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The main objective of this dissertation is to study the dynamics of structures made of 

cellular material. The validity of the effective medium theories is examined numerically 

when applied to statics and dynamics of beams. It is found that structures made of 

cellular material do approximately behave as continua for low mode numbers. 

The vibration frequencies of beams made of a variety of microstructures are computed 

numerically and the change in modal spacing is studied systematically. To compare and 

contrast the situation with that of continuum, a problem of porosity filled solid with the 

same external dimensions as those of the cellular beam is undertaken. With the increase 

in the mode number, a progressive departure in the trend is observed. This trend for 

cellular beams is strongly dependent on the microstructure and is a result of various 

types of local resonances in the cell walls. 

A method to reduce the computation involved in the vibration calculations in cellular 

structures is proposed. Continuum-based assumed modes are used as the basis of the 

method. It is found that a direct use of the assumed modes in the approximation 

yields inaccurate results. The source of this error is identified. A sensitivity analysis 

is presented to show that the small components of modal contribution associated with 

the exceptionally high frequency modes are responsible for the poor performance of the 

assumed modes method. The method is improved by pre-conditioning the assumed 

modes by the use of inverse power iterations. Two examples, a cantilever beam and an 

L-beam, are presented to demonstrate the working of the method. Further, a reduced 

order model is developed to estimate the frequency response. The effect of damping 

is included in the response calculations. The proposed method is shown to result in 

substantial computation saving for free vibration as well as forced response calculations 

while the accuracy is not compromised seriously. 

The effective elastic modulii of metal foam are experimentally determined. The 

hypothesis of the effective medium theory is then tested by a mode by mode comparison 

of the effective Young's modulus with that of a continuum. 

The general conclusion that cellular solids cease to behave as continua at moderately 

high mode numbers may have important implications to the dynamics of structures made 

of such material at high frequencies. 
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Thy right is to work only 

But never its fruits 

Let not the fruit of action be thy motive 

Nor let the attachment be to inaction. 

- Sloka from Bhagavad Gita 

Education is the manifestation of the perfection already in man. 

- Swami Vivekananda 
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Nomenclature 

E* Effective Young's modulus of the cellular solid 

G* Effective shear modulus of the cellular solid 

u* Effective Poisson's ratio of the cellular solid 

p* Density of the cellular solid 

Es Young's Modulus of the material of the cell wall 

Ps Density of the material of the cell wall 

Us Poisson's ratio of the cell wall material 

E Young's Modulus of the effective medium 

P Density of the effective medium 

L Lagrangian of a system, length of a sample 

B Width of a sample, perpendicular to the plane 

D Overall depth of a sample 

I Second moment of the area 

Ip Polar moment of inertia of the cross-section 

s Slenderness ratio 

r Radius of gyration 

kl Shear factor 

J Torsional constant 

Length of a cell wall 

h 

t 

V, V(t) 

T(t) 

K,K 

Height of a cell wall in a hexagonal cell 

Thickness of a cell wall, time 

Potential energy of the structure 

Kinetic energy of the structure 

Stiffness matrix for the full model and the reduced model respectively 
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M, M Inertia matrix for the full model and the reduced model respectively 

C, C Damping matrix for the full model and the reduced model respectively 

H(w), H(w) Frequency response function for the full model and the reduced model 

f, f 
p 

q, a 

¢ 

:F 

Q 

T 

U 

W 

F 

<p(x) 

V b vtension 
x' x 

R, 9 

E 

1"r, S 

J 

respectively 

Force vector for the full model and the reduced model respectively 

Concentrated load 

Generalised co-ordinates vector for the full model and the reduced model 

i-th eigenvector for the full model and the reduced model respectively 

i-th eigenvalue for the full model and the reduced model respectively 

r-th natural frequency for the full model 

Response vector 

Rayleigh's dissipation function 

Vector of generalised viscous damping force for the reduced model 

i-th Damping ratio for the full model and the reduced model respectively 

Damping coefficient 

Number of degrees-of-freedom for the full model and the reduced model 

respectively 

Transformation matrix 

Modal matrix 

MAC matrix 

FDAC matrix 

Transverse displacement field 

Axial and transverse displacement and, rotation of a node 

Two components of axial displacement, due to bending and 

tension/ compression 

Relative sensitivity 

Rayleigh's quotient 

Infinitesimally small number 

Kronecker Delta 

Subscripts for denoting indices 

Subscript, 

Modal contribution associated with i-th mode 

Co-efficients of the frequency equation of a shear beam 

Constants 
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Introduction 

§1.1 Background 

A large number of engineering materials can be successfully modelled as homogeneous 

continua. Conventionally manufactured metals, plastics and ceramics are examples of 

such materials. Most composites made out of these can also be treated as homogeneous 

(but not necessarily isotropic) matter at the macroscopic scale. As opposed to these, 

natural materials such as wood, cork, bone and tissues possess intrinsic porosity due to 

the presence of cells. These cells appear at length scales much greater than the atomic 

length scales but significantly smaller that the natural length scale of the bulk. We will 

refer to this intermediate length scale as mesoscopic. Porous internal structure leads to 

higher stiffness to weight ratio at the bulk level. This property is exploited in designing 

many processed materials such as metal and polymeric foams as well as honeycombs. 

Cellular materials are increasingly being used in the industry. Foams and honeycombs 

are frequently used as the core material for sandwich constructions. Polymeric foams 

are commonly used in the packaging industry. They are also used for sound and shock 

absorption. Porous ceramics are used in catalytic converters. Besides these, many 

aeronautical, marine and automotive applications demand high stiffness to weight ratio 

and high strength to weight ratio where cellular materials are potentially applicable. 

§1.2 Review of the past works 

Characterisation of mechanical and thermal properties of cellular solids has attracted 

attention of many researchers in the past. A review of the relevant literature is presented 

here. 

1 
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Investigation of the mechanical behaviour of cellular materials started in the middle 

of the 20th century. Research was initially motivated by the need to understand the 

mechanical properties of polymeric and plastic foams. Kelsey et al. [60J were probably 

the earliest contributors in this field. In 1958, they analysed the shear behaviour of an 

aluminium honeycomb sheet used as a core of aeronautical sandwich panels. 

The existing literature in the area of mechanics of cellular materials is primarily de­

voted to the response under static loading. Elastic behaviour, plastic behaviour, buck­

ling, fracture, and failure have been studied. A main objective of the study of static 

behaviour of foams is to investigate the deformation mechanism of the cell walls and, 

to develop relationship between the effective elastic parameters of the cellular solid and 

(i) the geometry (shape and size) and topology of the cells, (ii) the elastic properties 

of the cell wall material. Due to the difference in the mechanism of deformation at the 

cell level, the mechanical behaviour of honeycombs can be subdivided into the in-plane 

and the out-oj-plane (normal to the plane of the cells) behaviour. Discussions on these 

two classes of problems will be presented separately. The in-plane behaviour of two 

dimensional cellular materials is described next. This is followed by discussions on three 

dimensional microstructured materials in section 1.2.2. 

§1.2.1 In-plane behaviour of two dimensional cellular materials 

Periodic foams made of parallel arrays of simple unit cells are reviewed in this section. 

The mode of deformation of the cell walls primarily depends on the topology. Hence, 

the macroscopic mechanical behaviour varies accordingly. Structures made of hexagonal 

cells (see top left of figure 1.1) are taken up first. They are commonly found, for instance, 

in synthetic honeycombs, COrlL many woods etc. Christensen [11 J showed that among 

the different cell types, regular hexagons (hexagons with all equal sides) possess the 

minimum surface area for the same amount of material. This is observed during the 

artificial production of foams in liquid state initially, where regular hexagon is the natural 

morphology because it minimises the surface energy. 

Microstructures made of hexagonal cells 

Lattices made of hexagons that possess two-fold rotational symmetry as well as two 

planes of mirror symmetry are considered here. Such lattices corne back to the original 

orientation twice during a rotation of 360 0 about all axis perpendicular to the plane 

of lattice (see figure 1.1). Due to this symmetry, the material made of such lattices is 
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Figure 1.1: Periodic structures made of hexagonal, inverted hexagonal, triangular and 
square cells. 

orthotropic. As a result, the number of elastic constants required to describe the in­

plane mechanical behaviour are five: two values of Young's modulii, El and E2 in the 

directions 1 and 2 respectively, two Poisson's ratios v12 and v 21 and one shear modulus 

G*. Only four of these five constants are independent due to the reciprocal relationship 

E 1v21 = E2v 12· 
Abd El-Sayed et al. [1] first analysed the in-plane statics of solids made of hexagonal 

cells. They identified cell wall bending as the dominant mechanism of deformation for 

the tension-compression at the bulk level, and calculated the effective elastic modulii 

using the energy method of Castigliano. Further, they developed expressions for plastic 

collapse stress considering plastic bending of the cell walls. Gibson et al. [33] were the 

first to give a comprehensive account of the in-plane elastic behaviour of foams having 

hexagonal cells. They considered hexagonal cell as a unit cell for their analysis. Typical 

7'egular hexagons are shown in figure 1.2. Here, h is the height of the vertical cell walls, l 

is the length of the inclined cell walls, and t is the thickness of the cell wall. When h = l 

and e 30°, the hexagon is regular. When h =I- 1 and/or e =I- 30°, but two fold mirror 



Chapter 1. Introduction 4 

Figure 1.2: Geometry of a hexagonal cell in two different orientations. The parameters 
h, l, () and t are shown. 

symmetry and two fold rotational syrnmetry are present, the hexagons will be referred 

as non-uniform hexagons in this dissertation. Gibson et al. [33] concluded that the 

geometrical parameters: the aspect ratio hll, the cell angle (), and, the density parameter 

til affect the linear elastic behaviour. Macroscopic uni-axial tension-compression and 

shear behaviour were then deduced by analysing cell walls as beams using the Euler­

Bernoulli beam theory. Only bending mode of deformation of the cell walls was included 

in their analysis, valid for low density foams. 

Gibson et al. [33] developed closed-form expressions for E* and G* as functions of 

the geometrical parameters, hll and (), til and the modulus of elasticity of the cell wall 

material Es. They found that the effective Poisson's ratio v* is a function ofthe geometry 

of the cell only, i.e. hiland (). Regular hexagonal cells (equal edge lengths) possess 

six-fold rotational symmetry. Therefore, periodic structures made of regular hexagons 

are in-plane isotropic. Gibson's expressions [33] when specialised for regular hexagons 

(hll 1 and () = 30°), show that El = E2 and v12 V 21 = 1. Further, the effective 

shear modulus G* satisfies the relationship for an isotropic continuum G* = E* 12(1+v*). 

Gibson et al. [33] also studied the elastic collapse behaviour considering elastic buckling 

of the cell walls. They conducted experiments with silicone rubber honeycombs and 

showed that their experimental results generally agree with their analytical predictions. 

The cells of the radial section of cork and the axial section of balsa wood, can be 

idealised as being hexagonal. Hence, Gibson et al. [35] and Easterling et al. [26] used the 

above-mentioned results for hexagonal cells [33] to analyse the elastic properties of cork 

and wood respectively. Kahle and Woodhouse [58] also used the same results to describe 

the elastic properties of softwood for assessing its suitability for musical instruments. 

With the increase in volume fraction i.e. with greater thickness of the cell walls, 

contributions from the stretching and the shear deformation of the cell walls increase. 

Elastic analysis including all the deformations can be found in the text by Gibson and 

Ashby [34] and in the work of Masters et al. [71]. Both analyses are extensions of the 
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earlier beam analysis used by Gibson et al. [33]. 

Warren and Kraynik [103] included the bending as well as the stretching deformation 

of the cell walls, and analysed the kinematics of three cell walls connected at a node using 

the symmetry of regular hexagons. They expressed the elastic constants as a function 

of the area fraction. For low area fraction, their expression of the Young's modulus for 

regular hexagonal cells matches closely with that given by Gibson et al. [33]. Warren and 

Kraynik also studied the effect of non-uniform thickness of the cell walls, and showed that 

the Young's modulus is practically insensitive to such variations. They also showed that 

a material made of cells having six-fold rotational symmetry is transversely isotropic. 

The micropolar theory describes solids with a microstructure as a micropolar or 

cosserat continuum. Micro-rotation of the nodes produced by the couple-stresses is 

considered as an independent variable for such continuum. This concept was introduced 

by Voigt [100] and the Cosserat brothers [16] in an attempt to generalise the mechanics 

of continua. Later, Eringen [27] developed the mechanics of micropolar continuum. 

Bazant and Christensen [7] developed finite-difference equations for the struts connected 

at nodes and calculated the effective elastic modulii of such a continuum. Wang and 

Stronge [101] used micropolar theory to analyse the stress field of elastic solids made 

of regular hexagonal cells. They considered a diamond-shaped cell as a unit cell to 

represent the micropolar continuum. Their expression of the Young's modulus agrees 

with that given by Gibson et al. [33]. 

The effect of bi-axialloading has also been studied [34]. When a structure made of 

hexagonal cells is subjected to bi-axialloading, the bending moments at the joints tend 

to reduce the effect due to loading in two orthogonal directions, for example, tension in 

both directions. The bending moments can be zero for certain combination of loadings. 

Under such loading conditions, stretching-compression is the dominant mechanism of 

deformation of the cell walls instead of bending as in the case of the uni-axialloading. 

Cellular solids that possess cells with re-entrant corners such as inverted hexagonal 

cells (see top right figure in 1.1) exhibit an interesting behaviour. Due to the peculiar 

cell shape, when the structure is under overall stretching mode of deformation, it also 

elongates in the orthogonal direction instead of shrinking. Therefore, such solids exhibit 

negative Poisson's ratio. Lakes [63] first reported the fabrication of three dimensional 

re-entrant foams. Evans [24] named this class of solids as auxetic. Overacker et al. [77] 

showed the variation of the negative Poisson's ratio with certain directions of loading 

with respect to the microstructure. Scarpa et al. [86] studied the effect of uni-axial 
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loading on solids made of inverted hexagons using finite element as well as experimental 

methods. They showed that their results match closely with the values calculated using 

the expressions of Gibson et al. [33J. 

Microstructures composed of triangular cells 

Ceramic honeycombs made of triangular cells have an important use in the automotive 

catalytic converters. Gulati [44J first analysed the static behaviour of lattices made of 

equilateral triangles (see bottom left figure in 1.1). He developed expressions for the 

effective elastic constants using an energy approach (Castigliano's theorem) and stated 

that such a solid is anisotropic in the plane. Hunt [56J analysed triangular networks 

analytically as well as experimentally, and showed that they are in-plane isotropic. He 

assumed that the joints of the triangular cells are pinned. Both Gulati's and Hunt's 

expressions contain a linear (til) dependence of the Young's modulus (l and t are the 

length and the thickness of a typical cell wall respectively), in contrast to the hexagonal 

cells where it is proportional to (tll)3. The (tll)3 proportionality is a consequence of 

the cell wall bending being the dominant mode of deformation in hexagonal lattices. 

Deshpande et al. [21 J showed that stretching-compression is the primary mode of 

deformation in the cell walls in a triangular network because of their connectivity at 

each node is 6. The stretching mode of deformation gives higher Young's modulus. 

Hence, solids made of triangular cells are stiffer than those made of hexagonal cells with 

the same area fraction. The Poisson's ratio of triangular foam is 1/3, in contrast with the 

value of 1 for foams made of regular hexagons. Christensen [11 J developed expressions 

for the shear and the bulk modulii of such solids. He showed that for the bulk modulus 

calculations, stretching-compression of cell walls is the dominant mode of deformation 

for triangular as well as hexagonal lattices. 

Microstructures made of square cells 

When structures made of square cells (see bottom right figure in 1.1), are subjected to 

loading in two orthogonal directions intrinsic to the lattice, stretching or compression 

of the cell walls is the only mechanism of deformation [34 J. For loading in the diagonal 

direction, cell walls flex and the lattice shows a behaviour similar to that made of hexag­

onal cells. Therefore, macroscopically the structure is stiffer when loaded in the two cell 

wall directions rather than the diagonal direction. Such solids are anisotropic. Further 

due to the symmetries of the lattice, one concludes that the said anisotropy must be 
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Figure 1.3: Schematic of irregular structure of a planar honeycomb. Note the absence 
of any periodicity. 

orthotropy. Warren and Kraynik [103] also showed that structures made of square cells 

do not exhibit in-plane isotropy because of the square symmetry. 

Other than these classical cell-shapes, star-shaped, circular, and elliptical cells have 

also been analysed. For example, elastic constants for solids made of star-shaped cells 

are found in Christensen's work [11]. Chung and Waas [15] analysed the in-plane elastic 

properties of solids made of hexagonally packed circular and elliptic cells using Cas­

tigliano's method. They showed that the material made of circular cells is isotropic, 

whereas that made of elliptical cells is orthotropic. Chung and Waas [15] also analysed 

experimentally the stress-strain behaviour and the collapse load of circular cell polycar­

bonate foams due to bi-axialloading. 

Microstructures made of irregular cells 

Natural as well as synthetic cellular solids are often non-periodic. Irregularity arises due 

to the variations in topology, cell wall thickness, and material properties of the cell wall. 

Figure 1.3 shows a hypothetical structure made of irregular cells. The unit cell approach 

is not suitable for modelling such geometries because of the absence of any periodicity. 

The Voronoi diagram has been used by several researchers [89, 114] for filling a 

plane with irregular cells. For this purpose, a number of nucleation points are generated 

randomly. These points grow linearly in space simultaneously until any two boundaries 

meet. Thus, the whole area is divided into a number of cells such that any point within a 
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cell is closer to its nucleation point as compared to the nucleation points of its neighbours. 

Zhu et al. [114] studied the geometric properties of the Voronoi cells and presented their 

statistics. 

Silva et al. [89] studied the effect of such irregular microstructure on their effective 

elastic properties. They modelled each cell wall as a beam and performed finite element 

analysis. Silva et al. concluded that on the average, the elastic properties of solids with 

irregular cells are close to those of regular hexagonal foams of the same area fraction. 

The variation reported was in the range of 4-9%. 

Zhu et al. [114] proposed a factor for quantifying the irregularity of Voronoi cells. 

The factor was calculated based on the number of cells to be generated in a certain area 

such that any two nucleation points must be at a distance equal to or greater than a 

prescribed distance from each other. In another work [111], they used the same coefficient 

to study the effect of irregularity on the bulk elastic parameters. Their finite element 

results indicate that with the increase in irregularity, the Young's modulus and the 

shear modulus increase, whereas the bulk modulus decreases. The maximum deviation 

of the above-mentioned constants may be up to 20% as compared to those of regular 

hexagonal foams. However, they found that the irregular foams are nearly isotropic and 

the Poisson's ratio is very close to 1, as was observed by Silva et al. [89]. 

Simone and Gibson [91] studied the effect of the non-uniformity of the cell wall 

thickness on the Young's modulus for structures made of hexagons. Their numerical 

studies indicated that shifting material away from the cell edges into plateau borders 

at the vertices initially increases the modulus and peak stress of the cell walls. This 

happens due to the increase in the second moment of area at the ends of the cell walls 

where the bending moment is highest. When more material is rernoved, the increase in 

the second moment of area does not compensate for the reduction of the material from 

the cell wall and hence, the overall stiffness is reduced. They found that the effect of 

solid distribution (in the cell walls) on the elastic properties is not significant- this was 

also indicated earlier by Warren and Kraynik [103]. 

Silva et al. [89] scaled the Voronoi cells in a particular direction and thus introduced 

directionality to the models. They calculated the area fi'action and the scaling factor of 

the Voronoi foam from its digital image using stereology. Their finite element calcula­

tions indicated that the Young's modulus is affected more by scaling than the Poisson's 

ratio. Scaling has minor effects on the shear modulus. Silva et al. concluded that on 

an average, for the same area fraction, the macroscopic elastic properties of solids with 
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irregular cells and hexagonal cells are the same even for the anisotropic case. Cowin [18J 

also studied similar effects on the elastic properties of porous materials. He defined 

the fabric ellipsoid as a measure of the local microstructural features and developed the 

so-called fabric tensor. Further, he developed a relationship between the effective elastic 

constants, the fabric tensor and the volume fraction of porous materials. His relation­

ships require experimental determination of the unspecified scalar-valued functions of 

the volume fraction. 

Homogenisation theory 

The homogenisation theory has been applied for evaluating the effective properties of 

random heterogeneous media in which the macroscopic length scale is much larger than 

the length scale of the heterogeneity. Therefore, in such cases, the heterogeneous media 

can be assumed as a continuum at the macroscopic scale and its effective properties can 

be determined [96, 57J. 

Torquato et al. [96J viewed a piece of cellular solid as a two-phase composite (one 

phase being void), and applied the homogenisation theory of porous solids for deducing 

bounds on the effective elastic properties. Their calculations are based on the well-known 

Hashin-Shtrikman bounds [50J. They showed that for low area fraction, the upper bounds 

for the bulk modulus and the thermal conductivity of hexagonal, triangular or square 

foams match exactly with the theoretical results. Later, Hyun and Torquato [57J showed 

that for hexagonal as well as triangular cells, the three-point bounds [97J match better 

with the analytical results irrespective of the area fraction. 

§1.2.2 Out-of-plane behaviour of cellular materials 

When planar structures made of cells are subjected to out-of-plane loading, they become 

elongated, compressed or sheared. Stress distribution is now much more complicated 

because each cell face suffers a non-uniform deformation. Stretching-compression is the 

primary mode of deformation in this case rather than bending. Hence, structures are 

much stiffer in the transverse direction. As a result, they are used as core in sandwich 

panels which carry the major portion of shear and transverse loads. 

Earlier, the work of Kelsey et al. [60J was mentioned as one of the pioneering con­

tributions. They used the energy method of Castigliano for evaluating the lower and 

the upper bounds of the two shear modulii. They also validated their analysis exper­

irnentally. Similar analyses were carried out by Chang and Ebcioglu [9J, and Penzien 
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and Didriksson [80]. Grediac [39] used the finite element method for studying the shear 

behaviour in core made of hexagonal cells. Scarpa et al. [86] performed similar analysis 

with auxetic core. Hohe et al. [52] used a homogenisation approach based on energy 

equivalence, and analysed cellular cores of various topologies [52, 53]. A review of the 

stress-strain relations and the nonlinear behaviour for two dimensional cellular cores can 

be found in the work of Hohe et al. [54]. 

§1.2.3 Mechanical behaviour of three dimensional cellular materials 

Three dimensional foams are classified as open cell or closed cell foams depending upon 

their structure- a network of struts is known as an open cell, whereas that of plates is 

termed closed cell. Sometimes, foams are also found to have partially closed cells. The 

mechanical properties of the open cell foams and its closed cell counterpart are not the 

same given a volume fraction. This is due to the difference in the mechanism of deforma­

tion. For example, in the case of closed cell foams, the cell surfaces connecting the struts 

affect the mechanical behaviour considerably due to plate deformation mechanisms. In 

general, we have a much poorer understanding of closed cell foams compared to open 

cell foams. It was recognised by several authors [32, 62, 22, 79, 74, 36] that the most 

important property affecting the mechanical behaviour of foams is their volume fraction 

p* / Ps, where p* and Ps are the densities of the foam and the cell wall respectively. 

The general form of the Young's modulus of a low density foam was first proposed 

by Egli [22], 
E* _ (p*)n --C1 -
Es Ps' 

(1.1) 

where, E* is the equivalent Young's modulus of the foam, Es is the Young's modulus of 

the cell wall material, and C1 is a material-dependent constant. The value of n depends 

upon the mode of deformation of the cell wall [40, 31]. For example, n = 1 indicates 

stretching-compression of the cell wall is the only mode of deformation. n = 3 represents 

bending or twisting of the cell surfaces. When bending, twisting, and stretching govern 

the behaviour, the value of n lies in the range 1 :::; n :::; 3. Due to the difference in the 

mechanism of deformation, reviews for the open cell and the closed cell foams will now 

be presented separately. 

Open cell foams 

Gent and Thomas [32] first analysed the linear elastic behaviour of open cell foams 

in 1959. They modelled foams as networks of randomly-oriented thin elastic threads 
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connected to rigid spherical joints. For small volume fraction, they calculated E* / Es = 

frP* / Ps, and v* = t using an energy approach. They considered stretching-compression 

as the only mode of deformation of the cell rib. Later, Christensen [12] obtained the 

same results as Gent and Thomas [32]. Lederman [67] also used the energy method 

assuming extension of the cell edges, and found a linear relationship between the elastic 

parameters and the volume fraction of foams. His findings were similar to those of Gent 

and Thomas [32]. Kanakkant [59] showed that such foams are highly anisotropic and 

the tensile modulus differs significantly from the compressive modulus. 

Ko [62] modelled the foam topology as a network of beams in hexagonal closed 

packing (HCP) and face-centered-cubic packing (FCC). He arbitrarily chose a prin­

cipal direction of uni-axial strain and calculated the effective Young's modulus using 

three-dimensional beam analysis. He included both the stretching and the bending de­

formations in the analysis. Ko found a relationship similar to that of Gent and Thomas 

for HCP, but a different one for FCC as E* / Es = ~(p* / Ps)2. His results indicate that 

the dominant deformation mechanism changes from being stretching for HCP to be­

coming bending for FCC. Patel and Finnie [79] assumed the unit cell as a pentagonal 

dodecahedron. Their theoretical analysis, considering bending as the only mechanism of 

deformation of the cell walls, yields E* / Es = (P* / Ps)2. 

Menges and Knipschild [74] analysed an isolated joint consisting of four rods meeting 

at a tetrahedral angle using beam theory. They showed that the elastic modulus is 

proportional to (P* / Ps)2. Gibson and Ashby [36] assumed the foam as a network of 

struts interconnected in the form of a cube and used dimensional arguments. They 

considered cell wall bending as the dominant mechanism of deformation, and showed 

that the Young's modulus varies as (P* / P8)2. Their unit cell oversimplifies a real foam. 

