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ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

INVESTIGATION INTO ENERGY-EFFICIENT CO-SYNTHESIS 
OF DISTRIBUTED EMBEDDED SYSTEMS 

by Dong Wu 

Energy dissipation is an important performance parameter for portable embedded 
systems. This thesis focuses on minimising power consumption (dynamic and leakage) 
at the system level of the design flow. Special emphasis is placed upon developing co-
synthesis techniques (mapping, scheduling, and energy management) for systems that 
contain processing elements which can trade off between performance and power 
consumption during run-time by employing dynamic voltage scaling (DVS) and 
adaptive body biasing (ABB). 

The first part of the thesis addresses dynamic power minimisation for data and 
control dominated embedded systems. A novel conditional behaviour-aware DVS 
(CBADVS) targeting embedded systems expressed as conditional task graphs has been 
proposed. The CBADVS exploits the slack time taking into account the conditional 
behaviour of the application, so that energy dissipation is reduced and, at the same time, 
timing feasibility is guaranteed for all possible condition values. Furthermore, a genetic 
algorithm based mapping is introduced to optimise the system implementation towards 
effective exploitation of the proposed CBADVS, hence, leading to further energy 
reduction. The technique has been validated extensively including a real-life example of 
vehicle cruise controller, and it has been shown that up to 42% energy saving is achieved 
with 5 seconds computational time, and with no penalty in meeting real-time constraints. 

The second part of the thesis addresses the impact of communications on dynamic 
power minimisation in data and control dominated systems design. It is shown how the 
concept of enhanced system model, which captures the time and power costs of 
communications, allows the design of energy-efficient embedded systems by integrating 
communications with the above CBADVS based co-synthesis technique. The 
computational time of the communication-integrated co-synthesis technique has been 
reduced by analysing the deficiency of concurrent task and communication mapping, 
and decoupling communication from task mapping. A large number of experiments have 
been used to investigate the effect of alternative communication architectures on system 
quality in terms of energy efficiency. 

The co-synthesis techniques of the first and second parts have focused on dynamic 
power reduction. The final part of the thesis presents a power-composition profile aware 
co-synthesis technique to reduce dynamic power as well as leakage power. In particular, 
the proposed technique performs a power management selection at the architectural level, 
with the aim of achieving high energy saving at a reduced implementation cost. 
Furthermore, the proposed technique performs mapping, scheduling and voltage scaling 
(DVS and/or ABB) for applications specified as task graphs with timing constraints. The 
technique has been validated using extensive experiments including a real-life GSM 
voice CODEC example. 
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Chapter 1 

Introduction 

Over the last several years, energy efficiency has become an essential issue in the 

design of embedded systems and there are two major reasons. Firstly, the use of 

portable systems, such as mobile phones, personal digital assistants (PDAs), and 

digital cameras have significantly increased. These products are battery-powered and 

their battery operation time is one of the most critical performance measures. For such 

embedded systems energy efficiency is a primary design goal. Secondly, the 

continually growing density and operational frequency of integrated circuits causes 

higher power consumption. Power consumption implies heat dissipation, which 

directly influences the reliability, packaging and cooling costs of the systems. Thus 

energy efficiency benefits all types of digital systems in terms of reliability, packaging 

and cooling costs. 

This thesis investigates design techniques for energy-efficient embedded systems, 

which have the potential to overcome traditional design techniques that neglect 

important energy management issues. In this context, special attention is placed upon 

the employment of the following two techniques: dynamic voltage scaling (DVS) and 

adaptive body biasing (ABB). The basic idea of DVS and ABB techniques is to 

dynamically scale the operational frequency of digital circuits during run-time in 

accordance to the temporal performance requirements of the application, with the aim 

of reducing energy dissipation whilst meeting the performance requirements at the 

same time. This is based on the knowledge that there is a trade-off between 

operational frequency and energy dissipation of digital circuits. The investigated 

design techniques target the co-ordinated synthesis (co-synthesis) of mixed hardware 

and software applications towards the effective exploitation of DVS and ABB 

techniques, aiming to improvement in energy efficiency. 
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The main aim of this chapter is to place the problem of hardware and software 

co-synthesis within the general context of embedded system design flow, and illustrate 

the impact of hardware and software co-synthesis on design objectives including 

timing feasibility, cost, and especially the focus of this research, energy efficiency. 

The remaining of this chapter is organised as follows. Section 1.1 is an introduction to 

embedded systems and Section 1.2 outlines a typical embedded system design flow. 

Section 1.3 introduces the system specification models used in this thesis. Section 1.4 

shows the impact of co-synthesis on the energy dissipation and the traditional design 

objectives of embedded systems. Finally, Section 1.5 gives an overview of the thesis 

and highlights the main contribution of this research. 

1.1 Embedded Systems 

Embedded systems are a class of computing systems that use programmable 

processors to implement part of their functionality [1]. But unlike general-purpose 

systems such as personal computers, embedded systems are designed for dedicated 

application. Figure 1.1 shows a typical embedded system architecture that can be 

found in a modern mobile phone [2]. It consists of two software programmable 

processors (CPU, DSP) and a dedicated hardware component (ASIC), which are 

interconnected through communication links. The CPU/DSP/ASIC interact with 

environment through input/output ports (I/O), analog-to-digital converters (ADC), and 

digital-to-analog converters (DAC). A complete embedded system, however, consists 

of not only an architecture but also software that is executed on the architecture. The 

architecture provides the raw computing power for the system. Many features of the 

system, however, are not directly implemented in the architecture but are instead 

designed into the software. The architecture and software work together to provide the 

functionality of the application. 
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Figure 1.1: Embedded system architecture [2] 

Comparing with general-purpose computing systems, embedded systems have 

three key characteristics described as follows [3,4]. 

(1) Embedded systems are application-specific. Therefore, the functionality 

characteristics are defined before the system is designed. This allows static 

design schemes and deterministic performance analysis which helps fine 

tune the design decisions. 

(2) Many embedded systems are hard real-time systems, for which the 

correctness of the system functionality depends not only on the logical 

results of computation, but also on the time at which the results are produced. 

A failure to complete a computation by a given deadline causes system 

failure. A clear example of hard real-time systems is the anti-lock brake 

controller in automobiles, which computes the brake pressure depending on 

the spin speed of the wheel and the brake pedal position actuated by the 

driver. A failure of computing the brake pressure in a certain interval may 

cause the automobile to go out of control. 

(3) Many embedded systems are distributed systems. In order to provide design 

flexibility and cost efficient design, the embedded system architecture very 
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often consists of multiple heterogeneous processing elements (PEs) such as 

software programmable processors and dedicated hardware components. 

Software programmable processors can be general purpose processors 

(GPPs), microcontrollers, or digital signal processors (DSPs). The dedicated 

hardware components on the other side can be application specific integrated 

circuits (ASICs) or field programmable gate arrays (FPGAs). The multiple 

PEs are interconnected with communication links (CLs), such as processor 

bus, CAN (Controller Area Network) [5], I^C-bus [6], RapidIO [7]. For 

example, a dual mode mobile communication handset [8] consists of an 

ARM processor core, a DSP core, and several dedicated-purpose hardware 

blocks, which are interconnected with a 32-bit system bus. These 

heterogeneous PEs are combined together to implement the signal processing, 

the mobile communication protocol stacks, the man-machine interface, and 

the control of the overall operation of the handset. There are several reasons 

to employ distributed heterogeneous architecture for embedded systems: 

• Time-critical tasks may be placed on different processing elements (PEs) 

to ensure that all their hard deadlines are met. For example, a 

microprocessor has a good overall performance, but when it is busy 

working on a task, it may not be able to give fast response to other tasks 

at the same time. 

• Combination of several small but cheap processors very often leads to a 

more cost-efficient design than the usage of a large and costly processor. 

• The system may be physically distributed, or the imposed performance 

requirement cannot be met even on the most powerful processor 

available in the market. 

1.2 Embedded Systems Design Flow 

Embedded systems have been used in a wide diversity of application domains 

including automotive electronics, avionics, medical equipment, telecommunication 

devices, industrial equipment, household appliance, handheld devices, etc. Recently, 

the popularity of mobile applications has significantly increased. To be commercially 
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successful in the market, embedded systems, for example mobile applications, should 

have high performance, low cost, and energy efficiency in order to extend the battery 

lifetime. Designing such embedded systems is a challenging task, which is the main 

focus of this thesis. 

As illustrated in Section 1.1 (Figure 1.1), an embedded system contains both 

hardware and software. The hardware and software work together to provide the 

functionality of the application. Clearly, embedded system design is a hardware-

software co-design problem [1, 4, 9-13], which is a process of simultaneous designing 

the hardware and software portions of an embedded system while considering 

dependencies between the two, so that the implementation not only functions properly 

but also meets performance, cost and power goals. A possible design flow of energy-

efficient embedded systems is shown in Figure 1.2. There are mainly three steps in the 

design flow: system specification (Step 1), hardware-software co-synthesis (Step 2), 

hardware synthesis and software synthesis (Step 3). A brief description of the steps is 

given here, while the details of system specification and hardware-software co-

synthesis are given in Sections 1.3 and 1.4 respectively. The first step of the design 

flow is system specification. System specification gives the functionality, i.e., the 

operations to be performed by the system. System specification can be expressed 

using different representations such as abstract graphic representations, or high-level 

languages. Having defined the system specification, the next step of the design flow is 

hardware-software co-synthesis. One possible definition of hardware-software co-

synthesis is the automated method for concurrently determining the hardware and 

software portions of an embedded system based on the system specification [14]. It is 

an iterative process involving four sub-steps: architecture allocation, application 

mapping, activity scheduling, and energy management (Figure 1.2). After these four 

sub-steps, the implementation is evaluated to decide whether it meets the design 

objectives in terms of timing feasibility, cost, and energy dissipation. If the 

implementation is not satisfied, the evaluation result is fed back to the four previous 

sub-steps to modify the implementation towards the desired design objectives. A brief 

introduction of these sub-steps are given here, while the detailed description and 
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Figure 1.2: Typical design flow of energy-efDcient embedded systems 
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impact of these sub-steps on the design objectives, including timing feasibility, cost 

and energy dissipation are given in Section 1.4. 

Architecture Allocation - This involves the identification of an appropriate 

architecture, i.e., determining the type and number of the processing elements (PEs, 

i.e., software programmable processor or dedicated hardware component) and the 

communication links (CLs) interconnecting the PEs. In this thesis, this step is user-

driven and thereby based on the knowledge and experience of the designer. It is 

assumed that the designer has predefined an architecture based on previous design 

experience, then application mapping, activity scheduling, and energy management 

techniques help the designer to evaluate the quality of the allocation in terms of 

energy dissipation, cost, and timing feasibility. 

Application Mapping - This involves the mapping of the system functionality to 

the allocated system architecture, i.e., mapping the computation tasks and the 

communications among the tasks, which together consist of the system functionality, 

to the PEs and CLs respectively. Some tasks are to be mapped onto dedicated 

hardware component (i.e., implemented as hardware), while some tasks are to be 

mapped to software programmable processor (i.e., implemented as software). 

Activity Scheduling - A correct execution order of the computation tasks and 

communication is determined, such that the timing constraints are satisfied. The data 

and control dependencies among the activities have to be taken into account in order 

to effectively exploit the parallelism in the application, i.e., to make tasks executed on 

multiple PEs in parallel. 

The aim of these three sub-steps is to optimise the design according to the design 

objectives, which traditionally include performance and cost. However, due to the 

rising importance of the power issue, energy efficiency has become another essential 

design objective in recent years. In order to optimise energy efficiency, emerging co-

synthesis techniques [15] tightly integrate the consideration of energy management 

techniques within the co-synthesis process. 
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Energy Management - Energy management techniques utilise the idle and slack 

times (the duration when the PE are not carrying out useful activities, Section 1.4.4) to 

reduce the power consumption by either shutting down the idle PEs or reducing the 

performance of the PEs by means of DVS and/or ABB (Chapter 2, Section 2.1.2). 

After carrying out Step 2 (Hardware-Software Co-Synthesis), the next step in the 

design flow is hardware and software synthesis. In this step, the system functionality, 

which has been transformed into an architectural description of mixed hardware and 

software, is transformed into physical implementation. This is achieved by two 

separate processes: hardware synthesis and software synthesis [16]. Hardware 

synthesis creates hardware components, such as ASICs and FPGAs, for the tasks that 

have been mapped on hardware components in the co-synthesis step. The hardware 

synthesis is generally performed using the existing very large scale integration (VLSI) 

synthesis tools. A possible hardware synthesis flow [13, 17, 18] consists of three steps: 

high-level synthesis, logic synthesis, and layout synthesis, as shown in Figure 1.3(a). 

Firstly, the high-level synthesis [19, 20] transforms a behavioural specification, which 

may be specified as algorithms written in VHDL [21], Verilog HDL [22], or SystemC 

[23], into a structure of register-transfer level (RTL) components, such as registers, 

multiplexers, and arithmetic-logic units (ALUs). Secondly, the logic synthesis [24] 

transforms the RTL description into a gate-level representation. Finally the layout 

synthesis [25-27] generates the layout of the chip from the gate-level description. 

Software synthesis [28, 29] creates the software codes for the tasks that have been 

mapped to software programmable components. Figure 1.3(b) shows a possible 

software synthesis flow. Firstly, the initial specification in a high-level programming 

language, such as C/C++ [30] or Java [31], is compiled into assembly code using 

standard compilers or compilers specialised for specific application and processor type 

[32]. Then the generated assembler code is transformed into executable machine code 

using processor specific assemblers. The hardware and software parts can be co-

simulated [33-35] to verify the design, and help designer find errors at the early design 

stage to avoid expensive re-designs. After the hardware and software synthesis are 

completed, the produced hardware and software are integrated together as a complete 

system. 
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Figure 1.3: Flow of hardware synthesis and software synthesis 

1.3 System Specification 

Embedded systems design is the process of implementing a desired functionality using 

a set of hardware components and software codes [4], The complete process begins 

with specifying the desired functionality, which can be captured using a variety of 

models. To be useful, a model should possess certain qualities [9]. Firstly, the model 

should be formal so that it contains no ambiguity, and complete so that it can describe 

the entire system. There are numerous models for system specification, for example, 

high-level languages such as SystemC, VHDL, and C/C++, as well as more abstract 

models such as finite state machines (FSM) [9], program-state machine (PSM) [9], 

Petri Net [36], and data/control flow graph [37-39]. The literatures show that no 

model is ideal for all classes of systems. The designer should choose a model that 

most closely matches the characteristics of the target system. Typical applications 

targeted by this thesis are in the domain of real-time applications with conditional 

behaviours. Such applications fall into the category of data and data/control flow 

dominated systems. The appropriate representations for these systems are the task 

graph model (Section 1.3.1) and conditional task graph model (Section 1.3.2). All the 
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results given in this thesis are obtained using task graphs and conditional task graphs, 

which are introduced next. 

1.3.1 Task Graphs 

source i"o 

sink 4?.9.41}P^ 

Figure 1.4: Example of a task graph 

The functionality of a system containing intensive data flow can be specified as a task 

graph [9, 40]. Structurally, task graphs are similar to the data-flow graphs [9] that are 

commonly used in high-level synthesis [19, 20]. However, while nodes in data flow 

graphs represent single operations, such as multiplication and addition, the nodes in 

task graphs are associated with larger fragments of functionality, such as whole 

functions and processes. Each node in the task graph is a task (i.e., a single thread of 

execution). Tasks may be implemented as either software running on software 

programmable processors or hardware on dedicated hardware components. Figure 1.4 

shows an example of a task graph. Task graph is a directed, acyclic graph G = (TV, E). 

The set of nodes N = {nj, n2, nj represents the set of tasks to be executed without 

being pre-empted. The set of directed edges E = (etj \ ni e N, rij e N} represents the 

communications between the tasks and n/. the output of «,• is the input of uj. All 

tasks issue their outputs when they terminate. A task can only start its execution after 

all its inputs have arrived. For example, ejs denotes a communication between tasks My 

and ris, and 623 denotes a communication between tasks and ns. Task can only 

start execution after the inputs from n/ and have arrived. There are two special 
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nodes in the task graph: source and sink, which conventionally represent the first task 

and the last task, so that all other nodes in the graph are successors of the source and 

predecessors of the sink respectively. If you consider the activation of the source as a 

reference, the termination time of the sink is the delay of the task graph at a certain 

execution. This delay has to be smaller than a certain imposed deadline. The source 

task and sink task are introduced as dummy tasks with zero execution time. A dummy 

task is a task with zero execution time, or a task with non-zero execution time but not 

allocated to any physical processing element (PE). Detailed definition of dummy task 

and the extra modelling capability the dummy task provides are introduced in 

Appendix C. The concept of dummy node is used in Chapters 3, 4 and 5. 

1.3.2 Conditional Task Graphs 

source {"o 

(a) conditional task graph (b) track 1 (c) track 2 (d) track 3 

Figure 1.5: Example of a conditional task graph and its tracks 

An embedded system functionality often contains not only data flows but also control 

flows, which cannot be captured using task graph. This aspect has been recognised by 

the research community and conditional task graph (CTG) [41, 42] has been proposed 

to capture both the data and control flows at task level. A conditional task graph is 

similar to a traditional task graph (Figure 1.4), except that there are some conditions in 
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the graph to capture the control flow. Figure 1.5(a) shows an example of a conditional 

task graph. In a conditional task graph G(N, Es, Eq), Nis the set of node, Es and Ec are 

the sets of simple and conditional edges respectively, Es n\ Ec = ^ and Es^ Ec = E, 

where E is the set of all edges. 

An edge ey e is a conditional edge (represented with thick lines in Figure 

1.5(a)) and has an associated condition value. Transmission on such an edge takes 

place only if the associated condition value is true and not, like on simple edges, for 

each activation of the input task For example, in Figure 1.5(a) edges ej2, ejs, 634, 

and ess are all conditional edges, their associated condition values are A, A ,B, and B 

respectively. A node with conditional edges at its output is called a disjunction node 

(and the corresponding task a disjunction task). A disjunction node has one associated 

condition, a value of which it computes. Alternative paths starting from a disjunction 

node, which correspond to complementary values of the condition, are disjoint and 

they meet in a conjunction node (with the corresponding task called conjunction task). 

