
UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND APPLIED SCIENCE

School of Electronics and Computer Science

Mobile-Agent based Middleware for Mobile Users

by

Norliza Mohamad Zaini

A thesis submitted for the degree of Doctor of Philosophy

May 2005

UNNERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

SCHOOL OF ELECTRONICS & COMPUTER SCIENCE

Doctor of Philosophy

MOBILE-AGENT BASED MIDDLEW ARE FOR MOBILE USERS

by Norliza Mohamad Zaini

Mobile terminals such as cellular phones and PDAs have rapidly come into widespread use in

recent years. Consequently, there is a growing requirement for increased flexibility in

applications, especially in overcoming limitations of wireless environments. However,

developing distributed applications that make effective use of networked resources from a mobile

terminal is difficult for a number of reasons. We focus on two main problems: namely, mobile

terminals do not have a permanent connection, and have intermittent connectivity to the fixed

network; and the nature of a mobile terminal is the limiting factor when supporting computation

intensive applications. Such characteristics prevent the large-scale deployment of advanced

services to a mobile terminal. Here, we consider an application offering collaborative editing

support for mobile users. The coordination model that drives the application keeps track of and

coordinates activities performed by mobile collaborators. The application's architecture is

designed so as to allow documents hosted on mobile terminals, to be shared and edited in parallel

by mobile collaborators. The collaborative editing application is a complex application requiring

communication, memory and computing resources, and does not lend itself to a port to mobile

terminals with limited resources and intermittent connectivity. For this reason, we decided to

offload the computationally-intensive part of the application to the infrastructure, and to introduce

the idea of an intermediary located in the network infrastructure, interacting with applications on

behalf of the mobile terminal, thereby hiding away evidence of the intermittent connectivity. Our

vision is that of a mobile agent, called a shadow that is always in close vicinity of the mobile

terminal. We show that multiple shadows may co-exist, and we propose a protocol capable of

coordinating them. We present a middleware application called Mobile-Agent based Middleware

for Mobile Users (MAMiMoU), which hides away communication and coordination details, and

offers a substrate for building the distributed collaborative editing application across mobile

terminals and fixed infrastructures. Implementation details of our application are also presented.

We undertake a systematic evaluation of our architecture by using a testing environment that

simulates different collaboration patterns. Our conclusion is that when a system is supported by

MAMiMoU in mobile users' environments, it performs significantly better than such a system

without MaMiMoU.

Contents

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 THESCENARIO ... 2
1.2 CHALLENGES ... 3
1.3 RESEARCH AIMS AND APPROACHES .. 5

1.3.1 Addressing limitations in mobile users' environments .. 5
1.3.2 Support for collaborative editing of mobile documents ... 8

1.4 RESEARCH CONTRIBUTIONS .. 9
1.4.1 Mobile-Agent based Middlewarefor Mobile Users (MAMiMoU) ... 9
1.4.2 Collaboration Protocol for Mobile Users ... 11
1.4.3 Evaluation of the middleware .. 12

1.5 THESIS STRUCTURE ... 12

CHAPTER 2 ... 14

APPLICA TIONS FOR MOBILE USERS ... 14

2.1 OVERVIEW ... 14

2.2 MOBILE APPLICATIONS ISSUES .. 15

2.2.1 Limitations in existing communication models .. 15
2.2.2 Dynamic Reconfiguration 16
2.2.3 Adaptation 17
2.2.4 Discussion 18

2.3 MIDDLEWARE FOR MOBILE USERS .. 19
2.3.11ssues in Middleware design 19
2.3.2 Middleware Systems .. 21

2.3.2.1 iMASH ... 21
2.3.2.2 Integrated Personal Mobility Architecture (IPMoA) ... 22
2.3.2.3 Mobile Application Support Environment (MAS E) .. 24
2.3.2.4 Java messaging middleware (JMS) .. 25
2.3.2.5 Discussion .. 26

2.4 COLLABORATION SUPPORT FOR MOBILE USERS .. 28

2.4.1 Computer Supported Cooperative Work .. 29
2.4.2 QuickStep 30
2.4.3 Pocket DreamTeam ... 31
2.4.4 YACO ... 32
2.4.5 PCCE 33
2.4.6 Bayou 34
2.4.7 Coda File System 35
2.4.8 Discussion. ... 37

2.5 CONCLUSION ... 38

CHAPTER 3 ... 40

MOBILE AGENTS .. 40

3.1 INTRODUCTION TO MOBILE AGENTS ... 40

3.1.1 Advantages of Mobile Agent Applications ... 41
3.1.1.1 Advantages of code mobility ... 41
3.1.1.2 Advantages of Mobile Agents .. 42
3.1.1.3 Advantages of Mobile Agents in the Mobile Computing Environment.. ... 43

3.1.2 Mobile Agent Systems 44
3.1.2.1 SoFAR ... 44

3.1.2.1.1 SoFAR Mobile Agent .. 45
3.1.2.2 Mobile Agent Security Issues .. 46

3.2 MOBILE-AGENT BASED SYSTEMS FOR MOBILE USERS .. 47
3.2.1 A Mobile Agent Frameworkfor M-Commerce .. 47
3.2.2 Personal Agent System .. 50
3.2.3 MobiAgent ... 53
3.2.4 Mobile Agents Platform (MAP) 54
3.2.5 TACOMA Lite 56
3.2.6 MONADS 58
3.2. 7 Discussion 61

3.3 CONCLUSION ... 62

CHAPTER 4 ... 64

MOBILE-AGENT BASED MIDDLEWARE FOR MOBILE USERS .. 64

4.1 OVERVIEW ... 64
4.2 MIDDLEW ARE SERVICES ... 66
4.3 MIDDLEW ARE ARCHITECTURE .. 68

4.3.1 Components 70
4.3.1.1 Mobile terminal .. 70
4.3.1.2 Shadow handler. ... 70
4.3.1.3 Shadow .. 71

4.3.2 Component Interaction 71
4.3.3 Coordination Model 72

4.3.3.1 Migrate shadow phase .. 74
4.3.3.1.1 Migrate shadow phase: perfect scenario ... 75
4.3.3.1.2 Migrate shadow phase: failure cases .. 76

4.3.3.2 Shadow arrival phase ... 78
4.3.3.2.1 Shadow arrival phase: perfect scenario ... 78
4.3.3.2.2 Shadow arrival phase: failure cases .. 79

4.3.3.3 Shadow locating phase ... 82
4.3.3.3.1 Shadow locating phase: perfect scenario .. 82
4.3.3.3.2 Shadow locating phase: failure cases .. 84

4.3.3.4 Hand over phase ... 85
4.3.3.4.1 Hand over phase: perfect scenario .. 85
4.3.3.4.2 Hand over phase: failure cases ... 86

4.3.3.5 Shadow termination phase ... 90
4.3.3.5.1 Shadow termination phase: perfect scenario ... 90
4.3.3.5.2 Shadow termination phase: failure cases .. 91

4.3.3.6 Conclusion ... 93
4.4 DISCUSSION ... 93
4.5 CONCLUSION ... 95

CHAPTER 5 ... 96

MAMIMOU COORDINATION ALGORITHM .. 96

5.1 OVERVIEW ... 96
5.1.1 Notations ... 97

5.2 MAMrMoU' S COMPONENTS AND SUB-COMPONENTS .. 98
5.2.1 MT-agent ... 99

5.2.1.1 LOM, LIM and LR .. 100
5.2.1.2 Application-interface ... 101
5.2.1.3 Message-manager .. 102
5.2.1.4 Application-manager .. 102
5.2.1.5 Shadow-manager ... 102

5.2.2 Shadow-handler 103
5.2.3 Shadow .. 103

5.2.3.1 LOM, LIM, LR and LA ... 104

11

5.2.3.2 S-application-manager ... 105
5.2.3.3 S-message-manager ... 105
5.2.3.4 Migration-manager .. 105
5.2.3.5 Main-shadow and regular-shadow components ... 106

5.3 COORDINATION ALGORITHM ... 106
5.3.2 Processes 107

5.3.2.1 Application-handling process .. 108
5.3.2.2 Message handling process .. 111

5.3.3 Coordination phases 114
5.3.3.1 Migrate Shadows Phase ... 114
5.3.3.2 Shadow arrival phase ... 118
5.3.3.3 Shadow locating phase ... 122
5.3.3.4 Hand over phase ... 124
5.3.3.5 Shadow termination phase ... 129
5.3.3.6 Message delivery ... 131

5.4 IMPLEMENTATION ... 135
5.5 DISCUSSION ... 135
5.6 CONCLUSION ... 136

CHAPTER 6 ... 138

COLLABORA TIVE EDITING APPLICA TION .. 138

6.1 INTRODUCfION .. 138
6.2 ApPLICATION OVERVIEW .. 139
6.3 APPLICATION'S SERVICES .. 141

6.3.1 Services for a master editor 141
6.3.2 Services for a regular editor 142

6.4 THE ARCHITECTURE .. 143
6.4.1 User application .. 143
6.4.2 Repository 144

6.5 COLLABORATION PROTOCOL.. ... 146
6.5.1 Actors 146
6.5.2 Objects ... 149
6.5.3 Process .. 151
6.5.4 Activities .. 153

6.5.4.1 Master editor adds a document .. 154
6.5.4.2 Master editor" commits the master document as a major version .. 155
6.5.4.3 Master editor" checks out a copy of IDdoc.n

............•....•...•...•.......•......•..•..•.....•...•.•••..•••..•.•...•.••....•.•.•... 156
6.5.4.4 Master editor" reviews a tentative version of IDdoc.n

••.••.•••••••.•..•••••••••.•.••••••••••••.•.•••••••••••.••••••••.••••.•••••• 157
6.5.4.5 Master editor" removes IDdoc-n,s copies from the repository .. 161
6.5.4.6 Regular editor" checks out a copy ofIDdoc.n .. 161
6.5.4.7. Regular editor" commits a tentative version ofIDdnc.n

...........•..........•....•.................•....•..............••..•.. 163
6.5.4.9. Master editor" passes editing token to a newly appointed master editor ... 165
6.5.4.10. Version synchronising between repositories ... 168

6.6 IMPLEMENTATION ... 170
6.7 SECURITY .. 173
6.8 DISCUSSION ... 174
6.9 CONCLUSION ... 176

CHAPTER 7 ... 177

EVALUATION ... 177

7.1 EVALUATION OVERVIEW ... 177
7.1.1 Simulation Methodology .. 178

7.1.1.1 Dimension I: MAMiMoU's support .. 178
7.1.1.2 Dimension 2: collaboration patterns .. 178
7.1.1.3. Dimension 3: users' connectivity .. 184
7.1.1.4. Dimension 4: features in mobile users' environments .. 186

iii

7.1.2 Computing Facilities ... 187
7.1.3 Evaluation Environment Settings .. 187

7.2THEEVALUATION .. 189
7.2.1 Evaluation based on users' connectivity ... 189
7.2.2 Evaluation based on connection speed .. 197
7.2.3 Evaluation based on users' mobility .. 200
7.2.4 Evaluation based on collaboration group size .. 203
7.2.5 Evaluation based onfile size 205

7.3 ANALySIS .. 209
7.4 DISCUSSION ... 209

7.5 CONCLUSION ... 210

CHAPTER 8 ... 211

CONCLUSION AND FUTURE WORK .. 211

8.1 CONCLUSION ... 212

8.2 FuTuRE WORK .. 213
8.2.1 MAMiMoU deployment 214
8.2.2 Mobility Prediction .. 215

REFERENCES ... 216

iv

List of figures

Figure 2.1: The components in an IPMoA network 24
Figure 2.2: Comparison between systems .. 39

Figure 3.1: Overview of M-Commerce Framework ... 48
Figure 3.2: Personal Agent System Overview 51
Figure 3.3: Personal Agent System Scenario ... 52
Figure 3.4: MobiAgent System Architecture .. 53
Figure 3.5: Mobile Computing in Mobile Agents Platform 55
Figure 3.6: Execution steps in meet operation 57
Figure 3.7: Agent communication scenarios 59

Figure 4.1: The middleware as an abstraction layer ... 65
Figure 4.2: Generic organization 66
Figure 4.3: API offered to mobile terminal applications ... 67
Figure 4.4: API offered to network-based applications ... 67
Figure 4.5: APl. 68
Figure 4.6: Shadow following mobile terminal 69
Figure 4.7: Dynamic creation of shadow 70
Figure 4.8: Connections between coordination phases 74
Figure 4.9: Migrate shadows: perfect scenario 1 .. 75
Figure 4.10: Migrate shadows: perfect scenario 2(a) 76
Figure 4.11: Migrate shadows: perfect scenario 2(b) 76
Figure 4.12: Migrate shadows: failure case 1 ... 77
Figure 4.13: Migrate shadows: failure case 2 ... 77
Figure 4.14: Migrate shadows: failure case 3 ... 78
Figure 4.15: Shadow arrival phase: perfect scenario 1 ... 79
Figure 4.16: Shadow arrival phase: perfect scenario 2(a) .. 79
Figure 4.17: Shadow arrival phase: failure scenario I(a) ... 80
Figure 4.18: Shadow arrival phase: failure scenario 1 (b) 80
Figure 4.19: Shadow arrival phase: failure case 2(a) ... 81
Figure 4.20: Shadow arrival phase: failure case 2(b) ... 81
Figure 4.21: Shadow arrival phase: failure case 3(a) ... 82
Figure 4.22: Shadow arrival phase: failure case 3(b) ... 82
Figure 4.23: Shadow locating phase: perfect scenario 1 83
Figure 4.24: Shadow locating phase: perfect scenario 2(i) ... 84
Figure 4.25: Shadow locating phase: perfect scenario 2(ii) .. 84
Figure 4.26: Shadow locating phase: failure case 1 .. 85
Figure 4.27: Hand over phase: perfect scenario 1.. ... 86
Figure 4.28: Hand over phase: failure case 1 .. 87
Figure 4.29: Hand over phase: failure case 2 (i) ... 87
Figure 4.30: Hand over phase: failure case 2 (ii) .. 88
Figure 4.31: Hand over phase: failure case 2(iii) .. 89
Figure 4.32: Handover phase: failure case 3 (i) .. 89
Figure 4.33: Hand over phase: failure case 3 (ii) .. 90
Figure 4.34: Shadow termination phase: perfect scenario 1 ... 91
Figure 4.35: Shadow termination phase: failure case 1 ... 91
Figure 4.36: Shadow termination phase: failure case 2 ... 92
Figure 4.37: Shadow termination phase: failure case 3 ... 92

Figure 5.1: Notation 98
Figure 5.2: Interacting components ... 99

v

Figure 5.3: MT-agent's sub-components 100
Figure 5.4: Shadow's sub-components 104
Figure 5.5: Combination of sequence and activity diagram .. 107
Figure 5.6: Handling requests from the MT-applications manager ... 109
Figure 5.7: An N-application creation / removal 110
Figure 5.8: Handling outgoing messages 112
Figure 5.9: Handling incoming messages .. 113
Figure 5.10: Migrate shadows phase (cf Section 4.3.3.1) ... 115
Figure 5.11: MT-agent: migrate shadows phase (cf Section 4.3.3.1) ... 117
Figure 5.12: Shadow handler: migrate shadow phase (cf Section 4.3.3.1) ... 118
Figure 5.13: Shadow: migrate shadow phase (cf Section 4.3.3.1) .. 118
Figure 5.14: Shadow arrival phase (cf Section 4.3.3.2) .. 120
Figure 5.15: MT-agent: shadow arrival phase (cf Section 4.3.3.2) .. 122
Figure 5.16: Shadow: shadow arrival phase (cf Section 4.3.3.2) ... 122
Figure 5.17: Shadow locating phase (cf Section 4.3.3.3) .. 123
Figure 5.18: Main shadow: shadow locating phase (cf Section 4.3.3.3) ... 124
Figure 5.19: Regular shadow: shadow locating phase (cf Section 4.3.3.3) .. 124
Figure 5.20: Hand-over phase (cf Section 4.3.3.4) ... 126
Figure 5.21: Regular shadow: hand over phase (cf Section 4.3.3.4) .. 127
Figure 5.22: Main shadow: hand over phase (cf Section 4.3.3.4) ... 128
Figure 5.23: Shadow: resetting hand over variables after a migration ... 129
Figure 5.24: Shadow termination phase (cf Section 4.3.3.5) .. 130
Figure 5.25: Regular shadow: shadow termination phase (cf Section 4.3.3.5) ... 130
Figure 5.26: Main shadow: shadow termination phase (cf Section 4.3.3.5) ... 130
Figure 5.27: MT-agent: shadow termination phase (cf Section 4.3.3.5) ... 131
Figure 5.28: MT-agent: outgoing message handler ... 132
Figure 5.29: Shadow: message handler 134

Figure 6.1: Collaborative editing application architecture ... 143
Figure 6.2: User application and repository .. 144
Figure 6.3: One repository serving multiple users ... 145
Figure 6.4: Actors in the collaboration protocol ... 147
Figure 6.5: A user application associated with multiple repositories .. 148
Figure 6.6: Associations between a repository and multiple documents and user roles 149
Figure 6.7: Document replication and life cycle .. 150
Figure 6.8: List of authorized processes for each editing role ... 151
Figure 6.9: An example sequence of collaborative editing processes .. 153
Figure 6.10: Master editol' adds a document 154
Figure 6.11: Master editol' commits the master document . .. 155
Figure 6.12: Master editol' requests a log on 1Ddoc-n ... 156
Figure 6.13: Master editol' checks out a copy of document 157
Figure 6.14: Master editol' chooses to review changes made by other collaborators 158
Figure 6.15: Master editol' selects a tentative version to be reviewed from the list 158
Figure 6.16: Master editol' finishes reviewing the file and ready to merge changes in the reviewed
tentative version with the master document 159
Figure 6.17: Master editol' decides to merge the tentative version with the master document 159
Figure 6.18: Regular editol' receives notification of acceptance or rejection of changes being made to an
1Ddoc-n,s tentative version 160
Figure 6.19: Master editol' removes alllDdoc-n,s copies from the repository .. 161
Figure 6.20: A user requests for a log on all available documents .. 162
Figure 6.21: User application displays available documents that can be checked out.. 163
Figure 6.22: Regular editol' checks out the latest major version of 1Ddoc-n ... 163
Figure 6.23: Regular editol' commits the updated regular-document as a tentative version of IDdoc-n 165
Figure 6.24: Master editor' commits the master document as a new major version 165
Figure 6.25: Master editol' requests IDdoc-n,s collaborator list ... 166
Figure 6.26: Master editol' selects a collaborator to be the next master editol' 166

VI

Figure 6.27: The chosen collaborator decides on whether to accept or reject the offer to be the next master
editor for IDdoc

•
n
.. .. 167

Figure 6.28: Updating status on both previous and new master edito~' s terminals 168
Figure 6.29: Add and synchronise major versions of IDdoc

•
n on the new local repository 169

Figure 6.30: New major version of IDdoc
-
n is propagated to a remote repository 170

Figure 6.31: Collaborative editing application 171
Figure 6.32: Collaborative editing application supported by MAMiMoU ... 172

Figure 7.1: Discrete dimensions .. 178
Figure 7.2: Serialized editing collaboration .. 181
Figure 7.3: Simultaneous editing collaboration ... 182
Figure 7.4: Random editing collaboration 183
Figure 7.5: Formulas to obtain the number of every activity performed in each collaboration pattern
(derivedfrom Figure 7.2 - 7.4) .. 184
Figure 7.6: Dimension 4: features in mobile users' environments ... 187
Figure 7. 7: Evaluation environment settings ... 188
Figure 7.8: Simulation of a collaborative editing task between mobile collaborators 189
Figure 7.9: Number of message transfer neededfor each activity ... 190
Figure 7.10: Task completion time in ACU environment ... 191
Figure 7.11: Task completion time in MCU environment .. 191
Figure 7.12: Task completion time in RCU environment ... 191
Figure 7.13: Percentage of time saved by MAMiMoU in RCU environment ... 192
Figure 7. 14: Deterioration of application' s performance .. 194
Figure 7.15: Error bar plot 195
Figure 7.16: Mean rank and test statistics for serialized editing collaboration .. 196
Figure 7.17: Delay calculation .. 198
Figure 7.18: Effect of different users' connection speed in RCU environment: high-speed connections .. 198
Figure 7.19: Effect of different users' connection speed in RCU environment: medium speed connections
.. 199
Figure 7.20: Effect of different users' connection speed in RCU environment: slow connections 199
Figure 7.21: Percentage of application's performance deterioration .. 199
Figure 7.22: Percentage of time saved by MAMiMoU ... 200
Figure 7.23: Effect of different users' mobility number in RCU environment: stationary users 201
Figure 7.24: Effect of different users' mobility number in RCU environment: moderately mobile users .. 201
Figure 7.25: Effect of different users' mobility number in RCU environment: highly mobile users 202
Figure 7. 26: Percentage of application's performance deterioration .. 202
Figure 7.27: Percentage of time saved by MAMiMoU .. 202
Figure 7.28: Effect of different collaboration-group size: small group ... 203
Figure 7.29: Effect of different collaboration group size: medium sized group ... 204
Figure 7.30: Effect of different collaboration group size: large group .. 204
Figure 7.31: Average percentage of application's performance deterioration .. 204
Figure 7.32: Percentage of time saved by MAMiMoU based on different collaboration group size 205
Figure 7.33: Collaborative editing ofa smallfile .. 207
Figure 7.34: Collaborative editing of a medium-sized file ... 207
Figure 7.35: Collaborative editing of a large file .. 207
Figure 7.36: Average percentage of application's performance deterioration .. 208
Figure 7.37: Time saved by MAMiMoU in ReU environment based on different file size 208

vii

Acknowledgements

I would like to thank Prof. Luc Moreau for his excellent supervision and support in this research.

A sincere gratitude to the QinetiQ and EPSRC for funding the project. Thanks to Dr. Paul Lewis

for his guidance and advice during the evaluation phase of the research. Thank you also to Dr

Bruce Hunt and Richard Lawley who have helped proof-read this thesis. I would like to mention

all the people I have worked with over the course of my PhD, including Jing Zhou, Victor Tan

and Wei Yan Zheng. Special thanks go to my family, especially to my parents, my grandparents,

my brothers and Fuad, and to my friends, especially to Nor Aniza, Zuaini, Nadia, Shima,

Rosrnila, ling, Aniza and Arouna. Many thanks also to all the lAM members that have helped and

supported me over the last four years.

Above all, I would like to thank God who makes all things possible.

viii

I dedicate this thesis to my parents, my brothers, my husband-to-be and in loving memory of my
grandparents.

ix

Chapter i introduction

Chapter 1

Introduction

In the past few years, we have seen unprecedented growth in the number of mobile users,

applications and wireless network access technologies. More and more users travel with their

laptops or portable devices, accessing the Internet at a variety of places including their homes,

workplaces and public places, e.g. in shopping malls, cafes, airports or on public transportation

such as trains. This shows how communications and work activities can now take place anytime,

anywhere. This "online anytime and anywhere" trend is supported by technology that is

becorrling more advanced. Wireless and portable communication devices continue to provide

newer and better ways for mobile users to communicate with other people and access online

services, while at the same time fixed online services are also being expanded to support mobile

and wireless users. With the parallel incremental use of mobile terrrlinals and advances in

supporting technologies, a new type of computing, called mobile computing, has emerged [50].

Mobile computing focuses on supporting computing on the move and has the goal of providing

users with access to online services and communication supports in a mobile, sometimes wireless,

environment. Briefly, there are three different types of wireless data networks, namely wireless

personal area networks (WP AN), wireless local area networks (WLAN), and wireless and wide

area networks (W"W AN). Wireless Personal Area Networks are networks that follow a short

range protocol (10 meters) and operate at 1 Mbps [44]. Bluetooth technology is an example of

wireless personal area networking (WP AN) technology that has gained significant industry

support and coexists with most wireless LANs. A wireless LAN (WLAN) is an on-prerrlises data

communication system that reduces the need for wired connections and makes new applications

possible, thereby adding new flexibility to networking [127]. WW ANs are based on several

existing technologies, namely cellular, Satellites, Wireless Local Loops (WLL), Wireless

Asynchronous Transfer Mode (ATM) and Mobile Internet Protocol (IP). WW AN technologies

Chapter 1 Introduction 2

include the so-called 2.5 and 3G technologies, e.g. General Packet Radio Service (GPRS) and

Universal Mobile Telecommunications System (UMTS) , which give rise to new mobile devices

providing fast and immediate (i.e. "always connected") access to the Internet [66]. In the near

future there is the interesting prospect of technologies that promise broader coverage and higher

speed of connection to the network being continuously deployed.

Even though high-speed wireless technologies are widely used and newer technologies are

emerging, there are still some limiting factors that cannot be avoided. These factors include i)

poorer quality of connections to the fixed network due to lower bandwidth and more intermittent

connectivity; ii) users' mobility, i.e. frequent changes to the point of attachment to the network

that may result in interruptions in the connection; and iii) the limited processing power, memory

and battery power of terminals. These limiting factors typically result in slower download times

and more frequent failures being raised by applications hosted on mobile terminals when such

applications try to communicate with the fixed network. Taken as a whole, such limiting factors

may prevent or hinder large-scale deployment of advanced applications in mobile users'

environments, as these tend to be communication and computation intensive.

1.1 The scenario

To focus the discussion, we adopt a scenario by making use of such a wireless environment. The

fixed infrastructure provides a vast number of high-level services for users, such as information

databases, location maps, and interfaces to intelligent devices, e.g. sensors, displays, brokering

services and collaboration supports. The users of these services include mobile users who may

move from one location to another. One such scenario is described as follows:

Two researchers are attending a project meeting that takes place at another university. During the

meeting, information related to the meeting agenda is shared between the project members in an

ad-hoc manner, possibly by accessing shared documents from a local repository. The shared

documents can be cached onto mobile terminals by the members for future reference or use. In

some cases, such shared documents will be changed by some members, after which the updated

documents are republished to all. Such collaborative editing can be continued even after the

meeting, in which case the two researchers may continue the collaboration remotely using

resources at their own university, possibly exploiting local and remote repositories. This type of

Chapter 1 Introduction 3

scenario is described in [71] as the "meeting room scenario" and will be our motivation in

designing a collaborative editing application for mobile users (cf. Chapter 6).

In supporting such a scenario, we present the challenges involved, followed by the approaches we

take in addressing the challenges.

1.2 Challenges

Even though high-speed wireless connections such as WLAN and 3G technologies are more

prevalent nowadays, lower quality cellular wireless technologies such as GSM are still used by

many mobile users [95][62]. Although when using fast wireless connections users may

sometimes need to operate in a lower bandwidth mode, i.e. when they move further away from a

base station and the signal has dropped, mobile users with such low bandwidth connectivity

commonly experience higher error rates than others. Low bandwidth connectivity prevents

communication-intensive applications from working properly, in which case the slow

downloading time of data sometimes leads to the failure of an application to continue serving the

user's requests. Furthermore, with umeliable wireless service coverage, a mobile terminal may

ha ve to tolerate variable bandwidths ranging from several Mbps to a fraction of kbps.

Some wireless communication services are umeliable in terms of availability, where mobile users

may not be within the service coverage area of a network, thus making the network unavailable to

them. Service coverage mainly depends on the output power of the transmitter, its location and

the frequency used to transmit data. For each particular application, throughput decreases as

distance from the transmitter or access point increases. Based on these conditions mobile users

will experience intermittent connectivity to the network. In such a situation, messages sent by a

mobile terminal would fail, which could lead to a timeout in the mobile terminal. Besides this, the

synchronous invocation method, which is a common interaction model in the distributed

environment, is inadequate for mobile systems since the client needs to wait for a reply after each

request, which is difficult in an environment where high latency and disconnected operations

occur more often [3]. A challenging task in such a situation is to maintain interactions, possibly

asynchronous, which are established between applications hosted on the mobile terminal and

network-based applications.

Chapter I Introduction 4

Looking from another perspective, a mobile user, whether accessing the network either by wired

or wireless means, will no longer be stationary. Mobile users are commonly connected to the

network from different locations and this raises complexity in maintaining interactions between

mobile terminals and network-based applications. Not only are such interactions interrupted when

users lose their connections, but once reconnected from a new location, the network-based

applications will have problems in recognizing the mobile terminal's applications. From this

perspective, the challenge is to maintain such associations and interactions between mobile

terminal and network-based applications while users roam across the network. Supporting this

would require routing and keeping track of users' current locations, which may involve a mobile

device generating a location update when it detects that it has been re-connected to a network.

Users' mobility can cause network instability [55], which may result in a mobile terminal

operating in disconnected mode. In other cases, a user may voluntarily decide to connect to the

network only periodically.

Internet-enabled cell phones, Personal Digital Assistants (PDAs) and smartphones have emerged

as the newest products that can connect to the Internet across a digital wireless network. Such

small devices most likely have limited processing and power capabilities compared to desktop

computers. High utilization of devices' battery power prevents excessive use of computation- and

communication-intensive tasks. The small display areas of these devices is also a limiting factor,

preventing the display of complex and friendlier user interfaces. Security is also a greater concern

in wireless systems than in wired systems, since information may be traveling in free space.

Based on these limitations, the majority of current Internet content is not optimized for these

devices; at present, only email, stock quotes, news, messages, and simple transaction-oriented

services are commonly used. Besides that, in terms of security issues, most wireless devices are

not capable of handling strong encryption applications [44].

Despite the aforementioned limitations, an important subset of emerging activities is

collaborative, i.e. they involve mobile users who share and collaboratively edit documents. In

practice, mobile users would upload documents on their mobile terminals in order to be able to

work on them while they are disconnected; thus, such documents, which we refer to as mobile

documents, benefit from the physical mobility of mobile terminals, but fail to remain accessible

by other users due to the frequent disconnections of mobile terminals from the network. Our aim

is to be able to support such collaborative editing practices between mobile users by providing

solutions that reduce the impact of the aforementioned limitations in mobile users' environments.

Chapter llntroduction 5

Mobile collaborators may not all be connected at the same time, due to temporary disconnection

from the Internet. Thus, the challenge is to support asynchronous collaboration between users.

1.3 Research Aims and Approaches

In this section, we outline our research aims and approaches to two main categories; the fIrst

category deals with limitations in mobile users' environments, while the second category deals

with challenges in supporting collaborative editing of mobile documents between mobile users.

1.3.1 Addressing limitations in mobile users' environments

Our aim is to address the aforementioned limitations and challenges in mobile users'

environments and to support mobile document sharing and collaborative editing between mobile

users. We now break down this aim into smaller targets and approaches as shown below.

Firstly, we want to address the low bandwidth problem and our approach is to minimize the

number of message exchange via wireless medium between mobile terminal applications and

network-based applications. This is done by offloading the communication-intensive parts of the

mobile terminal's applications onto the fixed network. Messages can then be exchanged by such

offloaded application parts with network-based applications via a wired communication medium

that can reliably support their interactions.

Secondly, we want to address problems due to users' frequent disconnections from the fIxed

network. To do this, we envision an application with autonomous behaviour being hosted on the

local network, which can be used to maintain associations and interactions between mobile

terminal applications and network-based applications. Additionally, this application can act on

behalf of a mobile user while the user is disconnected from the network. Synchronous

interactions are not suitable when the mobile terminal experiences frequent disconnections. In

this case, support for asynchronous interactions is a solution, where a mobile terminal issues a

request and continues operating, then collects the result at an appropriate time [3]. Such a model

decouples the act of communication from the actual time a service provider on the network

requires to produce and deliver results to the mobile terminal, allowing the service provider to

Chapter i introduction 6

make progress when the mobile terminal is disconnected. Such a technique therefore has the

potential to mask some of the network failures experienced by mobile terminals [27]. To adopt

such asynchronous interactions, network-based applications can first send messages to the

autonomous application, which will forward the messages to the mobile terminal once the mobile

terminal reconnects. The autonomous application can be regarded as a proxy or a representative

of a mobile user on the fixed network, which has a store-and-forward mechanism to support

message exchange between mobile terminal applications and network-based applications.

Thirdly, we want to address problems raised by users' mobility, which we approach by hiding it

from mobile terrninal and network-based applications. To do this, we can provide an abstraction

layer that transparently maintains interactions between mobile terminal and network-based

applications. The abstraction layer is mainly hosted on the fixed network, which is able to locate

and establish a new connection with the mobile terminal once the mobile terminal moves and is

reattached from a new location. This way, network-based applications that are interacting with

applications on the mobile terminal are not required to keep track of the mobile terminal's new

location in order to continue their interactions with the mobile terminal's applications. Being

supported by the abstraction layer, i.e. using the store and forward mechanism; such network

based applications need only to maintain their interactions with the abstraction layer, which is

acting as a representation of the mobile terminal's applications on the fixed network. In parallel,

mobile terminal applications are offered the same service, in which case they can interact with the

infrastructure, and find and exploit services [122] to fulfill the user's needs for network-based

applications without having to be aware of the connection status of the mobile terminal.

Supporting this, one part of the abstraction layer is hosted on the mobile terminal, corresponding

to the rest of the abstraction layer on the fixed network once the mobile terminal is connected.

In recent years, Mobile IF [86] has been standardized by the IETF to provide users with the

freedom to roam beyond their home subnet whilst consistently maintaining their home IF address.

Mobile IF supports tunneling of messages for a mobile terminal while connected to the fixed

network, but it does not provide a store and forward mechanism for messages. We propose that

this would be a useful solution for supporting disconnected mobile terminals. Our work does not

intend to replace such a protocol, but to further assist in allowing the seamless movement of

mobile terminals, where we aim to allow mobile terminals to join and leave networks and sub

networks without explicit actions on the part of the users, specifically in re-establishing

interactions between mobile terminal and network-based applications. Our work also does not

Chapter 1 lntroduction 7

involve providing network-level support allowing mobile terminals to roam across several

different wireless and mobile networks, such as a service presented in [116], but our work can be

supported by such a service.

Fourthly, to address mobile terminal limitations, our approach is to allow the computation- and

communication-intensive components of mobile terminal applications to be offloaded onto the

fixed network, leaving only the light-loaded components to be hosted on the mobile terminal.

Offloaded components have the advantages of accessing high capability resources, e.g. high

computation power and large memory, while having only the light-loaded components of the

application left on the device will save the mobile terminal's resources. Such a design decision

by application developers helps to overcome the inherent imbalances of i) processing power

between mobile terminal and network-based processors and ii) uplink and downlink bandwidth

due to the transmission power available from the wireless mobile terminal [57], in which case as

bandwidth increases, power consumption increases. Wireless uplink refers to the bandwidth used

to transfer data from the mobile terminal to the fixed network, while downlink is the opposite of

this.

Given these alms, this thesis combines the approaches needed to address the problems by

realizing them in a middleware application for mobile users. With all these approaches translated

into appropriate functionalities, the middleware, once implemented, can be used to support both

mobile terminal and network-based applications. This middleware will act as an abstraction layer

that hides the complexity in the interactions between mobile terminal and network-based

applications. In the mobile environment, the user's locality, i.e. a particular operating

environment or network neighbourhood to which the user's mobile terminal is attached, which

offers resources and services locally; changes as the user moves. Thus, if a middleware

application serving a user is local and stationary, over time it may cease to be locally available to

the user, due to the users migrating elsewhere. The communication path can grow

disproportionately to actual movement since it may traverse more intermediaries, e.g. a small

movement can result in a much longer path when crossing network administrative boundaries

[27]. Such a long network path may result in longer latency and greater risk of disconnection,

and consumes more network capacity, even though the bandwidth between the mobile terminal

and the middleware may not degrade. To avoid these disadvantages, we allow the middleware to

dynamically serve users locally, i.e. to operate in their vicinity, for example being connected to

the same local network.

Chapter 1 Introduction 8

To realize this, we employ mobile agents as the main component of the middleware, which are

defined as running programs that autonomously decide to change location in order to continue

their execution in an environment with better resources [73]. Mobile agents have emerged as a

powerful paradigm to deal with intermittent connectivity [59]. They can make decisions at

runtime and migrate to locations with better resources to autonomously fulfill their tasks. In our

middleware, mobile agents will perform tasks on behalf of their users, e.g. maintaining

associations and interactions between mobile terminal and network-based applications. The

middleware will be presented further in Section 1.4.1. Having addressed common limitations in

mobile users' environments, our focus can now be shifted to our next aim, which is to address

problems in supporting collaborative editing between mobile users.

1.3.2 Support for collaborative editing of mobile documents

In terms of addressing the challenges of supporting collaborative editing of mobile documents

among mobile users, we first want to be able to provide accessibility to a mobile document to a

group of mobile users. One way of doing this is by having a copy of the document hosted on the

fixed network. This way, other mobile users can obtain a copy of the document from the network

and cache it on their mobile terminals, allowing them to access the document while being

disconnected. In terms of the document's consistency, copies of a document, either hosted on the

fixed network or on mobile terminals, can be updated with new changes once the original

document is changed. Furthermore, access to such copies can be restricted to specified users.

Secondly, in relation to supporting collaboration between mobile users, we are aware that such

collaborating mobile users are frequently not online at the same time, which prevents them from

having synchronous or real-time collaboration. In this respect, we want to support asynchronous

collaboration, and our way of doing this is by having a component to support asynchronous

messaging between mobile collaborators, which also in parallel keeps track and coordinates the

activities performed by the collaborators. Such an application will be hosted on the fixed network

to provide continuous access to all collaborators.

Chapter I Introduction 9

Merging these two approaches, we have designed a collaborative editing application, of which a

major part is a collaboration protocol capable of supporting both collaborative editing and the

sharing of mobile documents. This application will be further explained in Section 1.4.2.

1.4 Research Contributions

The work described in this thesis makes a number of important contributions to the state of the art

in the area of distributed information management in mobile users' environments. The main aim

of the thesis is to prove that our proposed mobile-agent based middleware for mobile users is a

practical solution to support applications in mobile users' environments by improving their

performance in such environments. In achieving this, this thesis first elaborates on the

middleware layer, which is supported by a coordination algorithm incorporating approaches and

mechanisms for addressing problems in mobile users' environments. Secondly, the thesis

introduces a collaboration protocol that supports a collaborative editing application, which is

tailored to the characteristics of mobile users and the features of their environments. Thirdly, we

present an evaluation that proves that the middleware improves the application's performance in

mobile users' environments. Each of these contributions consists of several novelties, which are

introduced next.

1.4.1 Mobile-Agent based Middleware for Mobile Users (MAMiMoU)

Our proposed middleware is called the Mobile-Agent based Middleware for Mobile Users

(MAMiMoU). MAMiMoU acts as an abstraction layer that conceals the complexity in the

interactions between mobile terminal and network-based applications by providing a set of APls

to the applications. The mobile agent, which is MAMiMoU's main component, is hosted on the

fixed network, performing various functions on behalf of a mobile user on the infrastructure by

taking advantage of the resources in its environment, while in parallel the mobile agent also

attempts to migrate closer to the mobile terminal. Due to this behaviour, we call this mobile

agent a shadow. The shadow incorporates a store-and-forward mechanism, which allows

asynchronous messages to be exchanged between mobile terminal and network-based

applications. The shadow can exchange messages with the mobile terminal whenever the mobile

terminal is online, i.e. attached to the network, whereas, when the mobile terminal is

Chapter 1 Introduction 10

disconnected, the shadow can receive messages from network-based applications on behalf of the

mobile terminal's applications, which will be forwarded to the mobile terminal once the mobile

terminal is online. In doing this, the shadow maintains associations between interacting

applications. Besides this, during a mobile terminal's disconnection, the shadow can continue

with other user tasks, e.g. creating or removing applications on the fIxed network on behalf of the

user.

On the failure of a shadow to migrate, for example due to the disconnection of the user's current

local network from the rest of the Internet, the middleware dynamically creates a new shadow for

the user to provide an immediate support at the user's new location. Adopting this approach may

result in a situation where a user is associated with multiple shadows on the fIxed network. To

address this, the middleware is supported by a coordination algorithm, which handles

reconciliation between existing shadows and coordinates interactions between the components of

the middleware. The reconciliation between existing shadows includes the accumulation of tasks,

i.e. in the form of states, between the shadows, and these tasks will be handed over to and later

performed by a single main shadow, in which case other shadows are then allowed to terminate.

The novel features of the middleware include:

• The middleware layer architecture consists of one or more mobile agents that carry the

states of tasks requested by a user.

• The middleware is driven by a coordination algorithm that coordinates interactions and

activities between its components and coordinates the reconciliation of tasks between

multiple shadows.

• The middleware provides an abstraction layer allowing users to create and remove

applications on the fIxed network, and also allowing network-based applications and

mobile terminal applications to transparently interact with each other.

The practicality of the middleware is fIrst demonstrated by having it support an application that

supports information sharing between mobile users [134], and secondly by supporting a

collaborative editing application, which is described in Chapter 6.

Chapter I Introduction 11

In describing the middleware, we prove that the middleware is able to offer advantages listed

below:

1. Complex functions can be executed on the fixed network, relieving capability-limited

mobile terminals.

2. Less communication is required and thus less bandwidth is consumed.

3. Online operations while mobile terminals are disconnected are accounted for.

4. A mobile terminal's mobility is hidden from the network-based applications by having a

mobile agent as its representative on the fixed network.

1.4.2 Collaboration Protocol for Mobile Users

We introduce a collaborative editing application architecture that supports mobile document

sharing and collaborative editing between mobile users. A major part of the application is its

collaboration protocol that keeps track of the collaborative activities performed by mobile users,

and details of the shared mobile documents. The application's architecture includes repositories,

which are hosted on the ftxed network to store copies of the shared mobile documents, making

the copies readily accessible to other mobile users. In supporting such shared mobile documents,

the collaboration protocol incorporates a mechanism that maintains consistency between a

document and its copies hosted across repositories on the ftxed network and other users' mobile

terminals.

The design of the collaboration protocol is tailored to the characteristics of an environment for

mobile users such that it:

• Supports asynchronous interactions between collaborating mobile users

• Maintains consistency between copies of the shared documents, which are replicated

across repositories on the fixed network, and cached on users' mobile terminals

• Restricts access to a document and its copies using the users' roles, in which case one

user may have more control over the original mobile document than the others

• Adopts the editing token metaphor to support the delegation of control over a shared

document. These combined features are described by the collaboration protocol, which is

another novelty presented in this thesis.

Chapter 1 lntroduction 12

1.4.3 Evaluation of the middleware

We perform an evaluation in order to prove that MAMiMoU is a practical solution to address the

intermittent connectivity experienced by mobile users, and limitations caused by their mobility.

Specifically, this is done by showing that MAMiMoU can improve the performance of the

collaborative editing application in mobile users' environments. The evaluation involves testing

the real implementation of the system in simulated environments of mobile users, in which the

collaborative editing application is used by a group of collaborating mobile users to accomplish a

collaborative editing task. In these environments, we compare the effect of MAMiMoU

supporting the application with MAMiMoU not supporting it, by recording and analysing the

performed collaborative editing tasks.

The evaluation is another novel item presented in this thesis, which has the features listed below:

• Evaluation set-up: the evaluation is set up by simulating mobile users' environments in

four dimensions, three of which reflect the potential limitations in mobile users'

environments.

• Simulation methodology: A group of mobile users is simulated as performing

collaborative editing tasks adopting three different patterns of collaboration.

• Measurements are taken in a time metric, each representing the time needed for a group

of mobile users to complete a collaborative editing task. Hypothesis testing is performed

on the measurements to prove their statistical significance.

• Analyses are given based on different aspects of limitations in mobile users'

environments.

1.5 Thesis Structure

In Chapter 2 and 3, we survey related literature, using this to clarify the problem domain and

provide reasons for the work. We first discuss the mobile computing environment in Chapter 2 by

presenting some distributed information management applications that have been developed for

mobile users. In Chapter 3, we present the background of mobile agent technology and some

related mobile-agent based applications. In Chapter 4, we present our proposed Mobile-Agent

based Middleware for Mobile Users (MAMiMoU), where we describe its architecture and

Chapter 1 Introduction 13

coordination model. This is followed by the detailed presentation of the coordination algorithm

employed by the middleware in Chapter 5. In Chapter 6, we present in detail our application,

which is designed to support mobile document sharing and collaborative editing between mobile

users. In Chapter 7, we discuss the evaluation we perform to prove that MAMiMoU is a practical

solution to support mobile users' applications by addressing limitations in their environments.

Finally in Chapter 8, we present our conclusion and future work.

Chapter 2 Applications for Mobile Users 14

Chapter 2

Applications for Mobile Users

Mobile computing has become more prevalent in our lives, influencing the design of applications

in many areas of computing. In comparison with traditional computing, the design of mobile

computing applications requires more effort, since their environments demonstrate a high level of

dynamicity with ever-changing popUlations of accessible resources. Adding to this dynarnicity are

users, who are frequently mobile and may experience intermittent connectivity and variability in

the quality of their connections. All these aspects are experienced as challenges in the design and

development of applications for mobile users.

2.1 Overview

The advantages offered by wireless technology motivate its common use among Internet users.

Wireless technology allows users to be connected to the Internet while being mobile or "always

connected" [66]. Many mobile applications have been developed to support personal needs, e.g.

to communicate to other people; business, e.g. m-commerce [109][117][64]; security e.g.

battlefield [39]; and community service, e.g. health service [76]. Our interest is to explore the

area in which mobile applications are developed to provide adapted information to mobile users

[113]. Thus in the rest of this chapter our discussion will be focused on issues and applications in

this area.

Providing applications in a wireless or mobile environment is a challenging task, which requires

the application designer to consider users' disconnection, application context and failure modes.

In considering the variability of connections, application designers may adopt one of three ways

Chapter 2 Applications for Mobile Users 15

based on the currently available connection: i) the mobile applications assume high bandwidth

connections and operate only while plugged in; ii) the mobile applications assume low bandwidth

connections and intermittent connectivity and do not take advantage of higher bandwidth when it

is available; or iii) the mobile applications adapt to the currently available resources, providing

the user with a variable level of detail or quality [27]. Our interest is in looking at applications

that are developed according to the third approach. Accordingly, we survey the related issues,

which are presented in the next section.

2.2 Mobile Applications Issues

Applications that are developed for mobile users are known as mobile applications [29], or as

nomadic computing applications [1]. They are programs that allow the user to leverage network

connectivity provided by either a wired or a wireless infrastructure, to productively access and

utilise information of interest to the users from any location, on any platform, and at any time [1].

The mobile environment is more dynamic than the traditional wired environment. For this reason,

we choose to break our study into three main issues, namely i) limitations in traditional

communication models, ii) dynamic reconfiguration, and iii) adaptation.

2.2.1 Limitations in existing communication models

The characteristics of a wireless network, especially cellular wireless, fluctuate variably in

comparison to those of a fixed network that change slowly over time. Besides this,

communication in a wireless environment is characterised by frequent disconnections. Therefore,

communication model such as Remote Procedure Call (RPC) suffers a variety of limitations in a

mobile environment [41]. These traditional communication models have the drawback of tight

coupling, which means that a sender has to know the exact identity and address of a receiver. The

sender also has to wait for the receiver to be ready for exchanging information (synchronization

paradigm). In addition, the receiver stores long-term state information related to particular sender

receiver associations [31]. Such requirements fit poorly in a dynamic environment like mobile

computing, where a decoupled and opportunistic style of computing is thus required. Application

requirements such as dynamic reconfiguration, context-awareness, and adaptation also need to be

supported [29].