Warren and Kraynik [104] performed linear elastic analysis of open cell foams using an 

isolated tetrahedral joint. Extensive reviews of the experimental and theoretical work 

on the various mechanical properties- stiffness, strength, fatigue, failure and impact 

behaviour of the polymeric foams are discussed in the work of Progelhof and Throne [82] 

and Hilyard [51]. 

Many of the foam models described so far, consider tetrahedron as a unit cell. Later 

on, unit cells in the fOrIn of regular tetrakaidecahedra, containing 14 faces with 8 hexagons 

and 6 squares, became popular. This cell, having minimum surface area for a given 

volume, was proposed by Lord Kelvin [61]. This is a good choice as a unit cell because 

often such cells with minimum surface area are generated during the phase-separation 
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processes of foam production. Weaire and Phelan [108] later identified a cell which is 

lower in surface area than the Kelvin's cell. This cell form is a combination of two cell 

types, a 14 sided form with faces of pentagons and hexagons combined with the 12 sided 

regular dodecahedron. A comparison of the surface properties of different cells can be 

found in Christensen [11]. 

Dement'ev and Tarakanov [19] first modelled an open cell foam using regular tetrakaidec­

ahedron. They analysed theoretically the compression of foams neglecting the strut­

bending and showed E* / Es = (1/9)p* / Ps. In another study [20], Dement'ev and 

Tarakanov considered bending and showed E* / Es = (4V2/9) (p* / Ps)2. Warren et al. [106] 

used analytical methods, whereas Zhu et al. [112] performed numerical calculations to 

study the elastic properties of the open cell foams having Kelvin cells. Both of these 

studies indicate that such foams are nearly isotropic. For uniform struts of square cross­

section, Warren et al. [106] obtained the same result as Demet'ev and Tarakanov [19]. Li 

et al. [68] developed closed-form expressions of the elastic parameters analysing tetrakei­

decahedron as a unit cell. They included all the three modes of deformation of the cell 

walls in their model with different shapes of the strut cross-section. Choi and Lakes [63] 

modelled three dimensional foam as an idealised 14-sided unit cell. They analysed the 

difference in the Young's modulus between conventional and re-entrant foams theoret­

ically as well as experimentally. Christensen [11] showed that the bulk modulus of 

these foams is governed by the tension mechanism and the shear modulus by the bend-

ing/torsion mechanisms. 

Closed cell foams 

A closed cell foam can be viewed as the cell walls/surfaces connected to each other along 

the cell edges [12, 35]. Therefore, when a closed cell foam is subjected to load, the 

deformations are due to the stretching of the cell surfaces along with the bending of the 

cell edges. Simplified unit cell models are preferred by many researchers [12, 35, 41, 91] 

because of the complexity involved in analysing the mechanics of the cell surface and 

the cell edge together. 

Christensen [12] analysed random closed cell foam assuming the cell surfaces as 

membranes. He developed expressions for the elastic constants of an isotropic closed 

cell foam as 
2(7 - vs) p* 

3(1 vs)(9 + 5vs) Ps ' 
(1.2) 

where, v* is the Poisson's ratio of the foam and Vs denotes the Poisson's ratio of the 
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cell wall material. Further, he showed that the Young's modulus of a closed cell foam is 

about three times greater than that of its open cell counterpart. 

Gibson and Ashby [35] used a semi-empirical approach and proposed the following 

expressions for closed cell foams 

G* ~~[Vc2(P*)2 +(l- Vc )P*], 
Es 8 Ps Ps 

* 1 
v ~ 3' (1.3) 

where, 11;; is the fraction of the solid in the cell edges and 1 - 1~ is the remaining fraction 

in the cell-surfaces, and G* is the shear modulus of the foam. If Vc is zero, then the 

above expression reduces to the expression of the elastic constants for an open cell foam. 

The expression needs the evaluation of Vc from the experiments which may be quite 

difficult in many practical situations. 

If the foam is assumed to be a two-phase isotropic composite, then Hashin-Shtrikman 

bounds [50] dictate 

E* < p*jps 
Es - 1+C2 (1 p*jps)' 

where C2 
(1 + vs) (13 - 5vs) 

2(7 5vs) 
v* :s: 0.5. (1.4) 

Other than these theoretical studies, the elastic constants for foams were also evalu­

ated numerically by analysing a unit cell model. BCC or FCC tetrakaidecahedral cells 

have been used in many studies [41, 91]. For example, Simone et al. [91] studied BCC 

tetrakaidecahedral cell by the finite element method using shell as well as continuum 

elements. For the loading in [100] direction, they proposed 

E* * 2 * 
-E ~0.209(~) +0.315~, 

s Ps Ps 
(1.5) 

applicable for p* j Ps :s: 0.2. They observed in their numerical simulations that the 

Young's modulus differs by about 10%, when the loading direction is changed to [111] 

and [110] fI'om the original [100] direction. An elaborate discussion of the different 

models of foams can be found in Gresnestedt's work [41]. 

Three dimensional foams made of irregular cells 

Van der burg et al. [99] analysed the effect of irregularity in open cell foams by generating 

random Voronoi cells in three dimensions. Their finite element results showed that the 

Young's modulus increases with the non-uniformity of the cell size. Zhu et al. [113] found 

that for low density foams, the Young's modulus and the shear modulus increases with 

the irregularity, whereas the bulk modulus decreases, as is the case for two dimensional 

foams studied in [114]. Grenestedt et al. [42] created foams of irregular cells by perturbing 
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the nodes of a tetrakaidecahedral cell for studying similar effect. They found that the 

bulk modulus as well as the shear modulus are affected very little by cell shape variations. 

Roberts et al. [84] generated closed cell as well as open cell foams using the Voronoi 

tessellation and a Gaussian random model. Their conclusions regarding the effect of the 

cell shape were similar to those of Grenestedt et al. [42]. 

Simone and Gibson [91] studied the effect of solid distribution in foams. They found 

that for open cell foams, the Young's modulus is practically insensitive to non-uniformity 

of cell wall thickness- an observation made for planar case [91] too. Their numerical 

study on closed cell foams also showed that the elastic properties do not differ much 

with such variations. 

For irregular honeycombs or foams, often simulation of the real microstructure be­

comes important. Hollister et al. [55] introduced digital imaging techniques to study 

the effect of microstructural morphology of bones in their finite element simulations. 

Garboczi et al. [31] developed an algorithm to calculate the elastic properties of random 

multi-phase materials. The algorithm treats each pixel of the digital image as a finite 

element. 

A review of the mechanical problems of solid and liquid foams can be found in Weaire 

and Fortes [109]. Similarly, detailed discussion on the elasticity and failure strength of 

foams can be found in the work of Kraynik and Warren [107] and Gibson and Ashby [35]. 

Gibson's work [37] is a similar review on metallic foams. 

§1.2.4 Effects of imperfections in cellular materials 

Various defects, for instance, the absence of cell walls, the presence of holes, notches and 

cracks are quite common in practical foams. Prakash et al. [81] first studied the effect 

of local strengthening and weakening on the macroscopic response of structures. They 

used optical images of samples made of hexagonal cells. They filled up cells in arbitrary 

locations with paraffin wax and thus introduced a local stiffening effect. Removal of the 

cell walls was introduced for local softening effect. They studied qualitatively the effect 

of the defects on the deformation bands and the strain hardening. 

The effect of defects has frequently been studied by several authors [90, 13, 45, 3] 

using the finite element method. Silva et al. [90] simulated the effect of missing cell walls 

on the compressive strength using the finite element method. They showed quantitatively 

that local defects cause a sharp decrease in the effective Young's modulus of solids 

made of hexagonal as well as irregular planar networks. For example, 10% reduction in 
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density due to defects caused a 60% reduction in strength of solids made of Voronoi cells. 

They found that localised strains frequently appear for irregular cells but relatively less 

so for periodic cells. When four or more adjacent cell walls are removed, a localized 

band of cells collapse in the defect zone, and the effective modulus and strength are 

reduced. The mechanical properties effectively degrade to zero when 35% of the cell 

walls were removed, because the whole solid is divided into two parts. Similar to the 

earlier results [81], they indicated that even those defects which have a negligible effect 

on density can alter the failure pattern as well as the effective properties significantly. 

Chen et al. [13] studied the influence of several imperfections (waviness, non-uniform 

cell wall thickness etc.) on the yielding of irregular foams. Guo and Gibson [45] stud­

ied the effect of large circular cut-outs on the elasticity and plasticity. Chen et al. [14] 

extended the work of Guo and Gibson [45] by considering the effect of inclusions in addi­

tion to holes. They compared their finite element results with the Hashin-Shtrikman [50] 

bounds. They found that the strength of such materials is relatively unaffected with the 

presence of holes and inclusions. Andrews et al. [3] considered three types of defects­

circular holes, sharp cracks, and notches in their numerical study. 

Previously cited works in this section were confined to two dimensional cases. There 

are some attelnpts to study the influence of imperfections in three dimensional foams too. 

Simone and Gibson [92, 93] observed that the discrepancies are of an order of magnitude 

between their experimental results of real aluminium foams and the properties of an ideal 

foam using tetrakaidecahedral cell as a repeating cell [91]. This difference is attributed 

to the presence of curvature and corrugations of the cell faces in real foams. Grenestedt 

et al. [40] showed that if the wave amplitude of the cell surfaces is five times the cell wall 

thickness, the stiffness can be reduced by 40% as compared to those with flat faces. 

§1.2.5 Nonlinear Elastic Behaviour 

If the solid material is linearly elastic, under uni-axial loading all cellular structures 

behave linear elastically for small deformations. With the increase in load, the behaviour 

becomes nonlinear. When a critical stress is reached, the cells begin to collapse. The 

elastomeric materials fail by the elastic buckling of the cell walls. Since the buckling is 

elastic, the deformations are recoverable on unloading. Elastic-plastic honeycombs fail 

due to the formation of plastic hinges at the points of maximum bending moment of 

the bent members; elastic-brittle honeycombs fail by brittle fracture of the cell walls. 

In the last two cases, the deformations are not recoverable while unloading. Eventually, 
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at high strains, the cell walls collapse sufficiently such that opposing cell walls touch 

(or their broken fragments pack together) and further deformation compresses the cell 

wall material itself. This gives the final, steeply rising portion of the stress-strain curve 

known as densification [35J. Analysis of the nonlinear behaviour of honeycombs can be 

found in the text of Gibson and Ashby [35], works of Overacker et al. [78J and Chen 

et al. [13J. Nonlinear elastic behaviour of open cell foams was studied by Warren and 

Kraynik [105J. 

§1.2.6 Dynamics of cellular materials 

While there are numerous studies on the statics of cellular solids, the dynamics of this 

class of materials appears to have received less attention. Wang and Stronge [102J studied 

elastic honeycombs made of hexagonal cells, under periodically fluctuating forces. They 

developed a relationship between the micro-inertia, excitation frequency and the cell wall 

geometry using the micropolar theory. Baker et al. [5J studied the effect of impact and 

energy absorption of two dimensional metallic foams. Very little literature is available 

on the dynamic analysis of sandwich structures with cellular cores. Scarpa et al. [87J 

analysed the characteristics of the vibration of sandwich plates made of auxetic materials. 

Their results indicate that using auxetic materials as a core significantly improves the 

bending stiffness for particular cell parameter ranges and thus, the dynamic performance 

of sandwich structure could be improved significantly. Nilsson et al. [75J studied the 

dynamics of sandwich beams with hexagonal foam as a core. They developed analytical 

expressions of predicting the natural frequencies of sandwich beams. Studies have been 

carried out by several researchers [48, 69, 6J to investigate the effect of the porosity on 

the nonlinear damping properties of aluminium foam. 

§1.3 Objectives and scope of the present work 

The present dissertation is concerned primarily with the dynamics of cellular structures. 

In the previous section, we observed that the published literature is devoted to analysing 

the elastic and plastic behaviour, failure, buckling, creep etc., whereas the understanding 

of dynamics is limited. Cellular structures are often subjected to dynamic forces in 

addition to the static loadings. As a result, there is a need to understand the dynamic 

behaviour for efficient design of such structures. The main motivation of the present 

work arises from this need. 

Structures made of small cells are complex, hence, a field description using the theory 
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of elasticity is practically impossible. Therefore, a computational approach is more suit­

able for the analysis of such structures. In the present work, the finite element method 

is used as a computational tool for modelling of cells at the meso-scale. This method 

is perhaps the best choice in this context as it can include the detailed structural fea­

tures along with the complex loading and boundary conditions. Further, with the finite 

element method, it is comparatively easy to vary the geometrical and material param­

eters of the microstructure in a controlled manner and perform the analyses, whereas 

it is practically impossible to control the parameters independently in the case of the 

laboratory experiments. These justify the choice of the finite element method for the 

present work. Analytical approaches are also used to some extent. 

For the finite element analysis, cell walls are modelled as elastic beams. Therefore, 

the whole structure is represented by a network of elastic beams. Axial deformation of 

the beams is included in the model for the sake of generality. The analysis is linear. 

This study is limited to the elastic range of the cell wall material properties. 

A systematic numerical study to understand the continuum behaviour and any depar­

ture therefrom is undertaken in this thesis. Modal characteristics of structures made of 

cellular material are compared and contrasted with those of structures made of continua. 

The finite element models of cellular structures tend to be computationally demand­

ing because of the large size of the models. The issue of computational economy and 

approximations is, therefore, addressed. 

Experimental work to understand the modal behaviour of rectangular bars of alu­

minium foams is carried out. Axial, bending and torsional modes are studied and the 

effective elastic modulli are derived from the modal frequencies. Again, these observa­

tions are compared and contrasted with the modal characteristics of homogeneous solid 

of similar shape and size. 

A chapter-wise outline of the dissertation is presented in the next section. 

§1.4 Outline of this dissertation 

Numerical experiments on cellular beams having hexagonal as well as triangular cells 

are considered in Chapter 2. The finite element calculations are performed to obtain the 

static response and to calculate the natural frequencies and the mode shapes as well. 

The accuracy of predictions using isotropic beam bending formula is tested for prob­

lems having directional preference in the cell geometry (hence exhibiting orthotropy). 

A Rayleigh's principle based method is then employed to compute the fundamental 
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frequency economically. 

Guided by the results in Chapter 2 that the overall behaviour of cellular structures 

resembles that of a continuum at low mode numbers, the validity of this to moderately 

high mode numbers is examined in Chapter 3. The dependence of modal spacing and 

modal density on mode number is studied and compared with that of continuum. A 

variety of cell geometries are considered. 

The problem of reducing the computation time for large scale models of cellular 

structures is addressed in Chapter 4. A method based on so-called continuum modes is 

proposed to reduce the order of the models of cellular structures for the low end of the 

spectrum. A direct application of the variational method based approximation leads to 

difficulties. The source of this difficulty is identified and a method based on inverse power 

iterations is employed to pre-condition the set of basis modes. A sensitivity analysis is 

presented to understand the surprisingly poor performance of the basis modes when 

pre-conditioning is not carried out. The accuracy and the computational expense are 

systematically studied on numerical models of two different model structures. 

Encouraged by the results in Chapter 4, the method using the continuum modes as 

basis is employed for response calculations in Chapter 5. Damping is introduced in the 

model and comparisons are made between response calculated from the full scale model 

and that obtained from the proposed reduced order model. 

The validity of the effective medium theory is examined experimentally in Chapter 

6. The effective elastic modulii (the Young's modulus and the Poisson's ratio) are deter­

mined for samples of metallic foam. The dependence of the Young's modulus on mode 

number is studied. 

Conclusions and the future work are presented in Chapter 7. 



I 
Chapter 

Applicability of the effective 

medium theory to statics and 

dynamics of cellular beams 

§2.1 Introd uction 

Equivalent medium theories have been proposed for cellular material when the strain field 

is uniform. The simplest case of this is the uni-axial tension. However, the applicability 

of such theories to non-uniform strain fields has not been explored in the past. From 

this point of view, the beam bending problem affords a simple practical situation where 

the strain field at the bulk level is non-uniform. This is a consequence of the Kirchoff's 

hypothesis for thin beams that plane sections remain plane and perpendicular to the 

neutral axis. With the motivation to test the validity of the effective medium theories 

for the beam bending problem, numerical experiments on the statics and the dynamics 

of cellular beams are presented in this chapter. 

It is proposed here that the transverse bending of cellular beams is guided by effective 

elastic properties corresponding to the Young's modulus in the axial direction. The 

rationale behind this assertion is two folds. First, the beam bending problem has axial 

strain as the main mechanism of strain energy storage. Therefore, the overall structure 

at the bulk level must show cells extending and compressing axially. The extent of 

stretching and compression of cells must depend on their distance away from the centre 

line of the overall beam. Second, the mechanism of strain energy storage for stretching 

and compression of cells (which is cell wall bending for hexagonal cells) must be the 

19 
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same as that for uniform strain fields (as in Gibson and Ashby [34]) as well as for 

non-uniform strain fields provided that the non-uniformity for strain field is not severe. 

This requires the cells being small compared to the overall depth of the beam in the 

transverse direction. The distinction between the properties in the two directions is 

crucial for media that are effectively orthotropic. 

Cellular cantilever beams with tip loads are considered. The low frequency dynamics 

for isotropic as well as orthotropic effective media are undertaken. An approximate 

method for the calculation of the fundamental frequency based on the static deflected 

shape is presented. A study of the dynamics when the continuum behaviour breaks 

down will be taken up in the next chapter. 

§2.2 Calculation of response of cellular structures uSIng 

the finite element method 

Cellular structures are modelled as planar networks of elastic members in this disserta­

tion. Each cell wall is modelled as a two node or three node Euler-Bernoulli beam having 

three degrees-of-freedom at each node. Thus, the nodes and their connectivity describe 

the geometry completely. The width normal to the plane of the structure is taken as 

unity. The degrees-of-freedom transverse to a cell wall along with the rotation at the end 

nodes account for the beam bending energy of the cell walls. The degrees-of-freedom in 

the direction of the line joining the end nodes of a cell wall provide stretching energy. 

Hence, the displacements in the horizontal and the vertical directions along with the 

rotation of all the nodes define the configuration of the whole structure. Within each 

beam element, cubic interpolation is used for the transverse displacements, whereas the 

linear interpolation is used for the axial displacements. 

The strain energy ofthe whole structure is determined by summing up the energy con­

tributions arising from different parts. For small displacements around equilibrium, the 

strain energy V of a structure is a quadratic function in the generalised co-ordinates [88], 

(2.1) 

where q is the vector of the generalised co-ordinates and K is the global stiffness matrix 

(N x N) of the structure having N degrees-of-freedom. The potential energy of the 

external loads can be expressed as 

W = _fTq (2.2) 
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where f is the vector of the generalised forces. The total potential energy of the system 

is given by II V + W = ~qTKq - fT q. Applying the Principle of Minimum Total Po­

tential Energy (PMTPE), the first variation of the total potential energy of the structure 

must be zero 

(2.3) 

This leads to the following set of algebraic equations 

Kq=f (2.4) 

which can be solved for the unknowns qi, i 1,2, ... , N. The formulation presented so 

far suffices for the calculation of static response of cellular media. When the dynamic 

response needs computing, additional energy functionals need to be considered. This is 

discussed in the next subsection. 

§2.2.1 Free vibration calculations for cellular structures 

For small oscillations around equilibrium, in the absence of any centripetal and Coriolis 

forces, the kinetic energy of a structure can be expressed as a quadratic function in the 

generalised velocities q, 

(2.5) 

Here, M is the global inertia matrix (N x N) of the structure. The potential energy 

V = ~qTKq is the same as before (see equation 2.1). Damping is assumed to be derivable 

from the Rayleigh's dissipation function (whenever it is accounted for in a later chapter 

of this dissertation), which is a quadratic function in the generalised velocities, 

(2.6) 

where C is the damping matrix. All other forces are assumed to be obtainable from the 

first variation of the external work done 

N 

6W L ii6qi, i 1,2, ... , N. (2.7) 
i=l 

For a conservative system, the Lagrangian L takes the form L = T - V. Substituting L 

and F into Lagrange's equations of motion [73] 

d (8L) 
dt 8qi 

8L 8F 

8 
+ 8 = ii, i = 1,2, ... , N 

. qi qi 
(2.8) 
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we obtain the following set of coupled second order ordinary linear differential equations 

Mq + Cq + Kq f(t). (2.9) 

This chapter is concerned with the undamped free vibration of the cellular structures. 

Hence, equation (2.9) reduces to 

Mq+Kq=O. (2.10) 

Looking for synchronous free vibration, equation (2.10) leads to the well known algebraic 

eigenvalue problem 

(2.11) 

where AI' is the r-th eigenvalue and, U r is the corresponding eigenvector. The square root 

of the eigenvalue AI' is the r-th natural frequency WI' of the overall structure. Eigenvectors 

are the mode shapes. 

The expressions for the kinetic energy and the potential energy are written for each 

element. The energy expressions for the whole structure is given by the sum of energies of 

the constituent parts (the finite elements). The element energies are expressed in terms 

of the local co-ordinates whereas they are expressed in terms of the global co-ordinates 

for the complete structure. The correspondence between the global co-ordinates and 

the local co-ordinates needs establishing which involves co-ordinate transformation and 

a careful book-keeping of the degrees-of-freedom. The procedure of adding energies 

and deriving global equations of motion from the total energy expressions is commonly 

known as assembly. From these energies, the global stiffness matrix K and the global 

inertia matrix M are assembled [73]. The procedure described here was implemented 

in the MATLAB [72] environment. Finally, the boundary conditions at the fixed end 

of the cantilever were applied by immobilising all the relevant degrees-of-freedom- this 

was achieved by deleting the corresponding rows and columns of the two matrices. This 

results in the eigenproblem of the form (2.11). For statics, the force vector f is generated 

along with K followed by solving equation (2.4) after applying the boundary condition. 

§2.3 Effective elasticity of hexagonal and triangular lat­

tices 

Structures made of cells possess geometrical features at two scales of length. First, the 

length scale of the overall structure, say is, is typically represented by the characteristic 
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length of a hypothetical solid when the porosity is completely filled. There is another 

length scale intrinsic to the microstructure, say le, which represents the average charac­

teristic length of cells. le is assumed to be small, i.e. le «ls (see figure 2.1). Therefore, 

such structures are not homogeneous at length scales of the order of cell dimensions. 

However, when the length scales involved in the deformed shape at the macroscopic 

level are much greater than le, the bulk mechanical behaviour is expected to resemble 

that of an equivalent continuum. This happens for low frequency dynamics, since the 

wavelengths involved far exceed the cell size. Hence, for lower modes, a cellular structure 

can be replaced by a homogeneous continuum. Note that for a standing wave, wave­

length can be approximately considered as double the distance between any two adjacent 

nodes or anti-nodes of the associated mode. 

Low and high frequency regions can be best characterised using the wavelength of 

the standing waves for a given normal mode. When this wavelength is much greater 

than typical cell size, le , the corresponding natural frequency will be referred to as low 

frequency. Similarly, when the wavelength is close to le, the associated frequency will 

be defined as high frequency. In this way we will use the phrases, low frequency and 

long wavelength and, high frequency and short wave length, synonymously. The actual 

values of the frequency is unimportant here since it will vary depending upon various 

factors, such as the cell geometry, geometric and the elastic properties of the cellular 

structures. 

I 

I 
-IJ..-c 

s ~I 

Figure 2.1: Two length scales of the structures made of cells. The length scale le is 
associated with the average cell size and, the length, ls, is associated with the overall 
dimensions. 

While replacing the cellular material by an equivalent continuum, the overall di­

mensions of the structure (beam in this case) must be kept unaltered. As a result, the 

continuum is obtained by filling the porosity with a hypothetical solid material having 

the same properties of that of the cellular material. Since dynamics involves both elas­

ticity and inertia, the Young's modulus E and the density p are the only parameters 

that need to be determined in order to define the equivalent continuum. This is achieved 
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by replacing E of the equivalent continuum by an effective value E*, and p by p*, the 

average density of the cellular structure. When Timoshenko shear correction is incor­

porated, the effective value of Poisson's ratio 1/* is used as the Poisson's ratio of the 

effective medium. 

The r-th natural frequency of a cantilever beam in bending, made up of homogeneous 

isotropic medium is given by [73] 

(2.12) 

where I is the second moment of the cross sectional area, A is the cross-sectional area, L 

is the length and Cr is a constant that depends on the mode number r. Cr takes the values 

1.875, 4.694, 7.855, 10.996, ... , (2r -1)7r /2 [73]. The second moment of the area and the 

cross-sectional area of the effective beam are calculated from the overall dimensions of 

the cellular beam. Equation (2.12) is based on the Euler-Bernoulli beam theory. When 

shear is included in the model, the beam bending frequencies are given by [47] 

1 
Wr =-

r 

where, r = J2(1 + I/s )/kl' dr and er are coefficients related by, 

d 
_ ers 

r-
r 

(2.13) 

(2.14) 

s is the slenderness ratio defined as L/r, where, r = I/A, is the radius of gyration. The 

shear factor kl is determined based on the shape of the cross-section [17]. For rectangular 

beams, kl is calculated as follows, 

(2.15) 

The values of dr and er are evaluated by solving the frequency equation for a fixed-free 

shear beam 

(d2 
- e2 )de sin d sinh e + (d4 + e4

) cos d cosh e + 2(Pe2 = O. (2.16) 

The finite element calculations will produce bending as well as axial modes of the 

overall beam out of a single model. This is because the degrees-of-freedom available in 

the model provide axial as well as transverse motion. The natural frequency of r-th 

mode of a rod in axial tension and compression is given by [73] 

(2.17) 
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In this chapter, the applicability of the effective medium theory is examined for 

beams made of hexagonal and triangular cells. These two cases are considered because 

analytical expressions for the Young's modulus are available for them in the published lit­

erature. However, no such formula is available for beams having irregular cells (see figure 

2.1). Hence, the eigenvalue problem (2.11) needs to be solved for the free vibration cal­

culations of such structures. Bounds on the elastic properties such as Hashin-Shtrikman 

(HS) bounds [50] (based on the homogenisation theory) can be used for deducing bounds 

on the natural frequencies. 

