UNIVERSITY OF SOUTHAMPTON
Faculty of Engineering and Applied Science

School of Electronics and Computer Science

Low Density Parity Check Coding

by

Feng Guo

A thesis submitted in partial fulfilment of the
requirements for the award of Doctor of Philosophy

at the University of Southampton

January 2005

SUPERVISOR: Prof. Lajos Hanzo
FREng, FIEEE, DSc, Dipl Ing, MSc, Ph.D



This thesis is dedicated to:
My mum A. S. Xu, my dad S. R. Guo and grandma C. Z. Wu in Shanghai for

their love and care since my birth.



UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Low Density Parity Check Coding

by Feng Guo

This thesis explores the properties of the family of Low Density Parity Check Codes (LDPCC). In addition to
Gallager’s original binary regular LDPCCs, the class of irregular LDPCCs and non-binary LDPCCs developed
from the binary regular LDPCC is also studied. Further, a novel reliability ratio based bit flipping decoding
algorithm is proposed for providing a low-complexity decoding solution. A novel three-layer iterative decoding
scheme is also designed for the symbol-based joint decoding of non-binary LDPCC aided space-time coding
operating at a low complexity. Furthermore, classic binary LDPCCs have been concatenated with both space-

time coding and source coding schemes for the sake of enhancing the achievable system performance.

Gallager’s binary regular LDPCCs achieve a near-capacity performance, while maintaining a relatively
low decoding complexity. Furthermore, Gallager suggested that the family of LDPCCs exhibits good distant
properties, provided that certain Parity Check Matrix (PCM) construction constraints are satisfled. A novel
LDPC Block Coded Modulation (LDPC-BCM) scheme was proposed, which was shown to outperform the Turbo
Trellis Coded Modulation (TTCM) based benchmark scheme by 1.5 dB at a BER of 1075, when communicating
over an uncorrelated Rayleigh fading channel using QPSK modulation, while maintaining an effective throughput
of 1 bit per symbol. Rather than assigning each message node or check node in the PCM a constant weight,
the class of irregular LDPCCs constructs the PCM using a pre-determined density profile, i.e. provides a non-
uniform weight distribution. This approach may introduce weight-two message nodes into the PCM, which
can result in less attractive distance properties for the code, potentially resulting in an error floor. Hence, a
technique referred to as Yang’s method is invoked for reducing this potential error floor, while still benefiting
from the irregular construction of the PCM. We found that the employment of Richardson’s PCM construction
approach is more feasible applications, which are not delay sensitive, while Yang’s approach is more attractive

in applications having a moderate coded block length, especially at high coding rates.

Davey and MacKay further developed the family of LDPCCs in order to create non-binary LDPC codes.
The advantage of non-binary LDPCCs is that they may achieve a reduced probability of incurring short cycles
in the PCM in comparison to the LDPCCs having an equivalent binary PCM. However, non-binary LDPCCs
do not always perform better than binary LDPCCs. The choice of the decoding field, column weight and also

the coding rate will affect the attainable performance of non-binary LDPCCs.

We have applied these non-binary LDPCCs to design a purely symbol-based joint decoding and demodula-
tion aided transmit diversity scheme, which is capable of exploiting the soft information generated by the LDPC
decoder by re-evaluating the soft channel output provided by the demodulator. Upon employing non-binary
LDPCCs defined over the Galois field GF(g) chosen according to the specific modulation scheme used, the
proposed non-binary-LDPCC aided transmit diversity scheme achieved a coding gain of nearly 2dB at a BER

ii



of 1075 in comparison to the bit-based binary-L.DPCC aided benchmark scheme, when communicating over an
uncorrelated Rayleigh fading channel. Furthermore, as a benefit of the low-complexity FFT-based decoding
approach of the non-binary LDPCC, upon invoking the proposed symbol-based LDPC-aided space-time coding
scheme, we benefit from both an improved BER performance and a reduced decoding complexity.

Variable Length Coding (VLC) schemes are widely used for the sake of bit rate reduction during the source
coding stage. Two trellis-based VLC MAP decoding schemes, namely the symbol-based and the bit-based
trellis decoding algorithms were proposed by Bauer and Hagenauer. We have applied this soft output decoding
algorithm to provide a solution for iterative joint source and channel decoding. Various VLC coding schemes
are investigated and these different VL.C coding schemes are jointly decoded in conjunction with various channel
codes, namely by iteratively exchanging information with a recursive systematic convolutional code, a turbo
code and an LDPC code. It is demonstrated that a source code having a higher free distance is capable of
achieving a higher iteration gain.

Various bit-flipping based decoding algorithms are investigated because they provide low-complexity LDPC
decoding, and a novel reliability-ratio based bit-flipping algorithm is proposed. Generally, the bit-flipping
algorithms are capable of operating at a significantly lower complexity in comparison to the well-known sum-
product algorithm, although at the cost of an inferior error correction capability. The proposed novel reliability-
ratio based bit-flipping algorithm was shown to be superior in comparison to the family of previously proposed

bit-flipping algorithms at no extra complexity.

ii



Acknowledgements

I would like to thank my supervisor Prof. Lajos Hanzo for his continual help, enthusiasm and en-
couragement during my work. I am also grateful to all my colleagues in the Communications Group,

both past and present, for their friendship and their help.

Finally T must thank my parents for all their support during my studies.

iv



List of Publications

1.

10.

11.

12.

F. Guo, S. X. Ng and L. Hanzo, “LDPC assisted block coded modulation for transmissicn
over Rayleigh fading channels”, Proceedings of IEEE Vehicular Technology Conference Spring,
Jeju, Korea, April 22-25, 2003, Volume 3, pp. 1867 - 1871.

F. Guo and L. Hanzo “Low complexity non-binary LDPC and modulation schemes commu-

nicating over MIMO channels”, Proceedings of IEEE Vehicular Technology Conference Fall, Los
Angeles, USA, Sept. 26-29, 2004

F. Guo and L. Hanzo “Reliability ratio based weighted bit-flipping decoding for low-density
parity-check codes”, IEE Electronics Letters, Volume 40, Issue. 21, 14 Oct. 2004, pp. 1356-1357.

. F. Guo and L. Hanzo “Reliability ratio based weighted bit-flipping decoding for LDPC codes”,

accepted by Vehicular Technology Conference Spring 2005, Stockholm, Sweden.

F. Guo and L. Hanzo “ On the design of three-stage serially concatenated turbo transceivers”,

submitted to Vehicular Technology Lettes.

. 0. Alamri, F. Guo, M. Jiang and L. Hanzo “ Turbo detection of symbol-based non-binary

LDPC-coded space-time signals using sphere packing modulation”, submitted to Vehicular Tech-

nology Conference Fall 2005, Dallas, USA.

J. Y. Chung, M. Y. Alias, F. Guo and L. Hanzo, “LDPC and turbo coding assisted space-
time block coded OFDM for H.261.", Proceedings of PIMRC’ 2003, Beijing, China, September
2003, pp. 2702-2706.

. J. Y. Chung, F. Guo, S. X. Ng and L. Hanzo, “Multi-mode joint-detection CDMA /H.26L

based wireless video telephony”, Proceedings of IEEE Vehicular Technology Conference Fall,
Orlando, Florida, USA, October 2003, Volume 3, pp. 6-9.

M. Y. Alias; F. Guo; S. X. Ng; T. H. Liew and L. Hanzo, “LDPC and turbo coding
assisted space-time block coded OFDM”, Proceedings of IEEE Vehicular Technology Conference
Spring, Jeju, Korea, April 22-25, 2003, Volume 3, pp. 2309-2313

S. X. Ng; F. Guo; J. Wang; L.-L. Yang and L. Hanzo, “ Joint source-coding, channel-
coding and modulation schemes for AWGN and Rayleigh fading channels”, Electronics Letters
,Volume: 39 , Issue: 17, 21 Aug. 2003 Pages:1259- 1261

S. X. Ng; F. Guo; J. Wang; L.-L. Yang and L. Hanzo, “ Jointly optimised iterative source-
coding, channel-coding and modulation for transmission over wireless channels”, Proceedings of
IEEE Vehicular Technology Conference Spring, Milan, Italy, 17-19 May 2004, Volumne 1, pp.
313 - 317

H. Wei, B. L. Yeap, F. Guo and L. Hanzo, “ Blind per-survivor processing-based multiuser
detection for channel-coded multicarrier DS-CDMA systems”, Proceedings of IEEE Vehicular
Technology Conference Spring, Milan, Italy, 17-19 May 2004, Volumne 3, pp. 1376 - 1380



13.

14.

S. X. Ng, J. Y. Chung, F. Guo and L. Hanzo, “ Turbo-detection aided serially concatenated
MPEG-4/TCM videophone transceiver”, Proceedings of IEEE Vehicular Technology Conference

Fall, Los Angeles, USA, Sept. 26-29, 2004

S. X. Ng, F. Guo and L. Hanzo, “ Iterative detection of diagonal block space time trellis
codes, TCM and reversible variable length codes for transmission over Rayleigh fading channels”,

Proceedings of IEEE Vehicular Technology Conference Fall, Los Angeles, USA, Sept. 26-29, 2004

vi



Contents

Abstract ii

Acknowledgements

iv

List of Publications v
1 Introduction 1
1.1 Historic Background . . . . .. . .. . L 1
1.2 Outline of the Thesis and its Novel Contributions . . . . . . . . . .. ... ... .. .. 3

2 Binary LDPC codes 5
2.1 Imtroduction . . . . . . .. 3

2.2 Linear block codes . . . . . . . . 6
2.3 Parity check matrix . . . . .. .. 6
24 LDPCencoding . . . . . . . . . . e 12
2.5 LDPC decoding . . . . . . . . . e 14
2.5.1 Exhaustive enumeration based decoding . . . . . . ... . ..o 14

2.5.2  Probabilistic decoding (Gallager’s method) . . . . ... . .. ... .. .. ... 15

2.6 LDPC decoding example . . . . . . . . ... 18
2.7 Generalised LDPC decoding procedure . . . . . .. ... .. .. L 23
271 Generalised notation . . . . . .. ... L L 23

2.7.2 Reduced complexity calculation of the message Ri;oo o oo 25

2.7.3 Complexity of the LDPC decoder . . . . . . ... .. . .. .. ... ....... 28

2.8 Theoretical performance bound . . . . . . ... L 30
2.9 Simulation results . . . . ... 30

vii



2.9.1 Effect of the number of LDPC iterations . . . . . . .. . . .. ... ....... 31
2.9.2 BER as a function of the LDPC bit-index . . . . ... .. .. ... ....... 36
2.9.3 Probability of undetected errors . . . . . .. ... 39
2.9.4 Performance of LDPC codes at various coding rates . . . . . ... .. .. ... 42
2.9.5 Performance of LDPC codes at various coded blocklengths . . .. . ... ... 43
2.9.6 Performance of LDPC-aided coded modulation over Rayleigh fading channels . 45
2.10 Summary and conclusion . . . ... . L 53
Irregular LDPC codes 57
3.1 Introduction . . . . . . ... 57
3.2 Definition of the row and column density distribution . . . . . . ... ... . ... .. 58
3.3 Performance of irregular LDPC codes . . . . . . . .. . ... . ... .. 60
3.4 Density evolution . . . . . . ... L e 61
3.5 Density evolution using Gaussian approximation . . . . ... . . . ... ... ... .. 64
3.6 LDPC density distribution optimisation . . . . .. ... .. .. ... . ... ..., 70
3.7 Variability of error protection versus bit-position in irregular LDPC codes . . . . . . . 74
3.8 Parity check matrix construction for irregular LDPC codes . . . . . .. .. ... ... 76
3.8.1 Richardson’s construction method . . . . . ... ... .. o000 76
3.8.2 Yang’s construction method . . . . . . .. ... Lo 79
3.9 Performance of irregular LDPC codes communicating over AWGN channels . . . . . . 82
3.10 Summary and conclusion . . . . . ... e 84
Non-Binary LDPC-aided Diversity Schemes 91
4.1 State-of-the-art . . . . . . . ... 91
4.2 Bayesian networks and Pearl’s belief propagation algorithm [110,131] . . . . . ... .. 92
4.3 Non-binary LDPCcodes . . . . . . . . . . . 93
4.3.1 Introduction . . .. . . . ... 93
4.3.2 Advantages and disadvantages of non-binary LDPC codes . . . . . . . ... .. 95
4.3.3 Decoding process . . . . . . . .. e 96
4.3.4 Non-binary LDPC decoding example . . . . . ... .. .. ... ... ... .. 100
4.3.5 Complexity . . . . . . . ... 106
4.4 Performance of non-binary LDPC codes . . . . .. ... ... .. ... ... ... ... 108

viii



4.4.1 Performance when the size of Hy is maintained . . . . . . . ... ... ... .. 108

4.4.2 Performance when the size of Hy is maintained . . . . . . . .. ... ... ... 110
4.4.3 Performance of non-binary LDPC codes using various code rates . . . . . . .. 113
4.5 Bit-based joint detection scheme . . . . .. . . .. ... ... .. 114
4.6 Symbol-based joint detection scheme . . . . . . . ... ... ... 120
4.7 Performance of the binary LDPC-aided space-time codec . . . . . . . .. .. ... ... 122
4.7.1 Effects of increasing the number of joint detection iterations . . . . . ... ... 123
4.7.2 Effects of increasing the number of transmission antennas . . . . .. . ... .. 124
4.7.3 Performance of the binary LDPC-aided space-time codec . . . . . .. .. ... 125
4.8 Performance of the non-binary LDPC-aided space-time codec . . . . . ... ... ... 128
4.9 Implementational complexity . . . . . . . . ... 129
4.10 Summary and conclusion . . . .. ... L L e 131
Joint Source and Channel Coding Using Variable Length Codes 137
5.1 Historical perspective . . . . . . . . . L 137
5.2 Decoding of variable length codes . . . . . . . ... ... ..o L 138
5.2.1 Symbol based decoding of VLCs . . . . . . . ... . 138
5.2.2 Bit-based decoding of VLCs . . . . . . .. . ... . 144
5.3 Levenshtein distance . . . . . . . . .. L 145
5.4 Performance of VLCs as error correction codes . . . . . . ... . .. ... ... ... . 146
5.4.1 Symbol-based VLC decoding performance . . . . ... . . ... ... ...... 147
5.4.2 Bit-based VLC decoding performance . . .. .. ... . . ... ......... 148
5.9 Joint source and channel decoding using VLCs . . . . . . .. . ... oL 151
5.6 Complexity . . . . . .. e 153
5.7 Summary and conclusion . . ... Lo L 156
Weighted Bit Flipping Decoding of LDPCC 164
6.1 Weighted bit-flipping algorithm . . . . . . . . ... . . ... ... 165
6.2 Improved weighted bit-flipping algorithm . . . . .. ... ... ... ... ... ... . 167
6.3 Bootstrap weighted bit-flipping algorithm . . . . . ... . ... ... ... ... .. .. 168
6.4 Reliability-ratio based weighted
bit-flipping algorithm . . . . . . . .. .. 169

ix



6.0 Decoding examples . . . . . ..
6.5.1 Bootstrap weighted bit-flipping decoding example . . . . . . ... ... ... ..

6.5.2 Reliability ratio based weighted bit-flipping

Decoding Example . . . . . . . ..

6.6 Simulation results . . . . ...
6.6.1 [Effects of the number of iterations . . . . . . .. ... ... L.
6.6.2 Reliability of the bit flipping algorithms . . . . . . . . . . .. ... ... ....
6.6.3 Effects of the various blocklengths . . . . . ... .. .. ... ... ... ... .
6.6.4 FEffects of using various code rates . . . . . ... ... . ... L.
6.6.5 Performance comparisons against MAP decoding . . . . . . . ... .. .. ...

6.7 Decoding complexity . . . . . . .. e e

6.8 Summary and conclusion . . . .. .. L

7 Summary, Conclusions and Future Research
7.1 SUMMATY . . o o o o o e e e e e e e
7.2 Conclusion . . . . . . e

7.3 Future Research Topics . . . . . . . . . . . . . . .

Appendices

A Proof of Theorem 2.12

B Proof of Equation 2.11

C Generation of the Companion Matrix

List of Symbols

Bibliography

Subject Index

Author Index

170

193
193
197

199

200

201

202

203

205

209

221

223



Chapter 1

Introduction

1.1 Historic Background

In 1963, Gallager [1] [2] devised the family of Low Density Parity Check Codes (LDPCC) during his
Ph.D study at MIT. At this early phase of the evolution of channel coding, this scheme made little
impact on the research of the channel coding community, despite its impressive performance, which
was unprecedented prior to the invention of turbo coding [3]. This modest interest in LDPCCs was &
consequence of its high storage requirements and complexity in the light of the state-of-the-art in 1963.
Following their conception, LDPCCs remained dormant for a decade or so. The complexity of LDPCCs
was evaluated by Zyablov and Pinsker in 1975 [4], while in [5] Tanner suggested the employment of a
recursive approach for the construction of LDPC codes and presented a graph representation of the

LDPCC’s parity check matrix. Sipser and Spielman [6] presented the LDPCC’s parity check matrix

using expander graphs.

However, during the 1990s, the channel coding community’s interest in LDPCCs was revived. As
summarised in Table 1.1, LDPC codes have become an extremely hot topic in the wireless commu-
nication research community. MacKay and Neal [7] [8] experimented with LDPCCs having a high
blocklength and illustrated that LDPCCs are capable of outperforming turbo codes, when communi-
cating over AWGN channels. Motivated by the outstanding performance of LDPCCs, they have been
studied in many different contexts. The density evolution (DE) algorithm was proposed by Richardson
et al. [9] for calculating the asymptotic performance of LDPCCs transmitted over AWGN channels.
Later Chung et al. [10] [11] simplified the density evolution algorithm. The density evolution algo-
rithm is now widely recognised as an accurate method of predicting the asymptotic performance of
the LDPCCs transmitted over AWGN channels, and it has been used by numerous authors, such as
Fossorier [12], Chen et al. [13], Narayanaswami et al. [14], Anastasopoulos [15] and Kumar et al. [16].
The performance bounds of LDPCCs rate were studied by Burshtein et al. in [17] [18] [19]. The
family of LDPC codes has also been utilised in a variety of different systems, such as OFDM [20-25],
MIMO and space-time coding schemes [26,27], in the context of the binary erasure channel [28,29],
the partial response channel [16,30,31], as well as a range of other channel models [32-34]. Bandwidth
efficient coded modulation schemes using LDPCCs were studied in [35-37]. Furthermore, LDPC codes



CHAPTER 1. INTRODUCTION 2

have also been widely used in diverse applications such as magnetic recording [38-42] by Song et al.,
in image transmission [43,44] by Zhang et al. and in optical data storage [45]. Many algorithms
have been proposed for specifically designing LDPCCs for hardware implementation, such as the tech-
niques advocated by Zhang et al. [46-48], Rupp et al. [49], Hocevar [50], Thorpe [51], Lu et al [52]
and Shanbhag et al. [53].

In addition to the performance evaluation studies and application-oriented aspects of LDPC codes,
researchers endeavoured to improve the stand-alone performance of LDPCCs by modifying the de-
coding algorithms and/or optimising the structure of the parity check matrix. Non-binary LDPCCs
were proposed by Davey et al. [54-56] that under certain conditions are capable of outperforming their
binary counterpart. A low-complexity decoding algorithm was proposed for non-binary LDPCCs by
Barnault et al. [57|. The family of non-binary LDPCCs was also applied by Song et al. [38], Nakamura
et al. [58] and Li et al [59]. Upon imposing an irregular construction on the LDPCC’s parity check
matrix [60-66] for the sake of improving their performance, they become capable of approaching the
Shannon limit [67]. Various ways of constructing the irregular LDPCC’s parity check matrix were
proposed in [65,66,68,69]. Increasing the length of the shortest cycles within the LDPC code’s parity
check matrix is another technique of improving their performance, which has the potential of lowering
their error floor. Moura et al. [7T0-73|, Lin et al. [74] and Williamson et al. [75] proposed various of
ways of constructing the PCM in an attempt to remove the short cycles. Lentmaier proposed the class
of Generalised Low Density Parity Check Codes in [76], which was facilitated by replacing the rows in
the LDPCC’s parity check matrix by a Hamming code. This technique also attracted the interest of
Zhang et al. [77] [78], Hirst et al. [79] [80] and Boutros et al. [81].

Apart from increasing the error correction capability of LDPCCs, other researchers endeavoured
to reduce the encoding and decoding complexity of LDPC codes. Although Mackay and Neal [8] have
demonstrated that upon randomly constructing the LDPCC’s PCM, a near capacity performance can
be achieved, it has also been observed that upon constructing the PCM following different rules, a
similar error correction capability can be achieved using a reduced-complexity encoding process that
can be implemented using shift registers. For example, the analytical approach of finite geometry was
utilised by Kou et al. [82-87] for constructing the LDPCC’s PCM. This finite geometry based technique
was also used by Pados [88] as well as Vasic et al. [89,90]. Honary et al. [91,92] utilised the Balanced
Incomplete Block Design (BIBD) technique for constructing the LDPC code’s PCMs in a (quasi)-cyclic
way. A range of other analytical techniques of constructing the LDPCC’s PCM have been contrived,
such as for example the schemes proposed by Vontobel [93], Ahn [94] and Okamura [95]. All these
schemes have been shown to be capable of attaining a performance which is as good as that of randomly
constructed LDPC codes, whilst the encoding complexity may be significantly reduced. Substantial
research efforts have also been invested in reducing the LDPC’s decoding complexity. The FFT based
decoding algorithm proposed by Richardson and Urbanke [9, 96] and the linearly decodable LDPC
codes proposed by Spielman [97] constitute a few examples of low-complexity decoders. Furthermore,
there are numerous other low-complexity decoding algorithms invented by Pothier [98], Narayanan [99]

and Fossorier et al. [100].



CHAPTER 1. INTRODUCTION 3

1948 Shannon limit quantified; Shannon [67]
1962 LDPCCs invented; Gallager [1]
1975 LDPCCs’ complexity quantified; Zyablov et al. [4]
1983 Tanner Graph introduced for the LDPCC parity check matrix; Tanner [5]
1997 Near-Shannon-Limit performance reported; MacKay et al. [7]
1998 Non-binary LDPCCs invented; Davey et al. [54,55]

Irregular LDPCCs proposed; Luby et al. [60]
Reduced complexity decoding algorithm using FFT proposed; Richardson et al. [9]
Density evolution algorithm proposed; Richardson et al. [9]

1999 Generalised LDPC proposed; Lentmaier [105]

2001 Finite geometry based LDPC proposed; Kou et al. [83,84,106]
Bit-flipping decoding of LDPCCs proposed; Kou et al. [83]
EXIT-chart invented; ten Brink [107]

Gaussian approximated density evolution method proposed; Chung et al. [11]

2002 BIBD based LDPC proposed; Ammar et al. [91,92]
|

]

Bootstrap decoding algorithm proposed; Nouh et al. [102
Bit-based three-layer LDPC-MIMO proposed; Meshkat et al. [108
2004 Bit-flipping decoding algorithm improved; Zhang et al. [101]

Symbol-based three-layer LDPC-MIMO proposed; Guo et al. [27]
Reliability ratio based bit-flipping algorithm proposed; Guo et al. [103]

Table 1.1: Mile-stones in LDPC coding research

In addition to the sub-optimum Sum-Product Algorithm (SPA) devised for decoding LDPC codes,
a significantly less complex bit-flipping based algorithm was proposed by Kou et al. [82]. This algorithm
was further improved by Zhang et al. in [101]. Furthermore, a bootstrap bit-flipping algorithm was
proposed by Nouh et al. in [102]. The reliability-ratio based algorithm was further developed by Guo
et al. in [103,104]. All these low-complexity bit-flipping algorithms constitute a useful supplement to

the popular SPA algorithm in the context of applications, where the system’s complexity is limited.

All these historic findings constitute the motivation of the underlying research described in this

thesis.

1.2 Outline of the Thesis and its Novel Contributions

The outline of the thesis is as follows. In Chapter 2 we introduce Gallager’s original LDPCC construc-
tion algorithm with the aid of an example. Additionally, a general description of the LDPC decoding

process is provided and the chapter is concluded with a range of performance results.

e A binary LDPC aided joint coding and modulation scheme was designed and benchmarked
against a Turbo Trellis Coded Modulation (TTCM) scheme. At a BER of 107° an Ej/Ny gain

of about 1.5 dB was achieved using 15 iterations in comparison to the TTCM benchmarker using



CHAPTER 1. INTRODUCTION 4

4 iterations. The effective throughput of the system was 1 bit per symbol [37].

The irregular construction of binary Parity Check Matrices (PCM) will be discussed in Chapter 3.
Two different PCM construction methods will be introduced. One of them is capable of providing a
high error correction performance at long blocklengths, while the other one will be aiming at lowering

the error floor encountered, when moderate blocklengths and a high code rate have to be used.

Chapter 4 will illustrate how LDPCCs may be constructed and decoded over non-binary fields.

o These non-binary codes, invented by Davey and MacKay [54], will then be invoked for con-
structing a novel purely symbol-based MIMO scheme. This scheme is benchmarked against a
bit-based MIMO scheme invoking a binary LDPC. An E,/Ngy gain of about 2 dB was obtained
at a BER of 107 for a MIMO scheme operating over GF(4), GF(8) as well as GF(16) and an
uncorrelated Rayleigh fading channel. Furthermore, the decoding complexity imposed was also

significantly reduced by the purely symbol-based scheme [27].

In Chapter 5, the family of Variable Length Codes (VLC) is introduced and it is demonstrated,
how they may be utilised for error correction. Different types of VLCs are serially concatenated with
various channel codecs and decoded in an iterative fashion. The associated performance trends are
highlighted, providing an insight on how to choose the VL.Cs in the context of serially concatenated

joint source and channel coding schemes using Extrinsic Information Transfer Charts (EXIT-Charts).

Chapter 6 offers an alternative technique of decoding LDPCCs using bit-flipping.

e A novel Reliability Ratio based Weighted Bit Flipping (RRWBF) algorithm is proposed. It is
demonstrated that an improved BER performance may be attained at no decoding complexity
penalty. When communicating over an AWGN channel, a (1000,500,5.0) LDPC code decoded by
the RRWBF algorithm achieved an F,/Ny gain of about 1.5 dB at a BER, of 1079 in comparison
to the set of known bit-flipping decoding algorithms [103,104].

Finally, Chapter 7 summarises the findings of the thesis and offers a range of further research

topics.



Chapter 2

Binary LDPC codes

2.1 Introduction

S U N

0O P E|N

Figure 2.1: Introductory example

Let us commence our discussions on a light-hearted note, considering the construction of Figure 2.1,
which is reminiscent of that of a cross-word puzzle. Let us assume that the number of letters in the
same column are identical and each row has to be a valid word. Let us now change for example the
character s’ in the first column or °p’ in the fourth column of Figure 2.1, which can be viewed as
the effect of a transmission error imposed by the channel. An intelligent human or a smart channel
decoder may be able to spot this error and might be able to correct it, such that each horizontal line
still remains a valid word, although in some cases ambiguous solutions may exist. The reason that we
are able to spot and probably even correct the error is not only due to the redundancy inherent in the
English language, but also because we may find clues confirming certain letters with a high confidence

from the other words seen in the different rows in Figure 2.1. LDPC codes have similar properties to

those of our example.

The most important parameter or descriptor of the family of LDPCCs is their parity check matrix.
Luby [60] showed that the LDPC code’s performance may potentially be increased, when an irregular
parity check matrix construction is applied. However, at this stage we only consider LDPCCs having

a regular parity check matrix construction, as it was initially proposed by Gallager [1].

In order to specify an LDPCC, its parity check matrix has be to defined first. Then the corre-
sponding generator matrix can be derived for this parity check matrix. Based on these parameters,

the encoder will be in the position to be able to generate the encoded bits for transmission.

(2}



CHAPTER 2. BINARY LDPC CODES 6

2.2 Linear block codes

LDPCCs belong to the family of linear block codes [1], hence the code can be defined by a parity check
matriz H and a corresponding generator matriz G. The parity check matrix H and the generator
matrix G have a size of (N — K) x N and (K x N), respectively. Explicitly, H can be represented as:

H=(I]A), (2.1)

where I is an (N — K) x (N — K)-dimensional identity matrix and A is a non-singular i.e. invertible

matrix, while the corresponding generator matrix G can be represented as:
G = (-A"|1), (2.2

where I" is a (K x K)-dimensional identity matrix and A7 is the transpose of the non-singular matrix

A used for defining H. The product of the matrixes H and G7 is by definition an all-zero matrix.
More explicitly,

Hv_r)xn Gl = O(v—K)xk - (2.3)

For each source information block S of size 1 x K, encoding is carried out by multiplying it with

the generator matrix G and the resultant 1 x N-dimensional vector is the encoded codeword C, which

is formulated as:

Cixnv =Sixx - Grgxn. (2.4)

The validity of the codeword can be verified by calculating the syndrome vector upon multiplying

C with H”, which becomes an all-zero syndrome vector, if the codeword is legitimate.

Syndrome(lxM) = C(IXN) . HT(NXM). (25)

The encoding and parity-checking process is shown more explicitly below:

r

g11 --- G1,N
[c1,¢2,...cN] = [81,82,. .. SK]
| 9K.1 9K.N
[ hii o hiw
[01,02,...0p] = [c1,€2,- .. CN] o : ,
| hwa oo b

where the notation c;, s; represents the j th clement of the codeword and the source information vector,
respectively. The notations g; ; and h; ; are for representing the element of the generator matrix G

and the transpose of the parity check matrix H, i.e. H? at position (1,j), respectively.

2.3 Parity check matrix

A conventional parity check code may be formed by combining a block of binary digits checking the

information part of the codeword. In the example seen in Figure 2.2, each parity check bit is the



CHAPTER 2. BINARY LDPC CODES 7

modulo 2 sum of a specific set of information bits. We will use the terminology of information bits to
denote the uncoded source bits. By contrast, parity bits are defined as the redundant bits appended
to the information bits in the codeword. As seen in Figure 2.2, each row of the parity check set can
be written as a parity check eguation given at the right of Figure 2.2. For any legitimate codeword,

all the parity check equations have to be satisfied.

Parity Information
bits bits

X Xo X3 X4 X5 X X7

1 0 0 1 1 1 o0 X = XD X5 DXy
H= o 1 0 1 1 0 1 X2 = XD X5 DXy
0 0 1 1 0 1 1 X3 = XD XsDX;

Figure 2.2: Conventional parity check set designed for block codes

LDPCCs, as suggested by the nomenclature, are typically specified by a matrix predominantly
containing logical zeros, and only a small number of logical ones, hence the term *low density”. FEach
LDPCC can be uniquely defined by the associated (N — K) x N-dimensional parity check matrix. The
notation M is used for representing the number of rows in the parity check matrix H, which equals
(N — K). The parity check matrix can be specified by the parameters (N, w,, w,), where N is the
encoded block-length, while w, and w, are the average Hamming weight of the columns and rows,
respectively. More explicitly, when w, is an integer and a so-called regular LDPC PCM construction is
applied, according to the definition of regular construction all the columns will have the same weight
of w.. However, if w, is not an integer, say 2.5, then half of the columns will have weight two, and
the remaining half will have weight three. These codes will be referred to as near-regular-construction
LDPC codes. By contrast, the terminology of irregular LDPC codes will refer to those LDPC codes,
whose PCM has significant variation in column weights. This type of irregular LDPC codes will be
introduced later in Chapter 3. Provided that the parity check matrix H has full rank,! the LDPCC’s
code rate can be calculated as r = K/N. Since the number of non-zero entries in the parity check
matrix is a constant, we have N - w., = M - w,. Hence the code rate can also be represented by
r = 1 — (we/w,). In the scenario, when there are dependent rows in the parity check matrix H,
the actual code rate will be higher than the figure calculated above. There is an alternative way
of specifying a parity check matrix by the coded blocklength, the information blocklength and the
column weight, i.e. as (N, K,w,.).

An example of the LDPC Parity Check Matrix (PCM) is given in Table 2.1. This is the PCM
Gallager used in his seminal paper on LDPCCs in 1963.

'In this LDPC context having a H matrix which is of full rank implies that all the rows in the H matrix are

independent.



CHAPTER 2. BINARY LDPC CODES 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
14111 100O0OO0OO0OO O0C 0 0 0 0 0 0 0 0 O
2j{6 00011110 0 0O 0O O o0 O 0 O 0o 0 O
3/o 000020001 1 1 1 0 0 0 0 o 0 0 O
4/0 00 00O0OO0OO0OO0ODO0O O0OC O 1 1 1 10 0 0 0
50 0 00 0 0OO0OO0ODOTO O OO 0O O o 1 1 1 1
6&/1 0 0 01 00 01 6 0o 0o 1 0 0 0 0 0 0 0
7(0 100010001 0 0 0O 0O 0 0 1 0 00

H=|8|0 01 0001 060 0 0 0 o0 1 0 0 0o 1 0 0
91t0 0 010 000OO0OO0O 1 0 0 0 1 06 0 0 1 O
/0o 0o 0o 00o0o0or20 06 ¢ 1 0 0 O 1 0 0 0 1
1/1 0 60 00 1000 O OC 1 0 0 O 0O 0O 1 0 O
201 0 0 001 00 0 1 0 0 0 O 1 0 0 0 0
3,001 000010 0 0O O 1 0 0 0 0 0 1 0
4/0 0 0100001 0 0 0 0 1 0 0o 1 0 0 O
%0 06000120000 1 0 0 0O 0 0 o0 0 0 1 1

Table 2.1: Example of a low density parity check matrix (PCM) for N=20, w.=3, w,=4 [1] with full
rank, where NV, w,,w, are used for representing the total number of columns, ie. the codeword length,
the number of non-zero entries per column, and the number of non-zero entries per row, respectively.
Finally, the number of rows in the parity check matrix is M = N x w./w, = 15. The coding rate is
defined as r = (N — M)/N.

O00O0 8000080000000 O0 %k %

Table 2.2: Reproduction of Table 2.1 highlighting the nodes forming cycles of length 4 () and 6 (%).



CHAPTER 2. BINARY LDPC CODES 9

® 99800000000 OOLOOOO0OO
C00O0O 88X XO0OO0OOQOOOOOOOO
O000000O0O®E® X X0O0O0OOOOO0OO0
O000O00O0O00OO0OQO0OS®®S®OO0O0OO0

Q0000000000000 0O0Oe® S

® 00080008000 ODO0ODO0O0OO
Ce 0000000000000 OO0
OO0 00800Q000OMO0O0OOO
OO0 0000000000000

O0O0000O0O X000 X 0008000 e

® 00008000008 OOODO0OeOO0
O® 0000 X000 X 0000880000
OO0 8000000008000 0O0CeO

OO0 0000000000000

OCO0O00®80 00000000000 S

Table 2.3: Reproduction of Table 2.1 highlighting the nodes forming cycles of length 8 (x)

Gallager suggested a regular construction for the parity check matrix which is shown in Table 2.1.
This construction is described as follows. As it can be seen in Table 2.1, the rows may be divided
into three subsets. In the first subset, the binary 1s in the i** row will occupy the columns spanning
from [(¢ — 1) x w, + 1] to [i X w,], and their position indicates, which information bits participate
in the i** parity check equation, i.e. the i*" row of the PCM, where each of the 15 rows represents
one of the 15 parity check equations. As becomes explicit in Table 2.1, each of the parity check
equations is checking the parity of both some information bits and some parity bits. For example,
in the (N, wc,w,)=(20, 3, 4) code of Table 2.1, the binary 1s in the first row occupy the positions
spanning from [(1 —1) x 4]+ 1 =1 to 1 x 4 = 4. Similarly, the binary 1s in the second row occupy the
positions spanning from [(2 — 1) x 4] +1 =5 to 2 x 4 = 8, hence the second row of the PCM checks
the parity of the bits located at the 5**, the 6**, the 7** and the 8" column of the PCM.

When the first subset has been constructed in this way, a number of further subsets separated
by the horizontal lines in Table 2.1 are created by random permutation of the columns obeying an
equal probability of permutation. For example, in the second horizontal partition of Table 2.1, the
5% and 27 columns have been swapped, hence the associated 6" parity check equation involves the
5t" column, while the 7% parity check equation involves the 2"¢ column. Furthermore, the 3™¢ and
the 9% columns were exchanged, etc. According to Gallager’s description of the parity check matrix,
the whole matrix will be divided into w, subsets, where w, is the number of non-zero entries per
column, i.e. the column weight. When the block-length N increases, while keeping the parameters
we and w, constant, the parity check matrix becomes more and more sparse. Hence the minimum
distance of the code, which is defined as the number of bit positions, where the two nearest code
words differ, increases as well, provided that the column weight of the PCM equals or greater than
three [1]. Gallager showed [1] that for a large N, the Cumulative Density Function (CDF), more
precisely the histogram of the minimum distance approaches a unit step at a fixed fraction ¢ of the
total blocklength. The corresponding Probability Density Function (PDF) of the minimum distance



CHAPTER 2. BINARY LDPC CODES 10

is similar to a Delta function of height %(5 concentrated at the weight nd, indicating that practically

all the codewords in the ensemble have a minimum distance that is similar to NJ.

column 3 Row 2
columu 7 Row 8
Row 13

column 8

Figure 2.3: Bipartite graph representation of a length-6 cycle, highlighted using the marker * in
Table 2.2.

The PCM may also be represented using a Tanner graph [5], which is constituted by nodes and
connections. Figure 2.3 shows a Tanner graph representing a fraction of the PCM seen in Table 2.2.
The nodes on the left of the Tanner graph are called the message nodes, which represent the specific
columns of the PCM indicated at the left of the figure. On the right of the Tanner graph are the
check nodes, which correspond to the specific rows of the PCM identified at the right of the figure. A
connection between a message node and a check node represents the corresponding non-zero entry in
the PCM. More explicitly, as shown in Figure 2.3, the connection between the column-3 message node
and the row-13 check node represents the non-zero entry at position (13,3) of the PCM in Table 2.2.
During the decoding process, the information will be passed from a message node to a check node via

the connection between them, and the check node will also feed the updated information back to the

message node through the connections.

As a result of further research efforts, the concept of cycles was devised [5], where the length of a
cycle refers to the number of non-zero entries in the parity check matrix, which can be connected to
form a cycle, as will be explained below. The concept of cycles can also be represented in the Tanner
graph, where the connections between the nodes form a closed loop. An example of a length-6 cycle
is shown in Figure 2.3. More explicitly, there are six connections in Figure 2.3 representing a closed
loop, which is referred to as a length-6 cycle. These six lines represent the non-zero entries (2,7), (8,7),

(8,3), (13,3), (13,8) and (2,8) of the PCM seen in Table 2.1, and this length-6 cycle is highlighted

using the marker x in Table 2.2.

It will be shown in Section 2.5 that this concept is related to the LDPCC’s decoding algorithm.
More explicitly, during the LDPC decoding process, the decoding information will be exchanged
both vertically and horizontally between the non-zero entries of the PCM. As for the Tanner graph
representation, the decoding information will be travelling back and forth between the message nodes
and the check nodes. The length of the cycle determines the amount of extrinsic information that
a particular non-zero entry is supplied with. However, for the sake of providing some intuition into
the deeper significance of cycles, suffice to say here that the formation of long cycles indicates that

the PCM promotes the efficient exchange of decoding information. By contrast, the presence of short



CHAPTER 2. BINARY LDPC CODES 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1f/0 11210 0010 0 1 0 0 0 O
20 00110110 1 0 0 0 0 O
311 00 0 O0O01O0O0CO0 0 1 0 1 1
4(/1 1 0001001 1 0 0 0 0 O
510 00 01 001 0 0 0 1 1 0

H=|6 |0 0 0 01 00 01 0 1 0 1 0 0
10 0 0000100 1 0 1 0 0 1
8|0 0 0 0OO1T OO0OO0OO0C 0 O 1 1 1
90111100000 O O 0 0 O
o o0o1o0o00010 0 1 1 0 0 O

Table 2.4: Example of a parity check matrix H having N=15, w.=3, w,=4.5, M=N—K=N xw,./w, =
10 and r=1/3.

cycles implies a limited exchange of information, leading to a limited decoding performance.

The more entries are needed for forming a cycle, the more decoding information is passed around
during the decoding process and hence the better the performance of the parity check matrix concerned.
In Section 2.5, where the process of probabilistic decoding is described, it will be shown that the
information needed for decoding will be passed between the non-zero entries of the same row or of the
same column. Thus if the length of the cycle is high, each non-zero entry in the parity check matrix is
capable of benefiting from more parity-related information provided by other entries within the cycle.
The shortest possible cycle of the PCM of Table 2.1 is a length-4 cycle, marked as * in Table 2.2, since
there are two non-zero entries in the fifth row and another two non-zero entries in the 15" row of
the parity check matrix, both pairs occupying the last two columns. Hence during the construction of
the parity check matrix, the existence of the shortest cycle, namely that of the length-4 cycle should
be eliminated, if possible. In this thesis a parity check matrix generated by computer search will be
introduced, which will be used during the rest of our discussions on the LDPCC encoding and decoding
process. The size of this PCM is quite small for the sake of simplicity, which is hence inadequate for

practical applications. Owing to the restricted size of the matrix, it has length-4 cycles.

The parity check matrix of the LDPCC is invoked at the decoder’s output for determining whether
the decoded codeword is a valid one. As stated previously, the parity check matrix is used for creating
the generator matrix, which is applied at the encoder for generating the parity bits to be appended
to the original information bits. Thus the product of the received codeword C, which is a (1xN)-
dimensional row vector, and the parity check matrix H becomes zero if there are no errors after the
iterative decoding process. A simple example highlighting this property is provided by assuming that
an encoded frame of 15 consecutive zero bits has been transmitted through a channel, and the 15 as
well as the 372 bit were corrupted, which gives a binary 1 both at bit position 1 and 3 in this received
codeword. Upon multiplying the received data stream of 101000000000000 with HT, which is the
transpose of the parity check matrix given by Table 2.4, we arrive at the stream of 1011100011. This
shows that the 15¢, 37, 40 5th gth and the 10" parity check equations are violated. Thus the decoder

will continue iterating, as it will be shown in Section 2.5, unless the decoding process has reached the



CHAPTER 2. BINARY LDPC CODES 12

predetermined maximum number of iterations.

Gallager also showed [1] that when this encoding scheme is applied for transmission over the
Binary Symmetric Channel (BSC) [109], the results approach the optimum in terms of the achievable
bit error probability. While the BSC constitutes a useful model for initial theoretical investigations,
it is by no means a practical channel model. For correcting transmission errors, Gallager proposed
the employment of probabilistic decoding, sometimes also referred to as the belief propagation
algorithm [110] or sum-product algorithm , which evaluates the a posteriori 2 probabilities of the bits

of the various received words, as it will be shown in the next section.

u priori
Lo information
apriory
information .
.
.

extrinsic

channel

information

information
Figure 2.4: The ertrinsic information is generated by the codec and constitutes the overall a posteriori

information

N\
\ channel
information

information together with the input a priori information and the channel information.

2.4 LDPC encoding

When using a channel code for protecting messages, we have to define a mapping from the original
uncoded information bit vector, S of dimension 1 x K=1 x (N — M), where M is the number of
rows of the parity check matrix, which can be expressed as M = N x ;‘j—;, when the parity check
matrix H has full rank. All the notations used bear the same meaning as previously. The symbol
S was introduced here for representing an uncoded information message, which is encoded into a
codeword C of dimension 1 x N carrying the uncoded systematic source information S at the end of
the codeword. Only linear mapping schemes will be considered here, which can be written in a matrix
form as C=8-G, where G is the generator matriz derived from the PCM H exemplified in Table 2.4,
as will be shown during our forthcoming discussion. For an LDPC code having a parity check matrix

H, any legitimate codeword has to satisfy C-HT=0. The generator matrix G can be calculated using

the following steps.

Since the parity check matrix H has an (N — K) x N=M x N-dimensional structure, it can be
divided into an (N — K) x (N — K)=M x M-dimensional matrix A and an M X (N — M)-dimensional

matrix B. Furthermore, since we have C-HT =0, this equation can also be written as:

C-HT=Cc - (A;B)Y=P-AT4+5s BT =0, (2.6)

2We will use the terminology of a priori information, eztrinsic information and a posteriori information to specify the
input and output information of a codec. The a priori information refers to the additional information, with respect to
the channel information, which is provided by an external codec. The terminology of exzirinsic information corresponds
to the extra new information generated internally inside the codec. The a posteriori information is a combination of the

a priori information, eztrinsic information and the channel information. An illustration is provided in Figure 2.4.



CHAPTER 2. BINARY LDPC CODES 13

where ”;” denotes matrix partition, and S and P are row vectors of dimension 1 x K and 1 x M=1—
(N — K), used for representing the information bits and the parity bits, respectively. Provided that

the submatrix AT is non-singular and hence may be inverted, from Equation 2.6 we have

P=5s. (BT.(AT) . 2.7)

Thus, using the parity bits P derived in this way, the LDPC encoded codeword C can be con-
structed by appending the information segment S at the end of the parity bit segment P. However,
since the parity check matrix has a pseudo-random construction, it cannot be guaranteed that the
submatrix AT is invertible. Hence, the columns of the parity check matrix may have to be reordered
for the sake of being able to calculate the inverse of the matrix AT. If the original matrix AT is
singular, we will randomly select a column from B and swap it with a randomly chosen column of A.
This process continues until the matrix A7 becomes non-singular. Thus, after reordering the columns
of the matrix H, we arrive at the reordered parity check matrix H,, and based on the new PCM
H,, the generator matrix G can be constructed by calculating the matrix (B - (AT)_I)(KxM) as
described based on H,. Then a K x K-dimensional identity matrix I\ g k) is appended to the right
of the matrix (BT . (AT)*I)(KxM). Hence we arrive at the (K x N)-dimensional generator matrix
G (g =) given by:

Grxn) = (BT - (AT) ™) keemyi Liexi) | (2.8)

Since the column order of the original PCM H has been altered, the encoded codewords generated
upon multiplying the information sequences by G created from H, will be incompatible with the
original PCM H, and hence the equation C-H”=0 will not hold. Therefore, after the generator
matrix G has been created from H.,., we should use H, for future manipulations. Let us now consider

the following encoding example.

When using the PCM H of Table 2.4, we first have to obtain H, for the sake of constructing the
generator matrix G. Since the column order of the original PCM H has been altered for the sake of
finding an invertible submatrix A7 as described previously, the PCM H, is obtained in the form of
Table 2.5. The matrixes A and B in Equation 2.6 constitute the left and right parts of H,, separated
by the vertical line in Table 2.5.

By calculating BT - (A7)~ in Equation 2.7, we arrive at the K x M=(N — M) x M-dimensional
matrix seen in Table 2.6. Upon multiplying the source bit stream S with this matrix, the parity bits
P can be obtained as seen in Equation 2.7. Thus the encoded codeword C is generated by multiplying

the information bit stream S with the generator matrix G, as follows:

Cuxny = Saxk)  Grxw) (2.9)

Assuming that we have a 5-bit information bit stream of S=01001, by multiplying S with the
generator matrix G of Table 2.7, the LDPC encoded codeword is given by C = 101110100101001.
The last five bits are the original information bits, while the first 10 bits are the parity bits. Upon
multiplying this encoded codeword C with the parity check matrix H? of Table 2.5, we will arrive at
the 10-component all-zero vector, which implies that the encoded codeword was indeed a legitimate

one.



CHAPTER 2. BINARY LDPC CODES 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1711010000101 O 0 0 0
21010001101 1]0 O 0 0 O
3 /0 001 0 00 10O0O0110 1 0 1 1
411 01 0 100101 0 O 0 0 O

H=|5 |0 0 1 01060100 0 0 1 1 0
6 |0 000 O0C101O0O0 /|1 O 1 0 0
T 10 0 0 0 0O 1O0O01 0 1 0 0 1
g8 /0 00OO11 0O0O0O0OUO0O] 0 O 1 1 1
971101 0100O0O0C|]0 0 0 0 O
/0 0o 061000 01 01 1 0 0 O

Table 2.5: The PCM H, constructed from H seen in Table 2.4. The PCM H, has N=15, M=10,
w.=3 and w,=4.5. The i*" column of the PCM H, is constructed by using the ofh column of the PCM
H, where we have 0; = {2,4,1,3,6,5,7,9,8,10,11,12,13,14,15}. The submatrixes A and B are the

left and right parts of H,, respectively.

1 23 45 6 7 8 9 10
11110 0 0 1 1 1 1
2/0 101 00 10 00
B".(ATy"'=|3/0 0 1 0 1 0 1 1 0 1
40 000 1 010 01
5011101 000 0 1

Table 2.6: The matrix product of BT . (AT)~1 required for calculating the generator matrix G of
Equation 2.8, which corresponds to the rearranged PCM H, in Table 2.5.

2.5 LDPC decoding

In this section, two decoding schemes will be described. The first one is referred to as exhaustive
enumeration based decoding [111], which represents the optimum Maximum Likelihood decoding of
the codeword. The second decoding method is based on probabilistic propagation [1] and this is a

sub-optimum decoding technique that is capable of achieving near-optimum performance.

2.5.1 Exhaustive enumeration based decoding

The optimum exhaustive enumeration decoding method [111] evaluates the probability of encoun-
tering each legitimate codeword based on the product of the individual bit probabilities quantified
as the demodulator’s soft-output. This approach compares the received codeword to all legitimate
codewords for the sake of finding the most likely original transmitted codeword. However, this decod-
ing philosophy becomes impractical for a high blocklength, since the number of legitimate codewords
increases exponentially with respect to the blocklength. Therefore, we introduce the low-complexity

but sub-optimal probabilistic decoding algorithm in Section 2.5.2.



CHAPTER 2. BINARY LDPC CODES 15

1 2 3 4 5 6 7 8 9 10|11 12 13 14 15

1j1r 1100011 1 1|1 O O O O

20 1 001001000 {0 1 o 0 O
G=|3]j]0 0 1 0 1 01 10 1|0 0o 1 0 O
4]0 0 001 010010 0 0 1 0

/1 1 1 01 00 O0O0O1 {0 0 0 0 1

Table 2.7: The generator matrix G= [(B7 . (AT)_I)(KxM);I(KxK)] corresponding to the parity check
matrix H, of Table 2.5.

2.5.2 Probabilistic decoding (Gallager’s method)

The second decoding method to be introduced provides a better trade-off between the achievable
performance and the associated complexity. When decoding a received sequence, two important
aspects have to be taken into consideration. Firstly, how likely it is that a bit has been received
incorrectly owing to the channel effects. Secondly, whether the redundant bits checking the parity of
a particular bit may be considered as error-free. Hence we have to calculate the probability of the
received symbol being a binary 1 or 0, conditioned on receiving a specific contaminated demodulator
soft-output sample y and also conditioned on the event S that this specific bit satisfies all the w,

parity check equations containing it. This statement can be written in a compact form as:

Pla; = 1{{y}, 5. (2.10)

Let Pj] be the probability that a binary 1 was transmitted at bit position 7 = 1...N, based on the
demodulator’s soft output. Furthermore, let us use Pil,j to denote the probability of encountering a
binary 1 at the bit position 7, (j = 1...N) in the i**, (i = 1...M) parity check of Table 2.5. Gallager
provided a formula for evaluating the ratio of the probabilities of a binary 1 and a binary 0 being

transmitted at bit position 5 = 1... N in the following form, as it was shown later in Appendix B [1]:

Ple; =0y}, 8) _ 1= P} oo [T+ Tieqan (1 — 2P0) (2.11)
Ples =1uhs) gy |1 Thetogans (1 = 2P0)

where {C;} is used for representing the set of column indices of the non-zero entries in the i** row
of the PCM of Table 2.5, and {R;} is used for representing the set of row indices of the non-zero
entries in the i** column of the PCM of Table 2.5. For example, in Table 2.5 we have {C»} =
{2,6,7,9,10} and {R;2}={3,7,10}. Furthermore, {R;} gives the set of row indices of the j* bit in
Table 2.5. Equation 2.11 illustrates the method of calculating the a posteriori probability ratio of
the j** bit conditioned on the knowledge of the channel’s soft output y and on satisfying the parity
check equations associated with the j** bit. This a posteriori probability ratio is calculated from the
intrinsic probability of the j** bit provided by the channel’s soft output Y5, and from the probabilities
of the neighbouring non-zero entries denoted as P;; in Equation 2.11. This will be exemplified with

the aid of a worked example in Section 2.6, while the proof of Equation 2.11 is given in Appendix B.

Let us introduce the Likelihood Ratio (LR) expressed as [1]:

1+ 1w (1 — 2P
U TTieqoy s ) i=1...M,j=1...N, (2.12)

LR ; =
T1- [tz (1 — 250




CHAPTER 2. BINARY LDPC CODES 16

and the Probability Ratio (PR) as:

1- P}
PRi; =5 I LR (2.13)
7 ke{R;}.kA
and .
1—P]
PR(zj)=——> ] LR; j=1...N. (2.14)
J iE{Rj}

Equation 2.13 describes how the PR information of each non-zero entry of the PCM is updated. More
explicitly, LR; ; in Equation 2.12, ¢ = 1...M,j = 1... N specifies the ratio of the probabilities that
the j** encoded bit is a binary 0 normalised to the probability of it being a binary 1 based on the
product of soft information F;; in Equation 2.12 provided by the other non-zero PCM entries in
the i** row, but excluding the current one according to Equation 2.12. The proof of Equation 2.12
is provided in Appendix A. Furthermore, the Probability Ratio PR;; in Equation 2.13, represents
similar information to LR; ; in Equation 2.12, except that the associated soft information is supplied
by all the other non-zero entries in the j** column. Finally, the notation PR(z;) in Equation 2.14
gives the overall a posteriori probability ratio of the j** coded bit. Additionally, we will also introduce
the notation P,(z;) for representing the ¢ntrinsic rather than a posteriori probability ratio of the jth

bit, which will be used in Section 2.6.

The LDPC decoding process involves both a vertical and a horizontal message passing operation
within each decoding iteration. These two operations are implemented based on the iterative cal-
culation of PR, ; and LR, ; expressed in Equations 2.13 and 2.12, respectively. Let us consider the
non-zero PCM entry of Table 2.5 at position (3,3) for example for the sake of describing the calcu-
lation of the message LR;; in Equation 2.12. There are another four non-zero entries in the same
row of Table 2.5 as entry (3,3), which may be found in the 7t*, 12t*, 14** and 15" column. Thus the
non-zero entry at (3,3) will receive eztrinsic information from all other non-zero PCM entries in the
374 row and based on Equation 2.12 it will calculate its own LR; ; message. More explicitly, based on
Equation 2.12 the estrinsic information specifies the probability of the 37¢ bit being a binary 0 on the
basis of the probabilities of all other bits involved in the 37 parity check set of Table 2.5. By contrast,
PR; 4 of Equation 2.13 is calculated by exploiting the soft-values of all other entries in the same col-
umn. Referring again to the non-zero PCM entry at position (3,3) of Table 2.5, the updating of this
information is based on Equation 2.13, exploiting the soft information provided by positions (4,3) and
(5,3) in Table 2.5. During the iterative update of Equations 2.12, 2.13 and 2.14, the employment of
PR expressed in Equations 2.13 and 2.14 is two-fold. The PR value of each bit, namely PR(z;) will
be calculated as in Equation 2.14 after each iteration. Based on PR(z;) a hard decision will be made
and the resultant bit sequence will be tested with the aid of the PCM. If the corresponding parity
check failed and hence another iteration is necessary for finding a legitimate codeword, the PR value
of each non-zero PCM entry, namely PR; ;,i=1...M, j =1...N will be evaluated according to
Equation 2.13. The difference between the PR value in Equation 2.14 of the above-mentioned it and
that of the non-zero PCM entry is that the PR(x;) value of the bit in Equation 2.14 incorporates the
information provided by all the non-zerc PCM entries within the column weighted by the intrinsic
probability ratio of the j** bit, denoted as %ll in Equation 2.14. By contrast, the PR;; value of a
non-zero PCM entry in Equation 2.13 is calculated based on both the knowledge of all other entries in

. . C o . . L. 1-Pr . .
the column combined with the intrinsic probability ratio of the j** bit, i.e. by —pr- in Equation 2.13.
3



CHAPTER 2. BINARY LDPC CODES 17

This measure is used for the sake of ensuring that the same information will not be used twice during

a given iteration.

Algorithm 1 A step-by-step description of Gallager’s probabilistic LDPC' decoding algorithm is pro-

vided as follows.

1. Based on the received soft values y; at the output of the channel, the intrimsic

probability of the G bit being a binary 1 or binary O can be calculated as: [112]
—(; +1)2)

= exp - 2.15

V2ro ( 202 (2.15)

1 —(y; — 1)?

€ ; 2.16

e (o), (2.16)

where y; and ¢ denotes the jth received soft channel output value and the standard deviation

P} = P(yjlz; = 1)

P} = P(y;|z; = 0) =

of the channel’s soft output, respectively.
2. The Pil_j values shown in Equation 2.12 are initialised by the le values obtained
from Equation 2.15.

3. The LR;; values corresponding to each non-zero entry in a given row of the PCM

are updated according to Equation 2.12, which is repeated here for convenience.

1+ (1 —2P)
el VG ER 11’1) i=1..Mj=1...N, (2.17)
L= Tleqegar (1 — 2P

4. The PR;; values corresponding to each non-zero entry in a given column of the

LRi’j

PCM are updated according to Equation 2.13, which is repeated here for convenience.

1-r}
PR;; = - J H LRy ; (2.18)

I ke{R;}.hi

5. For each coded bit, Equation 2.14 is used for updating the PR(z;). This is provided

here again for the ease of the reader.

1- P}
PR(zj):TJ I] LRy s=1...N. (2.19)
7 ie{R;}
6. The PZl] value corresponding to each non-zero entry of the PCM is updated according

to 1/(1+ PR;;), where PR;; represents the updated values from step 4.

7. Based on the PR(z;) values updated in step 5, a tentative hard decision is made

and this tentatively decoded codeword is multiplied with Hz

8. If the resultant syndrome vector is an all-zeroc vector, we declare a legitimate

codeword has been found and the iterative decoding process is terminated.

9. By contrast, if the syndrome vector is not an all-zero vector and the maximum number

of LDPC iterations is reached, we will declare a decoding failure and output the tentatively

decoded codeword.

10. If the maximum affordable complexity has not been exhausted, go back to step 3.

We will elaborate on these issues in more detail using a quantitative example in Section 2.6.



CHAPTER 2. BINARY LDPC CODES 18

2.6 LDPC decoding example

First of all, let us assume that the parity check matrix H, of Table 2.5 is used and the relevant generator
matrix G is the one seen in Table 2.7. Let us assume that the information bit stream of S=01101 is
transmitted. Thus, upon multiplying the source information sequence S by the generator matrix G of

Table 2.7 according to Equation 2.9, the encoded codeword C is found to be 100100010001101, which
is listed in Table 2.8.

T -7?2‘-773"7?4«775‘-7?6‘-777 978‘339‘-7710‘-7311]-7?12 13 | T14 9715}
1/ofof1]ojojof1]o]o]o]1 | 1]0]1]

Table 2.8: LDPC encoded codeword generated according to Equation 2.9 using the generator matrix
of Table 2.7

The encoded sequence of Table 2.8 is transmitted through an AWGN channel having a noise
standard deviation of ¢ = 0.9 using BPSK modulation. A logical 0 is transmitted as +1 and a
logical 1 is represented as —1. Once the encoded bit stream was transmitted through the channel, the
noise-contaminated received sequence shown in the 37 column of Table 2.9 may be received. This

corresponds to the demodulator’s soft output samples.

Transmitted | Received Probability | Probability | Decoded
Bits | Samples | Ratio(P-(z;)) P! Bit
z1 1 -0.89 0.11 0.9 1
T 0 +1.19 19 0.05 0
T3 0 +1.576 49 0.02 0
T4 1 -1.19 0.0526 0.95 1
Ts 0 +0.25 1.857 0.35 0
T 0 +1.193 19 0.05 0
T7 0 +0.081 1.222 0.45 0
T 1 -0.164 0.667 0.6 1
Ty 0 +1.115 15.67 0.06 0
Z10 0 +0.56 4 0.2 0
11 0 +1.865 100 0.01 0
T1p 1 +0.164 1.5 0.4 0 | Error
T13 1 -1.19 0.0526 0.95 1
14 0 +1.19 19 0.05 0
T15 1 -0.89 0.11 0.9 1

Table 2.9: LDPC decoding example, where a logical 0 corresponds to a positive received sample and
vice versa. The le is calculated from Equation 2.15 during step 1 of Algorithm 1 and the probability

ratio P.(z;) is calculated by (1 — le)/le.

The 4*" column of Table 2.9, denoted as P,, specifies the ratio of the probability that the bit was

originally transmitted as a binary zero over the probability that the bit was a binary one, i.e. the ratio



CHAPTER 2. BINARY LDPC CODES 19

\ 1 2 | 3 4 5 6 7 8 9 0] 11 | 12 13 14 ] 15
1|01 |19 0.0526 15.67 100
2 19 19 | 1.222 15.67 | 4
3 49 1.222 1.5 19 | o011
4 | o1 49 1.857 0.667 4
5 49 1.857 0.667 0.0526 | 19
6 19 0.667 100 0.0526
7 1.222 4 1.5 0.11
) 1.857 0.0526 | 19 | 0.11
9 [ 011 | 19 0.0526 19
10 0.0526 15.67 100 | 1.5

Table 2.10: Initial probability ratio value PR; ; of each non-zero PCM entry initialised by using the
P,(z;) values seen in Table 2.9 according to the PCM of Table 2.5 following step 2 of Algorithm 1.

1 2 3 4 5 6 7 ‘ 8 9 10 11 12 13 14 15
1 09| 005 0.95 0.06 0.01
2 0.05 0.05 | 0.45 0.06 | 0.2
3 0.02 0.45 0.4 0.05 | 0.9
4 |09 0.02 0.35 0.6 0.2
5 0.02 0.35 0.6 0.95 | 0.05
6 0.05 0.6 0.01 0.95
7 0.45 0.2 0.4 0.9
8 0.35 0.95 | 0.05 | 0.9
9 | 0.9 ]| 005 0.95 0.05
10 0.95 0.06 0.01 | 0.4

Table 2.11: Initial probability value Pi}j of entry (7, 7) of the PCM indicating the chances that the jth
bit is a transmitted binary 1 using the notation le of Table 2.9 according to the PCM of Table 2.5

P,(z;) = PY/P}. This represents the intrinsic probability ratio of each bit, which is calculated with

the aid of the Gaussian PDF function given by \/%a exp (_(?2;”)2 ) , where m denotes the mean of the
Gaussian distribution. When communicating over an AWGN channel, the only source of modulated
signal corruption is the channel-induced AWGN. Upon substituting m= +1 and —1 into the PDF for
the specific case of BPSK modulation, we arrive at the probability ratio of the d** bit as:

1 —(y;—1)°
Plle —0) =@ (%) .
P(zr;) = P(y;|z;) = —2L7 = = 2. /o’ 2.20
(T]) (y]|T]) P(y] -'L'j — 1) 1 exp (7(yj+21)2) €Xp y]/O' ( )
V2ro 20

According to Equation 2.20, the probability ratio P(z;) is computed from the demodulator’s soft
output by using the Gaussian Probability Density Function (PDF), which provides the corresponding
intrinsic information of the bit concerned. The terminology intrinsic implies that this information
was acquired from the channel output related to the specific bit concerned, rather than from any
surrounding bits of the same codeword, where the surrounding bits provide external or extrinsic
information as regards to the specific bit considered. According to step 1 of Algorithm 1, the 5%
column of Table 2.9, namely le, gives the probability of the bit being a binary 1 corresponding to the
P, values in the 4** column calculated in Equation 2.20 as:

P} !