For example, in Figure 1.5(a) and ns are disjunction nodes, n6 and n? are 

conjunction nodes. Consider disjunction node ns, there are two alternative paths 

starting from Mj. The first path is n j —» ^ and the second path is » n^. 

These two paths meet at conjunction node n^. At a given execution, which path to 

follow is dependent on the value that computed by Mj. If the computation result of ns 

is B, then the first path is followed, otherwise, the second path is followed. A task, that 

is not a conjunction task, can be activated only after all its inputs have arrived, whilst 

a conjunction task can be activated after message coming on one of the alternative 

paths has arrived. Therefore, at a given execution of the system, depending on the 

condition values that are produced by the disjunction tasks, only a certain subset of the 

total tasks (track) is executed, and this subset differs from one execution to the other. 

Consider CTG of Figure 1.5(a), there are three possible tracks that may be followed at 

a certain execution, which are shown in Figure 1.5(b) - (d) respectively. For example, 

if in a certain execution, the condition values produced by My and ns are A and B, 

track 2 of Figure 1.5(c) will be followed. In Chapter 3, Sections 3.5.1 and Chapter 4, 

Section 4.4.1, the task graphs of real-life applications of vehicle cruise controller and 

GSM voice CODEC are derived. 
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1.4 Co-Synthesis of Embedded Systems 

Section 1.3 has briefly outlined the main steps in co-synthesis of embedded systems. 

In this section, it will show how the steps of architecture allocation, application 

mapping, activity scheduling and energy management affect the quality of co-

synthesis, in terms of cost, performance and energy efficiency. 

1.4.1 Example 1: Architecture Selection 

Given a library of system components, i.e. processing elements (PEs) and 

communication links (CLs), the task of architecture allocation is defined as the 

selection of the type and number of the PEs as well as the determination of their 

interconnection to meet the design objectives. There are many different possible 

architectures that can be used to implement a given system functionality. The overall 

goal of architecture allocation is to identify a suitable architecture, which can provide 

sufficient computing power to meet the performance requirement, while, at the same 

time, minimise the cost, power consumption, and design time. In embedded systems, 

there are two classes of processing elements (PEs): software programmable processors 

(e.g. CPU, DSP) and dedicated hardware components (e.g. ASIC, FPGA). CPU/DSP 

are referred to as software programmable processors because their functionality is 

controlled by application software. While software executing on off-the-shelf 

CPU/DSP is more flexible and cheaper to implement than hardware components, the 

ASIC offers higher performance and 1 - 2 orders of magnitude more energy 

efficiency [2], Clearly, selecting the appropriate system components, in order to 

balance between these trade-offs, is essentially important for high quality designs. For 

example. Figure 1.6 shows two potential architectures for a fictitious embedded 

system. Assuming the cost and power consumption of the components are as shown in 

Table 1.1, since architecture 1 implements more functionality in hardware than 

Architecture 2, Architecture 1 has higher cost but consumes less power than 

Architecture 2. 
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Architecture 1 Architecture 2 

CPU! 

FPGA 

Cost: £80 
Power consumption: 400 mW 

CPU2 

Cost, f 62 
Power consumption: 520 mW 

Figure 1.6: Architecture allocation example 

Component CPUl CPU2 DSP ASIC FPGA CLl CL2 
Cost (£) 20 10 15 30 25 5 2 

Power (mW) 140 200 160 100 120 40 20 
Table 1.1: System components library 

1.4.2 Example 2: Mapping 

Figure 1.6 highlights the impact of an appropriate architecture allocation on design 

objectives. However, how good performance the allocated architecture can present 

significantly depends on the application mapping. In application mapping, the tasks 

and communications are mapped onto the allocated processing elements (PEs) and 

communication links (CLs) respectively. Figure 1.7 illustrates two different mappings 

of a task graph onto an allocated architecture. These two mappings differ in that task 

ft/ and swap their assignments. Note that the source task no and the sink task are 

not mapped to any PEs because they are dummy tasks (Appendix C). 
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fowrcg I 

Mapping 1 
Mapping 2 

sink \ h) deadline 

Figure 1.7: Application mapping example 

Mapping affects system performance in three ways: 

(1) Mapping impacts the execution characteristics of the tasks and 

communication. Due to the heterogeneity of system components, the 

execution characteristics (e.g., execution time, power consumption, and, for 

tasks implemented as hardware, silicon area) of the tasks varies in 

corresponding to their mappings. For example, assume the execution 

characteristics of task ni of Figure 1.7 are as shown in Table 1.2, where T, P 

and A denote execution time, power consumption and silicon area 

respectively. As it can be seen, if is mapped to PEl (software processor), 

its execution time is 56.2ms and it consumes 26.1mW power, while if it is 

mapped to PE2 (hardware component), its execution time is 4.9ms, it 

consumes 1.8mW power and 8.7 mm^ silicon area. 

(2) Mapping impacts the communication overheads. There is a normal 

assumption in hardware-software co-synthesis: the data exchange between 

two tasks causes communication overhead only if the two tasks are mapped 

to different PEs, while data exchange between tasks mapped to an identical 

PE doesn't have communication overhead. Therefore, the mapping has an 

important effect on the communications. For example, consider the two 

mappings of Figure 1.7. In Mapping 1, three tightly coupled tasks «/, «2, 
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are mapped to PEl, in such way the data exchanges between them do not 

cause communication overhead. While in Mapping 2, My is mapped to PE2, 

thus imposes two communications overheads (e;2 and ejs) on CL. 

(3) Mapping influences the utilisation of the architecture. An improper mapping 

may result in poor utilisation of the architecture, leading to timing 

infeasibility. For example, assigning tasks, which can be executed in parallel, 

to a same software PE may result in undesirable delay, since only one task 

can be executed on a software PE at a given time. This delay could have 

been avoided if the tasks are distributed to several different PEs. 

Task PEl (SW) PE2(HW) Task 
T(ms) P(mW) T (ms) P(mW) A (mm^) 

NI 56/2 2&1 4.9 1.8 8.7 

Table 1.2: Task implementation 

1.4.3 Example 3: Scheduling 

Activity scheduling establishes a suitable execution order of the tasks and 

communications, such that the timing constraints are satisfied. A good schedule 

efficiently exploits the parallelism between activities to improve the system 

performance. For example, given a task graph, an architecture and a possible mapping. 

Figure 1.8 shows two possible schedules (Schedule 1 and Schedule 2). Note that the 

dummy tasks {no and n?) are not mapped and scheduled, also the communications are 

ignored in this simple example in order to give a clear illustration. Consider the 

following scheduling scenario given in Schedule 1 and Schedule 2. After task nj has 

finished its execution, tasks ns and n4 are both ready to execute. However, because ns 

and n4 are mapped to the same PEl, they cannot execute at the same time. Thus, a 

scheduling decision has to be taken at this point — which task to execute first. 

Schedule 1 (Figure 1.8) corresponds to a schedule in which n4 executes before Mj. As 

it can be seen from Schedule 1, the delay of the task graph is di, before the imposed 

deadline. On the other hand, if ns executes before n4, as shown in Schedule 2, the late 

execution of further delays the execution of n^. The delay of the task graph using 

Schedule 2 is c/̂ , violating the deadline. Therefore, Schedule 1 is a better solution 
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since it meets the deadline. This example shows that activity scheduling has a 

significant impact on the delay of the application, which, in turn, influences the energy 

dissipation of the application. This is because the application delay explicitly decides 

available slack time, which can be exploited by energy management to reduce energy 

dissipation, as discussed next. 

Task graph Architecture 

Mapping 

I V (/goeZ/me 

Schedule 1 

Schedule 2 

PEl 

PE2 

PE] 

PE2 

Figure 1.8: Activity scheduling example 

1.4.4 Example 4: Energy Management 

Early embedded systems design research has focused on traditional design objectives 

including cost and performance. However, recently energy efficiency has become 

another important design objective due to the rising requirement of low power. In 

order to improve energy efficiency of embedded systems, energy management has 
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become an essential step in the co-synthesis. Energy management techniques exploit 

the possibility of energy saving after the scheduling step has been determined. Based 

on the fact that there are periods when applications do not require the maximum 

performance provided by the allocated architecture, energy management techniques 

identify these periods, and lower the system performance during these periods to 

reduce energy dissipation. There are two types of periods when the trade-off between 

performance and energy is possible. The periods are idle time and slack time, where: 

• Idle Time refers to the period in the schedule when PEs and CLs do not 

experience any workload, i.e., during these intervals the components are 

redundant. 

• Slack Time is the difference between the scheduled finish time and the latest 

end time (LET) of a task, i.e., slack times are a result of over-performance. 

Slack time is a special case of idle time. 

deadline 

(a) schedule before energy management 

Energy 
management 

clock frequency, 
power consumption 

descend 

deadline 

PEl 

PE2 

'•"I] n,. 
(standby m 

idle 

(b) schedule after energy management 

Figure 1.9: Energy management example 
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For example, Figure 1.9(a) shows a possible schedule for the task graph, 

architecture, and mapping of Figure 1.8. As indicated in the figure, PEl has idle time 

between t2 and the deadline, PE2 has idle time between t l and t2, and between t3 and 

the deadline. Since n6 finishes at t3 while the latest end time of n6 is the deadline, 

PE2 has slack time between t3 and the deadline. Similarly, PE2 also has slack time 

between tl and t2. 

There are two main energy management techniques: dynamic power management 

(DPM) [43-51] and dynamic voltage scaling (DVS) (Chapter 2, Section 2.1.2.1) [52-

59]. DPM puts the processing elements (PEs) or communication links (CLs) into 

standby mode whenever they are idle to save energy. In DVS, on the other hand, 

different tasks and communications run at different supply voltage and clock 

frequency according to the temporal performance requirement, in order to fill up the 

slack times in the schedule while still providing an adequate level of performance. By 

reducing the supply voltage (V^) of PEs, DVS achieves significant reduction in 

dynamic energy {Edynamic Vd/)- The basic concepts of DPM and DVS are 

demonstrated in Figure 1.9(b), which is the schedule after these two energy 

management techniques are applied. As it can be seen, PEl is put into standby mode 

between t4 and the deadline using DPM. Also, the execution of all tasks is prolonged. 

This is achieved by scaling down the clock frequency and supply voltage of the PEs 

using DVS, until all slack times are fully exploited. 

As technology feature size continues to scale, leakage power (Chapter 2, Section 

2.1.1.2) is becoming important in deep sub-micron technology (Chapter 2, Figure 2.3). 

Recently adaptive body biasing (ABB, Chapter 2, Section 2.1.2.2) is reported as an 

effective technique to reduce leakage power [60-64]. Similar to DVS, ABB trades off 

performance against energy efficiency. ABB simultaneously reduces the clock 

frequency and increases the threshold voltage {Vth) of the PEs through body bias 

control. In this way, it achieves significant reduction in leakage power (Pieakage 

The application of ABB is similar to Figure 1.9(b), i.e., prolong the execution of the 

tasks to exploit the slack times. 
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Clearly, the effectiveness of energy management techniques depends to a large 

extent on the available idle and slack times. The proposed co-synthesis techniques of 

this thesis produce application mapping and activity scheduling taking into account 

the optimisation of idle and slack time, allowing an effective exploitation of the 

energy management techniques. 

1.5 Contributions and Thesis Overview 

This thesis presents new design techniques for the co-synthesis of energy-efficient 

distributed embedded systems. In particular, the energy reduction capabilities of 

dynamic voltage scaling (DVS) and adaptive body biasing (ABB) are investigated and 

analysed in the context of embedded systems with strict real-time constraints. The 

remainder of this thesis is organised as follows. Motivation for co-synthesis of energy-

efficiency embedded systems, the necessary background information, as well as a 

comprehensive review of the most relevant research for minimising energy dissipation 

during co-synthesis are given in Chapter 2. 

Chapter 3 presents a novel DVS algorithm for embedded systems expressed as 

conditional task graphs (CTGs), which capture both control and data flow within the 

application functionality. The proposed conditional behaviour aware DVS produces a 

static voltage schedule so that the energy dissipation is minimised and performance 

constraints are satisfied simultaneously. Furthermore, a genetic algorithm (GA) based 

mapping is introduced to optimise the system implementation to efficiently exploit the 

conditional behaviour aware DVS technique, hence, leading to further energy saving. 

Combining the proposed DVS and mapping algorithm, a co-synthesis technique is 

developed for embedded systems expressed as CTGs. 

Chapter 4 extends the co-synthesis technique to address the impact of 

communications. The extended co-synthesis technique is applied to a large number of 

examples, including a real-life GSM CODEC example, which shows the effectiveness 

of the proposed technique. Also, the extended co-synthesis technique has been used to 

investigate the effect of alternative communication architecture on system quality in 
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terms of energy efficiency. As the technology continues to scale, it is expected that 

leakage power will become comparable to dynamic power in the future. Chapter 5 

presents a co-synthesis technique for distributed embedded systems for both dynamic 

and leakage energy minimisation. The technique performs a power management 

selection, and maps, schedules, and scales supply and bias voltage. A key feature of 

the proposed technique is a power-composition aware mapping and the employment 

of processing elements (PEs) with separate DVS or ABB capability. This has the 

benefit of reduced cost whilst achieves comparable energy reduction to that achieved 

using PEs with combined DVS and ABB capability. 

The work presented in this thesis has resulted in the following publications: 

• "Scheduling and mapping of conditional task graphs for the synthesis of low 

power embedded systems", D. Wu, B. M. Al-Hashimi and P. Eles, in 

Proceedings of Design, Automation and Test in Europe, pp. 90-95, March 

2003, Munich, Germany [65]. 

• "Scheduling and mapping of conditional task graph for the synthesis of low 

power embedded systems", D. Wu, B. M. Al-Hashimi and P. Eles, lEE 

Proceedings Computers and Digital Techniques, vol. 150, no. 5, pp. 262-273, 

September 2003 [66]. An extended version of a previous paper [65]. 

• "Dynamic voltage scaling for control flow-intensive applications", D. Wu, B. 

M. Al-Hashimi and P. Eles, in M. T. Schmitz, B. M. Al-Hashimi and P. Eles, 

System-level design techniques for energy-efficient embedded systems. 

Chapter 6, Kluwer Academic Publishers, 2004 [2]. 

• "Dynamic and leakage power-composition profile driven co-synthesis for 

energy and cost reduction", D. Wu, B. M. Al-Hashimi and P. Eles, in 

Proceedings of lEE/ACM Postgraduate Seminar on SoC Design, Test and 

Technology, 2004, Loughborough, UK. 

• "Energy-efficient co-synthesis of data/control dominated embedded systems", 

D. Wu and B. M. Al-Hashimi, submitted to PhD Forum at the Design, 

Automation and Test in Europe 2005. 



Chapter 2 

Background and Previous Work 

Low power design techniques for digital components have received significant 

attention and research effort over the last decade [67-72], These techniques focus 

mainly on the circuit and RTL level. However, it is well known that the higher the 

level of the design hierarchy where power problem is addressed, the higher the power 

reduction is possible [15]. The research presented in this thesis attempts to improve 

the energy efficiency of embedded systems in the context of system level co-synthesis. 

The aim of this chapter is to introduce the background regarding the power 

consumption within embedded systems and energy management techniques applicable 

in embedded system co-synthesis (Section 2.1), provide an overview of the previous 

research reported in the literature (Section 2.2), and outline the motivations of the 

proposed work in this thesis (Section 2.3). 

2.1 Background 

A review of the power consumption of embedded systems is outlined in Section 2.1.1. 

Two main energy management techniques employed in this thesis, dynamic voltage 

scaling (DVS) and adaptive body biasing (ABB), are introduced in Section 2.1.2. 

2.1.1 Power Consumption of Embedded Systems 

In order to design energy-efficient embedded systems, it is important to understand 

the sources of power consumption. The power consumed by processing elements (PEs) 

of embedded systems consists of two parts [2]: 

(1) static power, which occurs whenever the PE is switched on, even when no 

computation activity is carried out by the PE; 

22 
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(2) dynamic power, which is caused by switching activity within the circuitry 

that only occurs when computation activity is being performed. 

The total power consumption of a PE is given by: 

Static power and dynamic power both can be further divided into two components [67, 

73]: 

(^'2) 

p — p i p ^ p Oil 

Pieakage, leakage power, is due to the leakage current, Iieakage, which can arise from 

reverse-bias diode currents and sub-threshold effects. Ptias, bias power, arises from 

circuits that have a constant source of current between the supply and ground (e.g., 

bias circuitry). PswUching, switching power, represents the switching component of 

power, arises when energy is drawn from the power supply to charge load capacitors 

during switching activity. Pshort-drcuu, short-circuit power, is due to the direct-path 

short circuit current, Isc, which arises when both the NMOS and PMOS transistors are 

simultaneously active, conducting current directly from supply to ground. This direct-

path short circuit current exists for a short period of time during switching activity. 

Short-circuit power is often trivial in comparison with switching power [67], thus 

switching power is often referred to as dynamic power. 

For > 0.1pm CMOS technology, switching power Pswitching is the dominant 

component, accounting for approximately 90% of the total PE power consumption 

[67]. As the feature size continues to shrink (< 0.1pm), it is expected that Pieakage will 

increase and become an important component in the total power consumption [72, 74]. 

The following sub-sections introduce switching power and leakage power in details. 
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2.1.1.1 Switching Power 

Switching power arises when energy is drawn from the power supply to charge load 

capacitance during switching activity. To examine the energy drawn from the supply 

for each switching activity, consider the simple inverter gate shown in Figure 2.1, 

where Cl is the physical load capacitance at the output node and VDD is the supply 

voltage. This inverter undergoes the following transitions. First, the input signal is set 

to 1, the transistor T1 is off and the transistor T2 is on. Thus, Cl is discharged since 

T2 pulls the capacitance to ground. Now consider a 1—>0 transition at the input signal. 