Two cases of the hexagonal cells are considered here: (i) when the lattice possesses a 

six-fold rotational symmetry, the hexagons are regular, and (ii) when the lattice possesses 

two fold symmetry and two mirror planes symmetry: the case of non-uniform hexagons. 

Figures 2.2 and 2.3 show typical lattices made up of regular hexagons. The geometry of 

a typical cell was shown in figure 1.2. The aspect ratio hjl and the cell angle 0 define 

the shape of a cell. For regular hexagonal cells, hjl equals 1 and 0 is 30°. The area 

fraction of the solid depends on the ratio tjl in addition to hjl and O. 

Figure 2.2: A lattice of regular hexagons. The length of the beam runs horizontally 
whereas the thickness runs vertically. This geometry is referred to as orientation 1 in 
the text. 

Figure 2.3: Another orientations of the hexagons in the lattice~ orientation 2. Note 
that the hexagons are rotated by a right angle with respect to the orientation shown in 
figure 2.2. The length of the beam runs horizontally as before. 

The expressions of the effective modulus of elasticity in a tension-compression mode 

of deformation are given by [34] 

Ei = (tjl)3 cosO [ 1 1 
Es (hjl+sinO)sin20 1+cot20(t/l)2 

(2.18) 
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and 

- (tll)3 (hll + sine) [ 1 1 
Es - cos3 e 1 + (tan2 e + ~~~{IJ)( f)2 

(2.19) 

where, El is the effective modulus of elasticity of the solid having cells in orientation 1 

and E2 is the effective modulus of elasticity of the solid having cells in orientation 2 (see 

figures 2.2 and 2.3). The stretching of the cell walls is included in the above expression in 

addition to cell wall bending. For regular hexagonal cells, substituting hll = 1 and e = 

30° in expressions (2.18) and (2.19) leads to El = E2. The modulus of elasticity E* can 

be calculated by using the expressions (2.18) or (2.19), depending upon the orientation 

of the cells as appropriate. The density of the equivalent continuum p* is calculated 

using the standard expression for the cellular structures [90] 

p* Ips = t 2:)d LD. (2.20) 

Solids made of non-uniform hexagons with hll i- 1 and e -I- 30° are in-plane or­

thotropic [34]. Consequently, structures made of such hexagons possess two Young's 

modulii El and E2, in the two orthogonal directions 1 and 2 (see section 1.2.1). Next, 

we examine the validity of the isotTOpic effective medium theory applied for orthotropic 

cellular beams, when the Young's modulus is taken as that for the axial direction. Such a 

choice of Young's modulus is preferred when a beam bends transversely. This is because 

a fibre running parallel to the neutral axis is stretched or compressed axially during 

continuum beam-bending. We could treat a row of cells as a fibre provided that the 

dimensions of a cell in the transverse direction are small compared to the overall depth 

of the beam in the transverse direction. 

The performance of the effective medium theory is studied for the statics problems 

first. It is assumed that the isotropic beam formula continues to hold even for cells that 

exhibit overall orthotropy. This means that when cells have orientation 1, E2 has no 

effect on the dynamics and when the cells have orientation 2, El is unimportant. It is 

one of the aims of this chapter to investigate these hypotheses and assess the accuracy 

of the approximation. The value of the effective Young's modulus E* determined on the 

basis of the finite element results (2.4) is compared with that obtained using (2.18) or 

(2.19). 

At the next step, the effective medium theory is applied for low frequency dynam­

ics. The beam bending and rod extension formula are used for evaluating the natural 

frequencies of the beam made of regular hexagonal cells as appropriate. For dynamics, 

equations (2.18) or (2.19) and (2.20) are used to calculate the effective continuum prop-
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Figure 2.4: A beam made of equilateral triangles. Henceforth, this orientation IS 

referred to as orientation 1. 

erties, E* and p*, which, in turn, are used to calculate the free vibration frequencies 

according to equations (2.12) or (2.13) and (2.17). These continuum frequencies are 

compared with the finite element simulations. 

In the case of a lattice made of triangular cells, the primary mode of strain energy 

storage is stretching-compression of the cell walls. Typical beams made of such cells 

are shown in figures 2.4 and 2.5 for two different orientations of the cells. The effec­

tive Young's modulus for tension-compression mode of deformation for lattice made of 

equilateral triangles having cell orientations 1 and 2 is given by Hunt [56] 

E* E* t 
_1 = E2 = 1.15

z
' 

E" s 
(2.21 ) 

Figure 2.5: Another beam made of equilateral triangles, with the triangles are now 
oriented at a right angle with respect to the previous orientation. This orientation is 
referred to as orientation 2 in the text. 

§2.4 Results and discussions 

The results are presented in seven subsections. In section 2.4.1, results are presented for 

the transverse bending of beams made of regular hexagonal cells. Energy distribution 
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through the depth is studied in section 2.4.2. The case of orthotropic beams having 

hexagonal cells is presented in section 2.4.3. The statics of cellular beams made of 

triangular cells is presented in section 2.4.4. Free vibration of beams having regular 

hexagonal cells is taken up in section 2.4.5, followed by the case of non-uniform hexagonal 

cells in section 2.4.6. The dynamics of beam with triangular cells is undertaken in section 

2.4.7. A Rayleigh's principle based method to calculate the fundamental frequency of a 

cantilever cellular beam is proposed in section 2.4.8 and numerical examples are given. 

For all the models, the minimum number of rows of cells stacked vertically is kept 

as 10 in each case so that sufficient cells are present in the depth direction. The width 

perpendicular to the plane of the beam is taken as unity for all the models. The til 

ratio for each cell wall and the length/overall depth ratio for the cellular beam are kept 

greater than 10. This is to ensure that the whole beam as well as the cell walls behave 

as thin beams. The shear effects in the cell walls have been ignored due to thinness and 

because the deformed shape of each cell wall does not show rapid fluctuations for statics 

as well as for low frequency dynamics. It is assumed that all the cell walls are of uniform 

thickness. Displacements are assumed to be small so that a linear analysis is valid. The 

rotary inertia is neglected. 

§2.4.1 Transverse bending of beams having regular hexagonal cells 

Cantilever beams subjected to concentrated load at the free end are analysed here. The 

beam is fixed at its left end. Beams made of hexagonal cells having orientation 1 are 

considered first. The geometric data are presented in table 2.1. The L/ D ratio of the 

beam is 13.41. Therefore, the beam is thin enough for Euler-Bernoulli beam theory to 

be valid. The til ratio for each cell wall is 1/20. All the cellular strnctures analysed in 

this dissertation are made of aluminum with the material properties as shown in table 

2.1, unless mentioned otherwise. 

A vertical load of 1 N is applied at a node close to the neutral axis. The displacement 

field calculated by solving equation (2.4) is shown in figure 2.6. The horizontal and the 

vertical displacement components of each node are extracted from the displacement 

vector and are plotted as arrows such that the length and the direction of an arrow 

represent the magnitude and direction of displacement at the relevant node. Figure 2.6 

indicates that the vertical deflection gradually increases from left to right. The overall 

displacement pattern of the cellular beam looks similar to that of a homogeneous beam 

under transverse bending. When the same beam is analysed with tensile force being 
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Geometric data 
Length of the model L 
Overall transverse depth of the model D 
Length of a vertical/inclined cell wall h = l 
Thickness of each cell wall t 
N umber of cells in the horizontal direction 
N umber of rows of cells vertically stacked 
Number of nodes 
N umber of elements 
Material data 
Cell walls are made of aluminium 
Young's modulus Es 
Density Ps 

2078.5 mm 
155.5 mm 
10 mm 
0.5 mm 
120 
10 
2651 
3845 

70 GPa 
2700 kg/m3 

29 

Table 2.1: Data of a beam made of regular hexagonal cells having orientation 1. 

Length of the model L 
Overall transverse depth of the model D 
Length of a vertical/inclined cell wall h 
Thickness of each cell wall t 
N umber of cells in the horizontal direction 
N umber of rows of cells vertically stacked 
N umber of nodes 
N umber of elements 

4640 mm 
355 mm 
10 mm 
0.5 mm 
310 
20 
13020 
19199 

Table 2.2: Geometric data of a beam made of regular hexagonal cells having orientation 
2. 

applied at the right boundary, the displacement field is calculated as in figure 2.7. The 

uniform stretching from left to right resembles that observed in a rod under tension. 

The vertical displacement of the point of the application of the load, 0.L, as obtained 

from the finite element calculation is 0.4 mm. The Young's modulus E:; of the cellular 

beam is now calculated using the standard expression of a cantilever subjected to tip 

loading P [95] 

(2.22) 

The subscript 'b' indicates that this value is calculated from a numerical experiment 

involving beam bending. The value of E:; is calculated as 2.41 x 10-2 GPa. Because the 

beam is subjected to a concentrated load, there may be regions of localised deformation, 

however, it is not evident from figure 2.6. To eliminate this possible source of error, 

deflections were measured at five nodes on the neutral axis. The Young's modulus is 
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Figure 2.6: The displacement field of a cellular cantilever beam due to a vertical load 
acting at the free end. The deflected configuration resembles to that of a homogeneous 
beam. . 
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Figure 2.7: The displacement field of a cellular rod subjected to a tensile force at the 
free end. 

also calculated from each deflection using the following expression [95J 

E;; = PL2 (3L - 8)/(611':::.) (2.23) 

where, s is the distance of the node from the fixed end and I':::. is the corresponding 

vertical displacement. The average of the five values of E;; is found to be very close to 

the value calculated based on I':::.L. This indicates that the effect of localised deformation 

is not so critical in this case. 

The effective Young's modulus Ei is calculated using the infinite lattice expression 

(2.18) as 2.01 x 10- 2 GPa. The ratio E;; / Ei is obtained as 1.21. Therefore, the modulus 

calculated from the bending experiment is about 21% higher than the modulus based 

on macroscopic tension-compression. When the size of the problem is increased from 

120 x 10 (number of horizontal cells x number of vertical cells) to 240 x 20, the ratio 

E;; / Ei is reduced to 1.10. This results in a smaller cell size to the overall depth ratio. 

When a similar experiment is performed on a beam made of cells (310 x 20) having 

orientation 2, E;; / E2 is obtained as approximately equal to 1.0. The geometric data of 

the beam having cells in orientation 2 are presented in table 2.2. The number of cells 
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stacked vertically is kept 20 in this case. The close to unity value indicates that the 

effect of the cell size is not so pronounced for this orientation as opposed to orientation 

1. The results of the two orientations indicate the importance of the presence of an 

appreciable number of cells in the model. The value of the Young's modulus as obtained 

from numerical experiments involving axial tension is found to be within 0.1% of the 

value for the infinite lattice for both the cell orientations. 

§2.4.2 Energy distribution 

The strain energy of each cell wall during deformation can be divided into two parts- (i) 

the contribution from the cell wall bending deformation, and (ii) the contribution from 

the stretching of the cell walls. For a piece of cellular matter having hexagonal cells, it 

is well known that the strain energy is mainly due to cell wall bending when the overall 

deformation is tension or compression at the bulk level [34]. Since beam bending (at 

the bulk level) is not a case of uniform strain field, it is not obvious if the mechanism of 

deformation dominates here too. When these two components of energy were separated 

in a numerical simulation of beam bending, it was found that 99.99% of the total energy 

can be attributed to the bending of cell walls. This confirms that the main mechanism 

of energy storage in cellular beams continues to be the bending of cell walls. 

The distribution of the bending strain energy with the location of the cell walls is 

shown in figure 2.8. The cell wall numbering runs from left to right for the lowest level 

(that has only inclined mernbers, see figure 2.2) first. Then it runs back from right to 

left covering cell walls of vertical orientation at the level just above the level already 

numbered. When we reach the left end, the inclined members are numbered from left 

to right at the next higher level and this procedure continues till we reach the top level 

having inclined member alone. This numbering is stored in an array and we will refer this 

as the index of cell walls. Therefore, this array stores information about two dimensional 

space in a single array with one index. 

In figure 2.8 we plot the strain energy (as a percentage ofthe total strain energy of the 

structure) for each cell wall on the horizontal axis for the corresponding cell wall index 

on the vertical axis. This choice is deliberate since it captures the energy distribution 

through the thickness if we consider two cell wall indices separated by the number of 

cell walls in a row. Keeping the numbering scheme in the cell wall indices in mind, we 

now deduce the following from figure 2.8: 

(i) The vertical cell walls store negligible amount of strain energy- the cell wall indices 



Chapter 2. Effective medium theory for statics and dynamics 32 

correspond to the periodically placed short vertical lines in figure 2.8. This means that 

the vertical cell walls behave as rigid bodies- a fact previously known for a uniform 

strain fields as in uni-axial tension. In case of uniform strain field, the vertical cell walls 

translate away from each other. For beam bending deformation, they rotate with respect 

to each other. 

(ii) For a particular axial location, the energy stored in the cell walls close to the 

centre line of the overall bulk is less compared to that in the cell walls away from 

the centre line. This conforms with the trend that one would expect for a continuum 

beam. The trend for strain energy density (strain energy per unit volume) for continuum 

beam bending shows a parabolic variation through the thickness. This variation is 

approximately observed for the case of cellular beam too- if we joined the peaks of each 

'spike' in figure 2.8, we obtain a trend that is approximately parabolic. 

(iii) When we move left to right (i.e. from the fixed end to the loaded end) the strain 

energy in the inclined members reduces. This conforms with the continuum behaviour 

where the curvature of the neutral axis is maximum at the fixed end and zero at the 

loaded end. Keeping in mind that the strain energy density for continuum beams is 

proportional to the square of the curvature, the trend within each 'spike' in figure 2.8 

shows a continuum behaviour of the cellular beam. 
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Figure 2.8: Distribution of the bending strain energy among the cell walls due to 
transverse bending of a cantilever beam subjected to tip load. The beam is made of 
regular hexagonal cells having orientation 1. The bending energy accounts for 99.99% 
of the total strain energy. 
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§2.4.3 Statics of beams made of hexagonal cells exhibiting orthotropy 

Non-uniform hexagonal cells are generated next by changing h/t or e or both. The 

loading and the boundary conditions are kept the same as before. Table 2.3 shows the 

ratios of E; I E'{ and E; I E2 as calculated for four samples with various combinations of 

hit and e. All the models possess 20 rows of cells stacked vertically. 

Orientation Geometric data E*IE* 2 1 E*IE* b 1 E*IE* b 2 
Orientation 1 hit = 2 

e = 45° 14.38 1.15 0.08 
Orientation 1 hll 0.5 

e = 60° 23.40 1.17 0.05 
Orientation 2 hll = 2 

e = 45° 14.65 13.62 0.93 
Orientation 2 hll 0.5 

e = 60° 22.37 23.94 1.07 

Table 2.3: The ratio E; I E'{ and E; I E2 for beams made of hexagonal cells exhibiting 
orthotropy. 

Table 2.3 shows the ratio of the Young's modulus obtained from the bending exper­

iments and the value of the Young's modulus in the axial and the transverse direction 

for an infinite lattice. When the cells are having orientation 1 (see figure 2.2), E'{ repre­

sents the Young's modulus in the axial direction; E2 i.e. the modulus in the transverse 

direction is much higher than E'{ (see column 3 of the first two rows). For beams made 

of such cells, the ratio of the elastic modulus obtained from the bending experiments 

and E'{ is close to 1 (the last but one column of the first two rows of table 2.3), whereas 

absurd values of the ratios are obtained when the Young's modulus in the transverse 

direction E2 is used (see the last column of the same two rows). Similarly, for the cells 

having orientation 2 (see figure 2.3), E'{ is much less than E2 (see column 3 of the last 

two rows). Yet the ratios are again close to 1 (the last column of the last two rows) 

when calculated based on E2. In spite of the strong orthotropy, the ratio of the elastic 

modulus obtained from the bending experiments and the elastic modulus in the axial 

direction is close to 1 for all models. This suggests that the effect of the Young's modulus 

in the transverse direction is not so significant for bending of orthotropic beams. 

§2.4.4 Static deflection of cellular beams having triangular cells 

The geometric data used to generate the cellular beams having triangular cells are pre­

sented in tables 2.4 and 2.5 for the two orientations. The displacement field due to a 
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tip load on a cantilever beam made of cells with orientation 1 is shown in figure 2.9. 

The pattern generally resembles that of a homogeneous beam. When the value of the 

effective modulus was calculated from the static response of the beam made of cells 

with orientation 1, the ratio of the Young's modulus obtained from a bending numerical 

experiment to the analytical value for a lattice of infinite extent was found to be 1.23. 

This ratio is found to be 0.97 for cells having orientation 2. These ratios approach unity 

as the number of vertically stacked rows of cells is increased. This means that when 

the cell dimensions are very small compared to the overall depth of the beam D, the 

effective medium theory becomes increasingly more accurate. 

When the strain energy distribution in the cell walls is examined, the pattern is very 

similar to that obtained for beams having hexagonal cells (not shown here). Again, the 

cell walls away from the centre line store more strain energy than those close to the 

centre line. However, for the beam with cell orientation 1, the inclined members store 

negligible strain energy. The total strain energy is mainly contributed by the stretching­

compression of cell walls (up to 99.99%). 

Length of the model L 
Overall depth in the transverse direction D 
Length of each cell wall l 
Thickness of each cell wall t 
N umber of cells in the horizontal direction 
N umber of rows of cells vertically stacked 
N umber of nodes 
N umber of elements 

1495 mm 
121 mm 
10 mm 
0.5 mm 
150 
13 
2265 
6436 

Table 2.4: Geometric data of the beam made of triangular cells having orientation 1. 

Length of the model L 
Overall depth in the transverse direction D 
Length of each cell wall l 
Thickness of each cell wall t 
N umber of cells in the horizontal direction 
N umber of rows of cells vertically stacked 
N umber of nodes 
N umber of elements 

1290 mm 
115mm 
10 mm 
0.5 mm 
150 
11 
2265 
6436 

Table 2.5: Geometric data of the beam made of triangular cells having orientation 2. 
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Figure 2.9: The displacement field of a cantilever beam made of triangles when a 
vertical load acts at the free end. The deflected configuration resembles to that of a 
homogeneous beam. 

§2.4.5 Free vibration of beams made of regular hexagonal cells 

The mode shapes and the natural frequencies for beams made of regular hexagonal cells 

shown in figures 2.2 and 2.3 are presented now. These results are calculated using the full 

scale finite element model and are compared with those obtained based on the effective 

medium assumption. When the cell walls are modelled using three node elements, the 

frequencies are calculated within 0.1% (up to the 25th mode) of the values when only 

two node elements were used. This shows the convergence of the model for low order 

modes. Hence, two node beam elements are used here. Two beams made of cells having 

orientation 1 and 2 were generated with 1560 and 2076 cells respectively. 

The number of rows of horizontally running cells is 12 for both the models. The cell 

wall length is kept the same for both the orientations considered. This means that the 

overall length of the beams is different for the two models in order to keep the LID 

ratio of both the beams at about 12.5. The calculations have been carried out for til 

as 0.05 for both the orientations. The corresponding value of area fraction as calculated 

from equation (2.20) is 0.0577. Usually, the area fraction of foams considered in practice 

ranges in the range 0.03 to 0.33 [34]. 

The mode shapes are shown first for identifying the type of mode which will enable 

us to use (2.12) or (2.17) accordingly. The mode shapes for the first ten modes are 

obtained from the corresponding eigenvectors. The eigenvector U T in equation (2.11) 

contains information about the two displacement components and the rotation of each 

node of the finite element model. Again, the displacement components were extracted 

from the eigenvectors and plotted using arrows of length proportional to the magnitude 
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of displacement. Typical plots are shown in figures 2.10 to 2.19. These modes are plotted 

for the beam made of cells in orientation 1. The mode shapes of the beam made of cells 

in orientation 2 resemble those of beams having cells in orientation 1 and are, therefore 

not shown. 

The first mode of vibration (figure 2.10) resembles the first flexural mode of a solid 

cantilever beam. This pattern does not exhibit any node for the motion of the overall 

structure. The displacements increase from zero at the fixed end to a maximum at the 

free end. This variation is not linear, instead it closely mimics the trend for a continuum 

beam. The axial displacements are negligibly small indicating that this mode is primarily 

a bending mode as far the macroscopic behaviour is concerned . 
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Figure 2.10: The first mode of vibration of the beam made of regular hexagonal cells. 
Note the resemblance in the displacement pattern with those commonly found in fixed­
free continuum beams. 

The second and the third modes are shown in figures 2.11 and 2.12 exhibiting one and 

two nodes respectively. The displacement field shows an interesting pattern. Note the 

eddy-like structures near the regions where nodes are expected in an effective continuum. 

The flow pattern around the node of the second mode (figure 2.12) has a counter­

clockwise sense. The arrows shrink to a point as we come closer to the nodal point. On 

the left of this node we have vertically downward displacement whereas on the right of 

this node we have upward displacement. The displacement field in the direction of the 

axis of the cantilever is such that in the vicinity of this node the displacements point from 

right to left at the top; whereas they point from left to right at the bottom. These two 

observations combined, conform with the counter-clockwise flow pattern. In contrast, 

when we encounter a node such that vertically upward displacements are on its left and 

vertically downward displacements are on its right, the flow will have a clockwise sense. 

This is observed from the node closest to the free end of the third mode (see figure 2.12). 

As was the case with the first mode, the second and the third modes also do not show 
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any appreciable displacement along the axis of the cantilever beam. 

Figure 2.11: The second mode of vibration. Note the existence of a 'node' roughly 
where a node for a beam made up of continuum would be found. 

Figure 2.12: The third mode of vibration. Again this mode resembles the third con­
tinuum mode of a beam. There are two 'nodes' at the macroscopic level. 

The fourth mode shows displacements primarily along the axis of the beam (see figure 

2.13). This behaviour is not beam-like. Instead it resembles the first axial mode of a 

continuum rod in tension and compression. The overall fifth mode is again a flexural 

mode (see figure 2.14) and it corresponds to the fourth mode in the series of the bending 

modes. Further, the sixth, eighth and the ninth modes are flexural modes (see figures 

2.15, 2.17 and 2.18). The sixth mode is the fifth in the series of the flexural modes 

and, contain four nodes. Similarly, the eighth and the ninth mode are the sixth and the 

seventh in the bending series. 

The seventh and the tenth modes are the second and the third modes in the series 

of axial modes (see figures 2.16 and 2.19). In the case of the seventh mode, a zone of 

zero displacement can be seen. The 'eddy-like motion' in the nodal zone is not observed 
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in this case as was found in the case of the bending modes. Instead, the arrows in the 

central portion meet at the nodes from the opposite directions. The remaining arrows 

on the top portion move vertically upwards, whereas the arrows on the bottom portion 

move vertically downwards. The overall tenth mode possesses two nodes of axial motion. 

The nodal positions from the fixed end are normalised with respect to the overall 

length, and presented in table 2.6. The positions of the nodes shown in figures 2.10 

to 2.14, are estimated from the plots by noting the reversal of direction of the vertical 

component of the arrows. The table indicates that the overall mode shapes are very 

close to the mode shapes of homogeneous slender beams. 

Mode no. Medium 1st node 2nd node 3rd node 
Continuum beam [49] - - -

1 
Cellular beam - - -

Continuum beam [49] 0.78 - -
2 

Cellular beam 0.77 - -

Continuum beam [49] 0.50 0.87 -
3 

Cellular beam 0.49 0.84 -

Continuum beam [49] - - -
4 

Cellular beam - - -

5 
Continuum beam [49] 0.36 0.64 0.91 

Cellular beam 0.34 0.63 0.88 

Table 2.6: Comparison of the position of the nodes between the cellular beam and a 
solid beam . 
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Figure 2.13: The fourth mode of vibration. This mode, unlike the previous three as in 
figures 2.10 through to 2.12, shows axial mode of vibration at the macroscopic level. 

The results for the first ten frequencies are presented next. As pointed out earlier, the 

first three modes and the fifth mode are primarily bending modes. Therefore, equations 

(2.12) and (2.13) are applicable. Similarly, the frequencies are calculated for the sixth, 

eighth and the ninth modes. Equation (2.17) is used to calculate the fourth frequency 
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Figure 2.14: The fifth mode of vibration. There are three nodes as expected. The 
distance between two nodes now approaches the depth, but still the overall beam-like 
behaviour is remarkable. 

Figure 2.15: The sixth mode of vibration. This mode is the fifth in the series of flexural 
modes. It has four nodes as expected. 

since this mode corresponds to the first axial mode. The same equation is used for the 

seventh and the tenth mode as well because they are the second and the third in the 

series of axial modes respectively. The continuum relationships use equations (2.18) or 

(2.19) for the effective modulus . The density of the effective medium is calculated from 

equation (2.20). The value of the effective Poisson's ratio for the Timoshenko shear 

correction is used as 1 for both the cell orientations [34J and equation (2.13) is used to 

determine the flexural frequencies for the effective continuum. 

Figure 2.20 shows comparisons of the values of the first ten natural frequencies ob­

tained from the finite element analysis and the continuum relationship for orientations 

1 and 2 respectively. The horizontal axis represents the mode number. The cells in 

both the orientations are regular hexagons (hll = 1 and () = 30°) having the value 

of til = 0.05. The frequencies are normalised to obtain the fundamental frequency as 

unity in each case. This means that the modal frequencies for each set of calculations 

are divided by the fundamental frequency in that set. Similarly, the axial frequencies are 
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Figure 2.16: The seventh mode of vibration. It is the second mode in the axial vibration 
series. 

Figure 2.17: The eighth mode of vibration. This mode is the sixth in the series of 
flexural modes. There are five nodes as expected. 

normalised with respect to the first axial frequency as computed from the finite element 

modeL The flexural modes are shown in the top figure of 2.20. The figure shows that the 

frequencies obtained from the finite element analysis and the continuum relationship for 

both the orientations are close for the first few modes. This match starts deteriorating 

with increase in the mode number. 

