made up of two steps. The first case, Figure 1.8(a), shows that action G is generated
as an event when E is offered, and the transition from A to B takes place. The system

responds to event G in the next step by making a transition from C to D. Observe that

15

the generation of an event and the response to the event do not happen within the same
step. In the second case, Figure 1.8(b), the execution of E triggers a transition from J
to K. At this point, state K becomes active. Suppose the condition c is valid at all time,
the next step will take the system to L. Again, the generation and consumption of the
event F do not happen within the same step.

S1)
: S1
CSRNNED c
! C
BG : N
) ()

(a) (b)

Figure 1.8: Step Execution.

During the execution of a step, the generated event will trigger a valid transition from
the current active state and also all the actions associated with the transition. In the
case of a concurrent state, it is possible for a single event to fire multiple transitions, but
at most one transition is to be fired in each subregion. The step will only complete after
all the fired transitions with their respective triggered actions are completed. A new step
will commence after the state machine has reached a stable state configuration. A state
machine is said to have reached a stable state configuration when it has completed its

transition and entered a state which it is residing.

OMG adopts Harel’s step execution and complements it by proposing the concept of
event queue to fill in the gap left by Harel. In this, they try to explain what happens
after an event is generated and before it is being consumed. Under the OMG proposed
concept [54](p2:161), a state machine (which represents an object) is assigned with an
event queue whereby whenever the environment external to the state machine generates
an event, the event will be placed on the queue for further processing. An event instance
could be generated by the environment (i.e. an action from users) or by an action exe-

cuted by another state machine in the system.

At an event queue, the events are taken off the queue in a first in first out (FIFO)
manner and processed in steps, as explained by Harel. In this, OMG refers to the Harel’s
steps as the “run-to-completion (RTC)” steps. A RTC step is initiated when an event is
taken from the queue and processed by a state machine one at a time. As such, only one

event may be offered to the system at one unit time.

The event which is currently dispatched from the event queue is called the current
event. The current event will trigger those transitions which source states are the current
active states. If no transition is enabled and the event is not in the deferred event list of
the current state configuration, the event is discarded and the RTC step is completed. A
deferred event list is specified by a state to name a list of events that is to be deferred

16

when the system is at the state. OMG explains that if the current event is found in the
list of deferred event of the current state, the event will not be dispatched but instead it
will remain in the event queue until the state machine reaches a state where the deferred
event triggers a transition, or it is no longer being specified as a deferred event in the
current state. However, it is not clear how this is being done, and in what order the

deferred event is kept in the queue.

1.6 Related Work

There has been much work going on that involves combining formal and informal methods.
We limit ourselves to only look at those which seek to combine graphical notations and
formal methods with the aim of reaping the potentials offered by both. In general, we may

categorize the existing work into two categories, based on the main objectives of the work.

The first category is made up of those which look at representing FMs using graph-
ical notations. Among those significant are the ongoing work by Snook&Butler [66] in
Southampton which uses UML class diagrams to construct B specifications, and Meyer&
Souquieres [48] which generate B from OMT diagrams. Wehrheim [78] looks at using
UML class digrams to model the system architectural view expressed in CSP-OZ (a com-
bination of CSP and Object-Z), while Fischer et al. [23] proposes using UML-RT (a UML
profile for modelling real-time embedded system) to represent CSP-OZ. Work in this
category tends to emphasize on providing graphical visualization for the FM notations
without adhering strictly to the semantics of the graphical notations being used. In many
cases, the graphical notations are found not to be sufficient to express all the information
needed in a model. At such, annotations of constraints, variants and operation semantics
are added to complete the information in a FM being modelled. The first part of our
work presented in Chapter 2 is akin to this nature. Closely related to our work is that of
Bolton & Davies [8], Davies & Crichton [15], Brooke&Paige [10], Abeysinghe& Phalp [1]
and Engels et al. [19], which seek to represent Hoare’s CSP in different graphical nota-

tions. A comparison between their work and ours is made in Section 2.8.

The work in the second category is different from the first for it involves more in-
depth study which seeks to give a formal meaning to the UML models (we restrict ourself
to look at only UML notations). Some of this work makes use of the readily available
FMs framework while others define formal semantics that cater for a specific use, all with
the common aim of formally reasoning about the behaviour of the UML diagrams. The
second part of our work falls into this category and it concentrates on providing a formal
semantics in terms of CSP for UML state diagrams (see Chapter 3 & 4).

Among the work featured in this category are those which formalizes the behaviour
of UML activity diagrams, such as work by Eshuis&Wieringa [20, 21] which defines a

formal execution semantics that allows model-checking and Borger et al. [7] which uses

17

ASM (Abstract State Machine) [33] semantics. [18] and [25] formalize the UML class
diagrams in terms of Z. The work that is of most interest to us is that of UML state
diagrams. The related work on this include those of Lilius et al. [41, 42, 43, 56] and
Latella et.al [37, 38, 47] which translate UML state diagrams to Promela/SPIN [32] that
allow linear temporal logic model-checking. The works in [39, 62, 63] formalizes UML
state diagrams in B, [6] in ASM and [73, 74] uses labeled transition systems, but these
works do not support formal model-checking. A comparison between our work and those

related in this category may be found in Section 4.4.

1.7 Thesis Structure

This thesis is structured as follows:

Chapter 2 presents an approach that visualizes CSP in terms of the graphical nota-
tions provided by UML. A tool U2CSPuv! is developed which inputs a UML model and
generates CSP specification that can be fed-directly into FDR for model-checking. A few
examples are shown to illustrate the mapping strategy defined for this purpose. A dis-
cussion is included which explains why UML class diagrams, state diagrams and certain
notations in these diagrams are used. This chapter then concludes with a comparison

with other work.

Chapter 3 & 4 focuses on UML state diagrams and presents a formal semantics for the
diagrams in the CSP framework. This is done by first defining a structural model for the
UML state machine. Using the model, we then define a behavioural semantics for UML
state diagrams in terms of CSP. U2CSPv2 is developed, which is an enhanced version of
U2CSPv1 to cover the additional features introduced by this work. A comparison with
other related work is presented at the end of the two chapters.

Chapter 5 looks at two case studies with the aim of showing how we may model a
system in UML, translate them into CSP and most of all, how FDR may be used to

analysis and check for the correctness of the design.

Chapter 6 runs a few analysis on the work produced in this thesis. Firstly, we present
the results of comparison between Approach A (as presented in Chapter 2) and Approach
B (as described in Chapters 3 & 4). Secondly, an analysis is carried out to compare the
CSP generated from our proposed graphical model and the CSP written in a usual way.
Lastly, a comparison is made between the UML semantics proposed in this thesis with
that of the OMG semantics.

Chapter 7 concludes this thesis and make some suggestions for future work.

18

Chapter 2

Visualizing CSP in UML

2.1 Introduction

In this chapter, we seek to provide a graphical representation to CSP using UML. We aim
to produce a mechanism which allows users to design a system in UML diagrams that
are then translated to CSP in an automated mean. This helps users who are not familiar
with CSP to be able to make use of formal methods in their design process without hav-
ing to write the CSP specification themselves. Our work in this chapter emphasizes on
providing a graphical visualization for CSP without adhering strictly to the semantics of
the graphical notations being used.

We divide the visualization task based on three aspects of CSP: (i) the sequential
behaviour, (ii) the parallel composition, and (iii) the refinement assertions. The sequential
behaviour considers the events and transitions that are involved in a process. The parallel
structure refers to the relationship between different processes, this may include parallel
composition, indexed parallel or indexed interleaving. The refinement assertions model
the refinement construct in CSP. For each of these aspects, we propose ways to visualize
CSP using UML constructs. To this end, we choose to work with a subset of UML
constructs from the class diagrams and the state diagrams. In particular, we only consider
simple state diagrams with flat hierarchy and simple states without any state actions.
A translator U2CSPwv1 is developed which inputs a UML model and generates CSP
specification that can be fed directly into FDR for model-checking. This work is published
in [52].

2.2 Sequential Behavioural View

The sequential behaviour of CSP is modelled using a UML state diagram. In this, we use
a UML state machine to represent a CSP root process. A CSP root process has a global
data state associated with it and intuitively, we may represent the data states using the
UML state identifiers. For this, we use a state in a state diagram to represent a state
identifier in a CSP process. In order to avoid the confusion between a CSP state identifier
and a UML state, from now on we shall refer a CSP state identifier as a CSP process

19

identifier. For the special CSP process identifiers such as SKIP and STOP, we may use
an end state to represent SKIP, and a state with no outgoing transition as STOP (see
Figure 2.1).

SKIP => @

Figure 2.1: Representing SKIP and STOP in UML.

A state in a CSP process may be changed by atomic events/activities and the effect of
the atomic activities is represented by the assignment to the identifiers, i.e. P = @ where
P is the identifier and @) being an expression that contains several identifiers which may
include P itself since the equation can have recursion. A similar concept can be found
in UML, whereby the state change from one to another is by execution of a transition.
Therefore we may have the following mapping where we map a CSP process assignment

to a UML state transition, as shown in Figure 2.2a.

() P=Q =
(b) P=a ->Q =>
© p=ax->0Q > (P 2 (Q)

?
@ peamsg = (P

|
(e) P=alx—>Q => B 20 m
) P=g&Q > (P8 >

Figure 2.2: Mapping CSP to UML.

Furthermore, we can also map a CSP event prefix to a UML transition with an event
(see Figure 2.2b). In this, we have a straight forward mapping from a CSP event to a
UML event. In addition to simple events, we might have other information attached to
an event to get a compound event such as event with argument a.z, event with input
a?z or event with output a/z. In UML, the syntax for the event label may include a
list of parameters separated by commas such that the format will look like this: event-
name(parameter-name,...). We can represent the CSP event information using the UML
event parameter list in which case a.z will be expressed as a(z), a?z as a(?z) and alz as
a(!z) (see Figure 2.2c-e). The same mapping rule is applied to multiple-part compound
event, e.g. a.z?y can be expressed as a(z?y) in UML. In addition, we map a Boolean

guard expression in CSP to an UML transition guard (see Figure 2.2f).