Chapter 2 Applications for Mobile Users 16

Another requirement in the mobile environment is disconnected operation, which is defined as the

ability of an application to operate as close to normal as possible when disconnected from

network resources [3]. For example, in the case of a client-server application, the client should be

able to operate for long periods of time after either voluntary or involuntary disconnection from

its server. When the client reconnects, it should be able to reintegrate changes onto the server [3].

Some other requirements in developing newer and more active applications that have caught our

interest are presented in [41], namely i) support for dynamic routing so that messages that fail to

be delivered to the mobile terminal can independently change routing within the network; ii)

message cloning, creation and persistence in order to support increased robustness and enable

dynamic multicasting; and iii) active (code-carrying) messages capable of autonomous operation

when the mobile terminal is disconnected. With all the aforementioned requirements, the question

remaining is "With what technology can such an active application be built?"

2.2.2 Dynamic Reconfiguration

Being mobile, users' terminals are exposed to different types of environments, for example,

environments with different types of resources provided for the locally connected users. In facing

such changing environments, mobile terminals need to support dynamic reconfiguration in order

to be able to appropriately adapt to the environment. Besides, considering a different aspect of

users' mobility, there is a need to support users' personal mobility, which addresses the issue of

personalization [112]. Personalization means the dynamic reconfiguration of a user's operating

environment regardless of the terminal or network the user is using. Another area in which

dynamic reconfiguration is needed is where context-aware applications are employed. Such

applications rely on the current context of a mobile user at anyone time, e.g. location-dependent

information.

Traditional, stationary terminals are provided with information that is configured statically, such

as the local name server and available printers, whereas a challenge for mobile computing is to

factor out this information intelligently and provide mechanisms to obtain configuration data

appropriate to the present environment of the mobile terminal [27]. The mobile user may not be

aware of such changes in configuration, since such configuration can be made explicit only to the

Chapter 2 Applications for Mobile Users 17

mobile terminal's intermediary or to mobile applications. This information may include details on

local resources that are available on the fixed network to support the operation of mobile

applications.

One most important aspect in dynamic reconfiguration is the discovery of the available resources

in a mobile terminal's current operating environment; this is known as services discovery

[29][66]. Since mobile terminals often roam around various areas, services or resources that were

present before disconnecting from the network may not exist after reconnecting. To support

dynamic service discovery, there are systems like Jini [122], Ninja Service Discovery Service

(SDS) [17], Universal Plug and Play (UPnP) from Microsoft, E-speak from Hewlett-Packard, and

the Service Location Protocol (SLP) [66].

To illustrate the function of a service discovery system, we now describe Jini. Jini [122][66]

enables any terminal that runs a Java Virtual Machine to interoperate with others by offering and

using services. A service is defined as an entity that can be used by a person, a program, or

another service. Printing a document is an example of a service that can be advertised by Jini.

When a service is in use, it is registered as being leased by another service. To join the federation,

a device or a service uses a standard mechanism to register. Firstly, a lookup service has to be

discovered by polling the local network. Once the lookup service is found, the device or service

registers itself. The lookup service stores pointers, code or proxies representing the service, as

well as defining service characteristics and attributes.

2.2.3 Adaptation

In the dynamic mobile environment, mobile applications are required to be able to adapt to the

prevailing operating conditions. This makes adaptation an important mechanism for supporting

mobile applications. Adaptation is used to conceal complexity and variability in the mobile

environment from users, mainly by using local resources to reduce communication and to cope

with uncertainty. Three different approaches to adaptation are suggested in [100], namely a

laissez faire approach, application-transparent adaptation, and application-aware adaptation.

In a laissez-faire approach, adaptation is entirely the responsibility of individual applications.

This avoids the need for system support, and there is no need for a central arbitrator to resolve the

Chapter 2 Applications for Mobile Users 18

incompatible resource demands of different applications. Such an approach makes applications

more difficult to write, and fails to amortize the development cost of support for adaptation. By

adopting an application-transparent approach, adaptation is placed entirely on the system. Such

adaptation is backward-compatible with existing applications, where the system provides the

focal point for resource arbitration and control. But in some cases, it may also be inadequate or

counterproductive. Finally the application-aware adaptation supports a collaborative partnership

between applications and the system, which permits applications to determine how best to adapt

[100].

The adaptation support for a mobile terminal's applications can be provided by an abstraction

layer that provides an API to the applications. To be able to serve many different types of

applications, the abstraction layer can adopt the application-aware support, since this would give

more advantages to the applications; e.g. by providing them with the right type of adaptation, and

at the same time reducing the adaptation burden on the abstraction layer.

2.2.4 Discussion

The aforementioned requirements may involve a full or partial re-implementation of an existing

application in order to fit the mobile operating environment. Another alternative is to have an

intermediary that adopts an appropriate communication model, while in parallel hosting dynamic

reconfiguration and adaptation mechanisms for mobile applications. The diversity and

heterogeneity of mobile terminal systems also raises the need for intermediaries. For example, a

low-end mobile terminal may be incapable of hosting a complex application. Therefore, the

mobile terminal requires support from an intermediary on a more powerful terminal, such as a

stationary terminal connected to the fixed infrastructure. Then the intermediary translates and

forwards external communication requests to the low-end mobile. Such intermediaries can also be

used to transform ordinary information streams to enhance the information quality [31].

Middleware systems can provide such intermediaries, which deal with the increased complexity

that comes with a dynamically changing population of applications, types of connections and

hardware capabilities in mobile environments. Such middleware systems will support not just one

specific mobile application but also all that are hosted on a mobile terminal. Some work has

already been done in this area and some examples will be presented in the next section.

Chapter 2 Applications for Mobile Users 19

2.3 Middleware for Mobile Users

In the context of mobile computing, a middleware for mobile computing seeks primarily to hide

the underlying networked environment's complexity by insulating applications from explicit

protocol handling, distributed memories, data replication, network faults, and parallelism [31]. In

addition, some middleware systems are designed to mask the underlying heterogeneity of the

hardware and software platforms of mobile terminals, while others are built to address the

mobility issue of the mobile users. In this section, we present some existing middleware that have

been designed and built to support such functionalities.

2.3.1 Issues in Middleware design

Conventional middleware technologies, e.g. CORBA, Web Services, DCOM and Java RMI, have

focused on masking out the problems of heterogeneity to facilitate the development of distributed

systems. They have proved their suitability for standard client-server applications, but they are

not prepared to address the dynamic aspects of mobile systems [29]. This is due to their nature,

which allows them to deal best with static execution platforms where the host location is fIxed,

the network bandwidth does not fluctuate, and services are well defIned. Besides this, such

middleware platforms are too heavy to run on devices with limited resources.

Moving in a different direction, asynchronous and reactive systems are now targeted in order to

address the dynamic aspects in the mobile environment. To be suitable to serve such

asynchronous and reactive systems requires a more abstract communication paradigm, i.e. one

based on events. Events are in the form of simple asynchronous messages, which have the ability

to represent an intuitive way of modelling that something has occurred, in which case such an

occurrence or event is potentially of interest to some other objects. Middleware systems that are

based on this paradigm are often called "publish and subscribe middleware" [66]. The publish

and subscribe model is defined as a mechanism for sharing data between applications [26].

Applications can "publish" their data to a publisher, which will automatically notify all

applications that have "subscribed" to that type of data. Anonymous and loosely coupled

communication between publisher and subscriber, along with the inherently asynchronous nature

Chapter 2 Applications for Mobile Users 20

of these systems, help them adapt quickly to changing environments, making them a good choice

for mobile cellular networks.

In Web Services technology, a Web Service is allowed to pass a reference to itself or to another

Web Service, permitting the latter to call the former. This callback capability lets services

asynchronously push events or notifications to each other, and forms the basis of the WS

Eventing and WS-Notification specification [42]. The WS-Eventing specification allows Web

Services to provide asynchronous notifications to interested parties, in which it defines the

simplest level of Web Services interfaces for notification producers and notification consumers.

At the same time, the WS-Notification specification defines a standard Web services approach to

notification using a topic-based publish/subscribe pattern.

Unpredictable disconnections are one of the issues that need to be addressed in mobile

environment [29]. Data replication and caching is one approach taken to address this issue

[49][111]. This approach maximises the availability of data to users, where users are allowed to

have access to replicas and to continue their work while being disconnected. Different

mechanisms can then be used to maintain consistency among the replicas, e.g. discovery of

inconsistent data and data reconciliation. Since conventional pessimistic locking and concurrency

control mechanisms restrict mobile systems too tightly, an optimistic approach is more favourable

in such settings, where modifications to replicated data are allowed during disconnection,

followed by data reconciliation upon reconnection [31].

Another solution proposed to handle the problem of disconnected operations is by having a Tuple

Space middleware, especially to support asynchronous communication [29]. Tuple Space is a

logically shared memory, which provides the appearance of shared memory but does not require

an underlying physical shared memory. Any process can reference any Tuple! regardless of

where that Tuple is stored. Tuple Space solutions, like LIME [88], TSpaces [130], and

JavaSpaces [123] provide tuples, which are the basic elements that can be read or written by

many participants. Tuple-space systems are suitable to operate in the dynamic nature of mobile

environments since they exploit the decoupled nature of tuple spaces for supporting disconnected

operations. The asynchronous interaction paradigm that they offer is an appropriate solution for

dealing with the intermittent connection of mobile devices, as is often the case when a server is

not in reach or a mobile client requires to voluntarily disconnect to save battery and bandwidth.

Chapter 2 Applications for Mobile Users 21

Some middleware systems are specifically designed to support context-aware operation. Such

systems provide mobile applications with the necessary knowledge about the execution context in

order to allow applications to adapt to dynamic changes in mobile host and network conditions

[29]. The most commonly used context is location-based information, while other types of

context include mobile device characteristics, network condition, and user activity. Such context

information is typically presented in a suitable format, which can easily be used by the

middleware to apply a certain adaptation policy.

Another issue in middleware design is security. Cryptographic techniques are commonly

employed in distributed systems to secure messages from one terminal to another and to

safeguard private information stored in networked systems [124]. These techniques can be

adapted accordingly, e.g. by ensuring private data does not become public. To protect privacy,

schemes based on "digital pseudonyms" could be used to eliminate the need to give out items of

personal information that are routinely entrusted to the wires today, such as credit card numbers,

social security numbers and addresses.

2.3.2 Middleware Systems

In this section, we review some existing middleware systems that have been designed for mobile

users. Their functionalities vary according to different dynamic aspects of the mobile

environment.

2.3.2.1 iMASH

The iMASH research proj ect [1] aims to facilitate network interconnecti vity between an

application server (AS) and users working on heterogeneous mobile and fixed clients. In the

iMASH architecture, a Middleware Servers (MWS) layer is interpositioned between the clients

and the AS. Several servers are employed to act as an aggregate Middleware Service

(MWService) to provide the scalable functionality intended by the iMASH environment. The

iMASH middleware is designed primarily to ease the burden on the AS by performing user

1 A tuple is a fixed fixed-length list containing elements that need not have the same type.

Chapter 2 Applications for Mobile Users 22

authentication and profiling, presentation transcoding, location tracking and network quality-of

service adaptation, computational off-loading from client to middleware, and application session

handoff.

This Application Session Handoff (ASH) facility allows the user to have a seamless,

uninterrupted computing experience across client machines, where users are allowed to move the

current session state of an application running on one client to another (likely heterogeneous)

client. Supported by such mobile session states, the user is presented with a familiar set of data

that is adapted, or transcoded, to fit the prevailing operating environment of the device being

used. This way the user is allowed to access his data regardless of current platform or physical

location. The runtime environment that supports this model transparently tracks the user's

location and transfers the application's session state across devices. Hiding such complexity is a

tier of MWS that seamlessly provides the service to the clients by performing content transcoding

and intelligent data updates so that the user's view of data is consistent across all devices.

In iMASH, the middleware servers (MWS) are acting as intermediaries between mobile terminals

and application servers. Multiple servers are employed to address scalability, in which case a

local available server will serve a mobile terminal. Even though the system supports the hand off

of application sessions between different types of mobile terminal, it does not address the

intermittent connectivity and mobility of mobile terminals. No description is provided on what

the system will do when a mobile terminal is disconnected or relocates to a new environment. It is

not clear whether the server stores the application session while the mobile terminal is

disconnected and whether the system allows the mobile terminal to resume this session upon

reconnection.

2.3.2.2 Integrated Personal Mobility Architecture (lPMoA)

User mobility has been divided into two areas, namely terminal mobility and personal mobility

[112]. Terminal mobility focuses on the movement of the terminal and work in this area includes

the standardisation of Mobile IP [86]. Personal mobility, on the other hand, addresses the issues

of users' contact ability and personalisation. IPMoA (Integrated Personal Mobility Architecture)

[112] is a middleware that is specially designed to address personal mobility. IPMoA operates

Chapter 2 Applications for Mobile Users 23

between the network and the application layer, which is organised similarly to the way home

agents and foreign agents are organised in Mobile IP.

A user who wishes to use the IPMoA services subscribes to an IPMoA network, which is known

as the user's "home" IPMoA network. On arrival at a new location the user has to log on to an

IPMoA network, which is known as the "visiting" IPMoA network. The visiting IPMoA network

first authenticates the user with her "home" IPMoA network, after which access to the personal

mobility support functions is given. The IPMoA network consists of three primary components

(cf. Figure 2.1), namely, i) four manager entities, ii) an adaptation engine, and iii) an execution

environment. Each of the four managers has different functionality, e.g. the Application Manager

assists a user in executing the user's applications remotely while being away from the home

network. The execution environment provides an environment for the user's helpers, namely,

agents to execute tasks and assist the user, while the adaptation engine is responsible for

performing the adaptation. Three agents are used to provide assistance to the user: a Personal

Application Assistant (PAA); a Personal File Assistant (PFA); and a Personal Communication

Assistant (peA). These agents are realized as mobile agents, allowing them to operate in close

proximity to the user in order to increase flexibility by facilitating operation over poor

communications links.

Once a user reconnects to a visiting network, the PAA, PFA and peA migrate to the user's

current local environment. The peA allows the user to make a call to another user, the PF A

allows the user to get needed files from their home network, while the P AA allows applications to

be executed at the user's requests on their home network. In performing their tasks, these agents

may migrate and clone themselves. One problem with the approach taken by IPMoA is theat the

system depends too much on the home network of the user. All the three agents that serve the

user at his / her new location originate from the home network. They will be unable to provide

their services if the visiting network is not connected to the rest of the Internet, or if the home

network is disconnected from the Internet. A mechanism to handle such failures needs to be

considered, e.g. by having the visiting network dynamically create new agents for the visiting

user. In the case where the visiting network already has an application that can serve the user's

requests, the locally-available application should be manipulated by the P AA instead of having to

execute the application remotely on the user's home network.

Chapter 2 Applications for Mobile Users

r---------.... --------·------ -------------------·-------- ----.-------j
I Manager Entitles I
: I
I 1
1 I
: Use<'s Users Usa£'$ I
: Prei'erenOO$ I
I I

: :
: :
::

: :
: I
II

1 I L ___ 1

r---------------------------- --------------------------------
I Adaptation Engine : ! Exexecutlon Environment i
l ' I [,I
: j r Agents Execution Environment I
: Adaptation 1 ~ I

: Decision l r :
: -Engine 1 i f
I I I I
1 I [1 L __________________________ I L.________ _ ______ J

Network
Boundary

D
Figure 2.1: The components in an IPMoA network.

2.3.2.3 Mobile Application Support Environment (MASE)

24

The Mobile Application Support Environment (MASE) [3] is a middleware system that acts as a

mediator between applications and their users on the one hand and the mobile terminals and the

underlying networks on the other hand. MASE's goal is to hide the complexity of the network

from the application, by attempting to make different wireless networks appear to the user and

applications as a seamless and homogeneous communication medium. The services of MASE are

accessible through a mobile API that includes location, session, and power management, support

for disconnected operation, and system adaptivity management to support quality of service in a

mobile environment. These services allow the applications to adapt, for example to changes in

quality of service, connectivity, and user location.

One important feature of MASE is its adaptation mechanism, for which it employs the UMTS

Adaptation Layer (UAL). UAL encapsulates low-level mobile communication functionality,

allowing it to establish, maintain, and terminate network communication, alerting its users to

Chapter 2 Applications/or Mobile Users 25

incoming calls, field strength, fading, etc. Quality-of-service requests are made to the UAL as

well as requests for charging and location information. Thus, the VAL shields its users from the

complexity of mobile networks, offering instead a simpler communication abstraction.

Other components of MASE include the session manager, system adaptivity manager, location

manager and accounting manager. The MASE session manager offers services to establish, close

and exchange data in a communication session. It selects and requests the appropriate UAL

service based on QoS (e.g., quality, cost, security, priority), user/terminal profiles, and available

connectivity. The system adaptivity manager (SAM) is responsible for controIIing system

resources and their usage. SAM tunes the mobile system for best performance, given the current

operating environment and the user's preferences. The location manager deals with mobile

location information by locating the mobile terminal through the appropriate means available

from MASE, e.g. the network, the application and user inputs. FinaIIy, the accounting manager is

responsible for charging and biIIing tasks.

MASE supports disconnected operation, where the mobile terminal is allowed to operate as close

to normal as possible when disconnected from network resources. Upon reconnection, the mobile

terminal is allowed to re-integrate the modifications performed during the disconnection from the

server. While providing such support, MASE does not enable operations to be resumed on the

network on behalf of the user while the user is disconnected. This ability is also useful in mobile

users' environments, especially when user is involuntarily disconnected from the network. This

way, when the user reconnects they may obtain the results of tasks performed on the network

while he / she was disconnected.

2.3.2.4 Java messaging middleware (JMS)

Java messaging middleware (JMS) [62] operates using message queues, which are hosted on both

mobile devices and back-end servers. Fully bi-directional, one-to-one, or one-to-many

communications are supported. Outgoing messages are added to a queue on the mobile device

and are forwarded to a server when a network connection can be established. This allows the

client and server to communicate despite sporadic network disconnections. JMS was not

explicitly designed for mobile devices but it provides an ideal abstraction layer for developing

mobile applications. JMS allows many mobile devices to simultaneously send messages to a

Chapter 2 Applications/or Mobile Users 26

server. On arrival at the server, these messages are added to an inbound queue and will be dealt

with when resources are available, or can be forwarded to other servers for load sharing.

In comparison with CORBA, JMS is better suited for running applications over wireless networks

as it provides an asynchronous, message-based transport [62]. Using message queues hosted on

the client and the server side, JMS applications can operate in disconnected mode. A mobile

terminal being served by a JMS system may not be able to access the server that queue messages

intended for it due to the mobile terminal's new location not being connected to the rest of the

Internet. JMS can introduce more flexibility by having messages queued for a mobile terminal be

transferred to a server local to the mobile terminal. This way, the mobile terminal is able to use a

local service to send and receive the messages.

2.3.2.5 Discussion

By surveying existing middleware systems for mobile users, we can conclude that the following

are the main aspects that need to be considered when designing a middleware for mobile users.

Hide the underlying complexity in the mobile environment

The mobile computing environment is more dynamic than the traditional computing environment.

Not only has it involved limitations due to wireless communication and low-end devices, but it is

also populated with heterogeneous software and hardware platforms and ever-changing resources,

services and clients. Looking from a mobile user's perspective, while roaming the user's mobile

terminal is exposed to different types of environments. In order to continue their operations,

mobile applications that are hosted on the mobile terminal need to be able to adapt to the current

environment of the fixed infrastructure. For example, they should be able to maintain interactions

with network-based applications that are providing them with services. This is one aspect that

needs to be addressed by a middleware system, i.e. an abstraction layer that hides the underlying

interaction complexity from mobile applications, allowing transparent interactions between a

mobile terminal's applications and network-based applications.

Asynchronous communication support

Mobile terminals have a tendency to be intermittently connected to the fixed infrastructure. Since

such behaviour will lead commonly used synchronous communication to fail, the perfect solution

Chapter 2 Applications for Mobile Users 27

would be to have an asynchronous form of communication that did not require both sender and

receiver to be connected at the same time. The simplest approach in supporting such

asynchronous communication is by having a store and forward mechanism, which allows

messages to be queued and forwarded to the recipients.

Mobile terminal's location updates

In order to serve user's requests, mobile applications may need to interact with network-based

applications. Due to the user's mobility or disconnection, such interaction may be interrupted and,

upon reconnection, be impossible to be re-established since the network-based application has no

way of recognising the mobile application as its location has changed. To address this issue, a

mechanism hosted on the fixed network is needed to maintain associations between the

interacting mobile terminal's applications and network-based applications. This mechanism must

also have the ability to know the current location of the mobile terminal, so that messages from

the network-based applications can be delivered to the applications hosted on the mobile terminal.

Scalability

Mobile applications must not solely rely on a single middleware server / intermediary to serve its

request. A single and centralised server can be a single point of failure when it is not accessible

by the client or for whatever reason fails to respond. Thus to prevent such failure, multiple servers

/ intermediaries should be employed by the middleware.

Having reviewed the existing middleware systems for mobile users, we have identified some of

their limitations, which we describe below:

i) The use of a centralized server for mobile users does not address scalability, in which

case a high number of requests received from the mobile terminals may introduce

delay and a bottleneck. A centralized system is also a potential single point of failure,

in which case the services offered would become unavailable to all of the mobile

terminals.

ii) A stationary proxy of a mobile user is lacks flexibility, and may be located far away

from the mobile terminal's current point of attachment to the fixed network. A local

proxy is always preferred in mobile users' environments, since being local the proxy

can facilitate operation over poor communication links. The mobile terminal can

communicate with the proxy using a specialized protocol.

Chapter 2 Applications for Mobile Users 28

iii) Services offered by proxies need to incorporate disconnected operation, not only by

allowing mobile terminals to operate normally while they are disconnected, but also

by allowing user's session to be updated on the fixed network while their mobile

terminal is disconnected, having the results forwarded to the mobile terminal upon

reconnection.

In the next section we shift our focus to a study of existing collaborative applications designed for

mobile users. A collaboration normally involves shared resources between collaborators, and our

interest is to find out how such resources are maintained and how interactions between

collaborators are supported.

2.4 Collaboration Support for Mobile Users

Employees who travel or work in remote and changing locations should be able to attend to

business tasks regardless of their physical location. Furthermore, while roaming to different

network areas, an employee has to be allowed to seamlessly continue a coIIaborative session. It is

widely recognized that supporting nomadic workers in such settings is a key business requirement

for large enterprises [101]. Hence, there is a growing need for a comprehensive software

infrastructure, which enables employees to work together by locating information and sharing it

with their coIIaborators [13].

In such a coIIaboration context, the concept of supporting collaboration-aware applications refers

to those that are especiaIIy designed to support a group, i.e. they contain special code for group

functions, while collaboration-transparent applications are original single-user applications,

which, with help of a specialised application, e.g. a toolkit, can be used by many users

simultaneously [13]. Another form of applications that support collaboration is groupware

applications that provide a means for geographicaIIy dispersed users to show, manipulate, and

emphasize ideas using a software architecture that disseminates multimedia information in real

time to other participating users [1]. We will first survey some research work from the Computer

Supported Cooperative Work (CSCW) field, while in the rest of the section we describe some

applications that are specially designed to support collaboration between mobile users. This

survey is performed as a background study for our work (cf. Chapter 6).

Chapter 2 Applications for Mobile Users 29

2.4.1 Computer Supported Cooperative Work

Research papers in the field of Computer Supported Cooperative Work (CSCW) study a variety

of issues like concurrency control, user interface and the transmission of awareness infonnation

[23][51][20][35]. In this section we present some related work from this field.

The Artefact framework [23J is a tool for building collaborative applications on the web. In

Artefact, online presence of a user is provided by a software object called the Artefact User Agent

(ADA). The ADA can be contacted by the browser through a single URL while ADA interacts

with different applications. To build a collaborative application, objects can be declared and

added on-the-fIy by users. Every object supports access-control lists to allow fine-grained control

over security. Artefact also provides a complete object-oriented SDK for developing customized

application objects.

Iris [51J is a collaborative system based on a replicated architecture, designed to support

geographically-distributed co-authors in the writing of multimedia documents. To address

maintaining consistency of replicated documents in this environment, Iris supports optimistic

concurrency control mechanisms. Iris allows the documents to be accessed and modified by

different user applications, including standard text editors. Replica managers are hosted on every

machine participating in the editing process, which store the document objects and provide access

and notification broadcasting. Specifically, they handle read and write operations, and notify the

users of events happening in the group.

Groove Workspace [35] provides support for online and offline access to integrated messaging

and collaboration (e.g. group calendaring/scheduling, project management, me transfer and

access, instant messaging, and online meetings). The Groove platfonn uses binary differentials to

optimize network traffic as content flows throughout the lifecycIe of a project. Binary

differentials technique of comparing the original document and the revised document at the

binary level, determining which bits have changed, and sending only the changes across the

network to the other members of the shared space.

Chapter 2 Applications for Mobile Users 30

Artefact, Iris and Groove are examples of collaborative applications built for stationary users.

Even though they may have many interesting features, they are not specifically tailored to the

characteristics of mobile users. Below we present an example of a collaborative editing

application specifically built for mobile users.

CoFi [20] is an architecture that supports document editing and collaborative work over

bandwidth-limited clients. It enables bandwidth-limited clients to edit documents that are only

partially present at client. Such conditions are subject to adaptation systems that adopt techniques

to lower download latencies. These systems reduce network traffic by the use of subsetting and

versioning. In subsetting adaptations, only a subset of the components of the original document,

for example the first page is transferred. In versioning adaptations, some of the components are

transcoded into lower-fidelity representations, for example low-resolution images. CoFi is a

collaboration system that is more specific to documents being manipulated by the adaptations

systems. This makes CoFi suitably attached to adaptations systems. Our focus in designing the

collaboration application does not include such types of documents. In principle, CoFi does not

assume a predetermined relationship between system nodes, while our work includes the concern

of intermittent connectivity with mobile users.

2.4.2 QuickStep

QuickStep [94] is a platform that supports the development of mobility and collaboration aware

applications. It provides the developers with communication and collaboration primitives,

through which they can concentrate on application-specific details. This platform has been

especially designed for handheld devices, and employs a stationary server to offer information

that can be used by handheld applications. The server also acts as a communication relay between

handhelds, relieving them from heavy tasks and storing data during disconnection. In terms of

collaboration support, QuickStep introduces the idea of relaxed synchronous collaboration, which

is defined as collaboration for users who collaborate synchronously, but may infrequently be

disconnected from the network for short periods of time. Applications built on this platform allow

information sharing between mobile users, e.g. a collaborative calendar tool.

In QuickStep, when a mobile terminal is disconnected, the mobile terminal's session is stopped

and the corresponding session's records are immediately removed from both the server and the

Chapter 2 Applicationsfor Mobile Users 31

mobile terminal's caches. For an involuntary disconnection, such an action may not be suitable

since the stopped session may include an incomplete task requested by user. A better approach is

to allow such sessions to proceed until the requested tasks are completed, after which the results

can be forwarded to the mobile terminal upon reconnection.

2.4.3 Pocket DreamTeam

Pocket DreamTeam [95] is another platform that supports collaborative applications on mobile

devices. It is an application framework that was especially designed for mobile users in

synchronous sessions. Using Pocket DreamTeam, a developer can create prototypes for mobile

collaborative applications by using a high amount of reusable source code and a runtime system,

which executes demanding services in the background. Pocket DreamTeam is the extension of a

decentralised groupware platform called DreamTeam, with the addition of a stationary proxy

computer, which executes the computationally expensive operations of the applications.

DreamTeam is based on a completely decentralised architecture. The DreamTeam environment

allows the developer to develop co-operative applications like single user applications. It

comprises a development environment, a runtime environment and a simulation environment.

Applications under DreamTeam are developed according to the DreamTeam Resource Model

(DRM). Applications consist of an application frame, a set of resources and a user interface. With

this interface, the runtime system can initialise, start and stop applications. All data is available

locally, thus an application is still runnable in case of network problems. The original

DreamTeam uses pessimistic concurrency control procedures, which involve pessimistic locking

protocols enforcing that data is locked before it is written. This is one of the mechanisms that

promote a strict consistency model, in which participants have exactly the same views and data

all the times. Such mechanisms are suitable for optimally-connected users in stationary networks,

but among mobile and weakly-connected users, such mechanisms are unsuitable since mobile

users are normally intermittently connected to the network. As a solution, Pocket DreamTeam

offers a combination of pessimistic concurrency control for the mobile segment.

In providing its services to mobile users, Pocket DreamTeam uses additional computers called

proxies to execute computationally-expensive operations on behalf of the mobile terminals. Once

a mobile terminal is disconnected, the state of the interrupted session is updated by the proxy.

Chapter 2 Applications/or Mobile Users 32

Since Pocket DreamTeam uses multiple proxies to serve mobile terminals, the failure of one of

the proxies does not mean that the mobile terminals' sessions handled by the proxy are

terminated. The system provides automatic recovery mechanisms that switch a mobile terminal to

another proxy without interruption.

While addressing mobile terminal's disconnections, Pocket DreamTeam does not specifically

address a mobile terminal's mobility. During a collaboration session, a mobile terminal may roam

or relocate to a new location. Throughout this time, the collaboration session state continues to be

updated by the mobile terminal's proxy. However upon reconnection, the mobile terminal still

needs reconnect to the same proxy, regardless of its new location. More flexibility has to be

introduced in such a situation. Since Pocket DreamTeam employs multiple proxies located across

the network to serve mobile users, it can allow the mobile terminal to always be served by a local

proxy, allowing a local collaboration. At the same time, the mobile terminal can still continue its

collaboration session by communicating with a remote proxy. This way, the mobile terminal can

maintain both collaboration sessions. One advantage of having a local collaboration is that the

mobile terminal is able to manipulate local resources.

2.4.4 YACO

Some efforts in this area focus more specifically on collaboration in the corporate domain. Such

an effort is realised as a framework called Y ACO [8]. Y ACO offers services to collaborating

users in a corporate domain and exploits the capabilities of SIENA [11], a publish/subscribe

system, to support collaborative work. In this system, a sender publishes messages and receivers

subscribe for messages that are of interest to them, while the system is responsible for delivering

published messages to matching subscribers.

Additionally MOBIKIT [9], a support service for mobile publish/subscribe applications, is used

to manage the mobility of its client. Using the SIENA architecture, servers provide clients with

access points that offer the publish/subscribe interface. These servers are interconnected as a

distributed network. The YACO architecture is designed in such a way that MOBIKlT can be

used to support the movement of clients between the access points of the SIENA system. Y ACO

uses MOBIKIT to handle the mobility issue of users, whereby each user has a stationary proxy

handling their subscriptions and storing incoming notifications. Every time the user changes

Chapter 2 Applications for Mobile Users 33

location, another locally available proxy becomes the user's new proxy on the user's arrival at the

new location. This new proxy downloads all subscriptions and messages for users from the user's

previous proxy. This approach requires such a proxy to exist on all the sites ever visited by the

user. We believe a more flexible approach is to have a mobile proxy for each user, so that the

proxy is able to follow the user by migrating to their current vicinity. This way there is no strict

requirement for such a proxy to exist at every site.

YACO allows users to share artefacts, and every user in YACO uses a local repository for storing

artefacts. YACO uses publish/subscribe application to support the sharing of those artefacts,

where the artefact's owner publishes the events related to the artefact, such as when the artefact

becomes available or has just been modified. This way, interested users are notified when these

events have occurred. By using publish/subscribe method of communication, only the publisher

has the privilege to modify the artefact, while subscribers may only download and view the

different versions of the artefact. This may be a good solution for publishing documents, but it

may not be suitable in collaborative editing work, where collaborators are allowed to edit a shared

document in parallel.

2.4.5 PCCE

PCCE [87] is specific to the facilitation of scientific collaboration within widely distributed

environments. PCCE provides a persistent space in which collaborators can locate each other,

exchange messages and archive conversations. The architecture includes a centralized server to

provide persistence and a modified public domain IRC server to enable text-based synchronous

chat. The system is referred to as LBNLSecureMessaging and deployed as the presence and

messaging component of the PCCE. Their vision is to extend this system to support file-sharing

and collaborative editing. PCCE designers consider integrating both asynchronous and

synchronous collaboration into the system. The proposed sharing and collaborative editing of

documents will be an extension of the current PCCE system, which consists of a secured

messaging system. This requires the collaboration to be tightly coupled to the messaging tool.

Like some other described systems, PCCE employs a centralized server to provide services to

mobile users. In this case, the PCCE system is not concerned with the location of the mobile

terminals. In supporting collaboration between mobile users, the location of the server providing

Chapter 2 Applications/or Mobile Users 34

the service is an important consideration when the collaborators are stationary users. Centralized

systems introduce problems such as latency and bottlenecks, since the processing of requests

from the clients are performed sequentially and these problems occur when the server receives

too many requests from clients. By having only one server, the probability of a mobile terminal

not being able to access the server at a particular time is high, since the mobile terminal may

connect to a local network that is disconnected from the rest of the Internet.

2.4.6 Bayou

Emphasizing the support of application-specific conflict detection and resolution and the

provision of application-controlled inconsistency, the Bayou system is presented in [111]. Bayou

is a platform of replicated, highly available, variable consistency mobile databases on which to

build collaborative applications. The focus of the Bayou project is on exploring mechanisms that

let mobile clients actively read and write shared data. Bayou adopts a flexible client-server

architecture, where the server stores one or more databases and provides the service for read and

write operations to the clients. Clients are terminals accessing data from the server. A terminal

can be a server for databases and a client for others. Bayou permits "lightweight" servers to reside

on portable machines. Bayou chooses a read-any / write-any replication scheme to maximize a

user's ability to read and write data. A user is able to read from and write to any copy of the

database. Servers propagate writes among copies of the database using an "anti-entropy"

protocol, which is commonly known as a "reconciliation" process when used to synchronise file

systems. Anti-entropy ensures all copies of a database are converging towards the same state and

will eventually converge to identical states if there are no new updates.

The Bayou system detects update conflicts in an application-specific manner. A Bayou write

operation includes an application-specific procedure called a mergeproc that is invoked when a

write conflict is detected. This program reads the database copy residing at the executing server

and resolves the conflict by producing an alternate set of updates that are appropriate for the

current database contents. The Bayou design includes the notion of explicitly "committing" a

write. Once a write is committed, no other non-committed writes will be ordered before it, and

thus the outcome will be stable. A write that has not yet been committed is called "tentative".

Each Bayou database has one distinguished server, the "primary", which is responsible for

committing writes. The other "secondary" servers tentatively accept writes and propagate them

Chapter 2 Applicationsfor Mobile Users 35

toward the primary using anti-entropy. As secondary servers contact the primary, their tentative

writes are converted to committed writes, and a stable commit order is chosen for those writes by

the primary server.

Bayou does not address the possibility of having different types of writes. It treats writes from all

users the same by having them as "tentative" on secondary servers first before they are committed

by the primary servers. In a collaboration between a group of mobile users, the writes made by a

particular user, e.g. the document owner, may be valued as more significant than the writes made

by the others. Thus writes made by such users take precedence over the other writes, but this does

not mean that writes made by other users will be rejected. Parallel editing of the document

between users is still enabled but the modification made by different users may have different

effects on the document.

2.4.7 Coda File System

Coda [49] supports the mobile environment by providing infrastructures such as disconnected

operation, data hoarding2 and weak connection adaptation. To deal with disconnection, Coda

supports data caching on clients to improve performance and to enhance availability. In the

mobile environment, data caching allows critical work to be continued on the clients when the

server is inaccessible. Another approach adopted by Coda to achieve high availability is server

replication. This allows fIles to be replicated on more than one server. The set of replication sites

for a file volume is known as a volume storage group (VSG), while the subset of a VSG that is

currently accessible is a client's accessible VSG (AVSG).

Coda distinguishes between replicas on servers, and cache copies on clients. The first are known

as first-class replicas, while the latter are known as second-class replicas. First-class replicas are

more persistent, widely known, secure, available, complete and accurate. Second-class replicas,

in contrast, can only be useful by periodic revalidation with respect to a first-class replica. Coda

adopts optimistic replica control, which provides much higher availability by permitting reads

and writes on any replica. Coda deals with conflicts by detecting and resolving them after their

occurrence. Disconnected operation starts when the A VSG becomes empty, i.e. no server is

2 This is the process of hoarding or storing useful data on the mobile terminal in anticipation of
disconnection.

Chapter 2 ApplicationsJor Mobile Users 36

accessible to a client. In such a case, while disconnected, the Venus services file system, which is

the file system hosted on a mobile terminal, relies solely on the contents of its cache. During this

time, cache misses appear as failures to application programs and users. Once the mobile terminal

re-connects, Venus propagates modifications and reverts to the server replication.

Coda copes with all disconnections either involuntary or voluntary in the same manner. The only

differences are in terms of user expectations and the extent of user cooperation. The disconnected

operation supported by Coda is similar to a manual caching system with write-back upon

reconnection performed by a user, where the user identifies files of interest and downloads them

from the shared file system for use while disconnected. When the user reconnects, modified files

are copied back into the shared file system. In its operation, Coda introduces three states, namely

hoarding, emulation and re-integration states. In the hoarding state, Venus hoards useful data in

anticipation of disconnection. In the emulation state, Venus starts to function as a pseudo-server

by performing many actions normally handled by servers. Finally in the reintegration state, Venus

propagates changes made during emulation, and updates its cache to reflect current server state.

In supporting file sharing in a mobile environment, Coda highlights the following requirements:

I. File replications and caching are needed to enhance data availability;

ii. Optimistic replica control is suitable in mobile environment since clients are expected to

be frequently disconnected from the servers;

iii. Reintegration is needed upon a reconnection to revalidate the modified files.

Coda distinguishes second-class replicas hosted on the clients, e.g. mobile terminals, from the first-class

replicas stored on the server. The first-class replicas are considered more accurate and complete, while the

second-class replicas are considered useful only with periodic revalidation with the servers. In a real

collaboration, such categorisation can be the other way round. For example, a copy of a document hosted

on the owner's mobile terminal is the latest, most accurate and complete version of the document, while its

other replicas hosted on the fixed network may be outdated.

Chapter 2 Applications jar Mobile Users 37

2.4.8 Discussion

From our survey of existing collaborative applications, we have come to the conclusion that in

order to support collaboration between mobile users, the aspects described below need to exist in

a collaborative editing system for mobile users. The described systems may include some of these

features, but lack the others.

Asynchronous interactions

Since mobile collaborators may not be online at the same time, and due to the frequent

disconnections experienced by mobile collaborators, asynchronous interactions between them

must be supported. Such interactions can be supported by having a store and forward mechanism

hosted on the fixed network, for example queued messaging, shared memory or a publish /

subscribe system.

Disconnected operation

During disconnection, to some extent users need to be allowed to proceed with the collaborative

activity, e.g. working on a copy of the shared document in isolation. One way of allowing this is

by supporting document caching on mobile terminals. Upon reconnection, the work performed by

the user on the document has to be re-integrated with the original copy of the shared document

hosted on the fixed infrastructure. Other approaches can also be adopted to improve disconnected

operation, e.g. caching.

Data replication

Replication of shared data is one way to maximise the availability of data to users. The shared

data is replicated across multiple servers and normally a mechanism is needed to maintain the

consistency between replicas. One way of doing this is by propagating new updates between

servers.

Consistency maintenance

As we choose optimistic over the pessimistic concurrency control, we need to think about the

inconsistency that is likely to happen to replicas of a shared document. Optimistic concurrency

control is suitable for a mobile collaboration since collaborators are allowed to modify the shared

document in parallel. As opposed to pessimistic concurrency control, this approach does not

impose a locking mechanism on a shared document. Thus, no problem will arise when a

Chapter 2 Applications for Mobile Users 38

collaborator is disconnected for a long time. First of all, we need to think of a conflict detection

mechanism and secondly we have to decide on how the conflicts that occur will be resolved.

Access control

Another aspect of collaboration that we may need to think of is regarding the collaborators' roles.

Some of these roles may have higher permission and more control over resources shared between

the collaborators. This includes the type of permission allowed for a collaborator to access and

manipulate a shared document.

2.5 Conclusion

We have described the limitations of the traditional communication models in supporting mobile

computing applications, and we have presented some newer and more suitable approaches. Also

in this chapter we have presented our survey of mobile applications of interest. Two classes of

applications, namely middleware systems and collaborative applications for mobile users are

surveyed. From this study we have extracted their common features and requirements, which are

used as the foundation of our work. While the systems discussed may have some of the features

discussed in Section 2.4.8, they lack others (cf. Figure 2.2).

One feature of proxies serving mobile users is their location. We think that being locally

available to mobile users offers more advantages, e.g. communication between the proxy and the

mobile terminal can use a specialized protocol. One approach to realizing this is to have mobile

proxies or intermediaries for mobile users, implemented using mobile agent technology. We

describe mobile agents in more detail in the next chapter and survey some existing mobile

applications based on mobile agent technology.

Chapter 2 Applications for Mobile Users

Features Asynchronous
interactions

Artefact No
Iris Yes
Groove No
Workspace
CoFi No
QuickStep Yes
Pocket No
DreamTeam
YACO Yes
PCCE Yes
Bayou No
Coda File No
System
Yes: supported feature
No: not supported feature

Disconnected
operation
No
No
No

Yes
No
Yes

Yes
No
Yes
Yes

Data Consistency
replication maintenance
No No
Yes Yes
Yes Yes

Yes Yes
No No
Yes Yes

Yes No
No No
Yes Yes
Yes Yes

Figure 2.2: Comparison between systems

39

Access
control
Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes

Chapter 3 Mobile Agents 40

Chapter 3

Mobile Agents

In the previous chapter, we described the current trend in designing applications and rniddleware

for mobile users. We now shift our study to mobile agent technology, which is a potential

solution for developing suitable rniddleware for mobile users. We will start by introducing the

concept of a mobile agent, followed by a review of existing mobile-agent- based systems, and

finally a discussion.

3.1 Introduction to Mobile Agents

Before we describe what a mobile agent is, we present some previous definitions of software

agents. According to [58][16], an agent is defined as a program or software that acts on people's

or organizations' behalf, which allows these people or members of the organization to delegate

tasks to their agents. Being more specific, [47][129] define an agent as a computer system,

situated in some environment that is capable of flexible autonomous action in order to meet its

design objectives. Being autonomous, the system is able to act independently without the direct

intervention of users or other agents, and it has control over its own actions and internal state.

Being flexible, the system is expected to be responsive, pro-active and social. Responsive means

that agents are able to perceive and respond to their local environment. By being pro-active,

agents are able to exhibit opportunistic, goal-oriented behaviour and take the initiative where

appropriate. Social means that agents are able to interact with other agents in order to solve their

problems or to help other agents. These four attributes are believed to be the basics of agenthood

and to be necessary to provide the power of the agent paradigm that distinguishes agent systems

from other software paradigms [47][129]. The FIPA standard fully embraces the agent paradigm,

specifically providing the definition of a reference model of an agent platform and a set of

services [46].

Chapter 3 Mobile Agents 41

There is actually a distinction in concern between multi-agent systems / intelligent agents

community and mobile agents community [21]. The definitions presented above are from the

intelligent agent community, while for the mobile agent community, the concept of the mobile

agent is believed to have grown out of three earlier technologies [128], namely process migration

[91], remote evaluation [102], and mobile objects [48]. According to [28], the fundamental idea

in implementing mobile agents comes from the basic concept of code mobility, which is defined

as the capability to dynamically change the bindings between code fragments and the

locations where they are executed [10]. The mobile agent community concentrates more on the

subsystems for code shipping, while the intelligent agent and multi-agent community tends to

focus on application-specific problems. From the mobile agent community point of view, the

term "mobile agent" was first introduced by Telescript [21].

Based on the definitions given by both communities, mobile agents can be defined simply as

running programs that autonomously decide to change location in order to continue their

execution in an environment with better resources [73]. Having migration autonomy allows a

mobile agent to travel among the hosts on the network, which is an additional advantage in

comparison with more passive forms of mobile code, i.e. code on demand and remote evaluation

[28]. As a result, mobile agents are considered as the most powerful form of code mobility [119].

Besides flexibility, mobile agents offer other advantages, which will be presented in the next

section.

3.1.1 Advantages of Mobile Agent Applications

Before we describe the advantages offered by mobile agents per se, we take a step backward by

identifying the advantages offered by code mobility.

3.1.1.1 Advantages of code mobility

We refer to [28] for a list of advantages offered by code mobility, which are summarized next.

First of all, code mobility enables service customization, in which case the server is allowed to

request the remote execution of code. This helps to increase server flexibility without

Chapter 3 Mobile Agents 42

permanently affecting the size and complexity of the server. Secondly, mobile code is used in the

deployment and maintenance phases of the software development process by providing an

automated installation process. To some extent a mobile code can be autonomous, which allows it

to independently execute on a server without involving communication over a physical link. This

ability is especially useful in a disconnected environment such as wireless / mobile users'

environments. Such autonomy can also improve fault tolerance, e.g. a mobile code migrates to a

server to accomplish its task, allowing occurring faults to be handled locally by the server.

Finally, code mobility offers flexibility in data management and protocol encapsulation. The

components of a distributed application may exchange data between themselves, where each

component owns the protocol to interpret data. It is impractical to hard-wire such code into

application components as it may frequently change. In this case, code mobility enables more

efficient and flexible solutions. For example, only the specific code that implements a particular

protocol is requested to migrate to the local host by an application. All of these advantages also

apply to mobile agents in their lower level form, being mobile codes. Next we discuss specific

advantages offered by mobile agents.

3.1.1.2 Advantages of Mobile Agents

First of all, the application of a mobile agent can reduce network load in distributed environments

[58]. In completing a particular task, applications in a distributed environment normally rely on

some communication protocols that require multiple interactions to be carried out between them.

One way to minimize the network load in such a situation is by packaging the conversation and

moving it closer to the remote application. This allows the conversation to be performed locally

and thus removes the need for distanced interactions. Besides this, such an approach is also

applicable when an application requires the processing of large volumes of data that are stored

remotely. By migrating a mobile agent close to the data, the entire processing is able to be

performed remotely and close to the data, preventing large amounts of data being exchanged

across the network. In both cases, the use of a mobile agent allows the computation to be moved

closer to the needed resources, and thus reduces the network load involved.

Secondly, mobile agents can also overcome network latency [58]. Network latency is a major

limitation in critical real-time systems such as robots in manufacturing processes that need to

Chapter 3 Mobile Agents 43

respond to changes in their environments in real time. Thirdly, in terms of the user's privacy, the

capability of mobile agents to keep user-profile data within themselves and prevent other agents

to directly access the data [97]. Fourthly, from the security point of view, mobile agents can

operate in secured environment where they can provide high levels of security and reliability

without requiring additional code to be written [68]. And finally, mobile agents can also greatly

help to structure distributed applications [53], since a software architecture that includes mobile

agents as one of its components can be represented by many different architectural styles or

design paradigms. Such flexibility allows the designer to identify the most reasonable way to use

the mobile agent to best represent the architecture.

3.1.1.3 Advantages of Mobile Agents in the Mobile Computing Environment

Mobile agents can run autonomously and asynchronously and this ability is most useful in the wireless

environment, where users rely on expensive connections to the network [58][60][106][68][89][37][98].