The fundamental natural frequencies obtained from the finite element simulations 

for orientations 1 and 2 are 2.25 Hz and 1.73 Hz respectively. The difference in the 

fundamental frequency is attributed to the different values of the mass per unit length 

for the cantilever. This is because the number of cells accommodated within the same 

area is different for the two orientations. The ratio of the number of cells for the first 

orientation to that for the second orientation is about 0.75 which is approximately equal 

to the ratio of mass per unit length p* A for the two cases. Thus the frequencies must be 

in the ratio of the reciprocal of the square root of p* A i.e. approximately equal to 1:0.87 

because the effective modulus is the same for the two directions. The computationally 
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Figure 2.18: The ninth mode of vibration. It is the seventh mode in bending series. 
Note the presence of six nodes. 

Figure 2.19: The tenth mode of vibration. It is the the third mode in axial vibration 
series. 

obtained ratio of 1:0.77. The difference may be attributed to the fact that the cellular 

structures are not homogeneous and possibly the shear correction required for the two 

orientations are different. 

The Euler-Bernoulli beam theory does not account for the effect of shear. As the 

mode number increases, shear induces more flexibility and thus, reduces the natural 

frequencies. When Timoshenko correction is used via equation (2.13), the discrepancy 

between the finite element results and the effective medium calculations is reduced; yet 

there is a progressive deviation of the frequencies of the cellular beam with mode number 

(see figure 2.20). The deviation increases as the wavelength approaches the overall depth 

of the sample. At this stage, a cellular beam starts behaving as a two-dimensional solid 

rather than a one-dimensional beam. Consequently, the effective medium theory based 

on Euler-Bernoulli or Tirnoshenko beam theory is no longer applicable. We will look 

into the dynamic behaviour in the higher frequency range in the next chapter. 

Comparisons of the natural frequencies for the axial modes are made in the bottom 
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Figure 2.20: Comparison of the natural frequencies of the cellular beams as calculated 
by the finite element analysis with those from the effective medium theories. The top 
half and the bottom half show the frequencies associated with the flexural and the axial 
modes respectively. The beams are made ofregular hexagonal cells (hll = 1 and e = 30°) 
of orientation 1 and 2 (see figures 2.2 and 2.3). The value of til is 0.05. 

figure of 2.20. The overall agreement between the finite element computations and the 

rod theory (equation 2.17) is excellent. The third frequency deviates less than 3% from 

the values predicted by the effective medium theory for both the orientations. The 

difference for the axial modes is much less compared to that for the flexural modes. 

The reasons for this are three fold. Firstly, the Young's modulus used for the effective 

medium theory exactly represents the stretching-compression behaviour. Secondly, only 

the first three modes in the axial series are considered. Larger discrepancy is expected 

for higher modes because the one-dimensional rod theory is not valid. Finally, there is 

no shear correction for axial motion unlike the case of beam bending. 

The values of the fundamental frequencies in the axial motion are 40.69 Hz and 33.88 

Hz respectively corresponding to orientation 1 and orientation 2 of the cells. Again, this 
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discrepancy is due to the differences in the mass per unit length p* A for the two models. 

The ratio of the frequencies (finite elernent)is 1:0.83 which is close to the continuum 

value equal to 1:0.87. 

Instead of using equations (2.18) and (2.19) of Gibson and Ashby, bounds on the 

Young's modulus based on the homogenisation theory can be used. Torquato et al. [96] 

applied Hashin-Shrikman (HS) bounds [50] for the cellular structures (mentioned in sec­

tion 1.2.1). The HS upper bounds for the Young's modulus in the low density asymptotic 

limit (p* Ips « 1) becomes, 
E* 1 p* 
-<--. 
Es - 3 Ps 

(2.24) 

In the case of the two models described in this section, the maximum value of E* 

calculated from the above expression is 1.34 GPa. This value can be used for deducing 

the upper bound of the natural frequency using (2.12) or (2.17). However, the value of 

the Young's modulus 1.34 GPa is much greater than 0.02 GPa, evaluated using (2.18) 

or (2.19). Three point bounds proposed by Hyun and Torquato [57] may be used for a 

better estimate of the modulus in this case. 

§2.4.6 Vibration of hexagonal cells exhibiting overall orthotropy 

It was remarked in section 2.3.2 that the Young's modulii for two orthogonal directions 

are equal for regular hexagons (i.e. h land () 30°). When hexagons do not have all 

sides equal andlor the included angle is not 120° but mirror symmetry about two planes 

is preserved, then we expect an overall orthotropy of the medium. Numerical results for 

cellular beams made up of such cells for two cases are described next. 

The first orthotropic model beam is made of cells of orientation 1 (hll = 1.5 and () = 

45°), whereas the second is rnade of cells of orientation 2 (hll = 0.5 and () = 60°). The 

LI D ratio of the two beams are 12.23 and 12.48 respectively. The geometric parameters 

for the two beam, are as given in tables 2.7 and 2.8. 

Figure 2.21: A cellular beam made of non-uniform hexagonal cells (hll 1.5 and 
() 45°) having orientation 1. The beam runs horizontally as before. 

Figure 2.21 shows a part of the orthotropic beam made of cells having orientation 

1. The overall mode-shapes resemble to those of the beams made of uniform hexagons 
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Figure 2.22: A cellular beam made of non-uniform hexagonal cells (hll 
e = 60°) having orientation 2. 

Length of the model L 
Overall transverse depth of the model D 
Length of an inclined cell wall l 
Length of a vertical cell wall h 
Thickness of each cell wall t 
N umber of cells in the horizontal direction 
Number of rows of cells vertically stacked 
N umber of nodes 
Number of elements 

2969 mm 
249.8 mm 
10 mm 
15 mm 
0.5 mm 
210 
11 
5052 
7355 
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0.5 and 

Table 2.7: Geometric data of the beam made of non-uniform hexagonal cells of orien­
tation 1. 

Length of the model L 
Overall transverse depth of the model D 
Length of an inclined cell wall l 
Length of a horizontal cell wall h 
Thickness of a cell wall t 
N umber of cells in the horizontal direction 
N umber of rows of cells vertically stacked 
N umber of nodes 
N umber of elements 

1497.6 mm 
125 mm 
10 mm 
5 mm 
0.5 mm 
109 
12 
2860 
4167 

Table 2.8: Geometric data of the beam made of non-uniform hexagonal cells of orien­
tation 2. 

and, therefore, the mode-shapes are not shown here. The frequencies as calculated from 

the finite element simulations and those based on equations (2.12) through to (2.17) 

and equations (2.18) through to equation (2.20) are compared in figure (2.23). The 

normalisation is carried out in the same way as was done before for the regular hexagons. 

We observe that the frequencies calculated based on E* of axial stretching match well 

with the finite element results for the first few modes: a discrepancy of about 10% is 

observed up to the fifth mode. The deviation increases to 20% for the seventh mode 

of the bending series. In contrast, frequencies predicted based on E* in the transverse 

direction start deviating rapidly with mode number. The first frequency predicted based 

on E* in the transverse direction is 2.85 times of that calculated by the finite element 
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Figure 2.23: Comparison of the natural frequencies of orthotropic cellular beam as 
calculated by the finite element analysis and the isotropic effective medium theory. The 
beam is made of non-uniform hexagonal cells (h/l = 1.5 and () 45°) of orientation 1 
(see figure 2.21). Value of t/l is 0.05. Frequencies corresponding to both the axial and 
the bending modes are presented. 

simulation (this is not so clear on the wide range of the vertical scale in the top figure 

of 2.23). 

The fact that there is a good agreement for low frequencies when we use modulus in 

the axial direction for transverse motion indicates that orthotropy due to cell shape has 

little effect on the dynamic behaviour at least for the lower modes. As the mode number 

increases, the deformations in the transverse direction would have increasingly important 

role and they are affected by the Young's modulus in the transverse direction: a fact not 

accommodated by the isotropic beam formula 2.12. Further, the cellular medium itself 

will be another source of discrepancy, similar to the case of the isotropic cells. The axial 

modes (see bottom figure of 2.23) also show good agreement for the calculations based 

on E* of axial stretching. The deviation is less than 3% up to the third mode. 

The next model has cells in the second orientation but there is no in-plane isotropy 

now (see figure 2.22). Results on the lines of figure 2.23 are presented in figure 2.24. 
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Figure 2.24: Comparison of the natural frequencies of an orthotropic cellular beam as 
calculated by the finite element analysis and the isotropic effective medium theory. The 
beam is made of non-uniform hexagonal cells (hll 0.5 and () = 60°) having orientation 
2 (see figure 2.22). The value of til is 0.05. Frequencies associated with the flexural and 
the axial modes are presented. 

As before, the top figure refers to the flexural modes whereas the bottom figure refers 

to the axial modes. Once again, the calculations for this orthortropic beam match well 

with the finite element simulations when the elastic properties in the axial direction 

are used in the Euler-Bernoulli calculations. The error increases from 12% for the fifth 

mode to 33% for the seventh mode. In contrast, the frequencies calculated on the basis 

of the transverse Young's modulus are quite erroneous. The first predicted frequency is 

80% less than the corresponding value obtained from simulations. We expect a lower 

predicted frequency from this calculation because E=xial > Etransverse for the orientation 

of cells as in figure 2.24. The axial modes also do not match very well except the first 

mode. The third mode is 60% off. Frequency calculations based on E* in the transverse 

direction show larger error. 



Chapter 2. Effective medium theory for statics and dynamics 47 

§2.4.7 Vibration of beams made of triangUlar cells 

Two models of cellular beams having triangular cells in two different orientations (as 

in figures 2.4 and 2.5) were studied. Ten modes were extracted from the finite element 

model and the mode types were identified by examining the mode shapes. Out of the 

first ten modes, seven modes were essentially beam bending modes and the remaining 

three modes were primarily axial modes. The frequencies were normalised in each case 

as explained previously. The results are plotted in figure 2.25. The top figure shows the 

variation of the natural frequencies with the mode number in the bending series. The 

bottom figure shows the three axial vibration frequencies with the mode number in the 

overall extension-compression series. 

In case of the modes in the bending series, the finite element simulations are com­

pared with the analytically obtained frequencies on the basis of (i) the effective modulus 

expression for infinite lattices [56], and (ii) the frequency equations (2.12) or (2.13) for 

the Euler-Bernoulli beam bending formula or the Timoshenko beam bending formula. 

When the Euler-Bernoulli beam bending theory is used, the first three modes show ex­

cellent agreement with the numerically obtained values. This agreement deteriorates 

with mode number and errors of about 50% are observed for the seventh bending mode. 

When shear correction is incorporated, the agreement is substantially improved~ the 

error now comes down to the order of 10%. This implies that the disagreement between 

the simulation results and the Euler-Bernoulli calculations based of effective medium 

values taken for an infinite lattice is largely due to the inadequacy in the Euler-Bernoulli 

theory rather than any cellular features in the problem. 

The three axial modes show excellent agreement for cells in both the orientations. 

This confirms the validity of the effective medium theory for low order axial modes. 

§2.4.8 A method for approximately calculating the fundamental fre­

quency 

The deformed shape of a fixed-free beam under tip loading resembles the first mode of 

vibration (see figures 2.6 and 2.10). This suggests that the static response vector could 

be used as a trial vector in a Rayleigh's quotient approximation. Therefore, the cellular 

beam was first analysed under a vertical static load that acts at the node on the neutral 

axis of the free-end. The stiffness matrix K and the force vector f were generated as 

before. The static equilibrium leads to a set of algebraic equations Kq = f, in the form 

of equation (2.4). This equation was solved to calculate the response vector q. 
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Figure 2.25: The natural frequencies of beams made oftriangular cells (cell orientations 
1 and 2) compared with those of an effective medium. The top half and the bottom half 
show the frequencies associated with the flexural and the axial modes respectively. The 
value of til is 0.05. 

At this stage, the information about the translational as well as the rotational 

degrees-of-freedom under static loading are available through the vector q. The stiffness 

matrix K and the inertia matrix M incorporate all the details about the topology, geom­

etry and the properties of the individual cell walls. Computationally, the most expensive 

step is solving the eigenproblem, equation (2.11), when K and M are large. Usually, 

assembly is a relatively inexpensive process. Therefore, a Rayleigh's quotient based 

approximation to estimate the fundamental frequency of the overall structure without 

the solution of the eigellproblem (2.11) is proposed. Since the static deflection shape 

resembles the first mode of vibration, the value of the Rayleigh's quotient will be a good 

approximation for the first eigenvalue of (2.11) when the static deflection shape q is used 

as a trial vector, i.e. 

(2.25) 
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Two samples, each made of regular hexagonal cells of orientation 1 and 2 (used 

before) and another sample made of non-uniform hexagonal cells (orientation 2, hll = 

0.5 and e 60°) were analysed. All the models have the same values of til as 0.01. 

The errors with respect to the full scale eigencalculations (2.11) for the three cases is 

about 1.6%, 1.5% and 1.7% respectively for the three cases. The solution of equation 

(2.4) is substantially cheaper than solving the eigenvalue problem of equation (2.11). 

For example, for the first model, the total floating point operations required for the 

approximate method is less than 1 % of those required for extracting one eigenvalue. 

§2.5 Conclusions 

Since analytical results for the effective medium properties for an infinite hexagonal 

and triangular lattice exist, the applicability of these values to predict the response of 

a beam was examined. Six cases of cell lattice were considered: (i) regular hexagons 

in orientation 1, (ii) regular hexagons in orientation 2, (iii) hexagons with two-fold 

rotational symmetry in orientation 1, (iv) hexagons with two-fold rotational symmetry 

in orientation 2, (v) triangles in orientation 1 and (vi) triangles in orientation 2. In all 

the cases, the response calculated from the finite element simulations matched closely 

with the values predicted by the use of the effective elastic properties for an infinite 

lattice. The match improves with the increase in the number of rows of cells running 

along the length of the beam. This is explained by the fact that the theoretical values 

are based on a uniform strain field and this situation in the beam bending problem is 

realised more accurately when the cell size is infinitesimally small compared to the depth 

of the beam in the transverse direction. 

When the hexagons are not regular and exhibit overall orthotropy, the response 

predictions are accurate when the properties corresponding to stretching in the axial 

direction are used. There is a gross mismatch in the simulation results and the theoretical 

predictions if the properties in the transverse direction are used. This can be explained 

because cells extend or compress in the axial direction for beam bending problems. 

The strain energy distribution in the cell walls was studied for the cellular beam 

bending problem. In all the cases, the pattern broadly resembles the distribution in 

the continuum counterparts. For example, the strain energy density varies parabolically 

across the depth and cell walls store greater energy along the length in areas where large 

value of curvature of the centre line is observed. 

The fundamental natural frequency was fairly accurately predicted on the basis of 
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effective medium calculations in all the cases. The agreement with the predictions based 

on the effective medium values is good for the first few modes. However, this progres­

sively deteriorates with mode number. The agreement is improved when Timoshenko 

shear correction is introduced, as expected. The finite element model produces results 

for the overall axial vibration modes in addition to the bending modes. These modes 

are very accurately predicted when effective medium calculations are preformed. This is 

because the axial modes possess a strain field that resembles the uniform strain in the 

infinite lattice calculations. In addition, unlike the beam bending problem, there is no 

source of error due to Timoshenko shear for axial deformation. 

Guided by the observation that the static deflection shapes for cantilever beams 

under tip load resemble the first mode of bending vibration, a Rayleigh's quotient based 

approximation was proposed. The fundamental frequency was calculated within an 

accuracy of 2% with a computational expense less than 1% of that of the eigenvalue 

extraction. 



c= 3 -----------------' 
Statistical analysis of modal 

spacing and progressive departure 

from the continuum behaviour 

§3.1 Introduction 

It was concluded in the previous chapter that cellular structures exhibit a continuum 

behaviour for low frequency dynamics. The effective elasticity can be approximately 

taken as the effective properties for static calculations. However, it was noted that this 

changes with the increase in the mode number. In this chapter this departure from the 

continuum behaviour is investigated systematically. Trends in modal density (number 

of modes over a band of frequency) for the continuum are compared with those arising 

out of cellular matter of the same external dimensions. 

In order to get an insight into the statistical distribution of modes, a large number 

of modes need to be evaluated. This raises the issue of convergence in the calculations. 

When a small fraction of the total number of degree-of-freedom available in the model is 

used, the calculations are found to be satisfactory and mesh refinement in not required. 

In most cases considered in this chapter, when about 10% of the total number of degrees­

of-freedom are accepted, the accuracy of calculations of the highest mode used in the 

statistical analysis is found to be satisfactory. 

In the previous chapter, only the first few modes were examined in the light of an 

effective medium theory. The Euler-Bernoulli beam theory or improvements over it 

(e.g. shear correction due to Timoshenko) were adequate to capture the behaviour of 

51 
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the cellular beam when the external shape of the continuum beam is the same as the 

cellular beam. When the statistics of modal distribution is to be studied, the continuum 

needs to be modelled more carefully for comparisons with the modal distribution arising 

from the cellular structure. Even the most sophisticated beam theory may be inadequate 

for this. Therefore, modal density has been calculated from cantilever beams modelled 

as plane stress problem in this chapter. 

We were restricted to the hexagonal and the triangular cells in the previous chapter 

when we needed to compare the dynamics results with those calculated from effective 

elasticity because analytical expressions are available for a limited class of cell geometries. 

This restriction is removed in this chapter and, therefore, in addition to the beams made 

of triangular, and hexagonal cells, those made of square and irregular cells are also 

considered. 

§3.2 Numerical experiments using the finite element method 

Again, finite element models of cantilever cellular beams are considered. While shear in 

cell walls has negligible effect on the accuracy of the first few modes (about 100 modes), 

the refined model is used in this chapter. When the mesh is refined by by inserting 

an extra internal node for elements representing a cell wall, the frequency calculations 

improve slightly but they are always within 3% of the values for the coarse mesh (up to 

about 800th mode). Shear in the cell wall is modelled here using a quadratic Timoshenko 

beam element. The L/ D ratio of the beam is taken as 1/12. The overall dimensions of 

beams made of various topologies are kept the same for comparison purposes. The area 

fraction (the same as the volume fraction if the depth is is constant) is also kept the 

same for all the models. 

The plane stress problem is generated by filling the porosity with a hypothetical 

material having the density and the effective Young's modulus equal to those of the 

cellular structure. The effective Young' modulus E* is calculated from the fundamen­

tal frequency WI of the cellular beam. The Young's modulus is evaluated using beam 

formula [73] 

(3.1 ) 

with Cl =1.875 since the fundamental frequency is always flexural. The Poisson's ratio 

values are taken from the literature when known; and it is set at 1/3 for irregular cells. 

The continuum beam is modelled using the 8 noded plane stress element (CPS8) in 

ABAQUS [2]. 
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§3.3 Results and discussions 

The overall length L 600 mm and the depth in the transverse direction D = 50 mm 

give the L/ D ratio as 1/12. The width B of the beam is taken as unity. The area fraction 

of the cellular beam is chosen as 0.044, which is kept the same for all the models. 

§3.3.1 Modal distribution for beams made of triangular cells 

Beams made of triangular cells having orientation 1 (see figure 2.4) are analysed first. 

The geometrical data are given in table 3.1. The til ratio is 1/81. Therefore, mod­

elling each cell wall as Euler-Bernoulli beam is valid. The Young's modulus E* of the 

hypothetical continuum is evaluated using equation (3.1), based on the fundamental fre­

quency of the cellular beam. The value of the Poisson's ratio v* is taken as 1/3 [56]. 

Similarly, the mass density p* is calculated using (2.20). We recall that structures made 

of uniform triangular cells are isotropic (see section 1.2.1). Therefore, E*, v* and p* 

completely define the properties of the continuum beam. The natural frequencies of the 

solid beam are now obtained solving the eigenvalue problem (2.11). All the frequencies 

are then normalised with respect to the fundamental frequency. 

Length of the model L 
Overall depth in the transverse direction D 
Length of each cell wall 
(except the ovehanging cell walls at the free end) 
Length of the over hanging cell walls 
Thickness of each cell wall t 
N umber of nodes 
N umber of elements 

600 mm 
50 mm 
5.25 mm 

2.63 mm 
0.065 mm 
1392 
3899 

Table 3.1: Geometric data for the beam made of equilateral triangles having orientation 
1 (see figure 2.4). 

Figure 3.1 shows comparisons of the normalised cellular beam frequencies with those 

of a continuum of the same external dimensions. The values of the first 800 frequencies 

are plotted. The mode number scale is divided into two parts: the low mode number 

end spans the first 30 modes (the top figure), whereas the high mode number end shows 

the remaining modes (the bottom figure). This is deliberately done to present the 

distribution with different resolutions. These modes represents about 5% of the total 

number of modes (15873) available in the model. Therefore, convergence of modes is 

not an issue here. 
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Figure 3.1: Comparisons of the natural frequencies of a beam made of triangular cells 
with those of an equivalent continuum. The first few frequencies of the cellular beam 
are very close to those of the continuum. Later, the frequency curve of cellular beam 
becomes close to the horizontal indicating small increase in frequency per mode i.e. very 
high modal density. 
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Figure 3.2: The top figure is the modal density plot of a beam made of triangular cells, 
whereas the bottom figure is the that for a continuum. Note that for triangular cells, 
592 modes appear between 8 kHz and 10 kHz. This shows a sudden decrease in the 
modal separation. In contrast, the continuum has only 13 modes in the same frequency 
band. 

The plot in figure 3.1 shows three identifiable regions. The first few frequencies of 

the cellular beam are very close to those of the plane stress continuum. For example, the 

eighth and the tenth modal frequencies are lower than the corresponding frequencies of 

the continuum by 8% and 18% respectively. The discrepancy between the values obtained 

for the cellular beam and those from the plane stress problem increases gradually with 

mode number. The curve for the cellular beam increasingly falls below that for the 

continuum. This indicates that the frequency spacing for the cellular beam shrinks when 

compared to the continuum counterpart. Therefore, the modal density for the cellular 

medium grows relative to a continuum of the same shape and size. This regime of modal 

distribution is followed by a regime of extrelnely high modal density as indicated by the 

near horizontal line. 
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Let us introduce a third length scale ld corresponding to the depth D of the sample. 

The other two length scales, ls and lc, were introduced in the previous chapter. Now, the 

whole frequency regime is roughly divided into three regions. When the wavelength is 

greater than ld, the frequencies belong to region 1. In this frequency band, the wavelength 

may be equal to or less than ls. Structures made of cellular material approximately 

behave as those made of continua with some effective elastic properties in this frequency 

band. On the other extreme, for the frequency band associated with short wavelengths 

comparable or less than lc (region 3), continuum behaviour breaks down and the modal 

density is remarkably high compared to a structure of the same external dimensions but 

made up of continuum. The transition regime (region 2) between region 1 and region 3 

is characterised by wavelengths in the range of ld and lc. 

The cellular beam frequencies show marked deviation from those of the homogeneous 

continuum when the wavelength approaches the depth of the sample ld. At this stage, the 

one-dimensional cellular beam starts behaving as a two-dimensional solid. The cellular 

frequencies are now lower than the corresponding continuum ones. Hence, the cellular 

modes are more closely spaced as compared to those of the continuum. This results in 

an increase in the modal density in zone 2. Wavelengths in this regime are equal to or 

less than ld, but greater than the cell dimension lc. 

The gradual 'softening' of the cellular beam with mode number along with the sud­

den increase in the modal density can be explained on the basis of the microstructure. 

Structures made of continua possess extended modes in the sense that all the parts of the 

structure contribute to the energy expressions. On the other hand, cellular structures 

progressively exhibit localised modes at high mode numbers. This leads to a crowding 

of modes in a narrow band of frequency known as the passband. In the present context, 

region 3 on the mode number scale (the bottom figure in 3.1) represent the local reso­

nance of the individual cell walls. Prior to this extreme situation, there is a transition 

region between the effective medium regime and the cell wall resonance regime. This 

behaviour is very unlike a continuum and we will explore this further with other cell 

geometries. 

The abrupt increase in the modal density can be clearly seen in a plot showing the 

distribution of modes. The histogram of the number of modes in the selected bands of 

frequency is shown in figure 3.2. A distribution of a total of 609 modes has been shown 

as a function of frequency. Note the last four frequency bins in which there is a sudden 

rise in the number of modes. There are only 17 modes up to 8 kHz and the remaining 
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592 modes appear between 8 kHz and 10 kHz. In contrast, there are only 13 modes 

within the same frequency band in the case of the equivalent continuum (see figure 3.2). 

The type of the modes appearing in the frequency band beyond 8 kHz will be explored 

next. 

It is well known that the mechanics of triangular lattices is dominated by cell wall 

stretching as opposed to cell wall bending (as in hexagonal lattices). While this is true 

for most statics problems, the story is incomplete for the case of dynamics. If the cell 

walls have to resonate locally, this motion must be dominated by bending deformations. 

The natural frequencies due to the stretching mechanism of deformation are indepen­

dent of the cell wall thickness (both stiffness and inertia increase linearly with thickness), 

whereas the bending dominated nlOdes show a linear variation with thickness (stiffness "" 

thickness3 and inertia"" thickness, hence the ratio"" thickness2 and therefore frequency 

"" thickness). A cOIlvenient way to broadly distinguish the mode type, therefore, is to 

change the cell wall thickness systematically and observe the change in the modal fre­

quencies. The results of this are presented in figure 3.3. Each marker type in the figure 

refers to a particular cell wall thickness. If the modes corresponding to the (approx­

imately) horizontally running group of markers did correspond to cell wall resonance, 

then the level of these horizontal lines must be a measure of the cell wall resonance 

frequency in each case. As can be seen from the figure, the level of these horizontally 

running markers is in fact proportional to the cell wall thickness confirming that the 

mechanism of strain energy storage in the band is cell wall bending. There are a large 

number of nlOdes having approximately the same natural frequency because for each 

overall mode, a different cell wall may resonate. In principle, the number of cell wall 

resonance modes should be equal to the number of the cell walls. 