20

To visualize the external and internal choices in CSP, first of all, we take a look at
two choice representations that are available in UML: (a) a choice state (represented as a
diamond shape), and (b) a normal state with more than one outgoing transition. Every
transition out of these states represents a branch for the choice and it may be attached
with a guard. The two representations are distinguished in that for the choice state, the
decision on which branch to take depends on the prior actions in the same execution step,
and the external environment has no control over it. Because of this, it is also called a
dynamic conditional branch. In contrast, a normal state with more than one outgoing
transition denotes a static conditional branch - where the choice of branch depends on
the trigger event (offered by the environment) that occurs upon exiting from the current
state. We can conveniently adopt these concepts and use (a) a choice state with multiple
outgoing transitions to represent a CSP internal choice, (b) a normal state with more than
one outgoing transitions to represent a CSP external choice. (see Figure 2.3). Although
it is not explicitly stated in the diagram, the external and internal choices can both be
generalized from 2 branches to n-branches, the tool described in section 2.5.1 supports
this.

P
P=a-> Ql-Ib->R => ’

P=a-—>Q[]b—>R =

Figure 2.3: An example of representing CSP internal and external choices in UML.

In some cases, we might want to model QOUR or QN R . For this, we may represent
them in UML as in Figure 2.4.

Q
P=Q[IR = (P
R

P=QI-IR => P

Figure 2.4: Representing “P =Q O R” and “P=Q M R”.

Often in CSP we wish to call a process with expressions substituted for its process
parameter(s), e.g. we might want to call a parameterised process (i) with its param-
eter 1 substituted :+1. To represent this in UML, we use the transition action in state
diagrams, which according to Harel’s Statecharts semantics [30], can be used to represent
modification of data values. In our running example, we map the substitution expression
“:=i+1” to a UML transition action and the parameterised process Q(i) to the transition

21

target state. Figure 2.5 depicts this.
/i=i+l
Pi)=Ql+) =

Figure 2.5: Representing “P(i) = Q(i 4+ 1)” in UML

Here we assume the parameter i is input to the system via the transition event that
occurs prior to state P and it is then stored as a class attribute at state P, e.g. P(i). The
stored value can then be used in the next transition. The example in Section 2.2.1 shows
this.

2.2.1 An example

Given the mapping we have defined earlier which maps from CSP to UML, we will use an
example here to show how we can design a system in UML and make use of the mapping
rules to convert the UML diagrams to CSP. Figure 2.6 illustrates a simple counter. It is
a recursive process that begins by the user inputting a value z. z will be incremented by
1 at each iteration as long as it is less than 10, else the process will terminate.

START
]

COUNTER

input(?x)

[x<10](l INCREMENT(x)

I x:=x+1
[x>=10]
®
END

Figure 2.6: A simple counter.

Figure 2.6 can be mapped to CSP as follows.

START = COUNTER
COUNTER = input?s - INCREMENT(z)
INCREMENT(z) = (<10 & INCREMENT(z+ 1)) O (z > 10 & END)
END = SKIP

22

2.3 Parallel Composition View

In the previous section, we have illustrated how we may use the UML state diagrams to
model the sequential behaviour in CSP processes. From here on, we propose a way to
gather these processes and visualize the static relationships, e.g. the parallel composition
between them. For this, we only consider parallel composition between sequential pro-
cesses, that is the parallel structure in a higher level. We justify this based on the reason
being most of the case studies we have come across have this structure in general. For the
examples we have come across so far, it seems to be sufficient to say that all the parallel
composition is used in the outer most level of the process hierarchy. We have not come
across and hence do not support any use of parallel composition for substates, in order

to keep our representation simple and manageble.

2.3.1 Initial Design

Initially, we attempted to construct a graphical notation which closely resembles the
structure of the static architecture for the CSP textual notation. We achieved this by
ignoring largely the structural semantics of UML class diagram and placing emphasis on
attaining a straight-forward translation rule for the automated tool. However, we soon
ran into problems: the class diagrams generated in such a way are not able to render a
clear visualization. For example, to visualize the parallel composition between processes

P and Q over synchronized events {a,b} such as System = P || Q, we model it as shown
{a,b}
in Figure 2.7.

@
System

an

$b0
P ! Q
:30 <<par;IIeI>> :30
b0 b0
(0 ®a(0

Figure 2.7: An initial approach to visualize the parallel composition of CSP.

We argued that the association between P and Q may be stereotyped as ((parallel))
to represent the parallel relationship. The association class (depicted as a dotted line)
connects the association to the interface class labelled “System” and it may be used to
model the properties of the association, which in this case is the parallel composition.
The properties, which contain the synchronized events {a,b} may then be stored in the

operation clause of the interface class.

This method is obviously not ideal: we have, in some ways, misused the structures in
UML class diagram to suit the need of our graphical representation and caused confusion
to the UML users. In addition, the unnecessary constructs like the interface class and the

association class have cluttered the diagram and greatly distorted the visual quality. This

23

style of representation has proved to be clumsy when more processes are involved. The
example in Figure 2.8 illustrates this point, where we are trying to visualize the parallel
composition between processes SndMess, RcvAck, RcvMess, SndAck, Tz(i) and Rz(1) over
six common events: snd_mess, rcv_ack, rcv_mess, snd_ack, mess and ack. The example
has shown that the proposed style is not able to demonstrate clearly the relationship be-
tween processes as the line does not represent real communication between them, e.g. it
is not clear that Tz(i) synchronizes with SndMess and RcvAck. After the unsatisfactory
attempt, we considered the alternative to be discussed in the following sections.

System
°mess()
.aldo
|
o <<patallel>> O
LHSa RHSa
¥5nd_mess) Srov_mess)
<<||| 13 Tags>> Siov_ad) Sond_ady | <<l iTags>>
i) : : R
Dsnd_mess() <<parallel>> @) <<parallel>> Nroy_messO
Vev_adQ) SndMess_R RevMess S Und_adQ
Stetto cvhdk ndAck Ruighto
SndMess : RevAdk RevMess 1 SndAck
| .
Ssnd_mess) | <<interdeave>> | Sadg Omess) K<interteave>d Ssnd_adg)
Smes)) ®rou_ack) Yrou_mess) 2T

Figure 2.8: Initial attempt to visualize parallel composition involving more than two processes.

2.3.2 Simple Parallel

The conventional role of a UML class diagram is to provide a structural architecture for
classes and model the static associations between them. A class acts as a template for
all the object instances sharing the same behaviour. Contrary to this concept, our work
in this chapter treats each class as a CSP process. In our representation of CSP, a class
and the initial state of its state diagram share the same name.

All the events that are involved in a process are listed under the class operation
clause. We use a UML class association to represent a CSP channel that serves as an
interface between two CSP processes. The association label is used to name the common
channel (see Figure 2.9(a)). In the case when more than two processes are sharing a
common channel, we represent the common channel with a UML interface class, which
more than two processes may be connected to (Figure 2.9(b)).

In Figure 2.9(b), three processes are in parallel with one another over some common
channels: A shares channel b with B and channel d with C. B shares channel ¢ with C

and the three processes in turn share channel a. Applying our mapping strategy,

(Al B) || C
{a,b} {a,c,d}

(2.1)

24

(@ Al B =>
fc}

® (A I B) I C
(ab} {acd)

}

Figure 2.9: Visualizing the parallel composition in CSP.

The pair-wise composition in the CSP expression can be done in any combination, hence,
we might write Eq.2.1 as
Al (Bl C),
{a,bd} {a,}
(Al C) |l Bor
{a,d} {a)b,c}
A |l (C]| B).
{a,b,d} {a,c}
The above three equations are equivalent to Eq.2.1 based on the associative! and sym-
metric? laws [60].

Lastly, we model the interleaving relationship between two processes using two classes
with no association connection between them. We show in Figure ?? how we reconstruct
Figure 2.8 using the method proposed in this subsection. Under the new method, we
can see clearly from the diagram the common channels that are shared among the six
processes.

SndMess RcvMess
mess
. ® A .
||| . Tags>> | snd_mes Q?nneds_srgesso ’:Q\fsrigsso [Cv_mess <« |:T§gs>>
Tx() = < Rx{)
®snd_mess() %rcv_mess()
_ d ack _
Srev ack) [* ‘ff/ ¥snd_ack()
Heft) RevAck(1) Sndack |, Sright()
1cy_ack ack
%rcv_ack() %snd_ack()
Fack() Pack()

Figure 2.10: Visualizing Figure 2.8 using a better alternative.

HAIB)IIC=Al(BIC)
A B=B] A

25

2.3.3 Indexed Parallel/Interleaving

For indexed operations such as indexed parallel, i.e. || ¢ : T A(t) or indexed interleaving,
ie. |||t : T A(t) , we use the stereotype ({{))) of the class icon to represent the indexing.
An example is shown in Figure 2.11. For each of the diagrams in the figure, there are
multiple copies of A(t) or B(t) with ¢t from a set T running in parallel/interleaving with
one another (denoted by ((||t:T)) or ({|||t:T))).

