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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

Low Density Parity Check Coding 

by Feng Guo 

This thesis explores the properties of the family of Low Density Parity Check Codes (LDPCC). In addition to 

Gallager's original binary regular LDPCCs, the class of irregular LDPCCs and non-binary LDPCCs developed 

from the binary regular LDPCC is also studied. Further, a novel reliability ratio based bit flipping decoding 

algorithm is proposed for providing a low-complexity decoding solution. A novel three-layer iterative decoding 

scheme is also designed for the symbol-based joint decoding of non-binary LDPCC aided space-time coding 

operating at a low complexity. Furthermore, classic binary LDPCCs have been concatenated with both space­

time coding and source coding schemes for the sake of enhancing the achievable system performance. 

Gallager's binary regular LDPCCs achieve a near-capacity performance, while maintaining a relatively 

low decoding complexity. Furthermore, Gallager suggested that the family of LDPCCs exhibits good distant 

properties, provided that certain Parity Check Ivlatrix (PClvI) construction constraints are satisfied. A novel 

LDPC Block Coded Modulation (LDPC-BCM) scheme was proposed, which was shown to outperform the Turbo 

Trellis Coded Ivlodulation (TTCM) ba..~ed benchmark scheme by 1.5 dB at a BER of 10-5 , when communicating 

over an uncorrelated Rayleigh fading channel using QPSK modulation, while maintaining an effective throughput 

of 1 bit per symbol. Rather than assigning each message node or check node in the PCM a constant weight, 

the class of irregular LDPCCs constructs the PCl\l using a pre-determined density profile, i.e. provides a non­

uniform weight distribution. This approach may introduce weight-two message nodes into the PCM, which 

can result in less attractive distance properties for the code, potentially resulting in an error floor. Hence, a 

technique referred to as Yang's method is invoked for reducing this potential error floor, while still benefiting 

from the irregular construction of the PCM. We found that the employment of Richardson's PCM construction 

approach is more feasible applications, which are not delay sensitive, while Yang's approach is more attractive 

in applications having a moderate coded block length, especially at high coding rates. 

Davey and MacKay further developed the family of LDPCCs in order to create non-binary LDPC codes. 

The advantage of non-binary LDPCCs is that they may achieve a reduced probability of incurring short cycles 

in the PCM in comparison to the LDPCCs having an equivalent binary PCM. However, non-binary LDPCCs 

do not always perform better than binary LDPCCs. The choice of the decoding field, column weight and also 

the coding rate will affect the attainable performance of non-binary LDPCCs. 

We have applied these non-binary LDPCCs to design a purely symbol-based joint decoding and demodula­

tion aided transmit diversity scheme, which is capable of exploiting the soft information generated by the LDPC 

decoder by re-evaluating the soft channel output provided by the demodulator. Upon employing non-binary 

LDPCCs defined over the Galois field GF(q) chosen according to the specific modulation scheme used, the 

proposed non-binary-LDPCC aided transmit diversity scheme achieved a coding gain of nearly 2dB at a BER 
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of 10-5 in comparison to the bit-based binary-LDPCC aided benchmark scheme, when communicating over an 

uncorrelated Rayleigh fading channel. Furthermore, as a benefit of the low-complexity FFT-based decoding 

approach of the non-binary LDPCC, upon invoking the proposed symbol-based LDPC-aided space-time coding 

scheme, we benefit from both an improved BER performance and a reduced decoding complexity. 

Variable Length Coding (VLC) schemes are widely used for the sake of bit rate reduction during the source 

coding stage. Two trellis-based VLC MAP decoding schemes, namely the symbol-based and the bit-based 

trellis decoding algorithms were proposed by Bauer and Hagenauer. We have applied this soft output decoding 

algorithm to provide a solution for iterative joint source and channel decoding. Various VLC coding schemes 

are investigated and these different VLC coding schemes are jointly decoded in conjunction with various channel 

codes, namely by iteratively exchanging information with a recursive systematic convolutional code, a turbo 

code and an LDPC code. It is demonstrated that a source code having a higher free distance is capable of 

achieving a higher iteration gain. 

Various bit-flipping based decoding algorithms are investigated because they provide low-complexity LDPC 

decoding, and a novel reliability-ratio based bit-flipping algorithm is proposed. Generally, the bit-flipping 

algorithms are capable of operating at a significantly lower complexity in comparison to the well-known sum­

product algorithm, although at the cost of an inferior error correction capability. The proposed novel reliability­

ratio based bit-flipping algorithm was shown to be superior in comparison to the family of previously proposed 

bit-flipping algorithms at no extra complexity. 
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Chapter 1 

Introduction 

1.1 Historic Background 

In 1963, Gallager [1] [2] devised the family of Low Density Parity Check Codes (LDPCC) during his 

Ph.D study at MIT. At this early phase of the evolution of channel coding, this scheme made little 

impact on the research of the channel coding community, despite its impressive performance, which 

was unprecedented prior to the invention of turbo coding [3]. This modest interest in LDPCCs was a 

consequence of its high storage requirements and complexity in the light of the state-of-the-art in 1963. 

Following their conception, LDPCCs remained dormant for a decade or so. The complexity of LDPCCs 

was evaluated by Zyablov and Pinsker in 1975 [4], while in [5] Tanner suggested the employment of a 

recursive approach for the construction of LDPC codes and presented a graph representation of the 

LDPCC's parity check matrix. Sipser and Spielman [6] presented the LDPCC's parity check matrix 

using expander graphs. 

However, during the 1990s, the channel coding community's interest in LDPCCs was revived. As 

summarised in Table 1.1, LDPC codes have become an extremely hot topic in the wireless commu­

nication research community. MacKay and Neal [7] [8] experimented with LDPCCs having a high 

blocklength and illustrated that LDPCCs are capable of outperforming turbo codes, when communi­

cating over AWGN channels. Motivated by the outstanding performance of LDPCCs, they have been 

studied in many different contexts. The density evolution (DE) algorithm was proposed by Richardson 

et al. [9] for calculating the asymptotic performance of LDPCCs transmitted over AWGN channels. 

Later Chung et al. [10] [11] simplified the den.,ity evolution algorithm. The density evolution algo­

rithm is now widely recognised as an accurate method of predicting the asymptotic performance of 

the LDPCCs transmitted over AWGN channels, and it has been used by numerous authors, such as 

Fossorier [12], Chen et al. [13], Narayanaswami et al. [14], Anastasopoulos [15] and Kumar et al. [16]. 

The performance bounds of LDPCCs rate were studied by Burshtein et al. in [17] [18] [19]. The 

family of LDPC codes has also been utilised in a variety of different systems, such as OFDM [20-25], 

MIMO and space-time coding schemes [26,27], in the context of the binary erasure channel [28,29], 

the partial response channel [16,30,31], as well as a range of other channel models [32-34]. Bandwidth 

efficient coded modulation schemes using LDPCCs were studied in [35-37]. Furthermore, LDPC codes 

1 



CHAPTER 1. INTRODUCTION 2 

have also been widely used in diverse applications such &<; magnetic recording [38-42J by Song et oJ., 

in image transmission [43,44J by Zhang et al. and in optical data storage [45J. Many algorithms 

have been proposed for specifically designing LDPCCs for hardware implementation, such &<; the tech­

niques advocated by Zhang et oJ. [46-48], Rupp et al. [49], Hocevar [50], Thorpe [51], Lu et al. [52J 

and Shanbhag et oJ. [53J. 

In addition to the performance evaluation studies and application-oriented &<;pects of LDPC codes, 

researchers endeavoured to improve the stand-alone performance of LDPCCs by modifying the de­

coding algorithms and/or optimising the structure of the parity check matrix. Non-binary LDPCCs 

were proposed by Davey et al. [54-56J that under certain conditions are capable of outperforming their 

binary counterpart. A low-complexity decoding algorithm w&<; proposed for non-binary LDPCCs by 

Barnault et oL [57J. The family of non-binary LDPCCs w&<; also applied by Song et al. [38], Nakamura 

et al. [58J and Li et al [59J. Upon imposing an irregular construction on the LDPCC's parity check 

matrix [60-66J for the sake of improving their performance, they become capable of approaching the 

Shannon limit [67J. Various ways of constructing the irregular LDPCC's parity check matrix were 

proposed in [65,66,68, 69J. Incre&<;ing the length of the shortest cycles within the LDPC code's parity 

check matrix is another technique of improving their performance, which h&<; the potential of lowering 

their error floor. Moura et al. [70-73], Lin et al. [74J and Williamson et aL [75J proposed various of 

ways of constructing the PCM in an attempt to remove the short cycles. Lentmaier proposed the cl&<;s 

of Generalised Low Density Parity Check Codes in [76]' which w&<; facilitated by replacing the rows in 

the LDPCC's parity check matrix by a Hamming code. This technique also attracted the interest of 

Zhang et al. [77J [78], Hirst et oL [79J [80J and Boutros et oL [81J. 

Apart from incre&<;ing the error correction capability of LDPCCs, other researchers endeavoured 

to reduce the encoding and decoding complexity of LDPC codes. Although Mackay and Neal [8J have 

demonstrated that upon randomly constructing the LDPCC's PCM, a near capacity performance can 

be achieved, it h&<; also been observed that upon constructing the PCM following different rules, a 

similar error correction capability can be achieved using a reduced-complexity encoding process that 

can be implemented using shift registers. For example, the analytical approach of finite geometry w&<; 

utilised by Kou et al. [82-87J for constructing the LDPCC's PCM. This finite geometry b&<;ed technique 

w&<; also used by Pados [88J &<; well &<; V&<;ic et oJ. [89,90J. Honary et al. [91,92J utilised the Balanced 

Incomplete Block Design (BIBD) technique for constructing the LDPC code's PCMs in a (quasi)-cyclic 

way. A range of other analytical techniques of constructing the LDPCC's PCM have been contrived, 

such &<; for example the schemes proposed by Vontobel [93], Ahn [94J and Okamura [95J. All these 

schemes have been shown to be capable of attaining a performance which is as good &<; that of randomly 

constructed LDPC codes, whilst the encoding complexity may be significantly reduced. Substantial 

research efforts have also been invested in reducing the LDPC's decoding complexity. The FFT b&<;ed 

decoding algorithm proposed by Richardson and Urbanke [9, 96J and the linearly decodable LDPC 

codes proposed by Spielman [97J constitute a few examples of low-complexity decoders. Furthermore, 

there are numerous other low-complexity decoding algorithms invented by Pothier [98], Narayanan [99J 

and Fossorier et oL [100J. 
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1948 Shannon limit quantified; Shannon [67] 

1962 LDPCCs invented; Gallager [1] 

1975 LDPCCs' complexity quantified; Zyablov et al. [4] 

1983 Tanner Graph introduced for the LDPCC parity check matrix; Tanner [5] 

1997 Near-Shannon-Limit performance reported; MacKay et al. [7] 

1998 Non-binary LDPCCs invented; Davey et al. [54,55] 

Irregular LDPCCs proposed; Luby et al. [60] 
Reduced complexity decoding algorithm using FFT proposed; Richardson et al. [9] 

Density evolution algorithm proposed; Richardson et al. [9] 
1999 Generalised LDPC proposed; Lentmaier [105] 

2001 Finite geometry based LDPC proposed; Kou et oL [83,84,106] 

Bit-flipping decoding of LDPCCs proposed; Kou et al. [83] 

EXIT-chart invented; ten Brink [107] 

Gaussian approximated density evolution method proposed; Chung et al. [11] 

2002 BlBD b&'led LDPC proposed; Ammar et al. [91,92] 

Bootstrap decoding algorithm proposed; Nouh et al. [102] 

Bit-based three-layer LDPC-MIMO proposed; Meshkat et oL [108] 

2004 Bit-flipping decoding algorithm improved; Zhang et oL [101] 

Symbol-b&'led three-layer LDPC-MIMO proposed; Guo et al. [27] 

Reliability ratio based bit-flipping algorithm proposed; Guo et oL [103] 

Table 1.1: Mile-stones in LDPC coding research 

In addition to the sub-optimum Sum-Product Algorithm (SPA) devised for decoding LDPC codes, 

a significantly less complex bit-flipping b&'led algorithm W&'l proposed by Kou et al. [82]. This algorithm 

W&'l further improved by Zhang et oJ. in [101]. Furthermore, a bootstrap bit-flipping algorithm W&'l 

proposed by Nouh et oL in [102]. The reliability-ratio b&'led algorithm was further developed by Guo 

et al. in [103,104]. All these low-complexity bit-flipping algorithms constitute a useful supplement to 

the popular SPA algorithm in the context of applications, where the system's complexity is limited. 

All these historic findings constitute the motivation of the underlying research described in this 

thesis. 

1.2 Outline of the Thesis and its Novel Contributions 

The outline of the thesis is &'l follows. In Chapter 2 we introduce Gallager's original LDPCC construc­

tion algorithm with the aid of an example. Additionally, a general description of the LDPC decoding 

process is provided and the chapter is concluded with a range of performance results . 

• A binary LDPC aided joint coding and modulation scheme was designed and benchmarked 

against a Turbo Trellis Coded Modulation (TTCM) scheme. At a BER of 10-5 an EbjNO gain 

of about 1.5 dB W&'l achieved using 15 iterations in comparison to the TTCM benchmarker using 
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4 iterations. The effective throughput of the system W&'l 1 bit per symbol [37]. 

The irregular construction of binary Parity Check Matrices (PCM) will be discussed in Chapter 3. 

Two different PCM construction methods will be introduced. One of them is capable of providing a 

high error correction performance at long blocklengths, while the other one will be aiming at lowering 

the error floor encountered, when moderate blocklengths and a high code rate have to be used. 

Chapter 4 will illustrate how LDPCCs may be constructed and decoded over non-binary fields . 

• These non-binary codes, invented by Davey and MacKay [54], will then be invoked for con­

structing a novel purely symbol-b&'led MIMO scheme. This scheme is benchmarked against a 

bit-b&'led MIMO scheme invoking a binary LDPC. An Eb/No gain of about 2 dB W&'l obtained 

at a BER of 10-5 for a MIMO scheme operating over GF(4), GF(8) &'l well &'l GF(16) and an 

un correlated Rayleigh fading channel. Furthermore, the decoding complexity imposed W&'l also 

significantly reduced by the purely symbol-b&'led scheme [27]. 

In Chapter 5, the family of Variable Length Codes (VLC) is introduced and it is demonstrated, 

how they may be utilised for error correction. Different types of VLCs are serially concatenated with 

various channel codecs and decoded in an iterative f&'lhion. The &'lsociated performance trends are 

highlighted, providing an insight on how to choose the VLCs in the context of serially concatenated 

joint source and channel coding schema'l using Extrinsic Information Transfer Charts (EXIT-Charts). 

Chapter 6 offers an alternative technique of decoding LDPCCs using bit-flipping . 

• A novel Reliability Ratio b&'led Weighted Bit Flipping (RRWBF) algorithm is proposed. It is 

demonstrated that an improved BER performance may be attained at no decoding complexity 

penalty. When communicating over an AWGN channel, a (1000,500,5.0) LDPC code decoded by 

the RRWBF algorithm achieved an E b/ No gain of about 1.5 dB at a BER of 10-5 in comparison 

to the set of known bit-flipping decoding algorithms [103,104]. 

Finally, Chapter 7 summarises the findings of the thesis and offers a range of further research 

topics. 



Chapter 2 

Binary LDPC codes 

2.1 Introduction 

s U N 

S 0 U P 

0 P E N 

Figure 2.1: Introductory example 

Let us commence our discussions on a light-hearted note, considering the construction of Figure 2.1, 

which is reminiscent of that of a cross-word puzzle. Let us a'lsume that the number of letters in the 

same column are identical and each row ha'l to be a valid word. Let us now change for example the 

character's' in the first column or 'p' in the fourth column of Figure 2.1, which can be viewed as 

the effect of a transmission error imposed by the channel. An intelligent human or a smart channel 

decoder may be able to spot this error and might be able to correct it, such that each horizontal line 

still remains a valid word, although in some ca'les ambiguous solutions may exist. The rea'lon that we 

are able to spot and probably even correct the error is not only due to the redundancy inherent in the 

English language, but also because we may find clues confirming certain letters with a high confidence 

from the other words seen in the different rows in Figure 2.1. LDPC codes have similar properties to 

those of our example. 

The most important parameter or descriptor of the family of LDPCCs is their parity check matrix. 

Luby [60J showed that the LDPC code's performance may potentially be increased, when an irregular 

parity check matrix construction is applied. However, at this stage we only consider LDPCCs having 

a regular parity check matrix construction, a'l it wa'l initially proposed by Gallager [1 J. 

In order to specify an LDPCC, its parity check matrix ha'l be to defined first. Then the corre­

sponding generator matrix can be derived for this parity check matrix. Based on these parameters, 

the encoder will be in the position to be able to generate the encoded bits for transmission. 

5 



CHAPTER 2. BINARY LDPC CODES 6 

2.2 Linear block codes 

LDPCCs belong to the family of linear block codes [1], hence the code can be defined by a parity check 

matrix H and a corresponding generator matrix G. The parity check matrix H and the generator 

matrix G have a size of (N - K) x Nand (K x N), respectively. Explicitly, H can be represented a.'l: 

H = (I I A), (2.1) 

where I is an (N - K) x (N - K)-dimensional identity matrix and A is a non-singular i.e. invertible 

matrix, while the corresponding generator matrix G can be represented &'l: 

(2.2) 

where l' is a (K x K)-dimensional identity matrix and AT is the transpose of the non-singular matrix 

A used for defining H. The product of the matrixes Hand G T is by definition an all-zero matrix. 

More explicitly, 

(2.3) 

For each source information block S of size 1 x K, encoding is carried out by multiplying it with 

the generator matrix G and the resultant 1 x N-dimensional vector is the encoded codeword C, which 

is formulated a.'l: 

(2.4) 

The validity of the codeword can be verified by calculating the syndrome vector upon multiplying 

C with HT, which becomes an all-zero syndrome vector, if the codeword is legitimate. 

SyndromeClXM) = CCIXN) . HTCNXM)' (2.5) 

The encoding and parity-checking process is shown more explicitly below: 

[ 

9~.1 91;N 1 
gK.l gK.N 

[ 

hl.1 h1,M 1 
h~.l hN,M' 

where the notation Cj, 8j represents the lh element of the codeword and the source information vector, 

respectively. The notations gi,j and hi,] are for representing the element of the generator matrix G 

and the transpose of the parity check matrix H, i.e. HT at position (i,j), respectively. 

2.3 Parity check matrix 

A conventional parity check code may be formed by combining a block of binary digits checking the 

information part of the codeword. In the example seen in Figure 2.2, each parity check bit is the 
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modulo 2 sum of a specific set of information bits. We will use the terminology of information bits to 

denote the uncoded source bits. By contrast, parity bits are defined &'3 the redundant bits appended 

to the information bits in the codeword. As seen in Figure 2.2, each row of the parity check set can 

be written &'3 a parity check equation given at the right of Figure 2.2. For any legitimate codeword, 

all the parity check equations have to be satisfied. 

Parity Information 
bits bits 

m rTn 
Xl X2 X3 X4 Xs X6 X7 

0 0 0 Xl X4EB Xs EB X6 

H= 0 0 0 X2 X4EB Xs EBXi 

0 0 0 X3 X4EB X6 EBXi 

Figure 2.2: Conventional parity check set designed for block codes 

LDPCCs, &'l suggested by the nomenclature, are typically specified by a matrix predominantly 

containing logical zeros, and only a small number of logical ones, hence the term "low density". Each 

LDPCC can be uniquely defined by the &'3sociated (N - K) X N-dimensional parity check matrix. The 

notation !v! is used for representing the number of rows in the parity check matrix H, which equals 

(N - K). The parity check matrix can be specified by the parameters (N, We, wr ), where N is the 

encoded block-length, while We and Wr are the average Hamming weight of the columns and rows, 

respectively. More explicitly, when We is an integer and a so-called regular LDPC PCM construction is 

applied, according to the definition of regular construction all the columns will have the same weight 

of We' However, if We is not an integer, say 2.5, then half of the columns will have weight two, and 

the remaining half will have weight three. These codes will be referred to as near-regular-construction 

LDPC codes. By contrast, the terminology of irregular LDPC codes will refer to those LDPC codes, 

whose PCM h&'l significant variation in column weights. This type of irregular LDPC codes will be 

introduced later in Chapter 3. Provided that the parity check matrix H h&'l full rank,l the LDPCC's 

code rate can be calculated &'l r = KIN. Since the number of non-zero entries in the parity check 

matrix is a constant, we have N . We = !v! . W r . Hence the code rate can also be represented by 

r 1 - (wclwr). In the scenario, when there are dependent rows in the parity check matrix H, 

the actual code rate will be higher than the figure calculated above. There is an alternative way 

of specifying a parity check matrix by the coded blocklength, the information blocklength and the 

column weight, i.e. &'l (N, K, we). 

An example of the LDPC Parity Check Matrix (PCM) is given in Table 2.1. This is the PCM 

Gallager used in his seminal paper on LDPCCs in 1963. 

lIn this LDPC context having a H matrix which is of full rank implies that all the rows in the H matrix are 

independent. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

6 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

7 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

H= 8 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 

9 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 

10 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

11 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

12 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 

13 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 

14 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 

15 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 

Table 2.1: Example of a low density parity check matrix (PCM) for N=20, 11Je=3, wr =4 [1] with full 

rank, where N, We, 1iJr are used for representing the total number of columns, ie. the codeword length, 

the number of non-zero entries per column, and the number of non-zero entries per row, respectively. 

Finally, the number of rows in the parity check matrix is !vI = N x wc/wr = 15. The coding rate is 

defined as r = (N - M)jN. 

• • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0000. • * * 0 0 0 0 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 00. • • • 0 000 0 0 0 0 

o 0 0 0 0 0 000 0 0 0 • • • • 0 0 0 0 

000 0 0 0 0 000 000 0 0 0 • • * * 
.000. 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 

o • 0 0 0 • 0 0 0 • 0 0 0 000 • 0 0 0 

o 0 * 0 0 0 * 0 0 0 0 0 0 • 0 0 0 • 0 0 

000 • 0 0 0 000 • 0 0 0 • 000 • 0 

000 0 0 0 0 .00 0 • 0 0 0 • 000 • 

.0000 • 0 0 0 0 0 • 0 0 0 0 0 • 0 0 

o • 0 000 • 0 0 0 • 0 0 0 0 .00 0 0 

00* 0 0 0 0 * 0 0 0 0 • 000 00. 0 

000 • 0 0 0 0 • 0 0 0 0 .00 • 0 0 0 

o 0 0 0 • 0 0 00. 0 0 0 0 0 0 0 0 * * 

Table 2.2: Reproduction of Table 2.1 highlighting the nodes forming cycles of length 4 (*) and 6 (*). 



CHAPTER 2. BINARY LDPC CODES 9 

88880 0 0 0 0 0 0 0 0 000 0 0 0 0 

000088X XOOOOOOOOOOOO 

0000000088X XOOOOOOOO 

00000 0 0 0 0 0 0 0 8 8 8 8 0 0 0 0 

00000 0 0 0 0 0 0 0 0 000 8 8 8 8 

8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 000 0 0 

o 8 0 0 0 8 0 0 0 8 0 0 0 0 0 0 8 0 0 0 

008 0 0 0 8 0 0 0 000 8 0 0 0 8 0 0 

000 8 0 0 0 0 0 0 8 0 0 080 0 0 8 0 

0000000 X 000 X 00080008 

8 0 0 0 0 8 0 0 0 0 0 8 0 0 0 0 080 0 

080000 X 000 X 000080000 

008 0 0 0 0 8 0 0 0 0 8 0 0 0 0 0 8 0 

000 8 0 0 0 0 8 0 0 0 0 8 0 0 8 0 0 0 

o 0 0 0 8 0 0 0 0 8 0 0 0 0 0 000 8 8 

Table 2.3: Reproduction of Table 2.1 highlighting the nodes forming cycles of length 8 (X) 

Gallager suggested a regular construction for the parity check matrix which is shown in Table 2.l. 

This construction is described &'l follows. As it can be seen in Table 2.1, the rows may be divided 

into three subsets. In the first subset, the binary Is in the ith row will occupy the columns spanning 

from [(i - 1) X Wr + 1] to [i X W r ], and their position indicates, which information bits participate 

in the ith parity check equation, Le. the ith row of the PCM, where each of the 15 rows represents 

one of the 15 parity check equations. As becomes explicit in Table 2.1, each of the parity check 

equations is checking the parity of both some information bits and some parity bits. For example, 

in the (N, We, w r )=(20, 3, 4) code of Table 2.1, the binary Is in the first row occupy the positions 

spanning from [(1 -1) x 4] + 1 = 1 to 1 X 4 = 4. Similarly, the binary Is in the second row occupy the 

positions spanning from [(2 - 1) x 4] + 1 = 5 to 2 X 4 = 8, hence the second row of the PCM checks 

the parity of the bits located at the 5th , the 6th , the 7th and the 8th column of the PCM. 

When the first subset h&'l been constructed in this way, a number of further subsets separated 

by the horizontal lines in Table 2.1 are created by random permutation of the columns obeying an 

equal probability of permutation. For example, in the second horizontal partition of Table 2.1, the 

5th and 2nd columns have been swapped, hence the &'lsociated 6th parity check equation involves the 

5th column, while the 7th parity check equation involves the 2nd column. Furthermore, the 3rd and 

the 9th columns were exchanged, etc. According to Gallager's description of the parity check matrix, 

the whole matrix will be divided into We subsets, where We is the number of non-zero entries per 

column, Le. the column weight. When the block-length N incre&'les, while keeping the parameters 

We and Wr constant, the parity check matrix becomes more and more sparse. Hence the minimum 

distance of the code, which is defined &'l the number of bit positions, where the two nearest code 

words differ, incre&'les &'l well, provided that the column weight of the PCM equals or greater than 

three [1]. Gallager showed [1] that for a large N, the Cumulative Density Function (CDF), more 

precisely the histogram of the minimum distance approaches a unit step at a fixed fraction 6 of the 

total blocklength. The corresponding Probability Density Function (PDF) of the minimum distance 
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is similar to a Delta function of height J:.rtS concentrated at the weight ntS, indicating that practically 

all the codewords in the ensemble have a minimum distance that is similar to N tS. 

column 3 Row 2 

column 7 Row 8 

(2,8) 
(13,3) 

column 8 (13,8) 
Row 13 

Figure 2.3: Bipartite graph representation of a length-6 cycle, highlighted using the marker * in 

Table 2.2. 

The PCM may also be represented using a Tanner graph [5], which is constituted by nodes and 

connections. Figure 2.3 shows a Tanner graph representing a fraction of the PCM seen in Table 2.2. 

The nodes on the left of the Tanner graph are called the message nodes, which represent the specific 

columns of the PCM indicated at the left of the figure. On the right of the Tanner graph are the 

check nodes, which correspond to the specific rows of the PCM identified at the right of the figure. A 

connection between a message node and a check node represents the corresponding non-zero entry in 

the PCM. More explicitly, &'l shown in Figure 2.3, the connection between the column-3 message node 

and the row-13 check node represents the non-zero entry at position (13,3) of the PCM in Table 2.2. 

During the decoding process, the information will be p&'lsed from a message node to a check node via 

the connection between them, and the check node will also feed the updated information back to the 

message node through the connections. 

As a result of further research efforts, the concept of cycles W&'l devised [5], where the length of a 

cycle refers to the number of non-zero entries in the parity check matrix, which can be connected to 

form a cycle, as will be explained below. The concept of cycles can also be represented in the Tanner 

graph, where the connections between the nodes form a closed loop. An example of a length-6 cycle 

is shown in Figure 2.3. More explicitly, there are six connections in Figure 2.3 representing a closed 

loop, which is referred to &'l a length-6 cycle. These six lines represent the non-zero entries (2,7), (8,7), 

(8,3), (13,3), (13,8) and (2,8) of the PCM seen in Table 2.1, and this length-6 cycle is highlighted 

using the marker * in Table 2.2. 

It will be shown in Section 2.5 that this concept is related to the LDPCC's decoding algorithm. 

More explicitly, during the LDPC decoding process, the decoding information will be exchanged 

both vertically and horizontally between the non-zero entries of the PCM. As for the Tanner graph 

representation, the decoding information will be travelling back and forth between the message nodes 

and the check nodes. The length of the cycle determines the amount of extrinsic information that 

a particular non-zero entry is supplied with. However, for the sake of providing some intuition into 

the deeper significance of cycles, suffice to say here that the formation of long cycles indicates that 

the PCM promotes the efficient exchange of decoding information. By contrast, the presence of short 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 

2 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 

3 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 

4 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 

5 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 

H= 6 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 

7 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 

8 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 

9 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 

Table 2.4: Example of a parity check matrix H having N=15, wc=3, wr=4.5, !v[=N -K=Nxwc/wr = 

10 and r=1/3. 

cycles implies a limited exchange of information, leading to a limited decoding performance. 

The more entries are needed for forming a cycle, the more decoding information is pa<;sed around 

during the decoding process and hence the better the performance of the parity check matrix concerned. 

In Section 2.5, where the process of probabilistic decoding is described, it will be shown that the 

information needed for decoding will be pa<;sed between the non-zero entries of the same row or of the 

same column. Thus if the length of the cycle is high, each non-zero entry in the parity check matrix is 

capable of benefiting from more parity-related information provided by other entries within the cycle. 

The shortest possible cycle of the PCM of Table 2.1 is a length-4 cycle, marked as * in Table 2.2, since 

there are two non-zero entries in the fifth row and another two non-zero entries in the 15 th row of 

the parity check matrix, both pairs occupying the la<;t two columns. Hence during the construction of 

the parity check matrix, the existence of the shortest cycle, namely that of the length-4 cycle should 

be eliminated, if possible. In this thesis a parity check matrix generated by computer search will be 

introduced, which will be used during the rest of our discussions on the LDPCC encoding and decoding 

process. The size of this PCM is quite small for the sake of simplicity, which is hence inadequate for 

practical applications. Owing to the restricted size of the matrix, it has length-4 cycles. 

The parity check matrix of the LDPCC is invoked at the decoder's output for determining whether 

the decoded codeword is a valid one. As stated previously, the parity check matrix is used for creating 

the generator matrix, which is applied at the encoder for generating the parity bits to be appended 

to the original information bits. Thus the product of the received codeword C, which is a (lxN)­

dimensional row vector, and the parity check matrix H becomes zero if there are no errors after the 

iterative decoding process. A simple example highlighting this property is provided by a<;suming that 

an encoded frame of 15 consecutive zero bits ha<; been transmitted through a channel, and the 1 st a<; 

well a<; the 3rd bit were corrupted, which gives a binary 1 both at bit position 1 and 3 in this received 

codeword. Upon multiplying the received data stream of 101000000000000 with H T , which is the 

transpose of the parity check matrix given by Table 2.4, we arrive at the stream of 1011100011. This 

shows that the pt, 3rd , 4th, 5th , 9th and the 10th parity check equations are violated. Thus the decoder 

will continue iterating, a<; it will be shown in Section 2.5, unless the decoding process ha<; reached the 
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predetermined maximum number of iterations. 

Gallager also showed [1] that when this encoding scheme is applied for transmission over the 

Binary Symmetric Channel (BSC) [109], the results approach the optimum in terms of the achievable 

bit error probability. While the BSC constitutes a useful model for initial theoretical investigations, 

it is by no means a practical channel model. For correcting transmission errors, Gallager proposed 

the employment of probabilistic decoding, sometimes also referred to 8..<; the belief propagation 

algorithm [110] or sum-product algorithm, which evaluates the a posteriori 2 probabilities of the bits 

of the various received words, 8..<; it will be shown in the next section. 

Figure 2.4: The extrinsic information is generated by the codec and constitutes the overall a posteriori 

information together with the input a priori information and the channel information. 

2.4 LDPC encoding 

When using a channel code for protecting messages, we have to define a mapping from the original 

uncoded information bit vector, S of dimension 1 x K=l x (N - Iv!), where Iv! is the number of 

rows of the parity check matrix, which can be expressed 8..<; Iv! = N x We, when the parity check 
Wr 

matrix H h8..'l full rank. All the notations used bear the same meaning 8..<; previously. The symbol 

S W8..'l introduced here for representing an un coded information message, which is encoded into a 

codeword C of dimension 1 x N carrying the uncoded systematic source information S at the end of 

the codeword. Only linear mapping schemes will be considered here, which can be written in a matrix 

form 8..'l C=S·G, where G is the generator matrix derived from the PCM H exemplified in Table 2.4, 

8..'l will be shown during our forthcoming discussion. For an LDPC code having a parity check matrix 

H, any legitimate codeword h8..'l to satisfy C·HT =0. The generator matrix G can be calculated using 

the following steps. 

Since the parity check matrix H has an (N - K) x N=Iv! x N-dimensional structure, it can be 

divided into an (N - K) x (N - K)=M x M-dimensional matrix A and an M x (N - M)-dimensional 

matrix B. Furthermore, since we have C·HT =0, this equation can also be written 8..<;: 

C· HT = C· (A;Bf = p. AT + S· BT = 0, (2.6) 

2We will use the terminology of (], priori information, extrinsic information and (], poster'i(J'f"i information to specify the 

input and output information of a codec, The (], priori information refers to the additional information, with respect to 

the channel informatioll, which is provided by an external codec, The terminology of extrins'ic information corresponds 

to the extra new information generated internally inside the codec. The a poste-rior'i information is a combillation of the 

(], pr'iori information, extr'insic information and the channel information. An illustration is provided in Figure 2.4, 
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where";" denotes matrix partition, and 8 and P are row vectors of dimension 1 x K and 1 x .LV! =1 -

(N - K), used for representing the information bits and the parity bits, respectively. Provided that 

the submatrix AT is non-singular and hence may be inverted, from Equation 2.6 we have 

(2.7) 

Thus, using the parity bits P derived in this way, the LDPC encoded codeword C can be con­

structed by appending the information segment 8 at the end of the parity bit segment P. However, 

since the parity check matrix has a pseudo-random construction, it cannot be guaranteed that the 

submatrix AT is invertible. Hence, the columns of the parity check matrix may have to be reordered 

for the sake of being able to calculate the inverse of the matrix AT. If the original matrix AT is 

singular, we will randomly select a column from B and swap it with a randomly chosen column of A. 

This process continues until the matrix AT becoma'l non-singular. Thus, after reordering the columns 

of the matrix H, we arrive at the reordered parity check matrix H r , and based on the new PCM 

H r , the generator matrix G can be constructed by calculating the matrix (BT . (AT)-l)(KXM) as 

described ba'led on Hr. Then a K x K-dimensional identity matrix I(KxK) is appended to the right 

of the matrix (BT . (AT)-l)(KXM)' Hence we arrive at the (K x N)-dimensional generator matrix 

G(KxN) given by: 

(2.8) 

Since the column order of the original PCM H ha'l been altered, the encoded codewords generated 

upon multiplying the information sequences by G created from Hr will be incompatible with the 

original PCM H, and hence the equation GHT =0 will not hold. Therefore, after the generator 

matrix G ha'l been created from H r , we should use Hr for future manipulations. Let us now consider 

the following encoding example. 

When using the PCM H of Table 2.4, we first have to obtain Hr for the sake of constructing the 

generator matrix G. Since the column order of the original PCM H has been altered for the sake of 

finding an invertible submatrix AT a'l described previously, the PCM Hr is obtained in the form of 

Table 2.5. The matrixes A and B in Equation 2.6 constitute the left and right parts of H r , separated 

by the vertical line in Table 2.5. 

By calculating BT . (AT)-l in Equation 2.7, we arrive at the K x .LV!=(N -.LV!) x M-dimensional 

matrix seen in Table 2.6. Upon multiplying the source bit stream 8 with this matrix, the parity bits 

P can be obtained a'l seen in Equation 2.7. Thus the encoded codeword C is generated by multiplying 

the information bit stream 8 with the generator matrix G, a'l follows: 

C(1XN) = 8(1xK) . G(KxN) (2.9) 

Assuming that we have a 5-bit information bit stream of 8=01001, by multiplying 8 with the 

generator matrix G of Table 2.7, the LDPC encoded codeword is given by C = 101110100101001. 

The la'lt five bits are the original information bits, while the first 10 bits are the parity bits. Upon 

multiplying this encoded codeword C with the parity check matrix Hi!' of Table 2.5, we will arrive at 

the 10-component all-zero vector, which implies that the encoded codeword wa'l indeed a legitimate 

one. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 

2 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 

3 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 

4 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 

5 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 

6 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 

7 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 

8 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 

9 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 

10 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 

Table 2.5: The PCM Hr constructed from H seen in Table 2.4. The PCM Hr h&'l N=15, M=lO, 

wc=3 and wr =4.5. The ith column of the PCM Hr is constructed by using the ofh column of the PCM 

H, where we have 0i = {2, 4,1,3,6,5,7,9,8,10,11,12,13,14, 15}. The sllbmatrixes A and B are the 

left and right parts of H r , respectively. 

1 2 3 4 5 6 7 8 9 10 

1 1 1 1 0 0 0 1 1 1 1 

2 0 1 0 1 0 0 1 0 0 0 

3 0 0 1 0 1 0 1 1 0 1 

4 0 0 0 0 1 0 1 0 0 1 

5 1 1 1 0 1 0 0 0 0 1 

Table 2.6: The matrix product of BT . (AT)-l required for calculating the generator matrix G of 

Equation 2.8, which corresponds to the rearranged PCM Hr in Table 2.5. 

2.5 LDPC decoding 

In this section, two decoding schemes will be described. The first one is referred to &'l exhaustive 

enumeration b&'led decoding [111], which represents the optimum Maximum Likelihood decoding of 

the codeword. The second decoding method is b&'led on probabilistic propagation [lJ and this is a 

sub-optimum decoding technique that is capable of achieving near-optimum performance. 

2.5.1 Exhaustive enumeration based decoding 

The optimum exhaustive enumeration decoding method [111J evaluates the probability of encoun­

tering each legitimate codeword b&'led on the product of the individual bit probabilities quantified 

as the demodulator's soft-output. This approach compares the received codeword to all legitimate 

codewords for the sake of finding the most likely original transmitted codeword. However, this decod­

ing philosophy becomes impractical for a high blocklength, since the number of legitimate codewords 

incre&'les exponentially with respect to the blocklength. Therefore, we introduce the low-complexity 

but sub-optimal probabilistic decoding algorithm in Section 2.5.2. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 

2 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 

G= 3 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 

4 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 

5 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 

Table 2.7: The generator matrix G= [(BT . (AT)-l )(KXM); I(KxK)] corresponding to the parity check 

matrix Hr of Table 2.5. 

2.5.2 Probabilistic decoding (Gallager's method) 

The second decoding method to be introduced provides a better trade-off between the achievable 

performance and the &'3sociated complexity. When decoding a received sequence, two important 

&'3pects have to be taken into consideration. Firstly, how likely it is that a bit h&'3 been received 

incorrectly owing to the channel effects. Secondly, whether the redundant bits checking the parity of 

a particular bit may be considered &'3 error-free. Hence we have to calculate the probability of the 

received symbol being a binary 1 or 0, conditioned on receiving a specific contaminated demodulator 

soft-output sample Y and also conditioned on the event S that this specific bit satisfies all the We 

parity check equations containing it. This statement can be written in a compact form &'3: 

P[Xj = 11{Y},S]. (2.10) 

Let p} be the probability that a binary 1 W&'3 transmitted at bit position j = L.N, b&'3ed on the 

demodulator's soft output. Furthermore, let us use p/j to denote the probability of encountering a 

binary 1 at the bit position j, (j = L.N) in the ith, (i = L.M) parity check of Table 2.5. Gallager 

provided a formula for evaluating the ratio of the probabilities of a binary 1 and a binary 0 being 

transmitted at bit position j = 1 ... N in the following form, &'3 it was shown later in Appendix B [1]: 

P[Xj = 01{Y},S] = 1- p} IT [1 + ITIE{Ci},If-j(1 - 2P/J] , 
P[.Tj = 11 {y}, S] p]l. 1 - ITIE{C} l-t.] (1 - 2pll ) 

tE{Rj } , ,r t, 

(2.11) 

where {Ci } is used for representing the set of column indices of the non-zero entries in the ith row 

of the PCM of Table 2.5, and {Rd is used for representing the set of row indices of the non-zero 

entries in the ith column of the PCM of Table 2.5. For example, in Table 2.5 we have {C2} = 

{2,6,7,9,1O} and {R 12 }={3,7,10}. Furthermore, {Rj} gives the set of row indices of the ;th bit in 

Table 2.5. Equation 2.11 illustrates the method of calculating the a, posteriori probability ratio of 

the ;th bit conditioned on the knowledge of the channel's soft output Y and on satisfying the parity 

check equations &'3sociated with the ;th bit. This a, posteriori probability ratio is calculated from the 

intrinsic probability of the ;th bit provided by the channel's soft output Yj, and from the probabilities 

of the neighbouring non-zero entries denoted &'3 Pi,l in Equation 2.11. This will be exemplified with 

the aid of a worked example in Section 2.6, while the proof of Equation 2.11 is given in Appendix B. 

Let us introduce the Likelihood Ratio (LR) expressed &'3 [1]: 

LR . _ 1 + ITIE{Ci },If-j(1 - 2pL) 
t,] - 1 - ITIE{Ci },If-j(1 - 2pll) 

i=1 ... M,j=1 ... N, (2.12) 
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and the Probability Ratio (PR) a.'s: 

(2.13) 

and 
1- pI 

PR(.7:j) = y, IT LRi,j j = 1 ... N. 
] iE{Rj} 

(2.14) 

Equation 2.13 describes how the PR information of each non-zero entry of the PCM is updated. More 

explicitly, LRi,j in Equation 2.12, i = 1 ... M, j = 1 ... N specifies the ratio of the probabilities that 

the lh encoded bit is a binary 0 normalised to the probability of it being a binary 1 based on the 

product of soft information Pi,l in Equation 2.12 provided by the other non-zero PCM entries in 

the ith row, but excluding the current one according to Equation 2.12. The proof of Equation 2.12 

is provided in Appendix A. Furthermore, the Probability Ratio P Ri,j in Equation 2.13, represents 

similar information to LRi,j in Equation 2.12, except that the associated soft information is supplied 

by all the other non-zero entries in the lh column. Finally, the notation P R( x j) in Equation 2.14 

gives the overall a p08teriori probability ratio of the lh coded bit. Additionally, we will also introduce 

the notation Pr (.7:j) for representing the intrinsic rather than a posteriori probability ratio of the lh 
bit, which will be used in Section 2.6. 

The LDPC decoding process involves both a vertical and a horizontal message pa"'lsing operation 

within each decoding iteration. These two operations are implemented ba.<;ed on the iterative cal­

culation of PRi,j and LRi,j expressed in Equations 2.13 and 2.12, respectively. Let us consider the 

non-zero PCM entry of Table 2.5 at position (3,3) for example for the sake of describing the calcu­

lation of the message LRi,j in Equation 2.12. There are another four non-zero entries in the same 

row of Table 2.5 a.<; entry (3,3), which may be found in the 7th , 12th , 14th and 15th column. Thus the 

non-zero entry at (3,3) will receive e.7:trin8ic information from all other non-zero PCM entries in the 

3rd row and based on Equation 2.12 it will calculate its own LRi,j message. More explicitly, ba.<;ed on 

Equation 2.12 the extrinsic information specifies the probability of the 3rd bit being a binary 0 on the 

ba.<;is of the probabilities of all other bits involved in the 3rd parity check set of Table 2.5. By contrast, 

P Ri,d of Equation 2.13 is calculated by exploiting the soft-values of all other entries in the same col­

umn. Referring again to the non-zero PCM entry at position (3,3) of Table 2.5, the updating of this 

information is ba.<;ed on Equation 2.13, exploiting the soft information provided by positions (4,3) and 

(5,3) in Table 2.5. During the iterative update of Equations 2.12, 2.13 and 2.14, the employment of 

P R expressed in Equations 2.13 and 2.14 is two-fold. The PR value of each bit, namely P R(.7: j) will 

be calculated a.<; in Equation 2.14 after each iteration. Ba.<;ed on P R(.7: j) a hard decision will be made 

and the resultant bit sequence will be tested with the aid of the PCM. If the corresponding parity 

check failed and hence another iteration is necessary for finding a legitimate codeword, the PR value 

of each non-zero PCM entry, namely P Ri,j, i = 1 ... lvI, j = 1 ... N will be evaluated according to 

Equation 2.13. The difference between the PR value in Equation 2.14 of the above-mentioned bit and 

that of the non-zero PCM entry is that the P R(.7: j) value of the bit in Equation 2.14 incorporates the 

information provided by all the non-zero PCM entries within the column weighted by the intrinsic 

probability ratio of the lh bit, denoted a.<; I~~l in Equation 2.14. By contrast, the P Ri,j value of a 
J 

non-zero PCM entry in Equation 2.13 is calculated ba.<;ed on both the knowledge of all other entries in 

the column combined with the intrinsic probability ratio of the lh bit, Le. by I~~l in Equation 2.13. 
J 
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This me&'mre is used for the sake of ensuring that the same information will not be used twice during 

a given iteration. 

Algorithm 1 A 8tep-bY-8tep de8cription oj Gallager'8 probabili8tic LDPC decoding algorithm i8 pro­

vided 0,8 jollo1118. 

1. Based on the received soft values Yj at the output of the channel, the intrinsic 

probability of the jth bit being a binary 1 or binary 0 can be calculated as: [112] 

1 1 (-(Yj + 1)2) 
Pj = P(Yjl·Tj = 1) = $0" exp 20"2 (2.15) 

( 2) 0_ 1 -(Yj - 1) 
Pj - P(Yj I·Tj = 0) = r;c exp 2 ' 

V 27r0" 20" 
(2.16) 

where Yj and 0" denotes the jth received soft channel output value and the standard deviation 

of the channel's soft output, respectively. 

2. The Pi : j values shown in Equation 2.12 are initialised by the p} values obtained 

from Equation 2.15. 

3. The LRi,j values corresponding to each non-zero entry in a given row of the PCM 

are updated according to Equation 2.12, which is repeated here for convenience. 

LR . . - 1 + ITIE{Ci},I;tj(l - 2Plz) (2.17) 
2) - 1 i = 1 ... lvI, j = 1 ... N, 
, 1 - ITI E{Ci },I;tj(1 - 2Pi,l) 

4. The PRi,j values corresponding to each non-zero entry in a given column of the 

PCM are updated according to Equation 2.13, which is repeated here for convenience. 

1- pI 
P R ' - --) II LRk ,)· (2.18) 2,) - pI 

) kE{Rj},kf.i 

5. For each coded bit, Equation 2.14 is used for updating the PR(xj). This is provided 

here again for the ease of the reader. 

1- pI 
P R('Tj) = --1-) II LRi,j j = 1. .. N. 

Pj iE{Rj } 

(2.19) 

6. The plj value corresponding to each non-zero entry of the PCM is updated according 

to 1/(1 + P Ri,j) , where P Ri,j represents the updated values from step 4. 

7. Based on the PR(xj) values updated in step 5, a tentative hard decision is made 

and this tentatively decoded codeword is multiplied with 1I~. 

8. If the resultant syndrome vector is an all-zero vector, we declare a legitimate 

codeword has been found and the iterative decoding process is terminated. 

9. By contrast, if the syndrome vector is not an all-zero vector and the maximum number 

of LDPC iterations is reached, we will declare a decoding failure and output the tentatively 

decoded codeword. 

10. If the maximum affordable complexity has not been exhausted, go back to step 3. 

We will elaborate on these issue.', in more detail using a quantitative example in Section 2.6. 
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2.6 LDPC decoding example 

First of all, let us &<;sume that the parity check matrix Hr of Table 2.5 is used and the relevant generator 

matrix G is the one seen in Table 2.7. Let us assume that the information bit stream of 8=01101 is 

transmitted. Thus, upon multiplying the source information sequence 8 by the generator matrix G of 

Table 2.7 according to Equation 2.9, the encoded codeword C is found to be 100100010001101, which 

is listed in Table 2.8. 

·7:1 ·7:2 X3 X4 X5 ·7:6 X7 x8 ·7:9 XlO Xn ·7:12 X13 ·7:14 X15 

1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 

Table 2.8: LDPC encoded codeword generated according to Equation 2.9 using the generator matrix 

of Table 2.7 

The encoded sequence of Table 2.8 is transmitted through an AWGN channel having a noise 

standard deviation of (]" = 0.9 using BPSK modulation. A logical 0 is transmitted as +1 and a 

logical 1 is represented as -1. Once the encoded bit stream w&<; transmitted through the channel, the 

noise-contaminated received sequence shown in the 3rd column of Table 2.9 may be received. This 

corresponds to the demodulator's soft output samples. 

Transmitted Received Probability Probability Decoded 

Bits Samples Ratio(Pr(xj)) P} Bit 

Xl 1 -0.89 0.11 0.9 1 

X2 0 +1.19 19 0.05 0 

·7:3 0 +1.576 49 0.02 0 

·7:4 1 -1.19 0.0526 0.95 1 

,7:5 0 +0.25 1.857 0.35 0 

,7:6 0 +1.193 19 0.05 0 

,7:7 0 +0.081 1.222 0.45 0 

,7:8 1 -0.164 0.667 0.6 1 

,7:9 0 + 1.115 15.67 0.06 0 

XlO 0 +0.56 4 0.2 0 

·7:n 0 +1.865 100 0.01 0 

,7:12 1 +0.164 1.5 0.4 0 Error 

X13 1 -1.19 0.0526 0.95 1 

X14 0 +1.19 19 0.05 0 

X15 1 -0.89 0.11 0.9 1 

Table 2.9: LDPC decoding example, where a logical 0 corresponds to a positive received sample and 

vice versa. The P} is calculated from Equation 2.15 during step 1 of Algorithm 1 and the probability 

ratio Pr (,7:j) is calculated by (1- p})/ Pi-

The 4th column of Table 2.9, denoted &<; Pr , specifies the ratio of the probability that the bit w&<; 

originally transmitted &<; a binary zero over the probability that the bit w&<; a binary one, i.e. the ratio 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.11 19 0.0526 15.67 100 

2 19 19 1.222 15.67 4 

3 49 1.222 1.5 19 0.11 

4 0.11 49 1.857 0.667 4 

5 49 1.857 0.667 0.0526 19 

6 19 0.667 100 0.0526 

7 1.222 4 1.5 0.11 

8 1.857 0.0526 19 0.11 

9 0.11 19 0.0526 19 

10 0.0526 15.67 100 1.5 

Table 2.10: Initial probability ratio value P Ri,j of each non-zero PCM entry initialised by using the 

Pr(.'Ej) values seen in Table 2.9 according to the PCM of Table 2.5 following step 2 of Algorithm 1. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.9 0.05 0.95 0.06 0.01 

2 0.05 0.05 0.45 0.06 0.2 

3 0.02 0.45 0.4 0.05 0.9 

4 0.9 0.02 0.35 0.6 0.2 

5 0.02 0.35 0.6 0.95 0.05 

6 0.05 0.6 0.01 0.95 

7 0.45 0.2 0.4 0.9 

8 0.35 0.95 0.05 0.9 

9 0.9 0.05 0.95 0.05 

10 0.95 0.06 0.01 0.4 

Table 2.11: Initial probability value Pi~j of entry (i,j) of the PCM indicating the chances that the lh 

bit is a transmitted binary 1 using the notation p} of Table 2.9 according to the PCM of Table 2.5 

Pr(Xj) = pjOjP}. This represents the intrin8ic probability ratio of each bit, which is calculated with 

the aid of the Gaussian PDF function given by 1::: exp (-(y
2
-;,)2) , where m denotes the mean of the 

y21fO' a 

Gaussian distribution. When communicating over an AWGN channel, the only source of modulated 

signal corruption is the channel-induced AWGN. Upon substituting m= + 1 and -1 into the PDF for 

the specific ca..'le of BPSK modulation, we arrive at the probability ratio of the dth bit a..'l: 

exp (_(~j_1)2) 
20'2 2 

-'-----("----(--)-2 -'-) = exp 2Yj j (J • 
_1_ ex - Yj+1 
V2iO' P 20'2 

(2.20) 

According to Equation 2.20, the probability ratio Pr(.'Ej) is computed from the demodulator's soft 

output by using the Gaussian Probability Density Function (PDF), which provides the corresponding 

intrin8ic information of the bit concerned. The terminology intrin8ic implies that this information 

wa..'l acquired from the channel output related to the specific bit concerned, rather than from any 

surrounding bits of the same codeword, where the surrounding bits provide external or e.'Etrin8ic 

information a..'l regards to the specific bit considered. According to step 1 of Algorithm 1, the 5th 

column of Table 2.9, namely p}, gives the probability of the bit being a binary 1 corresponding to the 

Pr values in the 4th column calculated in Equation 2.20 a..'l: 

1 1 
Pj = (). 1+Pr .'Ej 

(2.21) 

At the beginning of the decoding process the intrin8ic probability ratio seen in the 4th column of 
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Table 2.9 will be used for initialising the non-zero entries' PR values in the PCM &"1 in step 2 of 

Algorithm 1, as listed in Table 2.10. For the sake of convenient demonstration of the decoding 

process, Table 2.11 gives the initial probability at position (i,j) that the jth bit is a transmitted 

binary 1 corresponding to the values seen Table 2.10. For example, the values Pi: 12 in the 12th column 

of Table 2.11 are calculated from the values Pr (XI2) in the 12th column of Table 2.10 with the aid of 

Equation 2.21 &"1 follows: 

pI _ 1 
i,12 - 1 + P R i ,12 

1 
1 + 1.5 = 0.4, i E {RI2 }, (2.22) 

where R12 represents the indices of the non-zero PCM entries in the 12th row. Furthermore, the values 

seen in the 2nd column of Table 2.11 are calculated by using the values found in the corresponding 

column of Table 2.10 &"1: 

1 1 1 
Pi ,2 = 1 +PR

i
,2 = 1 + 19 = 0.05, i E {R2}. (2.23) 

The probabilities found in Table 2.11 will be used for calculating LRi,j according to Equation 2.12 

following the 3rd step of Algorithm 1. For example, we have: 

1 + ITz E{c:!},Z#12(1 - 2Pl,z) 

1 - ITz E{C:!}N12(1 - 2Pl,z) 

1 + (1 - 2P1,3)(1 - 2P},7)(1 - 2P},14)(1 - 2Pl,15) 

1 - (1 - 2P1,3)(1 - 2P1,7) (1 - 2P},14)(1 - 2P},15) 

1 + (0.96) X (0.1) x (0.9) X (-0.8) 
1 - (0.96) x (0.1) x (0.9) x (-0.8) 

0.93088 = 0.87 
1.06912 ' 

(2.24) 

where all the extrinsic probabilities &'lsociated with the non-zero PCM entries were taken into account, 

except for the entry Pl,12' Similarly, we have 

LR lO ,12 

1 + (1 - 2Pi,7)(1 - 2Pi,1O) (1 - 2Pl,15) 

1 - (1 - 2Pf,7)(1 - 2Pf,1O)(1 - 2Pf,15) 

1 + (0.1) X (0.6) x (-0.8) 
1 - (0.1) x (0.6) x (-0.8) 

0.952 = 0.908' 
1.048 ' 
1 + (1 - 2plo,4)(1 - 2plo,9)(1 - 2plo,ll) 

1 - (1 - 2Plo,4)(1 - 2Plo,9)(1 - 2Plo,ll) 

1 + (-0.9) x (0.88) x (0.98) 
1 - (-0.9) X (0.86) x (0.98) 

0.22384 = 0.126. 
1.77616 

(2.25) 

(2.26) 

All these LR values are summarised in Table 2.12. Then the calculated message LRi,j is used for 

the sake of updating the probability ratio P Ri,j with the aid of Equation 2.13 to carry out the 4th 
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step of Algorithm 1. For example, we have: 

II 
kE {RI2} ,k;i'3 

1 - 0.4 
0.4 x LR7,12 x LRlO•12 

1.5 x 0.908 x 0.126 = 0.1716, 

21 

(2.27) 

where all the non-zero entries of the 12th column in Table 2.11 were taken into account, except for 

LR3.12, because the factor I-p~l2 already takes into account the intrinsic information available for bit 
, 12 

11 of the codeword. Similarly, we have 

PRlO,12 

0.6 
0.4 x LR3,12 x LRlO,12 

1.5 x 0.87 x 0.126 = 0.1644; 
0,6 
0.4 x LR3,12 x LR7,12 

1.5 x 0.87 x 0.908 = 1.185. 