The markers on the initial rising part of the modal frequency curve in each case do 

not show a strong dependence on thickness, which confirms that the low order modes 

(the extended modes) are cell wall extension dominated when the lattice is made of 

triangular cells. This independence of thickness is pronounced for the first ten modes 

beyond which the transition regime comes into play. 

An approximate estimation for the cell wall resonance frequency 

If cell walls resonated as isolated structures, one could determine the frequency of this 

oscillation. In practice, the ends of a cell wall are connected to the rest of the lattice and 

there is no easy way of determining the stiffness of a lattice analytically. However, the 
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Figure 3.3: The natural frequency vs mode number plot for various thicknesses of the 
cell wall of the beam made of triangular cells. The plot indicates that at the lower mode 
number, modes are independent of thickness (hence stretching dominated) whereas the 
high mode number modes have frequency ;::::: thickness (hence cell wall bending domi­
nated). 

bounds on the cell wall resonance can be obtained rather easily. Since the ends of a cell 

wall are connected elastically to the rest of the lattice, the stiffness offered by the lattice 

could be represented by effective springs. In the extreme case of the lattice offering no 

flexibility, the ends could be modelled as clamped. This frequency must be the upper 

bound for the cell wall resonance frequency because clamped beam has least freedom­

applying Rayleigh's theorem on systems with constraints, it follows that the greatest 

frequency is that of a beam with both ends clamped. When calculated for the cell wall 

parameter used in the simulations, this frequency is calculated as 12.3 kHz. Therefore, 

the cell wall resonance frequency for the network of beams must be less than 12.3 kHz. 

Encouraged by the calculations on the bounds, a model of a pinned-pinned isolated 

cell wall was considered because it represents the ideal end condition of a member in 

a truss. The resonant frequency is calculated as 5419 Hz, which is much less than the 

frequency of 8360 Hz where bending dominated modes appear in figure 3.2. This showed 

the need of a more realistic model. Since the ends of each cell wall possess three degrees­

of-freedom in a plane (two translations and one rotation), a model for the individual cell 
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Figure 3.4: Model of an isolated cell wall. The end connections with its neighbours 
are replaced by vertical kv, horizontal kh and torsional springs ktheta. 

Figure 3.5: A cellular beam made of square cells. 

wall is presented in figure 3.4. Note that this model is valid only for calculations of the cell 

wall resonance frequency. A vertical spring kv, a horizontal spring kh' and a rotational 

spring ke account for the stiffness at the ends. Since it is very difficult to have an estimate 

for these stiffnesses analytically, these stiffnesses were determined computationally by 

removing a cell wall from the overall cellular beam model and applying forces or moment 

appropriately. The values of kh' kv and ke were numerically calculated as 1.29 x 108 

N/m, 1.16 x 106 N/m and 5.80 N.m/rad respectively. The fundamental frequency of the 

isolated cell wall is now obtained as 8014 Hz. 

§3.3.2 Modal distribution for beams made of square cells 

A cellular beam rnade of square cells (see figure 3.5) is studied next. The geometric 

properties are presented in table 3.2. The til ratio of each member is 1/50. Note the 

value of t here is not the same as the case of the triangular cells. This is to ensure that 

the area fraction for the two models remains the same. The natural frequencies and the 

mode shapes of the cellular structure are calculated by solving the eigenvalue problem 

(2.11) as before. The Young's modulus E* is calculated from the numerically evaluated 

fundamental frequency. The E* value in this case is different from that calculated in the 

case of the triangular cells which can be attributed to the difference in the topology of 

the lattice. 
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Length of the model L 
Overall depth in the transverse direction D 
Length of each cell wall l 
Thickness of each cell wall t 
N umber of nodes 
N umber of elements 

600 mm 
50 mm 
4.5 mm 
0.09 mm 
1608 
3070 

Table 3.2: Geometric data for the beam shown in figure 3.5. 
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The frequencies of the cellular beam having square cells are compared with those of 

an isotropic plane stress beam in figure 3.6. Again, the continuum properties are chosen 

such that the fundamental frequency is matched. Unlike the case of the beam with 

triangular cells, the deviations are significant even for low mode numbers. The reason 

for this discrepancy lies in the fact that the effective continuum is not isotropic for a 

square lattice but it is orthotropic. 

There are three cases of the cellular beam in the results plotted in figure 3.6. All 

the three cases of the cellular beam shown in figure 3.6: (i) using data in table 3.2 when 

the cell walls are modelled as Euler-Bernoulli beams, (ii) same as the first case except 

that the cell walls model includes shear correction, and (iii) using all data in table 3.2 

except the thickness of the cell walls which is doubled. The three cases exhibit a common 

feature- there are three identifiable regions on the mode number scale. The first regime 

is characterised by low frequency continuum modes. When the cell wall thickness is 

doubled, the frequency is approximately doubled (note the approximately doubled slope 

of the line through the origin). This is in contrast with the behaviour for beams made of 

triangular cells. Since frequency rv thickness, it follows that even the lowest modes are 

bending dominated. This is expected for the square topology of cell wall connections. 

A closer look at the mode shape reveals that some of the modes are thickness-shear 

modes. A typical thickness-shear mode is plotted in figure 3.7. Depending on the sign 

of the deformation in a group of cell walls belonging to a row, a thickness-shear mode 

is obtained. Such modes are commonly found in the dynamics of crystal plates/beams. 

Since there are only 12 horizontally running rows of cell walls, the total number of 

thickness-shear modes would also be equal to 12 provided the sign of axial displacement 

does not change along the length. However, the modes observed do show this sign change 

in many cases accounting for a number of thickness-shear modes. The lack of thickness­

shear modes for triangular cells can be attributed to the high stiffness of the triangular 

lattice to shear deformations. 
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Figure 3.6: Comparisons of the natural frequencies of structure made of square cells 
with those of continuum whose properties are chosen to match the fundamental fre­
quency. 

In the second region on the mode number scale (spanning 17 modes starting mode 

number 151 up to and including mode number 167), the natural frequency trend is found 

to be on the up-slope. This means increased modal separation and a fall in modal density. 

Again this behaviour is not in agreement with that for beams made of triangular cells. 

The modes in this region are thickness-shear modes coupled with axial deformation. 

A typical such mode is plotted in figure 3.8. The increase in the modal separation is 

perhaps attributed to the high stiffness of the square cells in the axial direction. 

The final regime at the right end of each curve for shows a relatively small slope 

indicating a high modal density. These modes can be attributed to cell wall resonance. 

Unlike the case of cellular beams with triangular cells, the frequency variation with mode 

number is less flat. This means a relatively high modal separation and a relatively low 

modal density. The reason for this difference lies in a relatively strong coupling between 

the cell walls in case of square lattice as compared to the triangular lattice. In the case 

of the triangular lattice, the cell walls can be approximately imagined to be isolated 

from the adjacent neighbours when cells wall bending resonance takes place. 

The modal frequency curve, for the plane stress problem with properties chosen to 

match the fundamental frequency, is the steepest curve in figure (3.6) (the solid line). 
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Figure 3.7: A portion of the cellular beam showing thickness-shear mode of vibration. 
This is the overall 62nd mode. 

When the modal separation is compared with that of a homogeneous beam, it can be seen 

that the cellular beam exhibits a progressively reduced modal separation (Le. an increase 

in modal density). This observation is in tune with our previous remark regarding the 

case of the beams made of triangular cells. The reason again is the presence of a large 

number of localised modes for cellular structures (equal to the number of cell walls if 

the couping were iufinitesimally weak) as opposed to the homogeneous beam for which 

the modes continue to be extended even for relatively high mode numbers. 

The histograms of modes are shown in figure 3.9. The top figure corresponds to the 

cellular beam whereas the bottom figure refers to a homogeneous isotropic counterpart. 

Note the sudden rise in modal density around the frequency associated with cell wall 

resonance. 

§3.3.3 Modal distribution for beams made of hexagonal cells 

Beams made of regular hexagonal cells (in orientation 1, see figure 2.2) are analysed 

next. The geometric data of the beam are given in table 3.3. The til ratio for the 

cell walls is 1/27. Figure 3.10 shows the comparison of the frequencies of the beam 
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Figure 3.8: A portion of the cellular beam showing thickness-shear mode coupled with 
axial mode. This is the overall 163rd mode. 

made of hexagonal cells with a continuum beam with properties chosen to match the 

fundamental frequency. Again, the mode number scale is divided into two parts to show 

the low mode number end and the high mode number end with different resolutions. 

Lattices made of regular hexagonal cells are known to exhibit isotropy. The plot shows 

that the cellular beam frequencies agree with those of the homogeneous beam for low 

mode numbers indicating the validity of the equivalent isotropic continuum model in 

this regime. The 0 to 1 kHz band contains 16 and 14 modes for the cellular and the 

homogeneous beams respectively. 

Length of the model L 
Overall depth in the transverse direction D 
Length of each cell wall l 
Thickness of the cell walls t 
N umber of nodes 
N mnber of elements 

600 mm 
50 mm 
3.05 mm 
0.11 mm 
2748 
3995 

Table 3.3: The geometric data for the beam made of regular hexagonal cells. 

The discrepancy between modal frequencies for the cellular beam and those for the 
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Figure 3.9: Comparisons of the modal density plot for the square cells and the contin­
uum for the first 800 modes. A sudden increase in the modal density is observed in the 
case of the square cells in the regime of cell wall resonance. 

homogeneous beam increases with mode number. There are no identifiable bands for 

frequency that could be associated with a change in the mechanism of deformation 

(unlike, for example, the case of triangular cells when the low frequency modes were cell 

wall stretching dominated whereas the cell wall resonance is bending dominated; or the 

case of square calls in which the thickness shear modes have a characteristic band of 

frequency). Therefore, the departure from the continuum behaviour is gradual in case 

of the hexagonal lattice. 

The trend of modal separation can be observed in the plot for modal density (see fig­

ure 3.11). The increase in the modal density with mode number is much more pronounced 

for the cellular model than that for the the continuum beam having the fundamental 

frequency matched. The total number of modes appearing in the 0 to 10 kHz band is 

961 and 476 for the cellular beam and the continuum beam respectively. 

When the thickness of the cell walls is doubled, all the frequencies are approximately 
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Figure 3.10: Comparisons of the natural frequencies of a beam made of hexagonal 
cells with those of continuum whose properties are chosen to match the fundamental 
frequency. 

doubled indicating cell wall bending as the dominant mechanism of strain energy storage 

for all the modes. When shear correction is introduced, the frequencies are practically 

unaltered which means that shear in the cell walls is unimportant up to the modes under 

consideration. 

§3.3.4 Modal distribution for beams made of irregular cells 

To create a model of a beam having irregular cells, Voronoi cells were generated using 

randomly distributed 'seed' points. A rectangular portion was then cut from the block 

of these cells. The edges of each Voronoi cell represents a cell wall (see figure 3.12). 

The structure made of irregular cells is statistically isotropic as the Voronoi cells were 

generated without any directional preference. 

Since the generation of these cells required randomly placed nucleation points for the 

Voronoi cells, there is a distribution of length of the cell walls- shown in figure 3.13. As 
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Figure 3.11: Modal density plot for beams made of hexagonal cells and continuum 
whose properties are matched to give the same fundamental frequency as the cellular 
beam. 961 modes are present in the case of the hexagonal cells in contrast with 476 
modes for the continuum. 

Figure 3.12: A cellular beam. The microstructure is composed of irregular cells. 
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Figure 3.13: The distribution of length of the cell walls of the beam shown in figure 
3.12. 

a result, there is a small fraction of the total number of cell walls that is represented by 

short beams. This is undesirable from the point of view of mechanical modelling since 

the Euler-Bernoulli beam theory breaks down for very short beams. Since it is hard to 

control the length of the cell walls or the relative distance of the nucleation points with 

respect to close neighbours, an alternative approach of eliminating exceptionally short 

cell walls was taken. The nodes were moved such that that the two ends of a short 

beam (shorter than a prescribed threshold) coalesce to a point. The connectivity with 

other neighbours for each of the two merging nodes is left unchanged. The threshold 

of discarding short beams was kept as the thickness t to length l ratio equal to 1:3. 

Although this ratio may appear as one representing a very short beam, in practice, 

there are very few beams of this til ratio. A large majority of cell walls (about 90%) 

have a til ratio of 1:10 or less. A histogram of the distribution of the thickness to 

length ratio is plotted in figure 3.14. Note the strong skewness towards the left end of 

the histogram that represents thin long beams. The geometric data of the model are 

presented in table 3.4. The thickness is taken as the same for all the cell walls. The 

volume fraction of the solid is calculated using expression (2.20) as 0.044. 

The dependence of natural frequencies on the mode number is shown in figure (3.15). 

The initial portion of the graph (the top figure in 3.15) shows a close match between 

the cellular beam frequencies and the homogeneous beam frequencies when the material 

parameters of the homogeneous beam are chosen to match the fundamental frequency. 
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Figure 3.14: Histogram of thickness/length (t/l) ratio for the cell walls for the beam 
shown in figure 3.12. The distribution indicates that only about 10% cell walls have 
til ratio greater than 1/10 whereas 2.5% cell walls have til ratio greater than 1/5. 
Therefore, most of the cell walls (about 90%) have til ratio less than 1/10. 

Length of the model L 
Overall depth in the transverse direction D 
Length of the cell wall material Li li 
Thickness of the each cell wall t 
N umber of nodes 
N umber of elements 

600 mm 
50 mm 
7575.4 mm 
0.175 mm 
1148 
1556 

Table 3.4: Geometric data for the beam shown in figure 3.12. 

A good match up to the seventh mode shows the validity of the effective medium the­

ory in this band of frequency. The agreement is within 7% for up to the 13th mode. 

Beyond about the 20th mode, the cellular beam shows a relatively small modal spacing 

(and hence greater modal density). This is shown by a relatively flattening curve for 

the cellular beam in the top figure of (3.15). The bottom graphs in figure (3.15) show 

this trend changing- the curve for the cellular beam is steeper showing a greater modal 

separation and lower modal density. All this is a significant departure from the contin­

uum behaviour. It can, therefore, be concluded that the effective medium behaviour is 

limited to the first few modes. 

The modal spacing characteristics can be seen ill the histogram showing the distri­

bution of the number of modes in various intervals of natural frequency (figure 3.16). 
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Figure 3.15: Comparison of the natural frequencies against the mode number for a 
beam made of irregular cells with those of a continuum whose properties are matched 
to give the same fundamental frequency. 

The continuum beam shows a steadily increasing trend for modal density whereas the 

cellular beam shows an initially rising trend for modal density which falls gradually for 

high mode numbers. 

When the thickness of the cell walls is doubled all the natural frequencies approx­

imately double (not shown in any figure here). Therefore, the deformation of the cell 

walls is bending-dominated. This happens because most of the cells are polygons with 

the number of sides greater than three. Stretching-compression behaviour may become 

important if there is a significant number of the triangular cells present in the structure. 

Structures made of irregular cells are different from the earlier ones in that the length 

of the cell walls is distributed (see figure 3.13). Therefore, the natural fi'equency of the 

individual cell walls also follows a certain distribution. This has important implications 

to the distribution of the cell wall resonance. In case of lattice structures, a large number 

of cell walls resonate at approximately the same frequency since each cell wall is identical. 
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Figure 3.16: Modal density plot for the beam made of irregular cells (top figure) and 
the beam IIlade of continuum whose fundamental frequency is matched with that of a 
beam having irregular cells (bottom figure). The first 800 modes are considered. 

This leads to a sudden rise in the modal density around the cell wall resonance frequency. 

In the case of beams with irregular cells, this is gradual with TIlode number, hence a lack 

of a band of exceptionally high modal density (as in case of the triangular cells). The 

steeper curve at the high frequency end of for the natural frequency dependence on the 

mode number is in agreement with this general observation. 

Comparisons of the frequencies of all the topologies are shown in figure 3.17. The 

fundamental frequency is the highest for the same area fraction in the case of the trian­

gular cells. This is because triangular lattices deform due to cell wall extension for the 

low frequency regime. While the beams made of hexagonal cells show greatest modal 

density (least modal separation) at high mode number, the transition from low modal 

density to high modal density is gradual in case of hexagonal cells. As oppose to this the 

beams with triangular cells show a sudden increase in modal density since each cell wall 

is practically isolated from the rest once the cell walls start resonating. The square cells 

have an unusual dependence of the modal density on the mode number- this is attributed 
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Figure 3.17: Comparisons of the frequencies against the mode numbers for four topolo­
gies: triangular, square, hexagonal and irregular cells are considered. The first 800 modes 
are shown. 

to a large number of thickness-shear modes. Finally, the beams made of irregular cells 

show an increase in modal density followed by an increase in modal separation- this is 

partially due to (i) the distribution of the cell wall length, and (ii) the resonance of the 

cell walls at the edges at relatively low frequencies. There is one observation common to 

all the cellular topologies studied- the modal separation always decreases with respect 

to the properties matched continuum at the low frequency end of the spectrum. 

§3.4 ConcI usions 

The modal spacing characteristics of cellular beams having various microstructures were 

compared with those of their continuum counterpart. Since this requires a large set of 

modes to be extracted, the one-dimensional theories, such as beam theory or rod theory, 

break down. Therefore, the use of plane stress finite elements was preferred for modal 

density calculations in this chapter. 

Four cases of the microstructure were considered- beams made of triangular cells, 
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square cells, hexagonal cells and irregular cells were simulated. Each case exhibits its 

own modal spacing characteristics which is strongly dependent of the geometry of the 

microstructure. 

Beams made of triangular cells show discrepancy with continuum behaviour as the 

mode number increases. Three regimes of mode number were identified- the first few 

modes are dominated by cell wall extension and the overall behaviour resembles that of 

an effective continuum when the properties are chosen to match the fundamental fre­

quency. Beyond a certain critical frequency on the high frequency end of the spectrum 

the cell deformations are dominated by bending. This regime of mode numbers shows 

an unusually high modal density (low modal separation) as compared to the continuum 

counterpart. The reason for high modal density is the presence of a large number of 

identical cell walls- when they are interconnected, a large number of resonances are ob­

served in a narrow frequency band. The mode number regime between the two extremes 

shows a transition. 

The case of beam with square cells shows two main features in the modal density 

variation. Firstly the modal spacing is reduced as the continuum behaviour gradually 

breaks down. This is followed by a large number of thickness-shear modes. These modes 

are not observed for continuum at moderately high mode numbers. The reason for the 

existence of thickness-shear modes is the relatively low stiffness in shear when the cell 

walls are vertical and horizontal- the vertically oriented cell walls offer small resistance 

in bending. The main mechanism of strain energy storage is cell wall bending for all the 

modes up to moderately high mode number. 

BeaIllS made of hexagonal cells show a gradual decrease in modal separation. At high 

mode number, natural frequency is lowest compared to other microstructures studied 

for a fixed volume fraction of the material. The mechanism of strain energy storage is 

primarily cell wall bending for all the modes studied. 

When the microstructure is irregular, the modal spacing decreases first, then in­

creases (i.e. the slope of the natural frequency vs mode number shows this variation). 

This is partly due to the statistical distribution of the cell wall length as well as the 

presence of a significant number of cell walls at the boundary of the structure that are 

attached to the structure at one end and free at the other end. 

Two features common to all the microstructure are (i) an initial agreement with con­

tinuum behaviour with an effective IIlOdulus of elasticity, and (ii) the gradual reduction 

in modal spacing as the continuum behaviour breaks down. 
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Chapter 

Efficient free vibration 

calculations of cellular structures 

using continuum modes 

§4.1 Introd uction 

While studying the macroscopic behaviour of cellular structures using the finite element 

method, the overall size of the domain should be much greater than the typical cell 

dimensions. Therefore, a realistic model of a cellular structure usually contains a large 

number of cells. Supposing that this description is available either by an analytical 

method or by digital image based techniques, the number of degrees-of-freedom of the 

overall structure will then be very large. Thus, the eigenvalue problem resulting from 

the free vibration analysis is large. Hence, the calculation of the eigenvalues and the 

eigenvectors is computationally expensive even if only the first few of them are required. 

There have been attempts to reduce the order of the problem when the number of 

degrees-of-freedom in a structural problem is large. A commonly used approach is to 

take a small set of modes as the basis and apply Rayleigh's variational principle after 

expressing the kinetic energy and the potential energy in terms of the chosen set of basis 

modes. A practical difficulty here is a lack of a set of reasonable basis functions without 

performing any calculations associated with the original large scale eigenvalue problem. 

However, substantial computational gains can be made without compromising accuracy 

significantly, if there are physical (or any other) arguments that supply a set of guessed 

modes that are rich in the eigenvectors (eigenfunctions) of interest. In this thesis, the 

73 
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so-called continuum rnodes afford such a basis. 

There are alternative approaches to reduce the order of a model. For example, 

frequently a set of degrees-of-freedom (known as slave degrees-of-freedom) of a large finite 

element model are removed and a small group of degrees-of-fi'eedom (known as master 

degrees-of-freedom) is retained [46, 76, 30, 110J. The eigenvalue problem of the reduced 

model is then solved for the approximate eigensolutions of the original eigenproblem. 

Two types of reduction methods exist, the static reduction and the dynamic reduction 

method. In the case of the static method, such as Guyan reduction [46], the inertia terms 

associated with the slave degrees-of-freedom are neglected because they are associated 

with the inverse of the dynamic stiffness matrix. In contrast, the dynamic methods 

include the effects of the inertia terms in a simple way. For instance, O'Callahan [76J 

suggested an improved reduced system (IRS) by adding a higher order term in the 

Taylor's series expansion of the inverse of the dynamic stiffness matrix. Friswell et 

al. [30J proposed an iterative IRS scheme to improve the accuracy. Recently, Xia et 

al. [110] developed a new iterative order reduction (lOR) technique by retaining all the 

inertia terms associated with the slave degrees-of-freedOIn. 

The main aim of this chapter is to reduce the computational expense for free vibra­

tion calculations of cellular structures. Unlike the methods in the last paragraph, the 

proposed method incorporates all the structural details via complete mass and stiffness 

matrices but the resulting full scale eigensolution is avoided. The proposed method is 

suitable for calculations involved in low frequency dynmnics. For high frequency dynam­

ics, a piece of cellular solid ceases to behave as a continuum and the proposed method 

is not suitable in that case. It is reported here that a direct model order reduction by 

the use of a small set of basis modes possesses difficulties. It is then shown that this 

difficulty can be attributed to the presence of small components in the assumed modes 

that are associated with exceptionally high frequencies. A method to remove these high 

frequency components from the assumed modes is proposed. Two illustrative examples 

are presented to demonstrate the working of the method. For simplicity, the examples 

given in this chapter are two-dimensional. 
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§4.2 The proposed approximation for cellular structures 

based on continuum modes 

It was shown in figure 2.1 that a structure made up of cellular material possesses geo­

metrical features at two scales oflength, ls and le. We assume here that we are interested 

in the dynamics at a length scale much greater than le which means that the standing 

waves involved are longer than le. In these circumstances, we can guess the mode shape 

of the overall structure by filling the porosity and treating the structure as a homoge­

neous medium at the length scale ls. Since the mode shapes do not strongly depend 

on the material properties, it does not matter what properties (in terms of the elastic 

modulus and density) are chosen while calculating the guessed mode shape. Once the 

mode shapes of this hypothetical medium are calculated, the mode shapes of the cellular 

structure are interpreted by mapping the displacement and rotation fields of this hypo­

thetical porosity filled structure onto the nodes where cell walls join each other. The 

modes of this hypothetical medium will be referred to as the continuum modes in future. 

The calculation of the continuum modes does not require the knowledge of the effective 

properties and any reasonable value can be assumed. The reason why this approach is 

successful lies in the poor sensitivity of the normal modes to the material properties. 

The last step of interpreting mode shapes of a cellular structure based on those of 

a continuum structure requires simple kinematic calculations. In engineering practice, 

the overall structures are often made of simpler elements such as plates, bearns or shells. 

In that case, the calculation of the continuum modes will be greatly simplified. For 

example, if we have a planar cellular structure made up of beams at the length scales ls, 

then we need to consider only the skeleton of beams to calculate the modes of a structure 

made of a hypothetical homogeneous medium. The displacement field at other points 

can be calculated by using the kinematic relations intrinsic to the beam theory i.e. plane 

sections remain plane and normal to the skeleton axis. 

In our numerical implementations, we have restricted ourselves to planar structures 

with cell walls modelled as beams. The skeleton at length scales ls is also modelled using 

beam elements. These beams have axial degrees of freedom in addition to the transverse 

displacement and rotation at each of the two nodes of an element as before. In a local 

co-ordinate system, the transverse displacement i{J( x) is approximated using the four 

Hermite cubics. The displacement and rotation fields within an element are then given 
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by 

vy(x) = <p(x), 
d<p 

e(x) = -
dx 
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(4.1) 

where v~ (x, y) is the displacement in the axial direction of the element due to bending ef­

fects only, vy(x) is the transverse displacement of the neutral axis which is the transverse 

displacement of all the points normal to the neutral axis, and e (x) is the rotation of the 

cross-section. The total displacement field is obtained by superposing the displacement 

in the axial direction due to tension-compression effects, i.e. 

(4.2) 

Note that v1ension is assumed to be a function of x alone which asserts that this dis­

placement component is distributed uniformly through the cross-section: an assumption 

consistent with one-dimensional rod theories. This component is calculated by interpo­

lating the axial displacement field from the nodal axial displacements. 

There will be a transverse displacement field vtension(x) due to the Poisson's ratio 

effect. However, this part of the displacement field has been ignored while obtaining the 

assumed modes for two reasons: firstly, the contribution to the overall displacement from 

tension-compression is usually small since rods are stiff in tension-compression than in 

bending. Secondly, there is no way to know the effective Poisson's ratio of the cellular 

material at the start of the calculations. 