Having an autonomous mobile agent running on the network on behalf of a mobile user removes the

necessity for the user to have continuous connection with the network. The user can always reconnect later

to get the results for accomplished tasks. In comparison with other types of software agents, the agents'

ability to adapt to their environments is more useful to mobile agents. This is because mobile agents are

more exposed to different environments in comparison with stationary agents, as they may visit different

hosts throughout their lifetime [58]. The combination of mobility and adaptability possessed by mobile

agents offers another advantage in that they can be used to continuously maintain the optimal configuration

for solving a particular problem in different types of environments. Based on this behaviour, a mobile agent

can be a representative of a mobile terminal that is able to adapt and reconfigure itself to each network

being visited by the mobile terminal. This way, by communicating through the mobile agent, the mobile

terminal does not have to reconfigure its setting every time it is attached to a new location. From a different

point of view, mobile agents can also benefit small terminals such as PDAs and cellular phones [106] by

adapting themselves to different types of platform capability.

Chapter 3 Mobile Agents 44

3.1.2 Mobile Agent Systems

A mobile agent system offers agent life-cycle management, security enforcement, resource access

control, agent transport, communication and persistence [6][115][106][105]. Such a system

normally consists of an agent platform, which is a runtime environment that is able to perform the

tasks of supporting the agents' creation, execution, localisation, migration, communication and

security control [33]. Creation and transfer of mobile agents are normally defined by the

communication API in the communication layer of the system. A mobile agent platform accepts

incoming agents and performs authentication and authorization on them, and also launches new

agents and provides mobility services for them [77]. Each agent is identified by a unique name

and provides a set of services, allowing agents to interact with each other. In addition, some

mobile agent systems support other services like the remote cloning of agents [125], remote

creation of agents [58][6] or extensions of services to support operations on small devices

[106][46][4].

SoFAR, the Southampton Framework for Agent Research [74][72][73], is a system that supports

mobile agents. Since our implementation is mostly based on SoFAR, in the next sub-section we

present its overview and its support for agent mobility. This is followed by a sub-section on

mobile agent security issues.

3.1.2.1 SoF AR

SoFAR agents communicate based on the speech-act based communications, i.e. the

communication mechanism abstracts away from the communication details. A communication

between two agents is based on a "virtual link" defined by a startpoint and an endpoint. An

endpoint identifies an agent's ability to receive messages using a specific communication

protocol; it extracts messages from the communication link and passes them on to the agent. A

startpoint is the other end of the communication link, from which messages get sent to an

endpoint. Agents' communications are also declarative, where a minimal set of performatives has

been defined, representing the most common communication patterns, such as querying,

informing, registering, subscribing or requesting. Currently, SoFAR implementation relies on

shared memory communications, Java RMI [104], and SOAP [36].

Page 45 missing

Chapter 3 Mobile Agents 46

executing: i.e., the one executing the method migrate. In a case where an agent is currently

processing other performatives, the migrate method will block until all the other threads terminate

their execution.

3.1.2.2 Mobile Agent Security Issues

One issue that is normally dealt with by mobile agent systems is security. In mobile-agent-based

applications, two major security issues are identified, namely i) protecting host systems and

networks from malicious agents, and ii) protecting agents from malicious hosts

[53][106][54][121]. With regard to the first issue, malicious mobile agents may access and

modify data to which they should not have access and interfere with the execution of other agents

[54]. In addressing this problem, host security is a reasonably well-researched issue, and many

viable mechanisms have been developed to address it. Examples of such mechanisms include

sandbox security (used in Java to provide access control) [32], safe-typed languages [120] and

proof-carrying code [78]. Another approach to protecting a host is presented in [54], where

unauthenticated agents are rejected from the host or can be executed as an anonymous agent

within a very restricted environment. Furthermore, authorization is adopted to determine the

mobile agent's access permissions for the host's resources.

Referring to the second security issue, malicious hosts may cheat mobile agents migrating to

them and therefore interfere with the successful execution of the mobile agents. In addressing this

problem, some of the more weII-known mechanisms used to overcome this problem include code

obfuscation [40], encrypted functions [99], execution tracing [118] and tamper-resistant hardware

[126] [131]. These solutions must at least include techniques to protect the code and data integrity

of an agent from a malicious host [121]. In [107], mobile agent code and state information is

partitioned into self-contained components, which wiII then be encrypted using symmetric keys

that will be made available to platforms hosting the mobile agent. In supporting the distribution of

keys to these platforms, a specific type of mobile code called a key let is employed. SpecificaIIy,

the keylet is used to control the propagation of keys in a system by directing the distribution of

keys that encrypt and decrypt components. Another approach taken to protect mobile code is

presented in [108], which introduces the use of a verification server, i.e. a trusted third-party, to

verify the execution traces on behalf of the platform launching the mobile agent. This approach

ensures the capability of a particular host platform to undertake the correct execution of a mobile

Chapter 3 Mobile Agents 47

agent by having the server, which assumes the role of a Certificate Authority (CA) in a PKI,

testify to this by means of constructing a certificate.

3.2 Mobile-Agent based Systems for Mobile Users

Mobile agent technology has been used in many areas of application due to the advantages it

offers. One common advantage is the degree of scalability promoted by mobile agents, which

allows the distributed applications to be widely deployed across the network. MobiIe-agent-based

applications range from many areas such as the advanced telecommunication field [28],

electronic commerce [58J[80], information retrieval [28], personalization [60][97], adaptations

[79] and active networks [132][5]. Since our interest is in studying the application of mobile

agents in mobile computing environments, in the rest of this section we will present our study on

the existing mobile-agent-based systems for mobile users. Our main focus is on understanding the

interactions between mobile-terminal-based applications and services hosted on the fixed network

and how exactly mobile agents should fit into such architecture.

3.2.1 A Mobile Agent Framework for M-Commerce

An m-commerce framework based on mobile agents, presented in [67], aims to overcome the

limitations of mobile devices, e.g. bandwidth limitations, low resources, etc. The framework

provides three types of agents, specifically device agents, service agents and courier agents. A

device agent is a stationary agent that resides on a user's device, which is able to locate and

access various wireless services on behalf of the user. The device agent is also responsible for

handling specific tasks, such as negotiating or paying for a service. A service agent is a

heavyweight agent hosted on the fixed network, which is used by a service provider to handle

service requests generated by users. Finally, courier agents are lightweight agents, which are used

by service agents to communicate with users. These agents contain only limited functionality and

the data applicable to the current interaction between a service agent and a user. Once a courier

agent has been transferred from a service agent to a device agent, it communicates back with the

service agent via an XML-based communication protocol. Once migrated to a mobile terminal, a

courier agent cannot travel back to the service agent, to another device, or to another network

location.

Chapter 3 Mobile Agents 48

A courier agent is comprised of two parts, which are the information to be displayed to a user and

the business logic that determines how that information is manipulated. Courier agents typically

have a short life span; once they have displayed their information, they may be destroyed or

cached depending upon the application. A user who disconnects from the network will still be

able to interact with the cached courier agent. Once reconnected, the courier agent may resume its

session with the service agent. But the acceptable length of inactivity, i.e. the disconnection of the

user's device from the wired network, will differ from application to application.

i'~"'~ - -- .. wi~i;s~ N~;;~;k" -_ .. -~~~
Mobile device :

I :
I

:
I :
I

:
I
I
I

#.'
-----.,.

(3.)

(NOde J2~j
Service ~ _. __ ... ~.
Provider ~ (4)" _-

Service Agent
Node

Internet

Figure 3.1: Overview of M -Commerce Framework

Figure 3.1 presents a sample scenario of using the framework; the steps include:

1. A user locates and issues a request to a service provider.

2. A service provider creates a service agent to handle the user's service request.

3. The service agent and the device agent begin negotiations for the service.

4. The service agent moves to another network location to fulfil the user's request.

5. The service agent communicates with the user by sending courier agents.

A service agent is able to communicate with the device agent that has initiated the service and

with the courier agents it has generated. The same principle applies for courier agents, in which

Chapter 3 Mobile Agents 49

case they are allowed to communicate with the service agent they originated from and with other

courier agents from the same service agent.

In this framework, the service agent is a mobile agent, which is able to move around the wired

network in order to gather information and exploit the available resources. Having local access to

the needed resources has the advantage of allowing fast and reliable communication between the

service agent and the resource. As mobile devices tend to lose their connection frequently, having

application logic cached on the mobile device is beneficial, as it allows the mobile user to

manipulate the cached information while being disconnected and waiting for the connection to be

re-established.

The framework requires an agent framework to be installed on the mobile device, allowing it to

run agents. For low-end handheld devices this seems to be too much load since they have limited

resource capability, such as limited memory and processing power to run heavyweight

applications. Thus, having an agent system running on a mobile device requires either a very

lightweight agent system, or that the mobile device is powerful enough to run an agent system.

Some operating systems on mobile devices such as PalmOS on PDAs do not support multiple

application threads [45]. Although it is possible to install a lightweight agent system, it would

allow only one application or agent to be active at a time. The requirement of the framework of

having two agents, a device agent and a courier agent running at once prevents such operating

systems using the service.

Having courier agents migrate to mobile devices in order to maintain interactions with service

agents raises several issues. The process of an agent migrating usually involves the ability to

move the agent's state and code, which includes the serialisation and de-serialisation of the

transferred data. Besides, security and access control becomes an important aspect when dealing

with migrating agents. Again, the fact that some mobile devices do not have a platform capable of

running these tasks and handling security issues prevents them from using the service. Having an

agent migrating to a mobile device does give a great advantage if the task can be done by an

agent residing on the mobile device. For instance, the device agent can handle additional tasks,

i.e. the courier agent's tasks, including establishing and maintaining interactions with service

agents and storing and manipUlating application logic while being disconnected.

Chapter 3 Mobile Agents 50

Another question raised is how a device agent hosted on a mobile device can discover a service

provider on the fixed network. The service provider can be on a remote platform located at a

distance away from the network to which the mobile device is connected, in which case the

service agent may wait for the mobile device to reconnect since the previous connection was lost.

Upon a request from the mobile device, the service agent needs to communicate remotely with

the mobile device to serve the device's requests. A better alternative is to have a local service

agent serve the user's requests, to allow easier and faster access and more reliable communication

[15][112]. This will be an approach we adopt in our middleware (cf. Chapter 4).

3.2.2 Personal Agent System

The Personal Agent System [15] is a mobile agent system that provides a mobile user with a

personalized information retrieval service. Using mobile agent technology developed at

Dartmouth College, the system gathers information from the Internet and uses context-aware

mechanisms to manage the information according to a mobile user's needs and preferences. The

user's schedule and location are the context indicators in this system. The Personal Agent System

consists of agents, information servers, information-viewing applications and context-related

sensors (cf. Figure 3.2). The agents form the central part of the Personal Agent System. The

actual personal agent resides on a stationary server and communicates with agents residing on the

mobile device. The agents in the system handle the gathering and personalization of information

and communicate with one another extensively to provide an integrated service to the user. The

information servers supply the personal agent with the information that the agent requests. These

information servers can reside on any machine and typically would be owned and maintained by

third parties that wish to offer information services to users. For each form of information that the

personal agent gathers, there is a corresponding user application that provides an interface for

displaying and managing the information. Finally, the context-related sensors monitor the user's

location and schedule and notify the appropriate agent when the user's context changes.

The system involves migration of the personal agent to other stationary servers so that it follows

the user around in the wired network while the user and her mobile device move around in the

wireless network. In other words, the personal agent always moves to a location that is close to

the user. Having the personal agent and the agents on the mobile device in close proximity to

each other, i.e. ideally in the same local network, allows communication between them to be fast

Chapter 3 Mobile Agents 51

and reliable. The system is aware of both the user's location and schedule. The general location of

a user can be determined from the subnet in which he is located. The user's schedule can be

determined from a calendar application that is on the mobile device and is updated by the user.

When combined with user preferences, these two forms of information can be actively used to

filter and convert incoming information as well as to determine the timing of notifications so that

the user is presented with a minimally intrusive user interface.

PERSONAL AGENT SYSTEM
STATIONARY HOST

WU1HEli BULLETlhI!i ,AQ(,
D·tJs."Appi n INFORMATION SERVERS

Figure 3.2: Personal Agent System Overview

In this architecture, the personal agent moves around the network trying to stay as close as

possible to the mobile user (cf. Figure 3.3) . This pattern allows local communication between the

mobile device and the personal agent, and ensures fast and reliable communication between them.

This is actually a good solution to a situation where the mobile user moves to a new location

which is a long distance from its last point of connection to the wired network, where the personal

agent is residing. Instead of having to communicate through a very long communication medium

if the personal agent were to stay on the same platform, it would make more sense for the

personal agent to move closer to the mobile device and communicate locally.

The service of delivering the right information to the mobile user based on the user' s profile and

context is a suitable approach, especially when considering the limited resource capability on the

mobile device. For example, the limited screen area means the device is not suitable for

displaying all of the information from a normal html document. The low bandwidth of wireless

connection is too expensive to be wasted on delivering unnecessary information.

Chapter 3 Mobile Agents 52

Figure 3.3: Personal Agent System Scenario

As in the M-Commerce framework, this architecture also requires some agents to run on the

mobile device. This requirement can only be fulfilled by devices powerful enough to run an agent

platform and support mUltiple application threads. Another issue is in the event where the mobile

device cannot reach its personal agent, such as when the personal agent's platform is

disconnected from the network. This paper does not explicitly explain the solution to this

situation. One possible solution is to allow a new personal agent to be created for the user in order

to carry on with new requests.

Communication between personal agents and information servers occurs over sockets. If the

communications involved were complicated and data-intensive, there would be a long delay in

getting the required information. One approach to overcoming the problem is by sending a mobile

agent to the information server to interact with the information server locally. Furthermore,

sending more than one mobile agent to simultaneously gather the needed information across the

network would lead to faster performance of the system.

Chapter 3 Mobile Agents 53

3.2.3 MobiAgent

The MobiAgent system [63] is another system that uses mobile agents to serve mobile users . The

system consists of three main components connected together by both wired and wireless links .

The components in this system are a handheld mobile wireless device, an agent gateway and

network resources (cf. Figure 3.4).

Agent Gateway

Figure 3.4: MobiAgent System Architecture

In this architecture, the agent platform runs on a remote host called the agent gateway. It is the

heart of this system, which is comprised of both static and dynamic agents . Static agents provide

resources and facilities to mobile agents that move between network resources, taking advantages

of these resources to fulfill their goals . The agent gateway acts as the mediator between the

wireless device and network resources. Network resources are basically Internet platforms

containing online information. The agent platform supporting the agent gateway is the Voyager

system, while no agent platform runs on the mobile devices. The Mobile Information Device

Platform (MIDP) is used to develop MIDlets, which are applications that run on the mobile

devices.

Once communication is initiated with the gateway, a mobile device downloads a MIDlet. The

MIDlet can be used to create a user profile on the agent gateway, after which the user will be able

to dispatch an agent to do some work on the user ' s behalf. When the agent finishes its task, it

goes back to its host environment and pushes the results onto the device. On the other hand, if the

user lost connection after the agent was dispatched and remains disconnected when the agent

Chapter 3 Mobile Agents 54

finishes its task, the agent will go back to its host environment and record its result there. Once

reconnected, the user can use a Milliet to check the results.

Having mobile agents manipulating resources on the network to accomplish the tasks requested

by users allows the agents to interact locally with needed resources. Accessing resources locally

means fast and reliable communication with the resource, resulting in better performance and

faster completion of tasks than with remote communication. The MobiAgent system has a

centralized element, the agent gateway, which supports the main functionality of the system, i.e.

initiating agents for mobile users and storing results in the event of a mobile user being

disconnected. Such a centralized component is a potential single-point failure in a large-scale

distributed environment. Besides, the static location of the agent gateway leads to variance in the

distance between the gateway and the moving mobile devices. For example, in order to get a

result a mobile device has to interact with a particular agent gateway, with which the device was

communicating earlier. This applies regardless of the distance between the two components.

Again, having a proxy (in this case the agent gateway) as close as possible to the mobile device is

the best solution for achieving more reliable and faster communication, especially when wireless

communication is involved, as the proxy can reduce bandwidth utilization.

3.2.4 Mobile Agents Platform (MAP)

Mobile Agents Platform (MAP) [63] is a platform for the development and the management of

mobile agents, implemented at the University of Catania. It is used to develop a system that

supports mobile users with the architecture shown in Figure 3.5. The system consists of one or

more lookup servers, and some data servers. The lookup server maintains the information about

where an agent temporarily stores its results while waiting for the user to reconnect to the system.

Data servers are simple nodes on which agents store their results, in cases when they detect that

the user is no longer connected to the system.

Chapter 3 Mobile Agents

I
I
I
I
I
I
1
t
\ ,

I Ho~tA I <£'X·
.1

t/ . 3

I

~, 8
Lookup Server

®
5 4

, "" t \';. ilse'rmove, from '~,', '
----c____ " llbst A to has! B

"--:----, ---~-------------~

• UserAgenl

~ },wbile Manager Agent

~' DataMllilagefAgwt:

I. NOHOME

2: DATASIlRVER ORL

3.RESULT

4: HERE
5.REiruEVE URIc

Ii. DATA

7. RESULT

Figure 3.5: Mobile Computing in Mobile Agents Platform

55

Figure 3.5 shows the steps performed to serve a mobile user's requests. These steps are described

below:

1. A user agent X initiated by a user failed to communicate with the user's mobile terminal

called "node A" due to the user's disconnection.

2. The mobile manager agent, once notified about this failure, selects a data server and

sends the information "DATASERVER URL" to agent X. Then it updates a table inside

the lookup server, by storing the user's ID, the agent's ID and the URL of the data server

communicated.

3. Agent X sends a message "RESULT" to the agent data manager present in the data

server. Agent X specifies its ID, the user's ID, and the data to be stored. Then the agent

ends its execution. The data manager agent will then store the data received on the data

server.

4. When the user reconnects from a new station, i.e. "host B", the server MAP sends a

message "HERE" to the mobile manager agent, to inform it of the user's reconnection

and the new URL from which the user has connected.

5. The mobile manager agent refers to the table of the lookup server, after which it returns

to the user all information needed to retrieve the results.

6. The server MAP on which the user is, then sends a request "DATA" to the data manager

agents.

7. Data managers respond by returning the requested results.

Chapter 3 Mobile Agents 56

The Mobile Agents Platform (MAP) architecture includes a centralized component, the mobile

manager agent. Its function is to allocate a particular data server for an agent to store results on if

the mobile device is disconnected, and to hold a lookup table for result discovery by the user once

reconnected. In the case of the mobile user reconnecting to the wired network via a platform

located at a long distance from the mobile manager agent, the multiple communication steps, such

as having to query the lookup table for a data server address and then having to query the data

server for the result, seem to be unnecessary.

A simpler alternative would involve less interactions, i.e. when the device reconnects it can

directly request the result from a platform, provided that the address of the platform is known in

advance. This would make the communication much simpler, through not having to discover the

address of the data server from the lookup table before getting the result. Besides, agent X should

not necessarily terminate itself when it finishes its tasks if the user is disconnected, as it can still

be used by the user once reconnected. Agent X can also be the one migrating to the new location

of the user, carrying the results of the previously accomplished tasks.

3.2.5 TACOMA Lite

Another mobile-agent-based application for mobile users is presented in [45], specifically

applications on a PDA, which is supported by the TACOMA system. In TACOMA, an agent can

be shipped among sites that support the TACOMA system. The shipping is done in a so-called

briefcase, an encapsulating structure containing a set of folders. The folder contents can be

arbitrary data or code. Examples include the code folder containing the source code of an agent,

and the data folder containing agent specific data, e.g. an image that the agent will process.

Folders can also be left infile cabinets for persistency, at sites an agent visits (cf. Figure 3.6).

The TACOMA application programming interface (API) is implemented as a set of library

functions operating on these fundamental abstractions. In addition, TACOMA has a meet

operation executed by an initiating agent. The TACOMA functionality is composed of two

entities termed the firewall and the system agents. Conceptually, the TACOMA firewall controls

whether mobile code should be allowed to enter the host or not. The firewall also sets up and

Chapter 3 Mobile Agents 57

controls the runtime environments for mobile code that runs within it. System agents are

preinstalled non-mobile agents that serve as an addition to the TACOMA fIrewall. Examples of

system agents are the agents that compile or interpret mobile code. Another type of agent in

TACOMA is the mobile agent which uses the system agents to, for instance, migrate to a remote

host, install mobile code or notify a user about an exceptional event in the computing

environment.

Flrewall

meetl

1. marshal.briefcase

• ~\ /~.fetchboofcas~rrom ootwo~

'. . 4.unmars.hatbnefj)asQ
.,

2. transfer briefcase to firewall ---1>,

NetWork 5, Starttargetagentformeet
8. fetch briefcase from netWo~ -,

9. unmarshal resulting briefcase
6. marshal briefcase

I. ' ". 7. transfer briefcase back to agent meet fin ished
..... - ..

Figure 3.6: Execution steps in meet operation

With the limitations of PDAs in mind, there are several aspects of the initial TACOMA system

architecture that have to be revised. The initial architecture is based on two layers. The fIrst layer

is the TACOMA fIrewall, offering the basic services necessary for mobile code to execute. The

second layer is the applications using the TACOMA API, which makes it possible for them to, for

instance, migrate to a remote firewall.

Considering the characteristics of the PDAs, this architecture is inappropriate for PDAs in several

respects. First there is a good chance that the PDA is disconnected, or connected via unreliable

and slow links. When, however, a PDA is connected, this is typically for short periods, for

instance, when synchronizing data with a networked host. Furthermore, a PDA cannot provide

large amounts of stable storage for mobile agents. Since a PDA has low processing power, it is

unable to serve numerous concurrent mobile agents. Finally, the initial architecture does not take

advantage of the right coupling between the PDA and the host it uses for synchronizing data.

Chapter 3 Mobile Agents 58

Consequently, an extra layer is added to the initial TACOMA architecture. This layer consists of

an entity called the hostel. Essentially, the hostel is the host the PDA normally uses to

synchronize data with. The hostel is also assumed to act as the network provider or proxy for the

PDA, i.e. the hostel is a networked workstation. The paper outlines the need for the hostel

component in the application. For instance, the mobile agent gathering information on the wired

network assumes the presence of a host that they can inquire from in case the PDA is not

connected. Moreover, since a PDA cannot compile, for instance, C programs to executables,

access to a host that possesses the ability to do so is needed. As such, the hostel is placed between

the TACOMA API and the TACOMA fIrewall in the TACOMA Lite architecture.

In the presented architecture, each PDA has its own hostel, which is a fIxed proxy on the network.

It is a host with which the PDA always synchronizes its data. This application is suitable for a

user who does not move around too much and for whom the hostel is the only connection point

needed for the PDA.

In the case of a user always on the move and needing to connect to different hosts, the application

is unsuitable. In order to have a generic application, the user should be given alternative proxies,

or the proxy can be mobile.

3.2.6 MONADS

Different scenarios of agent communication in the wireless environment are presented in [38].

SpecifIcally five scenarios using agent-based systems are described (cf. Figure 3.7). The fIrst

scenario is where the mobile device is powerful enough to run a full agent system and a number

of agents. Agents at the mobile device communicate over the wireless link with other agents at

fIxed network, and possibly transfer themselves between the mobile device and the fIxed

network. A performance model is also presented in the paper, which can be used as a basis for

selecting the appropriate action: whether to migrate or whether to use message-passing over the

wireless link.

Chapter 3 Mobile Agents 59

Mobile Terminal

Figure 3.7: Agent communication scenarios

In the second scenario, the mobile device is a low-end device such as a PDA, which is unable to

run a full agent system due to its hardware and software limitations. However, having a stand

alone agent control tool in a mobile device, a user may, for example, start agents in the fixed

network and get results back to the mobile device even if the mobile device is itself unable to run

agents . In both of these cases, the mobile device communicates with a terminal communication

agent (TCA) located on the fixed network. The TCA acts as the proxy for mobile device while the

mobile device is in a disconnected state. Furthermore, the TCA takes care of locating mobile

devices whose IP-addresses change frequently. Once a mobile device reconnects to the fixed

network, possibly with a new IP-address, it informs its TCA about its new IP-address. The TCA

takes care of forwarding this information to the appropriate agents .

In the third case, the user may have for example a digital phone, which is used to control agents

on the fixed network, and agents can use this phone while reporting results back to the user. For

example, an agent may send a GSM short message (SMS) to the user once it has finished its task,

or the user may use the same technology to cancel an agent operation without establishing a data

connection to fixed network. For this kind of communication, there is a User Communication

Agent (UCA) located on the fixed network. Cases 4 and 5 are communication between the user

and the agents in the mobile device. This is similar to any communication between the user and

the agents - the only difference is in the user interface. In powerful devices an agent may have an

Chapter 3 Mobile Agents 60

advanced graphical user interface, but in some cases the mobile device hardware limits the

agent's user interface.

The paper proposes several possible implementations for mobile user applications. An approach

is presented for mobile devices that are incapable of running a full agent system. In this case, a

mobile user is allowed to start agents on the fixed network using the agent control on the mobile

device. Sometimes it is better to communicate by message-passing or remote method invocation

than by an agent migrating. This is due to the fact that some communication involves only simple

interactions between agents, which are much faster and convenient if done remotely. An agent

migrating sometimes involves high bandwidth and sometimes a long time is needed to transfer

the agent. These would be wasted if the migrated agent was not fully used or there was an easier

alternative way to accomplish the task.

An important issue raised by the paper is whether the Terminal Communication Agent (TCA) is

mobile. As the communication involves mobile devices expected to change location frequently

(possibly to a location far away from the home network), having a mobile TCA would be an

advantage. With the property of mobility, the TCA is able to move to the closest platform to the

mobile device. The function of the TCA explained in the paper is to forward the information on

the current location of the mobile devices to appropriate agents. By having a TCA, which is at a

long distance from the mobile device, all agents wanting to communicate with the mobile device

need to request its new location from the TCA before starting to communicate with the device.

This would involve multiple interactions, possibly over a long communication channel.

By having a mobile TCA that tries to move as close as possible to the mobile device, the

communication distance between itself and the mobile device may be reduced. Only one

interaction would be required, as the TCA would be responsible for relaying the message directly

to the mobile device. Locating a mobile TCA would not be a problem as mobile agents have

mechanisms to track their current location.

Chapter 3 Mobile Agents 61

3.2.7 Discussion

Looking at the existing architectures applying mobile agent technology to support applications for

mobile users, some patterns are recognisable. Most of the architectures use mobile agents to

gather information and to take advantage of the available resources on the wired network. In

some cases, only some mobile agents act on behalf of the users and receive requests directly from

the users, while other agents are delegated to do tasks for them.

For each mobile device connected to the wired network, there is normally a proxy that serves its

requests. In some of the architectures, the proxy is a platform communicating with the mobile

device, such as the hostel in TACOMA and the agent gateway in MobiAgent. In some other

architecture, the proxy is an agent acting on behalf of the mobile user on the wired network such

as the personal agent on Dartmouth Personal Agent System and the service agent on M

Commerce Framework. In most architecture, the proxy is defined as a stationary entity

representing a user on the wired network. Having such a proxy requires the mobile device to

communicate with it once the user connects to the wired network, regardless of the proxy's

location. This raises many disadvantages, such as in the case of there being a long distance

between the proxy and the mobile device. The need to communicate through a long

communication medium leads to problems such as high latency, heavy network load and high

error rates. Another possible problem is a situation in which a mobile device is unable to reach its

proxy on the fixed network. This can happen due to the disconnection of the proxy from the

network. Though this is an important issue to consider, it is not raised in any of the papers studied

in this chapter. One possible solution to this problem is simply to allow the mobile device to

communicate with a new proxy.

Some architecture requires agents to be run on the mobile device or to migrate to the mobile

device. Such architectures prevent low capability devices from using them. In [38], an alternative

approach is presented where a mobile device, which does not have the capability to run an agent

system is allowed to create and control agents on the fixed network. This approach would allow

all kinds of mobile devices to use the system. The issue of resource discovery in the current

environment of the proxy was taken into consideration by some of the architectures, for example

the application mobile manager in Mobile Agent Architecture.

Chapter 3 Mobile Agents 62

Observations and issues that have been raised on the existing architectures applying mobile agent

technology for mobile users are useful in our effort to design an architecture with the same aim,

which is to support mobile user applications.

3.3 Conclusion

We have introduced the concept of mobile agent, presented its advantages and described some

mobile agent systems. Based on the advantages it offers, mobile agent technology is used in many

different areas including mobile users' applications. We have studied applications that are

developed for mobile users and discussed their approaches. Our aim is to build a system for

mobile users and we have identified that mobile agent technology will be useful in its

implementation. Based on the study presented in this chapter, we draw a conclusion below that

will be the basis of our work, which will be presented in the next chapter.

Having a mobile agent performing tasks on the fixed network on behalf of a mobile user allows a

user's request to be accomplished without relying on the presence of a connection with the user's

mobile terminal. The mobile agent can be regarded as the mobile user's proxy as it can also act as

the user's representative on the fixed network, as well as performing tasks on behalf of the user.

Considering the nature of a mobile user, having a mobile agent as a proxy on the fixed network is

advantageous as it is capable of moving to a location closer to the user, helping to provide better

and more reliable communication. The mobile agent can perform the task requested by the user

by itself or by delegating it to other agents or applications on the network.

In the case of mobile users being disconnected before they receive reslilts from their mobile

agents, there should be a means of returning results back to the user, The mobile agent should be

able to detect the presence of the mobile user once reconnected and the exact location of the llser.

Vv'henever the mobile lIser reconnects to the ner.vork. the mobile agent I;viU migrate to a platform

dose to the mobile tenninal. This can be any platfonn located in the same local net\llork as tbe

mobllile tenninal. Having a mobile terminal and its mobile agent in close proximity to each other

aHows for faster and rnme reliable commurncation than \"ilb ll'emote communication.

The mobile tenniinaJ does not ha'llle an agent installed on it. It can Ibe • .u"UU,' U

on the mobile ~erminaI if the terminal is ",,,en""",T""" ,e!IUJug~n W run it For a generk arc:hll:ecture, '~N;;:

Chapter 3 Mobile Agents 63

just consider an application that can be installed on any type of mobile terminal. Thus an agent

platform is not required on the mobile terminal. The mobile terminal may have a local document

or state which it carries around, such as personal schedules or contact information. This local

information should be of reasonable size and be able to be manipulated by the user when offline.

When a user is connected to the wired network, the documents on her terminal can be transferred

to the wired network to be manipulated or shared and promoted to other online users. The

architecture would also need to provide the means to discover the services available on the

network, for example a service directory or a local lookup table that can be used by the mobile

agent to discover other local applications or resources.

In the next chapter we formalize these ideas, and introduce a middleware system based on mobile

agent technology to serve mobile users. This system, which addresses limitations in mobile users'

environments, is introduced as a mechanism to support applications developed for mobile users,

an example of which is the collaborative editing application for mobile users (cf. Chapter 6).

Chapter 4 Mobile-Agent based Middleware for Mobile Users 64

Chapter 4

Mobile-Agent based Middleware for Mobile Users

So far we have overviewed the limitations and challenges in mobile users' environments and we

have also discussed some applications and their approaches to addressing the problems raised.

Our survey has shown that mobile agent technology is a promising solution to limitations in

mobile computing environments. Thus in this chapter, we introduce a mobile-agent based

middleware supporting mobile users as our solution to the problems.

4.1 Overview

In this chapter we present two contributions, namely an abstraction layer providing a set of

services in the form of an API, and an architecture for a middleware application. The middleware

application, which we refer to as Mobile-Agent based Middleware for Mobile Users

(MAMiMoU), acts as an abstraction layer that hides away communication and coordination

details from the applications it is supporting. Its architecture makes use of multiple mobile agents

to serve mobile users and to support coordination between them.

Being an abstraction layer, MAMiMoU allows applications for mobile users to be constructed on

top of it, enabling transparent communication between applications hosted on mobile terminals

and network-based applications (cf. Figure 4.1). In doing this, the middleware addresses

limitations in mobile computing environment that include hiding intermittent connectivity and the

mobility details of users from applications. MAMiMoU offers services in the form of an API to

applications, which will be described in detail in Section 4.2. In its general form, MAMiMoU

offers a substrate for building distributed applications across mobile terminals and fixed

Chapter 4 Mobile-Agent based Middleware for Mobile Users 65

infrastructure. We will demonstrate this by showing that MAMiMoU can be used to build a

collaborative editing application for mobile users.

On a mobile
tenninal

An abstraction layer thal hides the
underlying complexity and addresses
limitations in the mobile computing
environment.

•
,

On the
fixed

network

Figure 4.1: The middleware as an abstraction layer

The second contribution presented in this chapter is the architecture of our middleware. We

present MAMiMoU's architecture on several levels, starting with a general overview of the

architecture, and followed by descriptions of the lower layers of the middleware. The middle ware

is based on mobile agent technology, with a mobile agent as the main component of the

middleware. This is based on the generic organisation illustrated in Figure 4.2 [71], where the

mobile agent is acting as an intermediary between the mobile terminal and applications hosted on

the fixed infrastructure, allowing applications on mobile terminals and the fixed infrastructure to

interact with each other. To support such an organisation, we describe the architecture in detail,

including the middleware's components and interactions and the coordination between them.

Together with the description of the architecture, we analyse the rationale behind our design and

describe the advantages it offers.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

cb R
_~L~~ ___ ~L--~-:

MT: mobiJe tenninal
MA: mobile agent
N: network-based application
-.--------------. : message exchange

Figure 4.2: Generic organization

4.2 Middleware Services

•

On the fixed
infrastructure

66

MAMiMoU offers services to two types of applications, namely applications that are hosted on

mobile terminals and network-based applications. To use these services, the applications can

invoke the API provided by the middleware. The API offered to mobile terminal applications

allows them to create or remove network-based applications and to transparently send and receive

messages from them. In Figure 4.3a, application A, which is an application hosted on a mobile

terminal, can invoke a create or remove request on MAMiMoU, after which MAMiMoU will

create or remove the respective network-based application, i.e. Application B. Application A can

also send a message to Application B by first forwarding the message to MAMiMoU (cf. Figure

4.3b). As for network-based applications, MAMiMoU allows them to send and receive messages

from mobile terminal's applications. Application B can fIrst send a message to the middleware,

which will forward the message to Application A (cf. Figure 4.4).

Chapter 4 Mobile-Agent based Middleware for Mobile Users

~

Mobile-Agent based Middleware
for Mobile Users

On a mobile
terminal

~
, On the

fixed
network

• (a)

...
message

Mobile-Agent based Middleware
for Mobile Users

message

Figure 4.3: API offered to mobile terminal applications

On a mobile
terminal

•
On the
fixed

network

• (b)

67

Being served by the rniddleware, network-based applications are not required to be aware of the

user's mobility and connectivity or to keep track of the mobile terminal's current location. As for

the mobile terminal's applications, they are not required to store details of the network-based

applications they are interacting with. Associations between interacting mobile terminal

applications and network-based applications are stored and maintained by MAMiMoU.

~ I Application A

+
: message

r on a mobile
terminal

Mobile-Agent based Middleware
for Mobile Users

...
message

Application B
on the
fixed

network

Figure 4.4: API offered to network-based applications

Figure 4.5 summarizes a list of operations provided by MAMiMoU to mobile terminal-based and

network-based applications. The createApplication(typeaPP
) API is invoked by an application

hosted on the mobile terminal to request the creation of a network-based application of the type

typeapP
, while removeApplication(idn

.
aPP

) is invoked to remove a network-based application

Chapter 4 Mobile-Agent based Middleware for Mobile Users 68

identified as idn-app. Only the network-based application's creator is allowed to remove it. The

sendMessageOut(idn-aPP,message) function is used by an application on a mobile terminal to send

a message to a specified network-based application, known as idn
-
app. To get a message from the

network-based application identified as idn-app, getMessage(idn
-
aPP) is invoked by a mobile

terminal's application. This request will fail if the required message does not exist. For network

based applications, sendMessageIn(idmt-aPP,message) is invoked to send a message to an

application on a mobile terminal identified as idmt-app.

API

createArrlication(type app)

removeApplication(idn-aPP)

sendMessageOut(idn-app ,message)
'--------

getMessage(idn-aPP)

sendMessageIn(idmt-app ,message)

Figure 4.5: API

4.3 Middleware Architecture

The main feature of our middleware is the intermediary, i.e. the mobile agent, which always

attempts to be in the vicinity or in the same locality as the mobile terminal. It follows the mobile

terminal by migrating to the current local environment of the mobile terminal (cf. Figure 4.6).

This happens every time the mobile terminal changes its location. Because of this behaviour, we

call the mobile agent a shadow. The shadow acts on behalf of the mobile terminal on the fixed

infrastructure, carrying out functions for the mobile terminal.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

f
1) Move

:"················_·_·l

»I.. ~~J MT

I

0---2-) M-ig-ra-te-----:»~(~)
MT: mobile terminal
S: shadow
................... : message exchange

Figure 4.6: Shadow following mobile terminal

I
I

•

On the fixed
infrastructure

69

In some cases, a shadow may fail to migrate to the current vicinity of the mobile user (cf. Figure

4.7). This may be because the network in which the shadow is currently running is not connected

to the rest of the Internet, or vice versa, i.e. the new user's shadow is not connected to the

Internet. To deal with such problems, our approach is to dynamically create a new shadow in the

current user's vicinity. However, this could lead to a situation where a user is associated with

multiple shadows, in which case each shadow holds information about the user's mobile terminal.

Maintaining all these shadows would be troublesome since the user's states would be distributed

across all the shadows and would be needed most of the time. Furthermore, these shadows could

be distributed across the network. To solve this problem, our approach is to allow the existing

shadows to merge their tasks together whenever network connectivity allows, and hand the

accumulated tasks over to a single shadow, which we refer to as the main shadow. Such

reconciliation or hand over of tasks between shadows will be described in detail in Section

4.3.3.4.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

'-_M-r-T--'I-----I)-M-O-v-e--->"..[.......... ~,·~, ... ~ ..]
t ..

MT: mobile terminal
SI, S2: shadow
................... : message exchange

3) New
shadow

is created

Figure 4.7: Dynamic creation of shadow

4.3.1 Components

On the fixed
infrastructure

70

The middleware comprises of three components, namely the mobile terminal, the shadow handler

and the shadow. Each component will be described together with the assumptions we make

concerning its communication capabilities.

4.3.1.1 Mobile terminal

A mobile terminal has the ability to connect to a network in its vicinity. It may use specific

methods to communicate with network hosts, e.g. infra-red or Bluetooth. We assume that the

terminal is allocated an address, which may change as the terminal connects to another network;

alternatively, the terminal can be supported by Mobile IP, in which case the mobile terminal is

assigned a permanent home address. Such address can be used by networked entities to

communicate with the mobile terminal.

4.3.1.2 Shadow handler

A shadow handler acts as a local daemon in a local network, the first contact point of a mobile

terminal with the local network. It is responsible for starting or migrating shadows on behalf of

mobile terminals.

Chapter 4 Mobile-Agent based Middleware for Mobile Users 71

4.3.1.3 Shadow

A shadow is a mobile agent, acting as an intermediary between a mobile terminal and

infrastructure applications. Being able to migrate allows it to move "closer" to the mobile

terminal in order to communicate with it using the address allocated by the local network. The

shadow acts on behalf of the mobile terminal on the fixed infrastructure, carrying out five main

functions for the mobile terminal, namely i) creating and removing network-based applications on

the mobile terminal's requests; ii) supporting a store-and-forward mechanism to allow

interactions between the mobile terminal and network-based applications; iii) maintaining

interaction mappings between the mobile terminal and network-based applications; iv)

maintaining details of network-based applications that have been created by the mobile terminal;

and (v) migrating to a location closer to the mobile terminal whenever the mobile terminal

changes its location, network connectivity permitting.

4.3.2 Component Interaction

Our architecture may be summarized as follows. When connected to a network, a mobile terminal

makes contact with a shadow handler, and requests it to migrate its shadows to the shadow

handler's location. If no user's shadow is active, the shadow handler creates a new shadow for the

mobile terminal. In the simplest case, a single shadow exists. If migration is successful, the

shadow interacts locally with the mobile terminal. The shadow spawns new applications as

requested by the terminal and forwards messages to and from them; in essence, the shadow acts

as a router of messages to the applications. Communications between shadow and applications

are robust to the migration of shadows, based on a transparent routing algorithm [69][70]; on the

other hand, communications between terminal and shadow may fail as the terminal changes

location. If the migration of all shadows fails, a new shadow is spawned locally, and the terminal

keeps a log of all created shadows. When several shadows are requested to migrate to a specific

destination, the first shadow to reach the location is assigned to be the main shadow; the others

coordinate with it to offload information about the applications to which they were routing

messages.

Chapter 4 Mobile-Agent based Middleware for Mobile Users 72

4.3.3 Coordination Model

Here we further describe the components' interaction by presenting a coordination model that

categorizes interactions between MAMiMoU's components into several phases. Based on this

model, a detailed protocol and algorithm is designed to coordinate interaction between

components of the architecture (cf. Chapter 5). Specifically, the interactions are categorized into

five phases, namely i) migrate shadow phase, ii) shadow arrival phase, iii) hand over phase, iv)

shadow locating phase and iii) shadow termination phase. A phase may involve activities to be

performed by at least one component, which will be described by several diagrams. A perfect

scenario is first explained for each of them, followed by an explanation of possible failures and a

handler for each failure. In describing the interactions, we use diagrams that show message

exchange between the components and the location of each component. Reception of a message

by a component triggers another activity to be performed internally by the component, while the

failure to receive an awaited message may result in a timeout in the component and a failure

handler being activated. The classification of failures in the interaction model will be further

explained in the next section.

In the rest of the thesis, we will use the word platfonn to refer to a fixed terminal that is able to

host a shadow-handler (SH) and shadows. A local platform is one that is located in the vicinity of

the mobile terminal, i.e. connected to the same local network; and its availability is advertised by

a local service directory. In the coordination model, we consider only communication failures that

may occur between components running on different platforms.

A shadow can be the main shadow of a mobile terminal, which is responsible for creating or

sending messages to and from applications on the fixed infrastructure; and for locating other

shadows of the user. A mobile terminal stores information on all of its shadows in a list of

shadows (LS), while a shadow stores information on applications in a list of applications (LA).

Both mobile terminal and shadow have lists of messages called list of outgoing messages (LOM)

that queues outgoing messages, list of incoming messages (LIM) that queues incoming messages,

and list of requests (LR) that queues requests to create or remove network-based applications.

To identify a component, we define the component's identifier, ID. For example the ID for a

component X will be denoted as IDx. A mobile terminal holds its main shadow's identifier in a

variable IDMS, while the identifier of a regular shadow, S, is held in a variable IDS. In a shadow,

Chapter 4 Mobile-Agent based Middleware for Mobile Users 73

the identifier of an application, App, is held in a variable IDApp. A shadow handler is responsible

for starting a shadow on a mobile terminal's request and this operation will be represented as

"perform(startShadow)", while the migration of a shadow will be denoted as

"perform(migration)" in the diagrams. A summary of the notations used in the diagrams is

presented below:

Variables:

LS

LA

LAnew

LAtemp

LA useR outer

LArouter

LOM

LIM
LR
ID

MS

IDS

IDApp

Operations:

perform(startShadow)

perform(migration)

List of shadows' details

List of applications' details

List of new applications received from

other shadows

Temporary list of applications

List of applications that require router

List of applications that are using

shadow as router

List of outgoing messages

List of incoming messages

List of requests

Main shadow's identifier

Shadow's identifier

Network-based application's identifier

Spawn a new shadow

Migrate to a new location

In Figure 4.8, we show the connection between the coordination phases that will be described in

the rest of this section. We illustrate four different components, each with different phases to be

carried out. New phases are started by a number of different triggers:

The value of a state in the component has changed, e.g. the online state changes to true,

which activates the migrate shadow phase in MT,

When another phase has finished, e.g. the completion of shadow arrival phase in MS

allows it to proceed to the shadow locating phase

When the same phase in other components has started, e.g. the start of the shadow

termination phase in S initiates the same phase in MS and MT.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

We now describe each phase individually.

Mobile terminal (MT)

"Migrate uest"

Shadow termination
phase

"MigrateShadow"

(d. Section 4.3.3.5) "Terminatio •

Regular Shadow (S)

"HandOver"

Migrate shadow
phase

(d. Section 4.3.3.1)

Shadow termination
phase

(ct. Section 4.3.3.5)

"Location Information'

Main Shadow (MS)

Figure 4.8: Connections between coordination phases

4.3.3.1 Migrate shadow phase

74

Once online, a mobile terminal starts with the migrate shadow phase. In this phase, the mobile

terminal tries to migrate its shadows closer to its current location.

Chapter 4 Mobile-Agent based Middleware for Mobile Users 75

4.3.3.1.1 Migrate shadow phase: perfect scenario

A mobile terminal starts this phase by sending a query for a shadow handler to a local lookup

service. Once the information on local shadow handlers is received, the mobile terminal starts

sending a request to one of the shadow handlers. Sometimes, a mobile terminal may not receive

any information on a shadow handler from the fIrst lookup service it queries, in which case it

would send the same query for shadow handlers to another lookup service in the local network. In

this model, we assume that each local network has at least one shadow handler operating.

The type of request sent by the mobile terminal to the shadow handler is a ''MigrateShadow''

request, which consists of a list of shadows' details, LS (cf. Figure 4.9). If LS is empty, the

shadow handler starts a new shadow for the mobile terminal. Failure in starting a shadow would

be handled by the shadow handler itself.

1) Migrat~hadow

----~: message sending
~: operation

r
i On the fIxed

1-----7'0
'---,---' 3) perform \.V

I infrastructure

(startShadow)

2) Detect LS is
empty

Figure 4.9: Migrate shadows: perfect scenario 1

A non-empty LS indicates that there are already some shadows or a shadow running on the

network on behalf of the mobile terminal. On receiving such an LS, the shadow handler would

send a "MigrateRequest" message to all shadows in LS, requesting them to migrate to the

platform on which it is operating (cf. Figure 4.10).

Chapter 4 Mobile-Agent based Middleware for Mobile Users

o
-- - -~: message sending
~:operation

,

1) Migrat~hadow i :0
: I _--- S 1 cp _-------1-3)1v1igrate SH ::-- I Request ----------i ----------__

: 3) Migrale~
2) Detect LS is not I Request ~

empty :
I .. --------------------------------_._----------_ ...

local network

! On the fIxed I infrastructure

Figure 4.10: Migrate shadows: perfect scenario 2(a)

76

On receiving a "MigrateRequest" message, a shadow has to make a decision as to whether to

migrate or not. By migrating to the shadow handler's platform, the shadow would be in the same

local network as the mobile terminal. Figure 4.11 illustrates the migrating shadows. On arrival,

these shadows enter the shadow arrival phase, which will be covered in Section 4.3.3.2.

----~: message sending
~:operation

I

IS~HI Sl~)~
Cmigr~te)

I

(;)~-+- ~
5)Enterthe ~ ~

shadow arrival Crnjgrate)
I

+._-------_. __ ._._-----------------_._. __ . __ .. __ ._--_.-_._-------..

local network

! On the fIxed
! infrastructure

Figure 4.11: Migrate shadows: perfect scenario 2(b)

4.3.3.1.2 Migrate shadow phase: failure cases

In some cases, the mobile terminal may fail to send a "MigrateShadow" request to the shadow

handler, SH (cf. Figure 4.12). This may be due to the fact that the SH is no longer operating or

connected. When this happens, the mobile terminal sends the same "MigrateShadow" request to

another local shadow handler, SH2.