<< 1 t:T >>|
(a) As=ItT Al => A(t)

<< Il t:T>>
(b) Bs=1IIt:T B(t) => B(t)

Figure 2.11: Modelling in UML (a) Indexed Parallel, (b) Indexed Interleaving

2.4 Refinement Assertion View

In this section, we discuss the final aspect of CSP visualization in UML by looking at the
CSP refinement assertion, and we accomplish the task using the class diagram. There are
two participants involved in a refinement assertion: the abstract specification and the con-
crete implementation. Assuming we have an abstract process A and a concrete process B
such that A C B. We use the realize relation to connect B to A with the arrow pointing
to A as in Figure 2.12(a). In the case where there is more than one process involved in
the implementation, we group the processes (i.e. classes) into a package as the one named
B found in Figure 2.12(b). Package is used here as a higher level process that represents
all other processes in the lower level. Note the label ((T)) beside the dotted line. It
represents a trace refinement. In a similar way, we can model the failure-divergence or
failure refinement using ((FD)) or ((F)) respectively. The hidden events are generated
automatically by the tool by comparing the events in the specification with the events in
the implementation. Here, we assume that the set of events found in the specification is

a subset of those found in the implementation, e.g. a4 C aB3.

2.5 Tool Support

We built our UML model using the commercial tool Rational Rose©[76] provided by
IBM®. We are currently using Rational Rose 2000e, Rose Enterprise Edition run on the
Windows 2000 platform. Using the mapping strategy we have proposed in this chapter,
we develop a translator (U2CSPwv!) which will take in the UML diagrams and generate
automatically CSP that is accepted by FDR. Essentially, what the tool does is it inputs a

3aX denotes the set of event alphabets found in process X

26

(a) A (b) A
4 <<T>> 1 <<T>>
B i
B
U U
A [T=B\ {hidden_events} A [T=B\ {hidden_events}

Note: <<T>> may be replced with <<FD>> or <<F>>
for Failure—Divergence or Failure refinement.

Figure 2.12: Visualizing CSP refinement assertion in UML

UML model consisting of one class diagram and one or more state diagrams and translates
them into a CSP specification in the form of a text file. The text file can then be fed into
the FDR tool for model-checking (see Figure 2.13).

CSp

; UML model Specification
Ra“‘i;:l] Rose U2CSPv1 FDR

Figure 2.13: The tools involved in generating CSP specification from a UML model for model checking.

In the Rational Rose environment, a UML model is drawn up in a hierarchical man-
ner. Each model contains at least one class diagram featuring different classes and it is
situated at the top level of the model. Each of the classes models a CSP process and each
class contains exactly one state diagram that is used to model the sequential behaviour
of the process. To avoid the class diagram getting cluttered with too many classes, we
may hide the classes in a package. In this way, the classes are arranged in a lower level,
providing clearer and simpler abstraction at the higher level. Given that at this stage we
do not support any nested state, i.e. a substate situated within a composite state, each

state diagram has a flat structure.

An example of a model drawn in the Rational Rose environment is shown in Figure
2.14. It contains three windows showing diagrams at three different levels that make up
the model. The Class Diagram: Logical View/Main is situated at the top level, showing
Design refining Specification. The Design is represented by a package which contains three
classes, as shown in the Class Diagram: Design/Main in the next lower level. At this
level, the classes represent ProcessA, ProcessB and ProcessC and they share some com-
mon event channels between them. For each of these processes, there is a state diagram
attached to it illustrating the sequential behaviour involved in the process. An example
of such state diagram is shown in the Statechart Diagram:ProcessC/NewDiagram (at the
bottom right corner) which corresponds to ProcessC. The other two state diagrams cor-

responding to ProcessA and ProcessB are not shown here.

27

<<T>>!

Design

ProcassC
evel \wmc

| Pnu:usﬂ aveanJ ProcessB I
I 1 T |

Figure 2.14: An example of a UML model in the Rational Rose Environment.

2.5.1 U2CSPuv1

U2CSPw! is essentially a script file that is built into the Rational Rose environment.
It is written in the Rational Rose Scripting language, which is an extended version of
the Summit BasicScriptlanguage [12, 13, 14]. There is a script editor that runs in the
Rational Rose environment that provides access to the scripting environment. The tool
is configured as an option on the menu. When U2CSPw1 is invoked, the translator takes
in the current UML model and retrieves the necessary information from the model. It
then generates a CSP specification with the file extension .csp. The current version of
U2CSPu! is a prototype used to explore the mapping strategy and the efficiency of the

concept.

2.6 Example

In this section, we are going to demonstrate how we can use UML as a graphical front-end
to design a system, and then use the mapping strategy we have devised to translate the
diagrams into CSP that can be fed into FDR for further model-checking. Here, we would
like to show how individuals with no experience of CSP can use CSP in their process of

designing a system without having actually write the CSP code themselves.

2.6.1 Lift System

In this example, we would like to design a lift system. In the system, there is a lift door
and one door at each of the floor. When the lift arrives at a floor, both the lift and the
floor doors will open. A passenger then enters the lift and presses a button corresponding
to the floor they wish to go. The lift and the floor door close before the lift moves to the
next destination floor. During the course of the lift moving, an emergency button may

28

be pressed and the lift will come to a halt. The lift will remain at halt until the release

button is pressed. For simplicity, we have not considered the mechanism for requesting
the lift.
Sequential Behavioural View

We begin our design by first identifying three main entities in the system: the lift itself,
the door at each floor and the emergency button. For each of these entities, we define its
sequential behaviour using a state diagram.

Start4

DOOR(i)

liftStop(i) liftStop(i) Start3 liftMove
liftMove .

liftOpen(i) | fMove/ ii=k doorOpen(i) X HMove (ACTIVE
BOARDING()

press
button(?k:diFf(FLOOR, [i}))

COMPLETE(i,k

liftClose(i)

button(?k:diff{FLOOR, (1)))
STILL_OPEN(i)

release HALT

doorClose(i)
DOOR_CLOSE(i) }—

(a) ()] (c)

Figure 2.15: State diagram for (a) lift (b) floor door and (c) emergency button

We start by looking at the design of the lift itself. In Figure 2.15(a), the system starts
at state LIFT(i). When the lift stops at the ** floor, e.g. liftStop(i), the lift opens,
modelled by liftOpen(i). Notice so far that when the states receive their incoming tran-
sition event parameters, we append the parameter 7 in the state names, e.g. LIFT(7)
and STOPP(i). Someone who enters the lift then presses any button k, except the cur-
rent floor. Hence, we have k : diff(FLOOR, 1) where FLOOR is the set of all the floors
which the lift serves, and diff (FLOOR, i) is the set difference between FLOOR and {i}.
Observe that both the arguments ¢ and k are appended to the next state name, e.g.
COMPLETE(i,k). The lift then closes at i** floor, e.g. liftClose(i). Next, when the event
liftMove takes place, it not only triggers a transition from CLOSED (i,k) to the next state,
at the same time, it will also trigger an action ¢ := k that will substitute ¢ with the next
target floor k, and the next state LIFT(i) will have the value of k¥ appended to its state
name. The whole process is repeated with the target floor k.

29

Using the proposed mapping strategy, we may now translate Figure 2.15(a) into CSP

as follows:
Start2 = LIFT(i)
LIFT(i) = liftStop.i —» STOPP(i)
STOPP(i) = liftOpen.i -~ BOARDING(i)
BOARDING(i) = button?k:diff(FLOOR,{i}) - COMPLETE(j,k)
COMPLETE(,k) = liftClose.i - CLOSED(i k)
CLOSED(i,k) = liftMove — LIFT(k)

We do the same for the floor door (see Figure 2.15(b)). Bear in mind that there is
more than one floor door involved in the system, hence 7 in DOOR(i) refers to the door

at the specific floor 7. The CSP translation for this diagram may be found in Appendix
A.l.

Figure 2.15(c) shows the design for the emergency button. The process begins at X.
When the lift moves, the system will transit to state ACTIVE. The system will remain at
this state as long as the lift is moving, e.g. event liftMove is offered by the environment
continuously. If the emergency button is ever pressed, e.g. event press takes place, and
the system comes to a HALT. The only possible way for the system to get out of the state
HALT is when release is pressed. The system then goes back to state X, and the whole
process is repeated. The corresponding CSP for the state diagram based on our mapping

strategy is as follows:

Start3 = X
X = liftMove - ACTIVE
ACTIVE = press —» HALT O liftMove - ACTIVE
HALT = release =+ X

Parallel Composition View

In the previous section, we have drawn three state diagrams with each illustrates the
individual process for the lift, the floor door and the emergency button. Now, we need
to combine these individual processes and put them in parallel in order to produce a
complete design. We achieve this using the method developed in Section 2.3. As shown
in Figure 2.16, we have three classes representing the three main processes: LIFT(1),
DOOR(i) and X . Notice that for process DOOR(1), it is stereotyped as ((|||i:zFLOOR)).
Since FLOOR = {1..N}, the stereotype indicates that there are N copies of processes
DOOR(i) interleave with one another. Translating the class into CSP using the mapping

30

strategy, we get
DOORs = |||i : FLOOR DOOR(i)

ST
= |\

:presso \

release() ||| :-FLOOR>>

SiRMove(LIFT() DOOR()
:Eggl“eo SitMove(
satorn) | MStp biton Ny

Y ulton

Q[!ﬁOpsn(U $doorOpen()
ifClose() SoorClosef)

Figure 2.16: The parallel composition between the CSP Processes

Figure 2.16 is interpreted as follows : DOORs is in parallel with LIFT(1) and they
synchronize via the common channels liftMowve, liftStop and button. They in turn are in
parallel with X (since X is in parallel with both LIFT(i) and DOORs) via the common
channel liftMove. The parallel composition is expressed in CSP as

System1 = DOORs I LIFT(1)
{|liftMove,liftStop, button|}

System = Systeml I X
{|tiftMove|}

Refinement View

SPEC(1)

YitMove()
9jifiStop(
®hutton()

8

<<T>5,
)
!