The corresponding PR values are summarised in Table 2.13. 

1 2 3 4 5 6 7 8 9 10 11 

1 0,177 4.27 0,234 4,48 3,62 

2 1,1 1,1 2,5 1,1 1,153 

3 0,972 0.757 

4 0,933 1.06 1.2 0.757 1.096 

5 1,1 1.368 0.621 

6 1.428 0.115 1.387 

7 0.825 0.968 

8 4.673 

9 0.157 4.672 0.214 4.673 

10 1.426 0.700 0.727 

(2.28) 

(2.29) 

12 13 14 15 

0,87 0,97 1.035 

0.9 1.11 

0.700 

0.9084 1.025 

0.645 1.55 0.609 

0.126 

Table 2.12: Likelihood ratio value LRi,j of each non-zero entry calculated using Equation 2.12 after 

the first iteration according to the PCM seen in Table 2.5 following step 3 of Algorithm 1. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.016 100 0.016 12.05 99.78 

2 333.33 125 0.763 50 4.255 

3 58.82 2.512 0.172 32.258 

4 0.0031 52.63 11.905 0.048 4.464 

5 50 10.42 0.172 0.024 28.57 

6 100 0.314 262.52 0.03 

7 2.31 5.05 0.165 

8 3.058 0.033 20,41 

9 0.Q18 90.91 0.017 30.3 

10 0.0026 76.92 501 1.186 

Table 2.13: Probability ratio value P Ri,j of each non-zero entry calculated using Equation 2.13 after 

the first iteration according to the PCM seen in Table 2.5 following step 4 of Algorithm 1. 

15 

0.07 

0.Q7 

0.118 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.984 0.01 0.984 0.076 0.01 

2 0.003 0.008 0.567 0.02 0.191 

3 0.017 0.284 0.854 0.03 0.935 

4 0.997 0.019 0.078 0.955 0.183 

5 0.019 0.087 0.945 0.977 0.034 

6 0.01 0.761 0.004 0.97 

7 0.302 0.165 0.0.859 0.935 

8 0.246 0.968 0.047 0.895 

9 0.982 0.011 0.983 0.032 

10 0.997 0.013 0.002 0.457 

Table 2.14: Probability values of entry (i,j) indicating that the /h bit is a transmitted binary 1 after 

one iteration according to the PCM seen in Table 2.5, which were calculated from the values tabulated 

in Table 2.13 following step 6 of Algorithm 1. 

Bit P R(.7:d) Bit P R(.7:d) Bit PR(Xd) 

·7:1 0.00285 ·7:6 139.466 Xll 365 

·7:2 416.94 X7 1.9079 ·7:12 0.149 

·7:3 55.534 X8 0.036 ·7:13 0.021 

X4 0.00375 ·7:9 54.055 X14 31.71 

·7:5 14.245 ·7:10 4.893 X15 0.07 

Table 2.15: A p08teriori probability ratio of each of the 15 encoded bits after the first iteration 

calculated from Equation 2.14 following step 5 of Algorithm 1. 

The above two steps accomplish the information p&'lsing from the message nodes to the check 

nodes and back to message nodes, which is the result of the first LDPC iteration. Following the above 

worked examples, all the elements of Table 2.12 and 2.13 may be calculated, which constitute the 

result of updating the LR and PR values of each individual non-zero entry in the PCM for the first 

iteration by using Equations 2.12 and 2.13, respectively. Furthermore, the probability values of entry 

(i,j) calculated from the corresponding probability ratio, which indicate the chances that the jth bit 

is a transmitted binary 1 after the first iteration are summarised in Table 2.14. After each iteration, 

&'l described at the 5th step of Algorithm 1, the likelihood ratios LRi,j summarised in Table 2.12 are 

utilised for generating the a, p08teriori probability ratio according to Equation 2.14. For example, 

using the LR values seen in column 12 of Table 2.12, we have: 

1.5 X 0.87 x 0.908 X 0.126 = 0.149. (2.30) 

These values are listed in Table 2.15. Furthermore, at step 6 of Algorithm 1, the P Ri,j values 

obtained after step 4 of Algorithm 1 are used for updating the value of P i : j , &'l seen in Table 2.14. 

The a posteriori probability generated by the decoder at its output is then fed to the decision making 

decoder stage for hard decision and the corresponding hard decision decoded codeword will be tested 

with the aid of the parity check matrix Hr. If the result of this verification stage using C.H; is not an 

all zero vector, then the decoded codeword is not a legitimate one and hence the operations described 

above will be carried out for another iteration. It can be observed that the 12th coded bit, which W&'l 
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originally in error in Table 2.9, has an a posteriori probability ratio of 0.149 in Table 2.15, where the 

probability ratio is defined as the ratio of the probability of the transmitted bit being a binary zero 

over the probability that the bit w&<; a binary one, under the &<;sumption that a zero and a one have 

an equal probability of occurrence. Therefore the threshold for flipping a bit is one. More explicitly, 

when the probability ratio becomes lower than the threshold, we flip the bit from a binary zero to a 

binary one and vice versa. Hence this bit is flipped to a binary one and we can compare with Table 2.9 

and see that this erroneous bit h&<; been corrected. 

As for the 7th step of Algorithm 1, upon carrying out a hard decision b&<;ed on the values seen 

in Table 2.15 and calculated during the first iteration, it can be seen that the error at position 12 

h&<; been detected and corrected. By multiplying the hard decision based results of the decoded bit 

sequence with the transpose of the PCM Hr of Table 2.5, the product becomes an all-zero vector. This 

indicates that the obtained codeword is legitimate, thus the iterations are concluded. Hereby, step 

8 is carried out for outputting a legitimate codeword and the decoding process is accomplished. If, 

however, the resultant product is not an all-zero vector, this will indicate that the decoded codeword is 

not a legitimate one, thus a further iteration will be carried out &<; described at step 9 in Algorithm 1, 

provided that the maximum affordable number of iterations h&<; not been exhausted. The values listed 

in Table 2.14 will be used for the remaining operations in the same f&<;hion, &<; described previously. 

2.7 Generalised LDPC decoding procedure 

In the previous section, a worked decoding example w&<; provided, using Gallager's notation. How­

ever, during the P&<;t decade, numerous researchers have been working on LDPC codes, and resulting 

in further advances, such &<; non-binary LDPC [55] or reduced complexity decoding [9]. In his re­

search, Gallager used the Probability Ratio and Likelihood Ratio of bits, &<;suming a binary coding 

and modulation scenario. As seen in Appendix A, the updating of the likelihood ratio is carried out 

by calculating the probability of encountering an even number of logical Is in a parity check equation. 

In order to avoid these limitations in this section a more general description of LDPC decoding will 

be given. This generalised description will be cross-referenced with our previous notation according 

to Gallager's original work. 

2.7.1 Generalised notation 

The iterative decoding procedure concerned involves p&<;sing probabilities between the non-zero entries 

within the parity check matrix. Since the decoding information is always p&<;sed from a column to 

a row or vice versa, the probabilities are circulating among the message nodes and the check nodes 

of the bipartite graph defined in Figure 2.3, where we defined the columns &<; message nodes and the 

rows &<; check nodes. Using the example seen in Figure 2.3, we arrive at the more detailed Figure 2.5, 

indicating the exchange of information among the nodes. 

To elaborate further in Figure 2.5, the message denoted &<; Qf,j is p&<;sed from the lh, j = 1 ... N, 

message node on the left to the ith, i = 1 ... Nf, check node seen at the right. More explicitly, Qf,j 
represents the probability p&<;sed from the message node j to the check node i indicating that the 

message node j is in state a E (0,1). The quantity Qi,j is similar to the PRi,j quantity defined in 
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column 3 Row 2 

column 7 Row 8 

column 8 Row 13 

Figure 2.5: Bipartite graph of message passing using the structure of Figure 2.3. 

Equation 2.13 and exemplified in Table 2.10 and 2.13, except that P Ri,j wa'3 expressed in a form of 

ratio. Hence we have P Ri,j = Q~,j/QL. The subscript of Qf,j denotes the row and column index of 

the corresponding non-zero entry in the parity check matrix, which is related to a specific connection 

between the two nodes in Fig 2.5. By contrast, the message denoted a'S Rf,j is pa'3sed from the ith 

check node to the ;th message node, quantifying the probability that the ith check is satisfied ba'3ed 

on the probability of all the participating nodes in the ith check except node j, which is in state a. 

Hence Rf,j corresponds to the LR defined in Equation 2.12, and we have LRi,j = R?,j/ RL· 

The notations Qf,j and Rf,j have a similar meaning to P Rf,j and LRi,j respectively, and these 

quantities are stored in the non-zero entries of the PCM in a fa'3hion similar to Table 2.13 and 

Table 2.12, respectively. At the beginning of the iterations, a'3 the P Ri,j of each non-zero entry is 

initialised to the value of the intrinsic probability ratio, i.e. to the values seen in the 4 th column 

of Table 2.9 for example, Qf,} is initialised to Pl, which is the intrinsic probability that the ;th 

symbol a'3sumed a transmitted binary value of a. If no a priori or independent statistical knowledge 

is available concerning this bit, encountering any of the possible states will have the same probability. 

Since the message Rf,j quantifies the probability that the ith check is satisfied, when the ;th symbol 

is in state a, it can be represented using the following expression [56J: 

Rf,j = L P(Zi = OIC) II 
C:cj=a kE{Ci},kij 

QCk 
i,k' i = 1 ... M, j = 1 ... N. (2.31) 

The notations Cj and Cj in Equation 2.31 are used to represent the ;th bit of the codeword C, and the 

set of column indices of the ;th row of the PCM, respectively. Equation 2.31 provides a recipe a'3 to 

how the message R't,j is updated, which is interpreted in more detail below. From this equation, we can 

see that we have to carry out the summation for all legitimate codewords, where the lh, j = 1 ... N, 

symbol is in state a and which satisfies the ith, i = 1 ... lvI, parity check Zi. More explicitly, the 

probability P(Zi = OIC) is 1, if the testing of the codeword configuration C satisfies the ith check Zi 

and a otherwise. In other words, P(Zi = OIC) is a binary flag, which returns a value of 1, if C is 

a legitimate codeword and zero otherwise. The flag P(Zi = OIC) also has to be multiplied with the 

product of all the probabilities Q~% of the message node k being in state Ck for the ith check. Finally, 

the set {Cd contains the column indices of all the non-zero entries participating in the i th row of the 

PCM. 



CHAPTER 2. BINARY LDPC CODES 

Updating Qi,j is quite similar, obeying the following equation [56]: 

Qi,j = Cti,jPJ II Rk,j' 
kE{Rj},kfi 
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(2.32) 

where {R j } denotes the set of row indices that have non-zero entries in column j, j = 1 ... N, of the 

PCM. Furthermore, Pl is the intrinsic probability &'lsociated with the channel output &'lsuming that 

Cj is in state a, and the scaling factor Cti,j is used for ensuring that we have La Qi,j = 1. 

The decoding process is b&'led on simply iteratively updating the values of Ri,j and Qi,j and after 

each update of Ri,j and Qi,j' a tentative hard decision will be made for the sake of determining the 

polarity of the product of Ri,j and each symbol's intrinsic probability, i.e. that of 

P(Cj) = PJ II Rk,j' (2.33) 
kE{Rj } 

The specific binary symbol having the higher probability from the set of two will be chosen &'3 

the survivor. If the hard-decision b&'3ed codeword satisfies the parity check matrix H r , the decoding 

operations are terminated and the corresponding codeword is output. Otherwise, the decoder will 

carryon updating the quantities Ri,j and Qi,j according to Equation 2.31 and Equation 2.32, until 

a valid codeword is found or a predetermined maximum number of iterations is reached. The flow 

diagram of the iterative decoding process is portrayed in Figure 2.6. 

Initialise Q::J 
to p~1 

J 

Declare decoding 
failure 

Update R~I 
'.J 

Maximum 

number of iteration 
reached? 

Hard decision and 

check with matrix H 

Check Satisfied~-----' 

Check not Satisfied 

Figure 2.6: LDPCC's probabilistic decoding flow diagram 

2.7.2 Reduced complexity calculation of the message Rfj 

As seen in Equation 2.31, the updating of the message R a . involves tentatively evaluating all the ",J 
legitimate codewords that have their lh bit in state a. This is a rather complex operation and may 

become prohibitively complex to implement, when the block-length is high. Hence Gallager's [1] 

suggestion outlined in this thesis' Appendix A W&'3 the introduction of a reduced complexity method. 

With the same objective in mind, Richardson proposed an efficient way of updating Ri,j using the 
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F&'lt Fourier Transform (FFT) [9] , which may be further generalised for employment in non-binary 

LDPC codes, &'l shown in Chapter 4. 

In Equation 2.31, the quantity we have to find is the probability of the lh coded bit being in 

state a by exploiting with the knowledge of the other coded bits having a certain probability and 

upon &'lsuming that the ith parity check equation is satisfied. Let us use the notation P DFi,j for 

representing the probability density function of the lh bit stored in the non-zero entry of the PCM 

at position (i,j), where we have PDFi,j = {Pi~j,Pi:j}. Our aim is now to calculate the probability 

density function PDFi,j of the non-zero PCM entry at position (i,j). All the non-zero entries in the 

ith row are modulo-2 added after a tentative hard-decision for the sake of testing, whether a legitimate 

codeword w&<; found. Therefore the probability density function of the jth LDPC coded bit h&<; to 

match the rest of the bits participating in this check for the sake of ensuring that their modulo-2 sum 

equals zero. In other words, the state of the ;th bit h&'l to be the same as the modulo-2 sum of all 

other bits involved in this check. Thus the probability density function of the lh LDPC coded bit 

may be obtained by evaluating the convolution of the probability density function of all other bits 

involved in the parity check equation, which is expressed &'l [56]: 

PDFi,j = ® PDFi,t 
tE{Ci},tfj 

(2.34) 

where ® denotes convolution. However, the convolution may become a high-complexity operation. 

The &'lsociated complexity may be reduced, if the operations are first Fourier-transformed, mul­

tiplied and then inverse Fourier-transformed. These operations may be carried out more efficiently 

using the F&'lt Fourier Transform and Inverse F&'lt Fourier Transform [113] over the corresponding 

finite Galois field, namely GF(2). More explicitly, Equation 2.34 may be formulated in the frequency 

domain &<;: 

II F(P DFi.t). (2.35) 

Let us introduce the function f, representing a function having abscissa values defined over GF(2). 

More explicitly, let f(O) and f(l) represent the probability of a particular bit being a binary zero 

and a binary one, respectively. Furthermore, let us use F(f) to represent the Fourier transform of f, 

which is defined &'l [114]: 

Therefore, we arrive at 

2-1 

F(f)(k) = L f(n)e-j27fkn/2, k = 0, l. 
n=O 

F(f)(O) 

F(f)(l) 

f(O) + f(l) = 1, 

f(O) - f(l). 

Let hj = P D Fi,j, ht = P D Fi,t and substitute these functions into Equation 2.35, yielding 

F(fi,j)(O) = II F(ht)(O), 
tE{Ci},tfj 

F(fi,j)(l) = II F(ht)(l). 
tE{Ci},tfj 

(2.36) 

(2.37) 

(2.38) 
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Apparently, the function F(fi,j)(O) in Equation 2.38 equals one, since we have F(f)(O) = f(O) + 
f(l) = 1 in Equation 2.37. By carrying out the inverse FFT of the results obtained in Equation 2.38, 

the value of Rf,j is obtained. The inverse FFT requires exactly the same operation as those seen in 

Equation 2.37, although an additional normalisation factor has to be incorporated, yielding [56]: 

f(O) = F(f)(O) ; F(f)(l) = 0.5 + F(f;(l) , 

f(l) = F(f)(O) - F(f)(l) 0.5 _ F(f)(l) . 
2 2 

(2.39) 

Let us now illustrate that this method results in the same formulation as Gallager's original work. 

Let us introduce the notation of mi,j = log((Q?,j/QL)). Then we have 

° _ 1 _ Q?,j - QL _ Q?jQL - 1 _ emi,j - 1 _ tanh(m .. /2) 
Qi,j Qi,j - QO . + Ql . - QO/Q1 . + 1 - emi,j + 1 - Z,J' 

Z,J Z,J Z,J Z,J 

and hence Equation 2.38 may be rewritten as 

F(fi,j) (0) 

F(fi,j) (1) 

1 

II 
tE{Ci},tij 

m· 
tanh~ 

2 

(2.40) 

(2.41 ) 

(2.42) 

By taking the inverse FFT of Equations 2.41 and 2.42, Rf,j of Equation 2.31 may be expressed as: 

RO. = F(h,j)(O) + F(fi,j)(l) = (1 + II tanh mi,t) .0.5 
ZJ 2 2 ' 

tE{C;},tij 

Rl. = F(fi,j)(O) - F(fi,j) (1) = (1- II tanh mi,t) ,0,5, 
ZJ 2 2 (2.43) 

tE{C;},tij 

As in Gallager'S LR format, where LRi,j = R?,j/ Rf,j holds, we have 

° 1 1 + ITtE{Cd,tfj tanh m~,t 
LR- . = R . /R· . = --=-----'---'-'-'-'-"------,;y;_:_:_ 

Z,J Z,J Z,J 1 _ IT t h mi,t . 
tE{Cd,tij an 2 

(2.44) 

Since we have tanh(mi,j/2) = Q?,j - Qf,j = 1- 2QL = 1- 2Pi~j' we arrive at Equation 2.12, resulting 

in Gallager's original representation of the LDPC decoding formulation. 

As introduced in Section 2.7.1, QL corresponds to Gallager's original notation Pi,j, as introduced 

in Section 2.6, hence the values seen in Table 2.11 can be directly used for the sake of computing the 

message Rf,j' Observing Equation 2.26, the message LRlO,12 was calculated as (1 - 0.77616)/(1 + 
0.77616) = 0.126. Let us now provide a brief example of updating the message R'lO,2 with the aid of 

the FFT and show that it is consistent with the approach demonstrated in Section 2.6. 

In order to calculate R'lO,2' we have carried out the FFT for all the probabilities of the non-zero 
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entries participating in the 10th row of Table 2.11 using Equation 2.37 a..'l follows: 

F(JlO.4) (0) flO,4(0) + flO,4(1) = 1, 

F(JlO,4) (1) f1O,4(0) - f1O,4(1) = -0.9; 

F(J1O,9) (0) ilO,9(0) + f1O,9(1) = 1, 

F(J1O,9) (1) f1O.9(0) - f1O.9(1) = 0.88; , , 

F(J1O,l1)(O) f1O,l1(O) + flO ,11 (1) = 1, 

F(JlO,l1)(l) f1O,l1 (0) - flO,l1 (1) = 0.98; 

F(J1O.12)(0) flO,12(0) + flO,12(1) = 1, 

F(J1O,12)(1) flO,12(0) - flO,12(1) = 0.2. (2.45) 

Upon multiplying the transformed values obtained with the aid of Equation 2.45, the Fourier 

transform of the PDF of entry (10, 12) can be updated as seen in Equation 2.38, yielding: 

F(J1O.12) (0) 

F(J1O.12)(1) 

II F(J1O,d(O) = F(JlO,4) (0) X F(JlO,9) (0) X F(J1O,l1)(O) 
tE{Cd,ti'12 

1 X 1 X 1 = 1; 

II F(J1O,t)(l) = F(JlO,4)(1) X F(J1O.9)(1) X F(J1O,l1)(l) 
tE{Ci}.ti'12 
(-0.9) X 0.88 X 0.98 = -0.77616. (2.46) 

The results obtained according to Equation 2.46 have to be inverse Fourier transformed for the sake 

of generating the PDF of the non-zero entry (10,2) of Table 2.11 using Equation 2.39, yielding: 

flO.12 (0) F(J1O,12)(0) + F(J1O,12) (1) = 1 - 0,77616 = 0.11192 
22' 

F(JlO.d(O) - F(J1O,12) (1) = 1 + 0.77616 = 0.88808. 
2 2 

Thus the results obtained in Equation 2.47 can be a..'lsigned to R'tO,2 as follows: 

R~0,12 
Rio,12 

flO,12(0) = 0.11192, 

flO,12(1) = 0.88808, 

(2.47) 

(2.48) 

yielding LRlO,12 = R~O,12/ Rio.12 = 0.126 a..'l according to Equation 2.44, which is consistent with the 

value previously tabulated in Table 2.12. 

2.7.3 Complexity of the LDPC decoder 

As described in Section 2.7.2, the complexity of the LDPC decoder can be reduced with the aid of 

the FFT. In this subsection, the complexity of the LDPC decoder will be calculated in terms of the 

number of additions and multiplications required. 

During the process of updating the message R~j' the FFT process of Equation 2.37 requires two 

additions. When the FFT ha..'l been carried out, the multiplications entailed in the evaluation of 

Equation 2.38 are carried out. Equation 2.38 may be more efficiently evaluated by using forward and 

backward multiplications [56J. A simple example is given a..'l follows. 
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Operation Value of temp Value of updated entry 

Initialise temp=l 1 nla 
Anew = temp 1 Anew=l 

temp temp x AOld AOld 

Bnew = temp AOld Bnew=Aold 

temp=tempx Bold AoldX Bold nla 
Cnew = temp AoldXBold Cnew=Aold x BOld 

temp=tempx Cold AoldXBoldXCold nla 
Dnew = temp AOld x Bold X Cold Dnew = AoldXBoldXCold 

temp=tempx Dold Aold X Bold X Cold X Dold nla 
Reset temp=l 1 nla 
Dnew = tempx temp 1 Dnew=Aold x Bold X Cold 

temp =tempx Dold Dold nla 
Cnew = temp x temp Dold Cnew = AoldXBoldXDold 

temp tempx = Cold Cold X Dold nla 
Bnew =tempx temp Cold X DOld Bnew = AoldXColdXDold 

temp =tempx Bold Bold X Cold X D old nla 
Anew = tempx = temp BOld X Cold X D old Anew = BoldXColdXDold 

temp tempx Aold AOld x Bold X Cold X D old nla 
Table 2.16: Process of forward and backward multiplications for a vector having four entries. 

Let us assume that we have a vector containing four values denoted a9 {Aold, Bold, Cold, D old }. We 

have to replace the value of each entry in the vector with a product of other values within the vector. 

More explicitly, we have 

Anew = Bold' Cold' D old , 

Bnew = Aold . Cold' D old , 

C new = Aold . Bold' Dold, 

Dnew = AOld . Bold' Cold· (2.49) 

The evaluation of Equation 2.49 requires (wr - 2) . Wr multiplications, where Wr is the number of 

entries within the vector, i.e. four in this example. We can observe that the complexity increases 

dramatically, when Wr is high in Equation 2.49. We will now show that the forward and backward 

multiplications require 3wr multiplications, a complexity which increases linearly with respect to the 

size of the vector. Using forward and backward multiplications will reduce the arithmetic complexity 

for Wr > 5, which is applicable for regular LDPC codes having a coding rate in excess of 0.4 and for 

most of the irregular LDPC codes introduced in Chapter 3. The process of updating values in the 

vector of Equation 2.49 is tabulated in Table 2.16, where a temporary variable denoted as temp is 

introduced. 

By summing the number of multiplication operations in Table 2.16, a total of 3wr multiplications 

are invoked for calculating state a. For the binary case, where a has two legitimate states, a total of 

6wr multiplications are required. 
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Similarly to the FFT operation, the IFFT operation of Equation 2.39 requires a further two 

additions. Furthermore, owing to the normalisation process of the IFFT another two multiplications 

are nece..'lsary. 

Thus by summing all the operations to be evaluated for a single row of the PCM having Wr 

non-zero entries, we require 411Jr additions and 8wr multiplications for updating message R for each 

individual row. By summing all the Jv[ rows, we have a total of 4JvhlJr number of additions and 8Jv[wr 

multiplications. Since we have Jv[ x Wr = N x We, where We is the column weight, the number of 

additions and multiplications can be represented by 4N x We and 8N x 11Jc , respectively. 

The update of message Q will involve another forward and backward multiplication, thus again, 

each column will require 6wc multiplications. Hence the overall decoding complexity associated with 

the detection of each coded bit in one iteration will be 4we additions and 14we multiplications. 

2.8 Theoretical performance bound 

Gallager stated [1] that a mathematical analysis of the performance of probabilistic decoding is ex­

tremely challenging, but a weak analytical bound on the error probability can be derived for the 

specific case of having a column weight of three, which is expressed as [1]: 

(2.50) 

In the equation, i is the iteration index, while Po is the intrinsic probability of the bit at the position 

concerned being in error. The second term on the right of the Equation 2.50 is the probability that the 

bit concerned is received in error, while the parity check is satisfied due to errors at other positions. 

Finally, the third term represents the probability that the bit concerned is actually received correctly, 

but due to errors in the parity check set, it was modified to be in error. 

Gallager derived Equation 2.50 based on the simplifying assumption that the Binary Symmetric 

Channel (BSC) was used. When the parity check set is not satisfied then the bit concerned was 

simply toggled. Based on this simplistic decoding method, this technique is limited to provide a weak 

bound on the achievable performance, since it is based on hard-decision decoding. When soft-decision 

based simulations are conducted using Equation 2.11, the attainable performance is almost an order 

of magnitude better than the results obtained from Equation 2.50. 

2.9 Simulation results 

In this section our simulation results will be discussed for the sake of characterising the achievable 

performance of the regular construction binary LDPC codes described in the previous sections, when 

communicating over both AWGN and uncorrelated Rayleigh fading channels. The various LDPC 

codes' performance will be benchmarked against that of turbo convolutional codes [3] [115] and 

Turbo Trellis Coded Modulation (TTCM) [115] [116] . All the parity check matrices of the LDPC 

codes are constructed in a random fashion. More explicitly, according to the column weight, the 
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LDPC code Channel Maximum number LDPCC's 

of iterations column weight 

(1000, 500) AWGN 2, 4, 8, 20, 50, 100 3 

(500, 250) AWGN 2, 4, 8, 20, 50, 100 3 

(200, 100) AWGN 2, 4, 8, 20, 50, 100 3 

(1000, 500) uncorrelated Rayleigh 2, 4, 8, 20, 50, 100 3 

(500, 250) uncorrelated Rayleigh 2, 4, 8, 20, 50, 100 3 

(200, 100) uncorrelated Rayleigh 2, 4, 8, 20, 50, 100 3 

Table 2.17: Simulation parameters for three haH-rate LDPCCs investigated, when communicating over 

an AWGN channel and an uncorrelated Rayleigh fading channel using different maximum numbers of 

iterations. 

positions of the non-zero entries are &'lsigned to the PCM randomly, while maintaining a constant row 

weight at the same time. The number of length 4 cycles is reduced to the lowest possible level. 

2.9.1 Effect of the number of LDPC iterations 

Similar to the celebrated family of turbo convolutional codes, the benefit of iteratively exchanging 

soft information is that during the iterative decoding process the performance of the channel decoder 

improves upon incre&'ling the number of iterations, i.e. the decoder's complexity. 

In this subsection, we will use three different haH-rate LDPC codes having various block-lengths. 

The code (N, K) listed in Table 2.17 represents a haH-rate LDPC code having a coded block-length 

of N bits and conveying K information bits. The column weight for each of the three codes seen in 

Table 2.17 is three. In this experiment an AWGN and the llncorrelated Rayleigh fading channel were 

applied. We will use G and UR for abbreviating the AWGN channel and the uncorrelated Rayleigh 

fading channel in the following tables. 

The performance of the LDPC codes listed in Table 2.17 is illustrated in Figures 2.7-2.12. The 

Eb/No required by each of the LDPC codes for achieving a BER of 10-4 when communicating over 

the two different channels is tabulated in Table 2.18. Furthermore, the performance of the uncoded 

scenario is used &'1 a benchmarker and the coding gains achieved by using various maximum numbers 

of iterations for the three different LDPC codes are tabulated in Table 2.19 and plotted in Figure 2.13. 

The corresponding coding gain versus arithmetic complexity curves are also plotted in Figure 2.14. 

The complexity quoted in Figure 2.14 characterises the complexity &'lsociated with the decoding of 

each information bit, calculated from the complexity figures obtained in Section 2.7.3 and divided by 

the LDPC code's coding rate. Observe in Figure 2.13 that even though the simulations were conducted 

for a maximum of 100 iterations, the coding gain started to saturate after an iteration index of 20. 

Hereby, we introduce another quantity termed &'1 the iteration efficiency, which is defined &'1 follows. 

We take the coding gain achieved when using a maximum of 100 iterations &'1 a reference and define 

the iteration efficiency &'1 the percentage of the maximum achievable coding gain at a given number 

of iterations. This quantity is plotted in Figure 2.15. 

It may be inferred from Figure 2.13 that the soft information b&'led iterative decoder achieves most 
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Figure 2.7: BER performance of the half-rate LDPC code (200, 100) parameterised in Table 2.17, 

using different maximum numbers of iterations, when communicating over an AWGN channel. The 

achievable coding gain of the various schemes at a BER of 10-4 will be summarised in Figure 2.13 

and Table 2.27. 
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Figure 2.8: BER performance of the half-rate LDPC code (500, 250) parameterised in Table 2.17, 

using different maximum numbers of iterations, when communicating over an AWGN channel. The 

achievable coding gain of the various schemm at a BER of 10-4 will be summarised in Figure 2.13 

and Table 2.27. 
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Figure 2.9: BER performance of the half-rate LDPC code (1000, 500) parameterised in Table 2.17, 

using different maximum numbers of iterations, when communicating over an AWGN channel. The 

achievable coding gain of the various scheme..'l at a BER of 10-4 will be summarised in Figure 2.13 

and Table 2.27. 
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Figure 2.10: BER performance of the half-rate LDPC code (200, 100) parameterised in Table 2.17, 

using different maximum numbers of iterations, when communicating over an un correlated Rayleigh 

fading channel. The achievable coding gain of the various scheme..'l at a BER of 10-4 will be summarised 

in Figure 2.13 and Table 2.27. 
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Figure 2.11: BER performance of the half-rate LDPC code (500, 250) parameterised in Table 2.17, 

using different maximum numbers of iterations, when communicating over an uncorrelated Rayleigh 

fading channel. The achievable coding gain of the various schemes at a BER of 10 -4 will be summarised 

in Figure 2.13 and Table 2.27. 
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Figure 2.12: BER performance of the half-rate LDPC code (1000, 500) parameterised in Table 2.17, 

using different maximum numbers of iterations, when communicating over an uncorrelated Rayleigh 

fading channel. The achievable coding gain of the various schemes at a BER of 10 -4 will be summarised 

in Figure 2.13 and Table 2.27. 
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Figure 2.13: Coding gain achieved by the three different half-rate LDPC codes parameterised in 

Table 2.17, at a BER of 10-4 , when communicating over AWGN and uncorrelated Rayleigh fading 

channels. 
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Figure 2.14: Coding gain achieved by the three different half-rate LDPC codes parameterised in 

Table 2.17, at a BER of 10-4 , when communicating over AWGN and un correlated Rayleigh fading 

channels. 
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LDPC Maximum number Required Eb/No (G) Required Eb/ No (UR) 
code of iterations (dB) (dB) 

(200, 100) 2 5.765 11.059 

4 4.559 8.353 

8 4.059 7.294 

20 3.794 7.059 

50 3.676 6.745 

100 3.588 6.589 

(500, 250) 2 5.647 10.824 

4 4.118 7.647 

8 3.265 6.059 

20 3.000 5.647 

50 2.824 5.353 

100 2.735 5.294 

(1000, 500) 2 5.588 10.706 

4 3.941 7.412 

8 2.882 5.529 

20 2.470 4.941 

50 2.324 4.764 

100 2.294 4.706 

uncoded N/A 8.47 34 

Table 2.18: Eb/No required by the three half-rate LDPC codes parameterised in Table 2.17 for achiev­

ing a BER of 10-4 , when communicating over both AWGN (G) and un correlated Rayleigh fading 

(UR) channels. 

of its attainable coding gain in the context of both channels after the first few iterations. Further 

iterations in excess of 20 achieve only a modest further performance improvement at the cost of a 

high additional decoder complexity. Comparing the curves plotted in Figure 2.15, it can be observed 

that when communicating over the same type of channel, the iteration efficiency improves at nearly 

the same rate for the three LDPC codes having different blocklengths. Upon using a maximum of 

eight iterations, all codes have already achieved over 90% of the maximum attainable coding gain, 

in the context of the AWGN channel. For the un correlated Rayleigh channel the iteration efficiency 

h&<; already exceeded 95% after eight iterations. By contrast, in the AWGN channel a maximum of 

20 iterations is necessitated for achieving over a 95% iteration efficiency, provided that the &<;sociated 

complexity is affordable. 

2.9.2 BER as a function of the LDPC bit-index 

The family of TTCM schemes [115] [116] employs set partitioning for mapping the input bits to be 

transmitted to the ph&<;er constellation. Hence each individual bit in a coded symbol h&<; a different 

BER [115]. Motivated by this observation, in this subsection we briefly investigate whether each coded 

bit in an LDPC codeword is equally protected. This experiment w&<; carried out by calculating the bit 
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LDPC Maximum no. Coding Coding gain Iteration Iteration 

code of iterations gain (G)(dB) (UR) (dB) efficiency( G) efficiency(UR) 

(200, 100) 2 2.705 22.941 55.4% 83.7% 

4 3.911 25.647 80.1% 93.6% 

8 4.411 26.706 90.3% 97.4% 

20 4.676 26.941 95.8% 98.3% 

50 4.794 27.255 98.2% 99.4% 

100 4.882 27.411 100.0% 100.0% 

(500, 250) 2 2.823 23.176 49.2% 80.7% 

4 4.352 26.353 75.9% 91.8% 

8 5.205 27.941 90.8% 97.3% 

20 5.470 28.353 95.4% 98.7% 

50 5.646 28.647 98.4% 99.8% 

100 5.735 28.706 100.0% 100.0% 

(1000, 500) 2 2.882 23.294 46.7% 79.5% 

4 4.529 26.588 73.3% 90.8% 

8 5.588 28.471 90.4% 97.2% 

20 6.000 29.059 97.1% 99.2% 

50 6.146 29.236 99.5% 99.8% 

100 6.176 29.294 100.0% 100.0% 

Table 2.19: Coding gain achieved by the three half-rate LDPC codes parameterised in Table 2.17 at 

a BER of 10-4 , when communicating over both AWGN (G) and un correlated Rayleigh (UR) fading 

channels. 

error ratio at each individual bit position of the entire LDPC codeword evaluated after each LDPC 

iteration when communicating over an AWGN channel. The simulation parameters used are given in 

Table 2.20. These experiments are conducted for two specific noise levels, i.e. for E b / No = 1.5dB and 

Eb/No = 2.5dB. 

The simulation results acquired for the LDPC scenarios of Table 2.20 are given in Figure 2.16 and 

Figure 2.17. The horizontal axis labelled &'l bit-index gives the bit position concerned in a codeword. 

As a benefit of iterative decoding, the BER of each constituent bit gradually decreased, &'l we incre&'led 

the number of iterations, but no significant BER difference W&'l observed for the various bit positions. 

Channel Maximum number LDPCC's Eb/No(dB) LDPC 

of iterations column weight code 

AWGN 5 3 1.5 (1000, 250) 

2.5 

Table 2.20: Simulation parameters for an quarter-rate LDPC code communicating over an AWGN 

channel at Eb/No = 1.5 and 2.5dB. 
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Figure 2.15: Iteration efficiency of the three half-rate LDPC codes of different block-lengths listed in 

Table 2.19, when communicating over AWGN and uncorrelated Rayleigh fading channels. 
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Figure 2.16: BER performance of each individual bit of the quarter-rate LDPC code (1000, 250), when 

communicating over an AWGN channel at EbjNO = 1.5dB. 
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Figure 2.17: BER performance of each individual bit of the quarter-rate LDPC code (1000,250), when 

communicating over an AWGN channel at Eb/No = 2.5dB. 

2.9.3 Probability of undetected errors 

Apart from having a good performance, LDPC codes are also capable of error detection with the aid 

of the PCM. More explicitly, after each iteration and tentative hard-decision decoding, the decoded 

codeword will be multiplied with the PCM. If the resultant vector is an all-zero vector, the decoder 

declares the detection of a legitimate codeword and the iterations are terminated. This error detection 

property of LDPC codes ha..'l the potential of reducing the decoding complexity by terminating the 

decoding process, when the decoder declares successful detection. However, even if the decoded 

codeword is legitimate, this does not necessarily imply that the decoded codeword is the error-free 

transmitted codeword, since the original transmitted codeword may have been decoded incorrectly to 

another legitimate codeword. In this situation the erroneous bits of the codeword cannot be eliminated 

by further iterations. These errors are referred to a..'l undetected errors. By contrast, the bit errors 

found in the codewords which result in a non-alI-zero vector after multiplication by the PCM are 

termed a..'l detectable errors. Undetected errors occur with a higher probability when the minimum 

Hamming distance of the code is relatively low, since the minimum distance of an LDPC code can 

increase linearly with the block-length, provided that the minimum column weight is higher than 

three [2]. We will now demonstrate that for a moderate LDPC coded block-length a..'lsociated with a 

uniformly distributed column weight of three, the likelihood of encountering undetected errors is fairly 

low. 

The LDPC codes listed in Table 2.21 were characterised, when communicating over the AWGN 

channel and the uncorrelated Rayleigh fading channel. We evaluated the achievable Frame Error Ratio 

(FER) using two different methods. The first evaluation method compared the decoded codeword 

to the original transmitted codeword on a bit-by-bit basis and hence this method gives the exact 
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LDPC code Channel Maximum number of iterations 

(500, 250) AWGN 25 

(200, 100) AWGN 25 

(100, 50) AWGN 25 

(50, 25) AWGN 25 

(500, 250) uncorrelated Rayleigh 25 

(200, 100) uncorrelated Rayleigh 25 

(100, 50) un correlated Rayleigh 25 

(50, 25) uncorrelated Rayleigh 25 

Table 2.21: Simulation parameters of four half-rate LDPC codes having different block-lengths, when 

communicating over AWGN and un correlated Rayleigh fading channels. 
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Figure 2.18: FER performance of the four half-rate LDPC codes listed in Table 2.21, when communi­

cating over an AWGN channel. 
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Figure 2.19: FER performance of the four half-rate LDPC codes listed in Table 2.21, when communi­

cating over an un correlated Rayleigh fading channel. 

FER, as seen in Figure 2.18 and Figure 2.19. The second evaluation method assumes that we have no 

knowledge of the original transmitted codeword and the only technique available for error detection 

is that the received codeword is checked by the PCM. If the check result indicates that the decoded 

codeword is a legitimate one, then this codeword is &'3sumed to be the originally transmitted one. This 

is denoted &'3 the Detected FER in Figure 2.18 and Figure 2.19. It may be observed from Figures 2.18 

and 2.19 that the two LDPC codes having a higher block-length, i.e. the codes (500, 250) and (200, 

100), have an indistinguishable Exact &'3 well &'3 Detected FER owing to their comparably longer 

block-length, i.e. &'3 a result of their higher minimum distance when compared to the remaining 

two LDPC codes. Again, since no undetected errors are experienced, the two curves indicating the 

Exact FER and the Detected FER are merged. By contrast, the LDPC code (100, 50) h&'3 a slightly 

lower minimum distance than the code (200, 100). Hence the FER performances evaluated by the 

two different methods are different, indicating that some erroneously decoded codewords have been 

deemed to be error-free by the second evaluation method and thus undetected errors exists for the code 

(100, 50). However, the two FER curves recorded for the code (100, 50) are nearly identical, which 

indicates that the likelihood of undetected errors is low. When the block-length is further reduced, 

the two FER curves of the code (50, 25) generated using the two different evaluation methods differ 

more significantly. Thus, in this scenario a significant fraction of undetected errors is encountered. 

In conclusion, in the context of applications requiring a moderate or long block-length, LDPC 

codes are unlikely to experience undetected errors owing to the fact that the minimum distance of 

regular LDPC codes incre&'3es linearly with the block-length, when all columns have a weight no less 

than three. However, in applications requiring a short block-length a higher probability of undetected 

errors will be experienced. 
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We note furthermore that, even when long block-length are applied, the minimum distance of the 

LDPC code will not incre&<;e linearly with respect to the block-length, unless the column weight is at 

le&<;t three. Hence undetected errors may occur and the LDPC code may experience a higher error 

floor. This issue will be further discussed in Chapter 3. 

2.9.4 Performance of LDPC codes at various coding rates 

In this section, the performance of LDPC codes will be evaluated at different coding rates, bench­

marked against the family of turbo convolutional codes having the same code-rate. The simulation 

parameters of the LDPC codes used are summarised in Table 2.22, while those of the turbo convolu­

tional benchmarker are given in Table 2.23. The coding rate of the LDPC code is varied by changing 

the size of the parity check matrix. As for the turbo convolutional code, the puncturing pattern 

listed in Table 2.24 w&<; proposed by Acikel [117], which w&<; applied for arriving at the desired coding 

rate. The component codes of the turbo code are half-rate Recursive Systematic Convolutional (RSC) 

codes having a constraint length of four. The forward and feedback generator polynomial is given 

in octal format &<; 13 and 15, respectively. In Table 2.24, the upper and lower puncturing pattern 

is represented by a binary stream of Os and Is. The notation 1 and 0 implies that the encoded bit 

generated by the corresponding component code is retained or punctured, respectively. For example, 

in Table 2.24 the upper puncturing pattern of the half-rate turbo convolutional code is 10, while the 

lower puncturing pattern is 01, since at each time instant there will be two parity bits generated by 

the two component encoders, but they are punctured alternatively. More explicitly, when each of the 

two convolutional encoder outputs a parity bit, the puncturer will retain the parity from the upper 

convolutional encoder, while that emerging from the lower encoder is discarded. At the next time 

instant, the parity accruing from the lower encoder is retained and the upper parity bit is punctured. 

Thus having two information bits and two parity bits, the encoder constitutes a half-rate encoding 

scheme. 

Channel AWGN 

Uncorrelated Rayleigh fading channel 

Modulation mode BPSK 

Decoder Probabilistic decoder 

Maximum number of iterations 25 

Coded block-length 3000 bits 

Coding rate 1/3, 1/2, 2/3, 3/4, 5/6 

Table 2.22: Simulation parameters of the LDPC codes having various coding rates. 

Figures 2.20 and 2.21 characterise the achievable BER and FER performance of the LDPC and 

turbo convolutional codes defined in Table 2.22 and Table 2.23, respectively. As we can see, the turbo 

convolutional code outperforms the identical-rate and identical-length LDPC codes. The attainable 

performance advantage gain of the turbo code over the LDPC scheme w&<; found to be the highest 

at a rate of 1/3, which w&<; gradually reduced &<; the coding rate w&<; incre&<;ed. The coding gain 

versus complexity of the LDPC codes specified in Table 2.22 and the turbo convolutional code defined 

in Table 2.23 is compared in Figure 2.22. The LDPC curves seen in Figure 2.22 represent various 
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Channel AWGN 

Un correlated Rayleigh fading channel 

Modulation mode BPSK 

Component code n = 2, k=l, K=4, Go=13, Gl=15 

Decoder LOG-MAP (Log-MAP) decoder 

Number of iterations 8 

Coded block-length 3000 bits 

Coding rate 1/3, 1/2, 2/3, 3/4, 5/6 

Table 2.23: Simulation parameters of the turbo convolutional code having various coding rates. 

Coding rate 1/3 1/2 2/3 3/4 5/6 

Upper puncturing pattern 1 10 1000 100000 1000000000 

Lower puncturing pattern 1 01 0001 000001 0000000001 

Table 2.24: Puncturing patterns for the turbo convolutional code [117] 

coding rate.'s ranging from 0.33 to 0.83 from right to left. By contrast, the turbo convolutional codes' 

different coding rate are a.'ssociated with the vertical solid line seen in Figure 2.22 from top to bottom. 

In Figure 2.22, the complexity is quantified in terms of the number of multiplications required by 

the decoding of each information bit, while the number of additions are ignored here owing to their 

relatively lower computational complexity compared to the multiplication process. The complexity 

of an (nc, 1, Kc) turbo convolutional code, where nc determine.', the coding rate of the constituent 

encoder and Kc represents the convolutional code's constraint length, can be formulated as [24]: 

(2.51) 

where it can be observed that the complexity of the turbo convolutional code is a constant for various 

coding rate.9, as seen in Figure 2.22. More explicitly, the complexity of the turbo convolutional code 

increa.ges linearly with n c , in other words, a lower coding rate and hence more powerful LDPC code 

results in a higher decoding complexity. The decoding complexity of the turbo convolutional code 

increa.ges exponentially with the constraint length. By contrast, as seen in Figure 2.22, the LDPC 

codes achieve a higher coding gain, when the complexity is increa.ged, i.e. when the corresponding 

coding rate is reduced. As seen in Figure 2.22, when the coding rate is higher than half, LDPC codes 

exhibit a significantly reduced complexity requirement compared to turbo convolutional codes at the 

cost of a slightly degraded performance. 

2.9.5 Performance of LDPC codes at various coded blocklengths 

Since an LDPC code is uniquely defined by its sparse parity check matrix, the performance of LDPC 

codes is dependent on the size of the PCM. The larger, the better. In this subsection we would like 

to discuss how the block-length should be chosen for the sake of achieving a satisfactory performance. 

The LDPC codes characterised in Table 2.25 were simulated and compared to the turbo convolutional 

code having the same block-length and coding rate. The puncturing pattern seen in Table 2.24 was 
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Figure 2.20: BER performance of the LDPC codes specified in Table 2.22 and turbo convolutional 

codes listed in Table 2.23 using the puncturing pattern seen in Table 2.24, when communicating over 

an AWGN channel. The &<;sociated effective throughputs for all code rates from r=1/3 to r=5/6 are 

1/3, 1/2,2/3,3/4,5/6 bps, respectively, The achievable coding gain of the various schemes at a BER 

of 10-4 will be summarised in Figure 2.22 and Table 2.28. 

Code rate 1/3, 1/2, 2/3 

Coded block-length(bits) 90, 300, 1200, 3000, 6000 

Maximum number of iterations 25 

Channel AWGN or 

Uncorrelated Rayleigh fading 

Modulation mode BPSK 

Table 2.25: Simulation parameters for LDPC codes having different blocklengths 

applied to the turbo convolutional code for the sake of achieving the corresponding coding rate. 

It can be observed in Figures 2.23 to 2.28 that for each individual channel, the turbo convolu­

tional code exhibits a slightly better performance than the LDPC codes. However, the performance 

difference between the two codes is reduced, when the coding rate is increased, especially, when longer 

blocklengths are utilised. Furthermore, only a modest additional performance gain may be attained, 

when the block-length of the LDPC code is extended from 3000 to 6000 bits. Thus we conclude that 

for both AWGN and uncorrelated Rayleigh fading channels employing a block-length of 3000 coded 

bits constitutes an appropriate compromise between the achievable performance and the &<;sociated 

coding delay. 
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Figure 2.21: BER performance of the LDPC codes specified in Table 2.22 and turbo convolutional 

codes listed in Table 2.23 using the puncturing pattern seen in Table 2.24, when communicating over 

an uncorrelated Rayleigh fading channel. The a..'lsociated effective throughputs for all code rates from 

r=1/3 to r=5/6 are 1/3, 1/2, 2/3, 3/4, 5/6 bps, respectively. The achievable coding gain of the 

various schemes at a BER of 10-4 will be summarised in Figure 2.22 and Table 2.28. 

2.9.6 Performance of LDPC-aided coded modulation over Rayleigh fading chan­

nels 

When a channel code's coding rate is less than unity, the system's effective throughput is reduced. 

However, by increa..'ling the number of bits per symbol transmitted, i.e. increa..'ling the size of the 

modulated signal constellation, the effective throughput of the uncoded system can be maintained. 

This scheme is referred to a..'l a coded modulation arrangement. Historically, the first coded modulation 

scheme wa..'l invented by Ungerbock, which wa..'l termed a..'l Trellis Coded Modulation (TCM) [118]. 

Inspired by the concept of turbo coding, Robertson and Wortz proposed a more sophisticated scheme 

referred to a..'l Turbo Trellis Coded Modulation (TTCM) [119]. 

Since LDPC codes have a less than unity rate, by combining LDPC codes with higher-order 

modulation schema'l, an LDPC Block Coded Modulation (LDPC-BCM) scheme may be created, when 

absorbing the parity bits in the extended modem constellation without any bandwidth expansion. 

When using for example a half-rate LDPC codec and employing BPSK modulation, the system's 

effective throughput ha..'l been reduced from 1 bit/symbol of the uncoded system to 0.5 bit/symbol. 

However, if a QPSK modulation scheme is employed in conjunction with a half-rate LDPC code, the 

system's effective throughput can be maintained at 1 bit/symbol. 

