
UNIVERSITY OF SOUTHAMPTON

SPECIFYING, REFINING AND VERIFYING REACTIVE
SYSTEM DESIGN WITH UML AND CSP

By

Muan Yong Ng

M.Sc.,B.Sc.(Hons)

A thesis submitted for the degree of

Doctor of Philosophy

Faculty of Engineering,

Department of Electronics and Computer Science,

University of Southampton,

United Kingdom.

March 1, 2005

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE DEPARTMENT

Doctor of Philosophy

SPECIFYING,VERIFYING AND REFINING REACTIVE SYSTEM DESIGN WITH

UML AND CSP

by Muan Yong Ng

The strength of Formal Methods (FMs) lies in having a mathematical framework

which supports a formal and logical approach towards specifying and verifying a system.

However, the formal mathematical framework which serves as the selling point for FMs is

at the same time an offset because it requires certain degrees of expertise and familiarity in

order to use FMs. For many years, many practitioners have been reluctant to adopt FMs

in their software development process simply because they are being put off by the steep

learning curve and the complicated mathematical theories involved. With this reason in

mind, we set off to find ways to improve the use of FMs and in this, we concentrate our

effort in seeking ways to combine FMs with the intuitive graphical modelling language in

order to reap the potentials offered by both.

In this thesis, we have developed a lightweight approach which uses UML to visualize

the syntactical behaviour of CSP. We have devised a way of mapping from UML to CSP

and used UML as an entry point for system designers who wish to utilize CSP in their

design. The results is encouraging in that we allow practitioners to use CSP without

having to write the CSP themselves. We feel that this is a great step forward for system

designers who are generally not familiar with Formal Methods but would wish to exploit

the full advantage of using Formal Methods. Furthermore, we have also developed a formal

semantics model which defines the behaviour of UML state diagrams in CSP. The model

is crucial for it provides us with a set of unified semantics to work on when we design a

system using the UML state diagrams. Our work enables practitioners to design in UML

based on a set of unified semantics and later use CSP to formally check the correctness of

their design. Lastly, we have developed a prototype tool which automatically takes UML

diagrams as input and generate CSP that can be fed directly into FDR for model-checking.

Contents

Acknowledgements

List of Symbols

Chapter 1 Introduction

1.1 Background...

1.2 Motivations ...

1.3 Outline of Our Work

1.4 CSP

1.4.1 Syntax and Notations

1.4.2 Behavioural Semantics .

1.4.3 Refinement Notions

1.4.4 Tool Support

1.5 UML

1.5.1 Overview .. .

1.5.2 Class Diagram

1.5.3 State Diagram

1.6 Related Work ..

1. 7 Thesis Structure ...

Chapter 2 Visualizing CSP in UML

2.1 Introduction..........

2.2 Sequential Behavioural View

2.2.1 An example

2.3 Parallel Composition View.

2.3.1 Initial Design

2.3.2 Simple Parallel .. .

2.3.3 Indexed Parallel/Interleaving

2.4 Refinement Assertion View

2.5 Tool Support . .

2.5.1 U2CSPvl.

2.6 Example

2.6.1 Lift System

2.6.2 Multiplexed Buffer

11

ix

x

1

1

2

3

4

4

6

7

7

9

9

10

11

17

18

19

19

19

22

23

23

24

26

26

26

28

28

28

33

2.7 Discussion.........................

2.7.1 Why State Diagrams over Activity Diagrams? .

2.7.2 Why Class Diagrams over Other Diagrams?

2.7.3 Fork and Join

2.8 Comparison with Related Work

2.9 Conclusion

Chapter 3 Formalizing UML State Diagrams in CSP (Part 1)

3.1 Introduction

3.2 Formalization Execution Mode

3.3 Well Formedness Rules

3.4 Structure of the State Diagrams.

3.4.1 State Configuration ...

3.4.2 Transition Configuration.

3.5 Basic Concepts of Formalization

3.5.1 Single Transition ..

3.5.2 Multiple Transitions

3.5.3 Transition Guard . .

3.5.4 State Actions and Transition Action

3.5.5 Multiple State Exit Actions .. .

3.6 The Mapping Function 1i

3.7 Formalization for Non-Composite State

3.7.1 Initial State.

3.7.2 Final State .

3.7.3 Simple State

3.7.4 Choice State

3.8 Possible Extensions to Support UML Identifiers .

3.9 Formalization for Composite OR-State

3.9.1 OR-State

Chapter 4 Formalizing UML State Diagrams in CSP (Part 2)

4.1 Formalization for Composite AND-state

4.1.1 AND-state and Subregions

4.1.2 Nested States

4.1.3 Restriction on AND-states.

4.1.4 An Example

4.2 Tool Support . .

4.2.1 U2CSPv2

4.3 Miscellaneous..

4.3.1 Priority of Transition

4.3.2 Interlevel Transition .

4.3.3 Multiple State Machines .

4.4 Comparison with Other Work . .

III

35

35

35

36

38

40

41

41

42

43

44

44

46

47

47

48

49

49

53

54

55

55

55

58

60

62

63

64

66

66

69

72

81

81

84

84

85

85

86

87

88

4.5 Conclusion 90

Chapter 5 Formal Reasoning About The UML State Diagrams with FDR 93

5.1 Compact Disc Player. 93

5.1.1 Specification 93

5.2

5.3

5.1.2 Design

5.1.3 Refinement Checking with FDR

Barrier System

5.2.1 Modelling with State Diagrams and CSP

5.2.2 Verification with FDR

Conclusion .

Chapter 6 Analysis

6.1 Comparison between Approach A and B

6.1.1 Table of Comparison

94

95

97

97

103

110

111

112

112

6.1.2 Experiment............ 113

6.2 Comparison between CSP and UML-CSP 117

6.2.1 An Experiment. 118

6.3 Comparison between Our Formalization Model and the OMG Model 121

Chapter 7 Conclusions

7.1 Conclusions ..

7.2 Further Works

Bibliography

Appendix A Examples

A.1 Lift System ..

A.2 Multiplexed Buffer

Appendix B CSP Listing

B.1 Compact Disc Player

B.2 Barrier System

B.3 Taking Classes (based on Approach A) .

B.4 Taking Classes (based on Approach B) .

IV

122

122

124

125

130

130

132

134

134

136

139

140

List of Figures

1.1 Elements in a Class Diagram

1.2 A state diagram with two states.

1.3 An AND-state with subregions SI and S2.

1.4 Composite state SI containing substates S2 and S3 and their corresponding

10

12

13

entry actions. .. 14

1.5 State and Transition Actions. .. 14

1.6 The exit action for all the substate will be carried out starting with the

inner most substate and finishes with the composite state exit action. 15

1. 7 An example of conflicting transition.

1.8 Step Execution

15

16

2.1 Representing SKIP and STOP in UML. 20

2.2 Mapping CSP to UML. 20

2.3 An example of representing CSP internal and external choices in UML. 21

2.4 Representing "P = Q D R" and "P = Q n R". 21

2.5 Representing "P(i) = Q(i + 1)" in UML 22

2.6 A simple counter. 22

2.7 An initial approach to visualize the parallel composition of CSP.

2.8 Initial attempt to visualize parallel composition involving more than two

processes.

2.9 Visualizing the parallel composition in CSP

2.10 Visualizing Figure 2.8 using a better alternative.

2.11 Modelling in UML (a) Indexed Parallel, (b) Indexed Interleaving

2.12 Visualizing CSP refinement assertion in UML

2.13 The tools involved in generating CSP specification from a UML model for

model checking

2.14 An example of a UML model in the Rational Rose Environment ..

2.15 State diagram for (a) lift (b) floor door and (c) emergency button

2.16 The parallel composition between the CSP Processes

2.17 The refinement assertion

2.18 Modeling the abstract behaviour of the System.

2.19 An overview of the lift system in UML.

2.20

2.21 The static relationships for processes in the multiplexed buffers system.

v

23

24

25

25

26

27

27

28

29

31

31

32

32

33

34

2.22 The refinement relationship in the multiplexed buffers system ..

2.23 An example of a component

2.24 Using forks and Joins

2.25 A representation of parallel processes in [10].

3.1 An example of a cross-boundary incoming transition which is not allowed

in our model.

35

36

37

38

44

3.2 An Example of a composite-AND-state. 45

3.3 State hierarchy corresponds to a tree. 46

3.4 An example. 47

3.5 Transitions with multiple source. 50

3.6 State with do-activity. 51

3.7 Transition Events and Actions 52

3.8 Multiple State Exit Transition. 53

3.9 This state diagram is equivalent to the state diagram in Figure 3.8(b). 53

3.10 An example. 54

3.11 (a) A final state F without any outgoing transition where H(M, F)

SKIP, (b) A final state F with outgoing transitions where H(M, F) =
((event(tl) -7 Sl)D(event(t2) -7 S3)) [> S2. 56

3.12 Some possible scenarios for a final state. 58

3.13 The completion event generated by X can only trigger transition i but not j. 58

3.14 Transition K-E. 59

3.15 Comparing a choice state with a normal state. 60

3.16 A choice state acting as a pseudostate between normal states. 61

3.17 The accessibility scope for an event parameter in the State Diagram. 62

3.18 An example of a choice state. 63

3.19 A composite OR-state 64

3.20 Simple state A nested in Sl and S2. 65

3.21 Sl has two possible start states: A or B. 65

4.1 A composite-AND-state with transition crossing the AND-state border. 67

4.2 Transitions A-E, A-G, B-H, B-F, S-C and S-D may trigger an exit out of S. 69

4.3 A simple state X enclosed by an AND-state S. 72

4.4 Final states Xl and X2 enclosed by an AND-state S. 78

4.5 A nested AND-state D within an AND-state S. 81

4.6 Formalizing the behaviour of a composite-AND-state. 82

4.7 (a) A standard representation of the UML composite-AND-state S. (b) An

alternative representation of state S in Rational Rose. 84

4.8 Transition conflict due to (a) a single event, (b) multiple events. 85

4.9 Cross Border Incoming Transition. . .

4.10 Multiple State Machines, M1 and M2.

4.11 An example.

4.12 Transitions triggered by implicit events.

VI

86

87

89

92

5.1 The specification model. .. 93

5.2 FDR confirms that the specification model is free of deadlock and livelock. 94

5.3 The design model. .. 94

5.4 The counter example in FDR shows the extra trace (displayed under the

column "Performs") found in the design model which is not specified in the

specification model..

5.5 The modified specification model.

5.6 An example of a barrier system

5.7 A barrier system with five parallel components.

5.8 The basic requirements of a barrier system.

5.9 A Detector

95

96

97

98

98

99

5.10 A Barrier Mechanism. 99

5.11 A Barrier Display. .. 100

5.12 A Control Unit. 101

5.13 The message passing between different components. 102

5.14 A Control Unit (version 2). 103

5.15 A Detector (version 2). . . . 104

5.16 A Control Unit (version 3). 105

5.17 A Detector (version 3). . . . 106

5.18 A Detector (version 4). . . . 107

5.19 Verification results from FDR. 109

5.20 The message passing between different components (updated version). 109

6.1 Taking two laboratory sessions. 114

6.2 Carrying out a term project. 114

6.3 Sitting for a test. 114

6.4 LAB, PROJECT and TEST are sharing channels pass,jail and dropOut.. 115

6.5 Modelling the COURSE example with Approach B. 116

6.6 Taking Buses . 120

6.7 FDR proves that the two specifications are equal. 120

A.1 State Diagrams for the Multiplexed Buffer System. 133

Vll

List of Tables

5.1 Event traces from FDR.

5.2 Event traces from FDR.

5.3 Event traces from FDR.

5.4 Event traces from FDR.

6.1 Comparing Approach A and B

Vlll

103

104

105

107

113

Acknow ledgements

First and foremost I would like to thank my supervisor Michael Butler who has introduced

me to the subject and guided me throughout until the completion of this thesis. You have

been a superb supervisor in providing great suggestions and guidance, and at the same

time giving me the freedom and supports to express my own ideas. I would also like to

thank my external examiner, Helen Treharne who has done a superb job in examining

my work and providing valuable feedbacks in improving this thesis.

A big thank you to my parents and family, who are always behind me during all these

years when I am far from home. I will not have gone this far without your supports and

loves. Thanks to my twin sister too, Muan Hong, for putting me up in every situation,

you have been great! A big thank you also to all of you in the Southampton Chinese

Christian Church, I truly value your prayers, friendships and loves. Thank you to Yue

Teng, who has been my main confidant and support especially when things are not going

well. Also, a big thank you to all my collegues in DSSE, who have made my stay in ECS

a pleasant and memorable one.

Last but most importantly, I would like to thank my God Jesus Christ, who has

blessed me graciously since I embarked on this work, and given me the right focus to

complete this thesis.

IX

List Of Symbols

SM

SM(ss)

SM(cs)

SM(is)

SM(fs)

SM(choice)

SM(region)

SM(o)

SM(coS)

SM(cas)

TM

TM(exp)

TM(imp)

EM

EM(exp)

EM(imp)

AM
IMM(S)

ENCL(S)

ZabeZ(S)

entry(S)

exit(S)

doActivity(S)

source(T)

target(T)

event(T)

guard(T)

action(T)

The set of state identifiers found in state machine M.

The set of simple state identifiers found in state machine M.

The set of composite state identifiers found in state machine M.

The set of initial state identifiers found in state machine M.

The set of final state identifiers found in state machine M.

The set of choice state identifiers found in state machine M.

The set of subregions found in state machine M.

The top state of state machine M.

The set of composite-OR-state identifiers found in state machine M.

The set of composite-AND-state identifiers found in state machine M.

The set of outgoing transition identifiers found in state machine/state M.

The set of explicitly triggered outgoing transitions for state machine/state M.

The set of implicitly triggered outgoing transitions for state machine/state M.

The set of event identifiers found in state machine M.

The set of explicit event identifiers found in state machine M.

The set of implicit event identifiers found in state machine M.

The set of action identifiers found in state machine M.

The immediate enclosing state for state S.

The set of enclosing states for state S.

The label for state S.

The state entry action for state S.

The state exit action for state S.

The do-activity for state S.

The source state for transition T.

The target state for transition T.

The trigger event for transition T.

The boolean guard expression for transition T.

A sequence of actions for transition T.

x

Chapter 1

Introduction

1.1 Background

A software process is a set of activities which leads to the production of a software

product [68]. There are different software process models to cater for different system

engineering needs. Among the more common models are: the Waterfall Model [68], the

Evolutionary Development [68], the Reused-Based Development [68] and the Formal Sys

tem Development [68]. Our work seeks to concentrate on the last model. The Formal

System Development is based on the formal mathematical transformation process of a

system specification to an executable program. The system requirement specification is

specified in a formal specification which is expressed in a mathematical notation. The

formal specification is then refined, through a series of transformation into a program.

In the transformation process, the formal mathematical representation is systematically

converted into a more detailed system representation, and each refinement is verified to

ensure the newly refined representation still satisfies the requirements stated in the former

representation. The transformation process will continue until the formal specification is

converted into an equivalent program. The main advantage of this approach is that

it renders an incremental step from specification to implementation, therefore increases

the accuracy of the final product in satisfying the requirements stated in the specification.

In general, there are four fundamental activities which are defined in the Formal

System Development. There are

1. Software Specification - which defines the requirement, functionality and constraint

of the software.

2. Software Design and Implementation - which produces the software that meets the

specification using a chosen implementation language.

3. Software Validation - which validates the software to ensure that it meets the cus

tomer requirement.

4. Software Evolution - which enhances the software to accommodate for the changing

customer requirements

Our work deals mainly with the software specification and design stage of the Formal

System Development cycle.

1

1.2 Motivations

One of the key issues we need to address in software engineering is the correctness of

use for software systems in the safety critical situation. One only has to consider the

risks inherent in the use of software to control nuclear power stations, chemical plants,

aircraft and so on to recognize the need to be able to check and certify that the software is

reliable. Perhaps there is nothing formal that can be done to prove that the specification

for a program is correct. However, in theory, it is now possible to provide formal proof

that an implementation of a specification in the form of software meets the specification,

if the specification is drawn up in a fully logical and formal way. This is where Formal

Methods [11, 79] comes into picture.

Based on the definition given by Formal Method Europe 1, Formal Methods (FMs) are

mathematical approaches to software and system development which support the rigorous

specification, design and verification of computer systems. FMs have precise notations

and semantics which can be used to express system requirements and specification (what

a system should do) in an exact and unambiguous manner. Specifying the system proper

ties using FMs very often helps designers to uncover many implicit aspects in the stated

requirements at an early stage in the design cycle. This greatly enhances the understand

ing of a system and even contributes towards significant time and cost saving in producing

more accurate software.

Each FM is supported by a specification language with which a system specifica

tion can be described formally. Examples of the specification languages include the B

method [2, 34, 61]' Z-notation [40, 69] and CSP [31, 59, 60]. Each specification language

has a unique set of notation and mathematical paradigm to work with and they may be

supported by tools such as animator, model checker and theorem prover. Instances of

these are Atelier-B [16] and the B-Toolkit [36] for B , ZANS [58] for Z and FDR [75] for

CSP.

Adopting FMs in the system development requires knowledge of mathematical model

notations, understanding of the underlying principles and having good experience will be

an added advantage. However, all these demand proper training and significant invest

ment of time to get familiar with a method. Due to lack of resources and support, the

industry is often discouraged from adopting the use of FMs in their system development.

More often, the use of FMs is restricted within the context of academic and research

purposes.

With these reasons in mind, we set out to look at ways to improve the use of FMs in

the software system development, especially in the industry. Along this, we observe that

1 Formal Method Europe is an independent body made up of different individuals, academic and gov
ernment bodies which aim to promote and support the industrial use of FMs for computer system devel
opment.

2

there is a need to make FMs more accessible to their users, especially to those who are

already working in the development cycles but are often FMs novices.

1.3 Outline of Our Work

In order to make FMs more accessible to their potential users, we began our work by

proposing the idea of using graphical notations as the front end for system engineers to

utilize FMs in designing and verifying the correctness of their work.

We have restricted our work by just looking at one of the FMs. For this, we choose

to work with CSP (Communicating Sequential Processes). CSP is a specification lan

guage that is used to describe concurrent systems whose components interact with one

another and also with other components from other systems. CSP provides a useful way

to reason about and design parallel systems which are traditionally seen as complex and

trouble-prone. Also, the fact that CSP is well-supported by model checkers such as FDR

and animators such as ProBE [44] have further elevated the status of CSP from being a

white board language to a concrete language and this enhances its potential in dealing

with real problems.

In order to make CSP more appealing to the system designers, we propose to use

UML(Unified Modeling Language) [3, 4, 5, 17, 24, 57] as a graphical front end that al

lows system designers to use the graphical notations for design, and subsequently, use

CSP to verify the correctness of the design. In achieving this, we have formalized a map

ping strategy that allows CSP to be represented in UML. We choose to use UML because

it has been proposed by OMG 2 as the standard modelling language for the industry and

UML has received increasing attention from the industry in recent years.

In addition, we have also developed an automated tool that will take in a design in

UML and generate the corresponding CSP specification. The automated tool will not

only provide a transparent platform for system designers to work indirectly with CSP,

more importantly, the tool serves as a ground for us to experiment with the proposed

mapping strategy in a consistent manner.

The work we have achieved in visualizing CSP in UML has opened the possibility

for us to match UML constructs with those of CSP. The discrepancy of UML is that it

is a semi-formal language which has an extensive set of constructs with good structural

semantics but lacks of a formal behavioural semantics. For this reason, the second part

of this thesis is devoted to developing a formal semantics for UML State Diagrams by

2The Object Management Group, Inc (OMG) is an international organization comprises system ven
dors, software developers and users that set out to establish the industry guidelines and object management
specifications to provide a common framework for the application of object-oriented technology in software
development. In doing so, OMG has adopted the UML specification as the standard modelling language
for the industry in order to reduce any confusion over many modelling notation. OMG has also resumed
the responsibility of pursuing further the development of UML standard and produced [54].

3

inferring from the OMG informal semantics and Harel's semantics [22, 27, 28, 29, 30] on

statecharts. We then express the derived semantics in CSP.

To restrict the scope of our work, we only limit ourselves to considering reactive

systems. According to Harel [30], the typical characteristics of a reactive system are:

• It usually has more than one process interacting with one another in parallel.

• Its operations and responses to inputs are often time-critical (The issue of time

critical will not be addressed in this phd work).

• It can interact with the environment via its inputs and outputs. These inputs and

outputs could occur at any point of time and they are often asynchronous with the

running process.

• It will respond to any interrupt which is regarded as a high-priority event at any

point of time even when the system is busy.

• There could be different behavioural outcomes from a system and these depend on

the system past history, the current input values and also the current operation

mode.

Examples of reactive systems include a telephone, a lift system, a barrier control

system, an avionics systems, a VLSI circuits and the machine interface to typical desktop

software.

1.4 CSP

1.4.1 Syntax and Notations

CSP is a notation for describing concurrent systems whose components, which are called

processes, interact with each other and with the environment by communication.

A process is defined in terms of events, which are the basic elements of CSP. An

event may be initiated either by the process itself or by some agents external to the pro

cess. These external agents include other processes in the system with which the system

interacts. In other words, events are interfaces through which a process interacts with

its environment. The occurrence of an event is assumed to be instantaneous. More than

one process may be involved in the performance of an event. When this happens, the

event will only take place when all its participants are ready to execute. Processes may

be indexed to allow parameterized definitions while identifiers may be introduced into the

system via input attached to an event, in a manner to be described next.

A single event may contain more than one piece of information. The information can

be the kind of event they are, the entity the events are concerned with, the communication

channel they are on, or the message they carry. In this case, we call the event together

with all its information a compound event. A dot operator "." separates each piece of

information in a compound event. For example, gate. open is a compound event with gate

4

being the entity and open being the kind of action associated with the entity. A family

of compound events makes up a channel, for instance gate. open and gate. close can be

grouped under a channel such as channel gate: open I close. On the other hand, we could

also use compound events to model the input(?) and output(!) mode of a communication.

For instance, a?x : T means channel a is inputting an element x of type T while b!x : T

means channel b is outputting an element x of type T.

If a is an event and P is a process, a -7 P is a process that is initially ready to engage

in a and when a occurs, the process will subsequently behave as P. STOP is the simplest

process in CSP which does nothing. It is frequently used to represent a deadlock in a

system. SKIP, on the other hand, denotes successful termination and it is identified as

J -7 STa P. J is a special event in CSP that represents the act of terminating success

fully.

More than one process may be synchronized to execute the same event, and we use

a parallel operator to represent this. The parallel composition, e.g. P II Q shows that
{a}

processes P and Q are executed in parallel, that is they synchronize over event a and

interleave in executing all other events. Interleaving(llI) is a special case of parallel

composition where Pili Q means P interleaves with Q and there is no synchronization

between their events.

Sequential composition is a different process combination, whereby P; Q means once

P has completed, the system control is passed on to Q. Hence, the execution of P and Q

is in sequence, starting with P and followed by Q. B&P is a guarded expression where

B is a Boolean guard such that process P will only be executed provided B is true.

There are two types of choice in CSP: deterministic choice(D) which is resolved by

the environment and nondeterministic choice(n) which is decided by the process itself.

If P and Q are processes and a and b are events, for a process a -7 P D b -7 Q, the

environment may choose to engage in either a or b, which then causes the subsequent

process to behave either as P or Q respectively. On the other hand, for a process P n Q,
the process will choose internally whether to behave as P or as Q. In this case, the choice

belongs to the process itself and the environment has no control over it.

Process hiding e.g. P\S, allows a process to behave like P except all the events in set

S are removed from its interface and become internal to the process. Consequently, the

process will have no synchronization with other components over all the events in S.

CSP has a time-out construct, denoted as 1>. In the context of untimed CSP where

time is not explicitly modelled, given a process (x -7 A) I> (y -7 B) with x and y being

the CSP events and A and B being the CSP processes, this means that if x is not offered

5

at all, y will be offered eventually 3. The interrupt operator, denoted as !::,., on the other

hand, may be used as the name suggests to interrupt a process that is going on.

Finally, CSP allows generalisation of the binary operators over indexed sets of pro-

cesses, e.g.

• II x: X@P{x} is an indexed parallel composition of all processes P{x}

• III y : Y@P{y} is an indexed interleaving composition of all processes pry}

• 0 z : Z@P{z} is an indexed external choice which means one process P(z) may

be chosen out of the range Z of process P by the environment.

• n z : Z@P{z} is an indexed internal choice which means one process P(z) may

be chosen out of the range Z of process P by the system internally.

1.4.2 Behavioural Semantics

CSP is a notation and calculus that assists us in understanding the interaction between

components of a concurrent system. The behaviour of a CSP process is usually defined

in terms of its traces, failures and divergences [59].

A trace of the behaviour of a process is a sequence of events which the process performs

and they are recorded in the order of their occurrence. There are different traces repre

senting the different behaviour of a system, where the behaviour differs according to its

interaction with its external environment. A function traces{P} is used to define a set of

all possible traces for process P. For example, if P = a --7 b --7 STOP 0 c --7 d --7 STOP,

traces(P) = {O, (a), (a, b), (c), (c, d)}. The traces in the set tells us the progress of P and

also the different possibilities of the behaviour of P, i.e. P might start by doing an "a"

followed by "b", or it might choose to do "c" then followed by "d". The set of traces is

prefix closed.

A failure for a process is a pair of (t, R) whereby t is a trace being observed after

which all the events in the set R may be refused by the process, even if offered by the

environment. The set R is called a refusal. Suppose we have a deterministic process

P = a --7 STOP 0 b --7 STOP and a nondeterministic process Q = a --7 STOP n b--7

STOP. P and Q share the same set of traces, i.e. { 0, (a), (b)}. However their failure

behaviour are different in that at the initial stage of the process P, P is always willing to

engage in either a or b (depending which is being offered by the environment) ; whereas

Q may initially refuse to do either a or b (as a result of some internal nondeterministic

choice). Hence, their failure sets differ from each other where

failures (P) = {((), {}), ((a), { a, b}), ((b), {a, b})}

failures (Q) = {((), {a}), ((), {b}), ((a), {a, b}), ((b), {a, b})}

3In the timed CSP model whereby time is modelled explicitly, if x does not occur after a defined unit
of time, y will be executed.

6

From this, we can see that failures model is useful in identifying if a process is determinis

tic. As demonstrated by the example, a process is said to be deterministic if it can never

refuse any event which is being offered at each point of the process.

For the divergence behaviour of a process, a divergence component is a set of traces

after which the process becomes livelocked. Divergence behaviour is normally encountered

when hiding is used where a process may perform infinitely many hidden events and the

environment has no way of interrupting the process. It is assumed that once a process

can diverge, it can then perform any trace or refuse anything and can always diverge on

any later trace. Therefore, the function divergences{P) contains not only the traces s on

which P can diverge, but also all extensions sAt of such traces. To observe accurately

what a process can do after it has already been able to diverge is difficult and it is not

worth the effort. So, in general, divergence is undesirable and hence need to be identified

and removed from a design. This is where the divergence model is useful.

1.4.3 Refinement Notions

In general, refinement is a process whereby several levels of specifications are produced,

with each specification being derived from the specification before and each specification

fulfills the properties of its predecessor. The goal of refinement is that the lowest level

specification will possess the structures that closely reflect the implementation.

In esp, refinement is a relationship between two processes such that if the behaviour

of B is a subset of the behaviour of A (i.e. B satisfies the behaviour properties of A), then

we say B is a refinement of A and this is expressed as A ~ B (pronounced A refined by B).

There are three levels of refinement in esp: traces, failures and failures/divergences

refinement. Given processes A and B, if traces(B) ~ traces(A), then we say B is a

traces refinement of A (A ~T B). If failures (B) ~ failures(A) then we can say B is a

failures refinement of A (A ~F B). Similarly, if divergences(B) ~ divergences(A) and

failures(B) ~ failures (A) , then A ~FD B such that B is a failures-divergences refinement

of A.

Therefore, if A ~F D B is true, this implies that A ~F B is also true. Since A ~F B

suggests that failures (B) ~ failures (A) which in turns implies that traces(B) ~ traces(A),

from here, we may also deduce that A ~T B is true.

1.4.4 Tool Support

The fact that esp is supported by tools has greatly enhanced its potential in solving

industrial problems. FDR (stands for Failure Divergence Refinement) is the first com

mercially available tool for model-checking esp. It carries out two types of check, one on

refinement assertions and another on individual processes.

7

We start by looking at the refinement assertion check. When FDR checks for the re

finement assertion between two processes, it bases its check on one of the three behaviour

models: traces model, failures model or failures-divergences model. For the traces model,

FDR will check for the refinement based on the trace property such that if process B

refines A, it ensures that all the possible sequences of communication which B can do

are also possible for A. Hence, if we consider A as a specification that determines all

the possible safe traces of a system, when A ~T B is satisfied, this proves that B is a

safe implementation, with no wrong events possible. Therefore, traces refinement may

be used when we need to determine the safety property of a system. The failures model,

on the other hand, allows us to make better distinction between processes based on their

permitted executed traces and the corresponding refusals. Under the failures refinement

check, if B refuses some events, A should also be able to refuse them (after performing

some events). FDR will identify an error as a deadlock if B refuses some events which

are not possibly refused by A after performing a similar trace. The failures-divergences

model provides further strength as compared to the failures model. Besides checking for

deadlock, the failures-divergences model can also be used to analyze a system which has

the potential of never executing a visible event. A failures-divergences refinement check

fails if the design model contains a livelock which is not possible in the specification model.

In essence, FDR allows a concrete design description to be compared with an abstract

specification in order to check if the refinement properties (mentioned above) are satis

fied. If the properties are not satisfied (thus the refinement check fails), FDR will generate

counter examples that could be used to pin point the failure.

Apart from checking refinement assertions, FDR may also be used to perform checks on

individual processes. Three types of behavioural properties could be checked for a single

process: deadlock, livelock and determinism. Determinism check is meant for processes

which contain internal choices. The check detects if the processes behave in an nonde

terminism manner since the external environment has no control over the internal choices.

ProBE is an animator for CSP which has received considerable attention. In contrast

to FDR's automatic checking of properties, ProBE is an interactive animator which allows

users to control the resolution of non-determinism and the choice of actions, hence enables

users to watch a process evolves in response. Both FDR and ProBE are products of Formal

Systems [75]. Our work adopts the use of FDR, both for the availability and also for the

ease of use.

8

1.5 UML

1.5.1 Overview

UML (stands for Unified Modeling Language) is a graphical modelling language comprises

a collection of graphical notations (diagrams) illustrating different aspect of a software sys

tem. It has an extensively structured set of constructs with a structural semantics but

lacks a comprehensive behavioural semantics, that is to say there is no formal definitions

for how a diagram which is made up of several constructs may behave. Since it has a

formally defined syntax and structural semantics but an informally specified dynamic se

mantics, it is also termed as a semi-formal language.