— i

System

Figure 2.17: The refinement assertion

All the three classes defined earlier are grouped together using a package named System
as shown in Figure 2.17. The package forms the concrete design for the system, and this is
used to refine the abstract specification SPEC(1). A refinement assertion (shown below)

31

Startl @
(_SPEC(i) y=—

liftStop(i)

Ca®)

button(?k:diff(FLOOR,{i}))

(BGk) J—

Figure 2.18: Modeling the abstract behaviour of the System.

liftMove/ i:=k

is generated as follows:

assert SPEC(1) Cr System\{|press,release,doorOpen,doorClose,lift Open,lift Close|}

To define the abstract specification, we specify the basic requirements such that when
the lift is in floor 4, the next destination floor will depend on the button being pressed.
The requirement is modelled via the state diagram found in Figure 2.18. We obtain the
following CSP representation that corresponds to Figure 2.18.

START! = SPEC(i)
SPEC(i) = UiftStop.i— A(i)
A1) = button?k:diff(FLOOR,{i}) — B(i,k)

B(i,k) = liftMove — SPEC(k)

The Overview

Refinement View Static Structure View Dynamic Behaviour View

L

SPEC()
KMo | e

Sits
M:g

I

PR
|

|
]

Figure 2.19: An overview of the lift system in UML.

32

Figure 2.19 put together all the diagrams we have developed so far and present an
architectural structure showing how the lift system is modelled in UML. U2CSPw? is used
to translate these diagrams to CSP. We initiated the variable FLOOR with FLOOR =
{1..4} in the UML diagrams. (Refer Appendix A.1 for the full CSP textual representation
generated for this case study.)

2.6.2 Multiplexed Buffer

This example is taken from [59]. It models a multiplexed buffer system which comprises
a number of buffers placed at both transmitting and receiving sides of a communication
channel (see Figure 2.20). The channel may be one/both ways. There are four main
processes involved in the system: SndMess(send message), RcvMess(receive message),
SndAck(send acknowledge) and RcvAck(receive acknowledge). On top of these, we also
have local processes for the Tx(transmitter) and Rx(receiver).

Send Message Receive Message
4
A ’

Transmitter(s)

‘ Receiver(s)

\

Send Acknowledge Receive Acknowledge

Figure 2.20:

These processes interact with one another by synchronizing over some common events.
The interaction is shown using a class diagram in Figure 2.21. The association between
two processes shows the common channel which is shared between the processes. We
may model the parallel relationship in the following way using CSP: the translator will
randomly pick a process to start with. In this example, the translation begins at Tzs
and it synchronizes with SndMess over channel send_mess (Eq. 2.2). The combination in
turn synchronizes with RevAck(1) over rcv_ack (Eq.2.3). They in turn synchronizes with
RcvMess over mess (Eq.2.4). The combination of four then synchronizes with SndAck
over ack (Eq.2.5), and lastly, Rzs synchronizes with the rest of the processes over two
channels rcv_mess and snd_ack. All these processes are grouped under a main process
named System (see Eq. 2.7).

33

Systeml = Txs I SndMess (2.2)

{|snd-mess]}

System2 = Systeml [l RecvAck(l) (2.3)
{|rcv_ack|}

System3 = System2 || RcvMess (2.4)
{|mess|}

System4 = System3 || SndAck (2.5)
{lackl}

System5 = System4 I Rxs (2.6)
{Ircv_mess,snd_ack|}

System = Systemb (2.7)

Observe that Tzs and Rzs are indexed interleaving processes, as denoted by ({i :
Tags)) on the diagram. They are expressed in CSP as

Txs = ||| i:Tags Tx(i) ~ (2.8)
Rxs = ||| i:Tags Rx(i) (2.9)
SndMess RevMess
mess .
. ¥snd_mess() 7| Omess) | rov mess :
<<||| i:Tags>> [snd_mes, s e - <[- Tags>>
() / mess|() rw_messO\\ R()
gy A Sy
¥ \ RevAck(!) SndAck / Yighi)
rcy_ack ack
$rev_ack() ®snd_ack()
$ack(®ack()

Figure 2.21: The static relationships for processes in the multiplexed buffers system.

Figure 2.22 shows how System is being used to refine the abstract specification Buffer().
The corresponding CSP representation for the diagram is

Buffers = ||| i:Tags Buffer(i)
assert Buffers [FD = System \

{|snd-mess,rcv_ack,mess,ack,rcv_mess, snd_ack|}

For each of the processes shown in Figure 2.21 and 2.22, a corresponding state diagram
is drawn to model the event transition for the process. These state diagrams together
with the the full list of the CSP representation for the system can be found in Appendix
A.2.

34

<<||| i:Tags>>
Buffer(i)

Yeft()
Pright()

A

<<FD>>

i

____11

System

Figure 2.22: The refinement relationship in the multiplexed buffers system.

2.7 Discussion

2.7.1 Why State Diagrams over Activity Diagrams?

In general, both state diagrams and activity diagrams are used to show the states in
which an object resides. As pointed out in [17], the primary difference between the two
is that: the transitions between states in the state diagrams are particularly triggered by
the events produced in the environment. Conversely, the transitions between states for
activity diagrams occur not because of event triggers, rather, the transitions are due to
the completion of the activities performed within an activity state. From this, we may
say that the state diagrams are more adept in modelling reactive systems that react to
event occurence. Moreover, a state diagram is concerned with events that take a system
from one state to another whereas an activity diagram is concerned with activity within
a state that takes up time. Since CSP is a notation concerning interaction of processes

with reactions to events, we feel it is more appropriate to use state diagrams in our work.

2.7.2 Why Class Diagrams over Other Diagrams?

To visualize the parallel structure and refinement assertion of CSP, we have adopted class
diagrams over all other UML diagrams. The reason class diagrams are chosen is mainly
because they are able to provide a clear hierarchical structure for the model of a system.
The feature provided by the Rational Rose® modeller allows a state diagram to be nested
within a class. With this, we can model the parallel structural behaviour of the system
using the class diagram and the dynamic sequential behaviour using the state diagram
independent from one another, but at the same time maintain the link between the two.
Also, in a class diagram one is allowed to group more than one class into a Package, and
this method proved useful in our approach to visualizing the refinement assertion. Fur-
thermore, the operations shown on each class entity can be used to display distinctively

the events that are involved in a process.
Having said this, UML has offered two types of physical diagrams at our disposal:

Component Diagram[24] and Deployment Diagram([24]. As mentioned before, a compo-
nent diagram shows the relationship between different components, whereas a deployment

35

diagram shows the physical deployment of a system into the real environment and indi-
cates where the components are situated in the real world. Based on the definitions, one
may suggest that we should use component diagrams when trying to visualize the parallel
structure between different CSP processes. The main entity in a component diagram are
components(refer Figure 2.23), with each depicted as a square box with two rectangles
attached to the top left corner of the box. A component may have interfaces (repre-
sented as lollipops sticking out from the square box) which are the visible channels the
component is offering to other components. In UML context, a component is used to
group classes together. Although component diagrams may have the potential of replac-
ing the class diagrams in our work, to a certain extent, we find working with component
diagram in the Rational Rose environment to be tedious. First of all, interfaces need to be
defined in a class diagram before they could be assigned to components. In other words,
component diagrams cannot be used alone in a design but it must be incorporated with
class diagrams. On the other hand, Rational Rose® does not provide any way to link a
state diagram to a component in the Component Diagram. Without the link, it could
make traversing the model to be confusing, and we will also loose the hierarchy structure
that class diagram could offer. Hence, we have left out component diagram for the time
being. We may consider using it in the future if a suitable tool is found to support its use
in a better way, or if there are additional features for the component diagrams offered in

the UML new version 2.0 to be released soon at the time of writing.

é Component A| C out
Cg in

Figure 2.23: An example of a component

2.7.3 Fork and Join

Naturally, one might think that we should use join and fork in UML to represent the

parallel composition in CSP. However, our observation suggests otherwise.

Before we explain further, we first introduce the notion of joins and forks. Typically,
a join construct is used to merge several transitions from the source states to a single
outgoing transition, while a fork construct is used to split an incoming transition into
more than one outgoing transition. An example of how the joins and forks are used is

shown in Figure 2.24.

For a fork, the events on its outgoing transitions can only take place after the event

on the incoming transition has occurred. For this, we can see that Search_Flight and

36

Search_Hotel Pay_Hotel

Browse_Catalog

Book_Hotel Ready,
®

Search_Flight Book_Flight

Pay_Insurance

Figure 2.24: Using forks and Joins

Search_Hotel only take place (one after another, regardless of the order) after Browse_Catalog.
Similarly, Book.Hotel can only occur after Search-Hotel and Book_Flight are completed.
Comparing the notion of synchronization between UML and CSP, we observe that for
UML, an event is synchronized in such a way that it is to occur before a second event
takes place. Conversely, the synchronization in CSP deals mainly with executing a com-
mon event shared among different processes. Bearing these differences in mind, we may

attempt to translate the diagram to CSP as below:

P1 = Browse_Catalog — Search_Hotel — Book_Hotel
— Pay_Hotel — Ready

P2 = Browse_Catalog — Search_Flight — Book_Flight
— Book_Hotel — Pay_Flight — Ready

To include the event Pay_Insurance, we would need to add another process such that

P3 = Browse_Catalog — Search _Flight — Book_Flight

— Book_Hotel — Pay_Insurance — Ready

Each of these processes are obtained by tracing the diagram from the initial state onwards
until the final state is reached. As a results, three different traces or processes are formed
that cover all the possible routes through different branches. Lastly, we may combine

these processes to get

BOOKING_HOLIDAY = (P1 I P2)
Browse_Catalog,Book_Hotel,Ready

P3
Browse_Catalog,Book_Hotel,Ready,Search_Flight,Book _Flight,Book_H otel

The translation may seem to work well but we foresee some complications in it. First of
all, all the processes are combined under the same diagram, hence, there is no clear and
direct visualization of individual processes that are involved in the system. Secondly, it is
less obvious which event the processes are synchronized on, as compared to the association
we have used to model a common channel between two processes. Thirdly, the diagram
might become more cluttered, when many processes are involved. In our two-tier hierar-

chical representations, we are able to reduce the complexity of the diagram by visualing

37

separately the sequential behaviour and the parallel composition of a system using a class
diagram and one/more state diagrams (with one state diagram corresponding to a process
in the system). Based on all these reasons, coupled with the consideration of simplicity

for our automated translation tool, we have decided not to use forks and joins in our work.