Previously, the performance of LDPC codes using BPSK modulation has been evaluated, when 

communicating over both AWGN and uncorrelated Rayleigh fading channels. For the sake of in­

crea..'ling the effective throughput of the system, typically a higher number of modulation levels is 

used. Hereby we would like to investigate the performance of LDPC-BCM, when communicating 

over both uncorrelated and correlated Rayleigh fading channels. The TTCM scheme will be used a..'l 

our benchmarker. The simulation parameters are tabulated in Table 2.26. The maximum number 

TC 
LDPC 
t=1/3 
FII2 
t=2/3 
t=3/4 
FS/6 

12 
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Figure 2.22: Coding gain versus complexity of the LDPC codes specified in Table 2.22, where the 

decoding complexity W8..'l varied by varying the code rate, but using always 25 iterations. The points 

in the graph correspond to r =1/3, 1/2, 2/3, 3/4 and 5/6. The turbo convolutional codes were listed 

in Table 2.23 using the puncturing patterns seen in Table 2.24 resulting in exactly the same code rate 

8.."1 in the LDPC codes. Transmissions were carried out over an AWGN(left) and un correlated Rayleigh 

fading channel (right ). 

of LDPC-BCM iterations W8..'l adjusted for the different modulation modes for the sake of ensuring 

that the maximum decoding complexity of the LDPC-BCM scheme did not exceed that of the TTCM 

benchmarker. A channel interleaver of 3000 coded symbols w8..'lutilised, when communicating over the 

correlated Rayleigh fading channel having a normalised Doppler frequency of 3.25 x 10-5 , in order to 

separate the symbols suffering from the bursty error effects of deep fades. The effect of removing the 

channel interleaver from the system, when communicating over correlated Rayleigh fading channels 

W8..'l also evaluated. 

Figure 2.29, Figure 2.30 and Figure 2.31 demonstrate that in the context of uncorrelated Rayleigh 

channels LDPC-BCM outperforms the TTCM benchmarker scheme by almost 3dB, 1.5dB and 3dB, 

when using QPSK, 8PSK and 16QAM modulation, respectively at the BER of 10-5 . It is shown in 

Figures 2.29, 2.30 and 2.31 that incre8..'ling the number of iterations to 50 results in an approximately 

0.5dB further coding gain for the LDPC-BCM scheme. 

When communicating over a correlated Rayleigh fading channel, we observe in Figure 2.32, Fig­

ure 2.33 and Figure 2.34 that LDPC-BCM and TTCM achieve a similar performance, provided that 

a channel interleaver is incorporated into the system. However, the LDPC-BCM operates with no 

performance degradation, when the channel interleaver is removed from the system. By contrast, the 

TTCM scheme suffers from an approximately 5 to 7 dB Eb/No degradation at the BER of 10-5 . This 

is a benefit of the randomly constructed parity check matrix and high block-length of LDPC-BCM, 

since each of the parity check equations is checking several random bit positions in a codeword, which 

h8..'l a similar effect to that of the channel interleaver. By contrast, the TTCM scheme is decoded 

using the trellis-based symbol-by-symbol Maximum A-Posteriori (MAP) algorithm [115], where the 
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Figure 2.23: BER performance of the third-rate LDPC codes characterised in Table 2.25 and turbo 

convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2,24, when 

communicating over an A WGN channel. The achievable coding gain of the various scheme..<; at a BER 

of 10-4 will be summarised in Table 2.29. 
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Figure 2.24: BER performance of the half-rate LDPC codes characterised in Table 2.25 and turbo 

convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, when 

communicating over an AWGN channel. The achievable coding gain of the various scheme..<; at a BER 

of 10-4 will be summarised in Table 2.29. 
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Figure 2.25: BER performance of the two-third-rate LDPC codes characterised in Table 2.25 and 

turbo convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, 

when communicating over an AWGN channel. The achievable coding gain of the various scheme..,> at 

a BER of 10-4 will be summarised in Table 2.29. 
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Figure 2.26: BER performance of the third-rate LDPC codes characterised in Table 2.25 and turbo 

convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, when 

communicating over an uncorrelated Rayleigh fading channel. The achievable coding gain of the 

various scheme..,> at a BER of 10-4 will be summarised in Table 2.29. 
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Figure 2.27: BER performance of the half-rate LDPC codes characterised in Table 2.25 and turbo 

convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, when 

communicating over an llncorrelated Rayleigh fading channel. The achievable coding gain of the 

various schema'l at a BER of 10-4 will be summarised in Table 2.29. 
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Figure 2.28: BER performance of the two-third-rate LDPC codes characterised in Table 2.25 and 

turbo convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, 

when communicating over an uncorrelated Rayleigh fading channel. The achievable coding gain of the 

various schema'l at a BER of 10-4 will be summarised in Table 2.29. 
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Tx. Burst Length, L 1000 Symbols 

Coding Rate, R 1/2, 2/3, 3/4 

Modulation Mode QPSK(QPSK), 8PSK(8PSK), 16QAM(16QAM) 

Channel Un correlated Rayleigh Fading 

Correlated Rayleigh Fading 

Normalised 

Doppler Frequency 3.25 x 10-5 

Channel 

Interleaver Length 3000 Symbols 

LDPC-BCM 

Column Weight 3 

Maximum No. of Iterations 

for LDPC-BCM 50 

TTCM Iteration 4 

No. of LDPC-BCM Iterations QPSK:15, 8PSK:1O, 16QAM:1O 

Table 2.26: LDPC-BCM System Parameters 
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Figure 2.29: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising QPSK 

when communicating over un correlated Rayleigh fading channel. 
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Figure 2.30: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising 8PSK 

when communicating over un correlated Rayleigh fading channeL 
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Figure 2.31: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising 16QAM 

when communicating over un correlated Rayleigh fading channeL 
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Figure 2.32: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising QPSK 

when communicating over correlated Rayleigh fading channel. 
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Figure 2.33: BER performance of LDPC and TTCM utilising 8PSK parameterised in Table 2.26, 

when communicating over correlated Rayleigh fading channel. 
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Figure 2.34: BER performance of LDPC and TTCM utilising 16QAM parameterised in Table 2.26, 

when communicating over correlated Rayleigh fading channel. 

neighbouring symbols are exposed to correlated channel fading effects and hence they are less capable 

of coping with bursty channel errors. Thus in the context of TTCM, the channel interleaver plays a 

crucial role in dispersing the bursty channel errors. 

2.10 Summary and conclusion 

In this chapter, the regular construction LDPC codes were introduced. Commencing in Section 2.3 

from Gallager's original proposed PCM , the characteristics of LDPCCs such a'l the column weight, 

the nature of cycles and the bipartite graph representation of the PCM were described. Section 2.4 

provided a detailed description of the LDPC encoding process, i.e. how the generator matrix G is 

obtained from Hr, which is a column permutated PCM generated from the original PCM H. It was 

also outlined how the parity check bits are generated from G and appended to the original information 

bits. Section 2.5 gave an introduction to two LDPC decoding algorithms, namely the optimum exhaus­

tive enumeration based decoding and the sub-optimum probabilistic decoding algorithm. Probabilistic 

decoding wa'l described using Gallager's original approach. Furthermore, a detailed decoding example 

using probabilistic decoding wa'l given in Section 2.6. In order to generalise Gallager'S LDPC model, 

which only considered binary transmission, a more general LDPC decoding procedure was provided 

and Richardson's [9J reduced complexity calculation of the message R was presented which involved the 

FFT. Furthermore, the arithmetic complexity of LDPC decoding using Richardson's FFT approach 

was quantified using the number of additions and multiplications in Section 2.7.3. Even though a 

mathematical analysis of the performance of probabilistic decoding is challenging, a weak bound wa'l 

briefly introduced in Section 2.8 for LDPC coded systems communicating over the BSC channel. 
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In Section 2.9, the performance of LDPCCs wa..'l characterised in various scenarios. The effect of in­

crea..'ling the LDPC decoder's complexity, i.e. the number of iterations W&'l studied in Section 2.9.1, 

and a..'l seen in Figure 2.13, Figure 2.14 and Figure 2.15, using eight to 20 iterations achieves a good 

compromise between the attainable coding gain and the a..'lsociated decoding complexity. The BER 

of each constituent bit of the LDPC codeword wa..'l observed and found to be equally protected in 

Section 2.9.2. In Section 2.9.3, four half-rate LDPC codes having different block-lengths were charac­

terised using two different FER mea..'lures. It wa..'l observed that LDPC codes have attractive minimum 

distance properties, provided that the minimum column weight is no less than three. LDPC codes 

having different coding-rates were compared to the turbo convolutional codes having identical rates 

in Section 2.9.4. More explicitly, the LDPC codes were found to have a similar BER performance to 

the turbo convolutional codes, while potentially imposing a lower complexity, when the coding-rate is 

higher than half. Furthermore, the effects of increa..'ling an LDPCC's coded block-length wa..'l demon­

strated in Section 2.9.5, and a block-length of 3000 bits wa..'l found to strike an appropriate compromise 

between the achievable performance and the &'lsociated coding delay. 

In Section 2.9.6 a novel coded modulation scheme, namely the LDPC-BCM arrangement wa..'l 

proposed, invoking high-order modulation schemes. In the cla..'lsic turbo trellis coded modulation 

scheme there is an un-protected bit, which may limit the achievable error correction performance in 

certain propagation scenarios. Hence, a..'l a design alternative, we contrived an LDPC-ba..'led BCM 

scheme ba..'led on the design philosophy of protecting all the bits and absorbing the increa..'led number 

of channel-coded bits by appropriately extending the modulated signal constellation. It wa..'l observed 

that LDPC-BCM constituted a more attractive scheme in comparison to the TTCM benchmarker 

scheme in terms of the attainable BER performance when communicating over un correlated Rayleigh 

fading channels. It W&'l also noted that no channel interleaver wa..'l necessary for the LDPCC, when 

communicating over correlated Rayleigh fading channels, provided the block-length of LDPCC bridges 

over several channel fades. 

A coding gain table is provided here for the sake of summarising the LDPCC's BER performance, 

when the maximum number of iterations, the blocklength and the code rate are varied. 
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LDPC Maximum no. Coding gain Coding gain 

code of iterations (G)(dB) (UR)(dB) 

(200,100) 2 2.705 22.941 

4 3.911 25.647 

8 4.411 26.706 

20 4.676 26.941 

50 4.794 27.255 

100 4.882 27.411 

(500,250) 2 2.823 23.176 

4 4.352 26.353 

8 5.205 27.941 

20 5.470 28.353 

50 5.646 28.647 

100 5.735 28.706 

(1000,500) 2 2.882 23.294 

4 4.529 26.588 

8 5.588 28.471 

20 6.000 29.059 

50 6.146 29.236 

100 6.176 29.294 

Table 2.27: Coding gain achieved by the three half-rate LDPC codes parameterised in Table 2.17 at a 

BER of 10-4 , when communicating over both AWGN (AWGN) (G) and llncorrelated Rayleigh fading 

(UR) channels. 

Code Coding gain Coding gain 

rate (G)(dB) (UR)(dB) 

1/3 6.66 30.58 

1/2 6.58 29.66 

2/3 6.08 28.18 

3/4 5.58 26.83 

5/6 5.1 25 

Table 2.28: Coding gain achieved by the LDPC code parameterised in Table 2.22 at a BER of 10-4
, 

when communicating over both AWGN (G) and un correlated Rayleigh fading (UR) channels. 
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Code Coded Coding gain Coding gain 

rate blocklength(bits) (G) (dB) (UR)(dB) 

1/3 90 3.47 26.43 

300 4.97 28.57 

1200 6.22 30.14 

3000 6.613 30.43 

6000 6.76 30.86 

1/2 90 3.76 25.43 

300 5.113 27.86 

1200 6.15 29.29 

3000 6.613 29.72 

6000 6.72 30.29 

2/3 90 3.03 22.32 

300 4.81 26 

1200 5.7 27.58 

3000 6.03 28.32 

6000 6.14 28.5 

Table 2.29: Coding gain achieved by the LDPC code parameterised in Table 2.25 at a BER of 10-4 , 

when communicating over both AWGN (G) and uncorrelated Rayleigh fading (UR) channels. 



Chapter 3 

Irregular LDPC codes 

3.1 Introduction 

In the previous chapter, the family of regular-construction LDPCCs W&'3 introduced and their decoding 

procedure was detailed with the aid of a worked example. The code W&'3 referred to &'3 "regular", since 

the Hamming weights of all the columns and rows were constant. However, Luby et at. [60] have 

shown that by imposing a carefully chosen non-uniform distribution of the column and row weights 

during the generation of the parity check matrix, the code may become capable of outperforming its 

regular-construction LDPCCs counterpart, &'3 will be shown in Section 3.8 of this chapter. Richardson 

proposed the employment of the Denility Evolution (DE) technique for predicting the performance 

of LDPCCs having an infinite length at a given column and row density distribution profile [9], and 

showed how to use DE for determining the optimum density distribution profile in [61]. Since DE is a 

complex operation, Chung simplified Richardson's high complexity Density Evolution algorithm using 

Gaussian Appro.rimation (GA) [11]. The intuition of replacing regular LDPCC by their irregular 

counterparts may be explained by using the so-called Tanner graph [5]. Figure 3.1 portrays a fraction 

of the parity check matrix seen in Table 2.4. 

As introduced in Chapter 2, an LDPCC's PCM can be represented by a Tanner graph. The Tanner 

graph is constituted by the so-called message nodes seen at the left of Figure 3.1, which are &'3sociated 

with each individual column of the PCM. The check nodes are at the right of the Tanner graph of 

Figure 3.1, which represent each individual row of the PCM. By choosing the 12th , 13th, 14th and 

15th column randomly in Table 2.4, they are represented by the message nodes seen at the left of 

Figure 3.1, and the randomly selected 1 st, 2nd , 9th and 10th rows of Table 2.4 are shown &'3 the check 

nodes at the right of Table 2.4. The line connecting the lh left node and the ith right node represents 

the non-zero entry at the intersection of the ith row and the lh column in Table 2.4. For example, the 

non-zero entry found in the first row and the second column of the parity check matrix of Table 2.4 is 

represented by the first horizontal line at the top of Figure 3.1. The dotted lines indicate encountering 

a short cycle of length 4. 

According to the decoding process of the LDPCC described in Section 2.5.2, the message nodes 

and the check nodes exchange their information iteratively. Recall from Chapter 2 that a regular­

construction LDPC parity check matrix h&'3 an uniform column weight and a constant or near constant 

row weight. However, for the message nodes of an LDPC code, it is better to have a high column weight, 

57 
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Figure 3.1: Tanner node representation of part of the parity check matrix of Table 2.4. The dotted 

lines represent a length-4 cycle. 

since the incre&<Jed number of check nodes become capable of providing more reliable information for 

the message nodes. By contrast, it is desirable for the check nodes to have a low number of entries in a 

row, because then they have to check the parity of a reduced number of columns, which results in less 

ambiguity concerning the index of the unreliable entries and hence more useful parity information may 

be exchanged with the connected message nodes. B&<Jed on this intuition, in 1998, Luby [60] and his 

colleagues proposed the introduction of irregular-constructed parity check matrices. More explicitly, 

instead of maintaining a constant column weight and row weight across the entire parity check matrix, 

&<J proposed by Gallager, they varied the column density and row density, i.e. use a pre-determined 

density-profile, which resulted in an improved performance over that of the regular-construction parity 

check matrix when opting for a long block-length, provided that the density-profile used W&<J carefully 

chosen. The rationale of this design philosophy W&<J that a message node associated with an incre&<Jed 

column weight received more information from the check nodes, and hence it W&<J capable of more 

reliably converging to its correct value, consequently providing more valuable information for the 

check nodes, which in turn &<Jsisted the message nodes having a lower weight in converging to their 

correct values more reliably. 

3.2 Definition of the row and column density distribution 

There have been loose definitions which specify the weight of a specific column and the profiles which 

specify the density of weight-i nodes across the whole PCM. In some literature, for example in [61] [60], 

the terminology degree i W&<J used to specify a message node having weight i. In [120], the term density 

distribution is used to specify the density distribution of the PCM, while in [121], the term weight 

distribution is used. For the sake of maintaining consistency within this thesis, the term weight i node 

will be used to specify a certain node or nodes having i edges connecting with the neighbouring nodes 

&<J in Figure 3.1. For example, the top left message node in Figure 3.1 is a weight two message node 

because there are two edges connecting this node with the 1 st and the 9th check node; and the top 
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right node is a weight three check node, since the 2nd , 3rd and 4th message nodes are connected to it. 

In our forthcoming discourse the term density is used, which is associated with the percentage of 

weight i nodes across the PCM. We will use the same definition as used by Urbanke et al in [11 J. A 

density profile can be defined by 
WC(771nX) 

Ae(·7:) = L Ai.7:i- 1 (3.1) 

and 
Wr{rnux) 

() 
~ i-I Pe·7: = ~ PiX , (3.2) 

which correspond to the column density profile and row density profile, respectively [122J. The nota­

tions wc(max) and 111r(max) are used for representing the maximum column weight and the maximum 

row weight of the density profile, while Ai and Pi quantify the fraction of edges belonging to degree-i 

variable and check node, respectively. 

To explain the terminology density more explicitly, let's use an example as: 

1 2 Ae (.7:) = 0.4.7: + 0.6x , (3.3) 

Equation 3.3 gives an example of a column density profile for the irregular LDPC code represented 

using Tanner graph in Figure 3.1. This profile shows the information that 40% of the edges are 

connected to weight-two message nodes, and the remaining 60% connects to the weight-three message 

nodes. To elaborate a little further, in the literature, two different ways of representing the density 

profile are used. The first one is referred to as the edge perspective representation [9J [11 J. This 

representation specifies the proportion of edges in the Tanner graph which are connected to the 

corresponding nodes associated with a specific term in Equation 3.3 for example, having a certain 

polynomial degree. The notations of A(.7:) and p(x) are used for representing the column's and the 

row's density distribution, respectively. 

There are a total of 10 edges in Figure 3.1, and two edges are connected to both the 12th message 

node as well as to the 15th . Because the 12th and the 15th message nodes are weight-two message 

nodes, 40% of the 10 edges are connected to weight-two message nodes, and the remaining 60% are 

connected to the weight-three message nodes, thus yielding Ae (.7:) = 0.4.7:1 + 0.6.7:2 as in Equation 3.3. 

For the corresponding expression of p(x), the four check nodes seen in Figure 3.1 have a weight and 

corresponding polynomial degree varying from 1 to 4. Explicitly, 10% of the edges are connected to the 

weight-1 check node, 20% to the weight-two, and 30% as well as 40% to the weight-three and weight­

four check nodes respectively. Hence we arrive at the expression of Pe(x) = 0.1.7:0 +0.2.7:1 +0.3.7:2 +0.4.7:3 . 

The other way of defining the density profile using An (x) and Pn (.7:) is termed as node perspective, rather 

than edge perspective representation. In this representation, the polynomials An(.7:) and Pn(.7:) specify 

the proportion of the nodes having a particular weight of i. As seen in Figure 3.1, since there are two 

message nodes of weight 2 and two of weight 3, i.e. 50% of the message nodes have a weight of two 

and another 50% have a weight of three, the node per8pecti1Je representation is An (x) = 0.5.7:1 + 0.5.7:2
. 

As for the check nodes, the weights of the four check nodes from the top downwards are 3, 2, 4, 

1, respectively. Thus Pn(.7:) may be written as p(.7:) = 0.25.7:0 + 0.25.7: 1 + 0.25x2 + 0.25.7:3 . In order 

to distinguish these two representations, we will use the notation of An(.7:) and Pn(x) for the node 

perspective representation, while Ae(X) and Pe(.7:) will refer to the edge perspective representation. The 
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constraints of A(l) = 1 and p(l) = 1 have to be satisfied, since the probabilities of all of the different 

weights should sum to unity in both representations. 

3.3 Performance of irregular LDPC codes 

The beneficial BER effects of using irregular LDPCCs are illustrated in Figura'l 3.2, 3.3 and 3.4, 

where an AWGN channel having Eb/No = 3.2dB was used. The associated density profiles of the 

codes characterised in these three figures are as follows: 

An (.7: ) 

Pn(.7: ) 

An (.7: ) 

Pn(.7: ) 

An (.7: ) 

Pn(.7:) 

1 2 5 (; 19 0.37787.7: + 0.34903x + 0.09643.7: + 0.06730x + 0.10937.7: 

X
27. ., , 

1 2 3 9 0.41564.7: + 0.34806x + 0.03181.7: + 0.2045.7: 

0.80952.7:15 + 0.19048x16 ; 

o 1 2 (; 7 0.00024.7: + 0.17516.7: + 0.6796.7: + 0.0905.7: + 0.0545.7: 

0.31665.7:18 + 0.68335x19 , 

(3.4) 

(3.5) 

(3.6) 

where we used the notation of An(.7:) = L Ai.7:i- 1 and Pn(x) = L Pi.7:i- 1 for representing the column 

density distribution and row density distribution, respectively. The exponent i of .7: in the summa­

tion represents the density concerned, while the coefficient Ai or Pi gives the corresponding relative 

frequency of a term having a given weight. As we can see in Equation 3.6, only a small fraction of 

the columns has a weight of 1. This is because the column density has to be consistent with the row 

density profile. More explicitly, the number of non-zero entries counted column-by-column has to be 

the same as that counted on a row-by-row basis. However, since the weight-l columns constitute only 

a small fraction of the PCM, their impact on the decoding performance is minor. 

Focusing our attention on Figures 3.2, 3.3 and 3.4, it can be observed that the message nodes 

associated with a higher exponent, i.e. a higher weight, converge to higher LLR'l within a lower 

number of iterations. However, the LLR curve associated with the weight-20 nodes in Figure 3.2 

converges initially fast, especially during the first few iterations, but the achievable convergence rate 

reduces after a few iterations and becomes more slowly than that of the nodes associated with a weight 

of six and seven. This is because the message node associated with weight 20 has more column entries, 

and hence initially it is benefiting from more parity information than the nodes having a weight of 

six or seven. However, having more non-zero entries in the columns is expected to introduce cycles 

associated with comparatively low lengths. Owing to the message passing decoding algorithm of the 

LDPCC, the e.7:trinsic information is passed between the non-zero entries in the parity check matrix, 

both vertically and horizontally. If a message node is associated with two non-zero entries, which 

belong to a short cycle of length four to consider the worst-case scenario, then these two non-zero 

entries are only receiving information from two parity checks and another message node, thus the 

extrinsic information being passed around amongst these nodes will reduce at a faster rate, since only 

a limited amount of independent extrinsic information may be provided by the 4 nodes concerned 

after a few iterations. By contrast, in the extreme case, when there are no cycles within a parity check 

matrix, all the message nodes are benefiting from the extrinsic information provided by all other 

message nodes and all the check nodes. In this case the magnitude of the e.7:trinsic information will 
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Figure 3.2: Average LLR versus iteration index characteristics of the (4161,3430) irregular LDPC 

code using the density distribution of Equation 3.4, when communicating over an AWGN channel at 

E b/ No = 3.2dB 

decrease at a lower rate. For this re&'Son, the node &'Ssociated with weight 20 is unable to converge &'S 

f&'St &'S the nodes &'Ssociated with weight 6 and 7 after the first few iterations. 

3.4 Density evolution 

Richardson et. al [9] demonstrated that the average &'Symptotic behaviour of a belief-propagation 

b&'Sed LDPC decoder is numerically computable by using the density evolution algorithm. The density 

evolution(DE) algorithm allows one to calculate the E b/ No value required for error free communication 

by an irregular LDPC code having a given density profile, when the block-length of the code tends 

to infinity. This algorithm determines a quantity termed &'S the threshold. The threshold is defined 

&'S the maximum value of a specific channel parameter, such &'S for example the standard deviation 

of the AWGN of the channel or the crossover probability for the Binary Symmetric Channel (BSC), 

which allows the decoder to achieve an arbitrary low error probability upon invoking an arbitrarily 

high number of iterations. The process of density evolution will be described &'S follows. 

As mentioned previously, the LDPC code's decoding algorithm iteratively p&'Sses information be­

tween the non-zero entries in the parity check matrix, i.e. between the message nodes and check nodes 

in the Tanner graph used. The philosophy of the density evolution algorithm is b&'Sed on the local tree 

assumption, which implies that the LDPC code may be represented by a tree structure, &'S illustrated 
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Figure 3.3: Average LLR versus iteration index characteristics of the (4000,3000) irregular LDPC 

code using density distribution of Equation 3.5, when communicating over an AWGN channel at 

Ebl No = 3.2dB 

in Figure 3.5. 

To elaborate a little further, in Figure 3.5, the hollow circles and the filled circles represent the 

check nodes and the message nodes seen in Figure 3.1. The lines horizontally connected to the message 

nodes represent the intrinsic information provided by the channel's output. Let us assume that the 

filled node at the top of Figure 3.5 represents the kth coded symbol in the LDPC block of N symbols, 

which is termed as the root node [lOJ. The root node receives information from the check nodes it is 

connected to at the level seen below it in Figure 3.5 and those check nodes also receive information from 

the message nodes they are connected to at the next level down, etc. The dotted lines in Figure 3.5 

indicate that the above process is repeated further by expanding the tree. The number of connections 

associated with a message node (excluding the line representing the intrinsic information) represents 

the column weight of this particular message node, while the number of connections associated with a 

check node represents the corresponding row weight. The DE process exploits the fact that information 

is passed from the message nodes to the check nodes in the upwards direction, and further up again to 

the message nodes during the completion of one LDPC iteration. This entire DE process mimics the 

decoding process of LDPC codes communicating over a channel characterised by a channel parameter 

referred to as the thre8hold. The above-mentioned local tree a887},mption implies that there are no 

repeated nodes in Figure 3.5 within a certain number of consecutive tree levels in Figure 3.5. More 

explicitly, since each message node and check node is related to a non-zero entry in the PCM, the local 

tree a8s1J.mption implies that there will be no more than one message node or check node representing 
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Figure 3.4: Average LLR versus iteration index characteristics of the (4161,3430) irregular LDPC 

code using density distribution of Equation 3.6, when communicating over an AWGN channel at 

E b / No = 3.2dB 

Figure 3.5: A tree representation of LDPC code, the hollow and filled circles represents the check 

nodes and the message nodes seen in Figure 3.1. 
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the same non-zero entry in the PCM. In other words, the local tree assumption ensures that there is 

no cycle in the tree structure of Figure 3.5. It is possible to create a cycle-free Tanner graph, when 

the PCM is constructed carefully. However, Vardy et al. suggested that a cycle-free Tanner graph 

does not result in good codes [123]. In practice, &'l long &'l the short cycles, such &'l the length-4 

and length-6 cycles are eliminated, a good decoding performance can be achieved [7]. As pointed out 

in [10], for almost all randomly constructed LDPC codes, the decoder's performance will be close to 

that predicted under the local tree assumption, provided that the block length of the LDPC code is 

sufficiently high. Hence, in order to estimate the performance bound of an irregular or regular LDPC 

code having a given density profile, a comparably long block length h&'l to be chosen. The decoding 

process is the same &'l that described in Section 2.5.2. By recursively tuning the threshold, the Eb/No 

boundary of the error-free region may be found &'lymptotically upon incre&'ling the block length. 

As described in Section 2.7, the values Ri,j and Qf,j depicted in Equation 2.31 and 2.32 are 

iteratively updated. Let us &'lsume that we are using a regular LDPC code, having a constant column 

weight We and row weight Wr for transmission over an AWGN channel. Initially, Q':n,n will be set to 

a value corresponding to the demodulator's soft output. When &'lsuming a binary scenario, it is more 

convenient to represent Qi,j in the form of the log-likelihood ratio of log :C~I~~!i). 

Having initialised Qf,j' its value is used for updating Rf,j according to Equation 2.31, or using the 

"tanh rule" [124] [125] [9] described in Section 2.7.2, &'l follows: 

where 

(~ .) tanh 2') IT tanh (Qi,j') 
j'E{C;},j'f.j 2' 

eX - 1 
tanh(x/2) = --. 

eX + 1 

(3.7) 

(3.8) 

Following these operations, the values of Rf,j are used for updating Qf,j employing Equation 2.31, 

while the a posteriori probability density of Q is updated using Equation 2.33. This two-stage 

operation referred to &'l density evolution &'lsists us in finding the above-mentioned channel-quality 

related threshold for the belief propagation decoding algorithm. If the channel's Eb/No parameter is 

above the threshold, the probability density of Q is shifted towards +/ - 00. In other words, the LLR 

of the bits &'lsociated with a logical 0 (mapped to +1) should converge to +00, while those related to 

a logical 1 should tend towards -00. When communicating over a Gaussian channel, the LLR obeys 

the Gaussian distribution. When the mean of the Gaussian distributed variable Q tends to 00, the 

probability of error decreases &'l the number of iterations incre&'les. Thus the decoder is capable of 

achieving an arbitrarily low bit error rate. However, when Eb/No is below the required threshold, the 

probability density of Q will result in a finite probability of error, which cannot be reduced with the 

aid of incre&'ling the number of iterations. 

3.5 Density evolution using Gaussian approximation 

The density evolution process highlighted in the previous section is capable of predicting the threshold, 

which determines the E b / No region of error free operation, provided that the code's density profile is 

specified. The entire process relies on tentatively setting a certain channel parameter, followed by in­

voking the decoding process using a high number of iterations and exploiting the &'lsumption that there 
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are no cycles within the parity check matrix in order to verify whether the bit error rate will decrease to 

a pre-determined low level. If the BER converges to a finite non-zero value, then this implies that the 

tentatively channel parameter Eb/No is currently lower than the threshold. Hence a higher tentative 

E b/ No channel parameter is set and the above process is repeated, until the BER become.'l lower than a 

pre-determined low level. Since this process is computationally demanding, Chung [11] suggested the 

employment of a significantly less complex method for calculating the threshold concerned by using 

the so-called Gau88ian Approximation(DEGA) [11]. Let us represent the quantities Qf,j and Rf,j in 

their Log Likelihood Ratio (LLR) format as Qi,j = log(Q?,j/Q}) and Ri,j = log(R?,j/R}). Then the 

quantity Qi,j is initialised according to the channel output &'l: 

(3.9) 

In Equation 3.9 Eb represents the bit energy, which is set to unity &'l usual and Yj represents the 

channel's soft output for the lh symbol. Since Yj is Gaussian distributed with a unity mean and 

variance of (j2, the quantity Qi,j calculated in Equation 3.9 is also Gaussian distributed. 

Since the product of a constant a and a Gaussian variable having a mean b and variance c will have 

a mean of ab and a variance of a2c, hence Qi,j of Equation 3.9 is the product of the constant 4Eb/2(j2 

in Equation 3.9 and the Gaussian variable Yj &'lsociated with a mean of unity and a variance of (j2. 

The mean of Qi,j is calculated &'l 4Eb/2(j2 xl = 2/(j2, while the variance as (4Eb/2(j2)2 X (j2 = 4/(j2. 

Since all the iterative decoding operations are linear in the log arithmetic domain, the quantities 

Ri,j and Qi,j will remain Gaussian during the message p&'lsing process. Thus using the mean and the 

variance of the &'lsociated Gaussian distribution adequately characterises the message's probability 

density [10]. More explicitly, Chung's method approximates the PDF of the received signal using a 

Gaussian PDF or Gaussian Mixtures 1 [11] for regular and irregular LDPCCs, respectively. 

By using the mean of the Gaussian density, the E b / No threshold to be satisfied may be readily 

calculated without any degradation of the achievable accuracy [11] of the threshold estimation process. 

Without loss of generality, we &'lsume that an all-zero codeword is transmitted, since the all-zero 

codeword is always a valid codeword. The LLR of the message Q(O) received over the AWGN channel 

can be represented &'l LeY, where Le = 4a2~~ is defined &'l the channel reliability [115]. Assuming 

that the BPSK modulator used maps a logical 0 to +1, and that the bit energy equals unity, we 

have Le = -:fr. Since Y is Gaussian distributed having a mean of unity in case of BPSK modulation 

and a variance of (j2, the LLR of the message Q(O) h&'l a mean of 2/(j2 and a variance of 4/(j2. The 

superscript 0 of Q indicates that Q(O) W&'l received from the channel before the first iteration, while 

Q(l) denotes the value of Q after l iterations. Furthermore, mx represents the mean of the variable x. 

lSince the message nodes of the irregular LDPC codes have various weights, thus a node will get i.i.d. messages from 

its neighbours, where each of these messages is a random mixture of different Gaussian probability density functions of 

its neighbours weighted by different weighting factor. 
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The mean of the quantity Q(l) following the lth iteration can be calculated with the aid of Equa­

tion 2.32 but using additions in the logarithmic domain instead of product seen in Equation 2.32 as 

follows [l1J: 

(3.10) 

When interpreting Equation 3.10 we notice that the second term on the right simply implies the 

multiplication ofthe mean of the quantity R(l) at the (l-l)st iteration by (we -1), where We represents 

the average column weight of the LDPCC's parity check matrix. This is, how we take into account the 

extrinsic information provided by the (we - 1) other non-zero entries. Therefore, the quantity mQ(l) 

still only reflects the mean of the e.rtrin8ic information, corresponding to Equation 2.32. Initially 

we have m MO) = 0 since the initial information from any check node before the commencement of 

iterations is O. Using this multiplication instead of summation is valid, because even though the 

(we - 1) R quantities found in the different rows of the We column considered will have a different 

polarity value, they are independent and identically distributed (i.i.d) variables, thus their means are 

identical. 

The update of the quantity R W&'3 defined in Equation 2.31, and in Equation 3.7 using the tanh rule 

[124J [125J [9J. By taking the expectation of both sides of Equation 3.7, we arrive at: 

E tanh R2 = E tanh Q
2 [ ( 

(l») 1 [ ((l») 1 k-l (3.11) 

Suppose the variable R(l) is Gaussian distributed having a mean of m R(l) and a variance of 2m R(l), 

where the expectation E[tanh (R;/)) J depends only on the mean of R(l), we have 

[ (
R(l») j 1 _ (r-171 R{l) )2 

E tanh -- = r tanh (~) e 4171 R(l) dr. 
2 V47fmR(l) } R 2 

(3.12) 

Hereby we will introduce a new function ¢(.r) for the sake of later convenience during the iterative 

calculation of the mean of the variable Q, where ¢(.r) is formulated &'3 [l1J: 

{ 
1 1 J h(r) _(r-x)2 d 'f 0 

( ) 
- r:<= R tan -2 e -4- X, Z x > ¢ x = v47rx X 

1, if .r = O. 
(3.13) 

From Figure 3.6, it can be readily seen that ¢(.r) is continuous and monotonically decreasing over 

the interval [0, (X)). 

Given the definition of ¢(.r) in Equation 3.13, the formula derived from Equation 3.10 for recursively 

calculating the mean of the quantity R(l) following the lth iteration is given by [l1J: 

(3.14) 

where mQ(O) = 0 is the initial value of mQ(O). Hence, the mean of the quantity Q(l) can be recursively 

updated by using Equation 3.10. As argued before, the quantity Q(l) and R(l) are Gaussian distributed 

with a mean of mQ(l) and mR(l), respectively, and their variances are 2mQ(l) and 2mQ(l), respectively. 

Thus when the value of mQ(I) or m R(l) tends to infinity, the corresponding Gaussian PDFs move 
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Figure 3.6: The function ¢(.7:) in Equation 3.13 

towards infinity. Hence the error probability, calculated by integrating the Gaussian Q-function over 

the interval of (-00,0], where erroneous decisions are encountered, tends to zero. Hence with the aid 

of this method, we can fix the a value of the E b/ No channel parameter and run this calculation for a 

sufficiently high number of iterations. If the mean mQl and mRI tends to zero, then we know that the 

E b/ No channel parameter is above the threshold required for maintaining error free communications. 

However, when the chosen Eb/No channel parameter is below the threshold, the mean mQl and mRI 

will converge to a fixed non-zero value. 

By the same token, the equation required for calculating the mean mQl and mRI of irregular 

LDPC codes can be derived in the following manner. Owing to the irregularity of the LDPCC's 

density distribution, the messages R(l) and Q(l) that are exchanged between the nodes are Gaussian 

mixtura'l rather than having a Gaussian PDF as in the regular LDPC scenario. Hence the mean of 

R(l) and Q(l) are determined by taking into account the specific edge perspective densities .A e (.7:) and 

Pe(.7:). Corresponding equation of irregular LDPCCs is given by [11] : 

(3.15) 

Chung provided an example for illustrating the accuracy of this Gaussian approximation algo-

rithm [11]. A half-rate irregular LDPCC's density profile is given by [10]: 

\ ( ) 2 5 Ii 19 
/le .7: = 0.23403.7: + 0.21242x + 0.114690.7: + 0.10284.7: + O.30381x , 

Pe(.7:) = 0.71875.7:7 + 0.28125.7:8 , 
(3.16) 

while the effect of the coded block-length and that of the number of iterations are not addressed 

here, since the Gaussian approximation is used to predict the asymptotic performance of an infinite 

long codeword employing a sufficiently high number of iterations. By using the density evolution 

technique of Section 3.4, the Eb/No threshold required by the LDPCC having the density profile given 
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in Equation 3.16 when communicating over an AWGN channel W&'l found to be 0.2923dB. When 

using the Gaussian approximation of DE instead, the corresponding threshold was Eb/NO = 0.5dB, 

(0.47dB in [11]), resulting in a deviation of 0.21dB from the threshold found by density evolution. 

Hence we may conclude that the Gaussian approximation is re&'lonably accurate. In Figure 3.7 and 

3.8, the density of the message R(l) after each iteration is plotted for two different E b / No values above 

the threshold of Eb/ No = 0.5dB. Still &'lsuming that the all-zero codeword W&'l transmitted and that 

a logical 0 was mapped to + 1, the two settings were E b/ No = 5.288dB and Eb/No = 9.269dB, which 

corresponds to a noise standard deviation of (]' = 0.544 and (]' = 0.344, respectively. From Figures 3.7 

and 3.8, it can be observed that the density of the message moves to the right towards CX) after each 

iteration. We can also observe that the higher Eb/NO value leads to a f&'lter convergence, reaching 

a logarithmic mean value in excess of 40 within a mere 3 iterations, &<; in Figure 3.8 compared to 

the results in Figure 3.7 where the logarithmic mean value exceeds a value of 40 after a number of 

10 iterations. This is because when the E b / No is well above the threshold value, there are less bits 

contaminated by the AWGN, and also the bits staying in their correct states are more confident, i.e. 

having a higher LLR, comparing to the scenario of encountering a lower Eb/No. In Figure 3.9, the 

evolution process of an LDPC code using the same density profile in Equation 3.16 communicating 

over the AWGN channel &<;sociated with Eb/NO = -1.896dB is characterised. This Eb/No value is 

2.396dB lower than the required threshold. Observe in Figure 3.9 that the &<;sociated Gaussian PDF 

curve stays at about the same average LLR value of 0 while the decoder iterates, since the decoder is 

unable to enhance the LLRs owing to the excessive noise level. As seen from Figure 3.10, where we 

have E b/ No = -1.896dB, the mean LLR remains near zero, regardless of the number of iterations. 

The Gaussian approximation allows us to check whether an LDPC code &<;sociated with a given 

density distribution is capable of achieving error-free transmissions upon incre&<;ing the number of 

iterations. Furthermore, it provides a mean of estimating, how rapidly the error probability may be 

reduced &'l a function of the number of iterations, &<; seen in Figures in 3.7,3.8 and 3.9. As suggested by 

Equations 3.14 and 3.15, the mean of the quantity R(l) emerging from the lth iteration is recursively 

updated with the mean of R(l-l) after the previous iteration. Thus by observing the difference of 

the mean between two consecutive iterations, we may be able to anticipate slow and f&'lt converging 

phases, &'l noted in [61]. We will use the notation 6m R (I) for representing the increment of the mean 

value of R(l) after the lth iteration. Assuming again that the density profile given in Equation 3.16 

is used, the mean increment curves of the three previously considered experimental Eb/No values, 

i.e. Eb/No = 5.288dB, Eb/No = 9.269dB and Eb/No = -1.896dB are plotted in Figure 3.11 and 

Figure 3.12. 

As seen in Figure 3.11, both curves are well above zero, which implies benefiting from desirable 

incre&<;e of the quantity 6mR. The lower curve corresponds to Eb/No = 5.288dB, which is 4.788dB 

above the threshold. After four iterations, the increment of 6mR reached a saturation, and the mean 

value of R keeps incre&<;ing until after ten iterations, moving towards 00. By comparing to the right 

hand side illustration of Figure 3.10, the curve corresponding to E b/ No = 5.288dB initially h&<; a 

slightly lower gradient for the first two-three iterations. This matches the results seen in Figure 3.11, 

since 6mR is lower for the first two-three iterations than later. The upper curve, which represents 

Eb/No = 9.269dB, h&<; a higher gradient, tending towards CX) after the 3rd iteration. 

By contrast, the curve representing the scenario of communicating over an AWGN channel at 
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Figure 3.7: The density evolution of the message R using the Gaussian approximation for the half-rate 

irregular LDPCC &'lsociated with the density distribution given in Equation 3.16, when communicating 

over an AWGN channel at Eb/No = 5.288dB. 
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Figure 3.8: The density evolution of the message R using the Gaussian approximation for the half rate 

irregular LDPCC &ssociated with the density distribution given in Equation 3.16, when communicating 

over an AWGN channel at Eb/No = 9.269dB. 

Eb/ No = -1.896dB, is plotted in Figure 3.12. The y-axis is plotted on a logarithmic scale for clearer 

illustration. The quantity 6.m R decreasa'l &S a function of the number of iterations, and eventually 

tends to zero after 15 iterations. As long &S we have 6.m R = 0, further iterations will not provide any 

benefits and thus the error-probability cannot be reduced any further. This result is consistent with 

Figure 3.10 and Figure 3.9. 

3.6 LDPC density distribution optimisation 

As described in the previous section, the Gaussian approximation algorithm can be used for fairly 

accurately estimating a certain code's behaviour for a specific density distribution. Thus, this method 

facilitates the search for an optimum density distribution in conjunction with one or several design 

constraints, such &S a given code rate or average row weight. 

The technique of searching for a beneficial density distribution can be described &"1 follows. Com­

mencing from a randomly chosen density profile, such &"1 for example l'vlacKay's regular construc­

tion [56], we &ssign an appropriate E b/ No channel parameter value and run the density evolution in 

Section 3.4 for a pre-determined number of iterations j. The error probability E arrived at after j 
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Figure 3.9: The density evolution of the message R using the Gaussian approximation for the half rate 

irregular LDPCC a.."lsociated with the density distribution given in Equation 3.16, when communicating 

over an AWGN channel at Eb/No = -1.896dB. 
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Figure 3.11: The evolution of the quantity 6mR for the half~rate irregular LDPCC &'3sociated with 

the density distribution given in Equation 3.16, when communicating over an AWGN channel at 

Eb/No = 5.288dB and Eb/No = 9.269dB. 
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Figure 3.12: The evolution of the quantity 6mR for the half-rate irregular LDPCC associated with 

the density distribution given in Equation 3.16, when communicating over an AWGN channel at 

EbjNO = -1.896dB. 

iterations will be calculated &<; a result of the density evolution process. Furthermore, if the Gaussian 

approximation method introduced in Section 3.5 is applied, we will determine the mean of the PDF 

after j iterations. The corresponding density profile will be stored &<; best density distribution so far. 

Then we slightly change the profile by changing the coefficients of the density distribution exemplified 

by Equation 3.4, while satisfying the constraint that .\(1) = 1 and p(l) = 1. This is followed by 

repeating the DE process described above and checking whether any BER improvement w&<; achieved. 

More explicitly, the &<;sociated improvement is expected to result in a lower error probability than 

E after j iterations, or reaching an error probability of E using a lower number of iterations than j. 

When the Gaussian approximation is applied, the &<;sociated improvement manifests itself in terms of 

achieving a higher mean LLR value at a given number of iterations. If there is any BER improvement 

in comparison to the previous best density distribution, then the new density profile will be stored &<; 

the best density distribution. This process is repeated &<; many times &<; it is affordable according to 

the complexity constraints imposed. 

This density distribution optimisation process is computationally complex. However, significant 

computational efforts may be saved, if we reduce the size of the search space. Richardson et. al 

found [9J that an attractive density distribution is expected to have a low number of non-zero elements. 

As far &<; the row weight is concerned, Chung showed in [11J that the rows of the PCM should be 

designed to have only one or two consecutive non-zero elements. As for the column weights, the 
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corresponding exponents of the polynomial may be limited to including terms having an exponent of 

1, 2 and the maximum exponent of w;;"ax -1, plus perhaps a few further terms having other exponents 

in between [61]. 

3.7 Variability of error protection versus bit-position In irregular 

LDPC codes 

As illustrated in Section 2.9.2 in the context of regular-construction LDPC codes, each individual 

coded bit may be regarded &'l equally protected. However, the equal-protection property applies to 

the family of regular LDPC codes only and for the irregular LDPC codes discussed in this chapter, 

the bits associated with a high column weight are more strongly protected. In other words, their 

soft-value tends to converge f&'lter to its correct transmitted value &'l a function of the number of 

iterations. This property is consistent with Ruby's original intuition concerning the family of irregular 

LDPC codes, suggesting that variable nodes &'lsociated with a higher weight may be expected to 

converge f&'lter to their correct value. This is illustrated in Figures 3.13 and 3.14 by using a LDPC 

code having the same block-length, namely 1000 bits and the same coding rate of r = 1/4 &'l the 

regular LDPC example provided in Figure 2.16 and Figure 2.17 of Section 2.9.2. In this experiment, 

rather than evaluating the BER of each individual bit, the average BER of all the nodes having 

a particular column weight is determined, since they are expected to be similar. Furthermore, in 

contrast to constructing the parity check matrix in a regular f&'lhion as in Chapter 2, we will use 

the optimum density distribution calculated by Chung's degree optimisation program found in [126]. 

Optimality in this context implies finding the distribution profile achieving the best known near­

capacity performance at a specific coding rate. The density distribution is defined in terms of the 

node-oriented description defined in Equation 3.17 &'l: 

( ) 
_ 2 4 5 11 12 An .1: - 0.6x + 0.21504.1: + 0.06571x + 0.04541.7: + 0.07268.1: + 0.00116.1: , 

3 4 Pn(.1:) = 0.55556.1: + 0.44444.1: . 
(3.17) 

Similar to the example provided in Section 2.9.2, our BER evaluations were carried out for a 

maximum of ten iterations at both E b/ No = 1.5dB and 2.5dB. The related simulation results are 

provided in Figures 3.13 and 3.14. 

We can see in Figures 3.13 and 3. 14that the average BER of all the message nodes having different 

column weights is similar and is between about 15% to 20% at the output of the demodulator, before 

the commencement of iterations. However, when the iterative decoding starts, the high-weight message 

nodes result in a reduced BER compared to the low-weight message nodes. Observe in Figure 3.13 

that between the first iteration and the third iteration, nodes having a higher column weight tend 

to converge to their final values f&'lter owing to having a higher number of non-zero entries in the 

column, which in turn provide more information for the message node. Consequently, during the 

subsequent iterations most of the high-weight nodes are &'lsociated with correct bit values and hence 

they are capable of providing correct information for the nodes having a lower column weight. Hence 

the low-weight nodes tend to steadily converge towards their correct values at a near-linear rate, while 

the convergence of the higher-weight nodes becomes slower during this ph&<;e. 

In summary, we may conclude that each individual message nodes of an irregular LDPC code tends 
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Figure 3.13: Average BER for all the nodes having a particular column weight after each decoding 

iteration, when communicating over an AWGN channel at Eb/No = 1.5dB. The code rate wa..<; r = 0.25 

and the density distribution wa..<; given in Equation 3.17. 
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iteration, when communicating over an AWGN channel at E b/ No = 2.5dB. The code rate wa..<; r = 0.25 

and the density distribution wa..<; given in Equation 3.17. 
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to be unequally protected, especially if the maximum number of iterations is limited. However, owing 

to the specific iterative decoding mechanism of irregular LDPC codes, if we allow a higher number of 

iterations, the higher-weight nodes will 8.''lsist the low-weight nodes in converging towards their correct 

value. Thus, provided that the affordable decoding complexity is not unduly limited, the various nodes 

may be deemed to be near-equally protected. 

3.8 Parity check matrix construction for irregular LDPC codes 

In this section we continue our discourse by introducing two different types of LDPC matrix con­

struction techniques. More explicitly, two different methods of choosing the density distribution for 

an irregular LDPC parity check matrix are presented. The first one is b&'led on using Richardson's 

density evolution concept [61], or Chung's Gaussian approximation method [l1J designed for finding 

the specific density distribution which offers the best &<;ymptotic performance, &<;suming an infinite 

block-length and a high number of iterations. This construction is capable of achieving a performance 

8.<; close to the Shannon limit &<; possible. 

The second method to be portrayed w&<; devised by Yang et al. [127J. This method h8.<; the potential 

of providing a lower error floor for high rate LDPC codes in comparison to Richardson's approach, at 

the cost of a slightly degraded performance at low SNRs. 

3.8.1 Richardson's construction method 

Again, Richardson's construction [61J concerned here is based on using a specific density distribution, 

which guarantees a performance &<; close to the capacity limit &<; possible. The technique of finding 

this density distribution has been described in Section 3.6. The corresponding density distribution can 

be calculated with the aid of the publically available program found at [126J. The performance of the 

family of LDPC codes using this construction method will be evaluated in this section in comparison 

to that of turbo convolutional codes having similar parameters, which were summarised in Table 2.23, 

while the corresponding puncturing patterns are given in Table 2.24. Similarly, the parameters of the 

LDPC codes studied were listed in Table 2.22. The corresponding density profiles for each coding rate 

considered are given as follows. 

Degree distribution for rate = r = 1/3: 

0.54453x + 0.22746.7:2 + 0.00341.7:4 + 0.15449.7:5 + 0.07011.7:19
, 

5 ° 0.82353x + 0.17647.7: . 

Degree distribution for rate = r = 1/2: 

An(X) 

Pn(x) 

0.48603.7: + 0.27696.7:2 + 0.06258.7:5 + 0.10026xo + 0.07417.7:19
, 

0.27273.7: 7 + O. 72727x8
. 

Degree distribution for rate r = 2/3: 

An (.7:) 0.42725.7: + 0.27089x2 + 0.16988.7:4 + 0.13198.7:19
, 

0.51613.7:14 + 0.48387.7:15
. 

(3.18) 

(3.19) 

(3.20) 
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Figure 3.15: BER performance of irregular LDPC codes constructed using the density profiles speci­

fied in Equations 3.18 to 3.22 ba.',ed on Richardson's construction method, benchmarked against turbo 

convolutional codes using the parameters summarised in Table 2.23 and Table 2.24, when communi­

cating over an AWGN channel. BPSK modulation applied. The effective throughputs of both codes 

are 1/3, 1/2,2/3,3/4, 5/6 bps according to their respective code rates. 

Degree distribution for rate = r 3/4: 

An(X) 

Pn(x) 
0.40056.7:1 + 0.29759.7:2 + 0.12986.7:4 + 0.03807.7:5 + 0.13392.7:19

, 

20 .7: . 

Degree distribution for rate = r = 5/6: 

0.37106.7: + 0.3348.7:2 + 0.05634.7:4 + 0.10363x5 + 0.13416.7:19
, 

31 .7: . 

(3.21) 

(3.22) 

Comparing the results illustrated in Figure 3.15 and Figure 3.16 to the results portrayed in Fig­

ure 2.20 and Figure 2.21 using regular construction, the irregular construction LDPC codes outperform 

the regular codes, when the BER is higher than 10-3 . However, the irregular construction LDPC codes 

have a tendency to exhibit an error floor at higher E b/ No values. This disadvantageous property of 

the irregular codes using Richardson's method is a consequence of employing the density evolution 

algorithm. This is because in Gallager's seminal paper [1] it has been shown that the code's col­

umn weight should be higher than or equal to three for the sake of ensuring that the code's distance 

increases linearly with the block-length. However, if weight two columns exists in the PCM, the 

achievable distance increases only logarithmatically, rather than linearly with the block-length [1]. 

Secondly, as pointed out in [127], when there are cycles which involve only weight-two columns, these 

cycles constitute the 'weakest link' in the parity check matrix. This is because during the vertical 

update of message Q?,j of Equation 2.32 in the PCM, the message Q?,j of the two non-zero entries in 

the lh column is only affected by the value of the other non-zero entry in the column, rather than 
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Figure 3.16: BER performance of irregular LDPC codes constructed using the density profiles specified 

in Equations 3.18 to 3.22 ba..'led on Richardson's construction method, benchmarked against turbo con­

volutional codes using the parameters summarised in Table 2.23 and Table 2.24, when communicating 

over an uncorrelated Rayleigh fading channel. BPSK modulation applied. The effective throughputs 

of both codes are 1/3, 1/2, 2/3,3/4, 5/6 bps according to their respective code rates. 

by two or more entries. Hence, during the vertical update process of Qi,j' the non-zero entries are 

getting only limited parity information from other check rows. As suggested by Yang in [127], cycles 

which involve only weight-two columns are preferably avoided during the construction of the PCM. 