In this case, T1 is on and T2 is off. T1 connects Cl to Vm- Vdd charges Q via Tl, until 

VOUT reaches VDD at time T, resulting in a 0->l transition at the output node. The power 

dissipation of this transition is given by; 

where the charging current ic is given by: 

Zc (2.5) 

Therefore, the energy drawn from the power supply for a 0->l transition at the output 

node is given by: 

= V,, ^ l i , d t = - Q . f = C , - r l (2.6) 

For this transition, the energy stored in CL is given by: 

fc. = iPcdt = I 'K, • k M = Q • f" = i c , • (2.7) 

Therefore, half of the energy drawn the power supply is stored in CL, and half of the 

energy is dissipated in Tl. It can be observed that for a 0—>1 transition at the input 
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signal, no energy is drawn from the power supply, but instead the energy stored in Q, 

is dissipated via T2. 

V. 

V 

T1 

-C 

T2 

\ ' c 

C, 

K 

Figure 2.1: Switching power consumption of an inverter [67] 

Although the discussion above is for a simple inverter, the validity of Equation 

2.6 holds for more complex gates and other logic styles [67, 70, 75]. Therefore, 

executing a task r on a PE with N nodes requires switching energy dissipation given 

by: 

f = I 
(2 8) 

where Nc(t) is the number of clock cycles needed to execute r, a is the 0—>1 

transition activity factor (the number of 0—>1 transition per clock cycle averaged over 

a number of clock cycles, 0<<%<1) averaged over the Nc(^ cycles. Equation 2.8 can be 

simplified to; 

(2 9) 

where Cgff is the effective capacitance of the whole PE averaged over the whole 

duration of execution. Assuming the clock frequency of the PE is f , the average 

switching power of a PE performing a computational task rcan be derived: 
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(r) = C.^ (2.10) 

It can be seen from Equations 2.9 and 2.10 that, assuming Ceff is a constant 

determined by the design and the circuit technology, Nc(-5) is a constant determined by 

the computational task and the PE, then ESWITCHING(^ is proportional to the square of VDD, 

whilst Pswitching(t:) is proportional to the product of / and the square of Vdd- Although 

decreasing the clock frequency/reduces the power consumption, it doesn't reduce the 

switching energy needed to complete the execution of task r. Consider the following 

example. A task requires lOM clock cycles to be executed on a PE. The PE works at 

lOOMHz and consumes lOOmW switching power. The execution of this task 

dissipates switching energy of lOOmW • (lOM / lOOMHz) = lOmJ. Alternatively, the 

PE can work at a reduced clock frequency 50MHz. According to Equation 2.10, the 

switching power of the PE reduced to lOOmW • (50MHz / lOOMHz) = 50mW. 

However, the switching energy is 50mW • (lOM / 50MHz) = 10mJ, the same as in the 

case of lOOMHz. Therefore, it is clear that reducing the clock frequency does not 

reduce switching energy, reducing the supply voltage is the only possibility to reduce 

the switching energy. 

Switching energy is proportional to the square of supply voltage. However, this 

simple solution to energy-efficient design comes at a cost. When reducing the supply 

voltage of a digital circuit, the time required for gate signals to settle is prolonged, 

which increases the circuit delay [67]. The effect of supply voltage reduction on 

circuit delay for adder and multiplier logic circuits is shown in Figure 2.2. Both the 

curves in the figure present a trend that the circuit delay increases as Vdd reduces, and 

the delay drastically increases as Vdd approaches the threshold voltage of the 

circuits. The increase of circuit delay necessitates the reduction of the clock frequency 

in order to ensure correct operation. The circuit delay d, which is inversely 

proportional to the clock frequency/ can be approximated (error < 10%) as [67]: 

„ (2.11) 

K -kJ 
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where Vth is the threshold voltage, and kd is a technology dependent constant given by: 

CR 

2 f r 
(2 12) 

where the constants W, VSAT, and Coa-denote the width of the sub-micron CMOS device, 

saturated velocity of the carriers, and gate capacitance respectively, Cl denotes the 

load capacitance. 

Q 

1 
o 
Z 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 
adder 

multiplier 

4.00 6.00 

Figure 2.2: Delay of adder and multiplier vs. supply voltage characteristics [67] 

2,1,1.2 Leakage Power 

Leakage power arises from two types of leakage current: reverse bias diode leakage at 

the transistor drains, and sub-threshold leakage through the channel of an " o f f device. 

Diode leakage occurs when a transistor is turned off and another active transistor 

charges up/down the drain with respect to the former's bulk potential. Sub-threshold 

leakage occurs due to carrier diffusion between the source and the drain when the 
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gate-source voltage Vgs has exceeded the weak inversion point, but is still below the 

threshold voltage V/,, where carrier drift is dominant. The magnitude of diode leakage 

is negligible comparing with sub-threshold leakage [60, 61]. Therefore, the leakage 

current can be approximated as sub-threshold leakage, which is given by [67, 76]: 

(Z13) 

/o ==,"oC., (2-14) 

M = 1 + (2.15) 

where VT is the thermal voltage (KT/q), VTH is the threshold voltage, VGS and VDS are 

gate-to-source voltage and drain-to-source voltage respectively, /̂ o is the zero bias 

mobility, Cox is the gate oxide capacitance, W/L is the ratio of channel width to 

channel length of the device, n is the sub-threshold swing coefficient, TOX is the gate 

oxide thickness, WDM is the maximum depletion layer width of the device, Sst and Sox 

are the dielectric constants of silicon and oxide respectively. For VDS » VT, Equation 

2.13 can be simplified to: 

= /o 2 (2.16) 

therefore, leakage power is given by: 

The magnitude of leakage power is set predominantly by the processing 

technology. For > 0.1 qm CMOS technology, leakage power is trivial comparing to 
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switching power (<10%) [77]. However, as the CMOS feature size continues to shrink, 

it is expected that leakage power will increase exponentially and become an important 

component in the total power consumption [74, 77]. Figure 2.3 illustrates the 

estimated dynamic and leakage power of an IC varying across the technologies [77]. 

The trend of increasing leakage power raises the need for leakage power reduction 

techniques. 

90.000 

8LOOO 

72.000 

63.000 

54.000 

45^00 

36.000 

27000 

l&OOO 
9.000 

0.000 

Q 

leakage powei 

switching power 

0.05 0.035 0.025 

Figure 2.3: Switching and leakage power vs. CMOS technolog)' [77] 

From Equation 2.17, it can be seen that, assuming the supply voltage is constant, 

the leakage power is exponentially proportional to the threshold voltage. The effect of 

threshold voltage to the leakage power is shown in Figure 2.4. As the threshold 

voltage increases, the leakage power decreases dramatically. For example, when Vth 

increases from 0.2V to 0.4V, the leakage power decrease from 10e4 to 10e2 (100 

times lower). However, according to Equation 2.11, increasing threshold voltage also 

results in longer circuit delay, which, in turn, necessitates the reduction of the clock 

frequency in order to ensure correct operation. Figure 2.4 also shows how circuit 

delay varies with threshold voltage. 
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Figure 2.4: Leakage power and circuit delay vs. threshold voltage [61] 

2.1.2 Energy Management Techniques 

This section introduces two main energy management techniques that have received 

considerable attention from academia and industry: dynamic voltage scaling (DVS), 

and adaptive body biasing (ABB), which are used in the co-synthesis techniques 

presented in this thesis. 

2.1.2.1 Dynamic Voltage Scaling 

This section introduces dynamic voltage scaling (DVS), an effective technique for 

dynamic power reduction. DVS is based on the fact that the dynamic energy needed 

for a processing element (PE) to execute a task is proportional to the square of the 

supply voltage (Equation 2.9). However, decreasing supply voltage also results in 

prolonged circuit delay (Equation 2.11), which in turn necessitates the reduction of 

clock frequency, i.e. the performance of the PE. The idea of DVS is to dynamically 

vary the supply voltage and clock frequency of the PE in corresponding to the 
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Figure 2.5: Energy vs. Frequency using fixed and dynamic supply voltages [2] 

temporal performance requirements of the application. According to Equations 2.9 

and 2.11, Figure 2.5 shows the normalised dynamic energy dependent on the 

normalised clock frequency for two cases: (1) keeping the supply voltage fixed and (2) 

adjusting the supply voltage dynamically in corresponding to the clock frequency. 

First consider the curve of fixed Vdd, starting at the nominal supply voltage of 3.3V, 

when clock frequency is reduced, there is no reduction in dynamic energy. Now 

consider the curve of dynamic VDD, as the clock frequency decreases, there is 

significant dynamic energy reduction at reduced Vdd- For example, when the 

normalised clock frequency is 0.4, the normalised dynamic energy for a fixed VDD of 

3.3V is 1. However, the normalised dynamic energy is reduced to 0.37 if Vdd is 

dynamically adjusted to 2.01V. From the above discussion, it can be seen that 

dynamic energy can be reduced in a quadratic manner by executing the tasks with 

lower supply voltage, at the cost of longer computational time. DVS reduces the 

dynamic energy when the performance requirement is low, while retaining peak 

throughput when requested. If a majority of the tasks within an application does not 
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require peak throughput, then the dynamic energy of the application can be 

significantly reduced. 
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Figure 2.6: Block diagram of DVS-enabled processor [70] 

There are three key components for implementing DVS in a processor: an 

operating system that can intelligently vary the processor operation frequency, a 

regulator loop that can generate the minimum voltage required for the desired 

operation frequency, and a processor that can operate over a wide range of voltage [70, 

75]. Figure 2.6 shows a block diagram of a typical DVS-enabled processor [70]. It 

consists of four blocks: microprocessor core, SRAM, I/O and voltage regulator. The 

microprocessor core, SRAM and I/O are interconnected with a system bus. The clock 

frequency of the processor system is controlled by the operating system running on 

the microprocessor. The operation system determines a suitable clock frequency 

according to temporal performance requirement, and writes the desired frequency into 

the frequency register, which is then fed to the voltage regulator. Unlike conventional 

voltage regulator which samples the output voltage and compares it to an input 

reference voltage within a negative feedback loop, in the voltage regulator within the 

DVS-enable processor system, the output voltage drives the VCO (voltage controlled 

oscillator), which generates the clock frequency in corresponding to the voltage. The 
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voltage regulator compares the clock frequency generated by the VCO with the 

desired frequency, and regulates the output voltage in corresponding to the frequency 

error. If the clock frequency is higher than the desired frequency, the regulator reduces 

the output voltage. Otherwise if the clock frequency is lower than the desired 

frequency, the regulator increases the output voltage. The voltage regulator and the 

VCO also supplies supply voltage and clock frequency to SRAM and I/O. This 

approach allows the operating system to directly set the clock frequency of the 

processor system, and lets the hardware loop (voltage regulator and VCO) determine 

the supply voltage to meet this desired frequency. 

Several technologies implementing DVS-enabled processor [70, 75, 78] have 

been reported and showed that energy dissipation can be reduced significantly. 

Recently, various chip manufactures have also marketed processors with DVS 

capability. Transmeta introduced the Crusoe Processor integrated with a DVS 

technique - LongRun [79]. For example, the Crusoe TM5900 can run between 

(667MHz, 0.8V) - (IGHz, 1.4V), consuming 6.5W - 9.5W power. AMD introduced 

DVS based processors - PowerNow [80]. Intel also has DVS based processors -

XScale [81]. 

2.1.2,2 Adaptive Body Biasing 

As outlined in Figure 2.3, leakage power reduction is becoming an important issue 

that needs to be addressed. An effective technique recently introduced is adaptive 

body biasing (ABB) [60-62, 64]. Adaptive body biasing (ABB) is a run-time leakage 

reduction technique which employs variable threshold CMOS. ABB utilises dynamic 

adjustment of clock frequency and threshold voltage through body bias control 

depending on the workload of the processor. When the workload is low, the threshold 

voltage is adaptively changed to a higher value via changing the body bias voltage. 

This will reduce leakage current exponentially (Equation 2.16) and at the same time 

deliver just enough amount of performance required for the current workload. This 

technique is similar to DVS, which is effective when the dynamic power is dominant. 



Chapter 2 Background and Previous Work 34 

On the other hand, ABB is effective for deep submicron circuits, where leakage power 

is an important component of the total power consumption. 

Figure 2.7 shows a block diagram of a possible ABB scheme. It is a negative 

feedback loop consisting of two key blocks: body biasing controller and VCO (voltage 

controlled oscillator). The operating system running on the processor determines a 

desired frequency according to temporal performance requirement, and feeds it into 

the loop. Body biasing controller compares the desired frequency with the actual clock 

frequency, and regulates the output body bias voltage corresponding to the frequency 

error. VCO generates the clock frequency in corresponding to the threshold voltage, 

which is determined by the body bias voltage. If the clock frequency is higher than the 

desired frequency, the controller decreases the body bias voltage, which in turn 

increases threshold voltage, thus results in lower clock frequency. Otherwise if the 

clock frequency is lower than the desired frequency, the regulator increases the body 

bias voltage. Several technologies implementing ABB [60-62, 64] have been reported 

and show that leakage power can be reduced significantly. However, there are some 

overheads of implementing ABB. To make the body bias voltage control available, 

besides body biasing controller and VCO, the substrate bias lines are required to be 

interconnected separately to the power lines, thus creating additional wiring. 

desired f Body Biasing 
Controller 

VCO 
Body Biasing 

Controller 
VCO 

System 

Figure 2.7: Block diagram of adaptive body biasing (ABB) scheme [64] 

2.2 Previous Work 

Embedded system co-synthesis (Chapter 1, Section 1.4) is a methodology aiming to 

find a suitable implementation for a given system specification. The degree of 

suitability is measured in terms of cost, performance, energy efficiency, etc. This 
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section gives a brief review of previous research in the co-synthesis of energy-

efficient embedded systems. There are other literature reviews carried out in Chapters 

3, 4 and 5. 

The early work in co-synthesis [4, 9, 12] focused on cost and performance. Two 

important early co-synthesis tools are VULCAN [28, 82, 83] and COSYMA [84-86], 

which partition the system specification into hardware and software (i.e., hardware-

software partitioning). Numerous research has also been carried out in the area of 

application mapping [84, 87-90] and activity scheduling [3, 14, 91-94]. However, the 

recent development of the portable application market has intensified the interests in 

co-synthesis techniques for energy-efficient embedded systems. The pioneer research 

targeting the reduction of energy dissipation throughout the co-synthesis process was 

proposed by Dave et al [14]. Their algorithm, namely COSYN, targets distributed 

heterogeneous embedded systems executing a set of acyclic task graphs. The mapping 

is produced in such a way that not only the timing and cost but also energy dissipation 

is taken into account. Energy reduction is achieved based on the fact that 

implementing tasks on hardware execute faster and with less power. A multi-objective 

genetic algorithm for hardware-software co-synthesis of embedded systems is 

presented by Dick and Jha [88], where cost and power are optimised while hard real-

time constraints are met. 

Dynamic Power Reduction 

Due to the emergence of DVS and the resulting high dynamic power reduction, 

embedded system co-synthesis research started to investigate the possibility of 

integrating DVS. In order to employ DVS, it is necessary to identify appropriate 

voltages for the task executions so that the available idle and slack time (Chapter 1, 

Section 1.4.4) can be exploited effectively. Initial research on DVS for co-synthesis 

was carried out for single processing element (PE) systems. DVS was investigated in 

the context of non-real-time applications [95, 96], where system traces of workloads 

are analysed to evaluate energy saving with simple energy/delay models. A foundation 

was presented by Fering et al [97] for the simulation and analysis of DVS algorithms 

for non-real-time application. 
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A large number of reported research was carried out for single PE systems 

executing real-time applications. Ishihara and Yasuura [53] proposed some guideline 

to solve the voltage scheduling problem, which was formulated as an integer linear 

programming (ILP) problem to find the optimal solution. To minimise energy 

dissipation, it shows that, for a PE with continuously variable voltages, a unique 

voltage should be used for each task to expand its execution to its deadline; while for a 

PE with a number of discretely variable voltages, at most two voltages need to be used 

to execute each task. Hong et al [52] used a heuristic technique to determine the best 

scheduling and voltage level. Their synthesis technique also addresses the selection of 

the PE core and the determination of the instruction and data cache size so as to fully 

exploit DVS, which results in significantly energy reduction. The fixed priority 

scheduling, widely used in hard real-time system design, was extended to an energy-

efficient version by Shin and Choi [98]. Their method obtains an energy reduction for 

a PE by exploiting the slack times inherent in the system or arising from variations of 

execution times of tasks instances. They presented a run-time mechanism to use these 

slack times for energy reduction, either by transiting the PE into power-down mode or 

changing the supply voltage and clock frequency dynamically. The problem of 

determining the optimal voltage scaling for a real-time system with fixed-priority jobs 

implemented on a variable voltage PE was proposed by Quan and Hu [54]. Two 

algorithms were presented in that paper. The first one finds the minimum constant 

operation frequency needed to complete the whole set of jobs; the second one is built 

on the first one and produces a voltage schedule which results in lower energy 

consumption. A power optimisation for priority-based pre-emptive scheduling was 

proposed by Shin et al [99]. The method combines off-line and on-line algorithms. 

The off-line algorithm determines the lowest possible nominal PE operation frequency 

while guaranteeing deadlines of all tasks. The on-line algorithm dynamically varies 

the PE operation frequency or brings a PE into a power-down mode according to the 

status of task set in order to exploit execution time variations and idle intervals. Lee 

and Sakurai [100] presented an online voltage scaling scheme. It exploits slack time 

arising from workload variation by partitioning a task into several timeslots and 

performing online voltage control on timeslot-by-timeslot basis. Their scheme can be 

easily applied to various targets, by employing software feedback control of supply 
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voltage and device driver from physical measurement of voltage-frequency 

relationship. 

Numerous embedded systems are multi-PE systems and the previously reported 

works on DVS techniques for multi-PE systems are discussed next. A hybrid search 

strategy based on simulated heating [101] was presented by Bambha et al [102]. They 

search the optimal voltage levels for all the tasks executing on a multi-PE systems. 