2.8 Comparison with Related Work

We gained our initial inspiration from the work carried by Bolton & Davies [8] which
involves Activity Graphs and CSP. The work takes a different approach in which it de-
fines a formal semantics of Activity Graph and then compares it with CSP, whereas we
concentrate on giving a full representation of CSP in UML, and emphasizes providing a
graphical support towards CSP.

The work by Davies & Crichton [15] provides a formal behavioural semantics to com-
binations of class, object and state diagrams using CSP. They use a class diagram to
describe how objects from different classes can communicate by calling operations on one
another and they use a state diagram to show how an object will react to the arrival of
an event. In their work, a state diagram for a class is used to describe a parameterised
communicating process which is based on the run-to-completion assumption. Their work
interpretes a class as a template behaviour for all the objects sharing the same behaviour,
whereas our work assumes a class as a CSP process, and hence our class and the initial
state of its state diagram share the same name. In comparison, their work resembles more
closely to the informal semantics of UML (as interpreted by OMG).

The work by Brooke et al. in [10] is closely related to ours. They are providing
a graphical notation for timed CSP (TCSP). Their work is different from ours in a few
aspects. First of all, [10] does not provide a complete graphical representation of TCSP
in that it does not support representation of refinement notion. Our work is able to do
so by using the realize relation under the class diagram to visualize the design process
refining the specification. Secondly, we have used the association relationship between
classes to model the parallel composition between two processes, as opposed to theirs
which does so by placing all the the processes that are in parallel within a square box
annotated with “Synch{}” (see Figure 2.25). Thirdly, their work opts for Harel’s state-

Synch({tock)) *

Process | Process 2

RS

Process 3

Figure 2.25: A representation of parallel processes in [10].

charts rather than the UML diagrams because they want to avoid the imprecise semantics

38

problem associated with UML. In contrast, we have chosen UML mainly for its wealth
of notation offered under different diagrams, in which case we have been utilizing the
notations offered by the class diagram and the state diagram for our work. Beyond that,
the readily available commercial tools (such as the Rational Rose CASE tool) not only
enables us to draw UML diagrams with ease but they also make integration with other
tools simple, which in our case, we are able to write a simple script file that works in
the Rational Rose environment to generate CSP from the UML diagrams. To compen-
sate for the problem of imprecise semantics of UML, we are providing a formal semantics
to UML state diagrams using the formal semantics of CSP. This work is presented in
Chapter 3 & 4. Fourthly, the approach they proposed in visualization is complicated,
in that they first define a text-based machine readable language (MRL) that describes
the TCSP graphical notation. Then, they develop a drawing tool that will draw the pro-
gram expressed in the MRL. Next, they develop a converter which will take the drawing
and transform them into some sort of notation to be fed into FDR or PVS [35, 55]. In
comparison, we have taken much simpler approach, in that we integrate the commercial
UML drawing tool Rational Rose with U2CSPw1. The only step required from the design-
ers is to draw UML diagrams (in Rational Rose CASE tool) and U2CSPv! will translate
the diagrams automatically to CSP that can be directly fed into FDR for model-checking.

The work by Abeysinghe et al. [1] examines two modelling paradigms: CSP and a
subset of Role Activity Diagram (RADs) which is centred around the concept of roles
and activities as opposed to processes and events in CSP. A role in RAD describes a
sequence of steps/activities which is carried out by an actor. There are two types of ac-
tivities involved in a role: actions and interations, which cause a step change in the role.
Actions are different from interactions in that the former is carried out by the actor of the
role alone whereas the later involves other roles as well. RADs have their strength over
UML state diagrams in that they are capable of modelling actions that are synchronized
between two roles in a much simpler way as opposed to the synchronization using fork
and join under UML state diagrams. Also, RADs are able to support refinement notion
in the same diagram, and they have a notation called “part refinement” which refines the
state of a role into a number of separate parts. We feel that this way of representation
is useful and straightforward when dealing with small case studies, as both the basic re-
quirements and the detailed refinement are presented in the same diagram. However the
diagram may become too cluttered if bigger case studies are involved. For this, our work
is able to provide a two-level hierarchical representation whereby a class diagram at the
the top level provides an overall view to a system. The user can then choose to zoom
into particular parts of the system by looking at the state diagrams in the lower lever for
more detailed description of the system.

39

2.9 Conclusion

In this chapter, we have demonstrated how we can visualize CSP in UML using the map-
ping strategy we have devised. We use UML state diagrams to model the sequential
behaviour of a CSP process, and UML class diagrams to visualize the parallel composi-
tion between the CSP processes and also the refinement assertion. The diagrams are then
put together to give a complete representation of CSP in UML. Meanwhile, a prototype
translator U2CSPwv! has also been developed based on the mapping strategy that will
automatically translate the UML diagrams to CSP that is accepted by FDR.

The main contribution for our work is we are able to introduce a graphical front-end as
an entry-point for users who would like to use CSP in the design of a system. In this, our
proposed graphical method presents the different components of a system in design in a
hierarchical structure: each state diagram is embedded in a class, and classes can be clus-
tered into packages. In addition, the proposed approach allows us to treat each process in
a separate state diagram and hence enables us to deal with a system with many processes
in a more organised manner. On top of this, designing in the graphical paradigm also
provides an easy accessibility to relative novices. This is important when the designers
need to deal with clients who have little knowledge of the specific designing language being
used, and yet need to get involved to understand what is going on. However, the relative
ease of using UML means that we lack formality in our descriptions. CSP supplements
this, by having a model checker that can verify formally the correctness of behaviour
for a system. Therefore, this suggests that there are benefits in attempting to use both
notations in a complimentary ways, with UML notations as a tool in the design and client
interaction stage, and CSP to verify the correctness and provide formality to the design.
Lastly, we believe that being able to map from one paradigm to another gives a significant

advantage to the system designers in reaping the potentials offered by both UML and CSP.

We have not covered all the constructs in CSP, and among these are sequence, event

hiding, interrupt and renaming.

40

Chapter 3

Formalizing UML State Diagrams
in CSP (Part 1)

3.1 Introduction

In the previous chapter, we address the issue of system design by looking at ways to
improve the use of CSP. In this, we have provided a graphical representation for CSP
in terms of UML. While doing so, we have uncovered the possibility of reasoning about
UML state diagram constructs in terms of CSP. As mentioned earlier, UML is rich in
its syntax constructs but still lacking in terms of having a formal behavioural semantics.
In this regard, we wish to exploit the use of CSP to define properly the behaviour of a
UML state diagram, especially those UML constructs which have not been covered so far.
The main motivation for us to pursue this is because UML CASE tools such as Rational
Rose© and Together/J [77] can actually be used to generate Java or C++ code from the
UML models. Hence, using CSP to reason about the state diagrams will help to validate

the design before implementation in terms of the actual program is produced.

In this chapter and the next one, we present a formal semantics for the UML state
diagrams expressed in the CSP framework. We do this by first defining a structural
model for the UML state machine. Using this model, we define our mapping from the
UML structural model to CSP. U2CSPv2 is developed, which is an enhanced version of
U2CSPvl1 to cover the additional features introduced by this work. Part of this work has
been published in [53].

This chapter and the next one are essentially one long chapter divided into two. They
are structured as follows. Section 3.2 explains the execution mode adopted by our formal-
ization model. Section 3.4 defines a structural model for the UML state machine. Section
3.5 to 3.6 deal with some fundamental concepts involved in developing our formalization.
In Section 3.7, 3.9 & 4.1, we present the formal definitions for the behaviour of different
states in terms of CSP. For each definition, we include some informal explanation and
examples where necessary to motivate the formal definition. Section 4.2 contains the work

involved in the development of U2CSPv2 tool. Section 4.3 discusses some miscellaneous

41

issues involved in our formalization. Section 4.4 is devoted to comparing our work with

others. Finally, Section 4.5 concludes the two chapters.

3.2 Formalization Execution Mode

Before we explain the execution mode adopted by our formalization model, let us first
take a look at the execution modes that underpin UML and CSP.

In UML, as mentioned earlier in Section 1.5.3 under “Event Processing”, the event
generation by the environment is assumed to happen one at a time, and the events are
collected and stored in an event queue which belongs to a state machine, which could be
an OR-state or a subregion of an AND-state. An event is taken off from the queue in
a FIFO manner and it is processed by its state machine as the current event. We may
summarize the main features of the UML state diagram as follows:

1. The generation and consumption of an event occur asynchronously.

2. Only one event is offered to the state machine at one time as a result of the event

queue.

In CSP, however, the execution mode takes on a different view:

1. The environment external to a process is allowed to offer more than one event and
this is modelled using the external choice construct (OJ).

2. The generation and consumption of an event is assumed to occur synchronously.
To achieve this, the environment external to a system is assumed to be running in

parallel with the system.

To illustrate further, we will use the CSP classical example of a vending machine. In
the example, a person (who acts as the external environment) may choose to have tea or
coffee from a vending machine. The external environment which is the person in this case

can be modelled as a CSP process as
PERSON = (tea - PERSON) O (cof fee -+ PERSON)

The vending machine (which acts as the main process) will react to the person (environ-
ment) according to what the machine has to offer. If the machine only has coffee left, it
might be modelled in CSP as MACHINE = cof fee -+ MACHINE. The PERSON
and MACHINE are then composed in parallel as

PERSON | MACHINE
{coffee}

Regardless of what is available in the vending machine, e.g. what the process chooses to

do, deadlock will not occur because the person/external environment is ready to provide

42

all the options.