The methodology of UML is that it is object-oriented and it promotes an iterative

and incremental design process. By using an iterative and incremental approach, we

can better manage the complexity of a system as well as incorporate requirements and

technologies changes as the design evolves over time. Beyond this, UML offers different

diagrams to model different aspects of a system. These diagrams are categorized into a

few groups according to their functionality, as follows:

• Use Case View.

The use case view describes the different functionalities of a program. It is generally

used to capture the basic requirements of a system and to provide the basis for the

construction of other views. A use case diagram may be used in this view to

depict the functionality of a system.

• Static Model View.

It is also called a structural or design view. This view describes the logical struc

tures which support the functional requirements expressed in the use case view. It

contains the program components which are principally classes and describes the

functionality for each components. This view is particular useful when we need to

gain an overall picture of how a system is made up of. A class diagram depicts the

static structure of a system using relationships between classes and general concepts

such as class attributes and operations.

• Dynamic View.

This view illustrates the behavioural aspect of a system in terms of its executable

threads and processes. There are a few diagrams available, as follows:

- A sequence diagram consists of actors, messages and a timeline. It is used to

show interactions between actors/objects through sending and receiving of messages

arranged in a time sequence.

- A collaboration diagram is similar to a sequence diagram except it has sequence

numbers to replace the timeline. A collaboration diagram is useful to show the

actual objects involved and the structural relationships between them but it is

weaker when it comes to showing the interactions between those objects as a time

ordered sequence of events.

9

Class

Class Operation

...- Interface Class

Association

\

B

~~LOP:-;-l (--;) 1----------l ~ op 10

~op20

~--Class
~

Realize Relation I
-.......... I E:J7k

'"

Figure 1.1: Elements in a Class Diagram

- A state diagram comprises states and events that show how a system changes

from one state to another via different response to the current status condition and

also events being offered by the environment.

- An activity diagram is similar to a state diagram except it is activity-oriented

rather than state and event-oriented.

• Component View.

A component diagram illustrates how the different components in a system are

connected. A component is a physical and replaceble part of a system that could

be representing a source file, an activeX control, a Java servlets and so on. A

component comprises many classes and interfaces which show how each component

is related to one another in the system.

• Deployment View.

A deployment diagram shows the physical hardware (such as a PC) on which the

software system will execute, and how the software is deployed on the hardware. It

consists of nodes which each of them represents a physical hardware. Each node

contains components representing the software system residing in the physical node.

The relationship between two nodes shows that there is a connection between the

two nodes.

Among all the UML diagrams being offered, we only consider state diagrams and class

diagrams in this work. We will further elaborate on these two diagrams in the following

sections.

1.5.2 Class Diagram

In the UML context, class diagrams are used to describe the types of objects in the system

and the various kinds of static relationships that exist among them. Figure 1.1 shows the

the various graphical representations for different elements in a class diagram which are

used in this work. The main entity in a class diagram is the class. Each class has its

own attributes and operations. An interface class is a variation of the normal class. It

is a class that acts as a template for other classes and no instances of it can be created.

Package, on the other hand, is a general purpose model element that organizes other

10

elements such as classes into a group.

The principal kind of static relationship between classes is the association. Each

association has two ends with each end being attached to one of the classes in the as

sociation. Another type of relationship that exists between two entities is the realize

relation. It is a dotted arrow line showing a class realizing the operations offered by the

other entity (pointed by the arrow head).

1.5.3 State Diagram

Basic Feature

A UML state diagram is used to describe a system behaviour in terms of its events and

state changes. Its notation and semantics are substantially those of Harel's Statechart

[22, 27, 28, 29, 30] except it is an object-based variant of Harel's. A UML state diagram

specifies the states a system may reside in and the transitions from one state to another.

In addition, it also specifies what causes activities to start and stop, and how the system

responds to various trigger events. Based on the informal behavioural semantics defined

by OMG [54], an event is an observable occurrence that may be generated by the system

itself by doing an action or by the environment surrounding the system. A state diagram

contains exactly one state machine that describes an object, which could be a class, a use

case, a subsystem or the entire system.

The semantics of state diagrams specifies that an object being modelled is always in

one of the finite set of states when it is in sequential operation, or it can occupy simulta

neously several states within a composite state when it is in concurrent operation. When

the object receives an event, it will response by moving from the current state to another

state. We may have actions attached to a transition or nested within a state. The OMG

defined informal semantics does not state clearly the differences between events and ac

tions. However, the Harel's semantics provides some insights where it defines an event

being the receiving of a signal or the effect of an operation call, and an action being the

sending of a signal or the call of an operation.

The basic syntax of a state diagram consists of rounded rectangles that represent

states, filled circles for the initial states, bull's eyes for the final states, diamonds for choice

states and finally, the arrow showing the path between states for the transitions. The syn

tax for a transition label has three parts, all of which are optional: Event[Guard}/ Action.

A guard is a logical condition and a guarded transition may only occur if the guard is true.

For example, suppose we have a simple cassette player mechanism that may reside

in one of the two states: PAUSE and PLAYING, as shown in Figure 1.2. The initial

start state(filled circle) and the stop state(bull's eye) indicate the start and the end of

the system respectively. When state PA USE is active, if event play occurs, it triggers the

action turn_an_player and also a transition that brings the system to state PLAYING.

11

ause
PAUSE

Figure 1.2: A state diagram with two states.

Note that although there are two transitions in the diagram that may be triggered by

the event play, i.e. one which emanates from the initial state and the other from the

PA USE state, only the later transition is triggered because PA USE is active at the time

play is offered. Only the active state can response to any live event that is offered by

the environment. In state P LA YING, if event pause is offered, it will trigger an opposite

transition that brings the system back to the state PA USE, whereas if stop is offered,

the system will reach the end state and terminate successfully. In this case, we can see

that PLAYING has two possible outgoing transitions. For a state with more than one

outgoing transition, only one transition can be fired at the point of exiting the state.

State

A state is a situation during the lifetime of an object when it waits for some events to

take place or it performs some actions/activitities. A state may be passed through in

stantaneously or not instantaneously. Each state machine has a top state that encloses

all the states in the state machine.

A simple state is a state which does not have substates whereas a composite state

is a state that contains other state vertices. These states that are enclosed within a

composite state are called the substates of the composite state. There are two types

of composite states: OR-state (which is also called a sequential state) and AND-state

(which is sometimes called a concurrent state or an orthogonal state). An OR-state is a

composite state which contains substates that are OR-ed together such that only one of

the substates can be active at one time. On the other hand, an AND-state is a composite

state which contains subregions that are AND-ed together, in that when the enclosing

AND-state is entered, all the subregions become active at the same time. Figure 1.3 shows

an example of an AND-state with two subregions S1 and S2. Each subregion contains

states that may not be shared with other subregions. Each subregion must include an

initial and an end state. A transition to the AND-state signifies an entry to all the initial

states of all the subregions. A transition to the final state of a subregion represents the

completion of the activity for the subregion. The activity of an AND-state is assumed to

complete only when all the subregions have completed their activities.

12

Figure 1.3: An AND-state with subregions Sl and S2.

Pseudostates are transient points in the state machine which are typically used as

notational symbol to indicate a special point (such as the initial state) or connect multiple

transitions to more complex state transition paths. Because pseudostates are intermediate

or transient states between two states, self-transitions (e.g. transitions which originate

from and terminate at the same point) are not allowed on pseudostates. Examples of

pseudostates are initial states, history states, joins, forks, junctions and choices. Here, we

choose to only elaborate on those which are used in our work.

1. Initial state represents the source for a single transition to the default/start state of

a composite state. The well formedness rules defined by the OMG group [54] (p2:157)

states that an initial state can have at most one outgoing transition and no incoming

transitions.

2. Final state cannot have any outgoing transition. A final state within a composite

state signifies that the enclosing state is completed. If the enclosing state is a top

state, then the final state indicates that the entire state machine has completed.

3. Choice state allows a transition path to be split into more than one branch. The

choice of which path to take will depend on the trigger event that is offered by

the environment and the guard to be satisfied if it is present. Only one path may

be activated at one time. In the event where more than one path is enabled, one

transition will be chosen, based on a priority rule to be discussed later.

A state can be active or inactive during execution. A state becomes active when it is

entered as a result of some transition and it becomes inactive if it is exited as a result of

a transition. A state may contain an entry action, an exit action and a do-activity which

is made up of a sequence of actions. When a state in entered, the entry action is carried

out before any other actions are executed. Conversely, the exit action is carried out prior

leaving the state.

The state activity takes place upon the completion of the entry action. The do-activity

may be carried out when the state is active. In the situation when the trigger event oc

curs before the do-activity completes, the activity will be aborted and the exit action

takes place prior to the state exit. On the other hand, if the do-activity finishes before

any trigger event occurs, the state will raise a completion event such that if there is an

outgoing transition, the state will be exited.

For a composite state, an incoming transition that terminates on the outside edge of

the state indicates the entry to the state. In Figure 1.4, for example, the transition t1 to

13

Sl/enterSl\--______ -----..

11

Figure 1.4: Composite state Sl containing substates S2 and S3 and their corresponding entry actions.

the edge of the composite state Sl indicates an entry into Sl. The entry action of the

composite state i.e. enterS1 will be carried out before the transition to the default initial

substate S2. Similarly, after S2 is entered, enterS2 is carried out. Each time, the entry

action of the substate is executed after the execution of the composite state entry action.

This rule is performed recursively until the transition terminates at a direct substate.

Transition

A transition is enabled if and only if

• its source state is the current active state, and

• the event that is being offered matches the trigger for the transition, and

• the conditions for the transition guard (if it exists) is satisfied.

For a simple transition from the source state to the target state, the transition is

activated when the trigger event occurs, following which the exit action of the source

state will be carried out. In the case where the transition is attached with an action,

the transition action is executed before the entry action of the target state is carried out.

Looking at Figure 1.5, assuming the system is in S, when ev occurs, exitS is carried out,

followed by a before enterT takes place.

[~exitS J ev/a > [~nterT J

Figure 1.5: State and Transition Actions.

Once the transition originating from the border of a composite state is activated, it

will trigger an exit from the composite state and also all the active substates within the

composite state. The exit action for all the active substates will be carried out starting

with the inner most active substate and finishes with the composite state exit action. In

Figure 1.6, for instance, when transition t1 is triggered, if SO, Sl and S2 are active, the

exit actions are carried out in the following order: exitSO, exitS1, exitS2.

OMG defines some rules to resolve the firing priority of conflicting transitions, I.e.

when more than one transition is activated by an event but which only one transition is

allowed to occur. An example is shown in Figure 1.7. If the current state is S with C

and D being active, if event a is offered, a conflict arises of whether transition D-E or S-F

14

S2/exitS2

S lIexitS 1 t1

(SO/exitSO) f----~

Figure 1.6: The exit action for all the substate will be carried out starting with the inner most substate and finishes
with the composite state exit action.

should proceed. OMG defines a transition priority scheme such that the internal transi

tion will always have priority over the higher level transition. In our case, the priority

relation resolves to choosing the lower level transition D-E over S-F. However, if event c

is offered instead, the conflict between C-H and D-G cannot be resolved in UML since

both their source states C and H are in the same level of the state hierarchy.

Figure 1.7: An example of conflicting transition.

In a simple transition with a guard, the guard is evaluated before the trigger event

occurs. For a multiple transitions such as those originating from a choice point, the order

in which the guards are evaluated is undefined.

Event Processing

Before we illustrate how a UML state diagram processes an event, we need to first discuss

the Harel's statecharts. Harel first invented statecharts [29, 30] with a vigorious seman

tics [28] and it is supported by a tool called STATEMATE [22]. As mentioned before, the

UML state diagram semantics and notations are substantially those of Harel's statecharts

except the former is an object-based variant of the Harel's. In our work, we have chosen

to refer to Harel's statecharts semantics in places where the UML informal semantics is

found to be lacking.

For event processing, Harel proposes the idea of step execution, where a system ex

ecutes a step when it performs all relevant reactions whose triggers are enabled. The

activity being executed within a step is assumed to take zero time. Let us illustrate with

some examples. Figure 1.8 shows two cases, each consisting of an execution scenario that

is made up of two steps. The first case, Figure 1.8(a), shows that action G is generated

as an event when E is offered, and the transition from A to B takes place. The system

responds to event G in the next step by making a transition from C to D. Observe that

15

ihe generation of an event and the response to the event do not happen within the same

step. In the second case, Figure 1.8(b), the execution of E triggers a transition from J

to K. At this point, state K becomes active. Suppose the condition c is valid at all time,

the next step will take the system to L. Again, the generation and consumption of the

event E do not happen within the same step.

:S2~ , C ,
: G ,
: D

[51

,

(al (b)

Figure 1.8: Step Execution.

During the execution of a step, the generated event will trigger a valid transition from

the current active state and also all the actions associated with the transition. In the

case of a concurrent state, it is possible for a single event to fire multiple transitions, but

at most one transition is to be fired in each subregion. The step will only complete after

all the fired transitions with their respective triggered actions are completed. A new step

will commence after the state machine has reached a stable state configuration. A state

machine is said to have reached a stable state configuration when it has completed its

transition and entered a state which it is residing.

OMG adopts Harel's step execution and complements it by proposing the concept of

event queue to fill in the gap left by Harel. In this, they try to explain what happens

after an event is generated and before it is being consumed. Under the OMG proposed

concept [54](p2:161), a state machine (which represents an object) is assigned with an

event queue whereby whenever the environment external to the state machine generates

an event, the event will be placed on the queue for further processing. An event instance

could be generated by the environment (i.e. an action from users) or by an action exe

cuted by another state machine in the system.

At an event queue, the events are taken off the queue in a first in first out (FIFO)

manner and processed in steps, as explained by Harel. In this, OMG refers to the Harel's

steps as the "run-to-completion (RTC)" steps. A RTC step is initiated when an event is

taken from the queue and processed by a state machine one at a time. As such, only one

event may be offered to the system at one unit time.

The event which is currently dispatched from the event queue is called the current

event. The current event will trigger those transitions which source states are the current

active states. If no transition is enabled and the event is not in the deferred event list of

the current state configuration, the event is discarded and the RTC step is completed. A

deferred event list is specified by a state to name a list of events that is to be deferred

16

when the system is at the state. OMG explains that if the current event is found in the

list of deferred event of the current state, the event will not be dispatched but instead it

will remain in the event queue until the state machine reaches a state where the deferred

event triggers a transition, or it is no longer being specified as a deferred event in the

current state. However, it is not clear how this is being done, and in what order the

deferred event is kept in the queue.

1.6 Related Work

There has been much work going on that involves combining formal and informal methods.

We limit ourselves to only look at those which seek to combine graphical notations and

formal methods with the aim of reaping the potentials offered by both. In general, we may

categorize the existing work into two categories, based on the main objectives of the work.

The first category is made up of those which look at representing FMs using graph

ical notations. Among those significant are the ongoing work by Snook&Butler [66J in

Southampton which uses UML class diagrams to construct B specifications, and Meyer&

Souquieres [48J which generate B from OMT diagrams. Wehrheim [78J looks at using

UML class digrams to model the system architectural view expressed in CSP-OZ (a com

bination of CSP and Object-Z), while Fischer et al. [23J proposes using UML-RT (a UML

profile for modelling real-time embedded system) to represent CSP-OZ. Work in this

category tends to emphasize on providing graphical visualization for the FM notations

without adhering strictly to the semantics of the graphical notations being used. In many

cases, the graphical notations are found not to be sufficient to express all the information

needed in a model. At such, annotations of constraints, variants and operation semantics

are added to complete the information in a FM being modelled. The first part of our

work presented in Chapter 2 is akin to this nature. Closely related to our work is that of

Bolton & Davies [8], Davies & Crichton [15], Brooke&Paige [10]' Abeysinghe& Phalp [lJ

and Engels et al. [19], which seek to represent Hoare's CSP in different graphical nota

tions. A comparison between their work and ours is made in Section 2.8.

The work in the second category is different from the first for it involves more in

depth study which seeks to give a formal meaning to the UML models (we restrict ourself

to look at only UML notations). Some of this work makes use of the readily available

FMs framework while others define formal semantics that cater for a specific use, all with

the common aim of formally reasoning about the behaviour of the UML diagrams. The

second part of our work falls into this category and it concentrates on providing a formal

semantics in terms of CSP for UML state diagrams (see Chapter 3 & 4).

Among the work featured in this category are those which formalizes the behaviour

of UML activity diagrams, such as work by Eshuis&Wieringa [20, 21J which defines a

formal execution semantics that allows model-checking and Borger et al. [7J which uses

17

ASM (Abstract State Machine) [33] semantics. [18] and [25] formalize the UML class

diagrams in terms of Z. The work that is of most interest to us is that of UML state

diagrams. The related work on this include those of Lilius et al. [41, 42, 43, 56] and

Latella et.al [37, 38, 47] which translate UML state diagrams to Promela/SPIN [32] that

allow linear temporal logic model-checking. The works in [39, 62, 63] formalizes UML

state diagrams in B, [6] in ASM and [73, 74] uses labeled transition systems, but these

works do not support formal model-checking. A comparison between our work and those

related in this category may be found in Section 4.4.

1.7 Thesis Structure

This thesis is structured as follows:

Chapter 2 presents an approach that visualizes CSP in terms of the graphical nota

tions provided by UML. A tool U2CSPvi is developed which inputs a UML model and

generates CSP specification that can be fed-directly into FDR for model-checking. A few

examples are shown to illustrate the mapping strategy defined for this purpose. A dis

cussion is included which explains why UML class diagrams, state diagrams and certain

notations in these diagrams are used. This chapter then concludes with a comparison

with other work.

Chapter 3 & 4 focuses on UML state diagrams and presents a formal semantics for the

diagrams in the CSP framework. This is done by first defining a structural model for the

UML state machine. Using the model, we then define a behavioural semantics for UML

state diagrams in terms of CSP. U2CSPv2 is developed, which is an enhanced version of

U2CSPvl to cover the additional features introduced by this work. A comparison with

other related work is presented at the end of the two chapters.

Chapter 5 looks at two case studies with the aim of showing how we may model a

system in UML, translate them into CSP and most of all, how FDR may be used to

analysis and check for the correctness of the design.

Chapter 6 runs a few analysis on the work produced in this thesis. Firstly, we present

the results of comparison between Approach A (as presented in Chapter 2) and Approach

B (as described in Chapters 3 & 4). Secondly, an analysis is carried out to compare the

CSP generated from our proposed graphical model and the CSP written in a usual way.

Lastly, a comparison is made between the UML semantics proposed in this thesis with

that of the OMG semantics.

Chapter 7 concludes this thesis and make some suggestions for future work.

18

Chapter 2

Visualizing CSP in UML

2.1 Introduction

In this chapter, we seek to provide a graphical representation to esp using UML. We aim

to produce a mechanism which allows users to design a system in UML diagrams that

are then translated to esp in an automated mean. This helps users who are not familiar

with esp to be able to make use of formal methods in their design process without hav

ing to write the esp specification themselves. Our work in this chapter emphasizes on

providing a graphical visualization for esp without adhering strictly to the semantics of

the graphical notations being used.

We divide the visualization task based on three aspects of esp: (i) the sequential

behaviour, (ii) the parallel composition, and (iii) the refinement assertions. The sequential

behaviour considers the events and transitions that are involved in a process. The parallel

structure refers to the relationship between different processes, this may include parallel

composition, indexed parallel or indexed interleaving. The refinement assertions model

the refinement construct in esp. For each of these aspects, we propose ways to visualize

esp using UML constructs. To this end, we choose to work with a subset of UML

constructs from the class diagrams and the state diagrams. In particular, we only consider

simple state diagrams with flat hierarchy and simple states without any state actions.

A translator U2CSPvl is developed which inputs a UML model and generates esp
specification that can be fed directly into FDR for model-checking. This work is published

in [52].

2.2 Sequential Behavioural View

The sequential behaviour of esp is modelled using a UML state diagram. In this, we use

a UML state machine to represent a esp root process. A esp root process has a global

data state associated with it and intuitively, we may represent the data states using the

UML state identifiers. For this, we use a state in a state diagram to represent a state

identifier in a esp process. In order to avoid the confusion between a esp state identifier

and a UML state, from now on we shall refer a esp state identifier as a esp process

19

identifier. For the special CSP process identifiers such as SKIP and STOP, we may use

an end state to represent SKIP, and a state with no outgoing transition as STOP (see

Figure 2.1).

SKIP

STOP

=>

=>

@

o
Figure 2.1: Representing SKIP and STOP in UML.

A state in a CSP process may be changed by atomic events/activities and the effect of

the atomic activities is represented by the assignment to the identifiers, i.e. P = Q where

P is the identifier and Q being an expression that contains several identifiers which may

include P itself since the equation can have recursion. A similar concept can be found

in UML, whereby the state change from one to another is by execution of a transition.

Therefore we may have the following mapping where we map a CSP process assignment

to a UML state transition, as shown in Figure 2.2a.

(a) P=Q => ~

(b) P=a -> Q => ~
(c) P= a.x -> Q => ~

(d) P = a?x -> Q => ~

(e) P=a!x -> Q => ~
(f) P=g&Q => ~

Figure 2.2: Mapping CSP to UML.

Furthermore, we can also map a CSP event prefix to a UML transition with an event

(see Figure 2.2b). In this, we have a straight forward mapping from a CSP event to a

UML event. In addition to simple events, we might have other information attached to

an event to get a compound event such as event with argument a.x, event with input

a?x or event with output a!x. In UML, the syntax for the event label may include a

list of parameters separated by commas such that the format will look like this: event

name(parameter-name, .. .}. We can represent the CSP event information using the UML

event parameter list in which case a.x will be expressed as a (x), a?x as a(?x) and a!x as

a(!x) (see Figure 2.2c-e). The same mapping rule is applied to multiple-part compound

event, e.g. a.x?y can be expressed as a(x?y) in UML. In addition, we map a Boolean

guard expression in CSP to an UML transition guard (see Figure 2.2f).

20

To visualize the external and internal choices in esp, first of all, we take a look at

two choice representations that are available in UML: (a) a choice state (represented as a

diamond shape), and (b) a normal state with more than one outgoing transition. Every

transition out of these states represents a branch for the choice and it may be attached

with a guard. The two representations are distinguished in that for the choice state, the

decision on which branch to take depends on the prior actions in the same execution step,

and the external environment has no control over it. Because of this, it is also called a

dynamic conditional branch. In contrast, a normal state with more than one outgoing

transition denotes a static conditional branch - where the choice of branch depends on

the trigger event (offered by the environment) that occurs upon exiting from the current

state. We can conveniently adopt these concepts and use (a) a choice state with multiple

outgoing transitions to represent a esp internal choice, (b) a normal state with more than

one outgoing transitions to represent a esp external choice. (see Figure 2.3). Although

it is not explicitly stated in the diagram, the external and internal choices can both be

generalized from 2 branches to n-branches, the tool described in section 2.5.1 supports

this.

P = a -> Q I-I b -> R

P = a -> Q [] b -> R

=>~
~

~ =>~~

Figure 2.3: An example of representing CSP internal and external choices in UML.

In some cases, we might want to model QDR or Q n R . For this, we may represent

them in UML as in Figure 2.4.

P=Q[]R =>~

P=QHR =>P~
Figure 2.4: Representing "P = Q 0 R" and "P = Q n R".

Often in esp we wish to call a process with expressions substituted for its process

parameter(s), e.g. we might want to call a parameterised process Q(i} with its param

eter i substituted i+l. To represent this in UML, we use the transition action in state

diagrams, which according to Barel's Statecharts semantics [30], can be used to represent

modification of data values. In our running example, we map the substitution expression

"i:=i+l" to a UML transition action and the parameterised process Q(i} to the transition

21

target state. Figure 2.5 depicts this.

Figure 2.5: Representing "P(i) = Q(i + 1)" in UML

Here we assume the parameter i is input to the system via the transition event that

occurs prior to state P and it is then stored as a class attribute at state P, e.g. P(i). The

stored value can then be used in the next transition. The example in Section 2.2.1 shows

this.

2.2.1 An example

Given the mapping we have defined earlier which maps from esp to UML, we will use an

example here to show how we can design a system in UML and make use of the mapping

rules to convert the UML diagrams to esp. Figure 2.6 illustrates a simple counter. It is

a recursive process that begins by the user inputting a value x. x will be incremented by

1 at each iteration as long as it is less than 10, else the process will terminate.

[x < 10 1
!x:=xt!

START

END

Figure 2.6: A simple counter.

Figure 2.6 can be mapped to esp as follows.

START

COUNTER

INCREMENT(x)

END

COUNTER

input?x --+ INCREMENT(x)

(x < 10 & INCREMENT(x + 1)) 0 (x ~ 10 & END)

SKIP

22

2.3 Parallel Composition View

In the previous section, we have illustrated how we may use the UML state diagrams to

model the sequential behaviour in CSP processes. From here on, we propose a way to

gather these processes and visualize the static relationships, e.g. the parallel composition

between them. For this, we only consider parallel composition between sequential pro

cesses, that is the parallel structure in a higher level. We justify this based on the reason

being most of the case studies we have come across have this structure in general. For the

examples we have come across so far, it seems to be sufficient to say that all the parallel

composition is used in the outer most level of the process hierarchy. We have not come

across and hence do not support any use of parallel composition for substates, in order

to keep our representation simple and manageble.

2.3.1 Initial Design

Initially, we attempted to construct a graphical notation which closely resembles the

structure of the static architecture for the CSP textual notation. We achieved this by

ignoring largely the structural semantics of UML class diagram and placing emphasis on

attaining a straight-forward translation rule for the automated tool. However, we soon

ran into problems: the class diagrams generated in such a way are not able to render a

clear visualization. For example, to visualize the parallel composition between processes

P and Q over synchronized events {a,b} such as System = P II Q, we model it as shown
{a,b}

in Figure 2.7.

o
System

P Q

·.0
·bO
·cO

«parallel» ·.0
·bO
·eO

Figure 2.7: An initial approach to visualize the parallel composition of esp.

We argued that the association between P and Q may be stereotyped as ((parallel))

to represent the parallel relationship. The association class (depicted as a dotted line)

connects the association to the interface class labelled "System" and it may be used to

model the properties of the association, which in this case is the parallel composition.

The properties, which contain the synchronized events {a,b} may then be stored in the

operation clause of the interface class.

This method is obviously not ideal: we have, in some ways, misused the structures in

UML class diagram to suit the need of our graphical representation and caused confusion

to the UML users. In addition, the unnecessary constructs like the interface class and the

association class have cluttered the diagram and greatly distorted the visual quality. This

23

style of representation has proved to be clumsy when more processes are involved. The

example in Figure 2.8 illustrates this point, where we are trying to visualize the parallel

composition between processes SndMess, RevAek, RevMess, SndAek, Tx(i) and Rx(i) over

six common events: snd_mess, rev_ack, rev_mess, snd_aek, mess and aek. The example

has shown that the proposed style is not able to demonstrate clearly the relationship be

tween processes as the line does not represent real communication between them, e.g. it

is not clear that Tx(i) synchronizes with SndMess and RevAek. After the unsatisfactory

attempt, we considered the alternative to be discussed in the following sections.

o
System

OI------------<-<p~ ... ~lIe~I»-----------O
lHSa

« 1111 : Tags»
T>(Q

~.~sn=d_=me=~~-----~<~<p~ar.Jlle~I>~>------O
~rcv_ad()
~e1l)

SndMess

CJsnd_ mes:s() «interleave»
"mes:s()

RH5a

«parallel»

RcvAd< RcvMess SndAd<

-mes:s() <interleave> ~nd_ad()
"rcv_mes:sO 'ad()

.rcv_me~
·snd_olc:kQ
· ,;ghl()

Figure 2.8: Initial attempt to visualize parallel composition involving more than two processes.

2.3.2 Simple Parallel

The conventional role of a UML class diagram is to provide a structural architecture for

classes and model the static associat ions between them. A class acts as a template for

all the object instances sharing the same behaviour . Contrary to this concept, our work

in this chapter treats each class as a CSP process. In our representation of CSP, a class

and the initial state of its state diagram share the same name.

All the events that are involved in a process are listed under the class operation

clause. We use a UML class association to represent a CSP channel that serves as an

interface between two CSP processes . The association label is used to name the common

channel (see Figure 2.9(a)). In the case when more than two processes are sharing a

common channel, we represent the common channel with a UML interface class, which

more than two processes may be connected to (Figure 2.9(b)).

In Figure 2.9(b) , three processes are in parallel with one another over some common

channels: A shares channel b with B and channel d with C. B shares channel e with C

and the three processes in turn share channel a. Applying our mapping strategy,

(A II B) II C (2.1)
{a,b} {a,c,d}

24

(a) A II B
(e)

(b) (A II B) II C
(a,b) (a,e,d)

=>

=>

c

A B c

Figure 2.9: Visualizing the parallel composition in esp.

The pair-wise composition in the CSP expression can be done in any combination, hence,

we might write Eq.2.1 as

A II (B II C) ,
{a,b,d} {a,e}

(A II C) II B or
{a ,d} {a,b,e}

A II (C II B) .
{a,b,d} {a,e}

The above three equations are equivalent to Eq.2.1 based on the associative1 and sym

metric2 laws [60J.

Lastly, we model the interleaving relationship between two processes using two classes

with no association connection between them. We show in Figure ?? how we reconstruct

Figure 2.8 using the method proposed in this subsection. Under the new method, we

can see clearly from the diagram the common channels that are shared among the six

processes.

SndMess RcvMess mess "
. ~snd messO

".

~messO ~ «llld ags» s7. -0 ~rcv_messO - «III i:T ags»
TxQ) - mess Rx(Q

'$n(me$$O~
!/~

~rcv_messO
~rcv_ackO .sn(ackO
~l eftO RcvAck(1) SndAck ~rightO

rev aek aek
-'

~rcv_ackO "- ~sn(ackO
~ackO ~ackO

Figure 2.10: Visualizing Figure 2.8 using a better alternative.

1 (A II B) II C = A II (B II C)
2A IIB=BIIA

25

2.3.3 Indexed Parallel/Interleaving

For indexed operations such as indexed parallel, i.e. II t : T A(t) or indexed interleaving,

i.e. lilt: T A(t) , we use the stereotype ((())) of the class icon to represent the indexing.

An example is shown in Figure 2.11. For each of the diagrams in the figure, there are

multiple copies of A(t) or B(t) with t from a set T running in parallel/interleaving with

one another (denoted by ((llt:T)) or ((lllt:T))).