= TG (2.21)

At the beginning of the decoding process the intrinsic probability ratio seen in the 4** column of



CHAPTER 2. BINARY LDPC CODES 20

Table 2.9 will be used for initialising the non-zero entries’ PR. values in the PCM as in step 2 of
Algorithm 1, as listed in Table 2.10. For the sake of convenient demonstration of the decoding
process, Table 2.11 gives the initial probability at position (i,7) that the j** bit is a transmitted
binary 1 corresponding to the values seen Table 2.10. For example, the values P&lz in the 12" column

of Table 2.11 are calculated from the values P, (z13) in the 12¢* column of Table 2.10 with the aid of
Equation 2.21 as follows:

1 1
P~1 L= — =04. 1 . 2.22
W2 TP,  141s  0h tE {F12}, (2.22)

where Ryy represents the indices of the non-zero PCM entries in the 12" row. Furthermore, the values

seen in the 2”@ column of Table 2.11 are calculated by using the values found in the corresponding

column of Table 2.10 as:

1 1
Pl = — = 0. ; 9}, 2.23
=1 PR, 1aig - 00h Te ) (223)

The probabilities found in Table 2.11 will be used for calculating LR; ; according to Equation 2.12
following the 37 step of Algorithm 1. For example, we have:

L+ Teqonyara(l — 2P5))
)
(
(

LR31y =
) Hm{m}z%u( 2P3

!
1+(1_2P33)( 2P37) 1- 2P31,14)(1_2P31,15)
1— (1 =2P3)(1 = 2P37)(1 — 2P} 14)(1 — 2P3 1;)
1+ (0.96) x (0.1)  (0.9) x (—0.8)
—(0.96) x (0.1) x (0.9) X (=0.8)
_ 0.93088 — 087, (2.24)
1.06912

where all the extrinsic probabilities associated with the non-zero PCM entries were taken into account,

except for the entry ]331 19- oimilarly, we have

LR 1+(1—2P71,7)(1—2P71.10)(1_2P71.15)
712 = i )
' 1 _(1 _2P71,7)(1_2P71,10)(1 _2P71,15)
_ +(0.1) x (0.6) x (—0.8)
~ 1—(0.1) x (0.6) x (—0.8)
O 952
= = 2.25
1.048 = 0.908; ( )

1+(1- 2P10,4)(1 - 2P110,9)(1 - 2P110,11)
1—(1=2Pf 4)(1 = 2P 4)(1 = 2P}y 14)
+(—0.9) x (0.88) x (0.98)
—(—0.9) x (0.86) x (0.98)
= 0228 106 (2.26)
1.77616

LRz =

All these LR values are summarised in Table 2.12. Then the calculated message LR; ; is used for

the sake of updating the probability ratio PR;; with the aid of Equation 2.13 to carry out the qth



CHAPTER 2. BINARY LDPC CODES

step of Algorithm 1. For example, we have:

|- P}

PR3y, = ——12

_1-04
04

1
P2 et ins

LB 1o

X LR 12 X LRg,12

= 1.5x0.908 x 0.126 = 0.1716,

21

(2.27)

where all the non-zero entries of the 12** column in Table 2.11 were taken into account, except for

LR3 12, because the factor

1
Pl2

1-Pl,

11 of the codeword. Similarly, we have

already takes into account the intrinsic information available for bit

0.6
PR7i2 = 04 % LR312 x LR10,12
= 1.5 x0.87 x 0.126 = 0.1644; (2.28)
0.6
PRig12 = 04 x LR312 X LRy 12
= 1.5 x0.87 x 0.908 = 1.185. (2.29)
The corresponding PR values are summarised in Table 2.13.
\ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|1 [o177 | 427 0.234 4.48 3.62
2 1.1 1.1 2.5 1.1 | 1.153
3 0.972 0.757 0.87 0.97 | 1.035
4 | 0.933 1.06 1.2 0.757 1.096
5 1.1 1.368 0.621 09 | 1.11
6 1.428 0.115 1.387 0.700
7 0.825 0.968 0.9084 1.025
8 4.673 0.645 | 1.55 | 0.609
9 | 0.157 | 4.672 0.214 4.673
10 1.426 0.700 0.727 | 0.126

Table 2.12: Likelihood ratio value LR; ; of each non-zero entry calculated using Equation 2.12 after
the first iteration according to the PCM seen in Table 2.5 following step 3 of Algorithm 1.

[ 1 2 3 4 5 | 6 7 8 9 10 11 12 13 14 15
1] 0016 | 100 0.016 12.05 99.78
2 333.33 125 | 0.763 50 | 4.255
3 58.82 2.512 0.172 32.258 | 0.07
4 ] 0.0031 52.63 11.905 0.048 4.464
5 50 10.42 0.172 0.024 | 28.57
6 100 0.314 262.52 0.03
7 2.31 5.05 0.165 0.07
8 3.058 0.033 | 2041 | 0118
9 | 0018 | 9091 0.017 30.3
10 0.0026 76.92 501 | 1.186

Table 2.13: Probability ratio value PR, ; of each non-zero entry calculated using Equation 2.13 after
the first iteration according to the PCM seen in Table 2.5 following step 4 of Algorithm 1.




CHAPTER 2. BINARY LDPC CODES 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0.984 0.01 0.984 0.076 0.01
2 0.003 0.008 | 0.567 0.02 | 0.191 _
3 0.017 0.284 0.854 0.03 | 0.935
4 | 0997 0.019 0.078 0.955 0.183
5 0.019 0.087 0.945 0.977 | 0.034
6 0.01 0.761 0.004 0.97
7 0.302 0.165 0.0.859 0.935
8 0.246 0.968 | 0.047 | 0.895
9 | 0.982 | 0.011 0.983 0.032
10 0.997 0.013 0.002 0.457

Table 2.14: Probability values of entry (i, ) indicating that the j th bit is a transmitted binary 1 after
one iteration according to the PCM seen in Table 2.5, which were calculated from the values tabulated

in Table 2.13 following step 6 of Algorithm 1.

Bit | PR(z4) | Bit | PR(zq) | Bit | PR(zq)
71 | 0.00285 | m¢ | 139.466 | z1; | 365
zy | 41694 | z7 | 1.9079 | zy, | 0.149
z3 | 55.534 | zg | 0.036 | ms | 0.021
24 | 0.00375 | zg | 54.055 | 4 | 3171
ms | 14245 |z | 4.893 | @5 | 0.07

Table 2.15: A posteriori probability ratio of each of the 15 encoded bits after the first iteration
calculated from Equation 2.14 following step 5 of Algorithm 1.

The above two steps accomplish the information passing from the message nodes to the check
nodes and back to message nodes, which is the result of the first LDPC iteration. Following the above
worked examples, all the elements of Table 2.12 and 2.13 may be calculated, which constitute the
result of updating the LR and PR values of each individual non-zero entry in the PCM for the first
iteration by using Equations 2.12 and 2.13, respectively. Furthermore, the probability values of entry
(4,7) calculated from the corresponding probability ratio, which indicate the chances that the j* bit
is a transmitted binary 1 after the first iteration are summarised in Table 2.14. After each iteration,
as described at the 5 step of Algorithm 1, the likelihood ratios LR; ; summarised in Table 2.12 are
utilised for generating the a posteriori probability ratio according to Equation 2.14. For example,

using the LR values seen in column 12 of Table 2.12, we have:

PR(z12) = Pr(z12) X LR312 X LR712 X LRyp,12
— 1.5 % 0.87 x 0.908 x 0.126 — 0.149. (2.30)

These values are listed in Table 2.15. Furthermore, at step 6 of Algorithm 1, the PR;; values
obtained after step 4 of Algorithm 1 are used for updating the value of Pi}]-, as seen in Table 2.14.
The a posteriori probability generated by the decoder at its output is then fed to the decision making
decoder stage for hard decision and the corresponding hard decision decoded codeword will be tested
with the aid of the parity check matrix H,.. If the result of this verification stage using C-HZ is not an
all zero vector, then the decoded codeword is not a legitimate one and hence the operations described

above will be carried out for another iteration. It can be observed that the 12** coded bit, which was



CHAPTER 2. BINARY LDPC CODES 23

originally in error in Table 2.9, has an a posteriori probability ratio of 0.149 in Table 2.15, where the
probability ratio is defined as the ratio of the probability of the transmitted bit being a binary zero
over the probability that the bit was a binary one, under the assumption that a zero and a one have
an equal probability of occurrence. Therefore the threshold for flipping a bit is one. More explicitly,
when the probability ratio becomes lower than the threshold, we flip the bit from a binary zero to a
binary one and vice versa. Hence this bit is flipped to a binary one and we can compare with Table 2.9

and see that this erroneous bit has been corrected.

As for the 7t step of Algorithm 1, upon carrying out a hard decision based on the values seen
in Table 2.15 and calculated during the first iteration, it can be seen that the error at position 12
has been detected and corrected. By multiplying the hard decision based results of the decoded bit
sequence with the transpose of the PCM H,, of Table 2.5, the product becomes an all-zero vector. This
indicates that the obtained codeword is legitimate, thus the iterations are concluded. Hereby, step
8 is carried out for outputting a legitimate codeword and the decoding process is accomplished. If,
however, the resultant product is not an all-zero vector, this will indicate that the decoded codeword is
not a legitimate one, thus a further iteration will be carried out as described at step 9 in Algorithm 1,
provided that the maximum affordable number of iterations has not been exhausted. The values listed

in Table 2.14 will be used for the remaining operations in the same fashion, as described previcusly.

2.7 Generalised LDPC decoding procedure

In the previous section, a worked decoding example was provided, using Gallager’s notation. How-
ever, during the past decade, numerous researchers have been working on LDPC codes, and resulting
in further advances, such as non-binary LDPC [55] or reduced complexity decoding [9]. In his re-
search, Gallager used the Probability Ratio and Likelithood Ratio of bits, assuming a binary coding
and modulation scenario. As seen in Appendix A, the updating of the likelihood rotio is carried out
by calculating the probability of encountering an even number of logical 1s in a parity check equation.
In order to avoid these limitations in this section a more general description of LDPC decoding will
be given. This generalised description will be cross-referenced with our previous notation according

to Gallager’s original work.

2.7.1 Generalised notation

The iterative decoding procedure concerned involves passing probabilities between the non-zero entries
within the parity check matrix. Since the decoding information is always passed from a column to
a row or vice versa, the probabilities are circulating among the message nodes and the check nodes
of the bipartite graph defined in Figure 2.3, where we defined the columns as message nodes and the
rows as check nodes. Using the example seen in Figure 2.3, we arrive at the more detailed Figure 2.5,

indicating the exchange of information among the nodes.

To elaborate further in Figure 2.5, the message denoted as Q7 ; is passed from the g™, j=1...N,
message node on the left to the i**, { = 1... M, check node seen at the right. More explicitly, Q?;j
represents the probability passed from the message node j to the check node i indicating that the
message node j is in state a € (0,1). The quantity @;; is similar to the PR;; quantity defined in



CHAPTER 2. BINARY LDPC CODES 24

column 3 Row 2
column 7 Row 8
Row 13

column 8

Figure 2.5: Bipartite graph of message passing using the structure of Figure 2.3.

Equation 2.13 and exemplified in Table 2.10 and 2.13, except that PR; ; was expressed in a form of
ratio. Hence we have PR;; = Q?] / Qil:j. The subscript of Qf j denotes the row and column index of
the corresponding non-zero entry in the parity check matrix, which is related to a specific connection
between the two nodes in Fig 2.5. By contrast, the message denoted as R7; is passed from the i*"
check node to the j** message node, quantifying the probability that the i** check is satisfied based
on the probability of all the participating nodes in the i** check except node 7, which is in state a.

Hence R7 ; corresponds to the LR defined in Equation 2.12, and we have LR, ; = R? j / Ril:j.

The notations F; and R, have a similar meaning to PR, and LR ; respectively, and these
quantities are stored in the non-zero entries of the PCM in a fashion similar to Table 2.13 and
Table 2.12, respectively. At the beginning of the iterations, as the PR; ; of each non-zero entry is
4th

initialised to the value of the intrinsic probability ratio, i.e. to the values seen in the column

of Table 2.9 for example, ()7 is initialised to P, which is the intrinsic probability that the j**
symbol assumed a transmitted binary value of a. If no a priori or independent statistical knowledge
is available concerning this bit, encountering any of the possible states will have the same probability.
Since the message R;,; quantifies the probability that the it" check is satisfied, when the j** symbol

is in state a, it can be represented using the following expression [56]:

Riyj= > Plz=0/C) J] @k i=1..Mj=1..N. (2.31)
Cicj=a ke{Ci} ks

The notations ¢; and C; in Equation 2.31 are used to represent the j** bit of the codeword C, and the
set of column indices of the j** row of the PCM, respectively. Equation 2.31 provides a recipe as to
how the message R} ; is updated, which is interpreted in more detail below. From this equation, we can
see that we have to carry out the summation for all legitimate codewords, where the j**, j =1...N,
symbol is in state @ and which satisfies the i**, i = 1... M, parity check z;. More explicitly, the
probability P(z; = 0|C) is 1, if the testing of the codeword configuration C satisfies the i** check z;
and 0 otherwise. In other words, P(z; = 0|C) is a binary flag, which returns a value of 1, if C is
a legitimate codeword and zero otherwise. The flag P(z; = 0/C) also has to be multiplied with the
product of all the probabilities Qf; of the message node k being in state ¢z for the i** check. Finally,
the set {C;} contains the column indices of all the non-zero entries participating in the i** row of the

PCM.



CHAPTER 2. BINARY LDPC CODES 25
Updating Q7 ; is quite similar, obeying the following equation [56]:

o=, Pf [ RE, (2.32)
ke{Ry} ki

where {R;} denotes the set of row indices that have non-zero entries in column j, 7 =1... N, of the
PCM. Furthermore, P} is the intrinsic probability associated with the channel output assuming that

Cj is in state a, and the scaling factor o; ; is used for ensuring that we have 3 Q=1

The decoding process is based on simply iteratively updating the values of R 5 and Qf ; and after
each update of R}, and Q;{j, a tentative hard decision will be made for the sake of determining the

polarity of the product of R{; and each symbol’s intrinsic probability, i.e. that of

pPcy)=p ] R:, (2.33)
kE{RJ’}

The specific binary symbol having the higher probability from the set of two will be chosen as
the survivor. If the hard-decision based codeword satisfies the parity check matrix H,, the decoding
operations are terminated and the corresponding codeword is output. Otherwise, the decoder will
carry on updating the quantities R and @ ; according to Equation 2.31 and Equation 2.32, until
a valid codeword is found or a predetermined maximum number of iterations is reached. The flow

diagram of the iterative decoding process is portrayed in Figure 2.6.

Demodulator’s Qutput

Update  RY.

P
Calculate Soft Values i
ofthe symbols

Update O

Hard decision and

Check Satisfied Output
Codeword
~ Check not Satisfied
Maximum
number of iteration

check with matrix H

Declare decoding

failure reached?

e

Figure 2.6: LDPCC’s probabilistic decoding flow diagram

2.7.2 Reduced complexity calculation of the message R,

As seen in Equation 2.31, the updating of the message R7; involves tentatively evaluating all the
legitimate codewords that have their jth bit in state a. This is a rather complex operation and may
become prohibitively complex to implement, when the block-length is high. Hence Gallager’s [1]
suggestion outlined in this thesis’ Appendix A was the introduction of a reduced complexity method.

With the same objective in mind, Richardson proposed an efficient way of updating R} ; using the



CHAPTER 2. BINARY LDPC CODES 26

Fast Fourier Transform (FFT) [9] , which may be further generalised for employment in non-binary
LDPC codes, as shown in Chapter 4.

In Equation 2.31, the quantity we have to find is the probability of the j** coded bit being in
state a by exploiting with the knowledge of the other coded bits having a certain probability and
upon assuming that the i** parity check equation is satisfied. Let us use the notation PDF; ; for
representing the probability density function of the j** bit stored in the non-zero entry of the PCM
at position (7, j), where we have PDF; ; = {PP], Pi{j}. Our aim is now to calculate the probability
density function PDF; ; of the non-zero PCM entry at position (7,7). All the non-zero entries in the
i*" row are modulo-2 added after a tentative hard-decision for the sake of testing, whether a legitimate
codeword was found. Therefore the probability density function of the 7** LDPC coded bit has to
match the rest of the bits participating in this check for the sake of ensuring that their modulo-2 sum
equals zero. In other words, the state of the j** bit has to be the same as the modulo-2 sum of all
other bits involved in this check. Thus the probability density function of the j** LDPC coded bit
may be obtained by evaluating the conveolution of the probability density function of all other bits

involved in the parity check equation, which is expressed as [56]:

PDF ;= (X)) PDFy, (2.34)
te{Ci}.t#7

where (X) denotes convolution. However, the convolution may become a high-complexity operation.

The associated complexity may be reduced, if the operations are first Fourier-transformed, mul-
tiplied and then inverse Fourier-transformed. These operations may be carried out more efficiently
using the Fast Fourier Transform and Inverse Fast Fourier Transform [113] over the corresponding
finite Galois field, namely GF(2). More explicitly, Equation 2.34 may be formulated in the frequency
domain as:

F(PDF ;)= [[ F(PDF). (2.35)
te{C;}.t#7

Let us introduce the function f, representing a function having abscissa values defined over GF(2).
More explicitly, let f(0) and f(1) represent the probability of a particular bit being a binary zero
and a binary one, respectively. Furthermore, let us use F(f) to represent the Fourier transform of f,

which is defined as [114]:

2—1
F(H)k) = fln)e ™2 k=0,1. (2.36)
n=0

Therefore, we arrive at

F(HA) = [f(0)— f(1). (2.37)
Let f; ; = PDF;;, fi; = PDF;,; and substitute these functions into Equation 2.35, yielding

FE)0) = [ F(fh0),

tE{Ci},t;éj

Fh)® =[] FHQ. (2.38)

te{C; },t#j



CHAPTER 2. BINARY LDPC CODES 27

Apparently, the function F(f; ;)(0) in Equation 2.38 equals one, since we have F(f)(0) = f(0) +
f(1) = 1 in Equation 2.37. By carrying out the inverse FFT of the results obtained in Equation 2.38,
the value of R, is obtained. The inverse FI'T requires exactly the same operation as those seen in

Equation 2.37, although an additional normalisation factor has to be incorporated, yielding [56]:

oy = FROEFD) _ o, 7D

Let us now illustrate that this method results in the same formulation as Gallager’s original work.

Let us introduce the notation of m; ; = log((Q?]/Q%])) Then we have

) @0l @0 -1 e -1

0
U _ 0ol = = = = tanh(m; ;/2), 2.40
“ha = Gug QY +Qf;  QY/Ql+1 ™+l anh(mi,j/2), (240
and hence Equation 2.38 may be rewritten as
F(fi)0) = 1 (2.41)
Ff)1) = ] tenn T (2.42)

te{Ci}t#7

By taking the inverse FFT of Equations 2.41 and 2.42, Ri‘j of Equation 2.31 may be expressed as:

R?,j = P30 ;F(f”)(l) =1+ H tanh 77121,5) 0.5,
te{C; }t#j

Rl - F(f1,3)(0) ; F(fi5)1) _ - J[ tanh m;t) o5, (2.43)
te{Ci }t#7

As in Gallager’s LR format, where LR, ; = jo / Rzl ; holds, we have

14+ HtE{C,;},tyéj tanh %
1-— Hte{Ci},t;&j tanh %

LRy; = Ry;/R; ;= (2.44)

Since we have tanh(m; ;/2) = Qg] — 11] =1- QQ}_]- =1- ZPZ-%j, we arrive at Equation 2.12, resulting

in Gallager’s original representation of the LDPC decoding formulation.

As introduced in Section 2.7.1, Q}’j corresponds to Gallager’s original notation P; j, as introduced
in Section 2.6, hence the values seen in Table 2.11 can be directly used for the sake of computing the
message Rf;. Observing Equation 2.26, the message LR1g 12 was calculated as (1 —0.77616)/(1 +
0.77616) = 0.126. Let us now provide a brief example of updating the message R{, , with the aid of
the FFT and show that it is consistent with the approach demonstrated in Section 2.6.

In order to calculate R{,,, we have carried out the FFT for all the probabilities of the non-zero



CHAPTER 2. BINARY LDPC CODES 28

entries participating in the 10** row of Table 2.11 using Equation 2.37 as follows:

F(f104)(0) = f104(0) + fr04(1) =1,

F(f104)(1) = f10,4(0) = fro,a(1) = —0.9;

F(f109)(0) = fio(0)+ froe(l) =1,

F(fr09)(1) = fio9(0) — fioe(1) = 0.88;

F(f10,11)(0) = f1011(0) + fro11(1) =1,

F(fro)(1) = fio,11(0) = fro11(1) = 0.98;

F(f1012)(0) = f10,12(0) + fro.12(1) = 1,

F(f1012)(1) = f1012(0) — f0,12(1) = 0.2. (2.45)

Upon multiplying the transformed values obtained with the aid of Equation 2.45, the Fourier
transform of the PDF of entry (10, 12) can be updated as seen in Equation 2.38, yielding:

F(f1012)(0) = H F(f10,6)(0) = F(f10,4)(0) X F(f10,9)(0) x F(f10,11)(0)
tE{Ci},tyél‘z
= Ix1x1=1;
Flhow)) = ] Flhud®) = F(fioa)1) x F(froe)(1) x F(fio)(1)
te{Ci} t#12
= (—0.9) x 0.88 x 0.98 = —0.77616. (2.46)

The results obtained according to Equation 2.46 have to be inverse Fourier transformed for the sake

of generating the PDF of the non-zero entry (10,2) of Table 2.11 using Equation 2.39, yielding:

F(f10.12)(0) + F(fr012)(1) _ 1—-0.77616 — 011192,

f1012(0) = 5 5
Fonz(l) = F(f10,12)(0) ;F(flo,m)(l) _ 1+O.277616  0.88508, (2.47)

Thus the results obtained in Equation 2.47 can be assigned to R{,, as follows:

R(ljo,rz = f10,12(0) = 0.11192,
Rlgs = fio,12(1) = 0.88808, (2.48)

yielding LRig 12 = R?U,H/R}U,u = 0.126 as according to Equation 2.44, which is consistent with the
value previously tabulated in Table 2.12.

2.7.3 Complexity of the LDPC decoder

As described in Section 2.7.2, the complexity of the LDPC decoder can be reduced with the aid of
the FFT. In this subsection, the complexity of the LDPC decoder will be calculated in terms of the

number of additions and multiplications required.

During the process of updating the message R7, the FFT process of Equation 2.37 requires two
additions. When the FFT has been carried out, the multiplications entailed in the evaluation of
Equation 2.38 are carried out. Equation 2.38 may be more efficiently evaluated by using forward and

backward multiplications [56]. A simple example is given as follows.



CHAPTER 2. BINARY LDPC CODES

Operation Value of temp | Value of updated entry
Initialise temp=1 1 n/a
Apew = temp 1 Anew=1
temp = tempXx Agyg Agd

Bnew = temp Aold Bnew:Aold
temp:tempx Bold Aoldx Bold n/a
Cnew = temp AoldXBold Cnew:AoldXBold
temp:tempx Cold AoldXBoldXCold n/a
Dnew - temp AoldXBoldXCold Dnew = AoldXBoldXCold
temp=tempX Doiq Aotg X Bota X Corax Doig n/a
Reset temp=1 1 n/a
Dnew = tempx temp 1 Dnew:AoldXBoldXCold
temp =tempx D,y Do n/a
Chew = tempx temp Doa | Cnew = AoiaXBoraX Doia
temp tempx = Coyg CotaX Dora n/a
Brew =tempx temp CotaxDog | Bpew = AoaxColaX Dolg
temp :tempx Bold BoldxcoldXDold n/a
Anew = tempx = temp Bo1aXCoiaX Dot | Anew = BoiaXColaX Doia
temp tempx = Agyq Aota X BotaX Cotg X Doyg n/a

29

Table 2.16: Process of forward and backward multiplications for a vector having four entries.

Let us assume that we have a vector containing four values denoted as { A4, Boids Coids Dota}. We

have to replace the value of each entry in the vector with a product of other values within the vector.

More explicitly, we have

Anew - Bold ' Cold ' Dold:
Bnew = Aold ' Cold ' Dold»
Chew = Aotd " Baod * Do

Dnew = Aold ' Bold ' Cold- (249)

The evaluation of Equation 2.49 requires (w, — 2) - w, multiplications, where w, is the number of
entries within the vector, i.e. four in this example. We can observe that the complexity increases
dramatically, when w, is high in Equation 2.49. We will now show that the forward end backward
multiplications require 3w, multiplications, a complexity which increases linearly with respect to the
size of the vector. Using forward and backward multiplications will reduce the arithmetic complexity
for wr > 5, which is applicable for regular LDPC codes having a coding rate in excess of 0.4 and for
most of the irregular LDPC codes introduced in Chapter 3. The process of updating values in the

vector of Equation 2.49 is tabulated in Table 2.16, where a temporary variable denoted as temp is
introduced.
By summing the number of multiplication operations in Table 2.16, a total of 3w, multiplications

are invoked for calculating state a. For the binary case, where a has two legitimate states, a total of

6w, multiplications are required.



CHAPTER 2. BINARY LDPC CODES 30

Similarly to the FFT operation, the IFFT operation of Equation 2.39 requires a further two
additions. Furthermore, owing to the normalisation process of the IFFT another two multiplications

are necessary.

Thus by summing all the operations to be evaluated for a single row of the PCM having w-
non-zero entries, we require 4w, additions and 8w, multiplications for updating message R for each
individual row. By summing all the M rows, we have a total of 4Mw, number of additions and 8Mw,
multiplications. Since we have M X w, = N X w,, where w, is the column weight, the number of

additions and multiplications can be represented by 4N x w. and 8N x w,, respectively.

The update of message @ will involve another forward and backward multiplication, thus again,
each column will require 6w, multiplications. Hence the overall decoding complexity associated with

the detection of each coded bit in one iteration will be 4w, additions and 14w, multiplications.

2.8 Theoretical performance bound

Gallager stated [1| that a mathematical analysis of the performance of probabilistic decoding is ex-
tremely challenging, but a weak analytical bound on the error probability can be derived for the

specific case of having a column weight of three, which is expressed as [1]:

A+ - 2pi)wT*l]wc_1

1- (1 - 2pi)wr_1 we—1
Pit1 = Po —Po| 3 ] .

+ (1 —po)[ 5 (2.50)

In the equation, 7 is the iteration index, while py is the intrinsic probability of the bit at the position
concerned being in error. The second term on the right of the Equation 2.50 is the probability that the
bit concerned is received in error, while the parity check is satisfied due to errors at other positions.
Finally, the third term represents the probability that the bit concerned is actually received correctly,

but due to errors in the parity check set, it was modified to be in error.

Gallager derived Equation 2.50 based on the simplifying assumption that the Binary Symmetric
Channel (BSC) was used. When the parity check set is not satisfied then the bit concerned was
simply toggled. Based on this simplistic decoding method, this technique is limited to provide a weak
bound on the achievable performance, since it is based on hard-decision decoding. When soft-decision
based simulations are conducted using Equation 2.11, the attainable performance is almost an order

of magnitude better than the results obtained from Equation 2.50.

2.9 Simulation results

In this section our simulation results will be discussed for the sake of characterising the achievable
performance of the regular construction binary LDPC codes described in the previous sections, when
communicating over both AWGN and uncorrelated Rayleigh fading channels. The various LDPC
codes’ performance will be benchmarked against that of turbo convolutional codes [3] [115] and
Turbo Trellis Coded Modulation (TTCM) [115] [116] . All the parity check matrices of the LDPC

codes are constructed in a random fashion. More explicitly, according to the column weight, the



CHAPTER 2. BINARY LDPC CODES 31

LDPC code Channel Maximum number LDPCC’s
of iterations column weight

(1000, 500) AWGN 2, 4, 8, 20, 50, 100 3
(500, 250) AWGN 2, 4, 8, 20, 50, 100 3

’ (200, 100) AWGN 2,4, 8, 20, 50, 100 3
(1000, 500) | uncorrelated Rayleigh | 2, 4, 8, 20, 50, 100 3
(5600, 250) | uncorrelated Rayleigh | 2, 4, 8, 20, 50, 100 3
(200, 100) | uncorrelated Rayleigh | 2, 4, 8, 20, 50, 100 3

Table 2.17: Simulation parameters for three half-rate LDPCCs investigated, when communicating over

an AWGN channel and an uncorrelated Rayleigh fading channel using different maximum numbers of

iterations.

positions of the non-zero entries are assigned to the PCM randomly, while maintaining a constant row

weight at the same time. The number of length 4 cycles is reduced to the lowest possible level.

2.9.1 Effect of the number of LDPC iterations

Similar to the celebrated family of turbo convolutional codes, the benefit of iteratively exchanging
soft information is that during the iterative decoding process the performance of the channel decoder

improves upon increasing the number of iterations, i.e. the decoder’s complexity.

In this subsection, we will use three different half-rate LDPC codes having various block-lengths.
The code (N, K) listed in Table 2.17 represents a half-rate LDPC code having a coded block-length
of N bits and conveying K information bits. The column weight for each of the three codes seen in
Table 2.17 is three. In this experiment an AWGN and the uncorrelated Rayleigh fading channel were
applied. We will use G and UR for abbreviating the AWGN channel and the uncorrelated Rayleigh

fading channel in the following tables.

The performance of the LDPC codes listed in Table 2.17 is illustrated in Figures 2.7-2.12. The
Ey /Ny required by each of the LDPC codes for achieving a BER of 10~% when communicating over
the two different channels is tabulated in Table 2.18. Furthermore, the performance of the uncoded
scenario is used as a benchmarker and the coding gains achieved by using various maximum numbers
of iterations for the three different LDPC codes are tabulated in Table 2.19 and plotted in Figure 2.13.
The corresponding coding gain versus arithmetic complexity curves are also plotted in Figure 2.14.
The complexity quoted in Figure 2.14 characterises the complexity associated with the decoding of
each information bit, calculated from the complexity figures obtained in Section 2.7.3 and divided by
the LDPC code’s coding rate. Observe in Figure 2.13 that even though the simulations were conducted
for a maximum of 100 iterations, the coding gain started to saturate after an iteration index of 20.
Hereby, we introduce another quantity termed as the iteration efficiency, which is defined as follows.
We take the coding gain achieved when using a maximum of 100 iterations as a reference and define
the iteration efficiency as the percentage of the maximum achievable coding gain at a given number

of iterations. This quantity is plotted in Figure 2.15.

It may be inferred from Figure 2.13 that the soft information based iterative decoder achieves most



CHAPTER 2. BINARY LDPC CODES 32

2 iterations

@]
10.1g\‘ o 4 iterations
. i x 8 iterations
I N SRS . .
| %ﬁyl\l < 20 iterations
2 ity 1 50 iterations
0 \ )\Q ® 100 iterations
] = e e R ee—— S uncoded
& —— LDPC coded
Y A\E: S S v 5 ‘
Mg \
a8 : i
5 ey
I LSRN A
LAV o
aiy
5 ‘ \\\\ \‘\ \\\ 7 ¥‘
I LW WAEAY
5 \ % &
R T®
0 l 2 3 4 5 6 7 9 10
E/Ny(dB)

Figure 2.7: BER performance of the half-rate LDPC code (200, 100) parameterised in Table 2.17,
using different maximum numbers of iterations, when communicating over an AWGN channel. The

achievable coding gain of the various schemes at a BER of 10~¢ will be summarised in Figure 2.13

and Table 2.27.

e} 2 iterations
10" £ ¢ 4 iterations
5 3 % 8 iterations
LY N\K ¢ 20 iterations
2 o t 50 iterations
102 K \Q ,\Q : e 100 iterations
S e e uncoded
\ X —— LDPC coded
o \ WX 1\ e
ot AN
m 5 ‘“u:‘\\ \\ \\\
\ L4 )y
) WA\
N
5 \\\ \‘\ | § \\
WYX hY N
2 A A \
AR
(] 1 2 3 4 5 6 7 10
E,/No(dB)

Figure 2.8: BER performance of the half-rate LDPC code (500, 250) parameterised in Table 2.17,
using different maximum numbers of iterations, when communicating over an AWGN channel. The
achievable coding gain of the various schemes at a BER of 10~¢ will be summarised in Figure 2.13

and Table 2.27.



CHAPTER 2. BINARY LDPC CODES

o) 2 iterations
107" : v 4 iterations
5 ST x 8 iterations
K{\ YR ¢ 20 iterations
2 1 50 iterations
107 * \% ® 100 iterations
. aiss 5 T S ——— uncoded
’ * T3 SN —— LDPC coded
v WA R TS
T AT
m 5 XYY ‘\ i\Y L7
: ¥ g
L \ .
2 W ) Y
RV
i AN \
5 | &1 X q
A |
0 1 2 3 4 5 6 7 8 9 10
E/Ny(dB)

Figure 2.9: BER performance of the half-rate LDPC code (1000, 500) parameterised in Table 2.17,
using different maximum numbers of iterations, when communicating over an AWGN channel. The

achievable coding gain of the various schemes at a BER of 107* will be summarised in Figure 2.13
and Table 2.27.

107
5 S
=N
, \K %
- NS
5] ‘m\ (Y
[ ANEAY
oLl WA
g 107 \\ & Q e} 2 iterations
5 \‘\\ ‘\\ v 4 jterations
ALY * 8 iterations
2| Wy X v 20 iterations
10 \\é\& >\\ t 50 iterations
] i . ® 100 iterations
AY \
— N1 e uncoded
7 WD —— LDPC coded
N A
0 2 4 6 8 10 12 14 16 18 20
E/Ny(dB)

Figure 2.10: BER performance of the half-rate LDPC code (200, 100) parameterised in Table 2.17,
using different maximum numbers of iterations, when communicating over an uncorrelated Rayleigh

fading channel. The achievable coding gain of the various schemes at a BER of 104 will be summarised
in Figure 2.13 and Table 2.27.



CHAPTER 2. BINARY LDPC CODES

10° j
s 3 - —
) B o)
o RAEN
e, ¢ 8
g 10?2 “\Y Q\ V?Q o] 2 iterations
5 i — - v 4 iterations
[ % 8 iterations
s [\ \Q ’\Q < 20 iterations
1o \LX 1 50 iterations
; L AN L . ° 100 iterations
* N = uncoded
2 e i = —— LDPC coded
10° n Q & T T T
4 6 8 10 12 14 16 18 20
E/Ny(dB)

34

Figure 2.11: BER performance of the half-rate LDPC code (500, 250) parameterised in Table 2.17,

using different maximum numbers of iterations, when communicating over an uncorrelated Rayleigh

fading channel. The achievable coding gain of the various schemes at a BER of 10™% will be summarised

in Figure 2.13 and Table 2.27.

10" .
5 Y — -
LANAASRY
2 ~d
10’2 \ Q ’Qn """
s P
0 9]
a7 \ hY
g 10?3 “ §< >(\ U%ﬁ e} 2 iterations
B gi‘ “\ “\ o v 4 jterations
I ¥ PN X 8 iterations
2] “\\ \* X Q ot 20 iterations
10" | 1. \ f 50 iterations
5 ‘W 1 3 & ° 100 iterations
i v A2 N S I uncoded
2 * \ —— LDPC coded
. N ——
0 2 4 6 8 10 12 14 16 18 20
Ey/Ny(dB)

Figure 2.12: BER performance of the half-rate LDPC code (1000, 500) parameterised in Table 2.17,
using different maximum numbers of iterations, when communicating over an uncorrelated Rayleigh

fading channel. The achievable coding gain of the various schemes at a BER of 10~ will be summarised
in Figure 2.13 and Table 2.27.



CHAPTER 2. BINARY LDPC CODES 35

— AWGN
~~~~~~~~~~ uncorrelated Rayleigh

o LDPC code(200, 100)
0 LDPC code(500, 250)
35 x LDPC code(1000, 500)
m
=2 8
N’
==
. r—
(o]
en
o0
= 15}
=
o
Lo
5 W )
0 . . , . .
0 20 40 60 80 100

Maximum number of iterations

Figure 2.13: Coding gain achieved by the three different half-rate LDPC codes parameterised in
Table 2.17, at a BER of 1074, when communicating over AWGN and uncorrelated Rayleigh fading

channels.
— AWGN
~~~~~~ uncorrelated Rayleigh
" o} LDPC code(200, 100) w0
o LDPC code(500, 250)
35 % LDPC code(1000, 500) 35
e 30
g g
H E
§= 3=
joT4] B 20
on on
‘—E 15 _'S 15
=] =]
1o o
iF e 5 2 g & -5
% 500 1000 1500 2000 2500 %0 Jolo 000 3000 4000 5000 6000 7000 000 9000

Number of additions Number of multiplications

Figure 2.14: Coding gain achieved by the three different half-rate LDPC codes parameterised in
Table 2.17, at a BER of 107%, when communicating over AWGN and uncorrelated Rayleigh fading

channels.



CHAPTER 2. BINARY LDPC CODES 36

LDPC Maximum number | Required Ey /Ny (G) | Required E,/Ny (UR)
code of iterations (dB) (dB)
(200, 100) 2 5.765 11.059
4 4.559 8.353
8 4.059 7.294
20 3.794 7.059
50 3.676 6.745
100 3.588 6.589
(500, 250) 2 5.647 10.824
4.118 7.647
8 3.265 6.059
20 3.000 5.647
o0 2.824 5.353
100 2.735 9.294
(1000, 500) 2 5.588 10.706
3.941 7.412
2.882 5.529
20 2.470 4.941
o0 2.324 4.764
100 2.294 4.706
uncoded { N/A 8.47 34

Table 2.18: E} /Ny required by the three half-rate LDPC codes parameterised in Table 2.17 for achiev-
ing a BER of 107, when communicating over both AWGN (G) and uncorrelated Rayleigh fading

(UR) channels.

of its attainable coding gain in the context of both channels after the first few iterations. Further
iterations in excess of 20 achieve only a modest further performance improvement at the cost of a
high additional decoder complexity. Comparing the curves plotted in Figure 2.15, it can be observed
that when communicating over the same type of channel, the iteration efficiency improves at nearly
the same rate for the three LDPC codes having different blocklengths. Upon using a maximum of
eight iterations, all codes have already achieved over 90% of the maximum attainable coding gain,
in the context of the AWGN channel. For the uncorrelated Rayleigh channel the iteration efficiency
has already exceeded 95% after eight iterations. By contrast, in the AWGN channel a maximum of
20 iterations is necessitated for achieving over a 95% iteration efficiency, provided that the associated

complexity is affordable.

2.9.2 BER as a function of the LDPC bit-index

The family of TTCM schemes [115] [116] employs set partitioning for mapping the input bits to be
transmitted to the phaser constellation. Hence each individual bit in a coded symbol has a different
BER [115]. Motivated by this observation, in this subsection we briefly investigate whether each coded

bit in an LDPC codeword is equally protected. This experiment was carried out by calculating the bit



CHAPTER 2. BINARY LDPC CODES

LDPC Maximum no. Coding Coding gain Iteration Iteration
code of iterations | gain (G)(dB) | (UR) (dB) | efficiency(G) | efficiency(UR.)
(200, 100) 2 2.705 22.941 55.4% 83.7%
4 3.911 25.647 80.1% 93.6%
8 4411 26.706 90.3% 97.4%
20 4.676 26.941 95.8% 98.3%
50 4.794 27.255 98.2% 99.4%
100 4.882 27.411 100.0% 100.0%
(500, 250) 2 2.823 23.176 49.2% 80.7%
4 4.352 26.353 75.9% 91.8%
8 5.205 27.941 90.8% 97.3%
20 5.470 28.353 95.4% 98.7%
50 5.646 28.647 98.4% 99.8%
100 5.735 28.706 100.0% 100.0%
(1000, 500) 2 2.882 23.294 46.7% 79.5%
4 4.529 26.588 73.3% 90.8%
8 5.588 28.471 90.4% 97.2%
20 6.000 29.059 97.1% 99.2%
50 6.146 29.236 99.5% 99.8%
100 6.176 29.294 100.0% 100.0%

37

Table 2.19: Coding gain achieved by the three half-rate LDPC codes parameterised in Table 2.17 at

a BER of 1074, when communicating over both AWGN (G) and uncorrelated Rayleigh (UR) fading

channels.

error ratio at each individual bit position of the entire LDPC codeword evaluated after each LDPC
iteration when communicating over an AWGN channel. The simulation parameters used are given in

Table 2.20. These experiments are conducted for two specific noise levels, i.e. for Ey/Ny = 1.5dB and

Ey/Ny = 2.5dB.

The simulation results acquired for the LDPC scenarios of Table 2.20 are given in Figure 2.16 and

Figure 2.17. The horizontal axis labelled as bit-index gives the bit position concerned in a codeword.

As a benefit of iterative decoding, the BER of each constituent bit gradually decreased, as we increased

the number of iterations, but no significant BER, difference was observed for the various bit positions.

Channel | Maximum number LDPCC’s Ey/Ny(dB) LDPC
of iterations column weight code
AWGN 3 3 1.5 (1000, 250)
2.5

Table 2.20: Simulation parameters for an quarter-rate LDPC code communicating over an AWGN
channel at E,/Ny = 1.5 and 2.5dB.



CHAPTER 2. BINARY LDPC CODES 38

110
—~ 100 ®
o
=N
=
5 90
o
[P}
8 80
L 9
o
o
=
S eof — AWGN
q;_'_) d ---------- uncorrelated Rayleigh
=5 d? o LDPC code(200, 100)
o LDPC code(500, 250)
x LDPC cade(1000, 500)
40
0 20 40 60 80 100

Maximum number of iterations

Figure 2.15: Iteration efficiency of the three half-rate LDPC codes of different block-lengths listed in
Table 2.19, when communicating over AWGN and uncorrelated Rayleigh fading channels.

1.5dB, (1000,250)