Let us now illustrate the BER and FER performance of both the third-rate and half-rate LDPC codes 

in Figure 3.17 using the same density profiles, as in Equation 3.18 and Equation 3.19, respectively 

while employing two different BER and FER evaluation techniques. Firstly, a..'l usual, we compare 

the decoded bit sequence to the originally transmitted bits for the calculation of the Exact BER and 

Exact FER, as seen in Figure 3.17. The second evaluation method is based on exploiting the PCM 

for checking whether the decoded codeword is a legitimate one. If the codeword is deemed to be a 

legitimate codeword, despite that it might have been incorrectly decoded, it is considered a..'l error-free. 

More explicitly, undetected errors resulting in a legitimate codeword are not taken into account, when 

determining the Detected BER and Detected FER in Figure 3.17. 

As demonstrated in Figure 3.17, both LDPC codes experience undetected errors in the low BER 

range. As illustrated in Figure 2.18 and Figure 2.19 of Section 2.9.3, LDPC codes employing a regular 

construction a..'lsociated with a column weight three have a very low probability of undetected errors 

even at a block-length of a mere 200 bits. By contrast, in case of irregular LDPC codes the significantly 

longer block-length of 3000 bits produced incorrectly decoded codewords, a..'l seen in Figure 3.17. This 

comparison suggests that the distance properties of the irregular LDPC codes having weight-two 

columns are worse than those of the family of regular LDPC codes having a minimum weight of three. 

When an undetected decoding error occurred, the decoder wa..'l unable to flag this event and hence in 

Figure 3.17 the Detected BER and Detected FER curves do not consider the effects of the undetected 
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Figure 3.17: BER and FER performance of irregular LDPC codes constructed using the density profiles 

of Equations 3.18 and 3.19 based on Richardson's construction method, when communicating over an 

AWGN channel. 

errors. This is why these curves appear to be more optimistic than the Exact curves. 

The evolution of the nodes' average LLR with respect to the LDPCC's iteration index was demon­

strated in Figures 3.2, 3,3 and 3.4. Recall from Section 3.1 that the column weight should be high and 

the row weight should be low. However, as it was shown in [9]' the presence of a weight-two column 

is necessary for ensuring a beneficial irregularity of the code, in order to counter-balance the effects 

of low-weight rows. In Gallager's seminal paper [1] it has been shown that the column weight should 

be equal to or higher than three for the sake of ensuring that the code's minimum distance increases 

linearly with the block-length. However, if the column weight is only two, the achievable distance 

increases only logarithmically with the block-length [1]. Hence the weight-two columns constitute the 

'weakest link' in the entire parity check matrix and the cycles which involve only weight-two columns 

should be preferably avoided, if possible. The irregular constructions used in [56] were shown to be 

superior to their regular counterparts, provided that the block-length was sufficiently long. However, 

in real-time interactive multimedia communications the system's delay constitutes a crucial design 

constraint and viewed from this perspective the block-length used in [56] was somewhat excessive. 

3.8.2 Yang's construction method 

For the sake of mitigating the problems arising from the existence of undetected decoding errors in 

Figure 3.17 when Richardson's PCM construction method is applied, in [127] Yang suggested avoiding 

having low-weight message nodes, such as weight-three or weight-four message nodes. However, in the 

context of the irregular PCM construction, we have to apply weight-2 columns in the PCM for the 

sake of maintaining a sparse PCM in order to counter-balance the employment of some high weight 

columns. By employing this method, the density profiles of a half-rate irregular LDPC code according 
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Figure 3.18: BER performance of the (3000,1500) irregular LDPC codes employing the PCM con­

structed using the density profiles of Equation 3.23 to 3.25, when communicating over an AWGN 

channel. A (3000, 1500) irregular LDPC code using Richardson's density profile given in Equa­

tion 3.19 and a regular LDPC code, where all the message nodes had a weight of three were used a..'l 

benchmarkers. 

to Yang's suggestion may be determined by using the density profile optimisation program found 

at [126], yielding: 

An(X) 0.48996.7: + 0.41282x3 + 0.07557.7:18 + 0.02165x19, 

Pn(X) .7:8 . (3.23) 

An (.7:) 0.49745x + 0.44548.7:4 + 0.05707x19, 

Pn (.7:) 0.27273.7:7 + 0.72727.7:8 . (3.24) 

An (.7:) 0.49746.7: + 0.47729x 5 + 0.02525x19 , 

Pn (.7:) 0.27273.7:7 + 0.72727x8 . (3.25) 

More explicitly, Equation 3.23 gives the density profile of the r = 0.5 LDPC code according to 

Yang's suggestion in [127], when the presence of weight-three message nodes is avoided. We can see 

from Equation 3.23 that the minimum weight of the message node is two, but there is no weight-three 

term in it. By following a similar approach, the density profile which avoids having both weight-three 

and weight-four nodes is given in Equation 3.24. Furthermore, in Equation 3.25 all the weight-three, 

weight-four and weight-five message nodes are avoided. The performance of a (3000,1500) irregular 

LDPC code utilising the above three different density profiles outlined in Equations 3.23 to 3.25 and 

communicating over an AWGN channel is characterised in Figure 3.18. This (3000, 1500) irregular 

code is benchmarked against the half-rate irregular LDPC code featuring in Figure 3.17 and against 

a regular LDPC code, where all the message nodes had a weight of three at an identical rate and 

block-length. 
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In Figure 3.18 the BER performance of the irregular LDPCCs using Yang's density profiles given 

by Equations 3.23 to 3.25 were evaluated using both the Exact BER and Detected BER, as defined 

previously in the context of Figure 3.17. The half-rate Exact BER curve previously shown in Fig­

ure 3.17 was reproduced here together with an identical-rate identical-black-length regular LDPC code 

as the benchmarkers. By comparing Figure 3.18 and Figure 3.17 we can observe that by avoiding some 

of the low-weight message nodes, for example the weight-three nodes during the construction of the 

PCM, the LDPC codes constructed according to Yang's suggestion become less prone to experiencing 

undetected errors, which suggests that the distance properties of these LDPC codes are better than 

those of the code constructed using Richardson's method. Upon avoiding more and more low-weight 

message nodes, the BER curves decay faster in the high-SNR region at the cost of a degraded residual 

BER performance. In conclusion, the LDPC code using the density profile specified in Equation 3.23 

constitutes the best solution in Figure 3.18. 

Furthermore, in practice often near-unity-rate coding schemes are invoked for the sake of increasing 

the system's overall effective throughput. When the coding rate increases, the PCM will have an 

increased number of columns and reduced number of rows. It was shown in [127] that the maximum 

number of weight-two columns that may be encountered before a cycle involving columns all having a 

weight of two is created is (N - K - 1), corresponding to the number of rows in the parity check matrix 

minus 1. Thus, limiting the number of weight-two message nodes, especially in a high-rate scenario, 

assists in reducing the error floor. Hereby, we would like to characterise the performance of a r = 0.82 

(4161,3430) irregular LDPC code, when the number of weight-two message nodes is limited to 730 

according to Yang's suggestion. This code will also be benchmarked against Richardson's proposed 

density profile. The designs according to Richardson's density profile as well as to Yang's approach 

are as follows: 

Richardson's density profile: 

An (.7:) 

Pn(.7:) 

Yang's density profile: 

An (.7:) 

Pn(x) 

127 0.398.7: + 0.38118.7: + 0.22082 , 
20 21 0.90411.7: + 0.09589x . 

0.0002.7:0 + 0.17543x1 + 0.64797.7:2 + 0.1764.7:7
, 

20 21 0.90411x + 0.09589.7: . 

(3.26) 

(3.27) 

We infer from Equation 3.26, which gives the Richardson's density profile, that the proportion of 

weight-two message nodes is 0.398, where the number of weight-two message nodes is calculated as 

0.398 X 4161 = 1656, which is significantly higher than the corresponding number of 730 weight-two 

nodes proposed by Yang. More explicitly, for Yang's design outlined in Equation 3.27, the number 

of weight-two message nodes is 0.17543 x 4161 = 730. The performance of the (4161, 3430) irregular 

LDPC code using the two different density profiles given in Equation 3.26 and Equation 3.27 is shown 

in Figure 3.19, where we can see that the error floor effects exhibited by Richardson's density profile 

were mitigated, when Yang's density profile was employed. 
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Figure 3.19: BER performance of the irregular (4161,3430) LDPC code in conjunction with two differ­

ent types of PCM construction, when communicating over an AWGN channel using BPSK modulation. 

The density profiles for the two types of PCM construction method is specified by Equation 3.26 and 

Equation 3.27. 

3.9 Performance of irregular LDPC codes communicating over AWGN 

channels 

As we have seen in Figure 3.19, Richardson's and Yang's identical-rate identical-block-Iength irregular 

LDPC codes transmitted over AWGN channels perform differently. In this section, the performance 

of irregular LDPC codes will be further studied in various scenarios. 

First the effects of various block-lengths are evaluated for transmissions over an AWGN channel. 

The various irregular LDPC codes were constructed using both Richardson's construction criteria 

introduced in Section 3.8.1 and Yang's construction method described in Section 3.8.2. The density 

profiles for the five coding rata<; used are given in Table 3.1. The density profiles constructed by Yang 

comply with the constraints given in Section 3.8.2, i.e. the number of weight-two message nodes does 

not exceed the number of check nodes minus one. Furthermore, by observing Yang's density profiles 

summarised in Table 3.1, we can see that the existence of weight-three message nodes was avoided 

during the PCM construction stage for the sake of improving the LDPC codes' distance properties. 

The BER performance of these irregular LDPC codes having various block-lengths and code rata<; 

may be studied in Figures 3.20 to 3.24. The LDPC codes were constructed using the density profiles 

summarised in Table 3.1. The attainable coding gain at a BER of 10-4 is plotted in Figure 3.25 

against the blocklength for the various coding rata<; considered. As we can see from Figura<; 3.20 to 

3.24 as well as from Figure 3.25, Yang's construction was superior in comparison to Richardson's con­

struction method. Especially at high code rates and higher Eb/No values, a better BER performance 

W8...'l achieved by Yang's construction when compared to the LDPC codes using PCMs constructed by 
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Coding rate Density profile 

Richardson's density profiles 

1/3 An(X) = 0.54453.r, + 0.22746x2 + 0.00341.r,4 + 0.15449.r,5 + 0.07011x19 

5 6 Pn(.r,) = 0.82353x + 0.17647.r, 

1/2 A ( ) 2 5 6 19 n X = 0.48603.r, + 0.27696.r, + 0.06258x + 0.10026x + 0.07417x 

Pn(.r,) = 0.27273x7 + 0.72727x8 

2/3 An(.r,) = 0.42725x + 0.27089x2 + 0.16988.r,4 + 0.13198x19 

Pn(x) = 0.51613.r,14 + 0.48387.r,15 

3/4 An(.r,) = 0.40056x + 0.29759x2 + 0.12986.r,4 + 0.03807.r,5 + 0.13392x19 

Pn (.r,) = .r, 20 

4/5 An(X) = 0.38319.r, + 0.3203l.r,2 + 0.08342.r,4 + 0.07914.r,5 + 0.13393.r19 

( ) 25 26 Pn.r = 0.50943x + 0.49058x 

Yang's density profiles 

1/3 ( ) 3 11 12 19 An X = 0.54354x + 0.3703.r, + 0.00148.r + 0.00529.r, + 0.07938x 
5 6 Pn(.r) = 0.63636x + 0.36364x 

1/2 An(.r) = 0.48728.r + 0.41431.r3 + 0.00831x18 + 0.09011x19 

Pn(x) = 0.81633.r8 + 0.18367x9 

2/3 ( ) 3 19 An.r = 0.33333x + 0.5669x + 0.09977.r 

Pn (.r,) = 0.21127.r13 + 0.78873.r14 

3/4 ( ) 3 19 An X = 0.25x + 0.65018x + 0.09982x 

Pn(.r) = 0.61165x 19 + 0.38835x20 

4/5 ( ) 3 19 An.r = 0.2x + 0.69877.r + 0.1D122.r 
( 25 26 Pn .r,) = 0.90335.r + 0.09665.r 

Table 3.1: Density profiles constructed by Richardson and Yang for various LDPC code rata". 

Richardson's density profile. However, Yang's method only improves the irregular LDPC code's dis­

tance properties when the existence of weight-two message nodes is inevitable, in which case it provides 

a way of reducing the error floor. However, Yang's method is also incapable of entirely eliminating the 

error floor, as illustrated in Figures 3.20 to 3.24, when short block-lengths are utilised. In order to 

mitigate this problem, Yang's design approach may be invoked for avoiding not only the weight-three, 

but also other relatively low-weight message nodes. By using the following density profiles constructed 

according to Yang's design criterion, we avoid having both weight-three and weight-four message nodes 

in Equation 3.28 and in Equation 3.29 we further avoid the weight-five message nodes: 

An (.r) 

Pn (.r) 

An(X) 

Pn(x) 

0.2x + 0.7 4539.r4 + 0.05462.r19 , 

25 26 0.90335.r + 0.09665x . 

0.19999.r + 0.79864.r,5 + 0.00137.r,19, 

25 26 0.90335.r + 0.09665x . 

(3.28) 

(3.29) 

By studying the results illustrated in Figure 3.26 and 3.27, it can be seen that when a short 

blocklength is concerned, the LDPC code's minimum distance is relatively low. Hence, upon avoiding 

the weight-three and weight-four message nodes, an improved performance is observed in Figure 3.26. 
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Figure 3.20: BER performance of different-length third-rate irregular LDPC codes constructed using 

both Richardson's and Yang's density profiles summarised in Table 3.1, when communicating over an 

AWGN channel using BPSK modulation. The achievable coding gain of the various scheme.'l at a BER 

of 1O~4 will be summarised in Figure 3.25 and Table 3.1. 

However, when we further avoid the weight-five message nodes, an inferior performance is observed in 

Figure 3.26. Thus, when the minimum distance of the LDPC code is relatively high, further avoiding 

the low-weight message nodes results in a less sparse PCM, which consequently results in an inferior 

performance. This phenomenon may be further clarified as follows. When a relatively high blocklength 

is concerned, the code's minimum distance becomes higher than that of the identical-rate but lower 

block-length LDPC codes constructed using the same density profile, when both scenarios only avoids 

weight-three message nodes, as seen in Table 3.1. Hence, by further avoiding the existence of weight­

four message nodes and weight-five message nodes will degrade the achievable BER performance. 

This is because the density profiles seen in Equations 3.28 and 3.29 are incapable of producing codes 

approaching the Shannon limit as closely as those summarised in Table 3.1, where less constraints 

were imposed on the codes during the density profile optimisation. 

3.10 Summary and conclusion 

Following Luby's approach [60], in this chapter we studied both the design and the achievable per­

formance of irregular LDPC codes in comparison to their regular counterparts. The higher weights 

associated with the message nodes are capable of providing more useful parity information, which 

has the potential of assisting the code in converging faster, while the messages are passed from node 

to node. Richardson's density evolution method [9J outlined in Section 3.4 provides an attractive 

theoretical approach of predicting the performance of a given density distribution. Chung's Gaus-
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Figure 3.21: BER performance of different-length half-rate irregular LDPC codes constructed using 

both Richardson's and Yang's density profiles summarised in Table 3.1, when communicating over an 

AWGN channel using BPSK modulation. The achievable coding gain of the various schemes at a BER 

of 10-4 will be summarised in Figure 3.25 and Table 3.1. 

sian approximation approach [11] to density evolution has significantly reduced the complexity of 

Richardson's original density evolution method at the cost of a slightly reduced accuracy, as it wa..'l 

shown in Section 3.5. However, due to the presence of weight-two columns in the Richardson's density 

distribution design, the minimum distance of irregular LDPCCs does not increa..'le linearly with the 

blocklength, which is the ca..'le for the family of regular LDPC codes. Thus, when an irregular con­

struction is applied to a short or medium-blocklength LDPC code, in the low SNR region irregular 

LDPCCs may outperform the family of regular LDPC codes. However, when the SNR increa..'les, the 

family of irregular LDPC codes will demonstrate a slower convergence and eventually these codes 

exhibit an error floor. 

Yang suggested an approach of reducing the error floor engendered by the existence of weight-two 

message nodes. This problem may be mitigated by limiting the number of weight-two columns and/or 

by avoiding some of the lower-weight nodes, such a..'l weight-three or weight-four nodes during the 

density profile optimisation process. Yang's approach ha..'l been shown to be effective for reducing the 

error floor of short blocklength codes. However, for longer block-lengths, for example for 2000 bits 

and above, it might not be necessary to avoid the existence of weight-four and weight-five message 

nodes, provided that a slightly degraded performance may be acceptable. Therefore, we recommend 

using Richardson's PCM construction approach for those applications which are in-sensitive to delays 

or which attempt to optimise the performance in the low-SNR region. As for the scenarios when 

satisfying a certain delay constraint is important or a sharp BER convergence is required, Yang's 

approach will be the better choice. 
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Figure 3.22: BER performance of different-length two-third-rate irregular LDPC codes constructed 

using both Richardson's and Yang's density profiles summarised in Table 3.1, when communicating 

over an AWGN channel using BPSK modulation. The achievable coding gain of the various schema'l 

at a BER of 10-4 will be summarised in Figure 3.25 and Table 3.1. 

A coding gain table is hereby provided for the sake of summarising the achievable BER performance 

of the irregular LDPC codes discussed in this chapter. 
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Figure 3.23: BER performance of different-length three-quarter-rate irregular LDPC codes constructed 

using both Richardson's and Yang's density profiles summarised in Table 3.1) when communicating 

over an AWGN channel using BPSK modulation. The achievable coding gain of the various schema,> 

at a BER of 10-4 will be summarised in Figure 3.25 and Table 3.1. 
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Figure 3.24: BER performance of different-length four-fifth-rate irregular LDPC codes constructed 

using both Richardson's and Yang's density profiles summarised in Table 3.1, when communicating 

over an AWGN channel using BPSK modulation. The achievable coding gain of the various schema,> 

at a BER of 10-4 will be summarised in Figure 3.25 and Table 3.1. 
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Figure 3.25: Coding gain achieved at a BER of 10-4 when irregular LDPC codes were communicating 

over an AWGN channel using BPSK modulation using different block-lengths at various coding rata'). 

The PCMs are constructed using both Richardson's and Yang's density profile tabulated in Table 3.1. 

Code Coding gain Coding gain 

rate (A)(dB) (UR)(dB) 

1/3 6.627 30.75 

1/2 6.47 30 

2/3 5.97 28.25 

3/4 5.53 26.875 

5/6 4.78 24.75 

Table 3.2: Coding gain achieved by the LDPC code constructed according to Richardson's density 

profile specified in Equations 3.18 to 3.22 at a BER of 10-4 , when communicating over AWGN and 

un correlated Rayleigh fading channels. A coded blocklength of 3000 bits was utilised and the LDPC 

decoder invokes a maximum of 25 iterations. 
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Figure 3.26: BER performance of the four-fifth rate (200,160) LDPC codes constructed by using 

Yang's density profile in Table 3.1 which avoids the weight-three nodes, and Yang's density profiles in 

Equation 3.28 and 3.29 which further avoid weight-four and weight-five nodes, respectively. 

10" 
; 

1 

10'5 
2.0 

~ Kl"-... 

~~ 

2.5 

0 Avoiding CW 3 
0 Avoiding CW3 4 
v Avoiding CW3 4 5 

1\\\ 

\\\ 

'\ 

\\ 
3.0 3.5 4.0 4.5 5.0 

EbINO(dB) 

Figure 3.27: BER performance of the four-fifth rate (2000,1600) LDPC codes constructed by using 

Yang's density profile in Table 3.1 which avoids the weight-three nodes, and Yang's density profiles in 

Equation 3.28 and 3.29 which further avoid weight-four and weight-five nodes, respectively. 
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Code Coded Coding gain Coding gain 

rate blocklength (A)(dB) (A) (dB) 

Richardson Yang 

1/3 201 2.47 3.176 

501 4.06 4.06 

1002 4.47 5.94 

2001 5.71 6.62 

5001 6.71 7 

1/2 200 3.36 4.08 

500 4.77 4.82 

1000 5.77 5.59 

2000 6.3 6.12 

5000 6.65 6.94 

2/3 201 2.96 3.65 

501 4.18 4.83 

1002 4.82 5.65 

2001 5.65 6.06 

5001 6.18 6.24 

3/4 200 2.70 3.14 

500 3.90 4.12 

1000 4.62 4.89 

2000 5.23 5.59 

5000 5.735 6 

4/5 200 2.2 2.2 

500 3.65 3.77 

1000 4 4.41 

2000 4.82 5.06 

5000 5.41 5.47 

Table 3.3: Coding gain achieved at a BER of 10-4 when irregular LDPC codes were employed for com­

municating over an AWGN channel using BPSK modulation using different block-lengths at various 

coding rata'). The PCMs are constructed using both Richardson's and Yang's density profile tabulated 

in Table 3.1. 



Chapter 4 

Non-Binary LDPC-aided Transmitter 

and Receiver Diversity Schemes 

4.1 State-of-the-art 

The belief propagation algorithm wa'l devised by Pearl [110], which ha'l been widely used in the area 

of Artificial Intelligence (AI) [128J [129J. Following the invention of turbo codes by Berrou [130J in 

1993, the research community showed sustained interest in contriving iterative decoding algorithms. 

McEliece [131J introduced Pearl's belief propagation algorithm to the information theory research 

community and further elucidated why turbo codes are capable of achieving near-capacity performance. 

McEliece also pointed out that many other error correction coding schemes, such a'l Gallager's Low 

Density Parity Check decoding algorithm [lJ also constitute instances of Pearl's belief propagation 

algorithm [131J. 

In recent years Multiple Input and Multiple Output (MIMO) schemes [115J [132J [133J using 

multiple antenna'l have enjoyed a rapid evolution a'l powerful fading counter-mea 'lures in wireless 

communication, owing to their attractive diversity and/or multiplexing gain. Motivated by these 

trends, Meshkat and Jafarkhani proposed a bit-by-bit joint detection scheme for an amalgamated 

LDPC code combined with a Space-Time (ST) code using BPSK modulation [108J. The novel 

contribution of this chapter is that the purely binary LDPC-coded space-time scheme of (1 DB) is further 

developed to a symbol-by-symbol detection scheme, which benefits from a purely symbol-based message 

exchange with a symbol-based non-binary LDPC code. We will demonstrate that the explicit benefit 

of this entirely symbol-based scheme is that an improved BER performance is achieved at a reduced 

detection complexity. Hence in this chapter, non-binary LDPC codes constructed over a Galois field 

of size q and proposed by Davey and MacKay [54J are introduced for the sake of developing a purely 

symbol-ba'led joint LDPC-Space Time (LDPC-ST) detection scheme. The structure of this chapter is 

a'l follows. 

Section 4.2 gives a brief introduction to both Bayesian networks and to Pearl's belief propagation 

algorithm. In Section 4.3 Davey's non-binary LDPC code [56J will be introduced. The decoding 

process for non-binary LDPC codes is outlined with the aid of a worked example and the a'lsociated 

decoding complexity issues are also addressed. Specifically, we will demonstrate that the FFT-ba'led 

91 



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 92 

G 

Figure 4.1: Bayesian network having six nodes 

LDPC decoding technique of [56] has a low complexity, which is independent of the number of bits 

per LDPC coded symbol. This advantageous property allows us to decode non-binary LDPC codes 

operating over a large Galois field at a low complexity. Section 4.4 characterises the performance 

trends of the family of non-binary LDPC codes employing different configurations. A bit-b&'led joint 

detection algorithm proposed by Meshkat and Jafarkhani is introduced in Section 4.5 and this al­

gorithm is further developed to a symbol-b&'led scheme in Section 4.6. Section 4.7 and Section 4.8 

evaluate the achievable performance gain of the bit-b&'led and symbol-b&'led system, respectively, and 

in Section 4.3.5 the decoding complexity of the two systems is compared. 

4.2 Bayesian networks and Pearl's belief propagation algorithm [110, 

131] 

Bayesian networks consist of a set of random variables denoted by X = {X I ,X2 ... X n } and these 

random variables are represented by the nodes of the network. In Figure 4.1 a Bayesian network 

having six nodes is portrayed &'l an example. The nodes are connected by directed links representing 

the relationship of the so-called parent nodes with the so-called child nodes. For example, since there 

is a directed link from X6 to X 3, this implies that there is message flow from X6 to X 3. Thus X6 is 

termed &'l the parent node of X3, and hence X3 is the child node of X 6 . Similarly, X4 and X5 are 

the parent nodes of node X2. Furthermore, due to the direct link from X2 to Xl, node X 2 is the 

parent node of Xl. Some of the nodes may correspond to random variables, whose values have been 

encountered and hence observed. The corresponding nodes are also referred to &'l evidence nodes or 

observation nodes. More explicitly, if nodes X 4, X5 and X6 in Figure 4.1 correspond to three channel 

output samples and their information is processed by a particular algorithm such &'l for example, an 

LDPC decoder, to provide parity information for nodes X 2 and X3 &'l well indirectly for node Xl, the 

nodes X 4, X5 and X6 are the so-called evidence nodes or observation nodes. When a specific set of 
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variables corresponding to the evidence nodes is observed, Pearl's belief propagation algorithm may 

be invoked for inferring the a posteriori information corresponding to the rest of the nodes in the 

network, &') W&') demonstrated in the context of Figure 4.1. For example, the a posteriori probability 

of node Xl is calculated &') follows: 

The mechanism of belief propagation which is expressed synonymously &') probability propagation 

becomes explicit in Equation 4.1 and Figure 4.1. If we use the notation PN(Xi ) for representing the 

parent node set of node i, Equation 4.1 can be rewritten &'): 

N 

P(XI ) = II P(.'EiIPN(Xi)). (4.2) 
i=l 

Recall from Chapter 3 that since an LDPC code's PCM can be represented using a Tanner graph as 

seen in Figure 3.1, hence Figure 3.1 represents the Baysian network structure of the LDPC code. More 

explicitly, all the message nodes at the left of Figure 3.1 are the" evidence nodes", since they receive 

initial intrinsic information from the channel's output. Then the information propagates through the 

connections from the message nodes seen at the left to the check nodes portrayed on the right in 

Figure 3.1. During this message p&')sing procedure, the message nodes are the parent nodes and the 

check nodes are the child nodes. When a message h&') to be p&')sed from the right to the left, the 

check nodes become the parent nodes and the variable nodes represent the child nodes, because the 

message nodes receive information from the check nodes. Hence the LDPC decoding procedure also 

constitutes an instance of Pearl's belief propagation algorithm [131]. 

4.3 Non-binary LDPC codes 

4.3.1 Introduction 

In Chapter 2 the family of binary regular-construction LDPCCs h&"l been introduced. The entries in 

the parity check matrix are either ones or zeroes, hence they are defined over Galois Field (2). Davey 

and MacKay developed the cl&"lsic binary LDPCCs further [55], where the parity check matrices are 

constructed by inserting non-zero entries defined over the Galois Field (q), i.e. over GF(q) (q = 2P ). 

More explicitly, the non-zero entries within the parity check matrix of a non-binary LDPCC may 

&"lsume values from the set spanning from 1 to (q - 1). For the sake of distinguishing the PCM H 

and the corresponding generator matrix G defined over the binary field from those defined over the 

non-binary Galois field GF(q), we would like to introduce the notation of Hq and Gq for representing 

the non-binary PCM and the non-binary generator matrix, respectively. By contrast, the binary PCM 

and the binary generator matrix will be denoted &"l Hb and G b , respectively. 

Hence the cl&"ls of non-binary LDPCCs constitutes a generalisation of the binary LDPC codes 

introduced in Chapter 2 and this generalisation will be detailed here with reference to the work of 

Davey and MacKay [54,56]. In the family of non-binary LDPCCs, the non-zero entries of the parity 

check matrix are inserted in the same way &"l in the binary C&"le. However, in addition to deciding 

where to insert the non-zero entries, the value of the non-zero entries h&"l to be determined over GF( q). 
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Furthermore, 3.'l in the case of binary codes, a legitimate non-binary codeword also has to sati'lfy the 

constraint that its product with the parity check matrix results in an all-zero vector. In the context 

of non-binary LDPCC decoding over GF(q), the additions and multiplications involved in computing 

the product of the codeword and the PCM should be carried out over the corresponding finite field, 

rather than over the binary field as in Chapter 2. 

For the non-binary LDPC defined over GF(q), each non-zero entry of both Hq and Gq can be 

associated with a (p xp)-dimensional submatrix, where we have p = 10g2(q) [56J. More explicitly, since 

the non-zero entries of the Hq and G q matrix may assume values from 1 to (q - 1) for a non-binary 

LDPCC defined over GF(q), there should be a total of (q - 1) different submatrices associated with 

each individual legitimate value of the non-zero entry in the matrices Hq and G q. Furthermore, each 

coded non-binary symbol defined over GF(q) can be represented in a binary format using p binary bits. 

If we replace all the non-zero entries in Hq and G q with their individually 3.'lsociated binary-valued 

submatrix, the equivalent binary PCM H2 and generator matrix G2 can be derived, which correspond 

to Hq and G q. Assume for example that we have a q - ary source symbol b defined over GF(q), and 

a is a non-zero entry in the parity check matrix also defined over GF(q). Then the multiplication of 

symbol b by a is equivalent to the matrix multiplication of the binary representation of the source 

symbol b and the submatrix associated with the non-zero entry a of the parity check matrix. Hence, if 

each non-zero entry in the q - ary matrix G q and Hq defined for non-binary LDPCCs is replaced with 

their corresponding binary submatrix, we will have the resultant binary generator matrix and parity 

check matrix G b and Hb in a binary form, while the sizes of the matrices are increased by a factor 

of p both vertically and horizontally. Suppose we have a source symbol sequence Sq over GF(q) and 

the corresponding binary representation of Sq can be denoted as Sb. Then, upon multiplying Sq with 

G q using finite field arithmetics, we arrive at the encoded symbol sequence C q . Similarly, the binary 

representation of a codeword C b may be obtained by multiplying Sb and G b over the binary field. As 

expected, the sequence C b is the binary representation of the symbol sequence C q [56J. However, the 

advantages and disadvantages of using binary versus higher order decoding fields will be highlighted 

at a later stage. 

The matrices Hb and Hq can be used for producing G b and G q which in turn may be involved for 

generating the same codeword in either bit or symbol format. Clearly, the non-binary LDPCC decoder 

is a symbol b3.'led decoder. Each column of Hq represents a symbol message node constituted by p bits. 

If the input to the decoder provides only bit probabilities, the decoder has to interpret p bits output 

by the demodulator 3.'l a single q - ary symbol and approximate the symbol probability by using the 

product of the probability values of each constituent bit, 3.'lsuming that all the bits are independent. 

This independence is only an approximately valid 3.'lsumption, for example in the C3.'le of using a gray­

coded modem constellation, where the gray-mapping imposes constraints on the transmitted bits. 

Following this philosophy, the symbol probability is calculated from the demodulator's soft output 

values 3.'l: 
p 

pa = II p~J, (4.3) 
j=l 

where p~J represents the probability that the;th constituent bit .1:j is equal to aj, while (aI, ... ap ) is 

the binary representation of symbol a. 
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4.3.2 Advantages and disadvantages of non-binary LDPC codes 

MacKay pointed out in [8] that LDPCCs should have a high column weight for the sake of achieving a 

high performance. As illustrated in Figures 3.2 to 3.4, the high-weight message nodes of an irregular 

LDPC code converge to their correct states at a higher rate than the low-weight nodes. This intuition, 

which led to Luby's [60] irregular construction, also implies that when having more non-zero entries in 

a column, a message nodes becoma'l more confident in deciding which state it should be in. However, 

the resultant higher number of non-zero entries in a row may lead to confusion for the check nodes, 

because now an increased number of non-zero entries participate in the parity check equation, thus 

an increased number of configurations are available to satisfy the check equation. Furthermore, when 

a moderate PCM size is applied, using a higher column weight will render the parity check matrix 

less sparse and hence cycles having a short length will be introduced. As seen from Figure 4.2, by 

extending GF(2) to GF(q), the binary column weight of the equivalent binary parity check matrix 

portrayed at the right of the figure is increased. Furthermore, the row weight of the equivalent binary 

PCM is also increased. 

Since we argued previously that Hq and G q have their corresponding binary equivalent matrices 

Hb and G b, hence the family of non-binary LDPCCs is subjected to the same design dilemma as 

binary irregular LDPCCs. More explicitly, using a large non-binary decoding field will result in a high 

equivalent binary column weight for the PCM, but the equivalent binary row weight is also increased. 

However, the merit of non-binary LDPCCs arises from their reduced probability of forming short 

cycles. 

By observing the cycles using the bipartite representation of Figure 4.2, it can be seen that using 

non-binary LDPCCs results in no cycles, while the equivalent binary PCM has many cycles, among 

which two length-4 cycles are highlighted using dotted lines in Figure 4.2. From this example we may 

infer that non-binary LDPCCs are less likely to incur short cycles. The binary equivalent PCMs are 

constructed upon replacing the non-zero entries defined over GF(8) by their corresponding binary 

companion matrices. Details of finding the binary companion matrix can be found in Appendix C. 

Since each binary submatrix is of dimension 3-by-3, we have three times more message nodes as well 

as the check nodes in comparison to the non-binary PCM seen at on the left of Figure 4.2. The 

Tanner graph of the binary equivalent matrix is constructed in a similar fashion as the non-binary 

PCM, i.e. by connecting the message nodes and the check nodes according to the position of the 

non-zero entries in the PCM. Thus, in the message passing based decoding process the non-zero 

PCM entries are capable of receiving information from more neighbouring nodes, which is expected 

to improve the achievable decoding performance. However, the disadvantage of non-binary LDPCCs 

arises from having an increased number of possible values for the non-zero entries in the PCM. Since 

the number of possible states is increased by a factor of q, the non-zero entries in the row may 

assume a higher number of possible values rendering them more difficult to classify. The associated 

decoding complexity is also increased owing to the increased number of possible states. Davey has 

demonstrated in [56] that non-binary LDPCCs are not always superior to their binary counterparts, 

as a consequence of the above-mentioned advantages and disadvantages. However, the non-binary 

LDPCCs lead themselves to purely symbol-ba.'led decoding, which will be shown to be advantageous 

in the context of the non-binary LDPCC-aided space-time code of Section 4.6. 

In our further discussion, we will express the coded blocklength of a non-binary LDPCC a.'lsociated 
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Figure 4.2: Bipartite graph representation of two PCMs constructed over GF(S) and GF(2) 

with Hq in terms of the number of symbols, while the blocklength of the equivalent binary represen­

tation of the codeword will be quoted in bits. For example, the PCM of Figure 4.2 is related to a 

non-binary LDPC code having a length of three non-binary symbols. At the same time, we may refer 

to this non-binary LDPC code &'3 having a coded blocklength of 9 bits, since it W&'3 constructed over 

GF(S). Furthermore, we could also use the number of non-binary symbols and bits for representing 

the size of the PCMs Hq and H b , respectively. All LDPC codes represented by (Nq, Kq)q refer to 

a code having Kq non-binary information symbols, while the encoded blocklength is N q non-binary 

symbols. 

4.3.3 Decoding process 

The decoding process is quite similar to that outlined in Chapter 2 for the binary LDPCC scenario, 

apart from the fact that all the calculations have to be carried out in the corresponding non-binary 

Galois field. However, since the Galois field order h&'3 been incre&'3ed from binary to GF(q), the 

complexity of updating R using Equation 2.31 is incre&'3ed by a factor of q2. Fortunately, the reduced 

complexity decoding method of Richardson and Urbanke outlined in Section 2.7.2 can be further 

generalised for non-binary LDPCCs. 

Algorithm 2 The procedure of decoding 0, non-binary LDPCC is outlined here as follo111s: 

Step 1: Initialisation 

During the initialisation step, the quantities Qa,i = 1 .. . lvlq ,j = 1. .. N q of each non-zero entry 
2,} 

in the PCM Hq have to be initialised to the specific value, which is provided by the channel's soft 

output, i.e. to the intrinsic probability Pja in Equation 2.32, where a and j represent the symbol state 

and the symbol index in the codeword, respectively. 
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Step 2: Horizontal update 

The horizontal update step is dedicated to the updating process of the quantity Rf,j using the 

quantity Qi,j' A legitimate codeword has to satisfy all parity check equations in the PCM. When 

updating Ri,j using Equation 2.31, the participating message nodes have to satisfy the ith parity 

check formulated a'S: 

L ci,]' . Hi,j' = 0, 
j'ECi 

( 4.4) 

where Ci,j represents the lh symbol, which participates in the ith parity check. More explicitly, 

Equation 4.4 requires that the product of the message nodes participating in the ith check, whose 

column indices are the elements of the vector Ci and the corresponding non-zero entries of the ith row 

of the PCM Hi,j' evaluated over G F( q) becomes zero. 

In the non-binary scenario, all message nodes have q possible values. Since we have to evaluate the 

probabilities for each legitimate symbol state, we can use the probability of each message node in the 

decoding process which we quantify with the aid of the corresponding discrete PDF. According to the 

Galois Field addition rule [134]' the sum of two identical elements of G F( q) is zero, thus Equation 4.4 

can be rewritten a'S: 

L Ci,j" Hi,]' = Ci,k . Hi,k, k E Ci . 
j'ECd'i'k 

(4.5) 

It becomes clear from Equation 4.5 that the variable Ci,k . Hi,k, k E Ci can be expressed a'S the sum of 

other variables Ci,j' . Hi,]', j' E Ci , j' =I- k. 

As mentioned in Section 2.7.2, the PDF of the quantity Rf,j of Equation 2.34 can be obtained by 

evaluating the convolution of the PDFs of the quantities Qa ., of the other message nodes participating 
',) 

in the ith check. 

An example ha'S been provided in Section 2.7.2 for the binary case, and a detailed worked example 

will be supplied later in Section 4.3.4 for the non-binary scenario. Let us now introduce a variable 

1Ji,j, which represents the product of the symbol value a E (0, q - 1) of the jth message node and the 

matrix entry Hi,] at the ith row and lh column obeying Vi,j = a· Hi,j' When non-binary LDPC codes 

are concerned, the PDF of the product RY,j can be obtained by calculating the convolution of the 

PDFs of the quantities OY,j' of the other message nodes participating in the ith check. The notations 

OY,j' and Rf,j' are hereby also introduced for the sake of distinguishing them from Qi,j' and Ri,j" The 

rea'Son that we used Ri,j and Qf,j directly in Section 2.7.2, rather than Rf,j and QL is because we 

had Hi,] = 1 for all i and j, when binary LDPCCs are concerned. Therefore we have v = a . Hi,j = a. 

Thus we arrive at: 

PDF{RV} = ',) 
(4.6) 

j'E{Ci},j'i'j 

where ® indicates convolution. 

Step 2.1: Permutation of the PDF entries of the quantity Qi,j' 

As seen from Equation 4.6, the PDF of the variable Of,j' is used to update RY,j" The PDF of 

the quantity Of,j' can be obtained upon permuting the PDF of variable Qf,}'. Considering GF(4) a'S 

an example and a'Ssuming that the PDF of Qi,j' for a message node is Qf,}' = (Q?,j" QL" QL" QL,) 
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and &'lsuming furthermore that the corresponding PCM entry is Hi,j' = 2 over GF(4), the prod­

uct ((0. Hi,jl), (1 . Hi,jl), (2 . Hi,jl), (3 . Hi,],)) yields (0,2,3, 1), since the sequence a = (0, 1,2,3) is 

multiplied with Hi,j' = 2 over GF(4). An arithmetic operation table over GF(4) is provided in Ta­

ble 4.1 for the reader's convenience. Thus, by reordering the original PDF Qi,j = (Q~,j' QL, Qt,j' QL) 

of the message nodes Qi,jl, i = 1 .. . l\!lq, j = 1 ... Nq according to the sequence (0,2,3,1) yields 

(Q?,jl, Qf,jl' Qt,jl,Qf,jl)' More explicitly, since according to Table 4.1 we have 2 x 2 = 3 over GF(4), 

thus 2 . Hi,jl will make a contribution to the ith parity check of the value of 3 over GF(8), with 

a probability of Qf,],' More explicitly, we have v = 2 x 2 = 3 over GF(8), hence Qf.J1 = QL,· 

Thus the probability of QL, should be placed at position three in the PDF of the variable Qf,jl 
and hence the PDF of QV ., becomes (Qo ." Q3

" 
Q1

" 
Q2,), which is indeed a permuted version of 

IJ IJ IJ IJ IJ 

Q a _ (Qo Q1 Q2 Q3 ) 
i,j' - i,j" i,j" i,j" i,j" 

+ 0 1 2 3 • 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 0 3 2 1 0 1 2 3 

2 2 3 0 1 2 0 2 3 1 

3 3 2 1 0 3 0 3 1 2 

Table 4.1: GF(4) addition and multiplication table 

As mentioned in Section 2.7.2 and defined by Equation 4.6, upon convolving the PDFs of all the 

variables QV ." except for that of the message node at the lh column, &'l shown in Equation 4.6, the 
I,) 

result specifies the PDF of it!,j' The elements of the PDF vector have to be permuted again, in the 

opposite sense in comparison to the previous permutation, for the sake of generating the PDF of the 

quantity fif,j. This process will be explained in more detail with the aid of a worked example in 

Section 4.3.4. 

Step 2.2: FFT 

As previously suggested in the context of Equation 2.35 of Section 2.7.2, the complex convolution 

can be more efficiently implemented in the frequency domain with the aid of the FFT [9]. Equation 2.37 

h&'l provided the corresponding FFT formula for the binary C&'le. In a non-binary LDPCC scenario 

the FFT h&'l to be implemented over a non-binary finite field, during the update of the quantity Ri,j 

of Equation 2.31 [56]. 

As suggested in Equation 2.37 of Chapter 2, the FFT of the function f defined over GF(2) is given 

by F(f)(O) = f(O) + f(l), F(f)(l) = 1'(0) - f(l). The notations F(f)(a) and f(a) have the similar 

definitions &'l in Equation 2.37, while here they are generalised for a decoding field of size q, rather 

than binary. 

Since the PDF of each message node is defined over GF(q), thus the FFT is not a one-dimensional 

q-point FFT, but a p-dimensional two-point FFT, where we have 2P = q. When the FFT is represented 

in a matrix format, the matrix is the same &'l the Walsh-Hadamard (WH) matrix [38]. By representing 

the FFT to be carried out over GF(2) in Equation 2.37 in a matrix format, we arrive at: 

( 
F(f)(O)) (f(O)) (1 1) 
F(f)(l) - f(l) 1 -1 . 

(4.7) 
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The (2 x 2) matrix in Equation 4.7 is termed the FFT matrix (FFTM) here, and it may be used &'l 

a component during the construction of other FFTMs for FFTs to be carried out over larger Galois 

fields. The creation of a FFTM defined over a Galois field of size 2P is a matrix manipulation process. 

When the size of the FFTM is doubled, i.e. when we use the FFTM valid for GF(2) for the sake 

of constructing the FFTM generated for GF(4), we can create the FFTM valid for GF(4) from four 

partitions, each having the same size &'l the FFTM created for GF(2). Three replic&'l of the original 

FFTM will be placed in the upper left, upper right and lower left partition, respectively, while the 

original copy will be positioned at the lower right corner of the new FFT matrix, where all elements in 

this and only this (2 x 2) component FFTM will have their polarity inverted according to the recursive 

WH matrix generation rules. A FFTM constructed over GF(4) and obtained by using the matrix 

seen in Equation 4.7 is &'l follows: 

( ;i;~i~~ 1_ ( ;i~~ 1 (~ -~ 
F(f)(2)) f(2)) 1 1 

\ F(f)(3) / \ f(3) / \ 1 -1 

111 1 -1 

-1 -1 

-1 1 
/ 

(4.8) 

Furthermore, by using the FFTM obtained in Equation 4.8, the FFTM created over GF(8) may 

be developed, &'l follows: 

F(f)(O) f(O) 1 1 1 1 1 1 1 1 
F(f)(l) f(l) 1 -1 1 -1 1 -1 1 -1 
F(f)(2) f(2) 1 1 -1 -1 1 1 -1 -1 
F(f)(3) f(3) 1 -1 -1 1 1 -1 -1 1 

(4.9) 
F(f)(4) f(4) 1 1 1 1 -1 -1 -1 -1 
F(f)(5) f(5) 1 -1 1 -1 -1 1 -1 1 
F(f)(6) f(6) 1 1 -1 -1 -1 -1 1 1 
F(f)(7) f(7) 1 -1 -1 1 -1 1 1 -1 

Let us use (O?,j" ... , Or,-/) for representing the FFT of the permuted PDF, which specifies the 

- ( - 0 - q 1) PDF of QY,j" namely that of Qij" ... , Qi,j, . 

Step 2.3: Updating the PDF of the variable RY,j 

Since now we carry out the convolution in the frequency domain after the FFT, the convolution 

process can be implemented with the aid of multiplications, &'l follows [56]: 

'0 'q-1 (II '0 (Ri,j, ... , Rij ) = Qij" II oL" ... , II Of,j?), (4.10) 

j'EC(i)\j j'EC(i)\j j'EC(i)\j 

'0 'q-1 . a . -0 -q-1 
where (Ri,j' ... , Ri,j ) represents the FFT of the PDF for the vanable Ri,j . Hi,j, I.e. (Ri,j' ... , Rij ). 

More explicitly, Equation 4.10 represents the FFT ofthe PDF for all the products QY,j" i = 1 ... Mq,j' = 
1 ... N q participating in the ith row, except for the ;th message node. 

Step 2.4 IFFT 

By carrying out an inverse FFT, this vector is transformed back to the time domain. The IFFT 

is carried out by following the procedure described in Chapter 2. More explicitly, the IFFT is carried 
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out over GF(q) by multiplying the corresponding FFTM, i.e. the same a..'3 during the FFT process, 

except that the resultant probability sequence ha..'3 to be normalised for the sake of ensuring that all 

probabilities sum up to unity. 

Step 2.5 Backward permutation 

After the IFFT has been completed and all the probabilities have been normalised, the resultant 

PDF defines the probability distribution of the variable j{'j.j. For the sake of retrieving the PDF of 

the variable Ri.j' the elements of the resultant PDF vector obtained during Step 2.4 are permuted for 

the sake of eliminating the effect of the matrix entry Hi,]. This operation can be carried out in the 

direction opposite to the way we permuted the PDF of the variable Qf,jl in Step 2.l. 

Step 3: Vertical update 

Once Step 2 ha..'3 been accomplished, the value of Rf,j may now be used for vertically updating the 

message Qf.j in Equation 2.32. The a posteriori probability of each individual coded symbol can be 

evaluated by using Equation 2.33. 

Step 4: Hard decision and parity check using Hq 

Using the a posteriori probability obtained from Step 3, the symbol having the highest probability 

will be chosen &<; the survivor during the hard decision ph&<;e. The non-binary symbol sequence 

obtained from the hard decision will be multiplied with the PCM Hq for verification using the non­

binary arithmetics operating over GF(q). If the resultant vector is an all-zero vector, then a legitimate 

codeword h&<; been found and the result will be output by the decoder. If the resultant vector is not an 

all-zero vector, provided that the maximum number of iterations h&<; not been reached, the decoding 

process will be continued by invoking Step 2 for the next iteration. 

4.3.4 Non-binary LDPC decoding example 

In this section, the iterative decoding of LDPC codes generated over GF( q) will be described in detail 

using a worked example. The example will illustrate the decoding process of a half-rate LDPC code 

constructed over GF(4), when communicating over an AWGN channel. A randomly generated parity 

check matrix Hq is listed in Table 4.2, and the corresponding generator matrix G q given in Table 4.3 

can be obtained in the same way &<; described in Section 2.4, except that all the arithmetic operations 

are carried out over GF(4). The generator matrix G q will produce a codeword with the original 

systematic information symbols concatenated at the end of the codeword. The arithmetic operations 

carried out over G F( 4) are previously summarised in Table 4.1 for the reader's convenience. 

Assuming that a sequence of five source symbols given by {2, 0, 1, 2, 2} h&'3 been encoded upon 

multiplying them with G q given in Table 4.3 &<; follows: 

C q (lxNq) = Sq (lxKq) . G q (KqxNq) 

1 1 0 0 0 1 0 0 0 0 

2 1 2 1 3 0 1 0 0 0 

[2 3 1 2 3 2 0 1 2 2J = [2 0 1 2 2J . 2 2 3 0 0 0 0 1 0 0 

1 1 1 1 2 0 0 0 1 0 

0 3 0 0 0 0 0 0 0 1 
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1 2 3 4 5 6 7 8 9 10 

1 0 0 3 0 0 0 1 2 3 0 

2 1 1 0 0 0 0 3 0 0 3 

3 0 0 0 2 3 0 0 0 3 0 

4 2 0 1 0 2 2 0 0 0 0 

5 0 2 0 2 0 2 0 3 0 1 

Table 4.2: Example of a low density parity check matrix (PCM) Hq for N q = 10, Mq = Nq - Kq = 5 

and We = 2 constructed over GF(4) 

1 2 3 4 5 6 7 8 9 10 

1 1 1 0 0 0 1 0 0 0 0 

2 2 1 2 1 3 0 1 0 0 0 

3 2 2 3 0 0 0 0 1 0 0 

4 1 1 1 1 2 0 0 0 1 0 

5 0 3 0 0 0 0 0 0 0 1 

Table 4.3: Generator matrix G q for the PCM Hq of Table 4.2 specifying the non-binary half-rate code 

LDPC (10,5)q over GF(4). 

The multiplications are carried out in GF(4). For example, the second parity symbol, i.e. 3, IS 

calculated by 2 x 1 + 0 x 1 + 1 x 2 + 2 x 1 + 2 x 3 = 2 + 0 + 2 + 2 + 1 = 3. 

Upon multiplying this codeword by the transpose of the parity check matrix Hq given in Table 4.2 

over GF(4) with the aid of Table 4.1, we arrive at: 

0 1 0 2 0 

0 1 0 0 2 

3 0 0 1 0 

0 0 2 0 2 

[2 3 1 2320122]' 
0 0 3 2 0 

= [0 0 0 0 0], 
0 0 0 2 2 

1 3 0 0 0 

2 0 0 0 3 

3 0 3 0 0 

0 3 0 0 1 

the resultant all-zero vector indicates that the codeword is legitimate. 

The encoded codeword is mapped onto bits for BPSK transmission over the AWGN channel. 

The probability of each symbol assuming any of the four possible values is calculated according to 

Equation 4.3 using the bit-b&'led soft channel outputs, where our inherent assumption is that the bits 

of a symbol are independent, although in C&'le of a gray-coded modulation constellation this is only 

approximately true. The resultant symbol probabilities are listed in Table 4.4. The far left column in 

Table 4.4 is the symbol index, while the top row specifies all the possible symbols. Finally, columns 

6 and 7 of Table 4.4 represent the surviving symbol and whether the hard decision is correct. The 
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symbol value having the highest probability is chosen &"1 the survivor in column 6 of Table 4.4, and 

the decoded codeword constituted by the surviving symbol is checked with the aid of the PCM to 

&'lcertain whether the decoded codeword is a legitimate one. 

o 1 2 3 I Survivor I Result I 
1 0.0333887 0.000155706 0.96197 0.00448607 2 Correct 

2 0.00157199 0.0076656 0.168601 0.822161 3 Correct 

3 0.968776 0.0210919 0.00991634 0.000215896 2 Error 

4 0.0647001 0.000175584 0.932593 0.00253088 2 Correct 

5 1.0302 x 10-5 0.0595526 0.000162658 0.940274 3 Correct 

6 0.825772 0.00632498 0.166626 0.00127627 0 Error 

7 0.582222 0.0116672 0.398132 0.00797822 0 Correct 

8 0.000738692 0.997418 1.36396 x 10-6 0.00184169 1 Correct 

9 0.00926008 5.02575 x 10-7 0.990686 5.37678 x 10-5 2 Correct 

10 0.00487535 3.97331 x 10-5 0.987041 0.00804418 2 Correct 

Table 4.4: Intrinsic symbol probabilities calculated using the channel's soft output for the LD­

PCC(1O,5) generated over GF( 4) using the PCM of Table 4.2. 