Chapter 4 Mobile-Agent based Middlewarefor Mobile Users

,------, 2) Get another
MT ~H'S details from

'---.--c,-l· the local lookup

", """"" dIToc<ory
I) Migrat~hadow

,
~ '1), MigrateShadow

o ~

----~: message sending
-?>-: operation

X: message sending failed

i On the fixed
i infrastructure

Figure 4.12: Migrate shadows: failure case 1

77

Figure 4.13 illustrates the failure of a shadow handler (SH) to send "MigrateRequest" to all

shadows of a mobile terminal (MT). In this case, SH believes that a failure has occurred in

sending such a message and it will start a new shadow for MT. This is made on the assumption

that SH will be able to start a shadow on behalf of MT with no failure or the failure being handled

by SH itself. It is expected that the newly created shadow, S, will report its existence to MT

before a timeout occurs in MT.

----~: message sending
-?>-: operation

x: message sending failed

, I
1) MigrateShadow :

,..--L--r- - - - -3) Migra!eRefj"UeStt *
SH I

~ On~efiXed
~ infristructure

'---r----.,....J.- - - _ -31 Mj~~Request:

4) perfo~------l~ G)i
(st adow) :

2) Detect LS is not ~ I

emp~ ~!
.... _ _------------_._._----------_._--------------_._-_._----_ ...

local network

Figure 4.13: Migrate shadows: failure case 2

Although some shadows of MT may have successfully received a "MigrateRequest" message

from SH, they may fail to migrate (cf. Figure 4.14). If all the shadows ofMT failed to migrate, a

timeout would occur in MT and this would drive it to send a "StartShadow" message to SH,

requesting SH to start a new shadow.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

----.-: message sending

~T ~ 5) Timeout!

i 6) StartShadow

--7 : operation

X: migration failed

,

~ ~~
<mi~ration) ,

O ~ 53) ,perform
<mIgration) ,

•.. _
Local network

i On the fixed
i infrastructure

I

Figure 4.14: Migrate shadows: failure case 3

4.3.3.2 Shadow arrival phase

78

The shadow arrival phase starts in a shadow once the shadow arrives at a new platform after

migration, while for a mobile terminal, this phase starts after a "MigrateRequest" message has

been successfully sent to a shadow handler. In this phase, a shadow informs the mobile terminal

about its arrival at the new location and waits for a reply from the mobile terminal.

4.3.3.2.1 Shadow arrival phase: perfect scenario

Figure 4.15 illustrates a scenario where MT only has one shadow running on the fixed

infrastructure. The shadow, S, begins the shadow arrival phase by notifying its arrival to the

mobile terminal, MT, in a "ShadowArrival" message (cf. Figure 4.15). In return, MT sends a

"MainShadowAssignment" or a "MainShadowInformation" message to S. A

"MainShadowAssignment" message is returned if MT still does not have a main shadow and this

message indicates that MT is requesting S to be its main shadow. Otherwise, if MT already has a

main shadow, then a "MainShadowInformation" message is returned to S, which contains

information on MT's main shadow.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

----~: message sending

2) MainShadow :1) Shadow
Assignment : ~nfonnation

o 6
r
i On the fIxed
! infrastructure

j

Figure 4.15: Shadow arrival phase: perfect scenario 1

79

In the case of multiple shadows arriving at a destination platform, MT assigns the first shadow to

arrive as its main shadow, while a "MainShadowInformation" message is sent to all other

subsequent shadows arriving (cf. Figure 4.16).

----~: message sending

r~--------------,
1) Shadow ~ 4) ¥ainShadow

Arrival: : L ____________ , Irlfonnation

1 : 1 i •

O
: 2) mainShadow :: !

SH : A}<;signment 3) SL~d: ! On the fIxed
I 1M OW. :.
~ ': i mfrastructure

~ C~) i S2

Figure 4.16: Shadow arrival phase: perfect scenario 2(a)

4.3.3.2.2 Shadow arrival phase: failure cases

Figure 4.17 illustrate a case where a newly started shadow, S, fails to inform a mobile terminal,

MT, of its existence. After a number of failed attempts to send the "Shadow Information" message

to MT, S terminates itself. This kind of failure may possibly be caused by a broken connection

with MT and there would be no way for S to know the new address of MT if the MT had changed

its location; vice versa, MT would not be aware of S's existence. Thus in such a case it is safe for

a shadow to terminate itself (cf. Figure 4.18).

Chapter 4 Mobile-Agent based Middleware for Mobile Users

,
,

1) Sha90wArrival

o

----~: message sending

X: message sending failed

!
: On the fixed
i infrastructure

Figure 4.17: Shadow arrival phase: failure scenario I(a)

3) Terminate

6

~:operation

1 On the fixed
i infrastructure

Figure 4.18: Shadow arrival phase: failure scenario I(b)

80

In a quite similar scenario, a newly arrived shadow, SI, may not be able to inform the mobile

terminal, MT, of its arrival (cf. Figure 4.19). On its arrival, SI wiII repeatedly send the

"ShadowArrival" message on failure until successful or until it reaches the predefined maximum

number of attempts necessary. One reason for such a failure could be that MT has moved to a

different location. This is not a problem since, even though MT has not updated S 1 ' s location, S I

has left forwarding pointers that can be used by MT to route messages to it (cf. Figure 4.20). In

this case, we assume there is a layer that can forward messages to the mobile agent when they

move [69][70].

Chapter 4 Mobile-Agent based Middleware for Mobile Users

I
I
I
I

2) Shadov.{Arrival :

----.: message sending
--3>-: operation

X: message sending failed

G)
' : -.............. .

SI < I (" SI)
I) Itrfomi·"""""",,·"··

; On the fixed
: infrastructure

(mi~ration)

I .. "-,._"""""''''''''''''-''''''''''''-'''''''',.,''''' ..
Local network

Figure 4.19: Shadow arrival phase: failure case 2(a)

- - - - .: message sending
--3>-: operati on

I
I

~: (''''''';;''''~2)The i On the fixed
~,~. ··,,"""t·-,,····· forwarding ; infrastructure

: (3k , pointer routes i
I •••• (I) the message to :.' : ~ ~" :
I ~ S1's current ;
: ~ location
I
I •

Figure 4.20: Shadow arrival phase: failure case 2(b)

81

On reception of a message from a shadow informing of its creation or its arrival, the mobile

terminal, MT may fail to return to it a "MainShadowAssignment" message or a

"MainShadowInformation" message. This may be caused by the disconnection of MT from the

platform on which the shadow is operating. With this failure, the shadow would not be able to

know the current status, i.e. whether MT has assigned either itself or another shadow to be the

main shadow (cf. Figure 4.21).

To solve this, MT once more sends a "MigrateShadow" request to another shadow handIer, SH2,

in the local network, (cf. Figure 4.22). By doing this, MT's existing shadows may migrate to the

new platform, allowing communication to be established with MT.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

---- .. : message sending
r~ ____________ ,X: message sending failed

I) Shado~ ~ 4) MainShadow
Arrival: : l ____________ , ~signment

i : : ! •

O
: 2):MainShadow :: i
I 'V' SH : Assignment i ~ i On the fixed 4< 3) Sh:adow i infrastructure

Arr!val

G)

Figure 4.21: Shadow arrival phase: failure case 3(a)

---- .. : message sending

0--~-)-~i~teShadOw

0~
~

: On the fixed

! infrastructure

Figure 4.22: Shadow arrival phase: failure case 3(b)

4.3.3.3 Shadow locating phase

82

One function of a main shadow (MS) is to locate other regular shadows of the mobile tenninal

(MT) and this function is included in the shadow locating phase_

4.3.3.3.1 Shadow locating phase: perfect scenario

When MS is first assigned to be the main shadow, it receives LS, which is a list of active shadows

of MT. From this list, MS is able to know the location of all mobile tenninals' shadows, and with

this information; MS sends each one of them a "LocationInformation" message, requesting them

to migrate. A "LocationInformation" message contains the current location of MT and the

platform on which MS is operating as the destination platform for the shadow's migration.

Chapter 4 Mobile-Agent based Middleware jor Mobile Users 83

Figure 4.23 illustrates a scenario where MS is sending a "LocationInformation" message to S2

that has already migrated. In this case, MS may send the message to S2's previous location and

the message would eventually be routed to S2 by following the forwarding pointer at its previous

location.

MS does not know that S2 has already migrated and
it keeps trying to send a LocationInformation

~ message to S2 until successful/receives HandOver
~ message from S2.

----~: message sending
----7: operati on
X: message sending failed

t i

8
-----)-aJ~~-a-ti.ql!~fqI]!l!lgql!l-------- .. / .. ··· ······.'\ Forwarding

MS i \ S2 l;:1 pointer points
- i .-,'.......... / to the current

/ lb5l:oea!tq~formation : ,/" location of
l? -.--.. ,.2a;~ LocationInformation S2.

MS stops sending >~"'" i
LocationInformation ,*"" ,·····X
messages to shadows when 0

2 it receives a
MigrateRequest /
LocationInformation
mess~e, .. _ ~

Local network

Figure 4.23: Shadow locating phase: perfect scenario 1

On the fixed
: infrastructure

As for a shadow, on receipt of a "LocationInformation" message, it immediately recognizes the

sender as the current Main shadow and also knows the current location of the mobile terminal. To

handle the possibility of a delayed "LocationInformation" message, which may bring outdated

information about the main shadow, the message also contains a Main shadow counter. The

higher the value of the counter the more recent the information is.

A "LocationInformation" message from a main shadow carries the same request as a

"MigrateRequest" message from a shadow handler, i.e. requesting the receiving shadow to

migrate to a new location, which is closer to the mobile terminal's current location. On receipt of

such a message, a shadow (S3) has the option to perform the request or stay at its current location

(cf. Figure 4.24). If S3 decides to migrate, it migrates to the platform on which the main shadow

(MS) is operating, and on arrival at the new location, it enters the shadow arrival phase (cf. Figure

4.25).

Chapter 4 Mobile-Agent based Middleware for Mobile Users

FinallyMS
successfully sends
LocationInformation
message to S3.

----~: message sending
----3>- : comment

-~ 1

G------ib)-~_ationillfOrmatiOn. (: .. :.::~~~ .. ",::)

~------_ ------- i
----4a) HandOver ---~--_

CL(;5't'Q ,LIM,LR) i ------*'0 i S3
S2 3a) S2 etHers the

hand ov~r phase

..... -.......... -... --... -........ --........ -...... - - ~
Local network

On the fixed
infrastructure

Figure 4.24: Shadow locating phase: perfect scenario 2(i)

3b) S3 enters shadow
arrival phase.

d)
o

.................................. _................... _
Local network

----3>- : operation

2b) perform
migration)

....... -.. ~.;)
..........................

On the fixed
i infrastructure

Figure 4.25: Shadow locating phase: perfect scenario 2(ii)

4.3.3.3.2 Shadow locating phase: failure cases

84

Sometimes, a main shadow (MS) may fail to send a "LocationInforrnation" message to a shadow.

In this case, MS repeatedly sends the message to the shadow on failure until the message is

successfully delivered or MS ceases to be the main shadow. This is performed to handle a

temporary disconnection, in which case the shadow eventually receives the message (cf. S3 in

Figure 4.23 and 4.24).

Chapter 4 Mobile-Agent based Middleware for Mobile Users 85

As illustrated in Figure 4.26, a shadow (S3) that has failed to migrate to a new location remains at

its current location, from where S2 remotely transfers its functions to the main shadow (MS).

----~: message sending
--:;;.. : operation
X: migration failed

0~· 4b) HandOver (::'::~~.~:::.'.:)
••••• (LA~L"0M~~IM,lR)

•••• '. 2b) perfonn
4a) HandOver. (migration)

(LA,WM,LIM,LR)-. '.

3a) S2 enters the -- -. ~
hand over phase. ~

..... _ _ __ ... 3b) 53 enters hand
Local network over phase.

On the fIxed
: infrastructure

Figure 4.26: Shadow locating phase: failure case 1

4.3.3.4 Hand over phase

The hand over phase is a phase undertaken by the shadows of a mobile terminal for their

reconciliation after a migration or when a new main shadow is assigned by the mobile terminal.

4.3.3.4.1 Hand over phase: perfect scenario

Once a shadow (S2) receives information of the main shadow (MS), S2 hands over its functions

and lists of messages to MS. To do this, S2 sends a "HandOver" message, which contains a list of

application mappings (LA), a list of outgoing messages (LOM), a list of incoming messages

(LIM), and a list of requests (LR) (cf. Figure 4.27).

MS adds the received LA into a temporary list, LAnew, and the LOM, LIM and LR are extended to

its local LOM, LIM and LR accordingly. To each application (App), listed in LAnew, MS sends a

"NewMainShadowInformation" message, which informs App that it is now acting as the new

intermediary between App and the mobile terminal (MT). The "NewMainShadowInformation"

message contains S2's identifier for validation purposes in App.

Chapter 4 Mobile-Agent based Middleware for Mobile Users 86

When an application (App) receives a "NewMainShadowlnformation" from MS, it fIrst checks

the enclosed shadow's information. If it contains the same information as its current shadow (S2),

it proceeds by sending a "NewMainShadowInfo_ack(IDMs)" acknowledgement to S2. By doing

this, App indicates that it has accepted MS as its new intermediary for interaction with the mobile

terminal.

When S2 receives a "NewMainShadowInfo_ack(IDMs)" message from App, it first recognizes

that MS has successfully acknowledged the hand over and second realizes that MS has taken over

the interaction with App. Knowing the former, S2 sends an acknowledgement, "HandOvecack",

to MS and sets its hand over flag as true. The latter drives S2 to remove App's information from

its list of application mappings (LA) and decreases its handOverCounter. The variable

handOverCounter indicates the number of applications still not handed over to MS that rely on a

shadow to be their intermediary. A handOverCounter that has been successfully decreased to zero

and an empty list of application mappings (LA) show that there are no more applications relying

on the shadow to be the intermediary. With this status the shadow is free from any task and may

terminate by entering the shadow termination phase.

----~: message sending
-7 : operation

3a) Add received LA to M5 LIM,LR) S2 7b.i) IfhandOverCount=O, :

2) Update WM, LIM 5b.i) handOverCount - - i
and LR. 'S"'_J2}:I~_d.Qy_e~I1-A,_I:9.¥",_~6b.i) Remove App fromLA.:

LA 'ow. / • .s-j).if)f!andC);er:':-iCC--- :~:e~hadow termination !
6b.ii) Add all application 3b) Ne~;';'~SD3ldOWInfO i 6b.ii) handOver=true !
mappings from 52 in (IDS2

) ••••• 4b) NewMain5hadowInfo_
LA"'w to LA. ". ack(ID~)

.......... @

Figure 4.27: Hand over phase: perfect scenario 1

4.3.3.4.2 Hand over phase: failure cases

On the filced
infrastrudture

A shadow (S2) may fail to transfer its function to the main shadow (MS), in which situation it

keeps sending a "Hand Over" message on failure until MS eventually receives it (cf. Figure 4.28).

Chapter 4 Mobile-Agent based Middleware for Mobile Users 87

If 52 receives a request to migrate before it can transfer its functions to M5, 52 immediately stops

its attempt to send the "HandOver" message to M5.

----.: message sending
-7: operation
X: message sending failed

.v.-J)-I:.I?!I-c!Q.Y~!\~A,)&1y1fJS2
/\. LIM,LR) On the fixed

52 repetitively attempts to send the
message until successful or until it
recei ves a "migrateRequest" or

i infrastructure

"locationInfo" message. •

Figure 4.28: Hand over phase: failure case 1

One possible failure III a main shadow (M5) is not being able to send a

"NewMain5hadowlnformation(IDs2
)" to an application (App) , which has recently been handed

over by a shadow, 52 (cf. Figure 4.29). With this failure, App would not be aware that M5 is its

new intermediary. In this situation, M5 would need 52 to be the router between itself and App.

M5 does this by sending a "BeTheRouterRequest(IDAPP)" message to 52 as a request. Once a link

with App is established via 52, M5 stores the routing information, which includes the fact that 52

is the router for App, in the "LA useRouter" list.

----.: message sending
-7: operation
X: message sending failed

2) Update LaM, LIM

and LR. 'G+-l)-I:.I?!I.(tQ.Y.en~A'.w-1y1-,-CJ
3a) Add received LA to MS LIM,LR) 52
LAnc:w

/ 3b) ~~~Mllin,shadOWInfOrmatiOn
4b) Update LA by adding (ID~j
52 as the router to interact - - X

with App -- - ..

Figure 4.29: Hand over phase: failure case 2 (i)

On the fixed
infrastructure

Chapter 4 Mobile-Agent based Middleware for Mobile Users 88

As for S2, on receipt of the "BeTheRouterRequest(IDAPP)" message from MS, it fIrst checks the

availability of App's information in its LA. If App's information is found, S2 proceeds by adding

App's information to another list called "LArDuter", which is used by S2 to store information on

applications for which it has to act as a router (cf. Figure 4.30). Once this is done, S2 may then

receive a "SendMessageToApp(IDAPP,Msg)" message from MS, requesting it to relay a message

to App, while in the reverse direction S2 may also receive a message from App, which will be

relayed to MS. In this situation, S2 cannot terminate itself because it has to act as the router for

MS to interact with App.

----~: message sending
----?: operation

r
! 6a) Add App's ,

MS (IDA,,,) S2 LA'"u"".

-- --- --- -------- -- ------.
On th~ fixed

S
-?~)-l?~!h~~9~-t~EB.-e-ql!~~t.c:Y details to

7a) SendMessageToApp
(IDAPP,Msg) :

Sa) fviSg
, m1-

Figure 4.30: Hand over phase: failure case 2 (ii)

Like a regular shadow, a main shadow (MS) may also receive a "MigrateRequest" message or a

"LocationInformation" message, which requests it to migrate to a new destination (cf. Figure

4.31). If MS decides to migrate, it removes all application information listed in LA useRouter because

it would no longer be the applications' intermediary at the new location. This is done to eliminate

complex interactions with applications that require a router. In such a situation, the applications

involved would use their previous intermediary shadow to interact with the mobile terminal.

Other temporary application lists, LAoew and LA router, are also reset.

When a regular shadow (S2), which acts as the router between an application (App) and the main

shadow (MS), has migrated to a new location, it is no longer the router between App and MS, but

again becomes the intermediary between App and the mobile terminal.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

..•• ~: message sending
~: operation

When S2 receives r
;?f migrateRequestl i y lQ~l.?e.I!5~M~gT9.¥.I?G/ locationInfomessage :

MS (Msg) S2 and handOverFlag is i
false, mappings of i

applications from LA temPi
: are moved to LA. If i
: LArouter is not empty ~

When MS receives 9a) Msg handOverFlag is set ~ :
migrateRequest! 10cationInfo : false.'

message, MSFlag is set to falSe@'
and all mappings of applications App
that require router are removed.

On th¢ fixed
infrastiucture

Figure 4.31: Hand over phase: failure case 2(iii)

89

In some cases, an application App may not be able to send a "NewMainShadowInfo _ack(IDMS)"

message to its originating shadow, S2 (cf. Figure 4.32). With this type of failure, App would not

be able to notify S2 that it has already accepted MS as its new intermediary with the mobile

terminal. Unaware of this new information, S2 would always assume that application App is still

relying on it to be the intermediary and therefore S2 would not remove the App's information

from its LA, preventing its handOverCounter being decreased to zero and thus preventing it from

proceeding to the shadow termination phase.

. ... ~: message sending
~:operation

X: message sending failed

and ill. MS LIM,ill) S2 S2 cannot terminate
2) Update WM, LIM ~ 12.Ij!lP.c!Q'y~!\~~,.1,9.~..'.0 Problem:

3a) Add received LA to because it assumes App is
LA now. , still relying on it, where

"'" handOverCouot>O.

3b) NewMainStllldowInfo
(IDS2

) "'"

1<
4b) NewMainShadow_

ack(ID'F)

Figure 4.32: Handover phase: failure case 3 (i)

On the fi~ed
infrastruq'ture

To prevent S2 from having such a problem, another way for S2 to get a notification from App

about its new intermediary (MS) is through MS (cf. Figure 4.33). This means App may use MS to

relay a message with the same information as carried by a "NewMainShadowInfo _ack(IDMS)"

Chapter 4 Mobile-Agent based Middleware for Mobile Users 90

message to S2. This is done by App by sending a "SendAckToShadow(IDs2)" message to MS. On

receipt of this message, MS forwards a "SendApp_ack(IDAPP)" message to S2, after which S2 is

aware that MS is now acting as the App' s new intermediary and App is no longer relying on it. S2

is then able to remove App's information from its LA and decrease its handOverCounter.

----~: message sending
~:operation

r
7b) handOverCount- -; !

rG 0 8b) Remove App from LA i
MS __ ~~ LS_e.l!~\.n;~P.Q~~~ _ _ _ S2 9b) If handOverCount = = !

(ID PP) D. enters shadow i
Need to use MS as the tennination phase. i
router because it is the only '1"'__ i
way to send an "'" i
acknowledgement to S2 to 5b) SendAc~o!,_hadow i
allow S2 to terminate (ill) '-__ On the fIl'ed
(decrease handOverCount). -"-

'-""~

Figure 4.33: Hand over phase: failure case 3 (ii)

4.3.3.5 Shadow termination phase

infrastrutre

i
~

A shadow (S2) enters the shadow termination phase when its handOverCounter is zero, its

handOverFlag is true, and its list of application mappings LA is empty. In this phase, the shadow

informs the main shadow about its intention to terminate, followed by the main shadow relaying

the information to the mobile terminal.

4.3.3.5.1 Shadow termination phase: perfect scenario

Before its termination, S2 notifies the main shadow (MS) about its intention to terminate by

sending a "Termination" message. On reception of the message, which contains S2' s information,

MS forwards this termination information to the mobile terminal (MT) in a

"ShadowTermination" message and at the same time it returns an acknowledgement,

"Termination_ack" to S2. After receiving such acknowledgement, S2 may terminate (cf. Figure

4.34).

Chapter 4 Mobile-Agent based Middleware for Mobile Users

2a) 5hado~Termination

----.: message sending
~: operation

0~i~:;~:;::~-::::-~y On the fixed
! infrastructure

3b) terminate

Figure 4.34: Shadow termination phase: perfect scenario 1

4.3.3.5.2 Shadow termination phase: failure cases

91

S2 may fail to send a "Termination" message to MS (cf. Figure 4.35), in which case S2

repeatedly tries to send the message until eventually the message is received by MS. But if S2

receives a "MigrateRequest" or a "LocationInformation" message, which requests it to migrate,

S2 may migrate and continue the shadow termination phase at its new location.

----.: message sending
~:operation

x: message sending failed

o 2~S~~::::"::---C)
send the termination message /

until successful or until it it'
recei yes a MigrateRequest /

Locationlnformation message.
After migration 52 will

continue its termination phase.

On the fixed
: infrastructure

Figure 4.35: Shadow termination phase: failure case 1

Another possible failure that may happen in this phase is when a main shadow (MS) fails to

inform the mobile terminal (MT) about the termination of a shadow (S2). This may be due to the

disconnection of MT from the local network (cf. Figure 4.36). In this case, MS keeps trying to

relay this information to MT until it is successful, even after MS's status has changed to a regular

shadow at its new location. The failure of MS to inform MT about S2' s termination always makes

MT assume that S2 is still alive, which leads to a continuous effort to locate a terminated S2.

Chapter 4 Mobile-Agent based Middleware for Mobile Users

O
----~: message sending

MT ~: operation
X: message sending failed

----~}c., ----------------------~T

2a) Shado-ivTermination

0~:::::;:'~;:~:~~;;:--'y
3a) MS repeatedly attempt to 3b) terminate
send the ShadowTermination

message to MT, even after
migrating to a new location

and become a regular shadow.

On the fixed
infrastructure

Figure 4.36: Shadow termination phase: failure case 2

92

After receiving a "Termination" message from S2, MS may not be able to return an

acknowledgement message, "Termination_ack", to S2 (cf. Figure 4.37). With this failure, S2 is

unable to terminate itself as it assumes that MS has not received its 'Termination" message.

Similarly to handling the failure to inform MT about S2's termination, MS keeps trying to relay

this acknowledgement to S2 until it is successful, even if its status has changed to a regular

shadow by this time. The permanent failure to relay the acknowledgement may leave S2 as

garbage in the system, since S2 will not be able to terminate itself until it has received the

acknowledgement message.

----~: message sending
~: operation
X: message sending failed

----------~--..

2a) Shado~Termination

~<4---------D..I.e_f!IAr.!~~9P ________ y2
/U--2bYTeliTIiiiatioii~ack---X·

MS repeatedly attempt to send
the Termination_ack message to Before getting the Termination_ack On the fixed

S2, even after it has migrated to a message, S2 will not be able to terminate. infrastructure
new location and become a MT has assumed that S2 has already

regular shadow. terminated. Thus it is the responsibility of
MS to successfully send the message to S2 .

•
Figure 4.37: Shadow termination phase: failure case 3

Chapter 4 Mobile-Agent based Middleware for Mobile Users 93

4.3.3.6 Conclusion

In the interactions between MAMiMoU's components, we introduce a global property that allows

the mobile terminal to interact only with a local main shadow, while regular shadows are allowed

to interact directly with the mobile terminal only if it is connected locally. The most challenging

task in specifying the interactions is to maintain consistency between the components, especially

in the case of multiple shadows for a mobile terminal. Careful coordination was considered,

especially in the hand over of tasks between shadows, as the failure to do so may lead to losing

links to the applications on the fixed network. Although cases with failures were described

together with their handlers, the handlers themselves may also fail. Thus, in some such cases, a

permanent effort to handle the failure, such as a permanent attempt to send a message, is

introduced in order to eventually reach a consistent state. In other cases, failures are handled with

the best effort to correct the situation. An instance of this is the case of a main shadow that tries to

have another shadow acting as a router to interact with an application, due to its failure to interact

directly with the application. This effort may well fail, but would not create permanent damage

and inconsistency.

4.4 Discussion

In this section we discuss the fundamental ideas behind the design of MAMiMo U' s architecture.

The main role of a shadow is to act as a proxy for a user on the network, performing tasks on the

user's behalf especially when the user is disconnected. The use of a mobile agent as a shadow

promotes flexibility in the sense that it is able to migrate and follow the user on the network. This

way it can always be in the close vicinity of the user when the user is connected to the network.

Such flexibility can help reduce the bandwidth required for the application to improve its

performance [34]. The use of a mobile agent as a shadow also allows the shadow to communicate

with the mobile terminal using specialized protocols, possibly dynamically chosen according

either to the current location or to a negotiation between parties. Besides this, applications can

communicate reliably using the transparent routing of messages to shadows.

One specific function provided by the shadow is to support asynchronous interactions between

applications that are hosted on a mobile terminal and network-based applications. Such

Chapter 4 Mobile-Agent based Middleware for Mobile Users 94

asynchronous support is needed since synchronous interactions between these two types of

applications are not practical due to the frequent disconnections experienced by mobile terminals.

Such connectivity interruptions can cause mobile terminal's applications to fail to run. Thus, as

an alternative, asynchronous interactions are more suitable for such an environment, where the

shadow will store and forward messages between the applications. When the mobile terminal is

disconnected, a network-based application can still send a message to the mobile terminal by

forwarding the message to the shadow first. Once the mobile terminal reconnects, the message

will be forwarded by the shadow to the mobile terminal. Vice versa, a message received from the

mobile terminal can be forwarded by the shadow to the destined network-based application even

though the mobile terminal is no longer connected. This way, we allow interactions to continue

despite frequent disconnections being experienced by the mobile terminal.

From one perspective, MAMiMoU allows applications to be offloaded onto the fixed network;

this is used to address the problems due to the limited capability of mobile terminals. This way,

communication- and computation-intensive mobile terminal applications can be shifted from

mobile terminals to the fixed infrastructure. On the one hand, fewer computation and

communication activities left on the mobile terminal will result in less of the resources of the

mobile terminal being used. On the other hand, the offloaded applications can take advantage of

the resources in their new local environments, e.g. higher processing power and memory

capacity. Once a user moves to a new location, the user will be attached to a new local network.

More advantages can be gained if the mobile terminal is allowed to manipulate resources in its

local vicinity; including the offloaded applications, instead of trying to manipUlate remote

resources. This is especially useful when the local network is not connected to the rest of the

Internet.

In terms of shadow implementation, weak mobility is adopted, allowing the shadow to transfer

only the code and state to the new location, as opposed to the strong notion of mobility, which

requires that the code, the data state (i.e. the values of the internal variables) and the execution

state (i.e. the stack and the program counter) be transferred [7]. The shadow can be implemented

as a mobile agent with either strong or weak mobility, since the information necessary for

operation is always stored in the mobile agent variables whose values are preserved during all

movements. For example, a shadow stores incoming messages in LIM before forwarding them to

the mobile terminal; to deal with such store-and-forward operations, weak mobility is enough.

Besides, if the shadow is not permitted to migrate due to an unfinished critical operation, it is

Chapter 4 Mobile-Agent based Middlewarefor Mobile Users 95

allowed to delay migration or reject the migration request, in which case it will remain in its

current location. Furthermore, failure handlers are introduced and explicitly defined in the

coordination model to prevent inconsistency in the system and the loss of messages.

Referring to another aspect of mobility, [65] has described multi-hop migration as a scenario

where an agent successively visits several network nodes while performing a given task. This

description fits the behaviour of our shadow, which we believe is an important capability that

allows the shadow to react based on its current environment.

4.5 Conclusion

In this chapter, we introduce MAMiMoU as an abstraction layer that allows mobile users to

seamless roam the network while manipulating services on the fixed infrastructure. MAMiMoU

is designed to overcome the limitations of the wireless environment and the limitations of mobile

terminals, while hiding away the underlying communication complexities from the supported

applications.

The main component of MAMiMoU is a mobile agent called shadow. In some cases, multiple

shadows may exist, and coordination between them is described in a coordination model (cf.

Section 4.3.3) that also explains other types of interactions that exist in the system. The

coordination model is divided into five phases, namely migrate shadow, shadow arrival, shadow

location, hand over and shadow termination phase. Based on this coordination model, a detailed

protocol and algorithm is designed to coordinate interaction between the three components of the

architecture, which will be presented in the next chapter.

Chapter 5 MAMiMoU Coordination Algorithm 96

Chapter 5

MAMiMoU Coordination Algorithm

In the previous chapter, we introduced MAMiMoU's components and a coordination model that

outlines their interactions and activities. Based on this coordination model, we have designed a

coordination algorithm that will be presented in detail in this chapter.

5.1 Overview

Our next contribution is a comprehensive coordination algorithm based on our study of how

MAMiMoU's components should interact and perform their activities. The coordination

algorithm is an innovative feature of MAMiMoU, consisting of the following:

• Interaction protocol between the middleware's components.

• Description of the shadow's functionalities that include i) supporting a store-and-forward

mechanism, ii) maintaining existing associations between mobile terminal and network

based applications, iii) maintaining details of applications on the fixed network that have

been created by the user.

• Shadow's migration protocol.

• Failure handler: On failure of a shadow to migrate, a new shadow is created dynamically

for the user in order to provide an instant support to the user at his / her current location.

• Reconciliation of multiple shadows: In the scenario where multiple shadows exist, the

shadows are able to merge their tasks together and hand these accumulated tasks to a

single main shadow.

Chapter 5 MAMiMoU Coordination Algorithm 97

The coordination algorithm is presented in the form of pseudo-code, formalizing the interactions,

activities and failure handlers of MAMiMoU's components, ready to be implemented. In

particular, the algorithm is designed based on the phases previously defined in the coordination

model (cf. Section 4.3.3) and the application and message management process, which will be

described in Section 5.3. The algorithm is one of the main contributions of this thesis, also

encompassing reconciliation between multiple shadows and the APls that support MT

applications. The algorithm has been presented in two publications [133][134].

We will start with an introduction to the notations used in describing the algorithm, followed by a

further description of MAMiMoU's components and their sub-components. In Section 5.3 we

present the algorithm, followed by Section 5.4, which describes the implementation. Finally, we

present a discussion and a conclusion.

5.1.1 Notations

Some of notations presented in Section 4.3.3 will still be used in the algorithm throughout this

chapter. Additional notations such as the components' variables are shown in Figure 5.1.

Global Variables:

LANi :

Pij :

SHij :
IDMT,uMT :

IDMS,uMS,yMs:

IDS, US :

Local network i

Platform j on LANi

Shadow handler j on LANi

Mobile terminal: identifier, address

Main shadow: identifier, address, counter

Shadow: identifier, address

IDS\, USHij : Shadow handler: identifier, address
IDAPP,uAPP,EApp: Application: identifier, address, type

MT-agent's Variables:

mconline

new_location

LS:

LOM:

LIM:

LLT:

SHlnfoList:

True if the mobile terminal is connected to the fixed network

True if the mobile terminal is connected to a different location

from the previous one

List of active shadows

List of outgoing messages

List of incoming messages

List oflocallookup tables

List of local shadow handlers

Chapter 5 MAMiMoU Coordination Algorithm

Shadow's Variables:

LIM:
LOMApp:

LOMMT
:

LOMMs
:

LOMs :

LA:

LAnew
:

LAtemp
:

LA useRouter :

LA router:

List of incoming messages

List of outgoing application messages

List of outgoing messages for mobile terminal

List of outgoing messages for main shadow

List of outgoing messages for shadow

List of applications

List of new applications received from other shadows

Temporary list of applications

List of applications that require router

List of applications that are using shadow as router

Message operations:

send(ID,a,Msg) :

receive(ID,a,Msg) :

Send message Msg to entity identified by ID,a

Receive message Msg from entity identified by ID,a

List operations:

[M):L

L\:L2
L:[M)

enqueue(M,L)

Variable value:

.1 . null

List composed of a head M and tail L)

Concatenation of two lists LJ, L2)

Message M added to the end oflist L)

L:=L:[M)

Figure 5.1: Notation

5.2 MAMiMoU's components and sub-components

98

Before we describe the coordination algorithm, we define the entities that are involved in the

interactions. As explained earlier, one role of a shadow is to support asynchronous interactions

between applications that are hosted on a mobile terminal and network-based applications (cf.

Section 4.2). Thus, to simplify the explanation, we distinguish these two types of application by

referring to the former as MT-applications and the latter as N-applications (cf. Figure 5.2). Other

entities are MAMiMoU's components (cf. Section 4.3.1), which are built up of sub-components;

each deals with a specific functionality (cf. Figure 5.1). This will be presented next.

Chapter 5 MAMiMoU Coordination Algorithm 99

Here we explain the system's behaviour in detail, where all the components are described further

in terms of their states and operations, based on the coordination model presented in the previous

chapter. The behaviour of a mobile terminal, shadow handler and shadow will be first explained

in a high-level view, followed by the detailed explanation of each sub-component. Each

component will also be explained by presenting its internal states. A component may have

variables, which may act as triggers that activate new operations to be performed in the

component. Basically, this has the same effect as when a component receives a message from

another component.

The shadow is MAMiMoU's main component, and runs on the fixed network. To support

interactions between a shadow and MT-applications, an application that we call MT-agent is

hosted on the mobile terminal. We will first describe the MT-agent, followed by a description of

the shadow-handler and shadow.

Shadow-handler

Figure 5.2: Interacting components

5.2.1 MT -agent

On the mobile
terminal

On the fixed
infrastructure

The MT-agent consists of four sub-components, namely application-interface, message-manager,

application-manager and shadow-manager (cf. Figure 5.3). Each of these sub-components will be

described next.

Chapter 5 MAMiMoU Coordination Algorithm 100

The MT-agent acts as an intermediary between the MT-applications and a shadow, receiving

messages and requests from MT-applications and forwarding them to the shadow. In reverse, the

MT-agent receives messages from the shadow, which will be forwarded to the respective MT

applications. We distinguish application messages from requests. Application messages are sent

by MT-applications to N-applications or sent by N-applications to MT-applications. Requests are

the type of messages that require the shadow to perform tasks. Both application messages and

requests are queued by the MT -agent before they are forwarded to the shadow or MT

applications. For this purpose, the MT-agent has three types of variables, called i) list of outgoing

application messages (LOM), ii) list of incoming application messages (LIM), and iii) list of

requests (LR). We introduce two LOMs, specifically LOMApp to list application messages

intended for N-applications, while LOMs is used for coordination purposes, and queues messages

specifically for shadows.

MT-applicationm

- - - __ - __ - __ - __ - __ - - - __ - - - - ______ - __ - - - - - - - - _________ - _____ - __ - ________ I

Messages to / from shadow

Figure 5.3: MT-agent's sub-components

5.2.1.1 LOM, LIM and LR

On the mobile
tenninal

The variable LOMApp queues messages from MT-applications for N-applications, LIM queues

messages from N-applications; via shadow, for MT-applications, and LR queues requests

received from MT-applications. Having LOMs and LR to enqueue messages before forwarding

them to the shadow is essential since the shadow will not be permanently available to the MT-

Chapter 5 MAMiMoU Coordination Algorithm 101

agent due to the intermittent connection of the mobile terminal. To perform the queuing of

application messages and requests to their respective lists, the MT-agent has two sUb-components

called message-manager and application-manager. The message-manager queues messages to

LOMApp and LIM, while the application-manager queues requests to LR.

5.2.1.2 Application-interface

Before we describe message-manager and application-manager, we now introduce the MT

agent's application-inteiface. The application-interface is an access point for MT-applications to

services offered by MAMiMoU. It interacts with MT-applications by receiving messages or

requests from them and returning acknowledgments to them. On receipt of requests from MT

applications, the application-interface forwards the requests to create or remove applications to

the application-manager, while requests to get messages from N-applications are forwarded to the

message manager. Messages from MT-applications for N-applications are forwarded to the

message-manager.

Before forwarding these requests or messages to the message-manager or application-manager,

the application-interface assigns an IDmessage to each one of them and includes these IDs in the

requests or messages that are forwarded. IDmessage is used as a session identifier and included in a

request or a message and later in the corresponding acknowledgement message. A session starts

when a message is sent by an MT-application to the MT-agent, and ends when a reply or an

acknowledgement message is returned to the MT-application. Besides this, the mappings between

the IDmessages and IDs of the sending or requesting MT-application are recorded in a list of

messages (LM). The details include the IDmessage, the request or message itself and the identifier of

the requesting MT -application. After a message or request is forwarded, the application-interface

may in return receive from the message-manager or application-manager an acknowledgement

message that contains the corresponding IDmessage. On receipt of such an acknowledgement

message from LM, the application-interface extracts the identifier of the MT -application to which

the acknowledgement message should be returned. This is done by finding the IDmessage in LM

that matches the IDmessage contained in the acknowledgement message. The application-interface

then forwards the acknowledgement message to the respective MT-application. In the absence of

an acknowledgement message, an MT-application may res end the same application message or

request to the MT -agent.

Chapter 5 MAMiMo U Coordination Algorithm 102

5.2.1.3 Message-manager

On receiving messages from the application-interface, the message-manager queues them in

LOMApp, while messages received from the shadows are queued in LIM. These messages are kept

in the lists together with the IDs of their senders and receivers. On receipt of the request from an

MT-application that is to get a message from a specific N-application, the message-manager first

finds the matching sender's and receiver's IDs in LIM and returns the relevant message. Besides

this, in parallel, the message-manager continually checks the status of LOMApp. If LOMApp is not

empty, the message-manager attempts to send the first message in LOMApp to the shadow if the

mobile terminal is online. As for incoming messages received from the shadow, the message

manager queues them in LIM.

5.2.1.4 Application-manager

The application-manager queues incoming requests to LR, while in parallel it also keeps details

of the created N-applications. Activities involving LR will be described first, followed by

activities involving another list called list of applications (LA). If LR is not empty and the mobile

terminal is online, the application-manager sends the requests in LR to the shadow. In return the

application manager receives acknowledgement messages from the shadow. On receipt of the

acknowledgement messages from the shadow, the application-manager adds details of the newly

created N-applications to LA, or removes details of a newly removed N-application from LA.

5.2.1.5 Shadow-manager

To keep track of shadows, the MT-agent has another sub-component called shadow-manager. The

shadow-manager stores details of the existing shadows in a list called the list of shadows (LS).

The details include the shadows' IDs and their addresses, which are used to locate the shadows.

When a mobile terminal arrives at a new location, the shadows need to be notified of the new

location of the mobile terminal to allow the shadows to migrate to the mobile terminal's vicinity.

To know the current mobile terminal's connection and location, the shadow-manager depends on

a callback for the mobile terminal's connection and location status, represented in two variables

called mt_online and new_location. The variable mt_online is true if the mobile terminal is

connected to the fixed network or false if otherwise, and the new_location variable has the value

Chapter 5 MAMiMoU Coordination Algorithm 103

true if the current location being visited by the mobile terminal is a new location. On arrival at a

new location, the shadow-manager discovers a local shadow-handler on the fixed infrastructure,

to which a request is sent in order to start the shadows' migration. The shadow-manager then

detects shadows that have successfully migrated and updates their details in the LS. If no shadow

was able to migrate, the shadow-manager requests the shadow-handler to create a new shadow,

after which the new shadow's details are added to the LS. The shadow-manager's roles include

assigning a new main shadow or informing regular shadows about a new main shadow. To do this

the shadow manager needs to send messages to the respective shadows. Supporting this message

sending is LOMs, which is used to queue messages for shadows.

5.2.2 Shadow-handler

Once started, a shadow-handler advertises its presence through a local directory service. In terms

of functionality, as reflected by its name, a shadow-handIer's only function is to handle shadows

on requests from mobile terminals. A shadow-handler may receive a request from a locally

connected mobile terminal to migrate shadows. Such request includes LS that contains a list of

shadows' details. To each of these shadows, the shadow-handler sends a message, requesting it to

migrate to a local platform, specifically the one on which the shadow-handler is currently

operating. A shadow is created by the shadow-handler when requested by a mobile terminal to

start a shadow. The shadow-handler continually attempts to create a shadow on a creation failure.

5.2.3 Shadow

Like MT-agent, a shadow has an application-manager and a message-manager, which deal with

requests to create or remove N-applications and messages exchanged between MT-applications

and N-applications. To distinguish these components from the MT-agent's sub-components, we

will refer to them as s-message-manager and s-application-manager. Besides these two

components, a shadow also has a migration-manager to handle migration and also a main-shadow

component and a regular-shadow component (cf. Figure 5.4). These two sub-components are

used to coordinate activities according to the shadow's status, i.e. main shadow or regular

shadow. These components will be further described next.

Chapter 5 MAMiMoU Coordination Algorithm

Tol from
MT-agent

To I from N
applications

migration-manager

s-message-manager

Shadow

Figure 5.4: Shadow's sub-components

5.2.3.1 LOM, LIM, LR and LA

Tol from
shadow

handler I main
shadow

To I from
other

shadows

104

A shadow has some variables used to queue messages and requests and to keep details of existing

N-applications. They are given the same names as given to MT-agent's variables. The list of

outgoing messages (LOM) queues messages from MT-applications for N-applications, the list of

incoming messages (LIM) queues messages from N-applications for MT-applications, the list of

requests (LR) queues requests to create or remove N-applications, and finally the list of

applications (LA) is used to keep details of the created N-applications. There are several LOMs

and LAs used by a shadow; each will be described next. A shadow has four LOMs, namely

LOMAPp, LOMMT, LOMs and LOMMs. The LOMApp is used to queue messages from MT

applications for N-applications, while the LOMMT is used to queue coordination messages for

MT-agent, e.g. a "ShadowInformation" message to notify MT-agent of the existence of a new

shadow. The LOMs and LOMMS are both used to queue messages for shadows, where LOMs

queues message for any shadows, while LOMMS queues messages for the latest main shadow,

which may change over time. The LOMs are categorized as such since the shadow has a different

round-robin processing mechanism for each LOM to deliver the queued messages. Besides the

primary LA, there are four other LAs called LAnew , LAtemp, LAwllter and LAllseRome" which will be

described in Section 5.3.3.4.

Chapter 5 MAMiMoU Coordination Algorithm 105

5.2.3.2 S-application-manager

The s-application-manager receives requests to create or remove N-applications from the MT

agent. On receipt of these messages, it queues them to LR. In parallel, the s-application-manager

creates or removes N-applications according to the request extracted from LR. For a newly

created N-application, its details are added to LA, whereas details of a removed N-application are

removed from LA.

5.2.3.3 S-message-manager

The s-message-manager receives messages for N-applications from MT-applications through the

MT-agent, which are queued in LOMApp. It also receives messages from N-applications for MT

applications, which are queued in LIM. In parallel, the s-message-manager also forwards

messages extracted from LOMApp to the respective N-applications and forwards messages

extracted from LIM to the MT-agent if the mobile terminal is online. The first message queued in

the lists will be sent first.

5.2.3.4 Migration-manager

A shadow receives a request every time the mobile terminal relocates to a new location. This

request contains information on the current location of the mobile terminal. By using this

information, the shadow can migrate to the mobile terminal's vicinity. On receipt of a migration

request from the shadow-handler, the shadow's migration-manager is responsible for starting the

shadow's migration to the new location. In a shadow, there is a callback for intelligent decision

making about migration; such a decision is not part of this algorithm, and may depend on the state

of the application or prevailing network condition. The output of this decision-making process is

obtained by the "callback" canMigrateO, which returns true if the application layer decides to

migrate. Thus, the migration manager will start the shadow's migration only if canMigrateO

returns true. The migration manager also has a variable called migrateCount that keeps track of

the number of migrations of a Shadow. This variable is included in the messages queued to be

sent to the MT-agent, preventing the shadow from sending outdated messages to the MT-agent.

Outdated messages are also removed from the list. An example of an outdated message is a

"ShadowArrival" message that should be delivered to the mobile terminal when it was at its

Chapter 5 MAMiMoU Coordination Algorithm 106

previous location. Such a message is not applicable when the mobile terminal has relocated to a

new location, in which case it potentially has a new address. No harm will be caused by this

outdated message, but it is no longer useful and will lead to a message delivery failure every time

delivery is attempted, as the address of the mobile terminal is no longer valid.

5.2.3.5 Main-shadow and regular-shadow components

At anyone time, a shadow can either be a main or a regular shadow and this status is reflected by

a variable mainShadowFlag, value true denoting a main shadow and false if otherwise.

Depending on this status the main-shadow and regular-shadow components become active or

inactive accordingly, e.g. when mainShadowFlag is true, the main-shadow component is active

and the regular-shadow component is inactive. A newly created shadow is initially defined as a

regular shadow, in which case by default its mainShadowFlag isfalse.

5.3 Coordination Algorithm

Activities performed by each component and sub-components of MT-agent and the shadow were

described in the previous section. In this section, inter-component activities involving interactions

between components and occurring events are described. Activities are categorized into two

types, namely processes and phases. A handler-process is a kind of daemon that is not invoked

explicitly, but waits for some conditions to occur before performing a sequence of activities

repetitively and continuously. A phase is a sequence of activities that are performed only

occasionally. Process will be described fIrst, followed by the explanation of phases.

Two processes are defIned, specifIcally i) the message-handling process, and ii) the application

handling process, while the phases correspond to the five phases introduced earlier in the

coordination model, namely i) migrate shadows phase, ii) shadow arrival phase, iii) shadow

locating iv) hand over phase, and v) shadow termination phase. In describing the handler

processes and phases, we want to be able to show them from three different perspectives, namely

i) the time sequence of the components participating in the interaction; ii) the components'

internal processing, i.e. action states; and iii) the components' locations. Since a standard UML

sequence diagram and an activity diagram can be used to show the first and second perspectives,

Chapter 5 MAMiMoU Coordination Algorithm 107

we combine both diagrams into one. In addition, the diagram will also include the components'

location indicators. This diagram is illustrated and described in Figure 5.5.