BER

—— Before Iteration
~~~~~~~~~ After 1 Iteration
------ After 2 Tterations
005+ After 3 Iterations
——= After 4 Iterations
—— After 5 Iterations

0.0+
0 200 400 600 800 1000

Bit index

Figure 2.16: BER performance of each individual bit of the quarter-rate LDPC code (1000, 250), when
communicating over an AWGN channel at E,/Ny = 1.5dB.



CHAPTER 2. BINARY LDPC CODES 39

2.5dB, (1000, 250)

0.25

0.2

Q_/" 0.15 r
0
M
0.1
—— Before Iteration
""""" After 1 Iteration
------ After 2 Iterations
0.05 B After 3 Iterations
——- After 4 Iterations
----- After 5 Iterations
0.0 * .
0 200 400 . 600 800 1000
Bit index

Figure 2.17: BER performance of each individual bit of the quarter-rate LDP C code (1000, 250), when
communicating over an AWGN channel at E,/Ny = 2.5dB.

2.9.3 Probability of undetected errors

Apart from having a good performance, LDPC codes are also capable of error detection with the aid
of the PCM. More explicitly, after each iteration and tentative hard-decision decoding, the decoded
codeword will be multiplied with the PCM. If the resultant vector is an all-zero vector, the decoder
declares the detection of a legitimate codeword and the iterations are terminated. This error detection
property of LDPC codes has the potential of reducing the decoding complexity by terminating the
decoding process, when the decoder declares successful detection. However, even if the decoded
codeword is legitimate, this does not necessarily imply that the decoded codeword is the error-free
transmitted codeword, since the original transmitted codeword may have been decoded incorrectly to
another legitimate codeword. In this situation the erroneous bits of the codeword cannot be eliminated
by further iterations. These errors are referred to as undetected errors. By contrast, the bit errors
found in the codewords which result in a non-all-zero vector after multiplication by the PCM are
termed as detectable errors. Undetected errors occur with a higher probability when the minimum
Hamming distance of the code is relatively low, since the minimum distance of an LDPC code can
increase linearly with the block-length, provided that the minimum column weight is higher than
three [2]. We will now demonstrate that for a moderate LDPC coded block-length associated with a

uniformly distributed column weight of three, the likelihood of encountering undetected errors is fairly

low.

The LDPC codes listed in Table 2.21 were characterised, when communicating over the AWGN
channel and the uncorrelated Rayleigh fading channel. We evaluated the achievable Frame Error Ratio
(FER) using two different methods. The first evaluation method compared the decoded codeword

to the original transmitted codeword on a bit-by-bit basis and hence this method gives the exact



CHAPTER 2. BINARY LDPC CODES

"LDPC code ‘ Channel Maximum number of iterations

(500, 250) AWGN 25
(200, 100) AWGN 25

(100, 50) AWGN 25

(50, 25) AWGN 25
(6500, 250) | uncorrelated Rayleigh 25
(200, 100) | uncorrelated Rayleigh 25

(100, 50) | uncorrelated Rayleigh 25

(50, 25) uncorrelated Rayleigh 25

Table 2.21: Simulation parameters of four half-rate LDPC codes having different block-lengths, when

communicating over AWGN and uncorrelated Rayleigh fading channels.

— Exact FER
Detected FER
code(500, 250)
code(200, 100)
code(100, 50)
code(50, 25)

5_.

pe

i
I xS0

o 5| ~ ‘N
1o? \‘“’
= s
a - o
R
5 \\ a -
\ X X
| 5T
10 \“
1 2 3 4 5 6 7 8
E/Ny(dB)

Figure 2.18: FER performance of the four half-rate LDPC codes listed in Table 2.21, when communi-
cating over an AWGN channel.



CHAPTER 2. BINARY LDPC CODES 41

10°4 ;
5 i — Exact FER
S N Detected FER
2 NS o code(500, 250)
107 \Q ¢ code(200, 100)
. = v code(100, 50)
"(\ N code(50, 25)
p PRI
o : \
ST X e
\ W S
\ X3 o)
: NI
; 5o X
10
s X : >
.| AN
10t A\
0 2 4 6 8 10 12 14
Ey/Ny(dB)

Figure 2.19: FER performance of the four half-rate LDPC codes listed in Table 2.21, when communi-

cating over an uncorrelated Rayleigh fading channel.

FER, as seen in Figure 2.18 and Figure 2.19. The second evaluation method assumes that we have no
knowledge of the original transmitted codeword and the only technique available for error detection
is that the received codeword is checked by the PCM. If the check result indicates that the decoded
codeword is a legitimate one, then this codeword is assumed to be the originally transmitted one. This
is denoted as the Detected FER in Figure 2.18 and Figure 2.19. It may be observed from Figures 2.18
and 2.19 that the two LDPC codes having a higher block-length, i.e. the codes (500, 250) and (200,
100), have an indistinguishable Ezact as well as Detected FER owing to their comparably longer
block-length, i.e. as a result of their higher minimum distance when compared to the remaining
two LDPC codes. Again, since no undetected errors are experienced, the two curves indicating the
Ezact FER and the Detected FER are merged. By contrast, the LDPC code (100, 50) has a slightly
lower minimum distance than the code (200, 100). Hence the FER performances evaluated by the
two different methods are different, indicating that some erroneously decoded codewords have been
deemed to be error-free by the second evaluation method and thus undetected errors exists for the code
(100, 50). However, the two FER curves recorded for the code (100, 50) are nearly identical, which
indicates that the likelihood of undetected errors is low. When the block-length is further reduced,
the two FER curves of the code (50, 25) generated using the two different evaluation methods differ

more significantly. Thus, in this scenario a significant fraction of undetected errors is encountered.

In conclusion, in the context of applications requiring a moderate or long block-length, LDPC
codes are unlikely to experience undetected errors owing to the fact that the minimum distance of
regular LDPC codes increases linearly with the block-length, when all columns have a weight no less
than three. However, in applications requiring a short block-length a higher probability of undetected

errors will be experienced.



CHAPTER 2. BINARY LDPC CODES 42

We note furthermore that, even when long block-length are applied, the minimum distance of the
LDPC code will not increase linearly with respect to the block-length, unless the column weight is at
least three. Hence undetected errors may occur and the LDPC code may experience a higher error

floor. This issue will be further discussed in Chapter 3.

2.9.4 Performance of LDPC codes at various coding rates

In this section, the performance of LDPC codes will be evaluated at different coding rates, bench-
marked against the family of turbo convolutional codes having the same code-rate. The simulation
parameters of the LDPC codes used are summarised in Table 2.22, while those of the turbo convolu-
tional benchmarker are given in Table 2.23. The coding rate of the LDPC code is varied by changing
the size of the parity check matrix. As for the turbo convolutional code, the puncturing pattern
listed in Table 2.24 was proposed by Acikel [117], which was applied for arriving at the desired coding
rate. The component codes of the turbo code are half-rate Recursive Systematic Convolutional (RSC)
codes having a constraint length of four. The forward and feedback generator polynomial is given
in octal format as 13 and 15, respectively. In Table 2.24, the upper and lower puncturing pattern
is represented by a binary stream of Os and 1s. The notation 1 and 0 implies that the encoded bit
generated by the corresponding component code is retained or punctured, respectively. For example,
in Table 2.24 the upper puncturing pattern of the half-rate turbo convolutional code is 10, while the
lower puncturing pattern is 01, since at each time instant there will be two parity bits generated by
the two component encoders, but they are punctured alternatively. More explicitly, when each of the
two convolutional encoder outputs a parity bit, the puncturer will retain the parity from the upper
convolutional encoder, while that emerging from the lower encoder is discarded. At the next time
instant, the parity accruing from the lower encoder is retained and the upper parity bit is punctured.
Thus having two information bits and two parity bits, the encoder constitutes a half-rate encoding

scheme.

Channel AWGN

Uncorrelated Rayleigh fading channel

Modulation mode BPSK

Decoder Probabilistic decoder

Maximum number of iterations 25

| Coded block-length 3000 bits

[ Coding rate 1/3,1/2,2/3, 3/4, 5/6

Table 2.22: Simulation parameters of the LDPC codes having various coding rates.

Figures 2.20 and 2.21 characterise the achievable BER and FER performance of the LDPC and
turbo convolutional codes defined in Table 2.22 and Table 2.23, respectively. As we can see, the turbo
convolutional code outperforms the identical-rate and identical-length LDPC codes. The attainable
performance advantage gain of the turbo code over the LDPC scheme was found to be the highest
at a rate of 1/3, which was gradually reduced as the coding rate was increased. The coding gain
versus complexity of the LDPC codes specified in Table 2.22 and the turbo convolutional code defined
in Table 2.23 is compared in Figure 2.22. The LDPC curves seen in Figure 2.22 represent various



CHAPTER 2. BINARY LDPC CODES 43

Channel AWGN

Uncorrelated Rayleigh fading channel
Modulation mode T BPSK
Component code n =2, k=1, K=4, Gy=13, G1=15
Decoder LOG-MAP (Log-MAP) decoder
Number of iterations 8
Coded block-length 3000 bits
Coding rate 1/3,1/2,2/3, 3/4,5/6

Table 2.23: Simulation parameters of the turbo convolutional code having various coding rates.

Coding rate 1/31/2] 2/3 ] 3/4 | 56 |
Upper puncturing pattern | 1 | 10 | 1000 | 100000 | 1000000000 |
Lower puncturing pattern | 1 | 01 | 0001 | 000001 | 0000000001 |

Table 2.24: Puncturing patterns for the turbo convolutional code [117]

coding rates ranging from 0.33 to 0.83 from right to left. By contrast, the turbo convolutional codes’
different coding rate are associated with the vertical solid line seen in Figure 2.22 from top to bottom.
In Figure 2.22, the complexity is quantified in terms of the number of multiplications required by
the decoding of each information bit, while the number of additions are ignored here owing to their
relatively lower computational complexity compared to the multiplication process. The complexity
of an (n. 1, K,.) turbo convolutional code, where n,. determines the coding rate of the constituent

encoder and K, represents the convolutional code’s constraint length, can be formulated as [24]:
comp{TC(ne, 1, K.)} = 40(2%="1) 4+ 12n, - 22, (2.51)

where it can be observed that the complexity of the turbo convolutional code is a constant for various
coding rates, as seen in Figure 2.22. More explicitly, the complexity of the turbo convolutional code
increases linearly with n., in other words, a lower coding rate and hence more powerful LDPC code
results in a higher decoding complexity. The decoding complexity of the turbo convolutional code
increases exponentially with the constraint length. By contrast, as seen in Figure 2.22, the LDPC
codes achieve a higher coding gain, when the complexity is increased, i.e. when the corresponding
coding rate is reduced. As seen in Figure 2.22, when the coding rate is higher than half, LDPC codes
exhibit a significantly reduced complexity requirement compared to turbo convolutional codes at the

cost of a slightly degraded performance.

2.9.5 Performance of LDPC codes at various coded blocklengths

Since an LDPC code is uniquely defined by its sparse parity check matrix, the performance of LDPC
codes is dependent on the size of the PCM. The larger, the better. In this subsection we would like
to discuss how the block-length should be chosen for the sake of achieving a satisfactory performance.
The LDPC codes characterised in Table 2.25 were simulated and compared to the turbo convolutional

code having the same block-length and coding rate. The puncturing pattern seen in Table 2.24 was



CHAPTER 2. BINARY LDPC CODES 44

10 — T s — — TC
s 2 —_—————T1—— - LDPC s 2 e — LDPC
TG 3 o =1/3 0 LN o =1/3
2 Rk 0 :/2 10" E o =172
10~ * r=2/3 13 \ Y ¥ .1 * r=2/3
; — = : v =34 N 3 =314
i ! AV U v i =5/6 10 = i =5/6
AL ROV EENE = e
m \ \ | B ', [ ¥
10° 3 58 N
m 3 Y T .v \\ “\ \‘\‘ L]’-‘10']
[ Y 3 . AW AW '
\ L9 W R W BN LY s ;
10 \ \\ i % \ \
. : = = 10*
X kY LY 1] 5
Al ; \ B
Y P

0.0 0.5 1.0 1.5 20 2,5‘ 3.0 3.51 4.0 2 3 4 5
E,/Ny(dB) E,/Ny(dB)
Figure 2.20: BER performance of the LDPC codes specified in Table 2.22 and turbo convolutional
codes listed in Table 2.23 using the puncturing pattern seen in Table 2.24, when communicating over
an AWGN channel. The associated effective throughputs for all code rates from r=1/3 to r=5/6 are
1/3,1/2,2/3, 3/4, 5/6 bps, respectively. The achievable coding gain of the various schemes at a BER
of 10™* will be summarised in Figure 2.22 and Table 2.28.

| Code rate 1/3,1/2,2/3 |
LCoded block-length(bits) 90, 300, 1200, 3000, 6000
Maximum number of iterations 25
Channel AWGN or
Uncorrelated Rayleigh fading
Modulation mode BPSK

Table 2.25: Simulation parameters for LDPC codes having different blocklengths

applied to the turbo conveolutional code for the sake of achieving the corresponding coding rate.

It can be observed in Figures 2.23 to 2.28 that for each individual channel, the turbo convolu-
tional code exhibits a slightly better performance than the LDPC codes. However, the performance
difference between the two codes is reduced, when the coding rate is increased, especially, when longer
blocklengths are utilised. Furthermore, only a modest additional performance gain may be attained,
when the block-length of the LDPC code is extended from 3000 to 6000 bits. Thus we conclude that
for both AWGN and uncorrelated Rayleigh fading channels employing a block-length of 3000 coded

bits constitutes an appropriate compromise between the achievable performance and the associated

coding delay.



CHAPTER 2. BINARY LDPC CODES 45

N 10° 2 L
? ‘ — TC —
I e e — I LDPC e e ——IREPR
5 ; = - — o =173 2| N \ \\ \ o
RIS 0 D I
10° —_—g A ———% \[ 3 : :gft : o L\‘A\_ e .
5 “‘ “\ b a ,’ ‘\ s =5/6 f 4 t
A — - . : 10?
M 2 ‘\ . \ B \ i . : M S F Xt & Y,
m 107 \ \ “ ‘ m 5 \I \\
asiy : { ; & 3 F g0
[ ¥ 1 3\ - LYY 5
5 | 1 \ \ .
o L V[ AT \ :
5 : L ; ¢ 10
Y & A g Y 3
. - Y Y : .
L W 8
o 1 2 § 9 10 0 2

3 4 5 6 7 4 6 8
Ey/Ny(dB) E/Ny(dB)
Figure 2.21: BER performance of the LDPC codes specified in Table 2.22 and turbo convolutional
codes listed in Table 2.23 using the puncturing pattern seen in Table 2.24, when communicating over
an uncorrelated Rayleigh fading channel. The associated effective throughputs for all code rates from
r=1/3 to r=5/6 are 1/3, 1/2, 2/3, 3/4, 5/6 bps, respectively. The achievable coding gain of the

various schemes at a BER of 107% will be summarised in Figure 2.22 and Table 2.28.

2.9.6 Performance of LDPC-aided coded modulation over Rayleigh fading chan-

nels

When a channel code’s coding rate is less than unity, the system’s effective throughput is reduced.
However, by increasing the number of bits per symbol transmitted, i.e. increasing the size of the
modulated signal constellation, the effective throughput of the uncoded system can be maintained.
This scheme is referred to as a coded modulation arrangement. Historically, the first coded modulation
scheme was invented by Ungerbdck, which was termed as Trellis Coded Modulation (TCM) [118].
Inspired by the concept of turbo coding, Robertson and Wortz proposed a more sophisticated scheme
referred to as Turbo Trellis Coded Modulation (TTCM) [119].

Since LDPC codes have a less than unity rate, by combining LDPC codes with higher-order
modulation schemes, an LDPC Block Coded Modulation (LDPC-BCM) scheme may be created, when
absorbing the parity bits in the extended modem constellation without any bandwidth expansion.
When using for example a half-rate LDPC codec and employing BPSK modulation, the system’s
effective throughput has been reduced from 1 bit/symbol of the uncoded system to 0.5 bit/symbol.
However, if a QPSK modulation scheme is employed in conjunction with a half-rate LDPC code, the

system’s effective throughput can be maintained at 1 bit/symbol.

Previously, the performance of LDPC codes using BPSK modulation has been evaluated, when
communicating over both AWGN and uncorrelated Rayleigh fading channels. For the sake of in-
creasing the effective throughput of the system, typically a higher number of modulation levels is
used. Hereby we would like to investigate the performance of LDPC-BCM, when communicating
over both uncorrelated and correlated Rayleigh fading channels. The TTCM scheme will be used as

our benchmarker. The simulation parameters are tabulated in Table 2.26. The maximum number




CHAPTER 2. BINARY LDPC CODES 46

8.0 37‘ o]
75 Q 31’ 5
e e .
& ’ g g
o 5 .
= s o ~ 29
E 6.5 Qe E D
- 3o 4
1) . B0 28
= e &b
= 5 o
Qs © <
O O 2
o
.0 s Ley
’ — TC % — TC
----- LDPC ----- LDPC
45 24
13200 1400 1600 1800 2000 2200 2.400' 2()0(.) 2800 3000 3200 1200 1400 1600 1800 2000 2200 2'400. 260(? 2800 3000 3200
Number of multiplications Number of multiplications

Figure 2.22: Coding gain versus complexity of the LDPC codes specified in Table 2.22, where the
decoding complexity was varied by varying the code rate, but using always 25 iterations. The points
in the graph correspond to r =1/3, 1/2, 2/3, 3/4 and 5/6. The turbo convolutional codes were listed
in Table 2.23 using the puncturing patterns seen in Table 2.24 resulting in exactly the same code rate
as in the LDPC codes. Transmissions were carried out over an AWGN(left) and uncorrelated Rayleigh

fading channel(right).

of LDPC-BCM iterations was adjusted for the different modulation modes for the sake of ensuring
that the maximum decoding complexity of the LDPC-BCM scheme did not exceed that of the TTCM
benchmarker. A channel interleaver of 3000 coded symbols was utilised, when communicating over the
correlated Rayleigh fading channel having a normalised Doppler frequency of 3.25 x 1072, in order to
separate the symbols suffering from the bursty error effects of deep fades. The effect of removing the
channel interleaver from the system, when communicating over correlated Rayleigh fading channels

was also evaluated.

Figure 2.29, Figure 2.30 and Figure 2.31 demonstrate that in the context of uncorrelated Rayleigh
channels LDPC-BCM outperforms the TTCM benchmarker scheme by almost 3dB, 1.5dB and 3dB,
when using QPSK, 8PSK and 16QAM modulation, respectively at the BER of 1072, It is shown in
Figures 2.29, 2.30 and 2.31 that increasing the number of iterations to 50 results in an approximately
0.5dB further coding gain for the LDPC-BCM scheme.

When communicating over a correlated Rayleigh fading channel, we observe in Figure 2.32, Fig-
ure 2.33 and Figure 2.34 that LDPC-BCM and T'TCM achieve a similar performance, provided that
a channel interleaver is incorporated into the system. However, the LDPC-BCM operates with no
performance degradation, when the channel interleaver is removed from the system. By contrast, the
TTCM scheme suffers from an approximately 5 to 7 dB E,/Ny degradation at the BER of 102, This
is a benefit of the randomly constructed parity check matrix and high block-length of LDPC-BCM,
since each of the parity check equations is checking several random bit positions in a codeword, which
has a similar effect to that of the channel interleaver. By contrast, the TTCM scheme is decoded

using the trellis-based symbol-by-symbol Mazimum A-Posteriori (MAP) algorithm [115], where the



CHAPTER 2. BINARY LDPC CODES 47

10" E= , — LDPC
=== IC
3 & \\\ ''''' E%Q <3 O Blocldength:90 bit‘S
2 4 & Blocklength=300 blt?
107 @\ \ X Blocklength=1200 bits
e = =S C Blocklength=3000 bits
$ e \\ X "\4) v - il Blocklength=6000 bits
o2 @
5 VRN Y
m , T \\ TS ¥
= 1Y Vo
\ : Y -
) B a
10* LA D
s : \‘\ \‘\
\ S VI :
B ‘ :". A':ﬁ (\f) \ " . T
10° &
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Ey/No(dB

Figure 2.23: BER performance of the third-rate LDPC codes characterised in Table 2.25 and turbo
convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, when
communicating over an AWGN channel. The achievable coding gain of the various schemes at a BER
of 107* will be summarised in Table 2.29.

10 e : —— LDPC
s TN —— TC .
T4y o 0 Blocklength=90 bits
: “9\\6 o Blocklength=300 bits
10 B S B x Blocklength=1200 bits
N it —— v Blocklength=3000 bits
‘(‘ I o i Blocklength=6000 bits
5 \ § TN
LR —F o8
m s e S
— ) Y - -
‘ EETR N VY R a (O]
10 “-,\-5 \\
s o % \\\ D
\ =
, X )
- 0
107° -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
E,/Ny(dB)

Figure 2.24: BER performance of the half-rate LDPC codes characterised in Table 2.25 and turbo
convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, when

communicating over an AWGN channel. The achievable coding gain of the various schemes at a BER
of 10~* will be summarised in Table 2.29.



CHAPTER 2. BINARY LDPC CODES 48

1o [ —— LDPC
e e s T ’]’C
; o) Blocklength=90 bits
5 o Blocklength=300 bits
10 x Blocklength=1200 bits
< Blocklength=3000 bits
5 i Blocklength=6000 bits
v N —
o s o\
e, 5
J
10” N
s 'A o IS ]
2 &
10° V>\ ®\
0 1 6 7 8

3' 4 5
Ey/No(dB)

Figure 2.25: BER performance of the two-third-rate LDPC codes characterised in Table 2.25 and
turbo convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24,
when communicating over an AWGN channel. The achievable coding gain of the various schemes at

a BER of 10~* will be summarised in Table 2.29.

— LDPC
Blocklength=90 bits
Blocklength=300 bits
Blocklength=1200 bits
Blocklength=3000 bits
Blocklength=6000 bits

-+ QG x & 0

7y

Figure 2.26: BER performance of the third-rate LDPC codes characterised in Table 2.25 and turbo
convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, when
communicating over an uncorrelated Rayleigh fading channel. The achievable coding gain of the

various schemes at a BER of 10~% will be summarised in Table 2.29.



CHAPTER 2. BINARY LDPC CODES 49

? ‘ — LDPC
10° = S ———F—~+——~+— TC
s e o} Blocklength=90 bits
L] o Blocklength=300 bits
; x Blocklength=1200 bits
10™ c Blocklength=3000 bits
s i Blocklength=6000 bits
AL | ]
4 [
asfly =
S - A‘.
N D
10 = ‘
s e Y S
7 | \ ¥ -
N i A\ Q.
o 1 A\ o
0 1 4 5 6 7 8 9 10
E/Ny(dB)

Figure 2.27: BER performance of the half-rate LDPC codes characterised in Table 2.25 and turbo
convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24, when
communicating over an uncorrelated Rayleigh fading channel. The achievable coding gain of the

various schemes at a BER of 10~¢ will be summarised in Table 2.29.

’ — LDPC
10" -_-— TC
S Blocklength=90 bits
Blocklength=300 bits
: Blocklength=1200 bits
107 Blocklength=3000 bits
5 ; Blocklength=6000 bits
<
oo
m1o
’ [
107
5
)Q\G
10 D
0 2 4 14

Figure 2.28: BER performance of the two-third-rate LDPC codes characterised in Table 2.25 and
turbo convolutional codes described in Table 2.23 using the puncturing pattern seen in Table 2.24,
when communicating over an uncorrelated Rayleigh fading channel. The achievable coding gain of the

various schemes at a BER of 10~¢ will be summarised in Table 2.29.



CHAPTER 2. BINARY LDPC CODES

Tx. Burst Length, L

1000 Symbols

Coding Rate, R

1/2, 2/3, 3/4

Modulation Mode

QPSK(QPSK), 8PSK (8PSK), 16QAM(16QAM)

Channel Uncorrelated Rayleigh Fading
Correlated Rayleigh Fading

Normalised

Doppler Frequency 3.25 x 1072

Channel

Interleaver Length 3000 Symbols

LDPC-BCM

Column Weight 3

Maximum No. of Iterations

for LDPC-BCM 50

TTCM Iteration 4

No. of LDPC-BCM Iterations

QPSK:15, 8PSK:10, 16QAM:10

Table 2.26: LDPC-BCM System Parameters

QPSK, uncorrelated Rayleigh fading

107! o O —— LDPC, 15 Iterations
s : ‘%g\,} Qe TTCM, 4 Iterations
) Q- LDPC, 50 Iterations
107 @?7 —
& 2 L
o )
M0~ e —]
< 7
N (IR
e
2 l‘,’\‘
10" @r
5 ) i
o
) NG V3
M Q.
107 :
0 2 4 6 ¥ 10 12 14
Eb/No

50

Figure 2.29: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising QPSK

when communicating over uncorrelated Rayleigh fading channel.



CHAPTER 2. BINARY LDPC CODES

8PSK, uncorrelated Rayleigh fading
10_.. % O —— LDPC, 10 Iterations
. = & e TTCM, 4 Tterations
7 | o on I LDPC, 50 Iterations
3 ‘Q\‘\\
o~ ' ":\QL
s AT
A%
Iy 10
= ;
Mio? ‘(\\
s T
2N
2 L
10" 9 5
5 I\ /“\ y
HIRAPAVA
)\ \/
10° H \ @
0 2 4 6 8 10 12
Eb/No

Figure 2.30: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising 8PSK
when communicating over uncorrelated Rayleigh fading channel.

16QAM, uncorrelated Rayleigh fading

2 T |
10"
5
107 %ﬁ
s 5
&
0,
o WY
Bp? =
5‘[ A
\ TN
. minA
10° H
s| © —— LDPC, 10 Iterations T
O e TTCM, 4 Iterations 7 @ l},\
A C, 50 Iterati
o LDPC, 50 Iterations ‘ \ W
0 2 6 8 10 12
Eb/No

Figure 2.31: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising 16QQAM
when communicating over uncorrelated Rayleigh fading channel.



CHAPTER 2. BINARY LDPC CODES 52

QPSK, correlated Rayleigh fading

107" O with channel interleaver —{
5 ¢ without channel interleaver
107
s e
< <
o~ 2 e
o » S
mio? &
5 7
2 AV
) Sl 7O
10 Y :
5| —— LDPC, 15 Iterations 2 - >
= TTCM, 4 Iterations S a
N LDPC, 50 Iterations i f
.5 3 “
10 0 5 10 15 20 25 30 35 40

Figure 2.32: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising QPSK

when communicating over correlated Rayleigh fading channel.

8PSK, correlated Rayleigh fading

) \
N O with channel interleaver
10 = ¢ without channel interleaver
5 o T
10°?
5 A
B
% , | U@ 5
P 1o% Rt
5 S —
EE p
) %N
o | ,
5| —— LDPC, 10 Iterations L3S :
---------- TTCM, 4 Iterations e
2 LDPC, 50 Iterations \ @ [
10° s &
0 5 10 15 20 25 30 35 40
Ey/No(dB)

Figure 2.33: BER performance of LDPC and TTCM utilising 8PSK parameterised in Table 2.26,

when communicating over correlated Rayleigh fading channel.



CHAPTER 2. BINARY LDPC CODES 53

16QAM, correlated Rayleigh fading

N ] . .
2 O with channel interleaver
10" ¢ without channel interleaver
: —
2l
107
5 SR
= s 20
i X0
B g7 —
s ot 7
%
2 3 <2
. | 0.
s| — LDPC, 10 Iterations | %S >
-------- TTCM, 4 Iterations & ¥
2 LDPC, 50 Iterations ; @)
10° &
0 5 10 15 20 25 30 35 40
Eb/No

Figure 2.34: BER performance of LDPC and TTCM utilising 16QAM parameterised in Table 2.26,

when communicating over correlated Rayleigh fading channel.

neighbouring symbols are exposed to correlated channel fading effects and hence they are less capable
of coping with bursty channel errors. Thus in the context of TTCM, the channel interleaver plays a

crucial role in dispersing the bursty channel errors.

2.10 Summary and conclusion

In this chapter, the regular construction LDPC codes were introduced. Commencing in Section 2.3
from Gallager’s original proposed PCM , the characteristics of LDPCCs such as the column weight,
the nature of cycles and the bipartite graph representation of the PCM were described. Section 2.4
provided a detailed description of the LDPC encoding process, i.e. how the generator matrix G is
obtained from H,, which is a column permutated PCM generated from the original PCM H. It was
also outlined how the parity check bits are generated from G and appended to the original information
bits. Section 2.5 gave an introduction to two LDPC decoding algorithms, namely the optimum ezhaus-
tive enumeration based decoding and the sub-optimum probabilistic decoding algorithm. Probabilistic
decoding was described using Gallager’s original approach. Furthermore, a detailed decoding example
using probabilistic decoding was given in Section 2.6. In order to generalise Gallager’s LDPC model,
which only considered binary transmission, a more general LDPC decoding procedure was provided
and Richardson’s [9] reduced complexity calculation of the message R was presented which involved the
FFT. Furthermore, the arithmetic complexity of LDPC decoding using Richardson’s FFT approach
was quantified using the number of additions and multiplications in Section 2.7.3. Even though a
mathematical analysis of the performance of probabilistic decoding is challenging, a weak bound was
briefly introduced in Section 2.8 for LDPC coded systems communicating over the BSC channel .



CHAPTER 2. BINARY LDPC CODES 54

In Section 2.9, the performance of LDPCCs was characterised in various scenarios. The effect of in-
creasing the LDPC decoder’s complexity, i.e. the number of iterations was studied in Section 2.9.1,
and as seen in Figure 2.13, Figure 2.14 and Figure 2.15, using eight to 20 iterations achieves a good
compromise between the attainable coding gain and the associated decoding complexity. The BER
of each constituent bit of the LDPC codeword was observed and found to be equally protected in
Section 2.9.2. In Section 2.9.3, four half-rate LDPC codes having different block-lengths were charac-
terised using two different FER measures. It was observed that LDPC codes have attractive minimum
distance properties, provided that the minimum column weight is no less than three. LDPC codes
having different coding-rates were compared to the turbo convolutional codes having identical rates
in Section 2.9.4. More explicitly, the LDPC codes were found to have a similar BER. performance to
the turbo convolutional codes, while potentially imposing a lower complexity, when the coding-rate is
higher than half. Furthermore, the effects of increasing an LDPCC’s coded block-length was demon-
strated in Section 2.9.5, and a block-length of 3000 bits was found to strike an appropriate compromise

between the achievable performance and the associated coding delay.

In Section 2.9.6 a novel coded modulation scheme, namely the LDPC-BCM arrangement was
proposed, invoking high-order modulation schemes. In the classic turbo trellis coded modulation
scheme there is an un-protected bit, which may limit the achievable error correction performance in
certain propagation scenarios. Hence, as a design alternative, we contrived an LDPC-based BCM
scheme based on the design philosophy of protecting all the bits and absorbing the increased number
of channel-coded bits by appropriately extending the modulated signal constellation. It was observed
that LDPC-BCM constituted a more attractive scheme in comparison to the TTCM benchmarker
scheme in terms of the attainable BER performance when communicating over uncorrelated Rayleigh
fading channels. It was also noted that no channel interleaver was necessary for the LDPCC, when
communicating over correlated Rayleigh fading channels, provided the block-length of LDPCC bridges

over several channel fades.

A coding gain table is provided here for the sake of summarising the LDPCC’s BER performance,

when the maximum number of iterations, the blocklength and the code rate are varied.



CHAPTER 2. BINARY LDPC CODES

LDPC Maximum no. | Coding gain | Coding gain
code of iterations (G)(dB) (UR)(dB)
(200,100) 2 2.705 22.941
4 3.911 25.647
8 4411 26.706
| 20 4.676 26.941
50 4.794 27.255
100 4.882 27411
(500,250) 2 2.823 23.176
4 4.352 26.353
8 5.205 27.941
20 5.470 28.353
50 5.646 28.647
100 5.735 28.706
(1000,500) 2 2.882 23.294
4 4.529 26.588
5.588 28.471
20 6.000 29.059
50 6.146 29.236
100 6.176 29.294

35

Table 2.27: Coding gain achieved by the three half-rate LDPC codes parameterised in Table 2.17 at a
BER of 107*, when communicating over both AWGN (AWGN) (G) and uncorrelated Rayleigh fading

(UR) channels.

Code | Coding gain | Coding gain
rate (G)(dB) (UR)(dB)
1/3 6.66 30.58

1/2 6.58 2966 |
2/3 6.08 28.18

3/4 5.58 26.83

5/6 5.1 25

Table 2.28: Coding gain achieved by the LDPC code parameterised in Table 2.22 at a BER of 10~*

when communicating over both AWGN (G) and uncorrelated Rayleigh fading (UR) channels.

?



CHAPTER 2. BINARY LDPC CODES 56

Code Coded Coding gain | Coding gain
rate | blocklength(bits) (G)(dB) (UR)(dB)
1/3 90 3.47 26.43
300 4.97 28.57
1200 6.22 30.14
| 3000 6.613 30.43
6000 6.76 30.86
1/2 90 3.76 25.43
300 5.113 27.86
1200 6.15 29.29
3000 6.613 29.72
6000 6.72 30.29
2/3 90 3.03 22.32
300 4.81 26
1200 5.7 2758
[ 3000 6.03 28.32
| 6000 6.14 28.5

Table 2.29: Coding gain achieved by the LDPC code parameterised in Table 2.25 at a BER of 1074,
when communicating over both AWGN (G) and uncorrelated Rayleigh fading (UR) channels.



Chapter 3

Irregular LDPC codes

3.1 Introduction

In the previous chapter, the family of regular-construction LDPCCs was introduced and their decoding
procedure was detailed with the aid of a worked example. The code was referred to as ”regular”, since
the Hamming weights of all the columns and rows were constant. However, Luby et al. [60] have
shown that by imposing a carefully chosen non-uniform distribution of the column and row weights
during the generation of the parity check matrix, the code may become capable of outperforming its
regular-construction LDPCCs counterpart, as will be shown in Section 3.8 of this chapter. Richardson
proposed the employment of the Density Evolution (DE) technique for predicting the performance
of LDPCCs having an infinite length at a given column and row density distribution profile [9], and
showed how to use DE for determining the optimum density distribution profile in [61]. Since DE is a
complex operation, Chung simplified Richardson’s high complexity Density Evolution algorithm using
Gaussian Approzimation (GA) [11]. The intuition of replacing regular LDPCC by their irregular
counterparts may be explained by using the so-called Tanner graph [5]. Figure 3.1 portrays a fraction

of the parity check matrix seen in Table 2.4.
As introduced in Chapter 2, an LDPCC’s PCM can be represented by a Tanner graph. The Tanner

graph is constituted by the so-called message nodes seen at the left of Figure 3.1, which are associated
with each individual column of the PCM. The check nodes are at the right of the Tanner graph of
Figure 3.1, which represent each individual row of the PCM. By choosing the 12¢%, 13", 14*" and
15" column randomly in Table 2.4, they are represented by the message nodes seen at the left of
Figure 3.1, and the randomly selected 1, 274, 9** and 10*" rows of Table 2.4 are shown as the check
nodes at the right of Table 2.4. The line connecting the ;% left node and the i** right node represents
the non-zero entry at the intersection of the i*" row and the j* column in Table 2.4. For example, the
non-zero entry found in the first row and the second column of the parity check matrix of Table 2.4 is
represented by the first horizontal line at the top of Figure 3.1. The dotted lines indicate encountering
a short cycle of length 4.

According to the decoding process of the LDPCC described in Section 2.5.2, the message nodes
and the check nodes exchange their information iteratively. Recall from Chapter 2 that a regular-

construction LDPC parity check matrix has an uniform column weight and a constant or near constant

row weight. However, for the message nodes of an LDPC code, it is better to have a high column weight,

a7



CHAPTER 3. IRREGULAR LDPC CODES 58

Message Nodes Check Nodes
12" 1
) 1 3th 21’1d
= -
E 2.
S 14m g 7
15 10"

Figure 3.1: Tanner node representation of part of the parity check matrix of Table 2.4. The dotted

lines represent a length-4 cycle.

since the increased number of check nodes become capable of providing more reliable information for
the message nodes. By contrast, it is desirable for the check nodes to have a low number of entries in a
row, because then they have to check the parity of a reduced number of columns, which results in less
ambiguity concerning the index of the unreliable entries and hence more useful parity information may
be exchanged with the connected message nodes. Based on this intuition, in 1998, Luby [60] and his
colleagues proposed the introduction of irregular-constructed parity check matrices. More explicitly,
instead of maintaining a constant column weight and row weight across the entire parity check matrix,
as proposed by Gallager, they varied the column density and row density, i.e. use a pre-determined
density-profile, which resulted in an improved performance over that of the regular-construction parity
check matrix when opting for a long block-length, provided that the density-profile used was carefully
chosen. The rationale of this design philosophy was that a message node associated with an increased
column weight received more information from the check nodes, and hence it was capable of more
reliably converging to its correct value, consequently providing more valuable information for the

check nodes, which in turn assisted the message nodes having a lower weight in converging to their

correct values more reliably.

3.2 Definition of the row and column density distribution

There have been loose definitions which specify the weight of a specific column and the profiles which
specify the density of weight-i nodes across the whole PCM. In some literature, for example in [61] [60],
the terminology degree ¢ was used to specify a message node having weight . In [120], the term density
distribution is used to specify the density distribution of the PCM, while in [121], the term weight
distribution is used. For the sake of maintaining consistency within this thesis, the term weight i node
will be used to specify a certain node or nodes having 7 edges connecting with the neighbouring nodes
as in Figure 3.1. For example, the top left message node in Figure 3.1 is a weight two message node
because there are two edges connecting this node with the 15 and the 9** check node; and the top



CHAPTER 3. IRREGULAR LDPC CODES 59

right node is a weight three check node, since the 277, 3" and 4" message nodes are connected to it.

In our forthcoming discourse the term density is used, which is associated with the percentage of

weight i nodes across the PCM. We will use the same definition as used by Urbanke et ol in [11]. A
density profile can be defined by

We(maxz)

Ae(z) = Z Nzt (3.1)

and
Wr(maz)

pe(z) = Z pizt T, (3.2)

which correspond to the column density profile and row density profile, respectively [122]. The nota-
tions We(mag) and Wr(maz) are used for representing the maximum column weight and the maximum
row weight of the density profile, while A; and p; quantify the fraction of edges belonging to degree-:

variable and check node, respectively.

To explain the terminology density more explicitly, let’s use an example as:
Ae(z) = 0.4zt +0.622, (3.3)

Equation 3.3 gives an example of a column density profile for the irregular LDPC code represented
using Tanner graph in Figure 3.1. This profile shows the information that 40% of the edges are
connected to weight-two message nodes, and the remaining 60% connects to the weight-three message
nodes. To elaborate a little further, in the literature, two different ways of representing the density
profile are used. The first one is referred to as the edge perspective representation [9] [11]. This
representation specifies the proportion of edges in the Tanner graph which are connected to the
corresponding nodes associated with a specific term in Equation 3.3 for example, having a certain
polynomial degree. The notations of A(z) and p(z) are used for representing the column’s and the

row’s density distribution, respectively.

There are a total of 10 edges in Figure 3.1, and two edges are connected to both the 12" message
node as well as to the 15", Because the 12* and the 15** message nodes are weight-two message
nodes, 40% of the 10 edges are connected to weight-two message nodes, and the remaining 60% are
connected to the weight-three message nodes, thus yielding A, (z) = 0.42:! + 0.6z? as in Equation 3.3.
For the corresponding expression of p(z), the four check nodes seen in Figure 3.1 have a weight and
corresponding polynomial degree varying from 1 to 4. Explicitly, 10% of the edges are connected to the
weight-1 check node, 20% to the weight-two, and 30% as well as 40% to the weight-three and weight-
four check nodes respectively. Hence we arrive at the expression of p,(z) = 0.1z°+0.221 4 0.322+0.42°.
The other way of defining the density profile using A, (z) and p,(z) is termed as node perspective, rather
than edge perspective representation. In this representation, the polynomials A, (z) and p,(x) specify
the proportion of the nodes having a particular weight of . As seen in Figure 3.1, since there are two
message nodes of weight 2 and two of weight 3, i.e. 50% of the message nodes have a weight of two
and another 50% have a weight of three, the node perspective representation is A, (z) = 0.5z + 0.5z2.
As for the check nodes, the weights of the four check nodes from the top downwards are 3, 2, 4,
1, respectively. Thus p,(z) may be written as p(z) = 0.25z° + 0.25z + 0.2522 + 0.25z3. In order
to distinguish these two representations, we will use the notation of A, (z) and p,(z) for the node

perspective representation, while A.(z) and p.(z) will refer to the edge perspective representation. The



CHAPTER 3. IRREGULAR LDPC CODES 60

constraints of A(1) =1 and p(1) = 1 have to be satisfied, since the probabilities of all of the different

weights should sum to unity in both representations.

3.3 Performance of irregular LDPC codes

The beneficial BER effects of using irregular LDPCCs are illustrated in Figures 3.2, 3.3 and 3.4,
where an AWGN channel having F,/Ny = 3.2dB was used. The associated density profiles of the

codes characterised in these three figures are as follows:

An(z) = 0.37787z' + 0.3490322 + 0.09643z° + 0.067302° + 0.1093721°

pal(z) = 7 (34)
An(z) = 041564z + 0.3480672 + 0.03181z° + 0.2045z°

pn(z) = 0.80952z'% 4 0.19048z1; (3.5)
An(z) = 0.00024z° + 0.175162" + 0.679622 + 0.090525 + 0.054527

pn(z) = 0.316652' 4 0.6833521°, (3.6)

where we used the notation of A,(z) = 3. M2t~ and p,(z) = 3. p;z*~! for representing the column
density distribution and row density distribution, respectively. The exponent ¢ of z in the summa-
tion represents the density concerned, while the coefficient A; or p; gives the corresponding relative
frequency of a term having a given weight. As we can see in Equation 3.6, only a small fraction of
the columns has a weight of 1. This is because the column density has to be consistent with the row
density profile. More explicitly, the number of non-zero entries counted column-by-column has to be
the same as that counted on a row-by-row basis. However, since the weight-1 columns constitute only

a small fraction of the PCM, their impact on the decoding performance is minor.

Focusing our attention on Figures 3.2, 3.3 and 3.4, it can be obhserved that the message nodes
associated with a higher exponent, i.e. a higher weight, converge to higher LLRs within a lower
number of iterations. However, the LLR curve associated with the weight-20 nodes in Figure 3.2
converges initially fast, especially during the first few iterations, but the achievable convergence rate
reduces after a few iterations and becomes more slowly than that of the nodes associated with a weight
of six and seven. This is because the message node associated with weight 20 has more column entries,
and hence initially it is benefiting from more parity information than the nodes having a weight of
six or seven. However, having more non-zero entries in the columns is expected to introduce cycles
associated with comparatively low lengths. Owing to the message passing decoding algorithm of the
LDPCC, the extrinsic information is passed between the non-zero entries in the parity check matrix,
both vertically and horizontally. If a message node is associated with two non-zero entries, which
belong to a short cycle of length four to consider the worst-case scenario, then these two non-zero
entries are only receiving information from two parity checks and another message node, thus the
ertrinsic information being passed around amongst these nodes will reduce at a faster rate, since only
a limited amount of independent eztrinsic information may be provided by the 4 nodes concerned
after a few iterations. By contrast, in the extreme case, when there are no cycles within a parity check
matrix, all the message nodes are benefiting from the eztrinsic information provided by all other

message nodes and all the check nodes. In this case the magnitude of the extrinsic information will



CHAPTER 3. IRREGULAR LDPC CODES 61

LLR vs. Iteration Index

no
BN

V@_..‘»-—-Z—-*" 72 ; Z

///% /e/e/
/
v

(%)
[39)

[S5]
o

J o
Y

Va
i

—_
o0

Average LLR
.
\\

12
/ / —— Weight 2
10 - ¢ —— Weight 3
% /;/ <« —— Weight 6
8 é//e/a - Welght 7
1 —— Weight 20

0 2 4 6 8 10 12 14 16 18 20
Tteration Index

Figure 3.2: Average LLR versus iteration index characteristics of the (4161,3430) irregular LDPC
code using the density distribution of Equation 3.4, when communicating over an AWGN channel at
E,/Ny = 3.2dB

decrease at a lower rate. For this reason, the node associated with weight 20 is unable to converge as

fast as the nodes associated with weight 6 and 7 after the first few iterations.

3.4 Density evolution

Richardson et. al [9] demonstrated that the average asymptotic behaviour of a belief-propagation
based LDPC decoder is numerically computable by using the density evolution algorithm. The density
evolution(DE) algorithm allows one to calculate the F},/Ny value required for error free communication
by an irregular LDPC code having a given density profile, when the block-length of the code tends
to infinity. This algorithm determines a quantity termed as the threshold. The threshold is defined
as the maximum value of a specific channel parameter, such as for example the standard deviation
of the AWGN of the channel or the crossover probability for the Binary Symmetric Channel (BSC),
which allows the decoder to achieve an arbitrary low error probability upon invoking an arbitrarily

high number of iterations. The process of density evolution will be described as follows.

As mentioned previously, the LDPC code’s decoding algorithm iteratively passes information be-
tween the non-zero entries in the parity check matrix, i.e. between the message nodes and check nodes
in the Tanner graph used. The philosophy of the density evolution algorithm is based on the local tree

assumption, which implies that the LDPC code may be represented by a tree structure, as illustrated



CHAPTER 3. IRREGULAR LDPC CODES 62

LLR vs. Iteration Index

[\
=N

[\
[\

//?/
/

/]
7

—_ [\
o0 =]

[

Average LLR

o =
\.
Q\

1 S
—— Weight 3

8 %" « —— Weight4
v —— Weight 10

0 2 4 6 8§ 10 12 14 16 18 20
Iteration Index

Figure 3.3: Average LLR versus iteration index characteristics of the (4000,3000) irregular LDPC

code using density distribution of Equation 3.5, when communicating over an AWGN channel at

Ey/No = 3.2dB

in Figure 3.5.

To elaborate a little further, in Figure 3.5, the hollow circles and the filled circles represent the
check nodes and the message nodes seen in Figure 3.1. The lines horizontally connected to the message
nodes represent the intrinsic information provided by the channel’s output. Let us assume that the
filled node at the top of Figure 3.5 represents the k** coded symbol in the LDPC block of N symbols,
which is termed as the root node [10]. The root node receives information from the check nodes it is
connected to at the level seen below it in Figure 3.5 and those check nodes also receive information from
the message nodes they are connected to at the next level down, etc. The dotted lines in Figure 3.5
indicate that the above process is repeated further by expanding the tree. The number of connections
associated with a message node (excluding the line representing the intrinsic information) represents
the column weight of this particular message node, while the number of connections associated with a
check node represents the corresponding row weight. The DE process exploits the fact that information
is passed from the message nodes to the check nodes in the upwards direction, and further up again to
the message nodes during the completion of one LDPC iteration. This entire DE process mimics the
decoding process of LDPC codes communicating over a channel characterised by a channel parameter
referred to as the threshold. The above-mentioned local tree assumption implies that there are no
repeated nodes in Figure 3.5 within a certain number of consecutive tree levels in Figure 3.5. More
explicitly, since each message node and check node is related to a non-zero entry in the PCM, the local

tree assumption implies that there will be no more than one message node or check node representing



CHAPTER 3. IRREGULAR LDPC CODES 63

LLR vs. [teration Index

22 e : ,S*"*;%W_‘
) eyl

) / ”
v

/

Do

Average LLR
Yy
N

12
‘ o —— Weight 1
10 —¥ ‘ £ ¢ —— Weight 2
//Z//Q/ » —— Weight3
8 ] ¢ —— Weight 7
— Weight 8

0 2 4 6 g8 10 12 14 16 18 20
Tteration Index

Figure 3.4: Average LLR versus iteration index characteristics of the (4161,3430) irregular LDPC

code using density distribution of Equation 3.6, when communicating over an AWGN channel at

E,/Ny = 3.2dB

AN

Figure 3.5: A tree representation of LDPC code, the hollow and filled circles represents the check

nodes and the message nodes seen in Figure 3.1.



CHAPTER 3. IRREGULAR LDPC CODES 64

the same non-zero entry in the PCM. In other words, the local tree assumption ensures that there is
no cycle in the tree structure of Figure 3.5. It is possible to create a cycle-free Tanner graph, when
the PCM is constructed carefully. However, Vardy et al. suggested that a cycle-free Tanner graph
does not result in good codes [123]. In practice, as long as the short cycles, such as the length-4
and length-6 cycles are eliminated, a good decoding performance can be achieved [7]. As pointed out
in [10], for almost all randomly constructed LDPC codes, the decoder’s performance will be close to
that predicted under the local tree assumption, provided that the block length of the LDPC code is
sufficiently high. Hence, in order to estimate the performance bound of an irregular or regular LDPC
code having a given density profile, a comparably long block length has to be chosen. The decoding
process is the same as that described in Section 2.5.2. By recursively tuning the threshold, the Ey/Ny

boundary of the error-free region may be found asymptotically upon increasing the block length.

As described in Section 2.7, the values R;’_j and Qf;j depicted in Equation 2.31 and 2.32 are
iteratively updated. Let us assume that we are using a regular LDPC code, having a constant column
weight w, and row weight w, for transmission over an AWGN channel. Initially, Q7, , will be set to

a value corresponding to the demodulator’s soft output. When assuming a binary scenario, it is more
p(ylz=1)

convenient to represent @; ; in the form of the log-likelihood ratio of log =t

Having initialised Qf ., its value is used for updating 2, according to Equation 2.31, or using the

“tanh rule” [124] [125] [9] described in Section 2.7.2, as follows:

tanh (%) = J] tanh (QTJ> , (3.7)

Je{Ci}.a'#3
where
tanh(z/2) — &2 (3.8)
nh(z = w1 .

Following these operations, the values of R are used for updating Qf ; employing Equation 2.31,
while the a posteriori probability density of @ is updated using Equation 2.33. This two-stage
operation referred to as density evolution assists us in finding the above-mentioned channel-quality
related threshold for the belief propagation decoding algorithm. If the channel’s E/Ng parameter is
above the threshold, the probability density of @ is shifted towards +/ — co. In other words, the LLR
of the bits associated with a logical 0 (mapped to +1) should converge to +o0, while those related to
a logical 1 should tend towards —oc. When communicating over a Gaussian channel, the LLR obeys
the Gaussian distribution. When the mean of the Gaussian distributed variable @) tends to oo, the
probability of error decreases as the number of iterations increases. Thus the decoder is capable of
achieving an arbitrarily low bit error rate. However, when E, /Ny is below the required threshold, the
probability density of @ will result in a finite probability of error, which cannot be reduced with the

aid of increasing the number of iterations.

3.5 Density evolution using Gaussian approximation

The density evolution process highlighted in the previous section is capable of predicting the threshold,
which determines the E,/Ny region of error free operation, provided that the code’s density profile is
specified. The entire process relies on tentatively setting a certain channel parameter, followed by in-

voking the decoding process using a high number of iterations and exploiting the assumption that there



CHAPTER 3. IRREGULAR LDPC CODES 65

are no cycles within the parity check matrix in order to verify whether the bit error rate will decrease to
a pre-determined low level. If the BER converges to a finite non-zero value, then this implies that the
tentatively channel parameter Ej/Ny is currently lower than the threshold. Hence a higher tentative
Ey/Ny channel parameter is set and the above process is repeated, until the BER becomes lower than a
pre-determined low level. Since this process is computationally demanding, Chung [11] suggested the
employment of a significantly less complex method for calculating the threshold concerned by using
the so-called Gaussian Approzimation(DEGA) [11]. Let us represent the quantities QF, and R7; in
their Log Likelihood Ratio (LLR) format as Q; ; = log(QE{j/Qij) and R; j = Zog(jo»/Rij). Then the

quantity @); ; is initialised according to the channel output as:

Plyjlz; = +1)
Q.;=LLR,, = log(="~1 ¢
v 3 g(P(y]'|.’L'j:-— ))
L g PR = 1)),
exp(— 2% (y; + 1)?)
Ey . Ey .
= (o5 — 1)~ (=55 + 1)?)
20 20
Ey

In Equation 3.9 E) represents the bit energy, which is set to unity as usual and y; represents the
channel’s soft output for the j* symbol. Since y; is Gaussian distributed with a unity mean and

variance of o2, the quantity @i, ; calculated in Equation 3.9 is also Gaussian distributed.

Since the product of a constant a and a Gaussian variable having a mean b and variance ¢ will have
a mean of ab and a variance of a®c, hence Q; ; of Equation 3.9 is the product of the constant 4By /20"
in Equation 3.9 and the Gaussian variable y; associated with a mean of unity and a variance of o2,

The mean of Q; ; is calculated as 4E,/20% x 1 = 2/a?, while the variance as (4E;/20?)? x 0% = 4/0°.

Since all the iterative decoding operations are linear in the log arithmetic domain, the quantities
R; ; and Q; ; will remain Gaussian during the message passing process. Thus using the mean and the
variance of the associated Gaussian distribution adequately characterises the message’s probability
density [10]. More explicitly, Chung’s method approximates the PDF of the received signal using a
Gaussian PDF or Gaussian Mixtures! [11] for regular and irregular LDPCCs, respectively.

By using the mean of the Gaussian density, the E},/Ny threshold to be satisfied may be readily
calculated without any degradation of the achievable accuracy [11] of the threshold estimation process.
Without loss of generality, we assume that an all-zero codeword is transmitted, since the all-zero
codeword is always a valid codeword. The LLR of the message Q¥ received over the AWGN channel
can be represented as L.y, where L, = 4(12}5752 is defined as the channel reliability [115]. Assuming
that the BPSK modulator used maps a logical 0 to +1, and that the bit energy equals unity, we
have L, = ;27 Since y is Gaussian distributed having a mean of unity in case of BPSK modulation
and a variance of g2, the LLR of the message Q) has a mean of 2/0% and a variance of 4/0?. The
superscript 0 of Q indicates that Q9 was received from the channel before the first iteration, while

QW denotes the value of @ after [ iterations. Furthermore, m, represents the mean of the variable z.

!Since the message nodes of the irregular LDPC codes have various weights, thus a node will get i.i.d. messages from
its neighbours, where each of these messages is a random mixture of different Gaussian probability density functions of

its neighbours weighted by different weighting factor.



CHAPTER 3. IRREGULAR LDPC CODES 66

The mean of the quantity Q(l) following the I, iteration can be calculated with the aid of Equa-
tion 2.32 but using additions in the logarithmic domain instead of product seen in Equation 2.32 as
follows [11]:

TI’LQ(I) - TI’LQ(U) + (U)c - 1)mR(1_1). (310)

When interpreting Equation 3.10 we notice that the second term on the right simply implies the
multiplication of the mean of the quantity R at the (I—1)** iteration by (w.—1), where w, represents
the average column weight of the LDPCC’s parity check matrix. This is, how we take into account the
extrinsic information provided by the (w, — 1) other non-zero entries. Therefore, the quantity meow
still only reflects the mean of the extrinsic information, corresponding to Equation 2.32. Initially
we have m ) = 0 since the initial information from any check node before the commencement of
iterations is 0. Using this multiplication instead of summation is valid, because even though the
(w, — 1) R quantities found in the different rows of the w,. column considered will have a different

polarity value, they are independent and identically distributed (i.i.d) variables, thus their means are

identical.

The update of the quantity R was defined in Equation 2.31, and in Equation 3.7 using the tanh rule
[124] [125] [9]. By taking the expectation of both sides of Equation 3.7, we arrive at:

k—1
E[tanh (RT([)) J = E{tanh (QTU)) } . (3.11)

Suppose the variable R® is Gaussian distributed having a mean of m R and a variance of 2m ),

where the expectation Eltanh (#)] depends only on the mean of R(l), we have
_ (r—mR(l) )2

RW® 1 r 1
E) tanh | — =———{ tanh(=]e TR dr, 3.12
[an (2 )J L [ (5)e . (.12)

Hereby we will introduce a new function ¢(z) for the sake of later convenience during the iterative

calculation of the mean of the variable @), where ¢(z) is formulated as [11]:

tanh () e_(r_z)zdm, if >0

dz (3.13)
if x=0.

¢><m)={ L i I

b

From Figure 3.6, it can be readily seen that ¢(z) is continuous and monotonically decreasing over
the interval [0, cc).

Given the definition of ¢(z) in Equation 3.13, the formula derived from Equation 3.10 for recursively

calculating the mean of the quantity R following the I, iteration is given by [11]:

(k—1)
Mpo =¢ (1 - [1 - ¢<QO) + (- 1)7711{(11))} ) : (3.14)

where mgw) = 0 is the initial value of m ). Hence, the mean of the quantity QW can be recursively

updated by using Equation 3.10. As argned before, the quantity Q® and R() are Gaussian distributed

with a mean of m,ay and m ), respectively, and their variances are 2m ) and 2m (), respectively.
Q R Y, Q Q

Thus when the value of Mgu Or My tends to infinity, the corresponding Gaussian PDFs move



CHAPTER 3. IRREGULAR LDPC CODES 67

1 T T T T
0.8 .
0.6 - -
z
<
04 F -
02 - -
0 | | |
0 5 10 15 20 25 30

Figure 3.6: The function ¢(z) in Equation 3.13

towards infinity. Hence the error probability, calculated by integrating the Gaussian Q-function over
the interval of (—o0,0], where erroneous decisions are encountered, tends to zero. Hence with the aid
of this method, we can fix the a value of the E},/Ny channel parameter and run this calculation for a
sufficiently high number of iterations. If the mean m g and myg tends to zero, then we know that the
Ey/Ny channel parameter is above the threshold required for maintaining error free communications.
However, when the chosen Ej/Ny channel parameter is below the threshold, the mean m and mp

will converge to a fixed non-zero value.

By the same token, the equation required for calculating the mean meg and mp of irregular
LDPC codes can be derived in the following manner. Owing to the irregularity of the LDPCC’s
density distribution, the messages RWY and QW that are exchanged between the nodes are Gaussian
mixtures rather than having a Gaussian PDF as in the regular LDPC scenario. Hence the mean of
R® and QW are determined by taking into account the specific edge perspective densities A.(z) and

pe(z). Corresponding equation of irregular LDPCCs is given by [11] :

Wr(maz) We(maz) (t—l)
Mmpuw = Z pt(Pil (1 - ':1 - Z ¢(mQ(o) —+ (i — l)mR(ll))J ) (3.15)

t=2 =2

Chung provided an example for illustrating the accuracy of this Gaussian approximation algo-

rithm [11]. A half-rate irregular LDPCC’s density profile is given by [10]:

Ae(z) = 0.23403z + 0.2124222 + 0.114690z° + 0.10284z% + 0.30381z, (3.16)
pe(x) = 0.7187527 + 0.2812525, '

while the effect of the coded block-length and that of the number of iterations are not addressed
here, since the Gaussian approximation is used to predict the asymptotic performance of an infinite
long codeword employing a sufficiently high number of iterations. By using the density evolution
technique of Section 3.4, the F}, /Ny threshold required by the LDPCC having the density profile given



CHAPTER 3. IRREGULAR LDPC CODES 68

in Equation 3.16 when communicating over an AWGN channel was found to be 0.2923dB. When
using the Gaussian approximation of DE instead, the corresponding threshold was E}, /Ny = 0.5d5,
(0.47dB in [11]), resulting in a deviation of 0.21dB from the threshold found by density evolution.
Hence we may conclude that the Gaussian approximation is reasonably accurate. In Figure 3.7 and
3.8, the density of the message R after each iteration is plotted for two different £,/Ny values above
the threshold of Fy/Ny = 0.5dB. Still assuming that the all-zero codeword was transmitted and that
a logical 0 was mapped to +1, the two settings were E}, /Ny = 5.2884B and E,/Ny = 9.269dB, which
corresponds to a noise standard deviation of ¢ = 0.544 and ¢ = 0.344, respectively. From Figures 3.7
and 3.8, it can be observed that the density of the message moves to the right towards oc after each
iteration. We can also observe that the higher F,/Ny value leads to a faster convergence, reaching
a logarithmic mean value in excess of 40 within a mere 3 iterations, as in Figure 3.8 compared to
the results in Figure 3.7 where the logarithmic mean value exceeds a value of 40 after a number of
10 iterations. This is because when the F,/Ny is well above the threshold value, there are less bits
contaminated by the AWGN, and also the bits staying in their correct states are more confident, i.e.
having a higher LLR, comparing to the scenario of encountering a lower F,/Ny. In Figure 3.9, the
evolution process of an LDPC code using the same density profile in Equation 3.16 communicating
over the AWGN channel associated with E,/Ny = —1.896dB is characterised. This E,/Ny value is
2.396d B lower than the required threshold. Observe in Figure 3.9 that the associated Gaussian PDF
curve stays at about the same average LLR value of 0 while the decoder iterates, since the decoder is
unable to enhance the LLRs owing to the excessive noise level. As seen from Figure 3.10, where we

have F,/Ny = —1.896d B, the mean LLR remains near zero, regardless of the number of iterations.

The Gaussian approximation allows us to check whether an LDPC code associated with a given
density distribution is capable of achieving error-free transmissions upon increasing the number of
iterations. Furthermore, it provides a mean of estimating, how rapidly the error probability may be
reduced as a function of the number of iterations, as seen in Figures in 3.7, 3.8 and 3.9. As suggested by
Equations 3.14 and 3.15, the mean of the quantity R®) emerging from the [** iteration is recursively
updated with the mean of R~V after the previous iteration. Thus by observing the difference of
the mean between two consecutive iterations, we may be able to anticipate slow and fast converging
phases, as noted in [61]. We will use the notation Am ) for representing the increment of the mean
value of RY) after the I** iteration. Assuming again that the density profile given in Equation 3.16
is used, the mean increment curves of the three previously considered experimental E,/Ny values,
ie. E,/Ny = 5.288dB, E,/Ny = 9.269dB and E,/Ny = —1.896dB are plotted in Figure 3.11 and
Figure 3.12.

As seen in Figure 3.11, both curves are well above zero, which implies benefiting from desirable
increase of the quantity Amp. The lower curve corresponds to Fp/Nyg = 5.288d5, which is 4.788dB
above the threshold. After four iterations, the increment of Am g reached a saturation, and the mean
value of R keeps increasing until after ten iterations, moving towards oco. By comparing to the right
hand side illustration of Figure 3.10, the curve corresponding to F,/Ny = 5.288dB initially has a
slightly lower gradient for the first two-three iterations. This matches the results seen in Figure 3.11,
since Am® is lower for the first two-three iterations than later. The upper curve, which represents

Ey/Ny = 9.269dB, has a higher gradient, tending towards oo after the 37¢ iteration.

By contrast, the curve representing the scenario of communicating over an AWGN channel at



CHAPTER 3. IRREGULAR LDPC CODES

I tteration

2 ltertions

3 Ierations

.23 0.25 0.23
0.2 02 0.2
() 013 AR}
[IN] 0.1 [N
n.0s 005 003
0.0 00 0.0
o 20 40 60 8 Ton 0 i} 40 60 L1 100 0 20 40 6l B 00
LLR LLR LLR
4 lterutiony 3 Iterations 6 lerations
023 0.23 023
0.2 0.2 0.2
w13 015 013
0.3 0.1 0.1
0.03 /\ 003 0.03
0.0 0.0 o
) 20 A0 60 B0 100 1] 20 40 60 80 100 [} 20 ED) 60 80 100
LLR LLR LLR
7 lteritions 8 lrerutions Y lerations
0.2% 0.25 025
0.2 42 02
AR 015 013
0. 0.1 0
0.05 0.03 .03
0.0 na 00
0 20 40 6l 80 i 0 20 40 60 80 1o 0 20 40 o 80 100
LLR LLR LLR
10 lterutions,
.25
0.2
015
0.1
[IKIN)
"o
0 20 40 6l B0 100
LLR

69

Figure 3.7: The density evolution of the message R using the (Gaussian approximation for the half-rate
irregular LDPCC associated with the density distribution given in Equation 3.16, when communicating

over an AWGN channel at E,/Ny = 5.28845.



CHAPTER 3. IRREGULAR LDPC CODES 70

1 Tteration 2 Tterations
0.25 025
02 02
0.15 0.15
0.1 0.1
0.05 0.05 /\
0.0 0.0
0 20 40 60 80 100 0 20 40 60 80 100
LLR LLR
3 Tterations

0.25
0.2
0.15

0.1

0.05 ’/—\

0.0
0 20 40 60 80 100
LLR

Figure 3.8: The density evolution of the message R using the Gaussian approximation for the half rate
irregular LDPCC associated with the density distribution given in Equation 3.16, when communicating

over an AWGN channel at E,/Ny = 9.269dB.

Ey/Ny = —1.896dB, is plotted in Figure 3.12. The y-axis is plotted on a logarithmic scale for clearer
illustration. The quantity Am?® decreases as a function of the number of iterations, and eventually
tends to zero after 15 iterations. As long as we have Amf = 0, further iterations will not provide any

benefits and thus the error-probability cannot be reduced any further. This result is consistent with

Figure 3.10 and Figure 3.9.

3.6 LDPC density distribution optimisation

As described in the previous section, the Gaussian approximation algorithm can be used for fairly
accurately estimating a certain code’s behaviour for a specific density distribution. Thus, this method
facilitates the search for an optimum density distribution in conjunction with one or several design

constraints, such as a given code rate or average row weight.

The technique of searching for a beneficial density distribution can be described as follows. Com-
mencing from a randomly chosen density profile, such as for example MacKay’s regular construc-
tion [56], we assign an appropriate Ep/Ny channel parameter value and run the density evolution in

Section 3.4 for a pre-determined number of iterations j. The error probability ¢ arrived at after j



CHAPTER 3. IRREGULAR LDPC CODES

2 herations

71

3 Tterutions

| leration
5.0 30 5.0
4.5 4.5 4.5
40 4 40 4
35 / 35 35
3 34 30
235 25 2.3
2.0 2.0 20
1.5 1.3 (8]
1.0 1.0 1.0
0.5 0.5 0.5
0.0 0.u o
Slbo-DE 06 <04 p2 0 02 04 06 08 0 L) 08 06 04 -02 00 02 04 06 0B 10 Sl 08 06 <04 02 00 02 04 06 08 LU
LLR LLR LLR
4 lterutions 5 Irerations 6 erations
50 3.0 50
43 45 45
4.0 4.0 40
3.5 3.5 3.5
EXIS 34 3.0
23 235 23
2.0 ] 20
1.5 1.3 L5
1.0 1.0 10
0.3 0.3 (%)
0.0 0.0 0
<10 -08 -06 -04 0.2 00 02 04 06 08 1.0 -8 06 04 <02 00 02 04 0.6 UK L0 Sl A8 -0 204 202 DO 02 04 06 U8 L0
LLR LLR LLR
7 Lterations 10 licrations. 50 herations
5.0 5.0 30
43 4.5 45
44 4.4 40
35 335 335
R 3.0 kX
2.5 23 235
2.0 20 20
1.5 [} 1.5
1.0 1.0 (K}
0.3 05 0.5
0.0 0.0 L]
-1.0 -0.8 Sl 08 D6 04 02 00 02 04 0e 08 LD 0 08 06 <04 02 0.0 D2 04 06 08 L
LLR LLR

-06 44 02 00 02 04 06 08 10
LLR

Figure 3.9: The density evolution of the message R using the Gaussian approximation for the half rate

irregular LDPCC associated with the density distribution given in Equation 3.16, when communicating

over an AWGN channel at E} /Ny

= —1.896dB.



CHAPTER 3. IRREGULAR LDPC CODES 72

Evolution of the mean value of R Evolution of the mean value of R

45

11.005

T OE/Ny—1.896dB n

06048

0.0046 3o

0.0044

Mean value
-

Mean value

0.0i42

0.014
5 2 O FEy/N—5.288d¢B
© Ey/Np—9269¢B
0.003% ]
] 2 6 [ 1 12 14 16 0 1 2 3 4 5 3 7 8 9 L
Tteration index Iteration index
(a) (b)

Figure 3.10: The evolution of the mean of the message R for the half rate irregular LDPCC associated

with density distribution given in Equation 3.16, when communicating over an AWGN channel a

Ep/Ny = 5.288dB, Ep/Ny = 9.269dB and FE),/Ny = —1.896dB.

16

O Eb/N0:9269dB

14
¢ E,/N,=5.288dB

12

10

4 5 6 7 8 9 10
Iteration index

(=]
—
SN
w

Figure 3.11: The evolution of the quantity Ampg for the half-rate irregular LDPCC associated with
the density distribution given in Equation 3.16, when communicating over an AWGN channel at
Eb/NU = 5288dB and Eb/NU = 0.260dB.



CHAPTER 3. IRREGULAR LDPC CODES 73

- 1 Ey/Ng=1.896dB

0 2 4 6 8 10 12 14 16
[teration index

Figure 3.12: The evolution of the quantity Ampg for the half-rate irregular LDPCC associated with

the density distribution given in Equation 3.16, when communicating over an AWGN channel at

E,/Ny = —1.896dB.

iterations will be calculated as a result of the density evolution process. Furthermore, if the Gaussian
approximation method introduced in Section 3.5 is applied, we will determine the mean of the PDF
after j iterations. The corresponding density profile will be stored as best density distribution so far.
Then we slightly change the profile by changing the coefficients of the density distribution exemplified
by Equation 3.4, while satisfying the constraint that A(1) = 1 and p(1) = 1. This is followed by
repeating the DE process described above and checking whether any BER Improvement was achieved.
More explicitly, the associated improvement is expected to result in a lower error probability than
e after j iterations, or reaching an error probability of € using a lower number of iterations than j.
When the Gaussian approximation is applied, the associated improvement manifests itself in terms of
achieving a higher mean LLR value at a given number of iterations. If there is any BER improvement
in comparison to the previous best density distribution, then the new density profile will be stored as
the best density distribution. This process is repeated as many times as it is affordable according to

the complexity constraints imposed.

This density distribution optimisation process is computationally complex. However, significant
computational efforts may be saved, if we reduce the size of the search space. Richardson et. al
found [9] that an attractive density distribution is expected to have a low number of non-zero elements.
As far as the row weight is concerned, Chung showed in [11] that the rows of the PCM should be

designed to have only one or two consecutive non-zero elements. As for the column weights, the



CHAPTER 3. IRREGULAR LDPC CODES 74

corresponding exponents of the polynomial may be limited to including terms having an exponent of

1, 2 and the maximum exponent of w7 — 1, plus perhaps a few further terms having other exponents

in between [61].

3.7 Variability of error protection versus bit-position in irregular

LDPC codes

As illustrated in Section 2.9.2 in the context of regular-construction LDPC codes, each individual
coded bit may be regarded as equally protected. However, the equal-protection property applies to
the family of regular LDPC codes only and for the irregular LDPC codes discussed in this chapter,
the bits associated with a high column weight are more strongly protected. In other words, their
soft-value tends to converge faster to its correct transmitted value as a function of the number of
iterations. This property is consistent with Ruby’s original intuition concerning the family of irregular
LDPC codes, suggesting that variable nodes associated with a higher weight may be expected to
converge faster to their correct value. This is illustrated in Figures 3.13 and 3.14 by using a LDPC
code having the same block-length, namely 1000 bits and the same coding rate of r = 1/4 as the
regular LDPC example provided in Figure 2.16 and Figure 2.17 of Section 2.9.2. In this experiment,
rather than evaluating the BER of each individual bit, the average BER of all the nodes having
a particular column weight is determined, since they are expected to be similar. Furthermore, in
contrast to constructing the parity check matrix in a regular fashion as in Chapter 2, we will use
the optimum density distribution calculated by Chung’s degree optimisation program found in [126].
Optimality in this context implies finding the distribution profile achieving the best known near-
capacity performance at a specific coding rate. The density distribution is defined in terms of the

node-oriented description defined in Equation 3.17 as:

An(z) = 0.6z + 0.21504z2 + 0.06571z* + 0.04541z° + 0.07268z'1 + 0.00116x2,

; (3.17)
pn(z) = 0.5555623 + 0.4444424.

Similar to the example provided in Section 2.9.2, our BER evaluations were carried out for a
maximum of ten iterations at both F,/Ny = 1.5dB and 2.5dB. The related simulation results are

provided in Figures 3.13 and 3.14.

We can see in Figures 3.13 and 3.14that the average BER of all the message nodes having different
column weights is similar and is between about 15% to 20% at the output of the demodulator, before
the commencement of iterations. However, when the iterative decoding starts, the high-weight message
nodes result in a reduced BER compared to the low-weight message nodes. Observe in Figure 3.13
that between the first iteration and the third iteration, nodes having a higher column weight tend
to converge to their final values faster owing to having a higher number of non-zero entries in the
column, which in turn provide more information for the message node. Consequently, during the
subsequent iterations most of the high-weight nodes are associated with correct bit values and hence
they are capable of providing correct information for the nodes having a lower column weight. Hence
the low-weight nodes tend to steadily converge towards their correct values at a near-linear rate, while

the convergence of the higher-weight nodes becomes slower during this phase.

In summary, we may conclude that each individual message nodes of an irregular LDPC code tends



CHAPTER 3. IRREGULAR LDPC CODES

BER

— Before lteration
- After 1 heration
- Alter 2 hierutions
-+ After 3 lierations
- After 4 Ierations
After 3 icrutions
==== Aficr 6 licration
==~ Aficr 7 ltcrations
=-- Aficr 8 licrutions
=== Afllcr 9 herations
—--= After 10 lterwions

o -
O -
Y
<
t
@]
¢
x
t

Figure 3.13: Average BER for all the
iteration, when communicating over an AWGN channel at F,/Ng = 1.5dB. The code rate was r = 0.25

2 4 6 8 10 12 14 16 18 20

Node weight index

and the density distribution was given in Equation 3.17.

nodes having a particular column weight after each decoding

Betore Iteration
O After [ Ierution
10»1 ) After 2 lerations
x Afier 3 lterutions
< - After 4 lreretions
t + Afier 3 Uerations
5 (o] Afier 6 licration
10™ e} Afier 7 Iterutions
x After 8 erations
T = Afier 9 hierutions
t === Afier 10 ltcrations
o~ 03
5 10
m
10*
-5
L0 i
10° -
0 2 4 6 8 10 12 14 16 18 20

Node weight index

Figure 3.14: Average BER for all the nodes having a particular column weight after each decoding
iteration, when communicating over an AWGN channel at /Ny = 2.5dB. The code rate was r = 0.25

and the density distribution was given in Equation 3.17.



CHAPTER 3. IRREGULAR LDPC CODES 76

to be unequally protected, especially if the maximum number of iterations is limited. However, owing
to the specific iterative decoding mechanism of irregular LDPC codes, if we allow a higher number of
iterations, the higher-weight nodes will assist the low-weight nodes in converging towards their correct
value. Thus, provided that the affordable decoding complexity is not unduly limited, the various nodes

may be deemed to be near-equally protected.

3.8 Parity check matrix construction for irregular LDPC codes

In this section we continue our discourse by introducing two different types of LDPC matrix con-
struction techniques. More explicitly, two different methods of choosing the density distribution for
an irregular LDPC parity check matrix are presented. The first one is based on using Richardson’s
density evolution concept [61], or Chung’s Gaussian approximation method [11] designed for finding
the specific density distribution which offers the best asymptotic performance, assuming an infinite
block-length and a high number of iterations. This construction is capable of achieving a performance

as close to the Shannon limit as possible.

The second method to be portrayed was devised by Yang et al. [127]. This method has the potential
of providing a lower error floor for high rate LDPC codes in comparison to Richardson’s approach, at

the cost of a slightly degraded performance at low SNRs.

3.8.1 Richardson’s construction method

Again, Richardson’s construction [61] concerned here is based on using a specific density distribution,
which guarantees a performance as close to the capacity limit as possible. The technique of finding
this density distribution has been described in Section 3.6. The corresponding density distribution can
be calculated with the aid of the publically available program found at [126]. The performance of the
family of LDPC codes using this construction method will be evaluated in this section in comparison
to that of turbo convolutional codes having similar parameters, which were summarised in Table 2.23,
while the corresponding puncturing patterns are given in Table 2.24. Similarly, the parameters of the
LDPC codes studied were listed in Table 2.22. The corresponding density profiles for each coding rate

considered are given as follows.

Degree distribution for rate = r = 1/3:

An(z) = 0.54453z + 0.227467% + 0.00341z* + 0.15449z° + 0.07011z,
pn(z) = 0.823532% + 0.1764725. (3.18)

Degree distribution for rate = r = 1/2:

An(z) = 0.48603z + 0.27696z% + 0.06258z° + 0.10026z° + 0.0741719,
puz) = 0.27273z" 4 0.727272°. (3.19)

Degree distribution for rate = r = 2/3:

An(z) = 0.42725z 4 0.270892? + 0.169882* + 0.13198z"7,
pn(z) = 0.51613z'4 + 048387z, (3.20)



CHAPTER 3. IRREGULAR LDPC CODES 77

|1
|
~+ 3 xS0
~
Il
A
N

|4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0
E,/No(dB)

Figure 3.15: BER performance of irregular LDPC codes constructed using the density profiles speci-
fied in Equations 3.18 to 3.22 based on Richardson’s construction method, benchmarked against turbo
convolutional codes using the parameters summarised in Table 2.23 and Table 2.24, when communi-
cating over an AWGN channel. BPSK modulation applied. The effective throughputs of both codes
are 1/3, 1/2, 2/3, 3/4, 5/6 bps according to their respective code rates.

Degree distribution for rate = r = 3/4:

A(z) = 0.40056z 4 0.297592% + 0.120862* + 0.03807z° + 0.13392z17,
on(z) = z%. (3.21)

Degree distribution for rate = r = 5/6:

An(z) = 0.37106z + 0.33482% 4 0.056342* + 0.10363z° + 0.1341627,
pn(z) = 2L (3.22)

Comparing the results illustrated in Figure 3.15 and Figure 3.16 to the results portrayed in Fig-
ure 2.20 and Figure 2.21 using regular construction, the irregular construction LDPC codes outperform
the regular codes, when the BER is higher than 1073, However, the irregular construction LDPC codes
have a tendency to exhibit an error floor at higher E},/Ny values. This disadvantageous property of
the irregular codes using Richardson’s method is a consequence of employing the density evolution
algorithm. This is because in Gallager’s seminal paper [1] it has been shown that the code’s col-
umn weight should be higher than or equal to three for the sake of ensuring that the code’s distance
increases linearly with the block-length. However, if weight two columns exists in the PCM, the
achievable distance increases only logarithmatically, rather than linearly with the block-length [1].
Secondly, as pointed out in [127], when there are cycles which involve only weight-two columns, these
cycles constitute the 'weakest link’ in the parity check matrix. This is because during the vertical
update of message (7 ; of Equation 2.32 in the PCM, the message Qf] of the two non-zero entries in

the j** column is only affected by the value of the other non-zero entry in the column, rather than



CHAPTER 3. IRREGULAR LDPC CODES 78

‘)Q" T T T
= — TC
10" - e Y <V N I R S SR R LDPC
s = X S ~F o =1/3
I W LV A | 0 i
2 N « 1=2/3
107 bl |\ A\ ] \ ) =3/4
s e e — T i =5/6
o L2 PG ¥
m | 0-.:» \ G \ i “"'-‘ \ \
5| e e =
N I i \ LYY
N & AR “:. \ \ "-A 1
A SR SN
5 ‘\\ Qy et i —
: | LN P W O | N
N 2 VA A A
0 1 2 4 5 6 7 8 9 10
E,/No(dB)

Figure 3.16: BER performance of irregular LDPC codes constructed using the density profiles specified
in Equations 3.18 to 3.22 based on Richardson’s construction method, benchmarked against turbo con-
volutional codes using the parameters summarised in Table 2.23 and Table 2.24, when communicating
over an uncorrelated Rayleigh fading channel. BPSK modulation applied. The effective throughputs
of both codes are 1/3, 1/2, 2/3, 3/4, 5/6 bps according to their respective code rates.

by two or more entries. Hence, during the vertical update process of Qf i the non-zero entries are
getting only limited parity information from other check rows. As suggested by Yang in [127], cycles
which involve only weight-two columns are preferably avoided during the construction of the PCM.
Let us now illustrate the BER and FER performance of both the third-rate and half-rate LDPC codes
in Figure 3.17 using the same density profiles, as in Equation 3.18 and Equation 3.19, respectively
while employing two different BER and FER evaluation techniques. Firstly, as usual, we compare
the decoded bit sequence to the originally transmitted bits for the calculation of the Fzact BER and
Ezact FER, as seen in Figure 3.17. The second evaluation method is based on exploiting the PCM
for checking whether the decoded codeword is a legitimate one. If the codeword is deemed to be a
legitimate codeword, despite that it might have been incorrectly decoded, it is considered as error-free.
More explicitly, undetected errors resulting in a legitimate codeword are not taken into account, when
determining the Detected BER and Detected FER in Figure 3.17.

As demonstrated in Figure 3.17, both LDPC codes experience undetected errors in the low BER
range. As illustrated in Figure 2.18 and Figure 2.19 of Section 2.9.3, LDPC codes employing a regular
construction associated with a column weight three have a very low probability of undetected errors
even at a block-length of a mere 200 bits. By contrast, in case of irregular LDPC codes the significantly
longer block-length of 3000 bits produced incorrectly decoded codewords, as seen in Figure 3.17. This
comparison suggests that the distance properties of the irregular LDPC codes having weight-two
columns are worse than those of the family of regular LDPC codes having a minimum weight of three.
When an undetected decoding error occurred, the decoder was unable to flag this event and hence in
Figure 3.17 the Detected BER and Detected FER curves do not consider the effects of the undetected



CHAPTER 3. IRREGULAR LDPC CODES 79

10" e =
3 — o~ —— Half-rate
2 g X = FER—T—1 Third-rate
10" = ¥ ; o] Exact BER
5 - I o Detected BER
2 , \éj\\ v Exact FER
=, \fﬁ =D \Q i Detected FER
210 ,
) e (N S T
=] X, i
£ . \\ e 6D
5 107 :
b R ST
|84
Lo \6
RN
10° R
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
Ey/Ny(dB)

Figure 3.17: BER and FER performance of irregular LDPC codes constructed using the density profiles

of Equations 3.18 and 3.19 based on Richardson’s construction method, when communicating over an

AWGN channel.

errors. This is why these curves appear to be more optimistic than the Fzact curves.

The evolution of the nodes’ average LLR with respect to the LDPCC'’s iteration index was demon-
strated in Figures 3.2, 3.3 and 3.4. Recall from Section 3.1 that the column weight should be high and
the row weight should be low. However, as it was shown in [9], the presence of a weight-two column
is necessary for ensuring a beneficial irregularity of the code, in order to counter-balance the effects
of low-weight rows. In Gallager’s seminal paper [1] it has been shown that the column weight should
be equal to or higher than three for the sake of ensuring that the code’s minimum distance increases
linearly with the block-length. However, if the column weight is only two, the achievable distance
increases only logarithmically with the block-length [1]. Hence the weight-two columns constitute the
'weakest link’ in the entire parity check matrix and the cycles which involve only weight-two columns
should be preferably avoided, if possible. The irregular constructions used in [56] were shown to be
superior to their regular counterparts, provided that the block-length was sufficiently long. However,
in real-time interactive multimedia communications the system’s delay constitutes a crucial design

constraint and viewed from this perspective the block-length used in [56] was somewhat excessive.

3.8.2 Yang’s construction method

For the sake of mitigating the problems arising from the existence of undetected decoding errors in
Figure 3.17 when Richardson’s PCM construction method is applied, in [127] Yang suggested avoiding
having low-weight message nodes, such as weight-three or weight-four message nodes. However, in the
context of the irregular PCM construction, we have to apply weight-2 columns in the PCM for the
sake of maintaining a sparse PCM in order to counter-balance the employment of some high weight

columns. By employing this method, the density profiles of a half-rate irregular LDPC code according



CHAPTER 3. IRREGULAR LDPC CODES 80

5 — Yang, avoiding CW 3
P AN N N S E—— Yang, avoiding CW 3,4
10.,< . L Yang, avoiding CW 3,4,5
=— — © Exact BER
- . o Detected BER
T o Richardson
107 e — T e Regular code

0.0 0.5 1.0 L. 5 3.0 35 4.0

5 2.0 2.
E,/Ny(dB)

Figure 3.18: BER performance of the (3000,1500) irregular LDPC codes employing the PCM con-
structed using the density profiles of Equation 3.23 to 3.25, when communicating over an AWGN
channel. A (3000, 1500) irregular LDPC code using Richardson’s density profile given in Equa-

tion 3.19 and a regular LDPC code, where all the message nodes had a weight of three were used as

benchmarkers.

to Yang’s suggestion may be determined by using the density profile optimisation program found

at [126], yielding:

An(z) = 0.489967 + 0.412822° 4 0.07557z' + 0.0216527,

pn(z) = 28 (3.23)
A7) = 0.49745z + 0.44548z* 4 0.05707z'9,

pn(z) = 02727327 + 0.727272%. (3.24)
A(T) = 0497467 + 0.477292° 4 0.025252,

pn(z) = 0.27273z7 +0.727275. (3.25)

More explicitly, Equation 3.23 gives the density profile of the » = 0.5 LDPC code according to
Yang’s suggestion in [127], when the presence of weight-three message nodes is avoided. We can see
from Equation 3.23 that the minimum weight of the message node is two, but there is no weight-three
term in it. By following a similar approach, the density profile which avoids having both weight-three
and weight-four nodes is given in Equation 3.24. Furthermore, in Equation 3.25 all the weight-three,
weight-four and weight-five message nodes are avoided. The performance of a (3000, 1500) irregular
LDPC code utilising the above three different density profiles outlined in Equations 3.23 to 3.25 and
communicating over an AWGN channel is characterised in Figure 3.18. This (3000, 1500) irregular
code is benchmarked against the half-rate irregular LDPC code featuring in Figure 3.17 and against
a regular LDPC code, where all the message nodes had a weight of three at an identical rate and

block-length.



CHAPTER 3. IRREGULAR LDPC CODES 81

In Figure 3.18 the BER performance of the irregular LDPCCs using Yang’s density profiles given
by Equations 3.23 to 3.25 were evaluated using both the Ezact BER and Detected BER, as defined
previously in the context of Figure 3.17. The half-rate Exoct BER curve previously shown in Fig-
ure 3.17 was reproduced here together with an identical-rate identical-block-length regular LDPC code
as the benchmarkers. By comparing Figure 3.18 and Figure 3.17 we can observe that by avoiding some
of the low-weight message nodes, for example the weight-three nodes during the construction of the
PCM, the LDPC codes constructed according to Yang’s suggestion become less prone to experiencing
undetected errors, which suggests that the distance properties of these LDPC codes are better than
those of the code constructed using Richardson’s method. Upon avoiding more and more low-weight
message nodes, the BER curves decay faster in the high-SNR region at the cost of a degraded residual
BER performance. In conclusion, the LDPC code using the density profile specified in Equation 3.23

constitutes the best solution in Figure 3.18.

Furthermore, in practice often near-unity-rate coding schemes are invoked for the sake of increasing
the system’s overall effective throughput. When the coding rate increases, the PCM will have an
increased number of columns and reduced number of rows. It was shown in [127] that the maximum