The surviving or most likely transmitted symbols are {2, 3, 0, 2, 3, 0, 0, 1, 2, 2}, &"1 seen in the 6th 

column of Table 4.4. The third and sixth symbols are erroneous, thus the product of the corresponding 

codeword sequence with the transpose of the PCM Hq seen in Table 4.2 is calculated &"1: 

0 1 0 2 0 

0 1 0 0 2 

3 0 0 1 0 

0 0 2 0 2 

[ 2 2 ] . 
0 0 3 2 0 

= [ 3 3 ] , 3 0 2 3 0 0 1 2 0 0 2 
0 0 0 2 2 

1 3 0 0 0 

2 0 0 0 3 

3 0 3 0 0 

0 3 0 0 1 

which is a non-zero vector. Thus we have to follow the decoding steps described in Section 4.3.3 for 

the sake of eliminating the errors. 

First all the non-zero entries of Hq seen in Table 4.2 will have their &'lsociated Qf,j values initialised 

to the intrinsic probabilities of Table 4.4, which are denoted &"1 p j
a in step 1 of the decoding process 

outlined in Section 4.3.3. Then the resultant Qf,j values will be used for updating Rf,j &"1 seen in the 

second step, employing the reduced complexity FFT-b&'led method of Equation 4.8. The process of 

using the FFT for updating Rf,j will now be described with the aid of a numerical example. 

Suppose we have to update Rf,j for the non-zero entries in the first row of Hq seen in Table 4.2. 

The message symbols involved in the 1 st row of Hq in Table 4.2 are {3, 7, 8, 9}. First we have to 

permute the probabilities of each variable node according to the matrix elements in Hq for the sake of 
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obtaining the PDF of the variable or,), where j denotes the column indices of each non-zero entry in 

the first row of Hq in Table 4.2. Thus the permuted probabilities after considering the matrix elements 

of the four message nodes in the first parity check are listed in Table 4.5. 

o 1 2 3 

3 0.968776 0.00991634 0.000215896 0.0210919 

7 0.582222 0.0116672 0.398132 0.00797822 

8 0.000738692 0.00184169 0.997418 1.36396 x 10-6 

9 0.00926008 0.990686 5.37678 x 10-5 5.02575 X 107 

Table 4.5: or,j values of the entries in the first row of Hq given in Table 4.2 after permuting the PDF 

of Qi,j' 

More explicitly, in Table 4.5, the top row quantifies the probability of each of the four legitimate 

symbol states, and the first column on the left indicates the column index of the non-zero PCM entries 

participating in the first row of Hq seen in Table 4.2. Following the probability permutation carried 

out according to the corresponding matrix entry H 1,j' seen in Table 4.2 for the sake of obtaining the 

PDF of the variable OL', the FFT is carried out for each symbol listed in Table 4.5 over GF(4) using 

the matrix defined by Equation 4.8. The result of the FFT is provided in Table 4.6, where we are 

using the same notation of Q, &"l in Equation 4.10 for denoting the result of the FFT. For example, 

the PDF of the non-zero entry in the 8th column and the 1st row of Table 4.2 is summarised in the 
th 0 1 2 3) -6 9) 8 row of Table 4.4 &"l (Ql,8' Ql,8' Ql,8, Ql,8 = (0.000738692,0.997418,1.36396 x 10 ,0.0018416 . 

Upon taking into account that the matrix entry at position (1,8) of Table 4.2 is 2, the PDF of the 

variable 01,8 is a permuted version of the PDF of the variable Q1,8' Since according to Table 4.1 the 

product of the sequence (0,1,2,3) and the element 2 over GF(4) results in (0, 2, 3, 1), the PDF of 
. "v, 0 3 1 2 -6 the vanable Ql,8 1S (Ql,8, Ql,8, Ql,8' Ql,8) = (0.000738692,0.00184169,0.997418,1.36396 x 10 ). The 

PDF of 01,8 will now be multiplied by the FFTM defined by Equation 4.8 to perform the FFT &"l 

follows: 

'0 
Ql,8 0.000738692 1 1 1 1 1 
'1 0.00184169 1 -1 1 -1 0.996314 Ql,8 (4.11) '2 0.997418 1 1 -1 -1 -0.994839 Ql,8 
'3 

Ql,8 1.36396e - 06 1 -1 -1 1 -0.99852 

which constitutes the row corresponding to the 8th symbol of the codeword seen in the 3rd row of 

Table 4.6. 

, 

3 1 0.937983 0.957384 0.979736 

7 1 0.960709 0.187779 0.180401 

8 1 0.996314 -0.994839 -0.99852 

9 1 -0.981372 0.999891 -0.981479 

Table 4.6: FFT of the variables seen in Table 4.5 computed using Equation 4.8. 

Following the FFT, HI') will be updated by the product of QL, of the other entries in the 1st row 
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of Hq according to Equation 4.10. For example, the RI,7 value a..'lsociated with the 7th symbol in the 

codeword is calculated according to Equation 4.10 using the (r values seen in Table 4.6 a..'l 0.957384 x 

-0.994839 x 0.999891 = -0.95234. Hence, after the update of R~.j according to Equation 2.31, the 

quantities Rf,j listed in Table 4.7 are obtained. 

AO Al A2 A3 
Rl . Rl . Rl . Rl . ·2 ·2 ·2 ·2 

3 1 -0.939338 -0.186789 0.176797 

7 1 -0.917118 -0.95234 0.960166 

8 1 -0.884343 0.179757 -0.173471 

9 1 0.897808 -0.178849 -0.176483 

Table 4.7: Results after updating the FFT of the variables seen in Table 4.6 using Equation 4.10. 

Having completed the updating process of Equation 4.10, the inverse FFT is required for retrieving 

the PDF of the variable RUjl, i.e. the PDF of the variable RL,. The inverse FFT is carried out by 

multiplying the PDF vector with the FFTM in the same way a..'l during the FFT process, except that 

all the resultant probabilities have to be normalised to ensure that we have Li RLI = 1. Finally, the 

sequence obtained after the IFFT ha..'l to be permuted again for the sake of obtaining the PDF of Rij. 

When the process outlined above ha..'l been completed for all the rows, the update of the quantity 

R't,j obeying Equation 4.10 of step 2.3 of Algorithm 2 is deemed completed for this iteration. Then 

the update of Qf,j according to Equation 2.32 of step 3 will be carried out using both the value of 

Ra" i' E R(j), i' =I i a..'l well a..'l the intrinsic probability calculated from the channel's soft output, a..'l 
2 ,J 

seen in Equation 2.32. For example, there are two non-zero entries in the sixth column of Table 4.2 

in row 4 and row 5. The previously calculated values of Rfj, which correspond to these two entries in 

the fifth column of Table 4.2 were given in Table 4.8. 

As seen in Table 4.2, the Hamming-weight of the 6th column is only two, thus according to Equa­

tion 2.32 the non-zero entry in the 4th row and the 6th column will use the product of the value R'5,6 and 

the intrinsic symbol probability provided by the channel for updating the value of Q4,6' Recall from 

Table 4.4 that the channel output defines the fifth symbol's intrinsic probabilities is now {0.825772, 

0.00632498,0.166626, 0.00127627} for the four possible GF(4) symbols of 0 to 3. For example, accord­

ing to Equation 2.32 the value of Q2,6 is updated by evaluating the product of the intrinsic probability 

of the 6th symbol, which is 0.825772 in Table 4.4, and the value of Rg,6 = 0.0616686 seen in Table 4.8. 

The updated value of Q2,6 obeying Equation 2.32 becomes 0.0509242. Hence, using the same mecha­

nism, Q~.6' q = 0 ... 3, will be updated according to Equation 2.32, yielding {0.0509242, 0.000128521, 

0.126089, 0.000205854}, respectively. After normalisation by a factor of L~:6 Q4,6 = 0.177347 accord­

ing to Equation 2.32 of step 3 in Algorithm 2, the quantity Q4,6 is obtained as {0.287143, 0.000724683, 

o 1 2 3 

4 0.0151071 0.878271 0.0204158 0.0862058 

5 0.0616686 0.0203196 0.756719 0.161293 

Table 4.8: Ri,j values for the two non-zero entries in the sixth column and row 3 and row 4 after the 

horizontal update process. 
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o 1 2 3 I Survivor I Result 

1 0.00105059 5.48387 x 10-5 0.866057 0.132838 2 Correct 

2 6.61436 x 10-6 0.00186265 0.00736306 0.990768 3 Correct 

3 0.0201037 0.467753 0.512142 1.83549 x 10-6 2 Error 

4 7.38459 x 10-5 1.40357 X 10-5 0.999912 1.17234 x 10-8 2 Correct 

5 3.13059 x 10-7 0.000590241 0.000433858 0.998976 3 Correct 

6 0.22144 0.0324903 0.740962 0.00510794 2 Correct 

7 0.871147 1.5601 x 10-5 0.105775 0.0230627 0 Correct 

8 0.00287799 0.96791 4.58809 x 10-6 0.0292073 1 Correct 

9 0.00909031 3.7477 x 10-9 0.990825 8.4621 x 10-5 2 Correct 

10 0.000853625 8.65283 x 10-6 0.998793 0.000344312 2 Correct 

Table 4.9: A posteriori symbol probabilities after one iteration 

o 1 2 3 I Survivor I Result I 
1 0.0132287 4.76994 x 10-6 0.985821 0.000945989 2 Correct 

2 0.00037386 0.0169579 0.0222603 0.960408 3 Correct 

3 0.000245489 0.97209 0.0276643 6.13229 x 10-8 1 Correct 

4 0.00184083 7.75363 x 10-5 0.998081 8.69016 x 10-7 2 Correct 

5 4.64757 x 10-7 0.00588021 2.05722 x 10-5 0.994099 3 Correct 

6 0.0110328 0.00145767 0.987503 6.23818 x 10-6 2 Correct 

7 0.814087 2.0928 x 10-6 0.184293 0.00161807 0 Correct 

8 0.00401789 0.989768 5.66533 x 10-8 0.00621357 1 Correct 

9 0.00013802 1.49272 x 10-8 0.999834 2.82329 x 10-5 2 Correct 

10 0.000980569 8.14098 x 10-5 0.996534 0.00240409 2 Correct 

Table 4.10: A posteriori symbol probabilities after two iterations 

0.710972, 0.00116073}. 

According to Equation 2.33, the a, posteriori symbol probability will be calculated &'1 the product 

of all the Ri,j values in the column and the corresponding intrinsic probability provided by the channel. 

Thus, after normalisation according to Equation 2.33, the a, posteriori probability of all the symbols 

in the codeword is obtained and these are summarised in Table 4.9 after the first iteration. 

Comparing the results of Table 4.4 and Table 4.9, we can observe that the erroneous symbol in 

the sixth position of the codeword h&'l been corrected. Although the third symbol remains incorrect, 

the probability of its original correct value h&'l been incre&'led from 0.02 to 0.467. During the second 

iteration, the a, posteriori symbol probabilities are calculated using the quantity Qi,j determined in 

the previous iteration and the intrinsic symbol probabilities provided by the channel. The a, posteriori 

probabilities generated after the second iteration are listed in Table 4.10. 

As seen from Table 4.10, the second iteration h&'l succeeded in correcting the remaining erroneous 

symbol and the codeword constituted by the surviving symbols results in an all-zero vector upon 

multiplying it by the PCM Hq of Table 4.2. Hence the decoder declares that a legitimate codeword 
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h&'i been found and the iterations are curtailed. 

4.3.5 Complexity 

As described in Section 2.7.2, employing the FFT-b&'ied decoding method during the update of the 

quantity Ri,j significantly reduces the decoding complexity imposed. In this section, the decoding 

complexity of the non-binary LDPCC will be evaluated. Let us consider the complexity calculation 

using an example in the context of GF(8). 

The FFT matrix derived for GF(8) in Equation 4.9 is reproduced here for the reader's convenience: 

F(f)(O) f(O) 1 1 1 1 1 1 1 1 

F(f)(l) f(l) 1 -1 1 -1 1 -1 1 -1 

F(f)(2) f(2) 1 1 -1 -1 1 1 -1 -1 

F(f)(3) f(3) 1 -1 -1 1 1 -1 -1 1 
(4.12) 

F(f)(4) f(4) 1 1 1 1 -1 -1 -1 -1 

F(f)(5) f(5) 1 -1 1 -1 -1 1 -1 1 

F(f)(6) f(6) 1 1 -1 -1 -1 -1 1 1 

F(f)(7) f(7) 1 -1 -1 1 -1 1 1 -1 

Since the matrix given in Equation 4.12 is symmetric according to the matrix construction outlined 

in Section 4.3.3, the complexity of implementing the FFT is given by qlo92(q) GF(q) additions, where 

q is the size of the Galois field. Explicitly, the evaluation of Equation 4.12 is detailed as follows. 

Firstly, we calculate the values hosted by the each pair of two consecutive elements of the matrix 

product, namely f(O) and f(l), f(2) and f(3), etc. The calculation to be carried out at this step is 

as follows: 

(f(0) + f(l)) 

(f(2) + f(3)) 

(f(4) + f(5)) 

(f(6) + f(7)) 
(f(0) - f(l)) 

(f(2) - f(3)) 

(f(4) - f(5)) 

(f(6) - f(7)). 

(4.13) 

The operations outlined in Equation 4.13 requires q = 8 additions in the first step. Then, the 

values calculated during the first step using Equation 4.13 will be invoked for obtaining the following 

values: 

(f(0) + f(l)) + (f(2) + f(3)) 

(f(0) + f(l)) - (f(2) + f(3)) 

(f(4) + f(5)) + (f(6) + f(7)) 

(f(4) + f(5)) - (f(6) + f(7)) 
(f(0) - f(l)) + (f(2) - f(3)) 

(f(0) - f(l)) - (f(2) - f(3)) 

(f(4) - f(5)) + (f(6) - f(7)) 
(f(4) - f(5)) - (f(6) - f(7)). 

(4.14) 
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This second step formulated in Equation 4.14 requires a further q = 8 additions. Finally, the values 

generated during the second step can be used for calculating the final result of the FFT, a'l follows: 

(1(0) + f(l)) + (1(2) + f(3)) + (1(4) + f(5)) + (1(6) + f(7)) 

(1(0) - f(l)) + (1(2) - f(3)) + (1(4) - f(5)) + (1(6) - f(7)) 

(1(0) + f(l)) - (1(2) + f(3)) + (1(4) + f(5)) - (1(6) + f(7)) 

(1(0) - f(l)) - (1(2) - f(3)) + (1(4) - f(5)) - (1(6) - f(7)) 
(4.15) 

(1(0) + f(l)) + (1(2) + f(3)) (1(4) + f(5)) + (1(6) + f(7)) 

(1(0) - f(l)) + (1(2) - f(3)) (1(4) - f(5)) + (1(6) - f(7)) 

(1(0) + f(l)) - (1(2) + f(3)) (1(4) + f(5)) - (1(6) + f(7)) 

((1(0) - f(1)) - (1(2) - f(3))) - ((1(4) - f(5)) - (1(6) - f(7))). 

Thus again, the final step in Equation 4.15 requires q = 8 additions. By summing up the number of 

additions li'lted above, a total of qlog(q) additions are required for carrying out the FFT. Since the 

IFFT will follow the same routine, so the number of additions required for carrying out the IFFT 

will also be qlog2(q). However, additionally, the normalisation operation is also required during the 

IFFT, hence a further q multiplications are necessary. Thus the overall complexity required for each 

symbol during the FFT of quantity Qi,j' and the IFFT of quantity Ri,j' is 2qlog2( q) additions and q 

multiplications. 

The above complexity calculations only considered the complexity required for the FFT and the 

IFFT. However, according to Equation 4.10, updating the quantity Rf,j using Equation 4.6 also involves 

the multiplications using the Qi,jJ values from other message nodes participating in the ith check. Thus 

referring back to Table 2.16 in Section 2.7.3, 3wr q multiplications are needed for the forward-backward 

calculation of updating the quantity Raj in Equation 4.6 for all the symbols in the row, where k 
2,J 

represents the row weight. Summing up all the complexity contributions, updating the quantity Ri,j 
according to Equation 4.6 will incur 2wr q .log2(q) additions and 4wr q multiplications for each row. 

By summing up all the complexity contribution of the rows, the overall complexity of all the non­

zero entries in the PCM required for updating Ri,j according to Equation 4.6 will be 2J1;lqw r q ·log2(q) 

additions and 4J1;lqwr q multiplications, where J1;lq represents the number of rows in the PCM Hq of 

Table 4.2. Since the number of non-zero entries in the parity check matrix is constant, we have 

J1;lqwr = Nqwe, with Nq and We representing the number of coded symbols and the mean column 

weight of the parity check matrix, respectively. By replacing J1;lqwr with Nqwc in the overall complexity 

calculations, followed by a division of the total number of coded symbols N q , each coded symbol will 

impose a computational complexity of 2wcq ·log2(q) additions and 4wcq multiplications per iteration. 

Updating the quantity Qi,j using Equation 2.32 will incur another 3wr q multiplications using the 

forward-backward recursion calculation according to Equation 2.32, thus the overall complexity of 

each coded symbol in one iteration will be 2wcq .log2(q) additions and 7wcq multiplications. Further­

more, since a symbol decoding step carried out over the Galois field of size q represents p = log2 (q) 

constituent bits, thus if we evaluate the bit-wise decoding complexity, the above-mentioned decoding 

complexity per coded symbol ha'l to be divided by p, resulting in a complexity figure for each coded bit 

corresponding to 2weq additions and 7wcq/log2(q) multiplications. Hence, the decoding complexity 

related to each original information bit becomes 2wcq/r additions and 7wcq/(log2(q) . r) multiplica-
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Hq (500, 250)q 

(1000,500)q 

(2000, 1000)q 

Average symbol column weight 2.5,3 

Decoding GF GF(2), GF(4), GF(8), GF(16) 

Modulation scheme BPSK 

Channel AWGN 

Number of LDPC iterations 25 

Table 4.11: Simulation parameters for three different half-rate non-binary LDPCCs decoded over 

GF(q) using BPSK modulation, when communicating over an AWGN channel. The values of q used 

for the various decoding field are 2, 4, 8, 16. 

tions, where r represents the code rate. Naturally, the true decoding complexity critically depends 

on the specific implementation considered and hence the above-mentioned complexity estimations are 

only indicative. 

4.4 Performance of non-binary LDPC codes 

Having estimated the decoding complexity, in this section, the achievable performance of the non­

binary LDPCCs will be evaluated. 

4.4.1 Performance when the size of Hq is maintained 

As mentioned in Section 4.3, upon incre&"ling the decoding field order, while maintaining the size of the 

PCM, the error correction capability of the LDPCC may be improved owing to its higher equivalent 

binary column weight. Hence in this section, we will demonstrate how the performance of the non­

binary LDPCC may be improved with the aid of incre&"ling the decoding field GF(q), without altering 

the size of the PCM H q . The related simulation parameters can be found in Table 4.11. 

As seen in Figures 4.3 to 4.5, the BER performance of the LDPC codes characterised in Table 4.11 

incre&"les with respect to the decoding field order. However, when using an average symbol column 

weight of 2.5, the non-binary LDPC codes suffer from the same error floor problem, &"l described in 

Chapter 3. The LDPC codes having a short blocklength in Figure 4.3, and &"lsociated with GF(2) 

and GF(4) showed a performance curve cross-over, when different average symbol column weights 

were applied. By contrast, this cross-over phenomenon does not occur for higher-order Galois fields 

such &"l GF(8) and GF(16) at this blocklength. When the blocklength is incre&"led in Figure 4.4 and 

Figure 4.5, the &"lsociated error floor phenomenon becomes less significant, although it is still visible. 

Generally speaking, when incre&"ling the decoding field order, while maintaining the size of H q , the 

BER performance of the non-binary LDPC code can be improved, although the &"lsociated improve­

ment is achieved at the cost of a higher decoding complexity. However, as outlined in Section 4.3.5, 

the decoding complexity can be reduced, when the FFT and IFFT are used. More explicitly, the &"lSO­

ciated decoding complexity defined in Section 4.3.5 and evaluated for the codes specified in Table 4.11 
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Figure 4.3: BER performance of the non-binary LDPC code (500, 250)q parameterised in Table 4.11 

operating over various Galois fields, when communicating in an AWGN channel. The achievable coding 

gain of the various schema'l at a BER of 10-4 will be summarised in Figure 4.6 and Table 4.20. 
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Figure 4.4: BER performance of the non-binary LDPC code (1000,500)q parameterised in Table 4.11 

operating over various Galois fields, when communicating in an AWGN channel. The achievable coding 

gain of the various schemes at a BER of 10-4 will be summarised in Figure 4.6 and Table 4.20. 
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Figure 4.5: BER performance of the non-binary LDPC code (2000, 1000)q parameterised in Table 4.11 

operating over various Galois fields, when communicating in an AWGN channel. The achievable coding 

gain of the various scheme..'l at a BER of 10-4 will be summarised in Figure 4.6 and Table 4.20. 

utilising various decoding fields can be found in Figure 4.6. 

More explicitly, in Figure 4.6, the coding gain versus the associated decoding complexity per 

information bit is plotted. It can be observed that upon using higher-order decoding fields, a higher 

coding gain is attained at the cost of an increased complexity. When the decoding field is extended from 

binary to GF(4), most of the attainable coding gain was achieved and hence upon further extending 

the decoding field to GF(8) and GF(16) results in modest further improvements, despite the fact that 

the complexity burden imposed upon extending the field from binary to GF(4) is significantly lower 

than to GF(8) or the GF(16) decoding field. In fact, the number of multiplications per information bit 

while operating over GF(4) is the same as that for GF(2). Thus it can be observed that GF(4) achieves 

an attractive trade-off between the achievable coding gain and the associated decoding complexity. 

Furthermore, it become..'l clear in Figure 4.3 to 4.5 that an error floor might occur for the LDPC codes 

having a symbol column weight of 2.5, hence the codes using a symbol column weight of three might 

constitute a better choice in case of binary decoding. By contrast, as it transpires from Figure..'l 4.3 

to 4.5 the codes having symbol column weight 2.5 are superior in comparison to the codes having an 

symbol column weight of three, when operating in a higher decoding field. 

4.4.2 Performance when the size of Hb is maintained 

In Section 4.4.1, the performance of non-binary LDPC codes decoded over various Galois fields was 

evaluated, while the size of the PCM Hq was maintained. More explicitly, in Section 4.4.1 the LDPC 

codes studied had the same number of columns and rows. Since the nOll-zero entries within the 

PCM are defined over Galois fields having various sizes, the size of the equivalent binary PCM Hb is 
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Figure 4.6: Coding gain versus decoding complexity of the non-binary LDPC codes tabulated in 

Table 4.11, when communicating over an AWGN channel. The complexity quoted quantifies the 

number of arithmetic operations per information bit. The four q values used are 2, 4, 8, 16 and the 

complexity value related to each decoding field are plotted in the figure from left to right while the 

decoding field order is increa.'led. 

increa.'led in the context of a larger Galois field. Thus in this section, we will maintain the size of the 

equivalent binary PCM Hb and evaluate the achievable performance of the same LDPC codes decoded 

over GF(q) at two different code rate, when communicating over an AWGN channel. The a.'lsociated 

simulation parameters are summarised in Table 4.12. 

Figure 4.7 and 4.8 characterise the attainable performance of the quarter-rate and half-rate LDPC 

codes studied having an equivalent binary PCM size of 4000 bits. For the quarter-rate LDPC codes 

characterised in Figure 4.7 decoding over a larger Galois field degraded the achievable performance, 

when the average column weight is three. As discussed previously in Section 4.3.2, the effect of ex­

tending the decoding Galois field is two-fold. Recall that in this experiment the size of Hq wa.'l reduced 

for larger Galois fields for the sake of maintaining a constant equivalent binary PCM size. Hence the 

code becomes less sparse and the cycles identified in the PCM will have a shorter length. Hence in 

this ca.'le the disadvantages introduced by using a larger decoding field cannot be compensated by the 

corresponding advantages. However, a.'l seen in Figure 4.7 if we reduce the average column weight to 

2.5, then the overall performance becomes better than that of its column-weight=3 counterpart and 

ultimately the codes operating over larger Galois fields exhibit a better BER performance. 

As seen in Figure 4.8, when the code rate is increa.'led to half, the codes having a column weight 

of 2.5 exhibit similar performance trends to those observed for the quarter-rate scheme characterised 

in Figure 4.7. For the scenario, which an average column weight of three, decoding over GF(4) still 

achieves a marginally better performance than GF(2). However, when the decoding field is further 

increa.'led to GF(8) and GF(16), the achievable BER performance becomes worse than the GF(2) 

owing to similar rea.'lons to those mentioned in the quarter-rate ca.'le discussed above. 
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Hq (4000, 1000)q, GF(2) 

Quarter-rate coding (2000,500)q , GF( 4) 

(1336,334)q , GF(8) 

(1000, 250)q , GF(16) 

Hq (4000, 2000)q, GF(2) 

Half-rate coding (2000,1000)q , GF( 4) 

(1334,667)q , GF(8) 

(1000,500)q , GF(16) 

A verage symbol column weight 2.5,3 

Modulation mode BPSK 

Channel AWGN 

Number of LDPC iterations 25 

Table 4.12: Simulation parameters for two sets of non-binary LDPCCs having a code-rate of one­

fourth and a half and operating over GF(q) using BPSK modulation, when communicating over an 

AWGN channel. The decoding Galois field &<;sociated with each specific LDPC code is given and the 

size of Hq is tabulated, while the size of the equivalent binary PCM Hb is maintained at 4000 bits. 
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Figure 4.7: BER performance of the various quarter-rate non-binary LDPC codes characterised in 

Table 4.12 having an average column weight of 2.5 &<; well &<; 3 and decoded over their &<;sociated 

Galois fields, when communicating over an AWGN channel. The achievable coding gain of the various 

schemes at a BER of 10-4 will be summarised in Table 4.21. 
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Figure 4.8: BER performance of the various half-rate non-binary LDPC code in Table 4.12 having 

an average column weight of 2.5 &'3 well &'3 3 and decoded over their &'3sociated Galois fields, when 

communicating over an AWGN channel. The achievable coding gain of the various schemes at a BER 

of 10-4 will be summarised in Table 4.21. 

4.4.3 Performance of non-binary LDPC codes using various code rates 

In Section 4.4.1, the performance of a half-rate non-binary LDPC codes ha..'l been evaluated at various 

blocklengths. In this section, we will demonstrate how the LDPC codes behave at various code rates, 

when the coded blocklength W&'3 fixed at 2100 non-binary symbols. 

The simulation parameters are given in Table 4.13. 

Figures 4.9 to 4.13 have illustrated the achievable BER performance of the non-binary LDPC 

codes summarised in Table 4.13 at various code rates. The attainable coding gain at a BER of 10-4 

is plotted in Figure 4.14 for the various code rates considered. For a relatively low code rate ranging 

from r = 0.33 to r = 0.66, using a column weight of 2.5 renders the LDPC codes more robust to 

channel errors for all the Galois fields considered than the column-weight 3 codes. By contrast, for the 

rates of r = 0.75 and r = 0.8 we observe in Figure 4.14 that owing to error floor problem discussed in 

Section 4.4.1, the codes having an average column weight of 2.5 suffer from undetected errors, when 

size of the Galois field utilised is limited. However, crossover of the BER curves is observed when the 

decoding field order is incre&'3ed and thus on balance we may argue that using a column weight of 2.5 

still constitutes a better configuration than using an average column weight of three. 
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Non-binary LDPC code (2100, 700)q, r=0.33 

(2100, 1050)q, r=0.50 

(2100, 1400)q, r=0.66 

(2100, 1575)q, r=0.75 

(2100, 16S0)q, r=O.SO 

Channel AWGN 

Modulation Mode BPSK 

Decoding Galois fields GF(2), GF(4), GF(S), GF(16) 

LDPC average column weight 2.5,3 

Table 4.13: Simulation parameters for non-binary LDPCCs having a blocklength of 2100 non-binary 

symbols operating at various coding rates, when communicating over an AWGN channel using BPSK 

modulation. 

4.5 Bit-based joint detection scheme 

Having introduced and characterised the family of non-binary LDPCCs, let us now focus our attention 

on a novel application in the context of space-time codes. The roots of this non-binary scheme germi­

nated in the binary system proposed by Meshkat and Jafarkhani [lOS], which is shown in Figure 4.15. 

The b&'lic philosophy of this space-time coding scheme is reminiscent of Alamouti's simple repetition­

b&'led two-antenna coding scheme [135], although a half-rate LDPC code W&'l used by the authors. 

Hence the number of bits W&'l doubled by the LDPC encoder and two separate antenn&'l were used for 

transmitting the bits. Provided that the two antenn&'l are sufficiently far apart, their fading envelope 

may be expected to be independent. Since the scheme proposed by Meshkat and Jafarkhani employs 

a powerful half-rate LDPCC instead of Alamouti's less potent half-rate repetition-code, the achievable 

performance is substantially improved. For further background on space-time coding, ple&'le refer 

to [115]. 

Let us now outline the approach of this binary LDPCC-b&'led space-time code in more detail. 

Suppose the source bit stream U is encoded into a binary codeword B by a binary LDPC encoder 

constituted by the bits (bo, . .. ,b3 ) in Figure 4.15. According to the modulation scheme used, the coded 

bits (bo, ... ,b3 ) are mapped onto their corresponding non-binary signal constellations and a symbol 

sequence S=(50 ,5d is obtained. The symbol sequence S will be transmitted using nt transmitters, 

and at the receiver side, there are nr receivers. The nr received samples are correlated with each other 

since they originate from the same set of nt transmitted samples generated from S. This inter-sample 

correlation may be beneficially exploited upon exchanging it also with the LDPC decoder, and hence 

extra iterative coding gain may be achieved. A Tanner graph is used in Figure 4.16 for demonstrating 

the process of information p&'lsing during the joint decoding process of the space-time and LDPC 

decoder. 

The nodes marked r, v and c represent the received signal samples, the LDPC code's message nodes 

and the check nodes, respectively. The message exchanged between the vectors r and v represents 

the information exchange between the demodulator and the LDPC decoder. By contrast, the message 

flow between the vectors v and c is part of the internal decoding process of the LDPC decoder. 
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Figure 4.9: BER performance of the (2100,700)q non-binary LDPC code characterised in Table 4.13 

and decoded over four different Galois fields, when communicating over an AWGN channel. We 

note that the different codes have an identical code rata'3 but the number of encoded bits per LDPC 

codeword is proportionally increased with respect to the associated Galois field. Hence the number of 

LDPC coded bits per codeword becoma'3 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4), 

GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10-4 will be 

summarised in Figure 4.14 and Table 4.22. 

In comparison to the conventional scheme, where the demodulator only evaluates the channel's soft 

output once and leaves all the remaining operations for the channel decoder to carry out, this scheme 

allows the demodulator to accept extra information from the channel decoder for the sake of exploiting 

the channel's soft output as best as possible. The demodulator receives the channel output samples, 

and calculates the soft channel-output metric, which can be expressed for a Gaussian channel as 

follows [115]: 

(4.16) 

where Jvlv ->r(bj ) represents the a priori information corresponding to the original information bits' 

soft estimate at the output of the LDPC decoder. 

In Equation 4.16, (Tn represents the standard deviation of the Gaussian noise, while H is an 

(nr X nt)-dimensional matrix containing the complex valued fading coefficients of each transmission 

path, where nr and nt are the numbers of receiver and transmitter antennas, respectively. Using 

bps for representing the number of bits per symbol for the corresponding modulation scheme, Bi 

represents the ith set of (nt x bps) - 1 transmitted bits, but excludes the kth bit bk , which directly 

contributa'3 to the value of the received vector r at the nr number of receivers, while S(B i , bk ) is a 

vector of nt components containing the modulated symbols corresponding to the bit set of Bi and bk. 
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Figure 4.10: BER performance of the (2100, 1050)q non-binary LDPC code characterised in Table 4.13 

and decoded over four different Galois fields, when communicating over an AWGN channel. We note 

that the different codes have an identical code rate..'l but the number of encoded bits per LDPC 

codeword is proportionally increased with respect to the associated Galois field. Hence the number of 

LDPC coded bits per codeword become..'l 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4), 

GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10-4 will be 

summarised in Figure 4.14 and Table 4.22. 

More explicitly, let us consider Figure 4.15, for example. When using QPSK modulation, four bits 

are mapped into two QPSK symbols and transmitted by the two transmitters to the three receivers. 

If Mr ->v(b2) is under consideration, then we have Bi = {bo, bI , b3 } and (Bi' b2) = {bo, bI , b2, b3 }. The 

vector r will contain elements of {rl>r2,r3}' For a particular set of Bi = {bo = 1,bI = 1,b3 = O}, 

since QPSK modulation is employed in Figure 4.15, thus the notation S(Bi' b2 ) represents {ll, OO} or 

{11, 1O}, depending on the specific value of b2 concerned. For the sake of generating the soft channel­

output metric lvlr->v(bi ) of Equation 4.16, we have to sum the terms associated with all possible 

bit-combinations incurred by the nt transmitters using a particular multi-level modulation scheme. 

Using Figure 4.15 for example, for the sake of calculating the probability J\;lr->v(b2 = 1), we have 

to consider all possible values of Bi = {bo, bI , b3 } which includes three bits. Thus, there is a total of 

23 = 8 bit-combinations for Bi in conjunction with b2 = 1, as seen in Table 4.14. 

For each individual configuration of (Bi' b2 = 1) shown in Table 4.14, the product seen at the 

right of Equation 4.16 quantifies the total a priori information available for b2 . For example, if the 

configuration listed in the final row of Table 4.14, which is given by (Bi' b2 = 1) = (1,1,1,1), is 

concerned, the product seen in Equation 4.16 will quantify the a priori probability available from the 

LDPC decoder, corresponding to the joint probability of (bo = 1, bI = 1, b3 = 1). 

Again, the quantity J\;lv->r in Equation 4.16 is the a priori information corresponding to the 
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Figure 4.11: BER performance of the (2100, 1400)q non-binary LDPC code characterised in Table 4.13 

and decoded over four different Galois fields, when communicating over an AWGN channel. We note 

that the different codes have an identical code rates but the number of encoded bits per LDPC 

codeword is proportionally increa.'led with respect to the a.'lsociated Galois field. Hence the number of 

LDPC coded bits per codeword becomes 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4), 

GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10-4 will be 

summarised in Figure 4.14 and Table 4.22. 

(Bi, b2 = 1) S(Bi' b2 = 1) 

Tx 1 Tx 2 Tx 1 Tx 2 

bo bl b 2 b3 80 81 

0 0 1 0 0 2 

0 1 1 0 1 2 

1 0 1 0 2 2 

1 1 1 0 3 2 

0 0 1 1 0 3 

0 1 1 1 1 3 

1 0 1 1 2 3 

1 1 1 1 3 3 

Table 4.14: All possible bit-combinations of a 4QAM, two antenna MIMO system for B2 in conjunction 

with b2 = 1. 
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Figure 4.12: BER performance of the (2100, 1575)q non-binary LDPC code characterised in Table 4.13 

and decoded over four different Galois fields, when communicating over an AWGN channel. We note 

that the different codes have an identical code rates but the number of encoded bits per LDPC 

codeword is proportionally increased with respect to the &'lsociated Galois field. Hence the number of 

LDPC coded bits per codeword becomes 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4), 

GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10-4 will be 

summarised in Figure 4.14 and Table 4.22. 

original information bits' soft estimate at the output of the LDPC decoder, and it is provided by 

the LDPCC's message nodes v, rather than the check nodes. When evaluating Equation 4.16 for the 

first time, the product at the right-hand side of Equation 4.16 is not calculated, since the quantity 

Jvlv->r is not available &'l yet. Equation 4.16 provides the soft information Jvlr->v, which is used for 

calculating the metric Jvlv_>cj according to [108J: 

Jvlv->Cj(bi ) = aMr_>v II Jvlck ->v(bi ). 

ckEC(bi),k=ftj 

(4.17) 

This process is actually the same &'l the updating the Q message of Equation 2.32 during the 

description of the LDPC code's iterative decoding process outlined in Chapter 2, where a is the 

normalisation factor, which ensures that the probabilities of bi summed over all possible states add up 

to unity. Furthermore, C(b i ) represents all the checks of the LDPCC's parity check matrix involving 

bit bi. The multiplicative term Jvlr->v seen in Equation 4.17 is quantified in Equation 4.16, which acts 

&'l the intrinsic probability iJ provided by the demodulator &'l in Equation 2.32. The soft information 

Jvlck ->v(bi ) is provided by the check nodes for the message nodes, which corresponds to the quantity 

R%,j in Equation 2.32. When Equation 4.17 is invoked for the first time, since the soft information 

Jvlck ->v(bi ) is not available &'l yet, hence the metric Jvlv->cj(b i ) in Equation 4.17 will be initialised to 

the value provided by Jvlr ->v of Equation 4.16. 
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Figure 4.13: BER performance of the (2100, 1680)q non-binary LDPC code characterised in Table 4.13 

and decoded over four different Galois fields, when communicating over an AWGN channel. We note 

that the different codes have an identical code rates but the number of encoded bits per LDPC 

codeword is proportionally increased with respect to the associated Galois field. Hence the number of 

LDPC coded bits per codeword become..'l 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4), 

GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10-4 will be 

summarised in Figure 4.14 and Table 4.22. 

Since the message nodes v are the nodes representing all the original coded bits we intended to 

decode, the "belief', or a posteriori probability has to be calculated at this stage, which is expressed 

as: 

Mopo(bi ) = aMr_>v(bi ) IT MCk->v(bi ). (4.18) 

CkEC(bi ) 

The resultant bit sequence generated by subjecting the a posteriori probability derived from Equa­

tion 4.18 to a hard decision will be checked against the LDPC's PCM. If there are unsatisfied checks, 

further iterations will be invoked until a pre-defined maximum number of iterations is reached. The 

metric lvlr->v(bi ) corresponds to the Pj
O term in Equation 2.33, while lvlck->v(bi ) represents RIc,j 

accordingly. 

Upon determining lvlv->cj from Equation 4.17, the quantity lvlcj_>v, which is the soft information 

provided by the check node c is calculated exactly the same way, as the updating of the message R't,j 

in Equation 2.31 of Chapter 2. The soft-metrics lvlc->v are then combined as follows: 
J 

Mv->r(b i ) = a IT MCk->v(b i ), 

CkEC(bi ) 

(4.19) 

before being passed onto the r node shown in Equation 4.16. This equation is similar to the a posteriori 

probability calculation seen in Equation 2.33 of Chapter 2, although the intrisic information term Pjo 
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Figure 4.14: Coding gain versus decoding field size for the various non-binary LDPC codes charac­

terised in Table 4.13 at a BER of 1O~4, when communicating over an AWGN channel. 

of Equation 2.33 wa..'l omitted for the sake of providing only the extrinsic information for feeding it 

back to Equation 4.16, since the intrinsic probability lv[r~>v wa..'l originally provided by the r node 

seen in Equation 4.16. 

4.6 Symbol-based joint detection scheme 

Having outlined the philosophy of the binary LDPC-ba..'led space-time co dec scheme, let us now improve 

its performance using non-binary LDPCCs and a purely symbol-ba..'led space-time codec. Noting that in 

Equation 4.16 of the previous section it ha..'l been a..'lsumed that during the calculation of the product of 

the a priori information of the bits, the bits participating in the nr number of received channel outputs 

were treated as independent variables. However, their independence is only approximately valid in 

Gray-coded non-binary modulation schemes. Furthermore, a..'l it will be discussed in Section 4.9, the 

complexity of the bit-ba..'led scheme of Section 4.5 increases dramatically, when the number of bits per 

symbol is increa..'led. 

Hence, in this section we will further develop the bit-ba..'led LDPC-aided space-time codec of Sec­

tion 4.5 into a symbol-ba..'led algorithm, which facilitates purely symbol-based message pa..'lsing, involv­

ing a non-binary LDPC code. 

Still using Figure 4.15 a..'l an example, instead of using the probabilities of the bits in Figure 4.15, say 
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Figure 4.15: A two-transmitter, two-receiver system using binary LDPCC-based QPSK-modulated 

space-time coding. 
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Figure 4.16: Tanner graph of the LDPC-aided space-time coding system, where r, v and c represent 

the received samples, &'1 well &'1 message and check nodes, respectively. 
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bo,b1,b2,b3, the probabilities of the symbols SO,SI will be used. Thus Equation 4.16 can be rewritten 

( 4.20) 

In Equation 4.20, Si now represents a set of (nt -1) symbols rather than (nt x bps -1) bits, including 

all symbols, except for Sk, which directly contributes to the value of the received vector r at the output 

of the nr receivers, and SCSi, Sk) is a vector of size nt containing the symbols including So and 81, 

as in Figure 4.15. More explicitly, rather than using the bits representing the symbols in Figure 4.15 

for the calculation of the a priori information, the symbols are employed directly in this scheme. 

Hence, if symbol SI of Figure 4.15 is concerned, the vector Si will have only one element, namely {so}. 
The a priori information JIv[v~>r(Sj) represents the probability of the jth symbol, rather than that 

of the bits in Equation 4.19. Correspondingly, Equation 4.17, 4.18 and 4.19 can be modified to their 

corresponding symbol-ba'led format, yielding: 

o;Mr~>v II JIv[Ck~>v(8i), 
CkEC(bi),kfj 

o;Mr~>v(Si) II MCk~>V(sd, 
ckEC(Si) 

0; II JIv[Ck~>v(8i)' 
CkEC(bi) 

(4.21) 

(4.22) 

(4.23) 

Since the non-binary LDPC decoder introduced in Section 4.3 operates using symbol probabilities, 

thus by specifically choosing a decoding field for the non-binary LDPC code, which matches the 

modulation scheme used, facilitates purely symbol-ba'led message pa'lsing. More explicitly, we can 

use for example 4QAM together with non-binary LDPC decoding over GF(4), or employing 16QAM 

modulation scheme, while choosing GF(16) for the non-binary LDPC. 

4.7 Performance of the binary LDPC-aided space-time codec 

In this section, the achievable performance of the jointly decoded LDPC-aided space-time codec will 

be evaluated. Alamouti's popular G 2 space-time code will be used a'l a benchmarker both with and 

without being concatenated to other channel codecs. The G 2 space-time code is a two-transmitter 

two-receiver scheme, using two time slots for transmitting two replica'l of the original two bits. More 

explicitly, a'l seen at the left of Table 4.15, during the first time slot the two transmitter antenna'l 

emit two independent information symbols .7:1 and .7:2, while the modified replica'l -xz and .7:i of the 

two independent information symbols transmitted during the first time slot are sent during the second 

time slot. Hence during the period of two time slots, the space-time code G 2 transmitted the two 

information symbols Xl and X2, yielding an effective throughput of 1 symbol/time slot. Similarly, 

a'l seen at the right of Table 4.15 for the ca'le where the half-rate binary LDPC-aided space-time 

codec proposed by Meshkat and Jafarkhani [108] is applied, during the first time slot, the original 

information symbol .7:1 is mapped onto the first antenna, while the corresponding parity symbol ·7: p l 

is mapped onto the second antenna and these two symbols are transmitted simultaneously during the 

first time slot. In the second time slot, another information symbol .7:2 and another parity symbol ·7:p 2 
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Time Antenna Time Antenna Time Antenna 

Slot 1 2 Slot 1 2 Slot 1 2 

1 Xl ·7:2 1 ·7:1 ·7:2 1 ·7:1 Xp1 

2 -·7:2 ·7:r 2 ·7:3 ·7:4 2 ·7:2 ·7:p 2 

Table 4.15: Comparison of the effective throughput of the G 2 code (left) and the LDPC-aided space­

time codec (right), both of which correspond to 1 symbol/time slot. By contrast, the scheme charac­

terised in the middle achieves an effective throughput of 2 symbols/time slot at the cost of attaining 

no diversity gain. 

are mapped onto the first and the second antenna, respectively. Thus, the half-rate binary LDPC­

aided space-time codec achieves the same effective throughput a'l Alamouti's space-time G 2 code, 

although owing to the employment of powerful LDPC coding, rather than simple repetition coding, a 

better BER performance is expected. Hence for the half-rate binary LDPC-aided space-time codec, 

the effective throughput can be calculated as: 

throughput (bps) channeLcode]ate 

x number _of _transmitter _antennas 

x modulator',,-biLper _symbol. (4.24) 

More explicitly, the throughput of the two schemes may be compared in Table 4.15 a'l follows. The 

r = 1/2-rate, repetition-coding, ba'led G 2 scheme characterised at the left transmits a total of two 

independent symbols, namely .7:1 and .7:2 in two time-slots using two antenna'l. Similarly, when con­

sidering two consecutive time-slots rather than a single one, the r = 1/2-rate LDPC-coded space-time 

codec featured at the right of Table 4.15 also transmits two independent symbols, namely .7:1 and X2 

in addition to the LDPC parity bits/symbols denoted by .7:p 1 and .7:p 2 at the right of Table 4.15. 

By contrast, the scheme characterised in the middle of Table 4.15 represents a simple system, where 

no channel co dec is used. In this ca'le, the transmitter may transmit four independent source symbols 

during the two consecutive time slots with the aid of two transmitter antenna'l, which yields a doubled 

throughput in comparison to the other two schemes characterised at the left and right of Table 4.15. 

However, this scheme increa'les the effective throughput at the cost of surrendering diversity gain. 

Since the four symbols transmitted during the two time slots are independent, thus the performance 

of this scheme will be similar to the uncoded single transmitter scenario. 

4.7.1 Effects of increasing the number of joint detection iterations 

As in all other iterative detection schemes, extra performance gains may be achieved with the aid of 

carrying out an increa'led number of iterations, i.e. at the cost of an increa'led complexity. Therefore 

we will gradually increa'le the number of joint detection iterations in the context of a two-transmitter 

two-receiver system utilising a (1500, 750) regular-construction binary LDPC code having an average 

column weight of 2.5. 

As seen from Figure 4.17, the achievable performance of the system significantly improves when the 

number of iterations is increa'led from one to two, although the further incremental performance gains 



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 124 

!O' ) 

0 1 Iteration 
0 2 Iterations 
\7 4 Iterations 
t 8 Iterations 
j 16 Iterations 

'J'-.. 

\\ "" P"N ~8-

\ \ ~ ~ ~ 

N '" \ ~ \ 'Ck 

~ '\ 'm ~ 
2 7 8 9 10 

Figure 4.17: BER performance of a two-transmitter two-receiver LDPC-aided space-time codec using 

(1500, 750) binary LDPC codes having an average column weight of 2.5, when communicating over 

an un correlated Rayleigh fading channel. The number of joint detection iterations used W&'l one, two, 

four and eight. 

gradually erode upon further incre&'ling the number of iterations. Thus, in our later experiments four 

iterations will be used in order to achieve a relatively good performance without excessively incre&'3ing 

the complexity of the decoder. 

4.7.2 Effects of increasing the number of transmission antennas 

In space-time coding, typically several antenn&'l are used both at the transmitter &'l well &'l at the 

receiver. In this section, we will evaluate the achievable performance, when the number of transmitters 

is incre&'led from one to four, while the number of antenn&'l at the receiver W&'l fixed to two. Following 

these investigations, the number of transmission antenn&'3 will be fixed to two, while the number of 

receiver antenna will be varied from one to four. The component LDPC code used W&'l the same &'l 

the one employed in Section 4.7.l. A binary (1500,750) LDPC code having an average column weight 

of 2.5 is used. The corresponding simulation parameters are summarised in Table 4.16. 

In Figure 4.18 we can see that when a higher number of transmitters is used, the attainable 

performance slightly degrades. This is because when a higher number of transmitters is used in 

Figure 4.18, more transmitters antenn&'l' signal will interfere upon arriving at each receiver antenna, 

which may result in decision conflicts at the output of the LDPC decoder. Fortunately, owing to the 

benefits of the iterative detection process, the BER degradation imposed is not significant, despite 

having an incre&'led effective throughput of 0.5, 1, l.5 and 2 bps in C&'3e of n = 1,2,3,4, respectively. 

Another factor resulting in a degraded performance for n > 2 is that for the sake of fair comparison, 

the total transmit power h&'3 to be constant, resulting in a reduced transmit power for each antenna. 
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Performance using various number of transmitter antennas 

Modulation Channel Co dec Tx. No. Rx. No. Throughput 

Scheme (symbol per time slot) 

BPSK LDPC(1500, 750) 1 2 0.5 

2 2 1 

3 2 1.5 

4 2 2 

Performance using various number of receiver antennas 

Modulation Channel Codec Tx. No. Rx. No. Throughput 

Scheme (symbol per time slot) 

BPSK LDPC(1500, 750) 2 1 1 

2 2 1 

2 3 1 

2 4 1 

Table 4.16: Simulation parameters of the LDPC-aided space-time codec using different configurations, 

where the number of transmitter antennas and receiver antennas is varied. 

Hence the BER curves recorded on an SNR scale have to be shifted to the right in Figure 4.18 on an 

Eb/No scale. 

Figure 4.19 illustrates the associated performance trends for the proposed system, when the number 

of receivers, rather than transmitters, is increased. In this scenario, since the number of transmitters 

was fixed to two, the system's effective throughput is maintained at 1bps. Since an increased number 

of receivers was employed, more copies of the original transmitted signal were captured by the multiple 

receivers. These replicas of the original signal propagated through different transmission paths, thus 

even if some replicas were severely corrupted owing to encountering channel fades, the less corrupted 

signals were still able to provide reliable information for the LDPC decoder. Therefore, the achievable 

performance was significantly improved upon using a higher number of receivers in the LDPC-aided 

space-time codec. 

4.7.3 Performance of the binary LDPC-aided space-time codec 

In this section, the performance of the proposed binary LDPC-aided space-time codec will be studied 

in conjunction with multilevel modulation for the sake of achieving an increased effective throughput. 

The space-time code G2 will be used as a benchmarker. The G 2 code will also be concatenated with 

an LDPC code having various code rates for the sake of achieving the same effective throughput as 

the binary LDPC-aided space-time codec studied. For the sake of comparing the performance of the 

LDPC-ST scheme and the LDPC-encoded G2 scheme, both arrangements employed four iterations. 

Additionally, since a turbo decoding iteration has a similar complexity to eight LDPC iterations when 

using a constraint length four component RSC code [24J, we also plotted the corresponding performance 

curves, when the TC concatenated with the G 2 scheme invoked eight iterations. The LDPC-encoded 

G 2 scheme is also characterised, when using 64 LDPC iterations. The latter two benchmarkers have a 

significantly higher complexity, than the LDPC-ST scheme and the LDPC-encoded G 2 scheme using 
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Figure 4.18: BER performance of an n-transmitter two-receiver LDPC-aided space-time co dec using 

(1500, 750) binary LDPC codes having an average column weight of 2.5, when communicating over 

an uncorrelated Rayleigh fading channel employing BPSK modulation. Four joint detection iterations 

were used and we had n = 1,2,3,4 transmitters. The effective throughput is 1, 2, 3,4 bps, respectively, 

this is why the required E b / No wa.', increa<]ed. 

4 iterations. However, these two high-complexity benchmarkers also provide interesting insights. 

The stand-alone effective throughput of these two schemes is different, even though they were both 

configured a<] two-transmitter two-receiver schemes. More explicitly, the r = 1/2-rate repetition-co de­

like G2 code emits for example two QPSK-modulated data symbols from the two transmitter antenna<] 

within one of the two time slots, while in the second time slot essentially the inverted and conjugated 

replica<] of the original two data symbols are transmitted. Since essentially the same information ha<] 

been transmitted twice using a 'code' reminiscent of repetition coding upon utilising the G 2 code, the 

effective throughput of the G 2 space-time code is reduced by a factor of two, resulting an effective 

throughput of one QPSK symbol per G 2-coded time-slot. Similarly, the r = 1/2-rate binary LDPC­

aided space-time codec transmits two originaluncoded QPSK-modulated data symbols within one time 

slot a<] seen in Table 4.15. Thus the uncoded effective throughput for the space-time codec proposed by 

Meshkat without being concatenated with any channel codec will be doubled in comparison to that of 

Alamouti's space-time G 2 code. The a<]sociated simulation parameters are summarised in Table 4.17. 

The turbo convolutional code concatenated with the space-time G 2 code ha<] a constraint length of 

four, and the turbo decoder employed eight iterations. The puncturing patterns listed in Table 2.24 

were used for achieving various code rates for the sake of appropriately adjusting the rate of the turbo 

convolutional code. All LDPC codes characterised in Table 4.17 used an average column weight of 2.5 

and employed decoding over the binary Galois field. The number of joint detection iterations used by 

the binary LDPC-aided space-time codec wa<] four. 