Other heuristic techniques have been proposed to get sub-optimal solutions [55, 58, 

59]. Luo and Jha [58] presented a power-conscious algorithm for jointly scheduling 

periodic task graphs and aperiodic tasks. In their technique, periodic task graphs are 

scheduled statically. Slots are created in this static schedule to accommodate hard 

aperiodic tasks (aperiodic tasks with hard deadlines). Soft aperiodic tasks (aperiodic 

tasks with soft deadlines) are scheduled dynamically with an online scheduler. The 

online scheduler employs a statistical process to predict the next arrival time of soft 

aperiodic tasks. Using the predicted arrival times and the static schedule, the online 

scheduler can predict the next idle time for the PE or predict the actual available 

processing time for a scheduled task, and perform appropriate DVS or DPM. Gruian 

and Kuchcinski [59] introduced a dynamic list scheduling heuristic, which supports 

DVS by making the priority function energy-aware. The energy sensitive task 

priorities are re-calculated at each scheduling attempt. If a scheduling attempt fails by 

exceeding the hard deadline, the priority function is adjusted and another scheduling 

attempt is carried out. Schmitz and Al-Hashimi [55] extended the system model by 

considering the variation of power consumption. They proposed an efficient DVS 

algorithm, which splits the slack time into slices, and iteratively distributes a slice to a 

selected task in such a way so that a maximum energy saving is achieved by using the 

slack time slice. In their recent papers [57, 103], the DVS algorithm [55] was 

combined with mapping and scheduling to form an energy-efficient co-synthesis. 

They employed genetic algorithm guided by energy sensitive objective functions to 

optimise the mapping and scheduling towards energy efficiency. 
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Leakage Power Reduction 

As outlined in Figure 2.3, leakage power will become an important power 

consumption component for < 0.1pm CMOS technology [74]. The importance of 

leakage power reduction has been recognised by the research community [74, 76, 77, 

104,105^ 

Three possible approaches to reduce leakage power [106, 107] in circuit level 

have been reported; input vector control, supply voltage gating, and increasing the 

threshold voltage. Input vector control is based on the fact that, the standby leakage 

power of a circuit unit varies depending on the input vector, which determines the 

number of transistor stacks in the unit with more than one off-state transistor [104, 

108]. The goal of input vector control is to find the input vector that minimise the 

leakage power [71, 109, 110]. Once this input vector is found, the input to the unit can 

be switched to this vector when the unit is in standby mode (i.e., the unit is not 

carrying out useful activities). Supply voltage gating shuts down the power supply so 

that idle units do not consume leakage power. This can be done using sleep transistors 

to cut the path from the power supply to the units [110-112]. For increasing the 

threshold voltage, there are different implementations, all of them involve some 

process technology support to change the threshold voltage of some (or all) transistors 

from the default defined for the technology; (1) In dynamic threshold voltage 

MOSFET (DTMOS) [113], the threshold voltage of the transistor is a function of its 

gate voltage, i.e., the threshold voltage is high whenever the transistor is off, therefore 

the leakage power of the transistors in off-state is reduced; (2) Dual Threshold CMOS 

[72, 114] uses low threshold devices in the critical path while high threshold devices 

in the non-critical path, therefore the leakage power on the non-critical path is reduced; 

(3) In Variable threshold CMOS (VTCMOS), the threshold voltage of a circuit unit 

can be scaled dynamically during runtime by adaptive body biasing (ABB) [60-64]. 

Khouri and Jha [72] proposed an RTL level leakage power analysis and reduction 

technique for behavioural synthesis. The technique identifies the frequently idle 

modules in the data-path, which are targeted for leakage optimisation. The leakage 
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optimisation is based on the use of dual threshold voltage CMOS technology, i.e., 

using high threshold voltage devices in the frequently idle modules, while low 

threshold voltage devices in the other modules. A combined DVS and ABB method 

was employed in a system level co-synthesis of embedded system [115]. The co-

synthesis technique targets single PE system and reduce dynamic and leakage power 

simultaneously. Analytical models are developed to produce optimal supply voltage 

and threshold voltage values for energy minimisation. 

2.3 Motivations 

There is little doubt that the demand of energy-efficient embedded systems will 

continue to increase in the future. Therefore, new embedded system co-synthesis 

techniques considering the dynamic and leakage power reduction will be needed. 

1. Energy-efficient co-synthesis of data and control dominated embedded systems 

Dynamic voltage scaling (DVS, Section 2.1.2.1) technique is an effective 

technique that can be employed in system level co-synthesis to reduce the dynamic 

power. A number of recently reported research [52-59] have employed DVS in the co-

synthesis of embedded systems to achieve energy efficiency, where purely data-

dominated systems are considered. However, embedded systems, particularly real-

time applications (e.g., communication or process control systems), often contain both 

data and control flows [116]. Control flows express the behaviour, where some parts 

of the system functionality execute only if specific control conditions are met. This 

aspect has been recognised by the research community and several system level 

representations have been proposed to capture both the data and control flow at task 

level [41, 42, 116-118]. Such an abstract system representation, conditional task graph 

(CTG), has been defined and a scheduling algorithm has been proposed so that the 

worst case delay is minimised [41, 42]. Xie and Wolf [119] presented a technique 

performing mapping and scheduling simultaneously for CTGs, which takes advantage 

of the resource sharing among mutual exclusive tasks. Such accurate system 

representations also offer potential of more efficient system implementations in terms 
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of energy efficiency. Nevertheless, the above works [41, 42, 116-118] have been 

conducted without the consideration of energy. No research has yet addressed the 

problem of energy minimisation of data and control dominated embedded systems. 

This forms the first motivation of this research. This thesis investigates energy 

minimisation techniques for the co-synthesis of embedded systems, whose 

representations capture both data and control flows (Chapter 3). 

2. Influence of communications on energy-efficient co-synthesis 

Communications have important impact on the design of multi-PE embedded 

systems, which have drawn much attention from the research community [42, 120-

125]. The time and energy overheads of communication significantly influence the 

quality of embedded system designs in terms of timing feasibility and energy 

efficiency. Therefore, the second motivation of this research is to integrate 

communications with the co-synthesis techniques of Chapter 3 by using enhanced 

system models (Chapter 4). Furthermore, a performance analysis is carried out to 

investigate the effect of alternative communication architectures on system quality in 

terms of energy efficiency. 

3. Simultaneous dynamic and leakage power reduction 

As outlined in Figure 2.3, leakage power will become an important power 

consumption component in deep sub-micron designs [74]. ABB has been recently 

proposed to effectively reduce leakage power [60-64], most of which focus in the 

circuit level. There is little research reported in the system level, apart the one reported 

by Martin et al [115], where combined DVS and ABB techniques have been proposed 

for embedded systems to reduce dynamic and leakage power simultaneously. The 

technique [115] has the disadvantage of increased cost of complexity due to the 

implementation of combined DVS and ABB technique. Future work is needed in the 

system level co-synthesis of embedded system for dynamic and leakage power 

reduction, taking cost into consideration. This forms the third motivation of this 

research. 
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2.4 Concluding Remarks 

This chapter introduces the sources of power consumptions within embedded systems, 

and outlines two main energy management techniques applicable in embedded system 

co-synthesis, namely dynamic voltage scaling (DVS) and adaptive body biasing 

(ABB), which are effective in reducing dynamic and leakage power respectively. An 

overview of the previous work in the co-synthesis of energy-efficient embedded 

systems is given. There is little doubt about the demand for new co-synthesis methods 

for energy-efficient embedded systems. Embedded systems, particularly real-time 

applications, often contain both control and data flows, which need special co-

synthesis techniques to improve the energy efficiency. Embedded systems are 

heterogeneous and distributed systems, the influences of communications on the 

design quality in terms of timing feasibility and energy efficiency need to be 

considered. Furthermore, most recent research in embedded systems focused on 

dynamic power reduction. However, leakage power is becoming important in deep 

sub-micron designs, therefore new cost-effective techniques capable of simultaneous 

reducing the dynamic and leakage power of embedded systems need to be investigated. 

All the above form the motivation of the proposed research in this thesis. 



Chapter 3 

Conditional Behaviour Aware DVS 

Based Co-Synthesis 

Dynamic voltage scaling (DVS) is an effective technique to reduce the dynamic power 

of processing elements (PEs) within embedded systems. DVS dynamically scales the 

supply voltage and the clock frequency in response to the temporal performance 

requirements, therefore, reduces the energy dissipation when the performance 

requirement is low, while retaining peak performance when requested. Previous DVS 

techniques for embedded systems have focused on purely data dominated systems 

[52-59], However, embedded systems often contain both data and control flows, 

particularly for real-time applications [116]. Control flows express the behaviour, 

where some parts of the system functionality execute only if specific control 

conditions are met. This aspect has been recognised by the research community and 

several system level representations have been proposed to capture both the data and 

control flow at task level [41, 42, 116-118]. Using such system representations allows 

a more accurate modelling for a wide range of applications, which will lead to more 

efficient system implementations. Based on such consideration, some research has 

addressed the scheduling and mapping of embedded systems expressed as conditional 

task graphs (CTGs, Chapter 1, Section 1.3.2) or similar representations [41, 42, 119], 

with the aim of minimising the worst case delay. Such an accurate system 

representation also offers the potential of efficient implementations in terms of energy 

efficiency. Nevertheless, no work has yet addressed the problem of energy 

minimisation during co-synthesis of system specifications which capture both 

dataflow and the flow of control. This chapter proposes a new DVS technique for data 

and control dominated embedded systems, which is capable of improving the energy 

efficiency taking into account the conditional behaviour of the systems. This chapter 

also develops a mapping technique for better exploitation of the proposed DVS 

techniques for further energy reduction. 

42 
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The remaining of this chapter is organised as follows. Section 3.1 outlines the 

preliminaries including the concept of the schedule table and the principles of genetic 

algorithms. Section 3.2 gives an overview of the proposed energy minimisation 

techniques for data and control dominated embedded systems, including a conditional 

behaviour aware DVS technique and an energy-efficient mapping technique, which 

are detailed in Sections 3.3 and 3.4 respectively. Extensive experimental results are 

presented in Section 3.5. Finally, concluding remarks are given in Section 3.6. 

3.1 Preliminaries 

This section presents the power and delay models used in the conditional behaviour 

DVS based co-synthesis for data and control dominated embedded systems. The 

concept of schedule table is introduced. Finally, the key principles of genetic 

algorithms are outlined. 

3.1.1 Power and Delay Models 

In order to apply DVS to the embedded systems, this section derives the power and 

delay models. The models include equations for the calculation of energy dissipation, 

execution time, and supply voltage. As outlined in Chapter 2, Section 2.1.2.1, DVS 

decreases energy dissipation by slowing down the clock frequency of PEs, which in 

turn results in longer execution time of tasks. Consider a PE executing a task r. 

Assume the nominal supply voltage and the threshold voltage of the PE is V„om and V/h 

respectively, the energy dissipation required to execute r at VNOM is EI^(VNOM)- The 

energy dissipation required to execute R at VDD can be derived from Chapter 2, 

Equation 2.9: 

MM 

Assuming the execution time of ra t Vnom is dr(Vnom), the execution time of r a t Vdd 

can be derived from Chapter 2, Equation 2.11: 
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(3,2) 
P«om --f'w) 

According to Equation 3.2, Vddidr), the supply voltage corresponding to dr is given by 

2a 

where 

y,, (d, ) = V , „ + ^ + J V „ + ~ - Ki (3.3) 

(pr _ pr If 
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Equations 3.1 - 3 . 5 will be used in the conditional behaviour aware DVS technique in 

Section 3.3. 

3.1.2 Schedule Table 

In Chapter 1, Section 1.3.2, the principles of conditional task graphs (CTGs) were 

outlined. In this section, additional information in terms of the conditional behaviour 

of CTGs is given, in order to explain how to present the schedules of different tracks 

within the CTGs. An example is used to illustrate the concept of schedule table. 

As stated earlier, an application is specified as a conditional task graph (CTG). At 

a given execution of a CTG, depending on the condition values produced by the 

disjunction tasks, only a certain subset of the total tasks (track) is executed, and this 

subset differs from one execution to the other. For example, Figure 3.1(a) shows a 

CTG, where tasks My and nj are disjunction tasks. Depending on the condition values 

produced by tasks My and ns, there exist three possible tracks as shown respectively in 

Figure 3.1(b) - (d); (1) track 1 of Figure 3.1(b) will be followed if N/ produces A; (2) 
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track 2 of Figure 3.1(c) will be followed if TIJ produces A and NS produces 5; (3) track 

3 of Figure 3.1(d) will be followed if NJ produces A and NS produces B . 

Column true 

sink {psj deadline=30ms 

Column A Column ,4 

^ Column Column 

• ' ' \ 

(a) conditional task graph (b) track 1 (c) track 2 (d) track 3 

Figure 3.1: Example of a conditional task graph and its tracks 

Architecture 

DVS-PEl 4 • 

DVS-PE2 4 • 

CL 

Figure 3.2: Example of architecture 

For a mapped CTG (i.e. each task in the CTG has been mapped onto a certain PE 

of the hardware architecture), there exists an optimal schedule for each individual 

track which produces a minimal delay. For example, consider the CTG of Figure 

3.1(a), assuming this CTG has been mapped to the architecture of Figure 3.2, the 
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mapping and the corresponding execution times of the tasks are as shown in Table 3.1. 

Note that no and ng are not considered in Table 3.1 and the following discussion, 

because they are dummy tasks which have zero execution time and are not mapped to 

any PE (Appendix C). Figure 3.3 shows the schedules of the three tracks of the CTG. 

As it can be seen, the start times of tasks vary depending on the condition values 

produced in a specific execution, which determine the track to follow. For example, if 

track 1 is followed, the schedule starts My at 15ms (Figure 3.3(a)), while if track 2 is 

followed, the schedule starts n j at 17ms (Figure 3.3(b)), finally, if track 3 is followed, 

the schedule starts m at 21ms (Figure 3.3(c)). Eles et al [41, 42] presented the 

schedule table concept to present the various start times of the tasks under all possible 

condition values. Table 3.2 is a schedule table corresponding to the schedules of 

Figure 3.3. Although the original schedule table [41, 42] specifies only the start times 

of the tasks. In this research, the schedule table is extended to have the end times as 

well. This is in order to present the clock frequency and, explicitly, the supply 

voltages (Equations 3.3 - 3.5) at which the tasks are executed. Examining Table 3.2 

shows that the table has one row for each task, which contains start and end times for 

that task corresponding to different condition values. Each column in the table is 

headed by a logical expression constructed as a conjunction of condition values. Start 

and end times in a given column under the logical expression represent the activation 

and termination times of the tasks when the respective expression is true. The start 

times and end times in the column true are for those tasks executed initially. 

Task Mapping Execution time (ms) 

ni PEl 10 

112 PE2 5 

113 PE2 4 

114 PEl 2 

115 PEl 6 

116 PE2 1 

n? PEl 5 
Table 3.1: Task mapping and task execution times 
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gure 3.3: Schedules for the CTG of Figure 3.1(a) (f^A=0.8V, f^5W) 



Chapter 3 Conditional Behaviour Aware DVS-Based Co-Synthesis 48 

true A A 

ni 0-+10 

n2 10-+15 

n3 10-»14 
ru 14-»16 
ns 14-+20 

% 16-+17 20-»21 

n? 15-»20 17-»22 21-+26 
Table 3.2: Schedule table for the CTG of Figure 3.1(a) 

The schedule table captures a schedule of the system specified by the CTG 

considering the given task mapping. This means that all decisions that could be taken 

off-line have been made by the scheduling algorithm and are written into the schedule 

table. Based on this information, the run-time kernels running on each PE will take the 

actual decision on activation of tasks, based on the current values of condition. For 

example, the CTG of Figure 3.1(a) has three tracks as shown in Figure 3.1(b) - (d). 

The schedule of track 1 is represented in columns true and A', the schedule of track 2 

is captured in columns true, A and A^B . The schedule of track 3 is given in columns 

true, A , and A^B . Considering track 2, the actual decisions on the activation of 

tasks are made as follows; (1) nj is executed initially from 0 to 10; (2) if ni produces 

condition value A , the run-time kernel searches column A of the schedule table, and 

executes NS from 10 to 14; (3) if NS produces condition value B, the run-time kernel 

searches column A^B , and executes n4 from 14 to 16, from 16 to 17, M; from 17 to 

22. It is clear that the actual schedule depends on which track is followed. 

3.1.3 Genetic Algorithms 

Genetic algorithms (GAs) [126, 127] have been the subject of numerous research in 

the last decades, and they have been proven to solve different optimisation problems 

successfully [88, 128]. In this section, the basic concept and principle of genetic 

algorithms are explained. 

Genetic algorithms are search algorithms based on the mechanics of natural 

selection and natural genetics. Figure 3.4 shows a general flow of a genetic algorithm. 
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Genetic algorithm maintains a population, which is a pool of solutions. Each solution 

in the pool is associated with an objective function value. The objective function is a 

measure of what the genetic algorithm attempts to maximise or minimise, e.g., cost, 

execution delay, and energy dissipation. The genetic algorithm (1) initialises a 

population; (2) evaluates the objective function value for each solution in the 

population; (3) ranks solutions according to the objective function values; (4) if the 

optimisation objective is met, terminates the optimisation, otherwise passed the ranked 

population to evolvement; (5) evolves the population by removing the low-ranked 

solutions (i.e., the solutions with lower quality) from the population and applying 

genetic operator to the high-ranked solutions (i.e., the solutions with high quality); (6) 

repeats steps (2) - (5) to the new generation of population. This procedure repeats 

until a certain optimisation objective is met. 

(1) Initilisation 

Population 

New generation 
of Population 

(2) Evaluation 

(5) Evolvement 
Reproduction 
Crossover 
Mutation 

(3) Ranking 

4) Optimisation 
objective met? 

Figure 3.4: General flow of a genetic algorithm 
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String. 