number of weight-two columns that may be encountered before a cycle involving columns all having a
weight of two is created is (N — K — 1), corresponding to the number of rows in the parity check matrix
minus 1. Thus, limiting the number of weight-two message nodes, especially in a high-rate scenario,
assists in reducing the error floor. Hereby, we would like to characterise the performance of a r = 0.82
(4161,3430) irregular LDPC code, when the number of weight-two message nodes is limited to 730
according to Yang’s suggestion. This code will also be benchmarked against Richardson’s proposed
density profile. The designs according to Richardson’s density profile as well as to Yang’s approach

are as follows:

Richardson's density profile :
Anfz) = 0.398z! 4 0.381182% + 0.220827,
pnlz) = 0.90411z% + 0.09589z . (3.26)
Yang's density profile :
An(z) = 0.00022° 4 0.17543z + 0.64797z% + 0.17642",
pnlz) = 0.90411z% 4 0.09589z%. (3.27)

We infer from Equation 3.26, which gives the Richardson’s density profile, that the proportion of
weight-two message nodes is 0.398, where the number of weight-two message nodes is calculated as
0.398 x 4161 = 1656, which is significantly higher than the corresponding number of 730 weight-two
nodes proposed by Yang. More explicitly, for Yang's design outlined in Equation 3.27, the number
of weight-two message nodes is 0.17543 x 4161 = 730. The performance of the (4161, 3430) irregular
LDPC code using the two different density profiles given in Equation 3.26 and Equation 3.27 is shown
in Figure 3.19, where we can see that the error floor effects exhibited by Richardson’s density profile

were mitigated, when Yang’s density profile was employed.



CHAPTER 3. IRREGULAR LDPC CODES 82

2 O — Richardson’s density profile
3\ ¢ —— Yang’s density profile

24 2.6 2.8 32 34 3.6

3.0
Ey/No(dB)

Figure 3.19: BER performance of the irregular (4161,3430) LDPC code in conjunction with two differ-
ent types of PCM construction, when communicating over an AWGN channel using BPSK modulation.
The density profiles for the two types of PCM construction method is specified by Equation 3.26 and
Equation 3.27.

3.9 Performance of irregular LDPC codes communicating over AWGN

channels

As we have seen in Figure 3.19, Richardson’s and Yang’s identical-rate identical-block-length irregular
LDPC codes transmitted over AWGN channels perform differently. In this section, the performance

of irregular LDPC codes will be further studied in various scenarios.

First the effects of various block-lengths are evaluated for transmissions over an AWGN channel.
The various irregular LDPC codes were constructed using both Richardson’s construction criteria
introduced in Section 3.8.1 and Yang’s construction method described in Section 3.8.2. The density
profiles for the five coding rates used are given in Table 3.1. The density profiles constructed by Yang
comply with the constraints given in Section 3.8.2, i.e. the number of weight-two message nodes does
not exceed the number of check nodes minus one. Furthermore, by observing Yang’s density profiles
summarised in Table 3.1, we can see that the existence of weight-three message nodes was avoided

during the PCM construction stage for the sake of improving the LDPC codes’ distance properties.

The BER performance of these irregular LDPC codes having various block-lengths and code rates
may be studied in Figures 3.20 to 3.24. The LDPC codes were constructed using the density profiles
summarised in Table 3.1. The attainable coding gain at a BER of 10~* is plotted in Figure 3.25
against the blocklength for the various coding rates considered. As we can see from Figures 3.20 to
3.24 as well as from Figure 3.25, Yang’s construction was superior in comparison to Richardson’s con-
struction method. Especially at high code rates and higher E;/Ny values, a better BER performance
was achieved by Yang’s construction when compared to the LDPC codes using PCMs constructed by



CHAPTER 3. IRREGULAR LDPC

CODES 83

‘ Coding rate ‘ Density profile

’ Richardson’s density profiles

1/3 An(z) = 0.54453z + 0.2274672 + 0.00341z* + 0.1544925 + 0.07011z1°
pn(z) = 0.82353z° + 0.176475

1/2 An(z) = 0.48603z + 0.27696z2 + 0.06258z° + 0.1002628 4 0.07417z1°
pn(z) = 0.2727327 4 0.727272%

2/3 An(z) = 0.42725z + 0.27089z2 + 0.16988z* + 0.1319821°
pn(z) = 0.516132'* + 0.48387z15

3/4 An(z) = 0.40056z + 0.297592% + 0.129865* + 0.03807z° 4 0.133922
pn(z) = 3%

4/5 An(z) = 0.383192 + 0.32031x2 + 0.08342z* + 0.079142° 4 0.13393z"7
pn(z) = 0.509432%° + 0.490581%

Yang’s density profiles

1/3 An(z) = 0.54354z + 0.3703z> 4 0.001487 + 0.005292'% + 0.07938z1°
pn(z) = 0.636362° + 0.36364z"

1/2 An(z) = 0.487287 + 0.41431z3 + 0.00831z1® + 0.090112"
pn(T) = 0.81633z% + 0.18367x°

2/3 An(z) = 0.333337 + 0.5669z3 + 0.09977z1°
pn(z) = 0.211272'3 + 0.78873214

3/4 An(z) = 0.25z + 0.6501823 + 0.0998221°
pn(z) = 0.61165z° + 0.388352%°

4/5 An(x) = 0.2z + 0.698772° + 0.1012221°

| pa(@) = 0.903352% + 0.096652°

Table 3.1: Density profiles constructed by Richardson and Yang for various LDPC code rates.

Richardson’s density profile. However, Yang’s method only improves the irregular LDPC code’s dis-

tance properties when the existence of

weight-two message nodes is inevitable, in which case it provides

a way of reducing the error floor. However, Yang’s method is also incapable of entirely eliminating the

error floor, as illustrated in Figures 3.

20 to 3.24, when short block-lengths are utilised. In order to

mitigate this problem, Yang’s design approach may be invoked for avoiding not only the weight-three,
but also other relatively low-weight message nodes. By using the following density profiles constructed
according to Yang’s design criterion, we avoid having both weight-three and weight-four message nodes

in Equation 3.28 and in Equation 3.29 we further avoid the weight-five message nodes:

>

n(zT

xr

s

n

>

n(x

(z)
(z)
(z)
pn(z)

n

By studying the results illustrate

0.2z + 0.745392* + 0.05462z°,

0.903352% 4 0.096655% . (3.28)
0.199992 + 0.798642° + 0.00137z19,
0.90335x% + 0.09665z%° . (3.29)

d in Figure 3.26 and 3.27, it can be seen that when a short

blocklength is concerned, the LDPC code’s minimum distance is relatively low. Hence, upon avoiding

the weight-three and weight-four mess

age nodes, an improved performance is observed in Figure 3.26.



CHAPTER 3. IRREGULAR LDPC CODES

(]

84

10
s o) (201,67)
2 ¢ (501,167)
(0! Y (1002,334)
s S i1 (2001,667)
o !
. x (5001,1667)
2 ) — Richardson’s density profile
107 e e Yang’s density profile
a4 5 \f ) =5 T T
m TR X 631N ]
M 2 A - AN RN
10° A 2w d o
3 \\\: e r})\’“f\‘ 7 ST
10 A > ASWN
5 ———~ N B s :
R T AN A )
2 S b \g\ AN
W  NGEEAN BN ANCLN
0 | 2 3 4 5 6 7 8 9 10
E,/Ny(dB)

Figure 3.20: BER performance of different-length third-rate irregular LDPC codes constructed using
both Richardson’s and Yang’s density profiles summarised in Table 3.1, when communicating over an
AWGN channel using BPSK modulation. The achievable coding gain of the various schemes at a BER
of 1074 will be summarised in Figure 3.25 and Table 3.1.

However, when we further avoid the weight-five message nodes, an inferior performance is observed in
Figure 3.26. Thus, when the minimum distance of the LDPC code is relatively high, further avoiding
the low-weight message nodes results in a less sparse PCM, which consequently results in an inferior
performance. This phenomenon may be further clarified as follows. When a relatively high blocklength
is concerned, the code’s minimum distance becomes higher than that of the identical-rate but lower
block-length LDPC codes constructed using the same density profile, when both scenarios only avoids
weight-three message nodes, as seen in Table 3.1. Hence, by further avoiding the existence of weight-
four message nodes and weight-five message nodes will degrade the achievable BER performance.
This is because the density profiles seen in Equations 3.28 and 3.29 are incapable of producing codes
approaching the Shannon limit as closely as those summarised in Table 3.1, where less constraints

were imposed on the codes during the density profile optimisation.

3.10 Summary and conclusion

Following Luby’s approach [60], in this chapter we studied both the design and the achievable per-
formance of irregular LDPC codes in comparison to their regular counterparts. The higher weights
associated with the message nodes are capable of providing more useful parity information, which
has the potential of assisting the code in converging faster, while the messages are passed from node
to node. Richardson’s density evolution method [9] outlined in Section 3.4 provides an attractive

theoretical approach of predicting the performance of a given density distribution. Chung’s Gaus-



CHAPTER 3. IRREGULAR LDPC CODES 85

10
s o (200,100)
, o (500,250)
o v (1000,500)
. i (2000,1000)
’ x (5000,2500)
2 — Richardson’s density profile
107 =t Yang’s density profile
i ' f
m 2
10
N N N
107 Y
2 *K\&\éﬂ A = N
10 e @ 160, TN
0 1 2 3 4 5 6 7 8 9 10
E,/Ny(dB)

Figure 3.21: BER performance of different-length half-rate irregular LDPC codes constructed using
both Richardson’s and Yang's density profiles summarised in Table 3.1, when communicating over an
AWGN channel using BPSK modulation. The achievable coding gain of the various schemes at a BER
of 10~ will be summarised in Figure 3.25 and Table 3.1.

sian approximation approach [11] to density evolution has significantly reduced the complexity of
Richardson’s original density evolution method at the cost of a slightly reduced accuracy, as it was
shown in Section 3.5. However, due to the presence of weight-two columns in the Richardson’s density
distribution design, the minimum distance of irregular LDPCCs does not increase linearly with the
blocklength, which is the case for the family of regular LDPC codes. Thus, when an irregular con-
struction is applied to a short or medium-blocklength LDPC code, in the low SNR region irregular
LDPCCs may outperform the family of regular LDPC codes. However, when the SNR. increases, the
family of irregular LDPC codes will demonstrate a slower convergence and eventually these codes

exhibit an error floor.

Yang suggested an approach of reducing the error floor engendered by the existence of weight-two
message nodes. This problem may be mitigated by limiting the number of weight-two columns and/or
by avoiding some of the lower-weight nodes, such as weight-three or weight-four nodes during the
density profile optimisation process. Yang’s approach has been shown to be effective for reducing the
error floor of short blocklength codes. However, for longer block-lengths, for example for 2000 bits
and above, it might not be necessary to avoid the existence of weight-four and weight-five message
nodes, provided that a slightly degraded performance may be acceptable. Therefore, we recommend
using Richardson’s PCM construction approach for those applications which are in-sensitive to delays
or which attempt to optimise the performance in the low-SNR region. As for the scenarios when
satisfying a certain delay constraint is important or a sharp BER convergence is required, Yang’s

approach will be the better choice.



CHAPTER 3. IRREGULAR LDPC CODES

86

10
5 o] (201,134)
R o (501,334)
10" 9 (1002,668)
;| i (2001,1334)
\ x (5001,3334)
2 — Richardson’s density profile
= — Yang’s density profile
Eﬁ 5 AL
é 2 o O,
107 == : : - =
5 e . =
L -
2 N 7 (OB
" NN =g
10 ——
o NN B N
0 2 3 4 5 6 7 8 9
E/Ny(dB)

Figure 3.22: BER performance of different-length two-third-rate irregular LDPC codes constructed
using both Richardson’s and Yang’s density profiles summarised in Table 3.1, when communicating
over an AWGN channel using BPSK modulation. The achievable coding gain of the various schemes

at a BER of 1074 will be summarised in Figure 3.25 and Table 3.1.

A coding gain table is hereby provided for the sake of summarising the achievable BER performance

of the irregular LDPC codes discussed in this chapter.



CHAPTER 3. IRREGULAR LDPC CODES 87

10
5 o (200,150)
2 ¢ (500,375)
1o Q (1000,750)
s t (2000,1500)
x (5000,3750)
2 ; — Richardson’s density profile
107 \%\\g\ —— Yang’s density profile
Gl Saniee !
m > o X
s ; -__:\\ ‘Q\"/ =
10 _\_\ - zl
5 e €
FR S T R -5
2 N ‘-.) "»3 S
l0.5 : \ L w B Q{ >, N
0 1 2 3 4 5 6 8 9 10
E,/Ny(dB)

Figure 3.23: BER performance of different-length three-quarter-rate irregular LDPC codes constructed
using both Richardson’s and Yang’s density profiles summarised in Table 3.1, when communicating
over an AWGN channel using BPSK modulation. The achievable coding gain of the various schemes

at a BER of 107 will be summarised in Figure 3.25 and Table 3.1.

10
s [¢] (200,160)
2 0 (500,400)
o 9 (1000,800)
s 1 (2000,1600)
: x (5000,4000)
: \ — Richardson’s density profile
10 SRl Yang’s density profile
5 “\\’0‘
R, R NI
103 L1\
5| = o)
\ % =
2 EVIELY i\
107 : AW \@\
5 R R 5
N o
o RHLVN D N
0 I 2 4 5 6 8 9 10
E,/Ny(dB)

Figure 3.24: BER performance of different-length four-fifth-rate irregular LDPC codes constructed
using both Richardson’s and Yang’s density profiles summarised in Table 3.1, when communicating
over an AWGN channel using BPSK modulation. The achievable coding gain of the various schemes

at a BER of 1074 will be summarised in Figure 3.25 and Table 3.1.



CHAPTER 3. IRREGULAR LDPC CODES

r=0.66

Coding gain(dB)

""" Yang's density profile

-——— Richardson’s density profile

0 1000 2 5000

000 3000 4000
Blocklength(bits)

r=0.33 and r=0.5

6000

Coding pain(dB)

o rate=0.33
3 o rate=0.5

— Richardson’s density profiie
""" Yang’s density profile

0 1000 2000 3000 4000 5000
Blocklength(bits)

6000

88

r=0.80

Coding gain(dB)

—— Richardson’s density profile
""" Yang’s density profile

5000 6000

0 1000 2000 3000 4000
Blocklength(bits)

r=0.75

N

Coding gain(dB)

o

w

—— Richardson’s density profile
""" Yang’s density profile

5

=

1000 2000 3

000 4000 5000 6000
Blocklength(bits)

Figure 3.25: Coding gain achieved at a BER of 10~* when irregular LDPC codes were communicating

over an AWGN channel using BPSK modulation using different block-lengths at various coding rates.
The PCMs are constructed using both Richardson’s and Yang’s density profile tabulated in Table 3.1.

Code | Coding gain | Coding gain
rate | (A)(dB) | (UR)(dB)
1/3 6.627 30.75 |
1/2 6.47 30 |
| 2/3 5.97 | 28.25 |
| 3/4 5.53 26.875 |
| 5/6 478 2475 |

Table 3.2: Coding gain achieved by the LDPC code constructed according to Richardson’s density
profile specified in Equations 3.18 to 3.22 at a BER of 104, when communicating over AWGN and
uncorrelated Rayleigh fading channels. A coded blocklength of 3000 bits was utilised and the LDPC

decoder invokes a maximum of 25 iterations.



CHAPTER 3. IRREGULAR LDPC CODES 89

s O Avoiding CW 3
2 ¢ Avoiding CW3 4
10°'q 7 Avoiding CW3 4 5
s S
10”
[
m
M
10° =
s S
2 Q
Lo N
s =
2 W
10 M\
0 1 2 3 4 5 6 7 8 9 10
E/Ny(dB)

Figure 3.26: BER performance of the four-fifth rate (200,160) LDPC codes constructed by using
Yang’s density profile in Table 3.1 which avoids the weight-three nodes, and Yang’s density profiles in
Equation 3.28 and 3.29 which further avoid weight-four and weight-five nodes, respectively.

10"
s O Avoiding CW 3
2 ¢ Avoiding CW3 4
10! 7 Avoiding CW3 4 5
5 !
——
, =
1042 5\
s ‘
58
m 2 G
10°
s
2 o)
10"
5 ‘T(
2 N
o N\
2.0 2.5 3.0 3.5 4.0 4.5 5.0
Ey/Ny(dB)

Figure 3.27: BER performance of the four-fifth rate (2000,1600) LDPC codes constructed by using
Yang’s density profile in Table 3.1 which avoids the weight-three nodes, and Yang’s density profiles in
Equation 3.28 and 3.29 which further avoid weight-four and weight-five nodes, respectively.



CHAPTER 3. IRREGULAR LDPC CODES 90

Code Coded Coding gain | Coding gain

rate | blocklength (A)(dB) (A)(dB)
Richardson Yang

1/3 201 2.47 3.176
501 4.06 4.06

1002 447 5.94

2001 5.71 6.62

5001 6.71 7

1/2 200 3.36 4.08
500 4.77 4.82

1000 5.77 5.59

2000 6.3 6.12

5000 6.65 6.94

2/3 201 2.96 3.65
501 4.18 4.83

1002 4.82 5.65

2001 5.65 6.06

5001 6.18 6.24

3/4 200 2.70 3.14
500 3.90 4.12

1000 4.62 4.89

2000 5.23 5.59

5000 5.735 6

4/5 200 2.2 2.2
500 3.65 3.77

| 1000 4 4.41
2000 41.82 5.06

5000 5.41 5.47

Table 3.3: Coding gain achieved at a BER of 10™% when irregular LDPC codes were employed for com-
municating over an AWGN channel using BPSK modulation using different block-lengths at various

coding rates. The PCMs are constructed using both Richardson’s and Yang’s density profile tabulated
in Table 3.1.



Chapter 4

Non-Binary LDPC-aided Transmitter

and Receiver Diversity Schemes

4.1 State-of-the-art

The belief propagation algorithm was devised by Pear] [110], which has been widely used in the area
of Artificial Intelligence (AI) [128] [129]. Following the invention of turbo codes by Berrou [130] in
1993, the research community showed sustained interest in contriving iterative decoding algorithms.
McEliece [131] introduced Pearl’s belief propagation algorithm to the information theory research
community and further elucidated why turbo codes are capable of achieving near-capacity performance.
McEliece also pointed out that many other error correction coding schemes, such as Gallager’s Low

Density Parity Check decoding algorithm [1] also constitute instances of Pearl’s belief propagation
algorithm [131].
In recent years Multiple Input and Multiple Output (MIMO) schemes [115] [132] [133] using

multiple antennas have enjoyed a rapid evolution as powerful fading counter-measures in wireless
communication, owing to their attractive diversity and/or multiplexing gain. Motivated by these
trends, Meshkat and Jafarkhani proposed a bit-by-bit joint detection scheme for an amalgamated
LDPC code combined with a Space-Time (ST) code using BPSK modulation [108]. The novel
contribution of this chapter is that the purely binary LDPC-coded space-time scheme of [108] is further
developed to o symbol-by-symbol detection scheme, which benefits from a purely symbol-based message
exchange with a symbol-based non-binary LDPC code. We will demonstrate that the explicit benefit
of this entirely symbol-based scheme is that an improved BER performance ts achieved at a reduced
detection complerity. Hence in this chapter, non-binary LDPC codes constructed over a Galois field
of size ¢ and proposed by Davey and MacKay [54] are introduced for the sake of developing a purely
symbol-based joint LDPC-Space Time (LDPC-ST) detection scheme. The structure of this chapter is
as follows.

Section 4.2 gives a brief introduction to both Bayesian networks and to Pearl’s belief propagation
algorithm. In Section 4.3 Davey’s non-binary LDPC code [56] will be introduced. The decoding
process for non-binary LDPC codes is outlined with the aid of a worked example and the associated

decoding complexity issues are also addressed. Specifically, we will demonstrate that the FFT-based

91



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 92

Figure 4.1: Bayesian network having six nodes

LDPC decoding technique of [56] has a low complexity, which is independent of the number of bits
per LDPC coded symbol. This advantageous property allows us to decode non-binary LDPC codes
operating over a large Galois field at a low complexity. Section 4.4 characterises the performance
trends of the family of non-binary LDPC codes employing different configurations. A bit-based joint
detection algorithm proposed by Meshkat and Jafarkhani is introduced in Section 4.5 and this al-
gorithm is further developed to a symbol-based scheme in Section 4.6. Section 4.7 and Section 4.8
evaluate the achievable performance gain of the bit-based and symbol-based system, respectively, and

in Section 4.3.5 the decoding complexity of the two systems is compared.

4.2 Bayesian networks and Pearl’s belief propagation algorithm [110,
131]

Bayesian networks consist of a set of random variables denoted by X = {X,;,X5..X,} and these
random variables are represented by the nodes of the network. In Figure 4.1 a Bayesian network
having six nodes is portrayed as an example. The nodes are connected by directed links representing
the relationship of the so-called parent nodes with the so-called child nodes. For example, since there
is a directed link from Xg to X3, this implies that there is message flow from Xg to X3. Thus X is
termed as the parent mode of X3, and hence X3 is the child node of Xg. Similarly, X4 and X5 are
the parent nodes of node X». Furthermore, due to the direct link from X3 to Xi, node Xy is the
parent node of X;. Some of the nodes may correspond to random variables, whose values have been
encountered and hence observed. The corresponding nodes are also referred to as evidence nodes or
observation nodes. More explicitly, if nodes X4, X5 and Xg in Figure 4.1 correspond to three channel
output samples and their information is processed by a particular algorithm such as for example, an
LDPC decoder, to provide parity information for nodes Xy and X3 as well indirectly for node X1, the

nodes X4, X5 and Xg are the so-called evidence nodes or observation nodes. When a specific set of



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 93

variables corresponding to the evidence nodes is observed, Pearl’s belief propagation algorithm may
be invoked for inferring the a posteriori information corresponding to the rest of the nodes in the
network, as was demonstrated in the context of Figure 4.1. For example, the a posteriori probability

of node X is calculated as follows:
P(Xy) = P(X1]| Xy, X3) - P(X2| X4, X5) - P(X3|Xs) - P(Xy) - P(X5) - P(Xs)- (4.1)

The mechanism of belief propagation which is expressed synonymously as probability propagation
becomes explicit in Equation 4.1 and Figure 4.1. If we use the notation PN (X;) for representing the
parent node set of node 4, Equation 4.1 can be rewritten as:
N
P(Xy) = [ PPN (). (4.2)

i=1

Recall from Chapter 3 that since an LDPC code’s PCM can be represented using a Tanner graph as
seen in Figure 3.1, hence Figure 3.1 represents the Baysian network structure of the LDPC code. More
explicitly, all the message nodes at the left of Figure 3.1 are the "evidence nodes”, since they receive
initial intrinsic information from the channel’s output. Then the information propagates through the
connections from the message nodes seen at the left to the check nodes portrayed on the right in
Figure 3.1. During this message passing procedure, the message nodes are the parent nodes and the
check nodes are the child nodes. When a message has to be passed from the right to the left, the
check nodes become the parent nodes and the variable nodes represent the child nodes, because the
message nodes receive information from the check nodes. Hence the LDPC decoding procedure also

constitutes an instance of Pearl’s belief propagation algorithm [131].

4.3 Non-binary LDPC codes

4.3.1 Introduction

In Chapter 2 the family of binary regular-construction LDPCCs has been introduced. The entries in
the parity check matrix are either ones or zeroes, hence they are defined over Galois Field (2). Davey
and MacKay developed the classic binary LDPCCs further [55], where the parity check matrices are
constructed by inserting non-zero entries defined over the Galois Field (g), i.e. over GF(q) (g = 27).
More explicitly, the non-zero entries within the parity check matrix of a non-binary LDPCC may
assume values from the set spanning from 1 to (g — 1). For the sake of distinguishing the PCM H
and the corresponding generator matrix G defined over the binary field from those defined over the
non-binary Galois field GF(q), we would like to introduce the notation of H, and G for representing
the non-binary PCM and the non-binary generator matrix, respectively. By contrast, the binary PCM

and the binary generator matrix will be denoted as Hy and Gy, respectively.

Hence the class of non-binary LDPCCs constitutes a generalisation of the binary LDPC codes
introduced in Chapter 2 and this generalisation will be detailed here with reference to the work of
Davey and MacKay [54,56]. In the family of non-binary LDPCCs, the non-zero entries of the parity
check matrix are inserted in the same way as in the binary case. However, in addition to deciding

where to insert the non-zero entries, the value of the non-zero entries has to be determined over GF(g).



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 94

Furthermore, as in the case of binary codes, a legitimate non-binary codeword also has to satisfy the
constraint that its product with the parity check matrix results in an all-zero vector. In the context
of non-binary LDPCC decoding over GF(g), the additions and multiplications involved in computing
the product of the codeword and the PCM should be carried out over the corresponding finite field,
rather than over the binary field as in Chapter 2.

For the non-binary LDPC defined over GF(q), each non-zero entry of both H, and G, can be
associated with a (p x p)-dimensional submatrix, where we have p = log,(g) [56]. More explicitly, since
the non-zero entries of the Hy and G, matrix may assume values from 1 to (¢ — 1) for a non-binary
LDPCC defined over GF(q), there should be a total of (q — 1) different submatrices associated with
each individual legitimate value of the non-zero entry in the matrices Hy and G,. Furthermore, each
coded non-binary symbol defined over GF{(qg) can be represented in a binary format using p binary bits.
If we replace all the non-zero entries in H, and G, with their individually associated binary-valued
submatrix, the equivalent binary PCM Hjy and generator matrix Gz can be derived, which correspond
to H, and G,. Assume for example that we have a ¢ — ary source symbol b defined over GF(g), and
a is a non-zero entry in the parity check matrix also defined over GF(g). Then the multiplication of
symbol b by a is equivalent to the matrix multiplication of the binary representation of the source
symbol b and the submatrix associated with the non-zero entry a of the parity check matrix. Hence, if
each non-zero entry in the g —ary matrix G4 and Hy defined for non-binary LDPCCs is replaced with
their corresponding binary submatrix, we will have the resultant binary generator matrix and parity
check matrix G and Hy in a binary form, while the sizes of the matrices are increased by a factor
of p both vertically and horizontally. Suppose we have a source symbol sequence S, over GF(g) and
the corresponding binary representation of S, can be denoted as S,. Then, upon multiplying S, with
G, using finite field arithmetics, we arrive at the encoded symbol sequence C,. Similarly, the binary
representation of a codeword Cp may be obtained by multiplying S, and Gy over the binary field. As
expected, the sequence Cy is the binary representation of the symbol sequence C, [56]. However, the

advantages and disadvantages of using binary versus higher order decoding fields will be highlighted

at a later stage.

The matrices Hy and H, can be used for producing Gy, and G, which in turn may be involved for
generating the same codeword in either bit or symbol format. Clearly, the non-binary LDPCC decoder
is a symbol based decoder. Each column of H, represents a symbol message node constituted by p bits.
If the input to the decoder provides only bit probabilities, the decoder has to interpret p bits output
by the demodulator as a single ¢ — ary symbol and approximate the symbol probability by using the
product of the probability values of each constituent bit, assuming that all the bits are independent.
This independence is only an approximately valid assumption, for example in the case of using a gray-
coded modem constellation, where the gray-mapping imposes constraints on the transmitted bits.
Following this philosophy, the symbol probability is calculated from the demodulator’s soft output

values as:

p
pe =1 P2, (4.3)
j=1

where P;j represents the probability that the j** constituent bit z; is equal to a;, while (a1, ...ap) is

the binary representation of symbol a.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 95

4.3.2 Advantages and disadvantages of non-binary LDPC codes

MacKay pointed out in [8] that LDPCCs should have a high column weight for the sake of achieving a
high performance. As illustrated in Figures 3.2 to 3.4, the high-weight message nodes of an irregular
LDPC code converge to their correct states at a higher rate than the low-weight nodes. This intuition,
which led to Luby’s [60] irregular construction, also implies that when having more non-zero entries in
a column, a message nodes becomes more confident in deciding which state it should be in. However,
the resultant higher number of non-zero entries in a row may lead to confusion for the check nodes,
because now an increased number of non-zero entries participate in the parity check equation, thus
an increased number of configurations are available to satisfy the check equation. Furthermore, when
a moderate PCM size is applied, using a higher column weight will render the parity check matrix
less sparse and hence cycles having a short length will be introduced. As seen from Figure 4.2, by
extending GF(2) to GF(q), the binary column weight of the equivalent binary parity check matrix

portrayed at the right of the figure is increased. Furthermore, the row weight of the equivalent binary

PCM is also increased.

Since we argued previously that H, and G, have their corresponding binary equivalent matrices
H, and G, hence the family of non-binary LDPCCs is subjected to the same design dilemma as
binary irregular LDPCCs. More explicitly, using a large non-binary decoding field will result in a high
equivalent binary column weight for the PCM, but the equivalent binary row weight is also increased.

However, the merit of non-binary LDPCCs arises from their reduced probability of forming short

cycles.

By observing the cycles using the bipartite representation of Figure 4.2, it can be seen that using
non-binary LDPCCs results in no cycles, while the equivalent binary PCM has many cycles, among
which two length-4 cycles are highlighted using dotted lines in Figure 4.2. From this example we may
infer that non-binary LDPCCs are less likely to incur short cycles. The binary equivalent PCMs are
constructed upon replacing the non-zero entries defined over GF(8) by their corresponding binary
companion matrices. Details of finding the binary companion matrix can be found in Appendix C.
Since each binary submatrix is of dimension 3-by-3, we have three times more message nodes as well
as the check nodes in comparison to the non-binary PCM seen at on the left of Figure 4.2. The
Tanner graph of the binary equivalent matrix is constructed in a similar fashion as the non-binary
PCM, i.e. by connecting the message nodes and the check nodes according to the position of the
non-zero entries in the PCM. Thus, in the message passing based decoding process the non-zero
PCM entries are capable of receiving information from more neighbouring nodes, which is expected
to improve the achievable decoding performance. However, the disadvantage of non-binary LDPCCs
arises from having an increased number of possible values for the non-zero entries in the PCM. Since
the number of possible states is increased by a factor of g, the non-zero entries in the row may
assume a higher number of possible values rendering them more difficult to classify. The associated
decoding complexity is also increased owing to the increased number of possible states. Davey has
demonstrated in [56] that non-binary LDPCCs are not always superior to their binary counterparts,
as a consequence of the above-mentioned advantages and disadvantages. However, the non-binary
LDPCCs lead themselves to purely symbol-based decoding, which will be shown to be advantageous

in the context of the non-binary LDPCC-aided space-time code of Section 4.6.

In our further discussion, we will express the coded blocklength of a non-binary LDP CC associated



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 96

X, X X3 X X Xis X1 X2 X5 X0 %82 X3

cif0o 0 1/]1 000 0C

¢, Co (1 01,01 00 00
Cs 101 1]0011]0 00

Ca|0 1 110 00 |1 01

C, C2{1 10/ 000 |1 11
Cx|1 1 1]000 (0 11

Figure 4.2: Bipartite graph representation of two PCMs constructed over GF(8) and GF(2)

with Hj in terms of the number of symbols, while the blocklength of the equivalent binary represen-
tation of the codeword will be quoted in bits. For example, the PCM of Figure 4.2 is related to a
non-binary LDPC code having a length of three non-binary symbols. At the same time, we may refer
to this non-binary LDPC code as having a coded blocklength of 9 bits, since it was constructed over
GF(8). Furthermore, we could also use the number of non-binary symbols and bits for representing
the size of the PCMs H, and Hy, respectively. All LDPC codes represented by (Ng, Kg), refer to

a code having K, non-binary information symbols, while the encoded blocklength is N, non-binary

symbols.

4.3.3 Decoding process

The decoding process is quite similar to that outlined in Chapter 2 for the binary LDPCC scenario,
apart from the fact that all the calculations have to be carried out in the corresponding non-binary
Galois field. However, since the Galois field order has been increased from binary to GF(q), the
complexity of updating R using Equation 2.31 is increased by a factor of g2. Fortunately, the reduced
complexity decoding method of Richardson and Urbanke outlined in Section 2.7.2 can be further

generalised for non-binary LDPCCs.

Algorithm 2 The procedure of decoding a non-binary LDPCC is outlined here as follows:

Step 1: Initialisation

During the initialisation step, the quantities QF ;¢ =1... Mg, j =1... Ng of each non-zero entry
in the PCM H, have to be initialised to the specific value, which is provided by the channel’s soft
output, i.e. to the intrinsic probability Pj“' in Equation 2.32, where a and 4 represent the symbol state

and the symbol index in the codeword, respectively.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 97

Step 2: Horizontal update

The horizontal update step is dedicated to the updating process of the quantity R{, using the
quantity QF ;. A legitimate codeword has to satisfy all parity check equations in the PCM. When
updating jo using Equation 2.31, the participating message nodes have to satisfy the ith parity

check formulated as:

> ey Hip =0, (4.4)

j'eC;

where ¢; ; represents the 4t symbol, which participates in the i** parity check. More explicitly,
Equation 4.4 requires that the product of the message nodes participating in the ith check, whose
column indices are the elements of the vector C; and the corresponding non-zero entries of the it row

of the PCM H, ; evaluated over GF(g) becomes zero.

In the non-binary scenario, all message nodes have ¢ possible values. Since we have to evaluate the
probabilities for each legitimate symbol state, we can use the probability of each message node in the
decoding process which we quantify with the aid of the corresponding discrete PDF. According to the
Galois Field addition rule [134], the sum of two identical elements of GF(q) is zero, thus Equation 4.4
can be rewritten as:

> ey Hip=cigHig k€Ci (4.5)
J'eCi g’ #k
It becomes clear from Equation 4.5 that the variable ¢; - H; k, k € C; can be expressed as the sum of

other variables ¢; - Hi,j’»j/ €Ci,j' £k

As mentioned in Section 2.7.2, the PDF of the quantity Rﬁj of Equation 2.34 can be obtained by
evaluating the convolution of the PDFs of the quantities Q7 ; of the other message nodes participating

in the 7" check.

An example has been provided in Section 2.7.2 for the binary case, and a detailed worked example
will be supplied later in Section 4.3.4 for the non-binary scenario. Let us now introduce a variable
3,7, which represents the product of the symbol value a € (0,9 — 1) of the j th message node and the
matrix entry H; ; at the i** row and j** column obeying v; ; = a+ H; j. When non-binary LDPC codes
are concerned, the PDF of the product R;’] can be obtained by calculating the convolution of the
PDFs of the quantities Q;’J», of the other message nodes participating in the i** check. The notations
Q;’ i and Rt} ;, are hereby also introduced for the sake of distinguishing them from Q;’ p and R . The
reason that we used R, and Qf] directly in Section 2.7.2, rather than sz and Qf] is because we
had H; ; =1 for all i and j, when binary LDPCCs are concerned. Therefore we have v = a- H;; = a.

Thus we arrive at:

PDF{R};}= (X PDF{Q!;}, (4.6)
Je{Ci}i'F
where (X) indicates convolution.

Step 2.1: Permutation of the PDF entries of the quantity Q; ;

As seen from Equation 4.6, the PDF of the variable Qf 5 1s used to update R;:’. ;- The PDF of
the quantity sz, can be obtained upon permuting the PDF of variable Q7 ;,. Considering GF(4) as
an example and assuming that the PDF of Qg]-, for a message node is Qf;j, = (Q?_j,, Qg,j”Q?,j”Qij‘)



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 98

and assuming furthermore that the corresponding PCM entry is H; y = 2 over GF(4), the prod-
uct ((0-H; ), (1-H;p),(2- H; 30),(3- Hy 1)) yields (0,2,3,1), since the sequence a = (0,1,2,3) is
multiplied with H; j» = 2 over GF(4). An arithmetic operation table over GF(4) is provided in Ta-
ble 4.1 for the reader’s convenience. Thus, by reordering the original PDF Q¢ , = ( ?,jv 117]», %j, Qf])
of the message nodes Qf,, i = 1...M,, j = 1... N, according to the sequence (0,2,3,1) yields
(ng,, Qg’j,, Qil’j,,Q?:j,). More explicitly, since according to Table 4.1 we have 2 x 2 = 3 over GF(4),
thus 2 - H; » will make a contribution to the *" parity check of the value of 3 over GF(8), with
a probability of QZ]-,. More explicitly, we have v = 2 x 2 = 3 over GF(8), hence Qf], = ?,j"
Thus the probability of Q;‘ZJ’ should be placed at position three in the PDF of the variable Qf:j/

and hence the PDF of Qf » becomes (QY,,Q3 ., Q] 4, Q7 ), which is indeed a permuted version of

: 1 2 :
Qi = (Qﬁj/, Q50 Qirjry Qf,j')

o O O oo
= W N O N
N = W O W

O N = O =

W N = o4
w N~ oo
N W O ==
—_ O W NN
O = N | W

W N = Ol e

Table 4.1: GF(4) addition and multiplication table

As mentioned in Section 2.7.2 and defined by Equation 4.6, upon convolving the PDFs of all the
variables Q;.J:j,, except for that of the message node at the j** column, as shown in Equation 4.6, the
result specifies the PDF of R ;. The elements of the PDF vector have to be permuted again, in the
opposite sense in comparison to the previous permutation, for the sake of generating the PDF of the

quantity Rf] This process will be explained in more detail with the aid of a worked example in

Section 4.3.4.
Step 2.2: FFT

As previously suggested in the context of Equation 2.35 of Section 2.7.2, the complex convolution
can be more efficiently implemented in the frequency domain with the aid of the FFT [9]. Equation 2.37
has provided the corresponding FFT formula for the binary case. In a non-binary LDPCC scenario
the FF'T has to be implemented over a non-binary finite field, during the update of the quantity R7 ;
of Equation 2.31 [56].

As suggested in Equation 2.37 of Chapter 2, the FFT of the function f defined over GF(2) is given
by F(f)(0) = f(0)+ f(1), F(f)(1) = f4(0) — f(1). The notations F(f)(a) and f(a) have the similar
definitions as in Equation 2.37, while here they are generalised for a decoding field of size g, rather
than binary.

Since the PDF of each message node is defined over GF(g), thus the FFT is not a one-dimensional
g-point FFT, but a p-dimensional two-point FFT, where we have 27 = q. When the FFT is represented
in a matrix format, the matrix is the same as the Walsh-Hadamard (WH) matrix [38|. By representing

the FFT to be carried out over GF(2) in Equation 2.37 in a matrix format, we arrive at:

(F(f)(O))_(f(0)><1 1 ) (.7)
F()1) f) 1 -1



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 99

The (2 x 2) matrix in Equation 4.7 is termed the FFT matriz (FFTM) here, and it may be used as
a component during the construction of other FFTMs for FFTs to be carried out over larger Galois
fields. The creation of a FEF'TM defined over a Galois field of size 27 is a matrix manipulation process.
When the size of the FFTM is doubled, i.e. when we use the FFTM valid for GF(2) for the sake
of constructing the FFTM generated for GF(4), we can create the FFTM valid for GF(4) from four
partitions, each having the same size as the FFTM created for GF(2). Three replicas of the original
FFTM will be placed in the upper left, upper right and lower left partition, respectively, while the
original copy will be positioned at the lower right corner of the new FFT matrix, where all elements in
this and only this (2 x 2) component FFTM will have their polarity inverted according to the recursive
WH matrix generation rules. A FFTM constructed over GF(4) and obtained by using the matrix

seen in Equation 4.7 is as follows:

F()(0) £(0) 1111
FOHO | _|ro |1 -1 12 is)
F(H2) f2) 1 1 -1 -1
FHB) ) L fB) )\ -1 -1 T

Furthermore, by using the FFTM obtained in Equation 4.8, the FFTM created over GF(8) may

be developed, as follows:

F()(0) £(0) 1 1 1 1 1 1 1 1
F(HQ) f() 1 -1 1 -1 1 -1 1 -1
F()(2) f(2) 1 1 -1 -1 1 1 -1 -1
FAHG) | _ | fB 1 -1 -1 1 1 -1 -1 1 (19)
F(4) f(4) 1 1 1 1 -1 -1 -1 -1
F(f)(5) f5) 1 -1 1 -1 -1 1 -1 1
F(f)(6) f(6) 1 1 -1 -1 -1 -1 1 1
F(T) JiG) 1 -1 -1 1 -1 1 1 -1

Let us use (ng,, ey QA?;,I) for representing the FFT of the permuted PDF, which specifies the
PDF of sz,, namely that of (Qg{j,, s Qvg‘]fll).
Step 2.3: Updating the PDF of the variable Rf]

Since now we carry out the convolution in the frequency domain after the FFT, the convolution

process can be implemented with the aid of multiplications, as follows [56]:

(J%g{j,...,J%Z;l):( T & II @ I Qg;,l), (4.10)

J'eC{EN JeC(\J J'eCENS

where (]%?], ey ]A?f]_]) represents the FFT of the PDF for the variable RZ, - H;j, ie. (jo, ,Rf;l)
g

More explicitly, Equation 4.10 represents the FFT of the PDF for all the products Q;’:j,, i=1... Mg, 7 =

1... N, participating in the it" row, except for the jth message node.

Step 2.4 IFFT

By carrying out an inverse FFT, this vector is transformed back to the time domain. The IFFT

is carried out by following the procedure described in Chapter 2. More explicitly, the IFFT is carried



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 100

out over GF(g) by multiplying the corresponding FFTM, i.e. the same as during the FFT process,

except that the resultant probability sequence has to be normalised for the sake of ensuring that all

probabilities sum up to unity.
Step 2.5 Backward permutation

After the IFFT has been completed and all the probabilities have been normalised, the resultant
PDF defines the probability distribution of the variable R;’ ;- For the sake of retrieving the PDF of
the variable R? ., the elements of the resultant PDF vector obtained during Step 2.4 are permuted for
the sake of eliminating the effect of the matrix entry H; ;. This operation can be carried out in the

direction opposite to the way we permuted the PDF of the variable Qf.j, in Step 2.1.

Step 3: Vertical update

Once Step 2 has been accomplished, the value of R} ; may now be used for vertically updating the

message Qf] in Equation 2.32. The a posteriori probability of each individual coded symbol can be

evaluated by using Equation 2.33.
Step 4: Hard decision and parity check using H,

Using the a posteriori probability obtained from Step 3, the symbol having the highest probability
will be chosen as the survivor during the hard decision phase. The non-binary symbol sequence
obtained from the hard decision will be multiplied with the PCM H, for verification using the non-
binary arithmetics operating over GF(q). If the resultant vector is an all-zero vector, then a legitimate
codeword has been found and the result will be output by the decoder. If the resultant vector is not an
all-zero vector, provided that the maximum number of iterations has not been reached, the decoding

process will be continued by invoking Step 2 for the next iteration.

4.3.4 Non-binary LDPC decoding example

In this section, the iterative decoding of LDPC codes generated over GF(g) will be described in detail
using a worked example. The example will illustrate the decoding process of a half-rate LDPC code
constructed over GF(4), when communicating over an AWGN channel. A randomly generated parity
check matrix Hy is listed in Table 4.2, and the corresponding generator matrix G4 given in Table 4.3
can be obtained in the same way as described in Section 2.4, except that all the arithmetic operations
are carried out over GF(4). The generator matrix G, will produce a codeword with the original
systematic information symbols concatenated at the end of the codeword. The arithmetic operations

carried out over GF(4) are previously summarised in Table 4.1 for the reader’s convenience.

Assuming that a sequence of five source symbols given by {2, 0, 1, 2, 2} has been encoded upon

multiplying them with G, given in Table 4.3 as follows:

Cq (1xny) = Sq (axky) - G (K x )

(1100010000'
2121301000
2312320122/=[20122]-/2 23 0000 100
1111200010
_o3ooooooo1J




CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 101

12 3 4 5 6 7 8 9 10

110 0 3 0 001 2 3 0
2110 0 0 0 3 0 0 3
H,-=/3|/0 0 0 2 3 00 03 O
412 01 0 2 2 0 0 0 O

510 2 0 2 0 2 0 3 0 1

Table 4.2: Example of a low density parity check matrix (PCM) H, for N, = 10, M; = N, — K4 =9

and w, = 2 constructed over GF(4)

| J1 2 3 456789 10
1/1 10001000 O
202 1 2130100 O
G,=(3/2 23000010 0
4/1 11120001 0
50030000000 1

Table 4.3: Generator matrix G, for the PCM H,, of Table 4.2 specifying the non-binary half-rate code
LDPC (10,5), over GF(4).

The multiplications are carried out in GF(4). For example, the second parity symbol, i.e. 3, is
calculated by 2 x 1 4+0x1+1x24+2x14+2x3=24+0+2+2+1=3.

Upon multiplying this codeword by the transpose of the parity check matrix H, given in Table 4.2
over GF'(4) with the aid of Table 4.1, we arrive at:

(010 2 0]
0100 2
30010
0020 2
[2312320122]~0032():[00000},
000 2 2
13000
2000 3
30300
03001

the resultant all-zero vector indicates that the codeword is legitimate.

The encoded codeword is mapped onto bits for BPSK transmission over the AWGN channel.
The probability of each symbol assuming any of the four possible values is calculated according to
Equation 4.3 using the bit-based soft channel outputs, where our inherent assumption is that the bits
of a symbol are independent, although in case of a gray-coded modulation constellation this is only
approximately true. The resultant symbol probabilities are listed in Table 4.4. The far left column in
Table 4.4 is the symbol index, while the top row specifies all the possible symbols. Finally, columns

6 and 7 of Table 4.4 represent the surviving symbol and whether the hard decision is correct. The



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 102

symbol value having the highest probability is chosen as the survivor in column 6 of Table 4.4, and
the decoded codeword constituted by the surviving symbaol is checked with the aid of the PCM to

ascertain whether the decoded codeword is a legitimate one.

} 0 1 2 3 Survivor ? Result ‘
1 [ 0.0333887 0.000155706 0.96197 0.00448607 2 Correct
2 1 0.00157199 0.0076656 0.168601 0.822161 3 Correct
3 | 0.968776 0.0210919 0.00991634 0.000215896 2 Error
4 | 0.0647001 0.000175584 0.932593 0.00253088 2 Correct
5 | 1.0302 x 107°  0.0595526 0.000162658 0.940274 3 Correct
6 | 0.825772 0.00632498 0.166626 0.00127627 0 Error
7 | 0.582222 0.0116672 0.398132 0.00797822 0 Correct
8 | 0.000738692 0.997418 1.36396 x 107  0.00184169 1 Correct
9 | 0.00926008 5.02575 x 1077 0.990686 5.37678 x 1072 2 Correct
10 | 0.00487535 3.97331 x 1075 0.987041 0.00804418 2 Correct

Table 4.4: Intrinsic symbol probabilities calculated using the channel’s soft cutput for the LD-
PCC(10,5) generated over GF(4) using the PCM of Table 4.2.

The surviving or most likely transmitted symbols are {2, 3, 0, 2, 3, 0, 0, 1, 2, 2}, as seen in the 6"

column of Table 4.4. The third and sixth symbols are erroneous, thus the product of the corresponding

codeword sequence with the transpose of the PCM H, seen in Table 4.2 is calculated as:

[

01020

0100 2

30010

0020 2
[2302300122}-00320:[30023},

000 2 2

13000

2 000 3

30300

03001

which is a non-zero vector. Thus we have to follow the decoding steps described in Section 4.3.3 for

the sake of eliminating the errors.

First all the non-zero entries of H, seen in Table 4.2 will have their associated Qf ; values initialised
to the intrinsic probabilities of Table 4.4, which are denoted as P? in step 1 of the decoding process
outlined in Section 4.3.3. Then the resultant Qf ; values will be used for updating 77 ; as seen in the
second step, employing the reduced complexity FFT-based method of Equation 4.8. The process of
using the FFT for updating R ; will now be described with the aid of a numerical example.

Suppose we have to update Rf ; for the non-zero entries in the first row of H, seen in Table 4.2.
The message symbols involved in the 1% row of H, in Table 4.2 are {3, 7, 8, 9}. First we have to

permute the probabilities of each variable node according to the matrix elements in H, for the sake of



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 103

obtaining the PDF of the variable Q}’_j, where j denotes the column indices of each non-zero entry in
the first row of Hy in Table 4.2. Thus the permuted probabilities after considering the matrix elements

of the four message nodes in the first parity check are listed in Table 4.5.

] 0 1 2 3
3 | 0.968776 0.00991634  0.000215896 0.0210919
7 | 0.582222 0.0116672  0.398132 0.00797822
8 | 0.000738692 0.00184169 0.997418 1.36396 x 10~°
9 | 0.00926008  0.990686 5.37678 x 107°  5.02575 x 107

Table 4.5: Qf j values of the entries in the first row of H, given in Table 4.2 after permuting the PDF
of Q¢ ;e

More explicitly, in Table 4.5, the top row quantifies the probability of each of the four legitimate
symbol states, and the first column on the left indicates the column index of the non-zero PCM entries
participating in the first row of Hy seen in Table 4.2. Following the probability permutation carried
out according to the corresponding matrix entry H; ; seen in Table 4.2 for the sake of obtaining the
PDF of the variable Qi’:j,, the FFT is carried out for each symbol listed in Table 4.5 over GF(4) using
the matrix defined by Equation 4.8. The result of the FFT is provided in Table 4.6, where we are
using the same notation of Q, as in Equation 4.10 for denoting the result of the FFT. For example,
the PDF of the non-zero entry in the 8 column and the 15 row of Table 4.2 is summarised in the
8™ row of Table 4.4 as (QF g, Q] 5, Q% 5, Q1 g) = (0.000738692,0.997418, 1.36396 x 10~°,0.00184169).
Upon taking into account that the matrix entry at position (1,8) of Table 4.2 is 2, the PDF of the
variable Qll).s is a permuted version of the PDF of the variable Q4. Since according to Table 4.1 the
product of the sequence (0, 1,2,3) and the element 2 over GF(4)‘ results in (0, 2, 3, 1), the PDF of
the variable QY 5 is (QY g, Q% 5, Q1 5, Q%) = (0.000738692,0.00184169,0.997418,1.36396 x 10~%). The
PDF of Qi’78 will now be m{lltiplied by the FFTM defined by Equation 4.8 to perform the FFT as

follows:
o 0.000738692 11 1 1 1
Oy | | o0.00184169 1 -1 1 -1 | | 0996314 )
A 0.997418 1 1 -1 -1 | | —0.994839 |’ '
Qg 1.36396¢ — 06 1 -1 -1 1 —0.99852

which constitutes the row corresponding to the 8** symbol of the codeword seen in the 37 row of

Table 4.6.

&y ol @A, Q|
31 0.937983  0.957384  0.979736
711 0.960709  0.187779  0.180401
811 0.996314  -0.994839 -0.99852
911 -0.981372 0.999891  -0.981479

Table 4.6: FFT of the variables seen in Table 4.5 computed using Equation 4.8.

Following the FFT, Rfj will be updated by the product of Q‘ij, of the other entries in the 15 row



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 104

of H; according to Equation 4.10. For example, the R%j value associated with the 7¢" symbol in the
codeword is calculated according to Equation 4.10 using the Q“ values seen in Table 4.6 as 0.957384 x
—0.994839 x 0.999891 = —0.95234. Hence, after the update of R?; according to Equation 2.31, the
quantities RE; listed in Table 4.7 are obtained.

|

n, e, i
1 -0.939338 -0.186789 0.176797
1 -0.917118 -0.95234  0.960166
1
1

-0.884343  0.179757 -0.173471
0.897808 -0.178849 -0.176483

L 00 g W

Table 4.7: Results after updating the FFT of the variables seen in Table 4.6 using Equation 4.10.

Having completed the updating process of Equation 4.10, the inverse FFT is required for retrieving
the PDF of the variable ]A?(‘ij,, i.e. the PDF of the variable Rij" The inverse FFT is carried out by
multiplying the PDF vector with the FFTM in the same way as during the FFT process, except that
all the resultant probabilities have to be normalised to ensure that we have >, f?ll =1 Finally, the

sequence obtained after the IFFT has to be permuted again for the sake of obtaining the PDF of R; ;.

When the process outlined above has been completed for all the rows, the update of the quantity
R ; obeying Equation 4.10 of step 2.3 of Algorithm 2 is deemed completed for this iteration. Then
the update of Qf] according to Equation 2.32 of step 3 will be carried out using both the value of
R 5, i € R(j),i" # i as well as the intrinsic probability calculated from the channel’s soft output, as
seen in Equation 2.32. For example, there are two non-zero entries in the sixth column of Table 4.2
in row 4 and row 5. The previously calculated values of R, which correspond to these two entries in

the fifth column of Table 4.2 were given in Table 4.8.

As seen in Table 4.2, the Hamming-weight of the 6** column is only two, thus according to Equa-
tion 2.32 the non-zero entry in the 4** row and the 6" column will use the product of the value R§ s and
the intrinsic symbol probability provided by the channel for updating the value of Qz:ﬁ. Recall from
Table 4.4 that the channel output defines the fifth symbol’s intrinsic probabilities is now {0.825772,
0.00632498, 0.166626, 0.00127627} for the four possible GF(4) symbols of 0 to 3. For example, accord-
ing to Equation 2.32 the value of QY 4 is updated by evaluating the product of the intrinsic probability
of the 6t symbol, which is 0.825772/in Table 4.4, and the value of Rg.(). = (0.0616686 seen in Table 4.8.
The updated value of Qiﬁ obeying Equation 2.32 becomes 0.0509242,. Hence, using the same mecha-
nism, erﬁ, g =0...3, will be updated according to Equation 2.32, yielding {0.0509242, 0.000128521,
0.126089, 0.000205854}, respectively. After normalisation by a factor of ZZ;(I] 46 = 0.177347 accord-
ing to Equation 2.32 of step 3 in Algorithm 2, the quantity Qiﬁ is obtained as {0.287143, 0.000724683,

0 1 2 3

0.0151071  0.878271 0.0204158 0.0862058
5 | 0.0616686 0.0203196 0.756719  0.161293

Table 4.8: R;; values for the two non-zero entries in the sixth column and row 3 and row 4 after the

horizontal update process.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 105

‘ ’ 0 1 2 3 Surviver | Result
1 | 0.00105059 5.48387 x 10~%  0.866057 0.132838 2 Correct
2 | 6.61436 x 107%  0.00186265 0.00736306 0.990768 3 Correct
3 | 0.0201037 0.467753 0.512142 1.83549 x 1076 2 Error
4 | 7.38459 x 107° 1.40357 x 1075 0.999912 1.17234 x 108 2 Correct
5 ] 3.13059 x 107 0.000590241 0.000433858 0.998976 3 Correct
6 | 0.22144 0.0324903 0.740962 0.00510794 2 Correct
7 | 0.871147 1.5601 x 1075 0.105775 0.0230627 0 Correct
8 | 0.00287799 0.96791 4.58809 x 107%  0.0292073 1 Correct
9 | 0.00909031 3.7477 x 1079 0.990825 8.4621 x 10—° 2 Correct
10 | 0.000853625 8.65283 x 10~ 0.998793 0.000344312 2 Correct

Table 4.9: A posteriori symbol probabilities after one iteration

’ ’ 0 1 2 3 Survivor | Result ‘
1 | 0.0132287 4.76994 x 10~ 0.985821 0.000945989 2 Correct
2 | 0.00037386 0.0169579 0.0222603 0.960408 3 Correct
3 | 0.000245489 0.97209 0.0276643 6.13229 x 108 1 Correct
4 | 0.00184083 7.75363 x 107°  0.998081 8.69016 x 10~7 2 Correct
5 [ 4.64757 x 1077 0.00588021 2.05722 x 107°  0.994099 3 Correct
6 | 0.0110328 0.00145767 0.987503 6.23818 x 1076 2 Correct
7 | 0.814087 2.0928 x 1078 0.184293 0.00161807 0 Correct
8 | 0.00401789 0.989768 5.66533 x 1078 0.00621357 1 Correct
9 | 0.00013802 1.49272 x 10-%  0.999834 2.82329 x 105 2 Correct

10 | 0.000980569 8.14098 x 107°  0.996534 0.00240409 2 Correct

Table 4.10: A posteriori symbol probabilities after two iterations

0.710972, 0.00116073}.

According to Equation 2.33, the a posteriori symbol probability will be calculated as the product
of all the R, values in the column and the corresponding intrinsic probability provided by the channel.
Thus, after normalisation according to Equation 2.33, the a posteriori probability of all the symbols

in the codeword is obtained and these are summarised in Table 4.9 after the first iteration.

Comparing the results of Table 4.4 and Table 4.9, we can observe that the erroneous symbol in
the sixth position of the codeword has been corrected. Although the third symbol remains incorrect,
the probability of its original correct value has been increased from 0.02 to 0.467. During the second
iteration, the a posteriori symbol probabilities are calculated using the quantity Qf j determined in
the previous iteration and the intrinsic symbol probabilities provided by the channel. The a posteriori

probabilities generated after the second iteration are listed in Table 4.10.

As seen from Table 4.10, the second iteration has succeeded in correcting the remaining erroneous
symbol and the codeword constituted by the surviving symbols results in an all-zero vector upon
multiplying it by the PCM H, of Table 4.2. Hence the decoder declares that a legitimate codeword



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES

has been found and the iterations are curtailed.

4.3.5 Complexity

106

As described in Section 2.7.2, employing the FFT-based decoding method during the update of the

quantity R2 f significantly reduces the decoding complexity imposed. In this section, the decoding

complexity of the non-binary LDPCC will be evaluated. Let us consider the complexity calculation

using an example in the context of GF(8).

The FFT matrix derived for GF(8) in Equation 4.9 is reproduced here for the reader’s convenience:

1
1
1
1

7(0) 1 1 1 1
F(1) 1 -1 1 -1
F(2) 11 -1 -1
F(3) 1 -1 -1 1
F(4) 11 1 1 -1
F(5) 1 -1 1 -1 -1
£(6) 11 -1 -1 -1
F(7) 1 -1 -1 1 -1

1
1
-1
-1
-1
—1
1
1

1
-1
-1

1
-1

1

1
-1

(4.12)

Since the matrix given in Equation 4.12 is symmetric according to the matrix construction outlined
in Section 4.3.3, the complexity of implementing the FFT is given by glogs(q) GF(q) additions, where
q is the size of the Galois field. Explicitly, the evaluation of Equation 4.12 is detailed as follows.
Firstly, we calculate the values hosted by the each pair of two consecutive elements of the matrix
product, namely f(0) and f(1), f(2) and f(3), etc. The calculation to be carried out at this step is

as follows:

(£(0) + f(1))
(f2)+ f3)
(f(4) + f(5)
(F(6) + £(7)
(F(0) = f(1))
(f(2) = f3)
(f(4) = f(5)
(f(6) = f(7)

(4.13)

The operations outlined in Equation 4.13 requires ¢ = 8 additions in the first step. Then, the

values calculated during the first step using Equation 4.13 will be invoked for obtaining the following

values:

(fO)+ f) +(f2) + f3))
(fO) + (1) = (f(2) + fB3))
(f(4) + () + (f(6) + £(7)
(f(4) + F(5)) = (f(6) + f(7))
(f(0) = fF() +(f(2) — f3))
(f(0) = f(1) = (f(2) = fB3))
(f(4) = f(5)) + (f(6) — £(7))
(f(4) = f(5)) = (f(6) — £(7))

(4.14)



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 107

This second step formulated in Equation 4.14 requires a further ¢ = 8 additions. Finally, the values

generated during the second step can be used for calculating the final result of the FFT, as follows:

(FO) +FW) + (F@)+73)) ) + ((f(4) + F(5)) + (F(6) + £(7))
(fO) = F) +(f(2) = fFB3)) ) + ((F(4) = FB) + (F(6) — f(7))
(FO)+71) = (F2) + f3)) ) + ((f(4) + F(5)) = (f(6) + f(7))
(f(0) = f()) = (F2) = F3) ) + ((F(4) = F(5)) = (F(6) — £ (7)) (4.15)
(fO)+ )+ (F2) + F3)) ) = ((f(4) + F(5)) + (F(6) + £ (7))
(f(0) = F) + (F(2) = fB3)) ) = ((F(4) = F(8)) + (£(8) — f(7))
(FO+ 1) = (F2) + FB3))) = ((F(4) + F(5)) = (F(6) + f(7))

Thus again, the final step in Equation 4.15 requires ¢ = 8 additions. By summing up the number of
additions listed above, a total of gqlog(q) additions are required for carrying out the FFT. Since the
IFFT will follow the same routine, so the number of additions required for carrying out the IFFT
will also be gloga(q). However, additionally, the normalisation operation is also required during the
IFFT, hence a further ¢ multiplications are necessary. Thus the overall complexity required for each
symbol during the FFT of quantity Q¢ and the IFFT of quantity R{ . is 2qlogs(q) additions and ¢

multiplications.

The above complexity calculations only considered the complexity required for the FFT and the
IFFT. However, according to Equation 4.10, updating the quantity R, using Equation 4.6 also involves
the multiplications using the Qf ;+ values from other message nodes participating in the i** check. Thus
referring back to Table 2.16 in Section 2.7.3, 3w, g multiplications are needed for the forward-backward
calculation of updating the quantity sz, in Equation 4.6 for all the symbols in the row, where &
represents the row weight. Summing up all the complexity contributions, updating the quantity sz

according to Equation 4.6 will incur 2w, q - log2(q) additions and 4w,q multiplications for each row.

By summing up all the complexity contribution of the rows, the overall complexity of all the non-
zero entries in the PCM required for updating Rij according to Equation 4.6 will be 2Mywrq - log2(q)
additions and 4M,w,q multiplications, where M, represents the number of rows in the PCM H, of
Table 4.2. Since the number of non-zero entries in the parity check matrix is constant, we have
Myw, = Njuw,, with N, and w, representing the number of coded symbols and the mean column
weight of the parity check matrix, respectively. By replacing M, w, with Ngw, in the overall complexity
calculations, followed by a division of the total number of coded symbols N, each coded symbol will

impose a computational complexity of 2w.q - loga(q) additions and 4w.q multiplications per iteration.

Updating the quantity Qf ; using Equation 2.32 will incur another 3us,q multiplications using the
forward-backward recursion calculation according to Equation 2.32, thus the overall complexity of
each coded symbol in one iteration will be 2w.q-logz(gq) additions and 7w.q multiplications. Further-
more, since a symbol decoding step carried out over the Galois field of size g represents p = loga(q)
constituent bits, thus if we evaluate the bit-wise decoding complexity, the above-mentioned decoding
complexity per coded symbol has to be divided by p, resulting in a complexity figure for each coded bit
corresponding to 2w.q additions and Twe.q/logs(q) multiplications. Hence, the decoding complexity

related to each original information bit becomes 2w.q/r additions and Tw.q/(log2(q) - r) multiplica-



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 108

H, (500, 250),
(1000, 500),
(2000, 1000),

Average symbol column weight 2.5,3
Decoding GF GF(2), GF(4), GF(8), GF(16)
Modulation scheme BPSK
Channel AWGN
Number of LDPC iterations 25

Table 4.11: Simulation parameters for three different half-rate non-binary LDPCCs decoded over
GF(g) using BPSK modulation, when communicating over an AWGN channel. The values of ¢ used
for the various decoding field are 2, 4, 8, 16.

tions, where r represents the code rate. Naturally, the true decoding complexity critically depends

on the specific implementation considered and hence the above-mentioned complexity estimations are

only indicative.

4.4 Performance of non-binary LDPC codes

Having estimated the decoding complexity, in this section, the achievable performance of the non-

binary LDPCCs will be evaluated.

4.4.1 Performance when the size of H, is maintained

As mentioned in Section 4.3, upon increasing the decoding field order, while maintaining the size of the
PCM, the error correction capability of the LDPCC may be improved owing to its higher equivalent
binary column weight. Hence in this section, we will demonstrate how the performance of the non-
binary LDPCC may be improved with the aid of increasing the decoding field GF(g), without altering
the size of the PCM H,. The related simulation parameters can be found in Table 4.11.

As seen in Figures 4.3 to 4.5, the BER performance of the LDPC codes characterised in Table 4.11
increases with respect to the decoding field order. However, when using an average symbol column
weight of 2.5, the non-binary LDPC codes suffer from the same error floor problem, as described in
Chapter 3. The LDPC codes having a short blocklength in Figure 4.3, and associated with GF(2)
and GF(4) showed a performance curve cross-over, when different average symbol column weights
were applied. By contrast, this cross-over phenomenon does not occur for higher-order Galois fields
such as GF(8) and GF(16) at this blocklength. When the blocklength is increased in Figure 4.4 and
Figure 4.5, the associated error floor phenomenon becomes less significant, although it is still visible.

Generally speaking, when increasing the decoding field order, while maintaining the size of H,, the
BER performance of the non-binary LDPC code can be improved, although the associated improve-
ment is achieved at the cost of a higher decoding complexity. However, as outlined in Section 4.3.5,
the decoding complexity can be reduced, when the FFT and IFFT are used. More explicitly, the asso-
clated decoding complexity defined in Section 4.3.5 and evaluated for the codes specified in Table 4.11



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 109

10

5 — Column weight 2.5

S N [ N N B B Column weight 3
10_, = BRI o] GF(Q)

. o GFE

7 © GF(8)

2 \ SS - i GF(16)
107 r

B \ b

m e \ D

10” : —

s Y D —=%

Ty 5 =

2 VN BN u bl

10" \ e RSN
S - ==
s ¢ 0
- T T 3

2 ¥ AT NN Y ”@J
ol TR

0.0 0.5 1.0 L5 2.0 2.5 3.0 35 4.0 4.5 5.0

E,/No(dB

Figure 4.3: BER performance of the non-binary LDPC code (500,250), parameterised in Table 4.11
operating over various Galois fields, when communicating in an AWGN channel. The achievable coding

gain of the various schemes at a BER of 10~* will be summarised in Figure 4.6 and Table 4.20.

10" =
5 ‘{: —— Column weight 2.5
N e Column weight 3
B o GF(2)
= e o GF(4)
\ i NN e GF(8)
2 L AN 1 GF(16)
107
m \\K})\ )
10° ‘ ;?: =
s =
LWV . SO A ¥
) N VR B
0° s
5 — I T
N T — X
) A 5N \
o eI ]
0.0 0.5 1.0 1.5 2.5 3.0 3.5 4.0 4.5 5.0

2.0
E,/N,(dB

Figure 4.4: BER performance of the non-binary LDPC code (1000, 500), parameterised in Table 4.11
operating over various Galois fields, when communicating in an AWGN channel. The achievable coding

gain of the various schemes at a BER of 107 will be summarised in Figure 4.6 and Table 4.20.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 110

10
. —— Column weight 2.5
e e s s s & AR Column weight 3
10.‘ o o GF(2)
A : = o GF(4)
| NS © GF(8)
, . i GF(16)
10° : —
% 5 “\\ (\‘) [‘;3
i WY
m : IV
10 E=
S i
I
, LA RN
10t \\ \ = 0\
5l i —— S
‘ T
N AN SN =

0.0 0.5 1.0 L5 35 4.0 45 5.0

20 725 30
Ey/Ny(dB)

Figure 4.5: BER performance of the non-binary LDPC code (2000, 1000), parameterised in Table 4.11
operating over various Galois fields, when communicating in an AWGN channel. The achievable coding

gain of the various schemes at a BER of 10~ will be summarised in Figure 4.6 and Table 4.20.

utilising various decoding fields can be found in Figure 4.6.

More explicitly, in Figure 4.6, the coding gain versus the associated decoding complexity per
information bit is plotted. It can be observed that upon using higher-order decoding fields, a higher
coding gain is attained at the cost of an increased complexity. When the decoding field is extended from
binary to GF(4), most of the attainable coding gain was achieved and hence upon further extending
the decoding field to GF(8) and GF(16) results in modest further improvements, despite the fact that
the complexity burden imposed upon extending the field from binary to GF(4) is significantly lower
than to GF(8) or the GF(16) decoding field. In fact, the number of multiplications per information bit
while operating over GF(4) is the same as that for GF(2). Thus it can be observed that GF (4) achieves
an attractive trade-off between the achievable coding gain and the associated decoding complexity.
Furthermore, it becomes clear in Figure 4.3 to 4.5 that an error floor might occur for the LDPC codes
having a symbol column weight of 2.5, hence the codes using a symbol column weight of three might
constitute a better choice in case of binary decoding. By contrast, as it transpires from Figures 4.3
to 4.5 the codes having symbol column weight 2.5 are superior in comparison to the codes having an

symbol column weight of three, when operating in a higher decoding field.

4.4.2 Performance when the size of H; is maintained

In Section 4.4.1, the performance of non-binary LDPC codes decoded over various Galois fields was
evaluated, while the size of the PCM H, was maintained. More explicitly, in Section 4.4.1 the LDPC
codes studied had the same number of columns and rows. Since the non-zero entries within the

PCM are defined over Galois flelds having various sizes, the size of the equivalent binary PCM Hj, is



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 111

75 7.5

70 7.0
) )
3 65 3 6.5
2 2
R=) RS
< <
ah 6.0 20 6.0
= 2.
5 s — Column weight 2.5 G s 1) — Column weight 2.5
8 4 A Column weight 3 8 L A Column weight 3

. o (500,250), o (500,250)4

30 o (1000,500), 30 o {1000,500),

9 (2000,1000), o (2000,1000),
450 500 1000 1500 2000 2500 300[.) .3500 4000 4500 5000 4?5[)0 2000 2500 3000 . ?500 . 4000 4500
Number of additions Number of multiplications

Figure 4.6: Coding gain versus decoding complexity of the non-binary LDPC codes tabulated in
Table 4.11, when communicating over an AWGN channel. The complexity quoted quantifies the
number of arithmetic operations per information bit. The four ¢ values used are 2, 4, 8, 16 and the
complexity value related to each decoding field are plotted in the figure from left to right while the

decoding field order is increased.

increased in the context of a larger Galois field. Thus in this section, we will maintain the size of the
equivalent binary PCM H, and evaluate the achievable performance of the same LDPC codes decoded
over GF(q) at two different code rate, when communicating over an AWGN channel. The associated

simulation parameters are summarised in Table 4.12.

Figure 4.7 and 4.8 characterise the attainable performance of the quarter-rate and half-rate LDPC
codes studied having an equivalent binary PCM size of 4000 bits. For the quarter-rate LDPC codes
characterised in Figure 4.7 decoding over a larger Galois field degraded the achievable performance,
when the average column weight is three. As discussed previously in Section 4.3.2, the effect of ex-
tending the decoding Galois field is two-fold. Recall that in this experiment the size of H, was reduced
for larger Galois fields for the sake of maintaining a constant equivalent binary PCM size. Hence the
code becomes less sparse and the cycles identified in the PCM will have a shorter length. Hence in
this case the disadvantages introduced by using a larger decoding field cannot be compensated by the
corresponding advantages. However, as seen in Figure 4.7 if we reduce the average column weight to
2.5, then the overall performance becomes better than that of its column-weight=3 counterpart and

ultimately the codes operating over larger Galois fields exhibit a better BER performance.

As seen in Figure 4.8, when the code rate is increased to half, the codes having a column weight
of 2.5 exhibit similar performance trends to those observed for the quarter-rate scheme characterised
in Figure 4.7. For the scenario, which an average column weight of three, decoding over GF(4) still
achieves a marginally better performance than GF(2). However, when the decoding field is further
increased to GF(8) and GF(16), the achievable BER performance becomes worse than the GF(2)

owing to similar reasons to those mentioned in the quarter-rate case discussed above.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 112

H, | (4000, 1000),, GF(2)
Quarter-rate coding !—2000 500), , GF'(4)
| (1336, 334)q , GF(S)

(1000, 250), , GF(16)
)

)

)

H, (4000,2000),, GF (2
Half-rate coding (2000, 1000),4 , GF(4
(1334,667), , GF(8) |
(1000,500), , GF(16)

Average symbol column weight 2.5, 3
Modulation mode BPSK
Channel AWGN
Number of LDPC iterations 25

Table 4.12: Simulation parameters for two sets of non-binary LDPCCs having a code-rate of one-
fourth and a half and operating over GF(g) using BPSK modulation, when communicating over an
AWGN channel. The decoding Galois field associated with each specific LDPC code is given and the
size of H, is tabulated, while the size of the equivalent binary PCM Hj is maintained at 4000 bits.

(Slightly higher for GF(8).)

5 —— Column weight 2.5
N S VRN N B | Column weight 3
1o o GF(2) (4000,1000),
5 S 0 GF(4) (2000,500),
@ GF(8) (1336,334),
2 BT t GF(16) (1000,250),,
102 : Y :
s Lvs
m AR T 3
m @ KT
10° \;
H S — —
X [4Y] 9
2 S N %
10 \j¥ \ﬁ i
5 \\4“\ )
Ay |
o \ :
00 05 10 15 20 Y25 35 40 45 50
Eb/NO(dB)

Figure 4.7: BER performance of the various quarter-rate non-binary LDPC codes characterised in
Table 4.12 having an average column weight of 2.5 as well as 3 and decoded over their associated
Galois fields, when communicating over an AWGN channel. The achievable coding gain of the various

schemes at a BER of 10~% will be summarised in Table 4.21.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 113

10 3
. — Column weight 2.5
1 Column weight 3
g o GF(2) (4000,2000),
5 * o GF(4) (2000,1000),
| o GF(8) (1334,667),
i n GF(16) (1000,500),
10.2 I
& s |
2
m
107
5 aw
‘ AW
2 € >
107
5 <Y
AT
10_5 t qu\(\ \8\69\

0.0 0.5 1.0 L5 2.0 2.5 3.0 35 4.0 4.5 5.0

Ey/No(dB)

Figure 4.8: BER performance of the various half-rate non-binary LDPC code in Table 4.12 having
an average column weight of 2.5 as well as 3 and decoded over their associated Galois fields, when
communicating over an AWGN channel. The achievable coding gain of the various schemes at a BER

of 10~% will be summarised in Table 4.21.

4.4.3 Performance of non-binary LDPC codes using various code rates

In Section 4.4.1, the performance of a half-rate non-binary LDPC codes has been evaluated at various

blocklengths. In this section, we will demonstrate how the LDPC codes behave at various code rates,

when the coded blocklength was fixed at 2100 non-binary symbols.
The simulation parameters are given in Table 4.13.

Figures 4.9 to 4.13 have illustrated the achievable BER performance of the non-binary LDPC
codes summarised in Table 4.13 at various code rates. The attainable coding gain at a BER of 10~*
is plotted in Figure 4.14 for the various code rates considered. For a relatively low code rate ranging
from r = 0.33 to 7 = 0.66, using a column weight of 2.5 renders the LDPC codes more robust to
channe] errors for all the Galois fields considered than the column-weight 3 codes. By contrast, for the
rates of r = 0.75 and r = 0.8 we observe in Figure 4.14 that owing to error floor problem discussed in
Section 4.4.1, the codes having an average column weight of 2.5 suffer from undetected errors, when
size of the Galois field utilised is limited. However, crossover of the BER curves is observed when the
decoding field order is increased and thus on balance we may argue that using a column weight of 2.5

still constitutes a better configuration than using an average column weight of three.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 114

Non-binary LDPC code (2100,700),, r=0.33
2100, 1050), 7—0.50
2100, 1400)4, r=0.66
)
)

2100, 1575),, r=0.75
2100, 1680),, 7=0.80

(
(
(
(

Channel AWGN
Modulation Mode BPSK
Decoding Galois fields GF(2), GF(4), GF(8), GF(16)
LDPC average column weight 2.5,3

Table 4.13: Simulation parameters for non-binary LDPCCs having a blocklength of 2100 non-binary

symbols operating at various coding rates, when communicating over an AWGN channel using BPSK

modulation.

4.5 Bit-based joint detection scheme

Having introduced and characterised the family of non-binary LDP CCs, let us now focus our attention
on a novel application in the context of space-time codes. The roots of this non-binary scheme germi-
nated in the binary system proposed by Meshkat and Jafarkhani [108], which is shown in Figure 4.15.
The basic philosophy of this space-time coding scheme is reminiscent of Alamouti’s simple repetition-
based two-antenna coding scheme [135], although a half-rate LDPC code was used by the authors.
Hence the number of bits was doubled by the LDPC encoder and two separate antennas were used for
transmitting the bits. Provided that the two antennas are sufficiently far apart, their fading envelope
may be expected to be independent. Since the scheme proposed by Meshkat and Jafarkhani employs
a powerful half-rate LDPCC instead of Alamouti’s less potent half-rate repetition-code, the achievable
performance is substantially improved. For further background on space-time coding, please refer
to [115].

Let us now outline the approach of this binary LDPCC-based space-time code in more detail.
Suppose the source bit stream U is encoded into a binary codeword B by a binary LDPC encoder
constituted by the bits (by, ..., b3) in Figure 4.15. According to the modulation scheme used, the coded
bits (by,...,bs) are mapped onto their corresponding non-binary signal constellations and a symbol
sequence S=(5;,5)) is obtained. The symbol sequence S will be transmitted using n; transmitters,
and at the receiver side, there are n, receivers. The n, received samples are correlated with each other
since they originate from the same set of n; transmitted samples generated from S. This inter-sample
correlation may be beneficially exploited upon exchanging it also with the LDPC decoder, and hence
extra iterative coding gain may be achieved. A Tanner graph is used in Figure 4.16 for demonstrating

the process of information passing during the joint decoding process of the space-time and LDPC

decoder.

The nodes marked r, v and c represent the received signal samples, the LDP C code’s message nodes
and the check nodes, respectively. The message exchanged between the vectors r and v represents
the information exchange between the demodulator and the LDPC decoder. By contrast, the message

flow between the vectors v and c¢ is part of the internal decoding process of the LDPC decoder.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES

10
5 — Column weight 2.5
e, | T e Column weight 3
10" SR o GF(2)
5 S ¢ GF(4)
S °© GF(8)
TR e 1 GE(6)
102
m s 'I: L‘%\ \ U~\,T
E 2 W N
10° = .
5 = 1 ¥ RS
— LW AV RN
s o & N\
> UL
s ¢ =
1 \\ \ ]
2 i D
10° L
00 05 10 15 20 25 30 35 40 45 50
E/Ny(dB)

Figure 4.9: BER performance of the (2100, 700)4 non-binary LDPC code characterised in Table 4.13
and decoded over four different Galois fields, when communicating over an AWGN channel. We
note that the different codes have an identical code rates but the number of encoded bits per LDPC
codeword is proportionally increased with respect to the associated Galois field. Hence the number of
LDPC coded bits per codeword becomes 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4),
GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10~* will be
summarised in Figure 4.14 and Table 4.22.

In comparison to the conventional scheme, where the demodulator only evaluates the channel’s soft
output once and leaves all the remaining operations for the channel decoder to carry out, this scheme
allows the demodulator to accept extra information from the channel decoder for the sake of exploiting
the channel’s soft output as best as possible. The demodulator receives the channel output samples,

and calculates the soft channel-output metric, which can be expressed for a Gaussian channel as

follows [115]:

1 (- 'I‘ — HS(B;, b;c
(\/ o"n) (Vomo e P 20’2

(4.16)

) JT Moose(

b;eB;

My so(bi) =

D

aoll B

where M,_s,(b;) represents the a priori information corresponding to the original information bits’

soft estimate at the output of the LDPC decoder.

In Equation 4.16, o, represents the standard deviation of the Gaussian noise, while H is an
(n, x ns)-dimensional matrix containing the complex valued fading coefficients of each transmission
path, where n, and n; are the numbers of receiver and transmitter antennas, respectively. Using
bps for representing the number of bits per symbol for the corresponding modulation scheme, B;
represents the i** set of (n, x bps) — 1 transmitted bits, but excludes the &*" bit by, which directly
contributes to the value of the received vector r at the n, number of receivers, while S(B;,b;) is a

vector of n; components containing the modulated symbols corresponding to the bit set of B; and bg.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 116

10°
5 ; —— Column weight 2.5
P AR N N N E N B Column weight 3
o ERa . | 0 GF(2)
5| 5B v GF(4)
w © GF(8)
: 1 GF(16)
10°
s
m 2
A
10
P ;
.
10" " B
;' =———-=
T ;
2 i & .
107 W T Ré

3.5 4.0 4.5 5.0

20 25 30
Ey/No(dB)

Figure 4.10: BER performance of the (2100, 1050), non-binary LDPC code characterised in Table 4.13
and decoded over four different Galois fields, when communicating over an AWGN channel. We note
that the different codes have an identical code rates but the number of encoded bits per LDPC
codeword is proportionally increased with respect to the associated Galois field. Hence the number of
LDPC coded bits per codeword becomes 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4),
GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10~% will be
summarised in Figure 4.14 and Table 4.22.

More explicitly, let us consider Figure 4.15, for example. When using QPSK modulation, four bits
are mapped into two QPSK symbols and transmitted by the two transmitters to the three receivers.
If M,_,(b2) is under consideration, then we have B; = {bg, by, b3} and (B;, b2) = {bo, b1, b2, b3}. The
vector r will contain elements of {rq,72,73}. For a particular set of B; = {by = 1,01 = 1,b3 = 0},
since QPSK modulation is employed in Figure 4.15, thus the notation S(B;, b2) represents {11,00} or
{11, 10}, depending on the specific value of b2 concerned. For the sake of generating the soft channel-
output metric M,_,(b;) of Equation 4.16, we have to sum the terms associated with all possible
bit-combinations incurred by the n; transmitters using a particular multi-level modulation scheme.
Using Figure 4.15 for example, for the sake of calculating the probability M,_s, (b2 = 1), we have
to consider all possible values of B; = {hg, b1, b3} which includes three bits. Thus, there is a total of

23 = 8 bit-combinations for B; in conjunction with by = 1, as seen in Table 4.14.

For each individual configuration of (B;, by = 1) shown in Table 4.14, the product seen at the
right of Equation 4.16 quantifies the total a priori information available for by. For example, if the
configuration listed in the final row of Table 4.14, which is given by (B, b = 1) = (1,1,1,1), is
concerned, the product seen in Equation 4.16 will quantify the a priori probability available from the

LDPC decoder, corresponding to the joint probability of (bg = 1,by =1,b3 = 1).

Again, the quantity M,_-, in Equation 4.16 is the a priori information corresponding to the



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 117

10°
5 — Column weight 2.5
P I I R N N I Column weight 3
o o} GF(2)
B = o GF(4)
B © GF(8)
2 \ S 1 GF(16)
10? =t
2 . 2N
A |
10° == =
s e
ERY })
2 [ NEE NN
- H \J
10 -
s e S
1AY WY
2 L\ - %
W F¥o
00 05 10 1S5 20 2 35 40 45 50

5 3.0
E,/Ny(dB)

Figure 4.11: BER performance of the (2100, 1400), non-binary LDPC code characterised in Table 4.13
and decoded over four different Galois fields, when communicating over an AWGN channel. We note
that the different codes have an identical code rates but the number of encoded bits per LDPC
codeword is proportionally increased with respect to the associated Galois field. Hence the number of
LDPC coded bits per codeword becomes 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4),
GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 107 will be
summarised in Figure 4.14 and Table 4.22.

(Bi,bo =1) | S(By bz = 1)
Tx 1 Tx2 | Tx1 ] Tx2
by | by | b2 | b3 | So S1
0,010 0 2
01 110 1 2
1 /0, 1|0 2 2
111 10 3 2
010111 0 3
0|1 1 1 1 3
1101 1 2 3
111 1 1 3 3

Table 4.14; All possible bit-combinations of a 4QAM, two antenna MIMO system for By in conjunction
with by = 1.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 118

107 =
.| —— Column weight 2.5
1 Column weight 3
i o) GF(2)
10" ==—=" GF(4)
T i ¢ GF(8)
5 \ A i GF(16)
10° =
% : i
. W Y
m :
107
=
10" ===
=
r PuY
2 A N
10 35 40 45 50

Figure 4.12: BER performance of the (2100, 1575), non-binary LDPC code characterised in Table 4.13
and decoded over four different Galois fields, when communicating over an AWGN channel. We note
that the different codes have an identical code rates but the number of encoded bits per LDPC
codeword is proportionally increased with respect to the associated Galois field. Hence the number of
LDPC coded bits per codeword becomes 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4),
GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10~% will be
summarised in Figure 4.14 and Table 4.22.

original information bits’ soft estimate at the output of the LDPC decoder, and it is provided by
the LDPCC’s message nodes v, rather than the check nodes. When evaluating Equation 4.16 for the
first time, the product at the right-hand side of Equation 4.16 is not calculated, since the quantity
M,_~, is not available as yet. Equation 4.16 provides the soft information M,_~,, which is used for

calculating the metric M,_., according to [108]:

My_se (b)) =aM,_sy | Mo—so(bs). (4.17)
e €C(by) k#]

This process is actually the same as the updating the Q message of Equation 2.32 during the
description of the LDPC code’s iterative decoding process outlined in Chapter 2, where « is the
normalisation factor, which ensures that the probabilities of b; summed over all possible states add up
to unity. Furthermore, C(b;) represents all the checks of the LDPCC’s parity check matrix involving
bit b;. The multiplicative term M, _~, seen in Equation 4.17 is quantified in Equation 4.16, which acts
as the intrinsic probability ff provided by the demodulator as in Equation 2.32. The soft information
M, —>4(b;) is provided by the check nodes for the message nodes, which corresponds to the quantity

%; in Equation 2.32. When Equation 4.17 is invoked for the first time, since the soft information
M¢,—5y(b;) is not available as yet, hence the metric A, (b;) in Equation 4.17 will be initialised to
the value provided by M, _~, of Equation 4.16.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 119

10° =
s ‘:‘ —— Column weight 2.5
P N I N N R N Column weight 3
1 o] GF(2)
105€ ; = ¢ GF(4)
\ S GF(8)
2 A GF(16)
1(]'2 ;: —
L E =
g 2 WX
‘ =
. RO
10 “ \ 4"'3 \ﬁ
T 2 S—
2 R AN
107 j ol ; ®\
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0

Ey/No(dB

Figure 4.13: BER performance of the (2100, 1680), non-binary LDPC code characterised in Table 4.13
and decoded over four different Galois fields, when communicating over an AWGN channel. We note
that the different codes have an identical code rates but the number of encoded bits per LDPC
codeword is proportionally increased with respect to the associated Galois field. Hence the number of
LDPC coded bits per codeword becomes 2100, 4200, 6300 and 8400, respectively for GF(2), GF(4),
GF(8) and GF(16). The achievable coding gain of the various schemes at a BER of 10™* will be
summarised in Figure 4.14 and Table 4.22.

Since the message nodes v are the nodes representing all the original coded bits we intended to
decode, the "belief”, or a posteriori probability has to be calculated at this stage, which is expressed
as:

Mopo(bs) = oMy 5u(bi) []  Mey—su(bi). (4.18)
ckEC(b,»)

The resultant bit sequence generated by subjecting the a posteriori probability derived from Equa-
tion 4.18 to a hard decision will be checked against the LDPC’s PCM. If there are unsatisfied checks,
further iterations will be invoked until a pre-defined maximum number of iterations is reached. The
metric M;_>y(b;) corresponds to the P{ term in Equation 2.33, while M, »,(b;) represents Rj ;
accordingly.

Upon determining M, »¢; from Equation 4.17, the quantity M, >, which is the soft information
provided by the check node c is calculated exactly the same way, as the updating of the message Rf ;

in Equation 2.31 of Chapter 2. The soft-metrics M —>v are then combined as follows:
My sr(b) =o [] Mo—su(bs), (4.19)
ex€C(b:)

before being passed onto the r node shown in Equation 4.16. This equation is similar to the a posteriori

probability calculation seen in Equation 2.33 of Chapter 2, although the intrisic information term pP?



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 120

—=0.66 r=0.75 and r=0.80

LA0) 8.0

75 —— Column weight 2.5 25 —— Column weight 2.5
= | Column weight 3 - A Column weight 3
ETO E"'.O (o] 1:075
g 65 g 65 =0.80
o o
&l 60 8060
.2 =
b= L=
o 3.3 o 3.3
o o

5.0 30

4.5 4.5

0 2 4 6 LY 12 14 6 1R ] 2 4 6 R .10 12 14 16 18
Decoding field Decoding field
=033 r—=0.50

RO 8.0

7.3 7.3
~~ —~
[2a]8 /A
= 70 - 70
Nt N
=] =]
=6 ‘= 6s
&0 &b
8060 8D 6
g £
32, 2
S 33 3 s
©. —— Column weight 2.5 o —— Column weight 2.5