(a) As = II t:T A(t) =>

(b) Bs = III t:T B(t) =>

«II tT»
A(t)

«III tT»
B(t)

Figure 2.11: Modelling in UML (a) Indexed Parallel, (b) Indexed Interleaving

2.4 Refinement Assertion View

In this section, we discuss the final aspect of CSP visualization in UML by looking at the

CSP refinement assertion, and we accomplish the task using the class diagram. There are

two participants involved in a refinement assertion: the abstract specification and the con

crete implementation. Assuming we have an abstract process A and a concrete process B

such that A ~ B. We use the realize relation to connect B to A with the arrow pointing

to A as in Figure 2.12(a). In the case where there is more than one process involved in

the implementation, we group the processes (i.e. classes) into a package as the one named

B found in Figure 2.12(b). Package is used here as a higher level process that represents

all other processes in the lower level. Note the label ((T)) beside the dotted line. It

represents a trace refinement. In a similar way, we can model the failure-divergence or

failure refinement using ((FD)) or ((F;) respectively. The hidden events are generated

automatically by the tool by comparing the events in the specification with the events in

the implementation. Here, we assume that the set of events found in the specification is

a subset of those found in the implementation, e.g. aA ~ aB3.

2.5 Tool Support

We built our UML model using the commercial tool Rational Rose© [76J provided by

IBM©. We are currently using Rational Rose 2000e, Rose Enterprise Edition run on the

Windows 2000 platform. Using the mapping strategy we have proposed in this chapter,

we develop a translator (U2CSPvl) which will take in the UML diagrams and generate

automatically CSP that is accepted by FDR. Essentially, what the tool does is it inputs a

3 a X denotes the set of event alphabets found in process X

26

(a)

~
(b)

~ I <<T»
I <<T»

[j I

l!J
II II
V v

A [T= B \ {hidden3vents) A [T= B \ {hidden_events)

Note: <<T» may be rep1ced with «FD» or <<1'»
for Failure-Divergence or Failure refinement.

Figure 2.12: Visualizing CSP refinement assertion in UML

UML model consisting of one class diagram and one or more state diagrams and translates

them into a CSP specification in the form of a text file. The text file can then be fed into

the FDR tool for model-checking (see Figure 2.13).

CSP
Rational Rose UMLmodel Specification I

I tool
U2CSPvl I FDR

Figure 2.13: The tools involved in generating CSP specification from a UML model for model checking.

In the Rational Rose environment, a UML model is drawn up in a hierarchical man

ner. Each model contains at least one class diagram featuring different classes and it is

situated at the top level of the model. Each of the classes models a CSP process and each

class contains exactly one state diagram that is used to model the sequential behaviour

of the process. To avoid the class diagram getting cluttered with too many classes, we

may hide the classes in a package. In this way, the classes are arranged in a lower level,

providing clearer and simpler abstraction at the higher level. Given that at this stage we

do not support any nested state, i.e. a substate situated within a composite state, each

state diagram has a flat structure.

An example of a model drawn in the Rational Rose environment is shown in Figure

2.14. It contains three windows showing diagrams at three different levels that make up

the model. The Class Diagram: Logical View/Main is situated at the top level, showing

Design refining Specification. The Design is represented by a package which contains three

classes, as shown in the Class Diagram: Design/Main in the next lower level. At this

level, the classes represent ProcessA, ProcessB and ProcessC and they share some com

mon event channels between them. For each of these processes, there is a state diagram

attached to it illustrating the sequential behaviour involved in the process. An example

of such state diagram is shown in the Statechart Diagram:ProcessC/NewDiagram (at the

bottom right corner) which corresponds to ProcessC. The other two state diagrams cor

responding to ProcessA and ProcessB are not shown here.

27

Figure 2.14: An example of a UML model in the Rational Rose Environment .

2.5.1 U2CSPv1

U2CSPvl is essentially a script file that is built into the Rational Rose environment.

It is written in the Rational Rose Scripting language, which is an extended version of

the Summit BasicScriptlanguage [12, 13, 14]. There is a script editor that runs in the

Rational Rose environment that provides access to the scripting environment. The tool

is configured as an option on the menu. When U2CSPvl is invoked, the translator takes

in the current UML model and retrieves the necessary information from the model. It

then generates a CSP specification with the file extension . esp. The current version of

U2CSPvl is a prototype used to explore the mapping strategy and the efficiency of the

concept.

2.6 Example

In this section, we are going to demonstrate how we can use UML as a graphical front-end

to design a system, and then use the mapping strategy we have devised to translate the

diagrams into CSP that can be fed into FDR for further model-checking. Here, we would

like to show how individuals with no experience of CSP can use CSP in their process of

designing a system without having actually write the CSP code themselves.

2.6.1 Lift System

In this example, we would like to design a lift system. In the system, there is a lift door

and one door at each of the floor. When the lift arrives at a floor, both the lift and the

floor doors will open. A passenger then enters the lift and presses a button corresponding

to the floor they wish to go. The lift and the floor door close before the lift moves to the

next destination floor. During the course of the lift moving, an emergency button may

28

be pressed and the lift will come to a halt. The lift will remain at halt until the release

button is pressed. For simplicity, we have not considered the mechanism for requesting

the lift.

Sequential Behavioural View

We begin our design by first identifying three main entities in the system: the lift itself,

the door at each floor and the emergency button. For each of these entities, we define its

sequential behaviour using a state diagram.

liftMove

press

release
HALT

(a) (b) (e)

Figure 2.15: State diagram for (a) lift (b) floor door and (c) emergency button

We start by looking at the design of the lift itself. In Figure 2.15(a), the system starts

at state LIFT(i). When the lift stops at the ith floor, e.g. lijtStop(i), the lift opens,

modelled by lijt Open (i). Notice so far that when the states receive their incoming tran

sition event parameters, we append the parameter i in the state names, e.g. LIFT(i)

and STOPP(i). Someone who enters the lift then presses any button k, except the cur

rent floor. Hence, we have k : dijJ(FLOOR,i) where FLOOR is the set of all the floors

which the lift serves, and dijJ (F LOOR, i) is the set difference between FLOOR and {i}.

Observe that both the arguments i and k are appended to the next state name, e.g.

COMPLETE(i,k). The lift then closes at ith floor, e.g. lijtClose(i). Next, when the event

lijtMove takes place, it not only triggers a transition from CLOSED(i,k) to the next state,

at the same time, it will also trigger an action i := k that will substitute i with the next

target floor k, and the next state LIFT(i) will have the value of k appended to its state

name. The whole process is repeated with the target floor k.

29

Using the proposed mapping strategy, we may now translate Figure 2.15(a) into CSP

as follows:

Start2

LIFT (i)

STOPP(i)

BOARDING(i)

COMPLETE(i,k)

CLOSED(i,k)

LIFT (i)

liftStop.i --+ STOPP(i)

liftOpen.i --+ BOARDING(i)

button?k:diff(FLOOR,{ i}) --+ COMPLETE(i,k)

liftClose.i --+ CLOSED(i,k)

lift Move --+ LIFT(k)

We do the same for the floor door (see Figure 2.15(b)). Bear in mind that there is

more than one floor door involved in the system, hence i in DOOR(i) refers to the door

at the specific floor i. The CSP translation for this diagram may be found in Appendix

A.I.

Figure 2.15(c) shows the design for the emergency button. The process begins at X.

When the lift moves, the system will transit to state A CTIVE. The system will remain at

this state as long as the lift is moving, e.g. event lijtM ave is offered by the environment

continuously. If the emergency button is ever pressed, e.g. event press takes place, and

the system comes to a HALT. The only possible way for the system to get out of the state

HALT is when release is pressed. The system then goes back to state X, and the whole

process is repeated. The corresponding CSP for the state diagram based on our mapping

strategy is as follows:

Start3

X

ACTIVE

HALT

Parallel Composition View

X

lift Move --+ ACTIVE

press --+ HALT 0 lift Move --+ ACTIVE

release --+ X

In the previous section, we have drawn three state diagrams with each illustrates the

individual process for the lift, the floor door and the emergency button. Now, we need

to combine these individual processes and put them in parallel in order to produce a

complete design. We achieve this using the method developed in Section 2.3. As shown

in Figure 2.16, we have three classes representing the three main processes: LIFT(l),

DOOR(i) and X. Notice that for process DOOR(i), it is stereotyped as ((IlIi:FLOOR)).

Since FLO OR = {i .. N}, the stereotype indicates that there are N copies of processes

DOOR(i) interleave with one another. Translating the class into CSP using the mapping

30

strategy, we get

DOORs = Illi : FLOOR DOOR(i)

o
/ liftMOVS

x/
'pressO
'releaseO
'liftMovsO LlFT(1)

« III i: FLOOR»
DOOR(i)

'IiftMoveO ' liftMoveO
'liftStop(i) 1---:-:--------1 ,
~utton(k) liflSlop,ootton liftStop(i)

' button(k)
'liftOpen(i) 'doorOpen(i)
'IiftClo se~) ' doorClose(i)

Figure 2.16: The parallel composition between the CSP Processes

Figure 2.16 is interpreted as follows: DOORs is in parallel with LIFT(l) and they

synchronize via the common channels lijtM ave, lijtStop and button. They in turn are in

parallel with X (since X is in parallel with both LIFT(i) and DOORs) via the common

channel liftMove. The parallel composition is expressed in CSP as

Systeml = DOORs II LIFT(1)

Refinement View

{ lliftM ove, liftS top, buttonl}

System = Systeml II X

SPEC(l)

'liftMoveO
'liftStopO
~buttonO

~

{lliftMovel}

Figure 2. 17: The refinement assertion

All the three classes defined earlier are grouped together using a package named System

as shown in Figure 2.17. The package forms the concrete design for the system, and this is

used to refine the abstract specification SPEe(l) . A refinement assertion (shown below)

31

liftMovel i:=k

iff(FLOOR, (i}»

Figure 2.18: Modeling the abstract behaviour of the System.

is generated as follows:

assert SP EC(l) ~T System\ {Ipress, release, door Open, doorClose,lijtOpen, lijtClose I}

To define the abstract specification, we specify the basic requirements such that when

the lift is in floor i, the next destination floor will depend on the button being pressed.

The requirement is modelled via the state diagram found in Figure 2.18. We obtain the

following CSP representation that corresponds to Figure 2.18.

The Overview

STARTl

SPEC(i)

A (i)

B(i,k)

SPEC(i)

lijtStop. i -+ A (i)

button?k:diff(FLOOR,{i}) -+ B(i,k)

lijtMove -+ SPEC(k)

Refinement View Static Structure View Dynamic Behaviour View

liJ
···

e- ··· ··· ·· ·· ················ ···· ········ ·· ·· ·~·

«T.~

I

~1 o// .. ~/·~
/ - /~ ~

~····~·.~· •••• ~ ... /: I C ~~·I ·
Figure 2.19: An overview of the lift system in UML.

32

Figure 2.19 put together all the diagrams we have developed so far and present an

architectural structure showing how the lift system is modelled in UML. U2CSPvl is used

to translate these diagrams to CSP. We initiated the variable FLOOR with FLOOR =
{1..4} in the UML diagrams. (Refer Appendix A.l for the full CSP textual representation

generated for this case study.)

2.6.2 Multiplexed Buffer

This example is taken from [59]. It models a multiplexed buffer system which comprises

a number of buffers placed at both transmitting and receiving sides of a communication

channel (see Figure 2.20). The channel may be one/both ways. There are four main

processes involved in the system: SndMess(send message), RcvMess(receive message),

SndAck(send acknowledge) and RcvAck(receive acknowledge). On top of these, we also

have local processes for the Tx(transmitter) and Rx(receiver).

Transmitter(s)

Send Message
, , , , , ,

, ,

•

R~ceive Message

• Receiver(s)

Send Acknowledge Receive Acknowledge

Figure 2.20:

These processes interact with one another by synchronizing over some common events.

The interaction is shown using a class diagram in Figure 2.21. The association between

two processes shows the common channel which is shared between the processes. We

may model the parallel relationship in the following way using CSP: the translator will

randomly pick a process to start with. In this example, the translation begins at Txs

and it synchronizes with SndMess over channel send_mess (Eq. 2.2). The combination in

turn synchronizes with RevAek{l} over rev_aek (Eq.2.3). They in turn synchronizes with

RevMess over mess (Eq.2.4). The combination of four then synchronizes with SndAek

over aek (Eq.2.5), and lastly, Rxs synchronizes with the rest of the processes over two

channels rev_mess and snd_aek. All these processes are grouped under a main process

named System (see Eq. 2.7).

33

System1

System2

System3

System4

System5

System

Txs II SndMess
{I snd_messl}

System1 II RcvAck(1)
{ I rcv_ackl }

System2 II RcvMess
{Imessl}

System3 II SndAck
{lack!}

System4 II Rxs
{I rcv_mess,snd_ackl}

System5

(2.2)

(2.3)

(2 .4)

(2.5)

(2.6)

(2.7)

Observe that Txs and Rxs are indexed interleaving processes, as denoted by ((i

Tags)) on the diagram. They are expressed in CSP as

Txs

Rxs

SndMess

« III i:Tags» sn
TxQ)

~===I/

~ 'snd messO mes -- ~messO

~sn(messO
~rcv_ackO ,
~[eftO ~

rcv BCK "-
RevAck(1)

~rcv_ackO
'ackO

III i:Tags Tx(i) 4

II I i:Tags Rx(i)

RcvMess
mess "-

,-

~messO ~
'rev _ messO -

[/ SndAck
BeK

""
·sn(ackO
·ackO

« III i:T ags»
Rx(i)

. rcv_messO

.sn(ackO
· rightO

Figure 2.21: The static relationships for processes in the multiplexed buffers system.

(2.8)

(2.9)

Figure 2.22 shows how System is being used to refine the abstract specification Buffer{i}.

The corresponding CSP representation for the diagram is

Buffers

assert Buffers [FD

III i:Tags Buffer(i)

System \

{lsnd-IIless,rcv _ack,mess,ack,rcv _mess, snd_ackl}

For each of the processes shown in Figure 2.21 and 2.22, a corresponding state diagram

is drawn to model the event transition for the process. These state diagrams together

with the the full list of the CSP representation for the system can be found in Appendix

A.2.

34

«III i:Tags»
Buffer(i)

~l eftO
~rightO

« FO»:

Figure 2.22: The refinement relationship in the multiplexed buffers system.

2.7 Discussion

2.7.1 Why State Diagrams over Activity Diagrams?

In general, both state diagrams and activity diagrams are used to show the states in

which an object resides. As pointed out in [17] , the primary difference between the two

is that: the transitions between states in the state diagrams are particularly triggered by

the events produced in the environment . Conversely, the transitions between states for

activity diagrams occur not because of event triggers, rather, the transitions are due to

the completion of the activities performed within an activity state. From this, we may

say that the state diagrams are more adept in modelling reactive systems that react to

event occurence. Moreover, a state diagram is concerned with events that take a system

from one state to another whereas an activity diagram is concerned with activity within

a state that takes up time. Since CSP is a notation concerning interaction of processes

with reactions to events, we feel it is more appropriate to use state diagrams in our work.

2.7.2 Why Class Diagrams over Other Diagrams?

To visualize the parallel structure and refinement assertion of CSP, we have adopted class

diagrams over all other UML diagrams. The reason class diagrams are chosen is mainly

because they are able to provide a clear hierarchical structure for the model of a system.

The feature provided by the Rational Rose© modeller allows a state diagram to be nested

within a class. With this, we can model the parallel structural behaviour of the system

using the class diagram and the dynamic sequential behaviour using the state diagram

independent from one another, but at the same time maintain the link between the two.

Also, in a class diagram one is allowed to group more than one class into a Package, and

this method proved useful in our approach to visualizing the refinement assertion. Fur

thermore, the operations shown on each class entity can be used to display distinctively

the events that are involved in a process.

Having said this, UML has offered two types of physical diagrams at our disposal:

Component Diagram[24] and Deployment Diagram[24]. As mentioned before, a compo

nent diagram shows the relationship between different components, whereas a deployment

35

diagram shows the physical deployment of a system into the real environment and indi

cates where the components are situated in the real world. Based on the definitions, one

may suggest that we should use component diagrams when trying to visualize the parallel

structure between different CSP processes. The main entity in a component diagram are

components(refer Figure 2.23), with each depicted as a square box with two rectangles

attached to the top left corner of the box. A component may have interfaces (repre

sented as lollipops sticking out from the square box) which are the visible channels the

component is offering to other components. In UML context, a component is used to

group classes together. Although component diagrams may have the potential of replac

ing the class diagrams in our work, to a certain extent, we find working with component

diagram in the Rational Rose environment to be tedious. First of all, interfaces need to be

defined in a class diagram before they could be assigned to components. In other words,

component diagrams cannot be used alone in a design but it must be incorporated with

class diagrams. On the other hand, Rational Rose© does not provide any way to link a

state diagram to a component in the Component Diagram. Without the link, it could

make traversing the model to be confusing, and we will also loose the hierarchy structure

that class diagram could offer. Hence, we have left out component diagram for the time

being. We may consider using it in the future if a suitable tool is found to support its use

in a better way, or if there are additional features for the component diagrams offered in

the UML new version 2.0 to be released soon at the time of writing.

out

Figure 2.23: An example of a component

2.7.3 Fork and Join

Naturally, one might think that we should use join and fork in UML to represent the

parallel composition in CSP. However, our observation suggests otherwise.

Before we explain further, we first introduce the notion of joins and forks. Typically,

a join construct is used to merge several transitions from the source states to a single

outgoing transition, while a fork construct is used to split an incoming transition into

more than one outgoing transition. An example of how the joins and forks are used is

shown in Figure 2.24.

For a fork, the events on its outgoing transitions can only take place after the event

on the incoming transition has occurred. For this, we can see that Search_Flight and

36

Figure 2.24: Using forks and Joins

Search_Hotel only take place (one after another, regardless ofthe order) after Browse_Catalog.

Similarly, Book_Hotel can only occur after Search_Hotel and Book_Flight are completed.

Comparing the notion of synchronization between UML and CSP, we observe that for

UML, an event is synchronized in such a way that it is to occur before a second event

takes place. Conversely, the synchronization in CSP deals mainly with executing a com

mon event shared among different processes. Bearing these differences in mind, we may

attempt to translate the diagram to CSP as below:

Pl Browse_Catalog -+ SearchJIotel -+ BookJIotel

-+ Pay _Hotel -+ Ready

P2 Browse_Catalog -+ Search~light -+ Book~light

-+ BookJIotel -+ Pay _Flight -+ Ready

To include the event Pay_Insurance, we would need to add another process such that

P3 Browse_Catalog -+ Search~light -+ Book~light

-+ Book_Hotel -+ Pay J:nsurance -+ Ready

Each of these processes are obtained by tracing the diagram from the initial state onwards

until the final state is reached. As a results, three different traces or processes are formed

that cover all the possible routes through different branches. Lastly, we may combine

these processes to get

BOOKINGJIOLIDAY (Pl II P2)
Browse_Catalog,Book_H otel,Ready

II
Browse_C atalog ,B ook_H otel ,Ready,S earchYlight,B ookYlight,B ook_H otel

The translation may seem to work well but we foresee some complications in it. First of

all, all the processes are combined under the same diagram, hence, there is no clear and

direct visualization of individual processes that are involved in the system. Secondly, it is

less obvious which event the processes are synchronized on, as compared to the association

we have used to model a common channel between two processes. Thirdly, the diagram

might become more cluttered, when many processes are involved. In our two-tier hierar

chical representations, we are able to reduce the complexity of the diagram by visualing

37

P3

separately the sequential behaviour and the parallel composition of a system using a class

diagram and one/more state diagrams (with one state diagram corresponding to a process

in the system). Based on all these reasons, coupled with the consideration of simplicity

for our automated translation tool, we have decided not to use forks and joins in our work.

2.8 Comparison with Related Work

We gained our initial inspiration from the work carried by Bolton & Davies [8] which

involves Activity Graphs and CSP. The work takes a different approach in which it de

fines a formal semantics of Activity Graph and then compares it with CSP, whereas we

concentrate on giving a full representation of CSP in UML, and emphasizes providing a

graphical support towards CSP.

The work by Davies & Crichton [15] provides a formal behavioural semantics to com

binations of class, object and state diagrams using CSP. They use a class diagram to

describe how objects from different classes can communicate by calling operations on one

another and they use a state diagram to show how an object will react to the arrival of

an event. In their work, a state diagram for a class is used to describe a parameterised

communicating process which is based on the run-to-completion assumption. Their work

interpretes a class as a template behaviour for all the objects sharing the same behaviour,

whereas our work assumes a class as a CSP process, and hence our class and the initial

state of its state diagram share the same name. In comparison, their work resembles more

closely to the informal semantics of UML (as interpreted by OMG).

The work by Brooke et al. in [10] is closely related to ours. They are providing

a graphical notation for timed CSP (TCSP). Their work is different from ours in a few

aspects. First of all, [10] does not provide a complete graphical representation of TCSP

in that it does not support representation of refinement notion. Our work is able to do

so by using the realize relation under the class diagram to visualize the design process

refining the specification. Secondly, we have used the association relationship between

classes to model the parallel composition between two processes, as opposed to theirs

which does so by placing all the the processes that are in parallel within a square box

annotated with "Synch{}" (see Figure 2.25). Thirdly, their work opts for Harel's state-

Process 3

Figure 2.25: A representation of parallel processes in [10].

charts rather than the UML diagrams because they want to avoid the imprecise semantics

38

problem associated with UML. In contrast, we have chosen UML mainly for its wealth

of notation offered under different diagrams, in which case we have been utilizing the

notations offered by the class diagram and the state diagram for our work. Beyond that,

the readily available commercial tools (such as the Rational Rose CASE tool) not only

enables us to draw UML diagrams with ease but they also make integration with other

tools simple, which in our case, we are able to write a simple script file that works in

the Rational Rose environment to generate CSP from the UML diagrams. To compen

sate for the problem of imprecise semantics of UML, we are providing a formal semantics

to UML state diagrams using the formal semantics of CSP. This work is presented in

Chapter 3 & 4. Fourthly, the approach they proposed in visualization is complicated,

in that they first define a text-based machine readable language (MRL) that describes

the TCSP graphical notation. Then, they develop a drawing tool that will draw the pro

gram expressed in the MRL. Next, they develop a converter which will take the drawing

and transform them into some sort of notation to be fed into FDR or PVS [35, 55]. In

comparison, we have taken much simpler approach, in that we integrate the commercial

UML drawing tool Rational Rose with U2CSPvl. The only step required from the design

ers is to draw UML diagrams (in Rational Rose CASE tool) and U2CSPvl will translate

the diagrams automatically to CSP that can be directly fed into FDR for model-checking.

The work by Abeysinghe et al. [1] examines two modelling paradigms: CSP and a

subset of Role Activity Diagram (RADs) which is centred around the concept of roles

and activities as opposed to processes and events in CSP. A role in RAD describes a

sequence of steps/activities which is carried out by an actor. There are two types of ac

tivities involved in a role: actions and interations, which cause a step change in the role.

Actions are different from interactions in that the former is carried out by the actor of the

role alone whereas the later involves other roles as well. RADs have their strength over

UML state diagrams in that they are capable of modelling actions that are synchronized

between two roles in a much simpler way as opposed to the synchronization using fork

and join under UML state diagrams. Also, RADs are able to support refinement notion

in the same diagram, and they have a notation called "part refinement" which refines the

state of a role into a number of separate parts. We feel that this way of representation

is useful and straightforward when dealing with small case studies, as both the basic re

quirements and the detailed refinement are presented in the same diagram. However the

diagram may become too cluttered if bigger case studies are involved. For this, our work

is able to provide a two-level hierarchical representation whereby a class diagram at the

the top level provides an overall view to a system. The user can then choose to zoom

into particular parts of the system by looking at the state diagrams in the lower lever for

more detailed description of the system.

39

2.9 Conclusion

In this chapter, we have demonstrated how we can visualize esp in UML using the map

ping strategy we have devised. We use UML state diagrams to model the sequential

behaviour of a esp process, and UML class diagrams to visualize the parallel composi

tion between the esp processes and also the refinement assertion. The diagrams are then

put together to give a complete representation of esp in UML. Meanwhile, a prototype

translator U2eSPvl has also been developed based on the mapping strategy that will

automatically translate the UML diagrams to esp that is accepted by FDR.

The main contribution for our work is we are able to introduce a graphical front-end as

an entry-point for users who would like to use esp in the design of a system. In this, our

proposed graphical method presents the different components of a system in design in a

hierarchical structure: each state diagram is embedded in a class, and classes can be clus

tered into packages. In addition, the proposed approach allows us to treat each process in

a separate state diagram and hence enables us to deal with a system with many processes

in a more organised manner. On top of this, designing in the graphical paradigm also

provides an easy accessibility to relative novices. This is important when the designers

need to deal with clients who have little knowledge of the specific designing language being

used, and yet need to get involved to understand what is going on. However, the relative

ease of using UML means that we lack formality in our descriptions. esp supplements

this, by having a model checker that can verify formally the correctness of behaviour

for a system. Therefore, this suggests that there are benefits in attempting to use both

notations in a complimentary ways, with UML notations as a tool in the design and client

interaction stage, and esp to verify the correctness and provide formality to the design.

Lastly, we believe that being able to map from one paradigm to another gives a significant

advantage to the system designers in reaping the potentials offered by both UML and esp.

We have not covered all the constructs in esp, and among these are sequence, event

hiding, interrupt and renaming.

40

Chapter 3

Formalizing UML State Diagrams

in CSP (Part 1)

3.1 Introduction

In the previous chapter, we address the issue of system design by looking at ways to

improve the use of CSP. In this, we have provided a graphical representation for CSP

in terms of UML. While doing so, we have uncovered the possibility of reasoning about

UML state diagram constructs in terms of CSP. As mentioned earlier, UML is rich in

its syntax constructs but still lacking in terms of having a formal behavioural semantics.

In this regard, we wish to exploit the use of CSP to define properly the behaviour of a

UML state diagram, especially those UML constructs which have not been covered so far.

The main motivation for us to pursue this is because UML CASE tools such as Rational

Rose© and Together/J [77] can actually be used to generate Java or C++ code from the

UML models. Hence, using CSP to reason about the state diagrams will help to validate

the design before implementation in terms of the actual program is produced.

In this chapter and the next one, we present a formal semantics for the UML state

diagrams expressed in the CSP framework. We do this by first defining a structural

model for the UML state machine. Using this model, we define our mapping from the

UML structural model to CSP. U2CSPv2 is developed, which is an enhanced version of

U2CSPv1 to cover the additional features introduced by this work. Part of this work has

been published in [53].

This chapter and the next one are essentially one long chapter divided into two. They

are structured as follows. Section 3.2 explains the execution mode adopted by our formal

ization model. Section 3.4 defines a structural model for the UML state machine. Section

3.5 to 3.6 deal with some fundamental concepts involved in developing our formalization.

In Section 3.7, 3.9 & 4.1, we present the formal definitions for the behaviour of different

states in terms of CSP. For each definition, we include some informal explanation and

examples where necessary to motivate the formal definition. Section 4.2 contains the work

involved in the development of U2CSPv2 tool. Section 4.3 discusses some miscellaneous

41

issues involved in our formalization. Section 4.4 is devoted to comparing our work with

others. Finally, Section 4.5 concludes the two chapters.

3.2 Formalization Execution Mode

Before we explain the execution mode adopted by our formalization model, let us first

take a look at the execution modes that underpin UML and esp.

In UML, as mentioned earlier in Section 1.5.3 under "Event Processing", the event

generation by the environment is assumed to happen one at a time, and the events are

collected and stored in an event queue which belongs to a state machine, which could be

an OR-state or a subregion of an AND-state. An event is taken off from the queue in

a FIFO manner and it is processed by its state machine as the current event. We may

summarize the main features of the UML state diagram as follows:

1. The generation and consumption of an event occur asynchronously.

2. Only one event is offered to the state machine at one time as a result of the event

queue.

In esp, however, the execution mode takes on a different view:

1. The environment external to a process is allowed to offer more than one event and

this is modelled using the external choice construct (0).

2. The generation and consumption of an event is assumed to occur synchronously.

To achieve this, the environment external to a system is assumed to be running in

parallel with the system.

To illustrate further, we will use the esp classical example of a vending machine. In

the example, a person (who acts as the external environment) may choose to have tea or

coffee from a vending machine. The external environment which is the person in this case

can be modelled as a esp process as

PERSON = (tea ~ PERSON) 0 (coffee ~ PERSON)

The vending machine (which acts as the main process) will react to the person (environ

ment) according to what the machine has to offer. If the machine only has coffee left, it

might be modelled in esp as MACHINE = coffee ~ MACHINE. The PERSON

and MACHINE are then composed in parallel as

PERSON II MACHINE
{coffee}

Regardless of what is available in the vending machine, e.g. what the process chooses to

do, deadlock will not occur because the person/external environment is ready to provide

42

all the options.

However, things are different when we try to model the example in UML. Since the

event queue offers only one event at a time, if the machine only has tea left and if the per

son (external environment) chooses to have coffee instead, a deadlock with occur. From

here, we can see that the UML event queue model, which does not allow modelling of

choice at the environment side, can pose serious deadlock problems. This is inherently a

deficiency found in the event queue concept proposed by OMG.

With regard to this, we decided to adopt the CSP mechanism for our formalization

model. In our formalization, we ignore the concept of UML event queue and replace it

with the assumption that the environment is always ready to offer an event required by

the process, and the generation and consumption of an event is assumed to occur syn

chronously. By adopting a synchronous execution mechanism, we view the environment

external to a state machine as another CSP process running in parallel with the state

machine. The event generation by the environment is synchronized with the consumption

of event by the state machine. In this way, we will be able to avoid the deadlock problem

mentioned above. Moreover, a model constructed in a synchronized mode as opposed to

asynchronous mode will also make model-checking easier. This is important in our work

since our ultimate goal is to model-check UML using CSP /FDR. We would like to stress

that although we are using synchronous mode in our formalization model, we are still

able to provide great insight into the interaction complexity concerning the UML state

diagram. As we will see in the subsequent formalization, our model has uncovered many

intrinsic details on the sequential execution involving different actions, state activity and

event. This insight is especially valuable when state hierarchy is involved.

3.3 Well Formedness Rules

In this section, we list out the well-formedness rules that apply to our formalization model.

1. The hierarchy of the state must define a tree, e.g. no cycle is allowed.

2. Only one outgoing transition is allowed from an initial state.

3. At least one initial state must present within each level of a composite-OR-state

hierarchy to indicate the start point upon entry into the composite state.

4. A transition originating from an initial state must always terminate at a state within

the same hierarchical level where the initial state resides.

5. An incoming transition is not allowed to cross any state boundary (see Figure 3.1).

We will discuss later in Section 4.3.2 the complications involved if this type of

transitions are included in our model.

6. Only simple actions (i.e. transition action, entry action or exit action) are consid

ered, no assignment statement is allowed in a state or transition action.

7. An entry state action consists of at most one simple action.

43

8. An exit state action consists of at most one simple action.

9. A state do-activity consists of at most one activity.

o [tQJ 1

Figure 3.1: An example of a cross-boundary incoming transition which is not allowed in our model.