We can observe in Figure 4.20 that when a low throughput is desired, the LDPC-coded G2 scheme 
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Scheme Tx. Rx. Channel Codec Modem Figure 

No. No. Number 

1 bps LDPC-ST 2 2 LDPC(1500, 750), r = 1/2 BPSK 4.20 

LDPC-ST 4 2 LDPC(1500, 375), r = 1/4 BPSK 

G2 2 2 LDPC(1500,750) QPSK 

G2 2 2 TC, r = 1/2 QPSK 

G2 2 2 N/A BPSK 

2 bps LDPC-ST 2 2 LDPC(1500, 750), r = 1/2 QPSK 4.21 

LDPC-ST 4 2 LDPC(1504, 376), r = 1/4 QPSK 

LDPC-ST 4 2 LDPC(1500, 750), r = 1/2 BPSK 

LDPC-ST 3 2 LDPC(1500, 1000), r = 2/3 BPSK 

LDPC-ST 3 2 LDPC(1500, 500), r = 1/3 QPSK 

LDPC-ST 2 2 LDPC(1504, 376), r = 1/4 16QAM 

G2 2 2 LDPC(1504,752) 16QAM 

G2 2 2 LDPC(1500,1000) 8PSK 

G2 2 2 TC, r = 1/2 16QAM 

Gz 2 2 TC, r = 2/3 8PSK 

G z 2 2 N/A QPSK 

3 bps LDPC-ST 3 2 LDPC(1500, 750), r = 1/2 QPSK 4.22 

LDPC-ST 2 2 LDPC(1500, 750), r = 1/2 8PSK 

G2 2 2 N/A 8PSK 

G2 2 2 LDPC(1500,1128) 16QAM 

G z 2 2 TC,r=3/4 16QAM 

4 bps LDPC-ST 2 2 LDPC(1504, 752), r = 1/2 16QAM 4.23 

LDPC-ST 4 2 LDPC(1504, 752), r = 1/2 QPSK 

G2 2 2 N/A 16QAM 

Table 4.17: Simulation parameters for the various space-time codecs employing multilevel modulator 

for achieving an effective throughput of 1, 2, 3 and 4 bits per symbol. The G 2 space-time codec W&'l 

concatenated with turbo convolutional codes having various code rates and using different modulation 

schemes for attaining the same effective throughput &'l the binary LDPC-aided space-time codec. 

It is worth noting that Alamouti's G2 space-time block code essentially uses a 'repetition-code-like' 

transmit diversity regime, which requires the employment of additional turbo convolutional code for 

achieving a low BER. By contrast, the benefit of the propose LDPC-ST scheme is that it inherently 

incorporates half-rate LDPC coding and hence no additional channel coding is required. This allows 

us to maintain a factor two higher effective throughput than that of the half-rate turbo-coded G 2 

space-time block code. 
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Figure 4.19: BER performance of a two-transmitter n-receiver LDPC-aided space-time codec using 

(1500, 750) binary LDPC codes having an average column weight of 2.5, when communicating over 

an un correlated Rayleigh fading channel employing BPSK modulation. Four joint detection iterations 

wa'l used and we had n 1, 2, 3, 4 receivers. The effective throughput is maintained at 1 bps. 

invoking four iterations achieved the best performance, excluding the two high-complexity benchmark­

ers. When the throughput is increa'led to 2 bps a'l in Figure 4.21, the performance degradation of 

the low-complexity four-iteration MIMO schemes compared to the high-complexity benchmarkers wa'l 

reduced in comparison to that of the 1 bps scenario characterised in Figure 4.20. Furthermore, we 

observed that the LDPC-ST scheme performed approximately 1 dB better than the LDPC-coded G 2 

scheme at a BER of 10-4 . When the throughput is further increa'led to 3 bps, as in Figure 4.22, the 

high-complexity scheme hardly achieved any benefit compared to the low-complexity scheme and the 

LDPC-ST scheme using a half-rate LDPC code transmitting over three antenna'l using QPSK modu­

lation achieved the best performance in the low-complexity category. Finally, in the 4 bps throughput 

scenario, there is no attractive schemes for concatenation with the G 2 scheme. Although it is possible 

to extend the constellation to 64QAM while using a two-third rate channel code, it ha'l been observed 

in Figures 4.20 to 4.23 that a high number of modulation levels will typically lead to a poor perfor­

mance. Therefore, the four-transmitter LDPC-ST which refrains from using separate channel coding 

is the optimal solution for achieving a throughput of 4 bps. 

4.8 Performance of the non-binary LDPC-aided space-time codec 

In this section, the performance of the symbol-ba'led non-binary LDPC-aided space-time codec de­

scribed in Section 4.6 will be compared to that of the bit-ba'led system proposed by Meshkat and 

Jafarkhani [108]. 
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Figure 4.20: BER performance of the various space-time coding configurations summarised in Ta­

ble 4.17 designed for achieving an effective throughput of 1 bps, when communicating over an uncor­

related Rayleigh fading channel. The achievable coding gain of the various schemes at a BER of 10~4 

will be summarised in Table 4.23. 

In order to achieve an identical effective throughput of two, three and four bits per symbol, the 

parameters of the symbol-b11.sed non-binary LDPC-aided space-time codec were selected 11.S summarised 

in Table 4.18, benchmarked against the bit-b11.sed system having an identical modulation mode. The 

non-binary LDPC codes described in Section 4.3 will be used in the symbol-b11.sed MIMO system for 

the sake of providing a purely symbol-b11.sed message p11.ssing mechanism. 

The performance of the system is characterised in Figure 4.24, Observe that the performance of 

the symbol-b11.sed system incorporating the non-binary LDPC codes is superior in comparison to the 

bit-b11.sed MIMO system using a binary LDPC decoder. As seen in Figure 4.8 of Section 4.4.2, if 

the size of the decoding Galois field is incre11.sed, while the size of the equivalent binary PCM Hb is 

maintained and when an average column weight of 2.5 is used, a larger Galois field will render the 

LDPC codes less prone to transmission errors. Thus the superior performance of the symbol-b11.sed 

system is essentially the consequence of employing of a stronger channel codec. Before concluding 

this chapter, we will now show that when using the symbol-b11.'led system, the 11.ssociated decoding 

complexity can be significantly reduced in conjunction with a higher number of modulation levels or 

a higher number of transmitters. 

4.9 Implementational complexity 

In this section we will demonstrate that the symbol-based non-binary LDPC-aided space-time codec 

constitutes a solution imposing a significantly lower decoding complexity than its bit-b11.'led LDPC-
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Figure 4.21: BER performance of the various space-time coding configurations summarised in Ta­

ble 4.17 designed for achieving an effective throughput of 2 bps, when communicating over an uncor­

related Rayleigh fading channel. The achievable coding gain of the various schemes at a BER of 10-4 

will be summarised in Table 4.23. 

aided space-time codec counterpart. 

Recall from Section 4.5 related to the bit-ba..<;ed system and from Section 4.6 on the symbol­

ba..<;ed system, the Equation 4.16 and Equation 4.20 defined the bit-ba..'3ed and symbol-ba..<;ed joint 

detection approach, respectively. For the bit-ba..<;ed joint detection procedure using Equation 4.16, 

the decoding operations require the evaluation of all possible input symbol configurations containing 

the kth bit of the original space-time coded codeword, a..<; well a..<; the calculation of the a priori 

probability provided by the neighbouring bits. Hence, for a system having nt transmitters and bps 

number of bits per symbol, the total number of metric evaluations using Equation 4.16 will be 2bps-nr. 

Each metric evaluation requires nt x nr multiplications for determining HS(Bi' bk ) in Equation 4.16, 

one multiplication for evaluating the square, and one for carrying out the required division. One 

subtraction is needed for finding the Euclidean distance between the received sample and each of 

the constellation points. Furthermore, for each metric evaluation, (bps x nt - 1) multiplications are 

needed for calculating the a priori probability. Thus, for each decoded bit, the required number of 

multiplications becomes ((bps x nt -1) + (nt x nr + 2)) X 2bpsxnt = (nt x (bps + n r) + 1) X 2bpsxnt. 

The required number of additions is 2bpsxnt. 

By contrast, for the proposed non-binary system using Equation 4.20, the number of multiplications 

needed for the a priori probability calculation is reduced to (nt - 1), since we are directly determining 

the symbol probability. Thus the total number of multiplications per bit for the symbol ba..<;ed system 

is (nt x (nr + 1) + 1) X 2bpsxnt /bps and the number of additions becomes 2bpsxnt /bps per bit. 

On the other hand, upon employing non-binary LDPC codes in the symbol-ba..<;ed approach, the 
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Figure 4.22: BER performance of the various space-time coding configurations summarised in Ta­

ble 4.17 designed for achieving an effective throughput of 3 bps, when communicating over an uncor­

related Rayleigh fading channeL The achievable coding gain of the various scheme . ..', at a BER of 10-4 

will be summarised in Table 4.23. 

message p3..'lsing between the system components becomes implementation ally more complex owing to 

the incre3..'led GF size. The number of multiplications and additions required for each coded bit can 

be represented 3..'1 2weq additions and 7weq/log2(q), 3..'1 detailed in Section 4.3.5, where We and q are 

the LDPC code's column weight and the LDPC decoding field size, respectively. 

Hence the overall complexity imposed by the two systems in each of the modulation schemes is 

listed in Table 4.19, and plotted in Figure 4.25. 

4.10 Summary and conclusion 

In this chapter, the family of non-binary LDPCCs proposed by Davey and MacKay [54J [56J W3..'l 

introduced in Section 4.3 and the achievable performance of various non-binary LDPCCs h3..'l been 

studied 3..'1 a function of the code rate, using two different average column weights, namely 2.5 and three. 

When the size of the non-binary PCM Hq is fixed, the simulation results provided in Section 4.4.1 

showed that the performance of the non-binary LDPCCs improves upon incre3..'ling the decoding field 

size. By contrast, when the size of the equivalent binary PCM Hb W3..9 fixed, as in Section 4.4.2, 

and when an average column weight of 2.5 W3..'l applied, the attainable performance of the non-binary 

LDPCCs improved upon incre3..'ling the size of the decoding field. However, when an average column 

weight of three W3..'l used, the advantages and disadvantages of using a larger decoding field were less 

pronounced, and using non-binary LDPCCs operating in a large G F were not always beneficial. During 

the complexity discussion of Section 4.3.5 related to non-binary LDPCCs we found that using GF(4) 
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Figure 4.23: BER performance of the various space-time coding configurations summarised in Ta­

ble 4.17 designed for achieving an effective throughput of 4 bps, when communicating over an uncor­

related Rayleigh fading channel. The achievable coding gain of the various schema<; at a BER of 10-4 

will be summarised in Table 4.23. 

strikes a good compromise between the attainable performance gain and the associated decoding 

complexity. 

The binary LDPC-aided joint space-time detection scheme proposed by Meshkat and Jafarkhani [lOB] 

was described in Section 4.5. This scheme has the drawback that an assumption was made that the 

adjacent bits in a constellation point are independent, which is not exactly true in the context of 

Gray mapping. Furthermore, the detection complexity increases exponentially with the number of 

antennas and with the number of modulation levels. Therefore, this scheme was further developed to 

create a novel purely symbol-based detection scheme in Section 4.6, where the non-binary LDPC code 

was embedded into the system for the sake of providing a purely symbol-based message exchanging 

mechanism. The attainable performance was evaluated for the bit-based system in Section 4.7 using 

various number of iterations, transmitters and receivers. Similarly, the performance of the symbol­

based system was studied in Section 4.B and appeared to be superior in comparison to the bit-based 

system owing to the employment of higher-performance non-binary LDPCCs. The major advantage of 

applying the symbol-based system over the bit-based scheme was highlighted in Section 4.9, where the 

complexity of the two schema<; was compared. More explicitly, it appears that by using the symbol­

based scheme proposed, the number of arithmetic operations may be significantly reduced, especially 

for the more complex scenarios using high-order phaser constellations. 

A coding gain summary is provided in Tables 4.20 to 4.23 for the sake of characterising the 

attainable BER performance of the non-binary LDPC code considered and that of the LDPC-ST 

scheme. As seen in Table 4.20, upon increasing the size of the decoding Galois field while maintaining 
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Throughput Bit-based Symbol-b&<;ed 

2 bps (1500, 750) (750, 375)q 

QPSK GF(2) GF(4) 

3 bps (1500, 750) (500, 250)q 

8PSK GF(2) GF(8) 

4 bps (1496, 748) (376, 188)q 

16QAM GF(2) GF(16) 

Average LDPC Column Weight 2.5 

Number of Iterations 5 

Number of Transmitters 2 

Number of Receivers 2 

Channel Uncorrelated Rayleigh fading 

LDPC Coded Blocklength 1500 bits( approximately) 

Table 4.18: Simulation parameters for the bit-b&<;ed and symbol-b&<;ed LDPC-aided space-time codec 

utilising both binary and non-binary LDPC codes, when communicating over an uncorrelated Rayleigh 

fading channel. 

Multiplications Bit-based Symbol-based Additions bit b&<;ed symbol b&<;ed 

QPSK 179 91 QPSK 27 28 

8PSK 739 198 8PSK 75 61 

16QAM 3338 518 16QAM 267 144 

Table 4.19: Complexity comparison between the bit-based LDPC-aided space-time codec of [108] and 

the symbol-b&'led algorithm characterised in Figure 4.24 using the simulation parameters listed in 

Table 4.18. 

the same non-binary PCM size quantified in terms of the number of non-binary symbols, an improved 

BER performance may be achieved using a higher-order decoding field. However when the size of the 

binary equivalent PCM is fixed, decoding over higher order Galois field is not always beneficial. While 

using various column-weights for the PCM, a different performance trend may be observed, as seen in 

Table 4.21. Table 4.23 summarises the decoding performance of the novel LDPC-ST scheme and that 

of the benchmarking LDPC-coded G 2 scheme. It has been observed that the LDPC-coded G2 scheme 

performs better than the LDPC-ST scheme, when the throughput is &'l low &<; 1 bps. However, when 

a higher throughput is desired, the LDPC-ST constitutes a superior solution compared to the LDPC­

coded G 2 scheme. Furthermore, the higher-complexity TC-coded G 2 scheme and an LDPC-coded 

G 2 arrangement are used &'l additional benchmarkers, while invoking a significantly higher number 

of iterations. It h&'l been observed that the extra performance gain of these high-complexity schemes 

was reduced, when the throughput W&'l increased. 
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Column LDPC Coding gain(dB) 

weight code GF(2) GF(4) GF(8) GF(16) 

wc=2.5 (500,250) 4.91 6.38 6.68 6.82 

(1000,500)q 5.47 6.47 6.94 7.09 

(2000, 1000)q 6.03 6.82 7.12 7.24 

wc=3.0 (500, 250)q 5.59 6.15 6.32 6.38 

(1000,500)q 6.03 6.53 6.59 6.67 

(2000,1000)q 6.41 6.73 6.77 6.794 

Table 4.20: Coding gain of the non-binary LDPC codes specified in Table 4.11 at a BER of 10-4
, 

when communicating over an AWGN channel. The best scheme is highlighted using bold fonts. 

Code Column Coding gain(dB) 

rate weight GF(2) GF(4) GF(8) GF(16) 

T=1/4 wc=2.5 6.79 7.13 7.28 7.28 

wc=3.0 6.53 6.53 6.41 6.41 

T=1/2 wc=2.5 6.41 6.845 7.03 7.09 

wc=3.0 6.66 6.72 6.66 6.66 

Table 4.21: Coding gain of the non-binary LDPC codes specified in Table 4.12 at a BER of 10-4
, 

when communicating over an AWGN channel. The best scheme is highlighted using bold fonts. 

Column Code Coding gain(dB) 

weight rate GF(2) GF(4) GF(8) GF(16) 

wc=2.5 T = 1/3 6.47 7.132 7.441 7.56 

T = 1/2 5.97 6.823 7.18 7.235 

T = 2/3 5.441 6.17 6.5 6.56 

T = 3/4 5.004 5.69 6 6.12 

T = 4/5 4.72 5.309 5.62 5.735 

w c=3.0 T = 1/3 6.412 6.81 6.81 6.86 

T = 1/2 6.412 6.735 6.78 6.81 

T = 2/3 5.912 6.17 6.323 6.323 

T = 3/4 5.44 5.794 5.882 5.882 

T = 4/5 5.103 5.412 5.53 5.53 

Table 4.22: Coding gain of the non-binary LDPC codes specified in Table 4.13 at a BER of 10-4
, 

when communicating over an AWGN channel. 
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Figure 4.24: BER performance of the bit-based and symbol-based MIMO systems summarised in 

Table 4.18 utilising binary and non-binary LDPC codes, when communicating over an un correlated 

Rayleigh fading channel. 
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Figure 4.25: Complexity comparison between the bit-ba..<;ed LDPC-aided space-time codec of [108] 

and the symbol-ba..<;ed algorithm characterised in Figure 4.24 using the simulation parameters listed 

in Table 4.18. 
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Throughput (bps) Scheme Eb/No(dB) required 

No. of LDPC Modulation at BER=1O-4 

transmitters code mode 

1 bps 2 (1500,750) BPSK LDPC-ST 3.63 

4 (1500,375) BPSK LDPC-ST 5.185 

2 (1500,750) QPSK G2 2.357 

2 bps 2 (1500,750) QPSK LDPC-ST 3.94 

4 (1504,376) QPSK LDPC-ST 6.437 

4 (1500,750) BPSK LDPC-ST 4.19 

3 (1500,1000) BPSK LDPC-ST 4.25 

3 (1500,500) QPSK LDPC-ST 5 

2 (1504,376) 16QAM LDPC-ST 8 

2 (1504,752) 16QAM G 2 5.41 

2 (1500,1000) 8PSK G 2 4.88 

3 bps 3 (1500,750) QPSK LDPC-ST 4.75 

2 (1500,750) 8PSK LDPC-ST 6.12 

2 (1504,1128 ) 16QAM G2 6 

4 bps 2 (1504,752) 16QAM LDPC-ST 7.25 

4 (1504,752) QPSK LDPC-ST 5.75 

Table 4.23: Eb/No values for the various LDPC-ST scheme parameterised in Table 4.17 required for 

the sake of achieving an effective system throughput of 1, 2, 3 and 4 bps at BER= 10-4
, respectively, 

when communicating over an llncorrelated Rayleigh fading channel. The best scheme is highlighted 

using bold fonts. 



Chapter 5 

Joint Source and Channel Coding 

Using Variable Length Codes 

5.1 Historical perspective 

Variable Length Codes (VLC) are widely used in both audio [136] and video compression schemes [109]. 

The conceptually simplest VLC philosophy is based on entropy-coding [67] [109], where a frequently 

encountered source symbol is assigned a short VLC symbol, while less frequent source symbols are 

encoded using longer VLC symbols. When using this procedure, the achievable average symbol length 

is typically reduced, provided that the original source symbols exhibit unequal probabilities on some 

degree. The well-known Huffman coding scheme [137] belongs to the family of VLC codes. Huffman 

codes are capable of achieving an average symbol length close to the entropy of the source symbol se­

quence. A lot of research attention ha.s been devoted to efficiently decoding Huffman codes, a.s outlined 

for example in [138-143]. However, in the absence of correlation between the consecutive source sym­

bols, Huffman codes may in fact result in an increa.sed bit rate in some practical scenarios, where the 

symbols are nearly equi-probable. Furthermore, a disadvantage of Huffman codes is that they are vul­

nerable to transmission errors, especially when communicating over high-BER mobile radio channels. 

Note that in the presence of transmission errors a Huffman-coded symbol may be corrupted to another 

legitimate symbol having a different number of bits, which leads to synchronisation errors a.s well as 

to the loss of some bits and symbols. This problem is aggravated by the fact that this error event 

may remain undetected. This is because in Huffman codes no short symbol is allowed to constitute 

a prefix of any of the longer symbols for rea.sons of unique detection capability. More explicitly, the 

Huffman decoder immediately outputs a decoded symbol upon identifying its corresponding received 

bits and in the presence of transmission errors this could be incorrect. With the aim of mitigating 

the above-mentioned deficiency of Huffman codes, Reversible Variable Length Codes (RVLC) were 

proposed by Takishima et a.l [144], which are less efficient source coding schemes compared to Huffman 

codes. However, RVLCs have the capability of decoding the bit stream from either the beginning or 

the end, When the decoder ha.s read a high number of bits without finding a valid codeword. The 

family of RVLCs can be categorised into two cla.sses, symmetric and a.symmetric RVLCs. An RVLC 

137 
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is defined &'l a symmetric code, if all the VLC symbols 1 have a symmetric bit pattern, such &"1 the 

VLC symbols of 010 or 1001. By contrast, the VLC symbols 01, 10 belong to an &'lymmetric RVLC. 

Different methods have been applied for constructing the code table of an RVLC [145-148J designed 

for different applications. RVLCs typically have a slightly higher average symbol length compared to 

Huffman codes, but in exchange for this they offer a better error detection and correction capability. 

Hence if an error is detected, the decoder can start decoding the codewords from the other end of 

the bit stream for the sake of minimising the chance of encountering a decoding failure. As further 

design alternatives, Variable Length Error Correcting (VLEC) codes were proposed by Buttigieg and 

Farrell [149], which were also studied by Lamy [150,151J. VLECs have an even higher average symbol 

length than RVLCs, with the added benefit that they exhibit an error correction capability similar 

to cl&'lsic block and convolutional codes, except that the length of the VLEC codes is not constant. 

Generally the VLC symbols are prone to channel impairment and hence powerful error correction 

methods have to be applied for the protection of the vulnerable VLC symbols. By invoking the cl&'lsic 

MAP algorithm [152]' originally devised by Bahl et. al, Bauer and Hagenauer [153,154J proposed two 

powerful VLC detection schemes by exploiting the residual redundancy found in the VLC. There are 

other soft information b&'led decoding techniques designed for VLCs such as those in [155J and [156J. 

The soft-in soft-out (8180) decoder principle of [152J can be used for constructing an iterative joint 

decoding system, such &"1 those proposed in [157-160], exploiting the residual redundancy left in the 

source-encoded sequence, owing to a sub-optimum source encoder failing to reach the lowest possible 

source coded rate(bounded by the entropy). Furthermore, this source-related extrinsic information 

may also be exchanged with the deliberately introduced extrinsic information of the channel codec. 

5.2 Decoding of variable length codes 

As stated previously, VLCs are vulnerable to transmission errors encountered in wireless channels. In 

order to enhance the robustness of the VLC decoder, the idea of representing a variable length code 

using a tree structure W&'l proposed by Buttigieg and Farrell in [161J. In [162,163]' the performance of 

the stand-alone VLEC code W&'l demonstrated to be better than that of a cascaded Huffman/Hamming 

code. B&'led on the trellis representation of the VLC codes &"1 proposed by Buttigieg and Farrell, Bauer 

and Hagenauer [153J [154J further developed the Maximum A Posteriori (MAP) algorithm [152J for 

decoding VLCs transmitted over AWGN channels. This was based on recognising the plausible fact that 

any encoder, which has 80me grade of redundancy, predictability or unequal probability of occurrence 

for the bits at its output may be viewed 0,8 an error correction encoder. 

5.2.1 Symbol based decoding of VLCs 

This section will describe the symbol b&'led trellis decoding of VLCs, following the approach of [154J. 

Assuming we have a variable length code C and a discrete T - ary random variable U = {O, .. T - I}, 

each symbol 11 of the set U is mapped to a binary symbol of the VLC C, where the mapping is denoted 

&'l C(l1). The maximum and minimum symbol length is represented &"1 lmax and lmin, respectively. 

lIn this chapter, for a non-binary VLC source symbol we will use the terminology of SO'lJ,l'ce symbol, while the binary 

representation of a VLC source symbol after encoding by a VLC encoder is referred to as VLC symbol. 
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There are 0 source symbols in a source-symbol packet processed by the decoder, i.e. we have 

u = (?Ll,?L2' ... ?La). After mapping the T - ary source symbol to the VLC, a VLC-encoded bit stream 

of length W is obtained, which is denoted &"1 b = (bI, b2 , ... bw ). The;th bit of the d h VLC-encoded 

source symbol is denoted &"1 Co,j. At the output of the channel the noisy sequence y = (Yl. Y2 ... Yw) is 

received by the VLC decoder from the demodulator. 

When we have a ternary source symbol &'lsociated with three legitimate values, the VLC encoder 

may map these three symbols to c(o) = 1, c(l) = 01, c(2) = 00. The source-symbol packet size is 

chosen to be 0 = 4, thus for example a source symbol sequence of?L = (0,2,0,1) may be transmitted. 

The four source symbols are then mapped by the VLC encoder to the binary representation of the 

VLC symbols given by (1,00,1,01). Hence we have a bit sequence of length 6, where the knowledge 

of the length of the symbol sequence and that of the length of the bit sequence can be used &"1 side­

information for constructing the trellis describing the operation of the VLC encoder analogously to 

that of a cl&'lsic convolutional encoder, &"1 seen in Figure 5.1. Naturally, the same trellis is used for 

the MAP decoding of the VLC symbols. 
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Figure 5.1: Trellis structure b&'led on the received number of VLC-encoded symbols and bits 

In Figure 5.1, the horizontal axis represents the number of VLC symbols that have been received, 

while the vertical axis represents the number of received bits. The bold line corresponds to the 

trellis path &'lsociated with the given input symbol sequence, and the remaining trellis transitions of 

Figure 5.1 represent all the other possible transitions incurred by all the legitimate input VLC symbols. 

In Figure 5.1, the transition engendered by the VLC symbols c(O), c(l) and c(2) are represented by the 

bold lines, d&'lhed lines and dotted lines, respectively. Commencing from the origin and by interpreting 

the first VLC symbol of c(O), a binary 1 is deemed to have been received. Thus the bold transition 

emerges from the origin to the trellis state (1,1). The next step along the bold path of transitions is 

engendered by the VLC symbol c(2). Since the VLC symbol c(2) comprises 2 bits, thus a total of 3 

binary bits are now received, hence the &'lsociated trellis transition evolves to state (2,3) in Figure 5.1. 
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However, all the legitimate trellis paths have to merge in state (4,6) eventually, i.e. in the state (0, W). 

Observe that at trellis states (2,4) and (3,5), there is only a single transition emerging from these 

two states. This is because these two states are constrained by the total number of VLC-encoded 

symbols 0 and the total number of bits W representing the 0 symbols. More explicitly, in state (2,4) 

there are two remaining VLC-encoded symbols to be detected and there are also only two remaining 

received bits to be interpreted. Thus the only possible VLC symbol at this state will be symbol c(O), 

which has the minimum symbol length of 1. The detection of all other VLC symbols arising from this 

state will be forbidden. Upon using the relation of 

v = 11) - (0 .lmin), (5.1) 

the trellis seen in Figure 5.1 may be transformed to the equivalent form seen in Figure 5.2, where the 

variables v, nand k in Equation 5.1 represent the trellis state index, the number of received bits and 

the number of received symbols, respectively. The maximum number of trellis states seen in Figure 5.2 

may be calculated by 

Vmax = W - (0· lmin) + 1, 

given the a priori knowledge that 0 VLC-encoded symbols and W bits are transmitted. 
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Figure 5.2: Modified trellis structure b&'led on the received number of VLC-encoded symbols and bits 

Hence Equations 5.1 and 5.2 may be used jointly for detecting the occurrence of illegitimate input 

symbols emerging from a given trellis state. For example, state (2,4) in Figure 5.1 corresponds to the 

trellis state (2,2) in Figure 5.2. Given the coordinates of the trellis state, with the aid of Equation 5.1 

and Figure 5.1, it is possible to infer that a total of 4 bits have been received. Therefore, if the 

VLC-encoded symbol c(l) is deemed to have been received b&'led on arriving in this state, the next 

trellis state to be encountered may be calculated &'l from Equation 5.1 &'l (4 + 2) - 3·1 = 3, which is a 

higher number than the maximum state index of 2 obtained by applying Equation 5.2 and therefore 

it is illegitimate. Thus there is only one legitimate transition from state (2,2), &'l seen in Figure 5.2. 

To elaborate a little further by focusing our attention on the trellis section bounded by the states 

(2,3), (2,4), (3,4) and (3,5) in Figure 5.1, we have a more explicit view of the trellis transitions, &'l 

seen in Figure 5.3. 
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Figure 5.3: Trellis transitions determined by the states (2,3), (2,4), (3,4) and (3,5) in Figure 5.1 

Explicitly, the numbers printed next to the transitions indicate the VLC-encoded symbols c(O), 

c(l) and c(2) followed by the corresponding binary representation of the VLC symbol. Note that 

parallel transitions exist in the trellises of VLCs, 8.'l long 8.'l there are several VLC-encoded symbols 

having the same number of bits. This trellis transition diagram will be used for highlighting how to 

invoke the MAP algorithm later in this section. 

B8.'led on the trellises seen in Figures 5.1 and 5.2, various VLC decoding strategies may be imple­

mented. In this thesis, the implementation of the popular Maximum-A-Posteriori (MAP) algorithm 

is described. The MAP algorithm W8.'l proposed by Bahl, Cocke, Jelinek and Raviv in 1974 [152] for 

estimating the a posteriori probabilities (APP) of the various states and the state transitions of a 

Markov source, provided that the channel encountered is memoryless. This algorithm is also often 

referred to 8.'l the BCJR algorithm after its inventors. This algorithm provides the estimated symbol 

sequence, b8.'led on maximising the APP of each symbol, which is essential for employment in any 

iterative scheme. 

In the symbol-b8.'led MAP algorithm described here, the objective of the VLC decoder is that of 

determining the APP of the transmitted VLC symboluo , (1 < 0 < 0) from the soft output Yo of the 

channel, which is formulated 8.'l 

P(tLO/Y) = ma.7: (P(uo /Y)), 0 = 1 ... O. (5.3) 

A tutorial on the MAP algorithm may be found for example in [115]. Suffice to say here that 

the MAP algorithm includes a forward recursion, a backward recursion and a symbol probability 

evaluation for the computation of the probabilities of the various VLC symbols associated with the 

trellis transitions. By extracting the trellis section of Figure 5.1 between 0 = 1 and 0 = 3, the 

corresponding application of the MAP algorithm can be illustrated with the aid of Figure 5.4. 

The symbol probability 

/i(Y":/;" w', w), (5.4) 

quantifies the probability of a transition from state Vi = W' to Vi+l = 11), engendered by a received 

VLC-encoded symbol 8.'lsociated with a given soft channel output YW' By applying the b8.'lic rules of 
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Figure 5.4: Recursive calculation of the a and f3 values for the trellis structure of Figure 5.1 between 

time instant 0 = 1 and 0 = 3. 

conditional probabilities, Ii can be split into three multiplicative factors 8..'l follows: 

(5.5) 

where to(111lw') represents the state transition probability that given the current state w', the next 

state will be 111. In Figure 5.3, the value of t o- 1 (111111112) is given by the sum of the probabilities 

of encountering symbol c(2) and symbol c(l), since both of these two symbols will engender the 

transition from WI to 1112. By contrast, if for example, 1112 is calculated to be an invalid state according 

to Equation 5.2, the probability value of t will be O. 

Upon returning to Equation 5.5, qo(uo = ilw', w) is the probability that given the previous state 

w' and the current state w, how likely it is that this transition W8..'l engendered by the VLC-encoded 

symbol i. As seen in Figure 5.3, only symbol c(l) and symbol c(2) may engender the trellis transition 

from WI to W2· Hence the probability qo-l(Uo-l = 1Iwl,W2) is given by P(uo~i)~;~~o-2)' which 

corresponds to the probability of occurrence of symbol c(1) over the sum of the probability of symbol 

c(l) and symbol c(2). 

Finally, p(Y~,luo = i) in Equation 5.5 represents the probability of encountering the soft channel 

output a..'lsociated with the transition w' --7 111, given that the transmitted symbol wa..'l U o = i. In the 

memoryless AWGN channel, this probability may be expressed a..'l the product of the bitwise transition 

probabilities a..'l follows: 
l(ci)-1 

p(Y~,luo = i) = II p(Yw'+jICo,j), (5.6) 
j=O 

where Coj represents the lh bit in the oth VLC symbol's binary representation. After the calculation 

of I according to Equation 5.5, we carry out the forward recursion for the sake of obtaining the values 

of a a..'l follows: 

(5.7) 

where the variable a o quantifies the joint probability of receiving the VLC symbol 0, 0 = 1···0, 

at state w yielding vo = wand that the first 0 soft channel outputs were yf, where the notation 
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Yl represents the vector of soft channel outputs Yl = [Y1 ... Yo]. Equation 5.7 indicates that the 0: 

value at instant 0 is related to all the channel soft inputs spanning from the beginning of decoding 

at 0 = 0 to the instant 0,0 > O. However, &'l seen in Figure 5.4, the quantity 0: 0 can be recursively 

calculated with the aid of the 0: 0 -1 values generated during the previous time instant. Hereby we will 

relate the trellis structure seen in Figure 5.1 to the MAP decoding structure outlined in Figure 5.4 

for the sake of demonstrating the recursive calculation of the quantity cx. The vertical axis on the 

left of Figure 5.4 corresponds to the number of received bits in Figure 5.1, while the horizontal axis 

in Figure 5.4 corresponds to the number of received symbols in Figure 5.1. The notation O:o(w) in 

Figure 5.4 is used for representing the quantity 0: at time instant 0, while at state w. The notations 

(3o(w) and ro(w) follow the same rationale. On receiving the soft channel output Y2 in Figure 5.4, 

the trellis transition emerging from state v = 2 to state v = 3 will be encountered, when the received 

source symbol is C(O). By contrast, two parallel transitions are encountered from state v = 1 to state 

v = 3, if either a source symbol of C(I) or C(2) is received. Thus, &'l seen in Figure 5.4, the quantity 

o:A3) is calculated &'l: 

(5.8) 

Commencing the corresponding recursion exemplified in Equation 5.8 from the first symbol by 

&'lsuming 0:0(0) = 1, i.e. that the trellis starts from the state v = 0 in Figure 5.1 or Figure 5.2 and 

following the rationale of Section 5.3.3 in [115], we have: 

(5.9) 

All the cy values corresponding to each time instant at different trellis states of Figure 5.2 can 

be similarly calculated. More explicitly, in the numerator of Equation 5.9 the inner summation 

L[=r} ri(Y~/ Wi, w) . 0:0 -1 (Wi) quantifies the probability of encountering transitions from a particu­

lar state Vo-1 = Wi to state Vo = w engendered by all possible input VLC symbols. By contrast, 

the outer summation calculates the overall probabilities of the transitions from all possible states 

Vo-1 = Wi, Wi E {Wo-d in the previous instant (0 - 1) to the current state Vo = w engendered by 

their corresponding VLC symbol. The denominator h&'l a third summation summing over all possible 

states w, 11} E {Wo}, at the current instant 0, which acts &'l a normalisation factor for the sake of 

ensuring that we have LWEWo CYo(w) = 1, since this condition h&'l to be satisfied by the probability of 

the &'lsociated events. 

Similarly, the &'lsociated backwards recursion of Section 5.3.3 in [115] calculates the value of 

(5.10) 

which gives the probability that given the trellis state Vo = W W&'l encountered at symbol instant 0, 

the future received soft channel output sequence will be yJ;;'+l' Similar to the recursive computation of 

0:0, the quantity (30 can be backwards recursively calculated with the aid of the (30+1 value at the next 

time instant. More explicitly, while still considering Figure 5.4 and following the same philosophy &'l 

for the recursive calculation of o:o(w) illustrated in Equation 5.8, the quantity (32(3) can be calculated 

&'l follows: 

(5.11) 
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The backwards recursion outlined in Equation 5.11 may be implemented in a similar way to 

Equation 5.9, but commencing the recursion from the end of the VLC symbol sequence and &<;suming 

that the trellis terminates at state v = W, i.e. that we have {3o (W) = 1, yielding [115J: 

(3( )
- "LwIEWD+l"Lr=(/li(Y~I,wl,w)·{30+1(wl) . 

o w - T 1 z. 
"LwEWo "LwIEWo+l "Li=O li(Y~" Wi, w) . (30+1(W I

) 

(5.12) 

Explicitly, the numerator sums up all transition probabilities &<;sociated with arriving at all possible 

states Vo+l = Wi, Wi E {I· .. W} at the next instant w + 1, from the current state Vo = w engendered 

by their corresponding input VLC symbols. The denominator normalis8c<; the probabilities Po(w), 1J} E 

{I ... W o} ensuring that "LwEwo (3o(w) = 1 is satisfied, since all probabilities of the corresponding 

events have to sum to unity. 

After all the values of Equation 5.7, 5.10 and 5.5 have been obtained, the a, posteriori probability 

may be expressed &<;: 

(5.13) 

Interpreted in physical tangible terms, the a, posteriori probability calculated using Equation 5.13 

quantifies the probability of encountering a specific VLC symbol t at the oth time instant. This 

probability is calculated by summing up all the probabilities for the transitions between the time 

instants 0 and 0 + I, which are engendered by the VLC symbol i. The probability P(uo = i/y) is 

normalised in Equation 5.13 so that we have "LiETP(uO = i/y) = l. 

Finally, Equation 5.3 is applied to identify the specific VLC symbol associated with the highest 

probability as the survivor symbol. 

In this section, the process of the symbol based trellis decoding of VLCs has been discussed. The 

construction of the trellis-based VLC decoder requires the a, priori knowledge of both the number 

of VLC symbols and the number of bits per transmission burst to be transmitted to the decoder as 

side-information. Since the length of the VLC decoder's trellis is determined by the total number of 

VLC symbols within the transmitted frame, the size of the VLC trellis may become excessive. At 

the output of the trellis b&<;ed VLC decoder, the &<;sociated symbol probabilities will be provided. 

However, when the VLC scheme is combined with other bit-based channel codecs, such &<; a turbo 

convolutional code or an LDPC code, symbol to bit conversion will be necessitated, which may result 

in information loss. In order to solve this problem, Bauer and Hagenauer proposed another trellis 

representation for VLCs [153J, which enables the bit-b&<;ed VLC decoding. 

5.2.2 Bit-based decoding of VLCs 

The bit b&<;ed decoding of VLCs [153J requires no additional side information, other than the number 

of bits transmitted. The size of the trellis is only related to that of the VLC codeword table, which is 

relatively small compared to that of the VLC symbol-b&<;ed trellis, even if the transmission packet size 

is large. The output of the bit-b&<;ed VLC decoder is the probability of the bits, thus the &<;sociated soft 

outputs may be input directly to the channel decoder for the sake of forming a serially concatenated 

joint source/channel coding system, without requiring symbol-to-bit probability conversion. 
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The bit-b&'led trellis of the VLC is constructed &'l follows [153]. We have to define three different 

types of nodes in the trellis. The first one is referred &'l a root node (R), from which a new VLC 

symbol emerges. The second one is the so-called terminal node (T), where a VLC symbol ends. The 

third one is termed the intermediate node (I), which represents an intermediate trellis state &'lsociated 

with the bit-b&'led representation of a VLC symbol that h&'l not been completely received. Let us now 

consider the &'lsociated bit-b&'led trellis construction using an example. 

T 

'0 

'1 

Figure 5.5: Bit-based trellis structure of a VLC, where the dotted lines indicate a transition engendered 

by a '0' and the solid lines by a '1' 

Let us &'lsume that we have a RVLC code table of c = {Cl''''C5} = {OO,11, 101, 010, 01l0}. 

In Figure 5.5, the dotted lines represent the transitions engendered by a bit 0 and the solid lines 

represent the transitions engendered by a bit l. The VLC decoder starts from the root node, (R) of 

Figure 5.5. Upon receiving the first bit 0, since the decoder h&'l not received a complete VLC symbol, 

the corresponding transition leads to node h. From h, if a further 0 is received, then the VLC symbol 

of 00 h&'l been received, hence the symbol h&'l been completed and the trellis is terminated at the 

terminal node (T), which constitutes the root node for the next VLC symbol. Otherwise, if a 1 is 

received upon emerging from h, since 01 h&'l not formed a valid VLC symbol &'l yet, the trellis branch 

traverses to another intermediate state h in Figure 5.5. Eventually, the trellis transitions should 

converge at the terminal node. 

The MAP algorithm may also be applied to this bit-b&'led trellis, although there is some difference 

between the symbol-b&'led trellis and the bit-b&'led trellis. In the bit-b&'led trellis, the transitions 

converge only at the root node and the number of transitions emerging from each node is less than or 

equal to 2. Both the bit-b&'led and the symbol-b&'led MAP algorithms have been detailed in [115]. 

5.3 Levenshtein distance 

There are various types of variable length codes. Huffman coding h&'l been considered &'l the most 

efficient code in terms of providing the shortest average symbol length. However, there are other 

VLCs, which are capable of outperforming Huffman codes in terms of other performance metrics, for 

example owing to their stronger error correction capability [164]. Reversible VLCs (RVLS) have the 

advantage of facilitating decoding from both ends of the received bit sequence, which is beneficial in 
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the event of losing symbol synchronisation owing to channel errors [144]. 

In the context of VLCs, the capability of correcting erroneous symbols is more important than 

correcting bits. In addition to using the most straightforward performance metric, namely the symbol 

error statistics b&'3ed on symbol by symbol comparisons, in this section we introduce the Levenshtein 

distance [165]. 

Since the variable length codes are capable of self-synchronisation, a single corrupted bit may not 

inflict severe error propagation. However, when insertion and/or deletion of VLC symbols occurs, 

a simple symbol by symbol b&'3ed comparison invoked for generating the &'3sociated symbol error 

statistics may not be a fair procedure. Hence in numerous research papers the Levenshtein distance 

was used for evaluating the associated symbol error statistics [153] [166] [167]. 

The Levenshtein distance was named after the Russian scientist Vladimir Levenshtein, who devised 

the concept. Since its introduction it has been used for quantifying the similarity of two strings. More 

specifically, the distance is defined &'3 the number of insertions, deletions or substitutions required 

for transforming one string into another. For example, let us &'3sume that string one is the word 

specification and the second string is also the word specification. The Levenshtein distance between 

these two strings is 0, since they are identical. If, however, the second string is specfication, then 

the Levenshtein distance is 1, since there is a deletion (a missing i), in the second string. As English 

words often contain some predictability or redundancy, despite the deletion of a character in the second 

string, we are able to recognise that the second string was meant to be specification. The associated 

symbol error rate in this C&'3e is 1/13, while the symbol error rate would be 9/13, if we used character 

by character b&'3ed symbol comparisons. 

5.4 Performance of VLCs as error correction codes 

As a benefit of the trellis-based decoding of the VLC introduced in Section 5.2, both the symbol-b&'3ed 

and the bit-b&'3ed approach is capable of facilitating their employment &'3 a weak error correction codec. 

Hence here we would like to characterise the achievable BER performance of the VLC using both the 

symbol-based and bit-b&'3ed decoding methods, when communicating over an AWGN channel. The 

parameters of the source codec used are listed in Table 5.1. 

Probability Huffman Code RVLC Code 1 RVLC Code 2 

0.33 00 00 00 

0.30 01 11 01 

0.18 11 010 10 

0.10 100 101 111 

0.09 101 0110 11011 

Average VLC symbol length 2.19 bits 2.46 bits 2.37 bits 

Rs 0.97 0.87 0.9 

Table 5.1: Source code parameters [153] 

Three different VLCs were designed and their code table is given in Table 5.1. In addition to 
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Channel AWGN 

Modulation scheme BPSK 

Block length 100 VLC symbols 

Source codec Huffman, RVLC Code 1, RVLC Code 2 &<; in Table 5.1 

Table 5.2: Simulation parameters for the symbol-b&<;ed VLC trellis decoding using BPSK modulation, 

when communicating over an AWGN channel. 

the cl&<;sic Huffman codec, two different types of RVLC are utilised. The first RVLC denoted as the 

RVLC Code 1 in Table 5.1 is symmetric and hence the associated binary encoded bits are identical 

with respect to the beginning and end of each VLC symbol, while the second RVLC in Table 5.1 is 

&<;ymmetric. As we can see in Table 5.1, the same original source symbol set results in a different 

average VLC symbol length after encoding by the above-mentioned three different encoding methods. 

In other words, the VLC h&<; a code rate Rs, which can be defined &<;: 

Rs = H/N, (5.14) 

where H is the binary entropy of the original source symbol set and N is the average symbol length 

&<; listed in Table 5.1. The binary entropy H can be calculated &<; [137]: 

(5.15) 

where Pi represents the ith symbol's probability of occurrence. By using Equation 5.15, the entropy of 

the source symbol set seen in Table 5.1 w&<; found to be 2.139 bits. Thus the corresponding code rate 

of each individual VLC code w&<; listed in Table 5.1. Given the above parameters, the corresponding 

E b/ No ratio of the system is calculated &<;: 

E /N, _ Ec 
b 0 - No' B . Rs . Rc ' 

(5.16) 

where Ec is the transmitted energy per modulated symbol, Rs and Rc represent the code rate of the 

source co dec and the channel codec, respectively, while B specifies the number of bits per symbol for 

the corresponding modulation mode utilised. 

5.4.1 Symbol-based VLC decoding performance 

The symbol-b&<;ed VLC decoding procedure &<;sumes that the receiver h&<; perfect knowledge of the 

number of symbols &<; well &<; the number of bits within a transmission block. The simulation param­

eters for the symbol-b&<;ed VLC decoding scheme are investigated &<; follows. 

As demonstrated in Figure 5.6, the RVLC 1 scheme achieves the best performance while the 

Huffman code exhibited the worst performance. Comparing these three source codecs in Table 5.1, 

we can observe that the Huffman code achieves the shortest average symbol length, while the RVLC 

1 arrangement has the longest average symbol length. In comparison to the entropy computed for 

the given set of symbol probabilities, the Huffman code's average symbol length is the closest, which 

configures that the Huffman coding is the most efficient way of encoding VLC symbols. By contrast, 
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Figure 5.6: Performance of symbol-based VLC decoding using the parameter summarised in Table 5.2 

when communicating over an AWGN channel. 

the RVLC 1 scheme has the longest average symbol length. By comparing the RVLC 1 and RVLC 2 

codewords in Table 5.1, it can be observed that the RVLC 1 scheme is a symmetric RVLC, while the 

RVLC 2 arrangement is an asymmetric one. Hence the RVLC 1 scheme has more residual redundancy 

in the code, and this redundancy is now exploited by the trellis decoding algorithm, resulting in the 

best error correction performance among the three VLC codec studied. 

5.4.2 Bit-based VLC decoding performance 

The symbol-based VLC decoding proposed by Hagenauer [154] assumes that the receiver has explicit 

knowledge of the number of symbols and the number of bits within a transmission block. Furthermore, 

the resultant symbol sequence is not designed for conveniently delivering soft information of each 

individual bit for the sake of exchanging information with other Soft In Soft Out (SISO) decoders. By 

contrast, the bit-based VLC trellis decoding algorithm of [153] invokes trellis decoding in a bit-by-bit 

manner, and the resultant bit-based soft information provides a convenient approach for constructing 

an iterative decoding scheme, when the VLC decoder is concatenated to other SISO decoders. A 

further advantage of the bit-based VLC decoding algorithm that it requires only the knowledge of 

the number of bits within the transmission block for constructing the decoding trellis, while the 

symbol-based VLC decoder required both the number of bits as well as the number of symbols. Our 

experiments using bit-based trellis decoding of VLCs will assume that the length of each transmission 

block expressed in terms of the number of bits transmitted is fixed. We will inform the receiver of 

the exact number of VLC encoding bits transmitted in the block with the aid of a side-information 

sequence, as seen in Figure 5.7. 

As seen in Figure 5.7, the overall length of the transmission block is fixed. At the beginning of 
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Figure 5.7: Transmission frame structure of bit-ba..'led VLC decoding, where the side information (the 

number of dummy bits and the number of VLC symbols) is repeated n times for the sake of invoking 

majority logic decision at the decoder. 

the transmission frame we include some side information for the sake of informing the receiver as to 

exactly how many VLC-encoded information bits are transmitted within the block. Following the side 

information the VLC-encoded information bits representing the original VLC-encoded source symbols 

are included. As seen in Figure 5.7, the side information is constituted by the information indicating 

how many dummy bits have to be included at the fixed-length transmission frame. The number of 

original VLC-encoded source symbols is also supplied to the decoder a..'l side information, each repeated 

n times for the sake of facilitating majority logic decisions, although this is not explicitly required by 

the bit-based VLC-decoder. Despite this extra protection, the side information may be corrupted and 

hence the synchronous detection of the transmitted frame cannot be guaranteed. The side information 

conveying the number of dummy bits and the number of VLC-encoded symbols is represented by using 

a binary vector. Since the size of the side information vector and the overall block length is fixed, the 

remaining capacity of the transmission frame dedicated to the VLC encoded information bits is also 

fixed. The encoder will map each source symbol to the binary representation of its VLC symbol and 

amp this binary information sequence to the transmission frame. It might occur that the incoming 

source symbols result in a transmission frame length which is longer than the remaining 'capacity' 

of the transmission block. In this ca..'le, the corresponding source symbol has to be mapped to the 

next transmission frame, and dummy bits will be inserted into the frame for the sake of filling up 

the la..'lt a few positions. Thus the maximum number of dummy bits that may have to be inserted 

into the block will be the maximum VLC-encoded symbol length minus one. Hence, the size of the 

binary vector required for representing the dummy bits is determined by the binary length of the 

longest VLC symbol. The maximum number of VLC-encoded symbols that can be mapped to a single 

transmission frame is approximately given by the transmission frame size divided by the minimum 

VLC symbol length. Thus the required size of the binary vector representing the number of symbols 

is log2(block size/minimum symbol length). The number of VLC symbols is also transmitted a..'l 

side information, although this is not necessary for the bit-ba..'led VLC decoding algorithm, a..'l stated 
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Channel AWGN 

Modulation scheme BPSK 

Block length 256 bits, including side information and dummy bits 

Source codec Huffman, RVLC Code 1, RVLC Code 2 of Table 5.1 

No. of side information repetitions 3 

Table 5.3: Simulation parameters for the bit-based VLC trellis decoder using BPSK modulation, when 

communicating over an AWGN channel. 

above. This information is nonetheless required for evaluating the symbol error statistics during the 

simulations. Transmitting this extra information will slightly reduce the achievable throughput, thus 

the simulation results to be provided in Section 5.5 and Figures 5.8 and 5.9 are slightly worse than in 

the scenario where the number of VLC symbols is not transmitted a..<; side information. The simulation 

parameters used for investigating the bit-ba..<;ed algorithm are given in Table 5.3. 
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Figure 5.8: Performance of bit-ba..<;ed VLC decoding using the parameters summarised in Table 5.3 

when communicating over an AWGN channel. 

In comparison to the results shown in Figure 5.6 for the symbol-ba..<;ed VLC decoding techniques, 

the three VLC source decoders using the bit-ba..<;ed algorithm exhibited a similar performance trend to 

each other. More explicitly, the three SER curves decay at a similar rate, which is different from the 

results recorded, when using the symbol-ba..<;ed algorithm, a..<; shown in Figure 5.8, where the Huffman 

code achieves the best performance, while the RVLC 1 arrangement the worst. More explicitly, the 

three VLC codecs have a similar BER performance when the bit-ba..<;ed VLC decoding algorithm 

is applied, although we observe three different BER performance curves owing to the Eb/NO shift 

according to Equation 5.16 imposed by taking into account the three different average VLC symbol 
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Figure 5.9: Performance of bit-b&'led VLC decoding using the parameters summarised in Table 5.3 

when communicating over an AWGN channel, when the entropy-b&'led shifting of the BER curves was 

not applied. 

lengths, when using the different source encoders. The fact that the three VLC codecs have a similar 

BER versus Eb/No performance is demonstrated in Figure 5.9, where in contrast to the Eb/NO curves 

of Figure 5.8, the BER curves were not shifted according to the different average symbol lengths of 

the three codes. Even though the source symbol sequence has a non-uniform probability of occurrence 

distribution, the VLC symbols will be mapped to bits, which will results in a uniformly distributed 

probability of encountering both a binary one and a binary zero. Since the bit-based VLC trellis 

decoding algorithm by definition operates on a bit-by-bit b&'lis, thus all the three bit-based VLC 

source decoder exhibits a similar performance. However, when the bit-b&'led VLC decoding scheme is 

concatenated with a range of other SISO decoders in Section 5.5, a different performance trend will 

be observed. 

5.5 Joint source and channel decoding using VLCs 

As discussed in Section 5.4.2, the trellis decoding of variable length codes is beneficial in the context 

of joint source and channel decoding, since the bit-based decoding of VLCs directly provides the bit 

probability, which can be exchanged iteratively with the channel decoder. In order to capitalise on 

these potential benefits, in this section, we invoke bit-based trellis decoding of VLCs in the context of 

iterative source and channel decoding. 