Having obtained the nodal displacements of the elements used to model the skele­

ton, equations (4.1) and (4.2) enable us to calculate the displacement and rotation 

fields at any point within the structure, as though the structure were made of homo­

geneous material. We use these kinematic relations now to map the displacement field 

vx(;x;),vy(:r;),e(x) onto the displacements at the joints of the cell walls in the actual 

cellular structure, i.e. 

(4.3) 

The generalised displacement vector at the joints contains displacements in the plane 

and rotation. We will denote these components for the complete structure as obtained 

for the i-th mode of the structure by 'l/Ji. We assurne that the necessary co-ordinate 

transformations have been employed so that 'l/Ji is expressed in a global co-ordinate 

system. 

Starting with p number of assumed modes 'l/Ji' i = 1,2, ... p we are now in a position to 

build a reduced order model of size p x p. To achieve this, we express the N-dimensional 
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vector of generalised co-ordinates W in terms of the assumed modes Wi as 

p 

W = L aiWi' 
i=l 

This expansion can be seen as the following transformation 

W = Ta 
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( 4.4) 

(4.5) 

where the N x p transformation matrix T is the matrix whose columns are Wi' i.e. 

(4.6) 

The vector a is of length p and contains aI, a2, ... , ap in a column. 

The Rayleigh's quotient in terms of W as the trial vector is now given by 

R (4.7) 

where K and M are the N x N stiffness and mass matrices respectively of whole struc­

ture. Note that these matrices contain all the detailed information about the geometry, 

properties and topology of the network of beams at the cell level. 

Substituting the transformation (4.5) into (4.7) we have 

aTTTKTa 
R = --=~:---

aTTTMTa' 
(4.8) 

Thus Rayleigh's quotient is a ratio with ai, i = 1,2, ... ,p as the unknowns. Applying 

Rayleigh's variational principle, the first variation of this quotient must be zero, i.e. 

6R(al, a2, ... , ap ) = O. This amounts to setting the first derivative of R with respect to 

each of the unknowns to zero, i.e. 

~R = O,i = 1,2, ... ,p. 
Uai 

(4.9) 

Since both the numerator and the denominator of R are quadratic forms, application of 

condition (4.9) leads to the following eigenvalue problem 

Ka = I)'Ma (4.10) 

where, K = TTKT and M = TTMT. This eigenproblem is of size p. Assuming that 

p « N, we conclude that the reduced order model will save substantial computation 

since we do not need to solve the full scale eigenproblem (2.11) of size N. 

Solution of the eigenvalue problem (4.10) gives p number of eigenvalues IL r , r = 

1,2, ... ,p and the corresponding eigenvectors aI, a2, ... , ap . The eigenvalues ~r are ap­

proximations for the exact eigenvalues Ar and the eigenvectors a r contain information 
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about the corresponding mode shapes U r . Mode shapes of the overall structure are cal­

culated for each a r by substituting the components of these vectors into the summation 

(4.4). As can be seen that the reduced order eigenproblem (4.10) affords only p number 

of modal parameters instead of the complete set of N, but this is the price that one 

has to pay for computational economy. Often this will be satisfactory because in many 

practical situations, the excitation occurs over a band of frequency and hence one needs 

to consider modes only within (and slightly outside) this band. 

When only one assumed mode is used in the summation (4.4), it amounts to substi­

tution of the assumed mode for the trial vector 'ljJ in equation (4.7). The accuracy of 

this approximation depends on the closeness of the assumed mode to the actual mode. 

It is a well known property of the Rayleigh's quotient that if the trial vector 'lj; differs 

from an eigenvector (say, u r ) by an amount of the order of a small quantity, say E, then 

the Rayleigh's quotient for this trial vector differs from the corresponding eigenvalue by 

an amount of the order of E2. Thus eigenvalue estimates are more accurate than the 

trial vectors used in the Rayleigh's quotient approximation. While using the continuum 

modes we find that the assumed modes are indeed very close to the actual modes (the 

difference, say, being of the order of E), still the frequencies are poorly predicted by a di­

rect application of Rayleigh's approximation. We will look into the approximation more 

closely in the next section. We will also propose a method to overcome the difficulty 

identified. 

§4.3 Rayleigh's variational method and pre-conditioning of 

the trial modes 

We turn to the single mode approximation first. It will be assumed that the trial mode is 

close to the actual mode shape. Expanding the trial vector 'lj; in terms of the eigenvectors 

of the original eigenproblem (2.11), we have 

(4.11) 

where N is the size of the original eigenproblem and b1 , b2 , ... , bN are constants. For the 

ease of presentation of analysis, we assume that the trial mode resembles the first mode 

shape U1 and is corrupted by contribution from a single mode Urn so that 

(4.12) 
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Further, assuming that the contribution from the m-th mode is small compared to that 

from the first mode (the mode whose frequency is being estimated by the approximation), 

we set Cl = 1 and Cm = E with E « 1. Substituting for 'lj; in the expression of R in (4.7) 

we have 

(4.13) 

We assume that the eigenvectors U r are mass-normalised, so that the orthogonality 

relationship gives u~Mus =6rs and u~Kus = Ar6rs , T, S = 1, m, where 6rs is the 

Kronecker-delta. Substituting the above in (4.13), after some algebra we obtain 

R = Al + E2Am 
1 + E2 

(4.14) 

If Al = O(Am), then R = Al + O(E2). However, if Am » AI, then the difference R Al 

can become very large affecting the approximation adversely. Suppose Ami Al M » 1, 

then R ~ Al (1 + E2 M), and therefore, R - Al ~ Al E2 M i= o( E2). 

The above analysis is restricted to a single mode approximation. The case of an 

approximation involving several continuum modes 'lj;l' 'lj;2, .,. can be treated similarly. 

Again for simplicity, we assume that there are only two modes to be used in the ap­

proximation (i.e. p = 2) and that each mode is corrupted by a small amount whose 

contribution comes from the m-th mode, m »2. Expressing this mathematically, we 

have 

(4.15) 

Assuming Ul, U2, u m to be mass normalised, the transformation matrix T as in equation 

(4.6) takes the form 

(4.16) 

Substituting this into the expressions following equation (4.10), the 2 x 2 matrices are 

obtained as 

M= (4.17) 

The eigenvalues fJ, can be obtained in closed form from the following quadratic equation 

(4.18) 

Solving this quadratic we have 

[(1 + E2)(Al + A2) + 2E2AmJ ± J(l + E2)2(Al - A2)2 + 4E4 [A;n - Am(Al + A2) + AIA2J 

2(1 + E2) 
(4.19) 
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\Vhen E is small but Am is large, i.e. when E ---t 0 and Am » A2 > Al then 

P1,2 ( 4.20) 

This confirms that the two approximate eigenvalues 111 and 112 do not resemble the 

actual eigenvalues Al and A2 in the circumstances. When we implemented the method 

outlined in section 4.2, we observed that the errors in the estimation of approximate 

eigenvalues P were often very large. To understand this further we present the following 

sensitivity analysis to study the rate of change of the approximate eigenvalues with 

respect to change in the parameter E. To do this, we view the eigenproblem (4.10) as 

one that depends on the parameter E. In that case, the eigenvalues have the functional 

relationship Pi pi(E). Fortunately, we can estimate the derivative of an eigenvalue 

exactly when an eigenproblem depends on a parameter [29]. The expression for the 

eigenderivative is given in the present context by 

aT [oK/oE - PioM/OEJ ai 

aTMai z 

(4.21) 

Since we know the functional dependences K(E) and M(E) explicitly via equation (4.17), 

differentiation leads to 
oM 

=2d 
OE 

( 4.22) 

where the 2 x 2 matrix 1 contains 1 's everywhere. We now divide the above sensitivity 

relationship by (pi/ E) and define the non-dimensional ratio O"i as the relative sensitivity 

for the i-th mode to obtain 

O"i= 

where 

(Opi/OE) 
(pdE) 

2E2 (~ - 1) 9 

(1 + E2) 
( 4.23) 

Note that the number 9 is bounded in the range 0 < 9 < 2 since 9 is a Rayleigh's 

quotient associated with the matrix 1 and since the eigenvalues of 1 are 0 and 2. As 

E ---t 0, both M and K become diagonal so that ai is either [0 l]T or [1 oV. For these 

vectors, 9 1. Hence for E « 1 

( 4.24) 

As in the previous cases of equation (4.14) and (4.19), the smallness of E2 alone does 

not guarantee accuracy of the approximation: we require smallness of the term E2 Am' 
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Since the approximation method we have proposed uses the physical reasoning that the 

overall mode shapes must resemble those of a continuum, it is very difficult to control 

the contributions (however small) from higher modes. The case of cellular structures is a 

particularly difficult one because it requires building a very large model meaning that the 

eigenvalues of the complete structure span a large range, i.e. Al «AN. This increases 

the chances of contributions coming from the high frequency end of the spectrum. 

Having identified the difficulty, we now propose a way to help the situation by filtering 

the components corresponding to high frequencies from the assumed modes '¢ before they 

are used either in the Rayleigh's quotient (as in one mode approximation) or before they 

are used in the variational formulation of equations (4.4) through to (4.10). We propose 

to remove the high frequency eigenmodes from the trial vectors by the use of inverse 

power iterations. When the power method of determining the dominant eigenvalue of a 

matrix is used, the method works by progressively enriching the iterated vector in favour 

of the large eigenvalue side of the spectrum. The contribution from the small eigenvalue 

side gradually becomes smaller as the iterations proceed. Since our aim is to determine 

the lowest few natural frequencies and the corresponding modes, we need to iterate with 

the inverse matrix. Fortunately, we do not need to compute the inverse explicitly. All 

we need to do now is to cast the original eigenproblem (2.11) in the following form 

(4.25) 

The iterations at the T-th step become 

(4.26) 

where the superscript refers to the iteration number. The above set of algebraic equations 

needs to be solved for 'ljJi. The first vector '¢ ~O) is the continuum mode presented 

in section 4.2. In our numerical implementations, we found just one iteration to be 

sufficient. In spite of extra calculations involved in solving (4.26) and those involved in 

mapping (4.3), an overall saving in the total number of floating point operations was 

observed in our implementations. 

§4.4 Numerical exam pIes and discussions 

We now present two numerical implementations of the scheme of using continuum modes 

for calculations of natural frequencies and normal modes for the first few modes. In the 

first instance we undertake a cantilever beam made of cellular material. Then we present 
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calculations for two cellular beams joined at right angle: we will refer to this structure 

as the L-beam (figure 4.5). 

§4.4.1 Example 1: the cantilever beam 

Consider the cantilever beam shown in figure 3.12. The geometric data for the beam 

were presented in table 3.4. The cell walls are modelled using two node Euler-Bernoulli 

beam elements for the finite element calculations. We are interested in the low frequency 

dynamics which justifies the use of thin beam theory. 

The continuum modes are obtained from the finite element analysis of a single fixed­

free beam having the same macroscopic dimensions as the cellular beam. A small size 

finite element model having twelve elements with cubic interpolation is used to calculate 

the continuum modes. Mapping on the lines of equation (4.3) is achieved using equations 

(4.1) and (4.2). The first ten continuum modes are chosen as the basis modes after pre­

conditioning using equation (4.26). An in-house code was developed in MATLAB [72] 

for predicting the natural frequencies and the mode shapes using both the approximate 

method and the full scale model. 

Table 4.1 shows the first ten natural frequencies as calculated by solving the full 

scale eigenproblem (2.11) and by using the approximation of pre-conditioned continuum 

modes presented in this chapter. The accuracy of the calculation is quite remarkable. 

The first nine modes show an error less than 1 %. 

Mode no. Natural frequency (Hz) Approximate frequency (Hz) Ftelative error(%) 
1 4.79 4.79 -4.89 x 10 7 

2 29.40 29.40 -5.51 x 10 6 

3 80.50 80.50 -4.21 x 10 -4 

4 102.51 102.51 -4.78 x 10 -4 

5 143.82 143.83 -3.96 x 10 3 

6 213.35 213.41 -2.69 x 10 2 

7 317.00 317.68 -2.14 x 10 1 

8 324.64 324.82 -5.77 x 10 2 

9 393.06 394.01 -2.41 x 10 1 

10 493.45 526.98 -6.80 

Table 4.1: Comparison between the natural frequencies as calculated from the full 
model (equation 2.11) and the approximation based on pre-conditioned continuum modes 
for the cellular beam in figure 3.12. 

Comparing mode shapes quantitatively is not as straightforward as comparing nat­

ural frequencies because of non-uniqueness of eigenmodes up to an arbitrary scaling. 
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MAC (Modal Assurance Criterion) is frequently used to correlate the experimental mode 

shapes with those obtained by the finite element method [28J. In this chapter, we use 

this established method to correlate the mode shapes obtained from the proposed ap­

proximation with finite element simulated modes. 

The MAC matrix W has the entries given by [28J 

( 4.27) 

The diagonal terms of the matrix represent the correlation between two eigenvectors 

associated with the same mode, whereas the off-diagonal terms reflect the correlation 

between the cross eigenvectors. For best correlation, the value of W rs will be 1, whereas 

the value of Wrs will be zero for no correlation. A grey scale with black colour for 

Wrs = 1 and white colour for Wrs = 0 is used. The intermediate shades indicate the 

correlation proportionately. 

The relative magnitudes of the quantity Wrs in figure 4.1 reflect the correlation 

between the original assumed continuum modes without pre-conditioning with the finite 

element modes. Similarly, figure 4.2 is plotted with Wrs calculated on the basis of the 

proposed reduced order model after pre-conditioning and the finite element modes. Note 

the improvement in the correlation due to the pre-conditioning and the application of 

Rayleigh's variational principle. 

As a second method to compare the two eigenvectors [28J, an eigenvector obtained 

from the reduced order model is plotted against the corresponding eigenvectors from the 

full scale model in figure 4.3. If the points fall around the straight line passing through 

the origin at an orientation of 45°, a good correlation is indicated. The pair of two 

eigenvectors associated with the first, eighth, ninth and the tenth mode are plotted in 

figure 4.3. 

The plot shows an excellent correlation for the first mode paIr. The correlation 

up to the eighth mode is found to be very good. The ninth mode does not correlate 

so well. In the case of the tenth mode, the approximate mode is poorly correlated 

with the eigenvector of the full-scale model. The natural frequency predicted based on 

the approximate mode is about 7% higher than the corresponding finite element value. 

Considering that only ten modes are used in the calculation, and the correlation of 

the tenth assumed mode is poor with the corresponding actual mode, the accuracy is 

surprisingly good. More number of modes must be included in the basis for improving 

the last mode. 

The flop counts for the full scale problem are compared with those of the reduced 
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Figure 4.1: MAC plot correlating the continuum assumed modes and the finite element 
modes. The dark blocks on the diagonal indicate good correlation for the first few modes; 
yet the predicted frequencies based on these assumed modes are very inaccurate. 
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Figure 4.2: MAC plot representing correlation between the two sets of eigenvectors as 
calculated by the finite element and the reduced order model. The dark blocks on the 
diagonal show excellent correlation up to the eighth mode. The correlation for the ninth 
mode is not so good, whereas the tenth mode shows poor correlation. 
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Figure 4.3: The straight line correlation plot for the first (top left), eighth (top right), 
ninth (bottom left) and the tenth (bottom right) mode respectively. Note the degrada­
tion in the correlation with the mode number. 

order problem in table 4.2. The full scale model is of size 3444 x 3444, whereas the 

continuum mode based reduced order model is of size 10 x 10. In view of this, only ten 

modes were extracted while solving the full-scale problem (2.11) using a sparse solver in 

MATLAB. 

Two other models were generated by replacing the microstructure of the present 

example by different cellular topologies. The degrees-of-freedom of the models were 

1431 and 4962 respectively. The basis continuum modes used in example 1 were used 

for these models as the external dimensions of the beam were the same. Therefore, the 

continuum modes need to be generated only once for structures with the same overall 

dimensions but filled with various cellular topologies. This is another advantage of the 

method leading to further computational savings in such cases. However, Hops required 

for the generation of the continuum modes were included in the comparison for all the 

reduced order models. 

Table 4.2 shows that the total flops required for the approximate method in the case 

of example 1 is only 9.58% of that for the whole model. Break-up of flops indicates 

that the generation of full K and M is much cheaper, it requires flops less than 1% 

when compared to the full model calculations. Table 4.2 also indicates that the savings 

will be a lot more for structures with higher degrees-of-freedom. Sometimes, a single 

mode calculation is very economical when we use the assumed mode directly into the 
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Rayleigh's quotient. We implemented this for the first mode and the approximation 

matched the value obtained from the full scale calculation within 0.000001 %. 

Floating point operations 
Degrees of Generation of Calculations of Total % of full scale 
freedom ofK&M frequencies & modes calculations calculations 

1431 reduced 1.20 x 105 6.74 x106 6.86 x106 11.39% model 

1431 full 1.20 x 105 6.01 X 107 6.03 X 107 100% model 

3444 reduced 3.14 x105 2.08 x 107 2.11x107 9.58% Example 1 model 
(Section 4.4.1) 

3444 full 3.14 x105 2.20 x 108 2.20 X 108 100% model 

4962 reduced 4.54 x105 3.37 x 107 3.42 X 106 7.49% model 

4962 full 4.54 x105 4.56 x108 4.57 x108 100% model 

Table 4.2: Comparison of the floating point operations for the full-scale problem (equa­
tion 2.11) and the approximation using the pre-conditioned continuum modes for both 
the models. Note that calculations of eigenvalues and eigenvectors for the reduced model 
include all the stages starting from the generation of the pre-conditioned assumed modes 
up to the prediction of the approximate frequencies and modes. 

The first five modes of vibration of the beam are presented in figure 4.4. The eigen­

vectors are calculated using the approximate method. The first three modes resemble 

those of a solid fixed-free beam. These three modes are primarily bending modes. The 

fourth mode resembles the first axial mode in tension-compression for a fixed-free elastic 

rod with axial degrees-of-freedom. The fifth mode is the fourth mode in the bending 

series. The approximate method has predicted both the bending and the axial modes 

accurately. The figures broadly justify the idea of using the continuum modes as the 

assumed modes for the cellular structures. 

§4A.2 Example 2: the L-beam 

The second example of an L-beam is shown in figure 4.5. To generate the structure of 

this shape filled with cellular material, a large block of Voronoi cells was created. Then 

a structure of the required L-shape was cut out of this rectangular block. Cell walls 

having very small length were created during the model generation process. They were 

eliminated in a similar way as was done for the cantilever beam. About 3% of the cell 

walls needed deleting from the mesh. The thickness of the cell walls was chosen such 

that the minimum til ratio is 1/3. The distribution of lengths thus generated indicates 

that only 7.4% elements have til ratios greater than 1/10 with 2.3% elements have til 
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Figure 4.4: The first five mode shapes of the cantilever beam shown in figure 3.12. 
The deflected shape of the first mode resembles the first flexural mode of a solid fixed­
free beam. The second, the third and the fifth modes resemble the second, third and 
the fourth flexural modes of a cantilever respectively. In contrast, the fourth mode is 
primarily an axial mode. 

ratio greater than 1/5. Therefore, about 92.6% of the cell walls have a t/l ratio less than 

1/10. Hence, the shear effect can be neglected for most cell walls. The geometric data 

for the L-beam are presented in table 4.3. The two arms of this L-beam have a L/ D 

ratio about 8.5. The area fraction of the cellular solid calculated using equation (2.20) 

is about 0.025. The continuum modes were calculated from a finite element analysis of 

the L-shaped skeleton. 

Table 4.4 shows a comparison of the natural frequencies as determined from equation 

(2.11) with those calculated on the basis of the pre-conditioned continuum modes. The 

agreement is excellent again, with frequencies well within 1 % up to the eighth mode. To 

assess the accuracy of the modes obtained via the reduced order model, MAC matrix 

W is calculated to correlate the reduced order modes and the finite element modes. 

The MAC plot for the L-beam is shown in figure 4.6. The figure indicates excellent 
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Figure 4.5: An L-beam composed of irregular cells. Note that the left-most and the 
bottom-most boundary are fixed. 

External length of each arm of the model 
Internal length of each arm of the model 
Overall depth perpendicular to the length direction D 
Length of the cell wall Inaterial Li li 
Thickness of the cell walls t 
N umber of nodes 
N umber of elements 

1250 mm 
1100 mm 
150 mm 
27171.2 mm 
0.33 mm 
1279 
1696 

Table 4.3: Geometric data for the L-beam shown in figure 4.5. 

correlation up to the eighth mode. The ninth and the tenth mode show poor correlation 

as expected. 

The size of the eigenvalue problem is reduced to 10 x 10 from 3837 x 3837 for this 

example. The total floating point operations involved in the approximate method (3.74 

xl07) is less than 10% of the operations required for the full model (3.93 xl08 ). There­

fore, substantial computational saving is achieved for such complex structure. Similar 

to the previous example, only ten modes of the full model were calculated using sparse 

solver. 

The L-beam with identical arms will have degenerate modes of multiplicity two if 

the beams have only bending degrees-of-freedom. This is because the corner will act as 

a pin joint with only rotations allowed and the system will have two coincident natural 

frequencies. Each of these corresponds to a beam fixed at one end and pinned at the 

other. When axial degrees-of-freedom are allowed and when two arms are not identical 
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Mode no. Natural frequency (Hz) Approximate frequency (Hz) Relative error(%) 
1 4.25 4.25 -1.86 x 10 -4 

2 6.54 6.54 -9.26 x 10 -4 

3 11.87 11.88 -1.01 x 10 -:L 

4 12.85 12.85 -8.54 x 10 -3 

5 14.75 14.76 -8.52 x 10- 0 

6 18.24 18.25 -2.84 x 10 -2 

7 25.41 25.44 -1.27 x 10 1 

8 30.14 30.22 -2.51 x 10 1 

9 39.55 41.18 -4.13 
10 39.96 42.22 -5.66 

Table 4.4: Comparison of the natural frequencies as calculated from the full model 
(equation 2.11) and the approximation using the pre-conditioned continuum modes for 
the L-beam shown in figure 4.5. 
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Figure 4.6: MAC plot representing correlation between the modes calculated by the 
finite element and the approximate method of the L-beam structure. The dark blocks 
on the diagonal show excellent correlation up to the eighth mode. The ninth and the 
tenth modes show poor correlation. 

(as in case of cellular arms) the degeneracy is broken and we expect to obtain frequencies 

in doublets. Each pair originates from one set of degenerate modes. 

When we look at the frequencies of the cellular L-beam (see table 4.4), we find a 

similar pattern but the frequencies are not that close. For example, the ratio of the 

first and the second frequencies is 1.54. The third and the fourth are the closest having 

a ratio equal to 1.08, whereas the fifth and the sixth possess a ratio of 1.24. The 

originally degenerate modes have split quite far because the two arms of the L-beam 
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Figure 4.7: The first mode of free vibration of the L-beam. 

possess different microstructure. As a result, their individual natural frequencies are not 

the same. 

Figures (4.7) to (4.11) show the first five natural modes of the L-beam. The mode 

shapes as obtained from the full scale finite element analysis using equation (2.11) and 

those obtained from the reduced order model almost coincide. Therefore, the mode 

shapes are displayed based on the eigenvectors calculated for the full model. The overall 

mode shapes of the cellular L-beam are similar to the corresponding modes of a solid 

L-beam. 

The first two modes are overall bending modes (see figures 4.7 and 4.8). The third 

and the fourth mode resemble each other (see figures 4.9 and 4.10). The horizontal arm 

is in the stretching-compression mode of vibration and the vertical arm is in flexural 

vibration in the case of the third mode. The opposite happens for the fourth mode 

where the stretching-compression mode of vibration is observed in the vertical arm and 

the flexural mode in the other. The fifth mode (see figure 4.11) is primarily a bending 

mode with each arm corresponding to the second mode of vibration for a fixed-pinned 

beam. 

Cellular metals are often used as the core for sandwich constructions. To model such 

composites, one could take two alternative routes. While the core can be modelled in 

a manner similar to that used for illustrations in this chapter, the external plates could 

be modelled using additional elements (beams for planar models of foams; and plates 

for three dimensional geometry). If the external plates are not isotropic (as often is the 

case), the relevant anisotropy (usually orthotropy) can be accounted for by appropriately 
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Figure 4.8: The second mode of vibration. This mode is also a flexural mode, similar 
to the first mode, but the phase of vibration in the two limbs of the structure is opposite 
of the mode presented in figure 4.7. 

Figure 4.9: The third mode of vibration. The horizontal arm is in stretching­
compression mode of vibration whereas the vertical arm is in flexural vibration. 
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Figure 4.10: The fourth mode of vibration. This mode is similar to the third mode, 
the difference being that the vertical arm is in stretching-compression mode of vibration 
in this mode. The horizontal arm is in flexural mode of vibration. 

Figure 4.11: The fifth mode of vibration. It is primarily a bending mode with each 
arm corresponding to the second mode of vibration for a fixed-pinned beam. 
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choosing the elements that represent the face-plates. An alternative to this approach 

could be to use analytical models that combine the face-plate geometry and properties 

with those of the core~ the core being represented by an effective medium. In this case, 

the shear modulus of the core will be of great importance. We have not undertaken the 

task of modelling such composites since the main objective of this chapter is to present 

an approximation method and not to model cellular composites. 

§4.5 Conclusions 

A realistic representation of cellular structures requires modelling structures with a num­

ber of cells. As a result, the eigenvalue problem associated with the free-vibration is large, 

and hence, computationally demanding. An approximate method was presented in this 

chapter to overcome this difficulty. The proposed method can be used for approximately 

calculating the first few natural frequencies and the associated modes for the cellular 

structures with substantial computational saving. The method is based on the assump­

tion that macroscopically cellular structures behave as a homogeneous continuum for 

low frequency dynamics. Assumed modes based on the continuum modes were used as 

basis in this method. The frequencies and the mode shapes were predicted accurately 

using Rayleigh's variational principle. 