3.4 Structure of the State Diagrams

A UML state diagram represents a hierarchical state machine that includes the initial

states, final states, choice states, simple states, composite states and transitions between

states. Each of these constructs is distinguised and referred to by a unique identifier. We

will begin by defining a structural model for the state diagram.

Assuming we have a state machine M such that the number of states in M is finite.

The set of state identifiers found in M is denoted by SM. The set of transition identifiers

found in M is denoted by TM and TM is finite. EM and AM represent respectively the

identifiers of the set of events and actions the state machine M is involved in. Some actions

involved in a state machine could also be events of the machines, that is EM n AM i- 0.

3.4.1 State Configuration

SM is partitioned into six disjoint sets as follows: simple states SM(ss), composite states

SM(cs) , initial states SM(is) , final states SM(js) , choice states SM(chaice) and subregions

SM(regian)'

Every simple state or composite state contains a label, and may have an entry action,

an exit action and do-activity. The label is compulsory for a state whereas the entry and

exit actions and do-activity are optional. For state K E S M, it is represented by the

following functions:

• the state label is represented as label: S M >--+ LABEL, where the total injective

function specifies clearly that no two states within a state machine are allowed to

have the same name.

• the entry action is represented as entry: S M-Tt AM

• the do-activity is represented as doActivity: SM-Tt AM

• the exit action is represented as exit: SM-Tt AM

The partial functions used for entry, doActivity and exit model the fact that they are

optional attributes for a state in a state machine.

For a state machine, we assume that there is a composite state that contains all other

states in the state machine and we refer to it as the top state, SMa, with SMa E SM.

44

x
Sl

~
II EI

-I3----?o-t- -S2

~
I2 E2

Figure 3.2: An Example of a composite-AND-state.

We define a binary function 1MM : S M-tt S M that maps each state to its immediate en

closing state. For example, given a composite state X with Y nested within it, we have

IMM(Y) = X (read as "the immediate enclosing state for Y is X"). Because the domain

and range of the function are elements from the same set S M, we run into a possibility

where a state may be mapped to itself through 1M M, which is obviously not correct. To

avoid this from happening, IMM must define a tree. For this, we introduce a constraint

where 1MM+ nid(SM) = 0 (see footnote 1,2) . To satisfy the constraint, 1MM+ should

not have any reflesive pair, i.e. x r--+ x. Since 1M M S:: 1M M+, the constraint will in turn

force 1M M not to contain any reflesive pair.

For convenience, we also define a function ENCL where ENCL : SM -+ JPlSM. ENCL

may be defined in terms of 1MM as ENCL(x) = 1MM+[{x}]. Due to the constraint

introduced earlier, ENCL satisfies Vx . x tJ ENCL(x).

The composite states are partitioned into two sets: SM(cos) which refers to the composite

OR-states and SM(cas) for the composite-AND-states. An OR state contains substates

that are OR-ed together so that only one substate can be active at a time, while an AND

state contains subregions that are AND-ed together, so that when the state is entered, all

the subregions become active at the same time. Each composite-AND-state is divided into

a finite set of subregions with each separated from the others by a dotted line. A subregion

may contain substates that consist of states in SM. Figure 3.2 shows an example 3 of a

composite-AND-state X which consists of two subregions Sl and 82, with 81 containing

substates 11, A and El, and 82 containing 12, B, C and E2. We define SM(region) as a

global set which contains all the subregions of all the composite-AND-states in the state

machine M, e.g. S1, S2 E SM(region)' To locate the AND-state in which a subregion re

sides, we use the function 1MM. For instance, 1MM(S1) = X. Similarly, we use the same

function to determine the subregion to which a substate belongs to, e.g. 1MM(A) = S1.

The hierarchy of various states found in a state diagram may be described using a

tree. Figure 3.3(a) shows an example of a state machine which the hierarchy of its states

are represented by a tree in Figure 3.3(b). The root node a represents the top state a of

1 1M M+ is the transitive closure of 1M M, e.g. 1M M+ = U 1M Mi
i>l

2id(SM) is the identity function on SM, e.g. id(SM) = {(s, i) I s E SM /\ t E SM /\ S = t}
3When presenting an example, we will use the same identifier to refer to a state and the label attached

to the state.

45

the state machine. The parent vertices labeled a, band k with vertices below them corre

spond to the composite states a, band k. Nodes nand 0 correspond to subregions nand

o that reside in the composite-AND-state k. The leaf vertices with no children attached

to them are states labeled h,e,j,j,l,c,d,m, p,q,r,s,t and u. In this figure, for instance, the

set of enclosing state for t, that is ENCL(t) is equal to {o, k, a}.

root vertex~.

o~

(a) (b)

Figure 3.3: State hierarchy corresponds to a tree.

3.4.2 Transition Configuration

A transition identifier t where t E TM (where M is the state machine) consists of a source

state, a target state, a trigger event, a guard and an action list. All information except

the source state and the target state is optional. Each transition t is represented by the

following functions:

• the source state is represented by source: TM -+ SM.

• the target state is represented by target: TM -+ SM.

• the trigger event is represented by event: TM -+ EM.

• the guard for the transition is a Boolean expression. Assuming we have a language

B that describes the Boolean expressions, we have guard: TM -+ B.

• the transition action is expressed as an ordered sequence of actions, e.g. al; a2; ... ; an.

Thus, we have action: TM -+ seq AM, where seq AM refers to sequences which are

made up of elements from the set AM.

In UML, there are two types of transition in a state diagram: transitions that are

triggered by an explicit event and transitions that are triggered by an implicit event (i.e.

completion event generated implicitly by the a state upon the completion of the state

activity). We denote the set of explicitly triggered transitions as TM(exp) and the set

of implicitly triggered transitions as TM(imp) such that TM = TM(exp) U TM(imp)' Given

the set of explicit events in M as EM(exp) and the set of implicit events as EM(imp)

where EM = EM(exp) U EM(imp), we have (t E TM(exp)) ¢:? (event(t) E EM(exp)) and

(t E TM(imp)) ¢:? (event(t) E EM(imp))'

46

Similarly, for a state K, the set of explicitly triggered outgoing transitions emanating

from K is TK(exp), where TK(exp) = {t I t E TM(exp) 1\ source(t) = K}. The set of implic

itly triggered outgoing transitions emanating from K is TK(imp), where

TK(imp) = {t I t E TM(imp) /\ source(t) = K}. Hence, TK = TK(exp) U TK(imp)'

3.5 Basic Concepts of Formalization

Our formalization is built on the foundation that each UML state is mapped to a CSP

process and each UML event to a CSP event. When a state becomes active, it will wait

for the next event to occur that will trigger a transition that brings the system to the

next state. If the trigger event is an external event, we model it as a CSP event. We will

start by first explaning some basic concepts that will be used in our formalization.

3.5.1 Single Transition

targetet)

trantion t t
~

Figure 3.4: An example.

Suppose we have a state A (see Figure 3.4) and it has one outgoing transition t. For

simplicity, assume there is no outgoing transition emanating from any enclosing state of

A. When A becomes an active state in the system being modelled, it will wait for the next

event that will trigger a transition out of the state through t. When the event becomes

available, the transition will take place that brings the system to the next state. If the

trigger event is an external event, we model it as a CSP event. We may express the

behaviour of a state with a single outgoing transition as

A = event(t) ---7 target(t)

Otherwise if event(t) is implicit, we write

A = target(t)

Here, we make an important assumption that the system is always willing to proceed to

the next state. Hence, we do not model A as A = target(t) n STOP. This aligns with

our fundamental concept in modelling the multiple choice between implicit and explicit

events (as we will see in the next subsection), where we assume that the implicit events

will eventually take place if the explicit events do not occur.

47

3.5.2 Multiple Transitions

A state is allowed to have more than one outgoing transition. The decision on which

transition to choose from will depend on what trigger event is being offered.

Let us have a state A which has more than one outgoing transition. For simplicity,

assume there is no outgoing transition emanating from any enclosing state of A. If all the

transitions are triggered by the explicit events, i.e. 'lit· t E TA =} event(t) E EM(exp), the

choice of transition is determined by the external environment. Hence, we formalize the

choice using the external choice construct (0) in CSP as follows.

A = OtETA event(t) ---+ target(t)

If all the transitions are triggered by the state completion event which is implicit, i.e.

'lit· t E TA =} event(t) E EM(imp) , the choice of the transitions will be resolved by the

process internally. As such, we model the choice as non-deterministic using the internal

choice construct (n) in CSP as follows.

A = ntETA target(t)

When both implicitly and explicitly triggered outgoing transitions are present at state

A, a problem arises to determine whether the process or the environment has the right to

resolve the choice. To explain how we resolve this problem and hence arrive at a solution,

we will use a simpler example to illustrate.

Suppose now state A has one explicitly triggered outgoing transition te and one im

plicitly triggered outgoing transition ti. Upon the completion of the do-Activity within A,

we are faced with two possibilities, (a) the environment offers event(te } which will trigger

a transition out of A through t e , or (b) state A produces a completion event which will

trigger a transition out of A through k Here, we are faced with one question: do we

model the choice between the two transitions as determined by the external environment

(and hence it is a deterministic choice) or the choice will be resolved internally by the

process itself (and hence it is a nondeterministic choice)?

UML semantics does not specify the behaviour of this type of process. In view of this,

we decided to adopt the interpretation offered by Roscoe's CSP semantics [59](p79-80).

Roscoe proposed the following way to reason about this behaviour: when the hidden

event becomes available, if the unhidden event does not occur, the hidden one will be

carried out eventually. In this, Roscoe introduces the notion of "timeout", denoted as l>,

whereby given A l> B, if A does not occur, B will be carried out eventually. Applying the

interpretation to our problem, we may express the behaviour at state A as

A = (event(te) ---+ target(te)) l> target(ti)

48

The above expression states that if event(te) is not offered by the environment, the system

will eventually take the transition to target(ti).

3.5.3 Transition Guard

In UML, we may have guards attached to transitions and they are Boolean conditions that

must be satisfied in order to enable a transition to take place. According to the OMG se

mantics, a guard is evaluated when an event instance is dispatched from the event queue.

If the guard is true at that time, its corresponding transition will be fired. Otherwise,

the transition is disabled. Based on [3], a guard condition may refer to the parameters

from the triggering events or the attributes of the objects that belong to the state machine.

In the context of esp, we may express a guarded transition using the esp Boolean

guard construct: g&P (read as if g then P). Having identified the construct in esp, we

may now formalize the UML transition guard using the esp boolean guard, as follows.

Using our running example, suppose state A has an explicitly triggered transition t with

guard(t), we may model the guarded transition as

A = guard(t) & event(t) -+ target(t)

If t is implicitly triggered, we have

A = guard(t) & target(t)

3.5.4 State Actions and Transition Action

In UML, we may have actions attached to a transition or nested within a state such

as entry action, exit action or do-activity. For simplicity, we are only going to consider

modelling UML actions as esp events.

Transition Action

More than one action may exist under a transition action component. For all the actions

that are attached to a transition, when the transition is triggered, this will automatically

execute the actions. The actions may be expressed in esp as a sequence of events ac

cording to their linear order along the segments of the transition. They occur after the

trigger event takes place.

We define a esp process named AeTION(t) which defines the sequence of execution

for all the actions belonging to a transition t when the transition is trigged.

Definition 1 Given a transition t E TM with action(t) E seqAM.

If action(t) = (aI, a2,'" ,an), ACTION(t) = al -+ a2 -+ ... -+ an -+ SKIP

If action(t) = 0, ACTION(t) = SKIP.

49

Sn.
S2

[Sl~l
~

tl

Figure 3.5: Transitions with multiple source.

State Entry and Exit Action

The well-formedness rule for our model allows at most one action to exist for each state

entry action and exit action. For a simple or a composite state with entry action, the

entry action is executed upon the state being entered. Similarly, the exit action is carried

out when the state is exited, after the triggered event but before the transition action

takes place. Below is the formalization for the UML actions.

Taking the transition and state actions together, we formalize their sequence of oc

curence as follows. Again, using our running example state A with outgoing transition t,

suppose action(t) = ali a2; ... ; an. If t is explicitly triggered, then

A = entry(A) ---+ event(t) ---+ exit(A) ---+ al ---+ a2 ---+ ... ---+ an ---+ target(t)

Otherwise if t is implicitly triggered, we write

A = entry(A) ---+ exit(A) ---+ al ---+ a2 ---+ ... ---+ an ---+ target(t)

In cases where we have a transition with multiple nested source states (see Figure 3.5),

we consider the following. For a transition with multiple source states e.g. transition tl,

the order in which the state exit actions are to be executed begins with the exit action of

the innermost nested state which is currently active. This is followed by the exit action

of the closest composite state that encloses the innermost active substate, and this rule

applies recursively until the composite state from which the transition directly emanates

from is reached. For our example in Figure 3.5, if the current active state is So, the ex

ecution sequence of the exit action is exit(So) ---+ exit(Sd ---+ exit(S2) ---+ ... ---+ exit(Sn).

If the current active state is Sx, the execution sequence becomes exit(Sx) ---+ exit(Sl) ---+
exit(S2) ---+ ... ---+ exit(Sn).

States Do-Activity

The do-activity for a state represents the execution of an interruptable sequence of ac

tions that occurs while the state is active. The activity starts executing upon entering the

state, following the entry action. If the activity completes while the state is still active, it

will raise a completion event that triggers an exit out of the state through its implicitly

triggered transition (if it is present). If the state is exited as a result of the firing of one

of its outgoing transitions before the activity is complete, the activity is aborted prior

to its completion. In our formalization, we model two important execution points of an

50

activity: its beginning and its termination. We represent these two occurence as CSP

events labeled beginActivityName and endActivityName.

transition t

Figure 3.6: State with do-activity.

Assuming A (see Figure 3.6) is a simple state enclosed immediately by the top state

SMo and A contains do-activity named Q. Suppose there is only one outgoing transition

t emanating from A. If t is an implicitly triggered transition, the behaviour at state A

may be described as

A = entry(A) --+ beginQ --+ endQ

--+ exit(A) --+ target(t)
(3.1)

If t is an explicitly triggered transition where event(t) E EM(exp) , we model the

interruption of event(t) on do-activity Q using the CSP deterministic choice construct.

For this, process A may be expressed as

A =entry(A) --+ ((beginQ --+ ((endQ --+ INT)

o (INT)

) 0 (INT)

where INT = event(t) --+ exit(A) --+ target(A).

(3.2)

In the above formalization, we can clearly see that event(t) is offered as a choice to

interrupt the operation before, during and after the execution of activity Q. This conforms

with the informal UML semantics defined by OMG [54].

One might wonder why we do not use the CSP interrupt operator (6) to model the

external events interrupting the execution of the do-activity. We will explain, using the

running example as follows. Suppose we use the CSP interrupt operator to model the

interruption of event(t) on do-activity Q. For this, we have

A = entry(A) --+ ((beginQ --+ endQ --+ event(t) --+ target(t))

6(event(t) --+ target(t)))
(3.3)

A closer inspection on the above equation reveals that if activity Q terminates suc

cessfully and proceeds to target(t), the subsequent execution from target(t) may also be

interrupted by event(t). This is clearly not desired. To overcome this problem, we can

replace target(t) with RU N{event(t)}. Eq. 3.3 becomes

51

AR = entry(A) -7 ((beginQ -7 endQ -7 event(t) -7 RUN{event(t)})

6(event(t) -7 RUN{event(t)}))

where it synchronizes with

RA = event(t) -7 exit(A) -7 target(t)

And, we have

A= AR II RA
{ event(t)}

(3.4)

(3.5)

(3.6)

In this way, the interrupt operator will only have effect after entryA has occured up

to and inclusive of event(t) in Eq.3.4. The subsequent execution modelled by Eq.3.5

is free from the interruption. RU N{event(t)} in Eq.3.4 is a special CSP process where

RU N{event(t)} = event(t) -7 RU N{event(t)} . RU N{event(t)} helps to avoid the parallel

composition in Eq.3.6 from getting deadlocked when there are occurences of event(t) in

the subsequent process.

We do not adopt CSP interrupt operator in our formalization because as demonstrated

by the above example, the approach is rather cumbersome. It also appears to be mislead

ing to use parallel contruct to model sequential execution. Based on these reasons, we

decided on the approach that uses the CSP deterministic choice operator to model UML

states with do-activity event.

Although we model both the transition event and action as a CSP event, the resulted

CSP expression are different in the way they are formalized. To illustrate, see Figure 3.7.

Using the concepts we have defined for multiple transitions earlier on, we may express

(j) (ii)

Figure 3.7: Transition Events and Actions

Figure 3.7(i) and (ii) in CSP as

(i) P

(ii) P

(a -7 Q) n (b -7 R)

(a -7 Q)O(b -7 R)

52

(3.7)

(3.8)

Both diagrams in Figure 3.7 model a different behaviour. In Figure 3.7(i), once state

P completes its activity, it produces a completion event which implicitly chooses to trig

ger one of the two transitions. The action along the chosen transition is carried out when

the transition is being executed. Eq.3.7 demonstrates this, whereby the internal choice

shows that the decision between a and b lies in the process itself. In Figure 3.7(ii), once

state P completes its activity, it waits for the environment to offer either a or b. In our

formalization, this is modelled using an external choice (see Eq.3.8) which shows that

the choice is upon the environment. From here, we can see how our formalization has

faithfully model the behaviour of the state P in both cases.

The basic concepts we have discussed so far will be used as the fundamental blocks

on which formal mapping definitions for non-composite states and composite states will

be built.

3.5.5 Multiple State Exit Actions

Before we proceed further, we need to consider the issue where multiple exit actions are

involved. Transitions tl and t2 shown in Figure 3.8 are examples of transitions which may

involve multiple state exit. The two transitions are similar in that they may be taken if A

is the current state (e.g. the state where the system is residing at the moment) and this

will result in a series of state exit actions being triggered from A to D. The difference

between the two is that for Figure 3.8(a), the only possible current state where tl can

be executed is A whereas for Figure 3.8(b), the possible current state where t2 can be

taken from could be either A, B or C. This is because in UML, an outgoing transition

from an enclosing state is essentially a valid outgoing transition from each of its nested

states, and in our case, Figure 3.8(b) is a simplified version of Figure 3.9, which has t2

originates from each state nested within C. Therefore, the exit actions involved when t2

is taken will depend on the current state when the transition is taken.

(a) (b)

Figure 3.8: Multiple State Exit Transition.

Figure 3.9: This state diagram is equivalent to the state diagram in Figure 3.8(b).

In order to keep a neat representation in the subsequent formalization, we define

here a process named EXIT(A, t) which represents a sequence of exit actions being

executed in the correct order when transition t is carried out from the current state

A. For example, looking at Figure 3.8(a), if the current state is A and if tl is taken,

53

EXIT(A, t1) = exit(A) -+ exit(B) -+ exit(C). Similarly for transition t2 in Figure

3.8(b), if the current state is A and if t2 is taken, EXIT(A, t2) = EXIT(A, t1). How

ever, if the current state is now B, EXIT(B, t2) = exit(B) -+ exit(C). From this, we

can see that the state exit actions involving a transition depend on the current state

from which the transition is taken. We now define formally the expression EXIT(s, t) as

follows.

Definition 2 Given a current state A E SM and a transition t ETA.

where

EXIT(A, t) = exit(A) -+ SKIP; exit(Sl) -+ SKIP;

exit(S2) -+ SKIP; ... ; exit(Sn) -+ SKIP

{Sl, S2,··· ,Sn} = {S I S E ENCL(A) 1\ S cf. ENCL(target(t))} 1\
Sl = IMM(A) 1\ n E NAT 1\ n> 1 1\ Sn = IMM(Sn-1)

Note if the current state A is a final state or a top state, it will not have any outgoing

transition. Hence the second assumption of the definition, e.g. a transition t E TA will

not be true and EX IT(A, t) does not exist for A.

3.6 The Mapping Function 1-£

To approach the formalization of the state diagram behaviour, we define a function H

that maps the structure of a state machine to a CSP process. The function takes in two

arguments, H(M, S) where M refers to a state machine and S refers to a state residing in

the state machine. Note that a CSP process definition comprises a process name (N) and

a process term (P), and it is written as N=P. Essentially, what H does is it will contruct

a CSP term for every state in a state machine. Under our formalization, each state will

give rise to a CSP process definition of the form label(A) = H(M, A) where A is a state

identifier. As you can see, the state label will form the name of the CSP process, and

H(M, A) will define the process term, which represent the behaviour of the state. For

an example shown in Figure 3.10, state A will give rise to the equation A = e -+ Band

state B will give rise to B = f -+ C. We will explain further in the current and the next

chapter how H defines the behaviour for different types of UML states.

Figure 3.10: An example.

Unless specifically mentioned, we assume that we are dealing with a state machine

named M from here onwards.

54

3.7 Formalization for Non-Composite State

In this section, we will formalize the UML non-composite states, i.e. those without any

nested states.

3.7.1 Initial State

The well formedness rules defined by the OMG group [54](p2:157) says that an initial

state can have at most one outgoing transition and no incoming transitions. This state

ment is rather vague as there is no mention if more than one initial state is allowed within

the same level of a state. Consequently, we choose to allow more than one initial state to

present within a state hierarchy level (which will be reflected in the definition for compos

ite states later). This provides more freedom to the modelling style that can be supported

by our formalization.

The outgoing transition that emanates from an initial state may be labeled, in which

case the label event refers to the incident that initiates a system routine or creates an

object (in an object-oriented context). If the transition is not labeled, the transition out

of the initial state points to the first state to be encountered in an enclosing state. The

formalization for an initial state is therefore

Definition 3 (Initial State) Given an initial state A where

A E SM(is) 1\ t ETA·

Recall the well formedness rule defined in Section 3.3, card(TA) = l.
1. If t E TA(imp) , H(M, A) = guard(t) & (ACTION(t); target(t)).

2. If t E TA(exp), H(M, A) = guard(t) & (event(t) --+ ACTION(t) ; target(t)).

3.7.2 Final State

Suppose we have a final state F nested within a set of enclosing states, ENCL(F}. Re

ferring to both diagrams in Figure 3.11, ENCL(F) = {AI, A2}. If there is no transition

emanating from any of the enclosing states, a transition to F represents a successful ter

mination for the state machine where F and all the enclosing states reside, e.g. see Figure

3.11(a).

On the other hand, if there is at least one outgoing transition from one of the states

in the set ENCL(F}, the entry to F denotes a successful termination for all the activity

within the immediate enclosing state of F, followed by the occurrence of the event (either

internal or external) that triggers the transition out of the enclosing state. In our running

example in Figure 3.11(b), when the system reaches F, it denotes a successful termination

for activity within A1. If neither event(t1} nor event(t2} are offered by the environment,

the implicitly triggered transition to S2 will be taken. Note that the implicitly triggered

55

Al F Bl
2

[--->@]

(a)

(b)

Figure 3.11: (a) A final state F without any outgoing transition where lI.(M,F) = 8KIP, (b) A final state F with
outgoing transitions where lI.(M, F) = ((event(t1) -+ 81)O(event(t2) -+ 83)) I> 82.

transition to 84 is not available at this point because A2 has not reached its completion.

As mentioned before, the system transition to F only denotes the completion of activity

within A1 and not A2.

56

Definition 4 (Final State) Given a final state F where

FE SM(fs) /\ (VS· S E ENCL(F) =} S tf- SM(cas))'

1. If there is no outgoing transition from any ENCL(F),

1i(M,F) = SKIP

2. If there is at least one implicitly triggered outgoing transition from 1M M (F),

3. If there is no implicitly triggered outgoing transition from 1M M (F),

1i(M,F) = F1

where

F1 DXEENCL(F)DtETX(exp) guard(t) & (event(t) -+ EXIT(F, t) ; ACTION(t) ; target(t))

F2 nUETIMM(F)(imp) guard(u) & (EXIT(F,u); ACTION(u); target(u))

The above definition is valid for different scenarios possible for F. We will show using

a few examples of how this is true. Before that, we present below a few CSP algebraic

laws which might be useful when we apply the definition to different scenarios. Note that

these algebraic laws are also applicable to subsequent definitions. Assuming P is a CSP

process,

Law I

Law 2

Law 3

x: 0 -+ P(x) = STOP

PO STOP = P

STOP I> P = P

To illustrate how we can apply Definition 4 to other scenarios, suppose we have a

final state F shown in Figure 3.12(a) where IMM(F) = X. Since there is an implicitly

triggered outgoing transition from 1M M(F), we use case 2 from Definition 4 to define the

behaviour for F where 1i(M, F) = F11>F2. However, when defining F1, since TX(exp) = 0,
applying Law I to F1 will produce F1 = STOP. At this point, 1i(M, F) = STOP I> F2

and using Law 3, 1i(M, F) = F2 .

We consider a different scenario in Figure 3.12(b). Since there is no implicitly trig

gered outgoing transition from IMM(F) = Xl, we use case 3 to define for the behaviour

of F, where 1i(M, F) = Fl. From the diagram, ENCL(F) = {Xl, X2}. Because there

is only one outgoing transition from Xl and no outgoing transition from X2, this gives

57

rise to F1 = (a -+ Y) D STOP. Applying Law 2 to the equation, we get F1 = (a -+ Y).

(a) (b)

Figure 3.12: Some possible scenarios for a final state.

Note that Definition 4 only models those final states which are not enclosed by any

AND-state (the constraint is imposed by the predicate VS·S E ENCL(F) =} S tt SM(cas)

in the definitions). The reason for this will be clear when we consider final states which

are enclosed by one or more AND-states in the next chapter.

3.7.3 Simple State

A simple state is a state which does not contain any substates. For a simple state A, the

state may be exited in a few different ways as follows:

a. State A completes its activity and produces a completion event that triggers an

outgoing transition through one of its implicitly triggered transitions (if there exists

one) at the state border. Here, we would like to point out that the completion event

will not have effect over any implicitly triggered transition at any of the enclosing

states that enclose A, e.g. the completion event produced by X in Figure 3.13 can

only trigger transition i but not j (note that both i and j with no labelled events

are implicitly triggered transitions).

b. The external environment offers an event that triggers an outgoing transition at the

border of state A. The activity within the state is then abandoned and the state is

exited.

c. An outgoing transition at one of A's enclosing states, say K, is fired and this triggers

an exit from K, A and all A's subsequent enclosing states up to but not including

the enclosing state for the target state. E.g. when A is active (see Figure 3.14), if

transition K-E is fired, it will trigger an exit for A, B, K and C, but not D since

D is also the enclosing state for the target state of K-E.

Now we are ready to formalize the behaviour of a simple state, and the formaliza

tion only applies to those simple states where their immediate enclosing states are not a

composite-AND-state.

transition i

[y CD ~,~
tranSItIOn]

Figure 3.13: The completion event generated by X can only trigger transition i but not j.

58

D

C

K (BCD
J

--

Figure 3.14: Transition K-E.

Definition 5 (Simple States) Given a simple state A where

A E SM(ss) 1\ (VS· S E ENCL(A) * S tt SM(cas))'

1. If A does not contain a do-activity, then

(a) If TA(imp) =J 0,
(b) If TA(imp) = 0,

H(M, A) = entry(A) -+ (F1 [> F2)

H(M, A) = entry(A) -+ F1

2. If A contains a do-activity named y, then

where

(a) If TA(imp) i= 0,

H(M, A) = entry(A) -+ ((beginY -+ ((endY -+ (F1 [> F2

) 0 F1

(b) If TA(imp) = 0,

H(M,A) entry(A) -+ ((beginY -+ ((endY -+ F1

) 0 F1

F1 = (OnETA(exp) guard(n) & (event(n) -+ EXIT(A,n) ; ACTION(n); target(n)))

o (OKEENCL(A)OWETK(exp) guard(w) &

(event(w) -+ EXIT(A,w) ; ACTION(w); target(w))

F2 nmETA(imp) guard(m) & (EXIT(A,m); ACTION(m); target(m))

59

We would like to highlight the point that the behaviour of the simple state is for

malized in such a way that after an event occurs, the do-activity be may interrupted

and aborted, and the system will carry out and complete all its triggered actions, i.e.

the source state exit action, transition action and the target state entry action, before

responding to the next event.

For example, when a state X is active and if an event e occurs, the system will exit

X, make a transition to the next state (say Y) and enter state Y. It is only after all these

actions are completed and when the system has reached a stable state configuration4 that

it is able to respond to another event.

Again, note that Definition 5 only models those simple states which are not enclosed

by any AND-state (the constraint is imposed by the predicate VS . S E ENCL(A) =}

S tt SM(cas) in the definitions). We will consider simple states which are enclosed by one

or more AND-states in the next chapter.

3.7.4 Choice State

The need to model data manipulation in UML arises when we attempt to model the choice

state, whose role is slightly different from that of a normal state. To model a choice state,

we first need to address the issue of modelling transition actions as value assignment so as

to allow data manipulation on the choice conditions. What we mean by this is, suppose

we have two cases as shown in Figure 3.15. Using the definitions we have formalized so

(ii)

Figure 3.15: Comparing a choice state with a normal state.

far, we may express each of these cases in CSP as follows:

1. P=a-rx-r ((G&Q) D (H&R))

11. P' = (G & a -r x -r Q') D (H & a -r x -r R')

The CSP expressions for case (i) and (ii) will exhibit the same behaviour if we model

the UML transition actions as CSP events, since action x does not change the value of the

guards G and H. On the other hand, if the transition actions allow for value assignment,

(i) and (ii) will exhibit a different behaviour as action x is now capable of changing the

4 A system is said to reach a stable state configuration when it has completed its transition and entered
a state in which it is residing.

60

data value in the guards, and hence in process P the choice between Q and R is deter

mined after action x takes place. From this, it shows that there is a need to model UML

transition actions as assignment statements in CSP in order to allow the function of the

choice states to be distinguished from that of the normal states.

However, since we do not support UML identifier in our formalization model, we will

not model the distinction between a simple state and a choice state. Having said so, we do

not foresee any difficulty to model such distinction with the possible extension to support

UML identifiers (which will be discussed in Section 3.8).

Choice State

Figure 3.16: A choice state acting as a pseudostate between normal states.

The formalization for a choice state is similar to that of a simple state, except that it

does not contain any state action or do-activity (refer Definition 5).

Definition 6 (Choice State) Given a choice state A where

A E SM(choice) 1\ (VS· S E ENCL(A) ::::} S rt. SM(cas))

z. If TA(imp) -I- 0,
n. If TA(imp) = 0,

where

1/.(M, A) = F1 c> F2

1/.(M,A) = F1

F1 (DnETA(exp) guard(n) & (event(n) ---+ EXIT(A,n) ; ACTION(n); target(n)))

D (DKEENCL(A)DwETK(exp) guard(w) &

(event(w) ---+ EXIT(A,w) ; ACTION(w); target(w))

F2 nmETA(imp) guard(m) & (EXIT(A,m); ACTION(m); target(m))

Note that Definition 6 only models those choice states which are not enclosed by any

AND-state (the constraint is imposed by the predicate VS· S E ENCL(A) ::::} S rt. SM(cas)

). We will consider choice states which are enclosed by one or more AND-states in the

next chapter.