However, things are different when we try to model the example in UML. Since the
event queue offers only one event at a time, if the machine only has tea left and if the per-
son (external environment) chooses to have coffee instead, a deadlock with occur. From
here, we can see that the UML event queue model, which does not allow modelling of
choice at the environment side, can pose serious deadlock problems. This is inherently a

deficiency found in the event queue concept proposed by OMG.

With regard to this, we decided to adopt the CSP mechanism for our formalization
model. In our formalization, we ignore the concept of UML event queue and replace it
with the assumption that the environment is always ready to offer an event required by
the process, and the generation and consumption of an event is assumed to occur syn-
chronously. By adopting a synchronous execution mechanism, we view the environment
external to a state machine as another CSP process running in parallel with the state
machine. The event generation by the environment is synchronized with the consumption
of event by the state machine. In this way, we will be able to avoid the deadlock problem
mentioned above. Moreover, a model constructed in a synchronized mode as opposed to
asynchronous mode will also make model-checking easier. This is important in our work
since our ultimate goal is to model-check UML using CSP/FDR. We would like to stress
that although we are using synchronous mode in our formalization model, we are still
able to provide great insight into the interaction complexity concerning the UML state
diagram. As we will see in the subsequent formalization, our model has uncovered many
intrinsic details on the sequential execution involving different actions, state activity and

event. This insight is especially valuable when state hierarchy is involved.

3.3 Well Formedness Rules

In this section, we list out the well-formedness rules that apply to our formalization model.

1. The hierarchy of the state must define a tree, e.g. no cycle is allowed.

2. Only one outgoing transition is allowed from an initial state.

3. At least one initial state must present within each level of a composite-OR-state
hierarchy to indicate the start point upon entry into the composite state.

4. A transition originating from an initial state must always terminate at a state within
the same hierarchical level where the initial state resides.

5. An incoming transition is not allowed to cross any state boundary (see Figure 3.1).
We will discuss later in Section 4.3.2 the complications involved if this type of
transitions are included in our model.

6. Only simple actions (i.e. transition action, entry action or exit action) are consid-
ered, no assignment statement is allowed in a state or transition action.

7. An entry state action consists of at most one simple action.

43

8. An exit state action consists of at most one simple action.

9. A state do-activity consists of at most one activity.

o) |

Figure 3.1: An example of a cross-boundary incoming transition which is not allowed in our model.

3.4 Structure of the State Diagrams

A UML state diagram represents a hierarchical state machine that includes the initial
states, final states, choice states, simple states, composite states and transitions between
states. Each of these constructs is distinguised and referred to by a unique identifier. We
will begin by defining a structural model for the state diagram.

Assuming we have a state machine M such that the number of states in M is finite.
The set of state identifiers found in M is denoted by Sps. The set of transition identifiers
found in M is denoted by Ty and T, is finite. Ejs and Ajps represent respectively the
identifiers of the set of events and actions the state machine M is involved in. Some actions

involved in a state machine could also be events of the machines, that is Epr N Ay # 0.

3.4.1 State Configuration

Su is partitioned into six disjoint sets as follows: simple states Sps(ss), composite states
SM(cs)» initial states Spy(is), final states Spy(ss), choice states Sys(choice) and subregions

SM(region)'

Every simple state or composite state contains a label, and may have an entry action,
an exit action and do-activity. The label is compulsory for a state whereas the entry and
exit actions and do-activity are optional. For state K € Sy, it is represented by the
following functions:

e the state label is represented as label : Spy — LABEL, where the total injective
function specifies clearly that no two states within a state machine are allowed to
have the same name.

e the entry action is represented as entry : Spr— Apnr

e the do-activity is represented as doActivity : Spr—+ Ay

e the exit action is represented as ezit: Sy Apr
The partial functions used for entry, doActivity and ezit model the fact that they are

optional attributes for a state in a state machine.

For a state machine, we assume that there is a composite state that contains all other
states in the state machine and we refer to it as the top state, Sus,, with Sy € Sir.

44

51
®
S El ...
o 53
(B) ® B3

Figure 3.2: An Example of a composite-AND-state.

We define a binary function IMM : Sp;— Sps that maps each state to its immediate en-
closing state. For example, given a composite state X with Y nested within it, we have
IMM(Y) = X (read as “the immediate enclosing state for Y is X”). Because the domain
and range of the function are elements from the same set Sys, we run into a possibility
where a state may be mapped to itself through IM M, which is obviously not correct. To
avoid this from happening, IM M must define a tree. For this, we introduce a constraint
where IMM* Nid(Sx) = 0 (see footnote 1>2) . To satisfy the constraint, IM M+ should
not have any reflesive pair, i.e. £+ z. Since IMM C IMM™, the constraint will in turn
force IM M not to contain any reflesive pair.

For convenience, we also define a function ENCL where ENCL : Spy — PSy;. ENCL
may be defined in terms of IMM as ENCL(z) = IMM™*[{z}]. Due to the constraint
introduced earlier, ENCL satisfies Vz - z ¢ ENCL(z).

The composite states are partitioned into two sets: Sps(cos) Which refers to the composite-
OR-states and Sp(cqs) for the composite-AND-states. An OR state contains substates
that are OR-ed together so that only one substate can be active at a time, while an AND-
state contains subregions that are AND-ed together, so that when the state is entered, all
the subregions become active at the same time. Each composite-AND-state is divided into
a finite set of subregions with each separated from the others by a dotted line. A subregion
may contain substates that consist of states in Sps. Figure 3.2 shows an example 2 of a
composite-AND-state X which consists of two subregions S7 and S2, with S7 containing
substates /1, A and E1, and S2 containing I2, B, C and E2. We define Sy(region) as a
global set which contains all the subregions of all the composite-AND-states in the state
machine M, e.g. 51,52 € Sp(region)- To locate the AND-state in which a subregion re-
sides, we use the function IMM. For instance, IMM(S1) = X. Similarly, we use the same
function to determine the subregion to which a substate belongs to, e.g. IMM(A) = S1.

The hierarchy of various states found in a state diagram may be described using a
tree. Figure 3.3(a) shows an example of a state machine which the hierarchy of its states

are represented by a tree in Figure 3.3(b). The root node a represents the top state a of

1IM M is the transitive closure of IMM, e.g. IMM™ = ,%IMM"
7

2id(Sh) is the identity function on Sur, e.g. id(Sn) = {(s,¢) | s € Sm At € Sus As=t}
3When presenting an example, we will use the same identifier to refer to a state and the label attached
to the state.

45

the state machine. The parent vertices labeled a, b and k with vertices below them corre-
spond to the composite states a, b and k. Nodes n and o correspond to subregions n and
o that reside in the composite-AND-state k. The leaf vertices with no children attached
to them are states labeled h,e,f,j,l,c,d,m, p,q,7,s,t and u. In this figure, for instance, the
set of enclosing state for ¢, that is ENCL(t) is equal to {o,k,a}.

100t Vertex. . _

(a) (b

Figure 3.3: State hierarchy corresponds to a tree.

3.4.2 Transition Configuration

A transition identifier t where ¢t € T)s (where M is the state machine) consists of a source
state, a target state, a trigger event, a guard and an action list. All information except
the source state and the target state is optional. Each transition ¢ is represented by the

following functions:

e the source state is represented by source : Thy — Spr.

e the target state is represented by target: Thr — Sps.

e the trigger event is represented by event: T — Epr.

e the guard for the transition is a Boolean expression. Assuming we have a language
B that describes the Boolean expressions, we have guard : Tyy — B.

e the transition action is expressed as an ordered sequence of actions, e.g. a1;as;...;Gy.
Thus, we have action : Tay — seq Apr, where seq Ay refers to sequences which are

made up of elements from the set Ajy.

In UML, there are two types of transition in a state diagram: transitions that are
triggered by an explicit event and transitions that are triggered by an implicit event (i.e.
completion event generated implicitly by the a state upon the completion of the state
activity). We denote the set of explicitly triggered transitions as Ts(ezpy and the set
of implicitly triggered transitions as Ts(imp) such that Thr = Ts(eap) U Tr(imp)- Given
the set of explicit events in M as Ejy(.p) and the set of implicit events as Eps(imp)
where Ep = Epf(ecp) U Ens(imp), We have (t € Typ(eqp)) € (event(t) € Epgezp)) and
(te TM(imp)) < (event(t) € EM(imp))-

46

Similarly, for a state K, the set of explicitly triggered outgoing transitions emanating
from K is Tk (ezp), Where Ti(eap) = {t | t € Thg(eap) N\ source(t) = K}. The set of implic-
itly triggered outgoing transitions emanating from K is T’k (imp), Where

Tr(imp) = {t |t € Th(imp) /\ source(t) = K}. Hence, T = T (ezp) U Tk (imp)-

3.5 Basic Concepts of Formalization

Our formalization is built on the foundation that each UML state is mapped to a CSP
process and each UML event to a CSP event. When a state becomes active, it will wait
for the next event to occur that will trigger a transition that brings the system to the
next state. If the trigger event is an external event, we model it as a CSP event. We will

start by first explaning some basic concepts that will be used in our formalization.

3.5.1 Single Transition

target(t)
transition t l

i)

Figure 3.4: An example.