Figure 5.10 provides the detailed schematic of the joint source/channel decoding scheme considered. 

As seen in the figure, the channel decoder accepts both the soft output of the demodulator and the 

a priori source information produced by the source decoder as its input. Since in the first iteration 
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there is no a prion information, the source decoder typically delivers an a priori information of 0 

in the first iteration, which corresponds to having a probability of 0.5 for both a binary one and a 

zero. After channel decoding, the extrinsic information Extrinsic (c) of Figure 5.10 is produced and, 

together with the demodulator's soft output, this information is forwarded to the source after being 

deinterleaved for the sake of presenting the information bits in their original order of appearance. 

The Extrinsic information supplied by the channel decoder will act as the a priori information for 

the source decoder. Again, the source decoder will generate the extrinsic information Extrinsic (8), 

which will constitute the a priori information for the channel decoder. After the affordable number 

of turbo iterations h&") been reached, the output of the source decoder will be p&")sed to a sequence 

estimator. The sequence estimator in Figure 5.10 is necessary, because the received codewords are 

decoded in the source decoder block using the MAP algorithm operating on the bit-b&")ed VLC trellis, 

and the VLC MAP decoder attempts to maximise the a posteriori probability of each individual bit. 

Therefore, it is not guaranteed that the bit-stream output by the VLC MAP source decoder may be 

directly mapped to the VLC symbols. Hence the Viterbi algorithm is invoked in the sequence estimator 

block to provide the best possible VLC-string estimate of the entire bit stream, before outputting a 

legitimate sequence that is decodable by the bit to symbol mapper. 

In the rest of this section we will characterise the achievable performance of a joint source and 

channel codec. We will use three different SISO channel decoders, namely a convolutional code, an 

LDPC code and a turbo convolutional code for constructing a serially concatenated jointly decoded 

system, &") shown in Figure 5.10. The associated simulation parameters are summarised in Table 5.4. 

The number of LDPC iterations w&") set to five for the sake of maintaining a similar decoding com­

plexity &") that of the RSC(2,1,5) code for the sake of a fair comparison. The turbo channel decoder in 

Figure 5.10 used a single iteration, however the complexity of the turbo decoder w&") still twice that 

of the other two channel decoders, since it h&") two constituent RSC decoders. 

It can be observed in Figures 5.11 to 5.13 and 5.15 to 5.17 that when the VLC source codec is 

concatenated with a channel codec, the three different source encoding methods exhibit different per­

formance trends. Huffman coding h&") the minimum residual redundancy residing in the source code, 
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Channel AWGN,Uncorrelated Rayleigh 

Modulation BPSK 

VLC block length 1024 bits 

Side information repetition time 3 

Number of joint iteration 0,1,2,4 

Source codec Huffman, RVLC 1, RVLC 2 

Channel codec 

RSC(2, 1, 5) Generator Polynomial 23,35 

Code termination true 

Turbo Component RSC code RSC(2,1,5) 

Convolutional Puncturing pattern 10,01 

Code Number of TC iteration 1 

LDPC Column weight 3 

PCM construction regular 

Number of LDPC iterations 5 

Table 5.4: Simulation parameters for joint source and channel decoding, using the three VLC source 

codecs of Table 5.1. 

hence regardless of which of the three channel codecs is applied, the concatenated system achieves only 

a modest joint iteration gain. By contrast, the RVLC 1 source codec ha"l the longest average symbol 

length of 2.46bits/symbol, implying the presence of a higher amount of residual source redundancy 

which results in a more significant joint iteration gain being achieved. Finally, the RVLC 2 source 

codec ha"l an average symbol length of 2.37 bits/symbol, and hence the attainable performance of the 

RVLC 2 source co dec is in between that recorded for the Huffman codec and the RVLC 1 source codec. 

Furthermore, it can be observed in the Figures that the curves corresponding to RVLC 1 are steeper 

than those related to Huffman code and to the RVLC 2 scheme. This trend is particularly dominant 

when the schemes are concatenated with the turbo convolutional code and communicating over an 

AWGN channel, a"l shown in Figure 5.12. By observing the source code a"lsignment in Table 5.1 it can 

be observed that the distance between the VLC codewords is two for the RVLC 1 scheme, while it is 

only one for the Huffman code and the RVLC 2 code. As seen from Figures 5.14 and 5.18, for either 

an AWGN or an uncorrelated Rayleigh fading channel, the RVLC 1 code having a free distance of 

two had a superior performance in comparison to that of the other VLC codes having a free distance 

of one. Therefore, the free distance of the VLC code should also be taken into consideration, when 

designing a good VLC source codec. 

5.6 Complexity 

Since the decoding of VLC codes can be characterised by a trellis structure, thus the complexity of the 

VLC decoding can be quantified by the number of trellis transitions. The complexity of the symbol­

ba.'led MAP VLC decoding algorithm will be calculated on a per symbol ba.'lis, while for bit-ba.'led 

VLC decoding, the complexity per decoded bit will be quantified. 
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Figure 5~11: VLC SER versus Eb/No performance of the three VLC source codecs of Table 5.1 con­

catenated with the RSC(2,1,5) convolutional code of Table 5.4, when communicating over an AWGN 

channel. The VLC frame length wa.', 1020 bits, while the overall length of the transmission burst after 

channel encoding W3.'l 2048 bits. The number of joint iterations invoked W3.'l increased from 1 to 4. 

The VLC frame length was 1020 bits rather than 1024 bits for the LDPC C3.'le was because there are 

four termination bits required for the RSC(2,1,5) code during encoding. The required Eb/No of the 

various schemes at a BER of 10-4 will be summarised in Figure 5.14 and Table 5.5. 

For the case of the symbol-based trellis, the size of the trellis may become excessive, when the 

size of the transmission burst is increased. As seen in Figure 5.2, most of the time intervals will have 

a fixed number of trellis transitions, except at the beginning where the trellis start from zero state 

and at the final stage, where all transitions have to converge to a single final stage. Hence for a 

comparatively long block length we may deem the average number of trellis transitions to be constant, 

since the effect of the reduced number of transitions at the beginning and the end of the trellis may be 

neglected. Explicitly, the number of trellis transitions per time interval can be quantified as V max . T, 

where Vmax is the maximum number of trellis states as defined by Equation 5.2 and T is the size of the 

source symbol alphabet, i.e. the number of possible source symbols. In Equation 5.2 the knowledge of 

the number of transmitted VLC symbols and the corresponding number of bits per transmission block 

is a.'lsumed to be known, but the quantity V max will vary from block to block. However, statistically 

speaking, the average number of bits W per transmission block should be the average number of 

VLC symbols 0 times the average VLC symbol length. Thus, the longer the block, the higher V max 

becoma'l. Hence the complexity of the symbol-based VLC decoding algorithm increases, when a long 
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Figure 5.12: VLC SER versus E b/ No performance of the three VLC source codecs of Table 5.1 concate­

nated with the turbo convolutional code of Table 5.4, when communicating over an AWGN channel. 

The VLC frame length wa..s 1020 bits, while the overall length of the transmission burst after channel 

encoding wa..s 2048 bits. The number of joint iterations invoked wa..s increa..sed from 1 to 4. The VLC 

frame length wa..s 1020 bits rather than 1024 bits for the LDPC ca..se wa..s because there are four ter­

mination bits required for the turbo convolutional code during encoding. The required E b/ No of the 

various schemes at a BER of 10-4 will be summarised in Figure 5.14 and Table 5.5. 

transmission block length is encountered. 

When using a bit-ba..sed trellis, since the trellis structure only depends on the size of the VLC 

symbol alphabet, the a..ssociated decoding complexity is a constant and will be quantified below. 

The bit-ba..sed trellis structure of the three VLC codecs characterised in Table 5.1 can be found in 

Figure 5.19. 

As seen from Figure 5.19, the Huffman code ha..s 8 legitimate transitions. By contrast, the two 

RVLC codes both have 10 transitions. Thus the Huffman code is inherently less complex. Since the 

Log-MAP algorithm is used, the VLC decoding complexity may be approximated similarly to that of a 

turbo convolutional code, which wa..s estimated in [115] a..s 3 x no of transitions. The multiplier factor 

of 3 is present, because the MAP algorithm requires the calculation of the 0:, (3 and I terms, which 

implies that the decoder ha..s to traverse through the trellis three times. Therefore, the complexity of 

the bit-ba..sed VLC trellis decoding scheme can be quantified by the number of trellis transitions. The 

RVLC 1 and RVLC 2 schemes have a decoding complexity, which is about 25% higher than that of 

the Huffman code. 
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Figure 5.13: VLC SER versus Eb/No performance of the three VLC source codecs of Table 5.1 con­

catenated with the LDPC code of Table 5.4, when communicating over an AWGN channel. The VLC 

frame length wa..'l 1024 bits, while the overall length of the transmission burst after channel encoding 

wa..'l 2048 bits. The number of joint iterations invoked wa..'l increa..'led from 1 to 4. The required Eb/No 

of the various schemes at a BER of 10-4 will be summarised in Figure 5.14 and Table 5.5. 

5.7 Summary and conclusion 

Trellis ba..'led joint source/channel decoding scheme constitutes an efficient way of exploiting the resid­

ual redundancy inherent in the source-coded stream a..'l well a..'l imposed by the channel code. The 

symbol-ba..'led trellis decoding [154,161] of VLCs wa..'l introduced in Section 5.2.1. Buttigieg and 

Farrell [162,163]' as well as Bauer and Hagenauer [154] used the MAP algorithm for decoding VLC 

a..'lsumed perfect knowledge of the number of VLC symbols and the number of bits in the received block, 

which is unrealistic in practice. Furthermore, the size of the trellis constructed for the symbol-ba..'led 

VLC decoding algorithm is related to both the number of symbols and bits, thus for high-blocklength 

applications the trellis construction process might be memory-intensive. In order to improve the VLC 

symbol-ba..'led decoder's attributes, Hagenauer [153] proposed the employment of bit-based trellis de­

coding of the VLCs, which requires the knowledge of the number of bits in the transmission block, 

but not of the VLC symbols. Furthermore, the bit-ba..'led process is capable of providing bit-ba..'led soft 

information, which renders the message pa..'lsing in iterative joint source and channel decoding more 

straightforward. The VLC trellis ba..'led decoding uses a slightly modified MAP algorithm, which wa..'l 

outlined with the aid of Figure 5.4 in Section 5.2. 
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Figure 5.14: Eb/No required for achieving a SER=10-4 for the three VLC source codecs of Table 5.1 

concatenated with the three channel codecs of Table 5.4, when communicating over an AWGN channel. 

The VLC frame length wa.s 1024 bits, while the overall length of the transmission burst after channel 

encoding wa.s 2048 bits. The number of joint iterations invoked wa.s increa.sed from 1 to 4. 

When using the trellis-based VLC decoding algorithm, a VLC codec wa.s capable of acting a.s a 

weak error correction codec. The performance of the stand-alone VLC codec using symbol-ba.sed trellis 

decoding wa.s evaluated in Section 5.4.1. Since the symbol-ba.sed trellis is capable of exploiting both 

the symbol and bit-related received information, the symmetric-construction RVLC 1 scheme achieves 

the best performance amongst the three candidate schemes owing to the residual redundancy inherent 

in the code. When the bit-ba.sed trellis decoder is used for the three VLC codecs of Section 5.4.2, the 

three VLC codecs behave similarly to each other, since all the bit-ba.sed trellis decoding algorithms 

rely on exploiting bit-oriented information. Thus although the VLC source symbols have different 

probability of occurrence, when they are encoded to bits, the occurrence probability of a binary zero 

and binary one becomes similar. 

In Section 5.5, we proposed a jointly optimised source-channel decoding scheme and three different 

channel codecs were concatenated with the three VLC source codecs using bit-ba.sed trellis decoding. 

The performance of the joint source-channel coding scheme characterised in Figures 5.ll to 5.18 

wa.s evaluated in various concatenated scenarios and both the AWGN channel and the un correlated 

Rayleigh fading channel have been used for investigating the different behaviours of the various schemes 

in Figures 5.ll to 5.18. It wa.s concluded that although using a code having a longer average symbol 

length will reduce the coding efficiency of the source codec, when employed in an iterative scheme, 

the a.ssociated higher redundancy may be expected to benefit the scheme by exchanging extrinsic 
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Figure 5.15: VLC SER versus Eb/ No performance of the three VLC source codecs of Table 5.1 concate­

nated with the RSC(2,1,5) convolutional code of Table 5.4, when communicating over an uncorrelated 

Rayleigh fading channel. The VLC frame length wa..'l 1020 bits, while the overall length of the transmis­

sion burst after channel encoding wa..'l 2048 bits. The number of joint iterations invoked wa..'l increa..'led 

from 1 to 4. The VLC frame length wa..'l 1020 bits rather than 1024 bits for the LDPC ca..'le wa..'l because 

there are four termination bits required for the RSC(2,1,5) code during encoding. The required Eb/No 

of the various schemes at a BER of 10-4 will be summarised in Figure 5.18 and Table 5.5. 

information between the source and channel decoder, thus the overall system performance may be 

improved. Furthermore, it ha..'l been observed in Figure 5.12 that the RVLC 1 code ha..'l a fa..'lter 

convergence rate compared to the other two VLC coding schemes. This is a consequence of its higher 

free distance of two between the RVLC 1 scheme's codewords, while the other two VLC codecs have 

a free distance of one. Therefore, the free distance of the VLC codewords also beneficially contributes 

to the overall performance gain of the joint source and channel coding scheme considered. 

The choice of the VLC can be made with the aid of EXtrinsic Information Transfer chart (EXIT­

chart) analysis. The EXIT-chart wa..'l devised by ten Brink [107], where the iterative exchange of the 

extrinsic information can be graphically visualised. Therefore, the EXIT-Chart is extremely useful, 

when designing concatenated systems. The EXIT-chart analysis stipulates the a..'lsumption that both 

the input a, priori and the output a, posteriori information of the soft-in soft-out decoder are Gaussian 

distributed, provided the decoding blocklength is sufficiently long. The EXIT-chart of the three VLC 

codes shown in Table 5.1 are given in Figure 5.20. It can be observed from Figure 5.20 that the RVLC 

1 code having a free distance of two is capable of providing the best extrinsic information. By contrast, 
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Figure 5.16: VLC SER versus Eb/No performance of the three VLC source codecs of Table 5.1 con­

catenated with the turbo convolutional code of Table 5.4, when communicating over an uncorrelated 

Rayleigh fading channel. The VLC frame length wa.''l 1020 bits, while the overall length of the transmis­

sion burst after channel encoding was 2048 bits. The number of joint iterations invoked wa.'l increa.'led 

from 1 to 4. The VLC frame length wa.'l 1020 bits rather than 1024 bits for the LDPC ca.'le wa.'l 

because there are four termination bits required for the turbo convolutional code during encoding. 

The required Eb/NO of the various schemes at a BER of 10-4 will be summarised in Figure 5.18 and 

Table 5.5. 

the Huffman code is hardly contributing any extrinsic output. Therefore, when the Huffman code is 

used in the joint source-channel decoding scheme, little iteration gain can be achieved. 

The Eb/NO values required by the joint source and channel coding scheme parameterised in Ta­

ble 5.4 for achieving SER= 10-4 are summarised in Table 5.5, when communicating over an AWGN 

and an uncorrelated Rayleigh fading channel. As seen in Table 5.5, even though in some ca.'les the 

TC coded scheme performs better than the LDPC a.'lsisted scheme, the decoding complexity of the 

LDPCC is only about 50% of that of the turbo coded scheme. Therefore, the LDPC-a.'lsisted joint 

source-channel decoding scheme is our best design option. 
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Figure 5.17: VLC SER versus E b/ No performance of the three VLC source codecs of Table 5.1 concate­

nated with the LDPC code of Table 5.4, when communicating over an un correlated Rayleigh fading 

channel. The VLC frame length W8.'l 1024 bits, while the overall length of the transmission burst after 

channel encoding W8.'l 2048 bits. The number of joint iterations invoked was incre8.'led from 1 to 4. 

The required Eb/No of the various schemes at a BER of 10-4 will be summarised in Figure 5.18 and 

Table 5.5. 
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Figure 5.18: Eb/No required for achieving a SER=1O-4 for the three VLC source codecs of Table 5.1 

concatenated with the three channel codecs of Table 5.4, when communicating over an un correlated 

Rayleigh fading channel. A VLC frame length was 1024 bits, while the overall length of the transmis­

sion burst after channel encoding wa..<; 2048 bits. The number of joint iterations invoked wa..<; increased 

from 1 to 4. 
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Figure 5.19: Bit-based trellis structure for the three different VLC codes in Table 5.1. The dotted 

line represents the transition incurred by an input of binary 0, while the solid lines represents the 

transition triggered by an input of binary 1. 
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Figure 5.20: EXIT-chart for the five-symbol VLC codes specified in Table 5.1. 
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Channel Source Channel Eb/No(dB) required for 

codec codec achieving SER=1O~4 

o Iteration 1 Iteration 2 Iterations 4 Iterations 

AWGN Huffman RSC 5.36 5.24 5.24 5.24 

TC 4.3 4.24 4.24 4.24 

LDPC 3.96 3.84 3.84 3.84 

RVLC 1 RSC 4.36 3.36 3.18 3.12 

TC 3.94 3 2.72 2.6 

LDPC 3.96 3.18 2.96 2.84 

RVLC2 RSC 5 4.36 4.24 4.24 

TC 4.18 3.24 3.06 2.94 

LDPC 4 3.36 3.21 3.1 

Un correIa ted Huffman RSC 8.96 8.96 8.96 8.96 

Rayleigh I TC 7.44 7.33 7.33 7.33 

fading LDPC 7.00 6.88 6.88 6.88 

RVLC 1 RSC 7.28 5.68 5.28 5.12 

TC 6.88 5.44 5.11 4.94 

LDPC 6.88 5.61 5.27 5.22 

RVLC2 RSC 8.48 7.2 6.96 6.96 

TC 7.33 5.88 5.44 5.33 

LDPC 7.11 5.94 5.88 5.88 

Table 5.5: Eb/ No required for the joint source and channel coding schemes parameterised in Table 5.4 

to achieve SER=10~4, when communicating over an AWGN channel and an uncorrelated Rayleigh 

fading channel. 



Chapter 6 

Weighted Bit Flipping Decoding of 

LDPCC 

It h&') been demonstrated in Chapters 2, 3 and 4 that the achievable performance of LDPC codes 

may approach the Shannon limit, when using probabilistic decoding, also often referred to &') the 

Sum-Product Algorithm (SPA) [15, 99J. A specific drawback of this soft decoder is however that 

the &')sociated decoding complexity quantified in Section 4.3.5 is high. Furthermore, for the sake of 

achieving a good performance, the blocklength h&') to be comparatively long, hence the achievable 

performance improvement of the soft-decoded LDPC code is attained at the cost of a relatively high 

delay. 

The hard decision b&')ed Weighted Bit-Flipping (WBF) algorithm proposed by Kou et al. [83, 168J 

strikes a good trade-off between the achievable performance and the &')sociated decoding complexity. 

We will show in Section 6.1 that the WBF algorithm evaluates a specific error term En for each 

individual message node at position n b&')ed on all the check-nodes' information and during each 

iteration the binary value of the le&')t reliable message node having the highest error term En will be 

inverted. Kou's idea [83, 168J W&') further improved by Zhang et al. [lOlJ by jointly considering both 

the check-node-b&'led and the message-node-b&'led information upon introducing a weighting factor al 

when evaluating the error term En. This improved WBF will be referred to &'l the IWBF algorithm in 

our forthcoming discussion. Furthermore, Nouh et al. proposed the Bootstrap Weighted Bit-Flipping 

(BWBF) algorithm [102J. The BWBF algorithm determines, which particular received bit is unreliable 

by comparing it to an off-line-calculated threshold denoted &'l aBo The soft value of the unreliable bit 

will be er&'led and replaced by the best possible estimate of this particular bit generated by exploiting 

the knowledge of the reliable neighbouring message nodes. However, the WBF, IWBF and BWBF 

algorithms attribute the violation of a particular check exclusively to the le&'lt reliable message node 

participating in the check, while all the information that could be gleaned from the other participating 

check nodes is discarded. 

In this chapter, we commence by describing the WBF, the IWBF and the BWBF decoding algo­

rithms in Sections 6.1, 6.2 and 6.3, respectively. In Section 6.4, we propose a novel Reliability-Ratio 

b&'led Weighted Bit-Flipping (RRWBF) technique, which takes the soft information of all message 

nodes into account, which contribute to a specific parity check. Two worked decoding examples are 

provided in Section 6.5 for the sake of exemplifying the decoding procedures of the BWBF and the 
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RRWBF algorithms. The corresponding simulation results are summarised in Section 6.6 for the above 

mentioned four bit-flipping algorithms and finally a summary of the achievable performance gains will 

be provided in Section 6.S. 

6.1 Weighted bit-flipping algorithm 

Let us &c.;sume that an LDPC encoded codeword c is transmitted over an AWGN channel using BPSK 

modulation and a sequence of noise-contaminated soft-values y is received. Assume furthermore that 

a hard decision can be made concerning each individual bit b&c.;ed on y in order to generate the 

tentative codeword C, which is an estimate of C. When the received soft value Yi &c.;sociated with 

the ith message node h&c.; a low magnitude, then this bit will have a relatively low reliability. It is 

readily seen that for a binary LDPC code each violated check can be corrected by flipping the state of 

any of the message nodes participating in this check. B&c.;ed on this observation, the WBF algorithm 

attributes the violation of a parity check to the le&c.;t reliable message node. Below we will detail the 

decoding steps of the WBF algorithm. 

Algorithm 3 The Weighted Bit-Flipping (WBF) algorithm is described by the jollowing steps, which 

are also shown in Figure 6.1. 

1. Calculate the syndrome vector s by multiplying C with the transpose HT of the PCM 

using modulo 2 operations, as in Equation 2.5. If the resultant syndrome vector 

sis an all-zero vector, then we claim that a legitimate codeword has been found 

and the iterations are terminated. 

2. For each check node i, i = l···Nf, the WBF algorithm finds the magnitude of the least 

reliable received message bit, which obeys: 

yr'in = min IYtl, 
tECi 

(6.1) 

where the notation IYtl represents the absolute value of the tth received message, 

i . e . the magnitude of the tth channel soft output, while C i represents the set of 

column indices of the message nodes participating in the ith row of the PCM. 

3. For each message node j, j = 1· .. N, the error term E j is calculated as: 

E j = L (2s t - l)y;nin, (6.2) 
tERj 

where R j denotes the row indices of the check nodes participating in the jth column 

of the PCM. The term (2s t -1) in Equation 6.2 indicates that when the tth parity check 

is violated, i. e. when we have St = 1 and thus (2s t - 1) = 1, then the magnitude 

of the least reliable received message bit yrin is added to the error term Ej as 

in Equation 6.2. By contrast, when a specific parity check is satisfied, then we 

have (2s t -1) = -1 and hence yrin is subtracted from the error term E j of Equation 6.2. 



0.. 
;= 
o 
(1) 

0.. 

S· 

0 
0 
~ 
':Il 

~ 
(1) 
>-i 
(1) 

0.. 

~ 
~ 
>-i 
(1) 

en 
f-' m 

(1) 
o :::r. f-3 '"Ij o P"' ~ 
~ (1) ~ 
en ~ 0 
. 0 P"' 
f-' Pi [l:l 
rt rt >-i 

o S· ;:-
en ..- ""' 
~ > § 

?< S 
'<! ~ 
0.. tn· 
(1) ..... 

~ ~ o ()q 
rt rt 

f}l lr 
rt 0.. 
P"' (1) 
(1) 0 
v' 0 
~ 0.. o ..... 
o ~ 
?;"""()q 

v''d 
(1) >-i 
~ 0 
§ 0 

~ ~ .... 
rt >-i 
o f}l 

rt 0 lr >-h 
rt 

"'" P"' s:. (1) 

':Il 0' 
rt ""' (1) .... 

'd >-i 

o s: 
>-h rt 

I 

rt ::t> P"' ..... 
(1) 'd 
N '2. 

0;. ~ 
;:'-()q 

~ r 
()q U 
Sl "0 
:=t: Q 

8" ~ 
s· 8 
rt 0.. 
>-i (1) o >-i 
I ':Il 

,----.... 

WBF BWBF IWBF RRWBF 

Find Find Find 

aB aI 1Ii"(l;C 

(A3.l) (A2.!) (A4.1) 

! 
Identify 
lUlTeliable 

nodes 
(A3.2) 

t 
Update channel 
soft values for 

lUlTel~~ble nodes 
A3.3) 

~ 
Calculate symdrome vector and check whether a legitimate codeword has been fOlmd. ' 

If so, then tenninate the iterations. Otherwise continue the iterations, if the maximum number of iteration has not been exhausted. 

(AI. I )(A2.2)(A3.4)(A4.2) 

t 
Calculate 

Find the least reliable bit yrain RRij Qrr' bFI/yimu
; 

(only has to be computed for the first time) (only calculated once) 
(Al.2)(A2.3)(A3.S) (A4.3) 

t ~ 
E j == L,tERj (28t 1) Tr{'in E j L,tERj (28t 1)1/"'ill 

11t . . t 
E j == LtER, (28t 1)/ RRt -0;1 ·IViI 

(A1.3)(A3.6) (A2.4) (A4.4) 

• t • 
Flip the bit associated with the highest error tenn E j 

(AI.4 )(A2. S)(A3. 7)( A4.S) 
-_ ........ __ ...... _----

~ 
~ 
'1j 

~ 
;:r;J 
~ 

~ 
'-'i 

~ 
~ 
tJ 

~ 
hJ 

~ 
t:a 
'1j 

~ 
G) 

~ 
Q 
g 
~ 
G) 

~ 
t-< 

~ 
Q 
Q 

f-' 
en 
en 



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 167 

4. Flip the specific bit of the tentative codeword C having the highest error term 

Ej , and repeat steps 1, 3 and 4 until the syndrome vector s becomes an all-zero vector 

or the maximum affordable complexity has been exhausted. 

It can be observed that the real value yjin used during each iteration is calculated by the second 

step, which is excluded from the iteration loop of Figure 6.1. Thus the complexity of the WBF algo­

rithm is significantly lower than that of the probabilistic decoding algorithm outlined in Section 2.5.2. 

6.2 Improved weighted bit-flipping algorithm 

As seen in Equation 6.2, the WBF algorithm proposed by Kou et aJ. [83] only considers the check-node 

b&"led information during the evaluation of the error-term Ej. By contrast, the Improved WBF (IWBF) 

algorithm proposed by Zhang and Fossorier [101] enhanced the performance of the WBF algorithm, 

since it considered both the available check-node b&"led and the message-node b&"led information during 

the evaluation of E j . As seen from Equation 6.2, when the error-term E j is high, the corresponding 

bit is likely to be an erroneous bit and hence ought to be flipped. However, when the soft-value IYjl of 

a certain bit is high, the message node itself is demonstrating some confidence that the corresponding 

bit should not be flipped. Hence Equation 6.2 W&"l modified in [101] &"l follows: 

E j = .L (28t - l)y;nin - O:I ·IYjl· (6.3) 
tERj 

In Algorithm 4 , the WBF procedure algorithm will be used &"l a reference algorithm, and the dif­

ference of the other three algorithms in comparison to the b&"leline WBF algorithm will be highlighted 

using italics font. 

Algorithm 4 The Improved Weighted Bit-Flipping (IWBF) algorithm is described by the following 

steps, which are also shown in Figure 6.1. 

1. Pre-determine the optimal threshold O:I, which will be used in the evaluation of the error term 

Ej of Equation 6.3. 

2. Calculate the syndrome vector s by multiplying C with the transpose lIT of the 

PCM using modulo 2 operations as in Equation 2.5. If s is an all-zero vector, then a 

legitimate codeword has been found and the iterations are terminated. 

3. As the WBF algorithm, for each check node i, i = 1· .. !vI, the IWBF algorithm finds 

the magnitude of the least reliable original coded bit, which obeys: 

(6.4) 

where the notation IYtl represents the absolute value, i. e. the magnitude of the tth soft 

output of the channel. 

4. For each mes,mge node j, j = 1··· N, the error term Ej is calculated as: 

E j = .L (28t - l)y;nin - O:I ·IYjl· 
tER;J 

(6.5) 
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The term (2st - 1) in Equation 6.3 indicates that when the tth parity check is violated, i.e. when we 

have St = 1 and thus (2s t - 1) = 1, then the magnitude of the least reliable original coded bit y'!'in is 

added to the error term E j , as in Equation 6.3. By contrast, when a specific parity check is satisfied, 

then we have (28t - 1) = -1 and hence y'!'in is subtracted from the error term Ej of Equation 6.3. 

5. Flip the specific bit of the tentative codewordChaving the highest error term 

Ej , and repeat steps 2, 4 and 5 until the syndrome vector s becomes an all-zero vector 

or the maximum affordable complexity has been exhausted. 

Equation 6.3 considers the extra information provided by the message node itself, thus a message 

node having a higher soft-value magnitude hs.', a lower chance of being flipped, despite having a high 

error term E j owing to encountering unreliable parity checks. We note however that for LDPC codes 

having different column weights, or operating at different SNRs, we should weight the effect of the 

soft-value IYjl differently [101]. Thus, when Equation 6.3 is used for decoding a particular LDPC code, 

the optimum threshold value aI should be found experimentally. 

6.3 Bootstrap weighted hit-flipping algorithm 

The Bootstrap WBF (BWBF) algorithm wa<; proposed by Nouh et al. in [102]. Unlike the IWBF 

algorithm of Section 6.2, which modifies the evaluation of the error term Ei during each iteration, the 

B\VBF algorithm pre-processes the received soft value y, before the soft channel values are pa<;sed 

on to the WBF decoder. The BWBF initially compares the absolute magnitude of each message 

node's channel soft output to a channel-SNR dependent threshold an, which is determined using 

off-line investigations. If a certain message node ha<; a magnitude less than the threshold value, this 

message node is considered to be an unreliable node and thus era<;ed. Otherwise, the message node is 

considered to be a reliable node and the original channel soft value will be retained. After identifying 

all the unreliable message nodes, the reliability of the check nodes will be determined. A check node 

is deemed unreliable when there is more than one unreliable message node participating in this check, 

but a<; reliable otherwise. The soft value of the unreliable bits will be calculated a<; follows: 

(6.6) 

The variable Yj in Equation 6.6 denotes the channel's soft output for the jth bit, which ha<; been 

classified a<; unreliable, while yj represents the updated channel soft output for the lh bit. The notation 

Rj ha<; a similar meaning to that of Rj introduced in Section 2.5.2, while the extra superscript r in 

Equation 6.6 indicates that only the reliable checks will be considered during the BWBF algorithm. 

As seen in Equation 6.6 for each check that the lh message node is participating in, we have to find 

the magnitude of the lea<;t reliable message node, except for the lh message node. Furthermore, ba<;ed 

on the channel's soft output value corresponding to all reliable message nodes participating in the tth 

check, a hard decision can be made for the sake of producing a sequence of binary Is and as. Observe 

in Equation 6.6 that if we have an even number of binary Is in the sequence, the previously found 

magnitude of the lea<;t reliable message node will be multiplied by a plus one. By contrast, if there 

is an odd number of binary Is in the sequence obtained by hard decision, a multiplication of minus 

one is applied. When the soft value of the era<;ed unreliable message nodes is replaced by the values 
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calculated in Equation 6.6, the new soft sequence is pa.''lsed on to the WBF decoder for the sake of 

finding the most likely LDPC codeword. With the advent of these me&'3ura'3, the BWBF algorithm 

enhances the attainable bit error ratio performance by preventing unreliable information from being 

propagated through the nodes. It h&'3 been observed in [102] that at different SNRs the threshold an 

should be different. Hence we introduce the term normali8ed thre8hold denoted &'3 an = an/o-, where 

0- represents the standard deviation of the AWGN. As noted before the algorithmic steps printed in 

italics are those that are different from Algorithm 3. 

Algorithm 5 The Boot8tmp Weighted Bit-Flipping (B WBF) algorithm is de8cribed by the following 

8tep8, which are also 8hown in Figure 6.1. 

1. Determine the optimal normali8ed thre8hold an. 

2. Determine the unreliable mes8age node8 and check nodes. 

3. Use Eqllation 6.6 to update the channel'8 80ft output values for the llnreliable message nodes. 

4. Calculate the syndrome vector s by multiplying C with the transpose lIT of the 

peM using modulo 2 operations, as in Equation 2.5. Ifsis an all-zero vector, then a 

legitimate codeword has been found and the iterations are terminated. 

5. For each check node i, i = 1· .. N[, the WBF algorithm finds the magnitude of the 

least reliable original coded bit, which obeys: 

(6.7) 

where the notation IYtl represents the absolute value of the tth channel soft output. 

6. For each message node j, j = 1 ... N, the error term E j is calculated as: 

E j = .L (2s t - l)y;;,in. (6.8) 
tERj 

The term (2s t -1) in Equation 6.2 indicates that when the tth parity check is violated, 

i.e. when we have St = 1 and thus (2s t -1) = 1, then the magnitude of the least reliable 

original coded bit y~in is added to the error term E j , as in Equation 6.2. By contrast, 

when a specific parity check is satisfied, then we have (2s t - 1) = -1 and hence y~in 

is subtracted from the error term Ej of Equation 6.2. 

7. Flip the specific bit of the tentative codewordChaving the highest error term 

Ej , and repeat steps 4, 6 and 7 until the syndrome vectorsbecomes an all-zero vector 

or the maximum affordable complexity has been exhausted. 

6.4 Reliability-ratio based weighted 

bit-flipping algorithm 

It can be observed in Equation 6.2 that the WBF algorithm only considers the check-node-based 

information. This impediment has been improved by the IWBF algorithm in Section 6.2, which 
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additionally took into account the information allowing from the message-nodes by introducing the 

extra term cx·IYjl in Equation 6.3. Furthermore, by pre-processing and hence enhancing the soft values 

of the unreliable bits, the BWBF algorithm of Section 6.3 become.<; capable of improving the achievable 

bit error ratio performance. However, all the algorithms of Sections 6.1, 6.2 and 6.3 attribute the 

violation of a particular parity check to the most unreliable participating message node, while all the 

soft information of the other message nodes involved in this check is discarded. However, every message 

node involved in this specific check is contributing to its final check state. Thus, even though some 

of the message nodes have a higher confidence owing to their higher channel soft output magnitude, 

it is more accurate to state that they are less likely to violate the check. Hence, here we introduce 

a quantity termed as the Reliability Ratio (RR) , which will be used for improving the algorithm's 

achievable performance. As noted before, the algorithmic steps printed in italics are those that are 

different from Algorithm 3. 

Algorithm 6 The Reliability Ratio based Weighted Bit-Flipping (RRWBF) algorithm is implemented 

using the following steps, which also become explicit in Figure 6.1. 

1. Find the magnitude of the most confident message node in a particular parity check i, which is 

denoted by YT:wx. 

2. Calwlate the Reliability Ratio RRi,j of the /h meS,5O,ge node involved in the ith check as: 

(6.9) 

where CXrr represents a normalisation factor introduced to enSl1,re that we have LjECi RRi,j = l. 

3. Calculate the syndrome vectors by multiplying the tentatively decoded codeword 

C by the transpose HT of the PCM using modulo 2 operations, as in Equation 2.5. If s 

is an all-zero vector, then we assume that a legitimate codeword has been found and the 

iterations are terminated. 

4. Evaluate the error term Ei l1.8ing the reliability ratio calwlated in Equation 6.9 as: 

E j = I: (2st - 1)/ RRi,t. (6.10) 
tERj 

5. Flip the bit in C having the highest error term E j , and repeat steps 3, 4 and 

5, until the syndrome vector s becomes an all-zero vector or the maximum affordable 

complexity has been exhausted. 

The RRWBF algorithm has the advantage that the real-valued variable RRi,j does not have to be 

calculated during the later iterations. Furthermore, it will be demonstrated in Section 6.6 that under 

certain channel conditions, the attainable performance of the RRWBF algorithm become.<; superior in 

comparison to that of the WBF, the IWBF and the BWBF algorithms in Sections 6.1, 6.2 and 6.3. 

6.5 Decoding examples 

Hereby, two numerical examples will be given for illustrating the operation of the BWBF and RRWBF 

decoding algorithms. No worked examples are provided for the WBF algorithm, because it is embedded 
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in the BWBF algorithm. Furthermore, the IWBF algorithm of Section 6.2 includes a single additional 

term in the calculation of the error term Ei and thus it is fairly similar to the WBF algorithm, as 

it is seen by comparing the flow charts of these two algorithms in Figure 6.1. Hence the numerical 

illustration of the IWBF decoding process will be omitted. 

6.5.1 Bootstrap weighted bit-flipping decoding example 

The PCM illustrated in Table 2.5 will be used in this example. For the sake of simple illustration, we 

assume that an all-zero codeword is BPSK modulated and transmitted through an AWGN channel. 

The channel's soft output values can be found in Table 6.1. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

y +1.2 +0.9 +0.6 + 0.2 +0.7 -0.2 +1.6 +1.0 +0.7 +3.0 +2.0 +0.85 0.7 +0.6 +0.3 

C 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Table 6.1: The received channel soft output values for the all-zero transmitted codeword. The first 

line indicates the position of each individual bit. The vector C indicates the original LDPC coded 

bits at each particular position. The vector y shows the channel's soft output, while the vector z 

represents the tentative decoded bits b&')ed on C using hard decisions. 

It may be observed from the values summarised in Table 6.1 that the sixth bit is erroneous. We 

will show how the BWBF algorithm corrects this error. 

Upon invoking the first step of the BWBF decoding algorithm, a threshold value of CY13 = 0.25 

is chosen. Hence any bit that h&') a magnitude lower than 0.25 will be deemed unreliable and hence 

recalculated, continuing the second and the third step for BWBF decoder described in Figure 6.l. 

Observe in Table 6.1 that the fourth and the sixth bits fall into this category. Thus we will calculate 

the updated soft values of these two bits using the flow chart of Figure 6.1. Since the PCM given in 

Table 2.5 is used for this worked example, it is reproduced here for the convenience of the reader. 
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Message Nodes 

2 3 4 5 6 7 8 9 10 11 

1 0 1 0 0 0 0 1 0 1 

1 0 0 0 1 1 0 1 1 0 

0 1 0 0 0 1 0 0 0 0 

0 1 0 1 0 0 1 0 1 0 

0 1 0 1 0 0 1 0 0 0 

0 0 0 0 1 0 1 0 0 1 

0 0 0 0 0 1 0 0 1 0 

0 0 0 1 0 0 0 0 0 0 

1 0 1 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 1 0 1 

Table 6.2: The PCM H of Table 2.5 

12 13 14 15 

0 0 0 0 

0 0 0 0 

1 0 1 1 

0 0 0 0 

0 1 1 0 

0 1 0 0 

1 0 0 1 

0 1 1 1 

0 0 0 0 

1 0 0 0 
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By observing the structure of the PCM reproduced in Table 6.2, we can see by noting the positions 

of the Is in the fourth column that the fourth message node is participating in the first, the ninth and 

the tenth parity check, while the sixth one is involved in the second, the sixth and the ninth parity 

check. According to the definition of reliable check nodes, we can identify that the first and the tenths 

parity check are reliable checks, because the fourth message node is the only unreliable message node 

these two check nodes are connected to, &'l seen by jointly considering Table 6.1 and Table 6.2. For 

the same reason, the second and the sixth check nodes are also reliable nodes, they are only connected 

to a single message node which is unreliable, namely the sixth. By contrast, the ninth check node is 

unreliable, since it is connected to both the unreliable fourth and the sixth message node. Hence the 

ninth check will not be considered during the calculation of the updated channel soft values invoking 

Equation 6.6 for the fourth and the sixth message node. The soft values of the above two unreliable 

message nodes will be calculated &'l follows: 

Y~ = Y4 + 0.7 + 0.7 = 0.2 + 0.7 + 0.7 = 1.6, (6.11) 

where the first 0.7 term copied from the ninth column of Table 6.1 indicates that among all the reliable 

message nodes participating in the first parity check, the ninth message node h&'l the lowest magnitude 

of 0.7, because all the tentatively decoded bits of the first, the second, the ninth and the 11 th message 

nodes found in Table 6.1 are zeros. Thus according to Equation 6.6, 0.7 is multiplied by + 1, yielding 

the first 0.7 term in Equation 6.11. Following a similar philosophy, it may be readily shown that the 

tenth check will also provide a contribution of +0.7 to Equation 6.11. Similarly, the updated value Y~ 

determined for the sixth message node is calculated &'l follows: 

Y~ = Yo + 0.7 + 0.7 = -0.2 + 0.7 + 0.7 = 1.2. (6.12) 

From the results obtained in Equations 6.11 and 6.12, it can be observed that by invoking the 

BWBF algorithm, the soft values of the unreliable bits are enhanced. The fourth message node 

originally had a relatively low confidence of its own state while the sixth message node W&'l erroneously 

hard decoded. After the BWBF algorithm's pre-processing, the magnitude of the fourth message node 

W&'l incre&'led, and the sixth message node h&'l had its binary state corrected. By imposing a hard 

decision on the updated soft values of the two originally unreliable message nodes, a hard decision was 

made and hence we arrived at an all-zero codeword, which is multiplied by the transpose of the PCM 

in Table 6.2. An all-zero check vector is resulted, indicating that the decoded codeword is legitimate, 

&'l in the fourth step of Figure 6.1. Hence in this example, the BWBF W&''J shown to be capable of 

correcting the erroneous bits found during the pre-processing stage. If the resultant vector is not an 

all-zero vector, further steps will be required according to Figure 6.1. 

6.5.2 Reliability ratio based weighted bit-flipping 
Decoding Example 

Our RRWBF decoding algorithm example outlined in this section will be using the same experimental 

data of Table 6.1 &'l in Section 6.5.1. Similarly, the PCM of Table 6.2 will be used in this example. 

According to the first step in Figure 6.1, upon multiplying the tentative decoded codeword z seen in 

Table 6.1 by the transpose HT of the PCM given in Table 6.2, we arrive at the syndrome vector of 

{0l000l0010}, which is not the all-zero vector, indicating that the codeword W&'l corrupted. Therefore 
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the RRWBF algorithm of Section 6.4 is used for correcting it. More explicitly, we invoke Equation 6.9 

for each message node at their corresponding parity check, according to the third step of Figure 6.l. 

Note that the third step will only be calculated once, and in later iterations the reliability ratio will 

not be re-calculated. For example, the highest magnitude for all message nodes participating in the 

first check will be 2, which belongs to the 11 th message node, &'3 seen in Table 6.1. Thus, the reliability 

ratio of the other message nodes used in the first parity check is found in Table 6.3. 

Message Node Index j 1 2 4 9 11 

Reliability Ratio 1.2/2 0.9/2 0.2/2 0.7/2 2/2 

Normalised Reliability Ratio RRl.j 0.3 0.225 0.05 0.175 0.25 

Table 6.3: Normalised reliability ratios of the message nodes participating in the first parity check of 

Table 6.2. 

By carrying out the same calculations &'3 in Table 6.3, the corresponding reliability ratio values 

can be obtained at all parity checks, which are listed in Table 6.4. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.3 0.225 0.05 0.175 0.25 

2 0.14 0.031 0.25 0.1 0.469 

3 0.152 0.405 0.215 0.152 0.076 

4 0.185 0.09 0.1 0.15 0.462 

5 0.167 0.194 0.278 0.194 0.167 

6 0.051 0.256 0.513 0.18 

7 0.278 0.52 0.148 0.052 

8 0.305 0.305 0.26 0.13 

9 0.48 0.36 0.08 0.08 

10 0.053 0.186 0.533 0.228 

Table 6.4: Normalised reliability ratio for each message node participating in each individual parity 

check using the soft channel output values given in Table 6.1. 

B&'3ed on the normalised reliability ratio values calculated from Equation 6.10 and summarised in 

Table 6.4, the third step of the RRWBF outlined in Figure 6.1 is implemented and the error term El 

is calculated according to Equation 6.10 &'3 follows: 

El (28 1 -1)/RR1,1 + (284 -1)/RR4,1 + (289 - 1)/RR9,l 

[(2·0 - 1)/0.3J + [(2·0 - 1)/0.185J + [(2 ·1 - 1)/0.48J 

-3.33 + (-5.405) + 2.083 

-6.652, (6.13) 

where the variable 8i denotes the syndrome of the ith parity check previously calculated upon multiply­

ing the tentative decoded codeword z of Table 6.1 by the transpose HT of the PCM seen in Table 6.2. 

Since the ninth parity check is violated owing to the erroneous bit at position six, the syndrome bit 

89 becomes + 1, while the first and the fourth parity check is satisfied, hence the syndrome bits 81 and 

84 are zeros. By carrying out the calculation of the error term Ei for the remaining message nodes of 

Table 6.4, the error terms Ei &'3sociated with all the message nodes are summarised in Table 6.5. 

Upon identifying the specific bit having the highest error term of E6 = 50.29, the sixth bit in the 

codeword W&'3 flipped. As seen in the final step of Figure 6.1, since the only erroneous bit is flipped to 
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Message 

Node 

Index j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

E j -6.652 2.33 -18.74 -26.37 -13.7 50.29 -2.07 -3.39 -5.96 -1.96 -3.93 -12.5 -2.87 -16.41 

Table 6.5: The error term Ei of each individual coded bit evaluated from Equation 6.10 based on 

the received soft channel output value seen in Table 6.1 and on the normalised reliability ratio values 

summarised in Table 6.4. 

the correct state, a legitimate codeword is detected owing to a resultant all-zero vector generated upon 

multiplying the new tentative decoded codeword by HT. Hence the decoding process is terminated. 

6.6 Simulation results 

6.6.1 Effects of the number of iterations 

In the context of the probabilistic decoding algorithm described in Chapter 2, whether a bit should 

be flipped or not is decided in the probabilistic decoding algorithm on the basis of the updated a 

posteriori probability. Hence during each iteration the decoder is capable of flipping a certain number 

of bits. However, since the four hard decision ba.'led bit-flipping algorithms of Sections 6.1 to 6.4 only 

flip the specific bit having the highest error term E i , the number of correctable bit errors for each 

iteration is only one. Thus the number of decoding iterations directly affects the attainable BER 

performance. Therefore, we would like to demonstrate to what extent we can improve the achievable 

performance upon using an increa.'led number of decoding iterations. We will use three different-length 

half-rate regular LDPC codes for this experiment and the above-mentioned decoders of Sections 6.1 

to 6.4 will be used in order to demonstrate their different error correction capabilities. The detailed 

simulation parameters are listed in Table 6.6. 

It may be observed in Figure 6.2 that for the (200,100,3) LDPC code the maximum number of 

iterations required is less than 20. Similarly, for the (500,250,3) LDPC code characterised in Figure 6.3 

and for the (1000,500,3) LDPC code evaluated in Figure 6.4, no further BER performance improve­

ments may be attained, when the number of iterations becomes more than 40 and 80, respectively. 

Hence we can see in Figures 6.2 to 6.4 that when the code's blocklength is increa.'led, more iterations 

are necessary to eliminate the erroneous bits in the codeword. We can see from Figures 6.2 - 6.4 that 

setting the maximum number of iterations to 10% of the coded blocklength may be deemed suffi­

ciently high for fully exploiting the decoding power of the decoder. Thus in our future investigations 

we opted for setting the number of iterations to 10% of the LDPC code's blocklength. Furthermore, 

we can observe from Figures 6.2 - 6.4 that when only a low number of iterations is allowed, the BWBF 

algorithm achieves the best performance. In other words, the BER curves of the BWBF algorithm 

do not exhibit a.'l high iterative gains a.'l the other three counterparts. This is because during the 

initialisation process of the BWBF algorithm, a number of errors are already corrected, which is in 

contrast to the other three bit-flipping algorithms, which are only capable of correcting errors during 

the iterative decoding process. 

15 

-30.65 



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 175 

Modem BPSK 

Channel AWGN 

LDPC Code (200,100,3) 

Maximum Number 

of Iterations 5, 10, 20, 40, 60, 80, 100 

LDPC Code (500,250,3) 

Maximum Number 

of Iterations 10, 20, 40, 60, 80, 100 

LDPC Code (1000,500,3) 

Maximum Number 

of Iterations 10, 20, 40, 60, 80, 100 

IWBF optimum a] 0.4 

BWBF threshold an 0.5 

Table 6.6: Simulation parameters for three different-length half-rate regular LDPC codes. The LDPC 

coded bitstreams are BPSK modulated and are transmitted over an AWGN channel while invoking 

various maximum number of iterations. The IWBF algorithm used a] = 0.4 [101] and the normalised 

BWBF algorithm's threshold of 0.5 was taken from [102]. 

6.6.2 Reliability of the bit flipping algorithms 

Since all the four above mentioned bit-flipping algorithms of Sections 6.1 - 6.4 are b&<Jed on flipping 

the bits having the highest error term E i , we wiIl now investigate how accurate or reliable these 

algorithms are in terms of locating the erroneous bits by resorting to the calculation of E i . When a 

particular bit is flipped during the simulation, the updated state of this bit will be compared to the 

original coded bit. If these two states are identical, then this flip will be classified &<J a correct one. 

Otherwise the flip is classified &<J an incorrect one. We will quantify the percentage of both the correct 

bit flipping operations and the fraction of incorrect bit flipping actions upon normalising them to the 

total number of bits that have been flipped. The simulations were carried out using BPSK modulation 

when communicating over an AWGN channel. A half-rate regular (500,250,3) LDPC code W&<J used 

and the results are shown for the WBF, the IWBF, the BWBF and the RRWBF algorithms. The 

maximum number of iterations W&<J set to 60. 

It can be observed from Figure 6.5 that in the high-SNR region the bit-flipping algorithm is quite 

accurate in terms of locating the position of the erroneous bit. However, when the SNR is low, 

the IWBF algorithm and the RRWBF algorithm are superior in comparison to the other two owing 

to additionally considering the message-node-b&<Jed soft information. The WBF and the BWBF 

algorithms do not perform particularly well in the low-SNR region, because when the SNR is low, 

a check is often violated by more than one erroneous bits. Hence, the calculation of the error term 

Ei expressed in Equation 6.2 is not sufficiently reliable, when only considering the check-node b&<Jed 

information. 
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Figure 6.2: BER performance of the (200,100,3) regular LDPC code decoded by the WBF decoder, the 

IWBF decoder, the BWBF decoder and the RRWBF decoder, when communicating over an AWGN 

channel using BPSK modulation. The achievable coding gain of the various schema') at a BER of 10-4 

will be summarised in Table 6.11. 

6.6.3 Effects of the various blocklengths 

As seen in Chapter 2, the blocklength of the LDPC code is important, when using the probabilistic 

decoding algorithm of Section 2.5.2 owing to the associated increased minimum distance. In this 

subsection we will investigate the associated performance trends, when the blocklength of a half-rate 

LDPC code is increased. The corresponding simulation parameters are listed in Table 6.7. 

Observe in Figures 6.6, 6.7 and 6.8 that no significant coding gain can be achieved upon increas­

ing the blocklength when communicating over AWGN or uncorrelated Rayleigh-fading channel. By 

contrast, it is expected that over correlated fading channels longer codes will tend to perform better 

owing to their ability to cope with bursty channel errors. A BER performance comparison of the 

four bit-flipping algorithms is offered in Figure 6.9 for transmission over an AWGN channel. The 

RRWBF algorithm achieved the best performance, with BWBF algorithm obtaining a marginally 

inferior performance. 
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Figure 6.3: BER performance of the (500,250,3) regular LDPC code decoded by the WBF decoder, the 

IWBF decoder, the BWBF decoder and the RRWBF decoder, when communicating over an AWGN 

channel using BPSK modulation. The achievable coding gain of the various schemes at a BER of 10-4 

will be summarised in Table 6.11. 

6.6.4 Effects of using various code rates 

In this subsection, the BER performance of five regular LDPC codes having the same coded blocklength 

of 900 bits, but having a different code rate will be investigated, when communicating over AWGN 

channels. The simulation parameters are listed in Table 6.8. 