~~~~~~ Column weight 3 <=+ Column weight 3 J

43 43
6 18 n 2 4 14 16 18

S Dﬁecoﬁding ﬁellzd Dﬁecosdin‘gn field

Figure 4.14: Coding gain versus decoding field size for the various non-binary LDPC codes charac-
terised in Table 4.13 at a BER of 104, when communicating over an AWGN channel.

of Equation 2.33 was omitted for the sake of providing only the extrinsic information for feeding it
back to Equation 4.16, since the intrinsic probability M, -, was criginally provided by the r node

seen in Equation 4.16.

4.6 Symbol-based joint detection scheme

Having outlined the philosophy of the binary LDPC-based space-time codec scheme, let us now improve
its performance using non-binary LDP CCs and a purely symbol-based space-time codec. Noting that in
Equation 4.16 of the previous section it has been assumed that during the calculation of the product of
the a priori information of the bits, the bits participating in the n, number of received channel outputs
were treated as independent variables. However, their independence is only approximately valid in
Gray-coded non-binary modulation schemes. Furthermore, as it will be discussed in Section 4.9, the

complexity of the bit-based scheme of Section 4.5 increases dramatically, when the number of bits per

symbol is increased.

Hence, in this section we will further develop the bit-based LDPC-aided space-time codec of Sec-
tion 4.5 into a symbol-based algorithm, which facilitates purely symbol-based message passing, involv-

ing a non-binary LDPC code.

Still using Figure 4.15 as an example, instead of using the probabilities of the bits in Figure 4.1, say



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 121

b, b, b bs
ov ov
S S
X
TX: 1, Q 2
Hiu H,,
Hi
o) O
RX: RX>
} AWGN
I I2

Figure 4.15: A two-transmitter, two-receiver system using binary LDPCC-based QPSK-modulated

space-time coding.

Figure 4.16: Tanner graph of the LDPC-aided space-time coding system, where r, v and c represent

the received samples, as well as message and check nodes, respectively.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 122

by, b1, b2, bz, the probabilities of the symbols sy, 51 will be used. Thus Equation 4.16 can be rewritten

as:

1 _ r—HS(8;.5;)[?
My sy(se) =Y ————e 2= [] My_s.(s5). (4.20)
all S; ( QWJn)nT s;€8;

In Equation 4.20, S; now represents a set of (n; — 1) symbols rather than (n: x bps — 1) bits, including
all symbols, except for s;, which directly contributes to the value of the received vector r at the output
of the n, receivers, and S(S;, sx) is a vector of size n; containing the symbols including sy and s,
as in Figure 4.15. More explicitly, rather than using the bits representing the symbols in Figure 4.15
for the calculation of the a priori information, the symbols are employed directly in this scheme.
Hence, if symbol s; of Figure 4.15 is concerned, the vector S; will have only one element, namely {so}.
The a priori information M,_s,(s;) represents the probability of the j** symbol, rather than that
of the bits in Equation 4.19. Correspondingly, Equation 4.17, 4.18 and 4.19 can be modified to their

corresponding symbol-based format, yielding:

My se;(si) = aMe_sy  [[ Mo su(si), (4.21)
ek €C(bi) k]
Mapo(si) = aMr_sy(si) [ Me—so(s:), (4.22)
cr€C(s3)
My sr(s:) = o J[ Mesu(ss). (4.23)
CkEC(bi)

Since the non-binary LDPC decoder introduced in Section 4.3 operates using symbol probabilities,
thus by specifically choosing a decoding field for the non-binary LDPC code, which matches the
modulation scheme used, facilitates purely symbol-based message passing. More explicitly, we can
use for example 4QAM together with non-binary LDPC decoding over GF(4), or employing 16QAM
modulation scheme, while choosing GF(16) for the non-binary LDPC.

4.7 Performance of the binary LDPC-aided space-time codec

In this section, the achievable performance of the jointly decoded LDPC-aided space-time codec will
be evaluated. Alamouti’s popular G space-time code will be used as a benchmarker both with and
without being concatenated to other channel codecs. The Gg space-time code is a two-transmitter
two-receiver scheme, using two time slots for transmitting two replicas of the original two bits. More
explicitly, as seen at the left of Table 4.15, during the first time slot the two transmitter antennas
emit two independent information symbols z; and z,, while the modified replicas —z% and «} of the
two independent information symbols transmitted during the first time slot are sent during the second
time slot. Hence during the period of two time slots, the space-time code G transmitted the two
information symbols z; and z», yielding an effective throughput of 1 symbol/time slot. Similarly,
as seen at the right of Table 4.15 for the case where the half-rate binary LDPC-aided space-time
codec proposed by Meshkat and Jafarkhani [108] is applied, during the first time slot, the original
information symbol z; is mapped onto the first antenna, while the corresponding parity symbol zp1
is mapped onto the second antenna and these two symbols are transmitted simultaneously during the

first time slot. In the second time slot, another information symbol zy and another parity symbol zp



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 123

| Time | Antenna Time | Antenna Time | Antenna
Slot 1 2 Slot | 1 2 Slot | 1 2

1 T1 | To 1 1 | To 7 1 T1 | Tp1

2 { -z | ] 2 T3 | T4 ‘ F 2 Ty | Tpy

Table 4.15: Comparison of the effective throughput of the G, code (left) and the LDPC-aided space-
time codec (right), both of which correspond to 1 symbol/time slot. By contrast, the scheme charac-

terised in the middle achieves an effective throughput of 2 symbols/time slot at the cost of attaining

no diversity gain.

are mapped onto the first and the second antenna, respectively. Thus, the half-rate binary LDPC-
aided space-time codec achieves the same effective throughput as Alamouti’s space-time Gy code,
although owing to the employment of powerful LDPC coding, rather than simple repetition coding, a
better BER performance is expected. Hence for the half-rate binary LDPC-aided space-time codec,

the effective throughput can be calculated as:

throughput (bps) = channel_code_rate
x number_of_transmitter_antennas

x modulator’s_bit_per_symbol. (4.24)

More explicitly, the throughput of the two schemes may be compared in Table 4.15 as follows. The
r = 1/2-rate, repetition-coding, based G, scheme characterised at the left transmits a total of two
independent symbols, namely x; and z, in two time-slots using two antennas. Similarly, when con-
sidering two consecutive time-slots rather than a single one, the r = 1/2-rate LDP C-coded space-time
codec featured at the right of Table 4.15 also transmits two independent symbols, namely z1 and z3

in addition to the LDPC parity bits/symbols denoted by z,1 and zp, at the right of Table 4.15.

By contrast, the scheme characterised in the middle of Table 4.15 represents a simple system, where
no channel codec is used. In this case, the transmitter may transmit four independent source symbols
during the two consecutive time slots with the aid of two transmitter antennas, which yields a doubled
throughput in comparison to the other two schemes characterised at the left and right of Table 4.15.
However, this scheme increases the effective throughput at the cost of surrendering diversity gain.
Since the four symbols transmitted during the two time slots are independent, thus the performance

of this scheme will be similar to the uncoded single transmitter scenario.

4.7.1 Effects of increasing the number of joint detection iterations

As in all other iterative detection schemes, extra performance gains may be achieved with the aid of
carrying out an increased number of iterations, i.e. at the cost of an increased complexity. Therefore
we will gradually increase the number of joint detection iterations in the context of a two-transmitter

two-receiver system utilising a (1500, 750) regular-construction binary LDPC code having an average

column weight of 2.5.

As seen from Figure 4.17, the achievable performance of the system significantly improves when the

number of iterations is increased from one to two, although the further incremental performance gains



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES

124

10° =
d O 1 Iteration
2 ¢ 2 Iterations
107" © 4 Iterations
5 t 8 Iterations
N ARV § 16 Iterations
102 DA S
m s \X& : =Y
g : EN
10° N S
s “\\ E N
) \ Ay e S
10" : X
5 \\ S
2 A V!
10 LN Y N
o 1 2 3 4 5 6 71 9 10
E/Ny(dB)

Figure 4.17: BER performance of a two-transmitter two-receiver LDPC-aided space-time codec using
(1500, 750) binary LDPC codes having an average column weight of 2.5, when communicating over

an uncorrelated Rayleigh fading channel. The number of joint detection iterations used was one, two,

four and eight.

gradually erode upon further increasing the number of iterations. Thus, in our later experiments four

iterations will be used in order to achieve a relatively good performance without excessively increasing

the complexity of the decoder.

4.7.2 Effects of increasing the number of transmission antennas

In space-time coding, typically several antennas are used both at the transmitter as well as at the
receiver. In this section, we will evaluate the achievable performance, when the number of transmitters
is increased from one to four, while the number of antennas at the receiver was fixed to two. Following
these investigations, the number of transmission antennas will be fixed to two, while the number of
receiver antenna will be varied from one to four. The component LDPC code used was the same as
the one employed in Section 4.7.1. A binary (1500, 750) LDPC code having an average column weight

of 2.5 is used. The corresponding simulation parameters are summarised in Table 4.16.

In Figure 4.18 we can see that when a higher number of transmitters is used, the attainable
performance slightly degrades. This is because when a higher number of transmitters is used in
Figure 4.18, more transmitters antennas’ signal will interfere upon arriving at each receiver antenna,
which may result in decision conflicts at the output of the LDPC decoder. Fortunately, owing to the
benefits of the iterative detection process, the BER degradation imposed is not significant, despite
having an increased effective throughput of 0.5, 1, 1.5 and 2 bps in case of n = 1,2, 3,4, respectively.
Another factor resulting in a degraded performance for n > 2 is that for the sake of fair comparison,

the total transmit power has to be constant, resulting in a reduced transmit power for each antenna.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 125

Performance using various number of transmitter antennas
Modulation | Channel Codec | Tx. No. | Rx. No. Throughput
Scheme (symbol per time slot)
BPSK LDPC(1500, 750) 1 2 0.5
2 2 1
3 2 1.5
4 2 2
Performance using various number of receiver antennas
Modulation | Channel Codec | Tx. No. | Rx. No. Throughput
Scheme (symbol per time slot)
BPSK LDPC(1500, 750) 2 1 1
2 2 1
2 3 1
2 4 1

Table 4.16: Simulation parameters of the LDPC-aided space-time codec using different configurations,

where the number of transmitter antennas and recelver antennas is varied.

Hence the BER curves recorded on an SNR scale have to be shifted to the right in Figure 4.18 on an
Ey /Ny scale.

Figure 4.19 illustrates the associated performance trends for the proposed system, when the number
of receivers, rather than transmitters, is increased. In this scenario, since the number of transmitters
was fixed to two, the system’s effective throughput is maintained at 1bps. Since an increased number
of receivers was employed, more copies of the original transmitted signal were captured by the multiple
receivers. These replicas of the original signal propagated through different transmission paths, thus
even if some replicas were severely corrupted owing to encountering channel fades, the less corrupted
signals were still able to provide reliable information for the LDPC decoder. Therefore, the achievable

performance was significantly improved upon using a higher number of receivers in the LDPC-aided

space-time codec.

4.7.3 Performance of the binary LDPC-aided space-time codec

In this section, the performance of the proposed binary LDPC-aided space-time codec will be studied
in conjunction with multilevel modulation for the sake of achieving an increased effective throughput.
The space-time code G2 will be used as a benchmarker. The Gy code will also be concatenated with
an LDPC code having various code rates for the sake of achieving the same effective throughput as
the binary LDPC-aided space-time codec studied. For the sake of comparing the performance of the
LDPC-ST scheme and the LDPC-encoded Gy scheme, both arrangements employed four iterations.
Additionally, since a turbo decoding iteration has a similar complexity to eight LDPC iterations when
using a constraint length four component RSC code [24], we also plotted the corresponding performance
curves, when the TC concatenated with the Gy scheme invoked eight iterations. The LDPC-encoded
G scheme is also characterised, when using 64 LDPC iterations. The latter two benchmarkers have a

significantly higher complexity, than the LDPC-ST scheme and the LDPC-encoded G scheme using



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES

126

10° ¢
s O 1 Transmitter
2 ¢ 2 Transmitters
o % 3 Transmitters
10 === ] .
s — t 4 Transmitters
K —
RN
107 =
Qﬁ 3 L A N A
m 2 0
m
107 =
5 PN
10 W i __
5 T 1
|
5 |
- R |
0 1 2 3 4 5 6 7 8 9 10
E/Ny(dB)

Figure 4.18: BER performance of an n-transmitter two-receiver LDPC-aided space-time codec using
(1500, 750) binary LDPC codes having an average column weight of 2.5, when communicating over
an uncorrelated Rayleigh fading channel employing BPSK modulation. Four joint detection iterations
were used and we had n = 1,2, 3,4 transmitters. The effective throughput is 1, 2, 3, 4 bps, respectively,
this is why the required Ey//Ny was increased.

4 iterations. However, these two high-complexity benchmarkers also provide interesting insights.
The stand-alone effective throughput of these two schemes is different, even though they were both
configured as two-transmitter two-receiver schemes. More explicitly, the 7 = 1/2-rate repetition-code-
like G2 code emits for example two QPSK-modulated data symbols from the two transmitter antennas
within one of the two time slots, while in the second time slot essentially the inverted and conjugated
replicas of the original two data symbols are transmitted. Since essentially the same information has
been transmitted twice using a 'code’ reminiscent of repetition coding upon utilising the G2 code, the
effective throughput of the G, space-time code is reduced by a factor of two, resulting an effective
throughput of one QPSK symbol per Gy-coded time-slot. Similarly, the 7 = 1/2-rate binary LDPC-
aided space-time codec transmits two original uncoded QPSK-modulated data symbols within one time
slot as seen in Table 4.15. Thus the uncoded effective throughput for the space-time codec proposed by
Meshkat without being concatenated with any channel codec will be doubled in comparison to that of
Alamouti’s space-time Gy code. The associated simulation parameters are summarised in Table 4.17.
The turbo convolutional code concatenated with the space-time Gy code has a constraint length of
four, and the turbo decoder employed eight iterations. The puncturing patterns listed in Table 2.24
were used for achieving various code rates for the sake of appropriately adjusting the rate of the turbo
convolutional code. All LDPC codes characterised in Table 4.17 used an average column weight of 2.5
and employed decoding over the binary Galois field. The number of joint detection iterations used by

the binary LDPC-aided space-time codec was four.

We can observe in Figure 4.20 that when a low throughput is desired, the LDPC-coded G2 scheme



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 127

Scheme | Tx. TRX. Channel Codec Modem | Figure
No. | No. Number
1bps | LDPC-ST | 2 | 2 | LDPC(1500, 750), r=1/2 | BPSK | 4.20
| LDPC-ST | 4 | 2 | LDPC(1500, 375), r =1/4 | BPSK
G 2 | 2 LDPC(1500,750) QPSK
G 2 | 2 TC,r=1/2 QPSK
G 2 | 2 N/A BPSK
2bps | LDPC-ST | 2 | 2 | LDPC(1500, 750), r = 1/2 | QPSK | 4.21
LDPC-ST | 4 | 2 | LDPC(1504, 376), r =1/4 | QPSK
LDPC-ST | 4 | 2 | LDPC(1500, 750), r = 1/2 | BPSK
LDPC-ST | 3 | 2 | LDPC(1500, 1000), r = 2/3 | BPSK
LDPC-ST | 3 | 2 | LDPC(1500, 500), r =1/3 | QPSK
LDPC-ST | 2 | 2 | LDPC(1504, 376), r = 1/4 = 16QAM
G 2 | 2 LDPC(1504,752) 16QAM
G, 2 | 2 LDPC(1500,1000) 8PSK
G, 2 | 2 TC, r=1/2 16QAM
G 2 | 2 TC, r =2/3 8PSK
G 2 | 2 N/A QPSK
3bps | LDPC-ST | 3 | 2 | LDPC(1500, 750), r = 1/2 | QPSK | 4.22
LDPC-ST | 2 | 2 | LDPC(1500, 750), » = 1/2 | 8PSK
G, 2 | 2 N/A 8PSK
G, 2 | 2 LDPC(1500,1128) 16QAM
G, 2 | 2 TC, r = 3/4 16QAM 1
4bps | LDPC-ST | 2 | 2 | LDPC(1504, 752), r = 1/2 | 16QAM | 4.23
| LDPC-ST | 4 | 2 | LDPC(1504, 752), r=1/2 | QPSK
G 2 | 2 N/A 16QAM

Table 4.17: Simulation parameters for the various space-time codecs employing multilevel modulator
for achieving an effective throughput of 1, 2, 3 and 4 bits per symbol. The G, space-time codec was
concatenated with turbo convolutional codes having various code rates and using different modulation
schemes for attaining the same effective throughput as the binary LDPC-aided space-time codec.
It is worth noting that Alamouti’s G2 space-time block code essentially uses a 'repetition-code-like’
transmit diversity regime, which requires the employment of additional turbo convolutional code for
achieving a low BER. By contrast, the benefit of the propose LDPC-ST scheme is that it inherently
incorporates half-rate LDPC coding and hence no additional channel coding is required. This allows

us to maintain a factor two higher effective thronghput than that of the half-rate turbo-coded G

space-time block code.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES

10 [
5 [{ o1 ReceiverT
5 | DO o ¢ 2 Receivers
10! ¢ 3 Receivers
s e t 4 Receivers
(\) A
s X NG )
10° \)\éﬂ R
& s =
3
= =
. X% g
5 i % 5 a5
—% - X
5 \ \ [\V)
10" \é Y & X
‘ = S
o [N —
4 -2 0 6 10

Ey/No(dB)

Figure 4.19: BER performance of a two-transmitter n-receiver LDPC-aided space-time codec using
(1500, 750) binary LDPC codes having an average column weight of 2.5, when communicating over
an uncorrelated Rayleigh fading channel employing BPSK modulation. Four joint detection iterations

was used and we had n =1, 2, 3, 4 receivers. The effective throughput is maintained at 1 bps.

invoking four iterations achieved the best performance, excluding the two high-complexity benchmark-
ers. When the throughput is increased to 2 bps as in Figure 4.21, the performance degradation of
the low-complexity four-iteration MIMO schemes compared to the high-complexity benchmarkers was
reduced in comparison to that of the 1 bps scenario characterised in Figure 4.20. Furthermore, we
observed that the LDPC-ST scheme performed approximately 1 dB better than the LDPC-coded G
scheme at a BER of 1074, When the throughput is further increased to 3 bps, as in Figure 4.22, the
high-complexity scheme hardly achieved any benefit compared to the low-complexity scheme and the
LDPC-ST scheme using a half-rate LDPC code transmitting over three antennas using QPSK modu-
lation achieved the best performance in the low-complexity category. Finally, in the 4 bps throughput
scenario, there is no attractive schemes for concatenation with the G, scheme. Although it is possible
to extend the constellation to 64QAM while using a two-third rate channel code, it has been observed
in Figures 4.20 to 4.23 that a high number of modulation levels will typically lead to a poor perfor-
mance. Therefore, the four-transmitter LDPC-ST which refrains from using separate channel coding

is the optimal solution for achieving a throughput of 4 bps.

4.8 Performance of the non-binary LDPC-aided space-time codec

In this section, the performance of the symbol-based non-binary LDPC-aided space-time codec de-
scribed in Section 4.6 will be compared to that of the bit-based system proposed by Meshkat and
Jafarkhani [108].



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES

129

0 —— 27Tx, (1500, 750), BPSK
10 s O —— 4 7Tx, (1500, 375), BPSK
s I‘ O e G2, uncoded
i & G2, half-rate TC(2,1,4), QPSK, 8 Iterations
1 o - G2, LDPC(1500,750), QPSK, 4 Iterations
10} & G2, LDPC(1500,750), QPSK, 64 Iterations
S R
RN IS
~ 107 = Q\‘,Eg@
5 = =
' Cr
g , () xS &
10° ) O
5 ~ 5T
\ y T = Y]
) | ) ) [ON
10-4 \ 3 ® & ]
: == )
2 “\‘ b
107 = 2 s
-2 0 10

2 4 6
E/No(dB)

Figure 4.20: BER performance of the various space-time coding configurations summarised in Ta-
ble 4.17 designed for achieving an effective throughput of 1 bps, when communicating over an uncor-
related Rayleigh fading channel. The achievable coding gain of the various schemes at a BER of 10~

will be summarised in Table 4.23.

In order to achieve an identical effective throughput of two, three and four bits per symbol, the
parameters of the symbol-based non-binary LDPC-aided space-time codec were selected as summarised
in Table 4.18, benchmarked against the bit-based system having an identical modulation mode. The
non-binary LDPC codes described in Section 4.3 will be used in the symbol-based MIMO system for

the sake of providing a purely symbol-based message passing mechanism.

The performance of the system is characterised in Figure 4.24. Observe that the performance of
the symbol-based system incorporating the non-binary LDPC codes is superior in comparison to the
bit-based MIMO system using a binary LDPC decoder. As seen in Figure 4.8 of Section 4.4.2, if
the size of the decoding Galois field is increased, while the size of the equivalent binary PCM H is
maintained and when an average column weight of 2.5 is used, a larger Galois field will render the
LDPC codes less prone to transmission errors. Thus the superior performance of the symbol-based
system is essentially the consequence of employing of a stronger channel codec. Before concluding
this chapter, we will now show that when using the symbol-based system, the associated decoding
complexity can be significantly reduced in conjunction with a higher number of modulation levels or

a higher number of transmitters.

4.9 Implementational complexity

In this section we will demonstrate that the symbol-based non-binary LDP C-aided space-time codec

constitutes a solution imposing a significantly lower decoding complexity than its bit-based LDPC-



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 130

0 — 2Tx, (1500, 750), QPSK
¢ —— 47Tx, (1504, 376), QPSK
, ¢ —— 4 Tx, (1500, 750), BPSK
10° 1 —— 3Tx, (1500, 1000), BPSK
S x  —— 3Tx, (1500, 500), QPSK
R . —— 27Tx, (1504, 376), 16QAM
107" O e G2, uncoded QPSK
= L Qo G2, TC(2,1,4) having 1=2/3, 8PSK, 8 Iterations
N ¥k ~C G G2, TC(2,1,4) having r=1/2, 16QAM, 8 Iterations
NEEERIAXTS o - G2, LDPC(1504,752), 16QAM, 4 Tterations
mlo' =——oru O G2, LDPC(1500,1000), 8PSK, 4 Iterations
0 s - Y = G G2, LDPC(1504,752), 16QAM, 64 Iterations
m 2 Ry R G2, LDPC(1500,1000), 8PSK, 64 Iterations
10° TRV A e =
S I; ;> R - =
2 J e R . W
10" B S5
s \} - AA T ‘\"9 -
10 19 AN A
0 1 2 3 4 5 6 7 10
Ey/Ny(dB)

Figure 4.21: BER performance of the various space-time coding configurations summarised in Ta-
ble 4.17 designed for achieving an effective throughput of 2 bps, when communicating over an uncor-
related Rayleigh fading channel. The achievable coding gain of the various schemes at a BER of 10~*

will be summarised in Table 4.23.

aided space-time codec counterpart.

Recall from Section 4.5 related to the bit-based system and from Section 4.6 on the symbol-
based system, the Equation 4.16 and Equation 4.20 defined the bit-based and symbol-based joint
detection approach, respectively. For the bit-based joint detection procedure using Equation 4.16,
the decoding operations require the evaluation of all possible input symbol configurations containing
the k' bit of the original space-time coded codeword, as well as the calculation of the a priori
probability provided by the neighbouring bits. Hence, for a system having m; transmitters and bps
number of bits per symbol, the total number of metric evaluations using Equation 4.16 will be obpsnr,
Each metric evaluation requires n; x n, multiplications for determining HS(B;, bx) in Equation 4.16,
one multiplication for evaluating the square, and one for carrying out the required division. One
subtraction is needed for finding the Euclidean distance between the received sample and each of
the constellation points. Furthermore, for each metric evaluation, (bps x n; — 1) multiplications are
needed for calculating the a priori probability. Thus, for each decoded bit, the required number of
multiplications becomes ((bps x ny — 1) + (ng X 1y + 2)) x 295X = (n; x (bps + n,) + 1) x 20P5x™e,
The required number of additions is 20P*™

By contrast, for the proposed non-binary system using Equation 4.20, the number of multiplications
needed for the a priori probability calculation is reduced to (n; — 1), since we are directly determining

the symbol probability. Thus the total number of multiplications per bit for the symbol based system
is (ng X (ny + 1) + 1) x 229%™ /hps and the number of additions becomes 2%29%™ /bps per bit.

On the other hand, upon employing non-binary LDPC codes in the symbol-based approach, the




CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 131

O —— 3 Tx, (1500, 750), QPSK
10’ ¢ —— 2Tx, (1500, 750), 8PSK
5 O e G2, uncoded, 8PSK
O e G2, TC(2,1,4) having r=3/4, 16QAM, § Iterations
? o - G2, LDPC(1504,1128), 16QAM, 4 Iterations
10" Gy o - G2, LDPC(1504,1128), 16QAM, 64 Iterations
s =
107 IS
2 . N>
aa) - N | [ Y ]
5 3
3 XA
) REAY K
o RNER
3 —hx oK
l0.5 >U§/ A\ &
0 | 2 3 4 5 6 7 9 10
E/Ny(dB)

Figure 4.22: BER performance of the various space-time coding configurations summarised in Ta-
ble 4.17 designed for achieving an effective throughput of 3 bps, when communicating over an uncor-
related Rayleigh fading channel. The achievable coding gain of the various schemes at a BER of 10~

will be summarised in Table 4.23.

message passing between the system components becomes implementationally more complex owing to
the increased GF size. The number of multiplications and additions required for each coded bit can
be represented as 2w.q additions and Tw.q/logs(q), as detailed in Section 4.3.5, where w, and q are

the LDPC code’s column weight and the LDPC decoding field size, respectively.

Hence the overall complexity imposed by the two systems in each of the modulation schemes is

listed in Table 4.19, and plotted in Figure 4.25.

4.10 Summary and conclusion

In this chapter, the family of non-binary LDPCCs proposed by Davey and MacKay [54] [56] was
introduced in Section 4.3 and the achievable performance of various non-binary LDPCCs has been
studied as a function of the code rate, using two different average column weights, namely 2.5 and three.
When the size of the non-binary PCM Hj, is fixed, the simulation results provided in Section 4.4.1
showed that the performance of the non-binary LDPCCs improves upon increasing the decoding field
size. By contrast, when the size of the equivalent binary PCM H, was fixed, as in Section 4.4.2,
and when an average column weight of 2.5 was applied, the attainable performance of the non-binary
LDPCCs improved upon increasing the size of the decoding field. However, when an average column
weight of three was used, the advantages and disadvantages of using a larger decoding field were less
pronounced, and using non-binary LDPCCs operating in a large GF were not always beneficial. During
the complexity discussion of Section 4.3.5 related to non-binary LDPCCs we found that using GF(4)



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 132

1" ;
5| 1 0 —— 27Tx, (1504, 752), 16QAM
, ¢ —— 4 Tx, (1504, 752), QPSK
lO-IC - —— O e G2, uncoded, 16QAM
s e S
2 V\@Nr vvvvvv
107 Ny D
m X =
10 —
5
2 ) *S
10" \
5| : =
[ I
5 ] 5
o | )
0 1 3 4 5 6 7 8 9 10
E/Ny(dB)

Figure 4.23: BER performance of the various space-time coding configurations summarised in Ta-
ble 4.17 designed for achieving an effective throughput of 4 bps, when communicating over an uncor-
related Rayleigh fading channel. The achievable coding gain of the various schemes at a BER of 10~4

will be summarised in Table 4.23.

strikes a good compromise between the attainable performance gain and the associated decoding
complexity.

The binary LDPC-aided joint space-time detection scheme proposed by Meshkat and Jafarkhani [108]
was described in Section 4.5. This scheme has the drawback that an assumption was made that the
adjacent bits in a constellation point are independent, which is not exactly true in the context of
Gray mapping. Furthermore, the detection complexity increases exponentially with the number of
antennas and with the number of modulation levels. Therefore, this scheme was further developed to
create a novel purely symbol-based detection scheme in Section 4.6, where the non-binary LDPC code
was embedded into the system for the sake of providing a purely symbol-based message exchanging
mechanism. The attainable performance was evaluated for the bit-based system in Section 4.7 using
various number of iterations, transmitters and receivers. Similarly, the performance of the symbol-
based system was studied in Section 4.8 and appeared to be superior in comparison to the bit-based
system owing to the employment of higher-performance non-binary LDPCCs. The major advantage of
applying the symbol-based system over the bit-based scheme was highlighted in Section 4.9, where the
complexity of the two schemes was compared. More explicitly, it appears that by using the symbol-
based scheme proposed, the number of arithmetic operations may be significantly reduced, especially

for the more complex scenarios using high-order phaser constellations.

A coding gain summary is provided in Tables 4.20 to 4.23 for the sake of characterising the
attainable BER performance of the non-binary LDPC code considered and that of the LDPC-ST

scheme. As seen in Table 4.20, upon increasing the size of the decoding Galois field while maintaining



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 133

Throughput Bit-based Symbol-based
2 bps (1500, 750) (750,375)4
QPSK GF(2) GF(4)
3 bps (1500, 750) (500, 250) 4
8PSK GF(2) GF(8)
4 bps (1496, 748) (376, 188)4
16QAM GF(2) GF(16)
‘ Average LDPC Column Weight 2.5
’ Number of Iterations 5
Number of Transmitters 2
Number of Receivers 2
Channel Uncorrelated Rayleigh fading
LDPC Coded Blocklength 1500 bits(approximately)

Table 4.18: Simulation parameters for the bit-based and symbol-based LDP C-aided space-time codec
utilising both binary and non-binary LDPC codes, when communicating over an uncorrelated Rayleigh

fading channel.

Multiplications | Bit-based | Symbol-based || Additions | bit based | symbol based
QPSK 179 91 QPSK 27 28
8PSK 739 198 8PSK 75 61

16QAM 3338 518 16QAM 267 144

Table 4.19: Complexity comparison between the bit-based LDPC-aided space-time codec of [108] and

the symbol-based algorithm characterised in Figure 4.24 using the simulation parameters listed in

Table 4.18.

the same non-binary PCM size quantified in terms of the number of non-binary symbols, an improved
BER performance may be achieved using a higher-order decoding field. However when the size of the
binary equivalent PCM is fixed, decoding over higher order Galois field is not always beneficial. While
using various column-weights for the PCM, a different performance trend may be observed, as seen in
Table 4.21. Table 4.23 summarises the decoding performance of the novel LDPC-ST scheme and that
of the benchmarking LDPC-coded G, scheme. It has been observed that the LDPC-coded Gy scheme
performs better than the LDPC-ST scheme, when the throughput is as low as 1 bps. However, when
a higher throughput is desired, the LDPC-ST constitutes a superior solution compared to the LDPC-
coded Gy scheme. Furthermore, the higher-complexity TC-coded Gy scheme and an LDPC-coded
G, arrangement are used as additional benchmarkers, while invoking a significantly higher number
of iterations. It has been observed that the extra performance gain of these high-complexity schemes

was reduced, when the throughput was increased.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 134

Column LDPC Coding gain(dB)

weight code GF(2) | GF(4) | GF(8) | GF(16)
We=2.5 (500,250) 4.91 6.38 6.68 6.82
(1000, 500)4 5.47 6.47 6.94 7.09
(2000,1000), | 6.03 | 682 | 7.12 | 7.24
we=3.0 (500, 250), 5.59 6.15 6.32 6.38
(1000, 500), 6.03 6.53 6.59 6.67
(2000,1000), | 641 | 6.73 | 677 | 6.794

Table 4.20: Coding gain of the non-binary LDPC codes specified in Table 4.11 at a BER of 1074,
when communicating over an AWGN channel. The best scheme is highlighted using bold fonts.

Code | Column Coding gain(dB)

rate | weight | GF(2) | GF(4) | GF(8) | GF(16)
r=1/4 | w.=2.5 | 6.79 7.13 7.28 7.28
we=3.0 6.53 6.53 6.41 6.41
r=1/2 | w.=2.5 6.41 6.845 7.03 7.09
we=3.0 6.66 6.72 6.66 6.66

Table 4.21: Coding gain of the non-binary LDPC codes specified in Table 4.12 at a BER of 1074,
when communicating over an AWGN channel. The best scheme is highlighted using bold fonts.

Column | Code T Coding gain(dB)

weight rate | GF(2) | GF(4) | GF(8) | GF(16)
we=25 | r=1/3 | 647 | 7.132 | 7.441 7.56
r=1/2 | 597 | 6.823 | 7.18 7.235
r=2/3 | 5441 | 6.17 6.5 6.56
r=3/4| 5.004 5.69 6 6.12
r=4/5| 4.72 | 5309 | 5.62 5.735
we=3.0 | r=1/3 | 6.412 6.81 6.81 6.86
r=1/2 | 6412 | 6.735 | 6.78 6.81
r=2/3| 5912 6.17 6.323 6.323
r=3/4| 544 | 5794 | 5.882 | 5.882
r=4/5 | 5103 | 5.412 9.53 5.53

Table 4.22: Coding gain of the non-binary LDPC codes specified in Table 4.13 at a BER of 104,

when communicating over an AWGN channel.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 135

0
10°
s ," — Symbol-based + non-binary LDPC
N Bit-based + binary LDPC
RS o oo o QPSK
107 e /Bl oS 0 8PSK
s : 2 ] - 16QAM
- W _
o\ VI
s e — = =
% 2 ! y A
10? 5 A X
5| Y "\ "\
LY ~ 1 1
2 X q _\ \
10" LY \ \
s \\ "‘ﬁ’
1Y 2\
2 \ -
IO-S N )
0 1 2 3 4 5 6 7 8 9 1o
E,/N,(dB)

Figure 4.24: BER performance of the bit-based and symbol-based MIMO systems summarised in

Table 4.18 utilising binary and non-binary LDPC codes, when communicating over an uncorrelated

Rayleigh fading channel.

Additions Multiplications

500 5000

450 Bit based 4500 Bit based
L 400 B Symbol based . 4000 M Symbol based
z &
£ 350 S 3500
g g
8 300 g 3000
] L
— 250 = 2500
S S
3 200 g 2000
0 to
£ 150 E 1500
“ 100 “ 1000

50 B I 500

0 0 L Frlum o
2 1 6 8 10 12 14 16 18 2 4 6 & 10 12 14 16 18
No. of Modulation levels No. of Modulation levels

Figure 4.25: Complexity comparison between the bit-based LDPC-aided space-time codec of [108]
and the symbol-based algorithm characterised in Figure 4.24 using the simulation parameters listed

in Table 4.18.



CHAPTER 4. NON-BINARY LDPC-AIDED DIVERSITY SCHEMES 136

Throughput({bps) Scheme Ey/Ny(dB) required
No. of LDPC Modulation at BER=10"4
transmitters code mode
1 bps | 9 (1500,750) BPSK | LDPC-ST 3.63
4 (1500,375) BPSK | LDPC-ST 5.185
2 (1500,750) QPSK G, 2.357
2 bps 2 (1500,750) QPSK | LDPC-ST 3.94
4 (1504,376) QPSK | LDPC-ST 6.437
4 (1500,750) BPSK | LDPC-ST 4.19
3 (1500,1000) BPSK | LDPC-ST 4.25
3 (1500,500) QPSK | LDPC-ST 5
2 (1504,376) 16QAM | LDPC-ST 8
2 (1504,752) 16QAM G, 5.41
2 (1500,1000) 8PSK G, 4.88
3 bps 3 (1500,750) QPSK | LDPC-ST 4.75
2 (1500,750) 8PSK LDPC-ST 6.12
2 (1504,1128) |  16QAM G, 6
4 bps 2 (1504,752) 16QAM | LDPC-ST 7.25
| 4 (1504,752) | QPSK | LDPC-ST 5.75

Table 4.23: Ey/Ny values for the various LDPC-ST scheme parameterised in Table 4.17 required for
the sake of achieving an effective system throughput of 1, 2, 3 and 4 bps at BER= 10~*, respectively,

when communicating over an uncorrelated Rayleigh fading channel. The best scheme is highlighted

using bold fonts.



Chapter 5

Joint Source and Channel Coding
Using Variable Length Codes

5.1 Historical perspective

Variable Length Codes (VLC) are widely used in both audio [136] and video compression schemes [109].
The conceptually simplest VLC philosophy is based on entropy-coding [67] [109], where a frequently
encountered source symbol is assigned a short VLC symbol, while less frequent source symbols are
encoded using longer VLC symbols. When using this procedure, the achievable average symbol length
is typically reduced, provided that the original source symbols exhibit unequal probabilities on some
degree. The well-known Huffman coding scheme [137] belongs to the family of VLC codes. Huffman
codes are capable of achieving an average symbol length close to the entropy of the source symbol se-
quence. A lot of research attention has been devoted to efficiently decoding Huffman codes, as outlined
for example in [138-143]. However, in the absence of correlation between the consecutive source sym-
bols, Huffman codes may in fact result in an increased bit rate in some practical scenarios, where the
symbols are nearly equi-probable. Furthermore, a disadvantage of Huffman codes is that they are vul-
nerable to transmission errors, especially when communicating over high-BER mobile radio channels.
Note that in the presence of transmission errors a Huffman-coded symbol may be corrupted to another
legitimate symbol having a different number of bits, which leads to synchronisation errors as well as
to the loss of some bits and symbols. This problem is aggravated by the fact that this error event
may remain undetected. This is because in Huffman codes no short symbol is allowed to constitute
a prefix of any of the longer symbols for reasons of unique detection capability. More explicitly, the
Huffman decoder immediately outputs a decoded symbol upon identifying its corresponding received
bits and in the presence of transmission errors this could be incorrect. With the aim of mitigating
the above-mentioned deficiency of Huffman codes, Reversible Variable Length Codes (RVLC) were
proposed by Takishima et al [144], which are less efficient source coding schemes compared to Huffman
codes. However, RVLCs have the capability of decoding the bit stream from either the beginning or
the end, When the decoder has read a high number of bits without finding a valid codeword. The
family of RVLCs can be categorised into two classes, symmetric and asymmetric RVLCs. An RVLC

137



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES138

is defined as a symmetric code, if all the VLC symbols ! have a symmetric bit pattern, such as the
VLC symbols of 010 or 1001. By contrast, the VL.C symbols 01, 10 belong to an asymmetric RVLC.
Different methods have been applied for constructing the code table of an RVLC [145-148] designed
for different applications. RVLCs typically have a slightly higher average symbol length compared to
Huffman codes, but in exchange for this they offer a better error detection and correction capability.
Hence if an error is detected, the decoder can start decoding the codewords from the other end of
the bit stream for the sake of minimising the chance of encountering a decoding failure. As further
design alternatives, Variable Length Error Correcting (VLEC) codes were proposed by Buttigieg and
Farrell [149], which were also studied by Lamy [150,151]. VLECs have an even higher average symbol
length than RVLCs, with the added benefit that they exhibit an error correction capability similar
to classic block and convolutional codes, except that the length of the VLEC codes is not constant.
Generally the VLC symbols are prone to channel impairment and hence powerful error correction
methods have to be applied for the protection of the vulnerable VL.C symbols. By invoking the classic
MAP algorithm [152], originally devised by Bahl et. al, Bauer and Hagenauer [153,154] proposed two
powerful VLC detection schemes by exploiting the residual redundancy found in the VLC. There are
other soft information based decoding techniques designed for VL.Cs such as those in [155] and [156].
The soft-in soft-out (SISO) decoder principle of [152] can be used for constructing an iterative joint
decoding system, such as those proposed in [157-160], exploiting the residual redundancy left in the
source-encoded sequence, owing to a sub-optimum source encoder failing to reach the lowest possible
source coded rate(bounded by the entropy). Furthermore, this source-related extrinsic information

may also be exchanged with the deliberately introduced extrinsic information of the channel codec.

5.2 Decoding of variable length codes

As stated previously, VLCs are vulnerable to transmission errors encountered in wireless channels. In
order to enhance the robustness of the VLC decoder, the idea of representing a variable length code
using a tree structure was proposed by Buttigieg and Farrell in [161]. In [162,163], the performance of
the stand-alone VLEC code was demonstrated to be better than that of a cascaded Huffman/Hamming
code. Based on the trellis representation of the VL.C codes as proposed by Buttigieg and Farrell, Bauer
and Hagenauer [153] [154] further developed the Maximum A Posteriori (MAP) algorithm [152] for
decoding VLCs transmitted over AWGN channels. This was based on recognising the plousible fact that
any encoder, which has some grade of redundancy, predictability or unequal probability of occurrence

for the bits at its output may be viewed as an error correction encoder.

5.2.1 Symbol based decoding of VLCs

This section will describe the symbol based trellis decoding of VLCs, following the approach of [154].
Assuming we have a variable length code C and a discrete 7' — ary random variable U = {0, .7 — 1},
each symbol u of the set U is mapped to a binary symbol of the VLC C, where the mapping is denoted

as c(u). The maximum and minimum symbol length is represented as I,,02 and ., respectively.

'Tn this chapter, for a non-binary VLC source symbol we will use the terminology of source symbol, while the binary

representation of a VLC source symbol after encoding by a VLC encoder is referred to as VLC symbol.



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES139

There are O source symbols in a source-symbol packet processed by the decoder, i.e. we have
u = (uy,us,...up). After mapping the T — ary source symbol to the VL.C, a VLC-encoded bit stream
of length W is obtained, which is denoted as b = (by, by, ...bwr). The j** bit of the o** VLC-encoded
source symbol is denoted as C, ;. At the output of the channel the noisy sequence y = (y1,y2...yw) is

received by the VLC decoder from the demodulator.

When we have a ternary source symbol associated with three legitimate values, the VL.C encoder
may map these three symbols to ¢(0) = 1, ¢(1) = 01, ¢(2) = 00. The source-symbol packet size is

chosen to be O = 4, thus for example a source symbol sequence of © = (0, 2,0, 1) may be transmitted.

The four source symbols are then mapped by the VLC encoder to the binary representation of the
VLC symbols given by (1,00,1,01). Hence we have a bit sequence of length 6, where the knowledge
of the length of the symbol sequence and that of the length of the bit sequence can be used as side-
information for constructing the trellis describing the operation of the VLC encoder analogously to

that of a classic convolutional encoder, as seen in Figure 5.1. Naturally, the same trellis is used for

the MAP decoding of the VL.C symbols.

w

6 +
‘%*
] ST
~N /‘./"
2
.:3 4 1 //"'
15 4 ’
Y] - Lo //
& // / [
§ 3 T /f 4
k /. / /
LY /. 7 o
= ~ A
L — o
= Ry e(1):40,1)

L+ o ¢(2):{0,0}

/ o .
/!
0 1 2 3 4

Number of Received Symbols

Figure 5.1: Trellis structure based on the received number of VLC-encoded symbols and bits

In Figure 5.1, the horizontal axis represents the number of VLC symbols that have been received,
while the vertical axis represents the number of received bits. The bold line corresponds to the
trellis path associated with the given input symbol sequence, and the remaining trellis transitions of
Figure 5.1 represent all the other possible transitions incurred by all the legitimate input VLC symbols.
In Figure 5.1, the transition engendered by the VLC symbols ¢(0), ¢(1) and ¢(2) are represented by the
bold lines, dashed lines and dotted lines, respectively. Commencing from the origin and by interpreting
the first VLC symbol of ¢(0), a binary 1 is deemed to have been received. Thus the bold transition
emerges from the origin to the trellis state (1,1). The next step along the bold path of transitions is
engendered by the VLC symbol ¢(2). Since the VLC symbol ¢(2) comprises 2 bits, thus a total of 3

binary bits are now received, hence the associated trellis transition evolves to state (2,3) in Figure 5.1.



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES140

However, all the legitimate trellis paths have to merge in state (4,6) eventually, i.e. in the state (O, W).

Observe that at trellis states (2,4) and (3,5), there is only a single transition emerging from these
two states. This is because these two states are constrained by the total number of VLC-encoded
symbols O and the total number of bits W representing the O symbols. More explicitly, in state (2,4)
there are two remaining VLC-encoded symbols to be detected and there are also only two remaining
received bits to be interpreted. Thus the only possible VLC symbol at this state will be symbol ¢(0),
which has the minimum symbol length of 1. The detection of all other VLC symbols arising from this

state will be forbidden. Upon using the relation of
v=w— (0" lmin), (5.1)

the trellis seen in Figure 5.1 may be transformed to the equivalent form seen in Figure 5.2, where the
variables v, n and & in Equation 5.1 represent the trellis state index, the number of received bits and

the number of received symbols, respectively. The maximum number of trellis states seen in Figure 5.2

may be calculated by
Umaz = W = (O~ Lyin) + 1, (5.2)

given the a priori knowledge that O VLC-encoded symbols and W bits are transmitted.

v
2
=
3
RS
2
=
o1 c(0):{1}
______ o(1):{0,1}
........... c(2):{0,0}

Number of Received Symbols

Figure 5.2: Modified trellis structure based on the received number of VL.C-encoded symbols and bits

Hence Equations 5.1 and 5.2 may be used jointly for detecting the occurrence of illegitimate input
symbols emerging from a given trellis state. For example, state (2,4) in Figure 5.1 corresponds to the
trellis state (2,2) in Figure 5.2. Given the coordinates of the trellis state, with the aid of Equation 5.1
and Figure 5.1, it is possible to infer that a total of 4 bits have been received. Therefore, if the
VLC-encoded symbol ¢(1) is deemed to have been received based on arriving in this state, the next
trellis state to be encountered may be calculated as from Equation 5.1 as (4+2)—3-1 =3, whichis a
higher number than the maximum state index of 2 obtained by applying Equation 5.2 and therefore

it is illegitimate. Thus there is only one legitimate transition from state (2,2), as seen in Figure 5.2.