Component 1 Component 2 I Component3

: .nnn.n.nn. 'Message2' . Ln -n -n -n -n.-n-n-'-n' l - -----'

I ~, : :~
- - ------ ---- ---· -Message1- -------:-,"'1-------

A ,.' ~----J!.P';- - - __
.. • Internal

. .,' ,
Message
sending

yes

activities
performed by

each
component

.'
, A ·· · ··

Tnnnnnnnnn •. oo 'Message3' .. nn •. nnn . • j

~ "'"
Waiting for
messages

,
. ,
. ,

" ~",
jJ

Different
patterns show

the location
-----.,~~I

: On the mobile terminal nnn.~ : Message sending

: Waiting for messages
On a local fIXed terminal

: On a remote fixed terminal

Figure 5.5: Combination of sequence and activity diagram

The sequence diagram is useful in showing the overall sequence of the activities and interactions

between the components while the activity diagram allows us to view the activities internally

performed by each component. In addition, the diagram is able to illustrate the different locations

at which the components are performing the activities. To describe the phases further, we present

the algorithm to be implemented by each component involved.

5.3.2 Processes

In this section we describe the application-handling and message-handling processes. The

application-handling process describes the sequence of activities involved in creating and

removing applications, while the message-handling process describes the sequence of activities

involved in storing and forwarding messages between MT-applications and N-applications. To

Chapter 5 MAMiMoU Coordination Algonthm 108

present these processes, we give a lower level description of message passing between MT-agent

and a shadow's sub-components, specifically the application-manager and message-manager.

5.3.2.1 Application-handling process

We illustrate the application-handling process in two figures. Figure 5.6 shows activities that are

triggered when a "CreateApplication" or "RemoveApplication" API is invoked by an MT

application, while Figure 5.7 shows the continuous activities performed in this phase, which

requires MT-application-manager to periodically check the status of LR. For simplicity, we show

the invocation of the API by the application as a message being sent to the MT-application

interface.

On receipt of a "CreateApplication" or a "RemoveApplication", the MT -application-interface

forwards it to MT-application-manager (cf. Figure 5.6). When the MT-application-manager

receives such messages, it enqueues them in LR. In parallel, the MT-application-manager also

runs another set of activities. It periodically checks the status of LR. If LR is not empty, the next

message from LR is retrieved. Figure 5.7 shows the set of activities that are performed when the

retrieved message from LR is a "CreateApplication" or "RemoveApplication" message. The

variable createOrRemoveApp represents either one of these two types of messages. The MT

application-manager first checks the mt_online status. If the value of mconline is true it proceeds

by sending the retrieved "CreateApplication" or "RemoveApplication" message to the shadow,

specifically to the s-application-manager. Otherwise, if mconline's value is false, it waits until

mconline's value is true.

Chapter 5 MAMiMoU Coordination Algorithm

MT-application
MT-agent

application
interface

MT-agent
application-

manager

: ·CreateApplication J. : : :
0___ _______ (type''')" .----. ! -~ _______ . ·CreateApplication . __ J._ :

i (lDm· ... g·. IDMT·.PP.type.PP)" i
i r---r.··...,.··...,.··7··"T··.,..· -'..,....,..-'-"-..,.."...,...".~..,,

l ~
: :
~ j

: ·RemoveApplication ! :

,--- ------ (IDN-a
pp

)" ·------1 _______ . ·RemoveApp,icatio·~···-:~~~~~···i
(I Dme,,,g •. IDMT"PP.I D"""W)"

------------. : Message sending

.•.••••.••••••.••••••. : Waiting for messages

: On the mobi le terminal

Figure 5.6: Handling requests from the MT-applications manager.

109

On receipt of a "CreateApplication(typeaPP)" message, the s-application-manager creates an

application of type typeapp and assigns to it an identifier IDN.app. Once this is done, s-application

manager adds details of the newly created application to LA. Then an acknowledgement message,

"CreateApplication_ack", is returned to the MT-application-manager. This message contains the

new N-application' s ID (IDN.aPP) and the creation status, i.e. "success" or "failed".

Chapter 5 MAMiMoU Coordination Algorithm

MT -application
MT-agent

application
interface

MT-agent
application

manager

S-application
manager

yo.

yes createOrRemoveApp

l....... containing
(l(Y"'I'ssall8 ,loMT-app

,type''')

createOrRemoveApp_Ack
containing

(io mnsa;',"success· ,
IOMT-aw"

ID~''')

createOrRemoveApp_

...... Ack containing
• (IDmessalJe ·success·

createOrRemoveApp_Ack. ____ : 10",. ":,10 """"')" ,
containing

("success", type l PP ,I ON-app)

-------- ------.-- -- - : Waiting for messages

. : Message sending

: On the mobile terminal

f§.i~81~~~ : On a local fixed terminal (platform ioeal
)

--{>-- : failure handler

Figure 5.7: An N-application creation / removal

110

On receipt of a "RemoveApplication(IDN'aPP)" message, the s-application-manager removes the

N-application identified as IDN-app. Once this is done, s-application-manager then removes details

Chapter 5 MAMiMoU Coordination Algorithm 111

of the N-application from LA only if the identifier of the requesting MT-application is the same

as that of the creator of the N-application. Then an acknowledgement message,

"RemoveApplication_ack", is returned to the MT-application-manager. This message contains

the N-application's ID (IDN-aPP) and the removal status, i.e. "success" or "failed".

If the acknowledgement message fails to be delivered to the MT-application-manager, it is added

to LIM, in which case the message will eventually be delivered to the MT-agent (cf. Section

5.3.3.6). On receipt of the acknowledgement message, the MT-application-manager respectively

adds or removes details of the N-application from its LA. Then the MT-application-manager

forwards this message to the MT-application-interface, which returns the acknowledgement

message to the requesting MT -application.

5.3.2.2 Message handling process

Figure 5.8 illustrates the sequence of activities involved in handling outgoing messages, i.e.

messages from an MT-application to an N-application, while Figure 5.9 illustrates the sequence

of activities involved in handling incoming messages, i.e. messages from N-application to MT

application. These activities will be described next.

An MT-application can send a message to an N-application by sending a "SendMessageOut"

message to the MT-application-interface, which forwards this message to the MT-message

manager. On receiving such a message, the MT-message-manager adds the message to LOMApp.

In parallel, the MT-message-manager is running another sequence of activities, in which it

periodically checks the status of LOMApp. If LOMApp is not empty, the next message from

LOMApp is retrieved. The variable mconline status is also checked, in which case if its value is

true, the MT-message-manager proceeds by sending a retrieved "SendMessageOut" message to

the S-message-manager. Otherwise if the mConline's value is false, the MT-message-manager

blocks until its value is true.

Chapter 5 MAMiMoU Coordination Algorithm

MT-agent
application

interface

·SendM essageOut 1

IDN·.PP,message)" ·SendMessageOut

MT-agent message
manager

••• , (IDMT~PP , '.1' .
.. ___ . (IOmDU.,!: IDM'T-epp ...

ION-·pp ,m~ssage) ;

___ _ o _ _ _____ • : Message sending

--{>-- : failure handler 'L
1 \\\ \\\\1 : on the mobile lenninal
. "' 't 1>" ,. • 'l. .

I~I : on a local fixed terminal (platformlocaJ
)

S-message
manager

Figure 5.8: Handling outgoing messages

N-application

·SendM essageOut
(10""'"'" ,
JDMT .. ~.

)"

I .. ,..:

112

At the other end, on receipt of a "SendMessageOut" message from the MT-message-manager, the

s-message-manager adds the message to its LOM. In parallel the S-message-manager also has

another sequence of activities , which involves periodical checking of LOM' s status . If LOM is

not empty, the s-message-manager retrieves the next message from LOM. Once a

"SendMessageOut(IDMT.app,IDN.app,message)" message is retrieved from LOM it is then

forwarded to the respective N-application, identified as IDN.app. If the message fails to be sent, the

s-message-manager creates an acknowledgement message "SendMessageOuCack(,failed' ,IDMT-

app,IDN-aPP,message)", which is added to LIM. This message is delivered by the S-message

manager to the MT-agent.

Figure 5.9 shows how an MT-application identified as IDMT-app receives a message sent by an N

application identified as IDN-app. First of all , the MT-application sends a "GetMessage(IDN-aPP)"

request to the application-interface, which forwards the request to the MT-message-manager. On

receipt of this request, the MT-message-manager retrieves the requested message from LIM and

includes it in an acknowledgement message, "GetMessage_ack(IDN-apP,IDMT-aPP,message)". This

acknowledgement message is then returned to the application-interface, which then forwards the

message to the requesting MT-application. In some cases, the MT-message-manager may detect

that the requested message does not exist, i.e. the message is not found in LIM. In such cases, a

"GetMessage_ack (,failed' ,IDMT-apP,IDN-app)" message is returned to the application-interface.

Chapter 5 MAMiMoU Coordination Algorithm

MT
application

MT-agent
application

interface

MT-agent message
manager

"GetMessage :
•• •• _ .. (IDJAT-IPP,IQN-1ppr --"1 "GetMessage

, _.(lomeu.llg. ,IDUT~pp • • 'O _

j IDN-,;opPy

i ~~~'~'\<~~~'''''\"~'~~'
: ~, re~~eve trorTll!~ '\
: , ·'P~s~a~e: ~ent ~Y~\
! ~I[)H"PP fo'r.IQ''' ~II\,\
i ,\', \'\ ,.""

I 'GeIMessage_

,[:, ----~L.- (ID~C!lIe,
"failed-,
IDMT~pp . ! I [YI-"ppr yes

: -GetMessage Ack I

r' (ID"" O,ID.rr·· .. , J
-GetMessage_Ack IDN" PP,messager
(IDtl-apP,message)" ._-

............. : Message sending

: On the mobile terminal

!~I : On a local fixed lenninal (pJatfonn locll)

---f>---. : failure handler

S-message-

Figure 5.9: Handling incoming messages

113

Besides the activities described above, the MT-message-manager also operates another sequence

of activities, where it continually listens to incoming messages from N-applications. To help the

explanation, we will describe how an N-application with the identifier IDN.app sends a message to

an MT-application with the identifier IDMT.app. First of all the N-application sends a

"SendMessageIn(IDN'aPP,IDMT.apP,message)" message to the S-message-manager, which adds the

message to LIM. In parallel to the process of receiving messages from N-applications, the S

message-manager continually checks the status of LIM. If LIM is not empty, the S-message

manager retrieves the next message from LIM and forwards it to the MT-message-manager. The

MT-message-manager then adds the received message to LIM. In some cases, the S-message

manager may fail to send the message to the MT-message-manager. The undelivered message is

then added to LIM. This message will eventually get sent when the mobile terminal reconnects to

the network.

Chapter 5 MAMiMoU Coordination Algorithm 114

5.3.3 Coordination phases

To describe the coordination phases, we present a summary of each phase in a sequence-activity

diagram, followed by the presentation of the algorithm to be implemented by each component

involved. The sequence diagram shows the general view of activities taking place in the

components, while the algorithm specifically presents the activities carried out by each

component.

5.3.3.1 Migrate Shadows Phase

The migrate shadow phase was previously introduced in Section 4.3.3.1. Figure 5.10 shows the

events that are taking place in the migrate shadows phase, which is started when a mobile

terminal connects to a local network. Figures 5.11 - 5.13 show the algorithm implemented by

each component involved in this phase. The process of discovering a local shadow-handler is

presented in Figure 5.11 (cf. "RequestingSH"), where firstly the MT-agent requests a list of

locally available shadow-handlers. From this list, the MT-agent extracts a shadow-handler's

details, to which the MT-agent attempts to send a "MigrateShadow" message. On failure, the

MT-agent sends the same request to the next shadow-handler in the list.

In a creation of a new shadow, the shadow-handler sends to the shadow an "MTInformation"

message that contains the details of MT-agent (cf. Figure 5.12). On receipt of this message, the

shadow sends a "Shadowlnformation" message to the MT-agent. By receiving this message, the

MT-agent acknowledges the existence of the new shadow and adds the shadow's identifier (IDS)

and address (as) to the LS. Since there is no other shadow on the fixed network, on receipt of such

a message, the MT-agent assigns the new shadow to be the main shadow by sending it a

"MainShadowAssignment" message. On receipt of this message, the shadow updates its status by

setting its mainShadowFlag as true, after which the shadow acts as the main shadow.

After a "MigrateShadow" message is sent to the shadow-handler, a "shadowArrival" timer is

started by MT-agent (cf. Figure 5.11), which is used in the shadow arrival phase (cf. Section

5.3.3.2). On receipt of "MigrateShadow" request, the shadow-handler sends a "MigrateRequest"

message to all shadows listed in LS that are remotely located, requesting them to migrate to a

local platform (cf. Figure 5.12). On receipt of this message, a shadow decides to migrate

Chapter 5 MAMiMoU Coordination Algorithm 115

depending on the "callback" canMigrateO. Once a shadow has migrated to the local platform, it

starts the shadow arrival phase (cf. Figure 5.13).

yes

Shadow Handler
(SH)

Shadow1 ...
Shadown Shadown+1

••·• .. ··MigrateRequesr
no

yes

yes

.. _ .. - .. _ .. _ ._ .. _ .. _ ._. _ .. - .- .. - .. - .. -.~
I

• I .--.. -... -.. --... -... --.-.-~'-'.~~~'.'-~~'.'.--~-.-~~~~:~~~~=~::~~:~=~~~~~--·~~~~~~~··~~~··~~~~~~~··~~··~~~~~1
no
--- .. ------ • .. --- .. • .. - ----- ... ·MainShadov.lAssignmenr ---- -.- -.---

I
I
I
I
I

L - --- -- - -------- ·MainShadowlnformation" __ __ _____ .. _____ .. ________ .. ________ -',..r\o,'VIV'Vv,,"V

: On the mobile terminal -------., : Message sending

- . - : Shadow creation
I~~&I : On a local fixed terminal

: Waiting for messages

: Talal active shadow

Figure 5.10: Migrate shadows phase (cf. Section 4.3.3.1)

Chapter 5 MAMiMoU Coordination Algorithm

MT-agent (implemented by the MT-shadow-manager)

Migrate shadows phase:

Variables: LLT, foundsH , SH_infoList, requestSent SH , shadowArrival,

timerlStopped, shadowArri ved, IDMS, a MS , yMS;

LLT:=diseoverLoealLookupTable();

foundsH:=false;

while ! (foundsH) :

if LLT=[(IDLT,aLT)]:LLT', then:

LLT:=LLT' ;

SH_infoList: =query (IDLT, a LT , findLoealSH ()) ;

if SH_infoList~, then:

LLT:=LLT': [(IDLT,aLT)];

else:

foundSH : =true;

RequestingSH: Iia label

requestSentSH:=false;

while ~ (requestSent SH
) :

if SH_infoList= [(IDSH, aSH)] : SH_infoList', then:

SH_infoList=SH_infoList' ;

send (IDSH , aSH, MigrateShadow (LS)) ;

if failed, then:

SH_infoList=SH_infoList' : [(IDSH , aSH)] ;

else:

requestSent SH: =t rue;

startTimer(shadowArrival, delay); II delay is the duration before timeout

timerlStopped:=false; shadowArrived:=false;

//start shadow arrival phase (ef. Figure 5.15)

Wait for messages:

if reeeive(IDs,as,Shadowlnformation(IDMT»,
then:

if shadowArrived=false, then:

stopTimer(shadowArrival);

116

Chapter 5 MAMiMoU Coordination Algorithm

timerlStopped:=true;

shadowArrived:=true;

if IDMsJ, then:

IDMs := IDs; a MS := as; yMS++;

send ((IDMS
, a MS , MainShadowAs s ignment (LS, ~s));

else:

enqueue ((IDs,

el, MainShadowInformation (IDMs , a MS , ~s) ,LOMs) ;

Figure 5.11: MT-agent: migrate shadows phase (cf. Section 4.3.3.1)

Shadow handler

Migrate shadow phase:

Variables: sentRequestCounter;

Repeatedly process the incoming messages:

if receive(IDMT , a MT , MigrateShadow(LS)), then:

sentRequestCounter:=O; II a counter

for each pair (IDs, as) in LS:

send (IDs, as, MigrateRequest (IDMT
, a MT

, ai,k)) ;

if successful, then

sentRequestCounter ++;

if sentRequestCounter = 0, then:

startShadow (IDMT
, a MT);

if receive (ID MT , a M\ startShadow), then:

startShadow (IDMT
, ~);

Subroutine:

startShadow (IDMT , a MT):

117

Chapter 5 MAMiMoU Coordination Algorithm 118

start a shadow S with new identifier IDs at address as;

send (IDs, as, MTInformation (IDM!, aM!)) ;

resend on failure;

Figure 5.12: Shadow handler: migrate shadow phase (cf. Section 4.3.3.1)

Shadow (implemented by the migration-manager)

Migrate shadows phase:

Variables: mainShadowFlag, IDMS, a MS , aM!, justMigrated;

Wait for messages:

if reeeive(IDsHu,q,aSHu,q, MigrateRequest(IDM!,r:JIT',aP)), then:

mainShadowFlag=false;

Subroutine:

migrate (aPx,y) :

IDMS : =.L; a MS : d; a MT : = aM!,;

if eanMigrate(), then:

migrate (aP) ;

//proeeed to shadow arrival phase (ef. Figure

5.15)

if (LANx¢LAN i), then:

migrate to a P x,y;

migrateCount++;

justMigrated:= true //for hand-over reset purpose (ef.

Figure 5.23)

//start shadow arrival phase (ef. Figure 5.16)

Figure 5.13: Shadow: migrate shadow phase (cf. Section 4.3.3.1)

5.3.3.2 Shadow arrival phase

The shadow arrival phase was introduced in Section 4.3.3.2. Here it is summarized in Figure

5.14. Figures 5.15 - 5.16 present the algorithm implemented in the shadow and MT-agent for this

phase. In this phase, the mobile terminal waits for "ShadowArrival" messages from its Shadows,

after which it responds according to the algorithm presented in Figure 5.15. A "ShadowArrival"

timer is used to detect the failure of shadows to migrate. On a timeout, a request is sent to the

Chapter 5 MAMiMoU Coordination Algorithm 119

shadow-handler to start a new shadow. Another timer called "ShadowArrivaI2" is started when

the mobile terminal fails to send a reply to the arriving shadow. Such failure may be due to the

disconnection of the local platform that hosts the shadows. Thus, ShadowArrival2's timeout is

likely to occur since no newly arriving shadow can send a "ShadowArrival" message to the MT

agent, forcing it to send a request to another local shadow-handler to migrate its Shadows. This is

illustrated in the handle_shadowArrival_IIO subroutine invoked by the MT-agent (cf. Figure

5.15).

The shadow's algorithm for this phase is presented in Figure 5.16. It shows how a shadow sends a

"ShadowArrival" message to the MT-agent on its arrival at a new location. For verification

purposes, the "Shadow Arrival" message that is queued for delivery to the MT-agent contains the

migrateCount value. This value allows the shadow to detect whether the message, which was

queued in LOMMT is still valid before the message is delivered. A message is considered outdated

if the migrate Count contained in the message is less than the current migrateCount of the shadow.

For example, a "ShadowArrival" message, which is used to inform the mobile terminal about the

shadow's arrival on a platform is no longer valid if the shadow has already migrated to another

platform. In this case, the migrateCount variable recorded in the "ShadowArrival" message would

be less than the current migrateCount, thus showing that the message is outdated and invalid. As a

result, such messages are not sent to the MT-agent and are discarded from the list.

The shadow updates its state once a reply is received from the MT-agent. If a

"MainShadowAssignment" message is received, the shadow sets its mainShadowFlag as true,

which activates its main-shadow-component. As seen in the algorithm (cf. Figure 5.11), the main

shadow counter (yMS,), which is included in the message, is first compared against the latest

main-shadow counter (yMS) known by the shadow. A ~s, that is less than yMS indicates that the

message is coming from the previous shadow and thus considered outdated. As a result this

message is ignored. Otherwise if a "MainShadowInforrnation" message is received, the shadow

updates its main-shadow's details, activates its regular-shadow-component and proceeds to the

hand over phase (cf. Section 5.3.3.4).

Chapter 5 MAMiMoU Coordination Algorithm

-------,

Shadow1 ...
Shadown Shadow Handler

-·· .. • • ••• • .. _· · • .. ShadowArrivar --- .. ------ ---- ------
I
I
I
I
I
I
I
I

Shadown+1

.. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. -~
I

:------------------------------ -MTlnformalion------------------------------1

T
---Shadowlnformalion' --1

I

no
_ .. ---------- --------- - ---- ------···"MainShadO'NA.ssignment· -- - _ .. -_ .. - --- - --- -._--------- - --

yes --------·_ .. ---- - - - -- - · · - - ·-· .. ••• --- · "MainShadO\Ylnforrnation" -- - ---- --------------. - --- - -- -- -- - --~j~~~~~~~S9

.. -- - ---~ : Message sending

- . - ... : Shadow creation .---[:>- : Failure Handler
I~~I : On a local flXed terminal

: Waiting for messages

: Total active shadow

Figure 5.l4: Shadow arrival phase (cf. Section 4.3.3.2)

120

Chapter 5 MAMiMoU Coordination Algorithm

MT-agent (implemented by MT-shadow-manager)

Shadow arrival phase:

Variables: timerlStopped, shadowArrived, timer2Stopped, LS, IDMs , ~s, ~s,

shadowArrival, shadowArriva12;

Ileontinued from the migrate shadows phase (ef. Figure 5.11)

while ! (timerlStopped) :

if timer.shadowArrivaltimeout, then:

stopTimer(shadowArrival);

send (IDSH , aSH, startShadow) ;

startTimer(shadowArrival, delay);

Wait for messages:

if receive(IDs,as,ShadowArrival(IDMT », then:

Subroutine:

if shadowArrived=false, then:

stopTimer(shadowArrival);

timerlStopped:=true;

shadowArrived:=true;

if (shadowArrived=true ~ timer2Stopped=false), then:

timer2Stopped:=true;

LS [IDs] :=as ;

if IDMSJ, then:

IDMS := IDs; a MS := as; ~++;

send ((IDMs , a MS , MainShadowAssignment (LS, y"s»;

if failed, then:

handle_shadowArrival_II();

if IDMS*.L, then:

enqueue ((IDs,

as, MainShadowInformation (IDMS , a MS , y'15) ,LOW) ;

handle_shadowArrival_II() :

IDMS := .L; a MS := .L; yMS-_;

startTimer(shadowArriva12,delay);

121

Chapter 5 MAMiMoU Coordination Algorithm

timer2Stopped:=false;

while ! (timer2Stopped) :

if timer.shadowArriva12timeout, then:

stopTimer(shadowArriva12);

/ /proceed to RequestingSH; (cf. Figure 5.11)

Figure 5.15: MT-agent: shadow arrival phase (cf. Section 4.3.3.2)

Shadow (implemented by the s-migration-manager)

Shadow arrival phase:

Variables: ID Ms , (:/'S, rnainShadowFlag, yMS;

enqueue (ShadowArrival (IDMT,rnigrateCount) ,LOMm);

IDMs:=~;aMs:~; mainShadowFlag:=false;

Wait for messages:

if receive (IDMT
, aMT,MainShadowAssignrnent (LS, ~s'»,

then:

if y",s'>~s, then:

rnainShadowFlag:=true;

~s:=~s';

Iistart the shadow locating phase (cf. Figure 5.17)

if receive (IDMT
, a MT

, MainShadowlnforrnation (IDMs
, ,aMS

, ,~s,)) ,

then:

if ~s, >~s, then:

mainShadowFlag:=false;

rDMS := 1Dl-f.s,; ctS := aMS,; VMS := yMS,;

Iistart the hand-over phase (cf. Figure 5.21)

Figure 5.16: Shadow: shadow arrival phase (cf. Section 4.3.3.2)

5.3.3.3 Shadow locating phase

122

The shadow locating phase was introduced in Section 4.3.3.3. It is summarized in Figure 5.17,

followed by the algorithm of the main shadow and regular shadow in Figure 5.18 and Figure

Chapter 5 MAMiMoU Coordination Algorithm 123

5.19. In this phase, two types of components are involved, namely a main-shadow and a regular

shadow (Figure 5.17). The main shadow sends a "LocationInformation" message to each shadow

listed in the LS; in the event of a failure, the message is resent (cf. Figure 5.18). For verification

purpose, the "LocationInformation" message contains the main-shadow counter (yMS) . The latest

main-shadow being assigned by MT-agent would have the highest yMS. This way the receiving

regular-shadow can detect outdated messages from shadows that have ceased to be the main

shadow. On reception of a "Locationlnformation" message, a regular-shadow first verifies that

the contained ~s in the message is not less than the latest recorded ~s (cf. Figure 5.19). Next,

the shadow updates its main shadow's details including the ~s.

Main-shadow
Regular-shadow1 .. .
Regular-shadown•1

•••••••••••••• ••• •• ' Locationlnformation" •••••••• • _ •••• _.

I~I : On a local fixed terminal

1~1 : On a remote fi xed tenninal

......... : Message sending

: Waiting for messages

n : Total active shadow

no

Figure 5.17: Shadow locating phase (cf. Section 4.3.3.3)

Shadow (implemented by the main-shadow-component)

Shadow locating phase (main shadow) :

Va r iabl e s : mess a ge Sent
;

In parallel , fo r each (I Ds,as) i n LS , do:

Chapter 5 MAMiMoU Coordination Algorithm

messages~t[IDS) :=false;

while ! (messageSent [IDs)) :

send (IDs, as, Locat ion Information (IDMT , a MT , a P
, yos)) ;

if success, then:

messages~t[IDs) :=true;

Figure 5.18: Main shadow: shadow locating phase (cf. Section 4.3.3.3)

Shadow (implemented by the s-migration-manager)

Shadow locating phase (regular shadow) :

Variables: MT a ,

Wait for messages:

yoS, mainShadowFlag;

if receive(IDs, as, LocationInformation(IDMT,exMT"exP,y'"'s,)) ~

(yos, >=yos), then:

mainShadowFlag:=false;

if canMigrate(), then:

migrate(exP); II (ef. Figure 5.13)

else:

proceed to hand-over phase; II (ef. Figure 5.21)

Figure 5.19: Regular shadow: shadow locating phase (cf. Section 4.3.3.3)

5.3.3.4 Hand over phase

124

The hand over phase was introduced in Section 4.3.3.4. The overview of this phase is illustrated

in Figure 5.20, while Figure 5.21 - 5.23 show the algorithm implemented by the regular shadow

and main shadow in this phase. In this phase, the main shadow may receive a "HandOver_ack"

message from the regular-shadow, indicating that the regular-shadow has acknowledged that all

of its tasks have been handed over to the main shadow. On receipt of this acknowledgement

message, the main shadow can now extend the LA' to its LA (cf. Figure 5.22).

Chapter 5 MAMiMoU Coordination Algorithm 125

From a regular-shadow's perspective, the hand over phase is started by initialising its

handOverCounter value to the number of items stored in LA. Then the shadow sends a

"HandOver" message to the main shadow. When a shadow receives a

"NewMainShadowInfo_ack" message from an N-application, the shadow adds the N

application's information to a temporary list of application mappings, LA temp, for backup

purposes. If a failure occurs during the hand over process, the application mappings in LA temp can

always be added back to LA and the hand over process can be started again. Basically, this

prevents the system from losing any of the application mappings. If no failure is detected, the

application mappings in LAtemp are removed when the shadow migrates or when it enters the

termination phase.

In some failure cases, an N-application is unable to send the "NewMainShadowInfo_ack"

message to the creating shadow. In this case, the N-application requests the main shadow to send

the acknowledgement on its behalf to the shadow. In this case, the shadow would receive a

"SendingAppAck" message from the main shadow. On receipt of this message, the shadow

would perform the same actions as when it receives a "NewMainShadowInfo_ack" message. A

shadow may also receive a "BeTheRouterRequest" message from the main shadow. The shadow

then adds the N-application's details to its list of routed applications, LA Router. From this list, the

shadow is able to know for which applications it has to act as a router.

For the purpose of resetting the hand over variables after a migration, both main-shadow and

regular-shadow continuously check the justMigrated value. The justMigrated variable with a

value true indicates that the shadow has just arrived at a new location. In this case the shadow

updates its LAnew, LAtemp, LA useRouter and LA router as presented in Figure 5.23.

Chapter 5 MAMiMoU Coordination Algorithm

Main-shadow N-app1 ... N-appY

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ------..,

I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

•••••••••••••••• ··············· · ·NewMainShadowl nfo···················· ••••••••••••
I
I
I
I r------,.-----,

: I · N~wMainShadowlnfo
I _ack'
I
I
I
I
I
I
I
I
I
I

······ ·HandOver ack· ··'··
- I

'BeTheRouter
Requesf

I
I
I
I
I
I
I
I

yes

: ••••• : SendMessage •• I :

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1- _____ , ToApp· l MeSS~ge" ••••• ~
I I
I I
I ~s I
I I I
I I
~································SendAckToShadow· · ····r •••••••••••••••••••••••••••••

l SendingAppAck....... •••••••••••• :

: On a local fixed terminal

: On a remote fixed terminal

: Failure Handler

••••••• ~ : Message sending

: Waiting for messages

: Tota l application associated
with Regular·shadow'

Figure 5.20: Hand-over phase (cf. Section 4.3.3.4)

126

Chapter 5 MAMiMoU Coordination Algorithm

Shadow (implemented by the regular-shadow-component)

Hand over phase:

Variables: handOverCount, handOverF lag, handover_acksent , LA, LAtemp , LArouter,

IDMs, o:MS, ¥,s;

handOverCount:=length(LA); handOverFlag:=false;

enqueue (HandOver (IDMT, LA, LOMMT, LOMApp , LOMs , LIM, LR) , LOMMS) ;

Wait for messages:

if receive (ID APP , ~PP, NewMainShadowlnfo_ack (IDMs) V receive (IDMS , d's,

SendingAppaCk (IDAPP)) then:

if ! (handOverFlag), then:

handOver_acksent : =false;

while ! (handOver_acksent) :

send (IDMS , o:MS, HandOver_ack) ;

if successful, then:

handOverFlag:=true;

handOver_acksent : =true;

handOverCount--;

if handOverFlag=true, then:

LA [IDAPP] : J;

else:

if handOverCount=O, then:

//proceed to shadow termination phase (ef. Figure 5.25)

if receive (IDMS , o:MS, BeTheRouterRequest (IDAPP), then:

LArouter [IDAPP] : =LA [IDAPP] ;

if receive (IDs, o:s, MainShadowInformat ion (IDMS
, ,o:MS, ,y'<s,)), then:

if VMS, >VMS , then:

1DI'.5 : = IDMs ,; o:"s : = o:MS,; VMS . = VMS,;

if handOverFlag=false, then:

//start the hand-over phase again;

Figure 5.21: Regular shadow: hand over phase (cf. Section 4.3.3.4)

127

Chapter 5 MAMiMoU Coordination Algorithm

Shadow (implemented by the main-shadow component)

Hand over phase:

Variables: LS new , LOMAPP , LOMs , LR, LA, LAnew ;

Wait for messages:

if receive (IDs, as, HandOver (IDMT
, LA' ,LOMAPP ' ,LOMs , ,LIM' ,LR')), then:

LAnew[IDs] := LA'; LIM:=LIM:LIM';

LOMAPP : =1,O~PP: LOMAPP '; LOMs : =LOMs : LOMs , ;

LR: =LR: LR' ;

start InformApplication(IDs);

if receive(IDs , as, HandOver_ack), then:

LA:= LA: LAnew[ID s];

if receive(IDAPP,aAPP,SendAckToshadow(IDS)), then:

enqueue ((IDs, as, SendingAppack (IDAPP)) ,LOMs) ;

Subroutine:

InformApplication (IDs)

In parallel, for each (IDAPP,clPp) in LAneW[IDs] , do:

send (IDAPP , a APP , NewMainShadowInformation (IDs)) ;

if failed, then:

enqueue ((IDs, as, BeTheRouterRequest (IDAPP)) ,LOMs) ;

Figure 5.22: Main shadow: hand over phase (cf. Section 4.3.3.4)

128

Chapter 5 MAMiMoU Coordination Algorithm

Shadow (implemented by the regular-shadow-component)

Resetting hand over variables:

Variables: LA, LAnew , LAuseRouter, LAtemp , handOverFlag;

if (justMigrated), then:

LAnew : =.1.;

if LAuseRouter",..L, then:

for each LAuseRouter[IDAPP],e..L in LAuseRouter, do:

LA [IDAPP] :~;

LA useRouter [IDAPP] : =.1.;

if ! (handOverFlag) A (LAtemp",..L), then:

//failures in the hand-over phase at previous location

add LA
temp to LA;

else:

for each (IDAPP , ctPP) in LAtemP :

send (IDAPP , ctPP , NewMainShadowlnformation (IDmyldentifier)) ;

resend on failure;

if (LArouter",..L) A (handOverFlag=true), then:

handOverFlag:=false;

LA temp: = .1.; LArouter:~;

justMigrated:=false;

Figure 5.23: Shadow: resetting hand over variables after a migration

5.3.3.5 Shadow termination phase

129

The shadow termination phase was introduced in Section 4.3.3.5. Here it is summarized in Figure

5.24, which shows the activities performed before a regular shadow terminates. Figures 5.25 -

5.27 show the algorithms of the components involved in this phase. In this phase, on receipt of

the "ShadowTermination" message, the MT-agent removes the regular-shadow's details from the

LS (cf. Figure 5.27).

Chapter 5 MAMiMoU Coordination Algorithm

Mobile Terminal Main-shadow

- .. ---- -- .. - .. _ .. -. "Terminatjon~ .----_ .. ----- - -----

----- -- ---- "ShadowTermination"·------- ------

---- -- --- - -- --- "T ermination_ack" .------------

: On tihe mobile terminal -------~ : Message sending

I~I : On a local fixed terminal (platform locol
)

: Waiting for messages

: On a remote fixed terminal (platform"mot')

Figure 5.24: Shadow termination phase (cf. Section 4.3.3.5)

Shadow (implemented by the regular-shadow component)

Shadow termination phase:

enqueue (TerminationMessage (10MT) , LOMMS) ;

Wai t for messages:

if receive(10~, a MS , Termination_ ack) , then : terminate();

Figure 5.25: Regular shadow: shadow termination phase (cf. Section 4.3.3 .5)

Shadow (implemented by the main-shadow component)

Shadow termination phase:

Var iables: LS ;

if receive(IOs , as , TerminationMessage(IOMT » , then :

enqueue(ShadowTermination(IOs) , LOMMT) ;

enqueue«IOs , as , Termination_ ack),LOMs) ;

LS [IOs]:= 1. ;

Figure 5.26: Main shadow: shadow termination phase (cf. Section 4.3.3.5)

130

Chapter 5 MAMiMoU Coordination Algorithm

MT-agent (implemented by the MT-shadow-manager)

Shadow termination phase:

Variables: LS;

Wait for messages:

if receive(ID~, a MS , ShadowTermination(IDs)), then:

LS [IDs) :=.-l;

Figure 5.27: MT-agent: shadow tennination phase (cf. Section 4.3.3.5)

5.3.3.6 Message delivery

131

In this additional section, we present the algorithm that describes the message delivery

mechanism used by MT -agent and shadow in supporting interactions in the coordination phases.

Figure 5.28 shows how MT-agent sends messages from LOMApp and LOMs to the shadow. These

messages are delivered only when a main shadow has been assigned at the new location. For each

LOM, a round-robin processing mechanism is used to deliver the queued message in turn.

MT-agent (implemented by the MT-application-manager and MT-shadow-manager)

Outgoing message handler:

Continuously in parallel:

if (IDMS;f.L) A (aMS;f.L), then:

if LOMs=[(IDs,as , MainShadowlnformation (IDMS , ,aMS , ,-I's'))) :LOMS, , then:

LOMs:=LOMs , ;

if y~S'=yMS then:

sendOut(IDs,LS[IDs),MainShadowlnformation(IDMs,aMs,~s),LOMs

); II use IDs,s latest address

if LOMAPP=[Msg) : LOMApp , , then:

LOMApp : =LOMAPP , ;

sendOut (IDMs , a MS , Msg, LOMAPP);

Chapter 5 MAMiMoU Coordination Algorithm

Subroutine:

sendOut(IDR,aR,Msg,Queue) :

send(IDR,aR,Msg);

if failed, then:

if Queue=LOMAPP , then:

enqueue (Msg, LOMAPP) ;

else:

enqueue«IDR,aR,Msg),Queue);

Figure 5.28: MT-agent: outgoing message handler

132

In Figure 5.29 we show how a shadow delivers messages from its LIM, LOMMT, LOMAPP
,

LOMMS and LOMs to the respective recipients. Messages from LIM can only be delivered to the

MT-agent if the shadow is currently a main shadow. Otherwise the messages are forwarded to the

current main shadow, each in a "SendMessageToMT" message. On receipt of this message, the

main shadow enqueues it to its LIM.

The LOMMT contains coordination messages, namely "ShadowInformation" and

"Shadow Arrival" to be sent to the MT-agent. These coordination messages can be outdated, i.e.

when the shadow has migrated to another location. To prevent delivery of an outdated message,

the shadow checks the migrateCount value included in the message before any delivery. If the

value is less than the current migrate Count value recorded by the shadow, this indicates that the

message is outdated and thus the message is then discarded. In the case of a new shadow trying to

inform the MT-agent about its existence, the "ShadowInformation" message is repetitively sent to

the MT-agent on failure for a predefined maximum number of times. After the maximum number

of attempts due to failures the shadow can terminate itself since it has not been allocated any task

and the MT-agent does not have any record that it exists.

LOMMS and LOMs are both lists that enqueue messages for shadows. The former contains

messages for the current main shadow while the latter contains messages for any shadow.

Messages from LOMs are continually extracted and delivered to the respective shadows, while

messages from LOMMS are delivered to the current main shadow only if the sender itself is not a

main shadow.

Chapter 5 MAMiMoU Coordination Algorithm 133

In delivering messages from LOMApp, there are two possibilities. Firstly, the message can be sent

according to the application mapping provided by LA, or secondly the message has to be

delivered via an intermediary or a router. In the latter case, details of the shadow acting as the

router are frrst obtained from the LA userRouter and to this shadow, the message will be directed.

Shadow (implemented by all sub-components)

Message Handler:

variables: LOMMT , LO~PP, LIM, LOMs , attemptCounter, maxAttempt, MTinformed,

mainShadowFlag;

Outgoing messages:

Continuously in parallel:

if LIM=[Msg] :LIM', then:

if mainShadowFlag=true, then:

send(IDMT,aMT,Msg) ;

else:

if failed, then: enqueue(Msg,LIM);

send (IDMS
, a MS

, SendMessageToMT (Msg)) ;

if failed, then: enqueue(Msg,LIM);

if LOMMT= [Shadowlnformation (IDMT,migrateCount')] : LOMMT , , then:

if (migrateCount'= migrateCount)), then:

attemptCounter:=O;

MTinformed: =false;

while ((attemptCounter<maxAttempt) A ! (MTinformed)) :

send (IDMT , a MT , Shadowlnformation (IDMT)) ;

if failed, then:

attemptCounter++;

else:

MTinformed: =true;

if attemptCounter>=maxAttempt, then:

//proeeed to shadow termination phase (ef. Figure

5.24)

if LOMMT=[ShadowArrival (IDMT,migrateCount')] : LOMMT , , then:

if (migrateCount'= migrateCount)), then:

Chapter 5 MAMiMoU Coordination Algorithm

attemptCounter:=Oi

MTinformed: =false;

while (attemptCounter<maxAttempt) A ! (MTinformed)

send (IDMT, ctT, ShadowArr ivaI (IDMT)) i

if failed, then:

attemptCounter++;

else:

MTinformed : =t rue;

if LOMMS=[Msg):LOMMS " then:

LOMMS : =LOMMS , ;

if ! (mainShadowFlag), then:

send(IDMs,aMS,Msg) ;

if failed, then: enqueue(Msg,LOMMS);

if LOMs=[(IDs,aS,Msg») :LOMs " then:

LOMs : =LOMs , ;

send(IDs,as , Msg);

if failed, then: enqueue ((IDs, as, Msg) , LOMs) ;

if LOMApp= [(IDAPP,Msg)) :LO~PP', then:

LOMAPP : =LOMAPP , ;

if (LAuseRouter[IDAPP)=(IDs,as», then:

send(IDs,as , SendMessageToApp(IDAPP,Msg»;

if failed, then: enqueue «IDAPP,Msg) , LOMAPP) ;

else:

send (IDAPP , LAAPP [IDAPP), Msg);

if failed, then: enqueue ((IDAPP , Msg) , LOMAPP) ;

Wait for messages:

if receive(IDs,as,SendMessageToMT(Msg», then:

enqueue ((IDs, as, Ms g) , LOMMT
) ;

Figure 5.29: Shadow: message handler

134

Chapter 5 MAMiMoU Coordination Algorithm 135

5.4 Implementation

We have developed MAMiMoU using the Southampton Framework for Agent Research

(SoFAR) [72], which supports weak mobility. The algorithm of MAMiMoU is implemented by

three agents, namely an MT-agent that is hosted on a mobile terminal, together with a shadow

handler and a shadow agent that are hosted on a stationary machine. MAMiMoU is currently

applicable for high-capability mobile terminals such as laptops. In relation to shadow mobility,

SoFAR provides "migrateO" and "restartO" APIs. The "migrateO" API allows the shadow to

migrate to a new location, while "restartO" allows the shadow to start its operations at the new

location. Although stationary on the hosting laptop, an MT -agent benefits from the physical

mobility of its hosting environment.

5.5 Discussion

Our work focuses on the coordination of multiple shadows, and on the communication between

mobile terminals and shadows. In our approach, we allow multiple shadows to be created,

according to the prevailing network conditions, and by allowing shadows to make intelligent

decisions as to whether to migrate. The hand over of the functions of a regular-shadow to the

main shadow shortcuts chains of the regular-shadow's forwarding pointers when the regular

shadow does not migrate.

In MAMiMoU, the use of mobile agents and the transparent routing of messages to them [69][70]

solved the problem of message delivery from the network-based applications to mobile terminals.

By addressing the problem of reliable delivery and of the routing of messages in MAMiMoU, we

have designed a generic solution reusable by other applications that need to support mobile users.

Alternatively, without MAMiMoU support, a Mobile IP [86] solution may be used to route

messages to the mobile terminal's mobile address, where it allows mobile terminal users to move

from one network to another while maintaining their permanent IP address. Mobile IP adds to the

Internet Protocol (IP) mechanisms for forwarding data to mobile terminals when they are

connecting through a network other than their home network. But relying totally on this approach

lacks the advantages offered by MAMiMoU, i.e. support on the network when the mobile

terminal is disconnected.

Chapter 5 MAMiMoU Coordination Algorithm 136

A scalability issue may be raised in a situation where all the shadows of a user attempt to migrate

to the same platform. One potential problem when this happens is that more resources are

required by the shadows than when there are less shadows migrating, which may lead to a

situation where the platform does not have sufficient resources to run an incoming shadow. The

coordination algorithm avoids such problematic situations by having a user's regular shadows

continuously attempt to hand over their tasks to a single main shadow, after which they can

terminate themselves. Thus the number of shadows associated with a user is kept to the

minimum, in which case the maximum number of shadows a user can realistically have is

equivalent to the total number of different networks that have been visited by the user.

Another issue with regard to platform resources is a situation where the MAMiMoU message lists

are becoming too long, consuming large amounts of the memory of a mobile terminal or a

platform. To address such problems, a potential solution is to offload the messages into the file

system or a database.

In some situations, the coordination algorithm requires a decision to be made, namely to set the

value of a timer's delay before a timeout on the mobile terminal (cf. Section 5.3.3.1) and to set

the maximum number of attempts for a shadow to deliver a particular message on failure (cf.

Section 4.3.3.2). Such decision making does not matter for the correctness of the algorithm, but

the right decision made for these values leads to better reactivity of the system. The MAMiMoU

prototype is hosted on a fast connection network. In such a context, a delay of 1.5 times the

average time needed for a shadow to migrate is sufficient to allow the mobile terminal to

successfully acknowledge the shadow's arrival.

5.6 Conclusion

A mobile agent able to migrate around the network trying to stay as close as possible to the

mobile user gives a major advantage by allowing local communication to be established with the

mobile terminal. With this capability, the mobile agent is designed to be the main component in

our middleware, allowing transparent interactions between fixed infrastructure applications and

applications on mobile terminals. The main challenge in developing an application supporting

Chapter 5 MAMiMoU Coordination Algorithm 137

mobile users is to construct an intermediary layer that supports seamless communication between

a traveling mobile user and a stationary application, e.g. a collaborative editing application hosted

by the fixed infrastructure. In this chapter we have presented in detail the algorithm of

MAMiMoU, which takes care of the coordination of multiple shadows, as well as the

communication between a mobile terminal and its shadows. MAMiMoU hides the details of

communication and coordination, allowing transparent interactions between fixed infrastructure

applications and applications on a mobile terminal.

Having MAMiMoU support interactions between mobile terminals and network-based

applications has made the implementation of the application straightforward, since the underlying

communication between mobile terminal and network-based applications have been taken care of

by MAMiMoU. The applications hosted on the fixed infrastructure are allowed to interact

transparently with a mobile terminal through MAMiMoU, and we believe such ability is

important to allow more applications for mobile users to be easily developed. Our next step is to

complete a formal evaluation of the MAMiMoU's architecture, but first we will introduce an

application for mobile users, which is designed to support the collaborative editing of a shared

document between a group of mobile collaborators. This application will be described in detail in

the next chapter and will later be used to evaluate MAMiMoU (cf. Chapter 7).

Chapter 6 Collaborative Editing Application 138

Chapter 6

Collaborative Editing Application

MAMiMoU was presented in Chapter 4 and its coordination algorithm was explained in depth in

Chapter 5. MAMiMoU can be used to support mobile applications by hiding intermittent

connectivity and users' mobility details. One of such mobile applications will be presented in this

chapter. We now shift our focus to another problem in mobile users' environments, namely the

lack of support for mobile document sharing and collaborative editing between mobile users. Our

solution to address this problem will be presented in this chapter.

6.1 Introduction

In this chapter we present an application that enables collaboration between mobile users when

they are geographically distributed and intermittently connected to the network. We designed the

application based on the scenario we presented in Section 1.1. The application offers a

mechanism to allow collaborative editing of mobile documents, which are documents hosted on

the mobile terminals. It allows a group of mobile users to work on the same version of a

document in parallel, thereby allowing them to save time. A major part of the application is a

collaboration protocol that specifies the interactions between the mobile terminals and

applications on the fixed infrastructure. This way, the collaborative activities between mobile

collaborators and the edited documents are driven and tracked by the system. In relation to

collaboration works described in CSCW field [19][24)[25], the support that we present here

focuses on a specific aspect of collaboration, namely one centered on the access and change of a

shared document.

Chapter 6 Collaborative Editing Application 139

A challenging aspect of this application is to store and forward messages transparently to mobile

users. In particular, we wish to be able to support both users who are temporarily disconnected

from the Internet, and users who may be connected in an ad-hoc manner (possibly without

Internet access). Hence, we envisage two modes of collaboration, namely local collaboration,

involving locally connected users, i.e. on a LAN, and global collaboration, including users

connected across the network. To that end, we are making use of MAMiMoU to hide

communication and coordination details from mobile device and infrastructure applications (cf.

Section 6.6).