A direct use of the assumed modes for the approximation leads to large errors. It 

was shown to be due to the presence of small high frequency components in the assumed 

modes. A method based on inverse power iterations was used to pre-condition the 

assumed modes successfully. Further, a sensitivity analysis was performed to study 

the effect of an arbitrarily chosen vector on Rayleigh's approximation. We found that 

even small errors in the trial vector can ruin the predictions unless care is taken in 

pre-conditioning the assumed continuum modes. 

Two examples were given for planar structures to demonstrate the working of the 

method. Structures made of irregular cells were analysed. A significant model-order 

reduction was achieved by the proposed method without compromising the accuracy. 

The method may be applicable for more complex structures. 



I 
Chapter 

Frequency response calculations 

of cellular structures using 

continuum modes 

§5.1 Introduction 

In the previous chapter, the natural frequencies were accurately predicted using the 

continuum modes as the basis functions. An accurate prediction of the natural frequen­

cies alone does not guarantee an accurate prediction of the frequency response. This is 

because the frequency response functions combine the natural frequency and the mode 

shape information. An indication of the prediction of mode shapes came in the last 

chapter from the MAC plots between the mode shapes of the complete model and those 

of the reduced order model. In this background, we explore the applicability of the model 

order reduction by the use of continuum modes for frequency response calculations. To 

bring realism into the calculations, damping is included in the model. 

Equations of motion for the reduced order model will be derived in the next section 

when the forcing is harmonic. The application of Lagrange's equations will lead to a 

reduced order system with smaller size stiffness, inertia and damping matrices in addition 

to the reduced order forcing vector. This will lead to an approximate frequency response 

function matrix. Since only a few continuum modes are used as the basis for model order 

reduction, we expect good predictions only in the low frequency band of the response. 

The problem of small contributions from exceptionally high frequency modes into 

the assumed modes is again found to pose difficulty. Therefore, the set of basis modes 

94 
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were pre-conditioned using inverse power iterations in the same way as were done in the 

previous chapter. 

§5.2 Development of the reduced order model using the 

continuum modes 

The full scale model of cellular structures was constructed in a manner similar to the 

previous sections. Therefore, it is assumed that the stiffness matrix K, the mass matrix 

M, and the force vector f are given. Further, it is assumed that viscous damping matrix 

C of the whole model is available to us. We will start with the Lagrange's equation of 

motion for the full model, Mq + Cq + Kq = f, equation (2.9). 

If f is harmonic force in the form f = f ejwt , then the response q can be expressed as 

q qejwt . Substituting f and q in equation (2.9) and simplifying, we obtain 

(5.1) 

where, 

(5.2) 

is the frequency response function matrix of the whole structure. The size of H(w) 

matrix is N x N for each value of the driving frequency w. Hence, the evaluation of 

H(w) is computationally exhaustive if N is large. In many practical cases, response for a 

particular degree-of-freedom is required. In those cases, the response q can be obtained 

by solving the set of linear algebraic equations, ill the form (-w 2 M + jwC + K)q = f, 

[modified form of equation (5.1)], without explicitly inverting the whole matrix H(w). 

Even this response calculation is computationally expensive for structures with large N. 

In order to reduce the computational expense associated with the response calcu­

lations, a reduced order model with p number of pre-conditioned assumed modes will 

be built, where p «N. The method of obtaining the continuum modes is described 

in Chapter 4 which uses kinematic mapping of the cheaply calculated continuum free 

vibration modes onto the joints of the cells in a cellular model. When these modes were 

employed in model order reduction directly, the method performed poorly due to the 

presence of small contributions from high frequency modes. Therefore, filtering of these 

undesirable modes was carried out using inverse power iterations as in case free vibration 

calculations. 

Let us assume that the motion of the structure at any time t can be approximated 
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by the superposition of p number of assumed modes W as 

(5.3) 

where, aI, a2, .... , ap are time-dependent generalised co-ordinates of the structure. This 

expansion can be expressed by the following transformation 

¢ Ta (5.4) 

where, T is the transformation Inatrix of size N x p, whose columns are the assumed 

modes Wi' i = 1,2, ... ,p 

(5.5) 

and a is a column of unknowns aI, a2, ... , ap . Note that the transformation matrix T 

has a structure similar to that of the modal matrix but it contains only p number of 

modes. In addition, these p modes are only approximate unlike the modal matrix where 

they are exact. 

The kinetic energy T(t) and the potential energy V(t) of the whole structure can be 

expressed as 

(5.6) 

Substituting the transformation (5.4) ill the above expressions of T and V and sirnpli­

fying, we obtain 

T(t) 1. TM · -a a 
2 ' 

1 T­
V(t) = 2a Ka (5.7) 

where, M = TTMT and K = TTKT. The matrices K and M will be referred to as 

the reduced stiffness and the inertia matrices respectively because of their reduced size 

p xp. 

Damping, assumed to be derivable from the Rayleigh's dissipation function, can be 

expressed similarly as (2.6), 

Using transformation (5.4), this expression reduces to 

'L 1. TC · 
J = -a a 2 . 

(5.8) 

(5.9) 

where C is the reduced damping matrix of size p x p. If Q is the generalised viscous 

damping force for the reduced model, then it can be derived from the Rayleigh's dissi-

pat ion function as 
- aF 
Qr = -a" r = 1,2, ... ,p. 

ar 
(5.10) 
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The variation of the non-conservative work done by all other forces other than the 

viscous forces (for the full model) is expressed as 

N 

c5Wnc = L fr c5 cPr. (5.11) 
r=l 

Substituting for cPr from equation (5.4) and simplifying we obtain 

(5.12) 

If f is the vector of the generalised forces corresponding to the reduced model of the 

structure producing the generalised displacements a, then the variation of the non­

conservative work done is given by 
p 

c5Wnc L 1sc5as. 
s=l 

Since the virtual work done is the same for both the systems, we obtain, 

N 

1s = L frTrs, S = 1,2, ... ,p. 
r=l 

(5.13) 

(5.14) 

Lagrange's equation of motion in terms of the new set of generalised co-ordinates 

and generalised forces, ai and 1i, can be written as 

:t ( Z~) -Z~ + ~~ = 1i, i=1,2, ... ,p, (5.15) 

where L = T V is the Lagrangian of the structure. 

Substituting expressions of (5.7) into equation (5.15), we obtain the following set of 

equations of motion in the matrix form 

Ma + Ca + Ka = f. (5.16) 

If the generalised force f is of the form f = fredejwt, then the generalised response a 

can be expressed as a = aejwt . Substituting for f and a in equation (5.16), we have 

2- - - 1~ a= (-w M+jwC+K)- fred, (5.17) 

which is similar to the previous expression (5.1). Hence, the approximate frequency 

response function matrix is given by 

(5.18) 

The coefficient matrices M, K and C are of size p x p, which is much smaller than the 

original size of N x N if we are interested in a frequency band spanned by the first few 

frequencies. Hence, the calculation of H(w) needs much less computational effort than 

evaluating H(w). The displacement field at each node of the cellular structure ¢ can be 

calculated from equation (5.3) after evaluating the values of the a's by solving (5.17). 
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§5.2.1 Proportional Damping 

It is extremely difficult to measure the damping of individual cell walls. In the absence of 

any damping model for the constituent parts, proportional or classical damping has been 

used. Expressing the damping matrix as a linear combination of the stiffness matrix and 

the mass matrix, we have 

c = aM+,8K. (5.19) 

Substituting C and ¢ into (5.S) and simplifying the expression for Rayleigh's dissipation 

function becomes 
1 T - -

:F = 2a (aM + ,8K)a. (5.20) 

Comparing this with equation (5.9), the reduced order damping matrix is obtained as 

C aM+,8K. (5.21 ) 

A commonly encountered difficulty while using the Rayleigh damping model is the 

lack of a rational approach to obtain the damping coefficients a and ,8. In this disserta­

tion, calculations based on prescribed values of the damping ratio at the terminal points 

of the frequency band of interest are presented. This specification leads to two algebraic 

equations for the two unknowns a and ,8. 

The eigenvectors U for any structure can be calculated solving the eigenvalue problem, 

KUr = ArMur, equation (2.11). The eigenvectors are stacked to obtain the modal 

matrix as U = [ullu21 .... luN]. If the eigenvectors are orthonormal then, they satisfy the 

following relationships 

UTMU = I, UTKU = diag[w;] r = 1,2, ..... , N. (5.22) 

U T CU is a diagonal matrix for proportional damping and is given by 

(5.23) 

where, (r is the damping ratio for the r-th mode. Using (5.19), and the orthogonality 

conditions, (5.22), we obtain 

UTCU = a1 + ,8diag[w;] r 1,2, ..... , N. (5.24) 

Equating the right side of the two expressions in equations (5.23) and (5.24), we obtain 

the frequency dependence of the damping ratio as 

a ,8wr - + -- r = 1,2, ... ,N. 
2wr 2 

(5.25) 
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If the value of ( is specified at the two extremes of a frequency band, then we obtain 

two equations for the unknowns 0: and 13. Solving for these unknowns determines the 

two parameters required in the Rayleigh damping model. 

Carrying out algebra on the lines of equations (5.22) through to (5.25) we obtain the 

expression for the damping ratios for the reduced model as 

-( _ ~ j3wr 
r - 2w

r 
+ 2 ' r=1,2, ... ,p (5.26) 

where (r and wr denote the damping ratio and the natural frequency corresponding 

to the r-th mode of the reduced model. The above expression is used here for the 

determination of the damping ratios as predicted by the reduced order model. This 

expression shows that the quality of estimates for the damping ratio depends upon the 

accuracy of the natural frequencies predicted by the reduced order model. 

§5.3 A numerical example and discussions 

The cantilever beam shown in figure 3.12 is taken up in this section to illustrate the 

continuum model based calculations of the frequency response functions. The global 

stiffness matrix K and the global inertia matrix M of the beam are calculated as before. 

Continuum modes were calculated in section 4.4 for the approximate free vibration 

calculation for the beam. These continuum modes were evaluated from the finite element 

analysis of the single fixed-free beam having the same macroscopic dimensions as the 

cellular beam. The assumed modes were calculated from these modes through mapping 

on the lines of equation (4.3) using equations (4.1) and (4.2). These assumed modes 

were chosen as the basis modes after pre-conditioning using equation (4.26). The first 

ten assumed modes are used here for calculation of the approximate response. The 

undamped response is considered in the next section, followed by the damped response 

in the subsequent section. 

§5.3.1 Undamped response 

A harmonic force fe jwt is applied to a node near the neutral axis since it is practically not 

possible to find a node on the neutral axis when irregular cells are present. Coefficient 

matrices and the force vector for the reduced model K, M and f are calculated using 

equations (5.7) and (5.14). The unknowns ar are determined by solving equation (5.17) 

without explicit inversion. The complete displacement field is obtained by the trans­

formation (5.3) after substituting the values of ar . The driving point and the transfer 
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receptances of the reduced order model are compared with those obtained from the full 

scale finite element simulations. 

The vertical displacement of a point is calculated due to a harmonic vertical load 

acting upon it. The amplitude of the driving point receptance calculated from the full 

scale model is compared with the calculations based on the reduced order model in figure 

5.1. The frequency band chosen here contains ten modes of the finite element model. 

The point response shows similar features as is observed in the case of a homogeneous 

continuum. The finite height of the peaks is due to the finite resolution of the frequency 

stepping. The figure shows an excellent agreement- the error being less than 1% up 

to the ninth mode. The response curve starts deviating progressively after the ninth 

peak. The tenth frequency estimated by the reduced model is higher by 7% than the 

corresponding value calculated by the full scale finite element analysis. The accuracy of 

the tenth frequency can be improved by including more number of basis modes instead 

of including only ten. However, when the wavelength approaches the cell size, inclusion 

of more number of basis modes cannot predict the response well as the method fails. 

It is expected that the overall motion of the structure will be primarily vertical when 

the load is applied vertically. This can lead to missing modes that are associated with 

non-vertical motion. Figure 5.1 shows the axial mode between the third and the fourth 

peaks at 102.51 Hz missing. On the other hand the eighth peak in this figure corresponds 

to an axial mode which is possibly due to small bending axial mode coupling afforded 

by the irregular microstructure. 

There is an anti-resonance between any two resonances in figure 5.1. This is char­

acteristic of a driving point response. At the anti-resonance, the displacement of the 

driving point is zero. This can be viewed as a constraint applied to the system. It is 

known from the Rayleigh's principle that if a constraint is applied to a system keeping 

everything is the same, the natural frequencies of the system are increased. Let AI, A2,"" 

AN be the natural frequencies of the system. Similarly, suppose that {tI, {t2, .. ·, {tN-I 

are the frequencies corresponding to the constrained system. Then from the inclusion 

theorem we have, 

(5.27) 

Since anti-resonances are resonances of a constrained system, it follows that resonances 

and anti-resonances interlace for driving point response. 

The driving point receptance due to axial loading is presented next. Figure 5.2 shows 

the comparisons of the amplitude of the point receptance as calculated from the full scale 
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Figure 5.1: Driving point receptance as calculated from the finite element analysis 
using the full scale model compared with that of the reduced order model. Response is 
calculated due to a harmonic vertical load acting at a boundary node. Note that the 
peak associated with the first axial mode between the third and the fourth peaks is 
missing. The agreement is excellent up to the ninth mode. Anti-resonances are observed 
between any two resonance peaks as expected. 

finite element analysis and the reduced order model. The agreement is generally good. 

Note that the axial mode missing in figure 5.1 at 102.51 Hz is the dominant peak now. 

Peaks associated with the axial modes are more pronounced now. Small resonance peaks 

associated with the flexural modes are observed in addition to the axial rnodes. This 

can be attributed to small coupling introduced by the irregularity. 

10-
2 
r------,-------,------,-------,-r===~======~ 

Reduced model 
FE 

10-12 '----____ --'-______ -"-______ --'---______ -L-______ '--____ ---.J 

o 100 200 300 400 500 600 
Driving Frequency (Hz) 

Figure 5.2: Undamped driving point response when a harmonic axial load acts at a 
boundary node. The response is evaluated from the full scale model as well as the reduced 
order model. Sharp resonance peaks are observed at the frequencies corresponding to 
the axial modes. The first axial mode missing in figure 5.1 is prominent now. 
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The transfer receptance is calculated next when the driving point is unchanged and 

the response point is a cell junction close to the centre of the sample (co-ordinates 30.56 

mm, 5.36 mm). Driving as well as response are in the vertical direction. The transfer 

response is shown in figure 5.3. Again the full scale calculations are compared with the 

proposed approximation based on the continuum modes. The agreement is again very 

satisfactory up to the ninth mode. 

Resonance peaks are observed at the frequencies corresponding to the flexural modes 

just as they were observed in the point receptance. The resonance associated with the 

first axial mode is missing again. In the case of the point receptance, resonances and 

anti-resonances were observed alternately. Such a pattern of response is not observed 

now. For example, no anti-resonance is observed between the first and the second or 

the second and the third resonance peaks. The transfer receptance, when the driving as 

well as the response directions are changed to axial, is shown in figure 5.4. The quality 

of match between full scale calculations and the continuum modes based approximation 

is again very good. 

1-:- ~~duced model 1 

o 100 200 300 400 500 600 
Driving Frequency (Hz) 

Figure 5.3: Undamped transfer receptance for the full scale model and the reduced 
order model due to a vertical load applied at the right hand boundary node. Note 
the absence of the anti-resonances between the resonance peaks in many cases. This a 
characteristic of transfer receptance. 

The response at a point of the structure is plotted so far. Now, the spatial response 

the structure as estimated by the reduced model will be compared with that from the full 

model. The FDAC (Frequency Domain Assurance Criteria) is used here for correlating 

the response vectors ¢ and q in the frequency domain. The plot is similar to the MAC 

plot used in sections 4.4.1 and 4.4.2 for comparing the eigenvectors. In the present case, 
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Figure 5.4: Undamped transfer receptance plotted all the lines of figure 5.3. The 
driving direction is axial now. 

it is impossible to compare the vectors at all the possible values of the driving frequency. 

Hence, the response functions are calculated at some representative frequencies only. 

In this thesis, the calculations are performed for all the natural frequencies and the 

mid-points between two adjacent modes on the frequency axis. The frequency band 

considered here has the first ten modes of the full scale model. Therefore, 20 pairs of 

vectors, ¢ and q are generated for the FDAC plot. 

The FDAC matrix F has the entries given by [28] 

(5.28) 

The asterisk denotes the complex conjugate. In the absence of damping, the response 

vectors are real. Figure 5.5 shows the relative magnitudes of Frs for the pair of response 

vectors on a suitable grey-scale. The dark diagonal cells on this plot show excellent 

correlation between the spatial response as calculated by the full scale model and that 

as calculated by the reduced order model. 

In order to compare the computational savings, the number of floating point op­

erations involved in both the approximate method and the finite element method are 

calculated when a vertical load is applied at a boundary node. A frequency interval of of 

0.16 Hz is considered which involves calculation of the response vector (3444 x 1) 3500 

times. The total floating point operations required for calculations using the reduced 

model and the finite element model are 2.61 x 108 and 2.63 x 1010 respectively. This 

indicates that the flops for the reduced model are only 1% of those required for the full 

scale model. Note that the flop counts for the reduced model includes the generation of 
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Figure 5.5: FDAC plot representing correlation between the response vectors as calcu­
lated by the finite element simulations and the reduced model. The dark blocks on the 
diagonal show excellent correlation up to the ninth mode. 

the assumed modes, the modes of the skeleton and preconditioning etc. The assembly 

of the coefficient matrices is included in both the cases. 

§5.3.2 Damped response 

The model analysed in the previous section is taken up now when damping is included in 

the model via Rayleigh damping. It is unclear how the damping ratios will be predicted 

when the model order reduction scheme proposed in Chapter 4 is employed. Potentially, a 

mismatch in the effective damping ratio can seriously affect response near the resonances. 

To investigate these issues, numerical results from the damped model are presented in 

this section. 

The value of the damping ratio ( is taken as 1% for the first and the tenth mode. 

The values of the constants a and 13 are then calculated by solving the two simultaneous 

equations using (5.25) for this chosen value of (. The values of a and 13 evaluated as 

above are 0.596 8 - 1 and 6.39 x 10-6 8 respectively. The reduced damping matrix C is 

then generated as aM + 13K. The response is calculated using equation (5.17). 
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The point receptance is presented in figure 5.6 when a vertical point load is applied 

to a node close to the centre line. The agreement is excellent agreement up to the 

ninth mode. This shows that the reduced damping matrix accurately captures the 

damping behaviour of the full scale model. The seventh mode is an axial mode which 

is also reproduced by the reduced order model since the basis modes include the axial 

continuum mode. Again, anti-resonances are observed between any two resonance peaks-

a characteristic of driving point response. The phase is also reproduced accurately by 

the reduced order model. 
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.s:::: 
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Figure 5.6: Driving point receptance due to a vertical load acting at a boundary node. 
Damping is included in the model. The response curves have the similar features as was 
observed in figure 5.1, with the difference is that the resonance peaks are now reduced 
due to damping. 

Equations (5.25) and (5.26) are used to determine the damping ratios for the full 

scale and the reduced model respectively. These values of ( are plotted in figure 5.7. 

The figure shows that the damping ratios are well predicted by the reduced model up to 

the ninth mode. 

The driving point response is shown in figure 5.8 when the loading and response 

measurement are axial. The response calculated from the full scale model matches 



Chapter 5. Frequency response calculations using continuum modes 106 

X 10-3 

11 

0 Damping ratio from FE model 
+ Damping ratio from reduced model 

9 

8 

0 
.~ 

7 
OJ 

Ell Ell c 
1'i 
E 6 
'" 0 

5 

Ell 

4 

3 
Ell 

Ell 

2 
1 2 3 4 5 6 7 8 9 10 

Mode number 

Figure 5.7: A plot of the damping ratio ((r) against mode number. The ratios estimated 
on the basis of the reduced model are very accurate except for the last mode. 

closely with the continuum mode approximation for a reasonable band of frequencies. 

The match is less satisfactory than the case of bending because of the lack of axial 

continuum modes in the frequency band under consideration. Again the height of the 

peaks are matched fairly accurately showing a good agreement in the damping ratio for 

the respective modes. The phase shows a generally good agreement too. The magnitude 

and the phase of the approximate transfer response calculations also match well with 

the finite element calculations (see figure 5.9). 

The FDAC matrix F is generated for both the response vectors q and ¢ for the 

comparisons of the damped response of the whole structure. The response functions are 

calculated at the same frequencies as was evaluated in the undamped case. Note that 

both the vectors are complex in this case because of damping. The FDAC matrix F is 

plotted in figure 5.10. The dark blocks on the diagonal show good correlation except 

the last mode. 

The total floating point operations required for the full scale and the reduced model 

calculations are 1.03 x 1011 and 9.99 x 108 respectively. Therefore, flops for the reduced 

model are less than 1 % than that required for the full model. The computational savings 

will be even greater when more number of response functions are to be calculated and 

when the size of the problem is larger. 
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Figure 5.8: Driving point receptance due to harmonic axial load when damping is 
included in the model. 

§5.4 ConcI usions 

A method was proposed for the estimation of frequency response of cellular structures. 

The main motivation was to reduce the computational expense associated with the 

response calculations for such structures without compromising the accuracy. The pre­

conditioned continuum modes were used as the basis for the model order reduction. The 

response of the whole structure was predicted using the reduced order model. 

A proportional damping model was proposed to include the effect of damping. The 

damping co-efficients associated with the stiffness and the inertia matrices were calcu­

lated for a frequency bandwidth when the value of the damping ratio was prescribed for 

the two extremes of the band. 

The response predicted by the proposed method was compared with that calculated 

from the full scale model. The comparisons showed good agreement for the damped as 

well as the undamped cases. The reduced order model predicts fairly accurate damping 

ratios. Without comprising the accuracy significantly, substantial computational saving 

was achieved when continuum modes are used for model order reduction. The limitation 
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Figure 5.9: Comparison of the transfer receptance when the load is vertical. Damping 
is included in the model. 

of the proposed model order reduction is that it is suitable only for the low frequency 

dynamics. 
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20 

Figure 5.10: FDAC plot representing correlation between the damped response vectors. 
The dark blocks on the diagonal show excellent correlation up to the ninth mode. 
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Experimental determination of 

the effective modulii of metallic 

foams and their dependence on 

mode number 

§6.1 Introduction 

An experimental study on the dynamic behaviour of metallic foams is undertaken in 

this chapter. Given the overall dimensions of a sample (say a thin rectangular bar), the 

effective Young's modulus can be worked out by using the well known frequency formula 

for beams in bending. If we assume that a piece of metal foam indeed behaves as an 

equivalent continuum, then the value of the modulus must be calculated the same from 

all the modes of vibration. To ensure that the higher order effects such as the shear 

correction, rotary inertia etc. are kept out of consideration, geometrical differences were 

eliminated by performing experiments on solid samples of the same external dimensions 

as those of the metallic foam sample. It may be recalled that the effects are dominated 

by geometry; i.e. a slender sample will increasingly mimic an Euler-Bernoulli beam 

behaviour. Having performed experiments on metallic foam samples as well as solid 

samples, a mode by mode comparison will be made for the effective Young's modulus. To 

achieve this, all the values will be normalised with respect to the measured fundamental 

frequency- this provides an opportunity to study the modal separation for metallic foams 

experimentally and to compare it with that of a solid sample. 

110 
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Among the previous experimental investigations on cellular matter, only those related 

to the mechanics of metallic foams are cited here. Simone et al. [91] studied the effect 

of ilnperfections on the elastic modulus and strength of Alporas™ foam. McCullough 

et a1. [70] performed static tensile and compressive test for calculating the uni-axial 

stress-strain behaviour of Alulight T:vI. Ramamurthy et a1. [83] studied the variability of 

the elastic modulus, the plastic strength, and the energy absorption in Alporas on foam 

density. However, experimental studies on the dynamic behaviour of metallic foams has 

received little attention. Dynamic experiments have been used in the past for evaluating 

the elastic constants of ceramic and dental materials [4, 56, 94]. The present work is 

perhaps the first attempt to determine the Young modulus as well as the Poisson's ratio 

of metallic foams. Certainly, a mode by mode variation of the effective modulus has not 

been reported previously. 

Commercially available closed cell metallic foam Alulight ™ was chosen for the ex­

perimental work. This choice was guided by the feasibility of performing dynamic ex­

periments. Open cell foams were kept out of consideration from the experimental work 

because of their low effective density and high internal damping they are not suitable 

for meaningful observations. In addition, instrumentation using accelerometers on open 

cell foams is difficult. 

The approach of obtaining modulii from vibration experiments has several advantages 

over static testing. Firstly, the frequencies are obtainable for very low amplitudes of 

vibration which is desirable for eliminating any geometric or material non-linearities. 

Secondly, the natural frequencies reflect the overall elastic behaviour unlike static tests 

in which local structural details may dominate. Thirdly, experimental determination of 

the Poisson's ratio from static experiments is much more difficult compared to that from 

the dynamics experiments. Finally, the objective of this work is to examine the validity 

of the effective medium theories in dynamics which requires estimation of the modulii 

for various excitation frequencies. This can come only from a vibration experiment. In 

the next section, the experimental set up and the general experimentation method are 

described. This is followed by the determination of the elastic modulii and a study on 

the modal separation in section 6.3. Conclusions are drawn in section 6.4. 

§6.2 The experimental procedure 

The experimental set up is shown in figure 6.1. The figure shows a sample horizontally 

suspended. The suspension cords were chosen sufficiently long to ensure that the oscil-
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lation frequency associated with the free swing as a rigid body was much smaller than 

the structural frequencies of interest. When the frequency of the rigid body swing is 

much smaller than the fundamental structural frequency, the sample can be practically 

considered to be in free-free conditions. Suspension by a cord has the advantage over 

soft supports (e.g. sponge) that it is practically lossless and the suspension stiffness can 

be altered easily by changing the cord length. In many cases a vertical suspension of the 

samples was also employed (not shown in the figure). 

Impulse using an instrumented hammer was the preferred method of excitation. 