String n 

1 0 1 0 0 1 1 0 0 1 

0 0 1 ] 0 1 1 1 0 0 

1 1 0 0 1 0 0 1 ] 0 

Figure 3.5: Solution pool of genetic algorithm 

Crossing point 

String i 

String j 

1 0 1 0 0 1 1 0 0 1 

J ^ s w a p 

0 0 1 1 0 1 1 1 0 0 

crossover 

String i' 

String j' 

1 0 1 0 0 1 1 1 0 0 

0 0 1 1 0 1 1 0 1 0 1 

Figure 3.6: Genetic operator: crossover (mating) 

In a genetic algorithm, each solution is represented by a string of values, as 

shown in Figure 3.5. The evolvement of the solutions is brought by tliree genetic 

operators: reproduction, crossover (mating), and mutation. Reproduction is a process 

in which individual strings are copied according to their objective function values. 

Strings with higher values have a higher probability of contributing one or more 

offspring in the next generation. After reproduction, crossover swaps portions of 

different strings at random. Figure 3.6 shows an example of string crossover between 

String i and String j. The portions right to the crossing point are swapped, producing 

String i' and String j'. The mechanics of reproduction and crossover are simple, 

involving random number generation, string copies, and partial string exchanges. The 

combination of reproduction and crossover gives genetic algorithm much of its power 
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to achieve optimisation objective. Another genetic operator is mutation, which 

changes one or more digit values in a string at random. Mutation is needed because, 

even though reproduction and crossover are effective, occasionally they may lose 

some potentially useful genetic material [126]. 

3.2 DVS based Co-Synthesis Overview 

The application of DVS techniques for task scheduling is based on the assumption that 

a certain slack time is available and this slack is also predictable, at least to a certain 

extent, at design time. In the case of system specifications which capture both the data 

flow and control flow, as in the case with conditional task graphs (CTGs), 

constructing a schedule with voltage scaling is more difficult than for pure data flow 

systems, due to the additional problems related to the prediction of slacks. The values 

of the conditions are unpredictable, so the decision on how much slack time can be 

distributed to a task is taken without knowing which values the downstream 

conditions will later get, i.e., the execution path is determined incrementally during 

run-time. On the other side, at a certain moment during execution, when the values of 

some conditions are already known (upstream conditions), they have to be used in 

order to take the best possible decisions. 

A new conditional behaviour aware DVS technique for embedded systems 

expressed as CTGs is presented in Section 3.3, which is capable of exploiting the 

slack time taking into account the conditional behaviour of the system. The main goal 

of this new DVS teclmique is the identification of a voltage scaling such that, under 

any possible set of condition values, the deadlines are satisfied and, at the same time, 

energy dissipation is reduced as much as possible. Also, a genetic algorithm based 

mapping technique is introduced in Section 3.4 to optimise the task mapping to 

efficiently exploit the proposed DVS teclinique, hence, leading to further energy 

saving. 
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Example 1: Challenge of Conditional Behaviour Aware DVS 

To illustrate the challenge of the conditional behaviour aware DVS technique for 

CTGs, consider the CTG of Figure 3.1(a). Assume that the deadline of the system is 

30ms. Figure 3.3(a) - (c) show the schedules of the three possible tracks through the 

CTG, corresponding to the schedule table Table 3.2. The schedules are produced 

using the algorithm proposed by Eles et al [42], where the aim is to produce a 

schedule such that the worst case delay is as small as possible. Examining Figure 3.3 

shows that the amount of slack time varies with the tracks, ranging from 10ms in the 

case of track 1 to 4ms in the case of track 3. Figure 3.3(a) - (c) also show the energy 

dissipation of each track, assuming PEl and PE2 consume 5W power running at a 

supply voltage of 3.3V and a threshold voltage of 0.8V. For example, the energy 

dissipation of track 1 is 5W (10ms + 5ms) + 5W 5ms = lOOmJ. In order to make use 

of the DVS techniques for energy minimisation, one possible DVS based approach 

[53, 59] can be employed. This involves uniformly distributing the slack times 

between the tasks, and scaling the tasks to fit the imposed deadline. The scaling factor 

is the ratio between the deadline and the total length of the schedule: 

f r = 

For example, the scaling factor for track 1 is calculated by 30 / 20 = 1.5. Similarly, the 

scaling factors for track 2 and track 3 are 1.36 and 1.15 respectively. Scaling modifies 

the start and end times of the tasks, which are given by; 

(3-8) 

where and ' are the start times before and after the scaling, and ' are the 

end times before and after the scdXmg, fscaling is the scaling factor. Using Equations 3.6 

- 3.8, scaling the schedules of Figure 3.3(a) - (c) generates the schedules of Figure 

3.7(a) - (c). For example, in the scaled schedule of track 1 (Figure 3.7(a)), tasks «/, «2, 
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and My are scaled with a scaling factor 1.5 to meet the deadline. In this case, the supply 

voltage at which ni, n2, and n? should be executed is calculated using Equations 3.3 -

3.5: 

a = ) _ 2 2 
4 V „ J 20 

1.5 

t _ (3 3 - 0 S)' • i o n i 
3.3 

0.8 + i ^ . 
2 1 ^ 

0.8 + 
1.894 

2 1 . 5 
0.8' «2.62F 

The energy dissipation of track 1 after scaling is calculated using Equation 3.1: 

J 

2.62 ' 

3.3' 
.100 = 63.0/My (3.9) 

where i is the task number. As it can be seen from Figure 3.7, the scaling factor, and in 

turn, the supply voltage depends on the track to be followed. For example, the scaling 

factors for tracks 1, 2 and 3 are 1.5, 1.36 and 1.15 respectively. The scaled schedules 

of Figure 3.7 are generated assuming the track to be followed is known at advance. 

During a specific execution, however, the condition values of the CTG, and, in turn, 

which track will be followed are not known in advance. Therefore, the scaled 

schedules of Figure 3.7 are impracticable. For example, at the time point of 0, it is 

unknown that whether track 1, track 2, or track 3 will be followed, hence it is 

unknown which scaling factor should be employed. If the scaling factor and, 

implicitly, the supply voltage are decided upon improperly, the time constraints may 

be conflicted, which camiot be tolerated in systems with hard-real time properties. As 

shown in Figure 3.8, if nj is scaled with the scaling factor of 1.5, i.e., is executed 

from time 0 to 15, and the condition values produced by ri] and come out to be A 

and B later, the deadline will be missed even if the remaining tasks run with the 

nominal supply voltage (3.3V). 
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(a) Scaled schedule of track 1 
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(c) Scaled schedule of track 3 

Figure 3.7: Schedule scaled for energy minimisation 
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Figure 3.8: Improper scaling 

The above example shows that, in order to exploit slack time as much as possible 

and at the same time meet time constraints, the worst case slack time (the maximum 

slack time that can be distributed to a task without later conflicting time constraints 

during upcoming scheduling decisions) should be identified dynamically and used to 

decide how much slack time a task can exploit. 

3.3 Conditional Behaviour Aware DVS 

In this section a new conditional behavioural aware DVS technique for conditional 

task graphs (CTGs) is described. The basic idea of the proposed DVS technique is to 

identify the available worst case slack time taking into account the conditional 

behaviour of CTGs. This is achieved by dynamically identifying the worst case track 

(a track with the longest delay), calculating the scaling factor (i.e. the ratio between 

the deadline and the total length of the schedule) and modifying the schedule table 

every time after a disjunction node (a node producing a condition value) has been 

scheduled. 

3.3.1 Problem Formulation 

The input of the proposed DVS technique is a conditional task graph (CTG) and a 

hardware architecture containing a number of DVS-enabled processing elements 

(PEs). The PEs can run at a range of supply voltages between the threshold voltage 

and the nominal supply voltage. The supply voltage can be scaled continuously within 
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the range, but it can be easily adapted to the case with discrete voltages (a number of 

potential supply voltages) [129]. An assumption is made that the tasks are of 

sufficiently coarse granularity and that the PEs can continue operation during the 

voltage scaling, which allows neglecting the scaling overhead in terms of power and 

time. Furthermore, the PEs might be shut down when they are idle. Each task in a 

CTG might have multiple implementation alternatives, i.e., it can be potentially 

mapped onto several PEs which are able to execute this task. For each possible task 

mapping, certain implementation properties, e.g. execution time and power 

consumption, are given in a technology library. These values are either based on 

previous design experiences or on estimation techniques [130-134]. The CTG has 

been mapped onto the architecture and a schedule table has been generated by the 

scheduling technique presented by Eles et al [42] whose aim is to make the worst case 

delay as small as possible. The output of the proposed DVS technique is a slack time 

exploited schedule table indicating activation times and voltage levels such that 

deadlines are satisfied and at the same time energy dissipation is reduced. In order to 

concentrate on the specific aspects of importance for this chapter, a simplifying 

assumption is made that communications between tasks take zero time and consumes 

zero power. Impact of communications will be discussed in Chapter 4. 

3.3.2 Proposed Technique 

The strategy of the proposed conditional behaviour aware DVS technique is based on 

the idea to exploit the information of condition values available when a disjunction 

node ends, in order to apply the largest possible scaling factor while still guarantee the 

deadline. The point in time when additional information concerning the future 

evolution of the system becomes available is the moment when a disjunction node 

ends. Therefore, at the beginning of the scheduling process, a more conservative 

scaling factor is applied. Once a disjunction node has been scheduled and, as a result, 

more available slack time can be identified, a higher scaling factor should be applied. 

Thus the schedule of a CTG is divided into several scaling regions by the end times of 

the disjunction nodes. Each scaling region is then scaled with a certain, suitable 

scaling factor. 
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Scaling region true Scaling region A 

Track 1 

Track 2 

Track 3 

deadline 

2027 

Scaling region A 

Scaling region A'̂ B 

Scaling region A^B 

0̂ 

Figure 3.9: Scaling regions vs. columns of schedule table 

Figure 3.9 shows the scaling regions for the schedule table Table 3.2. Since the 

disjunction node nj ends at time 10, the schedules of the three tracks are same from 

time 0 to time 10, which corresponds to scaling region true. If nj produces condition 

value A, track 1 is followed. In this case, the schedule of track 1 from time 10 to 20 

corresponds to scaling region A. Otherwise if produces condition value A , track 2 

or track 3 is followed depending on the condition value produced by ris. In this case, 

the schedules of track 2 and track 3 are same from time 10 to time 14, which 

corresponds to scaling region A . Similarly, scaling regions A'^B and A^B can be 

identified as shown in Figure 3.9. Examining Table 3.2 and Figure 3.9, it can be seen 

that the schedules of the tasks in each column correspond to a scaling region. 
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However, a column of the initial schedule table has not necessarily to directly 

correspond to a scaling region. This will be the case whenever, according to the 

generated schedule, a task is running in parallel with a disjunction task and is finishing 

after that one. Such a situation is illustrated next using an example. 

Example 2: Problem of Identifying Scaling Regions 

Previously, motivational example 1 has been used to show the challenge of the 

proposed conditional behaviour aware DVS technique. This will be another example 

showing the problem of identifying scaling regions. Consider the CTG of Figure 3.10, 

which is mapped to the architecture of Figure 3.2. Assuming the task mappings and 

execution times are as Table 3.3, Table 3.4 gives its schedule table. Accordingly, 

Figure 3.11 shows the schedules of the two tracks corresponding to condition value A 

and condition value A , where track 2 is the worst case track since it ends later than 

track 1. Consider the schedule of track 1 (Figure 3.11(a)). Task n2 is running over the 

finishing time of disjunction task ns. To scale the schedule for energy saving and at 

the same meet the timing constraints in the worst case (track 2), the scaling region 

from time 0 to 4 should be scaled with a conservative scaling factor, which can be 

calculated according to Equation 3.10 as 15/12=1.25, as shown in Figure 3.12. 

However, when task ns has finished, the information concerning the track that will be 

followed, in this example, track 1 corresponding to condition value A, is available. 

Hence, in order to make the most of the available slack, a larger scaling factor of (15 

5)/(10 4)= 1.67 will be applied and, consequently, the PE will be run at lower voltage 

(Figure 3.12). As it can be seen, task is scaled with two different scaling factors, i.e., 

it belongs to two different scaling regions. In such cases, the task belonging to more 

than one scaling regions should be split and distributed over several columns of the 

schedule table, so that each column corresponds to a scaling region, in order to apply 

the proposed DVS technique to the schedule table. For this example, n2 should be split 

and distributed over column true, column and column A , as shown in Table 3.5. It 

can be seen that, after splitting, the schedules of the tasks in each column directly 

correspond to a scaling region. Table 3.6 gives the schedule table after voltage scaling 

for this example. 
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sink deadline=15ms 

(a) conditional task graph (b) track 1 (c) track 2 

Figure 3.10: A conditional task graph and its tracks 

1 Task Mapping Execution time (ms) 

ni PEl 2 

n2 PE2 4 
ns PEl 2 

n4 PEl 2 
n; PEl 4 
ne PEl 2 
ny PEl 2 

Table 3.3: ask mapping and execution times of the CTG of Figure 3.10 

Task 1 true A A 

ni 0 ^ 2 

n2 2—>6 
ns 2 ^ 4 
n4 4—>6 
ns 4 ^ 8 
ne 6 ^ 8 8^10 

n? 8^10 10^12 
Table 3.4: Schedule table of the CTG of Figure 3.10 
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Figure 3.11: Schedule of the CTG of Figure 3.10 

Scaling region true Scaling region A 

r 
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P E l 
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P E 2 
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0 gJ 15 

clock frequency, 
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descend 

Figure 3.12: Scaling the schedule of Figure 3.11(a) 
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Task A A 

ni 0->2 

ni 2—>4 4—>6 4—>6 

na 2 ^ 4 
ru 4—>6 

n5 4-4-8 

% 6—>8 8-^10 

n? 1 8^10 10^12 
Table 3.5: Pre-processed schedule table of Table 3.4 

Task A 

nl 0^2.5 
n2 2.5^5 5^8.3 5^7.5 
n3 2.5^5 
n4 5^8.3 
n5 7.5^10 
n6 8.3-^11.6 10->12.5 
n7 11.6^15 12.5^15 
Table 3.6: Scaled schedule table of Table 3.5 

After having identified the scaling regions delimited by the end times of 

disjunction tasks, each scaling region can be scaled with a scaling factor determined 

incrementally during run-time. The drawback of this scaling technique is that the tasks 

on the non-critical paths do not take advantage of the available slack time. For 

example, as shown in Figure 3.12, after scaling the tasks with corresponding scaling 

factors, a slack time s5 is still available. This has to be exploited for further energy 

saving. A technique [55] is adapted to exploit such slack times. The basic idea lies in 

energy gradient, which is the difference between the energy dissipation of a task with 

the execution time t and the reduced energy dissipation (due to DVS) of the same task, 

when extended with a time quantum dt. The technique (1) splits the slack time 

(difference between the latest finish time and the actual finish time of the tasks) into a 

number of time quantum dt, (2) calculate the energy gradients for all extensible tasks 

(tasks which have slack time), achievable by extending them with dt, (3) identifies the 

task with the biggest energy gradient, which will result in the highest energy reduction; 

(4) extends the selected task with dt using the voltage scaling capability of the PE to 
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which the task is mapped; (5) repeats steps (2) - (4) until there is no extensible task 

left. 

DVS Technique for DVS 
Input schedule table - SchTable 
Deadline -

01 pre-process SchTable 
02 for (each column col in SchTable, from left to right) 
03 { 
04 identify the worst case track -
05 calculate the worst case total slack time - slack 
06 calculate the slack time distributed to col - sla^^^ 
07 scale col with scaling fac tor / calculated using Equation 3.10 
08 apply DVS technique in [55] ^ coZ 
09 update SchTable 
10) 

Figure 3.13: Conditional behaviour aware DVS technique 

The proposed conditional behaviour aware DVS technique for CTG is described 

in Figure 3.13. Step 01 pre-processes the input schedule table, so that each column 

corresponds to a scaling region. Steps 0 2 - 1 0 apply DVS to all the columns in 

SchTable, in a left-to-right sequence. For each column col, step 04 firstly identifies all 

possible tracks that will be followed after the condition values heading col are known; 

then the track with the latest end time (the end time of the sink node in the track) is 

identified, which is referred as the worst case track track^orst- Step 05 calculates the 

worst case total slack time slack^orst which is obtained by subtracting the end time of 

trackworst from the deadline Td- Step 06 calculates the slack time distributable to col, 

slackcoi, by distributing slack^orst to the columns along the trackworst in proportion to 

the columns' duration (i.e. the difference between the latest end time and the earliest 

start time of the tasks in the column). Step 07 scales col with the fscaling given by: 
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where duratioricoi is the duration of col. Step 08 exploits the slack times on non-critical 

path using the DVS technique proposed by Schmitz and Al-Hashimi [55]. Due to the 

scaling of col. Step 09 should update the contents in the columns that are successive to 

col along all the possible tracks. 

Example 3: Applying the Proposed DVS Technique 

To illustrate the proposed conditional behaviour aware DVS technique, it is 

applied to the schedule table for the CTG of Figure 3.1(a), Table 3.2. In this case, 

because the columns have already been corresponding to scaling regions, as shown in 

Figure 3.9, step 01 can be simply skipped. Then begin to process column true. Step 04: 

taking into account that no condition value is yet known, there are 3 possible tracks: 

track 1, track 2, and track 3 (see Figure 3.9). Track 3 is the worst case track, where the 

sink node n? ends at 26, compared to 20 in track 1 and 22 in track 2. Step 05: since the 

worst case track finishes at 26 and the deadline is 30, the worst case total slack time is 

30ms - 26ms = 4 ms. Step 06: 1.5 ms out of the 4ms slack time is distributed to 

column true, which is given by 4ms • (10ms / 26ms) « 1.5ms, where 10ms is the 

duration of column true and 26 is the time needed to finish the worst case track. Step 

07: the task in column true, ni, is scaled with the scaling factor 1.15, which is given 

by (10ms + 1.5ms) / 10ms =1.15 using Equation 3.10. According to Equation 3.7 -

3.8, My is then run from 0 to 11.5. Correspondingly, the voltage is scaled to 3.03V 

using Equation 3.3 - 3.5. Step 08: since there is no non-critical path in column true, 

this step can be skipped. Step 09: column true is a part of track 1, track 2, and track3. 