61

3.8 Possible Extensions to Support UML Identifiers

The UML identifiers may be categorized into two groups: event parameters and object

attributes. Event parameters are a list of parameters passed to the event and they corre

spond to the parameters of an operation which belongs to a class. Object attributes, on

the other hand, are mutable data held for an instance of a class. (Here, we assume there

is only one instance associated to each class.)

ev(x) IA:= x; A:= 2 * A
-----:>~~

Figure 3.17: The accessibility scope for an event parameter in the State Diagram.

Before we attempt to formalize the UML identifiers in esp, we first need to determine

the scope of accessibility for these identifiers in the state diagram. In this, we propose

the following:

1. Object Attributes Since a state diagram is a state machine that describes the

behaviour of an object of a particular class, the attributes corresponding to the

object may be accessed from any point within the diagram.

11. Event Parameter We propose that an event parameter is only available to (a) the

target state of the transition where the parameter is introduced via its event, and

(b) the outgoing transitions from the target state. For example, the parameter x

which is input via ev (see Figure 3.17) can only be accessed by S and all its nested

states, and also the outgoing transitions from S.

The restriction is formed on the basis of viewing event parameters as procedure

input variables in the programming language. In programming terms, a procedure

input variable is only available locally within the procedure. If we wish to make the

parameter available to subsequent states, (e.g. other procedures in a program) we

can assign the parameter value to the state machine global attribute, e.g. we assign

x to the global attribute A in the running example. This mirrors the assignment of

local copy of variable to a global variable which is readily accessible by the rest of

the program in programming terms.

Also, we require that object attributes may be assigned with different values using

UML actions or do-activity, but event parameters are not allowed to do so.

We will illustrate further what we have discussed so far using an example. In Figure

3.18, we have a choice state C1 with two conditional branches. Notice that the state

machine also contains three object attributes x, y and z and an event with parameter i.

What the machine attempts to model is: it will take in an input value i from the user

and increment it to 1 before using it for further operation. As discuss earlier, we do not

62

ClassA

Ox
()y
()z

<::> a (i)
[010] [x <= 10]

B C

Figure 3.18: An example of a choice state.

allow any value assignment to an event parameter. As such, we need to assign i to the

object attribute x before incrementing the value to 1. We may model the steps involved

as follows:

1. When i is input, A(x, y, z) = a?i -+ A' (x, y, z, i)

11. To assign i to x, A'(x,y,z,i) = A"(i,y,z,i)

lll. To increment x by 1, A"(x,y,z,i) = C1(x + 1,y,z,i)

Hence, at C1, we still have a modified value of x and an original copy of input i. We

may formalize the behaviour of A and C1 in CSP as follows:

a?i -+ C1(x + 1, y, z, i) (3.9) A(x, y, z)

C1(x, y, z, i) (x > 10 & B(x, y, z)) D (x :::; 10 & C(x, y, z)) (3.10)

As you can see, the UML object attributes x, y and z are modelled as process pa

rameters for each CSP process in the model. The event parameter i is represented as a

CSP input in Eq.3.9 and it is only passed on to the next process Cl using the process

parameter i. As clearly expressed in the CSP model, we represent the assignment to

parameter i as C1(x+1, ...) instead of a?i + 1, where x+1 is a copy of the updated i with

the value i remaining unchanged. Lastly, as mentioned earlier, i is only available to the

immediate next state C1 and not B or C.

What we have discussed in this section shows the possibility of modelling UML iden

tifiers in CSP. However, to keep our formalization simple, we have excluded the UML

identifiers in our model.

3.9 Formalization for Composite OR-State

A composite state (OR-state or AND-state) refers to a state where there are other states

nested within it. Hence, a composite state always satisfies

S E SM(cs) {:} ::IK . K E (SM(ss) U SM(cs)) 1\ S E ENCL(K)

63

In other words, we can say that a state 8 is a composite state if there exists some states

that are enclosed by S. The top state 8 Mo is an example of a composite state.

3.9.1 OR-State

As stated in the well-formed ness rules defined in Section 3.3, no cross-border incoming

transition is allowed and at least one initial state must present within each level of a

composite-OR-state hierarchy to indicate the start point upon entry into the composite

state. As such, a transition to a composite-OR-state represents a transition to an initial

state within the first level of the composite state. For example, a transition to the com

posite state 8 in Figure 3.19 signifies an entry into 8 which leads to the commencement

of activity within 8 starting from initial state 1. Hence, we have 8 = enter8 ---+ I. In

situations where we have more than one initial state within the first hierarchical level of

an OR-State, the choice of selecting an initial state is non-deterministic.

S

fenterS

I~

transition t

Figure 3.19: A composite OR-state

Definition 7 (Composite-OR-state) Given an OR-state 8 where 8 E 8M(cos)'

H(M,8) = ntEQ entry(8) ---+ source(t)

where Q = { tit E TM /\ source(t) E 8 M(is) /\ source(t) E 1MM-l[{8}] }.

Recall the well-formedness rule which specifies that an outgoing transition from an initial

state must terminate at a state within the same level of the initial state. Therefore, t must

also satisfy target(t) E 1MM-l[{8}]

At this point, one might wonder if Definition 7 is sufficient to model the behaviour of

an OR-state. How about the transitions that emanate from an OR-state, i.e. transition

labelled with event z from 81 in Figure 3.20? We have not forgotten about these types of

transitions. Rather, they are being considered when we formalize for states (e.g. simple

states, choice states and end states) which are nested within the OR-state. Therefore,

to model the diagram in Figure 3.20, we have

H(M,81) Il (using Definition 7)

H(M,Il) 82 (using Definition 3)

H(M,82) 12 (using Definition 7)

H(M, 12) A (using Definition 3)

H(M,A) z---+C (using Definition 5)

64

Figure 3.20: Simple state A nested in S1 and S2.

As you can see, the transition that emanates from 81 is covered under the formaliza

tion for simple state A. As pointed out earlier in section 3.3, our model does not allow

any incoming transition which crosses state boundaries. Therefore we do not allow design

such as in Figure 3.21. With this restriction, we are able to avoid the problem of having

to consider multiple entry actions with one transition. To keep our formalization simple,

we do not support do-activity for OR-states.

Figure 3.21: S1 has two possible start states: A or B.

Up to this point, we have defined the mapping function 1{ for composite-OR-states

and all their nested states. In the next chapter, we will deal with composite-AND-states.

65

Chapter 4

Formalizing UML State Diagrams

in CSP (Part 2)

4.1 Formalization for Composite AND-state

Based on the OMG informal semantics [54](p2-163), whenever a composite-AND-state is

entered, all its subregions are entered. At least one initial state must be present at each

of its subregions to indicate the start state for a particular subregion. If the incoming

transition terminates at the border of the AND-state, each of its subregions is entered

by default, i.e. through to its initial state. If the transition explicitly enters a subregion,

this region is entered explicitly while the rest are entered by default. Due of the well

formed ness rule defined in Section 3.3, we will not model the type of incoming transitions

which cross the boundary of the AND-state and enter explicitly into a subregion. On

another hand, whenever there is a transition out of the composite state from any substate

of a subregion, it will trigger an exit out of all the subregions in the composite state si

multaneously. Note that the cross-border transitions between subregions are not allowed

in UML.

In general, we may view the behaviour of a subregion to be similar to that of an

OR-state. Subsequently, an AND-state can be thought of as a set of OR-states running

in parallel. As such, we may model the behaviour of the AND-state S in Figure 4.1 as

8 = 81 1182 (4.1)

Recall that the transition to an OR-state represents the transition to an initial state

nested within its first hierarchical level (see section 3.9.1). Applying the same concept to

the subregions in the AND-state, an entry to the AND-state signifies the simultaneous

transition to all the initial states within the first hierarchical level of the subregions. So,

we can also write 8 = (11 n I2) II I3.

For each of the nested states within a subregion, we may attempt to apply the defi

nitions which we have defined in Section 3.7 to model their behaviour. For example, by

66

8

81
II

~E1
82 13

Figure 4.1: A composite-AND-state with transition crossing the AND-state border.

applying Definition 5 to the simple state A nested in 81, we get

H(M, A) = (x -+ B) D (b -+ R) (4.2)

Just as an outgoing transition from an OR-state is a potential transition from any of its

nested states (as discussed in Section 3.9.1), similarly, an outgoing transition from an

AND-state may be taken by a nested state in any of its subregions. This explains why

we have b -+ R as a choice in H(M, A).

However, because all the subregions in 8 are running in parallel, any transition that

causes an exit from 8, be it a transition emanating from the border of S (i.e. transition

b) or crossing the border of 8 (i.e. transition a) will have potential effect on a nested

state in every subregion. For this reason, we will also need to include the cross-border

transition a as part of the potential behaviour of A, as shown below.

A = (x -+ B) D (b -+ R) D (a -+ C) (4.3)

This means that, when A is active, if state D is active at the same time and if transition a

is taken, because a is a transition out of the composite AND-state, it will simultaneously

trigger an exit out of A and subsequently out of subregion 81. This clearly shows that the

informal semantics of UML state diagrams is not compositional, e.g. where AND-states

are involved, we cannot define a semantics of regions independently of the context in which

they appear. At this point, it is clear to us why the function H which we have developed

for some nested states (e.g. simple, final and choice states) enclosed by OR-state(s) are

not applicable if the nested states are enclosed by an AND-state. Hence, we will deal

with nested states within an AND- state later in Section 4.1.2.

As we continue with our running example, remember that each of the subregions are

composed in parallel with each other. Now suppose if D is to take on the transition to C

which is situated outside the AND-state, the system will move out of the AND-state and

as a result, the parallel composition should cease to exist. For this reason, we will need

to terminate any activity that is still running within the parallel composition. To achieve

this, we replace (a -+ C) with (a -+ SKIP) in Eq. 4.3. We do the same for transition

labelled with event b which causes an exit out of the AND-state by replacing (b -+ R)

67

with b ---+ 8K I P in Eq. 4.3. Eq. 4.3 then becomes

A = (x ---+ B) D (b ---+ 8KIP) D (a ---+ 8KIP) (4.4)

Subsequently, we would also need to modify Eq. 4.1 to include the modelling of transition

from S to any state outside S, i.e. state C or R, as

8 = (81 II 82) II ((a ---+ C) D (b ---+ R)) (4.5)
{a,b} {a,b}

What the above equation expresses is that: subprocess 81 II 82 (which describes
{a,b}

the behaviour of the AND-state 8) will synchronize with (a ---+ C) D (b ---+ R) over

the set of events {a, b}, so that if a or b is to occur, 81 II 82 will terminate and
{a,b}

(a ---+ C) D (b ---+ R) will carryon. Events a and b are exit events which will select the

next state (either C or R) following the exit out of the AND-state.

However, the above model in CSP will deadlock if event a or b were to appear in

the subsequent execution in process C or R, as it needs to synchronize with process

(81 II 82) which would have terminated by then. To overcome this problem, we use
{a,b}

RU N{a,b} (See footnote 1) instead of SKIP in Eq. 4.4.

Looking at Eq.4.5, one might raise the question of why a sequential operator is not

used in place of the second parallel operator. Perhaps it is useful to first explain that

a sequential composition between two processes is a mechanism of transferring control

from a process which has terminated successfully to another process. However, in our

case, we are attempting to model a behaviour whereby the control is passed from S to

another state whenever an exit event from S is performed, and the subsequent state de

pends on which exit event occurs. This happens regardless of whether S has terminated

successfully. If a sequential operator is used where process 8 is followed by R, i.e. 8; R

(see Figure 4.1), when a occurs, it causes the termination of S. If the subsequent process

(from state C onwards) terminates with a SKIP, the sequence operator will mean that

the next state in sequence will be R. This is clearly not a correct behaviour for the diagram.

1 RUNx is a standard CSP process which can perform any event in the set X, i.e. RUNx =?x : X --+
RUNx.

68

Following our discussion so far, we now list out the CSP for our example in Figure

4.1. The nested simple states and final states are modelled as

A (x --+ B) D (b --+ RUN{a,b}) D (a --+ RUN{a,b})

B (y --+ E1) D (b --+ RUN{a,b}) D (a --+ RUN{a,b})

E1 (b --+ RUN{a,b}) D (a --+ RUN{a,b})

D (z --+ E2) D (a --+ RUN{a,b}) D (b --+ RUN{a,b})

E2 (b--+RUN{a,b})

For the initial states, we use Definition 3 in the last chapter to produce

I1 B

12 A

I3 D

The behaviour for the AND-state is

8 = (81 II 82) II ((a --+ C) D (b --+ R))
{a,b} {a,b}

And the behaviour for the subregions are

81 I1 n 12

82 I3

The formal definitions to generate CSP for the behaviour of an AND-state and its

nested states will be discussed in the next few sections.

4.1.1 AND-state and Subregions

S

S1

S2 13

Figure 4.2: Transitions A-E, A-G, B-H, B-F, S-C and S-D may trigger an exit out of S.

Suppose we have an AND-state with six transitions that will cause an exit out of the

states (see Figure 4.2). They are A-E, A-G, B-F, B-H, S-C and S-D. Among them, A-E,

S-D and B-H are implicitly triggered. Notice that unlike the convention we have kept so

far, here we use auxilliary labels to represent the corresponding implicit triggered events

69

on the implicitly triggered transitions. The reason for this is because it is necessary in

order to allow hidden events to be represented in the parallel composition that is used

to synchronize the exit from all subregions. This will become clear when we look at the

CSP representation for the behaviour of 8, as follows:

8 =
(81 82) II

{a,b,d,Tl,T2,T3,c} {a,b,d,Tl,T2,T3}

((a -+ F) D (b -+ C) D (d -+ G) D (Tl -+ E) 0 (T2 -+ D) D (T3 -+ H))

) \ {Tl,T2,T3}

The CSP expression above suggests that the subregions 81 and 82 synchronize with

each other over all the events (including the hidden ones) that trigger an exit out of 8.

{a, b, d, Tl, T2, T3} is the set of exit events involved. Moreover, they will also need to

synchronize on the common events, i.e. event c which is common to both of them. The

parallel composition 81 II 82 which describes the AND-state behaviour in turn synchro

nizes with the next state selector over the exit events set {a, b, d, Tl, T2, T3}. Lastly, we

hide the hidden events Tl, T2 and T3 from the environment. We generalize the formal

ization for the composite-AND-state as follows.

70

Definition 8 (Composite-AND-state) Given a composite-AND-state S where

S E SM(cas)' Assume each subregion i is denoted as Si, 1 :::; i :::; N.

1l(M, 8) = (PN II (DtE(QUR)(event(t) -+ f -+ target(t)))
WU{c}

) \ z

(Note: The parallel composition in the above equation ensures there is synchronization

between the termination of S and the starting of another state outside S.)

where

N is the total number of subregions in S.

Pn 8n II Pn- l for 1 < n :::; N where PI = 81
£nUWU{c}

En is a set of events found in 8n which is common to those in 81 , 82 , ... , 8n- l ,

i.e. En = a8n n (a81 U a82 U ... U a8n-d.
Note: a8x denotes all the event alphabets found in the subregion 8x .

W comprises all the events (incl. hidden events) that trigger an exit out of s.
W = {event(t) It E (Q U nn

Q is a set of transitions emanating from S.

Q = {t I (t E TM 1\ source(t) = 8n·
is a set of transitions emanating from a state within S and crossing the border of s.
n = {t I (t E TM 1\ 8 E ENCL(source(t)) 1\ 8 ti ENCL(target(t))n·

is a dummy event that is required to synchronize the exit from all current

active substates when a transition out of the AND-state is triggered.

Z is a set of all the implicit events involved in the transitions that cause an

exit out of s.
Z = {event(z) I (z E TM(imp)) 1\(8 ti ENCL(target(z))) 1\

((source(z) = 8) V (8 E ENCL(source(z))) n·

71

The dummy event c which has been added to Definition 8 is particularly important

when we deal with nested states with exit actions. The dummy event ensures that the

exit actions take place before the transition to a state outside the AND-state. An ex

ample presented later in Section 4.1.4 will demonstrate this. In our model, we treat the

subregions as an ordered list of OR-states, which we traverse through from top to bottom

or left to right, depending on how the subregions are arranged in an AND-state.

Another interesting point to note is the impact of including the set W (i.e. the set of

all events that trigger an exit from S) in the synchronization set of the parallel compo

sition of processes. If anyone of the events in 'the set of all events that trigger an exit

from S' occurs, it will trigger an exit out of each of the composite state's subregions and

consequently a total exit out of the composite state S.

Definition 9 (Subregion) Given a subregion S where S E SM(region)'

1-l(M, S) = ntEQ entry(S) -t source(t)

where Q = {t I t E TM 1\ source(t) E SM(is) 1\ source(t) E IMM-l[{S}]}.

Recall the well-formedness rule which specifies that an outgoing transition from an initial

state must terminate at a state within the same level of the initial state. Therefore, t must

also satisfy target(t) E IMM- 1 [{S}].

4.1.2 Nested States

As pointed out earlier, we need to define the behaviour for simple states, choice states

and final states in the case when at least one of their enclosing states is an AND-state.

The formalization for an initial state remains the same, as in Definition 3, regardless of

whether it is enclosed by an OR-state or an AND-state.

Simple State

S

SI

S2

Figure 4.3: A simple state X enclosed by an AND-state S.

72

Suppose we have a simple state X (see Figure 4.3) where ENCL(X) = {Y, S1, S}.

All the explicitly triggered transitions are those labelled with events ei, with 1 :S i :S 6,

and we attach the auxilliary label 71 and 72 to the implicitly triggered transitions that

cause an exit out of the AND-state. As mentioned before, they are necessary so that if

the transition labelled 71 or 72 is to be taken, the label can be used to synchronize the

exit from the AND-state by all the active states from different subregions. The diagram

is not complete and we only choose to show all the transitions that trigger an exit out

of X together with the states necessary for our illustration. The behaviour for X can be

expressed in CSP as below:

x
((e2 -+ A3) D (e4 -+ A4)

D (e1 -+ RUNp) D (e3 -+ RUNp) D (e5 -+ RUNp)

D (e6 -+ RUNp) D (72 -+ RUNp)

D (71 -+ RUNp))

!> A3

where F = {e1, e3, e5, e6, 71, 72}.

(Line 1)

(Line 2)

(Line 3)

(Line 4)

(Line 5)

Line 1 refers to those explicitly triggered transitions which emanate either from X or

from any enclosing states of X and terminate within S. Line 2 refers to those transitions

that are similar to those in Line 1 except they terminate outside S. Line 3 models both

explicitly and implicitly triggered transitions which emanate from a state nested in any

of the subregions except Sl, and terminate outside S. Line 4 refers to those implicitly

triggered transitions emanating from X and terminating outside S. Line 5 refers to those

that are similar to Line 4 except they terminate within S. Finally, F is the set of exit

events from S.

Before we generalize the formalization, we assume a function SU BREG : SM--tt SM(reg)

which defines the most immediate subregion in which a state within an AND-state is

nested. For example, SUBREG(X) = S1, and this implies IMM(SUBREG(X)) = S.

73

Definition 10 (Simple State Enclosed by An AND-State)

Given a simple state X where X E SM(ss) ~ ENCL(X) U SM(cas) =1= 0, and

there exists an AND-state S E SM(cas) where S = IMM(SUBREG(X)).

Let n be the set of implicitly triggered transitions emanating from X, and terminating

within S (this will be defined later).

z. If X does not contain any do-activity and n =1= 0 then

1-l(M, X) = entry(X) -+ (F1 I> F2)

n. If X does not contain any do-activity and n = 0 then

1-l(M, X) = entry(X) -+ F1

m. If X contains do-activity Y and n =1= 0 then

1-l(M, X) = entry(X) -+ ((beginY -+ ((endY -+ F3) D F1)) D F1

zv. If X contains do-activity Y and n = 0 then

1-l(M, X) = entry(X) -+ ((beginY -+ ((endY -+ Fd D F1)) D F1

F1, F2 and F3 are defined as

F1 = (DaEt' guard(a) -+ event(a) -+ EXIT(X,a) ; ACTION(a) ; target(a))

D (DcE(QuNUV) guard(c) -+ event(c) -+ EXIT(X,c) ; ACTION(c) ; c-+

RU N{ event(u)luE(QuNuv) } U {c:})

F2 nbER guard(b) -+ EXIT(X, b) ; ACTION(b) ; target(b)

F3 F1 I> F2

74

where

P is a set of explicitly triggered transitions, emanating from X or ENCL(X),

and terminating within S, i. e.

P = {t I (t E TM(exp)) 1\ (source(t) E {X} U ENCL(X)) 1\ (8 E ENCL(target(t)))}

Q is a set of explicitly triggered transitions, emanating from X or ENCL(X),

and terminating outside S, i. e.

Q = {t I (t E TM(exp)) 1\ (source(t) E {X} U ENCL(X)) 1\(8 rt ENCL(target(t)))}

R is a set of implicitly triggered transitions, emanating from X,

and terminating within S, i. e.

R = {t I (t E TM(imp)) 1\ (source(t) = X) 1\(8 E ENCL(target(t)))}

N is a set of implicitly triggered transitions, emanating from X,

and terminating outside S, i. e.

N = {t I (t E TM(imp)) I\(source(t) = X) 1\(8 rt ENCL(target(t)))}

V is a set of both explicitly and implicitly triggered transitions, emanating from a nested

state situated in a subregion other than SUBREG(X), and terminating outside S, i. e.

V={t I (tETM)I\(IMM(8UBREG(source(t))) =8)

1\(8UBREG(source(t)) -I- 8UBREG(X)) 1\(8 rt ENCL(target(t)))}

c is a dummy event that is required to synchronize the exit from all current

active substates when a transition out of the AND-state is triggered.

As we have seen before in the previous chapter, Fl and F2 are expressions used to

define scenario i to iv in order to make the definitions neater and hopefully more com

prehensible. The set of implicitly triggered transitions emanating from a simple state X

and terminating within S (denoted as R above), is dealt with in Fl and not F2.

Both scenario i and iii describe a simple state X nested within a composite state S

and X has at least one implicitly triggered outgoing transition which terminates within

S (e.g. R -I- 0). That is why we find F2 (and F3 which contains F2) in the definition

for these two scenarios. On the other hand, scenario ii and iv describe a simple state X

nested within a composite state S and X does not have any implicitly triggered outgoing

transitions which terminate within S (e.g. R = 0). That is why we do not find F2 in the

definition for these two scenarios.

Observe that ENCL(X) is not being considered in Rand N. This is because when

X is active, and when X completes its activity, it may produce a completion event that

triggers an exit out of X through one of its implicit transitions. However, this completion

event will not have effect over any implicit transitions at any of X's enclosing states

75

(simple because these states might not have terminated yet). That is why the implicit

transitions for any states in ENCL(X) are not being considered in nand N when defining

the behaviour of X.

Choice State

The behaviour of a choice state nested within an AND-state is similar to that of a simple

state explained in the previous subsection, except a choice state does not contain any

state action.

76

Definition 11 (Choice State Enclosed by An AND-State)

Given a choice state X where X E SM(cs) ~ ENCL(X) U SM(cas) -=I 0, and

an AND-state S where S E SM(cas) ~ S = IMM(SUBREG(X)).

z. If R -=10,
zz. If R = 0,

1-l(M, X) =:;:1 I> :;:2
1-l(M, X) = :;:1 (See below for definition of R.)

:;:1 and:;:2 are defined as

:;:1 = (DaEF guard(a) ---+ event(a) ---+ EXIT(X, a) ; ACTION(a) ; target(a))

D (DcE(QuNUV) guard(c) ---+ event(c) ---+ EXIT(X,c) ; ACTION(c) ;

c ---+ RU N{ event(u)luE(QuNuV) } U {c})

:;:2 = nbER. guard(b) ---+ EXIT(X, b) ; ACTION(b) ; target(b)

where

P is a set of explicitly triggered transitions, emanating from X or ENCL(X),

and terminating within S, i. e.

P = {t I (t E TM(exp)) I\(source(t) E {X} U ENCL(X)) I\(S E ENCL(target(t)))}

Q is a set of explicitly triggered transitions, emanating from X or ENCL(X),

and terminating outside S, i. e.

Q = {t I (t E TM(exp)) I\(source(t) E {X} U ENCL(X)) I\(S rf- ENCL(target(t)))}

R is a set of implicitly triggered transitions, emanating from X,

and terminating within S, i. e.

R = {t I (t E TM(imp)) I\(source(t) = X) I\(S E ENCL(target(t)))}

N is a set of implicitly triggered transitions, emanating from X,

and terminating outside S, i. e.

N = {t I (t E TM(imp)) I\(source(t) = X) I\(S rf- ENCL(target(t)))}

V is a set of both explicitly and implicitly triggered transitions, emanating from a nested

state situated in a subregion other than SUBREG(X), and terminating outside S, i.e.

V = {t I (t E TM) 1\(IMM(SUBREG(source(t))) = S)

1\ (SU BREG(source(t)) -=I SU BREG(X)) 1\ (S rf- ENCL(target(t)))}

c is a dummy event that is required to synchronize the exit from all current

active substates when a transition out of the AND-state is triggered.

Final State

Figure 4.4 shows two final states Xl and X2 nested within an AND-state. As before,

all those transitions labelled with Ti are implicitly triggered. Again, we only choose to

show those constructs that are needed in our discussion. The main difference between X2

77

Al

S
SI

----~
el X2

e3
I----c~ AS

__ 1--='2---;;.{ A6

S2

Figure 4.4: Final states Xl and X2 enclosed by an AND-state S.

and Xl is that IMM(X2) is a subregion whereas IMM(X1) is not. This is significant

because what it means is that when the system reaches X2, it shows that the subregion 81

has terminated and the system can take on transition T2 if all other subregions have termi

nated as well. Unlike X2, when the system reaches Xl, 81 has not terminated, hence the

system cannot take on transition T2 even though other subregions might have terminated.

Using the approach similar to that for the simple states and choice states, we now try

to express the behaviour of these two final states in CSP. We will start with Xl.

For Xl, ENCL(X1) = {Y, 81, 8} and IMM(X1) = Y. The potential transitions out

of Xl include (a) all the explicitly triggered transitions emanating from ENCL(X1), (b)

the implicitly triggered transitions emanating from IMM(X1), and (c) all the transitions

emanating from a nested state in all subregions other than 81 and they terminate outside

8.

Xl (e2 ~ A2)

o (e1 ~ RUNF) 0 (T1 ~ RUNF) 0 (e3 ~ RUNF)

o (e4 ~ RUNF) 0 (T3 ~ RUNF)

I> A2

where F = {e1,e3,e4,T1,T2,T3}

For X2, ENCL(X2) = {81,8} and IMM(X2) = {81}. The potential transitions

out of X2 include, (a) all the transitions emanating from ENCL(X2), and (b) all the

transitions emanating from a nested state in all subregions other than 81 that terminate

outside 8. For (a), really we are only dealing with transitions emanating from S since

there are no outgoing transitions from a subregion.

X2 (e3 ~ RUNE) 0 (T2 ~ RUNE)

o (e4 ~ RUNE) 0 (T3 ~ RUNE)

78

where E = {el, e3, e4, rl, r2, r3}

Also, observe that X2 is able to respond to r2 but not Xl, for the reason as discussed

earlier. We may now generalize the formalization as follows.

Definition 12 (Final State Enclosed by An AND-State)

Given a final state X where X E SM(Js) * ENCL(X) U SM(cas) =I- 0, there exists

an AND-state S E SM(cas) where S = IMM(SUBREG(X)).

z. If puQunuMuNuv=0 ~ffi H(M,X) = SKIP

zz. Else

(a) If IMM(X) tf. SM(region) and n =I- 0, then

H(M,X) = :;:1 I> (ncE'R. guard(c) -+ EXIT(X,c) ; ACTION(c) ; target(c))

(b) If IMM(X) tf. SM(region) and n = 0, then H(M, X) = :;:1

(c) If IMM(X) E SM(region), then

H(M,X) = (DaE(MUNUV) guard(a) -+ event(a) -+ EXIT(X,a) ; ACTION(a) ;

c -+ RU N{event(u)luE('PUMUNuVn u {E})

:;:1 is defined as

:;:1 = (DaEQ guard(a) -+ event(a) -+ EXIT(X,a) ; ACTION(a) ; target(a))

D (DbE('PUMUV) guard(b) -+ event(b) -+ EXIT(X, b) ; ACTION(b) ;

c -+ RU N{event(u)luE('PUMUNUVn U {E})

79

where

P is a set of transitions emanating from ENCL{X) except S, and terminating outside S.

P = {t I (t E TM) I\(source(t) E ENCL(X) - {8}) 1\(8 rt ENCL(target(t)))}

Q is a set of explicit transitions emanating from ENCL{X) except S,

and terminating within S.

Q = {t I (t E TM(exp)) 1\ (source(t) E ENCL(X) - {8}) 1\(8 E ENCL(target(t)))}

n is a set of implicit transitions emanating from IMM{X) (where IMM{X) is not a

subregion) and terminating within S.

n = {t I (t E TM(imp)) 1\ (source(t) = IMM(X))

I\(IMM(X) rt 8 M (region)) 1\(8 E ENCL(target(t)))}

M is a set of explicit transitions emanating from S.

M = {t I (t E TM(exp)) I\(source(t) = 8)}

N is a set of implicit transitions emanating from S.

N = {t I (t E TM(imp)) 1\ (source(t) = 8)}

V is a set of transitions emanating from a state situated in a subregion other than

SUBREG{X), and terminating outside S.

V = {t I (t E TM) 1\(IMM(8UBREG(source(t))) = 8)

1\(8UBREG(source(t)) -1= 8UBREG(X)) 1\(8 rt ENCL(target(t)))}

is a dummy event that is required to synchronize the exit from all current

active substates when a transition out of the AND-state is triggered.

80

4.1.3 Restriction on AND-states

F

S

Sl

E

S2 D

Ir'--~--~------~---:----------------'l · =
Figure 4.5: A nested AND-state D within an AND-state S.

Our formalization is able to model the behaviour of an AND-state with all kinds of

nested states except a nested AND-state, i.e. we do not support AND-states such as 8

(see Figure 4.5) which has another AND-state D nested within it.

The reason we do not allow nested AND-state is to keep our formalization simple.