The primary interest was in measuring the natural frequencies of the test samples. An 

elaborate scheme for modal identification was avoided since the quantities of interest were 

fairly basic. For example, complete mode shapes were not determined, but information 

regarding mode shapes was inferred using simple means such as placing the accelerometer 

at various locations to locate the nodes and the anti-nodes. The samples chosen here 

were in the form of a beam with length/depth ratio greater than 10. The beam was 

hung freely in a vertical or in a horizontal position as it was found to be convenient. 

Any clamping of the structure was avoided since it is difficult to realise this boundary 

condition in the laboratory. 

Excitation and sensor locations were chosen to be the end points in many cases. This 

ensures that no modes are missed out because the free ends are anti-nodes for all the 

modes for a rectangular bar. On many occasions, the location of the excitation and/or 

sensing was altered to identify the nodes and anti-nodes of specific modes. The fact, 

that one would get a large response when a driving point measurement is made at an 

anti-node and a negligible response near a node, was used to identify the mode types in 

the measured frequency response functions. This strategy was also used to separate the 

bending modes from the torsional modes. Torsional modes were further confirmed by 

checking the phase at the opposite edges of a face. 

To ensure that the measured response actually represents a driving point measure­

ment, the excitation and the accelerometer locations were kept as close as possible. The 

data logging equipment and the software convert the analog data to the digital form 

after suitable amplification and compute the Fast Fourier Transform (FFT) of forcing 

as well as the response. The ratio of the FFTs of the response to that of forcing gives 

the frequency response function (FRF). 

The impulse hammer used to excite the samples was PCB make ICpTM (Integrated 

circuit~ piezoelectric, model no. 086COl). The weight of the hammer is 25 gm and the 
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Figure 6.1: The experimental set-up. The beam is suspended horizontally using two 
cords, which simulate the free-free boundary condition. The data-logger and the visual 
display unit (laptop) are also shown. 

sensitivity is 11.2 mV IN. To keep a balance between the low weight and the sensitivity 

of the transducer, PCB make ICpTM accelerometers (model no. 352C22) were used. An 

accelerometer weighs 0.5 gm and has a sensitivity of 9.30 mV / g. Petro wax adhesive 

was used for mounting the accelerometers on the foam surface. The first resonant fre­

quencies of the hammer and the accelerometer are 35 kHz and 50 kHz respectively. This 

ensured that data up to 20 kHz band can be captured safely. A 8-channel data-logger, 

Dataphysics Signalcalc Mobilyzer, was used for the experiment. It supplied the 4mA 

current needed to operate each ICpTM. 

In a practical measurement, in addition to bending and torsional modes, the axial 

modes also appear. To confirm this type of mode, the beam was excited axially. The 

resonance peaks corresponding to the axial modes then become pronounced . . This ex­

citation method gives a series of modes in axial extension and compression from which 

the effective modulii can be deduced. 

Figure 6.2 shows two different positions of excitation on a beam having a rectangular 

cross-section. For position 1, i.e. when the beam is excited near the midpoint, the tor-
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POSITION 1 

POSITION 2 

Figure 6.2: The positions 1 and 2 of the excitation. Position 1 is suitable for exciting 
the flexural modes while position 2 is suitable for torsional modes. 

sional modes are excited along with the bending and the axial n1.odes; but the resonance 

peaks corresponding to the torsional modes are small. When the driving point mea­

surement is shifted to position 2 (see figure 6.2), the torsional modes are pronounced. 

Torsional modes were further confirmed by making phase measurements when the driv­

ing point and the sensing point are different. The motion is in-phase at the opposite 

edges of the face for bending modes whereas it is out-of-phase for torsional motion. Ad­

ditional features of the torsional mode were used for confirmation of the mode type: for 

example, the fundamental torsional mode has an anti-node at the centre-line AB. 

§6.3 Results and discussions 

A macrograph of the a specimen of Alulight foam is shown in figure 6.3. As can be 

seen from this figure, the cells do not have any particular shape and they are randomly 

distributed. The average cell size for Alulight foams is reported elsewhere as 4.2 mm [3]. 

The average ratio of the length of the major axis and minor axis of cells has been 

reported to be close to 1 [3]. Therefore, macroscopically we do not expect any directional 

preference in the elastic properties. 

The geometrical parameters of the two samples of the foam are shown in table 6.l. 

The length/depth ratio for each beam is about 25. The cross-section of the beam is 

rectangular, with the overall depth/width ratio approximately being 2.44. The sam­

ples used for experimental work were the longest possible. This was dictated by the 

manufacturer's constraints. 

FRFs are calculated from the measurements of the applied impulse and the accel­

eration. A typical impulse and its FFT are shown in figure 6.4. Double impacts were 
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Figure 6 .3: A macrograph of a sample of Alulight foam. 
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Figure 6.4: A typical experimental impulse and t he magnitude of its FFT are shown. 



Chapter 6. Experimental determination of the effective modulii of foams 

Sample 1 
Length of the beam L 
Overall depth in the transverse direction D 
Width of the beam B 
Density of the foam p* 

Volume fraction of the foam p* / Ps 
Sample 2 
Length of the beam L 
Overall depth in the transverse direction D 
Width of the beam B 
Density of the foam p* 

Volume fraction of the foam p* / Ps 
Young's modulus of the cell wall material aluminium Es 
Poisson's ratio of aluminium Vs 

Density of aluminium Ps 

625 ± 1 mm 
24.1 ± 0.1 mm 
60.4 ± 0.1 nnn 
370.54 ± 0.007 kg/m3 

0.137 

625 ± 1 nun 
24.1 ± 0.1 mm 
59.5 ± 0.1 mm 
338.35 ± 0.007 kg/m3 

0.130 
70 GPa (assumed) 
0.33 (assumed) 
2700 kg/m3 (assumed) 
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Table 6.1: Geometric data for the two samples of rectangular bars made of Alulight. 

avoided by taking proper care while hitting the sample. Each impulse and its FFT were 

checked to avoid the effects of double impact. Further, frequency response plots which 

are free from noise were used for the averaging process. Since the Nyquist frequency 

is half the sampling frequency, the sampling frequency was chosen as 2.56 times the 

maximum frequency. The resolution of the spectral lines in the frequency is 0.25 to 0.5 

Hz. No windowing was used in this case as the primary interest was in the FRF for the 

whole frequency band. Figures 6.5 and 6.6 show typical plots of the amplitude and the 

phase of the accelerance obtained due to the excitation at positions 1 and 2 respectively. 

The noise in the band of DC to the first clear resonance peak in figures 6.5 and 6.6 is 

attributed to the soft suspension used. 

The measurements in figures 6.5 and 6.6 are driving point measurements. Note the 

alternating resonances and anti-resonances on the frequency axis. This is a characteristic 

feature of measurements when the excitation point coincides with the sensing point. The 

phase changes agree with the corresponding magnitude plots since we expect a phase of 

+7f associated with a resonance (or a pole of the transfer function) and a phase of -7f 

with an anti-resonance (a zero of the transfer function). The initial phase just below the 

first structural resonance is the accumulated phase from the internal resonances of the 

soft suspension. 

The torsional modes are excited in addition to the bending modes when the position 

of making the driving point measurements is changed from the centre line on a face 

to an edge. This is seen when we compare the peaks in figure 6.5 with those in figure 
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6.6. The torsional modes that are barely visible in figure 6.5 become pronounced in 

figure 6.6. They are located at 973 Hz, 1708 Hz, 2511 Hz, 3407 Hz and 4260 Hz. When 

driving point measurements were taken at the lengthwise centre of the beam, the first 

and the third torsional modes were found to be missing from the response (not shown 

here). This is expected since these structural modes have a node at the centre of the 

bar. There is a mode very close to the torsional mode at 2511 Hz in figure 6.6. This 

mode was confirmed to be the fundamental axial mode. This was identified by making 

a driving point measurement when excitation and measurement degrees-of-freedom are 

axial degrees-of-freedom at the ends. FRFs for such excitation are shown in figures 6.7 

and 6.8. Figure 6.8 is an average of 15 FRFs shown in figure 6.7. The fundamental 

peak is found at 2495 Hz. An average FRF for the axial excitation of a solid aluminum 

sample is shown in figure 6.9. When figure 6.8 is compared with figure 6.9, we note that 

the frequencies are approximately multiples of the fundamental frequency for the solid 

bar whereas aluminum foam bar shows that the second, the third, the fourth etc. modes 

are at frequencies less than double, three times or four times the fundamental frequency. 

The less pronounced but clearly present modes at frequencies below the fundamental 

axial mode in figure 6.8 are the bending and the torsional modes. 

§6.3.1 Extraction of elastic modulii from experimentally measured nat-

ural frequency data 

Once the types of modes in a measured FRF has been identified (e.g. bending, torsional 

or axial), the elastic modulii can be determined by using the frequency equation for the 

relevant mode type. The bending modes yield the Young's modulus using the formula 

(6.1 ) 

where, Cr takes the values of 4.73, 7.853, 10.996, 14.137, 17.279, ... , (2r + 1)7f /2 [8]. Note 

that the value of E* as calculated from above will depend on the mode number r in the 

bending series. If the beam were infinitesimally thin so that shear correction and rotary 

inertia are negligible, this value will be identical for all the modes (within the limits 

of errors ill the experimentation). However, any systematic departure from a constant 

value can be attributed to two factors: (i) that the beam does not behave as all ideal 

Euler-Bernoulli beam, and (ii) that the aluminium foam sample does not behave as a 

continuum. To distinguish these two factors, and to understand the effect of the latter, 

the strategy of comparing experiments with experiments were employed. When samples 

made of solid non-porous material are tested in the laboratory, any departure from a 
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Figure 6.5: The magnitude and the phase of the accelerance FRF for the driving point 
excitation at position 1. The resonances and the anti-resonances are observed. The noise 
before the first resonance peak is mainly due to the soft suspension. 
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Figure 6.6: Driving point FRF when the beam is excited at position 2 instead of 1. 
The torsional modes which were not clear in the previous figure are distinct now. The 
first five peaks are found to be at 973 Hz, 1708 Hz, 2511 Hz, 3407 Hz and 4260 Hz 
respectively. 
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Figure 6.7: Fifteen driving point FRFs for the axial excitation, superimposed on each 
other. 

constant value of the experimentally estimated values of the Young's modulus indicates 

the differences in modelling using a simple formula such as (6.1). These differences ap­

proximately depend on the geometry (e.g. thick beams require greater care in modelling) 

and the mode number (since the higher the mode number, the smaller the characteristic 

length in the axial direction rendering the same beam effectively thicker at high mode 

numbers). When the external dimensions of the aluminium foam samples are matched 

with those of a solid sample, the difference in the trend for modal frequencies and elastic 

constants determined therefrom will be due to the second factor mentioned above i.e. 

due to the porous nature of the matter being tested. The results in this section are 

presented with this general philosophy. 

On the lines of equation (6.1), the Young's modulus can be calculated from an axial 

vibration mode using the formula 

E * 2(L/)4 x wr Cr p' (6.2) 

where, r is the mode number in the axial vibration series. Cr takes the value nf for 

the r-th mode. Apart from the bending and axial vibration modes, the most commonly 

encountered mode type for a bar is torsional. Since these natural frequencies depend on 

the shear modulus, the (effective) shear modulus of the material can be calculated from 

w2 L2p* 1 r P 

c~J 
G* (6.3) 
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Figure 6.8: The average FRF of the fifteen FRFs for the axial excitation shown in 
figure 6.7. Six resonance peaks associated with the axial modes are pronounced now. 
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Figure 6.9: An average FRF for the axial excitation of a solid aluminium rectangular 
bar. The sample has the same external dimensions as those of the metal foam sample. 
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where, Wr is the r-th torsional frequency, Ip and J are the polar second moment of area 

and the torsional constant of the cross-section respectively. Cr takes the value nr for the 

r-th mode. This formula ignores warping, and this effect can be eliminated by comparing 

the mode number dependent values when (6.3) is employed to the torsional modes of a 

bar of solid material. 

The value of the Poisson's ratio can be calculated by making use of the experimentally 

determined values of the Young's modulus and the shear modulus 

1 E* 
v* = - - 1. 

2 G* 
(6.4) 

The bounds on the relative error in determining the values of E*, G* and v* are 

given by 

1 d~* 1 ~ 21 d: 1 + 21 df 1 + 1 ~* 1 + 1 dI; 1 + 1 ~: I· 
(6.5) 

and 

1 

dv* 1 ~ 1 dE* I + I dG* 1· 
v* E* , G* 

(6.6) 

The value extracted on the basis of the first axial mode and the first torsional vibra-

tion mode are tabulated in table 6.2. These values are based on the first axial frequency 

equal to 2495 Hz for sample 1, 2423 Hz for sample 2 and the first torsional frequency 

equal to 973 Hz for sample 1 and 937.5 Hz for sample 2. In the same table, estimates 

available in the literature (section 1.2.3) for modulii of foams are presented for compar­

ison. These estimates account for volume fraction only. 

Elastic 
Constants 

E* IEs 
v* 

Experiment 
Sample 1 

0.0516 ± 0.0002 
0.39 ± 0.058 

Experiment 
Sample 2 

0.0461 ± 0.0002 
0.40 ± 0.058 

Christensen 
[12] 

0.083 
0.249 

Gibson et al. 
[35] 

0.052 
0.33 

Simone et al. 
[91] 

0.0458 

Table 6.2: Comparisons of the experimental results with theoretical predictions. 

§6.3.2 Degradation of the effective elastic modulii of metallic foams 

with mode number 

The modal series provides a set of natural frequencies given the geometry and the prop­

erties. For slender geometries such as a bar, the ratio of frequencies in this series is 

independent of the material properties. Therefore, the effect of porosity on the modal 

series can be effectively studied by considering two different samples, one made of porous 

metal and another made of solid metal. If the external dimensions are the same, then 
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any deviation in the modal series normalised with respect to the fundamental can be 

attributed to the porosity. 

The strategy of testing beams made out of metal foams along with identical beams 

of solid material has the advantage that any higher order effects due to Timoshenko 

shear correction or rotary inertia or, possibly, three dimensional effects are accounted 

for. Therefore, we do not have to make corrections by the use of a sophisticated theory; 

instead results from one set of experiments can be compared with those from another set 

of experiments. To make sure that the variability of microstructure does not affect the 

generic conclusions about porosity related behaviour, two samples of metal foam were 

tested. 

The first ten flexural frequencies of the beam made of solid aluminium as well as 

those made of metal foam are presented in the top half of figure 6.10. For each sample, 

the frequencies have been normalised with respect to the experimentally measured fun­

damental structural frequency of the sample. In this way, all the normalised frequencies 

have the fundamental as unity and the higher modes show the ratio with respect to this 

value. The plot, therefore, shows a relative separation of modes on the frequency scale 

for solid matter as well as porous matter having the same external dimensions. If the 

effective medium theory were valid for the entire range of frequencies, we would expect 

that the three trends to be close to each other within the limits of experimental errors. 

On the contrary, we note a systematic departure from the trend for the solid bar. In 

both cases of porous metal, the higher modes show a progressive softening. The plot also 

indicates that deviation in modal separation cannot be attributed to the randomness in 

porosity because this would have resulted in random deviations on either side of the 

trend for the homogeneous solid. The observation that the deviations are small for low 

mode numbers and systematically increase with increase in the mode number indicates 

that the non-continuum behaviour is pronounced at higher frequencies. This is in agree­

ment with our observations on two-dimensional simple beams models in Chapter 2 and 

Chapter 3. A possible explanation is the existence of additional rotational freedom in 

case of cellular matter: traditional elasticity does not account for this degree of freedom. 

Therefore, the experimental as well as numerical observations suggest the cellular media 

may be modelled as Cosserat continua. 

The breakdown of the effective medium theory for higher modes can be presented 

by calculating effective Young's modulus for different resonant modes. This calculation 

is summarised in the bottom half of figure 6.10. If we had an infinitesimally thin rod, 
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an application of the Euler-Bernoulli beam bending formula would extract a value of 

Young's modulus that is independent of mode number. Using the normalisation with 

respect to the value of the fundamental frequency, this trend will be seen as a hori­

zontal line staying at the value of unity. When finite sized solid bars are tested in the 

laboratory but thin beam formula is used (admittedly inappropriately) to calculate the 

effective Young's modulus, we would obtain a mode number dependent value for the 

Young's modulus. The experimentally obtained values of Young's modulus for the solid 

aluminium bar obtained in this manner are shown in figure (6.10) using the diamond 

markers. This mode number dependent value shows that there is a progressing softening 

with respect to the Euler-Bernoulli theory which can be attributed to the shear correc­

tion, rotary inertia, and other higher order effects. Experimentally measured values for 

Alulight beams (shown using circles and dots for the two samples) exhibit additional 

flexibility. The difference between the values for the solid beam and that for the metal 

foam beam is about 20% for the second mode. We attribute this deviation to the poros­

ity of the material. The relative reduction in the values of Young's modulus is more 

pronounced for higher mode numbers. 

The free-free torsional vibration frequencies of slender rods are in the ratio 1 :2:3:4 

etc. This is closely demonstrated by the experimentally measured modal frequencies of 

the solid aluminium bar shown using diamond markers in figure 6.11 (the top figure). 

The modal frequencies have been normalised with respect to the fundamental so that 

all the graphs start at unity for mode number 1. The shear modes calculated from these 

modal frequencies is plotted against the mode number in the bottom part of figure 6.1l. 

Any departure from the diamond marker is due to the cellular nature of metallic foams. 

Note that both the samples show a reduced value of the shear modulus at higher mode 

numbers compared to the value derived from the fundamental natural frequency. 

The natural frequencies normalised with respect to the fundamental frequency for 

axial vibration are shown in the top figure of 6.12. The experimentally measured points 

(shown using the diamond markers) show a ratio close to 1:2:3:4~ the expected ratio 

for slender rods. In contrast, the points corresponding to the metallic foam samples fall 

below the diamond markers consistently. The same trend is observed for the dependence 

of the effective Young's modulus on the mode number (bottom figure in 6.12). 
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Figure 6.10: The top figure shows the bending frequencies of two Alulight samples 
(about both the axes) and aluminium plotted against the mode number. The frequencies 
are normalised with respect to the fundamental frequency of the respective series. 
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Figure 6.11: Comparisons of the torsional frequencies and the shear modulus with 
mode number for the Alulight foam and the solid. The solid shows little stiffening, 
whereas the two foam samples show reduction in the shear modulus. 

§6.4 ConcI usions 

An experimental study on the vibration of bars of rectangular cross-section made of 

aluminium foams was undertaken. Vibration modes in axial motion, bending and torsion 

were identified to calculate the effective medium properties (the Young's modulus and 

the Poisson's ratio of the material). 

The dependence of the effective Young's modulus on the mode number was exper­

imentally examined. It was observed that this variation has a systematic trend that 

the effective modulus for the higher modes shows a relatively lower value than that for 

the fundamental frequency. The variation is gradual for bending modes whereas for the 

axial modes, the values are very different for the first two modes, but mode to mode 

difference is less pronounced beyond the second mode. To account for the effects as­

sociated with the finite-sizedness of the experimental sample and, therefore, to account 
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Figure 6.12: The plot of the frequency ratio and the the Young's modulus for the axial 
modes. 

for the differences at the higher mode numbers because of the use of a simple beam or 

shaft formula, all the metallic foam modulii were compared with the modulii obtained 

from experiments on solid bars of the same external dimensions. In all the cases, it 

was observed that the Young's modulus for metallic foam samples shows relatively lower 

values at higher mode numbers compared to their solid counterparts. 

The progressive softening of the Young's modulus with mode number was a general 

feature that was observed in many numerical simulations in Chapter 3. Therefore the 

experimental evidence supports this observation and suggests that the mode number 

dependence is probably due to the porous nature of the material. A likely reason is the 

presence of rotation related energy that classical continuum does not possess but the 

generalised Cosserat continuum does. The rotation is probably due to the rotation of 

joints which is perhaps unimportant for the fundamental frequency but gains importance 

at higher mode numbers. 

The general observation in this chapter and earlier in the thesis that a constant value 
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of Young's modulus is not applicable for all the modes of vibration has important impli­

cations to the structural dynamics of cellular material. It clearly suggests that effective 

medium theories are inappropriate for high frequency vibration of cellular matter. 
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The statistics of the modal spacing and the modal density for the cellular beams 

were compared with those of a plane stress problem whose Young's modulus is chosen to 

match the fundamental frequency of the cellular beam. Three regions of modal spacing 

were identified. It was found that the effective medium theory breaks down in regime 2 

when the wavelength approaches the depth of the beam. For all the cellular topologies 

studied here, the modal density gradually increases as compared to that of a continuum. 

This rise is perhaps attributed to the porosity of the cellular medium. In this regime, 

various topologies start exhibiting features intrinsic to them. For example, structure 

made of square cells show the presence of thickness-shear modes. 

As the wavelength approaches the cell size, the cell walls exhibit local resonance. In 

this frequency range, the presence of a number of cell walls resonating together causes 

an abrupt increase in the modal density. This sudden rise in the modal density is most 

distinct in the case of the triangles as each cell wall behaves as an independent member, 

whereas coupling between the cell walls in the other topologies affect the sharp rise. In 

the case of the irregular cells, the modal separation first decreases and then increases. 

The decrease is attributed to the presence of boundary cell walls. It was shown that for 

a triangular network, the deformation mechanism of a cell wall changes from axial to 

bending at the first resonant frequency. An approximate method to estimate of the cell 

wall resonant frequency for the triangular lattice was presented. However, the calculation 

of the first resonant frequency is not that straightforward for other topologies, because 

the deformations of the cell walls are primarily bending dominated for all mode numbers. 

Further, there are difficulties in simulating the end conditions of the cell walls embedded 

in a lattice. 

A large eigenvalue problem needs to be solved for the free vibration calculations of 

cellular structures, even when only the first few frequencies are required. A method was 

developed to save computations by avoiding the solution of the full scale eigenproblem. 

The so-called continuum modes were used as the basis modes for the method. It was 

found that the Rayleigh's variational principle fails to predict the correct frequencies 

even when the assumed modes were very close to true modes. The reasons for this 

failure was traced. A sensitivity analysis was carried out to show that the presence 

of small mode components associated with exceptionally high frequencies can corrupt 

the modes. Inverse power iterations were used to eliminate these unwanted frequency 

components successfully. Two structural examples were given to illustrate the working 

of the method. Substantial computational saving without significant loss of accuracy 
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was reported. 

The method based on the continuum modes was extended to frequency response 

calculations. Illustrative examples were presented. The damping ratios were accurately 

predicted by the reduced order model. While an overall good agreement with the full 

scale calculations was observed, it is admitted that the method is not suitable for mod­

erately high frequency vibration calculations. 

The Young's modulus and the Poisson's ratio of Alulight ™ were obtained experi­

mentally by measuring the fundamental frequencies associated with the axial and the 

torsional modes. It was found that the Young's modulus as calculated from higher modes 

is always less than that extracted on the basis of the fundamental natural frequency. This 

trend was common to all the mode types but was most pronounced for bending modes. 

The above conclusions account for the limitations posed by one-dimensional theories­

the experimentally observed softening with mode number is much less for homogeneous 

bars of the same external dimensions. 

A general conclusion that arises out of this work is that effective medium theories 

are approximately applicable to low frequency dynamics. They become increasingly 

inappropriate to capture the behaviour with increase in the mode number. This affords 

new challenges to high frequency dynamics and noise transmission. 

The main contributions of this thesis are as follows: 

.. Beams made of cellular material can be replaced by an appropriate homogeneous 

continuum for static bending as well as for low frequency dynamics (Chapter 2) . 

.. With the increase in the mode number, a cellular beam ceases to behave as a 

continuum. Then, the dynamics of a cellular beam becomes topology-dependent, 

which is reflected by presence of a variety types of localised modes and a varying 

modal separation as well (Chapter 3) . 

.. A method is proposed for the approximate free vibration calculations of the cellular 

structures using assumed modes based on a continuum to achieve computational 

economy with good accuracy (Chapter 4) . 

.. A sensitivity analysis to show that an approximation based on the Rayleigh's 

variational principle can yield inaccurate results due to the presence of very small 

modal contributions associated with very high frequency in the trial vector, despite 

the trial vector being very close to the exact eigenvector. The use of inverse power 

iterations to pre-condition the assumed modes was successfully employed (Chapter 
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4). 

II The extension of the proposed model order reduction method to estimate the 

frequency response (Chapter 5). 

II Experimental investigation of the departure of the continuum behaviour of metallic 

foams by a carefully designed experiment (Chapter 6). 

§7.2 Future work 

There are several aspects of the structural dynamics of cellular media that need further 

study. They are itemised below: 

II The modelling of foam-filled sandwich constructions is a practical problem. The 

structural dynamics of these constructions is a problem closely related to the main 

theme of this work. 

II It would be interesting to check if the general conclusions drawn from two di­

mensional models presented in this dissertation hold for three dimensional models 

too. 

II The present work indicated the sensitivity of the cellular topologies on the dynamic 

behaviour of the cellular materials. The dependence of the geometrical parameters 

such as thickness of the cell walls was also presented. As the next step, the effect 

of the shape and the size of a cell on the overall dynamics can be studied. This will 

be useful in identifying a suitable foam topology, and then optimising its properties 

e.g. mass, stiffness etc., as required for specific applications. 

II Experimental measurements in the high frequency regimes could be undertaken. 

Asymptotic formula for modal density as a function of the real part of mobility 

can perhaps be used for the purpose. 

II The issue of computational economy for moderately high frequency is unresolved. 

Perhaps the Statistical Energy Analysis (SEA) is a suitable tool for problems such 

as noise transmission. 

II Instead of the proportional damping, hysteretic damping of the cell wall material 

can be included by evaluating the strain and the associated stress in the cell wall. 

In that case, the stiffness matrix will be complex. The limitation is that the 

equation of motion can only be written and solved in the frequency domain. 
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.. Experimental studies on damping mechanisms in cellular solids are very limited. 
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