Suppose we have a state A (see Figure 3.4) and it has one outgoing transition . For
simplicity, assume there is no outgoing transition emanating from any enclosing state of
A. When A becomes an active state in the system being modelled, it will wait for the next
event that will trigger a transition out of the state through ¢. When the event becomes
available, the transition will take place that brings the system to the next state. If the
trigger event is an external event, we model it as a CSP event. We may express the

behaviour of a state with a single outgoing transition as
A = event(t) — target(t)
Otherwise if event(t) is implicit, we write
A = target(t)

Here, we make an important assumption that the system is always willing to proceed to
the next state. Hence, we do not model A as A = target(t) M STOP. This aligns with
our fundamental concept in modelling the multiple choice between implicit and explicit
events (as we will see in the next subsection), where we assume that the implicit events
will eventually take place if the explicit events do not occur.

47

3.5.2 Multiple Transitions

A state is allowed to have more than one outgoing transition. The decision on which

transition to choose from will depend on what trigger event is being offered.

Let us have a state A which has more than one outgoing transition. For simplicity,
assume there is no outgoing transition emanating from any enclosing state of A. If all the
transitions are triggered by the explicit events, i.e. Vi -t € Ty = event(t) € Epf(eqp), the
choice of transition is determined by the external environment. Hence, we formalize the

choice using the external choice construct (J) in CSP as follows.
A =UOyer, event(t) — target(t)

If all the transitions are triggered by the state completion event which is implicit, i.e.
Vt-t € Ta = event(t) € Epr(imp), the choice of the transitions will be resolved by the
process internally. As such, we model the choice as non-deterministic using the internal

choice construct (M) in CSP as follows.
A =Mer, target(t)

When both implicitly and explicitly triggered outgoing transitions are present at state
A, a problem arises to determine whether the process or the environment has the right to
resolve the choice. To explain how we resolve this problem and hence arrive at a solution,

we will use a simpler example to illustrate.

Suppose now state A has one explicitly triggered outgoing transition ¢, and one im-
plicitly triggered outgoing transition ¢;. Upon the completion of the do-Activity within A,
we are faced with two possibilities, (a) the environment offers event(t.) which will trigger
a transition out of A through t., or (b) state A produces a completion event which will
trigger a transition out of A through t;. Here, we are faced with one question: do we
model the choice between the two transitions as determined by the external environment
(and hence it is a deterministic choice) or the choice will be resolved internally by the

process itself (and hence it is a nondeterministic choice)?

UML semantics does not specify the behaviour of this type of process. In view of this,
we decided to adopt the interpretation offered by Roscoe’s CSP semantics [59](p79-80).
Roscoe proposed the following way to reason about this behaviour: when the hidden
event becomes available, if the unhidden event does not occur, the hidden one will be
carried out eventually. In this, Roscoe introduces the notion of “timeout”, denoted as >,
whereby given A > B, if A does not occur, B will be carried out eventually. Applying the

interpretation to our problem, we may express the behaviour at state A as

A = (event(t,) — target(t.)) > target(t;)

48

The above expression states that if event(t.) is not offered by the environment, the system

will eventually take the transition to target(t;).

3.5.3 Transition Guard

In UML, we may have guards attached to transitions and they are Boolean conditions that
must be satisfied in order to enable a transition to take place. According to the OMG se-
mantics, a guard is evaluated when an event instance is dispatched from the event queue.
If the guard is true at that time, its corresponding transition will be fired. Otherwise,
the transition is disabled. Based on [3], a guard condition may refer to the parameters

from the triggering events or the attributes of the objects that belong to the state machine.

In the context of CSP, we may express a guarded transition using the CSP Boolean
guard construct: g& P (read as if g then P). Having identified the construct in CSP, we
may now formalize the UML transition guard using the CSP boolean guard, as follows.
Using our running example, suppose state A has an explicitly triggered transition ¢ with

guard(t), we may model the guarded transition as
A = guard(t) & event(t) — target(t)
If ¢t is implicitly triggered, we have
A = guard(t) & target(t)

3.5.4 State Actions and Transition Action

In UML, we may have actions attached to a transition or nested within a state such
as entry action, exit action or do-activity. For simplicity, we are only going to consider

modelling UML actions as CSP events.

Transition Action

More than one action may exist under a transition action component. For all the actions
that are attached to a transition, when the transition is triggered, this will automatically
execute the actions. The actions may be expressed in CSP as a sequence of events ac-
cording to their linear order along the segments of the transition. They occur after the

trigger event takes place.

We define a CSP process named ACTION(t) which defines the sequence of execution

for all the actions belonging to a transition ¢ when the transition is trigged.

Definition 1 Given a transition t € T)y with action(t) € seqAps.
If action(t) = (a1,a2, - ,an), ACTION(t) =a; - a2 = -+ = ap = SKIP
If action(t) = (), ACTION(t) = SKIP.

49

Sn .

Figure 3.5: Transitions with multiple source.

State Entry and Exit Action

The well-formedness rule for our model allows at most one action to exist for each state
entry action and exit action. For a simple or a composite state with entry action, the
entry action is executed upon the state being entered. Similarly, the exit action is carried
out when the state is exited, after the triggered event but before the transition action

takes place. Below is the formalization for the UML actions.

Taking the transition and state actions together, we formalize their sequence of oc-
curence as follows. Again, using our running example state A with outgoing transition t,

suppose action(t) = a1;as;...;a,. If ¢ is explicitly triggered, then
A = entry(A) — event(t) = exit(A) — a1 — az = ... = a, — target(t)
Otherwise if ¢ is implicitly triggered, we write
A =entry(A) — ezit(A) = a1 = az — ... = a, — target(t)

In cases where we have a transition with multiple nested source states (see Figure 3.5),
we consider the following. For a transition with multiple source states e.g. transition ¢1,
the order in which the state exit actions are to be executed begins with the exit action of
the innermost nested state which is currently active. This is followed by the exit action
of the closest composite state that encloses the innermost active substate, and this rule
applies recursively until the composite state from which the transition directly emanates
from is reached. For our example in Figure 3.5, if the current active state is Sy, the ex-
ecution sequence of the exit action is exit(Sg) — exit(S1) — exit(Sa) = ... — exit(Sy).
If the current active state is Sy, the execution sequence becomes exit(S;) — exit(S;) —
exit(Sy) = ... — exit(Sy).

States Do-Activity

The do-activity for a state represents the execution of an interruptable sequence of ac-
tions that occurs while the state is active. The activity starts executing upon entering the
state, following the entry action. If the activity completes while the state is still active, it
will raise a completion event that triggers an exit out of the state through its implicitly
triggered transition (if it is present). If the state is exited as a result of the firing of one
of its outgoing transitions before the activity is complete, the activity is aborted prior

to its completion. In our formalization, we model two important execution points of an

50

activity: its beginning and its termination. We represent these two occurence as CSP

events labeled beginActivityName and endActivityName.

transition t
;

A s
do/Q

Figure 3.6: State with do-activity.

Assuming A (see Figure 3.6) is a simple state enclosed immediately by the top state
Swmo and A contains do-activity named . Suppose there is only one outgoing transition
t emanating from A. If ¢ is an implicitly triggered transition, the behaviour at state A
may be described as

A= entry(A) — begin@ — endQ

(3.1)
— exit(A) — target(t)

If ¢ is an explicitly triggered transition where event(t) € Ep(eep), We model the
interruption of event(t) on do-activity Q using the CSP deterministic choice construct.

For this, process A may be expressed as

A =entry(A) — ((begin@ — ((end@ — INT)
O (INT)
) (3.2)
) O (INT)
)

where INT = event(t) — exit(A) — target(A).

In the above formalization, we can clearly see that event(t) is offered as a choice to
interrupt the operation before, during and after the execution of activity Q. This conforms
with the informal UML semantics defined by OMG [54].

One might wonder why we do not use the CSP interrupt operator (A) to model the
external events interrupting the execution of the do-activity. We will explain, using the
running example as follows. Suppose we use the CSP interrupt operator to model the

interruption of event(t) on do-activity . For this, we have

A= entry(A) = ((begin@ — endQ — event(t) — target(t))

(3.3)
A(event(t) — target(t)))

A closer inspection on the above equation reveals that if activity Q terminates suc-
cessfully and proceeds to target(t), the subsequent execution from target(t) may also be
interrupted by event(t). This is clearly not desired. To overcome this problem, we can
replace target(t) with RUN{cyent(r)}- Eq. 3.3 becomes

51

AR = entry(A4) — ((begin@ — endQ — event(t) = RU N{cyent(t)})

J (3.4)
A(event(t) — RUN{event(t)}))
where it synchronizes with
RA = event(t) — exit(A) — target(t) (3.5)
And, we have
A= AR || RA (3.6)

{event(t)}

In this way, the interrupt operator will only have effect after entryA has occured up
to and inclusive of event(t) in Eq.3.4. The subsequent execution modelled by Eq.3.5
is free from the interruption. RUN(eyent(t)} in Eq.3.4 is a special CSP process where
RUN{eyent(tyy = event(t) = RUN{event(t)} - BUN{event(r); helps to avoid the parallel
composition in Eq.3.6 from getting deadlocked when there are occurences of event(t) in

the subsequent process.

We do not adopt CSP interrupt operator in our formalization because as demonstrated
by the above example, the approach is rather cumbersome. It also appears to be mislead-
ing to use parallel contruct to model sequential execution. Based on these reasons, we
decided on the approach that uses the CSP deterministic choice operator to model UML

states with do-activity event.

Although we model both the transition event and action as a CSP event, the resulted
CSP expression are different in the way they are formalized. To illustrate, see Figure 3.7.