The collaboration protocol incorporates a mobile document inconsistency handler, where changes

made to a document's copies by users are distinguished and classified based on the users'

different roles. It also promotes local and remote collaboration support. In a local collaboration,

users connected to the local network have access to all shared mobile documents, while in a

remote collaboration, a user can continue being involved in a collaboration started at a previous

location once they move and reattach to a new location.

We start by introducing the application in the next section, followed by the description of the

application's services. In Section 6.4 we present the application's architecture and in Section 6.5

we describe its collaboration protocol. The application's integration with MAMiMoU is presented

in Section 6.6 followed by a discussion and a conclusion.

6.2 Application Overview

In today's world, many people are regularly on the move, traveling away from their homes or

workplaces for several days or weeks. Wherever their location, they may join up and collaborate

with locally connected users, while at the same time they may continue their collaboration with

others on remote networks, such as their workplace's network. At anyone time, other

collaborators might also be on the move. Collaborative editing is a common form of

collaboration, where a group of mobile users are working on a document together. In such

collaboration, copies of a shared document are normally cached on mobile collaborators'

terminals and are locally modified by them. Thus, the original document and its copies may

become different and inconsistent with each other. By inconsistent, we refer to a state where the

Chapter 6 Collaborative Editing Application 140

document's copies are outdated when the original document has been modified by the owner, or

the document's copies are in conflict with each other due to the modifications made by the users.

To address potential inconsistencies, we identify the original document hosted on a mobile

terminal as a master-document, while the user editing such a document is known as the

document's master editor. Other mobile users that have the document's copies cached on their

mobile terminals are known as regular editors. We distinguish master editor from regular editor:

the former is given full authorization to modify the master document, whereas the latter can only

make tentative changes that need to be approved by the master editor. In this setting, the approved

changes made by a regular editor will be merged with the latest version of the master-document

on the master editor's terminal. To support interactions, e.g. in the form of notification delivery

between master and regular editors, we provide a mechanism that allows regular editors to submit

changes to the master editor and to receive asynchronous acknowledgement from the master

editor. Distinguishing master editor from regular editor has some advantages: i) precise

ownership helps to identify a good consistency model; and ii) document congruency, which we

define as the state of a document's copies being similar to each other, can be maintained based on

changes made by master and regular editors.

To further promote flexibility in the collaboration, we allow the master editor to be reassigned.

The master editor may request that another collaborator becomes the next master editor. Such a

request, once approved by the other collaborator, results in an irrevocable delegation of editing

rights. At anyone time, the system ensures that there is only one master editor per document. To

implement this, we adopt the editing token metaphor, according to which a document is

associated with an editing token, which is kept by the master editor. Every time the master editor

changes, i.e. when the editing right is delegated to another user, the editing token will be passed

to the next master editor.

Supported by the collaboration protocol, our approach can be summarized as follows:

• Documents are cached on users' mobile terminals to allow parallel and asynchronous

editing. Having a locally cached document is essential for mobile terminals to permit user

to manipulate the document while being disconnected from the fixed infrastructure.

• Copies of documents are stored by repositories on the infrastructure to allow parallel

access to other users. A document hosted on a mobile terminal is rarely available to other

users due to frequent disconnections experienced by the mobile terminal. This prevents

Chapter 6 Collaborative Editing Application 141

the document from being shared with other users. By having the document's copies

hosted on the fixed infrastructure, other users have continuous access to the document.

• A mechanism exists that allows asynchronous interactions between master and regular

editors. Since mobile users are frequently disconnected from the fixed infrastructure, a

synchronous or real-time interaction between them is almost impossible, as they are

rarely online at the same time. Thus, by having support for asynchronous interactions

between the users, their collaborative work can be continued regardless of their

connection status.

6.3 Application's services

In this section, we introduce the services offered by the application to mobile users. We

categorized the services into two sets: one set offered for a master editor, and the other for a

regular editor. These services are described next.

6.3.1 Services for a master editor

A user may create a document on the mobile terminal and wish to share it with other locally

connected users. They can do this by adding the document to the system, permitting other users to

view or modify the document's copy. The user is then recognized by the system as the master

editor, who is given the sole permission to edit the master document (i.e. the corresponding

document hosted on the user's terminal). The master editor can then continue working on the

master document, and once the document is modified, the changes made to it can be shared with

the other users by committing the new version of the document to the system. When relocates at a

new local network, committing the document allows the master editor to share the document with

another group of locally connected users. This way, the master editor can still maintain remote

collaboration with users located at the previous locations, while at the same time collaborating

with local users.

When the master editor requests the document's log from the system, he / she is made aware that

other users may have checked out the document's copy and have modified it. Any changes

Chapter 6 Collaborative Editing Application 142

committed by the other users are known as tentative versions. The master editor would then

review such tentative versions, and approve or reject the changes made in them, applying the

accepted changes to the current version of the master document, i.e. merging the tentative

versions with the latest version of the master document.

The system allows the master editor to delegate the editing rights to another collaborator, i.e. a

regular editor. This delegation is successful only when it is approved by the requested regular

editor. Once such delegation is successful, the master editor no longer has the editing right to the

master document, which now is the corresponding document being hosted on the newly appointed

master editor's mobile terminal.

Finally, one other service offered to the master editor is to remove the document from the fixed

infrastructure. This way the system removes all versions of the document across the network,

preventing other users from further access to document. Details of all copies and versions of a

specific document are stored in the repository directory.

6.3.2 Services for a regular editor

The system allows a user to view information on all locally available documents. On request, a

list of documents' details can be provided by the system, allowing the user to choose a particular

document to be checked out. Once checked out, a document can later be viewed and modified by

the user while being disconnected from the network. Mter modifying the document, the user can

then commit the modified version to the system as a tentative version, awaiting review from the

master editor. This way the changes made to the version can be applied to the master document

upon approval of the master editor, at which time the system would notify the user of an

acceptance or rejection by the master editor of the committed tentative version.

To view the current state of the document, the system allows the user to view the document's

status, followed by a check-out of its latest available version. By editing and committing changes

to a particular document, a user is regarded by the system as a regular editor of the document, and

being a regular editor the user may receive a request from the system to be the new document's

master-editor. The user can accept or reject the request. On accepting the request, the user is

Chapter 6 Collaborative Editing Application 143

given the editing rights to the master document, which is hosted on their mobile terminal, and is

offered the services explained in Section 6.3.1.

6.4 The architecture

In this section, we present the collaborative editing application's architecture. It consists of two

components, namely a user application that runs on mobile terminals and a repository that runs on

the fixed network (cf. Figure 6.1), which we describe next.

Mobile terminal

Fixed network

Figure 6.1: Collaborative editing application architecture

6.4.1 User application

A user application is the user's access point to services provided by the collaborative editing

application . It consists of four sub-components: a user interface, a coordinator, a document

database and a repository directory (cf. Figure 6.2).

The user interface has two functions . On the one hand, it supports interactions with users by

offering them a list of activities in accordance with their roles: add a document, check out a

document, commit changes and display the results of requested activities. On the other hand, the

user interface interacts with the coordinator by forwarding users' requests and receiving results of

the requests from the coordinator.

The coordinator creates requests for a repository once it receives requests from the user interface.

Such request creation involves queries to be made to the document database and the repository

Chapter 6 Collaborative Editing Application 144

directory in order to get details of a document and associated repositories. Once created, the

requests are forwarded to the repository.

The document database maps a document's identifier to the document's details, which include

the document's version number and editing token. The repository assigns an identifier to the

document the first time it is added to the fixed infrastructure. This identifier is used throughout

the document's lifetime, i.e. until it is removed from the infrastructure. Master documents are

associated with editing tokens, whereas checked out documents are not. When the document

database receives a query about a given document's identifier, it returns the document's version

number and editing token (when it exists).

User Application

user in terface

•
~

•
Figure 6.2: User application and repository

On the
mobile

terminal

On the
fixed

network

The repository directory maps a document's identifier to the identifiers and addresses of

repositories that contain copies of the document on the fixed network. These repositories may

host one or more versions of the same document, in which case the repository directory keeps the

latest version number of the document held by each repository.

6.4.2 Repository

Repositories are the part of the application hosted on the fixed network that need to be available

at all times to provide mobile users with access to copies of shared documents. The repository to

Chapter 6 Collaborative Editing Application 145

which a document's copy is initially added will create an editing token and assign an identifier to

the document. The uniqueness of editing tokens and documents is required to distinguish them

across the network; this can be achieved by using structured strings, e.g. URI or uum
(Universally Unique Identifiers) [96] to identify each one of them.

The collaborative editing application does not rely on only one repository; a user application can

be associated with multiple repositories that are distributed across the fixed network. A user

application on a mobile terminal is assumed to interact with a local repository due to our belief

that it is important to have a local interaction rather than a remote one. The short-range

connection between a mobile terminal and a repository can overcome network delays, which is

particularly significant for a mobile terminal as it could face wide variations and rapid changes in

network conditions. Additionally, manipulation of a local repository is also useful when the local

network is not connected to the Internet.

Mobile
terminal i

Mobile
terminal

iv

Mobile

tiF~"""""'-"'"""'''--,terminal ii

Fixedttetwork

user
application

iv

Figure 6.3: One repository serving mUltiple users

Mobile
terminal iii

Thus, on connection to the fixed network, a user application tries to initiate an interaction with a

local repository. It starts by finding information on a local repository from a local lookup

Chapter 6 Collaborative Editing Application 146

directory or local services directory such as Jini [81]. Using the information obtained, the user

application is then able to start interacting with the repository. The mobile terminal continues to

be served by the repository for as long as the mobile terminal is connected to the same network.

From a repository's point of view, at anyone time it may need to serve more than one user

application hosted on different mobile terminals that are connected to the same local network (cf.

Figure 6.3).

6.5 Collaboration Protocol

In this section, we explain the collaboration protocol that supports collaborative editing between

mobile users, by adopting some definitions from [24J. These definitions are based on the

coordinator aspect, i.e. one aspect of the collaborative technologies related to the ordering and

synchronization of individual activities that make up the whole process, specifically adopted in

the Computer Supported Cooperative Work (CSCW) / groupware field [19J[24J[25]. A process,

with an associated goal or specific purpose, can be summarized as a sequence of activities that are

carried out by groups of actors and result in the handling of some objects. Thus, specifically, our

collaboration protocol defines the ordering and synchronization of the collaborative editing

processes and activities included in each process. We elaborate this further below.

6.5.1 Actors

An actor is a human user or an application, who or which is responsible for initiating or

performing a process (cf. Figure 6.4). We consider a mobile user as an initiator of processes who

uses the user application to access services offered by the collaborative editing application. At

any time, the user may choose an entry from the user interface's menu, which is translated into a

request that initiates a new process. We characterize mobile users further with different roles. A

role for a user is regarded as the given rights to initiate specific types of processes. We have

defined two roles for mobile users, namely master editor and regular editor for each document.

For example, for a given document, a process such as "pass-editing-token" is authorized to be

initiated only by a user who has the role of "master editor".

Chapter 6 Collaborative Editing Application 147

The user application and repository are also two actors; they are components of the application

that were described in Section 6.2.1 and Section 6.2.2. Both user application and repository have

to react to occurring events according to a process description, which we will elaborate upon in

Section 6.3.3. Below we describe the association of the user application and repository with other

actors.

.... -- repository

Figure 6.4: Actors in the collaboration protocol

One user application is associated with one mobile user. While on the fIxed infrastructure, the

user application is linked to the repositories. A user application is mainly associated with a locally

available repository, which is treated as its main repository. At the same time, a user application

may also interact with other remote repositories storing copies of documents for which the user is

their master editor. This happens when those repositories are storing copies of a document, i.e.

identified as m
doc

-
n

, which is being collaboratively edited by the mobile user and other

collaborators. In this case, the document is associated with multiple repositories, in which case

the mappings between m
doc

-
n and all the addresses of repositories (areps) are stored in the

repository directory (see Section 6.2.1). Such an association is also illustrated in Figure 6.5.

At anyone time, a user application can manage more than one document on behalf of the user. A

mobile user may collaborate in editing multiple documents in parallel, in which case, for each

document, the mobile user has an associated role. As an example, consider a scenario in which a

mobile user collaborates with other users in editing three separate documents identifIed as m
doc

-
n

,

mdoc-m and mdoc-D. In such a scenario, the user may have the role of a master editor for m
doc

-
n

while at the same time he or she may have the role of a regular editor for mdoc-m and m
doc

-
o

• Such

Chapter 6 Collaborative Editing Application 148

information is held by the document directory (cf. Section 6.2.1) , which specifically stores details

of documents including the roles of the users associated with each of them.

Fixed network

----------------,

, , , , , , , , ,
:..

repository
ii

Figure 6.5: A user application associated with multiple repositories

In serving multiple user applications, a repository may handle one or more documents. A specific

document can be shared and edited by multiple users and roles; thus, for a group of collaborators

working on a document, the repository stores a list containing the collaborators ' details. This

includes the users ' IDs, roles and addresses. Such associations are illustrated in Figure 6.6. A user

ID is the distinguished name of the user, e.g. the user's name in a certificate, login name or email

address .

In the figure , collaboratorListn contains details of collaborators working on IDdoc
-
n

, while

collaboratorListm and collaboratorListO contain details of collaborators who work on IDdoc
-
m and

IDdoc
-
o respectively. Peter, John and Mary are the user IDs of the collaborators, while a appended

with a user ID refers to the address of the referred user. By default, a of a user refers to a list

allocated to hold notifications for the user hosted by the repository. Alternatively, a user's a can

be the user ' s email address, in which case the repository will have a mechanism to deliver the

notification to the user's email address . In terms of roles , to differentiate between roles of a user,

each role is appended with the document's id.

Chapter 6 Collaborative Editing Application

collaboratorListn
: (Peter,a.peter),(John,uiohn)

collaboratorLi stm: (Mary, a. mary), (Peter,a.peter),(J ohn,uiohn
)

collaboratorListo: (John,ui°hn
)

Peter:
master editorn

regular editorm

r--
1

John:
regular editorn

master editorO
regular editorm

1
1
1
1
1 repository ___ J

1 _____ _

Marv:
master editorm

Figure 6.6: Associations between a repository and multiple documents and user roles .

6.5.2 Objects

149

An object is considered as a passive and non-reactive entity: it can be created, modified, passed or

handled by actors. We define two kinds of objects, namely documents and editing tokens . On the

one hand, documents stored in repositories may not be updated directly: they can be added,

checked out and removed from repositories; such documents are therefore identified as read-only

objects (cf. Figure 6.7). On tl1e other hand, for a document to be editable it must be located on a

Chapter 6 Collaborative Editing Application 150

user's terminal. Hence, we adopt a terminology that distinguishes such documents . Documents

that are hosted on mobile terminals are simply referred to as documents, whereas documents'

replicas stored in repositories are referred to as copies. The document hosted on the master

editor' s terminal is known as the master document, while a document checked out by a regular

editor is known as a regular document. Copies are also further categorized into two types, namely

major versions and tentative versions. A major version refers to a copy that is committed by a

master editor and available to other users, whereas a tentative version is committed by a regular

editor and can only be viewed by the master editor.

master editor's
mobile terminal

... ~ ',r:....
master , '

document , '

" ,

regular
~""'" document

,
add / commit

tentative version

, repository , , '':&' '.l ~ , ',-I
L '~

m'ajor
version

Figure 6.7: Document replication and life cycle.

regular editor's
mobile terminal

regular
document

Editing tokens are also objects created by repositories and are unique for each shared document.

The editing token is passed between mobile collaborators, from a master editor to a regular editor;

after transfer, the token ' s sender reverts to being a regular editor, whereas its recipient becomes

the master editor. Thus, the holder of the editing token is known as the master editor. We use

Chapter 6 Collaborative Editing Application 151

cryptographic transformations of editing tokens so that repositories can prove the source and

integrity of editing tokens and to protect them against forgery [90].

6.5.3 Process

A collaborative editing series involves a number of processes being initiated by collaborating

mobile users. Each process has a goal associated with it, and to realize such a goal, a sequence of

activities needs to be performed by the user application and the repository. For the purpose of

illustration, we now describe a sequence of processes performed by a group of collaborators to

obtain the final version of the document (cf. Figure 6.8). Master editorn refers to a user assigned

as the master editor for the document identified as IDdoe-n, while regular editor" refers to a normal

user of the document.

Roles

Master editor"

Regular

editorn

Processes

o Add a document

o

o

o

o

0

0

0

0

Commit the IDdoe-n,s master document

as a major version

Check out a major / tentative version of
IDdoc-n

Review an IDdoe-n,s tentative version

Remove all IDdoe-n,s copies from the

fixed network

Pass editing token to another

collaborator
Synchronise IDdoe-n,s versions

Check out an IDdoe-n,s tentative version

Commit IDdoe-n,s regular document

Figure 6.8: List of authorized processes for each editing role

The add document process is initiated by a master editor in order to make a mobile document

accessible to other users by adding a copy of the document to a repository on the fixed network.

The commit process can be initiated by either master editor or regular editor; changes committed

by the master editor result in a latest major version of the document being created, whereas

changes committed by a regular editor result in a tentative version being created. The check out

process can also be performed by both kinds of editors; the master editor may check out both

Chapter 6 Collaborative Editing Application 152

major and tentative versions of the document, whereas a regular editor may only check out the

latest major version of the document. The review tentative version process is only permitted for

the master editor, who can review a tentative version of the document and decide whether to

approve or reject the changes made by a regular editor. Subsequently, the regular editor will

receive a notification on the master editor's decision. The pass editing token process is initiated

by a master editor who decides to delegate the master editor role to another collaborator. Finally,

the synchronise version process is initiated by a master editor in order to request a local

repository to obtain the latest version of the document from the mobile terminal or another

repository. The master editor may have committed the latest version of a document to a repository

at a previous location and when the master editor arrives at a new location, the master editor may

choose to synchronise the document between a local and the remote repository. This way, the

locally connected users at the master editor's new location can have access to the document.

In a collaboration, all collaborators are involved in constructing the document to some extent. As

an illustration, Figure 6.9 shows that a master editor is involved in a sequence of processes: to

add a document (1), to review tentative changes (5) and to commit (6) a document; a regular

editor is following another sequence of processes: to check-out (2), to make changes to the

checked out document and to commit (3) the changes. We distinguish the tentative version, i.e.,

Vl.1, resulting from a commit by the regular editor, from the latest major version (i.e., V2)

committed by the master editor. Changes in tentative versions have to be accepted by the master

editor before they are merged to the latest version.

We envisage a system that allows parallel editing of a document among a group of users, but at

the same time we want to give the sole editing right of the document to one user, i.e. the master

editor. Thus, we distinguish the changes made by the master editor by regarding them as having

higher priority than changes made by regular editors. For the latter, approval from the master

editor is needed before the changes are applied to the master document. Thus in labeling these

two classes of changes, we name the committed versions with master editor's modifications as

major versions, while versions modified by regular editors are known as tentative versions.

Accomplishing a collaborative editing task involves a number of processes that are performed by

a group of collaborating mobile users. Figure 6.8 shows a list of processes that can be initiated by

a mobile user. Each process normally has some goals associated with it. To realize these goals, a

sequence of activities needs to be performed by the user application and repository. These

Chapter 6 Collaborative Editing Application 153

activities will be further explained in Section 6.5.4. Here, we will start by categorizing processes

into their authorized roles. This means that some processes are allowed to be performed only by

users with specific roles. First, we list all the processes authorized to be performed by a master

editor, followed by the processes authorized for a regular editor.

I Master Editor I I Regular Editor I I Local Repository I

1. Add(userID,ID""g) '(1) ,
lb. Add_ack(lD""g,

"success" ,I D'oe-n ,V, ,Ern)

2. CheckOut(ID""",V,) , (2) ,
2b. CheckOut_ack(lD'<»O,V,)

I Modify I D'<»'. I
3. Comm~(userID,ID"",V,) • (3)

3b. Commit_ack(lD""",V,,)

4. CheckOut(ID'<»'Vl1) , (4) ,
4b. CheckOut_ack(lD'oc-"V,,) I Review version I

V,., of ID""".

I (5) I Accept cnanges I
in version V,., of I

~. CommitNotification(lD'<>o-n,V ID'<>c-n.
,.,:accepted")

I Merge V" with I
the latest iD"""'. ISh. CommrtNotification(lD""",V

1.,:accepted")

6. Commit(lD""",V,) • (6)

6b. Commit_aCk(lD'<>c-n,
"success"V2)

Figure 6.9: An example sequence of collaborative editing processes

6.5.4 Activities

An activity is a unit of work or action to be performed either by the user application or the

repository. In general, some activities cannot be performed until other activities are completed. In

describing the activities, we use the same combination of sequence and activity diagrams as

described in Section 5.3, but without the location indicator.

Chapter 6 Collaborative Editing Application 154

6.5.4.1 Master editor adds a document

We now describe activities performed in the add document process (cf. Figure 6.10). The goal of

this process is to make a document accessible to other mobile users by having its copy stored in a

repository on the fixed network. First, a user selects the document to add; then, the user

application sends an "add" request message that includes the user's identifier (m llSer
), the message

identifier (mmessage) and a copy of the document to the repository. The mmessage is used as a

session identifier, and therefore is also included in the reply from the repository. On receipt of the

request, the repository stores the transferred document, marks it as a master-copy and assigns to it

a unique identifier (mdOC
-
fi) and a version number (VI). An editing token (Ern) and a collaborator

list (colIaboratorLisn (cf. Section 6.5.1), which are stored in the repository, are also created for

the copy. The collaborator list enumerates the identifiers and addresses of the document's master

editor and regular editors; the collaborator list is updated with user's details whenever the user

has committed the modified version of the document. Such information is needed to enable

asynchronous interactions between master and regular editors. The repository then returns an

acknowledgement message to the user; it includes the session identifier (IDmessage), the operation

status (i.e. "success" or "failure"), the document identifier (mdOC
-
fi), the version number (VI) and

the editing token CETfi). On receiving this message, the user application stores details of the

successfully added document. Finally, the user application notifies the master editor of the

successful addition of the document identified as mdOC
-
fi to the repository.

Repository

I
--------------------.1) add(l om g., I 0"'",) __________________ I

: 0
I
I 2) The received copy is identified

as 10doc-n, major version V" 10"''"
and aU'" are added to

coliaboratorListn• An editing token,
ET" is also created for the

documenl

r·--·3) add_ack(IOm",,.g., 'succesS',IOdoc-n,V"ET") ------

4) Oetails of the successfully
added document (IOdoc-n,V"ET")
are stored in document database

and master editor is notified.

o : Transfer of file

: Wait for incoming message

....... -.. : Message sending

Figure 6.10: Master editorfi adds a document.

Chapter 6 Collaborative Editing Application 155

6.5.4.2 Master editor" commits the master document as a major version

After performing some changes to the document, master editorn may decide to commit the

updated document to the repository. Once this request has been received by the user application,

it sends a "commit" request to the repository (cf. Figure 6.11). Besides a copy of the updated

document, the user application which keeps tracking and storing information about the latest state

of the document, includes the document's id, mdoc
-
n

, the current version number of document, Vx

, and document's editing token, ET", in the commit request. Upon receiving this request, flrst of

all the repository checks whether ET" is valid. If it is valid, the repository proceeds by committing

the document as a new major version of the document. In our design, committing a modi fled

version of a document involves the creation of a new copy, representing the latest version of the

document in the repository without overwriting its previous version. This action is performed by

the repository in order to prevent any inconsistencies between existing versions of the document.

The repository assigns a new version number to this new copy, V(x+I), and then returns an

acknowledgement message to the user application. This acknowledgement message contains

mdoc
-
n and V(x+I)' On receiving this message, the user application stores mdoc

-
n
, V(x+l) and ET".

Finally, the user application notifies the user of the successful commit request.

Repository

I

-------------.1) commit(lOmessage, I Odo,,"n , Vx' ET") .__________ I

D
2) The received document is

stored as a new major version of
IOdoc-n,which is assigned version

number V(x+1).

--------·3) commit_ aCk(1 omessage, lodoc-n, V(X+1» .-----------

4) Details of (IOdoc-n, V(x+1),M,ET")
is stored and the master editor is

informed.

D : Transfer of file

: Wait for incoming message

-----.- : Message sending

Figure 6.11: Master editorn commits the master document.

Chapter 6 Collaborative Editing Application 156

6.5.4.3 Master editorn checks out a copy of IDdoc
-
n

In order to check out the major versions of IDdoc-n from a repository, a user application must first

request details of major versions of mdoc-n from the repository (cf. Figure 6.12). To do this, the

user application needs to send a "log" request to the repository, containing the document's ID

(IDdoc-n), the document status (i.e. "major" for getting details of major versions; "tentative" for

tentative version and "all" for both major and tentative versions of IDdoc-n), and lastly the

document's editing token (Er). On receipt of this request, the repository extracts details of all

major versions and places them in a list lisl, which is then included in an acknowledgement

message, returned to the user application. On receipt of this message, the user application extracts

information from 1istn and displays it to master editot. From the displayed information, master

editorn can proceed by selecting a particular version of mdoc-n to be checked out from the

repository.

Based on master editorn,s selection, the user application will send a "check_out" message to the

repository. The message contains details of IDdoc-n,s version requested by master editot. In

Figure 6.13, the check out message contains IDdoc-n, Vz, the version type, i.e. "major" or

"tentaive" version, and Er. In this case, the message can be translated as a request received from

master editot to check out a tentative version of IDdoc-n, which has the version number, Vz.

Repository

I

-----------1) log(IDmessage,IDdoc-n, "tentative",ET") ________ I

I
I
I
I
I
I
I
I
I
I
I
I

4) Display the documents' details.

2) Extract to list" details of the
document identified as IDdoc-n and

has "tentative" status. auser is
updated.

D : Transfer of file

: Wait for incoming message

-----.- : Message sending

Figure 6.12: Master editorn requests a log on mdoc-n_

Chapter 6 Collaborative Editing Application

Repository

-----1) check_out(IDmeSSage,IDdoc-n,Vz' "tentative",ET")·-
I
I
I
I
I
I
I
I
I
I

2) Retrieve a tentative version of
IDdoc-n with version number Vz.

--·3) checkOuCack(IDmeSSage,IDdoc-n,Vz,"tentative") -----

4) The checked out document is
stored, while its details (IDdoc-n,V ,
"tentative",ETn) are stored and thZe

master editor is notified.

o
o : Transfer of file

: Wait for incoming message

-----.. : Message sending

Figure 6.13: Master editorn checks out a copy of document.

6.5.4.4 Master editorn reviews a tentative version of mdoc
-
n

157

A master editorn who wants to review changes made by other users must fIrst check out a

particular tentative version of IDdoc-n from the repository. The check out process was explained in

Section 6.5.4.3. Once a required tentative version has been checked out, master editorn may

choose to perform "review document" from the user application's menu (cf. Figure 6.14). The

user application then extracts details of the available IDdoc-n,s tentative versions and displays them

to master editorn (cf. Figure 6.15).

Figure 6.15 shows us an example of a list being displayed by the user application to master

editorn. The list contains details of IDdoc-n,s tentative versions, which include their version

numbers and the user IDs of collaborators who made changes to them. From this list, master

editorn will choose a particular tentative version to be reviewed. As illustrated in Figure 6.15, we

can see that master editor" chooses to review a tentative version, V 8.3 of IDdoc-n, which was

modified by another collaborator with the user id, John. The user application will then open the

selected tentative version of IDdoc-n and display it to the user.

Master editorn can then start reviewing the document and may also make some changes to it.

When master editorn has saved the fIle, the user application asks master editorn whether he or she

Chapter 6 Collaborative Editing Application 158

wants to merge the reviewed tentative version with the master document. Alternatively, the user

may postpone the decision making to another time (cf. Figure 6.16).

(1)
Master editor"'s user

application

~
1) Extract details of all
tentative versions of
I Ddoc-n that have been
checked out from the

repository .

+
2) Display a list of
available tentative
versions of IDdoc-n

Figure 6.14: Master editor" chooses to review changes made by other collaborators.

(2) Master editor"'s user
application

Please select a document to

3) Select a tentative be reviewed:
version 01) of IDdoc-n o"ourDocument.txt" 0185 , Mary)

from t~e list. o"ourDocument.txt" ~'4' Peter)
.,f0"OUrDOcument.txt" :~

+ ---

4) Retrieve and
display the selected

file.

Figure 6.15: Master editor" selects a tentative version to be reviewed from the list.

Then, master editor" chooses one option from the request box displayed by the user application.

In Figure 6.17, we can see that master editor" chooses to merge the reviewed tentative version

with the master document. This action causes the user application to merge both files into another

copy of the document, which is considered as the latest major version of IDdoc
-". At anyone time,

Chapter 6 Collaborative Editing Application 159

the version number of a master document is the one that was assigned by the repository, which

was included in the acknowledgement message received from the repository after an "add" or

"commit" request was successfully performed. In a case such as this, where the master document

is merged with changes made by a regular user, the merged document is now known as the

uncommitted version of the master document. Although this master document has been modified,

it continues to carry the same version number until master editorn commits this modified

document to the repository and gets a new version number assigned by the repository.

(3) Master editor"'s user
application

5) View changes and
possibly edit changes
made by John. Then
save or close the file.

l
6) Display options on

how to proceed.

-

Do you want to merge the
tentative version:
o"ourDocument.txI" IVs~
with the master docatnent:
o"ourDocument.txI"

~ ~ I Next time I

Figure 6.16: Master editorn finishes reviewing the file and ready to merge changes in the
reviewed tentative version with the master document.

(4) Master editor"'s user I
application

-- Do you want to merge the - tentative version: -- o"ourDocument.txt" Cis ~
with the master docatnent:

7) Select one. o"ourDocument. txt"

8~ I Next time I ---
8) Merge the reviewed

document with the
master document.

Figure 6.17: Master editor" decides to merge the tentative version with the master document.

Chapter 6 Collaborative Editing Application 160

Referring back to Figure 6.16, if master editorn chooses "No" or "Next Time", the user

application will do no merging of the document. Besides interpreting the chosen option as either

to merge or not to merge the documents, the user application also considers the selected "Yes" as

the way that master editorn formally accepts the changes made by another collaborator, while

"No" rejects the changes and "Next Time" postpones the decision to accept or reject the changes.

Thus, when a "Yes" or a "No" is selected, the user application sends a "commitNotification"

message to the repository. This message contains details of the reviewed tentative version of

m dOc-n, as well as the "acceptance" or "rejection" status of the decision made by master editor"

about changes in a tentative version. This is shown in Figure 6.18.

Repository

I

(John's) regular editor"'s
user application

9) commitNotification I I
•••••••••••••••••••• (I Ddo"",,,V. ,,"accepted") ••••••••••••••••• , I

. 10) commitNotification I
•••.•••••••••••• (IQdoc-n.V •. ,,'accepted") •••••••••••••• ,

: Wait for incoming message

••••• ~ : Message sending

11) Notify John that
committed changes in

V
B3

of IDdo"",,.
has been accepted by

the
master editor".

Figure 6.18: Regular editor" receives notification of acceptance or rejection of changes being
made to an mdoc.n,s tentative version

On receipt of a "commitNotification" message that contains a tentative version's details and

master editorn,s review decision, the repository extracts details of regular editorn, who has made

changes to the tentative version. The extracted details include regular editorn,s address, e.g. the

user's email address, to which the repository will forward the received "commitNotification"

message. An example is illustrated in Figure 6.18, where on receipt of a "commitNotification"

message for a tentative version, with version number V 8.3, the repository will extract the details of

John, who has made changes to V8.3. Once this is done, the repository will then be able to forward

the "commitNotification" message to John. On receipt of this message, John's user application

will inform John about the notification.

Chapter 6 Collaborative Editing Application 161

6.5.4.5 Master editorn removes IDdoc.n,s copies from the repository

Master editorn may decide to remove IDdoe.n,s versions from the repository. When such a removal

request is issued by master editorn, the user application sends a "remove" request to all

repositories that have copies of IDdoe.n (cf. Figure 6.19). The user application does this by first

extracting the details of all repositories from the repository directory, and then sending a

"remove" request to each of these repositories. This request contains IDdoe.n and ETn. On receipt

of this request, each repository first checks whether ETn is actually the right editing token. If it is,

the repository then removes all copies of IDdoc.n.

Repository

I

••••••••••••••. 1) Remove(lDmessage, I Ddoc-n ,ETn)............ I

I
I
I
I
I
I
I
I
I

2) Check ETn and remove all
copies of IDdoc-n and

coliaboratorListn.

r·········3) Remove_ack(IDmessage, "success")·.····· •• •••

4) Display notification on
successful removal of aIlIDdoc-n's

copies from the repository.

: Wait for incoming message

• •••• ~ : Message sending

Figure 6.19: Master editorn removes all IDdoe.n,s copies from the repository

6.5.4.6 Regular editorn checks out a copy of IDdoc.n

Before a user can check out a copy from a local repository, the user application must first send a

"log" request to the repository (cf. Figure 6.20). This request is sent in order to get details of all

available copies in the repository, in which case an "all" status is set in the "log" request. For the

same purpose, the request is not specified with a particular document identifier, IDdoe.n. On receipt

of this request, the repository extracts information on the latest major version of all available

copies. The information includes copies' IDs and their version numbers, which are included in a

list called Lise. This list is then included in an acknowledgement message that is returned to the

requesting user.

Chapter 6 Collaborative Editing Application 162

As illustrated in Figure 6.20, once a user application receives a "lo!Lack" message from the

repository, it displays the extracted information from the received list. From the displayed list, the

user may then choose which copies he or she wants to check out.

The listed copies are publicly available and can be checked out by any user. But a master editor"

may decide to make IDdoc-n,s copies available only to certain users. This is done by having

selected user IDs in the collaborator list, so that the repository will only allow these users to

check out and modify the document. Thus, options provided to master editorn include:

• To make IDdoc-n,s copies available to other users (read and modify / read only).

• To make IDdoc-n,s copies available only to a group of users, in which case the user IDs of

the accepted collaborators are added to the collaborator list (read and modify / read only).

Once a document has been selected by the user, the user application sends a "check_out" request

to the repository. This request contains IDdoc-n, which is the identifier of the selected document.

Once this request is received by the repository, it will return the latest major version copy of

IDdoc-n to the user together with an acknowledgement message that contains IDdoc-n and its version

number, e.g. VB (cf. Figure 6.22). On receipt of this reply, the user application saves the received

copy, marks it as a regular document and stores the document's details including its ID and

version number. The user is now identified as a regular editor".

Repository

2) extract details of
latest major

versions of copies.

: Wait for incoming message

....... : Message sending

Figure 6.20: A user requests for a log on all available documents.

Chapter 6 Collaborative Editing Application

I A user-application I

,-----------, ---
---r~--~~--~~

Please select a document to 4) Display a list of
checkout: locally available
·IDdoc-n, "ourDocument.txt" .. documents
·iddoc-m. "other-document1.txt" ~. (extracted from List
·iddoc-o. "other-document2.txt" • • received),
'----------' ,." - - - ,

- ••••••••••••• 5) Selects a

••••• document to be
checked out from
the repository,

Figure 6.21: User application displays available documents that can be checked out.

Repository

•• ----.1) check_out(l Dmessage .IDuser.IDdoc-n) ••• ___ •• _

2) Retrieve the latest
major version of I DdOc-n,
Add IDuser and au,er to

coliaboratorListn.

I
I
I
I
I
I
I
I
I
I D I

---••• --3) checkOut_aCk(IDmeSSage.IDdoc-n.Va)·····-1

D : Transfer of file

: Wait for incoming message

-----~ : Message sending

4) The received co py of
IDdoc-n is saved. while its

details (lDdoc
n,va."tentative") is stored.

Regular editor" is then
notified.

Figure 6.22: Regular editor" checks out the latest major version ofIDdoc
-
n

6.5.4.7. Regular editor" commits a tentative version of mdoc
-"

163

Following a check out process, a regular editor" may modify the checked out document and later

decide to commit it. Once regular editorn has selected the "commit" option from the user

application's main menu, the user application sends a "commit" request to the repository (cf.

Figure 6.23). This request contains the ID (IDdoc
-
n

) and version number (Vs). On receipt of this

request, the repository knows that the requesting user is just a regular editorn
, causing it to

Chapter 6 Collaborative Editing Application 164

commit the document as a tentative version of mdoc
-
n, e.g. in this case the version assigned is VS.I •

Afterwards, the repository sends an acknowledgement message containing mdoc
-
n and new

version number VS. I to the regular editorn.

By committing the document, the regular editorn knows that changes he has made will be merged

with the same major version that he has previously checked out, i.e. Vs, although the merged

document can then be modified again by master editorn. To explain this further, a sequence of

related activities is explained below.

The regular editorn, i.e. John, checks out a major version of mdoc
-
n, which has the version number

Vs. John makes some changes to the checked out document. John commits the modified

document and receives an acknowledgment from the repository that includes details of the

committed document. The repository identifies the committed document as a tentative version of

mdoc
-
n and assigns to it a new version number, i.e. VS.3' This tentative version (VS.3) is then

reviewed by the master editor. The version is acceptable for review by the master editor because

at this point the latest version number of the master document is still V s. The regular copy (V S.3)

is still considered not to be outdated since the changes were made by John on Vs of the master

document. If the master document had a newer version, i.e. V9, then this regular-copy (VS.3)

would no longer be acceptable, as it would be considered to be outdated. John would be notified

that he must first update the checked out document to the latest version of the master document

before re-committing the changes. Master editorn commits the new master document to the

repository and at this point the repository assigns V 9 as the version number of the master

document (cf. Figure 6.24). By receiving a "CommitNotification" message with an "accepted"

status, John acknowledges that the committed tentative version (VS.3) will be merged with version

V S of the master document, which may have been modified by the master editorn
.

Chapter 6 Collaborative Editing Application

Repository

D
•••••••••• 1) Commit(idmessage, I Ddoc-n ,vB) .••••••••••••

2) The received
document identified as
IDdoc-n V (marked as
a tentatiM version) is

committed. ause, is
updated.

I
I
I
I
I
I
I
I
I
I
I
I

·············-3) Commit_ack(lDdoc-n,V8.1)············,

D : Transfer of file

: Wait for incoming message

••••• ~ : Message sending

4) Details of (IDdoc-n,V81 ,
"tentative") is stored arid

the regular editOr" is
informed .

165

Figure 6.23: Regular editor' commits the updated regular-document as a tentative version of
IDdoc•n

Repository

I

•••••••••••••• 1) Commit(idmessage, I Ddoc-n, V 8'etn)........... I

D
2) The received document is

stored as a new major version of
IDdoc-n, which is aSSigned version

numberVg

···········3) Commit_ ack(idmessage, I Ddoc.n ,V g) •••••••••••••

4) Details of (IDdoc-n, Vg,M,etn) are
stored and the master editor is

informed.

D : Transfer of file

: Wait for incoming message

• •••• ., : Message sending

Figure 6.24: Master editorn commits the master document as a new major version

6.5.4.9. Master editorn passes editing token to a newly appointed master editor

At any time during the collaboration, master editorn may decide to stop being the master editor

for IDdoc
.
n and pass ETn to another collaborator. To do this, once requested, master editorn,s user

Chapter 6 Collaborative Editing Application 166

application sends a "getCollaboratorList" message to the repository (cf. Figure 6.25). In return the

repository sends an acknowledgement message containing a list of collaborators' IDs and

addresses, e.g. user's email address.

Master editorn's user

I I application Repository

t- I 1--------1) getColiaboratorList(lOmessage,IOdOc-n ,ETn)·-----i

I
I

2) Validate ET" and get I
I coliaboratorListn.
I

: 1
I 3) getColiaboratorList ack
~----------- (I omessage, IOdoc-n ,coliaboratorListn) .-------------

---- : Wait for incoming message

-----~ : Message sending

Figure 6.25: Master editorn requests IDdoc-n,s collaborator list.

On receipt of the acknowledgement message, the user application extracts the IDs of the

collaborators and displays them to master editorn. From this list, master editorn chooses a

collaborator to be the next master edito~. For example, Figure 6.26 illustrates that master edito~

chooses John as the next master editorn. To a!0hn, the user application sends a "passEditingToken"

message, which contains IDdoc-n and ETn.

Master editorn's user
application

4) Display the list of
collaborators involved

in editing IDdoc-n.

5) Choose a
collaborator to be the
next master editor"

from the list.

....

~

" ..-

Choose one collaborator to be the next
master editor for "ourDocumenttxt" :

+-John
~ • Peter

• Mary

..... , '-------------------'
......

Figure 6.26: Master editorn selects a collaborator to be the next master editorn

Chapter 6 Collaborative Editing Application 167

On receipt of the "passEditingToken" request, John's user application asks John whether he want

to accept the offer to be the next master editor for m doe-n, i.e. a file called "ourDocumenttxt".

Figure 6.27 illustrates that John accepts the offer to be the new master editorn. An

acknowledgement message is then sent to the previous master editorn, which contains m doe-n and

an "accept" status. On receipt of this message, the user application of the previous master editorn

removes ET" from all mdoe-n,s details and marks all mdoe-n,s documents as regular documents (cf.

Figure 6.28). This is done through a change in the status of the user, who is no longer master

editorn. At the same time, on John's mobile tenninal, the user application checks out the latest

major version of m doe-n from the repository. Once this has been done, John's user application

marks the newly checked out document as the master document of m doe-n. This document can

always be merged with John's previous regular document of m doe-n. Besides this, all the details of

m doc-n are also added with the editing token, ET".

(John's) regular editorn's
user application

6) passEditingToken I
·····················(IDmessage,IDdoc-n,ET") .•••••••••••••••••

,-____ -L ______ ,- ___ ,-______________ -,

: Wait for incoming message

....... : Message sending

7) Display notification
of editing token

passing. Ask the user
whether to accept or

not.

Do you want to be the
master editor for

"ourDocument.txt" file?

~

Figure 6.27: The chosen collaborator decides on whether to accept or reject the offer to be the
next master editor for m doe-n

Referring back to Figure 6.27, in a case where John rejects the offer to be the new master editorn,

the "passEditingToken_ack" message returned to the previous master editor" will contain a

"reject" status. On receipt of such message, the previous master editor repeats all the steps in

Section 6.5.4.9 but selects a different user (besides John) to be the new master editor".

Chapter 6 Collaborative Editing Application 168

Master editor"'s user (John's) regular editorn's
application user application

t················ i~,f.~!~~~t~~2~~~~~e~f.~···················
11) Remove all ETn

from allIDdOO<l's 11) Check out the latest
details and mark them major version of IDdoc-n
as regular documents from the repository.

("R").

--_. : Wait for incoming message 12) Add ET" to all
....... : Message sending

details of I DdOO<l and
mark them as master

document'M".

Figure 6.28: Updating status on both previous and new master editorn,s terminals

6.5.4.10. Version synchronising between repositories

Master editorn may move to another location and at the new location, the user application will be

connected to a different repository, i.e. repository2, which is the current locally available

repository (cf. Figure 6.29). If this is the fIrst time master editorn has come to this location, no

copies of m doc-n could be stored in repository2. At this new location, master edito~ may decide to

collaborate with locally connected users and want to make mdoc-n,s copies available to them. In

this case, master editorn does not need to add m doc-n again, as was done previously. In this case,

the master editor just chooses the "synchroniseVersion" option from the main user application's

menu and user application requests repository2 to get the latest major version of m doc-n from

another repository, i.e. repository 1 , which has the required version.

Figure 6.30 shows another way in which versions can be synchronised between two repositories,

but this can be applied only by repositories that have mdoc-n,s copies. In this case, synchronisation

is automatically initiated by the master editor's user application. Once a newer major version of

m doc-n has been committed to a local repository, i.e. repository2, the user application retrieves

from the repository directory the addresses of all the other repositories that store mdoc-n,s copies.

To each of these repositories, the user application sends a "synchronise Version" request that

contains m doc-n, urep2 and ETn. The variable urep2 represents the address of repository2 that has the

latest major version of m doc-n. Figure 6.30 illustrates a remote repository, i.e. repositoryl, which

Chapter 6 Collaborative Editing Application 169

receives such a request. First of all, repository! checks the validity of ET", after which it sends a

"synchroniseVersion" message to repository2. Besides containing IDdoe
-
n and ET", this message

also includes Vx, which is the latest major version number of IDdoe
-
n in repository!. On receipt of

this message, repository2 first checks Vx against its latest major version of IDdoe
-
n

, Vy. This is

done to prevent repository! from getting an outdated version from repository2, i.e. when Vx < Vy.

If Vy is a later version than Vx (\1y > Vx), then repository2 returns a copy of Vy to repository!

together with an acknowledgement message. On receipt of this message and the document's

copy, repository! stores the received copy and its details.

I Master editor"'s user I I I I
appllcallOn " Repository2 " " Repository1

D
-----~

..L 1) SynchrOniseversion: : y---------------. (Iomess,ge.1 Ddoc-n,a'epo.to'Y1 ,ET") -------------1 I

: Transfer of file

: Wail for incoming message

: Message sending

________________ 2) S(~~~~~s'io~r)sion --------------..J
I ' 0' ...

I
I 3) Validate ET"" Get
I the latest
I major version of 10d<»
: n,V, .. "success~ status
I IS given only If V 0 < : D V,.

~----------- 4) S(YI Dn;~oVnis;version;;-)ack . ____________ -'
t ' "success

5) Store the received
document and mark

it as (I0doc
n,V/major').

Figure 6.29: Add and synchronise major versions of IDdoe
-
n on the new local repository.

New version numbers can be assigned by different repositories to newly committed versions, but

each version will be unique across repositories. This is ensured since every time a master editor

commits the modified master document, its current version number, i.e. Vx, is included in the

commit request, thus the receiving repository (no matter which one), assigns the next version

number of the committed copy as Vx+ I' This also applies to a repository that does not have any

previous version of the master document, where instead of adding the document as a new major

version (VI)' the document is assigned as Vx+I.

Chapter 6 Collaborative Editing Application 170

I Master editor"'s user I I
application Repository2 . Repository1

: 1
i 1

[

I 00 1) Commlt_ack(idmmage,IDdO'"",M,Vy) oo.oo·t i

... _ _ _ '} "~~~y{'r-···-·---·--···::=1o. Ge<;he

latest
version number of

IDd",.."V,.

~.-- '} ,ir~~~::i',;"'M·_· .. ··-·t
1

5) Check ef'. Get the 1
latest 1

major version number 1
of IDde<>-", Vy. 1

• Success' status is 1

only given if Vy < Vx.. D :
1

'-••••••••••••. 6) s(yIDn~~~Vnis:Version.)ack .••••••••••• ..j
, y' success ,

D : Transfer of file

- - - . : Wait for incoming message

••••• .- : Message sending

7) The received V
and its details Y
(IDdo""",V,M)
are stored.

Figure 6.30: New major version of mdoc
.
n is propagated to a remote repository

6.6 Implementation

In this section we describe how we implement the collaborative editing application. The

application can be developed to operate on its own, even though we are in favour of employing

MAMiMoU to support the interactions between the application components. For the sake of

clarity, we describe two approaches to implementing the application, i.e. with and without

MAMiMoU's support. We will first describe the implementation of an application not supported

by the middleware, followed by a description of the application's integration with MAMiMoU.