To illustrate the level of complexity involves, suppose we are formalizing the behaviour

for the current active state A in Figure 4.5. Based on Definition 10, we would need to

include transition B-C in the behaviour of A since it also has the effect of triggering an

exit of out A and D2. Similarly, we would have to include transition E-F as E-F is not

only able to trigger an exit out of E, 81 and 8 but at the same time an exit from 82

and A which may be the current active state within 82. What this suggests is that the

complexity of our formulation for active state A will increase with the increasing number

of enclosing AND-states. As we have seen before, the lack of compositionality in a UML

state diagram (i.e. the behaviour of a subregion depends on the behaviour of other subre

gions) has already made our existing formalization rather complicated. The introduction

of enclosing AND-state will further increase the complexity involved. With this reason in

mind, we have decided not to support nested AND-states in an AND-state.

Furthermore, we do not model do-activity for an AND-state. The exclusion of this

feature has further helped to simplify our semantics definition for the AND-state.

4.1.4 An Example

In this example, we show how the definitions we have formalized in this chapter may be

used to formalize the behaviour of a composite-AND-state 8 in Figure 4.6. Note that we

use the auxilliary labels 71, 72 and 73 to represent the implicit events that may trigger an

exit out of the composite state S. The following are a list of CSP expressions describing

the behaviour of S.

81

1-£(M, 8)

1-£(M, 81)

1-£(M, 82)

1-£ (M,I2)

1-£(M, D)

1-£(M, G)

1-l(M,E2)

@EI

S2

12

Figure 4.6: Formalizing the behaviour of a composite-AND-state.

{z,a,b,c,71 ,72,73,1:}

II
{a,b,c,71 ,72,73,1:}

((a -+ c -+ C) 0 (b -+ c -+ E) 0 (c -+ c -+ R) 0

(Tl -+ C -+ F) 0 (T2 -+ c -+ L) 0 (T3 -+ c -+ H))

) \ {Tl' T2, T3} [Definition8]

I1 [Definition9]

12 [Definition9]

D [Definition3]

entryD -+ ((z -+ exitD -+ E2) 0 (b -+ exitD -+ c -+ RUNJ)

o (Tl -+ exitD -+ c -+ RUNJ) 0 (c -+ exitD -+ c -+ RUNJ)

o (a -+ exitD -+ c -+ RUNJ)D (T3 -+ exitD -+ c -+ RUNJ)

) I> (exitD -+ G)

[Definition10]

(y -+ E2) 0 (c -+ c -+ RUNJ) 0 (a -+ c -+ RUNJ)

o (T3 -+ c -+ RU NJ) [Definition10]

(c -+ c -+ RUNJ) 0 (T2 -+ c -+ RUNJ) 0 (a -+ c -+ RUNJ)

[Definition12]

82

1-l(M, J1)

1-l(M, A)

1-l(M, B)

1-l(M, K)

where

A [Dejinition3]

entryA -+ ((begindoA -+ ((enddoA -+ Sl)OS2)) 0 S2) [DejinitionIO]

(z -+ Ed 0 (c -+ c -+ RUNJ)

o (b -+ c -+ RUNJ) 0 (71 -+ c -+ RUNJ)

(r -+ B) 0 (c -+ c -+ RUNJ)

[DejinitionIO]

o (b -+ c -+ RUNJ) 0 (71 -+ c -+ RUNJ) [DejinitionIO]

(c -+ c -+ RUNJ) 0 (72 -+ c -+ RUNJ) 0 (b -+ c -+ RUNJ)

[DejinitionI2]

Sl S2) I> (exitA -+ K)

S2 (x -+ exitA -+ B) 0 (a -+ exitA -+ c -+ RUNJ)

o (c -+ exitA -+ c -+ RUNJ) 0 (b -+ exitA -+ c -+ RUNJ)

o (71 -+ exitA -+ c -+ RUNJ) 0 (73 -+ exitA -+ c -+ RUNJ)

J {a,b,c,71,72,73,c}

Using Definition 5, we get

1-l(M, C) STOP

1-l(M, H) STOP

1-l(M, E) STOP

1-l(M, F) STOP

1-l(M, R) STOP

1-l(M, L) STOP

One might ask how z triggers an exit out of the composite state 8? First of all, z

is an event common to both subregions 81 and 82. This means that when z occurs, it

will simultaneously trigger two transitions: B-E1 and D-E2. When this happens, both

subregions reach their respective final states and are ready to exit the composite state.

At this point, they will wait for either event c or 72 to occur which will subsequently

activate a transition to exit the composite state 8. If we take a look at the formalization

for EI and E2 above, e.g. 1-l(M, EI) and 1-l(M, E2), events c and 72 are included in the

possible behaviour for the final states.

83

4.2 Tool Support

4.2.1 U2CSPv2

We have developed a prototype translator U2CSPv2, which is essentially an enhanced

version of U2CSPvl with emphasize on generating CSP for the UML state diagram.

Compared to its previous version, U2CSPv2 covers more state diagram constructs and

these include nested states, OR-state and AND-state. Also, more in-depth treatment is

given for a state to consider its entry action, exit action and do-activity. Beyond this,

U2CSPv2 is able to support different combinations of explicitly and implicitly triggered

transitions emanating from a state. In essence, U2CSPv2 is developed with the aim of

seeking to understand the behaviour of the UML state diagram in a formal and consistent

manner, as compared to U2CSPvl which emphasizes on representing CSP using UML

constructs.

One shortcoming of the Rational Rose CASE tool is that it is not able to support the

composite-AND-state and its subregions. In view of this, we seek an alternative repre

sentation using the fork and join constructs. We use a state to represent a subregion and

place all the states/subregions between a pair offork and join. Figure 4.7 shows how this

is being done.

s

:. ~ {:::::::::::::::::I~~ @

(a)

«AND-ST ATE»

A

(b)

S

Figure 4.7: (a) A standard representation of the UML composite-AND-state S. (b) An alternative representation
of state S in Rational Rose.

U2CSPv2 supports this alternative representation but with a few limitations asserted

as follows:

• A state diagram is only allowed to have a pair of fork and join, hence only one

AND-state is supported.

• No event labels are allowed on the transition out of/into the fork/join.

• The trigger event which triggers an exit out of an AND-state is modelled using the

event label on the outgoing transition from the join. Therefore, only one exit event

may be modelled.

84

• The tool does not support any transition from a substate of a subregion to a state

outside the AND-state.

4.3 Miscellaneous

4.3.1 Priority of Transition

The problem of transition conflict arises when more than one transition originating from

the same source are enabled. The problem is categorised into two cases: those which are

caused by a single event, and those which are caused by more than one event.

T

{'~ n

{t2}

(a) (b)

Note: {tl} and {t2} are labels given to the transitions for
illustration purposes.

Figure 4.8: Transition conflict due to (a) a single event, (b) multiple events.

In the first case, a conflict arises when an event triggers more than one transition

originating from the same source. In Figure 4.8(a), for example, if the currently active

state is A, when event a is offered, two transitions: tl and t2 are triggered, because both

of them originate from the same source A. Since only one transition is allowed to take

place, according to the OMG defined priority rule, the lower level transition t1 is selected

over the higher level transition t2.

We propose a possible extension to model this priority in CSP using transition guards.

In the example, we introduce a guard G !\ H to the lower priority transition t2. The

formalization for A becomes

A=(G & a-tB) 0 ((G!\H) & a-tC)

What the above expression says is this: When a is offered, whenever G is evaluated true

(regardless if H is true), a -t B is selected. Otherwise, transition a -t C will be selected,

provided its guard, H is true. A transition with no guard present is assumed to have a

guard which is always evaluated to true.

To include this type of transition priority in our model, we would need to devise a way

to model the different hierarchical level of a state. Lilius et. al. has addressed the issue

by introducing the notion of covering in [41] which defines the hierarchy of the states in

the formalization that can be used to resolve the transition conflict. We may adopt a

similar concept, where we define a binary operator called higher_than, denoted as >-- such

that given two states Sl and So, Sl >-- So iff Sl E ENCL(So). In our running example

85

(Figure 4.8(a)), since source(t2) >-- source(tl), therefore, the firing priority will be given

to the lower transition tl.

In the second case, as shown in Figure 4.8(b), if events m and n are offered when D

is active, both transitions tl and t2 are enabled and hence they will be in conflict. This

problem only arises when more than one event is offered. As before, one may use a prior

ity scheme to resolve the conflicts. However, we will not be able to formalize this in CSP

since we do not know prior to the execution if the environment is going to offer only one

or both events. For this, we cannot express in CSP the choice of events that is definitely

going to be offered by the environment. (See footnote2 on the notion of priority in CSP.)

The probe primitive proposed by [46] might be able to deal with this. The probe primitive

enables a communication channel between two processes to be pro bed to determine if the

occurrence of an event is possible. With this, we may use the boolean guarded command

so that if an event that triggers a higher priority transition is known to occur, we will

select the transition over other enabled transitions. Having said so, however, we perceive

that things will become rather complicated if we are to define the "probe" notion in our

formalization. Moreover, "probe" is not part of the standard CSP and it is not supported

by FDR.

4.3.2 Interlevel Transition

Interlevel transitions refer to those transitions which cross state boundaries. There are

two types of interlevel transitions, as discussed below:

Cross Boundary Incoming Transition

(C \ exitC)/1
x

A \ enterA

I1~(B \ enterB } - - -(D \ enterD J

Figure 4.9: Cross Border Incoming Transition.

The well-formed ness rules defined for our formalization model does not allow any in

coming transition which crosses a state boundary (e.g. transition C-D in Figure 4.9). In

this section, we will attempt to show you the intricacy involved if we allow such transi

tions to be supported by our model.

Looking at Figure 4.9, we may describe the behaviour of the OR-state using Definition

7 as A = enter A -+ 11 where 11 = B, B = enterB -+ ... , D = enterD -+ ... and so on

2The notion of priority mentioned by Roscoe in [59](p409-413) concerns with the internal events having
higher priority over the external events in the context of timed esp. This has no relation with the issue
we are addressing here.

86

as defined by Definition 3 and 5. In this, we attach the entry action for each state at the

beginning of the process term generated by the H function of the corresponding state.

However, the structure of our formalization will be destroyed if we allow cross-border

transition such as C-D to present in a state machine. To show you how, we may express

the behaviour of C as C = x ---+ exitC ---+ D. However, because the transition is entering

A before it reaches D, we will need to modify the expression for D defined earlier to

include the entry action to A, where D = enter A ---+ enter D ---+ To cater for this sort

of transition, a tracing mechanism will be required in our model to trace the state entry

of an incoming transition wherever more than one state entry is involved.

In order to avoid the complexity involved in developing such mechanism, we decided

not to allow any incoming transition which crosses state border. As a result, we are

able to develop a clean and tidy mapping process which is very handy when it comes to

automating the process.

Cross Boundary Outgoing Transition

We deal with the problem involving cross-boundary outgoing transition using the process

ACTION(t) which has been discussed in Section 3.5.4 under "Transition Action".

4.3.3 Multiple State Machines

So far, we have developed our formalization based on the operation of a single state ma

chine. In this section, we will show how our model can be extended to model operation

involving multiple state machines. The behaviour of a system consisting of multiple state

machines is similar to that of a composite-AND-state comprising a few subregions, except

the latter may have outgoing transitions that will trigger an exit out of all subregions in

the composite state. For a process involving multiple state machines, they synchronize

on events which are common to each other.

,--;::;-'\ /~,--;:;-, e2 ~
MI • ~~~~

~ el/e2 rD\
M2. :..~~~

Figure 4.10: Multiple State Machines, M1 and M2.

Suppose we have a system with two state machines, M1 and M2 as in Figure 4.10.

Using our formalization model we may describe Figure 4.10 in CSP as follows.

87

For M1:

For M2:

1-l(M1, M1) = C where

1-l(M1, C) = e1 -+ D

1-l(M1, D) = e2 -+ E

1-l(M1, E) = STOP

1-l(M2, M2) = A where

1-l(M2, A) = e1 -+ e2 -+ B

1-l(M2, B) = STOP

Since the two machines needs to synchronize on the common events e1 and e2, we have

SYSTEM=M1 II M2
{el,e2}

4.4 Comparison with Other Work

The task of formalizing UML has been addressed using various available formal tech

niques, as we will discuss below. Most of these works are complementary, and they differ

in approaching the task from different viewpoints and aims.

Much work has been carried out to give a formal semantics to the state diagrams in

particular. The work by Engels et al. [19] involves translation from UML state diagrams

to CSP but their aim is not to provide a formal semantics to the state diagrams. Rather,

the reason they use CSP is to check the consistency between different UML diagrams that

represent a model. They are interested to find out if the relationship of "classDiagram

B inherits classDigram A" holds, will "stateDiagram B inherit stateDiagram A" holds as

well. For this purpose, they derive the "rule-based-notation" which is used to map state

diagrams into CSP, and use the CSP refinement assertion to check for the consistency.

Closely related to our work is that of Bolton & Davies [8] which presents a formal

behavioural semantics for the UML activity diagrams. They use CSP to provide a syn

tactical interpretation of the activity graph but they have adopted an approach rather

different from ours. For example, given a diagram in Figure 4.11, they translate the

activity states as

P(playing)

P(resting)

where

line1 -+ (playing -+ stop -+ line2 -+ P(playing) III P(playing))

line2 -+ (resting -+ line3 -+ P(resting) III P(resting))

CombinedProcess = (P(playing) II P(resting)) \{line1,line2,line3}
{line2}

88

In their approach, each transition is given a name which is then used to synchronize the

common transitions between two states. Because interleaving is used to model the pro

cess corresponding to each state, in order to eliminate divergence, they need to put an

upper limit on the number of time a CSP event is allowed in any place. Readers who are

interested to know how this is done may refer to [8]. Although the limit helps to ensure

there is no divergence during model-checking, it has inevitably introduce limitations to

their formalization model.

line I line2 line3
--,,>~(playing)t-------=>:;.J(resting)f-----;;>~

stop

Figure 4.11: An example.

Latella et al. [37, 38, 47] develop a formal semantics for a subset of UML state dia

grams which includes sequentialisation, parallelism, non-determinism and the transition

priorities schemas. What they have done is to map the UML state diagrams to an in

termediate format of the extended hierarchical automata, and then define an operational

semantics for these automata based on Kripke structures3 . They adopt the same approach

as in our work which uses a hierarchical representation of the state diagrams. As opposed

to our work which translates the state diagrams to CSP which is verified with FDR, their

work in [37] translates the hierarchical automata to PROMELA that is verified using

SPIN [32]. Also, their work in [26] attempts to verify the state diagrams in the JACK [9]

environment.

The work by Mikk et al. [49, 50, 51] is loosely related to ours in that they formalize

the semantics for the Harel's Statecharts. Similar to the work by Latella et aI., their

work translates Harel's Statecharts into Promela using extended hierarchical automata

(EHA) [50] as an intermediate format. The EHA allows them to 'flatten' an interlevel

transition by imposing restricted source and target to the transition. In their work, they

propose two sets of mapping strategies, the first deals with the mapping from Statecharts

to the EHA, and the second strategy map the EHA to Promela.

Lilius & Porres [41, 42, 43, 56] have also worked on formalizing the behaviour of the

UML state diagrams. Their work claims to present a complete formalization of UML

state machine semantics and provides an operational semantics for verifying the state

diagrams. Their work takes on the same approach as ours which first formalizes the

structure of the UML State machine, before defining the operational semantics of UML

states based on the defined structure. In addition, they have also developed a tool called

vUML [42] that translates the UML models into Promela language that may be fed into

SPIN for model-checking. In order to cater for the model-checking using SPIN, one needs

to include invalid states in the state diagram which serves as error claims [32] for the

3 A nondeterministic finite state machine whose states are labeled with boolean variables, which are
the evaluations of expressions in that state.

89

verification process in SPIN. In this, our approach is different. To verify a state diagram

against certain properties, we model the properties in a separate UML diagram called the

specification model. We then verfiy the correctness of our main model by carrying out

refinement checking on the model against the specification model. (This will be demon

strated in Chapter 5)

Borger et al. [6] describes the dynamics of UML state machines using the ASM (Ab

stract State Machine) rules [33]. Their work covers the event driven run-to-completion

scheme, the sequential execution of entry/exit actions for nested states and also the si

multanoues execution of do-activities for nested states that are currently active.

Sekerinski & Zurob [62, 63] and Ledang & Souquieres [39] present algorithms that

translate state diagrams to the AMN (Abstract Machine Notation) of the B method

[2, 34]. In their B models, a state is represented as a value of an enumerated set type

and a transition is represented as a change of value for a typed variable. The events

and actions are modelled as B operations which modify the typed variables. Ledang &

Souquieres's algorithm involves two stages: the first stage uses an abstract machine to

model the events, and the second uses the refinement/implementation which models the

relationship between the events with their triggered transitions and actions. The refine

ment/implementation model is done by importing/extending the abstract machine. The

presentation in B is rather intricate especially in terms of tracing the sequentiality and

parallelism in a state diagram. Moreover, the complexity of the model increases when the

notion of "include", "extend" or "import" of other B machines are involved. In compari

son, CSP is much more straightforward and intuitive when it comes to model the dynamic

behaviour of a state diagram. The refinement model in CSP is also more comprehensible

as oppose to that of the B-model.

4.5 Conclusion

First of all, our formalization model adopts a synchronous interaction mode (we view

the generation and consumption of an event to occur synchronously), as oppose to the

asynchronous mode of the UML model. The discussion found in Section 3.2 justifies for

this.

We started our work by first defining a structural model for a UML state machine.

We then proceed by using this structural model to describe formally the behaviour of the

UML structures in terms of CSP. In this, we have developed a set of formal definitions

which define formally the behaviour of all the different states found in a UML state ma

chine. Currently, our model is able to support initial state, final state, simple state, choice

state, composite-OR-state and AND-state. Our model also includes constructs such as

entry action, exit action, do-activity and transition action. Furthermore, we have pro

posed possible extensions to support UML identifiers and the transition priority scheme

90

suggested by OMG.

CSP was chosen to model the UML state diagrams mainly because it is well-supported

by model checking tools such as FDR. In addition, we find the CSP features to be appro

priate in modelling various behaviours of a state machine. For example in our work, it is

useful to have the CSP nondeterministic choice to model the choice between multiple im

plicitly triggered transitions, the deterministic choice for the multiple explicitly triggered

transitions, the time-out feature for states with both explicitly and implicitly triggered

outgoing transitions and the choice operator for the interrupt occurrence in UML. The

CSP interrupt operator is not used in our work to model the interrupt behaviour in UML

(i.e. the occurrence of an external event which interrupts a state do-activity) because we

found using them to be cumbersome, as shown in Section 3.5.4 under "State Do-Activity".

To model the implicit events in UML, e.g. the state completion events that trigger

the implicitly triggered transitions out of a state, our model has adopted two approaches.

They are listed as follow:

1. We do not model explicitly a completion event by representing it using a "tau_event:'

in CSP. Instead, we express, for example the implicitly triggered transition from P

in Figure 4.12 as P = Q. If there are more than one implicitly triggered transi

tion available, we use the CSP nondeteministic choice to model the choice between

them. If a state has a choice between an explicitly and an implicitly triggered tran

sitions, i.e. state Q, we use a CSP timeout operator (I» to model the choice, where

Q = (a -+ R) I> S. This is equivalent to writing Q = ((a -+ R) 0 (T -+ S)) \ {T}.

This method is used in most of the definitions we have seen in the model.

11. We model explicitly a completion event by representing it using a "tau_event:' in

CSP. In this, a CSP hiding operator is used (\) to hide the "tau_event:'. The need

for this method arises when we model the behaviour of the AND-states and their

nested states. In an AND-state, a T event is used to represent an implicitly triggered

exit event from the state so that it can be used later to synchronize the exit from

the AND-state to the subsequent next state. (See Section 4.1.1)

We have preferred method (i) over (ii) for it makes our definitions simpler and less

clutter by not having to model explicitly the implicit events. However, when we start to

formalize for AND-state, we realize that method (i) is not sufficient and we are forced to

switch to method (ii) instead. In doing so, we have decided to keep method (i) for all

other definitions, bearing in mind that the inconsistency of methods used to represent

UML in CSP will not actually affect the performance of our ultimate goal, that is to

model-check UML state diagrams using FDR.

91

Figure 4.12: Transitions triggered by implicit events.

Our formalization is designed to be general and hence it does not restrict to any spe

cific domain application. At the same time, we have developed a prototype translator,

U2CSPv2, which is an extension to U2CSPvl to generate CSP automatically from the

state diagrams which is then used to model-check the diagrams in FDR.

In order to keep our formalization simple and straighforward, we have defined a set

of well-formedness rules (in Section 3.3) to constrain our work to a subset of UML state

diagrams. Moreover, our formalization does not support

1. do-activity for OR-states and AND-states, and

11. AND-state with nested AND-states.

92

Chapter 5

Formal Reasoning About The

UML State Diagrams with FDR

In this chapter, we demonstrate how state diagrams are used for the design of a system,

and how CSP jFDR can be used to verify the correctness for each design phase and assist

in the design process. For each case study, the UML design is first translated into CSP

using U2CSPv2 based on the formalization defined in Chapter 3 & 4. The CSP generated

by U2CSPv2 is then analysed using FDR.

5.1 Compact Disc Player

5.1.1 Specification

stop

SPEC

play

pause

pause

stop

Figure 5.1: The specification model.

Figure 5.1 shows a simple CD player with three states: STOP, PLAYING and PA USE.

The events play, stop and pause model the actions performed by the user by pressing the

various buttons on the player. This diagram captures the basic requirements of how a

CD player is expected to work. Since this is a model of a single component that does

not involve any event synchronization, it is obvious from the diagram that the design is

deadlock free. Also, the absence of any impicit event should also imply that the model has

no livelock problem. The checks using FDR (see Figure 5.2) confirms these observations.

93

i.~ .
./ SPEC deadlock free [F]
./ SPEC IIvelock free

CHAOS(-)
PAUSE

Model

Failures J

Clear

PLAYING . ,

E~:~§~~~:::~:~::~::::~~=:·::::~:::=::~~==:=:::=:::::=::=:::~==:~.::~=:::::::::=~~:=:=~ 7
~ ...- . ~

Figure 5.2: FDR confirms that the specification model is free of deadlock and livelock.

DESIGN
STOP2

5.1.2 Design

PLAYING2

S.
stop

play

entry I find3urrenctrack
do I playing

lend

Istore_n xt_track
as3urre t_track

Figure 5.3: The design model.

Now suppose we want to include more details to the initial specification. For the purpose

of translating into CSP later, we rename the states in the initial specification to STOP2,

PLAYING2 and PA USE2 in order to avoid repetition of process names . Referring to Fig

ure 5.3 , we add two extra states PLAYA_TRACK and INCREMENT and we place these

states together with PA USE2 within PLAYING2. At this point, we would like to present a

design rule as suggested by Harel (previously mentioned in Section 1.5.3 under "Basic Fea

ture"), where we will use transition events to model received signals (e.g. input from the

environment) and transition actions to model generated signals (e.g. signals that are gen

erated by the system internally). At STOP2, when the button play is pressed by the ex

ternal user, the system enters PLAYING2 in which store_firsLtrack_as_currenLtrack will

be carried out by the player. At PLAYING2, the default first state is PLAY_A_TRACK

which upon being entered into, the system will find_currenLtrack and begin playing. Dur

ing this time, pause may be pressed to temporarily stop the playing. A second pause will

start the current track from the beginning again. After the current track finishes, an

implicit completion event will trigger the transition from PLAY ~_TRACK to INCRE

MENT. At this state, two situations may be possible: if the current track is the final track

94

on the CD, the process will end; else the system will store the next track as the current

track and the cycle of playing the current track is repeated. At this level, we leave the

two possiblitities as two choices resolved implicitly by the system. At any state when the

system is in PLAYING2, the user may stop the player. This is modelled by the outgoing

trasition labelled stop emanating from PLAYING2 to STOP2.

5.1.3 Refinement Checking with FDR

To check whether the design satisfies the requirements set out in the specification, we

carry out a trace refinement check on the models in FDR using the trace refinement

assertion below .

SP EC ~T DESIGN\{end, store_firsLtrack_as_currenLtrack, find_currenLtrack ,

beginPlaying, endPlaying,

store_nexLtrack_as_currenLtrack}

'FDR2 debugger

fDESIGNI{end,store first

Performs
Iplay

tau
tau
tau
tau
tau
tau
tau
tau

play

Show tau

(5.1)

Figure 5.4: The counter example in FDR shows the extra trace (displayed under the column "Performs") found in
the design model which is not specified in the specification model.

The results from FDR produces a counter example (see Figure 5.4) indicating an extra

trace is identified in the design model that is not found in the specification model. The

counter example suggests that the design model is capable of performing two successive

play events, as a result of the user pressing the play button for the second time after

the last track has been played which automatically stop the player. On the other hand,

looking at the specification in Figure 5.1, after the user presses the play button, he/she

needs to stop the player before the play button can be pressed again, and no consideration

is given to the situation where the player may stop automatically after the last track is

played and the user should be allowed to press the play button again after that. For this,

we modify the specification model by inserting an implicitly triggered transition from

PLAYING to STOP. This modification is highlighted in Figure 5.5. We repeat the trace

refinement check on the design model against the specification and this time we obtain

a successful check which suggests that the design model satisfies the safety requirements

95

listed out in the specification model.

stop

SPEC
STOP

pause

'----1 PAUSE~-.....J
pause

stop

Figure 5.5: The modified specification model.

Furthermore, we run a failure and failure divergence refinement checks on the model.

For this, we use the same assertion as in Equation 5.1 except that "T" is replaced with

"F" and "FD" respectively. As expected, the models pass the failure check but fail in the

failure divergence check because the system may diverge due to the implicit transition

introduced /store_nexLtrack_as_currenLtrack in the design. This happens because at this

level, we choose to abstract away from specifying the bound for the number of tracks the

CD player may play. In future, we may remove the divergence by introducing a variable

to limit the number of tracks in playing a CD. This can be done using a transition guard

Appendix B.1 contains the CSP code for this example in ASCII form.

96

5.2 Barrier System

This is an example of a safety-critical distributed system which is made up of various

components communicating with each other. The example is taken from a case study

examined under the ABCD I (Automated Validation of Business Critical Systems with

Component Based Designs) Project [70] . It involves the monitoring and controlling of

a barrier system at the entrance of a protected area where hazardous activity is being

carried out. A barrier system comprises four detectors, two barrier mechanisms, a control

unit and two displays (see Figure 5.6). Each of these components communicate with one

another. A detector detects the presence of a vehicle as it approaches the barrier, and

reads information off the tag displayed on the front screen of the vehicle. The information

gathered from the tag is then sent back to the control unit. A barrier mechanism receives

instruction from the control unit in order to open or close the barrier. Once the barrier

status is changed, it sends information back to the control unit to notify the change.

The control unit receives information from both the detector and the barrier mechanism

before issuing appropriate instruction to the barrier mechanism and the barrier display.

Upon receiving request from the control unit, the display board will turn on either the

GREEN or the RED light.

6
Detector Detector

Display

Detector DetectOJ

Figure 5.6: An example of a barrier system.

5.2.1 Modelling with State Diagrams and CSP

We will attempt the problem using a simplified version of a barrier system which consists

of one detector, one barrier mechanism, one display and one control unit. We model the

simplified barrier unit system as a state machine in the UML state diagram comprising

a composite-AND-state with five subregions (see Figure 5.7 for the model built using the

Rational Rose CASE tool). Each of the subregions models a specific component in the

system.

Before we proceed to deal with the complexity of the system involving various com

ponents, we start by first drawing up the basic requirements which the system design

1 Funded by EPSRC GR/M91013/01.

97

DESIGN

«AND-STATE»
BARRIER_SYSTEM

BARRIER_DETECTOR

BARRIER_DISPLAY

Figure 5.7: A barrier system with five parallel components .

needs to satisfy. These requirements are presented in Figure 5.8. Looking at the figure,

when a vehicleArrive, its tag will be scanned and if it is a valid Tag, the vehicle may

pass. At any point after vehicleArrive, the vehicle may choose to retreat regardless of

whether the tag is valid. We model this requirement using a transition labelled "vehi

cleRetreat" emanating from state A3, where the transition may be taken at any state

in A3. Observe that we model /validTag and /invalidTag as actions which are internal

to the system, and when translated to esp, the choice between them is expressed as

(validTag -7 A6) n (invalidTag -7 A7). This is a reasonable abstraction at the high level

to leave the outcome of the tag processing to the system. In a future implementation

when more tag information is considered, we may want to model the outcome as external

events where the control is in the environment.

Figure 5.8: The basic requirements of a barrier system.

In the next few sections, we are going to look at the design of different components

in the system. As before, we follow the design rule where we use a transition action to

model a message generated and broadcasted by a component and a transition event to

model an external message which is received and acted upon by a component. In this

aspect, we would like to remind the readers that although our formalization models each

transition event and action as a esp event, the difference is highlighted in how we resolve

the choice between them (refer section 3.5.2).

98

vehicieRetreat I vehiel RetreatSignal vehiciePas I vehiciePassSignal

vehicieArrive I v hieleArriveSignal

Figure 5.9: A Detector

Detector

Figure 5.9 describes the function of a detector in the barrier system. When a detector

detects the presence of an approaching vehicle through the external event vehicleArrive, it

will scan the tag on the vehicle for information. Since the scanning process takes time, it is

modelled as a do-activity /scanTag. While the car tag is being scanned, the vehicle might

reverse and leave, modelled by the transition vehicleRetreat emanating from OCCUPIED

to FREE. Otherwise, the detector will send the tag information signal back to the con

trol unit for processing, e.g. /tagInfoSIgnal. A vehicle may pass after its tag is sent to

the control unit. Observe that whenever the external events vehicleArrive, vehicleRetreat

or vehiclePass takes place, a corresponding signal is generated and sent to the control unit.

Barrier Mechanism

openBarrier I performOpen

BARRIER

I closeComplete

openBarrie I performOpen

I closeComplete
'--''''''-'''''''''-'''''_'-/

closeBarrier I performClose

Figure 5.10: A Barrier Mechanism.

99

The role of the barrier mechanism (see Figure 5.10) is to control the position of the

barrier. There are two possible states in which a barrier might reside: CLOSE and OPEN.

Since the action of closing and opening the barrier takes time, they are modelled as do

activities opening and closing instead of atomic events. Hence, we have two intermediate

states: OPENING and CLOSING.

At state CLOSE, when the barrier mechanism receives openBarrier from the control

unit, it will issue an internal command called perJormOpen which will initiate the opening

of the barrier. While the barrier is opening, the control unit may issue closeBarrier which

will then trigger perJormClose. Once the opening of the barrier completes, the barrier

mechanism issues a open Complete signal, denoted by the implicitly triggered transition

from OPENING to OPEN.

Likewise at state OPEN, a closeBarrier command received by the barrier will trigger

perJormClose. While the barrier is closing, the control unit may issue an openBarrier

commmand which will trigger perJormOpen. Once the closing of the barrier completes,

the barrier mechanism issues a close Complete signal, denoted by the implicitly triggered

transition from CLOSING to CLOSE.