Using the concepts we have defined for multiple transitions earlier on, we may express

/a b a b

Q) (R Q) (R
(i (i)

Figure 3.7: Transition Events and Actions

Figure 3.7(i) and (ii) in CSP as

(%)
(i)

= (a=>Q)N(b—R) (3.7)

p
P = (a—Q@)0300b—R) (3.8)

52

Both diagrams in Figure 3.7 model a different behaviour. In Figure 3.7(i), once state
P completes its activity, it produces a completion event which implicitly chooses to trig-
ger one of the two transitions. The action along the chosen transition is carried out when
the transition is being executed. Eq.3.7 demonstrates this, whereby the internal choice
shows that the decision between a and b lies in the process itself. In Figure 3.7(ii), once
state P completes its activity, it waits for the environment to offer either a or b. In our
formalization, this is modelled using an external choice (see Eq.3.8) which shows that
the choice is upon the environment. From here, we can see how our formalization has
faithfully model the behaviour of the state P in both cases.

The basic concepts we have discussed so far will be used as the fundamental blocks
on which formal mapping definitions for non-composite states and composite states will
be built.

3.5.5 Multiple State Exit Actions

Before we proceed further, we need to consider the issue where multiple exit actions are
involved. Transitions t1 and #2 shown in Figure 3.8 are examples of transitions which may
involve multiple state exit. The two transitions are similar in that they may be taken if A
is the current state (e.g. the state where the system is residing at the moment) and this
will result in a series of state exit actions being triggered from A to D. The difference
between the two is that for Figure 3.8(a), the only possible current state where ¢/ can
be executed is A whereas for Figure 3.8(b), the possible current state where ¢2 can be
taken from could be either A, B or C. This is because in UML, an outgoing transition
from an enclosing state is essentially a valid outgoing transition from each of its nested
states, and in our case, Figure 3.8(b) is a simplified version of Figure 3.9, which has ¢2
originates from each state nested within C. Therefore, the exit actions involved when t2

is taken will depend on the current state when the transition is taken.

1 ¢ 2

(a) ()

Figure 3.8: Multiple State Exit Transition.

Figure 3.9: This state diagram is equivalent to the state diagram in Figure 3.8(b).

In order to keep a neat representation in the subsequent formalization, we define
here a process named EXIT(A,t) which represents a sequence of exit actions being
executed in the correct order when transition ¢ is carried out from the current state
A. For example, looking at Figure 3.8(a), if the current state is A and if ¢1 is taken,

53

EXIT(A,tl) = exit(A) — exit(B) — exit(C). Similarly for transition #2 in Figure
3.8(b), if the current state is A and if ¢2 is taken, EXIT(A,t2) = EXIT(A,tl). How-
ever, if the current state is now B, EXIT(B,t2) = exit(B) — exit(C). From this, we
can see that the state exit actions involving a transition depend on the current state
from which the transition is taken. We now define formally the expression EXIT(s,t) as
follows.

Definition 2 Given a current state A € Sp; and a transition t € T4.

EXIT(A,t) = ezit(A) - SKIP ; exit(S1) - SKIP ;
ezit(Sy) — SKIP ; ... ; exit(Sy) — SKIP

where {S1,S2,--+,Sp}={S | S€ ENCL(A)A\S & ENCL(target(t))} A
Si=IMM(A) N neNAT A n>1 A S,=IMM(Sy-1)

Note if the current state A is a final state or a top state, it will not have any outgoing
transition. Hence the second assumption of the definition, e.g. a transition ¢ € Ty will
not be true and EXIT(A,t) does not exist for 4.

3.6 The Mapping Function H

To approach the formalization of the state diagram behaviour, we define a function H
that maps the structure of a state machine to a CSP process. The function takes in two
arguments, H (M, S) where M refers to a state machine and S refers to a state residing in
the state machine. Note that a CSP process definition comprises a process name (N) and
a process term (P), and it is written as N=P. Essentially, what # does is it will contruct
a CSP term for every state in a state machine. Under our formalization, each state will
give rise to a CSP process definition of the form label(A) = H(M, A) where A is a state
identifier. As you can see, the state label will form the name of the CSP process, and
H(M, A) will define the process term, which represent the behaviour of the state. For
an example shown in Figure 3.10, state A will give rise to the equation A = e — B and
state B will give rise to B = f — C. We will explain further in the current and the next
chapter how # defines the behaviour for different types of UML states.

(A ——= >{0)

Figure 3.10: An example.

Unless specifically mentioned, we assume that we are dealing with a state machine

named M from here onwards.

54

3.7 Formalization for Non-Composite State

In this section, we will formalize the UML non-composite states, i.e. those without any

nested states.

3.7.1 Initial State

The well formedness rules defined by the OMG group [54](p2:157) says that an initial
state can have at most one outgoing transition and no incoming transitions. This state-
ment is rather vague as there is no mention if more than one initial state is allowed within
the same level of a state. Consequently, we choose to allow more than one initial state to
present within a state hierarchy level (which will be reflected in the definition for compos-
ite states later). This provides more freedom to the modelling style that can be supported
by our formalization.

The outgoing transition that emanates from an initial state may be labeled, in which
case the label event refers to the incident that initiates a system routine or creates an
object (in an object-oriented context). If the transition is not labeled, the transition out
of the initial state points to the first state to be encountered in an enclosing state. The

formalization for an initial state is therefore

Definition 3 (Initial State) Given an initial state A where
A € Sus) A teTq.
Recall the well formedness rule defined in Section 3.3, card(T4) = 1.
1. If t € Tp(imp), H(M,A) = guard(t) & (ACTION(t); target(t)).
2. If t € Tp(eap)y H(M,A) = guard(t) & (event(t) > ACTION(t); target(t)).

3.7.2 Final State

Suppose we have a final state F' nested within a set of enclosing states, ENCL(F). Re-
ferring to both diagrams in Figure 3.11, ENCL(F) = { A1, A2}. If there is no transition
emanating from any of the enclosing states, a transition to F' represents a successful ter-
mination for the state machine where F and all the enclosing states reside, e.g. see Figure
3.11(a).

On the other hand, if there is at least one outgoing transition from one of the states
in the set ENCL(F), the entry to F' denotes a successful termination for all the activity
within the immediate enclosing state of F, followed by the occurrence of the event (either
internal or external) that triggers the transition out of the enclosing state. In our running
example in Figure 3.11(b), when the system reaches F, it denotes a successful termination
for activity within A1. If neither event(t1) nor event(t2) are offered by the environment,
the implicitly triggered transition to S2 will be taken. Note that the implicitly triggered

55

A2 A2

Al F Al F event(tl)
--—>(®) --—>(9) St

(2) event(t2)
()

Figure 3.11: (a) A final state F without any outgoing transition where H(M, F') = SKIP, (b) A final state F with
outgoing transitions where H(M, F) = ((event(t:) — S1)0(event(tz) — S3)) > Sa.

transition to S4 is not available at this point because A2 has not reached its completion.
As mentioned before, the system transition to F' only denotes the completion of activity
within A7 and not A2

56

Definition 4 (Final State) Given a final state F' where
Fe SM(fs) /\ (VS-S e ENCL(F) =S¢ SM(ca,s))'

1. If there is no outgoing transition from any ENCL(F),
H(M,F)=SKIP
2. If there is at least one implicitly triggered outgoing transition from IMM(F'),
H(M,F) =Fi>F
3. If there is no implicitly triggered outgoing transition from IMM(F),
H(M,F)=F
where

Fi = OxeENCL(F)DteTx (onp guard(t) & (event(t) - EXIT(F,t); ACTION(t); target(t))
F2 = TweTiymimamp 9uord(u) & (EXIT(F,u); ACTION (u); target(u))

The above definition is valid for different scenarios possible for F. We will show using
a few examples of how this is true. Before that, we present below a few CSP algebraic
laws which might be useful when we apply the definition to different scenarios. Note that
these algebraic laws are also applicable to subsequent definitions. Assuming P is a CSP

process,

Lawl z:0— P(z) =STOP
Law 2 POSTOP=P
Law 3 STOP » P=P

To illustrate how we can apply Definition 4 to other scenarios, suppose we have a
final state F' shown in Figure 3.12(a) where IM M (F) = X. Since there is an implicitly
triggered outgoing transition from IM M (F), we use case 2 from Definition 4 to define the
behaviour for ' where % (M, F') = F1>F,. However, when defining F1, since T'x (ezpy = 0,
applying Law 1 to F; will produce F; = STOP. At this point, H(M,F) = STOP > F,
and using Law 3, H(M, F) = F».

We consider a different scenario in Figure 3.12(b). Since there is no implicitly trig-
gered outgoing transition from IM M (F) = X1, we use case 3 to define for the behaviour
of F, where H(M,F) = F;. From the diagram, ENCL(F) = {X1,X2}. Because there

is only one outgoing transition from X1 and no outgoing transition from X2, this gives

57

rise to F1 = (a = Y) O STOP. Applying Law 2 to the equation, we get F1 = (a = Y).

“r@®

(a) (b)
Figure 3.12: Some possible scenarios for a final state.

Note that Definition 4 only models those final states which are not enclosed by any
AND-state (the constraint is imposed by the predicate VS-S € ENCL(F) = S & Si(cas)
in the definitions). The reason for this will be clear when we consider final states which

are enclosed by one or more AND-states in the next chapter.

3.7.3 Simple State

A simple state is a state which does not contain any substates. For a simple state A, the

state may be exited in a few different ways as follows:

a. State A completes its activity and produces a completion event that triggers an
outgoing transition through one of its implicitly triggered transitions (if there exists
one) at the state border. Here, we would like to point out that the completion event
will not have effect over any implicitly triggered transition at any of the enclosing
states that enclose A, e.g. the completion event produced by X in Figure 3.13 can
only trigger transition 7 but not j (note that both ¢ and j with no labelled events
are implicitly triggered transitions).

b. The external environment offers an event that triggers an outgoing transition at the
border of state A. The activity within the state is then abandoned and the state is
exited.

c. An outgoing transition at one of A’s enclosing states, say K, is fired and th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>