In track 1, column A is successive to column true', in track 2, columns A and A^B 

are successive to column true', in track 3 columns A and A^B are successive to 

column true. Therefore the schedules of columns A , A^B , and A^ B are updated 

due to the scaling of column true. Table 3.7 is produced after the end of Step 09, and 

its corresponding schedule is shown in Figure 3.14. 
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true A A 

n, 0^11.5 
% 11.5^16.5 
ns 11.5^15.5 
ru, 15.5^17.5 

nj 15.5^21.5 
ne 17.5^18.5 21.5^22.5 

n? 16.5-^21.5 18.5^23.5 22.5^27.5 
Table 3.7: Sc ledule table al Fter processing column /rwe 

Scaling region true 
Scalingregionv4 

Track 1 

Track 2 

deadline 

Track 3 

clock frequency, 
power consumption 

u 
descend 

Scaling region 

Scaling region A^B 

Scaling region A^B 

^0 

Figure 3.14: Schedule after processing column /rwg (Table 3.7) 
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true A A 

ni 0^11.5 

n2 11.5^20.75 
ns 11.5^15.5 
XH 15.5^17.5 

nj 15.5^21.5 

n6 17.5^18.5 21.5^22.5 
ny 20.75^30 18.5-^23.5 22.5^27.5 

Table 3.8: Schedule table after processing column 4 

Scaling region true Scaling region A 

me 

Track 1 

Track 2 

Track 3 

20. 

clock frequency, 
power consumption 

u 
descend 

Scaling region A 

Scaling region 

Scaling region A'^B 

^0 

Figure 3.15: Schedule after processing column^ (Table 3.8) 
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Starting with Table 3.7, repeat steps 04 - 09 for column A. Steps 04: having 

known condition value A, track 1 is the only possible track will be followed. Hence, 

track 1 is the worst case track (see Figure 3.14). Step 05: since the worst case track 

finishes at 21.5 and the deadline is 30, the worst case total slack time is 30ms -

21.5ms = 8.5ms. Step 06: since there is no successive columns to column^ in track 1, 

the whole 8.5ms slack time is distributed to the column A. Step 07: the tasks in 

column A, N2 and «/, are scaled with the scaling factor , which is given by (10ms + 

8.5ms) / 10ms = 1.85 using Equation 3.10, where 10ms is the duration of column A. 

After voltage scaling, is then run from 11.5 to 20.75, and n j from 20.75 to 30. 

Correspondingly, the voltage is scaled to 2.35V using Equation 3.3 - 3.5. Step 08: this 

step is skipped since there is no non-critical path in column Step 09: this step is also 

skipped since there is no successive column to column A in track 1. Table 3.8 is 

produced after the end of Step 09, and its corresponding schedule is shown in Figure 

Similarly, considering columns A , A^B, and A ^ B separately, applying steps 

04 - 09 to them, the final schedule table is obtained as shown in Table 3.9. According 

to Table 3.9, Figure 3.16 show the actual schedules of the three tracks after voltage 

scaling, which meet the deadline and at the same time produce minimal energy 

dissipation. 

A A ,4 

ni 0->11.5 

n2 11.5^20.75 
ns 11.5-»16u2 
% 16.2^19.6 
ns 16.2^23.1 
% 19.6^21.3 23.1^24.2 

n? 20.75^30 21.3-^30 24.2-^30 
Table 3.9: Final schedule table after voltage scaling 
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(c) Scaled schedule of track 3 

Figure 3.16: Final schedule after voltage scaling (Table 3.9) 

of 

By comparing Figure 3.7 and Figure 3.16, it can be observed that the actual 

schedule is the same as the schedule of Figure 3.7 only in the case of track 3, which is 
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the worst case track. It is important to note that the schedules of the other tracks in 

Figure 3.7 are impracticable. This is because the schedules in Figure 3.7 are produced 

upon the assumption that the condition values are known before executing the 

disjunction nodes, which is not true during the runtime of the application. In practice, 

the condition values are not known until all the disjunction nodes have finished their 

execution. Hence, it is not possible for an online voltage scheduler to immediately use 

this information to achieve feasible and energy-efficient settings. 

3.4 Energy-Efficient Mapping for CTGs 

In Section 3.3 a conditional behaviour aware DVS technique has been employed with 

mapped and scheduled CTGs to reduce energy dissipation. In this section, a mapping 

technique specifically developed for better utilisation of the proposed DVS is 

described. Combining the proposed mapping technique with the conditional behaviour 

aware DVS technique can reduce system energy dissipation further, as shown in the 

experimental results (Section 3.5). 

The flow of the mapping technique is shown in Figure 3.17 (a). The input to the 

mapping technique is the system architecture and specification, the output is an 

optimised system implementation, including task mapping, task scheduling, and 

voltage scaling. The mapping optimisation is based on a genetic algorithm (GA, 

Section 3.1.3). Genetic algorithm maintains a population (a pool of mapping 

candidates). Each mapping candidate is represented by a mapping string. Figure 3.17 

(b) shows a possible mapping string for the CTG of Figure 3.1(a), which means is 

mapped to PEl, is mapped to PE2, and so on. Each mapping candidate is associated 

with an objective function value (i.e., fitness), which measures the quality of the 

candidate. In the proposed mapping technique, the objective function is given by: 

Fitness = - ^ ) 
m a x ( r ^ , r j 

T, 
(3 11; 
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Figure 3.17: En erg}-efficient mapping technique 

where z is the task number, E(TI) is the energy dissipation of task r,, TD is the deadline 

of the CTG, Te is the real execution time of the CTG. The first part of the fitness 

function is the total energy dissipation of all tasks, which has to be minimised. The 

second part of the function introduces a penalty factor due to deadline violations. If 

the length of the schedule is smaller than the deadline, the value of the second part is 1, 

hence, no penalty is applied. Otherwise, the squaring introduces a higher penalty to 
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the fitness. Thus, the optimisation process is driven towards implementations with 

reduced energy dissipation, and at the same time, deadlines are satisfied. 

The process of the mapping technique (Figure 3.17(a)) is described as the 

following. Firstly, an initial population of mapping candidates is created randomly 

(Initialisation). For each candidate in the population: 

(1) a mapping is generated according to the mapping string (Perform Mapping); 

(2) a schedule table is produced for the mapped CTG using the scheduling 

algorithm [42] (Perform Scheduling); 

(3) the schedule table is passed to the conditional behaviour aware DVS 

technique (Section 3.3) to perform voltage scaling (Perform DVS); 

(4) according to the results of voltage scaling, the fitness for the mapping 

candidate is calculated using Equation 3.11 (Evaluation). 

After steps (1) - (4) are applied to all the mapping candidates, the candidates are 

ranked according to their fitness. Then the algorithm decides whether the optimisation 

should be terminated: if no improved candidate has been produced for a certain 

number of iterations, the optimisation is terminated and the best implementation is 

returned; otherwise, the optimisation continues with generation evolvement 

(Evolvement). After evolvement, the new generation of mapping candidates is feed 

back to the loop. This iterative process continues until the termination condition is met. 

The aim of this iterative optimisation process is to finally produce an implementation 

that has low energy dissipation, and at the same time meets the deadline. 

The evolvement involves the selection of high ranked candidates and applying 

genetic operators to them (Section 3.1.3). Crossover (mating) selects a pair of high-

ranked mapping strings as parent. Offspring are produced by replacing part of the first 

parent string with part of the second parent string. Hence, crossover results in two new 

offspring strings. By selecting high quality mapping strings for crossover, the chances 

to evolve mapping strings of higher quality are increased. In order to enter an 

unexplored region of the search space, the genetic algorithm also mutates the mapping 

strings occasionally with a low probability. The mutation is carried out by randomly 
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changing a digit of a randomly selected mapping candidate. Note that the flow of 

Figure 3.17(a), as well as Chapter 4, Figure 4.9, is similar to the one presented by 

Schmitz and Al-Hashimi [57], because they all use general genetic algorithm flow to 

perform mapping optimisation. However, the technique presented by Schmitz and Al-

Hashimi [57] targets pure data flow systems, while the technique in this research is 

specifically developed for data and control dominated systems. Conditional behaviour 

aware DVS technique is employed in the mapping technique of this research to 

evaluate the quality of mapping candidates. 

3.5 Experimental Results 

To demonstrate the efficiency and the applicability of the proposed conditional 

behaviour aware DVS (Section 3.3) and mapping (Section 3.4) technique in reducing 

the energy dissipation of multi-processor embedded systems expressed as conditional 

task graphs, experiments and comparisons with previously published approach [119] 

have been carried out. The DVS and mapping techniques outlined in this chapter have 

been implemented using C++ on a Pentium-III/866MHz Linux PC (Appendix A). The 

used examples consist of two sets: (1) a real-life example of vehicle cruise controller 

from [135]; (2) a number of synthetic examples automatically generated using the tool 

provided by [42]. 

3.5.1 Vehicle Cruise Controller Example 

ABS 1 ETM E C M 
J L . 

CEM 

CL 

TCM 

Figure 3.18: Architecture of the vehicle control cruiser (VCC) 
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Figure 3.19: The vehicle cruise controller (VCC) functionality expressed as CTG 

A real-life example of vehicle cruise controller (VCC) from [135] is used to test the 

efficiency of the conditional behaviour aware DVS technique. The example is derived 

from a requirement specification provided by the industry. The functionality of VCC 
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is described as follows: it maintains a constant speed for speeds over 30m/h and under 

80m/h, offers an interface (buttons) for the driver to increase or decrease the reference 

speed, and is able to resume its operation at the previous reference speed. The VCC 

suspends its operation when the driver presses the brake pedal or accelerator pedal. 

The specification assumes that the functionality of the VCC is distributed over an 

architecture consisting of five interconnected processing elements (PEs): anti blocking 

system (ABS), transmission control module (TCM), engine control module (ECM), 

electronic throttle module (ETM), and central electronic module (CEM), as shown in 

Figure 3.18. The functionality of the VCC has been derived using a CTG that consists 

of 32 tasks and includes two alternative tracks (CC ON, CC OFF), as shown in Figure 

3.19. This figure also shows the task mapping and the corresponding execution time to 

the right of each task. It is assumed that each PE has DVS capability (F„om=3.3V, 

VT/T=0.8V), such that the supply voltage can be scaled continuously within the range of 

l.OV - 3.3 V, the power consumption of the PEs at the nominal supply voltage (3.3 V) 

is 5W. 

To test the effectiveness of the proposed DVS technique for CTG, a scheduling 

algorithm [42] is used to generate a schedule table for the VCC example, and then 

apply the proposed DVS technique to the schedule table. Four cases with variant 

deadlines are examined, i.e., 100%, 105%, 110% and 120% of the schedule length 

produced by [42]. Table 3.10 gives the experimental results, with one row for each 

deadline. It can be seen that the proposed DVS technique reduces the energy 

dissipation significantly for all cases. For example, consider the case of 120% 

deadline (4^ row). The energy dissipation before applying DVS is 440mJ, and it was 

reduced to 288.87mJ after applying DVS, i.e., a reduction of 34.35%. Also, the energy 

reduction becomes more significant as the deadline increases, because more slack time 

is available to be exploited by DVS. For example, the energy reduction is 19.28% in 

the case of 100% deadline. It is further increased to 34.35% in the case of 120% 

deadline. For this example, the task mapping (i.e., which PE gets which task) has not 

been optimised. This is because the mapping is explicitly decided by the actual VCC 

implementation and changing its mapping will lose its sense of real-life. 
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Energy Dissipation 
before DVS (mJ) 

Energy Dissipation 
after DVS (mJ) 

Energy Reduction 
(%) 

100% deadline 440.00 355^5 19.28 
105% deadline 44&00 335.61 23 J3 
110% deadline 44&00 31&28 27.66 
120% deadline 440.00 28&87 3435 

Table 3.10: Results for vehicle cruise controller example 

3.5.2 Synthetic Examples 

Twenty six synthetic mapped CTG examples (ctgl - ctg26) are generated using the 

tool provided by [42], with various complexities in terms of the number of node 

(ranges from 13 to 93), edges (ranges from 16 to 118), conditions (ranges from 2 to 5). 

These examples use architectures consisting of 2 to 5 DVS-enabled PEs. The DVS-

enabled PEs have threshold voltage (VTH) of 0.8V and nominal supply voltage (VNOM) of 

3.3V. Their supply voltage can be scaled between IV to 3.3V continuously, and their 

power consumption at nominal supply voltage is 5W. Three experiments have been 

carried out. Experiment 1 concentrates on the proposed conditional behaviour aware 

DVS technique (Section 3.3). Experiment 2 deals with the proposed mapping 

technique (Section 3.4). Experiment 2 also presents a comparison between the 

proposed mapping technique and a previously proposed technique [119]. Experiment 

3 examines the effects of PE number and condition number on the energy dissipation. 

Experiment 1 

In this experiment, a scheduling algorithm [42] is employed to generate a 

schedule table for each example. Then the proposed DVS technique is applied to the 

schedule table. The results of experiment 1 are given in Table 3.11. Column 1 lists the 

examples used in this experiment; column 2 shows the complexity of the examples in 

terms of the number of node (task), edge, condition and PE; column 3 gives the 

schedule length produced by [42]; column 4 shows the deadline, which is 110% of the 

schedule length; column 5 and column 6 are the energy dissipation before and after 

applying the DVS technique; finally, column 7 shows the energy reduction achieved 

by applying DVS, which is calculated as (1 - (column 6 / column 5)). It can be seen 
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from the table that, for all the examples, the proposed DVS technique significantly 

reduces the energy dissipation. For example, in the case of ctgl (]/* row), the energy 

dissipation before DVS is 563.75mJ, and it is reduced to 366.599mJ after DVS, i.e., a 

reduction of 34.97%; similarly, in the case of ctg26 (26^ row), the energy dissipation 

before DVS is 2690.62mJ, and it is reduced to 1811.29 after DVS, a reduction of 

32.68%. 

Example 

No. of 
node/edge/ 
condition/ 

PE 

Schedule 
length (ms) 

Deadline 
(ms) 

Energy dissipation 
(mJ) 

Energy 
Reduction 

(%) Example 

No. of 
node/edge/ 
condition/ 

PE 

Schedule 
length (ms) 

Deadline 
(ms) 

Before DVS 
After 
DVS 

Energy 
Reduction 

(%) 

ctgl 13/16/2/2 109 119.9 563.75 366.599 34.97 
ctg2 13/16/2/3 73 80.3 547.5 395.35 28.16 
ctg3 13/16/2/4 112 123.2 630 421.656 33.07 
ctg4 13/16/2/5 97 106.7 573.75 372.45 35.08 
ctg5 13/16/3/2 110 121 632.5 511.205 19.18 
ctg6 13/16/3/4 112 123.2 717.5 563.569 21.45 
ctg7 25/30/2/2 267 293.7 1492.5 1174.4 21.31 
ctg8 25/30/2/3 243 267.3 1495 1197.07 19.93 
ctg9 25/30/2/4 172 189.2 1090 761.009 30.18 

ctglO 25/30/2/5 211 232.1 1302.5 940.649 27.78 
ctgll 25/30/3/2 204 224.4 1240 973.057 21.53 
ctgl 2 25/30/3/3 251 276.1 1576.25 1212.75 23.06 
ctgl 3 25/30/3/4 246 270.6 1393.75 1000.47 28.22 
ctgl 4 25/30/3/5 196 215.6 1271.25 1023.15 19.52 
ctgl 5 25/29/4/2 221 243.1 1187.5 881.673 25.75 
ctgl 6 25/29/4/3 183 201.3 1070 789.477 26.22 
ctgl 7 25/29/4/4 222 244.2 1172.5 864.295 26.29 
ctgl 8 25/29/4/5 214 235.4 1060 777.599 26.64 
ctgl 9 35/41/2/2 342 376.2 1371.25 946.793 30.95 
ctg20 37/45/2/3 437 480.7 1803.75 1378.73 23.56 
ctg21 35/41/2/5 353 388.3 1528.75 1069.83 30.02 
ctg22 38/48/2/2 306 336.6 2105 1598.76 24.05 
ctg23 48/60/3/3 497 546.7 1921.88 1313.04 31.68 
ctg24 46/55/3/5 450 495 1711.88 1163.96 32.00 
ctg25 59/71/3/3 613 674.3 3685 2676.84 27.36 
ctg26 93/118/5/5 566 622.6 2690.62 1811.29 32.68 

able 3.11: Results of applying DVS to the synthetic examples 
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Experiment 2 

In this experiment, a comparison between two co-synthesis approaches is 

presented to demonstrate the effectiveness of the proposed mapping technique in 

terms of energy reduction. Approach 1 consists of the mapping and scheduling 

algorithm proposed by Xie and Wolf [119], combined with the proposed DVS 

technique; approach 2 consists of the proposed mapping technique, a scheduling 

algorithm [42], and the proposed DVS technique. Firstly consider approach 1. The 

mapping and scheduling algorithm [119] is employed to generate mapping and 

scheduling for each CTG, then the proposed DVS technique is applied to the mapped 

and scheduled CTG. The results of approach 1 are given in columns 2 - 6 of Table 

3.12. Column 2 lists the deadline, which is 110% of the schedule length produced by 

[119]; columns 3 and 4 give the energy dissipation before and after applying the DVS 

technique; column 5 is the energy reduction achieved by DVS, which is calculated as 

(1 - (column 4 / column 3)); column 6 gives the computational time used to produce 

the solution. It can be seen that applying the proposed conditional aware DVS reduces 

the energy dissipation, as expected. 

Now consider approach 2. The proposed mapping technique is used to optimise 

the mapping for each CTG, the schedule technique [42] is employed to generate a 

schedule table, and the proposed DVS is applied to the schedule table. In order to 

make a fair comparison with approach 1, the same deadline as in the case of approach 

1 is imposed to the CTGs. The results of approach 2 are given in columns 7 - 9 . 

Column 7 gives the energy dissipation of the examples after applying DVS; column 8 

is the energy reduction compared to the energy dissipation before DVS in approach 1, 

calculated as (1 - (column 7 / column 3)); column 9 gives the computational time. 