Display

displayRed / performDisplayRed displayGreen / performDisplayGreen

displayGreen / perfonmDisplayGreen

DISPLAY

Figure 5.ll: A Barrier Display.

The barrier display has the simplest design out of all the other components . It pro

vides an indication of the access permission given to the approaching vehicles. There are

two states which a display may reside: RED or GREEN. The display receives instruction

displayRed or display Green from the control unit and issues perJormDisplayRed or per

JormDisplayGreen. Figure 5.11 shows the behaviour of the display.

Control Unit

The control unit is the mastermind behind the system and it is designed to receive input

from the detector and the barrier mechanism before issuing instruction to the latter and

the barrier display so that they may act upon the instruction. Looking at Figure 5.12,

100

OCl
PROCESSING

•
I validT ag;open8arrier ,J C2 C4

CTRLUNIT l dol process Taalnfo

l IDLE 1 taglnfoSignal"

J
/ I invalidT ag openComplete I disp ayGreen

l C3

J [C5

J
close Complete

vehiclePassSignal1 close8arrier,displayRed

[C6 1 vehicleRetreatSignal1 close8arrier;displayRed

J

Figure 5.12: A Control Unit.

there are two main states in which the control unit may reside: IDLE or PROCESSING.

At IDLE, upon receiving the tagInfoSignal, the control unit will process the information

where the outcome is determined internally by the system and thus issued with an internal

action /validTag or /invalidTag. If the tag is valid, the control unit proceeds to issue the

/openBarrier command. Once the barrier is up, the control unit will be notified via the

signal openComplete which upon being received, the control unit sends out /displayGreen

to the display. At this point , the vehicle may pass which will generate vehiclePassSignal

that triggers control unit to issue /closeBarrier followed by displayRed. At any state

within PROCESSING, a vehicle may retreat which when this happens, the control unit

receives vehiclePassSignal and generates /closeBarrier follows by displayRed. Upon re

ceiving close Complete, the control unit may proceed to process the tag of the next car.

The Complete System

Figure 5.13 is an architectural diagram describing the communication between different

components in the system. The diagram simply illustrates the message passing between

the components in order to provide a clearer picture to the reader and it is not part of

the UML diagram design.

101

vehicleArrive
vehiclePass - - - - ,
vehicleRetreat I

(fro~ the external \:,
envIronment) V

~
/ tagInfoSignal
/ vehicleRetreatSignal
/ vehicleArriveSignal
/ vehiclePassSignal

CONTROL
UNIT

/ displayRed
/ displayGreen

DISPLAY

/ closeComplete
/ open Complete

BARRIER
MECHANISM

/openBarrier
/ closeBarrier

F igure 5.13: The message passing between d ifferent com ponents.

102

5.2.2 Verification with FDR

For this case study, we are interested to find out if the four components which have been

designed separately are able to work collectively to deliver the main function of the sys

tem. For this, we use FDR to perform a deadlock check on the design of the collective

system.

The results from FDR reveals that deadlocks exist. A closer inspection at the traces

performed by the detector and the control unit (show in Table 5.1) suggests that a dead

lock arises when a vehicle arrives and then retreats before the information of its tag is

being sent to the control unit. In this case, the detector wants to issue /vehicleRetreatSig

nal, but is not able to do so without synchronizing with the receiving of the signal at the

control unit side. Meanwhile, the control unit (see Figure 5.12) resides at state IDLE and

it is only willing to accept tagInfoSignal. To remove the deadlock, we add a self-transition

to state IDLE which then allows the control unit to receive vehicleRetreatSignal at state

IDLE. Figure 5.14 reflect the changes.

Detector

Performs (vehicleArrive, vehicleArrSignal, vehicleRetreat)

Accepts { vehicleRetreatSignal }

Control Unit

Performs ()

Accepts { tagInfoSignal }

Table 5.1: Event traces from FDR.

PROCESSING

I validTag;openBarrier ,--------....

I invalidTag
openComplet I displayGreen

closeComplete

vehiclePassSignal1 closeBarrier,displayRed

vehicleRetreatSignal1 closeBarrier;displayRed

Figure 5.14: A Control Unit (version 2).

103

We repeat the deadlock check on the modified design and as before, deadlocks are

detected. This time, FDR exposes a major flaw in the design where we actually allow

the environment to perform vehiclePass even though the results from the tag processing

shows that it is invalid. To rectify the problem, we constrain the freedom given to the

environment by only allowing the environment to perform vehiclePass after the control

unit issues display Green. Modification is made by adding to the detector a new state B4

and a transition labelled displayGreen from B3 to B4 (see Figure 5.15). This means that

the control unit will need to send display Green to the detector at the same time it issues

the signal to the display.

Detector

Performs (vehicleArrive, vehicleArrSignal, beginscanTag, endscanTag,

taglnJoSignal, vehiclePass). Accepts { vehiclePassSignal }

Control Unit

Performs (taglnJoSignal, beginprocessTaglnJo, endprocessTaglnJo, _tau , invalidTag)

Accepts { vehicleRetreatSignal }

Table 5.2: Event traces from FDR.

DETECTOR

\

FREE

veh iclePas I vehiclePassSignal
vehicleRetreat I vehicleRetreatSignal

veh icleArrive I v hicleArriveSignal

OCCUPIED

81

82 I taglnfoSignal

dol scanTa

Figure 5.15: A Detector (version 2) .

104

When we run the design in FDR again, we encounter another deadlock. Comparing

the traces listed in Table 5.3 with Figures 5.14 and 5.15, we can see that the control unit

deadlocks at the transition between C4 and C5 because it cannot issue display Green,

while the detector deadlocks at the transition between OCCUPIED and FREE and only

willing to issue vehicleRetreatSignal. To resolve the conflict, we decided to impose a re

striction on the model where a vehicle is not allowed to retreat between the state after

the control unit issues openBarrier and before it issues display Green. What we mean by

this is , looking at Figure 5.14, instead of allowing transition vehicleRetreat to be taken

from every nested state in PROCESSING, we forbid the transition from C4 by moving

C4 out of PROCESSING (see Figure 5.16). Similarly, we make a change to the detector

by moving B3 out of OCCUPIED to reflect the restriction (see Figure 5.17) .

Detector

Performs (vehicleArrive, vehicleArriveSignal, beginscanTag, endscanTag,

taglnfoSignal, vehicleRetreat). Accepts { vehicleRetreatSignal }

Control Unit

Performs (tagInfoSignal, beginprocessTagInfo, endprocessTagInfo, _tau,

validTag, openBarrier, openComplete) Accepts { displayGreen }

vehic leRetreat Signal

.~T
'r--'-,::-,-::::-'-___

closeComplete

Table 5.3 : Event traces from FDR.

PROCESSING
C1

dol processTaglnfo

vehic le assSignal1 closeBarrier,displayRed

'-------'
'vehicleRetreatSignal l closeBarrier; displayRed

Figure 5.16: A Control Unit (version 3) .

105

openComplet I displayGreen

vehicleArrive I vehic eArriveS ignal

vehic le etreat I ve hicleRetre atS ignal vehiclePa s I ve hiclePassS ig n a l

OCCUPIED

I taglnfoSignal

di sp layGreen

Figure 5. 17: A Detector (version 3).

106

However, when we run the check again, FDR detects yet another deadlock. Looking

at the traces provided in Table 5.4, we found a fault in the design which reveals that

vehicle retreat is not allowed when the tag is invalid. For this, we make some changes to

the detector by inserting a new state B5 with transition invalid Tag (see Figure 5.18). (A

final state can be used instead of the simple state B5 and this will not make any difference

in Figure 5.18). By placing B5 within OCCUPIED, we allow a vehicle to retreat if its tag

is found to be invalid. Again, this means the control unit will need to send invalid Tag to

the detector each time the signal is generated.

Detector

Performs (vehicleArrive, vehicleArriveSignal, beginscanTag, endscanTag,

tag I nJ oSignal). Accepts { displayGreen }

Control Unit

Performs (tagInJoSignal, beginprocessTagInJo, endprocessTagInJo, _tau,

invalidTag). Accepts { vehicleRetreat }

Table 5.4: Event traces from FDR.

veh icle etreat I vehicleRetreatS igna l

vehicleArrive I vehicleArriveS gnal

vehiclePa s I vehiclePassSignal

displayGree n

Figure 5.18: A Detector (version 4).

107

Finally, when we run the deadlock check on the overall design, FDR passes the check

which proves that the design is deadlock free. Now, we may use FDR to verify if our

design is working correctly with respect to the requirements we have set out earlier in

Figure 5.8. For this, we perform three types of refinement check using the following three

refinement assertions:

where

assert SPECIFICATION ~T DESIGN \X

assert SPECIFICATION ~F DESIGN \X

assert SPECIFICATION ~FD DESIGN \X

x = {displayGreen, openBarrier, closeBarrier, displayRed, tagInfoSignal,

closeComplete, openComplete, beginscanTag, endscanTag,per formOpen,

per formClose, beginopening, endopening, beginclosing, endclosing,

per f ormDisplayGreen, per f ormDisplayRed, beginprocessTagI nf 0,

endprocessTagInfo, vehicleArriveSignal, vehicleRetreatSignal, vehiclePassSignal }

The results produced by FDR proves that the three assertions are true. Figure 5.19

presents a screenshot of the results. At this point we redraw the system architectural

design shown earlier in Figure 5.13. All the communication channels remain the same as

before except we have introduced a new communication channel from the control unit to

the detector for the signals display Green and invalid Tag, which are required to control

the events of the vehicle movement in the external environment. Appendix B.2 contains

the CSP code for this case study in ASCII form.

108

Deadlock: , ,

Model

Failures =.t

SPEC I FICA TI ON [T = DES I GN\{displayGreen,openBarrier,closeBarrier,displ
SPEC I F I CATION [F = DES I GN\{displayGreen,openBarrier,closeBarrier,displ
SPEC I F I CATION [FD= DES I GN\{displayGreen,openBarrier,closeBarrier,di
DESIGN deadlock free [F]

Figure 5.19: Verification results from FDR.

vehicleArri ve
vehiclePass - - - - ,
vehicleRetreat I

(from the external I:'
environment) V

~
/ tagInfoSignal
/ vehicleRetreatSignal
/ vehicleArriveSignal
/ vehiclePassSignal

/displayGreen
/ invalidTag

CONTROL
UNIT

/ displayRed
/ displayGreen

DISPLAY

/ closeComplete
/ open Complete

BARRIER
MECHANISM

Figure 5,20: The message passing between different components (upd ated version).

109

5.3 Conclusion

We have demonstrated with the two case studies how we may incorporate visual diagrams

and formal methods in the design of a system. The UML state diagrams are able to pro

vide a clear graphical tool to visualize a system in design, while CSP /FDR provides a

mean to verify if a design is of desired behaviour. From the experience, we found work

ing with UML and FDR helps to detect any error in the design in a more effective manner.

We have approached the compact disc player example by first specifying the basic

requirements of a CD player in a specification model and then adding in more details in a

design model. We then use CSP refinement to check if the design is a correct refinement

of the specification. In this, the trace refinement allows us to check if the design satisfies

all the safety properties listed in the specification, e.g. the design only performs what is

specified in the specification. On the other hand, the failure refinement allows us to check

if the refusal set in the design is a subset of the refusal set of the specification model, e.g.

what the design refuses to do is also what the specification may refuse. Futhermore, the

divergence refinement allows us to detect if there is any livelock. We found the refinement

checking provided by CSP /FDR is valuable especially in the iterative design of a system.

Refinement checking may be carried out repeatedly to ensure a design still adheres to

the basic requirements set out in the specification while additional features are included

gradually.

When dealing with a complex design such as the barrier system, our experience with

the case study shows how we may express the requirements of the system in a simple spec

ification, and then divide and design the complex system in smaller modules. In this, we

have designed each component in the system separately using an independent OR-state

before combining all the components under an AND-state. With the help of CSP /FDR,

we can model check each of the components to make sure they are free of deadlocks and

livelocks before integrating them into the whole system. Hence, when it comes to the

system level, we only need to deal with the correctness of the communication between

the components without having to worry about their internal behaviour. At this level, we

have used CSP /FDR to check for deadlock-free for the communication among the parallel

components. Lastly, we have also shown how we may use CSP /FDR to verify that the

overall design satisfies the requirements first set out in the specification.

An important observation we have gathered from our experience with the two case

studies shows that we only need to work with the UML diagrams and the event traces

provided by FDR without having to study the CSP code underpinning a model. This is

obviously good news for those who are novices in CSP. Here, we do not wish to discount

the benefits of knowing the syntax and semantics of CSP. Rather, we would like to point

out that the combined approach of using UML and CSP has greatly reduced the technical

overheads of introducing formal methods into the design of a system.

110

Chapter 6

Analysis

In this chapter, we carry out three main analyses in an attempt to answer a few questions.

First of all, the primary objective set for this thesis is to find ways to make FM more

accessible by investigating the possibility of combining informal and formal methods. In

this, we have proposed two approaches to combine the use of UML with CSP. For the

convenience of further discussion, we refer the work on Visualizing CSP in UML in Chap

ter 2 as Approach A; and we name the work produced on Formalizing UML in CSP in

Chapter 3-5 as Approach B. We make a comparison between the two approaches in order

to find out how they differ from each other. For this, a case study is carried out using the

methods proposed and we are interested to find out if one is better than the other, and

how they have contributed towards our aforementioned objective. Section 6.1 reports the

results gained from this analysis.

Secondly, the main issue involved in model-checking is the size of the state space in

volved. We have experimented with the Dining Philosopher case study to compare the

performance of the CSP generated from UML with the CSP written in the usual way.

(The FDR manual [45J has suggested ways to compress this case study). With the results

obtained, we do not attempt to make any definite claim for we are not in position to do

so with just one case study. Rather, we wish to carry out a preliminary investigation to

see if there is any downside in using CSP together with UML for modelling. The results

for this analysis may be found in Section 6.2.

Lastly, we make a comparison between the proposed CSP model and the OMG model.

In this, we attempt to point out the similarities and differences between the two models.

This work may be found in Section 6.3.

111

6.1 Comparison between Approach A and B

6.1.1 Table of Comparison

The table below shows a comparison between approach A and B.

Aim

UML constructs

valved

Approach A: Visualizing CSP

in UML

This approach intends to VI

sualize CSP in UML. Hence,

the emphasis is placed on giv

ing a graphical representation

to CSP by making compro

mise to the syntax and seman

tics rules of UML. With this,

we attempt to cover as many

CSP constructs as possible in

the approach.

m- Class Diagram: class, asso

ciation, interface class, real

ize relation, package. State

Approach B: Formalizing

UML State Diagrams in CSP

This approach alms to for

malize the UML state dia

grams within the framework

of CSP. In this, we emphasize

on providing a formal mean

ing to UML without violating

the informal semantics sug

gested by the OMG group and

Harel. We seek to support

as many UML state diagram

constructs as possible in the

approach.

Support state diagrams only

but with additional features,

i.e. composite state, state

Diagram: initial state, end action, transition action and

state, simple state, choice multiple transitions.

state, transition event and ac-

tion.

CSP constructs m- SKIP, STOP, simple event SKIP, STOP, RUN, SIm-

valved

Sequential Behaviour

prefix, compound event, pro- pIe event prefix, compound

cess parameter, event hiding,

deterministic & nondetermin

istic choice, simple parallel,

indexed parallel, indexed in

terleaving and refinement as

sertion.

event, process parameter, de

terministic & nondeterminis-

tic choice, simple parallel,

time-out and event hiding.

In this approach, the se- The sequential behaviour is

quential behaviour of a sys- modelled in a similar way as

tem is modelled using states for Approach A except it sup

in sequence under the UML ports nested states.

state diagrams. However, this

approach does not support

nested states and only allows

for single level state.

112

Parallel Structure It models the parallel pro- Parallel processes are mod-

cesses using classes and asso- elled using subregions in a

ciation under the class dia- composite-AND-state.

gram.

Refinement Assertion It models the refinement rela- Do not support refinement as-

tionship in class diagrams us- sertion. The refinement asser-

ing classes, packages and real- tion needs to be inserted man-

ize relations. ually.

Choice State A choice state is used to model A choice state is treated as

the CSP internal choice. a normal state without any

state action.

Tool Support U2CSPvl is developed which U2CSPv2 is an extension

inputs a class diagram with from U2CSPvl which covers

one/more state diagrams and more constructs for the UML

generate CSP from the UML. state diagrams.

Hiding Support event hiding at the Event hiding is used to hide

refinement level which hide implicit events that need to

events in the system that do be named in order to allow

not appear in the specifica- synchronization among sub-

tion. regions in a composite-AND-

state.

Table 6.1: Comparing Approach A and B

6.1.2 Experiment

In this section, we proceed to compare the two approaches by experimenting using a case

study. The case study models the process a student goes through in order to complete a

university course. In order to pass the course, the student must complete two laboratory

sessions in sequence, carry out a project and sit for a final test. If the student fails either

one of these, he will not be allowed to proceed and will be considered to have failed the

whole course. For the whole duration of the course, a student may choose to drop-out at

any point of time. The lab session, project and test may take place concurrently.

Modelling Using Approach A

There are three processes involved in the example: lab, project and test. Under this

approach, we use a state diagram to represent each of these processes, as in Figure 6.1-

6.3. Since these three processes are running in parallel, they synchronize on the common

events, which are pass, fail and dropOut. We model this using a class diagram as shown

in Figure 6.4 with the common channels pass, fail and dropOut showing the common

events which the parallel components synchronize over. The three classes represent the

113

three state diagrams in Figure 6.1-6.3. The full CSP representation for the model can be

found in Appendix B.3.

PASSED

Figure 6.1: Taking two laboratory sessions.

PASSED

Figure 6.2: Carrying out a term project.

PASSED

Figure 6.3: Sitting for a test.

114

o
/drOPOut

.----[A-B-'/ [£'ROJECT

~~====:f ~ailO
completeD ~dropOutO

~ai lD ~
~dropOutO passO
~passO

I o
pass

TEST

~ailO
~dropOutO
~passO

fail

Figure 6.4: LAB, PROJECT and TEST are sharing channels pass,fail and dropOut.

115

Modelling Using Approach B

Under the second approach, we only need to use one state diagram to model the whole

process, as in Figure 6.5. The composite state COURSE contains three subregions which

model the three parallel components in the course: lab, project and test. Based on Figure

6.5, a student may leave the course if he/she fails in one of the components, or choose

to drop out at any time during the duration of the course. These two possibilities are

modelled by the transitions drop Out and fail. Taking anyone of these transitions will

mean an exit from all the subregions in the AND-state. A student is only considered to

have passed the course if all the subregions have reached their respective end states, where

the implicit transition labelled /pass will then be activated. The full CSP representation

for this model may be found in Appendix B.4.

COURSE

LAB dropOut
LAB 1 _ LAB2 • EI QUIT

complete

Start PROJECT / pass

• """" (TERMPROJECT) ",,""@E2 PASSEI?)

TEST

",,",@E3
fail

FAILED • """" (FINALTEST)

Figure 6.5: Modelling the COURSE example with Approach B.

Discussion

In this section, we will attempt to point out the differences between the two approaches.

Before we do so, we want to know if the models produced by both approaches behave

equally. For this, we perform a mutual refinement on the models, e.g. if M odelApproachA ~

ModelApproachB and ModelApproachB ~ ModelApproachA are true. The result from FDR

confirms that they have the same behaviour.

Looking from the perspective of graphical representation:

• We can see that Approach A uses three state diagrams and one class diagram, as

compared to Approach B which uses only one state diagram to illustrate the same

process. From this, we may say that Approach B is more effective in providing

a simple diagram to model the overall process. On the other hand, Approach A

provides the advantage of showing clearly what channels are being shared among

the parallel components involved whereas one needs to study Figure 6.5 under Ap

proach B closely in order to work out the synchronized events between the parallel

subregions .

• The model created using Approach A consists of two levels: the top level is made up

of a class diagram showing the parallel composition; and the lower level comprises

116

individual state diagrams showing each of the parallel components. This hierarchical

feature may prove useful when a big model is involved. Having said this, Approach

B is able to provide a similar feature using the nested state contruct, i.e. the nested

subregions in an AND-state .

• With Approach A, it is easier to see all the possible outgoing transitions from a state

since the structure for each state diagram is a flat hierarchy. However, in this way,

we may have many repetitive transitions, e.g. the transition labelled dropOut that

appears twice in Figure 6.1. The repetitive transitions could be better replaced by

one transition originating from a composite state enclosing all the states which have

the same transition, as proposed by the composite state COURSE under Approach

B.

In terms of the representation of esp, we made the following observation:

• In terms of the code-efficiency for the model-checking in FDR, we found that the

state-space explored by FDR for the model by Approach A is 3 states and 6 tran

sitions, as opposed to 23 states and 48 transitions for the model by Approach B.

This suggests that Approach A may be more amenable to model-checking using

FDR, perhaps due to Approach A is geared more towards esp, with FDR being

esp purpose built model checker. On the other hand, Approach B is more inclined

towards modelling UML, where extra events and parallel contructs are introduced

under the approach to model the same system. These extra events and constructs

resulted in extra number of states during model-checking. This observation suggests

that Approach A may generate more effective esp for model-checking than those

produced under Approach B.

All in all, we may conclude that each approach has its own strong points as opposed

to the other. Therefore, it depends on the nature of the design to decide which approach

will suit best.

6.2 Comparison between CSP and UML-CSP

In this section, we would like to investigate the FDR model-checking performance on the

esp codes generated from the UML models with those written by hand. For this, we

carry out some experiments using a simple case study. Before we proceed further, perhaps

it is useful if we discuss briefly the mechanism of model-checking utilized by FDR.

The most notable factor that influences the performance of model-checking is the

size of the state-space involved. For FDR, the effectiveness of the state-space is greatly

influenced by how a system is being composed. The FDR2 user manual [45] suggests

some of the rule of thumbs that we may follow to achieve the optimum state-space:

117

• Put together two processes that are communicating with each other as early as

possible when composing a system.

• Hide any unnecessary events at as low level as possible.

• Hide all events that are not relevant to the specification we try to prove.

Various compression techniques are used in FDR to reduce the state-space of the sys

tem being checked. Interested readers are referred to chapter 5 of [45]. These compression

techniques are automatically employed by FDR during model-checking.

6.2.1 An Experiment

We carry out an experiment using a case study on Taking Buses (taken from FDR demo

example due to Simon Gay, Royal Holloway). It is a simple system which models two bus

services: 37 and 111A together with a passenger who is only willing to take bus numbered

37. The arrival of either bus 37 or 111A is nondeterministic. The model CSP is shown

below:

BUS37

BUS111

SERVICE

PASS

SYSTEMi

board37 A ---+ ((pay90 ---+ alight37B ---+ STOP) 0 (alight37 A ---+ STOP))

boardl11A ---+ ((pay70 ---+ alight11IB ---+ STOP) 0 (alightl11A ---+ STOP))

BUS37 n BUSl11

board37 A ---+ pay90 ---+ alight37 B ---+ STOP

SERVICE II PASS
{board37 A,pay90,alight37 B}

To obtain the UMLjCSP, we model the system in UML as in Figure 6.6. The resulted

CSP generated from the diagrams using tool U2CSPv2 is then

118

SERVICE Sl

PASS S2

Start Sync2

A BUS37 n BUS111

BUS37 board37 A -+ B

BUS111 board111A -+ C

B (pay90 -+ D) 0 (alight37 A -+ E)

C (pay70 -+ G) 0 (alight111A -+ H)

D alight37 B -+ F

E STOP

F STOP

G alight111B -+ J

H STOP

J STOP

Sl A

K board37 A -+ L

L pay90 -+ M

M alight37 B -+ N

N STOP

S2 K

Sync2 SYSTEM

SYSTEM Sync2SR

Sync2SR SERVICE II PASS
{board37 A,pay90,alight37 B}

With the two CSP specifications in hand, we want to know if they are equal. For

this, we check if they mutually refine each other, e.g. SYSTEMi ~ SYSTEM and

SYSTEM ~ SYSTEMi. The result from FDR (see Figure 6.7) proves that they behave

equally the same.

Next, we model check each of them using FDR to find out about their state-space

performance. We obtain the same results such that both produce one counter example

after FDR refine-checked 6 states with 8 transitions. Now, suppose we make one slight

change to both CSP and UML-CSP specifications by rewriting the parallel composition

as

SERV ICE x IIx PASS

119

Startl

«AND-STATE»
SYSTEM

SERVICE

PASS
Sync2

(a)

Sl-----'=~ A

(b)

Figure 6.6: Taking Buses

./ SYSTEMj [T = SYSTEM

./ SYSTEM [T = SYSTEMj

./ SYSTEMj [FD= SYSTEM

./ SYSTEM [FD= SYSTEMj

Syncl

alight37E

(c)

Figure 6.7: FDR proves that the two specifications are equal.

120

where X = {lboard37 A, alight37 A, alight37 B, boardll1A, alight111A, alightll1B,pay70,pay901

Again, we obtain a similar results for the two, but this time, the model checker pro

duces a counter example after refine-checked 3 states with 3 transitions. The difference

in the performance figure is mainly because in the first instance where the parallel com

position is expressed as SERVICE II PASS, the two processes only
{board37 a,pay90,alight37b}

synchronize on the three events: board31a,pay90 and alight31b. For this, boardlllA and

alightlllA are allowed to happen before a deadlock is encountered. This explains why

more states (i.e. 6 states) are checked before a refusal is encountered. Therefore, this

also demonstrates that the performance of the model-checking depends on how a system

is being composed.

Here, we wish to suggest that the style of the CSP generated from the UML diagrams

has similar model-checking performance as those CSP written by hand. However, even

though it seems that UML-CSP has equal performance as the normal CSP when it comes

to model-checking, the later fares better than the former by having a smaller number of

lines of code. Having said so, UML-CSP has the tradeoff of having graphical annotation

which renders better readability than reading lines of CSP code.

6.3 Comparison between Our Formalization Model and the

OMG Model

The similarity found between our model defined in CSP framework and that of the OMG's

on the semantics of the UML State diagrams is that both models make the same assump

tion by assumming the occurence of an event to be instantaneous and ignore time. The

main difference prevails in terms of execution of event. OMG defines an event queue to

collect events from the environment and dispatch them later. In this, they treat the gen

eration and execution of the same event in two different steps. Unlike OMG's, our model

treats the two occurence to be executed in parallel. Our model views the environment of a

process to be another process, with its behaviour defined by a similar CSP notation. The

interaction between the environment and the system can be modelled as two processes

evolving concurrently, synchronizing on the generating and receiving of signals from either

party. Therefore, unlike OMG's, our model assumes the generation and the consumption

of events to be synchronous.

Comparing our model to the OMG semantics, ours does not model the UML event

queue. Instead, we assume the environment is always ready to offer the event required by

the process. Also, we do not consider deferred event list. Rather, we choose to ignore an

event which does not invoke any transition or action.

121

Chapter 7

Conci usions

7.1 Conclusions

It is widely recognised that the use offormal methods(FMs) have not received its deserved

attention due to the barrier imposed by its rigorious mathematical foundation. FMs such

as B, Z and CSP impose use of semantically well-defined constructs and rigorously jus

tified methods, which are its strength but unfortunately are also its weakness. Indeed,

there are not many programmers who have a good background of mathematics to be able

to deal comfortably with the notation in the heart of the FMs.

With this reason in mind, we set our goal to improve the use of FMs. We believe the

formal verification aspect of a software is important, but it should not be forced on the

end-users. To achieve a solution, we should think of ways to keep FMs in the background.

For this, we start by investigating how graphical language may be combined with FMs

so that they may be used collaboratively to reap the potential offered by both. The use

of graphical notation is intuitive, and designs that are expressed in graphical notation

have higher readability. At the same time, the use of FMs provides formal analysis and

verification to the design. By combining the two methods, we are able to achieve better

quality system design by having both good readability and high correctness.

Specifically, we set out to explore the possibility of combining UML with CSP. The

reason UML is chosen is due to its increasing demand and attention from the industry.

On the other hand, CSP is selected, largely because it is a process algebra which has

relatively simpler syntax and semantics as compared to other methods such as B or Z.

Furthermore, the nature of CSP fits well with the process behaviour modelling of reactive

systems which our work is aiming for.

We started by proposing a lightweight approach which uses UML to visualize the syn

tactic behaviour of CSP (see Chapter 2). The results are encouraging in that we are able

to express the complexity of a CSP formal specification using UML class diagrams and

state diagrams: a class diagram is used to visualize the refinement relationships and the

122

parallel compositions between individual processes; and a state diagram which is embed

ded under a class is used to describe the sequential behaviour of an individual process. In

this, we achieve a two-level graphical representation of CSP, with the top level illustrat

ing the relationships between processes, and the lower level describing in further details

the behaviour for each process. Obviously, presenting CSP through this kind of intuitive

graphical representation has significantly improved the readability to the outside world.

Moreover, the work also suggests that we may use UML to insulate the use of CSP, that

is, we may carry out a design in UML and then, using the automated translation tool we

have developed, we can generate CSP from UML without having to learn to write the

code ourselves. This will definitely appeal to system designers who are generally FMs

illiterate but would wish to exploit the full advantage of using FMs to verify formally the

correctness of their design.

The positive results obtained from the first approach has motivated us to explore fur

ther the combined use of UML and CSP. In order to allow designers to deal confidently

with UML, we need to ensure the graphical notations are supported by a well-defined

semantics. To achieve this, we take a step further by proposing a second approach which

uses CSP to give a formal semantics to UML. To this end, we propose a set of formal

ization which formalises the behaviour of different states in a state machine in terms of

CSP (refer Chapter 3 & 4). This then allow us to carry out model-checking on the state

diagrams using FDR. Our approach is practical since our formalization is supported by a

readily available verification tool. The case studies presented in Chapter 5 demonstrate

the many benefits of incorporating FDR in a system design process.

Our semantics model has enabled us to formally reason about the behaviour of the

state diagram in various aspects. For example, we may carry out refinement checking

between two state diagrams. To do this, typically, a CSP refinement hides events in the

refining process. This idea may be mapped onto UML where we can hide events and treat

them as implicit in the refining model. On the other hand, we may also carry out deadlock

checking on the diagram, whereby deadlocks are commonly found on parallel components

that need to synchronize on certain events, or on states with guarded transitions which

the guards can never be satisfied. Also, with the help of FDR, we can detect any diver

gence, which commonly occurs when we have a cycle of implicit events in a state machine.

Our formalization is rather simple and straighforward due to the intuitive mapping

from UML to CSP. Compared to other semantics model, ours does not cover the com

plete set of UML state diagram constructs. Instead, we only support a subset of them

that are commonly used. Clearly, our aim is to achieve a semantics model that could

easily support model-checking and formal-reasoning instead of an extensive but difficult

semantics which will only make model-checking complicated. The outcomes of the second

approach are twofold: first, we are able to provide a formal and standardised semantics

on which designers across the organisation are able to work with, and secondly, this in

123

turns strengthens the possibility of using UML as a platform to gain access to esp.