We have developed our application using the Southampton Framework For Agent Research

(SoFAR) [72]. The collaboration protocol of the application is implemented by two agents,

namely a user-application agent and a repository agent (cf. Figure 6.31). We host the user

application agent on the mobile terminal, while the repository agent is hosted on stationary

terminals. As there is no mechanism used by the application to support the asynchronous delivery

Chapter 6 Collaborative Editing Application 171

of notifications, the user-application supports an additional function for mobile users: to check for

incoming notifications about a particular document from the repository. In this case, notifications

for users are held by the repositories until they are collected by the recipients. Such repositories

are ones that have the versions being modified by the users awaiting review from the master

editor. The disadvantage of implementing such an approach is that the notifications will be

received by the users only when requested, and the repository that is being requested can be

remotely located and may not be accessible.

~---------------------------------------'T

User-application agent
I
I
I On the mobile
I terminal

I
I
I
I
I

L-________________________ ~--~--~------------~ •

/
/

/

_--_J"/

... ~: local interaction

/

/
/

/

/
/

/

~ -...... : interaction with a remote repository

\
\

\

\
\

\
\

\
\

\

Figure 6.31: Collaborative editing application

T
On the fixed

I infrastructure
I

To take full advantage of MAMiMoU, we offloaded some of the collaborative editing

application's components onto MAMiMoU. This is illustrated in Figure 6.32. The coordinator is

now divided into two components, namely coordinator! and coordinator2. Coordinator2 and the

repository directory are the two application components offloaded onto the fixed network as part

of the shadow. When a request is received from a user, coordinator! creates a request message

by querying the document database. The encoded message is then forwarded to coordinator2,

which forwards it to a local repository after making a query for the repository's address from the

Chapter 6 Collaborative Editing Application 172

repository directory. An acknowledgement message from the repository is then returned to

coordinatorl, which forwards the message to the user interface. By offloading these components

to the shadow, less computation is performed on the mobile terminal. Besides this, some activities

can now be performed when the mobile terminal is disconnected. For example, coordinator2 can

still query repository directory and send an unsent request to the repository, and receive an

acknowledgement.

User-application agent

... ~: local interaction

• - ~ : interaction with a remote repository

I

T
I
1 On the mobile
I terminal

I
I
I
I
I
I
•

----------1

On the fixed

•

Figure 6.32: Collaborative editing application supported by MAMiMoU.

The system now consists of three agents: a user-application agent; a shadow; and a repository

agent (cf. Figure 6.32). The shadow implements the coordinator2 and repository-directory

components of the application, while the user-application agent implements the user-interface,

document directory and coordinatorl. The shadow is now used to support asynchronous delivery

of notifications, where it will always be available on the network to receive notifications from the

repositories on behalf of the user. By relying on the shadow to do this, notifications will be

forwarded to the user once the user re-connects to the network. Additionally, having coordinator2

Chapter 6 Collaborative Editing Application 173

and repository-directory offloaded onto the fixed network allows them to continue their tasks, e.g.

to serve pending requests from the user while the mobile terminal is disconnected. This way, time

can be saved since no pending requests are lost during the disconnection of users, which may

require the user to re-send the requests again. Having said this, we will analyze further the

benefits gained from this integration by means of an empirical evaluation presented in Chapter 7.

6.7 Security

To address the issue of security, cryptography [30], which is known as a major enabling

technology for network security, can be used to establish secured channels between the

application's components, both in terms of authenticity and integrity, as well as confidentiality.

To do this, an additional layer dealing with security can be implemented on top of the

collaboration protocol layer. This layer will implement a cryptographic algorithm, i.e. an

algorithm defined by a sequence of steps precisely specifying the actions required to achieve a

specific security objective, and a cryptographic protocol, i.e. a distributed algorithm defined by a

sequence of steps precisely specifying the actions required from two or more entities to achieve a

specific security objective [83].

One potential cryptosystem3 that can be used is the public key cryptography, in which a user has a

pair of mathematically-related keys - a public and private key, where it is computationally

infeasible for an outsider to derive one from the other. Public key cryptography can be used to

protect the confidentiality of data transferred on the network. Besides protecting the

confidentiality of messages exchanged between components, a public key cryptosystem can also

be used to protect the authenticity and integrity of a message. This way, the authenticity and

integrity of objects included in the message, e.g. an editing token or a file, can indirectly be

protected. For example, a sender A can protect the authenticity and integrity of a message M by

computing a digital signature S for M. Digital signatures provide an electronic analog of

handwritten signatures for electronic documents, where the signature is not forgeable, can be

verified by the recipient [83].

3 A cryptosystem is the package of all procedures, protocols, cryptographic algorithms and instructions
used for encoding and decoding messages using cryptography.

Chapter 6 Collaborative Editing Application 174

Another way of protecting editing tokens against unauthorized reading and undetected mutilation

is by having editing tokens stored in an encrypted fonn in the repository. User applications and

the repository both use the same encryption and decryption algorithm, i.e. [90]. This way both

user application and repository are able to encrypt or decrypt editing tokens with any secret

cryptographic function. In supporting this technique, an approach presented in [107] can be used,

where the editing token is encrypted and decrypted as one partition of the shadow's state. This

way, the symmetric key used in the encryption can be made available to platfonns being visited

by the shadow. To control such propagation of keys, mobile code called a keylet is employed.

6.8 Discussion

In this section we summarize the advantages offered by our application. First of all, our

application's architecture promotes high accessibility of mobile documents to users. The

application allows other users to check out a document with authorization given by the

document's owner. This is possible even if the owner is not online. To achieve this, we have

taken the approach proposed in [111], which suggests that one way to maximize the availability

of mobile documents is by having their replicas stored on the fixed network.

Document replicas will be kept on repositories located on the fixed infrastructure. A repository is

a storage system, in which an aggregation of documents are kept and maintained in an organized

way. It allows operations on documents such as add, commit, check out, update and remove to be

performed [12]. A local repository is a repository that runs in the user's vicinity: one that runs on

the same local network as the user. It advertises its services on a local lookup table, e.g. [81],

from which a mobile user discovers it. To take full advantage of distributed repositories available

on the fixed network, a document replica may be stored not only on one repository but also on as

many repositories as necessary. A replica of the same document can be added to another

repository every time a user changes their location. The more replicas available on the network

means the easier it is for other users to access the document.

The main advantage offered by our collaborative editing application in supporting collaboration

between mobile users is its collaboration protocol. This protocol can be regarded as a service

promoting collaborative activities between users, allowing it to be re-used in other types of

Chapter 6 Collaborative Editing Application 175

settings, e.g. supporting an application with a different architecture or implemented with a

different technology.

Having users simultaneously manipulate a document's replicas raises the issue of consistency,

between the original document and its replicas. To resolve this, we have adopted the metaphor of

an editing token. The user holding an editing token has the sole permission to edit a specific

document. We call such user the master editor, while the original document is referred to as the

master document. We promote flexibility by allowing other users to work on their copy of the

document in parallel. We call these users regular editors as changes they made to their copy of

document need to be approved by the master editor before those changes are merged with the

master document.

Changes committed by a regular editor to the repository may not be reviewed immediately by the

master editor. This may due to the unavailability of the master editor on the network, or the

master editor is not ready to review the changes. With the support from the collaboration

protocol, such requests will be queued on the network and can be viewed by the master editor

once requested. This application will support weak consistency of documents, where document

copies on the network are allowed to diverge temporarily, but they will eventually come to an

agreement by means of the master editor's approval. Document copies that have the same version

as the master document are considered up to date and consistent with the master document. Other

versions are either waiting to be reviewed by the master editor, or already outdated. Our

application helps a master editor to have easy access to all versions committed by other users.

Even though user-committed versions of a document are stored by different repositories across

the network, our application is able to pull information about these versions from the repositories.

Once obtained, this information will be presented to the master editor.

The protocol also promotes eager notification of a document's new version across repositories

that have a copy of the document. When a master editor successfully commits a new version of a

document to a local repository, our application is able to extend information on this new

document version to other repositories that currently have only the outdated versions of the

document. This information also includes details of a repository keeping the latest version of the

document. With such information, other repositories could synchronise their outdated versions

with the latest version from the specified repository.

Chapter 6 Collaborative Editing Application 176

A version control system such as Concurrent Version System (CVS) [12] can be used to support

repository and document versioning. CVS is a version control system aimed at keeping document

history and has all versions of a document by storing differences between them. In this case, an

application, e.g. a repository agent can be employed to act as a wrapper to the CVS repository,

while implementing our protocol described for a repository. This way the repository agent will

translate all messages received from user applications to CVS commands executed on the

repository. Results acquired from the repository are returned to the requesting user applications.

In comparison to other related works [135][94][95], our work is unique in the sense that we use

mobile elements, i.e. shadows of MAMiMoU, to support the document sharing and collaborative

application for mobile users. Our approach is similar to others in the sense of having a proxy or

an application do tasks on behalf of a user on the infrastructure, although our approach offers

more flexibility with a shadow: a state associated with a user that is mobile and capable of

migrating to the user's vicinity. Repositories that are exploited by the shadow in this application

are those that are also local to the user's device. The short-distance communication between the

mobile device, shadow and repositories on the fixed infrastructure helps reduce the bandwidth

required for the application and improve its performance [34]. To summarize from the

implementation's viewpoint, relying on MAMiMoU to handle complex interactions between

mobile device and repositories has made the application's development straightforward. It allows

us to concentrate on the application-specific details of the application.

6.9 Conclusion

We have presented a collaborative editing application supporting mobile document sharing and

editing between mobile users by describing its architecture and collaboration protocol. Even

though the application is able to operate on its own, we relied on MAMiMoU to store and

forward messages transparently to mobile users. This is to improve the application's performance,

as some collaborative activities, such as delivery of notifications and propagation of knowledge

between repositories, can still be continued while users are offline. To prove this hypothesis, we

will present our evaluation in the next chapter, which aims to compare the performance of the

collaborative editing application when it is supported by MAMiMoU and when it is not.

Chapter 7 Evaluation 177

Chapter 7

Evaluation

In the previous chapter, we introduced a collaborative editing application, with an architecture

that promotes high accessibility of mobile documents among mobile users, supported by a

collaboration protocol designed to support collaborative editing between mobile users. Based on

services offered by MAMiMoU, which include supporting asynchronous messaging and hosting

an offloaded application's components, we believe that MAMiMoU's support can improve the

application's performance. To prove this claim, we perform an evaluation to compare the

performance of the application both when it is supported and when it is not supported by

MAMiMoU.

7.1 Evaluation Overview

In this chapter we present an empirical evaluation to analyse the benefits gained from the

integration of the collaborative editing application with MAMiMoU. Our aim is to establish

whether MAMiMoU significantly improves the collaborative editing application's performance.

In the evaluation, we test the real implementation of MAMiMoU and the collaborative editing

application in simulated environments. To this end, we compare the application's behaviour in

two different settings, specifically with and without MAMiMoU's support. In both settings, the

application is programmed to perform the same sequence of collaborative editing processes,

which we refer to in the rest of the chapter as a collaborative editing task.

We have designed an environment that simulates users performing typical collaborative editing

tasks. During collaboration, the simulated users are made to experience unavailability of

connection, being connected via different bandwidth, or being made to move to other locations,

resulting in delays before they can continue with their processes. Even though the evaluation is

performed in simulated environments without real users, the analysis is sufficient since the aim of

Chapter 7 Evaluation 178

the evaluation is not to evaluate interactions between users, but to evaluate the system being used

to support collaboration between mobile users in such environments.

7.1.1 Simulation Methodology

In this section we present the approach we adopt to conduct the simulation. The simulated

environment can be described in terms of four different dimensions, each consisting of different

levels (cf. Figure 7.1). These dimensions and their categorizations are described next.

Discrete Dimensions
i) MAMiMoU's support

ii) Collaboration patterns

iii) Users' connectivity

iv) Different features in mobile

users' environments

Simulations
o With MAMiMoU's support (SoFAR

andMAMiMoU)

o Without MAMiMoU's support

(SoFAR)

o Serialized editing

o Simultaneous editing

o Random editing

o Always connected users (ACU)

o Moderately connected users (MCU)

o Rarely connected users (RCU)

o Users' connection speed

o Users'mobility

o Collaboration group size

o Shared file size

Figure 7.1: Discrete dimensions

7.1.1.1 Dimension 1: MAMiMoU's support

At anyone time, the fIrst dimension represents one of two possible settings: the collaborative

editing application is either supported by MAMiMoU or it is not. The application's

implementation in both settings is described in Section 7.7.

7.1.1.2 Dimension 2: collaboration patterns

There are infInite possibilities for how a group of people can collaborate in editing a document.

There are different ways of performing collaborative editing, or collaboration patterns, which can

Chapter 7 Evaluation 179

be considered as an aspect of dependencies between the work of the collaborators [82]. The

collaboration patterns influence the time required to complete a collaborative editing task, since

different collaboration patterns may involve a different number of activities and different order of

performing the activities. Thus, some collaboration patterns may save time, in which case the

collaborative task among a group of mobile collaborators can be performed faster. As a result,

we include this feature as the second dimension that parameterizes the evaluation environment.

As we cannot possibly simulate an infinite number of different possible patterns of collaboration,

we narrow them down to three types of collaboration patterns, which we have named serialized,

simultaneous and random editing. Serialized editing collaboration requires most activities to be

performed in series; simultaneous editing collaboration promotes higher degree of parallelism;

while random editing collaboration allows the mixture of the other two patterns. We choose these

patterns due to the difference in number and order of activities they may offer. Thus, with these

variations, we expect to see a variation in the time needed to complete the collaborative tasks in

the simulation.

To give a general view of the collaboration pattern simulation, here we describe the general idea

of what will happen during the simulated collaboration. In the simulation, a group of between

four and sixteen users collaborate in editing a document. Each user is responsible for editing a

section of the document, and thus no update conflict is expected to occur. The sections written by

regular editors will be committed as tentative versions in the repository. Accordingly, the master

editor will have to merge these sections, i.e. the accepted tentative versions, into the latest version

of the master document.

In the serialized editing collaboration pattern (cf. Figure 7.2), the editing token is passed between

the editors sequentially. In this case, each editor has a turn to become the master editor. An editor

who receives the editing token becomes the new master editor, who is entitled to merge changes

made to the latest version of the master document and commit it to a repository as a newer

version of the master document.

In the simultaneous editing collaboration (cf. Figure 7.3), only one editor is responsible for being

the master editor all the time; this editor is responsible for reviewing and approving the changes

committed by other editors as tentative versions. This collaboration is simultaneous in the sense

that all regular editors can concurrently make changes to the checked-out document, commit

Chapter 7 Evaluation 180

changes as tentative versions and then leave the decision to review and accept or reject the

changes to the master editor.

Finally, in the random editing collaboration (cf. Figure 7.4), the master editor will either

randomly pass the editing token to a potential candidate, or review a tentative version committed

by another user. This type of collaboration is really flexible; in which case it can mix both

serialized and simultaneous editing to various degree, e.g. simultaneous editing is adopted most

of the time compared to serialized editing or vice versa. Thus, in the collaboration, only some

editors may get the opportunity to become master editor, unlike serialized editing. On the other

hand, there may be more than one master editor throughout the collaboration process, unlike

simultaneous editing. In simulating this pattern we consider an optimistic approach, which is

based on the following rules:

1) When an editor (editor-A) is assigned as a master editor:

a. editor-A is not allowed to be a master editor again once he / she passes the token

to another user

b. the previously submitted tentative version by editor-A will not be reviewed

again, as the section updated by editor-A is already merged with the master

document

2) When the tentative version committed by a regular-editor (editor-B) has been reviewed

by the master editor:

a. editor-B will not be a master editor

3) When all sections have been reviewed, the final version of the master document can be

committed to the repository, allowing other regular editors to check out the latest version.

In Figure 7.4 we denote a list of editors entitled to be the next master editor as potentialME-list,

while review-list is a list of tentative versions that need to be reviewed in order to complete the

collaborative editing task.

Chapter 7 Evaluation 181

Serialised editing activity diagram

x = total editors --- startTime recorded --..
editor-1 adds document

editor-2 ... editor-x check out
the latest major version of the editor-1 edits sectlon-1

document

editor-2 ... editor-x edit
editor-1 commits changes In

sectlon-2 ... section-x
sectlon-1

respectively
z=1;
y=2;

editor-y checks out latest
editor-z passes editing token

major version of the
document

to editor-y

t ~

editor-y merges the local
version (updated sectlon-y)
with the checked out major

version

editor-y commits the merged
document to be the new

major version
z=y;
y++;

no

y>totaIAuthor? I

yes

edltor-1 ... editor-(y-1) check
out the final major version of
the document respectively

~
--- endTime recorded -

Figure 7.2: Serialized editing collaboration

Chapter 7 Evaluation

Simultaneous editing activity diagram

---- startTime recorded -

• x = total editors

n 0

editor-1 adds document

•
editor-1 edits section-1

y=2;

1
waitFor(section-

yCommitted=true)

l
editor-1 checks out the
document committed by

editor-y

i
editor-1 reviews changes in

section-y committed by
editor-y

J
editor-1 merges the reviewed

document with the current
version of master document

y++;

y>totalAuthor? yes ...

I ,
editor-2 ... editor-x check out
latest major version of the

document

~
editor-2 ... editor-x edit
section-2 ... section-x

respectively

~
editor-2 ... editor-x commit

changes in section-
2 ... section-x respectively

• section-2Committed = true
."

section-xCommitted = true

editor-1 commits the master
document to be the final

major version of the
document

I

editor-2 ... editor-x check out
the final major version of the

document

-- endTime recorded -

Figure 7.3: Simultaneous editing collaboration

182

Chapter 7 Evaluation

Random editing activity diagram

x:; total editors
j = 2 ... x

- startTime recorded -

potentiaJME-Hst:; [editor-2, ... ,editor-x]
review-list:; 0
reviewCounler :; (x-1)

editor-ME: current master editor
item:; random(LlST): the item randomly selected from the LIST

yes--------"tL-"

remove editor-y from the
potentia/ME-list;

remove section-y from the
review-list;

reviewCounter -;

potentialME-list
=empty?

editor-y merges the checked
out master document with the

local copy
editor-ME:; editor-Yo

- endTime recorded -

yes

(review-list
=empty)A

reviewCounter-O)?

no

Figure 7.4: Random editing collaboration

remove editor-R from the
potentiaIME-Ust;

remove section-R from the
review-list;

reviewCounter-;

183

In order to present our hypothesis based on this dimension, we have analysed the expected

behaviour of each collaboration pattern. First, we calculate the number of activities needed by

Chapter 7 Evaluation 184

each collaboration pattern to accomplish an editing task, followed by the required number of

connectivity.

Collaboration Serialized Simultaneous Random editing
patterns / activity editing editing

Add document 1 1 1
----------------------- ------------- ----------------- -----------------

Check out 3*(totalEditor - 3*(totalEditor - 3*(totalEditor -1)

document 1) 1)
---------------- 1---,----------- --------- -

Commit document totalEditor totalEditor totalEditor
------------ f--------- ------------------- -------

Pass editing token totalEditor - 1 0 totalEditor - 1 0 (min)

(max)
------------------f----------- f------------ ------_._---------

Merge document totalEditor - 1 totalEditor - 1 totalEditor - 1 totalEditor - 1
------------------- ---------- ------------- ---- ---

Review document 0 totalEditor - 1 0 totalEditor - 1

Figure 7.5: Formulas to obtain the number of every activity performed in each collaboration
pattern (derived from Figure 7.2 - 7.4)

With these formulas (cf. Figure 7.5), we can obtain the number of each type of activity and

estimate which of these collaboration patterns will spend more time accomplishing the editing

task. This is done by obtaining the total number of activities involved when a pattern is adopted.

If we assume that each occurrence of an activity requires the same amount of time as others, we

may estimate that the collaboration pattern with the most number of activities will require more

time than if other patterns are adopted.

Based on this figure, we estimate that the collaborative editing task will be completed about the

same length of time for any collaboration pattern being adopted. In performing the task, some

activities may be carried out in parallel by different users, which we believe will affect the task

completion time. However, this analysis is made just to get a rough idea of the outcome of the

simulations.

7.1.1.3. Dimension 3: users' connectivity

The main difference between a collaborative editing application with and without MAMiMoU's

support is the total time needed by the application to be connected in order to proceed with the

editing task. When supported by MAMiMoU, the mobile collaborators do not have to be

continuously connected to the fixed infrastructure while collaborating. The only time connectivity

Chapter 7 Evaluation 185

is needed is when the application needs to deliver messages or requests to the repository, and to

receive the results. From this perspective, we can say that the use of MAMiMoU can minimise

the connectivity required for performing tasks. Thus we expect that the application with its

support would have the advantage in an environment where connectivity to the network is

infrequent.

We consider three different environments in which users may operate:

i. Always connected users (ACU) environment

ii. Moderately connected users (MCV) environment

iii. Rarely connected users (RCU) environment

In the ACU environment, all users are always connected to the network, while in the MCV

environment each user is connected only 50% of the time. In this environment, users' connections

and disconnections are unifonnly distributed throughout the simulations. We simulate this by

activating and deactivating the online status of the device, where each activation and deactivation

is performed 50% of the time. In the RCU environment, each user is connected to the network for

only 10% of the time. As in the MCU environment, the activation and deactivation of online

status is generated randomly, summing up to the ratio of 10% online activation time and 90%

online deactivation time.

We expect that a group of always connected users will always complete tasks faster than

moderately and rarely connected users. This is due to the continuous connectivity that allows

users to perform an uninterrupted collaborative editing task. A collaborative editing task requires

messages to be exchanged between collaborators' mobile terminals and the repository. Once a

mobile terminal is disconnected, no messages can be received or sent by the mobile terminal.

This slows down the completion of the collaborative task. While in contrast, if all users are

always connected, the collaboration can be carried out continuously, as messages can always be

exchanged between the repository and the mobile terminals. This speeds up the completion of the

task.

Connectivity to the fixed network is needed when the device is sending a message to the

repository or expecting a reply from the repository. At this time, the absence of connectivity will

result in a delay in proceeding with the task since the mobile terminal needs to wait for

reconnection. Apart from such a situation, the absence of connectivity does not have much effect.

Chapter 7 Evaluation 186

Based on this hypothesis, we first estimate the respective ratio of connectivity required by each

collaboration pattern to complete a collaborative editing task.

Specifically, most activities require connectivity when the request is first sent by the mobile

terminal to the repository, and later when the reply is returned by the repository. If the mobile

terminal is disconnected between these two times, the result will be lost and not be returned to the

user application. But with the support provided by MAMiMoU, the shadow will always be

available to receive the result. Thus, any disconnections will not cause a significant effect. For

activities like "pass editing token" and "check out document", connectivity is required more than

twice. For each activity, we estimate the number of messages being exchanged between different

components, reflecting the need for connectivity. With this summary, we may estimate the

significance of connection presence for each activity. To evaluate the effect of connectivity on the

application's performance, we simulate three degrees of users' connectivity.

As mentioned earlier, different patterns of collaboration involve different number of activities. At

the same time, different activities will have different sensitivities to the level of connectivity.

Thus, from the number of each type of activity, we may estimate the relative ratios of

connectivity required by the different collaboration patterns.

7.1.1.4. Dimension 4: features in mobile users' environments

The fourth dimension is used to express miscellaneous features of mobile users' environments,

such as connection speed, users' mobility and different size of collaborating group. These

features and their different discrete values are listed in Figure 7.6. In the user's connection speed

simulation, users are made to experience different connection bandwidths; in the user's mobility

simulation, users experience different degrees of mobility; in the collaboration group size

simulation, different numbers of users are simulated to perform collaborative tasks; and finally in

the document size simulation, users are made to edit different sizes of shared document. These

features will be explained further in Sections 7.2.1 to 7.2.4. In each section, we explain the

hypothesis, followed by the results obtained and the analysis we draw from the results.

Chapter 7 Evaluation

Features in mobile users'
environments

Users' connection speed (cf.

Section 7.2.1)

Users' mobility (cf. Section

7.2.2)

Simulations

• Slow (14.4 Kbps)

• Medium (56.6 Kbps)

• High speed (100 Mbps)

• Stationary users

• Moderately mobile users

location every 10 minutes)

• Highly mobile users (users

every 5 minutes)
-------------------- ----------------

Collaboration group size (cf. • Small group (4 editors)

Section 7.2.3) • Medium size group (8 editors)

• Large group (16 editors)
--------------- ---------------

Document size (cf. Section • Small file (4KB)
7.2.4) • Medium size file (16KB)

• Large file (77KB)

(users

change

Figure 7.6: Dimension 4: features in mobile users' environments

7.1.2 Computing Facilities

187

change

location

In order to run the evaluation, we use Southampton University's Iridis cluster, consisting of 204

computational nodes. The service is primarily designed as a batch service for users who need to

run distributed memory parallel jobs. Nodes are accessed via the Easy scheduler, to which jobs

are submitted. Most Iridis nodes have CPU type of Intel Pill or P4 and have at least 256MB

available memory (RAM). With this facility, we can run the evaluation on 7-19 nodes at one

time. Seven nodes are required to run a simulation involving four mobile collaborators; eleven

nodes are required to run a simulation involving eight mobile collaborators and nineteen nodes

are required to run a simulation involving sixteen mobile collaborators. We will describe the

evaluation settings next.

7.1.3 Evaluation Environment Settings

We set up the evaluation environment by running a repository on one node and user applications

on another 4 to 16 nodes, each of which represents a user's mobile terminal (cf. Figure 7.7). In

Chapter 7 Evaluation 188

order to simulate user migration (which affects the location of shadows in MAMiMoU), a shadow

handler is deployed on another node to create and migrate shadows as if a user had changed

location. We also run a recording agent on one stationary node, which records the events that are

logged by the application .

user-application iv , ,
~ 'YV «---

<E------7 : Message exchange

« ______ : Notifications of events

Figure 7.7: Evaluation environment settings

The metric we use to assess application performance is task completion time, which is the total

time spent by the application to complete a simulated collaborative editing task among a group of

virtual users. The less time required by an application to complete the collaborative editing task,

the higher performance we claim for the application. Task completion time is actually measured

from the log recorded by the recording agent. In the simulation, the application logs a start-time

and an end-time. Start-time is the time when Editor!, who is the initial master editor, sends the

"add" request to the repository, while end-time is the time when the last editor, i.e. Editor4, has

checked out the final version of the document (cf. Figure 7.8) . Both start-time and end-time are

Chapter 7 Evaluation 189

recorded by the recording agent when notifications of such events are received from the

respective users' user applications.

add(idmeSSillje ,Edrtor1)

•

• •
checkOut(idme~5aoe , Editor

.1d"'«'.V.>

end-time ----- ------ ------------f+---------1
checkOut_ ack(idmusa~ I

·success·)

Figure 7.8: Simulation of a collaborative editing task between mobile collaborators

7.2 The evaluation

In this section, we describe the four evaluations we perform to analyse the application's

performance with and without MAMiMoU's support.

7.2.1 Evaluation based on users' connectivity

The first evaluation is performed to observe the performance of the collaborative editing

application in different settings of users' connectivity. Our aim is to establish whether a

collaborative editing task is completed faster by a collaborative editing application that is

supported by MAMiMoU, than one without it, in the Reu environment. Based on Figure 7.6 and

7.9, we expect that a group of mobile collaborators adopting the serialized editing collaboration

will take the longest time in completing the collaborative editing task in comparison with the

other two patterns of collaboration. The reason for this is that it has the highest number of

messages passed, i.e. 70, in comparison to the total of 46 and 18 messages required by the

simultaneous and random editing.

Chapter 7 Evaluation 190

Activity Number of connection needed

Add document • Sending add message: 1

• Receiving add_ack: 1

• Total: 2
----------------------- --

Check out document • Sending log message: 1

• Receiving log_ack message: 1

• Sending check out message: 1

• Receiving checkout_ack message: 1

• Total: 4

Commit document • Sending commit message: 1

• Receiving commiCack message: 1

• Total: 2
Pass editing token ·---C: d' urrent master e ltor:

• Sending get collaborator list message: 1

• Receiving get collaborator liscack message: 1

• Sending pass editing token message: 1

• Receiving pass editing token _ack message: 1

• Total: 4

New master editor:

• Receiving pass editing token message: 1

• Sending pass editing token ack message: 1

• Sending change master editor: 1

• Receiving change master editor _ack : 1

• Total: 4
~~--~-----------+---

Merge document • Total: 0
-~-~~------------+

Review document • Total: 0

Figure 7.9: Number of message transfer needed for each activity

Chapter 7 Evaluation

]
~

.~
~

.~
0.
S
8
~
" f-.

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

Task completion time in always-connected-users (ACU)
environment

~--===---.----.. - ---._----_.-

Seria lised editing

o W,h MAMtJoU Support

Simultaneous

editing

Random

editing

EI W,hout MAMtJoU Support Collaboration patterns

Figure 7.10: Task completion time in ACU environment

Task completion time in moderately-eonnected-users (MCV)

200000
180000
160000
140000

120000

100000

80000
60000
40000
20000

0 +---'---
Serialised editing

environment

Simultaneous

editing

Random

editing
o With MAMirvloU Support

c Wrthout MAMiMoU Support Collaboration patterns

Figure 7.11: Task completion time in MCU environment

Task completion tirn.e in rarely-connected-users (ReV)

300000

] 250000

" .~ 200000
§

• .tl

t
150000

100000

'" ~ 50000

o +---L._
Serialised editing

o With MAMM:JU Support

El Without MAMM:JU Support

environment

Simultaneous

editing

Collabor ati on patterns

Random

editing

Figure 7.12: Task completion time in RCU environment

191

Chapter 7 Evaluation 192

We have performed a total of 18 experiments for this evaluation. For each of them, we run 10

simulations of the collaborative editing task, which we average and plot in Figures 7.10 to 7.12.

The most noticeable observation is that in the ACU and MCU environments, the application

without MAMiMoU's support performs the task faster than the application supported by

MAMiMoU, but in the RCU environment, an application supported by MAMiMoU outperforms

the one without MAMiMoU.

Comparing results from MCU and RCU, on average, the performance of the application without

MAMiMoU's support degraded as much as 266% in RCU, in comparison to only 4%

performance degradation of the application supported by MAMiMoU. From this, we may say that

the application supported by MAMiMoU performs more steadily in MCU and RCU, which

means that the application is not affected much by additional users' disconnections. The

calculation of these percentages is shown in Figure 7.14.a.

Referring to Figure 7.12, we calculate completion time difference by applications with and

without MAMiMoU's support, expressed as percentages. These calculations are presented in

Figure 7.13. On average, 27.42% of time is saved when the application is supported by

MAMiMoU and specifically, the highest percentage of time is saved (41.03%) when the random

editing collaboration is adopted.

To learn more about the reliability of an application's performance when it is supported and not

supported by MAMiMoU, we produce graphs in Figure 7.14. Graphs (1) and (2) show

performance deterioration, expressed as percentages, in the MCU and RCU environments

respectively. The percentage is calculated based on task completion time recorded in the ACU

environment (cf. Figure 7.14.a). In both graphs, we can see that the performance of an application

without MAMiMoU's support deteriorates more than that of an application supported by

MAMiMoU.

Percentage of difference Serialized Simultaneous Random Average

editing editing editing

Rarely connected users 23.15% 18.09% 41.03% 27.42%
(RCU)

Figure 7.13: Percentage of time saved by MAMiMo U in RCU environment

Chapter 7 Evaluation 193

We can see that the application without middleware shows a slightly higher percentage of

performance deterioration in the MeU environment in comparison with the application supported

by middleware, while this percentage is much higher in the ReU environment (cf. Figure 7.14.b

c). From this observation, we conclude that performance of the application without MAMiMoU's

support deteriorates faster with additional disconnections in the environment.

To prove the statistical significance of these experimental results, we perform some hypothesis

testing on the measurements obtained. Our main objective is to show that the results we obtained

are significant for the claim that in the ReU environment the application supported by

MAMiMoU performs better than the application without MAMiMoU's support.

The error bar plot as shown in Figure 7.15 is based on Figure 7 .l2. From this plot, we can see that

the task completion time range for the application both with and without middleware support

overlap with each other except when random editing collaboration is adopted. With this

observation, we can conclude that the two sets of results for random editing are significantly

different from each other, but we could reach no conclusion in cases where serialized and

simultaneous collaboration patterns are adopted. We do further hypothesis testing on task

completion time recorded from these two simulated environments to prove that the measurements

recorded from the application supported by MAMiMoU are significantly less than the

measurements recorded when the application without MAMiMoU's support is performing the

task.

Chapter 7 Evaluation

For graph 1.
Percentage of deterioration = (tctMCU

/ tctACU
) * 100

For graph 2.
Percentage of deterioration = (tctRCU

/ tctACU
) * 100

tcf : task completion time in environment X.

a) Calculation of application's performance deterioration

300
5 :c 250
~ .s:

200 2J
~

"tl

C1 150

fo 100
~
~ 50
~

0

a) MCU environment:

percentage of perfonnance deterioration

Serialised editing Simultaneous

editing
Random
editing

___ Without M<\MMJUs support
Collaboration patterns

-...- With M'lMMol1s support

b) Percentage of performance deterioration in MCV environment

§
:c
a .s:
2J
~

"tl

C1
fo
.G s:
~

!i
~

1400

1200

1000

800

600

400

200

0

b) RCU environment:

percentage of perfonnance deterioration

... ...
5erialised editing

__ With Ml\MWol1s support

Simultaneous

editing

Random

editing

-...- Without M'lMWol1s support Collaboration patterns

c) Percentage of performance deterioration in ReV environment

Figure 7.14: Deterioration of application's performance

194

Chapter 7 Evaluation

Error bar plot of recorded results from
application without MAMiMoU's support

.~700000

§ 600000.
'a

<l)

~500000.
o
u

~400000

5;300000

Error bar plot of recorded results from
application with MAMiMoU's support

.~ 700000

§ 600000
'a

<l)

]- 500000
o
u

@ 300000

~ 400000 1
r.· ... · ... · .. -.·.·.-.. -.·.·.·;.~.~.~~.~.~.~.~.~~~~~,~~~~~ ~~ .. ~~i;; ~;~;;,~;;;, :.:~.::.::.:~.: -.. -.. -.. -.. -.. -.,

1::. __________ ,,=,,=,,=:.:=:.: " . =~~~~~~~ :.:="=:.:=::=,, :.:=::=:.:=:.:=::= - .. - .. - .. - .. - .. - ..

N

~200000
<l)

::B 100000-

Seriillised Simultaneous RantJom Serialised Simultaneous Random
editing editing editing editing editing editing

Collaboration patterns Collaboration patterns

Figure 7.15: Error bar plot

195

We use SPSS software [14] to generate the hypothesis testing analysis in order to find the

significance value of the results we have obtained. Since the recorded task completion times do

not constitute a random sample from a larger population and they are not based on assumption

that they come from a parametric family of distributions, we use non-parametric testing to

calculate the significance value of the recorded results [18]. We use the Mann-Whitney U Test,

which is a two-independent-samples non-parametric test. We define task completion time

performed by an application supported by MAMiMoU and an application without MAMiMoU's

support as the two independent samples to be tested.

Figure 7.l6.a shows the results generated by SPSS software based on task completion time

recorded when the serialized editing collaboration is adopted in the RCU environment.

Specifically, it presents the summary statistics from a Mann-Whitney U Test. The table lists the

average of ranks for the recorded task completion time grouped by application with and without

MAMiMoU's support; values are 14.9 and 7.1 respectively. These two values are different, which

means that their groups' spans differ. To further confirm that their spans really differ, the Mann

Whitney U Test or the Wilcoxon W Test is used. Figure 7.l6.b contains statistics associated with

a Mann-Whitney U Test for two independent measurements recorded by the application with and

without MAMiMoU's support when serialized editing collaboration is adopted in the RCU

environment.

Chapter 7 Evaluation 196

The small significance value «0.05) (cf. * in Figure 7.16.b) indicates that the two compared

groups of values have different locations (value range) and are thus significantly different. This

allows us to draw correct conclusions from the results obtained. We also performed the same test

for the simultaneous and random editing collaborations. Thus, we can similarly conclude that

differences in task completion time collected from the two different settings, namely an

application with and without MAMiMoU's support, are significant. Based on this conclusion, we

can correctly assume that the application supported by MAMiMoU performs the collaborative

editing task faster in the RCU environment, which is deduced from the fact that the task

completion time recorded by an application in this setting is significantly lower than the same

measurements recorded from the same application when it is not supported by MAMiMoU. One

reason why such results are observed only in the RCU environment is due to the application not

supported by MAMiMoU failing to operate normally, e.g. frequent timeouts occuring on the

mobile terminal when submitting requests to the repository. Whereas for an application supported

by MAMiMoU, frequent disconnections of the mobile terminal are addressed by MAMiMoU, in

which case the shadow stores and forwards messages while the mobile terminal is disconnected.

a) Mean rank for serialized editing collaboration

Ranks Application N Mean rank Sum of Ranks

Task completion Without MAMiMoU's 10 14.9 149

time support

With MAMiMoU's 10 7.1 61

support

Total 20

b) Test statistics for serialized editing collaboration

Test Statistics (b) Task completion time

Mann-Whitney U 6

Wilcoxon W

z -3.326

Asymp. Sig. (2-tailed) 0.001

Exact Sig. 2* (I-tailed Sig.)] 0« 0.05 *)

a: Not corrected for ties

b: Grouping variable: with or without MAMiMoU's support

Figure 7.16: Mean rank and test statistics for serialized editing collaboration

Chapter 7 Evaluation 197

Since we have proved that the results we obtained are significant, we can now further prove that

our next hypothesis, which claims that a group of users adopting the serialized editing

collaboration will suffer the most in the RCU environment (cf. Figure 7.7). This is because the

serialized editing collaboration requires a high number of connectivity during the collaboration.

This can be seen in Figures 7.12 to 7.14, where the serialized editing collaboration takes the

longest time to complete the task, followed by random and simultaneous editing collaboration.

With this observation, we can draw a conclusion that the serialized editing collaboration is not

suitable to be adopted in the mobile users' environments, and simultaneous editing is the

recommended collaboration pattern. We further analyse these results based on different

collaboration patterns by comparing the task completion time of an application with and without

MAMiMoU's support in the RCU environment. From Figure 7.13 we can see that total time

being saved by MAMiMoU in the serialized editing collaboration is higher than in the

simultaneous editing collaboration but lower than in the random editing collaboration.

For the following evaluations, we do the same hypothesis testing as explained in this section, but

to simplify the presentation we will omit the explanations of such testing. Besides this, no graphs

from the ACU and MCU environments will be described since we are specifically interested in

observing what happens in the RCU environment.

7.2.2 Evaluation based on connection speed

In this evaluation, four users are simulated as collaborating over the same connection speed. We

expect that the collaborative editing task can be completed faster with high-speed communication

links (lOOMbps) than with slower ones (56.6Kbps or 14.4Kbps), because of the reduced time

required to exchange messages and transfer files between components. Our aim is to show that in

all these three connection speed settings, MAMiMoU helps to speed up the collaborative task. We

simulate the overall latency of a particular speed rate; for instance, in simulating a

communication channel with a speed of l4.4Kbps, we use the formula shown in Figure 7.17 to

calculate the delay. The delay will be simulated at the recipient every time a message is received.

The actuaCsendin~time is the actual time needed to deliver the message via the connection

being used. For example, to deliver a message or a file with the size of lOOkB on a lOOMbps

network, approximately 7.8125 milliseconds are needed.

Chapter 7 Evaluation

simulateSendingTime := messageSize_in_Kbits / 14.4;

delay := simulateSendingTime - actual_sendin~time;

messageSize_in_Kbits: size of message or file in Kbits

actual_sending_time: total time spent sending the message or file

delay: total delay to be si mulated in seconds

Figure 7.17: Delay calculation

198

The results obtained in this evaluation are illustrated in Figures 7.18 to 7.20, where we can see

that for all connection settings an application with MAMiMoU outperforms the one without it.

From Figure 7.21 , we can see that in comparison to the application's performance with a

100Mbps connection, the performance of the application with MAMiMoU support deteriorates

more than the application without MAMiMoU support with 56.6kbps and l4.4kbps connections.

This may be due to the delay when messages are being transferred between the mobile terminal

and shadow resulting in the messages failing to be delivered once a disconnection occurs . Thus

the time needed to res end the messages prolongs the time taken to complete the collaborative

editing task. However, even with this delay, MAMiMoU still saves time in all the three

connection-speed settings (cf. Figure 7.22). Due to high deterioration in the application's

performance, a lower percentage of time is saved with lower connection speeds. From this

observation we can conclude that applications supported by MAMiMoU are also affected by slow

connections, but not as much as applications without MAMiMoU support.

300000

a) Task completion tiIne in high speed (100Mbps)

connections enviroIU'Ilent

250000

200000

150000

100000

50000

0 +---'---
Scrialised

editing

o With MAMtv10Us support

m Without MA.Mtv1oVs support

Simultaneous
editing

Collaboration patterns

Random
ed iting

Figure 7.18: Effect of different users ' connection speed in ReU environment: high-speed
connections

Chapter 7 Evaluation

b) Task cOJl1pletion tiIne in medium speed (S6 .6Kbps)

connections environnlent
450000

~ 400000

J 350000

I
300000

250000

200000

150000

~ 100000

50000

0
Serialised

editing

o Wl1h fvbMN10U Suppon

CJ Without NbMrv10U Support

Simultaneou s
editing

Collaboration Patterns

Random
editing

199

Figure 7.19: Effect of different users' connection speed in RCV environment: medium speed
connections

c) Task coxnpletion t::i.J:ne in lo'W speed (14.4Kbps) connections

~
~ ."
8
il

§
~

450000

400000

350000

300000

250000

200000

150000

100000

50000

o
Serialised

e diting

o With tv'A.Mrv'oLJs support

C Without MAMtv'oUs suppon

environDlenl

Sirrrultaneous
editing

Collaboration patterns

Random
editing

Figure 7.20: Effect of different users' connection speed in RCV environment: slow connections

Percentage of application's performance deterioration

140
.,

120 ~

'" /' s
" 100 .,

/ () ---+- With MAMiMoU support
~ 80 c. / ---" ___ Without MAMiMoU 0 60
'" ¥'--- support '" (; 40
"C .,

20 ~
0

56.6kbps 14.4kbps

Bandwidth settings

Figure 7.21: Percentage of application's performance deterioration

Chapter 7 Evaluation

Percentage oftime saved by MAMiMoU

30.-------------------------.
."
~ 25

'" U)

CI> 20

~
'0 15
Q)

g> 10
E
Q)

~ 5
Q)

11.

o
100Mbps 56.6kbps

Bandwidth settings

14.4kbps

EJ Percentage of tim:: saved by
M AMiM oU

Figure 7.22: Percentage of time saved by MAMiMoU

7.2.3 Evaluation based on users' mobility

200

We expect that a group of highly mobile users tends to slow down the collaborative task due to

the extra work the users' applications need to perform every time they reconnect to the network

from a different location. In other words, users' mobility overhead is proportional to the number

of users' migrations. Since MAMiMoU can perform tasks on behalf of the users while they are

moving and reconnecting to their new location, MAMiMoU can help save time in completing the

collaboration. Thus, we perform an evaluation to prove that MAMiMoU not only saves time in a

collaboration between stationary users, but also in environments where users are moderately

mobile (moving every 10 minutes) and highly mobile (moving every 5 minutes) .

Figures 7.25 to 7.27 show that the application completes the task faster with MAMiMoU than

without it, in all three settings of users ' mobility. We can also see that more time is saved by

MAMiMoU in environments where users are moderately and highly mobile.

From Figure 7.26, we can see that performance of the application without MAMiMoU support

deteriorates significantly more than the application supported by MAMiMoU. This shows that

MAMiMoU allows an application to perform reliably in different settings of users' mobility.

While from Figure 7.27, we can see that MAMiMoU saves time in all the three users' mobility

settings. The most time is saved when users are relocating every 10 minutes. The time being

saved by MAMiMoU becomes less when the users relocate every 5 minutes, probably due to the

Chapter 7 Evaluation 201

higher overhead time needed for the shadow to migrate and re-establish connection with the

mobile terminal.

a) Task completion time in the envirorunent with

300000

~ 250000 -i------.

_§ 200000 -i------,-::c--

8 -£ 150000

1100000

~ 50000

0+---'---
Serialised

editing

o With t./AMII/oVs support

,I;J Without tv1A.M1v'oVs support

stationary users

Sirrruitaneous
editing

Collaboration patterns

Random
editing

Figure 7.23: Effect of different users' mobility number in RCD environment: stationary users

b) Task completion time in environment W"ith

80008gerately -mobile users (move every 10 minutes)

~ 700000 :s 600000

-§ 500000 -1----
8 -E 400000 -1---

§ 300000

~ 200000

f'" 100000

0+--'--
Serialised

editing

o Wrth t-MMtv'oUs support

E3 Wrthout MA.Mtv'ol1s support

Simultaneous
editing

Collaboration patterns

Random
editing

Figure 7.24: Effect of different users' mobility number in RCD environment: moderately mobile
users

Chapter 7 Evaluation

c) Task completion time in the environment with
highly mobile u sers (move every 5 minutes)

700000

! 600000 ~----

~ 500000

~ 400000 -1----

" I
.:.:

~

300000

200000

100000

0 +---1..--
Serialised

editing

o With MAMM:JLTs support

C Without MAMtvtJUs support

Sim.Jltaneou s
ediling

Collaboration patterns

Random
editing

202

Figure 7.25: Effect of different users ' mobility number in ReU environment: highly mobile users

Percentage of application's performance deterioration

300
c:

0

250 'i;
~ ~

$
200 __ With MAMiMoU support

OJ
'C 150
'0 ____ Without MAMiMoU

~ 100 support
S • • c:
OJ 50
~
OJ
c..