To elaborate a little further by focusing our attention on the trellis section bounded by the states
(2,3), (2,4), (3/4) and (3,5) in Figure 5.1, we have a more explicit view of the trellis transitions, as

seen in Figure 5.3.



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES141

7Y

c(0):{1}
AAAAA c(1):{0,1}
,,,,,,,, o(2):{0,0}

Figure 5.3: Trellis transitions determined by the states (2,3), (2,4), (3,4) and (3,5) in Figure 5.1

Explicitly, the numbers printed next to the transitions indicate the VLC-encoded symbols ¢(0),
¢(1) and ¢(2) followed by the corresponding binary representation of the VLC symbol. Note that
parallel transitions exist in the trellises of VLCs, as long as there are several VLC-encoded symbols
having the same number of bits. This trellis transition diagram will be used for highlighting how to

invoke the MAP algorithm later in this section.

Based on the trellises seen in Figures 5.1 and 5.2, various VLC decoding strategies may be imple-
mented. In this thesis, the implementation of the popular Maximum-A-Posteriori (MAP) algorithm
is described. The MAP algorithm was proposed by Bahl, Cocke, Jelinek and Raviv in 1974 [152] for
estimating the a posteriori probabilities (APP) of the various states and the state transitions of a
Markov source, provided that the channel encountered is memoryless. This algorithm is also often
referred to as the BCJR algorithm after its inventors. This algorithm provides the estimated symbol
sequence, based on maximising the APP of each symbol, which is essential for employment in any

iterative scheme.

In the symbol-based MAP algorithm described here, the objective of the VLC decoder is that of
determining the APP of the transmitted VLC symbol u,, (1 < 0 < O) from the soft output y, of the

channel, which is formulated as

Plii,ly) = maz (P(uoly)), o=1...0. (5.3)

A tutorial on the MAP algorithm may be found for example in [115]. Suffice to say here that
the MAP algorithm includes a forward recursion, a backward recursion and a symbol probability
evaluation for the computation of the probabilities of the various VLC symbols associated with the
trellis transitions. By extracting the trellis section of Figure 5.1 between o = 1 and o = 3, the
corresponding application of the MAP algorithm can be illustrated with the aid of Figure 5.4.

The symbol probability
vy w',w), (5.4)

quantifies the probability of a transition from state v; = w’ to v;41 = w, engendered by a received

VLC-encoded symbol associated with a given soft channel output y,,. By applying the basic rules of



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES142

c(0):{1}
______ c(1):{0,1}
........... c(2):{0,0}

0=1 0=2 0=3 o0=4

Figure 5.4: Recursive calculation of the o and 3 values for the trellis structure of Figure 5.1 between

time instant 0 = 1 and o = 3.

conditional probabilities, y; can be split into three multiplicative factors as follows:
W (W2, w'  w) = g, = ijw,w) - pyisu, = i) - to(wlw'), (5.5)

where t,(w|w’) represents the state transition probability that given the current state w’, the next
state will be w. In Figure 5.3, the value of t,_1(wi|wy) is given by the sum of the probabilities
of encountering symbol ¢(2) and symbol ¢(1), since both of these two symbols will engender the
transition from w; to wy. By contrast, if for example, w, is calculated to be an invalid state according

to Equation 5.2, the probability value of £ will be 0.

Upon returning to Equation 5.5, go(ue = iJw’,w) is the probability that given the previous state
w’ and the current state w, how likely it is that this transition was engendered by the VLC-encoded
symbol 7. As seen in Figure 5.3, only symbol ¢(1) and symbol ¢(2) may engender the trellis transition
from wi to wy. Hence the probability go_1(ue-1 = l|lwi,wy) is given by Pﬁ—fm, which
corresponds to the probability of occurrence of symbol ¢(1) over the sum of the probability of symbol
¢(1) and symbol ¢(2).

Finally, p(¥% |1, = %) in Equation 5.5 represents the probability of encountering the soft channel
output associated with the transition w’ — w, given that the transmitted symbol was u, = 7. In the
memoryless AWGN channel, this probability may be expressed as the product of the bitwise transition

probabilities as follows:
l(ci)— 1

Pl =i) = || pyw51Cos), (56)
j=0
where C, ; represents the j bit in the o' VLC symbol’s binary representation. After the calculation

of v according to Equation 5.5, we carry out the forward recursion for the sake of obtaining the values

of o as follows:
ao(w) = Plv, =w,y3), (5.7)

where the variable ¢, quantifies the joint probability of receiving the VI.C symbol 0, 0 = 1--- O,

at state w ylelding v, = w and that the first o soft channel outputs were y¢, where the notation



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES143

y9 represents the vector of soft channel outputs y9 = [y1...9.). Equation 5.7 indicates that the «
value at instant o is related to all the channel soft inputs spanning from the beginning of decoding
at 0 = 0 to the instant 0,0 > 0. However, as seen in Figure 5.4, the quantity o, can be recursively
calculated with the aid of the «,_; values generated during the previous time instant. Hereby we will
relate the trellis structure seen in Figure 5.1 to the MAP decoding structure outlined in Figure 5.4
for the sake of demonstrating the recursive calculation of the quantity «. The vertical axis on the
left of Figure 5.4 corresponds to the number of received bits in Figure 5.1, while the horizontal axis
in Figure 5.4 corresponds to the number of received symbols in Figure 5.1. The notation a,(w) in
Figure 5.4 is used for representing the quantity « at time instant o, while at state w. The notations
Bo(w) and ~y,(w) follow the same rationale. On receiving the soft channel output y, in Figure 5.4,
the trellis transition emerging from state v = 2 to state v = 3 will be encountered, when the received
source symbol is C(0). By contrast, two parallel transitions are encountered from state v =1 to state
v = 3, if either a source symbol of C'(1) or C(2) is received. Thus, as seen in Figure 5.4, the quantity

a3(3) is calculated as:
a2(3) = e1(2)1(0) + a1 (1)71(2) + ea (1) (2)- (5.8)

Commencing the corresponding recursion exemplified in Equation 5.8 from the first symbol by
assuming ag(0) = 1, i.e. that the trellis starts from the state v = 0 in Figure 5.1 or Figure 5.2 and
following the rationale of Section 5.3.3 in [115], we have:

Zw’EWU—l Zsz_Ul ’Yi(yllg” U)I’“)) ’ aO‘—l(U)I) (5 9)

ao(w) = T — —.
Zwewg ZM,EWFI Doimo vy, ww) - a1 (w)

All the « values corresponding to each time instant at different trellis states of Figure 5.2 can
be similarly calculated. More explicitly, in the numerator of Equation 5.9 the inner summation
Z?;Ul Yi(ys, w',w) - as_1(w') quantifies the probability of encountering transitions from a particu-
lar state v, = w' to state v, = w engendered by all possible input VLC symbols. By contrast,
the outer summation calculates the overall probabilities of the transitions from all possible states
Vo—1 = w,w' € {Wy,_1} in the previous instant (0 — 1) to the current state v, = w engendered by
their corresponding VLC symbol. The denominator has a third summation summing over all possible
states w, w € {W,}, at the current instant o, which acts as a normalisation factor for the sake of
ensuring that we have )y, a,(w) = 1, since this condition has to be satisfied by the probability of

the associated events.

Similarly, the associated backwards recursion of Section 5.3.3 in [115] calculates the value of
Be(w) = Py, | |v, = w), (5.10)

which gives the probability that given the trellis state v, = w was encountered at symbol instant o,
the future received soft channel output sequence will be yZ)V 1. Similar to the recursive computation of
oo, the quantity 5, can be backwards recursively calculated with the aid of the 8,11 value at the next
time instant. More explicitly, while still considering Figure 5.4 and following the same philosophy as
for the recursive calculation of «,(w) illustrated in Equation 5.8, the quantity 82(3) can be calculated

as follows:

B2(3) = B3(5)v2(1) + B3(5)72(2) + B3(4)72(0). (5.11)



CHAPTERS5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES144

The backwards recursion outlined in Equation 5.11 may be implemented in a similar way to
Equation 5.9, but commencing the recursion from the end of the VLC symbol sequence and assuming
that the trellis terminates at state v = W, i.e. that we have Bo(W) = 1, yielding [115]:

T-1 w / /
w im0 Yilyn, W w) - Bor1(w
ﬁo(ﬂ)) _ Z EW9+1 Z 0 ,7 (y ) +1( ) 2‘,' (5'12)

T-1
Zwewg Zw’eWU+l Yoo vy, w w) - Boy1(w)
Explicitly, the numerator sums up all transition probabilities associated with arriving at all possible
states v,11 = w',w’ € {1--- W} at the next instant w + 1, from the current state v, = w engendered
by their corresponding input VLC symbols. The denominator normalises the probabilities 8,(w), w €
{1.--W,} ensuring that )"y Bo(w) = 1 is satisfied, since all probabilities of the corresponding

events have to sum to unity.

After all the values of Equation 5.7, 5.10 and 5.5 have been obtained, the a posteriori probability

may be expressed as:

Zwewa Zw’EWa—l ,Yt(yzﬁ" U)I’ U)) . aoil(u}l) ' ﬁO(w) (5 13)
Z’(UEWU Zw’EWo—l Zg:ol Vi (Y W' w) - i1 (W) - Bo(w)

Pu, =tly) =

Interpreted in physical tangible terms, the a posteriori probability calculated using Equation 5.13
quantifies the probability of encountering a specific VLC symbol ¢ at the o'® time instant. This
probability is calculated by summing up all the probabilities for the transitions between the time
instants 0 and o0 + 1, which are engendered by the VLC symbol 7. The probability P(u, = ily) is
normalised in Equation 5.13 so that we have ), . P(u, = ily) = 1.

Finally, Equation 5.3 is applied to identify the specific VLC symbol associated with the highest

probability as the survivor symbol.

In this section, the process of the symbol based trellis decoding of VL.Cs has been discussed. The
construction of the trellis-based VLC decoder requires the a priori knowledge of both the number
of VL.C symbols and the number of bits per transmission burst to be transmitted to the decoder as
side-information. Since the length of the VLC decoder’s trellis is determined by the total number of
VLC symbols within the transmitted frame, the size of the VLC trellis may become excessive. At
the output of the trellis based VL.C decoder, the associated symbol probabilities will be provided.
However, when the VLC scheme is combined with other bit-based channel codecs, such as a turbo
convolutional code or an LDPC code, symbol to bit conversion will be necessitated, which may result
in information loss. In order to solve this problem, Bauer and Hagenauer proposed another trellis

representation for VLCs [153], which enables the bit-based VLC decoding.

5.2.2 Bit-based decoding of VLCs

The bit based decoding of VLCs [153] requires no additional side information, other than the number
of bits transmitted. The size of the trellis is only related to that of the VLC codeword table, which is
relatively small compared to that of the VLC symbol-based trellis, even if the transmission packet size
is large. The output of the bit-based VLC decoder is the probability of the bits, thus the associated soft
outputs may be input directly to the channel decoder for the sake of forming a serially concatenated

joint source/channel coding system, without requiring symbol-to-bit probability conversion.



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES145

The bit-based trellis of the VLC is constructed as follows [153]. We have to define three different
types of nodes in the trellis. The first one is referred as a root node (R), from which a new VLC
symbol emerges. The second one is the so-called terminal node (T), where a VLC symbol ends. The
third one is termed the intermediate node (1), which represents an intermediate trellis state associated
with the bit-based representation of a VL.C symbol that has not been completely received. Let us now

consider the associated bit-based trellis construction using an example.

Figure 5.5: Bit-based trellis structure of a VLC, where the dotted lines indicate a transition engendered

by a ’0’ and the solid lines by a ’1’

Let us assume that we have a RVLC code table of ¢ = {e1,---c5} = {00, 11,101, 010,0110}.
In Figure 5.5, the dotted lines represent the transitions engendered by a bit 0 and the solid lines
represent the transitions engendered by a bit 1. The VLC decoder starts from the root node, (R) of
Figure 5.5. Upon receiving the first bit 0, since the decoder has not received a complete VL.C symbol,
the corresponding transition leads to node I;. From I, if a further 0 is received, then the VL.C symbol
of 00 has been received, hence the symbol has been completed and the trellis is terminated at the
terminal node (T), which constitutes the root node for the next VLC symbol. Otherwise, if a 1 is
received upon emerging from I, since 01 has not formed a valid VLC symbol as yet, the trellis branch
traverses to another intermediate state I3 in Figure 5.5. Eventually, the trellis transitions should

converge at the terminal node.

The MAP algorithm may also be applied to this bit-based trellis, although there is some difference
between the symbol-based trellis and the bit-based trellis. In the bit-based trellis, the transitions
converge only at the root node and the number of transitions emerging from each node is less than or

equal to 2. Both the bit-based and the symbol-based MAP algorithms have been detailed in [115].

5.3 Levenshtein distance

There are various types of variable length codes. Huffman coding has been considered as the most
efficient code in terms of providing the shortest average symbol length. However, there are other
VLCs, which are capable of outperforming Huffman codes in terms of other performance metrics, for
example owing to their stronger error correction capability [164]. Reversible VLCs (RVLS) have the

advantage of facilitating decoding from both ends of the received bit sequence, which is beneficial in



CHAPTERS5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES146

the event of losing symbol synchronisation owing to channel errors [144].

In the context of VLCs, the capability of correcting erroneous symbols is more important than
correcting bits. In addition to using the most straightforward performance metric, namely the symbol

error statistics based on symbol by symbol comparisons, in this section we introduce the Levenshtein

distance [165].

Since the variable length codes are capable of self-synchronisation, a single corrupted bit may not
inflict severe error propagation. However, when insertion and/or deletion of VLC symbols occurs,
a simple symbol by symbol based comparison invoked for generating the associated symbol error
statistics may not be a fair procedure. Hence in numerous research papers the Levenshtein distance

was used for evaluating the associated symbol error statistics [153] [166] [167].

The Levenshtein distance was named after the Russian scientist Vladimir Levenshtein, who devised
the concept. Since its introduction it has been used for quantifying the similarity of two strings. More
specifically, the distance is defined as the number of insertions, deletions or substitutions required
for transforming one string into another. For example, let us assume that string one is the word
specification and the second string is also the word specification. The Levenshtein distance between
these two strings is 0, since they are identical. If, however, the second string is specfication, then
the Levenshtein distance is 1, since there is a deletion (a missing 7), in the second string. As English
words often contain some predictability or redundancy, despite the deletion of a character in the second
string, we are able to recognise that the second string was meant to be specification. The associated
symbol error rate in this case is 1/13, while the symbol error rate would be 9/13, if we used character

by character based symbol comparisons.

5.4 Performance of VLCs as error correction codes

As a benefit of the trellis-based decoding of the VILC introduced in Section 5.2, both the symbol-based
and the bit-based approach is capable of facilitating their employment as a weak error correction codec.
Hence here we would like to characterise the achievable BER performance of the VL.C using both the
symbol-based and bit-based decoding methods, when communicating over an AWGN channel. The

parameters of the source codec used are listed in Table 5.1.

Probability Huffman Code | RVLC Code 1 | RVLL.C Code 2
0.33 00 00 00
0.30 01 11 01
0.18 11 010 10
0.10 100 101 111
0.09 101 0110 11011
Average VLC symbol length 2.19 bits 2.46 bits 2.37 bits
R 0.97 0.87 0.9

Table 5.1: Source code parameters [153]

Three different VLCs were designed and their code table is given in

Table 5.1. In addition to



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES147

Channel AWGN
Modulation scheme BPSK
Block length 100 VLC symbols
Source codec Huffman, RVLC Code 1, RVLC Code 2 as in Table 5.1

Table 5.2: Simulation parameters for the symbol-based VLC trellis decoding using BPSK modulation,

when communicating over an AWGN channel.

the classic Huffman codec, two different types of RVLC are utilised. The first RVLC denoted as the
RVLC Code 1 in Table 5.1 is symmetric and hence the associated binary encoded bits are identical
with respect to the beginning and end of each VLC symbol, while the second RVLC in Table 5.1 is
asymmetric. As we can see in Table 5.1, the same original source symbol set results in a different
average VLC symbol length after encoding by the above-mentioned three different encoding methods.
In other words, the VLC has a code rate R, which can be defined as:

R, = H/N, (5.14)

where H is the binary entropy of the original source symbol set and N is the average symbol length

as listed in Table 5.1. The binary entropy H can be calculated as [137]:
Zizogz(ﬂ) (5.15)
b 7

where P, represents the i** symbol’s probability of occurrence. By using Equation 5.15, the entropy of
the source symbol set seen in Table 5.1 was found to be 2.139 bits. Thus the corresponding code rate
of each individual VLC code was listed in Table 5.1. Given the above parameters, the corresponding
Ey /Ny ratio of the system is calculated as:

E.

where F, is the transmitted energy per modulated symbol, B, and R, represent the code rate of the
source codec and the channel codec, respectively, while B specifies the number of bits per symbol for

the corresponding modulation mode utilised.

5.4.1 Symbol-based VLC decoding performance

The symbol-based VL.C decoding procedure assumes that the receiver has perfect knowledge of the
number of symbols as well as the number of bits within a transmission block. The simulation param-

eters for the symbol-based VLC decoding scheme are investigated as follows.

As demonstrated in Figure 5.6, the RVLC 1 scheme achieves the best performance while the
Huffman code exhibited the worst performance. Comparing these three source codecs in Table 5.1,
we can observe that the Huffman code achieves the shortest average symbol length, while the RVLC
1 arrangement has the longest average symbol length. In comparison to the entropy computed for
the given set of symbol probabilities, the Huffman code’s average symbol length is the closest, which

configures that the Huffman coding is the most efficient way of encoding VLC symbols. By contrast,



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES148

2 O —— Huffman Code
o 7 ¢ — RVLC|
==mies © — RVLC2
5 f N o
| A N
10 \‘S\’
5 B - IS8T
o SR
jua i A
U2 g2 T —
5
[ X faN]
2 \V\ %
107 2
s S
ANV
2 D
107
0 1 2 3 4 5 6 7 ¥ 9 10
E/Ny(dB)

Figure 5.6: Performance of symbol-based VLC decoding using the parameter summarised in Table 5.2

when communicating over an AWGN channel.

the RVLC 1 scheme has the longest average symbol length. By comparing the RVLC 1 and RVLC 2
codewords in Table 5.1, it can be observed that the RVLC 1 scheme is a symmetric RVLC, while the
RVLC 2 arrangement is an asymmetric one. Hence the RVLC 1 scheme has more residual redundancy
in the code, and this redundancy is now exploited by the trellis decoding algorithm, resulting in the

best error correction performance among the three VLC codec studied.

5.4.2 Bit-based VLC decoding performance

The symbol-based VLC decoding proposed by Hagenauer [154] assumes that the receiver has explicit
knowledge of the number of symbols and the number of bits within a transmission block. Furthermore,
the resultant symbol sequence is not designed for conveniently delivering soft information of each
individual bit for the sake of exchanging information with other Soft In Soft Out (SISO) decoders. By
contrast, the bit-based VLC trellis decoding algorithm of [153] invokes trellis decoding in a bit-by-bit
manner, and the resultant bit-based soft information provides a convenient approach for constructing
an iterative decoding scheme, when the VLC decoder is concatenated to other SISO decoders. A
further advantage of the bit-based VLC decoding algorithm that it requires only the knowledge of
the number of bits within the transmission block for constructing the decoding trellis, while the
symbol-based VLC decoder required both the number of bits as well as the number of symbols. Qur
experiments using bit-based trellis decoding of VL.Cs will assume that the length of each transmission
block expressed in terms of the number of bits transmitted is fixed. We will inform the receiver of
the exact number of VLC encoding bits transmitted in the block with the aid of a side-information

sequence, as seen in Figure 5.7.

As seen in Figure 5.7, the overall length of the transmission block is fixed. At the beginning of



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES149

Side
Information

——r

VLC encoded information bits

Dummy
Bits

~—

No. of No. of No. of No. of
Dummy VLC | ommremeny Dummy VLC
Bits Symbols Bits Symbols
7l

Figure 5.7: Transmission frame structure of bit-based VLC decoding, where the side information (the
number of dummy bits and the number of VLC symbols) is repeated n times for the sake of invoking

majority logic decision at the decoder.

the transmission frame we include some side information for the sake of informing the receiver as to
exactly how many VL.C-encoded information bits are transmitted within the block. Following the side
information the VI.C-encoded information bits representing the original VLC-encoded source symbols
are included. As seen in Figure 5.7, the side information is constituted by the information indicating
how many dummy bits have to be included at the fixed-length transmission frame. The number of
original VLC-encoded source symbols is also supplied to the decoder as side information, each repeated
n times for the sake of facilitating majority logic decisions, although this is not explicitly required by
the bit-based VLC-decoder. Despite this extra protection, the side information may be corrupted and
hence the synchronous detection of the transmitted frame cannot be guaranteed. The side information
conveying the number of dummy bits and the number of VLC-encoded symbols is represented by using
a binary vector. Since the size of the side information vector and the overall block length is fixed, the
remaining capacity of the transmission frame dedicated to the VLC encoded information bits is also
fixed. The encoder will map each source symbol to the binary representation of its VLC symbol and
amp this binary information sequence to the transmission frame. It might occur that the incoming
source symbols result in a transmission frame length which is longer than the remaining ’capacity’
of the transmission block. In this case, the corresponding source symbol has to be mapped to the
next transmission frame, and dummy bits will be inserted into the frame for the sake of filling up
the last a few positions. Thus the maximum number of dummy bits that may have to be inserted
into the block will be the maximum VLC-encoded symbol length minus one. Hence, the size of the
binary vector required for representing the dummy bits is determined by the binary length of the
longest VLC symbol. The maximum number of VLC-encoded symbols that can be mapped to a single
transmission frame is approximately given by the transmission frame size divided by the minimum
VLC symbol length. Thus the required size of the binary vector representing the number of symbols
is loga(block size/minimum symbol length). The number of VLC symbols is also transmitted as

side information, although this is not necessary for the bit-based VL.C decoding algorithm, as stated



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES150

| Channel AWGN
’ Modulation scheme BPSK
Block length 256 Dbits, including side information and dummy bits
Source codec Huffman, RVLC Code 1, RVLC Code 2 of Table 5.1
No. of side information repetitions 3

Table 5.3: Simulation parameters for the bit-based VLC trellis decoder using BPSK modulation, when

communicating over an AWGN channel.

above. This information is nonetheless required for evaluating the symbol error statistics during the
simulations. Transmitting this extra information will slightly reduce the achievable throughput, thus
the simulation results to be provided in Section 5.5 and Figures 5.8 and 5.9 are slightly worse than in
the scenario where the number of VLC symbols is not transmitted as side information. The simulation

parameters used for investigating the bit-based algorithm are given in Table 5.3.

? .
V.
5 4 O —— Huffman Code
N ¢ — RVIC |
10 S = ¢ — RVLC2
s N
\ < N
, N~
10° ;\:,%
5 LY &
o
o —
c,DIO'J 5
5
R
2 D
10*
s LY
| ]
8 -9 10

I 2 3 7

4 5 6
Ey/Ny(dB)

Figure 5.8: Performance of bit-based VLC decoding using the parameters summarised in Table 5.3

when communicating over an AWGN channel.

In comparison to the results shown in Figure 5.6 for the symbol-based VLC decoding techniques,
the three VLC source decoders using the bit-based algorithm exhibited a similar performance trend to
each other. More explicitly, the three SER curves decay at a similar rate, which is different from the
results recorded, when using the symbol-based algorithm, as shown in Figure 5.8, where the Huffman
code achieves the best performance, while the RVLC 1 arrangement the worst. More explicitly, the
three VL.C codecs have a similar BER performance when the bit-based VLC decoding algorithm
is applied, although we observe three different BER performance curves owing to the FE,/Ny shift
according to Equation 5.16 imposed by taking into account the three different average VLC symbol



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES151

2
3 O —— Huffman Code
. ¥ 9\@3 0 — RVLC1
10 = =——=/= v — RVLC2
s B  E— T T
BN ——
10° V\ﬁﬁﬁ%ﬂ‘, ——
s S
% | |
1y
5
s
3 A
0 AW
’| D
5 |
-5
107 1 2 3 4 5 6 7 8 9 10
SNR(dB)

Figure 5.9: Performance of bit-based VL.C decoding using the parameters summarised in Table 5.3
when communicating over an AWGN channel, when the entropy-based shifting of the BER curves was

not applied.

lengths, when using the different source encoders. The fact that the three VLC codecs have a similar
BER versus F}/Ny performance is demonstrated in Figure 5.9, where in contrast to the Fj /Ny curves
of Figure 5.8, the BER curves were not shifted according to the different average symbol lengths of
the three codes. Even though the source symbol sequence has a non-uniform probability of occurrence
distribution, the VLC symbols will be mapped to bits, which will results in a uniformly distributed
probability of encountering both a binary one and a binary zero. Since the bit-based VLC trellis
decoding algorithm by definition operates on a bit-by-bit basis, thus all the three bit-based VLC
source decoder exhibits a similar performance. However, when the bit-based VLC decoding scheme is

concatenated with a range of other SISO decoders in Section 5.5, a different performance trend will

be observed.

5.5 Joint source and channel decoding using VLCs

As discussed in Section 5.4.2, the trellis decoding of variable length codes is beneficial in the context
of joint source and channel decoding, since the bit-based decoding of VLCs directly provides the bit
probability, which can be exchanged iteratively with the channel decoder. In order to capitalise on
these potential benefits, in this section, we invoke bit-based trellis decoding of VLCs in the context of

iterative source and channel decoding.
Figure 5.10 provides the detailed schematic of the joint source/channel decoding scheme considered.

As seen in the figure, the channel decoder accepts both the soft output of the demodulator and the

a priori source information produced by the source decoder as its input. Since in the first iteration



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES152

Channel Output
A Priori (c)
Extrinsic (c)

Channel Output

Channel Decoder

Channel Output Viterbi

A Priori (s) Source Decoder Estimator

Estimated
Channel Output
A Priori (s)

Extrinsic (s)

A Priori (c) Extrinsic(s) Decoded
Deinterleave - Symbols

A Priori (s)
Channel Output

Figure 5.10: Iterative joint source and channel decoding schematic

there is no a priori information, the source decoder typically delivers an a prior: information of 0
in the first iteration, which corresponds to having a probability of 0.5 for both a binary one and a
zero. After channel decoding, the extrinsic information Eztrinsic (¢) of Figure 5.10 is produced and,
together with the demodulator’s soft output, this information is forwarded to the source after being
deinterleaved for the sake of presenting the information bits in their original order of appearance.
The Eztrinsic information supplied by the channel decoder will act as the a priori information for
the source decoder. Again, the source decoder will generate the extrinsic information Eztrinsic (s),
which will constitute the a priori information for the channel decoder. After the affordable number
of turbo iterations has been reached, the output of the source decoder will be passed to a sequence
estimator. The sequence estimator in Figure 5.10 is necessary, because the received codewords are
decoded in the source decoder block using the MAP algorithm operating on the bit-based VLC trellis,
and the VLC MAP decoder attempts to maximise the a posteriori probability of each individual bit.
Therefore, it is not guaranteed that the bit-stream output by the VLC MAP source decoder may be
directly mapped to the VLC symbols. Hence the Viterbi algorithm is invoked in the sequence estimator
block to provide the best possible VLC-string estimate of the entire bit stream, before outputting a
legitimate sequence that is decodable by the bit to symbol mapper.

In the rest of this section we will characterise the achievable performance of a joint source and
channel codec. We will use three different SISO channel decoders, namely a convolutional code, an
LDPC code and a turbo convolutional code for constructing a serially concatenated jointly decoded
system, as shown in Figure 5.10. The associated simulation parameters are summarised in Table 5.4.
The number of LDPC iterations was set to five for the sake of maintaining a similar decoding com-
plexity as that of the RSC(2,1,5) code for the sake of a fair comparison. The turbo channel decoder in
Figure 5.10 used a single iteration, however the complexity of the turbo decoder was still twice that

of the other two channel decoders, since it has two constituent RSC decoders.

It can be observed in Figures 5.11 to 5.13 and 5.15 to 5.17 that when the VLC source codec is
concatenated with a channel codec, the three different source encoding methods exhibit different per-

formance trends. Huffran coding has the minimum residual redundancy residing in the source code,



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES153

!_Ciannel AWGN,Uncorrelated Rayleigh
’ Modulation BPSK
VLC block length 1024 bits
Side information repetition time 3
Number of joint iteration 0,1,24
Source codec Huffman, RVLC 1, RVLC 2
Channel codec
RSC(2, 1, 5) Generator Polynomial 23, 35

Code termination true

Turbo Component RSC code RSC(2,1,5)
Convolutional Puncturing pattern 10, 01
Code Number of TC iteration 1
LDPC Column weight 3
PCM construction regular

Number of LDPC iterations 5]

Table 5.4: Simulation parameters for joint source and channel decoding, using the three VLC source

codecs of Table 5.1.

hence regardless of which of the three channel codecs is applied, the concatenated system achieves only
a modest joint iteration gain. By contrast, the RVLC 1 source codec has the longest average symbol
length of 2.46bits/symbol, implying the presence of a higher amount of residual source redundancy
which results in a more significant joint iteration gain being achieved. Finally, the RVLC 2 source
codec has an average symbol length of 2.37 bits/symbol, and hence the attainable performance of the

RVLC 2 source codec is in between that recorded for the Huffiman codec and the RVLC 1 source codec.

Furthermore, it can be observed in the Figures that the curves corresponding to RVLC 1 are steeper
than those related to Huffman code and to the RVLC 2 scheme. This trend is particularly dominant
when the schemes are concatenated with the turbo convolutional code and communicating over an
AWGN channel, as shown in Figure 5.12. By observing the source code assignment in Table 5.1 it can
be observed that the distance between the VLC codewords is two for the RVLC 1 scheme, while it is
only one for the Huffman code and the RVLC 2 code. As seen from Figures 5.14 and 5.18, for either
an AWGN or an uncorrelated Rayleigh fading channel, the RVLC 1 code having a free distance of
two had a superior performance in comparison to that of the other VL.C codes having a free distance
of one. Therefore, the free distance of the VLC code should also be taken into consideration, when

designing a good VLC source codec.

5.6 Complexity

Since the decoding of VLC codes can be characterised by a trellis structure, thus the complexity of the
VLC decoding can be quantified by the number of trellis transitions. The complexity of the symbol-
based MAP VLC decoding algorithm will be calculated on a per symbol basis, while for bit-based
VLC decoding, the complexity per decoded bit will be quantified.



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES154

3| & — 0 iteration 3 o — 0 jteration
10 5 : & —— 1 iteration 107 & —— 1 iteration
e x —— 2 iterations > i x  —— 2 iterations
IO; | ¢ —— 4iterations 10_: ¢ —— 4 iterations
m 3  — t ; ; m 5 i N + i
9 I | B T ] | ] o 1 [
o B t
w10’ w210
3 =+ S + —] 3 . e it i
2 % ! ] , : 3 ! ]
10" - é% 10
3 v — 1 3 E i t
5 1% i i ] A0 i ) —
o G S . . -
3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 10
Ey/No(dB) Ey/Ny(dB)
Huffman
5 )
2 O —— 0 iteration
10 = 5 O — literation
g 3 = —— 2 iterations
g ¢ —— 4 iterations

1 - !
| i | & I I

I
|

] S
‘1 \

“Ey/Ny(dB)

t
|
I
7 8 9

(=)
N

Figure 5.11: VLC SER versus Ep/Ny performance of the three VLC source codecs of Table 5.1 con-
catenated with the RSC(2,1,5) convolutional code of Table 5.4, when communicating over an AWGN
channel. The VL.C frame length was 1020 bits, while the overall length of the transmission burst after
channel encoding was 2048 bits. The number of joint iterations invoked was increased from 1 to 4.
The VLC frame length was 1020 bits rather than 1024 bits for the LDPC case was because there are
four termination bits required for the RSC(2,1,5) code during encoding. The required E,/Ny of the
various schemes at a BER of 10~% will be summarised in Figure 5.14 and Table 5.5.

For the case of the symbol-based trellis, the size of the trellis may become excessive, when the
size of the transmission burst is increased. As seen in Figure 5.2, most of the time intervals will have
a fixed number of trellis transitions, except at the beginning where the trellis start from zero state
and at the final stage, where all transitions have to converge to a single final stage. Hence for a
comparatively long block length we may deem the average number of trellis transitions to be constant,
since the effect of the reduced number of transitions at the beginning and the end of the trellis may be
neglected. Explicitly, the number of trellis transitions per time interval can be quantified as vpyaz - 7,
where vy, 1 the maximum number of trellis states as defined by Equation 5.2 and T is the size of the
source symbol alphabet, i.e. the number of possible source symbols. In Equation 5.2 the knowledge of
the number of transmitted VLC symbols and the corresponding number of bits per transmission block
is assumed to be known, but the quantity vma, will vary frem block to block. However, statistically
speaking, the average number of bits W per transmission block should be the average number of
VLC symbols O times the average VL.C symbol length. Thus, the longer the block, the higher v,,4z

becomes. Hence the complexity of the symbol-based VL.C decoding algorithm increases, when a long



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES155

, o — Olitcrat'ion N - | \—‘r ;
10! 0 — |lteration 10" e |
5 f t b 2 iterations 5 : i |
2 | ? —— 4 iterations 2 ] I : )
107 1072
[~ : : = e S
[1] ! ] [ o S S M 5\ W W R §
107 == “10;
5 H 5 :
) | Y — 2| © —— Oiteration [] \'
10t é 10| © — literation d
3 i e S| % —— 2iterations H——
i ‘\ \\ T f 2| @ —— 4iterations ‘
107 107 ;
00 05 [0 1.5 20 25 3.0 35 40 45 5.0 00 05 1.0 1.5 20 25 3.0 3.5 40 45 5.0
Ey/Ny(dB) Ey/No(dB)
Huffman
10"
5
2
107
m 5
M :
3
U)IOj : J =
2| ¢ —— 0 iteration i /8
10*1 © —— I iteration %
3| % —— 2iterations H= +
v — 4 iterations % i f

10°
00 05 10 1.5 20 25 3.0 35 40 45 5.0

Ey/Ny(dB)

Figure 5.12: VLC SER versus E, /Ny performance of the three VLC source codecs of Table 5.1 concate-
nated with the turbo convolutional code of Table 5.4, when communicating over an AWGN channel.
The VLC frame length was 1020 bits, while the overall length of the transmission burst after channel
encoding was 2048 bits. The number of joint iterations invoked was increased from 1 to 4. The VLC
frame length was 1020 bits rather than 1024 bits for the LDPC case was because there are four ter-
mination bits required for the turbo convolutional code during encoding. The required £} /Ny of the

various schemes at a BER of 107 will be summarised in Figure 5.14 and Table 5.5.

transmission block length is encountered.

When using a bit-based trellis, since the trellis structure only depends on the size of the VLC
symbol alphabet, the associated decoding complexity is a constant and will be quantified below.
The bit-based trellis structure of the three VLC codecs characterised in Table 5.1 can be found in
Figure 5.19.

As seen from Figure 5.19, the Huffman code has 8 legitimate transitions. By contrast, the two
RVLC codes both have 10 transitions. Thus the Huffman code is inherently less complex. Since the
Log-MAP algorithm is used, the VLC decoding complexity may be approximated similarly to that of a
turbo convolutional code, which was estimated in [115] as 3 X no of transitions. The multiplier factor
of 3 is present, because the MAP algorithm requires the calculation of the «, # and + terms, which
implies that the decoder has to traverse through the trellis three times. Therefore, the complexity of
the bit-based VLC trellis decoding scheme can be quantified by the number of trellis transitions. The
RVLC 1 and RVLC 2 schemes have a decoding complexity, which is about 25% higher than that of
the Huffman code.



CHAPTER 5. JOINTSOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES156
RVLC 1 RVLC?2

R e S

10! %iﬁ

2

) T
I I
2 L
107 %$
3 T T b
m i i 1 T
m 1 i i N ]
3
w2 105 %;,é % TXEE%
2| © —— Oiteration [ ! i 5| © —— 0 iteration s ] ] |-
10| © —— I iteration 107 | © —— 1 iteration
S50 2 iterations 5% 2 iterations I
2| ® —— 4 iterations 2 ® —— 4iterations H—
10°* 10° !
00 05 10 1.5 20 25 3.0 35 40 45 50 00 05 1.0 1.5 20 25 3.0 35 4.0 45 50

E,/N,(dB) Ey/Ny(dB)

2
wnio’
’ . . = X Jf —
2| © — Oiteration [ X1 -
10*| ¢ —— I iteration
S 2 iterations H= T i |
1| © — 4iterations H- 1 L N Sa—
o A\

00 05 1.0 1.5 20 25 3.0 35 40 45 5.0

E/No(dB)

Figure 5.13: VLC SER versus Ej/Ny performance of the three VLC source codecs of Table 5.1 con-
catenated with the LDPC code of Table 5.4, when communicating over an AWGN channel. The VLC
frame length was 1024 bits, while the overall length of the transmission burst after channel encoding
was 2048 bits. The number of joint iterations invoked was increased from 1 to 4. The required £} /Ny

of the various schemes at a BER of 10™* will be summarised in Figure 5.14 and Table 5.5.

5.7 Summary and conclusion

Trellis based joint source/channel decoding scheme constitutes an efficient way of exploiting the resid-
ual redundancy inherent in the source-coded stream as well as imposed by the channel code. The
symbol-based trellis decoding [154, 161] of VLCs was introduced in Section 5.2.1. Buttigieg and
Farrell [162,163], as well as Bauer and Hagenauer [154] used the MAP algorithm for decoding VLC
assumed perfect knowledge of the number of VL.C symbols and the number of bits in the received block,
which is unrealistic in practice. Furthermore, the size of the trellis constructed for the symbol-based
VLC decoding algorithm is related to both the number of symbols and bits, thus for high-blocklength
applications the trellis construction process might be memory-intensive. In order to improve the VLC
symbol-based decoder’s attributes, Hagenauer [153] proposed the employment of bit-based trellis de-
coding of the VLCs, which requires the knowledge of the number of bits in the transmission block,
but not of the VLC symbols. Furthermore, the bit-based process is capable of providing bit-based soft
information, which renders the message passing in iterative joint source and channel decoding more
straightforward. The VLC trellis based decoding uses a slightly modified MAP algorithm, which was
outlined with the aid of Figure 5.4 in Section 5.2.



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES157

RSC LDPC
5.5 5.5
a E —— Huffman
E E U
~, <t
Tc 5.0 . —— Huffman ‘= 5.0 -==- RVLC2
N RVLC 1 in
& 45 --—- RVLC?2 4 4.5
g T ]
v | e T e wn
=] P
£ a0 &40 —
el -
z £
ERE 5 35 N
=g =2 .l
& | Tt 3 e TN
g 30 Z30r e
3 "B
5 5
2.5 2.5
-1 0 . 1 . 2 . 3 4 35 -1 0 . ] . 2 3 4 5
Joint iteration index Joint iteration index
TC
55
-
'E_g —— Huffiman
~sol | RVLC |
S --—- RVLC2

£
in

P
=

“
o

Ey/Ny required for SER:
Lo

[
n

-1 0 1 2 3
Joint iteration index

Figure 5.14: Fy/Ng required for achieving a SER=10"* for the three VLC source codecs of Table 5.1
concatenated with the three channel codecs of Table 5.4, when communicating over an AWGN channel.
The VLC frame length was 1024 bits, while the overall length of the transmission burst after channel

encoding was 2048 bits. The number of joint iterations invoked was increased from 1 to 4.

When using the trellis-based VLC decoding algorithm, a VL.C codec was capable of acting as a
weak error correction codec. The performance of the stand-alone VLC codec using symbol-based trellis
decoding was evaluated in Section 5.4.1. Since the symbol-based trellis is capable of exploiting both
the symbol and bit-related received information, the symmetric-construction RVLC 1 scheme achieves
the best performance amongst the three candidate schemes owing to the residual redundancy inherent
in the code. When the bit-based trellis decoder is used for the three VLC codecs of Section 5.4.2, the
three VLC codecs behave similarly to each other, since all the bit-based trellis decoding algorithms
rely on exploiting bit-oriented information. Thus although the VLC source symbols have different
probability of occurrence, when they are encoded to bits, the occurrence probability of a binary zero

and binary one becomes similar.

In Section 5.5, we proposed a jointly optimised source-channel decoding scheme and three different
channel codecs were concatenated with the three VLC source codecs using bit-based trellis decoding.
The performance of the joint source-channel coding scheme characterised in Figures 5.11 to 5.18
was evaluated in various concatenated scenarios and both the AWGN channel and the uncorrelated
Rayleigh fading channel have been used for investigating the different behaviours of the various schemes
in Figures 5.11 to 5.18. It was concluded that although using a code having a longer average symbol
length will reduce the coding efficiency of the source codec, when employed in an iterative scheme,

the associated higher redundancy may be expected to benefit the scheme by exchanging extrinsic



CHAPTERS5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES158

RVLC 1 RVLC?2
—— 0 jteration # —— 0 jteration
— 1 iteration —— 1 iteration
—— 2 iterations —— 2 iterations
—— 4 jterations —— 4 iterations
% T
1 L
5 T T
e
I
! ;
i Y
N 1
12 14

Huffman
’} = — O —— 0 iteration
107 & —— | iteration
? iv\‘. x —— 2 iterations
10_% ¢ —— 4iterations
m 5 g %%
N i A
9) 10'E
SEe— ) ‘+r
) \— —F
-4
10 5 E % Rt
2 ] ! B — —
I - | e
0 2 6 8 10 12 14

Figure 5.15: VLC SER versus E,/Ny performance of the three VL.C source codecs of Table 5.1 concate-
nated with the RSC(2,1,5) convolutional code of Table 5.4, when communicating over an uncorrelated
Rayleigh fading channel. The VLC frame length was 1020 bits, while the overall length of the transmis-
sion burst after channel encoding was 2048 bits. The number of joint iterations invoked was increased
from 1 to 4. The VLC frame length was 1020 bits rather than 1024 bits for the LDPC case was because
there are four termination bits required for the RSC(2,1,5) code during encoding. The required £} /Ny
of the various schemes at a BER of 1074 will be summarised in Figure 5.18 and Table 5.5.

information between the source and channel decoder, thus the overall system performance may be
improved. Furthermore, it has been observed in Figure 5.12 that the RVLC 1 code has a faster
convergence rate compared to the other two VLC coding schemes. This is a consequence of its higher
free distance of two between the RVLC 1 scheme’s codewords, while the other two VLC codecs have
a free distance of one. Therefore, the free distance of the VLC codewords also beneficially contributes

to the overall performance gain of the joint source and channel coding scheme considered.

The choice of the VLC can be made with the aid of EXtrinsic Information Transfer chart (EXIT-
chart) analysis. The EXIT-chart was devised by ten Brink [107], where the iterative exchange of the
extrinsic information can be graphically visualised. Therefore, the EXIT-Chart is extremely useful,
when designing concatenated systems. The EXIT-chart analysis stipulates the assumption that both
the input a priori and the output a posteriori information of the soft-in soft-out decoder are Gaussian
distributed, provided the decoding blocklength is sufficiently long. The EXIT-chart of the three VLC
codes shown in Table 5.1 are given in Figure 5.20. It can be observed from Figure 5.20 that the RVLC

1 code having a free distance of two is capable of providing the best extrinsic information. By contrast,



CHAPTERS5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES159
RVLC 2

g
it

—— 0 iteration
—— | jteration

10°

d xS0

— 2 iterations B
—— 4 iterations 5
107
=—= '
I m 2
N0’
i 3 + =
] ] 2| © —— Oiteration (KT T
1071 © —— I iteration
5| % ——— 2iterations [R5 t ; j ‘;
Q0 — : fome L H I S
; 10_25 @ 4 iterations N T |
5 6 7 8 9 10

—_
(=}

[=}

SER

&
—— (Qiteration [] A !

—
o

e}

O —— 1 iteration %

x —— 2 terations i !

» —— 4 iterations \K

1 2 3 4 5 6 7 38
B,/Ny(dB)

o v b b b ow b ou Lo

=)

:
[
|
9 10

Figure 5.16: VLC SER versus Fj /Ny performance of the three VLC source codecs of Table 5.1 con-
catenated with the turbo convolutional code of Table 5.4, when communicating over an uncorrelated
Rayleigh fading channel. The VLC frame length was 1020 bits, while the overall length of the transmis-
sion burst after channel encoding was 2048 bits. The number of joint iterations invoked was increased
from 1 to 4. The VLC frame length was 1020 bits rather than 1024 bits for the LDPC case was
because there are four termination bits required for the turbo convolutional code during encoding.
The required Ej/Ny of the various schemes at a BER of 10~% will be summarised in Figure 5.18 and
Table 5.5.

the Huffman code is hardly contributing any extrinsic output. Therefore, when the Huffman code is

used in the joint source-channel decoding scheme, little iteration gain can be achieved.

The Ey/Ny values required by the joint source and channel coding scheme parameterised in Ta-
ble 5.4 for achieving SER= 10~ are summarised in Table 5.5, when communicating over an AWGN
and an uncorrelated Rayleigh fading channel. As seen in Table 5.5, even though in some cases the
TC coded scheme performs better than the LDPC assisted scheme, the decoding complexity of the
LDPCC is only about 50% of that of the turbo coded scheme. Therefore, the LDPC-assisted joint

source-channel decoding scheme is our best design option.



CHAPTER 5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES160

RVLC 1 RVLC 2
-G e T T T T 5 = T
, = TM\ ‘! ‘; f 2%% 1 ‘r | 4
10! — 10" —L
? i e o S ’ e —
B I 1Y | — ) A AW A —
2 2
10~ % %E 10”
= oy = fa B
m T— O UV N S I
wAo; N10° = %
’ . . (i =% 1 3 . ] =
2| © —— Oiteration [} X Y 1 2| © —— 0 iteration h)
101 ¢ —— 1iteration | 10*| ¢ —— 1iteration 3
5|« —— 2iterations FELHT —— 5| % —— 2 iterations ]
1| © —— 4iterations H Af\‘" v " 1‘ 2 L@ — 4 iterations J‘
10°¢ : 107
5 6 7 8 9 10 0 1 2 8 10

3 4 5 6 7
Ey/Ny(dB)

5 = ¥
2 | © —— Oiteration E I\ i -
10*1 ¢ — I iteration $%
5| % —— 2iterations F—— —F
2 ¥ —— 4 iterations "——-'7 Q—T—‘—“
10° —% ~
3 4 5 6 7 8 9 10
E,/Ny(dB)

Figure 5.17: VLC SER versus E;/Ny performance of the three VL.C source codecs of Table 5.1 concate-
nated with the LDPC code of Table 5.4, when communicating over an uncorrelated Rayleigh fading
channel. The VLC frame length was 1024 bits, while the overall length of the transmission burst after
channel encoding was 2048 bits. The number of joint iterations invoked was increased from 1 to 4.

The required £j/Ny of the various schemes at a BER of 10~ will be summarised in Figure 5.18 and
Table 5.5.



CHAPTERS5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES161

RSC LDPC
10 10
a 65\ —— Huffman
Gl = .
=, Y R RVLC 1
= o ——=- RVLC2
i - Il
\ Huffman
S N e RVLC | =3
ke ---- RVLC2 “
=} =}
& m— <1
e et 7 k‘:\
o o LN
g g
S S
3 6 8 R
= A I S
Z | Tt Z |,
s 55
55 55
A o 1 2 3 4 5 a1 0 1 2 3 4 5
Joint iteration index o Joint iteration index
10
o — Huffinan
‘TE ------ RVLC1
9
> -—-- RVLC2
]
o
wl
g S
[} \,
) 7 N \\
& N
=
g6
= T
z | T
Z 1 el T
48]
1 0 1 2 3 4 5

Joint iteration index

Figure 5.18: E, /Ny required for achieving a SER=10"* for the three VL.C source codecs of Table 5.1
concatenated with the three channel codecs of Table 5.4, when communicating over an uncorrelated
Rayleigh fading channel. A VLC frame length was 1024 bits, while the overall length of the transmis-

sion burst after channel encoding was 2048 bits. The number of joint iterations invoked was increased

from 1 to 4.

Huffman

Figure 5.19: Bit-based trellis structure for the three different VLC codes in Table 5.1. The dotted

line represents the transition incurred by an input of binary 0, while the solid lines represents the

transition triggered by an input of binary 1.



CHAPTERS. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES162

1.0

0.8

o Huffman Code, d;=1
o RVLC 2,d#=1
© RVLC 1, d=2

0.6

0.4

0.2

0.04

00 01 02 03 04 05 06
Ia

Figure 5.20: EXIT-chart for the five-symbol VLC codes specified in Table 5.1.



CHAPTERYS5. JOINT SOURCE AND CHANNEL CODING USING VARIABLE LENGTH CODES163

Channel Source | Channel E,/No(dB) required for
codec codec achieving SER=10"*
0 Iteration | 1 Iteration | 2 Iterations | 4 Iterations
AWGN Huffrman RSC 5.36 5.24 5.24 5.24
TC 4.3 4.24 4.24 4.24
LDPC 3.96 3.84 3.84 3.84
RVLC 1 RSC 4.36 3.36 3.18 3.12
TC 3.94 3 2.72 2.6
LDPC 3.96 3.18 2.96 2.84
RVLC 2 RSC ) 4.36 4.24 4.24
TC 4.18 3.24 3.06 2.94
LDPC 4 3.36 3.21 3.1
Uncorrelated | Huffman | RSC 8.96 8.96 8.96 8.96
Rayleigh TC 7.44 7.33 7.33 7.33
fading | LDPC 7.00 6.88 6.88 6.88
RVLC1 | RSC 7.28 5.68 5.28 5.12
TC 6.88 5.44 5.11 4.94
LDPC 6.88 5.61 5.27 5.22
RVLC2 | RSC 8.48 7.2 6.96 6.96
TC 7.33 5.88 5.44 5.33
LDPC 7.11 5.94 5.88 5.88

Table 5.5: Ejp/Ny required for the joint source and channel coding schemes parameterised in Table 5.4

to achieve SER=10"%, when communicating over an AWGN channel and an uncorrelated Rayleigh

fading channel.



Chapter 6

Weighted Bit Flipping Decoding of
LDPCC

It has been demonstrated in Chapters 2, 3 and 4 that the achievable performance of LDPC codes
may approach the Shannon limit, when using probabilistic decoding, also often referred to as the
Sum-Product Algorithm (SPA) [15,99]. A specific drawback of this soft decoder is however that
the associated decoding complexity quantified in Section 4.3.5 is high. Furthermore, for the sake of
achieving a good performance, the blocklength has to be comparatively long, hence the achievable

performance improvement of the soft-decoded LDPC code is attained at the cost of a relatively high

delay.
The hard decision based Weighted Bit-Flipping (WBF) algorithm proposed by Kou et al. [83,168]

strikes a good trade-off between the achievable performance and the associated decoding complexity.
We will show in Section 6.1 that the WBF algorithm evaluates a specific error term £, for each
individual message node at position n based on all the check-nodes’ information and during each
iteration the binary value of the least reliable message node having the highest error term £, will be
inverted. Kou’s idea [83,168] was further improved by Zhang et al. [101] by jointly considering both
the check-node-based and the message-node-based information upon introducing a weighting factor ay
when evaluating the error term E,,. This improved WBF will be referred to as the IWBF algorithm in
our forthcoming discussion. Furthermore, Nouh et al. proposed the Bootstrap Weighted Bit-Flipping
(BWBF) algorithm [102]. The BWBF algorithm determines, which particular received bit is unreliable
by comparing it to an off-line-calculated threshold denoted as a.3. The soft value of the unreliable bit
will be erased and replaced by the best possible estimate of this particular bit generated by exploiting
the knowledge of the reliable neighbouring message nodes. However, the WBF, IWBF and BWBF
algorithms attribute the violation of a particular check exclusively to the least reliable message node
participating in the check, while all the information that could be gleaned from the other participating

check nodes is discarded.

In this chapter, we commence by describing the WBF, the IWBF and the BWBF decoding algo-
rithms in Sections 6.1, 6.2 and 6.3, respectively. In Section 6.4, we propose a novel Reliability-Ratio
based Weighted Bit-Flipping (RRWBF) technique, which takes the soft information of all message
nodes into account, which contribute to a specific parity check. Two worked decoding examples are

provided in Section 6.5 for the sake of exemplifying the decoding procedures of the BWBF and the

164



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 165

RRWBEF algorithms. The corresponding simulation results are summarised in Section 6.6 for the above

mentioned four bit-flipping algorithms and finally a summary of the achievable performance gains will

be provided in Section 6.8.

6.1 Weighted bit-flipping algorithm

Let us assume that an LDPC encoded codeword c is transmitted over an AWGN channel using BPSK
modulation and a sequence of noise-contaminated soft-values y is received. Assume furthermore that
a hard decision can be made concerning each individual bit based on y in order to generate the
tentative codeword C, which is an estimate of C. When the received soft value y; associated with
the i*" message node has a low magnitude, then this bit will have a relatively low reliability. It is
readily seen that for a binary LDPC code each violated check can be corrected by flipping the state of
any of the message nodes participating in this check. Based on this observation, the WBF algorithm
attributes the violation of a parity check to the least reliable message node. Below we will detail the

decoding steps of the WBF algorithm.

Algorithm 3 The Weighted Bit-Flipping (WBF) algorithm is described by the following steps, which

are also shoun in Figure 6.1.

1. Calculate the syndrome vector sby multiplying Cwith the transpose H7T of the PCM
using modulo 2 operations, as in Equation 2.5. If the resultant syndrome vector
s is an all-zero vector, then we claim that a legitimate codeword has been found

and the iterations are terminated.

2. For each check node ¢, 1 =1.--M, the WBF algorithm finds the magnitude of the least
reliable received message bit, which obeys:
mi“ = min 61
Yi e, lytlv ( )
where the notation |y;| represents the absolute value of the tth received message,

i.e. the magnitude of the #'® channel soft output, while C; represents the set of

column indices of the message nodes participating in the i*" row of the PCM.

3. For each message node j, j=1-.-/N, the error term F; is calculated as:

B =Y (25— y"™, (6.2)

tER]'

where I; denotes the row indices of the check nodes participating in the 4t column
of the PCM. The term (2s;—1) in Equation 6.2 indicates that when the t!" parity check
is violated, i.e. when we have s; = 1 and thus (2s; — 1) = 1, then the magnitude

of the least reliable received message bit y/"" is added to the error term Ej; as

in Equation 6.2. By contrast, when a specific parity check is satisfied, then we

have (2s;,—1) = —1 and hence y/"" is subtracted from the error term E; of Equation 6.2.



‘F°Q 03 1°Q SUOIDAG Ul Padup

-0IjUT WYHI0T[E o\, T 83 JO degs 7t a3 09 gguoraq Yoo[q B} $9j0ULp AXY UOIJEj0U 9], 'PIIdPISU0D

s19p029p D AT Surddig-41q I10og oy} Jo sompeooid Furpooep oYy SUISTIBWIWINS JIBYD MO[ ' 9Im3r]

WBF BWBF IWBF RRWBF
Find Find Find
dB (27} 1 ]:,‘m ar
(A3.1) A2.1 (A4.1)

Identify
unreljable

Update channel
soft values for
unreliable nodes

(A33)

Calculate symdrome vector and check whether a legitimate codeword has been found.
1f s0, then terminate the iterations. Otherwise continue the iterations, if the maximum number of iteration has not been exhausted.

(AL.1)(A2.2)(A3.4)(A4.2)

Calculate
Find the least reliable bit yfl-’"i”' RR;; = a,, - Ly i
(only has to be computed for the first time) (only calculated. once)
(A1.2)(A2.3)(A3.5) (A43)

! ] ! ¢

I .  THETL E = Z ~(23’ - l)y'l’li” '
Ej =3 en, (25— Dy T |,,jj|t r Ej =3 ten, (25t —1)/RRy
(A1.3)(A3.6) (A2%) (Ad.4)

' ' ] &

Flip the bit associated with the highest error term £
(A1.4)(A2.5(A3.7)(A4.5)

DOAAT A0 HNIAODHA ONIddITA LI AALHDIAM "9 H4LdVHO

991



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 167

4. Flip the specific bit of the tentative codeword @ having the highest error term
E;, and repeat steps 1, 3 and 4 until the syndrome vector sbecomes an all-zero vector
or the maximum affordable complexity has been exhausted.
It can be observed that the real value y}”i” used during each iteration is calculated by the second
step, which is excluded from the iteration loop of Figure 6.1. Thus the complexity of the WBF algo-
rithm is significantly lower than that of the probabilistic decoding algorithm outlined in Section 2.5.2.

6.2 Improved weighted bit-flipping algorithm

As seen in Equation 6.2, the WBF algorithm proposed by Kou et al. [83] only considers the check-node
based information during the evaluation of the error-term £;. By contrast, the Improved WBF (IWBF)
algorithm proposed by Zhang and Fossorier [101] enhanced the performance of the WBF algorithm,
since it considered both the available check-node based and the message-node based information during
the evaluation of £;. As seen from Equation 6.2, when the error-term £ is high, the corresponding
bit is likely to be an erroneous bit and hence ought to be flipped. However, when the soft-value |y ;| of
a certain bit is high, the message node itself is demonstrating some confidence that the corresponding
bit should not be flipped. Hence Equation 6.2 was modified in [101] as follows:

E; = Z (2s; — Dyi™™ — oy - |y (6.3)
teER;

In Algorithm 4 , the WBF procedure algorithm will be used as a reference algorithm, and the dif-

ference of the other three algorithms in comparison to the baseline WBF' algorithm will be highlighted

using italics font.

Algorithm 4 The Improved Weighted Bit-Flipping (IWBF') algorithm is described by the following

steps, which are also shown in Figure 6.1.

1. Pre-determine the optimal threshold o, which will be used in the evaluation of the error term

E; of Equation 6.3.

2. Calculate the syndrome vector s by multiplying C with the transpose H” of the
PCM using modulo 2 operations as in Equation 2.5. If sis an all-zero vector, them a

legitimate codeword has been found and the iterations are terminated.

3. As the WBF algorithm, for each check node ¢, i{=1-.-M, the IWBF algorithm finds

the magnitude of the least reliable original coded bit, which obeys:

min _ min 6.4

Yi e |yt|> ( )
wvhere the notation |y;| represents the absolute value, i.e. the magnitude of the tth soft

output of the channel.

4. For each message node j, j =1--- N, the error term Ej is calculated as:

Ep= Y (28— Dyi™™ — or - [y, (6.5)

teR;)



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 168

The term (2s; — 1) in Equation 6.8 indicates that when the t™* parity check is violated, i.e. when we
have s, = 1 and thus (2s; — 1) = 1, then the magnitude of the least reliable original coded bit y™™ is
added to the error term E;, as in Equation 6.3. By contrast, when a specific parity check is satisfied,

then we have (2s, — 1) = —1 and hence y[™" is subtracted from the error term E; of Equation 6.5.

5. Flip the specific bit of the tentative codewordéhaving the highest error term
E;, and repeat steps 2, 4 and 5 until the syndrome vector sbecomes an all-zero vector

or the maximum affordable complexity has been exhausted.

Equation 6.3 considers the extra information provided by the message node itself, thus a message
node having a higher soft-value magnitude has a lower chance of being flipped, despite having a high
error term E; owing to encountering unreliable parity checks. We note however that for LDPC codes
having different column weights, or operating at different SNRs, we should weight the effect of the
soft-value |y;| differently [101]. Thus, when Equation 6.3 is used for decoding a particular LDPC code,

the optimum threshold value «; should be found experimentally.

6.3 Bootstrap weighted bit-flipping algorithm

The Bootstrap WBF (BWBF) algorithm was proposed by Nouh et al. in [102]. Unlike the IWBF
algorithm of Section 6.2, which modifies the evaluation of the error term F; during each iteration, the
BWBF algorithm pre-processes the received soft value y, before the soft channel values are passed
on to the WBF decoder. The BWBF initially compares the absolute magnitude of each message
node’s channel soft output to a channel-SNR. dependent threshold «p, which is determined using
off-line investigations. If a certain message node has a magnitude less than the threshold value, this
message node is considered to be an unreliable node and thus erased. Otherwise, the message node is
considered to be a reliable node and the original channel soft value will be retained. After identifying
all the unreliable message nodes, the reliability of the check nodes will be determined. A check node
is deemed unreliable when there is more than one unreliable message node participating in this check,

but as reliable otherwise. The soft value of the unreliable bits will be calculated as follows:

yi=uit ) L mineccizs ol (6.6)
J tER; -1 -Tninkect#j lyk|.

The variable y; in Equation 6.6 denotes the channel’s soft output for the j th bit, which has been
classified as unreliable, while y; represents the updated channel soft output for the j** bit. The notation
R} has a similar meaning to that of R; introduced in Section 2.5.2, while the extra superscript 7 in
Equation 6.6 indicates that only the reliable checks will be considered during the BWBF algorithm.
As seen in Equation 6.6 for each check that the j** message node is participating in, we have to find
the magnitude of the least reliable message node, except for the j** message node. Furthermore, based
on the channel’s soft output value corresponding to all reliable message nodes participating in the tth
check, a hard decision can be made for the sake of producing a sequence of binary 1s and 0s. Observe
in Equation 6.6 that if we have an even number of binary 1s in the sequence, the previously found
magnitude of the least reliable message node will be multiplied by a plus one. By contrast, if there
is an odd number of binary 1s in the sequence obtained by hard decision, a multiplication of minus

one is applied. When the soft value of the erased unreliable message nodes is replaced by the values



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 169

calculated in Equation 6.6, the new soft sequence is passed on to the WBF decoder for the sake of
finding the most likely LDPC codeword. With the advent of these measures, the BWBF algorithm
enhances the attainable bit error ratio performance by preventing unreliable information from being
propagated through the nodes. It has been observed in [102] that at different SNRs the threshold ap
should be different. Hence we introduce the term normalised threshold denoted as & p = ap/c, where
o represents the standard deviation of the AWGN. As noted before the algorithmic steps printed in

italics are those that are different from Algorithm 3.

Algorithm 5 The Bootstrap Weighted Bit-Flipping (BWBF) algorithm is described by the following

steps, which are also shown in Figure 6.1.

1. Determine the optimal normalised threshold &.
2. Determine the unreliable message nodes and check nodes.
3. Use Equation 6.6 to update the channel’s soft output values for the unrelioble message nodes.

4. Calculate the syndrome vector s by multiplying C with the transpose H7” of the
PCM using modulo 2 operations, as in Equation 2.5. Ifsis an all-zero vector, then a
legitimate codeword has been found and the iterations are terminated.

5. For each check node z, 1 =1.--M, the WBF algorithm finds the magnitude of the

least reliable original coded bit, which obeys:

y"" = min |y, (6.7)

where the notation |y;| represents the absolute value of the t** channel soft output.

6. For each message node j, j=1---N, the error term £; is calculated as:

E; = Z (28, — 1)yrn. (6.8)
tcR;

The term (2s;—1) in Equation 6.2 indicates that when the t'* parity check is violated,
i.e. when we have s, =1 and thus (2s;—1) =1, then the magnitude of the least reliable
original coded bit y{”’i” is added to the error term E;, as in Equation 6.2. By contrast,
when a specific parity check is satisfied, then we have (2s; — 1) = —1 and hence y[”i”

is subtracted from the error term L} of Equation 6.2.

7. Flip the specific bit of the tentative codewordéhaving the highest error term
E;, and repeat steps 4, 6 and 7 until the syndrome vector sbecomes an all-zero vector

or the maximum affordable complexity has been exhausted.
6.4 Reliability-ratio based weighted
bit-flipping algorithm

It can be observed in Equation 6.2 that the WBF algorithm only considers the check-node-based
information. This impediment has been improved by the IWBF algorithm in Section 6.2, which



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 170

additionally took into account the information allowing from the message-nodes by introducing the
extra term «-|y;| in Equation 6.3. Furthermore, by pre-processing and hence enhancing the soft vahies
of the unreliable bits, the BWBF algorithm of Section 6.3 becomes capable of improving the achievable
bit error ratio performance. However, all the algorithms of Sections 6.1, 6.2 and 6.3 attribute the
violation of a particular parity check to the most unreliable participating message node, while all the
soft information of the other message nodes involved in this check is discarded. However, every message
node involved in this specific check is contributing to its final check state. Thus, even though some
of the message nodes have a higher confidence owing to their higher channel soft output magnitude,
it is more accurate to state that they are less likely to violate the check. Hence, here we introduce
a quantity termed as the Reliability Ratio (RR) , which will be used for improving the algorithm’s
achievable performance. As noted before, the algorithmic steps printed in italics are those that are

different from Algorithm 3.