Comparing the energy reduction achieved by approach 1 (column 5) and approach 2 

(column 8), it can seen that, using the mapping technique specifically developed for 

better utilisation of the conditional behaviour aware DVS, the energy dissipation is 

reduced further. For example, consider ctgll (11^ row), the energy reduction 

achieved by the proposed mapping technique is 31.13%, that is about two times higher 

than 15.48%, the reduction achieved by using the mapping and schedule technique of 
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Example 

Approach 1: [119]+ proposed DVS 
Approach 2: [42] + 

proposed mapping & DVS 

Example 
Deadline 

(ms) 

Energy 
dissipation (mJ) 

Ene 
Redu. 
(%) 

CPU 
time 
(s) 

Energy 
dissipation 
after DVS 

(mJ) 

Ene 
Redu. 
(%) 

CPU 
time 
(s) 

Example 
Deadline 

(ms) Before 
DVS 

After 
DVS 

Ene 
Redu. 
(%) 

CPU 
time 
(s) 

Energy 
dissipation 
after DVS 

(mJ) 

Ene 
Redu. 
(%) 

CPU 
time 
(s) 

ctgl 100.1 510 388.29 23 0.030 31289 38.65 L29 
ctg2 717 493J5 38239 22.55 0.030 282.76 42.73 4.78 
ct83 69J 562.5 434IW 22.84 0.020 38932 30.79 415 
ct84 825 448J5 300.48 33.04 0.040 254.64 43.26 3 1 4 
c%g5 lOTa 602.5 493.66 18.06 0.030 404J4 3288 L48 
(^86 99 607.5 460.85 24.14 0.050 405.07 33.32 290 
ctg7 233:2 1330 114288 14.07 0.050 967.08 27.29 10.66 

202/1 13225 1088.21 17.72 0.040 93254 29.49 &159 
c*g9 138.6 970 793.70 18.17 0.090 66&04 31.23 23.68 

ctglO 163.9 1105 890.38 19.42 0.070 764^9 30.80 45.63 
(dgll 203.5 1157^ 978.28 15.48 0100 79714 31.13 25^9 
(dgl2 181.5 1253.75 1037.29 17.27 &070 91632 26.91 57.77 

(^gl3 198 1141.25 865.13 24.19 OTOO 748.03 34.46 3106 
ctgl 4 166T 1050 84L29 19.88 OJJO 773.01 26.38 5617 

183.7 1010 879.49 12.92 0.030 78L45 22.63 &710 
(^#16 130U) 905 773T9 14.57 0.040 687.07 24.08 1018 
(dgl7 183.7 94&75 769.84 18.86 0.050 66^76 29.41 1&97 
ctgl 8 140.8 796.25 666.65 16.28 0.040 599.76 24.68 18.44 

ctgl 9 337.7 1256.25 991.20 2L10 0.070 873.23 30.48 3120 
#g20 396 1618.75 1299^9 19.72 (1080 1160.75 28.29 6150 
(dg21 27&6 1163.75 903.95 22J2 0.070 835.90 28.17 8.57 
(^g22 25L9 19825 1622.66 16.13 OĴ W 1509.71 23.85 131.46 
ctg23 418 1631.25 126&92 2221 0T60 1108.82 32.03 41.530 
(^#24 371.8 1316.88 954.67 27J^ 0.040 873.68 33.66 12.78 
(^g25 504^ 3218.75 263&23 18.04 OT90 2310.56 28.22 64146 
dg26 47^6 2156.88 1654.76 2128 &450 1513.06 29.85 271.82 

Table 3.12: Results of Mapping optimisation of the synthetic examples 

[119]. The efficiency of the proposed mapping technique is also shown by comparing 

the results of approach 2 (columns 7 - 9 of Table 3.12) and the results of step 1 (Table 

3.11), where the same scheduling and DVS technique are employed, while approach 2 

performs an additional mapping optimisation. Consider ctgl , in Table 3.11, its energy 

dissipation after DVS is 366.599 (column 6), considering a deadline of 119.9 (column 

4); while in Table 3.12, its energy dissipation after DVS is 312.89 (column 7), 

considering a deadline of 100.1 (column2). By performing mapping optimisation, 
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further energy reduction is achieved with a tighter deadline. Due to the iterative 

optimisation nature, the higher energy reduction achieved by the proposed mapping 

technique is at the cost of increased computational time, as shown in the column 9. 

Experiment 3 

This experiment investigates the effect of the PE number and condition number 

on the energy dissipation. The deadline of ctg24 (46 nodes, 55 edges, see Table 3.11 

and Table 3.12) is set as 395ms, various PE numbers and condition numbers are 

assigned to ctg24. The PE number ranges from 3 to 5, whilst the condition number 

ranges from 1 to 3. The proposed mapping and DVS techniques are applied to ctg24 

with various PE numbers and condition numbers. Table 3.13 gives the energy 

dissipation of ctg24 before and after applying DVS. For example, considering the 

situation that ctg24 has 1 condition (row 1), when the architecture has 3 PEs, the 

energy dissipations before and after DVS are 1960mJ and 1547.98mJ respectively; 

when the architecture has 4 PEs, its energy dissipations before and after DVS are 

1875mJ and 1351.61mJ respectively. To show the trend of energy dissipation 

corresponding to the PE number and condition number, the results in Table 3.13 are 

represented in Figure 3.20 and Figure 3.21. It can be seen from the figures that, in 

both cases (before and after DVS), the energy dissipation increase as the PE number 

reduces. Similarly, the reduction of condition number also increases the energy 

dissipation. For example, considering Figure 3.21 (after DVS), the energy dissipation 

is 854.86mJ when the (PE, condition) numbers are (5, 3), the energy dissipation 

increases to 968.14mJ when the (PE, condition) numbers are (4, 3), the energy 

3PE 4 PEs 5 PEs 
Energy (mJ) Energy (mJ) Energ y (mJ) 

Before 
DVS 

After 
DVS 

Before 
DVS 

After 
DVS 

Before 
DVS 

After 
DVS 

1 condition 1960 1547.98 1875 1351.61 1810 1235 
2 conditions 1558.75 11:25.3:! 1495 1017J 1442.5 938J1 
3 conditions 148&T2 1058.62 1428.75 96&14 1346.25 854^6 

Table 3.13: Effects of PE number and condition number 
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Figure 3.20: Energy dissipation before DVS 
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Figure 3.21: Energ} dissipation after DVS 

dissipation increases further to 1017.3mJ when the (PE, condition) numbers are (4, 2). 

This is because, as the PE number decreases, the load on each PE increases. The 
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increased load on each PE results in less slack time available for DVS, therefore 

higher energy dissipation. On the other hand, as the condition number decreases, a 

larger part of ctg24 needs to be executed in a certain activation of the application, 

which leads to higher energy dissipation. 

3.6 Concluding Remarks 

This chapter presented new DVS-driven energy minimisation techniques for data and 

control dominated embedded systems expressed as conditional task graphs (CTGs), 

including a conditional behaviour aware DVS technique and a genetic algorithm (GA) 

based mapping technique. The proposed DVS technique exploits the slack time taking 

into account the conditional behaviours of CTGs, such that energy dissipation is 

reduced and, at the same time, the deadlines are satisfied under any possible 

conditions. The proposed mapping technique optimises the task mapping towards 

better utilisation of the proposed DVS technique, thus to achieve further energy 

reduction. Combining the proposed mapping and DVS techniques with the scheduling 

algorithm of [42] forms a co-synthesis approach for CTGs, which is able to produce 

high quality designs in terms of energy efficiency and timing feasibility. The 

efficiency of the proposed techniques has been validated using a large number of 

examples, including a real-life vehicle cruise controller (VCC) application. 

Experimental results show that the proposed techniques achieve significantly better 

energy reduction, compared to a previously reported approach which neglects the 

availability of DVS, and this energy reduction can be achieved within a reasonable 

amount of computational time. 



Chapter 4 

Communication-Integrated Energy-

Efficient Co-Synthesis 

A conditional behaviour aware co-synthesis technique has been presented in Chapter 3 

to improve the energy efficiency for data and control dominated systems expressed as 

conditional task graphs (CTGs). In order to concentrate on the analysis of conditional 

behaviour, a simplified model (referred to as the basic system model) is considered 

where impact of communications is ignored. In this chapter, a more accurate system 

model (referred to as the enhanced system model) is introduced, which takes into 

account the time and energy cost of communications. A co-synthesis technique 

integrated with communication considerations is presented to perform mapping, 

scheduling and voltage scaling for the enhanced system model. Using the proposed co-

synthesis technique, a performance analysis is carried out to investigate the effect of 

alternative communication architecture on system quality in terms of energy 

efficiency. 

The remaining of this chapter is organised as follows. Section 4.1 outlines the 

main motivation of integrating communications with DVS-driven co-synthesis 

technique for CTGs. The concept of enhanced system model is introduced in Section 

4.2. Section 4.3 describes the proposed communication-integrated energy-efficient co-

synthesis technique. Experimental results are presented in Section 4.4. Finally 

concluding remarks are given in Section 4.5. 

4.1 Motivation 

Several early works [52-54, 98-100] in embedded system co-synthesis have 

considered single processor systems without communication links (CLs). However, 

numerous embedded systems are implemented as multi-processor systems [55, 58, 59, 

81 
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101, 102], and the system representations often contain data and control flows [41, 42, 

116-118], For such systems, communications have an important impact on embedded 

systems design. Communications have drawn much attention from the research 

community [42, 120-125, 136]. Knudsan and Madsen [122] presented a 

communication model to estimate the performance of CLs with various parameters, 

including bus width and clock frequency. The model is used to integrate 

communication protocol selection with hardware-software partitioning. Eles et al [42, 

123] investigated the impact of communication protocols on the task scheduling, 

employing the time-triggered protocol (TTP) [137]. The techniques [42, 122, 123] all 

try to maximise the system performance without considering the energy dissipation. 

There has also been some research examining the influence of communications on 

energy dissipation of embedded systems. Bus encoding techniques were proposed to 

reduce the communication energy dissipation [124, 125]. Liu et al [136] presented a 

communication speed selection method to exploit the energy/performance trade-offs 

between communications and computations on DVS-enabled processors, in order to 

globally optimise the energy dissipation of embedded systems. Joint dynamic voltage 

scaling for variable-voltage processing elements and communication links are 

proposed in recent papers [138, 139], to maximise system energy saving, further 

demonstrating the importance of integrating communication in energy-efficient 

system design. 

Based on the work in Chapter 3, this chapter presents a co-synthesis technique, 

which integrates the communication considerations into the co-synthesis steps, 

performs efficient mapping, scheduling and voltage scaling of tasks and 

communications, aiming to achieve energy-efficient system implementations while 

meeting the real-time constraints. In particular, the computational time of the 

communication-integrated co-synthesis technique is significantly reduced by 

decoupling communication from task mapping, instead of mapping tasks and 

communications concurrently. Furthermore, using the communication-integrated co-

synthesis technique, this chapter investigates the effect of alternative communication 

architectures on system energy efficiency, providing a guide to communication 

architecture selection. To illustrate the impact of communication and communication 
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architecture selection on the system energy efficiency, a motivational example is 

given next. 

Motivational Example 

-QVS-PEl 
CL 

sink rW deadline—50ms sink deadline—50ms 

(a) Conditional task graph (b) Architecture 

Figure 4.1: Motivational example 

Task 1 Mapping Execution time (ms) 

ni II PEl 10 

ni PE2 20 
ns PE2 20 
n4 1 PEl 10 

Table 4.1: Task mapping and task execution time 

Consider the conditional task graph (CTG) of Figure 4.1(a), assuming this CTG 

has been mapped to the architecture of Figure 4.1(b), the mapping and the 

corresponding execution times of the tasks are shown in Table 4.1. The dummy tasks 

no and ns are not considered, because they are assumed to have zero execution time 

and not mapped to any PE (Appendix C). Assume the power consumption, nominal 

supply voltage, and threshold voltage of PEl and PE2 are 5W, 3.3V, and 0.8V 

respectively. Using the scheduling and voltage scaling techniques outlined in Chapter 

3 (i.e. without consideration of communications), Figure 4.2(a)-(b) show the schedules 

and energy dissipations when the condition value is A, before and after applying DVS. 

Now, assuming communications have time and energy costs, consider two types of 
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clock frequency, 
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• 
descend 

Figure 4.2: Schedule and voltage scaling without communication 

CLs: CLl and CL2. CL2 is faster and more power-consuming compared to CLl. The 

costs of ei2 (communication between nj and M̂ ) and 624 (communication between nj 

and n4) are given in Table 4.2. For example, en takes 2ms and consumes IW power 

using CLl, while it takes 0.5ms and consumes 1.5W power using CL2. Assuming PEl 

and PE2 are connected with CLl, Figure 4.3 shows the schedules and energy 

dissipations before and after voltage scaling. Similarly, assuming PEl and PE2 are 

connected with CL2, the energy dissipation in this case before and after voltage 

scaling is 201.5mJ and 158.9mJ respectively. Figure 4.4 summaries the results of this 

motivational example. It can be seen that taking communications into consideration 

increases the energy dissipation, as expected. Furthermore, the selection of CL 

considerably influences the system energy efficiency. Employing CL2 leads to lower 

energy dissipation than employing CLl. This is because CL2 consumes less energy 
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(time X power) for transmitting en and 624 (Table 4.2) than CLl, furthermore, CL2 

consumes less time, thus provides more slack time for voltage scaling of the 

computation tasks. 

CI LI CI L2 
Time (ms) Power (W) Time (ms) Power (W) 

6̂ 2 2 1 0.5 1.5 

624 2 1 0.5 1.5 
Table 4.2: Communication costs 

Energy = 204 mJ 

deadline 

slack time 

32 34 

PE2 
50 t(ms) 
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(a) Schedule before voltage scaling 

Energy = 173.3 mJ 
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3.0 

11.1 

deadline 

0 Vj..; 36.j JO 
(b) Schedule after voltage scaling 

clock frequency, 
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Figure 4.3: Schedule and voltage scaling ivith communication (using CLl) 
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Figure 4.4: Summary of motivational example 

4.2 Enhanced System Model 

This section describes the enhanced system model considered in this chapter. The 

communication architecture is introduced. The power and delay models of 

communications are presented. Finally, the key features of the enhanced system model 

are outlined. 

4.2.1 Communication Architecture 

The communication architecture could be as simple as a single shared system bus, or 

more complex, consisting of a network of shared bus and dedicated communication 

channels. Shared buses are very commonly used to facilitate communications between 

PEs. Being shared buses, they require arbitration in order to ensure that only one 

component has the control of the bus at any given time. Dedicated links are point-to-

point connections between PEs. Since such links are not shared, the question of 

arbitration does not arise and communication on such links can proceed as soon as 

both the sender and receiver are ready to communicate. Figure 4.5 shows three 

possible communication architectures for a multi-processor embedded system. Figure 

4.5(a) shows a communication architecture where the three PEs are connected via 
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CL2 
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PEl 

PES 

(a) Dedicated links architecture 

CLl 

PEl 

PE2 PE3 

(b) Shared bus architecture 

PE2 

PEl 

PES 

(c) Split shared bus architecture 

Figure 4.5: Examples of communication architectures 

three dedicated links. In Figure 4.5(b), the three PEs are connected by a shared bus. In 

this shared bus communication architecture, an arbiter resolves conflicts resulting 

from simultaneous attempts to access the bus. An alternative architecture is shown in 

Figure 4.5(c), where the shared bus in Figure 4.5(b) is split into two shared buses. The 
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increase in bus number decreases the chance of bus conflicts. However, each shared 

bus in Figure 4.5(c) has a reduced bandwidth compared to the one in Figure 4.5(b), 

which leads to a possible degradation in performance. Hence, there is a trade-off 

between the higher bandwidth of a shared bus and the lower frequency of bus conflicts 

in a spht bus architecture. 

A communication between two tasks, which are mapped to two different PEs, can 

be carried out on any CL that connects the two PEs. For example, consider the 

communication architecture of Figure 4.5(c), if there is a communication y between 

task Ti and %), which are mapped to PEl and PE2 respectively, y can be carried on 

either CLl or CL2. It is assumed that communications between tasks that mapped to a 

same PE do not cause time or energy costs, while communications over CLs cost 

certain amount of time and energy, which can be estimated using power and delay 

models as discussed next. 

4.2.2 Power and Delay Models of Communications 

In order to integrate the communications within the co-synthesis techniques, this 

section drives the power and delay models of communications. The models include 

equations for the calculation of energy dissipation and execution time needed for a 

communication over a communication links (CL). The execution time of a 

communication y over a CL is dependent on the data size of y and the performance of 

theCL [140]: 

= T 1 (4 t) 

where dyis the execution time of /, Byis the data size of y, and baudci is the baud-rate 

of the CL. The baud-rate of a CL is given by [140]; 

(4.2) 

where Wcl and/ci are the bus width and the clock frequency of CL respectively. 
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With each transmission of data over the CL, the line capacitance is charged and 

discharged, drawing a current from the I/O pins of the processing elements (PEs). The 

power consumed by these current is given by [2]: 

where PCL(/) is the power consumption of the CL, C^is the effective load capacitance 

of the CL averaged over the whole duration of /,FCL is the clock frequency of the CL, 

and VCL is the operational voltage of the CL. The energy dissipation needed for the CL 

to transmit / can be derived from Equations 4.1 - 4.3: 

EC, {>•) = PCL B)-D,= C,„ (4 .4) 

4.2.3 Heterogeneous Processing Elements 

In the enhanced system model, system architecture contains a number of 

heterogeneous PEs. Each PE is either a software programmable PE (e.g., CPU) or a 

dedicated hardware PE (e.g., ASIC). There are two aspects needed to be considered in 

the co-synthesis techniques: (1) software PEs can execute only one task at one time, 

while hardware PEs allow multiple tasks to be executed in parallel; (2) the area (i.e., 

functional units) of hardware PEs is a limited resource, which imposes a constraint on 

the number of tasks that can be mapped to hardware PEs, while software PEs don't 

have such a constraint because their functional units can be shared by all the tasks 

mapped to them. The heterogeneous nature of the PEs is also exhibited in their various 

properties (Table 4.3), including nominal supply voltage, threshold voltage, nominal 

clock frequency, area limit, whether DVS-enabled or not. Furthermore, it is assumed 

that the power consumption of the PEs is dependent on the executed tasks, due to the 

employment of low-level power minimisation techniques such as clock gating in 

modern IC designs [55, 130]. Each task might be potentially mapped to several PEs, 

resulting in various task properties for each alternative mapping (Table 4.3), including 

execution times, power dissipation, area overhead (only applicable for hardware 
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implementations). Table 4.3 summaries the PE properties and task properties 

considered in the enhance system model. 