0
Relocation el.ery Relocation el.ery

10 minutes 5 minutes
Mobility settings

Figure 7.26: Percentage of application's performance deterioration

Percentage of time saved by MAMiMoU

OJ

70~--------------,

60 +-------

50+-------

~ 40 -\-------
c:
~ 30 +-------
OJ

c.. 20 +--4~~1~--

10

Stationary Relocation every Relocation every
10 rrinutes 5 rrinutes

Users' mobility settings

I III Percentage of time sal.ed I

Figure 7. 27: Percentage of time saved by MAMiMo U

Chapter 7 Evaluation 203

7.2.4 Evaluation based on collaboration group size

The next evaluation we performed was based on the size of the collaboration group. Our initial

hypothesis is based on Figure 7.5 and Figure 7.9, from which we obtain the number of message

exchange that reflects connectivity ratio required by a group of users' applications according to

different group sizes, namely groups consisting of 4, 8 and 16 editors. From the estimation, we

expect that a large number of editors will slow down the collaborative task, because of the

increasing number of processes that need to be performed, i.e. more regular editors being

involved in the collaboration means that more tentative versions need to be reviewed by the

master editor. Thus, we expect such a delay to increase in proportion to the number of editors

involved in the collaboration. Since MAMiMoU may perform some tasks while users are

disconnected, some time can be saved in the collaboration process. Thus, in this evaluation, we

want to prove that the bigger the size of the collaboration group, the more time can be saved by

MAMiMoU in the ReU environment.

a) Task completion time by 4 collaborators
300000

! 250000

.~

I
200000

150000

100000

~ 50000

0
Serialised

editing

o Wrth !\I\AMtvbUs support

EJ Wilhout PvV\M~Us support

Si.rn..Iltaneous
editing

Collaboration patterns

Random
editing

Figure 7.28: Effect of different collaboration-group size: small group

Chapter 7 Evaluation

900000

~ 800000

~
700000

600000
c 500000 0

i 400000 'Q.
§ 300000

~
200000

100000

0

b) Task completion time by 8 collaborators

Serialised
editing

Sirn.lltaneous
editing

Random
editing

o Wrth tvtA.Ml\IoUs support
CoUabora tion panerns

m Without tv\A.M~Us support

Figure 7.29: Effect of different collaboration group size: medium sized group

3000000

l 2500000

~ 2000000
8
II 1500000

§ 1000000

~ 500000

0

c) Task completion time by 16 collaborators

Serialised
editing

SirnJltaneous
editing

Random
editing

o Wrth N'A.M!vbUs support CoUaboration panerns
I:l Wrthout tv'A.MtvbUs support

Figure 7.30: Effect of different collaboration group size: large group

Percentage of application's performance deterioration

800
c:

700 .2 / ~ 600 .g / / s 500 -+- With MAMiMoU support ., // "0 400
"0 / / --- Without MAMiMoU ., 300
CI // support
.!l! 200 c: :/' .,
~ 100
Q)

0.. 0
8 users 16 users

Different group sizes

Figure 7.31: Average percentage of application's performance deterioration

204

Chapter 7 Evaluation

Percentage of time saved by MAMiMoU

50,------------------------,
45 +----------===~--------~

4>

40 +-----------
35 +----------

N 30 +----------
ai 25

~ 20
0.. 15

10
5
O+-~~L-,_~~~~~

4 users 8 users 16 users

Different group sizes

El Percentage of time sa-ed by
MAMiMoU

205

Figure 7.32: Percentage of time saved by MAMiMoU based on different collaboration group size

Figures 7.29 to 7.31 show the results we obtained from this evaluation. We can see that the

application that is supported by MAMiMoU outperforms the application without MAMiMoU's

support in all three different settings of collaboration group size. From Figure 7.31, we can see

that performance of the application without MAMiMoU deteriorates more than the application

supported by MAMiMoU when the group size is increased to 8 and 16 users. This shows that

MAMiMoU allows the application to perform reliably when the number of collaborators using

the system increases. Studying the results further, we calculate the percentage of time being saved

by MAMiMoU in each setting (cf. Figure 7.32). From this graph, we can conclude that

MAMiMoU saves time in all three settings of collaboration group size. However, the time being

saved when the collaboration consists of 16 users is less than when the group size is 8 users and

thus we could not prove that the bigger the size of the collaboration group, the more time can be

saved by MAMiMoU. However, such results may be due to the higher number of shadows

running on a machine resulting in a longer time taken for a shadow to process requests from the

mobile terminal. Another possibility is due to the slow response from the repository that has to

serve more users.

7.2.5 Evaluation based on file size

For our final evaluation, we simulate collaborative editing tasks by involving different file sizes.

Our aim is to establish that the size of a document being edited by a group of collaborators would

also affect the completion time of a collaborative editing task. Basically, this is due to the extra

time being used for long file transfers when a large sized file is involved. Activities such as

Chapter 7 Evaluation 206

"commit" and "check out" document involve such file transfers. Thus, these particular activities

are expected to be lengthy when dealing with a large file.

From this evaluation, we believe that we will be able to prove that the support given by

MAMiMoU to the application will help to shorten the task completion time. This is based on our

prediction that the application without MAMiMo U' s support will not be able to cope well in the

RCU environment especially when the task involves a large sized file. This is basically due to the

application's lack of support for handling file transfer when a disconnection occurs. The only

failure handler is to repetitively attempt to transfer the file until it is successfully delivered. We

assume that such repetitive attempts at a file transfer, especially involving a large file, further

lengthen the task completion time. In the implementation, we transfer the file separately from the

message. We use data buffering in order to transfer a single file in smaller parts (maximum of 300

bits a time). The file is transferred through MAMiMoU just like messages are stored and forward

between the mobile terminal and network-based applications. This way the file is temporarily

cached by the shadow on the platform it is operating before they are being forwarded to the

mobile terminal or network-based application.

Here we can estimate which collaboration pattern may be greatly affected by the size of the file.

The high number of activities that involve file transfer leads to a high probability that file size

affects total task completion time. From Figure 7.7 we deduce the number of file transfers

occurring for each collaboration pattern. From the calculated number of file transfers, we can see

that each collaboration pattern involves the same number of file transfers. From this observation,

we may assume that different file size may not have any effect for different collaboration

patterns. Even though we could not reach a conclusion based on the collaboration patterns, from

this evaluation we want to prove that the collaborative editing application supported by

MAMiMoU will perform better in the RCU envirorunent. Besides this, our aim is also to prove

that when a larger file is involved, more time is being saved when the application is supported by

MAMiMoU in comparison with when the application is without MAMiMoU's support.

Chapter 7 Evaluation

Task completion time in the collaborative editing
of a small-sized (4 KB) file

350000

~ 300000 4------("'

.~ 250000 --1-------

.~ 200000 --1----

1150000

i 100000

~ 50000

o -1---'---
Serialised Editing Simultaneous Random

o Wrth fIIoMfIIoU Support
Editing Editing

C Wrthout tvbMtvbU Support Collaboration patterns

Figure 7.33: Collaborative editing of a small file

Task completion time in the collaborative editing
of a medium-sized (16 KB) File

300000

250000 -j---

200000 -j---

150000

100000

50000

04--'----"
Serialised Editing Simultaneous

Editing

o With fIIoMfIIoU Suppon

c Without tvbMlvt:lU Support
Collaboration patterns

Random

Editing

Figure 7.34: Collaborative editing of a medium-sized file

Task completion time in the collaborative editing ofa
large (77KB) file

350000

300000

250000

200000

150000

100000

50000

0 +--'--
Serialised Editing Simultaneous

Editing

o With WoMWoU Suppon Collaboration patterns
o Without fIIoMWoU suppon

Random

Editing

Figure 7.35: Collaborative editing of a large file

207

Chapter 7 Evaluation

Percentage of application's performance deterioration

60

50 ~

/" Q) 40 -+- With MAMiMoU support
Cl // J9 a; 30

// __ Without MAMiMoU 0

~ 20 support

10 //'
V

0
16 kB file 77 kB file

File size settings

Figure 7 .36: Average percentage of application's performance deterioration

Average of percentage saved by MAMiMoU

35.-------------------------.

Q)

30

25

N 20
c:
1l 15 :;;

D.. 10

4kB 16kB

Different file sizes

77kB

o Average of percentage saved
by MAMiMoU

Figure 7.37: Time saved by MAMiMoU in Reu environment based on different file size

208

From graphs in Figures 7.34 to 7.36, we can see that collaborative editing tasks are completed

faster by applications supported by MAMiMoU in comparison with applications without

MAMiMoU's support. This applies to all simulations involving different file sizes. In Figure

7.36, we can see that performance of the application supported by MAMiMoU deteriorates more

than the application without MAMiMoU support. Even though this is the case, MAMiMoU still

reduces the amount of time needed to complete the collaborative editing task in all three file size

settings (cf. Figure 7.37). The percentage of time saved is reduced when the size of the shared file

increases and thus we could not prove that when a larger file is involved, the more time is being

saved by MAMiMoU. However, such a result may be due to the need to transfer the file twice

when MAMiMoU is used, i.e. a file transferred from a mobile terminal will be transferred to the

shadow first, and then to the repository, and vice versa.

Chapter 7 Evaluation 209

7.3 Analysis

First of all, we have proven that MAMiMoU improves performance of a collaborative editing

application in RCU, which is a challenging environment for a mobile terminal's application to

operate, where most of the time the application relies on a network-based application, e.g. a

repository. Secondly, we have proven that in many different challenging features of RCU,

(different bandwidths, users' mobility, collaboration group size and file size settings),

MAMiMoU was able to maintain its ability to support the application and improves the

application's performance. This is shown in the graphs showing the time saved by MAMiMoU in

those different settings (cf. Section 7.2.2 - Section 7.2.5). The most time saved by MAMiMoU in

the collaborative work is when mobile users are simulated to relocate every 10 and 5 minutes (cf.

Section 7.2.3), in which case MAMiMoU saves more than 50% of time. The least time is saved

by MAMiMoU is when the users have a connection speed of 14.4kbps, in which case less than

10% of time is saved (cf. Section 7.2.2).

In terms of collaboration patterns, we observed that the serialized editing collaboration always

results in the longest time needed to complete a collaborative editing task, while simultaneous

editing collaboration always results in the least time needed. From this, we can draw a conclusion

that simultaneous editing is better for mobile users' environments, while serialized editing should

not be adopted. Simultaneous editing may offer this advantage due to the parallelism it promotes

in performing the collaborative activities.

7.4 Discussion

The evaluation we have presented in this chapter is unique in the sense that it combines the

experiment on a collaborative application with a middleware system. Evaluations and analysis

performed on CSCW systems [24][25][19] involve the study of interactions and technologies

used in the collaborative work, while system evaluations such as presented in [22][34] focus only

on evaluating the performance of mobile agent-based systems. The simulation is designed in such

a way since the application is expected to operate in mobile users' environments. The features

forming simulated dimensions in the experiment reflect the real challenging features of the

environments of mobile users.

Chapter 7 Evaluation 210

The results we obtained in Section 7.2.1 may raise a question of whether MAMiMoU is suitable

to support the applications, since in the ACU and MCU environments, the application without

MAMiMoU support performed better. This is due to the overhead introduced by MAMiMoU in

migrating shadows and by having to store and forward messages between the mobile terminal and

repository. We can conclude that in ACU and MCU environments, having direct interactions with

the repository are more advantageous, while in RCU, MAMiMoU is needed to support the

application and improves its performance. To support an application in all the three different

environments, the application can be provided with two modes; the fIrst mode is for ACU and

MCU environments that do not require the support from MAMiMoU, while the second mode is

for RCU environment, in which case the MAMiMoU service will be enabled. The switch between

the two modes can be automated by having a mechanism monitoring the mobile terminal's

connectivity to the network. If the mechanism detects that mobile terminal is connected

intermittently to the network within the ratio of 10% or less connectivity over a period of time,

the MAMiMoU service will be enabled. Otherwise, normal operation without MAMiMoU's

support will be performed.

7.5 Conclusion

In this chapter, we have presented an empirical evaluation analysing the performance of the

collaborative editing application when it is supported and not supported by MAMiMoU. From

this evaluation, we have proven that MAMiMoU is able to improve the application's performance

in RCU environment, which has other challenging and dynamic features, i.e. different bandwidth,

different users' mobility, different collaboration group sizes and different shared fIle sizes

settings. Since RCU is a typical environment in mobile users' environments, we can draw a

conclusion that MAMiMoU is a suitable approach and solution to address problems in mobile

users' environments. We now proceed to the fInal chapter, in which we present our conclusion for

the whole thesis and describe the future work.

Chapter 8 Conclusion and Future Work 211

Chapter 8

Conclusion and Future Work

In this thesis we have described the environment of mobile users and the challenges in developing

suitable applications for mobile users. Our ftrst aim was to address the common limitations in

mobile users' environments, which are caused by the quality of users' connections, users'

mobility and also the limitations of users' mobile terminals. We envisioned an abstraction layer

that hides users' mobility from the applications and the complexity of the communications

between mobile terminal and network-based applications. To realize this, we developed a

middleware called Mobile-Agent Based Middleware for Mobile Users (MAMiMoU), which

employs mobile agents as its main component. We use mobile agents as they can autonomously

perform tasks for mobile users and migrate to users' vicinities. Such close proximity between the

user's mobile terminal and the shadow can help reduce the bandwidth required and thus improve

the middleware's performance [34].

Our other interest was to support the sharing between mobile users of documents that are hosted

on the users' mobile terminals. We call such documents mobile documents; the sharing of these

documents between users is common in many types of collaborations. A challenge in supporting

the sharing of mobile documents is to make them accessible to other users, as they may be hardly

available to the network due to frequent disconnections of mobile terminals from the ftxed

network. Besides this, supporting collaborations between mobile users is also difftcult, as a group

of collaborating users is hardly ever online at the same time. Complex applications to support

both mobile document sharing and collaborative editing are impossible to deploy on mobile

terminals that have limited capability. Thus, our approach has been to design a collaboration

protocol to support a collaborative editing application by taking into account the characteristics of

Chapter 8 Conclusion and Future Work 212

both mobile documents and mobile users' environments. To improve the application's

performance in mobile users' environments, we integrated the application with MAMiMoU.

We performed an evaluation involving a test of a real implementation by running it in a simulated

mobile users' environment, where users have intermittent connectivity and mobility. In such an

environment, we monitored the performance of the collaborative editing application used by a

group of mobile collaborators to complete collaborative editing tasks. In one setting the

application was supported by MAMiMoU, while in the other it was not. The performance of the

application in both settings was compared and discussed. From the results obtained, we proved

that the application's performance was significantly improved. This proves our thesis, which

states that MAMiMoU is a practical solution to support mobile users' applications in mobile

users' environments, in which case MAMiMoU improves their performance. MAMiMoU was

formalized based on the ideas we obtained from the study we conducted on existing mobile-agent

based systems.

8.1 Conclusion

We have successfully accomplished our aims as stated in Chapter 1. We have addressed the

common limitations in mobile users' environments by having designed and implemented

MAMiMoU. MAMiMoU's architecture and coordination algorithm are two of our main

contributions in this thesis. MAMiMoU allows users to searnlessly exploit resources on the fixed

network while on the move. It acts as an abstraction layer that hides complexity in

communications from the applications, allowing mobile terminal applications and network-based

applications to transparently interact with each other. MAMiMoU's coordination algorithm

describes the interaction protocol between its components, the reconciliation protocol between

multiple shadows and failure handlers. MAMiMoU offers a substrate for building distributed

applications across mobile terminals and fixed infrastructures, allowing the large scale

deployment of advanced services to mobile users.

Another contribution presented in this thesis is the support for collaborative editing of mobile

documents between mobile users. We presented a collaborative editing application by describing

its architecture and the supporting collaboration protocol, which is the major part of the

application. The collaboration protocol specifies the components' activities, llsed to maintain

Chapter 8 Conclusion and Future Work 213

consistency between shared documents, and coordinates the collaborative editing activities

between mobile users. The application allows mobile documents to be shared between mobile

users by having documents' copies hosted on the network. Such documents' copies can also be

cached on users' mobile terminals, allowing the users to access the document while disconnected

from the network. Tailored to the characteristics of mobile users, the collaboration protocol was

also designed to support asynchronous collaboration between mobile users.

Our final contribution is the design of an evaluation methodology, which is used to measure the

effectiveness of MAMiMoU as a middleware supporting an application that operates in mobile

users' environments. In this evaluation, the common characteristics of mobile users'

environments were simulated, in which MAMiMoU is put to the test by supporting the

collaborative editing application. Different patterns of collaboration between mobile users were

simulated and the application's performance was measured based on the total time used by the

users to complete a collaborative editing task. Other aspects considered in the evaluation include

the effects of different users' connectivity, users' connection speed, users' mobility, collaboration

group size and shared document size. From this evaluation, we concluded that MAMiMoU can

improve the performance of an application operating in an environment that closely resembles

real mobile users' environments. With this result, we proved that MAMiMoU is able to support

applications in the challenging environments of mobile users by improving the applications'

performance. As a contribution to the field of mobile collaboration, our evaluation methodology

can be re-used to measure the performance of other collaborative applications in mobile users'

environment.

8.2 Future Work

In the future, we plan on deploying MAMiMoU in real mobile users' environment, and extending

MAMiMoU in order to have more systematic mobility management. We divide the future work

into two major plans, each addressing some research questions and the work involved. The first

plan focuses on the deployment of MAMiMoU, while the second plan focuses on the users'

mobility prediction mechanism that can be added to the middleware. Both plans are elaborated on

below.

Chapter 8 Conclusion and Future Work 214

8.2.1 MAMiMo U deployment

The current implementation of MAMiMoU is in the form of a demonstrator. In the future, we

wish to deploy MAMiMoU as a concrete middleware system, able to support real mobile users

and applications. In general we need to implement all of the assumptions that we made, i.e. each

local area environment has at least a shadow handler and a platform that is able to run mobile

agents. The first step in achieving this is to develop clear concepts and methods for the

deployment that will hide the details and complexity related to the implementation. The concepts

may include the description of functionalities offered by MAMiMoU to the environment in which

it will be deployed. These are required in order to bridge the gap between component

specifications and their actual configuration and distribution across the real fixed network and

mobile terminals.

The interfaces and protocols between MAMiMoU's components and the API offered by

MAMiMoU to applications needs to be well-defined and standardized. This is essential to support

the deployment of MAMiMoU by multiple network operators and on heterogeneous platforms.

The shadow handler and mobile agent's platform has to be installed and initialized on the user's

network, while an MT-agent has to be installed on the mobile terminal. In performing this,

specific requirements must be considered, e.g. a mobile agent platform has to be installed and run

on the same node as the shadow-handler.

To deploy the middleware, two types of packages can be prepared for the network operators and

mobile applications providers: a package consisting of components deployable on the fixed

network; and another package that consists of MT-agents deployable on the mobile terminal.

Each package should include the component descriptors, which provide a method of abstracting

the source code of the application from any reference to software or hardware configuration [2].

Each package may also include additional information on the components' requirements,

dependencies and their constraints, which might not be part of the component specification itself.

This way, MAMiMoU's components can be easily installed on the target terminals and establish

their initial configuration. The deployment process may include designing a methodology to

design applications using MAMiMoU's support, e.g. to decide whether to offload the

application's components to fixed network or not. Additionally, design metrics can be adopted to

offer guidance and feedback regarding the quality of the designs.

Chapter 8 Conclusion and Future Work 215

8.2.2 Mobility Prediction

Currently, the shadow in MAMiMoU passively migrates to the location of the mobile terminal

when it connects to a new location, i.e. it moves only when requested. This creates a delay in

providing the service to users. A solution to this problem involves having the shadow migrate

just before the user reattaches to the new location. One way to allow this is by having the user

always inform the system well beforehand of where he / she is going to go. But we may want to

minimize reliance on user feedback. Another way to achieve this solution would be to use a

mechanism that predicts the next location of a mobile user. When a prediction is made, the

shadow, possibly with all of its applications, can migrate in advance. Then, on arrival at its new

location, the mobile terminal could immediately become connected with the shadow, and

continue to interact with the applications through the shadow without encountering a delay in

connecting to the shadow. Such a capability would be especially important when a large number

of shadows and applications needed to migrate closer to the mobile terminal. We believe such an

approach can improve the performance of the middleware since it would be instantly ready to

serve the user without any migration delay. By having mUltiple possible predictions for the user's

next location, we may consider cloning the user's shadow at each of those locations. With cloned

shadows, we would need to address the coordination and interaction between them. This will be

regarded as a research question in this work.

One example of users' mobility prediction is presented in [61], which is called the predictive

mobility management (PMM). It is based on the user's movement history, i.e. their previous

movement patterns. Based on these movement patterns, a pattern-matchingirecognition-based

Mobile Motion Prediction algorithm (MMP) is proposed, which can be used to estimate the future

location of the mobile user. Any movement that cannot be classified by the simple mobility

patterns is classified as random movement. The random parts of the movement are modeled using

Stochastic Processes and Markov Chain, which can provide detailed calculations of the

probability distributions for the next possible states with a given confidence level. Users' mobility

prediction mechanisms such as this are normally employed by mobile service providers, which

could be used by MAMiMoU. Alternatively, the same type of services may be offered by some

applications on the network.

216

References

[1] Bagrodia R, Phan T. and Guy R (2003). A Scalable, Distributed Middleware Service

Architecture to Support Mobile Internet Applications. Wireless Networks, 9(4): 311-320,

2003. 10 pages.

[2] Baude F., Caromel D., Huet F., Mestre L., and Vayssillere J. (2002). Interactive and

Descriptor-Based Deployment of Object-Oriented Grid Applications. In 11th IEEE

International Symposium on High Performance Distributed Computing HPDC-ll, 2002.

[3] Baumgarten H., Borrmann L., Kohler T., Pink S., Lacoste G. and Reichert F. (1996).

Middleware for a New Generation of Mobile Networks: The ACTS OnTheMove Project.

INET'96 Conference of the Internet Society. Montreal, Canada. 6/1996.

[4] Bellifernine F., Poggi A and Rimassa G. (2001). Developing multi agent systems with a

FIPA -compliant agent framework. in Software - Practice & Experience. John Wiley &

Sons, Ltd. vol no. 31, 2001, page 103-128.

[5] Bhattacharjee S., Calvert K.L., and Zegura E.W. (1997). An Architecture for Active

Networking. High Performance Networking (HPN'97), Apr. 1997.

[6] Broos R, Dillenseger B., Dini P., Hong T., Leichseming A, Leith M., Malville E., Nietfeld

M. and Sadi K. (2000). Mobile Mobile Agent Platform Assessment Report. Contribution to

the EU Advanced Communications Technology and Services (ACTS) Programme, 2000.

Available at http://www .fokus.gmd de/research/cc/ecco/climate/ap-documents/rniarni

agplatf. pdf.

[7] Cabri G. Leonardi L. and Zambonelli F. (2000). Weak and Strong Mobility in Mobile Agent

Applications. In Proceedings of the 2nd International Conference and Exhibition on The

Practical Application of Java (PA JAVA 2000), Manchester (UK).

[8] Caporuscio M. and Inverardi P. (2003). Yet Another Frameworkfor Supporting Mobile and

Collaborative Work. International Workshop on Distributed and Mobile Collaboration,

Linz, Austria, June 2003.

[9] Caporuscio M., Carzaniga A and A L. Wolf. Design and evaluation of a support service

for mobile, wireless publish/subscribe applications. Technical Report CU-CS-944-03,

Department of Computer Science, University of Colorado, Jan. 2003. Available at

http://www.di.univaq.itl.

217

[10] Carzaniga A., Picco G. P. and Vigna G. (1997). Designing Distributed Applications with

Mobile Code Paradigms. In Proceedings of the 19th International Conference on

Software Engineering (ICSE'97), pages 22-32. ACM Press, 1997.

[11] Carzaniga A., Rosenblum D. S. and Wolf A. L. (2001). Design and Evaluation of a Wide

Area Event Notification Service. ACM Transactions on Computer Systems, 19(3):332-383,

August 200l.

[12] Cederqvist P. Version Management with CVS. Available at

(http://www .cvshome.org/docs/manuaW.

[13] Chaki S., Fenkam P., Gall H., Jha S., Kirda E. and Veith H. (2003). Integrating

Publish/Subscribe into a Mobile Teamwork Support Platform. In Prooceedings of the 15th

International Conference on Software Engineering and Knowledge Engineering (SEKE)

2003.

[14] Chicago IL SPSS Inc. SPSS base 12.0 for Windows user's guide, 2000.

[15] Chyi D. (2000). An Infrastructure for a Mobile-Agent System that Provides Personalized

Services to Mobile Devices. Dartmouth College Computer Science Technical Report

TR2000-370, 2000.

[16] Clements P.E., Papaioannou T. and Edwards J. (1997). Aglets: Enabling the virtual

enterprise. Published and Presented at International Conference Managing Enterprises

Stakeholders, Engineering, Logistics and Achievement (ME-SELA'97) Loughborough,

UK. July 1997 (ME-SELA '97).

[l7] Czerwinski S.E., Zhao B.Y., Hodes T.D., Joseph A.D., and Katz R.H. (1999). An

Architecture for a Secure Service Discovery Service. In Proceedings of the Fifth Annual

International Conference on Mobile Computing and Networks (MobiCom '99), Seattle,

W A, August 1999, pp. 24-35.

[18] Dallal G.E. (2003). The Little Handbook of Statistical Practice. Chapter Nonparametric

Statistics. http://www.statisticalpractice.coml. 2003.

[19] David B., Delotte 0., Chalon R., Tarpin-Bernard F. and Saikali K (2003). Patterns in

Collaborative System Design. Development and Use IFIP Working Group 13.2 workshop

"Methodologies for user centered systems design", 2nd Workshop on Software and

Usability Cross-pollination: The Role of Usability Patterns, INTERACT 2003, Sept 2003,

Zurich.

[20] de Lara E., Kumar R., Wallach D. S. and Zwaenepoel W. (2001). Collaboration and

Document Editing on Bandwidth-Limited Devices. In Proceedings of the Workshop on

Application Models and Programming Tools for Ubiquitous Computing (UbiTools).

218

Atlanta, Georgia. September, 200l.

[21] Dejan S. M. (1999). Trend Wars: Mobile agent applications. IEEE Concurrency 7(3): 80-

90,1999.

[22] Dikaiakos M., Kyriakaou M. and Samaras G. (2001). Performance Evaluation of Mobile

Agent Middleware: A Hierarchical Approach. In Proceedings of the 5th IEEE International

Conference on Mobile Agents, J.P. Picco (ed.), Lecture Notes of Computer Science series,

vol. 2240, pages 244-259, Springer, Atlanta, USA, December 200l.

[23] Dobridge, T., Lin J., Rajan D., Roscoe T., Brandenburg J., and Byerly B. (1998). Artefact:

A Frameworkfor Low-Overhead Web-Based Collaborative Systems. In Proceedings of the

ACM CSCW'98, November 1998, Page 189 - 196.

[24] Ellis C. (1999). An evaluationframeworkfor collaborative Systems. Report to NIT Tech.

Group. University of Colorado CS Report CU-CS-109-99, 1999.

[25] Ellis, C. Aand Nutt GJ. (1992). The Modelling and analysis of collaborative Systems. In

CSCW Tools and Technologies Workshop October 1992.

[26] Farooq u., Parsons E. W. and Majumdar S. (2004). Performance ofpublishlsubscribe

middleware in mobile wireless networks. In Proceedings of the fourth international

workshop on Software and performance, Redwood Shores, California, 278 - 289.

[27] Forman G. H. and Zahorjan J. (1994). The Challenges of Mobile Computing. IEEE

Computer, V 27, N 4, (April 1994), pp. 38-47.

[28] Fuggetta A, Picco G.P. and Vigna G. (1998). Understanding Code Mobility. IEEE

Transactions on Software Engineering, Volume 24, Issue 5, page 342-361. May 1998.

[29] Gadah A and Kunz T. (2003). A Survey of Middleware Paradigms for Mobile Computing.

Carleton University, Systems and Computer Engineering, Technical Report SCE-03-16,

July 2003.

[30] Ganguli H. (2002). Java Security. Chapter 12 - An Introduction to Cryptography. Premier

Press ©. 2002.

[31] Geihs K. (2001). Middleware challenges ahead. IEEE Computer, 34(6):24-31, June 200l.

[32] Gong L. (1998). Java Security Architecture (JDKl.2). Technical report, Sun Microsystems,

March 1998.

[33] Grasshopper A Platjormfor Mobile Software Agents. Available at

http://www.grasshopper.de/download/doc/GrasshopperIntroduction.pdf

[34] Gray R., Kotz D., Peterson R. A, Barton J., Chacon D., Gerken P., Hofmann M., Bradshaw

J., Breedy M., Jeffers Rand Suri N (2001). Mobile-Agent versus Client/Server

Performance: Scalability in an Information-Retrieval Task. In Proceedings of Mobile

Agents (229-243). 2001.

[35] Groove Networks (2002). Groove: Goodfor Bandwidth. Available at

http://www.groove.netlpdf/Groove and Bandwidth.pdf

219

[36] Gudgin M., Hadley M., Moreau J.-J. and Nielsen H. F. (2001). Soap version 1.2. Technical

report. World Wide Web Consortium.

[37] Harrison c., Chess D. and Kershenbaum A. (1995). Mobile Agents: Are they a good idea?

IBM T.J. Watson Research Center, Yorktown Heights, New York, March 1995.

[38] Helin, H., Laamanen, H., and Raatikainen, K. (1999). Mobile Agent Communication in

Wireless Networks. In Proceedings of the European Wireless'99, pages 211-216, October

1999.

[39] Hofmann M. 0., McGovern A. and Whitebread K. R. (2002). Mobile agents on the digital

battlefield. In Proceedings of the second international conference on Autonomous agents,

(page 219 - 225). Minneapolis, Minnesota, United States, April 2002.

[40] HohL F. (1998). Time limited blackbox security: Protecting mobile agents from malicious

hosts. In Mobile Agents Qnd Security, number 1419 in LNCS. Springer-Verlag, 1998.

[41] Hurst L. (1998). MCK: Wireless Communication with Mobile Agents. Technical Report

(TCD-CS-1998-05). Trinity College Dublin, Dublin 1998.

[42] IBM developerWorks (2004). Publish-Subscribe Notification for Web services. White

Paper. http://www-106.ibm.com!developerworks/library/ws-pubsub/WS-PubSub.pdf ws
Notification:IBM developerWorks.

[43] IBM, Inc. (1998). IBM Aglets Documentation. Available at URL http://aglets.trl.ibm.co.jp,

1998.

[44] Intergraph Corporation (2003). Wireless Technology Overview, White Paper 2003.

http://solutions.intergraph. com! core/white _papers/wireles sTech2004 3513 A. pdf

[45] Jacobsen K. and Johansen D. (1997). Mobile Software on Mobile Hardware: Experiences

with TACOMA on PDAs. Technical Report 97-32, Department of Computer

Science,University of Troms, Norway, 1997.

[46] JADE. A White Paper. http://jade.tilab.com!paperslWhitePaperJADEEXP.pdf.

[47] Jennings N. R., Sycara K. and Wooldridge M. (1998). A Roadmap of Agent Research and

Development. Autonomous Agents and Multi-Agent Systems, Volume 1, Issue 1 1998. (7

- 38).

[48] Jul E., Levy H., Hutchinson N. and Black. A. (1988). Fine-grained mobility in the Emerald

system. ACM Transactions on Computer Systems 6, 1. (Feb. 1988), 109-133.

[49] Kistler J. J. and Satyanarayanan M. (1992). Disconnected Operation in the Coda File

220

System. ACM Transactions on Computer Systems, 10(1), February 1992.

[50] Kleimock L. (1995). Nomadic computing: An opportunity. Computer Communications

Review (Jan. 1995).

[51] Kock M (1995). The Collaborative Multi-User Editor Project IRIS. Technical Report

TUM-I9524, University of Munich, Aug. 1995.

[52] Koskirnies O. and Raatikainen K (2000). Partitioning Applications with Agents. In

Proceedings of the Second International Workshop on Mobile Agents for

Telecommunication Applications (MATA2000). 2000.

[53] Kotz D., Gray R. S. and Rus D. (2002). Future Directions for Mobile-Agent Research.

Technical Report TR2002-415. Hanover, NH. 2002.

[54] Kun Y., Xin G. and Dayou L. (2000). Security in mobile agent system: problems and

approaches. ACM SIGOPS Operating Systems Review, Volume 34, Issue 1 (January

2000). (21 - 28).

[55] Kurkovsky S., Bhagyavati and Ray A. (2004). A collaborative problem-solving framework

for mobile devices. ACM Southeast Regional Conference 2004: 5-10

[56] La Corte A., A. Puliafito A. and Tomarchio o. (1999). An Agent-basedframeworkfor

Mobile Users. In 3rd European Research Seminar On Advances In Distributed Systems

(ERSADS'99), Madeira (Portugal), April 1999.

[57] La Porta T.P., Sabnani KK and Gitlin R.D. (1996). Challenges for nomadic computing.

Mobility management and wireless communications 1996.

[58] Lange D. B. (1998). Mobile Objects and Mobile Agents: The Future of Distributed

Computing. In Proceedings of The European Conference on Obj ect -Oriented Pro gramrning

'98, 1998.

[59] Lange D. B. and !shima M. (1998). Program and Deploying Java Mobile Agents with

Aglets. Addison-Wesley, 1998.

[60] Lauzac S.W., Chrysanthis P.K. (2002). Personalizing information gathering for mobile

database clients. Proceedings of the 17th symposium on Proceedings of the 2002 ACM

symposium on applied computing, March 2002, pp. 49-56.

[61] Liu G. and Maguire G. (1995). A Predictive Mobility Management Scheme for Supporting

Wireless Mobile Computing. Technical Report, TRITA-IT R 95:04, Royal Institute of

Technology (KTH), Feb 1995.

[62] Maffeis S. (2000). Communication Middleware for Mobile Applications - A Comparison.

White Paper, SoftWired AG, August 2000.

[63] Mahmoud Q.H. (2001). MobiAgent: An Agent-based Approach to Wireless Information

221

Systems. In the Proceedings of the 3rd International Bi-Conference Workshop on Agent

Oriented Information Systems (AOIS-200l).

[64] Mallat N., Rossi M. and Tuunainen V. K. (2004). Mobile banking services.

Communications of the ACM, Volume 47, Issue 5 (May 2004), (42 - 46).

[65] Marques P., Simoes P., Silva L., Boavida F. and Silva J. (2001). Providing Applications

with Mobile Agent Technology. In the Proceedings of the 4th International Conference on

Open Architectures and Network Programming (OPENARCH). 2001.

[66] Mattern F., Sturm P (2003). From Distributed Systems to Ubiquitous Computing - The

State of the Art, Trends, and Prospects of Future Networked Systems. In Klaus Irrnscher,

Klaus-Peter Falmrich (Eds.) Proc. KlVS 2003, pp. 3-25, Springer-Verlag, February 2003.

[67] Mihailescu P. and Binder W. (2001). A Mobile Agent Frameworkfor M-Commerce. Agents

in E-Business (AgEB-2001), Workshop of the Informatik 2001, Vienna, Austria,

September 2001.

[68] Mitsubishi Electric ITA Horizon Systems Laboratory. Technology at a glance: Concordia,

Java Mobile Agent Technology. Available at

http://www.meitca.comlHSLlProjects/ConcordiaiConcordia-at-a-glance.htrnl

[69] Moreau L. (2001). Distributed Directory Service and Message Router for Mobile Agents.

In Journal of Science of Computer Programming, Volume 39 (2-3), Page 249-272.2001.

[70] Moreau L. (2002). A Fault-Tolerant Directory Service for Mobile Agents based on

Forwarding Pointers. In The 17th ACM Symposium on Applied Computing (SAC'2002) ,

Track on Agents, Interactions, Mobility and Systems, Madrid, March 2002.

[71] Moreau L., De Roure D., Hall W. and Jennings N. (2000). Case for Support:

MAGNITUDE Mobile AGents Negotiating for ITinerant Users in the Distributed

Enterprise. http://www.ecs.soton.ac.ukl-Iavrnlmagnitude/.

[72] Moreau L., Gibbins N., DeRoure D., El-Beltagy S., Hall W., Hughes G., Joyce D., Kim S.

and Michaelides D. (2000). SoFAR with DIM Agents: An Agent Frameworkfor Distributed

Information Management. In Proceedings of the 5th International Conference on the

Practical Application of Intelligent Agents and Multi-Agent Technology (P AAM 2000),

pages 369-388, 2000.

[73] Moreau L., Tan V. and Gibbins N. (2001). Transparent migration of mobile agents. In IEE

Seminar: Mobile Agents - Where are They Going?, pages 2/1-2/11, Savoy Place, London,

April 2001. IEE.

[74] Moreau L., Zaini N., Cruickshank D. and De Roure D. (2003). SoFAR: An Agent

Frameworkfor Distributed Information Management. Chapter in Intelligent Agent

222

Software Engineering, pages 49-67. Idea Group Publishing, 2003.

[75] Moreau L., Zaini N., Zhou 1., Jennings N. R., Wei Y. Z., Hall W., De Roure D., Gilchrist

I., O'Dell M., Reich S., Berka T., and Di Napoli C. (2002). A Market-Based Recommender

System. In Proceedings of the Fourth International Bi-Conference Workshop on Agent

Oriented Information Systems at AAMAS 2002 (AOIS'02), Bologna, Italy, July 2002.

http://CEDR-WS.orgNol-59/.

[76] Morton S. and Bukhres O. (1997). Utilizing mobile computing in the Wishard Memorial

Hospital ambulatory service. In Proceedings of the 1997 ACM symposium on Applied

computing, San Jose, California, United States, (287 - 294).

[77] Nalla A., Sumi A. and Renganarayanan V. (2002). aZIMAs: Almost Zero Infrastructure

Mobile Agents System. In Proceedings of the lEEE Wireless Communications and

Networking Conference, March 2002.

[78] Necula G. and Lee P. (1996). Safe kernel extensions without run-time checking. In

Proceedings of the "2nd Symposium on Operating System Design and Implementation

(OSDI '96), Washington, October" 1996.

[79] Noble B. D. and Satyanarayanan M. (1999). Experience with adaptive mobile applications

in Odyssey. Mobile Networks and Applications archive, Volume 4, Issue 4, page 245-354.

December 1999.

[80] Nwana H. S., Rosenschein J., Sandholm T., Sierra c., Maes P., and Guttman R. (1998).

Agent-mediated electronic commerce: issues, challenges and some viewpoints. In

Proceedings of the third International Conference on Autonomous Agents, 1998.

[81] Oaks S. and Wong H. (2000). lini In a Nutshell. O'Reilly 2000.

[82] Olson J. Sand Teasly S (1996). Groupware in the Wild: Lessons Learnedfrom a Year of

Virtual Collocation. CSCW '96. Proceedings of the ACM 1996 conference on Computer

supported cooperative work, pages 419-42.

[83] Oppliger R. (2002). Internet and Intranet Security, Second Edition. Artech House © 2002,

Chapter 5 - Cryptographic Techniques.

[84] Page J., Zaslavsky A. and Indrawan M. A buddy model of security for mobile agent

communities operating in pervasive scenarios. In Proceedings of the second workshop on

Australasian information security, Data Mining and Web Intelligence, and Software

Internationalisation - Volume 32 January 2004.

[85] Peine H. and Stolpmann T. (1997). The Architecture of the Ara Platform for Mobile

Agents. First International Workshop on Mobile Agents, Berlin, Germany, April 7-8, 1997.

Mobile Agents (MA'97).

223

[86] Perkins C.E. (1998). Mobile networking through mobile IP. IEEE Internet Computing 2

(January-February 1998) 58-69.

[87] Perry M., Agarwal D. (2003). Collaborative Editing within the Pervasive Collaborative

Computing Environment. In Proceedings of the 5th International Workshop on

Collaborative Editing, ECSCW 2003, Helsinki, Finland, September 15, 2003. LBNL-

53769.

[88] Picco G., Murphy A and Roman G.-c. (1999). LIME: Linda Meets Mobility. In

Proceedings of the 21st International Conference on Software Engineering, pages 368-377,

May 1999.

[89] Pittura E. and Samaras G. (1997). Data Managementfor Mobile Computing. Kluwer

Academic Publishers, 1997.

[90] Postma A, Boer W. de, Helme A, and Smit G. (1996). Distributed Encryption and

Decryption Algorithms. Memoranda Informatica 96-20, University of Twente, Enschede,

December 1996.

[91] Powell M., and Miller B. (1983). Process Migration in DEMOS/MO. In Proceedings of the

Ninth ACM Symposium on Operating Systems Principles (Bretton Woods, N.H., Oct. lI

B), ACMfSIGOPS, New York, 1983, pp. 110-119.

[92] Reichert F. (1996). Middleware for a New Generation of Mobile Networks: The ACTS

OnTheMove Project. Inet 96 conference contribution, June 1996.

[93] Roman G.-c., Picco G. P. and Murphy AM. (2000). Software Engineering for Mobility: a

Roadmap. In Proceedings of the conference on the future of Software engineering,

Limerick, Ireland. Pages 241-258. 2000.

[94] Roth 1. (2001). Infonnation sharing with handheld appliances. In the Proceedings of the

8th IFIP Working Conference on Engineering for Human-Computer Interaction (EHCI'Ol),

Toronto, Canada, May, 2001, (263-279).

[95] Roth J. (2003). The Resource Frameworkfor Mobile Applications. In the Proceedings of

the 5th International Conference on Enterprise Information Systems (ICEIS 2003), Angers,

France, April 2003, 87-94, volume 4.

[96] Salz R., Leach P. and Mealling M. (2004). A uuid urn namespace. Network Working

Group, Internet-Draft, January 2004. http://www.ietf.orglinternet-drafts/draft-mealling

uuid-urn-03.txt.

[97] Samaras G. and Panayiotou C. Personalized portals for the wireless user based on mobile

agents. In Proceedings of the 2nd international workshop on Mobile commerce. Atlanta,

Georgia, USA (70 - 74).

224

[98] Samaras G., Pitoura E. and Evripidou P. (1999). Software Models for Wireless and Mobile

Computing: Survey and Case Study. Technical Report TR-99-5, University of Cyprus,

March 1999.

[99] Sander T. and Tschudin C. F. (1998). Protecting mobile agents against malicious hosts. In

Mobile Agents and Security, number 1419 in LNCS. Springer-Verlag, 1998.

[100] Satyanarayanan M. (1996). Fundamental challenges in mobile computing. In Proceedings

of Fifteenth Annual ACM Symposium on Principles of Distributed Computing,

Philadelphia, PA, ACM Press (1996).

[101] Schiller J. (2000). Mobile Communications. Addison-Wesley, Reading, Mass. and London,

2000.

[102] Stamos J. and Gifford D. (1990). Remote evaluation. ACM Trans. Computer System 12,4

(Oct. 1990),537-565.

[103] Sun Microsystems (1994). The Java Language: An Overview. Technical Report, Sun

Microsystems, 1994.

[104] Sun Microsystems (1996). Java Remote Method Invocation Specification.

[105] Suri N., Bradshaw I. M., Breedy M. R., Groth P. T., Hill G. A, Jeffers R., and Mitrovich

T.S. (2000). An Overview of the NOMADS Mobile Agent System. In Proceedings of

European Conference on Object-Oriented Progranuning (ECOOP'2000), Nice, France,

2000.

[106] Suri N., Carvalho M., Bradshaw R. and Bradshaw I.M. (2002). Small Mobile Agent

Platforms. In Proceeding of the International Conference on Autonomous Agents and

Multiagent Systems (AAMAS) 2002. Bologna Italy.

[107] Tan H. K and Moreau L. (2001). Mobile Code for Key Propagation. In Proceedings of

First International Workshop on Security of Mobile MultiAgent Systems (SEMAS'2001),

pages 10. Fischer, K and Hutter, D., Eds.

[108] Tan H.K, and Moreau L. (2002). Certificates for Mobile Code Security. In The 17th ACM

Symposium on Applied Computing (SAC'2002) - Track on Agents, Interactions, Mobility

and Systems, pages 76-81, Madrid, Spain, March 2002.

[109] Tarasewich P., Nickerson R., and Warkentin M. (2002). An examination of the issues in

mobile e-commerce. Communications of the AlS 8, (2002), 41-64.

[110] Tardo J., Valente L. (1996). Mobile Agent Security and Telescript. In the Proceedings of

IEEE COMPCON Spring '96,58-63,1996.

[111] Terry D. B., Theimer M. M., Petersen K, Demers A J. (1995). Managing Update Conflict

in Bayou, a Weakly Connected Replicated Storage System. In Proceedings of the fifteenth

225

ACM symposium on Operating systems principles, Copper Mountain, CO USA, Dec. 3-6,

1995,172-182.

[112] Thai B., Wan R., Seneviratne A. and Rakotoarivelo T. (2003). Integrated Personal

Mobility Architecture: A Complete Personal Mobility Solution. Mobile Networks and

Applications (MONET) 8(1): 27-36 (2003).

[113] Thompson M., De Roure D., Michaelides D.T. (2000). Weaving the Pervasive Information

Fabric. In Proceedings of Open Hypermedia Systems and Structural Computing, 6th

International Workshop, OHS-6, 2nd International Workshop, SC-2, San Antonio, Texas,

USA, May 30-June 3, 2000 Proceedings 1903, pages pp. 87-95. Reich, S. and Anderson, K.

M.,Eds.

[114] Tripathi A. R. and Karnik N. M. (2000). Mechanisms for Delegation of Privileges to

Mobile Agents in Ajanta. In Proceedings of Internet Computing 2000 (IC2000), 379-385,

Monte Carlo Resort, Las Vegas, June 26-29,2000.

[115] Tripatbi A., Koka M., Karanth S., Osipkov 1., Talkad H., Ahmed T., Johnson D., and Dier

S. (2004). Robustness and Security in a Mobile-Agent based Network Monitoring System.

Technical Report 04-003. 2004.

[116] Varsheny, U., and Vetter, R. (2000) Emerging mobile and wireless networks.

Communications of the ACM 43 (6),73-81

[117] Varshney U. and Vetter R. (2002). Mobile Commerce: Framework, Applications and

Networking Support. Mobile Networks and Applications, Volume 7, Issue 3, June 2002,

Pages 185 - 198.

[118] Vigna G. (1998). Cryptographic traces for mobile agents. In Mobile Agents and Security,

number 1419 inLNCS. Springer-Verlag, 1998.

[119] Vigna G. (2004). Mobile Agents: Ten Reasons For Failure. In Proceedings of MDM 2004

298-299 Berkeley, CA January 2004.

[120] Volpano D. and Smith G. (1998). Language issues in mobile program security. In Mobile

Agents and Security, number 1419 in LNCS. Spriuger-Verlag, 1998.

[121] Vuong S.T. and Fu P. (2001). A security architecture and design for mobile intelligent

agent systems. ACM SIGAPP Applied Computing Review, Volume 9, Issue 3 Fall 2001.

(21 - 30).

[122] Waldo J. (1998). Jini Architecture Overview. Sun Microsystems, 1998.

[123] Waldo, J., JavaSpaces, specification 1.0. Technical report (March 1998), Sun

Microsystems.

[124] Weiser M. (1991). The computer of the 21st century. Scientific American, pages 94--100,

226

September 1991.

[125] White J. (1995). Telescript Technology: An Introduction to the Telescript wnguage.

General Magic White Paper GM-M-TSWP3-0495-Vl, General Magic Incorporated, 1995.

[126] Wilhelm U. G., Staamann S. and L. Buttyan (1999). Introducing trusted third parties to the

mobile agent paradigm. In Secure Internet Programming: Security Issues for Mobile and

Distributed Objects, number 1603 in LNCS. Springer-Verlag, 1999.

[127] WLANA. What is a Wireless LAN? http://www.wlana.com/

[128] Wong D., Paciorek N. and Moore D. (1999). Java-based mobile agents. Communications

of the ACM, Volume 42, Issue 3 (March 1999).

[129] Wooldridge M. and Jennings N. R. (1995). Intelligent agents: Theory and practice. The

Knowledge Engineering Review, vol. 10(2) pp. 115-152,1995.

[130] WyckoffP., McLaughry S. W., Lehman T. J., and Ford D. A. (1998). T Spaces. IBM

Systems Journal 37, 3, 454-474. 1998.

[131] Yee B. S. (1999). A sanctuary for mobile agents. In Secure Internet Programming:

Security Issues for Mobile and Distributed Objects, number 1603 in LNCS. Springer

Verlag, 1999.

[132] Yemini Y. and da Silva S. (1996). Towards Programmable Networks. In Proceedings of

IFIPIIEEE International Workshop Distributed Systems: Operations and Management,

L' Aquila, Italy, Oct. 1996.

[133] Zaini N., Moreau L. (2002). Coordination of Mobile Intermediaries Acting on Behalf of

Mobile Users. In Proceedings of the 8th International Euro-Par Conference Paderborn,

Germany. Page 973-977.2002.

[134] Zaini N., Moreau L. (2002). Mobile Intermediaries Supporting Information Sharing

between Mobile Users. In Proceedings of the 6th International Conference, MA 2002,

Barcelona, Spain. Page 121-137.2002.

[135] Zhang J., Helal A. and Hammer J. (2003). UbiData: Ubiquitous Mobile File Service. In

Proceedings of the ACM Symposium on Applied Computing (SAC), Melbourne, Florida

2003.