Algorithm 6 The Reliability Ratio based Weighted Bit-Flipping (RRWBF') algorithm is implemented

using the following steps, which also become explicit in Figure 6.1.

1. Find the magnitude of the most confident message node in a particular parity check i, which is

denoted by y"**.

2. Calculate the Reliability Ratio RR; ; of the j* message node involved in the ith check as:
RRij = arr - Jy;|/yi"™™", (6.9)
where cr represents a normalisation factor introduced to ensure that we have ) ;.o RR;j =1.

3. Calculate the syndrome vector sby multiplying the tentatively decoded codeword
be the transpose H” of the PCM using modulo 2 operations, as in Equation 2.5. Ifs

is an all-zero vector, then we assume that a legitimate codeword has been found and the

iterations are terminated.

4. FBwaluate the error term E; using the reliability ratio calculated in Equation 6.9 as:

E; =) (2s:—1)/RRiy. (6.10)

tER]'

5. Flip the bit in Chaving the highest error term E;, and repeat steps 3, 4 and
5, until the syndrome vector s becomes an all-zero vector or the maximum affordable
complexity has been exhausted.

The RRWBE algorithm has the advantage that the real-valued variable RR; ; does not have to be
calculated during the later iterations. Furthermore, it will be demonstrated in Section 6.6 that under

certain channel conditions, the attainable performance of the RRWBF algorithm becomes superior in
comparison to that of the WBF, the IWBF and the BWBF algorithms in Sections 6.1, 6.2 and 6.3.

6.5 Decoding examples

Hereby, two numerical examples will be given for illustrating the operation of the BWBF and RRWBF
decoding algorithms. No worked examples are provided for the WBF algorithm, because it is embedded



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 171

in the BWBF algorithm. Furthermore, the IWBF algorithm of Section 6.2 includes a single additional
term in the calculation of the error term F; and thus it is fairly similar to the WBF algorithm, as
it is seen by comparing the flow charts of these two algorithms in Figure 6.1. Hence the numerical

illustration of the IWBF decoding process will be omitted.

6.5.1 Bootstrap weighted bit-flipping decoding example

The PCM illustrated in Table 2.5 will be used in this example. For the sake of simple illustration, we
assume that an all-zero codeword is BPSK modulated and transmitted through an AWGN channel.

The channel’s soft output values can be found in Table 6.1.

1] 2] 3 4 | 5 [ 6] 7 [ 8 [ 9 1011 [ 12 [13]14]15
c| o 0 0 0 o Jo ] o] o 0 0 0 o o] o

y | 412 ] 409 | 40.6 | +0.2 | 40.7 | -0.2 | +16 | +1.0 | +0.7 | +3.0 [ +2.0 [ +0.85 | 0.7 | +0.6 | +03
¢l ol o 0 0 o [ 1 [ 0o [ o] o 0 0 o Jo] o [ o]

Table 6.1: The received channel soft output values for the all-zero transmitted codeword. The first
line indicates the position of each individual bit. The vector C indicates the original LDPC coded
bits at each particular position. The vector y shows the channel’s soft output, while the vector z

represents the tentative decoded bits based on € using hard decisions.

It may be observed from the values summarised in Table 6.1 that the sixth bit is erroneous. We

will show how the BWBF algorithm corrects this error.

Upon invoking the first step of the BWBF decoding algorithm, a threshold value of ap = 0.25
is chosen. Hence any bit that has a magnitude lower than 0.25 will be deemed unreliable and hence
recalculated, continuing the second and the third step for BWBF decoder described in Figure 6.1.
Observe in Table 6.1 that the fourth and the sixth bits fall into this category. Thus we will calculate
the updated soft values of these two bits using the flow chart of Figure 6.1. Since the PCM given in

Table 2.5 is used for this worked example, it is reproduced here for the convenience of the reader.

Message Nodes

1 2 3 45 6 7 8 9 10 11 12 13 14 15
1110 100O0O0OT1U0 1 0 0 0 O
20100011011 0 0 0 0 0
3 (0 01 00 0100 O0 0 1 0O 1 1
411010100101 0 0 0 0 O

Check (6 (O 0O 1 0 1 0 0 1 0 0O 0 O 1 1 0
Nodes|6 |0 0 O 0 0 1 0 1 0 O 1 O 1 0 0
710 0 0 0O 01001 0 1 0 0 1
§ {0 0O 0OO1 00 O0O0OO0O 0 O 1 1 1
g (11010 100O0O0 O 0 O 0 0
(0 0 01000010 1 1 0 0 0

Table 6.2: The PCM H of Table 2.5



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 172

By observing the structure of the PCM reproduced in Table 6.2, we can see by noting the positions
of the 1s in the fourth column that the fourth message node is participating in the first, the ninth and
the tenth parity check, while the sixth one is involved in the second, the sixth and the ninth parity
check. According to the definition of reliable check nodes, we can identify that the first and the tenths
parity check are reliable checks, because the fourth message node is the only unreliable message node
these two check nodes are connected to, as seen by jointly considering Table 6.1 and Table 6.2. For
the same reason, the second and the sixth check nodes are also reliable nodes, they are only connected
to a single message node which is unreliable, namely the sixth. By contrast, the ninth check node is
unreliable, since it is connected to both the unreliable fourth and the sixth message node. Hence the
ninth check will not be considered during the calculation of the updated channel soft values invoking
Equation 6.6 for the fourth and the sixth message node. The soft values of the above two unreliable

message nodes will be calculated as follows:
Yy =ys+07+07=02+07+0.7 =16, (6.11)

where the first 0.7 term copied from the ninth column of Table 6.1 indicates that among all the reliable
message nodes participating in the first parity check, the ninth message node has the lowest magnitude
of 0.7, because all the tentatively decoded bits of the first, the second, the ninth and the 11** message
nodes found in Table 6.1 are zeros. Thus according to Equation 6.6, 0.7 is multiplied by +1, yielding
the first 0.7 term in Equation 6.11. Following a similar philesophy, it may be readily shown that the
tenth check will also provide a contribution of +0.7 to Equation 6.11. Similarly, the updated value yj

determined for the sixth message node is calculated as follows:

Yp = +0.7+07=-02+0740.7=12. (6.12)

From the results obtained in Equations 6.11 and 6.12, it can be observed that by invoking the
BWBF algorithm, the soft values of the unreliable bits are enhanced. The fourth message node
originally had a relatively low confidence of its own state while the sixth message node was erroneously
hard decoded. After the BWBF algorithm’s pre-processing, the magnitude of the fourth message node
was increased, and the sixth message node has had its binary state corrected. By imposing a hard
decision on the updated soft values of the two originally unreliable message nodes, a hard decision was
made and hence we arrived at an all-zero codeword, which is multiplied by the transpose of the PCM
in Table 6.2. An all-zero check vector is resulted, indicating that the decoded codeword is legitimate,
as in the fourth step of Figure 6.1. Hence in this example, the BWBF was shown to be capable of
correcting the erroneous bits found during the pre-processing stage. If the resultant vector is not an

all-zero vector, further steps will be required according to Figure 6.1.

6.5.2 Reliability ratio based weighted bit-flipping
Decoding Example

Our RRWBF decoding algorithm example outlined in this section will be using the same experimental
data of Table 6.1 as in Section 6.5.1. Similarly, the PCM of Table 6.2 will be used in this example.
According to the first step in Figure 6.1, upon multiplying the tentative decoded codeword z seen in
Table 6.1 by the transpose H” of the PCM given in Table 6.2, we arrive at the syndrome vector of
{0100010010}, which is not the all-zero vector, indicating that the codeword was corrupted. Therefore



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 173

the RRWBF algorithm of Section 6.4 is used for correcting it. More explicitly, we invoke Equation 6.9
for each message node at their corresponding parity check, according to the third step of Figure 6.1.
Note that the third step will only be calculated once, and in later iterations the reliability ratio will
not be re-calculated. For example, the highest magnitude for all message nodes participating in the
first check will be 2, which belongs to the 11" message node, as seen in Table 6.1. Thus, the reliability

ratio of the other message nodes used in the first parity check is found in Table 6.3.

Message Node Index j 1 2 4 ) 11
Reliability Ratio 1.2/2 | 0.9/2 | 0.2/2 | 0.7/2 | 2/2
Normalised Reliability Ratio Ry, ; 0.3 | 0225 | 005 | 0.175 | 0.25

Table 6.3: Normalised reliability ratios of the message nodes participating in the first parity check of

Table 6.2.

By carrying out the same calculations as in Table 6.3, the corresponding reliability ratio values

can be obtained at all parity checks, which are listed in Table 6.4.

1 1 [ 2 3 4 5 6 7 ] 8 | 9 0 | 11 12 13 14 15
(1] 03 | 0225 0.05 ~ Joarms 0.25
2 0.14 0.031 | 0.25 01 ] 0.469
3 0.152 0.405 | | 0.215 0.152 | 0.076
4 | 0.185 0.09 0.1 0.15 | 0.462 \
5 0.167 0.194 0.278 0.194 | 0.167
6 0.051 0.256 0.513 0.18
7 0.278 0.52 0.148 0.052
8 0.305 0.305 | 026 | 013
9 [ 048 | 036 0.08 0.08
| 10 [ | 0.053 | 0.186 | 0.533 | 0.228

Table 6.4: Normalised reliability ratio for each message node participating in each individual parity

check using the soft channel output values given in Table 6.1.

Based on the normalised reliability ratio values calculated from Equation 6.10 and summarised in
Table 6.4, the third step of the RRWBF outlined in Figure 6.1 is implemented and the error term £

is calculated according to Equation 6.10 as follows:

Ey = (2s1—1)/RRy 1+ (284 —1)/RR41 + (289 — 1)/ RRy,
= [(2-0-1)/03] +[(2-0—1)/0.185] +[(2-1 — 1)/0.48]
—  —3.33+ (—5.405) + 2.083
—  _6.652, (6.13)

where the variable s; denotes the syndrome of the it" parity check previously calculated upon multiply-
ing the tentative decoded codeword z of Table 6.1 by the transpose H” of the PCM seen in Table 6.2.
Since the ninth parity check is violated owing to the erroneous bit at position six, the syndrome bit
sg becomes +1, while the first and the fourth parity check is satisfied, hence the syndrome bits s; and
s4 are zeros. By carrying out the calculation of the error term F; for the remaining message nodes of

Table 6.4, the error terms F; associated with all the message nodes are summarised in Table 6.5.

Upon identifying the specific bit having the highest error term of Fg = 50.29, the sixth bit in the

codeword was flipped. As seen in the final step of Figure 6.1, since the only erroneous bit is flipped to




CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 174

Message

Node

Index 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[E]- -6.652 | 2.33 | -18.74 | -26.37 | -13.7 | 50.29 }-2.07 =339 | -5.96 | -1.96 | -3.93 | -12.5 | -2.87 | -16.41 | -30.65

Table 6.5: The error term F; of each individual coded bit evaluated from Equation 6.10 based on

the received soft channel output value seen in Table 6.1 and on the normalised reliability ratio values

summarised in Table 6.4.

the correct state, a legitimate codeword is detected owing to a resultant all-zero vector generated upon

multiplying the new tentative decoded codeword by HT. Hence the decoding process is terminated.

6.6 Simulation results

6.6.1 Effects of the number of iterations

In the context of the probabilistic decoding algorithm described in Chapter 2, whether a bit should
be flipped or not is decided in the probabilistic decoding algorithm on the basis of the updated a
posteriors probability. Hence during each iteration the decoder is capable of flipping a certain number
of bits. However, since the four hard decision based bit-flipping algorithms of Sections 6.1 to 6.4 only
flip the specific bit having the highest error term F;, the number of correctable bit errors for each
iteration is only one. Thus the number of decoding iterations directly affects the attainable BER
performance. Therefore, we would like to demonstrate to what extent we can improve the achievable
performance upon using an increased number of decoding iterations. We will use three different-length
half-rate regular LDPC codes for this experiment and the above-mentioned decoders of Sections 6.1

to 6.4 will be used in order to demonstrate their different error correction capabilities. The detailed

simulation parameters are listed in Table 6.6.

It may be observed in Figure 6.2 that for the (200,100,3) LDPC code the maximum number of
iterations required is less than 20. Similarly, for the (500,250,3) LDPC code characterised in Figure 6.3
and for the (1000,500,3) LDPC code evaluated in Figure 6.4, no further BER performance improve-
ments may be attained, when the number of iterations becomes more than 40 and 80, respectively.
Hence we can see in Figures 6.2 to 6.4 that when the code’s blocklength is increased, more iterations
are necessary to eliminate the erroneous bits in the codeword. We can see from Figures 6.2 - 6.4 that
setting the maximum number of iterations to 10% of the coded blocklength may be deemed suffi-
ciently high for fully exploiting the decoding power of the decoder. Thus in our future investigations
we opted for setting the number of iterations to 10% of the LDPC code’s blocklength. Furthermore,
we can observe from Figures 6.2 - 6.4 that when only a low number of iterations is allowed, the BWBF
algorithm achieves the best performance. In other words, the BER curves of the BWBF algorithm
do not exhibit as high iterative gains as the other three counterparts. This is because during the
initialisation process of the BWBF algorithm, a number of errors are already corrected, which is in

contrast to the other three bit-flipping algorithms, which are only capable of correcting errors during

the iterative decoding process.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 175

Modem BPSK
Channel AWGN
LDPC Code (200,100,3)
Maximum Number

of Iterations 5, 10, 20, 40, 60, 80, 100
LDPC Code (500,250,3)
Maximum Number

of Iterations 10, 20, 40, 60, 80, 100
LDPC Code (1000,500,3)
Maximum Number

of Iterations 10, 20, 40, 60, 80, 100
IWBF optimum aj 0.4
BWBEF threshold &p 0.5

Table 6.6: Simulation parameters for three different-length half-rate regular LDPC codes. The LDPC
coded bitstreams are BPSK modulated and are transmitted over an AWGN channel while invoking
various maximum number of iterations. The IWBF algorithm used oy = 0.4 [101] and the normalised

BWBEF algorithm’s threshold of 0.5 was taken from [102].

6.6.2 Reliability of the bit flipping algorithms

Since all the four above mentioned bit-flipping algorithms of Sections 6.1 - 6.4 are based on flipping
the bits having the highest error term F;, we will now investigate how accurate or reliable these
algorithms are in terms of locating the erroneous bits by resorting to the calculation of £;. When a
particular bit is flipped during the simulation, the updated state of this bit will be compared to the
original coded bit. If these two states are identical, then this flip will be classified as a correct one.
Otherwise the flip is classified as an incorrect one. We will quantify the percentage of both the correct
bit flipping operations and the fraction of incorrect bit flipping actions upon normalising them to the
total number of bits that have been flipped. The simulations were carried out using BPSK modulation
when communicating over an AWGN channel. A half-rate regular (500,250,3) LDPC code was used
and the results are shown for the WBF, the IWBF, the BWBF and the RRWBF algorithms. The

maximum number of iterations was set to 60.

It can be observed from Figure 6.5 that in the high-SNR region the bit-flipping algorithm is quite
accurate in terms of locating the position of the erroneous bit. However, when the SNR is low,
the IWBF algorithm and the RRWBF algorithm are superior in comparison to the other two owing
to additionally considering the message-node-based soft information. The WBF and the BWBF
algorithms do not perform particularly well in the low-SNR region, because when the SNR is low,
a check is often violated by more than one erroneous bits. Hence, the calculation of the error term
E; expressed in Equation 6.2 is not sufficiently reliable, when only considering the check-node based

information.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 176
RRWBF WBF

f : : T O —— 5 Iterations f : i 5 0 — S5 lterations
| f f ! ! O —— 10 lterations | | i I I 1 ¢ —— 10 Terations
107 %ﬁ X —— 20 Iterations 107 %ﬁ x  —— 20 [terations
e st ¥ —4 T —— 40 lterations f = 7 7 —— 40 lterations
2 T i —— 60 Iterations 2 ’ t —— 60 Iterations
10 % ® —— 80 lterations 10 @ —— B0 Iterations
m + —— 7 & —— 100 Iterations m i S — { & —— 100 Tterations
1 LN 1
X = I N,
m 107 == —
m T T  —— v—_ ¢ -
I 1 N ]
4 -
10
| } T 1 } — -
I T 1 1 &
-5
10
f i i T i i
-6 [ [ | il [ [ L
10
2 3 4 5 6 8 9

—— 5 Terations

0
= F — 5 lterations == (o]
t f ! ! F—— ¢ —— 10 Iterations | ! & —— 10 Tterations
10 %% >~ 20Iterations 10° ——— <« —— 20 Iterations
9 t t ¢ —— 40 Tterations = 1 ¥ —— 40 [terations
2 f s ! . —— 60 Tterations 2 } I t —— 60 Iterations
10 % ® —— 80 Iterations 10 ® —— 80 Iterations
J— ations j =+ 1 ] _ terations
m = i ! == t ! & 100 Iterations m = = = ! & 100 Tterations
3 .
m 107 m 10 3 $%$
M — aa) E— z
4 4
10 — 10 == < j
i i ! i : — = ! ! |
I I I I | ! T I 1 !
-5 R
10 éﬁﬁ 10 5 %%
— = —— ===t
-6 .
10° | I — 1o I
2 3 4 5 8 9 10 2 3 4 5 6 7 8 9

f
6 7
Ey/No(dB) Ey/No(dB)

Figure 6.2: BER performance of the (200,100,3) regular LDPC code decoded by the WBF decoder, the
IWBF decoder, the BWBF decoder and the RRWBF decoder, when communicating over an AWGN
channel using BPSK modulation. The achievable coding gain of the various schemes at a BER of 107*

will be summarised in Table 6.11.

6.6.3 Effects of the various blocklengths

As seen in Chapter 2, the blocklength of the LDPC code is important, when using the probabilistic
decoding algorithm of Section 2.5.2 owing to the associated increased minimum distance. In this
subsection we will investigate the associated performance trends, when the blocklength of a half-rate

LDPC code is increased. The corresponding simulation parameters are listed in Table 6.7.

Observe in Figures 6.6, 6.7 and 6.8 that no significant coding gain can be achieved upon increas-
ing the blocklength when communicating over AWGN or uncorrelated Rayleigh-fading channel. By
contrast, it is expected that over correlated fading channels longer codes will tend to perform better
owing to their ability to cope with bursty channel errors. A BER performance comparison of the
four bit-flipping algorithms is offered in Figure 6.9 for transmission over an AWGN channel. The
RRWBF algorithm achieved the best performance, with BWBF algorithm obtaining a marginally

inferior performance.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 177
RRWBF WBF

(1] 0
10 BT =g 10
f } 3 4 O —— 10 Tterations %% © —— 10 Terations
| ! T ! ] ¢ —— 20 Tterations N i 7 ¢ —— 20 Iterations
107 x —— 40 Tterations 107 x —— 40 [terations
S i s . - ——— T —— 60 lterations 7 —— 60 Iterations
2 D F—— t —— g0 Iterations 2 t —— 80 Iterations
10 ® —— 100 Iterations 10 ® —— 100 Tterations
pg e —— — a4 = —
-3 -3
Spys——_,er > » 107 et
CQ " ; = I — a — ; i
i i % [ 1 1 =i T A
4 4
10 10
i + - T — F — — f 1 1 7 f 7 +
[ i ! I I — i —] [ ! ! i | I !

—_
<
n
—
(]
n
s

il

F 7 % ———— 3
10° { [ \ [ [ \ \ [ 107 { | I 1 \ [ )
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9
E/Ny(dB) E/Ny(dB)
10" = 10° ———
=—=——=—"1N —_— )
; O —— 10 ferations : : i O —— 10 lterations
, ! ¢ —— 20 Iterations | ! 1 & —— 20 Iterations
107 % ¥ —— 40 Iterations 107 ¢ 40 Tterations
+ + 1 < —— 60 Tterations © —— 60 Iterations
2 + —— 80 lterations 2 1 —— BO Iterations
10 ® —— 100 Iterations 10 ® —— (00 Iterations

i = T —t | i — 1 T T
L 1 a7 ]

i

[a's % o~ — — Y = — :

EIO'3 AR S W Y S S E — (F3 10 S
I

LN

t t T
T T T

: t
t i — i

t —

107" %%% 107 %ﬁ%

| i i ! o
\ | \ \ [

6 8 9

|
5 7
Ew/No(dB)

i
|
4

w

|
|
6 9 10

]

4 s 7
E/No(dB)
Figure 6.3: BER performance of the (500,250,3) regular LDPC code decoded by the WBF decoder, the
IWBF decoder, the BWBF decoder and the RRWBF decoder, when communicating over an AWGN

channel using BPSK modulation. The achievable coding gain of the various schemes at a BER of 1074

will be summarised in Table 6.11.

6.6.4 Effects of using various code rates

In this subsection, the BER performance of five regular LDPC codes having the same coded blocklength
of 900 bits, but having a different code rate will be investigated, when communicating over AWGN

channels. The simulation parameters are listed in Table 6.8.

When the code rate is varied in the AWGN channel scenario considered, we observe from the
results shown in Figure 6.10 that the higher the code rate, the higher the coding gain. This is because
the slight SNR loss of higher coding rates is outweighed by their advantage of having significantly less
parity bits. When we consider the uncorrelated fading channel, the performance trends associated
with varying the code rate have changed, as evidenced by Figure 6.12. For the WBF, IWBF and
BWBEF decoder, the achievable BER performance becomes poorer, as the code rate is increased. By
contrast, for the RRWBF decoder, the coding gain versus coding rate curve peaks around r = 0.75 and
then it decays around r = 0.8. We can also see in Figure 6.12 that the performance of the RRWBF
is in fact the worst in the uncorrelated Rayleigh fading channel at low code rates. This is because in

the above experiments we were using a column-weight of three for all the LDPC decoders. However,

?
|
10



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 178
RRWBF WBF

10 = o= —— ===
| i —=— O —— 10 Terations F T § & —— 10 Iterations
. [ ! ¢ —— 20 Iterations . | f [ O —— 20 lterations
10 ﬁ x  —— 40 Iterations 10 E% % —— 40 Iterations
= 7 = T —— 60 Tterations i T ——" 4 % —— 60 Iterations
2 | 8 | ¥ —— 80 Iterations 2 1§ —— 80 Derations
10 e —— (00 lterations 10 ® —— |00 [terations
-3
1o
4
10
10°
i
|
-6
107
2

F E ——— © —— 10 Iterations —— 10 Tterations
‘ ¢ ! I ¢ —— 20 Terations —— 20 Iterations
lOqu ¥ —— 40 Tterations —— 40 Tterations
+ i t & —— 60 Tterations © —— 60 Iterations
2 2 ! ‘ { + —— 80 Tterations —— 80 [terations
10” % ® — 100 Iterations —— 100 Iterations
o’ 1 e — — T “ —" —
3 N “K
g 10 : W% — % ‘
i X 1
10'4 :‘**?%? %
: i = i
10‘5 % %
I t i in i — i i - 7 i - i
10° \ I [ N [ [ 1 ! | 107 I \ | | 1 |
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9
E/No(dB) E/Ny(dB)

Figure 6.4: BER performance of the (1000,500,3) regular LDPC code decoded by the WBEF decoder,
the IWBF decoder, the BWBF decoder and the RRWBF decoder, when communicating over an
AWGN channel using BPSK modulation. The achievable coding gain of the various schemes at a
BER of 10~ will be summarised in Table 6.11.

since the RRWBF decoder calculates the reliability ratio based on all the participating message nodes
for a given check node, the decoder would benefit from having more samples for the sake of having a
more accurate reliability ratio calculation. We can see that since in an AWGN channel the channel
conditions are benign, the RRWBF decoder was capable of confidently calculating the reliability ratio.
However, when the channel becomes more hostile in a fading channel scenario and when a low code
rate is desired, the row weight of the LDPC code’s PCM becomes relatively low in comparison to that
of a higher rate LDPC code. Hence, upon increasing the code rate the RRWBF becomes capable of
calculating the reliability ratio values more accurately. Observe however that in Figure 6.12 a lower
coding gain was achieved at r = 0.8 in comparison to r = 0.75, indicating that there is a trade-off
between providing more accurate information for the RRWBF to calculate the reliability ratio and

the associated error correction capability of the corresponding code rate.

There is another way of improving the RRWBF decoder’s confidence in calculating the reliability
ratio. Specifically, we can increase the column weight proportionately to the increase of the row

weight. Furthermore, upon increasing the column weight the minimum distance of the LDPC code



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 179
RRWBF

1.0 Correct Flipping 0| E
B Incorrect Flipping 8 Incorrect Flipping l i
O 08 i L 0.8 1
on on
3 “ 3
= 06 = 06
3] 3]
=04 = 04
L L
2 4 6 8 10 2 4 6 8 10
E,/Ny(dB) E,/Ny(dB)
BWBF IWBF
1.0 | B2 Correct Flipping 1.0 Correct Flipping
8 Incorrect Flipping fl 8 Incorrect FlippingJ W

%)DO.S } l H %)00.8 [
8 ﬂ S i
= 06 = 06
: :
=04 =04
L 9]
s ol

0.2 0.2

0.0 J‘ 0.0 I

8 10

10

2 4 | 6
Ey/No(dB)

Figure 6.5: Percentage of correct bit-flipping and incorrect bit-flipping for a half-rate regular
(500,250,3) LDPC code, when communicating over an AWGN channel using BPSK modulation. The

maximum number of iterations used for each decoder is 60.

is also increased. In Figure 6.13, we portray the BER versus E,/Ny results for a (1000,500,5) LDPC

code when communicating over uncorrelated Rayleigh fading channel, while having an average LDPC

PCM column weight of five.

To elaborate a little further, it can be seen from Figure 6.13 for a half-rate LDPC code having a
codeword length of 1000 bits transmitted over an uncorrelated Rayleigh fading channel, that increas-
ing the average column weight of the LDPC is beneficial for the RRWBF algorithm in terms of being
capable of computing the reliability ratio more accurately. In Figure 6.14 the experiments conducted
were similar to those in Figure 6.13 for the four bit-flipping decoders in Sections 6.1 to 6.4 having
various coding rates. The coding gains achieved at a target BER of 10~* are plotted in Figure 6.15.
It becomes clear from Figure 6.15 that when the LDPC code’s column weight is increased in propor-
tion to the row weight, while aiming for a low coding rate, the RRWBF algorithm constitutes the
best design option. However, when the code rate is increased, the error correction capability of the
RRWBF decoder in Section 6.4 decays faster than that of the other bit-flipping decoders introduced
in Sections 6.1 to 6.4. For r > 0.66 and an average column weight of five, the BWBF decoder and the
IWBF decoder of Sections 6.3 and 6.2 offered the highest coding gain.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 180

| Modem BPSK
Channel AWGN
( Uncorrelated Rayleigh Fading
fLDPC Code (200,100,3)
(400,200,3)

(600,300,3)

(800,400,3)

(1000,500,3)

Maximum Number 10% of the
of Tterations coded blocklength

Table 6.7: Simulation parameters for five half-rate regular LDPC codes having various coded block-

lengths.

| Modem BPSK
Channel AWGN
Uncorrelated Rayleigh Fading
Code (900,300,3)
(900,450,3)
(900,600,3)
(900,675,3)
(900,720,3)

Maximum Number
of Iterations 90

Table 6.8: Simulation parameters for five regular LDPC codes having various code rates at a coded

blocklength of 900 bits.

Interestingly, if we compare the results of Figure 6.12 and Figure 6.15, we find that at a low
code rate the performance of all the bit-flipping decoders improved when a higher column weight was
invoked. However, the achievable error correction capability was impaired by increasing the column
weight, when the code rate was high, and simultaneously also the row weight was high. More explicitly,
in the context of bit-flipping decoders a higher row weight was capable of providing more confident
information for the RRWBYF decoder during the calculation of the reliability ratio. However, when
the row weight is set to a high value, it may result in confusing the decoder, because the violation
of a check might be inflicted by an increased number of unreliable message nodes. The decoder has
to choose a specific message node for bit flipping based on the calculated error term E; from a large
number of participating message nodes. However, its decision might not be sufficiently accurate owing
to the low channel quality experienced. Hence, the employment of a lower column weight is suggested
for high code rate applications, whilst opting for a slightly higher column weight may be suitable when

the code rate employed is low.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 181

100 100
B =
; ; =+ 0 —— (200,100,3) w = : © — (200,100,3)
. ! -+ | & —— (400,200,3) . & —— (400,200,3)
107 %é x (600,300,3) 107 = x —— (600,300,3)
: T —— (800,400,3) - 9 —— (800,4003)
> T —— (1000,500,3) a2 i —— (1000,500,3)
107 |
Y i : E !
Mo
aal . S R S— i f i T
107
P e
107
i i i i i 7
10° T | | \ 1 [
2 3 4 5 6 7 8 9 10
E,/Ny(dB)
IWBF
0 0
iy-——- = ==
I t t T O — (200,100,3) t o — (200,100,3)
. I ; ! ! O —— (400,2003) : ! & —— (400,200,3)
107 *%g ® {600,300,3) 107 %EE‘ 4 (600,300,3)
= ¢ — (800,400,3) Sos i o —— (800,400,3)
| i — & — (1000,500,3) ) T i —— (1000,500,3)
10
o " o ! <‘
K10 ﬁ
aal ! ] ] ! :
-4
10 %gg
-5 L © |
: % 107 = ===~
I I } i i i T 1 i - i g i ¥ ] |
10° [ [ [ \ [ ! [ | 10 [ J [ [ [ | \ | |
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Ey/Ny(dB)

Figure 6.6: BER performance of the five different-length half-rate regular LDPC codes listed in
Table 6.7, which are decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and
the RRWBF decoder, when communicating over an AWGN channel using BPSK modulation. The

achievable coding gain of the various schemes at a BER of 10~ will be summarised in Figure 6.8 and

Table 6.11.

6.6.5 Performance comparisons against MAP decoding

It becomes clear from the results of Section 6.6.4 that using a code rate around r = 0.66 has the
highest coding gain when communicating over an AWGN channel. By contrast, for a soft decoder of
length 3000 bits, the best coding gain was achieved at r = 0.33, as seen in Figure 2.20. Hence we now
continue our discussions by comparing the performance of the family of bit-flipping decoders to that
of the soft decision aided probabilistic MAP decoder of Section 2.5.2 at different coding rates. The

associated simulation parameters are listed in Table 6.9.

It can be observed in Figure 6.16 that as the code rate increases, the BER performance of the
LDPC codes studied does not suffer from dramatic degradation when decoded by the hard-decision-
based bit-flipping decoders of Sections 6.1 - 6.4. By contrast, the BER performance of the probabilistic
decoder of Section 2.5.2 is degraded, when the code rate is increased. For example, at a code rate
of r = 0.8, the performance of the probabilistic decoder is only about 1.5dB better than that of the
RRWBF decoder. In the next section, we will compare the decoding complexity of different decoders.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 182
RRWBF WBF

10° 10
e
; : O — (200,100,3) i © —— (200,100,3)
. { } O —— (400,200,3) | & —— (400,200,3)
107 X —— (600,300,3) 107 x —— (600,300,3)
! : B« — (800,400,3) 2 —— (300,400,3)
—
; ! t —— (1000,500,3) i —— (1000,500,3)
-2 -2
10 10
e, i : : z 27
K107 10”
M [ M
10* [ S — Y
; i i i |
107 107
— | % f |
-6 -0
10 10
5 10 15 20 25

25

g 00—
; i 0 —— (200,100,3) O —— (200,100,3)
. ! ! O —— (400,200,3) ] J ] = ¢ —— (400,200,3)
10 * (600,300,3) 107 « (600,300,3)
¢ —— (800,400,3) i t © —— (300,400.3)
t —— (1000,500,3) ) ‘ Sy I i 1 — (1000,500,3)
10° — e }
m ]0-3 e
10_4 e |
-~
107
'L —————
6
10
20

0 15
E,/No(dB) Ey/No(dB)

Figure 6.7: BER performance of the five different-length half-rate regular LDPC codes listed in Ta-
ble 6.7, which are decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and the
RRWBF decoder, when communicating over an uncorrelated Rayleigh fading channel using BPSK

modulation. The achievable coding gain of the various schemes at a BER of 10~* will be summarised

in Figure 6.8 and Table 6.11.

6.7 Decoding complexity

In this section, the complexity of the above mentioned four bit-flipping based decoders of Sections 6.1 -
6.4 will be quantified. In each WBF algorithm iteration the specific bit having the highest error term £;
will be flipped. The flipping of this particular bit will consequently toggle the state of w, parity checks.
Furthermore, each parity check’s state change will affect the value of the error term E; participating
in this check, hence the w, error terms E; associated with the message nodes and participating in this
parity check have to be recalculated. Thus a total of w. - w, error terms have to be recalculated. The
notation w. and w, has the same meaning as in Chapter 2, which represent the average column weight
and average row weight of the PCM. When the WBF algorithm is invoked, the number of additions
required is w,, as seen by considering Equation 6.2. Hence wf -w, additions are required by the WBF

algorithm during each iteration.

The IWBF algorithm is similar to the WBF algorithm as shown in Figure 6.1, but according to



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 183

Coding Gain versus Blocklength

25
20 W
~
jas)
S
N’
c% 151 — AWGN
.......... Rayleigh
(20 o WBF
i o [WBF
;g 10 « BWBF
S 0 RRWBF
o
5 L

o N . L " L " L 1
100 200 300 400 500 600 700 800 900 10001100
Blocklength (bits)

Figure 6.8: Coding gain versus blocklength performance at a target BER at 104, extracted from

the results shown in Figures 6.6 and 6.7, when communicating over both AWGN and uncorrelated

Rayleigh fading channel.

Equation 6.3 the weighting factor «; has to be additionally multiplied by the magnitude of each bit
and it has to be subtracted from the previously calculated F; term. Hence the IWBF will require

w, - w, extra additions and w, - w, extra multiplications during each iteration.

By the same token, the BWBF algorithm operates exactly the same way as the WBF algorithm,
as in Figure 6.1. Hence the complexity associated with each iteration is the same as that of the WBF

algorithm.

The RRWBF algorithm only slightly modifies the WBT algorithm, since the reciprocal of the
reliability ratio is used instead of using the minimum soft value within a specific row of the PCM, as
seen in Figure 6.1 and Algorithm 6. Referring back to Section 4.3.5, the complexity of the probabilistic
decoder was found to be 2w,.q additions and 7w.q multiplications per coded bit per iteration. For the
(900,720,3) code characterised in Figure 6.16, the complexity of all the decoders involved in decoding
a codeword is summarised in Table 6.10. The (900,720,3) code associated with w, = 3, w, = 15 and
N = 900 was investigated and the bit-flipping decoder invoked 90 iterations, while the probabilistic
decoder employed 15 iterations, where the specific number of iterations for the different decoders was

chosen for the sake of fully exploiting the decoding power of the different decoders.

It becomes explicit from Table 6.10 that the complexity of the bit-flipping algorithms is less than
50% compared to that of the probabilistic decoder in terms of the number of additions required.
Furthermore, in terms of multiplications, the probabilistic decoder exhibits a significantly higher
decoding complexity than the rest of the decoders. Since a multiplication is deemed to impose a
higher complexity than an addition, it can be concluded that the probabilistic decoder is significantly



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 184

107 = = =
© —— RRWRBF
0 & —— WBF
10 % = x —— IWBF
=3 — j © —— BWBF
1672 MISN
%103 DR AKX [ __
10 T B Y
T VA &
107 o %
L/ \()
107
2 3 9 10

4 5 6 7 8
E,/N,(dB)
Figure 6.9: BER performance of a (1000,500,3) LDPC code decoded by the four bit-flipping algorithms,

when communicating over an AWGN channel. The simulation parameters are listed in Table 6.7.

more complex than the bit-flipping decoders considered in Sections 6.1 - 6.4.

6.8 Summary and conclusion

In this chapter, we introduced a hard-decision based approach for decoding LDPC codes. The WBF,
the IWBF and the BWBF algorithms were introduced and their advantages as well as disadvantages
were identified. A novel reliability ratio based WBF algorithm was proposed and it was compared to
the other three algorithms. Hereby, we would like to conclude by providing a table summarising the

achievable coding gain versus various parameters extracted from the Figures provided in Section 6.6.

As seen in Table 6.11, the major results of this chapter are summarised in terms of the achievable
coding gain at a target BER of 107%. It can be observed in Table 6.11 that as expected, in an
AWGN channel the required number of iterations is proportional to the codeword blocklength, which
is plausible on the basis of the fact that each iteration allows the correction of a single bit. The BWBF
algorithm achieves the highest coding gain during the first few iterations owing to the pre-processing
of the unreliable message nodes. However, provided that a sufficiently high number of iterations
has been carried out, the RRWBF achieved the highest coding gain compared to the other three
algorithms. We can observe in Table 6.11 that by using a number of iterations which is about 10%
of the codeword length will be sufficient for fully exploiting the error correction power of the decoder.
Increasing the codeword length did not achieve a significant BER improvement in either AWGN or
uncorrelated Rayleigh fading channels. Observe in Table 6.11 that when the rate of the LDPC code is

varied in the AWGN scenario and an average column weight of three is chosen, the highest coding gain



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 185
RRWBF WBF

=——-—=
t O — r=0.33
B 9] : =0.50
10 3 =0.66
I =< o — =075
2 —+ ! 1 t — =08
10
in T ) T v
M0
aa + —
10
e — E ! o e—
107 :
P e e e
3 4 5 6 7 8 9
E/Ny(dB)
IWBF
100
=~ T am

‘ j = 0 — =050
10"%% ® —— =066 10™ - . — 1=0.66
S + — 1 ¢ — =075 i v — =075
1

10

10_2 I R I 1 o8 B
a4 ! S — i ] ! |
Mo®
m I ‘ i I |

10% %%%%

t T T i ]

b { 1 T )

10° ﬁ%

3 e e e i

10% 1 \ [ \ [ | I

2 3 4 5 6 7 8 9 10
E/Ny(dB)

Figure 6.10: BER performance of five regular LDPC codes having various code rates as listed in
Table 6.8, decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and the RRWBF
decoder, when communicating over an AWGN channel using BPSK modulation. The achievable coding

gain of the various schemes at a BER of 10~* will be summarised in Figure 6.12 and Table 6.11.

is achieved, when the code rate is high. However, as portrayed in Table 6.11, when communicating
over uncorrelated Rayleigh fading channels, this performance trend was reversed in comparison to the
AWGN scenario. As evidenced in Figure 6.11, the best BER versus Ej /Ny performance is achieved
at a low code rate. Observe in Figure 6.8 that when a column weight of three is used, the RRWBF
algorithm achieved the best coding gain performance, when communicating over an AWGN channel.
By contrast, it constitutes the worst performance in terms of coding gain, when the uncorrelated
Rayleigh fading channel is considered. As detailed in Section 6.6.4, the RRWBF’s performance relies
on the accuracy of the reliability ratio calculation. Therefore, when communicating over Rayleigh
fading channels, a higher row weight is desired for a better estimation of the reliability ratio of the
message nodes for this particular check. However, there is a trade-off between calculating the reliability
ratio more accurately and having more message nodes participating in a single parity check, owing
to the increased number of message nodes participating in a violated parity check. As observed in
Figure 6.14 that when the average column weight of the LDPC code was increased from three to five,
the RRWBF algorithm achieved the best performance at a coding rate of » = 0.5. However, owing

to having a high number of message nodes participating in a parity check when the column weight is




CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 186
RRWBF WBF

0
10 10
‘ : i | 0 — =033 ] o — r=(.33
. ! ! ! o — =0.50 \ I 6 — =050
107 x — =0.66 107 x —— r=0.66
¢ — =075 S ! o —— =075
2 i — =08 I $EE 1 t — =08
2
10
[as = I
3
m10 =
m i W BT ;
4
10
r | M o
107

L_iil
=
o H_u

Ey/Ny(dB)
BWBF
100 — o073
: : o — =0.
. —— ] & — =050
10 x — r=0.66
= oy
10
o f i Sey : ! |
10” =
aa) e —— % !
107 = Qﬁ

10 15
E,/No(dB)

w -

Figure 6.11: BER performance of five regular LDPC codes having various code rates as listed in
Table 6.8, decoded by the WBF decoder, the IWBF decoder, the BWBF decoder and the RRWBF
decoder, when communicating over an uncorrelated Rayleigh fading channel using BPSK modulation.
The achievable coding gain of the various schemes at a BER of 10~ will be summarised in Figure 6.12

and Table 6.11.

five and the coding rate is high, the coding gain performance of the RRWBF algorithm degrades the
most dramatically, when the code rate is increased to » = 0.8. Hence, it is beneficial for the RRWBF
algorithm operating under hostile channel conditions to have a row weight of approximately eight to
ten, which will strike a good compromise between achieving an accurate reliability ratio calculation

and having an excessive number of message nodes participating in a parity check.

In conclusion, the bit-flipping algorithms were shown to be capable of maintaining a significantly
lower decoding complexity compared to the probabilistic decoder of Section 2.5.2, at a E},/Ny degra-
dation of about 1.5dB, as demonstrated in Figure 6.16 for a coding rate of » = 0.8 while invoking the
RRWBF decoding algorithm. The proposed RRWBF algorithm of Section 6.4 constitutes an attractive
design alternative to the existing bit-flipping algorithms. At a column weight of three and when com-
municating over an AWGN channel, the RRWBF decoder exhibited a better BER performance than
the other BF decoders in many scenarios, although while sometimes it was marginally outperformed

by the BWBF algorithm. When operating in fading channels, the row weight of the LDPC code’s



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 187

Coding Gain versus Code Rate

25 —
20
—
m
=
N’
B 151
<
) —— AWGN
e N I Rayleigh
a 10 ¢ o) WBF
5 0 IWBF
& “ BWBF
O 5| © RRWBF
™ o % 2
é%é——é—é
0 N s P, : . L N
0.2 03 04 05 06 07 08 09 1.0
Code Rate

Figure 6.12: Coding gain versus code rate performance at a target BER at 1074, extracted from
the results shown in Figures 6.10 and 6.11, when communicating over both AWGN and uncorrelated

Rayleigh fading channel.

PCM has to be selected appropriately for the sake of computing the reliability ratio more accurately.
When the code rate is varied as shown in Figures 6.12 and 6.15, two different performance trends are
observed for the RRWBF algorithm. When a column weight of three is used, the BER performance
becomes better upon increasing the code rate to » = 0.75 and then decades. By contrast, when a
column weight of five is used, the BER performance becomes better at a low code rate, while degrad-
ing, when increasing the code-rate up to » = 0.8. This suggests that the row weight of the LDPCC
should be carefully chosen, when communicating over fading channels. This is because a row weight
between 7 — 10 will provide a good estimate of the reliability ratio of each message node. During the
decoding process, the RRWBF algorithm requires no pre-processing and maintains a similar decoding

complexity to the other bit-flipping algorithms.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 188

10°
O WBF
. 0 TWBF
10 éL = x BWBF
i E== ¢ RRWBF
102 \® EE%
WRA )
510‘3 i
aa Vi
10* = - -
SN
107 Y
b Y
10°

4 6 8 10 12 14 16 18 20
E,/N,y(dB)

Figure 6.13: BER performance of a half-rate regular LDPC codes having a blocklength of 1000 bits
and an average column weight of five, which are decoded by the WBF decoder, the IWBF decoder,
the BWBF decoder and the RRWBF decoder, when communicating over uncorrelated Rayleigh fading
channel using BPSK modulation. The achievable coding gain of the various schemes at a BER of 10~*

will be summarised in Figure 6.15 and Table 6.11.

Modem BPSK
Channel AWGN
LDPC code (900,600,3)

(900,675,3)

(900,720,3)
Soft Decoder Probabilistic Decoder using 15 Iterations
Hard Decoder | WBF, IWBF, BWBF, RRWBF using 90 Iterations

‘able 6.9: Simulation parameters for LDPC codes using probabilistic decoder and bit-flipping decoder,

when communicating over an AWGN channel using BPSK modulation.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC

W

10 15
E/Ny(dB)

189

Ltdtl

Figure 6.14: BER performance of five regular LDPC codes having various code rates as listed in
Table 6.8, decoded by the WBF decoder, the IWBF decoder, the BWBEF decoder and the RRWBF
decoder, when communicating over an uncorrelated Rayleigh fading channel using BPSK modulation.
An average column weight of five is used. The achievable coding gain of the various schemes at a BER

of 10~* will be summarised in Figure 6.15 and Table 6.11.

[ \WBF IWBF | BWBF | RRWBF | SPA Decoder
+ | 12150 | 16200 | 12150 | 12150 27000
1 4050 0 0 94500

Table 6.10: The number of arithmetic operations required by the various decoders, when decoding the
(900,720,3) LDPC code, excluding the pre-processing operations such as finding the optimal weighting
factor oy and ap for the IWBF and BWBF algorithms, respectively. The arithmetic operations
required for the initialisation of the BWBF and the RRWBF during the update of unreliable message

bits and the calculation of the reliability ratios are ignored, since these operations are only need to be