When the code rate is varied in the AWGN channel scenario considered, we observe from the 

results shown in Figure 6.10 that the higher the code rate, the higher the coding gain. This is because 

the slight SNR loss of higher coding rata'S is outweighed by their advantage of having significantly less 

parity bits. When we consider the uncorrelated fading channel, the performance trends associated 

with varying the code rate have changed, as evidenced by Figure 6.12. For the WBF, IWBF and 

BWBF decoder, the achievable BER performance becoma'S poorer, as the code rate is increased. By 

contrast, for the RRWBF decoder, the coding gain versus coding rate curve peaks around r = 0.75 and 

then it decays around r = 0.8. We can also see in Figure 6.12 that the performance of the RRWBF 

is in fact the worst in the uncorrelated Rayleigh fading channel at low code rata'S. This is because in 

the above experiments we were using a column-weight of three for all the LDPC decoders. However, 
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Figure 6.4: BER performance of the (1000,500,3) regular LDPC code decoded by the WBF decoder, 

the IWBF decoder, the BWBF decoder and the RRWBF decoder, when communicating over an 

AWGN channel using BPSK modulation. The achievable coding gain of the various schemes at a 

BER of 10-4 will be summarised in Table 6.11. 

since the RRWBF decoder calculates the reliability ratio b&'led on all the participating message nodes 

for a given check node, the decoder would benefit from having more samples for the sake of having a 

more accurate reliability ratio calculation. We can see that since in an AWGN channel the channel 

conditions are benign, the RRWBF decoder W&'l capable of confidently calculating the reliability ratio. 

However, when the channel becomes more hostile in a fading channel scenario and when a low code 

rate is desired, the row weight of the LDPC code's PCM becomes relatively low in comparison to that 

of a higher rate LDPC code. Hence, upon incre&'ling the code rate the RRWBF becomes capable of 

calculating the reliability ratio values more accurately. Observe however that in Figure 6.12 a lower 

coding gain W&'l achieved at r = 0.8 in comparison to r = 0.75, indicating that there is a trade-off 

between providing more accurate information for the RRWBF to calculate the reliability ratio and 

the &'lsociated error correction capability of the corresponding code rate. 

There is another way of improving the RRWBF decoder's confidence in calculating the reliability 

ratio. Specifically, we can incre&'le the column weight proportionately to the incre&'le of the row 

weight. Furthermore, upon incre&'ling the column weight the minimum distance of the LDPC code 
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Figure 6.5: Percentage of correct bit-flipping and incorrect bit-flipping for a half-rate regular 

(500,250,3) LDPC code, when communicating over an AWGN channel using BPSK modulation. The 

maximum number of iterations used for each decoder is 60. 

is also increa.'3ed. In Figure 6.13, we portray the BER versus EbjNO results for a (1000,500,5) LDPC 

code when communicating over un correlated Rayleigh fading channel, while having an average LDPC 

PCM column weight of five. 

To elaborate a little further, it can be seen from Figure 6.13 for a half-rate LDPC code having a 

codeword length of 1000 bits transmitted over an un correlated Rayleigh fading channel, that increa..'l­

ing the average column weight of the LDPC is beneficial for the RRWBF algorithm in terms of being 

capable of computing the reliability ratio more accurately. In Figure 6.14 the experiments conducted 

were similar to those in Figure 6.13 for the four bit-flipping decoders in Sections 6.1 to 6.4 having 

various coding rates. The coding gains achieved at a target BER of 10-4 are plotted in Figure 6.15. 

It becomes clear from Figure 6.15 that when the LDPC code's column weight is increa..'led in propor­

tion to the row weight, while aiming for a low coding rate, the RRWBF algorithm constitutes the 

best design option. However, when the code rate is increa..'led, the error correction capability of the 

RRWBF decoder in Section 6.4 decays fa..'lter than that of the other bit-flipping decoders introduced 

in Sections 6.1 to 6.4. For r > 0.66 and an average column weight of five, the BWBF decoder and the 

IWBF decoder of Sections 6.3 and 6.2 offered the highest coding gain. 

10 

10 
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Modem BPSK 

Channel AWGN 

Uncorrelated Rayleigh Fading 

LDPC Code (200,100,3) 

( 400,200,3) 

(600,300,3) 

(800,400,3) 

(1000,500,3) 

Maximum Number 10% of the 

of Iterations coded blocklength 

Table 6.7: Simulation parameters for five half-rate regular LDPC codes having various coded block­

lengths. 

Modem BPSK 

Channel AWGN 

Uncorrelated Rayleigh Fading 

Code (900,300,3) 

(900,450,3) 

(900,600,3) 

(900,675,3) 

(900,720,3) 

Maximum Number 

of Iterations 90 

Table 6.8: Simulation parameters for five regular LDPC codes having various code rate.." at a coded 

blocklength of 900 bits. 

Interestingly, if we compare the results of Figure 6.12 and Figure 6.15, we find that at a low 

code rate the performance of all the bit-flipping decoders improved when a higher column weight was 

invoked. However, the achievable error correction capability was impaired by increasing the column 

weight, when the code rate w&<; high, and simultaneously also the row weight w&<; high. More explicitly, 

in the context of bit-flipping decoders a higher row weight was capable of providing more confident 

information for the RRWBF decoder during the calculation of the reliability ratio. However, when 

the row weight is set to a high value, it may result in confusing the decoder, because the violation 

of a check might be inflicted by an increased number of unreliable message nodes. The decoder h&<; 

to choose a specific message node for bit flipping based on the calculated error term Ei from a large 

number of participating message nodes. However, its decision might not be sufficiently accurate owing 

to the low channel quality experienced. Hence, the employment of a lower column weight is suggested 

for high code rate applications, whilst opting for a slightly higher column weight may be suitable when 

the code rate employed is low. 
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Figure 6.6: BER performance of the five different-length half-rate regular LDPC codes listed III 

Table 6.7, which are decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and 

the RRWBF decoder, when communicating over an AWGN channel using BPSK modulation. The 

achievable coding gain of the various scheme.'s at a BER of 10-4 will be summarised in Figure 6.8 and 

Table 6.11. 

6.6.5 Performance comparisons against MAP decoding 

It become.') clear from the results of Section 6,6.4 that using a code rate around r = 0.66 has the 

highest coding gain when communicating over an AWGN channel. By contrast, for a soft decoder of 

length 3000 bits, the best coding gain was achieved at r = 0.33, as seen in Figure 2.20, Hence we now 

continue our discussions by comparing the performance of the family of bit-flipping decoders to that 

of the soft decision aided probabilistic MAP decoder of Section 2,5.2 at different coding rate.')_ The 

associated simulation parameters are listed in Table 6.9. 

It can be observed in Figure 6_16 that as the code rate increases, the BER performance of the 

LDPC codes studied does not suffer from dramatic degradation when decoded by the hard-decision­

based bit-flipping decoders of Sections 6.1 - 6.4. By contrast, the BER performance of the probabilistic 

decoder of Section 2,5,2 is degraded, when the code rate is increased. For example, at a code rate 

of r = 0.8, the performance of the probabilistic decoder is only about 1.5dB better than that of the 

RRWBF decoder. In the next section, we will compare the decoding complexity of different decoders. 
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Figure 6.7: BER performance of the five different-length half-rate regular LDPC codes li'lted in Ta­

ble 6.7, which are decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and the 

RRWBF decoder, when communicating over an un correlated Rayleigh fading channel using BPSK 

modulation. The achievable coding gain of the various schemes at a BER of 10-4 will be summarised 

in Figure 6.8 and Table 6.11. 

6.7 Decoding complexity 

In this section, the complexity of the above mentioned four bit-flipping based decoders of Sections 6.1 -

6.4 will be quantified. In each WBF algorithm iteration the specific bit having the highest error term E j 

will be flipped. The flipping of this particular bit will consequently toggle the state of We parity checks. 

Furthermore, each parity check's state change will affect the value of the error term Ej participating 

in this check, hence the 11Jr error terms E j associated with the message nodes and participating in this 

parity check have to be recalculated. Thus a total of We' Wr error terms have to be recalculated. The 

notation We and Wr has the same meaning as in Chapter 2, which represent the average column weight 

and average row weight of the PCM. When the WBF algorithm is invoked, the number of additions 

required is We, as seen by considering Equation 6.2. Hence wt . Wr additions are required by the WBF 

algorithm during each iteration. 

The IWBF algorithm is similar to the WBF algorithm as shown in Figure 6.1, but according to 

25 
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Figure 6.8: Coding gain versus blocklength performance at a target BER at 10 -4, extracted from 

the results shown in Figures 6.6 and 6.7, when communicating over both AWGN and uncorrelated 

Rayleigh fading channel. 

Equation 6.3 the weighting factor Ct1 ha..<J to be additionally multiplied by the magnitude of each bit 

and it has to be subtracted from the previously calculated Ei term. Hence the IWBF will require 

We . Wr extra additions and We . Wr extra multiplications during each iteration. 

By the same token, the BWBF algorithm operates exactly the same way as the WBF algorithm, 

a..<J in Figure 6.1. Hence the complexity a..<Jsociated with each iteration is the same as that of the WBF 

algorithm. 

The RRWBF algorithm only slightly modifies the WBF algorithm, since the reciprocal of the 

reliability ratio is used instead of using the minimum soft value within a specific row of the PCM, as 

seen in Figure 6.1 and Algorithm 6. Referring back to Section 4.3.5, the complexity of the probabilistic 

decoder was found to be 2weq additions and 7weQ multiplications per coded bit per iteration. For the 

(900,720,3) code characterised in Figure 6.16, the complexity of all the decoders involved in decoding 

a codeword is summarised in Table 6.10. The (900,720,3) code associated with We = 3, Wr = 15 and 

N = 900 was investigated and the bit-flipping decoder invoked 90 iterations, while the probabilistic 

decoder employed 15 iterations, where the specific number of iterations for the different decoders was 

chosen for the sake of fully exploiting the decoding power of the different decoders. 

It becomes explicit from Table 6.10 that the complexity of the bit-flipping algorithms is less than 

50% compared to that of the probabilistic decoder in terms of the number of additions required. 

Furthermore, in terms of multiplications, the probabilistic decoder exhibits a significantly higher 

decoding complexity than the rest of the decoders. Since a multiplication is deemed to impose a 

higher complexity than an addition, it can be concluded that the probabilistic decoder is significantly 
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Figure 6.9: BER performance of a (1000,500,3) LDPC code decoded by the four bit-flipping algorithms, 

when communicating over an AWGN channel. The simulation parameters are listed in Table 6.7. 

more complex than the bit-flipping decoders considered in Sections 6.1 - 6.4. 

6.8 Summary and conclusion 

In this chapter, we introduced a hard-decision ba..<Jed approach for decoding LDPC codes. The WBF, 

the IWBF and the BWBF algorithms were introduced and their advantages a..<J well a..<J disadvantages 

were identified. A novel reliability ratio ba..<Jed WBF algorithm wa..<J proposed and it wa..<J compared to 

the other three algorithms. Hereby, we would like to conclude by providing a table summarising the 

achievable coding gain versus various parameters extracted from the Figures provided in Section 6.6. 

As seen in Table 6.11, the major results of this chapter are summarised in terms of the achievable 

coding gain at a target BER of 10-4 . It can be observed in Table 6.11 that a..<J expected, in an 

AWGN channel the required number of iterations is proportional to the codeword blocklength, which 

is plausible on the ba..<Jis of the fact that each iteration allows the correction of a single bit. The BWBF 

algorithm achieves the highest coding gain during the first few iterations owing to the pre-processing 

of the unreliable message nodes. However, provided that a sufficiently high number of iterations 

ha..<J been carried out, the RRWBF achieved the highest coding gain compared to the other three 

algorithms. We can observe in Table 6.11 that by using a number of iterations which is about 10% 

of the codeword length will be sufficient for fully exploiting the error correction power of the decoder. 

Increa..<Jing the codeword length did not achieve a significant BER improvement in either AWGN or 

un correlated Rayleigh fading channels. Observe in Table 6.11 that when the rate of the LDPC code is 

varied in the AWGN scenario and an average column weight of three is chosen, the highest coding gain 
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Figure 6.10: BER performance of five regular LDPC codes having various code rata<; as listed in 

Table 6.8, decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and the RRWBF 

decoder, when communicating over an AWGN channel using BPSK modulation. The achievable coding 

gain of the various schema<; at a BER of 10-4 will be summarised in Figure 6.12 and Table 6.11. 

is achieved, when the code rate is high. However, as portrayed in Table 6.11, when communicating 

over un correlated Rayleigh fading channels, this performance trend was reversed in comparison to the 

AWGN scenario. As evidenced in Figure 6.11, the best BER versus Eb/No performance is achieved 

at a low code rate. Observe in Figure 6.8 that when a column weight of three is used, the RRWBF 

algorithm achieved the best coding gain performance, when communicating over an AWGN channel. 

By contrast, it constitutes the worst performance in terms of coding gain, when the un correlated 

Rayleigh fading channel is considered. As detailed in Section 6.6.4, the RRWBF's performance relies 

on the accuracy of the reliability ratio calculation. Therefore, when communicating over Rayleigh 

fading channels, a higher row weight is desired for a better estimation of the reliability ratio of the 

message nodes for this particular check. However, there is a trade-off between calculating the reliability 

ratio more accurately and having more message nodes participating in a single parity check, owing 

to the increased number of message nodes participating in a violated parity check. As observed in 

Figure 6.14 that when the average column weight of the LDPC code was incre&<;ed from three to five, 

the RRWBF algorithm achieved the best performance at a coding rate of r = 0.5. However, owing 

to having a high number of message nodes participating in a parity check when the column weight is 
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Figure 6_11: BER performance of five regular LDPC codes having various code rata'> as listed in 

Table 6.8, decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and the RRWBF 

decoder, when communicating over an un correlated Rayleigh fading channel using BPSK modulation. 

The achievable coding gain of the various schemes at a BER of 1O~4 will be summarised in Figure 6.12 

and Table 6.11. 

five and the coding rate is high, the coding gain performance of the RRWBF algorithm degrades the 

most dramatically, when the code rate is increased to r = 0.8. Hence, it is beneficial for the RRWBF 

algorithm operating under hostile channel conditions to have a row weight of approximately eight to 

ten, which will strike a good compromise between achieving an accurate reliability ratio calculation 

and having an excessive number of message nodes participating in a parity check. 

In conclusion, the bit-flipping algorithms were shown to be capable of maintaining a significantly 

lower decoding complexity compared to the probabilistic decoder of Section 2.5.2, at a Eb/No degra­

dation of about 1.5dB, as demonstrated in Figure 6.16 for a coding rate of r = 0.8 while invoking the 

RRWBF decoding algorithm. The proposed RRWBF algorithm of Section 6.4 constitutes an attractive 

design alternative to the existing bit-flipping algorithms. At a column weight of three and when com­

municating over an AWGN channel, the RRWBF decoder exhibited a better BER performance than 

the other BF decoders in many scenarios, although while sometimes it w&<; marginally outperformed 

by the BWBF algorithm. When operating in fading channels, the row weight of the LDPC code's 
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Figure 6.12: Coding gain versus code rate performance at a target BER at 10-4 , extracted from 

the results shown in Figura" 6.10 and 6.11, when communicating over both AWGN and un correlated 

Rayleigh fading channel. 

PCM has to be selected appropriately for the sake of computing the reliability ratio more accurately. 

When the code rate is varied as shown in Figura" 6.12 and 6.15, two different performance trends are 

observed for the RRWBF algorithm. When a column weight of three is used, the BER performance 

becoma" better upon increasing the code rate to r = 0.75 and then decades. By contrast, when a 

column weight of five is used, the BER performance becoma'l better at a low code rate, while degrad­

ing, when increasing the code-rate up to r = 0.8. This suggests that the row weight of the LDPCC 

should be carefully chosen, when communicating over fading channels. This is because a row weight 

between 7 - 10 will provide a good estimate of the reliability ratio of each message node. During the 

decoding process, the RRWBF algorithm requires no pre-processing and maintains a similar decoding 

complexity to the other bit-flipping algorithms. 
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Figure 6.13: BER performance of a half-rate regular LDPC codes having a blocklength of 1000 bits 

and an average column weight of five, which are decoded by the WBF decoder, the IWBF decoder, 

the BWBF decoder and the RRWBF decoder, when communicating over un correlated Rayleigh fading 

channel using BPSK modulation. The achievable coding gain of the various schema,> at a BER of 10~4 

will be summarised in Figure 6.15 and Table 6.11. 

Modem BPSK 

Channel AWGN 

LDPC code (900,600,3) 

(900,675,3) 

(900,720,3) 

Soft Decoder Probabilistic Decoder using 15 Iterations 

Hard Decoder WBF, IWBF, BWBF, RRWBF using 90 Iterations 

Table 6.9: Simulation parameters for LDPC codes using probabilistic decoder and bit-flipping decoder, 

when communicating over an AWGN channel using BPSK modulation. 
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Figure 6.14: BER performance of five regular LDPC codes having variolls code rate.', &'l listed in 

Table 6.8, decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and the RRWBF 

decoder, when communicating over an uncorrelated Rayleigh fading channel using BPSK modulation. 

An average column weight of five is used. The achievable coding gain of the various scheme.'l at a BER 

of 10-4 will be summarised in Figure 6.15 and Table 6.11. 

WBF IWBF BWBF RRWBF SPA Decoder 

+ 12150 16200 12150 12150 27000 

* 0 4050 0 0 94500 

Table 6.10: The number of arithmetic operations required by the various decoders, when decoding the 

(900,720,3) LDPC code, excluding the pre-processing operations such &'l finding the optimal weighting 

factor cq and aI3 for the IWBF and BWBF algorithms, respectively. The arithmetic operations 

required for the initialisation of the BWBF and the RRWBF during the update of unreliable message 

bits and the calculation of the reliability ratios are ignored, since these operations are only need to be 

carried out once. 
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Figure 6.15: Coding gain versus code rate extract from the results shown in Figure 6.14 for an 

uncorrelated Rayleigh fading channel using the LDPC codes of Table 6.8, with an average column 

weight of five. 
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Figure 6.16: BER performance of the three different-rate LDPC codes summarised in Table 6.9 in­

voking five different decoders, when communicating over an AWGN channel using BPSK modulation. 
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Parameters Coding Gain achieved at DER=10 4(dD) 

AWGN/Uncorrelated Rayleigh Fading 

WDF IWDF I3WDF RRWDF 

LDPC Various LDPC(200,l00,3) 1.4/18.6 2/20.85 2.08/22.62 2.13/17.08 
column blocklength LDPC(400,200,3) 1.65/19.38 2.1/20.92 2.46/23 2.48/18.23 

weight at half-rate LDPC(600,300,3) 1.75/19.46 2.3/21 2.62/23.15 2.73/18.23 
equals LDPC(800,400,3) 1.81/19.7 2.6/21.1 2.75/23.31 2.97/18.23 
three LDPC(1000,500,3) 1.83/19.77 2.9/21.15 2.81/23.19 3/18.23 

Various r = 0.33 0.81/19.7 0.91/20.54 1.86/23.38 2/16.38 
code rates r = 0.5 1.81/19.7 2.10/21 2.78/23.38 2.94/18.54 
at a codeword r = 0.66 2.16/18.46 2.78/20.54 2.78/22.15 3.02/18.92 
length of r = 0.75 2.24/17.08 2.86/19.93 2.89/20.85 3.16/19.3 
1000 bits r = 0.8 2.24/16.3 2.86/19.39 2.89/20.08 3.21/17.39 

Parameters Coding Gain achieved at DER=lO 4(dD) 

Uncorrelated Rayleigh Fading 

WDF IWDF I3WDF RRWDF 

LDPC Various r = 0.33 21.73 22.18 24.23 24.34 

column code rates r = 0.5 21.73 22.53 23.77 24.46 
weight at a codeword r = 0.66 20.36 21.84 22.3 22.2 
equals length of r = 0.75 17.18 19.68 19.8 15.02 
five 1000 bits r = 0.8 14.8 17.98 17.04 13.1 

Parameters Coding Gain achieved at DER=lO 4(dD) 

AWGN 

WDF IWDF I3WDF RRWDF 

LDPC LDPC(200,l00,3) Iteration = 5 0.98 1.07 1.98 0.98 
column Iteration = 10 1.4 1.9 2.07 2.025 
weight Iteration = 20 1.4 1.98 2.07 2.15 
equals Iteration = 40 1.4 1.98 2.07 2.15 
three, Iteration = 60 1.4 1.98 2.07 2.15 

Iteration = 80 1.4 1.98 2.07 2.15 
Various Iteration = 100 1.4 1.98 2.07 2.15 
number LDPC(500,250) Iteration = 10 1.23 1.23 2.48 1.24 
of Iteration = 20 1. 73 2.15 2.57 2.4 
iterations Iteration = 40 1. 73 2.15 2.57 2.65 

Iteration = 60 1. 73 2.15 2.57 2.65 

Iteration = 80 1.73 2.15 2.57 2.65 
Iteration = 100 1. 73 2.15 2.57 2.65 

LDPC(1000,500) Iteration = 10 0.48 0.48 2.15 0.48 

Iteration = 20 1.48 1.57 2.73 1.48 
Iteration = 40 1.82 2.19 2.82 2.7 

Iteration = 60 1.82 2.19 2.82 3.025 
Iteration = 80 1.82 2.19 2.82 3.025 

Iteration = 100 1.82 2.19 2.82 3.025 

Table 6.11: Achievable coding gain for the four bit-flipping decoders of Sections 6.1 - 6.4 when the 

number of LDPC iterations, the codeword blocklength, the code rate and the LDPC code's average 

column weight is varied. The results were extracted from the BER performance results provided in 

Section 6.6. 



Chapter 7 

Summary, Conclusions and Future 

Research 

In this conclusion chapter, a summary of the thesis will be provided and the novelty of our investiga­

tions will be highlighted. Additionally, some ide&'l will be provided for future research. 

7.1 Summary 

Gallager's original binary regular LDPC codes were introduced and investigated in Chapter 2. The 

concepts of row and column weight, cycles and the bipartite graph representation of the PCM were 

highlighted. LDPC codes can be defined by a sparse parity check matrix and they may be decoded 

by the sub-optimal sum-product algorithm for the sake of achieving near-capacity performance. The 

encoding and decoding processes of LDPCCs were introduced in Sections 2.4 and 2.5, with the aid of 

worked examples. Gallager's original work W&'l b&'led on binary LDPCCs. The b&'lic concepts of these 

codes and a generalized LDPC decoding procedure were introduced in Section 2.7 together with our 

generalized notation used for describing the LDPC decoding algorithm. These notations were used 

later in Chapter 3 and Chapter 4. The FFT-b&'led low-complexity decoding approach suggested by 

Richardson et al. [9] W&'l described in Section 2.7. 

The performance of various LDPC codes W&'l investigated for transmission over different channels. 

The family of LDPC codes h&'l attractive distance properties, provided that the all the columns have a 

weight no less than three. At a coded blocklength of 200 bits, the LDPC code exhibited no undetected 

errors, when communicating over an AWGN channel. It h&'l been observed that the LDPC code 

achieves most of the attainable iteration gain within ten to twenty iterations, while communicating 

over both AWGN and un correlated Rayleigh fading channels. The performance of LDPC codes W&'l 

benchmarked against that of turbo convolutional codes, demonstrating that LDPC codes are capable 

of achieving a similar BER performance to that of turbo convolutional codes. F\uthermore, at a high 

code rate LDPC codes may outperform turbo codes in the low-BER region. 

Coded modulation schemes are commonly used for jointly optimizing the coding and modulation 

stage of a system. A novel LDPC-aided block coded modulation scheme W&'l proposed in Chapter 2. 

The extra parity bits introduced by the LDPC code were absorbed by expanding the modulation 

193 
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constellation without extending the bandwidth. It was observed in Section 2.9.6 that the LDPC-BCM 

arrangement constituted a more attractive scheme in comparison to the TTCM benchmarker scheme 

in terms of the attainable BER performance, when communicating over uncorrelated Rayleigh fading 

channels. As shown in Figure 7.1, a binary LDPC aided joint coding and modulation scheme W8..'l found 

QPSK, illlcorrelated Rayleigh fading 

,~ I\;;. 0 LDPC 
0 TTCM 

" ------ LDPC 50iter 

'~ 

" 6 

y\ v, 

v 

\ \ () 

12 14 

Figure 7.1: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising QPSK when 

communicating over un correlated Rayleigh fading channels. 

to achieve an EbjNO gain of about 1.5 dB at a BER of 10-5 , when using 15 iterations in comparison 

to the TTCM benchmarking scheme using 4 iterations. The modulation scheme applied W8..'l QPSK 

and the effective system throughput W8..'l 1 BPS. 

Luby et al. [60] proposed the idea of constructing the LDPC PCM using a non-uniformly dis­

tributed density profile, rather than a uniformly distributed 8..'l initially suggested by Gallager [1]. The 

density evolution (DE) algorithm W8..'l proposed by Richardson et al. [9] for calculating the 8..'lymptotic 

performance of the LDPC code, given a specific density profile. This algorithm W8..'l simplified by 

Chung et al. [11] using the Gaussian approximation (GA) of the decoding information and the resul­

tant low-complexity DEGA algorithm W8..'l capable of providing an accurate performance prediction 8..'l 

the original high-complexity DE algorithm in [9]. Either the DE or the DEGA algorithm may be used 

to find the optimal density profile for a long LDPC code. Chung et al. demonstrated in [169] that 

LDPCC achieved a performance within 0.0045dB of the Shannon limit. It W8..'l shown in Section 3.8 

that the irregular LDPC PCM construction will often introduce weight-two columns, the minimum 

distance of irregular-construction LDPC codes does not incre8..'le linearly with the blocklength. How­

ever, when a long block length is considered, Richardson's PCM construction approach outlined in 

Section 3.8.1 will achieve a good BER performance. By contrast, it wa..<; shown in Section 3.8.2 when 

a moderate block length and high coding rates are considered, Richardson's approach will lead to an 

error floor. Therefore, Yang [127] suggested to limit the number of weight-two columns in the PCM 

and we may also aim for avoiding the weight-three columns and weight-four columns. This approach 

mitigates the error floor incurred by having a high number of weight-two columns in the PCM, which is 

achieved at the cost of an inferior BER performance in the low SNR region. B8..'led on the comparative 
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study of the two different PCM construction approaches devised by Richardson [9J and Yang [127], we 

found that it wa..'l more beneficial to use Richardson's approach, provided that the system's delay is 

not an important design constraint. By contrast, Yang's approach [127J may be implemented, when a 

moderate block length and/or high coding rate are desired. 

The idea of decoding LDPC codes over a non-binary field wa..'l devised by Davey and MacKay [54, 

55J. The family of non-binary LDPC codes ha..'l the advantage of forming cycles with a reduced 

probability, when compared to their binary counterparts. However, their drawback is that a non-binary 

symbol ha..'l a higher number of legitimate values. Furthermore, the a..'lsociated decoding complexity is 

also increased. Davey [54,56J further developed Richardson's FFT-ba..'led decoding algorithm [9J for 

the non-binary scenario, while ensuring that the decoding complexity does not increase exponentially 

with respect to the Galois field size. The family of non-binary LDPC codes was characterized in 

various scenarios and their performance wa..'l found to be sometimes better, sometimes worse than 

that of their binary counterparts. The symbol-based column weight of the non-binary LDPC code 

has to be carefully chosen for the sake of achieving a better performance. A bit-ba..'led LDPC space­

time diversity scheme wa..'l introduced by Meshkat and Jafarkhani [108J, which wa..'l characterized in 

Section 4.5. This scheme iteratively improves the soft channel output arriving at each receiver antenna 

with the aid of the extra a priori information provided by the LDPC code. The drawback of this 

scheme is that it a..'lsumes each individual bit in a pha..'lor constellation is independent, which is not 

true for a Gray-mapped constellation. Furthermore, the complexity of the iterative evaluation of the 

soft channel output increa..'les exponentially with respect to the number of transmitter antennas and 

the number of bits per modulation symbol. 

IO()~~~~~=-==~~~ Symbol-based + non-binary LDPC 
........ Bit-based + binary LDPC 

4QAM 
8PSK 
16QAM 

10'2 \ .... '" \ 
~5 
~ 
o:l 2 

\ 10'3 

Figure 7.2: BER performance of the bit-based and symbol-ba..'led MIMO systems summarized in Ta­

ble 4.18 utilizing both binary and non-binary LDPC codes, when communicating over an uncorrelated 

Rayleigh fading channel. 

Therefore, a novel purely symbol-ba..'led LDPC-ST scheme wa..'l developed by invoking Davey's 
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non-binary LDPC code as a powerful channel code. By using this symbol-ba.<'led LDPC-ST scheme, 

the decoding complexity wa.') significantly reduced in comparison to the bit-ba.')ed scheme proposed 

by Meshkat and Jafarkhani [108]. Furthermore, an improved BER performance wa.') also observed in 

Figure 4.24, when communicating over an un correlated Rayleigh fading channel using two transmitters 

and two receivers. As seen in Figure 7.2, the symbol-ba.,)ed MIMO schemes achieved an Eb/No gain 

of approximately 2 dB at a BER of 10-5 in comparison to their bit-ba.')ed counterparts having the 

same throughput, when operating over GF(4), GF(8), GF(16) and an uncorrelated Rayleigh fading 

channel. The LDPC-ST scheme wa.') also characterized in Section 4.7.3 at various throughputs, when 

benchmarked against a channel-coded G 2 scheme. It ha.') been found that when the required effective 

throughput is low, it is fea.')ible to concatenate Alamouti's G 2 code with a powerful channel code 

without having to expand the modulation constellation. However, when a higher effective throughput 

is desired, the LDPC-ST is superior in comparison to the G 2 coded scheme, since the simple 'repetition­

like-code' of G 2 is outperformed by the powerful non-binary LDPC code of the in LDPC-ST scheme. 

The idea of constructing a trellis structure for variable length codes wa.') proposed by Buttigieg and 

Farrell [161,163]. Ba.')ed on the trellis structure of Buttigieg and Farrell, Bauer and Hagenauer [154] 

used the MAP algorithm for decoding both symbol-ba.,)ed and bit-ba.')ed VLC codes. Ba.')ed on the 

work by Bauer and Hagenauer [153,154]' we serially concatenated a variable length source code with 

various channel codes and exploited the extrinsic information provided by the VLC decoder, which wa.') 

iteratively exchanged between the source and channel decoding stages. Several different VLCs were 

introduced in Table 5.1, namely the cla.')sic Huffman code and two different types of RVLCs. Using 

these different encoders led to a different code table and consequently different average VLC symbol 

lengths were obtained. Having different average VLC symbol lengths implies that the VLC symbols 

coded by various encoding schemes have different amount of residual redundancy in the symbols and 

this residual redundancy can be exploited for enhancing the achievable error correction capability. It 

wa.') observed in Figures 5.11 to 5.13 that the VLC having the highest amount of residual redundancy 

in comparison to the entropy and the highest free distance, namely the RVLC 2 scheme of Table 5.1, 

wa.') capable of achieving the highest iteration gain, when concatenated with a channel codec. 

Chapter 6 introduced the bit-flipping ba.')ed decoding of LDPCCs. It wa.') shown that the bit­

flipping algorithm is capable of operating at a significantly lower decoding complexity in comparison 

to the commonly used sum-product algorithm. However, the achievable performance of the bit-flipping 

algorithm wa.') found to be inferior to that attained by the sum-product algorithm. Hence, an improved 

weighted bit-flipping algorithm a.') well a.') a bootstrap decoding scheme were proposed in Sections 6.2 

and 6.3 for improving the attainable BER performance. These two improved schemes were ba.')ed on 

the philosophy of applying an optimized weighting factor during decoding, which wa.') obtained byoff­

line pre-processing. A further developed scheme ba.')ed on the so-called reliability-ratio wa.') proposed 

in Section 6.4, which required no a priori knowledge or weighting factor. This reliability-ratio ba.')ed 

bit-flipping algorithm ha.') been shown to be capable of outperforming the other bit-flipping algorithms 

considered, a.') evidenced in Section 6.6. 
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Figure 7.3: BER performance of a half-rate regular LDPC codes having a blocklength of 1000 bits 

and an average column weight of five, which is decoded by the WBF decoder, the IWBF decoder, the 

BWBF decoder and the RRWBF decoder of Sections 6.1 to 6.4, respectively, when communicating 

over an uncorrelated Rayleigh fading channel using BPSK modulation. 

7.2 Conclusion 

As evidenced by the results of Chapter 2, LDPC codes are attractive channel codes, exhibiting a 

performance close to that of turbo convolutional codes. Additionally, the family of LDPC codes h&'3 

numerous advantageous properties over turbo convolutional codes, such as for example exhibiting a 

reliable error detection capability; straightforward PCM construction; flexible adjustment of the code 

rate; a lower error floor than that of turbo codes when having PCM columns with a weight no less 

than three, etc. The novel LDPC-BCM scheme of Chapter 2 constitutes an application example of 

LDPC codes, where a powerful channel code W&'3 integrated with a modulation scheme and exhibited 

a better performance than the TTCM benchmarker scheme. As outlined in Chapter 3, upon using a 

non-uniform weight distribution of the PCM, the performance of regular LDPC codes can be further 

improved. Richardson's [9] and Yang's [127] irregular PCM constructions become beneficial in dif­

ferent applications. Richardson's approach can be used to achieve a good performance, provided the 

blocklength is sufficiently high. Therefore, Richardson's approach can be used for magnetic recording 

or broadc&'3t type applications. Yang's approach is more beneficial for employment in delay-sensitive 

applications, such &'3 interactive video or audio communications. These applications are capable of tol­

erating a higher error rate, but require a short delay. Both the DE &'3 well as the DEGA algorithms of 

Sections 3.4 and 3.5 have been frequently invoked for accurately predicting the convergence of LDPC 

codes. EXIT-charts have also been used for characterizing the convergence of LDPC codes [170]. Sayir 

et al. [170] invoked EXIT -charts for evaluating the decoding performance of the so-called sum-min 

algorithm. The decoding trajectory of LDPC codes can be conveniently visualized for the sake of 

characterizing and improving the convergence of the algorithm. By contrast, density evolution sim­

ply determines whether the code is powerful or not, without providing any indications, &'3 to how to 

improve it. 
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As evidenced in Chapter 4, non-binary LDPC codes [54,56J devised by Davey and MacKay were 

demonstrated to have a better BER performance than their binary counterparts, when the column 

weight is appropriately chosen, but this may not always be achieved. As outlined in Section 4.6, 

the bit-based LDPC-ST scheme of [10SJ was further developed to create a novel purely symbol-based 

scheme by invoking a non-binary LDPC code. This scheme performed better than the bit-based 

scheme of Meshkat and Jafarkhani [10SJ in terms of the achievable BER performance, while imposing 

a reduced complexity. Furthermore, the LDPC-ST scheme of [27J is attractive for employment in high 

throughput scenarios, i.e. when the required number of bits per symbol was relatively high. Since 

a high throughput may be achieved in a variety of ways, for example by increasing the number of 

transmit antennas, the number of modulation levels and the channel coding rate, therefore we aimed 

to find the optimum configurations at each possible effective throughput. However, increasing the value 

of either of the above mentioned parameters may result in some disadvantages. When the number of 

transmitters is increased, the receiver will receive the superposition of the faded symbols sent from each 

individual transmitter antenna. Hence it is difficult for the receiver to decide the values of the originally 

transmitted symbols. Furthermore, when the number of modulation levels is increased, the minimum 

Euclidean distances of the modulated symbols are gradually decreased. Consider BPSK, QPSK and 

SPSK for example. The minimum Euclidean distance of these three modulation schemes are reduced 

from 2 to 1.414 and further down to 1. A reduced minimum Euclidean distance will result in an 

inferior detection performance. Additionally, a higher channel coding rate wi1llead to a less powerful 

channel decoder. As shown in Figure 4.21, when the effective throughput was 2 bps, the LDPC­

ST scheme using 2 transmitters and a half-rate LDPC code as well a') QPSK modulation achieved 

the best performance. Comparing the 2-transmitter and 3-transmitter LDPC-ST configurations in 

Figure 4.21, it was observed that when the number of transmit antennas was fixed, invoking a high 

rate code in conjunction with a low number of modulation levels will be better than using a low rate 

code in conjunction with a high number of modulation levels. In the scenario when the channel code 

rate was fixed, the performance trends concerning the number of transmitters and modulation levels 

were unclear. For example, as shown in Figure 4.21, when the LDPC(1500,750) code was used, the 2-

transmitter scheme performed better than the 4-transmitter scheme. This was because the Euclidean 

distances for BPSK and QPSK are 2 and 1.414, respectively, while invoking the 4-transmitter scheme 

will result in each receiver receiving the superposition of four samples, which are received from each of 

the four individual transmitters. By contrast, as shown in Figure 4.22, the 3 bits per symbol effective 

throughput 3-transmitter QPSK scheme performed better than the 2-transmitter SPSK scheme. In 

this case, the Euclidean distance of SPSK is 1, which is smaller than the distance of QPSK and the 

increased inter-antenna interference of the 3-transmitter scheme does not significantly degrade the 

achievable performance. Therefore, the choice of modulation scheme and the number of transmitters 

has to be carefully considered, since the modification of each individual simulation parameter in a 

configuration as listed in Table 4.17 will improve or degrade the error correction capability of the 

overall system. 

As discussed in Chapter 5, the trellis structure devised for VLCs by Buttigieg and Farrell [162,163J 

was also used by Bauer and Hagenauer [154J. The authors invoked both symbol-based [154J and bit­

based VLC [153J decoding using the the MAP decoding algorithm [152]. A VLC can be used to act 

as a weak error correction code and it has been beneficially concatenated with other channel codes to 

construct a joint source and channel decoding scheme. It has been observed that maintaining a high 
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free distance for the VLC is important for the sake of providing reliable extrinsic information after 

VLC decoding, which will be fed to the channel decoder for the sake of achieving a high iteration 

gain. For the three VLC codes investigated in Section 5.4, the RVLC 1 arrangement portrayed in 

Table 5.1 and having a free distance of two performed better than the other two VLCs having a free 

distance of one. Even though the average symbol length of the RVLC 1 arrangement of Table 5.1 wa'l 

slightly higher than that of its other two counterparts, the a'lsociated extra redundancy provided more 

extrinsic information during the VLC decoding process. EXIT-charts were invoked for providing a 

graphically visualized insight in to the convergence of these soft-in soft-out decoders. Hence the EXIT­

chart enabled us to understand the behavior of each individual soft-in soft-out constituent decoder 

and facilitated the construction of attractive concatenated coding schemes. 

The family of bit-flipping algorithms wa'l studied in Chapter 6 and a novel RRWBF algorithm 

wa'l proposed in Section 6.4. The RRWBF algorithm wa'l contributed and wa'l found to have a good 

performance in comparison to the other existing bit-flipping algorithms, while avoiding the requirement 

of using any off-line pre-processing. The bit-flipping algorithms are low-complexity decoders, which 

require no multiplication operations during the iterative decoding process. This implies that the bit­

flipping algorithms of Chapter 6 are attractive in terms of having a low complexity, when compared 

to the sum-product algorithm of Chapter 2. A drawback of the bit-flipping algorithms is that they 

achieve an inferior performance in comparison to the SPA ba'led decoder. Hence, the bit-flipping 

algorithms are suitable for low-complexity applications, where achieving the highest possible error 

correction capability is not at premium. Additionally, there are other LDPC decoders, such a'l the 

sum-min decoder proposed by Sayir et aL [170]. This approach simplifies the complex SPA algorithm 

with the aid of carrying out low-complexity decoder post-processing, rather than choosing the tanh 

operations; a'l in the SPA, when decoding binary LDPCCs. This approach achieves a performance 

within 0.1 dB of the SPA algorithm and significantly reduces the complexity imposed, when the 

algorithm is implemented in hardware. 

7.3 Future Research Topics 

As demonstrated in Section 6.7, the bit-flipping algorithm ha'l a low complexity in comparison to the 

sum-product algorithm, when decoding a binary LDPC code. Since a higher decoding complexity will 

be encountered when decoding non-binary LDPC codes using the sum-product algorithm, a slightly 

more sophisticated symbol-flipping, rather than bit-flipping algorithm combined with the cla'lsic Cha'le 

algorithm [171] would be worth more research attention in the context of the non-binary LDPCC of 

Chapter 4. 

The EXIT-chart ha'l been demonstrated to provide a straightforward convergence-test approach, 

while constructing a two-stage concatenated scheme. However, when designing a more sophisticated 

scheme, such a'l a three-stage serial concatenated system combining a VLC decoder, an outer and an 

inner channel codec, constructing a three-dimensional EXIT-chart would be beneficial. Furthermore, 

the symbol-ba'led EXIT-chart recently contrived in the group would constitute an interesting research 

area and provide accurate prediction of the purely symbol-ba'led system's performance, when using 

the non-binary LDPC-ST scheme of Chapter 4. 

The non-binary LDPC code of Chapter 4 ha'l by now been combined with other modulation 
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10 20 30 

Figure 7.4: BER performance of a non-binary LDPCC a..'isisted slow frequency hopping 16FSK scheme 

communicating over a Rayleigh fading channel. The Eb/No used wa..'i 16 dB and a half-rate LDPC 

code having a coded block length of 2400 bits wa..'i invoked. 

schemes such a..'i sphere-packing [172] and MFSK modulation schemes in the group. A coding gain of 

2 dB ha..'i been achieved at a BER of 10-5 by the symbol-ba..'ied STBC sphere-packing scheme using a 

non-binary LDPC code against the benchmarking bit-ba..'ied STBC sphere-packing benchmark scheme 

combined with a convolutional codec, when communicating over a correlated Rayleigh fading channel 

having a normalized Doppler frequency of 0.1. Furthermore, a..'i shown in Figure 7.4, the non-binary 

LDPC code aided Slow Frequency Hopping (SFH) MFSK scheme achieved an E b/ No gain of about 13 

dB compared to the cla..'isic RS code a..'lsisted SFH-MFSK scheme at a BER of 10-5 . 

It appears promising to jointly optimize these two concatenated components and iterative message 

pa..'ising between the blocks might bring further extra benefits. 

As shown in Figure 3.14, message nodes having a higher column weight tend to their correct 

values more rapidly than those, which have a lower column weight. Therefore in video and audio 

applications, where unequal protection is desired, irregular LDPC codes may be employed to map the 

more important data to the high column weight nodes for the sake of ensuring the integrity of the 

video and audio stream. 



Appendix A 

Proof of Theorem 2.12 

Preparation 

In order to prove Theorem 2.11, the following lemma h&s to be proven first 

Lemma 1: Consider a sequence of Wr independent binary digits, where the zth bit is 1 with probability 

pl. Then the probability that an even number of digits is 1 is given by 

1 + rr~;l (1 - 2P/ ) 
2 

(A.l) 

Proof: First consider the function rr~l (1- p/ + P/t), t is just an arbitrary item in the polynomial 

which will be set to 1 later for the provement of the theorem. When this expression is expanded into 

a polynomial format in terms of t, the multiplicative coefficient of ti(i = 1...11Jr ) is the probability 

of i binary Is within these Wr binary digits. Let us also consider the function rr~;l (1 - P/ - P/t), 

which is identical except that the coefficients of all the odd powers of t are negative. Adding these 

two functions, all the coefficients of the even powers of t are doubled, ie, the probability that there is 

even number of digits will be doubled, and the odd powered terms disappear which means we throw 

away all the probability that there are odd number of Is in the sequence of Wr binary digits. So the 

addition of the two equation h&s to be halved to obtain the probability of an even number of Is. 

Finally, upon setting t = 1 and dividing by 2, the result is the probability of an even number of 

ones. Also since 

f1~-'"l(l-pl+pn+f1~l(l-Pl-pn _ 1+f1~-'"1(1-2P/) 
2 2 

Thus the Lemma is proved. 
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Appendix B 

Proof of Equation 2.11 

According to the Bayes' Rule 

P(AIB) = P(AB)/ P(B) 

So the following equations can be thus derived: 

Thus 

P[(.'Ej = 0) IS] = P[(Xj = 0) 1\ S]/ P[S] 

P[(.'Ej = 1) IS] = P[(Xj = 1) 1\ S]/ P[S] 
P[SI(.'Ej = 0)] = P[S 1\ (.'Ej = 0)]/ P[.'Ej = 0] 

P[SI(.'Ej = 1)] = P[S 1\ (Xj = 1)]/ P[.'Ej = 1] 

P[(.'Ej = 1)IS] = (P[.'Ej = 1]) X (P[SI(.'Ej = 1)]) 
P[(.'Ej = O)IS] P[Xj = 0] P[SI(Xj = 0)] 

Since p} = P[.'Ej = 1] and (1 - P}) = P[Xj = 0], so 

P[XJ = II{y}, S] = p} 1 (P(SI.'EJ : 1, {y})) 
P[.'EJ Ol{y}, S] 1 - Pj P(SI·'EJ - 0, {y}) 

(B.l) 

(B.2) 

(B.3) 

Given that .'Ej = 0, a parity check on the bit position j is satisfied, if the other(wr - 1) positions 

in the parity check set contain an even number of logical Is. Since all digits in the ensemble are 

statistically independent, the probability that all the We parity checks are satisfied is the product 

of the probabilities of the individual checks being satisfied. Using Lemma 1 this is identical to the 

probability of having an even number of logical Is, which is given by: 

(BA) 

P(SIXj = 0, {y}) = j] [1 + rr~;l~(1 - 2P/z) 1 (B.5) 

Upon substituting B.4 and B.5 into B.3, the theorem is thus proven. 
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Appendix C 

Generation of the Companion Matrix 

Over the GF(23 ) decoding field, there are 8 possible non-binary symbols, namely 0 ... 7. We may 

represent these eight symbols using the notation O;i in Table C.l, where 0; is a zero of the primitive 

polynomial p(x) = ;1;:3 +;1; + 1. 

Since the decoding field size is GF(8), each non-binary symbol O;i can be represented by a three-bit 

binary stream. More explicitly, because 0; is a zero of the polynomial p(x), thus we have 0;3 +0;+ 1 = 0, 

which can also be represented as 0;3 = 0; + 1. Since the decoding field is GF(2 3 ), hence we will use 

0;2,0;1 and 0;0 to represent all the non-binary symbols over GF(8) 

0;0 0;0 = 1 

0;1 0;1 

0;2 0; 2 

0; 3 0;+1 (C.1) 

0;4 0; . 0;3 = 0;2 + 0; 

0;5 0;2 . 0;3 = 0;2 + 0; + 1 

0; (i 0;2 . 0;4 = 0;2 + 1. 

Upon mapping the results in the set of Equations C.l, we arrive at Table C.2: 

The binary companion matrix Ti for the non-binary symbol O;i is defined a.''3 [173J: 

where each column is represented in the binary form of O;i a.'S in Table C.2. 

Symbol index 0 1 2 3 4 5 6 7 

0; representation 0 1 0; 0; 2 0; 3 0;4 0;5 0; (i 

Table C.l: Representation for the eight non-binary symbols over GF(8). 

203 



APPENDIX C. GENERATION OF THE COMPANION MATRIX 204 

Symbol 0; Results 0;0 0;1 0; 2 

index representation from Equ. C.1 

0 0 0 0 0 0 

1 1 1 1 0 0 

2 0; 0; 0 1 0 

3 0; 2 0; 2 0 0 1 

4 0; 3 0;+1 1 1 0 

5 0;4 0;2 +0; 0 1 1 

6 0;5 0;2 + 0; + 1 1 1 1 

7 0; 0 0;2 + 1 1 0 1 

Table C.2: Mapping table from non-binary symbols defined over GF(8) into the three-digit binary 

form. 

Therefore, we arrive at: 

r i ~2 ] U 
0 n 1: To = 0; 1 

0 

r ~ ~3 ] r~ 
0 

~]; 0;: Tl = 2 0 0; 

1 

r ~2 ~' ] r ~ 
1 

:] 0;2: T2 = 3 1 0; 

0 

r ~3 ~5 ] L 
0 : ] ; 0;3: T3 = 0;4 1 

1 

r ~' ,;" ] r; 
1 

~ ] 0;4: T4 = 0;5 1 

1 

r ~5 ~7 ] r i 
1 

~] ; 
0;5: T5 = 0 0 0; 

1 

U ~8 ] r ~ 
1 

~] 0;6: To = 0;7 0 

0 

Thus the binary companion matrices for the eight non-binary symbols are obtained. Upon replac­

ing the non-binary symbols defined over GF(8) by their corresponding binary companion matrices 

obtained here, we arrive at the binary equivalent PCM of the LDPC PCM constructed over GF(8), 

&'l shown in Figure 4.2. 



List of Symbols 

General notation 

• The superscript * is used to indicate complex conjugation. Therefore, a* represents the complex 

conjugate of the variable a. 

• The superscript T is used to indicate matrix transpose operation. Therefore, aT represents the 

transpose of the matrix a. 

• The superscript -1 is used to indicate inverse matrix operation. Therefore, a-I represents the 

inverse matrix of the matrix a. 

• The notation ® denotes the convolution operation. Therefore, a ® b represents the convolution 

of the variables a and b. 

• The notation x represents the estimate of .7:. 

• The notation F(f) is the Fourier Transform of f(t). 
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Special symbols 

GF(q): Galois Field of size q. 

H: Binary parity check matrix of an LDPC code. 

Hq : Non-binary parity check matrix of an LDPC code defined over GF(q). 

G: Binary generator matrix of the LDPC code. 

Gq : Non-binary generator matrix of an LDPC code defined over GF(q). 

'KxK: A (K x K)-dimensional identity matrix. 

N: Number of LDPC coded bits, i.e. the number of columns in an LDPC code's PCM. 

!v!: The number of rows in an LDPC code's PCM. 

K: Number of LDPC information bits, i.e. N - !v!. 

N q : Number of non-binary LDPC coded symbols, i.e. the number of columns in a non-binary 

LDPC code's PCM. 

!v!q: The number of rows in a non-binary LDPC code's PCM. 

K q : Number of non-binary LDPC coded information symbols m a codeword, where we have 

Nq - M q . 

C: Codeword vector. 

5: Source information vector. 

P: Parity-bit vector. 

(N, K): A binary LDPC code having K number of input information bits and N coded bits. 

(N, K, we): A binary LDPC code having K number of input information bits and N coded bits, where 

the average column weight is We' 

(Nq , Kq)q: A non-binary LDPC code defined over GF(q) having K number of input information 

symbols and N q coded non-binary symbols. 

We: A verage column weight of the LDPC's PCM, i.e. the average number of non-zero entries in 

a column (binary or non-binary). 

Wr: Average row weight of the LDPC's PCM, i.e. the average number of non-zero entries in a 

row (binary or non-binary). 

Pja: The probability that the jth LDPC coded symbol is in state a. 
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Pr(Xj): The intrinsic probability ratio of the lh coded bit. 

P R(.7:j): The a posteriori probability ratio of the lh LDPC coded bit. 

Rff The probability that the lh LDPC coded symbol is in state a, b&'led on the probability 

distributions of other coded symbols participating in the ith parity check. 

Qa . 
i,j' 

P a. 
i,j' 

PRi,j: 

The probability that the lh LDPC coded symbol is in state a, b&'led on the probability 

distributions of the coded symbols provided by all other parity checks, excluding the ith 

parity check. 

Same &'l Qf,j' 

Same &'l R?,j I RL· 

Same &'l Q?jQL. 

log(Q?jQt)· 

log(Rtl RI)· 

Row indices of all the non-zero entries participating in the ith column of the PCM. 

Column indices of all the non-zero entries paritipating in the ith row of the PCM. 

Number of coded bits of a convolutional code. 

Number of input bits of a convolutional code. 

Constraint length of a convolutional code. 

The column density distribution of an irregular LDPC code's PCM. (Edge perspective) 

The row density distribution of an irregular LDPC code's PCM. (Edge perspective) 

The column density distribution of an irregular LDPC code's PCM. (Node perspective) 

The row density distribution of an irregular LDPC code's PCM. (Node perspective) 

Q(l): A set of Qi,j, i 1 ... !'vi, j = 1 ... N values after the lth iteration. 

R(l): A set of Ri,j, i = 1 ... !'vi, j = 1 ... N values after the lth iteration. 

N: Average VLC symbol length. 

u: Source symbol stream. 

b: VLC encoded bit stream. 

H(U): The binary entropy of the set of VLC codes (U). 

lmax: Maximum VLC symbol length. 

lmin: Minimum VLC symbol length. 

0: Number of source symbols in a block. 
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W: Number of VLC encoded bits in a block. 

c(i): Encoded VLC symbol for the ith source symbol. 

v k : Trellis state of the VLC at the kth symbol instant. 

T: Number of possible source symbols. 

RS: Source code rate. 

W k : The number of legitimate VLC trellis states at the kth symbol instant. 

Ei : Error term used in the WBF algorithm for the ith coded bit. 

Si: Syndrome of the ith parity check. 

(XI: Optimum weighting factor used in the IWBF algorithm. 

an: Normalised BWBF threshold weighting factor. 

RRi,j: Reliability ratio value of the ;th coded bit participating in the ith parity check. 

D: A posteriori LLR value used in the EXIT-chart investigations. 

A: A priori LLR value used in the EXIT-chart investigations. 

Z: Channel LLR value. 

E: Extrinsic LLR value. 

df : Free distance. 
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