To conclude, we strongly feel that FMs is still the promising way towards constructing

highly reliable software. Therefore we need to encourage the use of FMs by making it

more accessible to the software designers. As demonstrated by the work in this thesis,

combining informal methods such as UML with FMs could be a realistic way forward to

use FMs without having an in-depth knowledge of how FMs work.

7.2 Further Works

1. The main difficulty we face in developing the formalization model for UML state

diagram is the non-compositionality involved in UML state diagrams (i.e. the be

haviour of a subregion relies on the behaviour of other subregions). This resulted

in a formalization model which is rather complicated. In view of this, we propose

to work with a subset of UML which is compositional, e.g. by not allowing any

cross-border transitions. A compositional state diagram will produce a simpler and

compositional formalization model that allows modelling of nested AND-states in

another AND-state which is not supported by our existing model.

11. We may extend our work further by looking at including B in the combined use of

UML and esp. In line with our aim to promote a better use of FMs, we feel that

there are potential benefits to be reaped in combining different FMs in the system

verification. To this end, Treharne & Schneider [71, 72] have been investigating

the collaborative use of Band esp. For each B-machine, they propose a controller

specified in esp to drive the interaction between different machines and ensure the

operations within a machine are called within their preconditions. We hope to look

at how UML can be used to support the specification framework underpined by

both Band esp. In this, we see the potentials offered by UML class diagrams and

state diagrams. Also, the work by Snook & Butler [64, 65, 66, 67] on mapping B

to UML will provide great insight if we choose to pursue this direction in future.

lll. Besides class diagrams and state diagrams, UML offers many other diagram views

such as use cases, sequence and collaboration diagrams which intend to support a

complete design by looking at different aspects of a system. In defining the seman

tics for state diagrams, we have not considered its relationship with other diagrams

in UML. We may extend our formalization further to look at how other diagrams

may be incorporated into the combined use of UML and esp.

124

Bibliography

[1] Geetha Abeysinghe and Keith Phalp. Combining Process Modeling Methods. Infor-

mation and Software Technology, 39:107-124, 1997.

[2] J-R Abrial. The B-Book. Camridge University Press, 1996.

[3] Sinan Si Alhir. UML In A Nutshell. O'Reilly & Associates, Inc., 1998.

[4] Sinan Si Alhir. Guide to Applying the UML. Springer-Verlag, 2002.

[5] Jim Arlow and Ila Neustadt. UML and The Unified Process. Practical Object

Oriented Analysis and Design. Addison-Wesley, 2002.

[6] Egon Borger, Alessandra Cavarra, and Elvinia Riccobene. Modelling the Dynam

ics of UML State Machine. In Proceedings of the Abstract State Machine Work

shop(ASMj,Monte Verita, Switzerland. Springer Verlag, Berlin, March,2000.

[7] Egon Borger, Alessandra Cavarra, and Elvinia Riccobene. An ASM Semantics for

UML Activity Diagrams. In Proceedings of the Algebraic Methodology and Soft

ware Technology, 8th International Conference,AMAST 2000, Iowa City, Iowa, USA.

Springer Verlag,LNCS 1816, May 2000.

[8] Christie Bolton and Jim Davies. Activity Graphs and Processes. In Integrated Formal

Methods, 2nd International Conference, IFM 2000 Dagstuhl Castle, Germany, Nov

2000. Springer Verlag, Berlin, 2000.

[9] A. Bouali, S. Gnesi, and S. Larosa. The integration project for the JACK environ

ment. Bulletin of the EATCS (54):207223, 1994.

[10] Philip J Brooke and Richard F Paige. The Design of a Tool-Supported Graphical

Notation for Timed CSP. In Proceedings 3rd International Conference on Integrated

Formal Methods May 15-17, 2002, Turku, Finland. Springer Verlag, 2002.

[11] Edmund M. Clarke and Jeannette M Wing. Formal methods: state of the art and

future directions. ACM Computing Surveys, 28(4):626-643, 1996.

[12] Rational Software Corporation. Using Rose - Rational Rose 2000e. Part Number

800-023321-000.

[13] Rational Software Corporation. Rose Extensibility User's Guide - Rational Rose

2000e. Part Number 800-023328-000.

[14] Rational Software Corporation. Rose Extensibility User's reference - Rational Rose

2000e. Part Number 800-023329-000.

[15] Jim Davies and Charles Crichton. Concurrency and Refinement in the Unified Mod

eling Language. Electronic Notes in Theoretical Computer Science, 70(3), 2002.

[16] Steria Technologies del Information. AtelierB Reference Manual, version 1.8.1.

125

[17J Bruce Powel Douglass. Doing Hard Time. Developing Real-Time Systems with UML,

Objects, Frameworks, and Patterns. Addison Wesley, 1999.

[18J Sophie Dupuy and Lydie du Bousquet. A Multi-formalism Approach for the Valida

tion of UML Models. Formal Aspects of Computing, 12(4):228-230, 2000.

[19J Gregor Engels, Reiko Heckel, and Jochen Malte Kuster. Rule-based Specification of

Behavioral Consistency based on the UML Meta-Model. In Proceedings 4th Interna

tional Conference on the Unified Modeling Language: UML 2001. Springer Verlag,

200l.

[20J R. Eshuis and R. Wieringa. A Real-Time Execution Semantics for UML Activity

Diagrams. In Proc. Fundamental Approaches to Software Engineering (FASE 2001),

LNCS 2029. Springer Verlag, April, 200l.

[21J R. Eshuis and R. Wieringa. A Formal Semantics for UML Activity Diagrams -

Formalising Workflow Models. CTIT Technical Report 01-04. University of Twente,

February 200l.

[22J David Harel et al. STATEMATE: A working environment for the development of

complex reactive systems. IEEE Transactions on Software Engineering, 16(4):403-

413, 1990.

[23J Clemens Fischer, Ernst-Ruediger Olderog, and Heike Wehrheim. A CSP View on

UML-RT Structure Diagrams. In FASE 2000, Fundamental Approaches to Software

Engineering, LNCS 1183, 2000.

[24J Martin Fowler and Kendall Scott. UML Distilled, Second Edition. A Brief Guide to

the Standard Object Modelling Language. Addison Wesley, 2000.

[25J Robert B. France, Jean-Michel Bruel, Maria M. Larrondo-Petrie, and Malcolm Shroff.

Exploring the Semantics of UML Type Structures with Z. In Proceedings of the Formal

Methods for Open Object-based Distributed Systems (FMO ODS '91), 1997.

[26J S. Gnesi, D. Latella, and M. Massink. Model checking UML statechart diagrams

using JA CK. 1999. ISBN 0-7695-0418-3.

[27J David Harel. Statecharts: A Visual Formalism For Complex System. Science of

Computer Programming, 8:231-274, 1987.

[28J David Harel. The STATEMATE semantics of Statecharts. ACM Transactions on

Software Engineering and Methodology, 5(4):293-333, October 1996.

[29J David Harel, A Pnueli, J P Schmidt, and R Sherman. On the Formal Semantics of

Statecharts. In Proceedings Symposium on Logic in Computer Science, 1987.

[30J David Harel and Michal Politi. Modeling Reactive Systems with Statecharts. Com

puting McGraw-Hill. ISBN 0-07-026205-5, 1988.

[31J C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,

1985.

[32J Gerard J. Holzmann. The Model Checker SPIN. IEEE Transaction on Software

Engineering, 23(5):279-295, May,1997.

[33J James K. Huggins and Charles Wallace. An Abstract State Machine Primer. Michi

gan Technology University Computer Science Technical Report, CS-TR-02-04, De

cember 4, 2002.

126

[34] J.B.Wordsworth. Software Engineering with B. Addison Wesley, 1996.

[35] SRI International's Computer Science Laboratory. The PVS Specification and Veri

fication System. http://pvs.csl.sri.com/overview.html.

[36] K. Lano and H Haughton. Specification in B: an Introduction using the B- Toolkit.

Imperial College Press, ISBN 1-86094-008-0 (paperback: 1-86094-018-8), 250 pages.

[37] D. Latella, 1. Majzik, and M. Massink. Automatic Verification Of A Behavioural

Subset of UML Statechart Diagrams Using The SPIN Model-Checker. Formal Aspects

of Computing. The International Journal of Formal Methods, Springer, 11(6):637-

664, 1999.

[38] D. Latella, 1. Majzik, and M. Massink. Towards A Formal Operational Semantics

Of UML Statechart Diagram. In Proceedings of the 3rd International Conference on

the Formal Methods for Open 00 Distributed Systems, Boston. Kluwer Academic

Publishers, 1999.

[39] Hung Ledang and Jeanine Souquieres. Contributions for Modeling UML State-Charts

in B. In Proceedings 3Td International Conference on Integrated Formal Methods May

15-17, 2002, Turku, Finland. Springer Verlag, 2002.

[40] David Lightfoot. Formal Specification using Z (Second Edition). Palgrave, 2001.

[41] J. Lilius and Ivan Porres Paltor. Formalizing UML state machines for model checking.

In Proceedings of UML'99, volume 1723 of Lecture Notes in Computer Science, p430-

445, Springer Verlag, 1999.

[42] J. Lilius and Ivan Porres Paltor. vUML: A Tool For Verifying UML Models. In

Proceedings of ASE'99,pages 255-25. In 8. IEEE Computer Society, 1999.

[43] J. Lilius and Ivan Porres Paltor. The Semantics Of UML State Machines. In Tech

nical Report 273, Turku Centre for Computer Science TUCS, Turku, Finland, June

1999.

[44] Formal Systems (Europe) Ltd. ProBE User Manual.

http://www.fsel.com/documentation/ probe/ probe-doc-html/html/ index.html.

[45] Formal Systems (Europe) Ltd. Failure-Divergence Refinement, FDR2 User Manual,

version 5. 3 May 2000.

[46] Alain J Martin. The PROBE: An Addition to Communication Primitives. Informa

tion Processing Letters, 20:125-130, 1985.

[47] D. Latella M. Massink. A formal testing framework for UML Statechart Diagrams

behaviours: From theory to automatic verification. 2001.

[48] Eric Meyer and Jeanine Souquieres. A Systematic Approach to Transform OMT

diagrams to a B Specification. In Proceedings of the FM'99 World Congress of Formal

Methods. Springer Verlag, Berlin, 1999.

[49] Erich Mikk, Yassine Lakhnech, C. Petersohn, and Michael Siegel. On formal seman

tics of Statecharts as supported by STATEMATE. In In 2nd BCS-FACS Northern

Formal Methods Worksho. Springer- Verlagp, July 97.

[50] Erich Mikk, Yassine Lakhnech, and Michael Siegel. Hierarchical automata as model

for statecharts. In Asian Computing Science Conference (ASIAN'97), volume 1345

of LNCS, Springer Verlag, December 97.

127

[51] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holzmann. Imple

menting Statecharts in Promela/SPIN. In Proceedings of the 2nd IEEE Workshop

on Industrial-Strength Formal Specification Techniques IEEE Computer Society, Oc

tober 21-23 1998.

[52] Muan Yong Ng and Michael Butler. Tool Support for Visualizing CSP in UML. In

Proceedings 3rd International Conference for Formal Engineering Methods, Shanghai,

2002. Springer Verlag, 2002.

[53] Muan Yong Ng and Michael Butler. Towards Formalizing UML State Diagrams in

CSP. In Proceedings 1st IEEE International Conference for Software Engineering

and Formal Methods, Brisbane, 2003. IEEE Society Computer Press, 2003.

[54] OMG. OMG Unified Modelling Language Specification version 1.4 September 2001.

http://www.rational.com/uml/ resources / documentation/, 2001.

[55] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert. PVS System Guide. Com

puter Science Laboratory,SRI International, September 1998.

[56] Ivan Pones. Modelling and Analyzing Software Behavior in UML. In PhD Thesis.

Department of Computer Science, Abo Akademi University, Finland, 200l.

[57] Mark Priestley. Practical Object-Oriented Design with UML. McGraw-Hill, 2000.

[58] Rikki Prince. Notes on using ZTC type checker and ZAN animator.

http://www.ecs.soton.ac.uk/ rfpl02/cmI40/.

[59] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[60] Steve Schneider. Concurrent and Real Time Systems, The CSP Approach. John

Wiley and Sons Ltd, 2000.

[61] Steve Schneider. The B-Method - An Introduction. Palgrave, 200l.

[62] Emil Sekerinski and Rafik Zurob. Translating Statecharts to B. In Proceedings 3rd

International Conference on Integrated Formal Methods May 15-17, 2002, Turku,

Finland. Springer Verlag, 2002.

[63] Emil Sekerinski and Rafik Zurob. iState: A Statechart Translator. In Proceedings

UML 2001 - The Unified Modeling Language, Toronto, Canada, M. Gogolla and C.

Kobryn, Eds., Lecture Notes in Computer Science 2185, Springer- Verlag, pp. 376 -

390. Springer Verlag, October 2001.

[64] Colin Snook. Combining UML and B. In Proceedings of Forum on Specification and

Design Languages Marseille, 2002.

[65] Colin Snook, M Butler, and I Oliver. Towards a UML profile for UML-B. In

Technical Report DSSE-TR-2003-3, Electronics and Computer Science, University

of Southampton, 2003.

[66] Colin Snook and Michael Butler. Using a Graphical Design Tool for Formal Specifica

tion. In Proceedings of the 13th Annual Workshop of the Psychology of Programming

Interest Group (PPIG) , 2001.

[67] Colin Snook and K Sandstrom. Using UML-B and U2B for formal refinement of

digital components. In Proceedings of Forum on Specification and Design Languages,

Frankfurt, 2003.

[68] Ian Sommerville. Software Engineering 6th Edition. Addison-Wesley, 2001.

128

[69] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2001. May also

be found at http://spivey.oriel.ox.ac. ukl rvmike/zrm/index.html.

[70] Declarative System and Software Engineering Research Group (DSSE) Uni

versity of Southampton. Research Project zn Automated Validation

of Business Critical Systems with Component Based Designs (ABCD).

http://www.ecs.soton.ac.uk/ph/abcd.htm.

[71] Helen Treharne and Steve Schneider. How To Drive a B Machine. In Proceedings of

the International conference of Z and B Users, LNCS 1878, Springer, 2000.

[72] Helen Treharne and Steve Schneider. Communicating B Machines. In Proceedings

of the International conference of Z and B Users, LNCS 2272, Springer, 2002.

[73] Michael von der Beeck. Formalization of UML-Statecharts. In M. Gogolla and C.

Kobryn, editors, Proceedings of the 4th International Conference on the Unified Mod

eling Language (UML'2001), pages 406-421, LNCS 2185, Toronto, Canada, 2001.

[74] Michael von der Beeck. A Structured Operational Semantics for UML-Statecharts.

Software and Systems Modeling, 1(2):130-141, 2002.

[75] Formal Systems Website. http://www.fsel.com/.

[76] IBM Rational Rose Website. http://www.rational.com/products/rose/index.jsp.

[77] Together I J Website. http://www.extreme-java.de/features/20001200 /.

[78] Heike Wehrheim. Specification of An Automatic Manufacturing System - A Case

Study In Using Integrated Formal Methods. In FASE 2000, Fundamental Approaches

to Software Engineering, LNCS 1783, 2000.

[79] Jeannette M Wing. A Specifier's Introduction to Formal Methods. IEEE Computer,

23(9):8-24, 1990.

129

Appendix A

Examples

A.I Lift System

FLOOR = {l.A}
channelliftStop: FLOOR

channel button: FLOOR

channel liftMove

channelliftOpen: FLOOR

channel lift Close: FLOOR

channel press

channel release

channel doorOpen: FLOOR

channel doorClose: FLOOR

Startl = SPEC(i)

SPEC(i) = (liftStop.i -+ LIFTSTOP(i))

LIFTSTOP(i) = (button?k:diff(FLOOR,{i}) -+ BUTTONSELECTED(i,k))

BUTTONSELECTED(i,k) = (lift Move -+ SPEC(k))

LIFT (i) = (LiftStop.i -+ STOPP(i))

Start2 = LIFT (i)

STOPP(i) = (liftOpen.i -+ BOARDING(i))

BOARDING(i) = (button?k:diff(FLOOR,{i}) -+ COMPLETE(i,k))

COMPLETE(i,k) = (liftClose.i -+ CLOSED(i,k))

CLOSED(i,k) = (liftMove -+ LIFT(k))

X = (liftMove -+ ACTIVE)

Start3 = X

ACTIVE = (liftMove -+ ACTIVE)O(press -+ HALT)

HALT = (release -+ X)

DOOR(i) = (liftStop.i -+ LIFTARRIVE(i))

LIFTARRIVE(i) = (doorOpen.i -+ DOOR_OPEN(i))

DOOR_OPEN(i) = (button?k:diff(FLOOR,{i}) -+ STILL_OPEN(i))

STILL_OPEN(i) = (doorClose.i -+ DOOR_CLOSED(i))

DOOR_CLOSED(i)= (liftMove -+ DOOR(i))

Start4 = DOOR(i)

DOORs = III i:FLOOR @ DOOR(i)

Systeml = LIFT(l) [I { IliftStop,button,liftMove I } I] DOORs

130

System2 = Systeml [1 { 1 lift Move 1 } 11 X

System = System2

assert SPEC(l) [T= System { 1 press,release,liftOpen,liftClose,doorOpen,doorClose 1 }

131

A.2 Multiplexed Buffer

datatype Tags = tl I t2 I t3

datatype Data = dl I d2

channel left: Tags.Data

channel right: Tags.Data

channel sndJlless: Tags.Data

channel rcv _ack: Tags

channel mess: Tags.Data

channel ack: Tags

channel rcv Jlless: Tags.Data

channel snd_ack: Tags

Buffer(i) = (left.i?x -+ L(i,x))

Startl = Buffer(i)

L(i,x) = (right.i!x -+ Buffer(i))

Start2 = Tx(i)

Tx(i) = (left.i?x -+ E(i,x))

E(i,x) = (sndJlless.i!x -+ F(i))

F(i) = (rcv ~ck.i -+ Tx(i))

SndMess = (sndJlless?i?x -+ A(i,x))

Start3 = SndMess

A(i,x) = (mess!i.x -+ SndMess)

Start4 = RcvAck(i)

RcvAck(i) = (ack?i -+ D(i))

D(i) = (rcv_ack.i -+ RcvAck(i))

Start5 = RcvMess

RcvMess = (mess?i.x -+ B(i,x))

B(i,x) = (rcvJlless.i!x -+ RcvMess)

Start6 = SndAck

SndAck = (snd_ack?i -+ C(i))

C(i) = (ackli -+ SndAck)

Rx(i) = (rcv Jlless.i?x -+ G(i,x))

Start7 = Rx(i)

G(i,x) = (right.i!x -+ H(i))

H(i) = (snd_ack.i -+ Rx(i))

Txs = III i:Tags @ Tx(i)

Rxs = III i:Tags @ Rx(i)

Systeml = Txs [I{lsndJllessl}ll SndMess

System2 = System 1 [1{lrcv~ckl}ll RcvAck(l)

System3 = System2[1{lmessl}1l RcvMess

System4 = System3 [I{lackl}ll SndAck

System5 = System4 [1{lrcvJlless,snd_ackl}ll Rxs

System = System5

Buffers = III i:Tags @ Buffer(i)

assert Buffers [FD= System \ {lsndJlless,rcv ~ck,mess,ack,rcv Jlless,snd~ckl}

132

righ~ i!x) lefI{ i?x)

Start3

rYES (!i.x)

snd_ ess(?i?x) ack(?i)

StartS
t Sart6

I

ack(~)

sn(ac i)

Figure A.l: State Diagrams for the Multiplexed Buffer System.

133

Appendix B

CSP Listing

B.l Compact Disc Player

channel play

channel stop

channel pause

channel end

channel storeJirsLtrack~s_current_track

channel find_currenLtrack

channel beginPlaying

channel endPlaying

channel storeJlexLtrack~_current_track

SPEC = ((STOP))

STOP = ((play -+ PLAYING))

PLAYING = ((stop -+ STOP) 0 (pause -+ PAUSE)) [> STOP

PAUSE = ((pause -+ PLAYING)D(stop -+ STOP))

PLAYING2 = storeJirsLtrack~s_current_track -+ S

DESIGN = ((STOP2))

STOP2 = ((play -+ PLAYING2))

S = ((PLAY_A_TRACK))

PLAY.A_TRACK = find_currenUrack -+ ((beginplaying -+ ((endplaying -+ PLAY.A_TRACK_2

) 0 PLAY.A_TRACK_1)) 0 PLAY.A_TRACK_1)

PLAY_A_TRACK_1 = ((pause -+ PAUSE2) 0 (stop -+ STOP2))

PLAY.A_TRACK_2 = ((pause -+ PAUSE2) 0 (stop -+ STOP2)) [> INCREMENT

INCREMENT = ((stop -+ STOP2)) [> ((storeJlexUrack_as_currenLtrack -+ PLAY.A_TRACK)

1""'1 (end -+ STOP2))
PAUSE2 = ((pause -+ PLAY.A_TRACK)D(stop -+ STOP2))

assert SPEC [T= DESIGN \ {end, storeJirsLtrack~s_currenLtrack, find_currenLtrack, begin

Playing,endPlaying,store..1lext_track_as_current_track}

assert SPEC [F= DESIGN \ {end, storeJirsLtrack~s_currenLtrack, find_current_track, begin

Playing,endPlaying,store..1lext_track_as_currenLtrack}

134

assert SPEC [FD= DESIGN \ {end, storeJirsLtrack~~LcurrenLtrack, find_currenLtrack, begin

Playing,endPlaying,storeJlext_track~s_current_track }

135

B.2 Barrier System

channel vehicleArrive

channel vehicleRetreat

channel display Green

channel invalidTag

channel vehiclePass

channel openBarrier

channel closeBarrier

channel display Red

channel tagInfoSignal

channel vehicleRetreatSignal

channel closeComplete

channelopenComplete

channel vehiclePassSignal

channel vehicleArriveSignal

channel beginscanTag

channel endscanTag

channel performOpen

channel perform Close

channel beginopening

channel endopening

channel beginclosing

channel end closing

channel performDisplayGreen

channel performDisplayRed

channel beginprocessTagInfo

channel endprocessTagInfo

channel valid Tag

SPECIFICATION = SO

BARRIER.l)ETECTOR = DETECTOR

BARRIER.MECH = BARRIER

BARRIER.l)ISPLAY = DISPLAY

CONTROL_UNIT = CTRLUNIT

OCCUPIED = BI

PROCESSING = CI

A8 = Al

A3 = A4

DESIGN = ((Sync2))

DETECTOR = ((FREE))

FREE = ((vehicleArrive -+ vehicleArriveSignal -+ OCCUPIED))

B3 = ((displayGreen -+ B4)O(invalidTag -+ B5))

BI = ((B2))

B2 = ((beginscanTag -+ ((endscanTag -+B2-2) 0 B2_I)) 0 B2_I)

B2_I = ((vehicleRetreat -+ vehicleRetreatSignal -+ FREE))

B2_2 = ((vehicleRetreat -+ vehicleRetreatSignal -+ FREE) [> ((tagInfoSignal -+ B3)))

B4 = ((vehiclePass -+ vehiclePassSignal -+ FREE)O(vehicleRetreat -+ vehicleRetreatSignal -+

136

FREE))

B5 = ((vehicleRetreat --+ vehicleRetreatSignal --+ FREE))

CLOSE = ((openBarrier --+ perform Open --+ OPENING) 0 (closeBarrier --+ close Complete --+

CLOSE))

OPEN = ((close Barrier --+ performClose --+ CLOSING)O(openBarrier --+ openComplete --+ OPEN

))

OPENING = ((beginopening --+ ((endopening --+OPENING_2) 0 OPENING_I)) 0 OPEN

lNG_I)

OPENING_l = ((closeBarrier --+ performClose --+ CLOSING) 0 (openBarrier --+ OPENING))

OPENING_2 = (((closeBarrier --+ performClose --+ CLOSING) 0 (openBarrier --+ OPENING))

[> ((openComplete --+ OPEN)))

CLOSING = ((beginclosing --+ ((endclosing --+CLOSING_2) 0 CLOSING_I)) 0 CLOSING_l

)
CLOSING_l = ((openBarrier --+ performOpen --+ OPENING) 0 (closeBarrier --+ CLOSING))

CLOSING_2 = (((openBarrier --+ performOpen --+ OPENING) 0 (closeBarrier --+ CLOSING))

[> ((close Complete --+ CLOSE)))

BARRIER = ((CLOSE))

DISPLAY = ((RED))

RED = ((displayGreen --+ performDisplayGreen --+ GREEN)O(displayRed --+ performDisplayRed

--+ RED))

GREEN = ((displayRed --+ performDisplayRed --+ RED)O(displayGreen --+ performDisplayGreen

--+ GREEN))

CTRLUNIT = ((IDLE))

IDLE = ((tagInfoSignal --+ PROCESSING)O(vehicleRetreatSignal --+ IDLE))

C6 = ((closeComplete --+ IDLE))

C4 = ((openComplete --+ displayGreen --+ C5))

C2 = ((beginprocessTagInfo --+ ((endprocessTagInfo --+C2-.2) 0 C2_1)) 0 C2_1)

C2_1 = ((vehicleRetreatSignal --+ closeBarrier --+ display Red --+ C6))

C2_2 = ((vehicleRetreatSignal--+ closeBarrier --+ displayRed --+ C6) [> ((invalid Tag --+ C3)1 '" I

(validTag --+ openBarrier --+ C4)))

Cl=((C2))

C3 = ((vehicleRetreatSignal --+ close Barrier --+ display Red --+ C6))

C5 = ((vehiclePassSignal --+ closeBarrier --+ display Red --+ C6) 0 (vehicleRetreatSignal --+ close

Barrier --+ displayRed --+ C6))

SO = ((A8))
Al = ((A2))

A2 = ((vehicle Arrive --+ A3))

A6 = ((vehiclePass --+ A2) 0 (vehicleRetreat --+ A2))

A 7 = ((vehicleRetreat --+ A2))

A4 = ((A5))

A5 = ((vehicleRetreat --+ A2) [> ((validTag --+ A6) I'" I (invalid Tag --+ A7)))

Sync2 = BARRIER_SYSTEM

BARRIER_SYSTEM = ((Sync2SR))

Sync2_1 = BARRIER_DETECTOR [I{ II}I] BARRIEKMECH

Sync2_2 = Sync2_1 [I{ldisplayGreenl}l] BARRIER_DISPLAY

Sync2SR = Sync2_2 [I {lvehicleRetreatSignal,displayGreen,invalidTag, tagInfoSignal, vehiclePassSignal,

openBarrier,closeBarrier,closeComplete,openComplete,displayRedl}l] CONTROL_UNIT

137

assert SPECIFICATION [T= DESIGN \ {displayGreen,openBarrier,closeBarrier,displayRed,

tagInfoSignal,closeComplete,openComplete,beginscanTag,endscanTag,performOpen,performClose,

beginopening,endopening,beginclosing,endclosing,performDisplayGreen,performDisplayRed,

beginprocessTagInfo,endprocessTagInfo, vehicleArriveSignal, vehicleRetreatSignal, vehiclePassSig

nal}

assert SPECIFICATION [F= DESIGN \ {displayGreen,openBarrier,closeBarrier,displayRed,

tagInfoSignal,closeComplete,openComplete,beginscanTag,endscanTag,performOpen,performClose,

beginopening,endopening,beginclosing,endclosing,performDisplayGreen,performDisplayRed,

beginprocessTagInfo,endprocessTagInfo,vehicleArriveSignal, vehicleRetreatSignal, vehiclePassSig

nal}

assert SPECIFICATION [FD= DESIGN \ {displayGreen,openBarrier,closeBarrier,displayRed,

tagInfoSignal,closeComplete,openComplete,beginscanTag,endscanTag,performOpen,performClose,

beginopening,endopening,beginclosing,endclosing,performDisplayGreen,performDisplayRed,

beginprocessTagInfo,endprocessTagInfo,vehicleArriveSigna1, vehicleRetreatSignal, vehiclePassSig

nal}

138

B.3 Taking Classes (based on Approach A)

channel complete

channel dropOut

channel fail

channel pass

LAB = ((LAB 1))
LABI = ((complete -+ LAB2)O(dropOut -+ QUIT)O(fail -+ FAILED))

LAB2 = ((pass -+ PASSED)O(dropOut -+ QUIT)O(fail -+ FAILED))

PROJECT = ((TERMPROJECT))

TERMPROJECT = ((pass -+ PASSED)O(dropOut -+ QUIT)O(fail -+ FAILED))

TEST = ((FINALTEST))

FINALTEST = ((pass -+ PASSED)O(dropOut -+ QUIT)O(fail -+ FAILED))

PASSED = STOP

QUIT = STOP

FAILED = STOP

COURSE = (LAB [1{lpass, dropOut, faill}1l PROJECT) [I{lpass, dropOut, faill}llTEST

139

B.4 Taking Classes (based on Approach B)

channel complete

channel dropOut

channel fail

channel pass

channel tau

channel epsilon

Start = COURSE

LAB = LABl

LABl = (complete -7 LAB2) 0 (fail -7 epsilon -7 RUN) 0 (dropOut -7 epsilon -7 RUN)

LAB2 = ((fail -7 epsilon -7 RUN) 0 (dropOut -7 epsilon -7 RUN)) [> El

El = (dropOut -7 epsilon -7 RUN) 0 (tau -7 epsilon -7 RUN) 0 (fail -7 epsilon -7 RUN)

PROJECT = TERMPROJECT

TERMPROJECT = ((fail -7 epsilon -7 FAILED) 0 (dropOut -7 epsilon -7 RUN)) [> E2

E2 = (dropOut -7 epsilon -7 RUN) 0 (tau -7 epsilon -7 RUN) 0 (fail -7 epsilon -7 RUN)

TEST = FINALTEST

FINALTEST = ((fail -7 epsilon -7 RUN) 0 (dropOut -7 epsilon -7 RUN)) [> E3

E3 = (dropOut -7 epsilon -7 RUN) 0 (tau -7 epsilon -7 RUN) O(fail -7 epsilon -7 RUN)

QUIT = STOP

PASSED = STOP

FAILED = STOP

RUN = (fail -7 RUN)O (dropOut -7 RUN) 0 (tau -7 RUN) 0 (epsilon -7 RUN)

COURSE = ((LAB [I{I fail, dropOut, tau, epsilon 1}ll PROJECT) [I{I fail, dropOut, tau, epsilon

1}ll TEST) [I{I fail, dropOut, tau, epsilon nil ((fail -7 epsilon -7 FAILED) 0 (dropOut -7 epsilon

-7 QUIT)O (tau -7 epsilon -7 pass -7 PASSED)) \ tau

140