carried out once.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 190

Coding Gain versus Code Rate

25
20
—_
/m
=)
~—
g 15 |
<
O
210!
3
~~~~~~~~~~ Rayleigh
O 5 e WBF
o IWBF
X BWBF
0 ) RRWBF
02 03 04 05 06 07 08 09 1.0

Code Rate

Figure 6.15: Coding gain versus code rate extract from the results shown in Figure 6.14 for an
uncorrelated Rayleigh fading channel using the LDPC codes of Table 6.8, with an average column

weight of five.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC

(900,600,3)

191

(900,675,3)

10° 10
= t f { — Probabilistic Decoder I i : © —— Probabilistic Decoder
. ! 11 It | —— WBF . i T 1 O —— WBF
10 % — IWBF 107 » —— IWBF
| — s t — BWBF S — t ¢ —— BWBF
54 . I —— RRWBF ) D t —— RRWBF
107 P s —— 10 % e
o - a: ; i i | o I A i i —
M10? H10?
~m — — — jas ] : i i —
-4 4
10 e k| S W W
— e ; —— T i
10° %ﬁ 107 E@
; i i e = i 1 | i = e —
10° ! [ [ \ \ [ 107 [ 1 ¢ I \ | [ }
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Ey/Ny(dB) Ey/Ny(dB)
(900,720,3)
ng=
= i + 1 | © —— TProbabilistic Decoder
F I 1 I i & —— WBF
TWBF
—— BWBF

—— RRWBF

—
i T i A— i
; e
Fal | | I [ I | ]
2 3 4 5 6 7 8
E/Ny(dB)

Figure 6.16: BER performance of the three different-rate LDPC codes summarised in Table 6.9 in-

voking five different decoders, when communicating over an AWGN channel using BPSK modulation.



CHAPTER 6. WEIGHTED BIT FLIPPING DECODING OF LDPCC 192

Parameters Coding Gain achieved at BER=10~%(dB)
AWGN /Uncorrelated Rayleigh Fading
WDF IWDBF BWDBF ‘ RRWDBF
LDPC Various LDPC(200,100,3) 1.4/18.6 2/20.85 2.08/22.62 | 2.13/17.08
column blocklength LDPC(400,200,3) 1.65/19.38 | 2.1/20.92 2.46/23 2.48/18.23
weight at half-rate LDPC(600,300,3) 1.75/19.46 | 2.3/21 2.62/23.15 ‘ 2.73/18.23
equals LDPC(800,400,3) | 1.81/19.7 | 2.6/21.1 2.75/23.31 | 2.97/18.23
three FLDPC(I(J(J(J,S(J(J,S) 1.83/19.77 | 2.9/21.15 2.81/23.19 | 3/18.23
Various =033 081/19.7 | 0.91/20.54 | 1.86/23.38 | 2/16.38 |
code rates ‘ r=0.5 1.81/19.7 2.16/21 2.78/23.38 | 2.94/18.54
at a codeword r = 0.66 2.16/18.46 | 2.78/20.54 | 2.78/22.15 | 3.02/18.92
length of [ r=075 2.24/17.08 | 2.86/19.93 | 2.89/20.85 | 3.16/19.3
1000 bits r=0.8 2.24/16.3 2.86/19.39 | 2.89/20.08 | 3.21/17.39
Parameters Coding Gain achieved at BER=10~4(dB)
Uncorrelated Rayleigh Fading
WDBF IWBF BWDBF RRWIBF
LDPC Various r=0.33 21.73 22.18 24.23 24.34
column code rates r=0.5 21.73 22.53 23.77 24.46
weight at a codeword r = 0.66 20.36 21.84 22.3 22.2
equals length of r=0.75 17.18 19.68 19.8 15.02
five 1000 bits r=0.8 14.8 17.98 17.64 13.1
Parameters Coding Gain achieved at BER=10"%(dB)
AWGN
WBF | IWDF | BWBF RRWEF
LDPC LDPC(200,100,3) ‘ Iteration = 5 0.98 ‘ 1.07 1.98 0.98
column | Iteration = 10 1.4 1.9 2.07 2.025
weight [ Iteration = 20 1.4 1.98 2.07 2.15
equals ﬁteration =40 1.4 1.98 2.07 2.15
three, { Iteration = 60 1.4 1.98 2.07 2.15
| Iteration = 80 1.4 1.98 2.07 2.15
Various Iteration = 100 1.4 1.98 2.07 2.15
number LDPC(500,250) Iteration = 10 1.23 1.23 2.48 1.24
of Iteration = 20 1.73 2.15 2.57 2.4
iterations / Iteration = 40 1.73 2.15 2.57 2.65
Iteration = 60 1.73 2.15 2.57 2.65
Iteration = 80 1.73 2.15 2.57 2.65
Iteration = 100 1.73 2.15 2.57 2.65
LDPC(1000,500) Iteration = 10 0.48 0.48 2.15 0.48
Tteration = 20 1.48 1.57 2.73 1.48
Iteration = 40 1.82 2.19 2.82 2.7
Tteration = 60 1.82 2.19 2.82 3.025
| Tteration = 80 1.82 2.19 2.82 3.025
| Iteration = 100 1.82 2.19 2.82 3.025

Table 6.11: Achievable coding gain for the four bit-flipping decoders of Sections 6.1 - 6.4 when the
number of LDPC iterations, the codeword blocklength, the code rate and the LDPC code’s average

column weight is varied. The results were extracted from the BER performance results provided in

Section 6.6.



Chapter 7

Summary, Conclusions and Future

Research

In this conclusion chapter, a summary of the thesis will be provided and the novelty of our investiga-

tions will be highlighted. Additionally, some ideas will be provided for future research.

7.1 Summary

Gallager’s original binary regnlar LDPC codes were introduced and investigated in Chapter 2. The
concepts of row and column weight, cycles and the bipartite graph representation of the PCM were
highlighted. LDPC codes can be defined by a sparse parity check matrix and they may be decoded
by the sub-optimal sum-product algorithm for the sake of achieving near-capacity performance. The
encoding and decoding processes of LDPCCs were introduced in Sections 2.4 and 2.5, with the aid of
worked examples. Gallager’s original work was based on binary LDPCCs. The basic concepts of these
codes and a generalized LDPC decoding procedure were introduced in Section 2.7 together with our
generalized notation used for describing the LDPC decoding algorithm. These notations were used
later in Chapter 3 and Chapter 4. The FFT-based low-complexity decoding approach suggested by

Richardson et al. [9] was described in Section 2.7.

The performance of various LDPC codes was investigated for transmission over different channels.
The family of LDPC codes has attractive distance properties, provided that the all the columns have a
weight no less than three. At a coded blocklength of 200 bits, the LDPC code exhibited no undetected
errors, when communicating over an AWGN channel. It has been observed that the LDPC code
achieves most of the attainable iteration gain within ten to twenty iterations, while communicating
over both AWGN and uncorrelated Rayleigh fading channels. The performance of LDPC codes was
benchmarked against that of turbo convolutional codes, demonstrating that LDPC codes are capable
of achieving a similar BER performance to that of turbo convolutional codes. Furthermore, at a high

code rate LDPC codes may outperform turbo codes in the low-BER region.

Coded modulation schemes are commonly used for jointly optimizing the coding and modulation
stage of a system. A novel LDPC-aided block coded modulation scheme was proposed in Chapter 2.
The extra parity bits introduced by the LDPC code were absorbed by expanding the modulation

193



CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 194

constellation without extending the bandwidth. It was observed in Section 2.9.6 that the LDPC-BCM
arrangement constituted a more attractive scheme in comparison to the TTCM benchmarker scheme
in terms of the attainable BER performance, when communicating over uncorrelated Rayleigh fading

channels. As shown in Figure 7.1, a binary LDPC aided joint coding and modulation scheme was found

QPSK, uncorrelated Rayleigh fading

Wi o — LDPC
5 = G TTCM
}:\) [ J—— LDPC 50iter
W)
10 : = |
1 ‘Jt‘—(‘
5 i i “
Qﬁ 2 i‘ai\() | j
oo i
10
aa] . = |
1Y
k) Ho—
10 ﬁﬁ'
\ =
7
.| )
10‘5( e \
2 4 6 8 10 2 '
Eb/N()(dB)

Figure 7.1: BER performance of LDPC and TTCM parameterised in Table 2.26, utilising QPSK when

communicating over uncorrelated Rayleigh fading channels.

to achieve an Ej/Ny gain of about 1.5 dB at a BER of 107, when using 15 iterations in comparison
to the TTCM benchmarking scheme using 4 iterations. The modulation scheme applied was QPSK
and the effective system throughput was 1 BPS.

Luby et al. [60] proposed the idea of constructing the LDPC PCM using a non-uniformly dis-
tributed density profile, rather than a uniformly distributed as initially suggested by Gallager [1]. The
density evolution (DE) algorithm was proposed by Richardson et al. [9] for calculating the asymptotic
performance of the LDPC code, given a specific density profile. This algorithm was simplified by
Chung et al. [11] using the Gaussian approximation (GA) of the decoding information and the resul-
tant low-complexity DEGA algorithm was capable of providing an accurate performance prediction as
the original high-complexity DE algorithm in [9]. Either the DE or the DEGA algorithm may be used
to find the optimal density profile for a long LDPC code. Chung et al. demonstrated in [169] that
LDPCC achieved a performance within 0.0045dB of the Shannon limit. It was shown in Section 3.8
that the irregular LDPC PCM construction will often introduce weight-two columns, the minimum
distance of irregular-construction LDPC codes does not increase linearly with the blocklength. How-
ever, when a long block length is considered, Richardson’s PCM construction approach outlined in
Section 3.8.1 will achieve a good BER performance. By contrast, it was shown in Section 3.8.2 when
a moderate block length and high coding rates are considered, Richardson’s approach will lead to an
error floor. Therefore, Yang [127] suggested to limit the number of weight-two columns in the PCM
and we may also aim for avoiding the weight-three columns and weight-four columns. This approach
mitigates the error floor incurred by having a high number of weight-two columns in the PCM, which is

achieved at the cost of an inferior BER performance in the low SNR region. Based on the comparative



CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 195

study of the two different PCM construction approaches devised by Richardson [9] and Yang [127], we
found that it was more beneficial to use Richardson’s approach, provided that the system’s delay is
not an important design constraint. By contrast, Yang’s approach [127] may be implemented, when a

moderate block length and/or high coding rate are desired.

The idea of decoding LDPC codes over a non-binary field was devised by Davey and MacKay [54,
55]. The family of non-binary LDPC codes has the advantage of forming cycles with a reduced
probability, when compared to their binary counterparts. However, their drawback is that a non-binary
symbol has a higher number of legitimate values. Furthermore, the associated decoding complexity is
also increased. Davey [54,56] further developed Richardson’s FFT-based decoding algorithm [9] for
the non-binary scenario, while ensuring that the decoding complexity does not increase exponentially
with respect to the Galois field size. The family of non-binary LDPC codes was characterized in
various scenarios and their performance was found to be sometimes better, sometimes worse than
that of their binary counterparts. The symbol-based column weight of the non-binary LDPC code
has to be carefully chosen for the sake of achieving a better performance. A bit-based LDPC space-
time diversity scheme was introduced by Meshkat and Jafarkhani [108], which was characterized in
Section 4.5. This scheme iteratively improves the soft channel output arriving at each receiver antenna
with the aid of the extra a priori information provided by the LDPC code. The drawback of this
scheme is that it assumes each individual bit in a phasor constellation is independent, which is not
true for a Gray-mapped constellation. Furthermore, the complexity of the iterative evaluation of the
soft channel output increases exponentially with respect to the number of transmitter antennas and

the number of bits per modulation symbol.

10 |
5 — Symbol-bascd + non-binary LDPC
"""" Bit-bascd + binary LDPC
i e — ) FPOK.
5] === S 16QAM
o T
) \ Y-
S N A I
Qf, 107 = = —
A s e
v Y P
- N \ \ 2\
M -3 \ - %
10 3 :
5 1 —t i
L T =
2 }‘ | \\ 2
10™ ;_«t
2
5

I 2 3 7 8 9 10

i s s’n
E/Ny(dB)

Figure 7.2: BER performance of the bit-based and symbol-based MIMO systems summarized in Ta-
ble 4.18 utilizing both binary and non-binary LDPC codes, when communicating over an uncorrelated

Rayleigh fading channel.

Therefore, a novel purely symbol-based LDPC-ST scheme was developed by invoking Davey’s



CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 196

non-binary LDPC code as a powerful channel code. By using this symbol-based LDPC-ST scheme,
the decoding complexity was significantly reduced in comparison to the bit-based scheme proposed
by Meshkat and Jafarkhani [108]. Furthermore, an improved BER performance was also observed in
Figure 4.24, when communicating over an uncorrelated Rayleigh fading channel using two transmitters
and two receivers. As seen in Figure 7.2, the symbol-based MIMO schemes achieved an Ep/Ny gain
of approximately 2 dB at a BER of 107® in comparison to their bit-based counterparts having the
same throughput, when operating over GF(4), GF(8), GF(16) and an uncorrelated Rayleigh fading
channel. The LDPC-ST scheme was also characterized in Section 4.7.3 at various throughputs, when
benchmarked against a channel-coded Gy scheme. It has been found that when the required effective
throughput is low, it is feasible to concatenate Alamouti’s G code with a powerful channel code
without having to expand the modulation constellation. However, when a higher effective throughput
is desired, the LDPC-ST is superior in comparison to the Gy coded scheme, since the simple ‘repetition-

like-code’ of G, is outperformed by the powerful non-binary LDPC code of the in LDPC-ST scheme.

The idea of constructing a trellis structure for variable length codes was proposed by Buttigieg and
Farrell [161,163]. Based on the trellis structure of Buttigieg and Farrell, Bauer and Hagenauer [154]
used the MAP algorithm for decoding both symbol-based and bit-based VLC codes. Based on the
work by Bauer and Hagenauer [153,154], we serially concatenated a variable length source code with
various channel codes and exploited the extrinsic information provided by the VLC decoder, which was
iteratively exchanged between the source and channel decoding stages. Several different VLCs were
introduced in Table 5.1, namely the classic Huffman code and two different types of RVLCs. Using
these different encoders led to a different code table and consequently different average VLC symbol
lengths were obtained. Having different average VLC symbol lengths implies that the VL.C symbols
coded by various encoding schemes have different amount of residual redundancy in the symbols and
this residual redundancy can be exploited for enhancing the achievable error correction capability. It
was observed in Figures 5.11 to 5.13 that the VLC having the highest amount of residual redundancy
in comparison to the entropy and the highest free distance, namely the RVLC 2 scheme of Table 5.1,

was capable of achieving the highest iteration gain, when concatenated with a channel codec.

Chapter 6 introduced the bit-flipping based decoding of LDPCCs. It was shown that the bit-
flipping algorithm is capable of operating at a significantly lower decoding complexity in comparison
to the commonly used sum-product algorithm. However, the achievable performance of the bit-flipping
algorithm was found to be inferior to that attained by the sum-product algorithm. Hence, an improved
weighted bit-flipping algorithm as well as a bootstrap decoding scheme were proposed in Sections 6.2
and 6.3 for improving the attainable BER performance. These two improved schemes were based on
the philosophy of applying an optimized weighting factor during decoding, which was obtained by off-
line pre-processing. A further developed scheme based on the so-called reliability-ratio was proposed
in Section 6.4, which required no a priori knowledge or weighting factor. This reliability-ratio based
bit-flipping algorithm has been shown to be capable of outperforming the other bit-flipping algorithms

considered, as evidenced in Section 6.6.



CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 197

4 6 § 10 12 14 16 18 20

E,/N,(dB)

Figure 7.3: BER performance of a half-rate regular LDPC codes having a blocklength of 1000 bits
and an average column weight of five, which is decoded by the WBF decoder, the IWBF decoder, the
BWBF decoder and the RRWBF decoder of Sections 6.1 to 6.4, respectively, when communicating

over an uncorrelated Rayleigh fading channel using BPSK modulation.

7.2 Conclusion

As evidenced by the results of Chapter 2, LDPC codes are attractive channel codes, exhibiting a
performance close to that of turbo convolutional codes. Additionally, the family of LDPC codes has
numerous advantageous properties over turbo convolutional codes, such as for example exhibiting a
reliable error detection capability; straightforward PCM construction; flexible adjustment of the code
rate; a lower error floor than that of turbo codes when having PCM columns with a weight no less
than three, etc. The novel LDPC-BCM scheme of Chapter 2 constitutes an application example of
LDPC codes, where a powerful channel code was integrated with a modulation scheme and exhibited
a better performance than the TTCM benchmarker scheme. As outlined in Chapter 3, upon using a
non-uniform weight distribution of the PCM, the performance of regular LDPC codes can be further
improved. Richardson’s [9] and Yang’s [127] irregular PCM constructions become beneficial in dif-
ferent applications. Richardson’s approach can be used to achieve a good performance, provided the
blocklength is sufficiently high. Therefore, Richardson’s approach can be used for magnetic recording
or broadcast type applications. Yang’s approach is more beneficial for employment in delay-sensitive
applications, such as interactive video or audio communications. These applications are capable of tol-
erating a higher error rate, but require a short delay. Both the DE as well as the DEGA algorithms of
Sections 3.4 and 3.5 have been frequently invoked for accurately predicting the convergence of LDPC
codes. EXIT-charts have also been used for characterizing the convergence of LDPC codes [170]. Sayir
et al. [170] invoked EXIT-charts for evaluating the decoding performance of the so-called sum-min
algorithm. The decoding trajectory of LDPC codes can be conveniently visualized for the sake of
characterizing and improving the convergence of the algorithm. By contrast, density evolution sim-
ply determines whether the code is powerful or not, without providing any indications, as to how to

improve it.



CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 198

As evidenced in Chapter 4, non-binary LDPC codes [54, 56 devised by Davey and MacKay were
demonstrated to have a better BER performance than their binary counterparts, when the column
weight is appropriately chosen, but this may not always be achieved. As outlined in Section 4.6,
the bit-based LDPC-ST scheme of [108] was further developed to create a novel purely symbol-based
scheme by invoking a non-binary LDPC code. This scheme performed better than the bit-based
scheme of Meshkat and Jafarkhani [108] in terms of the achievable BER. performance, while imposing
a reduced complexity. Furthermore, the LDPC-ST scheme of [27] is attractive for employment in high
throughput scenarios, i.e. when the required number of bits per symbol was relatively high. Since
a high throughput may be achieved in a variety of ways, for example by increasing the number of
transmit antennas, the number of modulation levels and the channel coding rate, therefore we aimed
to find the optimum configurations at each possible effective throughput. However, increasing the value
of either of the above mentioned parameters may result in some disadvantages. When the number of
transmitters is increased, the receiver will receive the superposition of the faded symbols sent from each
individual transmitter antenna. Hence it is difficult for the receiver to decide the values of the originally
transmitted symbols. Furthermore, when the number of modulation levels is increased, the minimum
Euclidean distances of the modulated symbols are gradually decreased. Consider BPSK, QPSK and
8PSK for example. The minimum Euclidean distance of these three modulation schemes are reduced
from 2 to 1.414 and further down to 1. A reduced minimum Euclidean distance will result in an
inferior detection performance. Additionally, a higher channel coding rate will lead to a less powerful
channel decoder. As shown in Figure 4.21, when the effective throughput was 2 bps, the LDPC-
ST scheme using 2 transmitters and a half-rate LDPC code as well as QPSK modulation achieved
the best performance. Comparing the 2-transmitter and 3-transmitter LDPC-ST configurations in
Figure 4.21, it was observed that when the number of transmit antennas was fixed, invoking a high
rate code in conjunction with a low number of modulation levels will be better than using a low rate
code in conjunction with a high number of modulation levels. In the scenario when the channel code
rate was fixed, the performance trends concerning the number of transmitters and modulation levels
were unclear. For example, as shown in Figure 4.21, when the LDPC(1500,750) code was used, the 2-
transmitter scheme performed better than the 4-transmitter scheme. This was because the Euclidean
distances for BPSK and QPSK are 2 and 1.414, respectively, while invoking the 4-transmitter scheme
will result in each receiver receiving the superposition of four samples, which are received from each of
the four individual transmitters. By contrast, as shown in Figure 4.22, the 3 bits per symbol effective
throughput 3-transmitter QPSK scheme performed better than the 2-transmitter 8PSK scheme. In
this case, the Euclidean distance of 8PSK is 1, which is smaller than the distance of QPSK and the
increased inter-antenna interference of the 3-transmitter scheme does not significantly degrade the
achievable performance. Therefore, the choice of modulation scheme and the number of transmitters
has to be carefully considered, since the modification of each individual simulation parameter in a
configuration as listed in Table 4.17 will improve or degrade the error correction capability of the

overall system.

As discussed in Chapter 5, the trellis structure devised for VLCs by Buttigieg and Farrell [162,163]
was also used by Bauer and Hagenauer [154]. The authors invoked both symbol-based [154] and bit-
based VLC [153] decoding using the the MAP decoding algorithm [152]. A VLC can be used to act
as a weak error correction code and it has been beneficially concatenated with other channel codes to

construct a joint source and channel decoding scheme. It has been observed that maintaining a high



CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 199

free distance for the VLC is important for the sake of providing reliable extrinsic information after
VLC decoding, which will be fed to the channel decoder for the sake of achieving a high iteration
gain. For the three VLC codes investigated in Section 5.4, the RVLC 1 arrangement portrayed in
Table 5.1 and having a free distance of two performed better than the other two VLCs having a free
distance of one. Even though the average symbol length of the RVLC 1 arrangement of Table 5.1 was
slightly higher than that of its other two counterparts, the associated extra redundancy provided more
extrinsic information during the VLC decoding process. EXIT-charts were invoked for providing a
graphically visualized insight in to the convergence of these soft-in soft-out decoders. Hence the EXIT-
chart enabled us to understand the behavior of each individual soft-in soft-out constituent decoder

and facilitated the construction of attractive concatenated coding schemes.

The family of bit-flipping algorithms was studied in Chapter 6 and a novel RRWBF algorithm
was proposed in Section 6.4. The RRWBF algorithm was contributed and was found to have a good
performance in comparison to the other existing bit-flipping algorithms, while avoiding the requirement
of using any off-line pre-processing. The bit-flipping algorithms are low-complexity decoders, which
require no multiplication operations during the iterative decoding process. This implies that the bit-
flipping algorithms of Chapter 6 are attractive in terms of having a low complexity, when compared
to the sum-product algorithm of Chapter 2. A drawback of the bit-flipping algorithms is that they
achieve an inferior performance in comparison to the SPA based decoder. Hence, the bit-flipping
algorithms are suitable for low-complexity applications, where achieving the highest possible error
correction capability is not at premium. Additionally, there are other LDPC decoders, such as the
sum-min decoder proposed by Sayir et al. [170]. This approach simplifies the complex SPA algorithm
with the aid of carrying out low-complexity decoder post-processing, rather than choosing the tanh
operations; as in the SPA, when decoding binary LDPCCs. This approach achieves a performance
within 0.1 dB of the SPA algorithm and significantly reduces the complexity imposed, when the

algorithm is implemented in hardware.

7.3 Future Research Topics

As demonstrated in Section 6.7, the bit-flipping algorithm has a low complexity in comparison to the
sum-product algorithm, when decoding a binary LDPC code. Since a higher decoding complexity will
be encountered when decoding non-binary LDPC codes using the sum-product algorithm, a slightly
more sophisticated symbol-flipping, rather than bit-flipping algorithm combined with the classic Chase
algorithm [171] would be worth more research attention in the context of the non-binary LDPCC of

Chapter 4.

The EXIT-chart has been demonstrated to provide a straightforward convergence-test approach,
while constructing a two-stage concatenated scheme. However, when designing a more sophisticated
scheme, such as a three-stage serial concatenated system combining a VL.C decoder, an outer and an
inner channel codec, constructing a three-dimensional EXIT-chart would be beneficial. Furthermore,
the symbol-based EXIT-chart recently contrived in the group would constitute an interesting research
area and provide accurate prediction of the purely symbol-based system’s performance, when using

the non-binary LDPC-ST scheme of Chapter 4.

The non-binary LDPC code of Chapter 4 has by now been combined with other modulation



CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 200

10"

Py
3

Uncaded

—+— LDPG 11
L —x— LOPC I1=2
—#— LDPC =4
-—8— LDPC =10
—8— RS-coded
—&— RS-coded,RTT
6 L L 5, Ll 3

0 5 10 15 20 25 ao
EgN,

Figure 7.4: BER performance of a non-binary LDPCC assisted slow frequency hopping 16FSK scheme
communicating over a Rayleigh fading channel. The FE,/Ny used was 16 dB and a half-rate LDPC
code having a coded block length of 2400 bits was invoked.

schemes such as sphere-packing [172] and MFSK modulation schemes in the group. A coding gain of
2 dB has been achieved at a BER of 107° by the symbol-based STBC sphere-packing scheme using a
non-binary LDPC code against the benchmarking bit-based STBC sphere-packing benchmark scheme
combined with a convolutional codec, when communicating over a correlated Rayleigh fading channel
having a normalized Doppler frequency of 0.1. Furthermore, as shown in Figure 7.4, the non-binary
LDPC code aided Slow Frequency Hopping (SFH) MFSK scheme achieved an Ej/Ng gain of about 13
dB compared to the classic RS code assisted SFH-MFSK scheme at a BER of 1075,

It appears promising to jointly optimize these two concatenated components and iterative message

passing between the blocks might bring further extra benefits.

As shown in Figure 3.14, message nodes having a higher column weight tend to their correct
values more rapidly than those, which have a lower column weight. Therefore in video and andio
applications, where unequal protection is desired, irregular LDPC codes may be employed to map the
more important data to the high column weight nodes for the sake of ensuring the integrity of the

video and audio stream.



Appendix A

Proof of Theorem 2.12

Preparation
In order to prove Theorem 2.11, the following lemma has to be proven first
Lemma 1: Consider a sequence of w, independent binary digits, where the I** bit is 1 with probability

Pl. Then the probability that an even number of digits is 1 is given by

2

Proof : First consider the function [ ], (1 — P+ Pt), tis just an arbitrary item in the polynomial
which will be set to 1 later for the provement of the theorem. When this expression is expanded into
a polynomial format in terms of #, the multiplicative coefficient of #*(i = 1..w,) is the probability
of ¢ binary 1s within these w, binary digits. Let us also consider the function [, (1 — Pl1 - Pl),
which is identical except that the coefficients of all the odd powers of ¢ are negative. Adding these
two functions, all the coefficients of the even powers of ¢ are doubled, ie, the probability that there is
even number of digits will be doubled, and the odd powered terms disappear which means we throw
away all the probability that there are odd number of 1s in the sequence of w, binary digits. So the

addition of the two equation has to be halved to obtain the probability of an even number of 1s.

Finally, upon setting ¢ = 1 and dividing by 2, the result is the probability of an even number of

ones. Also since

1—1;2‘1(1_[3[1"'[311)”%1—1;:‘1(17P117P1,1) _ 1+1—I;U:rl(172P11)
2 - 2

Thus the Lemma is proved.

201



Appendix B

Proof of Equation 2.11

According to the Bayes’ Rule
P(A|B) = P(AB)/P(B) (B.1)

So the following equations can be thus derived:

Pl(z; = 0)|S] = Pl(z; = 0) A 5]/ PIS]
Pl(; = 1)|S] = Pl(z; = 1) A 8]/ P[S]
PIS|(z; = 0)] = P[S A (; = 0)]/ Pl = 0]
PIS|(z; = 1)] = PIS A (; = 1)}/ Pla; = 1]
s Plle; = VIS] _ (Ple; = 1]\ _ { PIS|(z; = 1)
Pl(z; = 0)|8] (P[xj = o1> x (P[Sl(mj = on) (B2)
Since P! = Plz; = 1] and (1 — P}) = P[z; = 0], so
Plo; =1}, S) B P(Sle; =1 {v}), (B23)

Plz; =0l{y},S]  1- P} P(S|lz; =0,{y})

Given that z; = 0, a parity check on the bit position j is satisfied, if the other(w, — 1) positions
in the parity check set contain an even number of logical 1s. Since all digits in the ensemble are
statistically independent, the probability that all the w, parity checks are satisfied is the product
of the probabilities of the individual checks being satisfied. Using Lemma 1 this is identical to the

probability of having an even number of logical 1s, which is given by:

P(ste; = 1)~ [ |2~ TEE ;(1‘2135)J 8.4)
i=1 L

v 1+ Tt - 2p)
P(Slr; = 0.4y =[] | = 0220 (B.5)
i=1 L

Upon substituting B.4 and B.5 into B.3, the theorem is thus proven.

202



Appendix C

Generation of the Companion Matrix

Over the GF(2%) decoding field, there are 8 possible non-binary symbols, namely 0...7. We may

represent these eight symbols using the notation o* in Table C.1, where « is a zero of the primitive

polynomial p(z) = z° + z + 1.

Since the decoding field size is GF(8), each non-binary symbol o? can be represented by a three-bit
binary stream. More explicitly, because « is a zero of the polynomial p(z), thus we have o® +a+1 =0,

which can also be represented as o® = oo+ 1. Since the decoding field is GF(23)7 hence we will use

o?, ol and oY to represent all the non-binary symbols over GF(8)

a+1
a‘aB:a‘z—i—a
ot =0 ta+1

a2-a4:a2+1.

Upon mapping the results in the set of Equations C.1, we arrive at Table C.2:

The binary companion matrix 7; for the non-binary symbol o is defined as [173]:

where each column is represented in the binary form of o® as in Table C.2.

| Symbol index

ol1[2]3 4567

[ « representation ’ 0 ‘ 1 ‘ a | o? ‘ o’ | o { a® ‘ ab

4

Table C.1: Representation for the eight non-binary symbols over GF(8).

203



APPENDIX C. GENERATION OF THE COMPANION MATRIX 204

Symbol o Results ol | ol | o?
index | representation | from Equ. C.1

0 0 0 0,010

1 1 1 110 1|0

2 o o 0 1 0

3 o? o? 0 0 1

4 ol a+1 1|1 0

5 at o+« 0] 1 |1
6 a | +atl 111
7 ab | 2+ 101

Table C.2: Mapping table from non-binary symbols defined over GF(8) into the three-digit binary

form.

Therefore, we arrive at:

[ 1 00
1:Ty=11 a« &> | =01 0 |;
. 0 01
| | 0 01
a:Ti=la o &A1 =10 1];
| 010
. (010'
2 Ty=]a?2 & o4 | =01 1];
L 1] 1o
(i ] [1ro 1]
S Ty=1a% ot & =11 1];
) Lo
[0 1] [o1 1]
ot Ty=|at &5 a8 =111 0 ;
A Y IR (A S U O
I N |
@ Ts=a® a8 o [=]1 0 ;
) Lo
[ 1 1 0]
A Te=]a &7 8| =|00 1
I |1 0 0|

Thus the binary companion matrices for the eight non-binary symbols are obtained. Upon replac-
ing the non-binary symbols defined over GF(8) by their corresponding binary companion matrices
obtained here, we arrive at the binary equivalent PCM of the LDPC PCM constructed over GF(8),

as shown in Figure 4.2.



List of Symbols

General notation
e The superscript * is used to indicate complex conjugation. Therefore, a* represents the complex
conjugate of the variable a.

e The superscript 7 is used to indicate matrix transpose operation. Therefore, al represents the

transpose of the matrix a.

o The superscript ~! is used to indicate inverse matrix operation. Therefore, a~! represents the

inverse matrix of the matrix a.

e The notation () denotes the convolution operation. Therefore, a () b represents the convolution

of the variables a and b.
e The notation I represents the estimate of z.

o The notation F(f) is the Fourier Transform of f(¢).

205



List of Symbols

206

Special symbols

GF(q):

S:

P:

Galois Field of size q.

Binary parity check matrix of an LDPC code.

Same as H.

Non-binary parity check matrix of an LDPC code defined over GF(q).
Binary generator matrix of the LDPC code.

Same as G.

Non-binary generator matrix of an LDPC code defined over GF(q).

A (K x K)-dimensional identity matrix.

Number of LDPC coded bits, i.e. the number of columns in an LDPC code’s PCM.
The number of rows in an LDPC code’s PCM.

Number of LDPC information bits, i.e. N — M.

Number of non-binary LDPC coded symbols, i.e. the mimber of columns in a non-binary

LDPC code’s PCM.
The number of rows in a non-binary LDPC code’s PCM.

Number of non-binary LDPC coded information symbols in a codeword, where we have

Ny — M,.
Codeword vector.
Source information vector.

Parity-bit vector.

(N,K): A binary LDPC code having K number of input information bits and N coded bits.

(N, K,w.): A binary LDPC code having K number of input information bits and N coded bits, where

the average column weight is w..

(Ng, K4)q: A non-binary LDPC code defined over GF(g) having K number of input information

We:

W

P

symbols and N; coded non-binary symbols.

Average column weight of the LDPC’s PCM, i.e. the average number of non-zero entries in

a column (binary or non-binary).

Average row weight of the LDPC’s PCM, ie. the average number of non-zero entries in a

row (binary or non-binary).

The probability that the j** LDPC coded symbol is in state a.



List of Symbols

207

P.(z;): The intrinsic probability ratio of the j** coded bit.

PR(z;): The a posteriori probability ratio of the j** LDPC coded bit.

a .
R3

a .
1,5

ij

LRi,j:

PRI'TJ‘Z

Pn:
QW:
R®;

2

The probability that the j*» LDPC coded symbol is in state a, based on the probability

distributions of other coded symbols participating in the i** parity check.

The probability that the j** LDPC coded symbol is in state a, based on the probability
distributions of the coded symbols provided by all other parity checks, excluding the i**
parity check.

Same as Qf I

Same as R?:]»/Ri{j.

Same as Q?]/Q}]

log(Q?,j/Qil,j)'

log(RY,/R} ).

Row indices of all the non-zero entries participating in the ¢** column of the PCM.
Column indices of all the non-zero entries paritipating in the *"* row of the PCM.
Number of coded bits of a convolutional code.

Number of input bits of a convolutional code.

Constraint length of a convolutional code.

The column density distribution of an irregular LDPC code’s PCM. (Edge perspective)
The row density distribution of an irregular LDPC code’s PCM. (Edge perspective)
The column density distribution of an irregular LDPC code’s PCM. (Node perspective)
The row density distribution of an irregular LDPC code’s PCM. (Node perspective)
Asetof Qi ,i=1...M,7=1...N values after the I* iteration.

Asetof Rjj,i=1...M,j=1... N values after the I*" iteration.

Average VLC symbol length.

Source symbol stream.

VLC encoded bit stream.

The binary entropy of the set of VLC codes (U).

Maximum VLC symbol length.

Minimum VLC symbol length.

Number of source symbols in a block.



List of Symbols 208

W: Number of VLC encoded bits in a block.

c(): Encoded VLC symbol for the it source symbol.

T Trellis state of the VLC at the k** symbol instant.

T: Number of possible source symbols.

R?: Source code rate.

W The number of legitimate VLC trellis states at the £ symbol instant.
Ey: Error term used in the WBF algorithm for the i** coded bit.

S;: Syndrome of the i** parity check.

ar: Optimum weighting factor used in the IWBF algorithm.

&p: Normalised BWBF threshold weighting factor.
RR; j: Reliability ratio value of the 7% coded bit participating in the i*" parity check.
D: A posteriori LLR value used in the EXIT-chart investigations.
A priori LLR value used in the EXIT-chart investigations.
zZ: Channel LLR value.
E: Extrinsic LLR value.

dy: Free distance.



Bibliography

1]

[10]

[11]

[12]

[13]

R. Gallager, “Low density parity check codes,” IEEE Transaction on Information Theory, vol. 8,
pp. 21-28, Jan. 1962.

R. Gallager, “Low density parity check codes,” Ph.D thesis,M.1.T,USA, 1963.

C. Berrou, A. Glavieux and P. Thitimajshima, “Near shannon limit error-correcting coding and

decoding : turbo codes,” in Proceedings of the IEEE International Confrence on Communica-

tions, pp. 1064-1070, 1993.

V. V. Zyablov and M. S. Pinsker, “Estimation of the error correction complexity for gallager’s

low-density codes.,” Problemy Peredachi Informatsii, vol. 11, no. 1, pp. 23-36, 1975.

M. R. Tanner, “A recursive approach to low complexity codes,” IEEFE Transactions on Infor-

mation Theory, vol. 27, September 1981.

M. Sipser and D. A. Spielman, “Expander codes,” IFEE Transactions on Information Theory,
vol. 42, pp. 1710-1722, November 1996.

D. J. C MacKay, and R. M. Neal, “Near shannon limit performance of low density parity check
codes,” Electronics Letters, vol. 33, pp. 457-458, 13 March 1997.

D. J. C. MacKay and R. M. Neal, “Good error-correction codes based on very sparse matrices,”

IEEE Transactions on Information Theory, vol. 45, pp. 399-431, March 1999.

T.ichardson, R. Urbanke, “The capacity of low density parity check codes under message-passing

decoding,” IEEE Transaction on Information Theory, vol. 47, pp. 599-618, Feb. 2001.

S.Y. Chung, “On the construction of some capacity-approaching coding schemes,” Ph.D thesis,
MIT,USA, 2000.

S.Y. Chung, T. J. Richardson, R. L. Urbanke, “Analysis of sum-product decoding of low density

parity check codes using a gaussian approximation,” IEEE Transactions on Information Theory,

vol. 47, Feb. 2001.

J. Chen and M. Fossorier, “Density evolution for two improved BP-based decoding algorithms

of LDPC codes,” IFEE Communication Letters, vol. 8, pp. 208-210, May 2002.

W. Lin, X. Juan and G Chen, “Density evolution method and threshold decision for irregular
LDPC codes,” in IEEFE International Conference on Communications, Circuits and Systems,

vol. 1, pp. 25 — 28, 27-29 June 2004.

209



BIBLIOGRAPHY 210

[14]

[18]

[19]

[20]

[21]

[22]

[23]

[26]

K. R. Narayanan, I. Altunbas and R. S. Narayanaswami, “Design of serial concatenated MSK

schemes based on density evolution,” IEEE Transactions on Communications, vol. 51, pp. 1283

- 1295, August 2003.

A. Anastasopoulos, “A comparison between the sum-product and the min-sum iterative detec-
tion algorithms based on density evolution,” in IEEE Global Telecommunications Conference,

vol. 2, pp. 1021 - 1025, 25 - 29 Nov. 2001.

H. Song, J. Liu and B. V. Kumar, “Convergence analysis of iterative soft decoding in partial

response channels,” IEEE Transactions on Magnetics, vol. 39, pp. 2552-2554, Sept. 2003.

D. Burshtein, M. Krivelevich, M. Litsyn and G. Miller, “Upper bounds on the rate of LDPC
codes,” IFEE Transactions on Information Theory, vol. 48, pp. 2437 — 2449, September 2002.

D. Burshtein, “Bounds on the performance of belief propagation decoding,” IEEE Transactions
on Information Theory, vol. 48, pp. 112 — 122, January 2002.

G. Miller and D. Burshtein, “Bounds on the maximum-likelihood decoding error probability of
low-density parity-check codes,” IEEE Transactions on Information Theory, vol. 47, pp. 2696 -

2710, November 2001.

H. Futaki and T. Ohtsuki, “Low-density parity-check (LDPC) coded OFDM systems with M-
PSK,” in IEEE 55th Vehicular Technology Conference, vol. 2, (Birmingham, AL, USA), pp. 1035

- 1039, 6-9 May. 2002.

H. Futaki and T. Ohtsuki, “Performance of low-density parity-check (LDPC) coded OFDM
systems,” in IFEE International Conference on Communicetions, vol. 3, pp. 1696 — 1700, 28
April - 2 May. 2002.

H. Futaki and T. Ohtsuki, “Low-density parity-check (LDPC) coded OFDM systems,” in IEEE
54th Vehiculor Technology Conference, vol. 1, (Atlanta City, New Jersey, USA), pp. 82 - 86, 7
- 11 October. 2001.

B. Lu, G. Yue and X. Wang, “Performance analysis and design optimization of LDPC-coded
MIMO OFDM systems,” IEEE Transactions on Signal Processing, vol. 52, pp. 348 — 361, Feb.
2004.

M. Y. Alias, F. Guo, S. X. Ng, T. H. Liew and L. Hanzo, “LDPC and turbo coding assisted
space-time block coded OFDM,” in IEEE Vehiculor Technology Conference, vol. 4, (Jeju, Korea),
pp. 23092313, 22-25 April 2003.

J. Y. Chung, M. Y. Alias, F. Guo and L. Hanzo, “LDPC and turbo coding assisted space-time
block coded OFDM for H.26L,” in Proceedings of PIMRC’ 2003, (Beijing, China), pp. 2702-2706,
September 2003.

H. Futaki and T. Ohtsuki, “LDPC-based space-time transmit diversity schemes with multiple
transmit antennas,” in IEEFE 57th Vehicular Technology Conference, vol. 4, pp. 2589 — 2593, 22

- 25 April 2003.



BIBLIOGRAPHY 211

[27]

28]

29]

32]

[33]

[40]

F. Guo, L. Hanzo, “Low complexity non-binary LDPC and modulation schemes communicating
over MIMO channels,” in Accepted by VI'C Fall, 2004, (Los Angeles, CA, USA), 2004.

H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check codes over the binary
erasure channel,” [EFE Transactions on Information Theory, vol. 50, pp. 439 — 454, March
2004.

D. Burshtein and G. Miller, “An efficient maximum-likelihood decoding of LDPC codes over
the binary erasure channel,” IFEE Transactions on Information Theory, vol. 50, pp. 28372844,

Nov. 2004.

H. Song, J. Liu and B. V. Kumar, “Low complexity LDPC codes for partial response channel,”
in IEEE Global Telecommunications Conference, vol. 2, pp. 1294 — 1299, 17-21 Nov 2002.

T. Mittelholzer, A. Dholakia and E. Eleftheriou, “Reduced-complexity decoding of low density

parity check codes for generalized partial response channels,” IEEFE Transactions on Magnetics,

vol. 37, pp. 721-728, March 2001.

M. Yang and W. E. Ryan, “Performance of (quasi-)cyclic LDPC codes in noise bursts on the
EPRA4 channel,” in IEEE Global Telecommunication Conference, vol. 5, pp. 2961 — 2965, 25-29
Nov. 2001.

M. Yang and W. E. Ryan, “Performance of efficiently encodable low-density parity-check codes
in noise bursts on the EPR4 channel,” IEEE Transactions on Magnetics, vol. 40, pp. 507-512,

March 2004.

D. Yang, R. Molstad and Y. Yip, “Performance evaluation of LDPC code on VR2 channel,” in
IEFEFE International Magnetics Conference, p. AP2, 28 April - 2 May 2002.

E. Eleftheriou, S. Olcer, “Further results on the performance of LDPC coded modulation for
AWGN channels,” ITU-Telecommunication Standardization Sector, May 2001.

J. Hou, P. H. Siegel, L. B. Milstein and H. D. Pfister, “Capacity-approaching bandwidth-efficient
coded modulation schemes based on low-density parity-check codes,” IEEE Transactions on

Information Theory, vol. 49, pp. 2141-2155, September 2003.

F. Guo, L. Hanzo, “LDPC assisted block coded modulation for transmission over Rayleigh fading
channels,” in Vehicular Technology Conference, Spring, vol. 3, (Jeju, Korea), pp. 1867 — 1871,
22-25 April 2003.

H. Song and J. R. Cruz, “Reduced-Complexity Decoding of Q-ary LDPC Codes for Magnetic
Recording,” IEEE Transactions on Magnetics, vol. 39, pp. 1081-1087, March 2003.

H. Song, J. Liu and B. V. Kumar, “Concatenated low density parity check (LDPC) codes for
magnetic recording channels,” in IEEE International Magnetics Conference, pp. DT-12, 28

March - 3 April 2003.

H. Song, R. M. Todd and J. R. Cruz, “Applications of low-density parity-check codes to magnetic
recording channels,” IEEE Journal on Selected Areas in Communications, vol. 19, pp. 918-923,
May 2001.



BIBLIOGRAPHY

1)

[42]

[43]

44]

45

[46]

47]

[48]

[49]

212

H. Song, R. M. Todd and J. R. Cruz, “Low density parity check codes for magnetic recording
channels,” IFEE Transactions on Magnetics, vol. 36, pp. 2183-2186, Sept. 2000.

S. Sahu, H. Song, B. V. Kumar, “Performance of low density parity check (LDPC) codes on
high-density magnetic tape recording signals,” in IEEE International Magnetics Conference,

pp.- DT-10, 28 March - 3 April 2003.

Y. Zhan, D. Yuan, H. Zhang, “The application of LDPC codes in image transmission,” in
International Conference on Communications Circuits and Systems, vol. 1, pp. 29 - 33, 27-29

June 2004.

X. Yang, D. Yuan, P. Ma and H. Zhang, “Performance of LDPC codes in image transmission over
Rayleigh fading channel,” in International Conference on Communication Technology, vol. 2,

pp. 1444-1446, 9-11 April 2003.

S. Chae and Y. Park, “Low complexity encoding of regular low density parity check codes,” in
IEEE Vehicular Technology Conference, vol. 3, pp. 1822 — 1826, 6-9 Oct. 2003.

H. Zhong and T. Zhang, “Design of VLSI implementation-oriented LDPC codes,” in IEEE
Vehicular Technology Conference, vol. 1, pp. 670-673, 6-9 Oct. 2003.

H. Zhong and T. Zhang, “Joint code-encoder-decoder design for LDPC coding system VLSI
implementation,” in International Symposium on Circuits and Systems, vol. 2, pp. 389-392,

23-26 May 2004.

T. Zhang and K. K. Parhi, “VLSI implementation-oriented (3 k)-regular low-density parity-check
codes,” in IEEE Workshop on Signal Processing Systems, pp. 25-36, 26-28 Sept. 2001.

G. Lechner, J. Sayir and M. Rupp, “Efficient DSP implementation of an LDPC decoder,” in
International Conference on Acoustics, Speech and Signal Processing, vol. 4, pp. 665-668, 17-21
May 2004.

[50] D. E. Hocevar, “LDPC code construction with flexible hardware implementation,” in JEEE

[51]

International Conference on Communications, vol. 4, pp. 2708-2712, 11-15 May 2003.

J. Thorpe, “Design of LDPC graphs for hardware implementation,” in IEEF International Sym-
posium on Information Theory, p. 483, 2002.

[52] Y. Pei, L. Yin, J. Lu, “Design of irregular LDPC codec on a single chip FPGA,” in IEEE 6th

Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless

Communications, vol. 1, pp. 221 — 224, 31 May - 2 June 2004.

[63] M. M. Mansour, M. Shanbhag, “Architecture-aware low-density parity-check codes,” in Inter-

nattonal Symposium on Circuits and Systems, vol. 2, pp. 57-60, 25-28 May 2003.

[54] M. C. Davey and D. J. C MacKay, “Low density parity check codes over GF(q),” IEEE Com-

munications Letters, vol. 2, pp. 165-167, June 1998.

[55] M. C. Davey and D. J. C. MacKay, “Low density parity check codes over GF(q),” in Proceedings

of the 1998 IEEFE Information Theory Workshop, pp. 70-71, June 1998.



BIBLIOGRAPHY 213

[56]

[57]

[58]

[59]

[60]

[62]

(63]

[64]

M.C. Davey, “Error-correction using low density parity check codes,” Ph.D thesis, University of
Cambridge, UK, 1999.

L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(29),” in IEEE Infor-
mation Theory Workshop, pp. 70-73, 31 March - 4 April 2003.

K. Nakamura, Y. Kabashima and D. Saad, “Statistical mechanics of low-density parity check
error-correcting codes over Galois fields,” Furophysics Letters, vol. 56, pp. 610-616, November

2001.

X. Li, M. R. Soleymani, J. Lodge and P. S. Guinand, “Good LDPC codes over GF(q) for
bandwidth efficient transmission,” in IFEFE workshop on Signal Processing Advances in Wireless

Communications, pp. 95-99, 15-18 June 2003.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved low density
parity check codes using irregular graphs and belief propagations,” in Proceedings of the IEEE

International Symposium on Information Theory, p. 117, 1998.

T. Richardson, M. A Shokrollahi, R. Urbanke, “Design of Capacity Approaching Irregular Low
Density Parity Check Codes,” IEEE Transaction on Information Theory, vol. 47, Febuary 2001.

D. J. C MacKay, S. T Wilson, and M. C Davey, “Comparison of constructions of irregular
gallager codes,” IEEE Transactions on Communications, vol. 47, pp. 1449-1454, October 1999.

D. J. C MacKay, “Punctured and irregular high-rate gallager codes,” Unpublished.

X. Yang, D. Yuan, P. Ma and M. Jiang, “New research on unequal error protection (UEP) prop-

erty of irregular LDPC codes,” in IEEE Consumer Communications and Networking Conference,

pp. 361 — 363, 5-8 Jan. 2004.

S. J. Johnson and S. R. Weller, “A family of irregular LDPC codes with low encoding complex-
ity,” IEEE Communications Letters, vol. 7, pp. 79-81, Feb. 2003.

T. Tao, C. Jones, J. D. Villasenor and R. D. Wesel, “Construction of irregular LDPC codes with
low error floors,” in IEEFE International Conference on Communications, vol. 5, pp. 3125-3129,

11-15 May 2003.

C. E. Shannon, “A mathematical theory of communication,” The Bell system Technical Journal,

vol. 27, pp. 379-656, July 1948.

S. Sankaranarayanan, B. Vasic and E. M. Kurtas, “Irregular low-density parity-check codes: con-
struction and performance on perpendicular magnetic recording channels,” IEEE Transactions
on Magnetics, vol. 39, pp. 2567-2569, Sept. 2003.

M. Ardakani, F. R. Kschischang, “Designing irregular LDPC codes using EXIT charts based on

message error rate,” in IEEE International Symposium on Information Theory, p. 454, 2002.

J. Lu, J. M. F. Moura, “Turbo design for LDPC with large girth,” in IEEE workshop on Signal
Processing Advanced in Wireless Communications, pp. 90-94, 15-18 June 2003.



BIBLIOGRAPHY 214

[71]

[72]

[77]

[83]

H. Zhang and J. M. F. Moura, “The design of structured regular LDPC codes with large girth,”
in IEEFE Global Telecommunications Conference, vol. 7, pp. 40224027, 1-5 December 2003.

H. Zhang and J. M. F. Moura, “Large-girth LDPC codes based on graphical models,” in IEEE

workshop on Signal Processing Advances in Wireless Communications, pp. 100-104, 15-18 June

2003.

J. M. F. Moura, J. Lu and H. Zhang, “Structured low-density parity-check codes,” IFEE Signal
Processing Magazine, vol. 21, pp. 42-55, Jan. 2004.

L. Lan, Y. Y. Tai, L. Chen, S. Lin and K. Abdel-Ghaffar, “A trellis-based method for removing
cycles from bipartite graphs and construction of low-density parity-check codes,” IFEE Com-
munications Letters, vol. 8, pp. 443-445, July 2004.

J. A. McGowan, R. C. Williamson, “Loop removal from LDPC codes,” in IEEE Information
Theory Workshop, pp. 230-233, 31 March - 4 April 2003.

M. Lentmaier, “Soft iterative decoding of generalized low-density parity-check codes based on

MAP decoding of component hamming codes,” Diploma Thesis, University of Ulm, Germany,

1997.

T. Zhang and K. K. Parhi, *A class of efficient-encoding generalized low-density parity-check
codes,” in IFEE Internationa Conference on Acoustics, Speech, and Signal Processing, vol. 4,

pp. 2477 — 2480, 7-11 May. 2001.

T. Zhang and K. K. Parhi, “High-performance, low-complexity decoding of generalized low-
density parity-check codes,” in IEEE Global Telecommunications Conference, vol. 1, pp. 181 —
185, 25-29 November. 2001.

S. Hirst and B. Honary, “Decoding of generalized low-density parity-check codes using weighted
bit-flip voting,” in IEE Proceedings on Communications, vol. 149, pp. 1 — 5, 2002.

S. Hirst and B. Honary, “Application of efficient Chase algorithm in decoding of generalized
low-density parity-check codes,” in IEEFE Communications Letters, vol. 6, pp. 385 — 387, 2002.

J. Boutros, O. Pothier and G. Zemor, “Generalized low density (Tanner) codes,” in IEEE In-
ternational Conference on Communications, vol. 1, pp. 441 — 445, 6-10 June, 1999.

Y. Kou, S. Lin and M. Fossorier, “Low density parity check codes: construction based on finite
geometries,” in IEFE Global Telecommunications Conference, vol. 2, pp. 825-829, 27 Nov. - 1
Dec. 2000.

Y. Kou, S. Lin and M. Fossorier, “Low-density parity-check codes based on finite geometries: a
rediscovery and new results,” IEEE Transactions on Information Theory, vol. 47, pp. 2711-2736,
November 2001.

J. Xu, H. Tang, Y. Kou, S. Lin and K. Abdel-Ghaffar, “A general class of LDPC finite geometry
codes and their performance,” in IEEFE International Symposium on Information Theory, p. 309,

2002.



BIBLIOGRAPHY 215

[85]

[86]

87]

88

89)

[90]

[92]

H. Tang, J. Xu, Y. Kou, S. Lin and K. Abdel-Ghaffar, “On algebraic construction of Gallager and

circulant low-density parity-check codes,” IEFE Transactions on Information Theory, vol. 50,

pp. 1269-1279, June 2004.

Y. Kou, J. Xu, H. Tang, S. Lin and K. Abdel-Ghaffar, “On circulant low densty parity check
codes,” in IEEE International Symposium on Information Theory, p. 200, 2002.

M. P. C. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation ma-
trices,” IEEE Transactions on Information Theory, vol. 50, pp. 1788-1793, Aug. 2004.

Z. Liu and D. A. Pados, “Low complexity decoding of finite geometry LDPC codes,” in IEEE
International Conference on Communications, vol. 4, pp. 2713-2717, 11-15 May 2003.

I. B. Djordjevic and B. Vasic, “Projective geometry LDPC codes for ultralong-haul WDM high-
speed transmission,” IEFEE Photonics Technology Letters, vol. 15, pp. 784-786, May 2003.

O. Milenkovic, I. B. Djordjevic, B. Vasic, “Block-circulant low-density parity-check codes for
optical communication systems,” IFEFE Journal of Selected Topics in Quantum Electronics,

vol. 10, pp. 294 — 299, March-April 2004.

B. Ammar, B. Honary, Y. Kou and S. Lin, “Construction of low density parity check codes:

a combinatoric design approach,” in IFEE International Symposium on Information Theory,

p. 311, 2002.

B. Ammar, B. Honary, Y. Kou, J. Xu and S. Lin, “Construction of low-density parity-check
codes based on balanced incomplete block designs,” IEEE Transactions on Information Theory,

vol. 50, pp. 1257-1269, June 2004.

J. Rosenthal and P. O. Vontobel, “Constructions of regular and irregular LDPC codes using Ra-

manujan graphs and ideas from Margulis,” in International Symposium on Information Theory,

p. 4, 24-29 June 2001.

K. S. Kim, S. H. Lee, Y. H. Kim and J. Y. Ahn, “Design of binary LDPC code using cyclic shift
matrices,” Electronics Letters, vol. 40, pp. 325-326, March 2004.

T. Okamura, “Designing LDPC codes using cyclic shifts,” in IEEE International Symposium on
Information Theory, p. 151, 29 June - 4 July 2003.

T. J. Richardson and R. L. Urbanke, “Efficient Encoding of Low-Density Parity-Check Codes,”
IEEE Transactions on Information Theory, vol. 47, pp. 638 — 656, Febuary 2001.

D. A. Spielman, “Linear-time encodable and decodable error-correcting codes,” IEEE Transac-

tions on Information Theory, vol. 42, pp. 1723-1731, November 1996.

O. Pothier, L. Brunel and J. Boutros, “A low complexity FEC scheme based on the intersection
of interleaved block codes,” in IEEE 49th Vehicular Technology Conference, vol. 1, (Houston,
TX, USA), pp. 274 — 278, 16-20 May 1999.

[99] H. Sankar and K. R. Narayanan, “Memory-efficient sum-product decoding of LDPC codes,”

IEEE Transactions on Communications, vol. 52, pp. 1225-1230, Aug. 2004.



BIBLIOGRAPHY 216

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

111

[112]

[113]

[114]

[115]

[116]

J. Chen, A. Deholakia, E. Eleftheriou, M. Fossorier, X. Y. Hu, “Near optimal reduced-complexity
decoding algorithms for LDPC codes,” in IEEE International Symposium on Information The-

ory, p. 455, 2002.

J. Zhang, M. P. C. Fossorier, “A Modified Weighted Bit-Flipping Decoding of Low-Density
Parity-Check Codes,” IEEE Communications Letters, vol. 8, pp. 165-167, March 2004.

A. Nouh, A. H. Banihashemi, “Bootstrap decoding of low-density parity-check codes,” IEEE
Commaunications Letters, vol. 6, pp. 391-393, September 2002.

F. Guo, L. Hanzo, “Reliability ratio based weighted bit-flipping decoding for low-density parity-
check codes.,” IFE Electronics Letters, vol. 40, pp. 1356 — 1357, 14 Oct. 2004.

F. Guo, L. Hanzo, “Reliability ratio based weighted bit-flipping decoding for LDPC codes,” in
Accepted by VTC 2005 spring, (Stockholm, Sweden), 2005.

M. Lentmaier and K. Sh. Zigangirov, “On generalized low-density parity-check codes based on
Hamming component codes,” IEEE Communication Letters, vol. 3, pp. 248 — 250, August 1999.

S. Lin, H. Tang and Y. Kou, “On a class of finite geometry low density parity check codes,” in
IEEFE International Symposium on Information Theory, p. 2, 24-29 June 2001.

S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE

Transactions on Communications, vol. 49, pp. 1727-1737, October 2001.

P. Meshkat and H. Jafarkhani, “Space-time low-density parity-check codes,” vol. 2, (Pacific
Grove, Monterey, CA, USA), pp. 1117 -1121, 3-6, Nov 2002.

L. Hanzo, P. Cherriman, J,Streit, Wireless Video Communications: Second to Third Generation

Systems and Beyond. Wiley & 1EEE, 2001.

J. Pearl, “Probabilistic Reasoning in Intelligent Systems,” San Mateo, CA:Morgan Kaufmann,
1988.

R. M. Neal, “http://www.cs.toronto.edu/ radford/homepage.html,”

L. Hanzo, T. H. Liew, B. L. Yeap, S. X. Ng, Turbo Coding, Turbo Equalisation and Space-Time
Cloding for transmission over foding channels, pp. 317-390. Wiley & IEEE, 2002.

A. V. Oppenheim and A. S. Willsky, Signal and Systems, ch. 7, pp. 177-284. Prentice Hall,
1999.

J. G. Proakis and D. G. Manolakis, Digital signal processing, principles, algorithms and appli-
cations, 3rd Edition, ch. 5, p. 403. Prentice Hall, 1996.

L. Hanzo, T. H. Liew, B. L. Yeap, S. X. Ng, Turbo Coding, Turbo Equalisation and Space-Time
Coding for transmission over fading channels, ch. 9, pp. 317-390. Wiley & IEEE, 2002.

P. Robertson and T. Worz, “Bandwidth-efficient turbo trellis-coded modulation using punctured
component codes,” IEEE Journal on Selected Areas in Communications, vol. 16, pp. 206-218,

February 1998.



BIBLIOGRAPHY 217

[117]

118

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

O. Acikel and W. Ryan, “Punctured turbo-codes for BPSK/QPSK channels,” IEEE Transac-
tions on Communications, vol. 47, pp. 1315-1323, September 1999,

G. Ungerboeck, “Channel coding with multilevel /phase signal,” IEEE Transactions on Infor-
mation Theory, vol. 28, pp. 55-66, January 1982.

P. Robertson, T. Worz, “Bandwidth-efficient turbo trellis-coded modulation using punctured
component codes,” IEEE Journal on Selected Areas in Communications, vol. 16, pp. 206-218,

February 1998.

J. Hou, P. H. Siegel and L. B. Milstein, “Performance analysis and code optimization of low
density parity-check codes on Rayleigh fading channels,” IEEE Journal on Selected Areas in
Communications, vol. 19, pp. 924-934, May 2001.

K. Kasai, T. Shibuya and K. Sakaniwa, “Detailedly represented irregular low-density parity-
check codes,” IEICE Transactions on Fundamentals, no. 10, pp. 2435-2444, 2003.

w0

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman and V. Stemann, “Practical
loss-resilient codes,” in Proceedings of 29th Annual ACM Symp. Theory of Computing, pp. 150-
159, 1997.

T. Etzion, A. Trachtenberg and A. Vardy, “Which codes have cycle-free tanner graphs?,” IEEE
Transactions on Information Theory, vol. 45, pp. 2173 — 2181, Sept. 1999.

Joachim Hagenauer, Elke Offer and Lutz Papke, “Iterative decoding of binary block and convo-
lutional codes,” IEEE Transactions on Information Theory, vol. 42, pp. 429-445, March 1996.

C. R. P. Hartmann and L. D. Rudolph, “An optimum symbol-by-symbol decoding rule for linear
codes,” IFEFE Transactions on Information Theory, vol. 22, pp. 514-517, September 1976.

S. Y. Chung, “http://lids.mit.edu/ sychung/gaopt.html,”

M. Yang, W. E. Ryan and Y. Li, “Design of efficiently encodable moderate-length high-rate
irregular LDPC codes,” IEFE Transaction on Communication, vol. 52, pp. 564-571, 2004.

S. Prakash, S. Glenn, and M. Khaled, “Propagation of belief functions: A distributed approach,”
in Proceedings of the 2nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-86),
(New York, NY), pp. 0-0, Elsevier Science Publishing Comapny, Inc., 1986.

H. Y. Hau and R. L. Kashyap, “Belief combination and propagation in a lattice-structured
interference network,” IFEE Transaction on Systems, Man and Cybernetics, vol. 20, pp. 45-97,
Jan.-Feb. 1990.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,”

IEEE Transactions on Communications, vol. 44, pp. 1261-1271, October 1996.

R. J. McEliece, D. J. C. MacKay, J. F. Cheng, “Turbo decoding as an instance of Pearl’s belief
propagation algorithm,” IEEE Journal on Selected Areas in Communications, vol. 16, pp. 140-
152, Feb. 1998.



BIBLIOGRAPHY 218

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

143

[144]

[145]

146

[147)

L. Hanzo, M. Muenster, B.J. Choi and T. Keller, OFDM and MC-CDMA for Broadcasting
Multi-User Communications, WLANs and Broodcasting. Wiley & IEEE, 2003.

L. Hanzo, L-L. Yang, E-L. Kuan and K. Yen , Single- and Multi-Carrier DS-CDMA: Multi-User
Detection, Space-Time Spreading, Synchronisation, Networking ond Standards. Wiley & [EEE,

2003.

K.H.H. Wong and L. Hanzo, Mobile Radio Communications, ch. 4.4.4, pp. 425-428. IEEE Press,
445 Hoes Lane, Piscataway, NJ, 08855, USA: IEEE Press and Pentech Press, 1992.

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE

Journal on Selected Areas in Communications, vol. 16, pp. 1451-1458, October 1998.

L. Hanzo, F.C.A. Somerville, J.P. Woodard, Voice Compression and Communications - Princi-

ples and Applications for Fired and Wireless Channels. Wiley & IEEE, 2001.
S. G. Wilson, Digital modulation and coding. Prentice Hall, 1999.

T. B. M. Kawahara, Y. Chiu, “High-speed software implementation of Huffman coding,” in
Proceedings of Data Compression Conference, 1998, p. 553, 30 March - 1 April 1998.

T. M. B. Wei, “A programmable parallel Huffman decoder,” in Proceedings of IEEE International
Conference Image Processing, vol. 3, pp. 668-671, 13-16 Nov 1994.

A. N. M. Aggarwal, “Efficient huffman decoding,” in Proceedings of IEEE International Con-
ference Image Processing, 2000, vol. 3, pp. 936-939, 10-13 Sept. 2000.

R. Hashemian, “Direct huffman coding and decoding using the table of code-lengths,” in Proceed-
ings of International Conference on Information Technology: Coding and Computing [Computers

and Communications/, pp. 237-241, 28-30 April 2003.

B. W. Y. Wei, T. H. Meng, “A parallel decoder of programmable Huffman codes,” IEEE trans-
actions on Circuits and Systems for Video Technology, vol. 5, pp. 175-178, April 1995.

R. Hashemian, “Condensed huffman coding, a new efficient decoding technique,” in Proceedings
of The 2002 45th Midwest Symposium on Circuits and Systems, vol. 1, pp. 228-231, 4-7 Aug.
2002.

Y. Takishima, M. Wada, H. Murakami, “Reversible variable length codes,” IEEE Transaction
on Communications, vol. 43, February/March/April 1995.

C. W. Lin, Y. J. Chuang and J. L. Wu, “Generic construction algorithms for symmetric and
asymmetric RVLCs,” in Proceedings of The 8th International Conference on Communication

Systems, vol. 2, pp. 968-972, 25-28 Nov. 2002.

K. Lakovic and J. Villasenor, “Design considerations for efficient reversible variable length
codes,” in Proceedings of Thirty-Sizth Asilomar Conference on Signals, Systems and Computers,

vol. 1, pp. 262-266, 3-6 Nov. 2002.

K. Lakovic and J. Villasenor, “On design of error-correcting reversible variable length codes,”

IEEE Communication Letters, vol. 6, pp. 337-339, Aug 2002.



BIBLIOGRAPHY 219

148

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

C. W. Tsai and J. L. Wu, “On constructing the Huffman-code-based reversible variable-length
codes,” IEEE Transactions on Communications, vol. 49, pp. 1506-1509, Sept 2001.

V. Buttigieg and P. G. Farrell, “On variable-length error-correcting codes,” in /EEE Interna-
tional Symposium on Information Theory, p. 507, 27 June-1 July 1994.

C. Lamy and J. Paccaut, “Optimised constructions for variable-length error correcting codes,”
in Proceedings. 2008 IEEE Information Theory Workshop, 2003, (Paris, France), pp. 183-186,
31 March - 4 April 2003.

C. Lamy and F. X. Bergot, “Lower bounds on the existence of binary error-correcting variable-
length codes,” in Proceedings of IEEE Information Theory Workshop, 2003, pp. 300-303, 31

March - 4 April 2003.

L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing
Symbol Error Rate,” IEEE Transactions on Information Theory, vol. 20, pp. 284-287, March

1974.

R. Bauer, J. Hagenauer, “On variable length codes for iterative source/channel decoding,” Data

Compression Conference, pp. 273-282, 27-29, March 2001.

R. Bauer and J. Hagenauer, “Symbol by symbol MAP decoding of variable length codes,” in 3rd
ITG Conference Source and Channel Coding, vol. 1, (Munich, Germany), pp. 111 — 116, 17-19
Jan. 2000.

M. Park and D. J. Miller, “Decoding entropy-coded symbols over noisy channels using discrete

HMDMs,” in Proceedings of IEFE International Conference on Information Sciences and Systems,

March 1998.

J. T. Wen and J. Villasenor, “Soft-input soft-output decoding of variable length codes,” IEEE
Transactions on Communications, vol. 50, pp. 689-692, May 2002.

E. Fabre, A. Guyader and C. Guillemot, “Joint source-channel turbo decoding of VLC-coded
Markov sources,” in Proceedings of IEEE International Conference on Acoustics, Speech, and

Signal Processing, vol. 4, pp. 2657-2660, 7-11 May 2001.

G. Melnikov, G. M. Schuster and A. K. Katsaggelos, “Shape coding using temporal correlation
and joint VL.C optimization,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 10, pp. 744-754, Aug 2000.

K. Lakovic and J. Villasenor, “On reversible variable length codes with turbo codes, and iterative

source-channel decoding,” in IEEE International Symposium on Information Theory, p. 170,

2002.

S. X. Ng, F. Guo, L. Hanzo, “Joint source-coding, channel-coding and modulation schemes for
AWGN and Rayleigh fading channels,” IEE Electronic Letters, vol. 39, pp. 1259-1261, 21 Aug
2003.



BIBLIOGRAPHY 220

[161]

162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

V. Buttigieg and P. G. Farrell, “A maximum likelihood decoding algorithm for variable-length

error-correcting codes.,” in Proc. 5th Bangor Symposium on Communications, (Bangor, Wales),

pp. 56-59, 2-3 June 1993.

V. Buttigieg and P. G. Farrell, “A maximum a-posteriori (MAP) decoding algorithm for variable-
length error-correcting codes,” in Codes and cyphers: Cryptography and coding IV, The Institute
of Mathematics and its Applications., (Essex, England), pp. 103-119, 1995.

V. Buttigieg and P. G. Farrell, “Variable-length error-correcting codes,” IEFE Proceedings in
Communications, vol. 147, pp. 211-215, Aug. 2000.

V. Buttigieg, “Variable-length error-correction codes,” Ph.D thesis, Department of Electrical
Engineering, University of Manchester, UK, 1995.

V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals.,” Sov.

Phys. Dokl., vol. 6, pp. 707-710, 1966.

K. Lakovic, J. Villasenor, “Combining variable length codes and turbo codes,” Vehicular Tech-

nology Conference Spring, vol. 4, pp. 1719-1723, 6-9 May 2002.

J. Kliewer, R. Thobaben, “Combining FEC and optimal soft-input source decoding for the reli-
able transmission of correlated variable-length encoded signals,” Data Compression Conference,

pp. 83-91, 2-4 April 2002.

Y. Kou, S. Lin and M. Fossorier, “Low density parity check codes based on finite geometries: A

rediscovery,” in IEEFE International Symposium on Information Theory, (Sorrento, Italy), 25-30
June 2000.

S.Y. Chung, G. D. Jr. Forney, T. J. Richardson and R. Urbanke, “On the design of low-density
parity-check codes within 0.0045 dB of the Shannon limit,” IFEE Communications Letters,

vol. 5, pp. 5860, Feb. 2001.
G. Lechner and J. Sayir, “Improved sum-min decoding of LDPC codes.,” 10-13 Oct. 2004.

David Chase, “A Class of Algorithms for Decoding Block Codes With Channel Measurement
Information,” IEEE Transactions of Information Theory, vol. 18, pp. 170-182, January 1972.

O. Alamri, F. Guo, M. Jiang and L. Hanzo, “Turbo detection of symbol-based non-binary
LDPC-coded space-time signals using sphere packing modulation.,” in Submitted to Vehicular
Technology Conference, 2005 Fall, (Dallas, USA), 2005.

T. R. N. Rao and E. Fujiwara, Error-control coding for computer systems, ch. 3, p. 110. Prentice
Hallf, 1989.



Index

Symbols

1I6QAM ... 50
8PSK .. 50
A

aposteriori ........ .. i 12
A PIIOTT vt 12
AWGN . . 55
B

BPSK. ..o 18
BSC . 12
BWBEF. ... 168
C

CDF . 9
CyCle . 10
D

density evolution........................... 61
density profile.......... ... ... . ... 59
detected errors.......... ... i, 39
E

EEBD .. o 14
error floor...... ... ... 76
EXIT-Charts......cooviiiiiiiiii 4
EXtTINSIC .. 16
F

FER ... 39
FET o 26
FETM .. 99
forward and backward...................... 28
G

Galois fleld............. ... ... o 91
Gaussian approx. of density evolution...... 64
I

LLd 66

221

TEE T 26
INtringic. ... . 19
IWBF .. 164, 167
L

LDPC-BCM ... e 45
Log-MAP ... 43
M

MIMO .. 91
minimum distance........ ... iiiiiia 9
N

normalised threshold...................... 169
P

POM . 6
PF 9
Probabilistic Decoding ..................... 15
Q

QPSK .. 50
R

Regular LDPC........ . ... .o 9
RRWBE . .. 4, 164
RVLC . 137
S

SISO .. e 138
Space Time . ... .. ..o i 91
T

trellis ... 46, 138
T CM o 30
turbocode ... .. . 30
U

undetected errors . ... .o 39
v

VLC . e 4, 137



INDEX 222

VLEC ... 138
W
WBE .. 164



Author Index

A

Abdel-Ghaffar [85] ............... ... ... 2
Abdel-Ghaffar [84].................... ..., 2,3
Abdel-Ghaffar [74] ............ ... ...l 2
Abdel-Ghaffar [86] ............... ..., 2
Acikel [117]. .. ... 42, 43
Ahn [94] ... 2
Alamouti [135] ... 114
Alamri [172]) ..o 200
Alias [25]. . oo 1
Alias [24] ... 1, 43, 125
Altunbas [14].............oo i 1
Ammar [91]. ... 2,3
Ammar [92]. ... o 2,3
Anastasopoulos [15] ................ ..., 1
Ardakani [69]............ ... 2
B

Banihashemi [102]........................... 3
Barnault [57]............. . 2
Bauer [153] ... 196
Bauer [154]. ... 156, 196
Berrou [130]. . ... 91
Berrou [3] ... 1, 30
Boutros [81]...........ocoiii i 2
Boutros [98].........c.o i 2
Brink [107] ... ..o 3, 158
Brunel [98]............o i 2
Burshtein [29].......... ... L 1
Burshtein [17] ... 1
Burshtein [18]............................... 1
Burshtein [19].................... . ... .. 1
Buttigileg [162] ....................... 138, 156
Buttigieg [163] ... ....ovoevnen. .. 138, 156, 196
Buttigieg [161] ....................... 138, 196
C

Chae [45]. .. oo oo 2

223

Chase [171] ... 199
Chen [100] .....ovviii 2
Chen [12] . ... 1
Chen [74] ... 2
Chen [13] ... 1
Cheng [131]. .. ... 91-93
Cherriman [109]......... ..., 12
Choi [132] .« o\ oo 91
Chung [126]. ..., 74, 76, 80
Chung [25] . ... ..o 1
Chung [169]. ... 194

Chung [11] . 1, 3, 57, 59, 65-68, 73, 76, 85, 194

Chung [10] ................... 1, 62, 64, 65, 67
Cruz [38] ... 2,98
Cruz [40] . ..o 2
Cruz [41] ..o 2
D

Davey [56] 2, 24-28, 70, 79, 91-95, 98, 99, 131,

195

Davey [54] .. ...oovvnn. .. 9.3, 91, 93, 131, 195
Davey [55]. cov e 9,3, 23, 93, 195
Davey [62] .....coooiii 2
Declercq [57]...ovvvii 2
Deholakia [100]. ...t 2
Dholakia [31]........ ..o 1
Djordjevic [89] ... 2
Djordjevic [90] ... 2
E

Eleftheriou [35]..... ... 1
Eleftheriou [100]. ..., 2
Eleftheriou [31]......... ... ... e, 1
Etzion [123]..... ... o 64
F

Farrell [162]................coo, 138, 156
Farrell [163]..................... 138, 156, 196



AUTHOR INDEX

Farrell [161]. ..o 138, 196
Fekri [28]. .. .o 1
Forney [169] ..........ooviiiiin i, 194
Fossorier [100].........coovviiiiii . 2
Fossorier [12]. ...t 1
Fossorier [101].........oooiiiii i, 3
Fossorier [87]..........cooiiii i 2
Fossorier [83]........................ 2,3, 164
Fossorier [82] ..., 2,3
Fossorier [168] ..... ..., 164
Fujiwara [173]. ... 203
Futaki [21]) ... 1
Futaki [20] ... 1
Futaki [26] ... 1
Futaki [22] ... 1
G

Gallager [2]......cooviiiiii i 1, 39
Gallager [1].1, 3, 5, 8, 9, 12, 14, 15, 25, 30, 77,

79, 91, 194

Glavieux [130]. ... 91
Glavieux [3] ... 1, 30
Glenn [128] .. ..o 91
Guinand [59] ... 2
Guo [103] ... 3
Guo [104] ..o 3
Guo [27] ... 1,3
Guo [37] oo 1
Guo [25] ... 1
Guo [24] ... 1, 43, 125
Guo [172] ... 200
H

Hagenauer [153]........................... 196
Hagenauer [124]........................ 64, 66
Hagenauer [154]...................... 156, 196
Hartmann [125]......................... 64, 66
Hau [129] ... 91
HIESE [80]. .o\ oe oo 2
Hirst [79].. ..o 2
Hocevar [50]..........ocoiiiiiiiii 2
Homnary [91]........cooviii 2,3
Homnary [92]........cooiiii 2,3

Honary [80] ..., 2

Honary [79] ... .. i 2
Hou [120] ..o 58
Hou [36]. ... 1
Hu [100]. ..o 2
1

ichardson [9] 1-3, 23, 26, 53, 57, 59, 61, 64, 66,
73, 79, 84, 98, 193-195

J

J,Streit [109] ... 12

Jafarkhani [108].3, 91, 114, 118, 122, 128, 132,
133, 135, 195, 196

Jiang [172] ... ... 200
Jiang [64] ... ... o 2
Johnson [65]...... ... ... 2
Jones [66] ... 2
Juan [13]....... 1
K

Ko Yen [133] ... 91
Kabashima [58]................ ... 2
Kasal [121] ... 58
Kashyap [129]..............ooiiint. 91
Keller [132] ..o 91
Khaled [128] ... ..o 91
KM [94] oo 2
Kou [91] ... 2,3
Kou [92]. ... 2,3
Kou [85] ..o 2
KOU [B4] .+ oo 2,3
Kou [106] ..o 3
Kou [B6] covviiii i 2
Kou [83] ... 2,3, 164
Kou [82] . ... 2,3
Kou [168] ..o 164
Krivelevich [17]). ... oL 1
Kschischang [69] ... ... 2
Kuan [133] ..o 91
Kumar [30]..........ooo i 1
Kumar [39]..... ... 2
Kumar [16]..... ... 1
Kumar [42]. ... 2
Kurtas [68].......ccovvii 2



AUTHOR INDEX

L

Lan [74] ..o 2
Lechner [170]. ...t 197, 199
Lechner [49] ..., 2
Lee [94] oot 2
Lentmaier [105] ...t 3
Lentmaier [76]........................ooo... 2
Li[127) oo 76-81, 194, 195
L [BO] oo 2
Liew [115] ......... 30, 36, 46, 65, 91, 114, 115
Liew [24] oo 1, 43, 125
LA [O1] oo 2, 3
LD [92] oo oo 2,3
LD [85] e 2
Lin [84] oo 2,3
L0 [74] oo 2
L0 [106] « oo 3
Lin (18] oo e 1
LA [86] « v oo 2
Lin [83] .. i 2, 3,164
Lin [82] oo 2,3
LN [168] .o oo 164
Litsyn [17] ..o 1
Lin [30] oo 1
Liu [39] oo 2
LU [16] <o e 1
Liu [88] ..o 2
Lodge [59]. oo 2
Lu [28] oo 1
Lu [70] .o 2
Lu (78] 2
Lu [52]. o 2
Luby [122] oo 59
Luby [60]........... 9,3, 5, 57, 58, 84, 95, 194
M

Ma [44] oo 2
Ma [64] ..o 2
MacKay [54]............. 2, 3,91, 93, 131, 195
MacKay [55].............oot. 2,3, 23, 93, 195
MacKay [62] ...t 2
MacKay [7] .. oo 1,3
MacKay [63] ... 2
MacKay [8] ... 1,2,95

225

MacKay [131]............oioiiiinn. 91-93
Manolakis [114] ... 26
Mansour [53] ... ... 2
McEliece [131]..........ooooiiiiiiiann. 91-93
McGowan [75]........ i 2

Meshkat [108]...3, 91, 114, 118, 122, 128, 132,
133, 135, 195, 196

Milenkovic [90]. ... 2
Miller [29]....... e 1
Miller [17] ..o 1
Miller [19] ... oo 1
Milstein [120] ... oo 58
Milstein [36]...... .o 1
Mittelholzer [31]. ... ... ..., 1
Mitzenmacher [122] .......... ... 59
Mitzenmacher [60] .. 2, 3, 5, 57, 58, 84, 95, 194
Molstad [34]. ..o 1
Moura [71] ..oov e 2
Moura [72] ..o 2
Moura [70] ... 2
Moura [73] ... 2
Muenster [132].............oiiiis 91
N

Nakamura [58] ........... ... 2
Narayanan [99] ... 2
Narayanan [14].............ocoiiiiiiiiiiins 1
Narayanaswami [14]......................... 1
Neal [T].. oo 1,3
Neal [8] ... 1, 2, 95
Neal [111] . eov oo 14
Ng [115] .. oov 30, 36, 46, 65, 91, 114, 115
NE [24] oo 1, 43, 125
Nouh [102] ... 3
O

Offer [124]. ...\ oo 64, 66
Ohtsuki [21]..... ..o 1
Ohtsuki [20]. ... 1
Ohtsuki [26]. ... ..o 1
Ohtsuki [22]. ... ..o 1
Okamura [95]. ... ... 2
Oleer [35] ..o 1
Oppenheim [113]. ... 26



AUTHOR INDEX

P

Pados [88]. ... oo 2
Papke [124] . ... L 64, 66
Parhi [78] ... oo 2
Parhi [77) ... oo 2
Parhi 48] . ... .o 2
Park [45] ... 2
Pear] [110] ... oeeeeeeeeieeninn 12, 91, 92
Pei [52]. + oo 2
Pfister [36] ....oovir i 1
Pinsker [4] . ... ... 1,3
Pishro-Nik [28] .. oveoeeee e 1
Pothier [81] ... ... 2
Pothier [98] ... ... 2
Prakash [128] ........ ... .. it 91
Proakis [114] ... 26
R

Rao [173] ..o 203
Richardson [169] ................. ... ... 194
Richardson [11]. 1, 3, 57, 59, 65-68, 73, 76, 85,

194

Richardson [96]............... ... ... 2
Richardson [61] ........... 2, 57, 58, 68, 74, 76
Robertson [119] ..., 45
Robertson [116] ..ot 30, 36
Rosenthal [93]...............oooi. 2
Rudolph [125] ........ ...l 64, 66
Rupp [49] . ..o 2
Ryan [117] oo, 42, 43
Ryan [32] ... 1
Ryan [33] oo 1
Ryan [127].................... 76-81, 194, 195
S

Saad [B8]. ..o 2
Sahu [42] ... 2
Sakaniwa [121] ........ . ... ... 58
Sankar [99]........ ... 2
Sankaranarayanan [68] ...................... 2
Sayir [170] ..., 197, 199
Sayir [49]. ..o 2
Shanbhag [63]............. 2

Shannon [67]...............o i 2,3

226

Shibuya [121] ...... ... oo 58
Shokrollahi [122] . ......ooueee 59
Shokrollahi [60] . . ...2, 3, 5, 57, 58, 84, 95, 194
Shokrollahi [61] ........... 2, 57, 58, 68, 74, 76
Siegel [120]. ... 58
Siegel [36] .. ... 1
Sipser [B]. ..o 1
Soleymani [59] ....... .. ..o 2
Song [30]. o ovv i 1
Song [39]. .o 2
Song [16]. ..ot 1
Song [38] ... 2, 98
Song [40] .. oo 2
Song [A1]. ..o 2
Song [42] o oe i 2
Spielman [97].......... 2
Spielman [122] ... .. . ... 59
Spielman [60]....... 2, 3, 5, 57, b8, 84, 95, 194
Spielman [6]........ooiii 1
Stemann [122]........... ... oo 59
T

Tk [TA] © oo 9
Tang [85]. .o v 2
Tang [84] ... 2,3
Tang [106]. . ... 3
Tang [86]. ... oo 2
Tanner [5] ..., 1, 3, 10, 57
Tao [66] ..ot 2
Thitimajshima [3] .................... ... 1, 30
Thorpe [B1] ...ooviiii 2
Todd [A0] «. o v e e 2
Todd [41] «o. e e oo 2
Trachtenberg [123] .......... ... 64
U

Ungerboeck [118]........ ..., 45
Urbanke [169]......................oooo.o. 194
Urbanke [11]1, 3, 57, 59, 65-68, 73, 76, 85, 194
Urbanke [96] ... o 2
Urbanke [61].............. 2, 57, 58, 68, 74, 76

Urbanke [9] . 1-3, 23, 26, 53, 57, 59, 61, 64, 66,
73, 79, 84, 98, 193-195



AUTHOR INDEX

v

Vardy [123] ... 64
Vasic [89] «oooiii 2
Vasic [90] ..o 2
Vasic [68] oo 2
Villasenor [66].......................oL 2
Vontobel [93]................... i 2
w

Wang [23] ..o 1
Weller [65] ..o 2
Wesel [66].......cvoiiii 2
Williamson [75] ... 2
Willsky [113] ... .o 26
Wilson [62]. ... 2
Wong [134]. ..o 97
Worz [119] ... 45
Worz [116]. ... 30, 36
X

Xu[92) o 2,3
Xu [85]. oo 2
Xu [84] oo 2,3
Xu [86] e 2
Y

Yang [34]. oo 1
Yang [133] ...oooei i 91
Yang [32] .. ooiii 1
Yang [33]. ..ot 1
Yang [127] oo oveereneein 76-81, 194, 195
Yang [44] ..o 2
Yang (64] ... 2
Yin 52 oo 2
YD [34] oo 1
Yuan [44] ..o 2
Yuan [64] ... 2
Yuan [43] ..o 2
Yue [23]. .o 1
Z

Zemor [81] ... 2
Zhan [43] ... 2
Zhang [71) ... 2

Zhang [72] ... 2

Zhong [46]
Zigangirov
Zyablov [4]

[105] ..o