PE properties Task properties 
Vnom, nominal supply voltage 

Vth, threshold voltage 

fnom, nominal clock frequency 

DVS-enabled 

A, area (only applicable for hardware PE) 

N, execution cycle 

f (TnofV, power dissipation at Fnom 

a, area overhead (only applicable for 
hardware implementation) 

Table 4.3: PE properties and task properties 

4.3 Integrating Communication with DVS based Co-Synthesis 

The co-synthesis techniques of Chapter 3 are extended in this section, in order to 

address the impact of communications and heterogeneous PEs introduced in the 

enhanced system model (Section 4.2). The following sub-sections present the 

modification made to the three co-synthesis steps: mapping, scheduling, and voltage 

scaling. Section 4.3.1 presents a decoupled task mapping and communication mapping, 

which has the advantage of reduced computational time comparing with a concurrent 

task and communication mapping. A scheduling is introduced in Section 4.3.2, which 

determines the mapping of communications onto communication links (CLs) and the 

execution order of tasks and communications simultaneously. Section 4.3.3 describes 

an enhanced DVS, which allows efficient exploitation of slack time taking account of 

the enhanced system model. 

4.3.1 Task Mapping 

In Chapter 3, a genetic algorithm based mapping is proposed to optimise the task 

mapping, where a mapping string is used to represent a candidate mapping, each digit 

in the string represents a task's mapping (Chapter 3, Figure 3.17(b)). However, the 

mapping technique in Chapter 3 ignores the communication mapping (i.e., assign a 

CL for each communication between two tasks mapped to different PEs), which is 

investigated next. 
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At first sight, communication mapping can be handled together with task 

mapping using a mapping string, each digit of which represents the mapping of a task 

or a communication. However, using this way causes two problems. The first problem 

is illustrated in the following example. Consider the conditional task graph (CTG) of 

Figure 4.6(a), the tasks and communications need to be mapped to the architecture of 

Figure 4.6(b). In order to handle the task and communication mapping together, a 

possible mapping string is shown in Figure 4.7(a). The string combines the task 

mapping and communication mapping together. This string represents a yalid solution, 

since communication between task nj and n2 is mapped to CL2, which connects 

the PEs that execute task «/ and Similarly, communications en, 624 and 634 are 

mapped to CLl, CL2 and CLl respectively. Now consider a certain genetic operation, 

e.g., crossover (Chapter 3, Section 3.2.3), transforms the mapping string into the one 

in Figure 4.7 (b). It is easy to see that the mapping string of Figure 4.7(b) represents 

an invalid solution. For example, consider the communication ei2 between tasks 

and n2. Although tasks nj and nj are respectively mapped to PE3 and PEl, which are 

solely connected by CLl, the communication is mapped to CL2. From this 

example, it can be seen that combining task mapping and communication mapping 

CLl 

nt? 1 PE2 
11 

PE2 1 
1 

CL2 

sink deadline=50ms 

(a) Conditional task graph (b) Architecture 

Figure 4.6: A CTG and its target architecture 
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Figure 4.7: Genetic operator leading to invalid mapping string 
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X 

Figure 4.8: Unneeded communication mapping 

may produce a large number of invalid solutions during the genetic algorithm based 

optimisation, which is undesirable for efficient design space exploration. The second 

problem caused by concurrent task and communication mapping is shown in Figure 

4.8, where tasks ns and are mapped to a same PE. Hence there is no need to assign 

the communication 634 to a CL. In this case, ideally, a short mapping string should be 

employed to speed the mapping optimisation. However, during the combined task and 
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communication mapping, the length of the mapping string cannot be adapted 

dynamically. Therefore, the full length of the mapping string is always employed, 

causing unnecessary computational time. 

Based on the above observation, it is clear that handling communication mapping 

together with task mapping could cause negative effects on the mapping optimisation. 

Thus the co-synthesis flow of Figure 4.9 is employed in this chapter. As it can be seen, 

the task mapping and communication mapping are handled separately. After 

performing task mapping, communication mapping is carried out simultaneously with 

activity scheduling. In this way, it is possible to avoid invalid solutions, since all 

possible mappings of communications onto the CLs are statically known for a given 

task mapping. For example, consider Figure 4.6 again, if the tasks nj and nj are 

mapped to PEl and PE2 respectively, then the communication en can be mapped onto 

CLl or CL2; on the other hand, if the tasks and are mapped to PEl and PE3 

respectively, then the communication eu can only be mapped onto CLl. Hence the 

combined communication mapping and activity scheduling (Section 4.3.2) can takes 

advantage of this information to ensure that only valid solutions are produced. The 

flow of Figure 4.9 is similar to the one in Chapter 3, Figure 3.17, except for three 

enhancements to address the impact of communications and heterogeneous PEs: 

(1) after having decided upon the task mapping (Perform Task Mapping), 

communication mapping is performed simultaneously with activity 

scheduling (Perform Communication Mapping & Activity Scheduling, 

Section 4.3.2); 

(2) the DVS technique is enhanced to handle communication and heterogeneous 

PEs (Section 4.3.3); 

(3) the fitness function of task mapping is modified to address the area 

constraints of ASICs (Equation 4.5). 
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Figure 4.9: Separate task and communication mapping 

The fitness function for task mapping is given by: 

Fitness 
comm _ mopipmg 

'ZE{R,) + Y,E{R,) 

\2 

Y [ A P , (4.5) 

where z, j and k are respectively the task number, the communication number and the 

PE number. The first part of the Equation 4.5 is the total energy dissipation of all tasks 

and communication, which has to be minimised. E(Tj) is the energy dissipation of task 

Tj, E(/j) is the energy dissipation of communication /j. The second part of Equation 4.5 

introduces a penalty factor due to deadline violations. Td is the deadline of the CTG, 

Te is the real execution time of the CTG. If the length of the schedule is smaller than 

the deadline, the value of the second part is 1, hence, no penalty is applied. In the 

opposite case, the squaring introduces a higher penalty to the fitness. The third part of 



Chapter 4 Communication-Integrated Energy-Efficient Co-Synthesis 95 

Equation 4.5 introduces a penalty factor due to area constraints violations. APk is an 

area penalty for each ASIC that exceeds its area constrains. APk, is given by: 

AP,̂  = max (4.6) 

where UAk is the used area, AAu is the available area, and A" is a constant to control the 

magnitude of the area penalty. If UAk is smaller than AAk, the value of APk is 1, hence, 

no penalty is applied. In the opposite case, a penalty is introduced. The value of K 

needs to be sufficiently high to avoid infeasible results at the end of the mapping 

optimisation, and still low enough to allow infeasible solutions to survive sometimes, 

in order to increase the population diversity and avoid a premature convergence of the 

genetic algorithm (GA) towards low quality solutions. Extensive experiments are 

performed, where a number of values (0.01, 0.02, 0.03, 0.04, 0.05 and 0.1) are tried 

for K. For each value, a set of examples with various complexities are employed to 

examining the impact of K. For all the examples, a value of 0.02 was found to be a 

good choice, which guides the genetic algorithm to feasible results quickly. In this 

way, it is possible to achieve a solution such that the energy dissipation is minimised, 

and at the time, the timing and area constraints are respected. 

4.3.2 Combined Communication Mapping and Activity Scheduling 

This section presents a scheduling technique, which performs communication 

mapping and activity (task and communication) scheduling simultaneously. The 

proposed scheduling technique determines the mapping of communications onto 

communication links (CLs), and produces a schedule table for a conditional task 

graphs (CTG), aiming to meet the real-time constraints and provide as much as 

possible slack time for DVS (Section 4.3.3). The proposed scheduling technique is 

similar to [42], which also produces a schedule table for a CTG, but without the 

capability of performing communication mapping. 

The basic idea is to convert communications into pseudo tasks, and consider CLs 

as pseudo PEs, thus allowing the unification of tasks and communication. The 
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mapping of a pseudo task (communication) is determined simultaneously when it is 

scheduled. In order to perform the combined communication mapping and activity 

scheduling, after having decided upon the task mapping (Figure 4.9), the CTG should 

be modified to capture the communication activities. This is achieved by converting 

communications between different PEs into pseudo tasks, as illustrated in the 

following example. Consider the CTG of Figure 4.6(a) and its mapping of Figure 

4.7(a) («/ and are mapped to PEl, nj is mapped to PE2, ns is mapped to PE3). Since 

communications en, en, 2̂4, €34 are between different PEs, they should be converted 

to pseudo tasks, as shown in Figure 4.10. Also, all possible mappings of 

communications onto the CLs are statically decided, this information will be used in 

the combined communication mapping and activity scheduling technique (Figure 

4.11). For example, the possible mappings for communications en, eyj, ^24, ̂ 34 are 

{CLl, CL2}, {CLl}, {CLl, CL2}, {CLl} respectively. 

fowrcg ("0 
source ("0 

sink ("0 deadline=50ms 

Task mappings: 
: PEl 

M.: PE2 
: PE3 
: PEl 

Possible communication 
mappings: 

{CL1,CL2} 
e , , : {CLl} 
e , , : {CL1,CL2} 

Figure 4.10: Modiiying CTG to capture communications 

After capturing the communications information using pseudo tasks, the 

combined communication mapping and activity scheduling is performed using the 

technique outlined in Figure 4.11. The technique is a list scheduling [42, 141, 142], 

which maintains an ordered list from which tasks are extracted to be scheduled at 

certain instances. In the proposed technique, two ordered lists are maintained: 

Is_readyJask and ls_ready__comm, in which tasks and communications are 

respectively placed in increasing order of the time when they become ready for 
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execution. This time is stored as an attributed tready for each task n and each 

communication r, and is the instance when all the predecessors of « or r have 

terminated. After initialising ls_ready_task (step 01), the technique enters two loops, 

which process communications (step 02 - 11) and tasks (step 1 2 - 2 3 ) respectively. 

The loops continue until all the communications and tasks have been scheduled. The 

key feature of the technique is the communication loop (step 02 - 11), which are 

described next. If there are ready communications in the ls_ready_comm (step 02), the 

communication r at the head of the ls_ready_comm is extracted (step 03). For each 

possible CL, the end time of r is calculates as (steps 04 — 05): 

) -h (C2) (4.7) 

where r.tready is the ready time of r, CL.tavaiiabie is the time when CL becomes available, 

r.texecution(CL) is the execution time needed by CL to transmit r. Communication r is 

mapped to the CL which produces the earliest end time (step 06), and r is scheduled 

accordingly (step 07). Due to the schedule of r, the available time of CL, the 

ls_readyjcomm and the ls_ready_task should be updated as steps 08 - 10. In step 10, 

those successor tasks of r, whose inputs have all arrived, are added to the 

ls_ready_task. In the task loop (steps 12 - 23), if task n is mapped to a hardware PE 

(step 15), n is scheduled, without any restriction, at the instance when n is ready (step 

16). This is because hardware PE allows tasks run in parallel. If n is mapped to a 

software PE (step 17), however, it can be scheduled only after the PE becomes 

available {PE.tavaiiabie)- There can be several tasks mapped to PE, so that at a given 

instance, n. tready ^ PE.tavaiiabie- All of these tasks will be ready when the PE becomes 

available. From these tasks, the one which has the highest priority is selected by 

function selectJask (step 18), and is scheduled (step 19). In function selectjask, the 

partial critical path (PCP) priority policy is employed due to its proved efficiency in 

scheduling CTGs [42]. In step 22, the Is j-eadyJask and Is j-eady_comm are updated, 

depending on whether the task n that has just been scheduled is a disjunction task 

(Chapter 1, Section 1.3.2). For how to update the ls_recidyj:ask and ls_ready_comm 

for CTGs, readers are referred to [42]. 
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List_schedule(/5'_refl(i_y_to^, Is_ready_comm) 

01 ls_ready_task = {source task} 
02 while ls_ready_comm is not empty { 

r = head (ls_ready_comm) 
for each possible CL 

calculate r.t 
end 

03 
04 
05 
06 
07 
08 
09 
10 
11} 
12 while ls_ready_task is not empty { 

r.mapping = the CL with earliest 

available start ^executionf^^^ 

remove r from Is_ready_comm 
update ls_ready_task 

else 

13 
14 
15 
16 

17 
18 

19 
20 
21 
22 
23 } 
24 goto step 02 

n = head (Is_readyJask) 
PE = n.mapping 
if PE is a hardware component 

n = selectJask(lsjreadyJask, PE) 
n.t start 'J 

PE.t ,, + n.t 
available execution ^available 

remove n from ls_ready_task 
update ls_ready_task and ls_ready_comm 

Figure 4.11: Proposed combined communication mapping and activit}^ scheduling 

4.3.3 DVS for Enhanced System Model 

In Chapter 3, Section 3.3, a conditional behaviour aware DVS technique has been 

described, but without the consideration of communication. In this section, an 

enhanced DVS technique is presented to address the impact of communication and the 

heterogeneous PEs. 

In the DVS technique for CTG of Chapter 3, Section 3.3, the whole schedule 

table is divided into several scaling regions. After identifying the slack time available 

for a scaling region, a scaling factor is calculated, and all the tasks in the scaling 
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region are scaled with the same scaling factor. This technique works effectively for 

the basic system model. However, it needs further enhancement in order to achieve 

energy efficiency for the enhanced system model. For example, consider the 

motivational example of Figure 4.1(a) and its schedule of Figure 4.3(a) (the track 

corresponding to condition value A). Since M/isa disjunction task (Chapter 1, Section 

1.3.2), the schedule of Figure 4.3(a) can be divided into two scaling regions as shown 

in Figure 4.12(a). According to the DVS technique of Chapter 3, Section 3.3, the 

scaling factors for scaling regions true and scaling region A both are 1.136. Scaling 

the two regions with scaling factor 1.136 generates the schedule of Figure 4.12(b). 

However, as can be seen in the figure, because the CL is not DVS-enabled, the 

execution time of ej2 and cannot be scaled. Therefore, slack time sJ and s2 are 

wasted, which should have been exploited by other tasks to reduce energy dissipation. 

This problem also occurs when some PEs are not DVS-enabled. Furthermore, due to 

the heterogeneous PEs, the tasks within a scaling region may consume different power. 

In such case, instead of using an identical scaling factor for all tasks within a scaling 

region, it is beneficial to use variant scaling factors for tasks depending on their power 

consumption [55]. Highly power-consuming tasks are assigned with more slack time 

(i.e., larger scaling factor), and low power-consuming tasks are assigned with less 

slack time (i.e., smaller scaling factor). Based on the above observation, the problems 

raised by the communication and heterogeneous PEs of the enhanced system model 

can be solved by controlling the slack time distribution: 

(1) avoid distributing slack time to communications or tasks that are mapped to 

non-DVS-enabled PEs, hence no slack time will be wasted; 

(2) distribute slack time to the tasks according to their power consumption (the 

higher power, the more slack time), in order to achieve maximum energy 

reduction. 
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Figure 4.12: Improper voltage scaling leading to slack time waste 

Figure 4.13 outlines the enhanced DVS technique. The enhancement (highlighted 

in Figure 4.13) involves the slack times distribution between the tasks within a scaling 

region, whilst the conditional behaviour aware identification of available slack time 

for each scaling region is the same as Chapter 3, Figure 3.13, where the technique of 

[55] is employed to exploit the slack time on non-critical paths within a scaling region 

(Chapter 3, Section 3.4). The main idea of the enhancement is to use the technique of 

[55] to control slack time distribution, not only on the non-critical paths, but also 
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DVS Technique for DVS 
Input schedule table -
Deadline -

01 pre-process 
02 for (each column col in SchTable, from left to right) 
03 { 
04 identify the worst case track -
05 calculate the worst case total slack time - slack 
06 calculate the slack time distributed to col - slaclc^^i 
07 convert the tasks within col to a task graph TG 
08 apply DVS technique in [55] to TG 
09 update SchTable 
10) 

Figure 4.13: DVS technique for enhanced system model 

critical paths. In this way, although the computational time increases due to the 

iterative nature of the technique [55], the slack time is fully exploited for energy 

efficiency improvement of the enhanced system model. The conditional behaviour 

aware identification of available slack time and the principle of the technique of [55] 

have been described in Chapter 3, Section 3.3, the enhancement is explained next. In 

step 07, after having identified the available slack time for a scaling region (steps 01 -

06), the tasks within the scaling region are converted into a task graph {TG), in order 

to use the technique of [55], which is only applicable to task graphs. In step 08, the 

technique of [55] is applied to the TG to exploit the slack time for energy reduction. 

The conversion from a scaling region to a task graph is achieved by: (1) from the CTG, 

extract the part belong to the scaling region; (2) insert a source task and a sink task 

(Appendix C), and decide the start time of the source task and the deadline of the sink 

task according to the timing information of the scaling region; (3) for each task n 

without an inwards edge, insert an edge from the source task to n, for each task n 

without an outwards edge, insert an edge from n to the sink task. For example, 

consider the CTG of Figure 4.10, the schedule of its track corresponding to condition 

value A is given in Figure 4.12(a). Figure 4.14 illustrates the conversion from scaling 

region A to a task graph. The start time of the source task is 11.36ms. This is because, 

according to the conditional behaviour aware identification of slack time, the slack 
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time available for scaling region true is 1.36ms, hence the earliest start time of eu is 

10ms + 1.36 ms = 11.36ms. Obviously, the deadline of the sink task is 50ms, imposed 

by the deadline of the original CTG. 

source 

fowrcg 

deadline=50ms 

start time 
11.36ms 

G 
11.36ms 

(3) 

sink (2) 50ms ( 50ms 

Figure 4.14: Conversion from a scaling region to a task graph (Scaling region A 

of Figure 4.12) 

4.4 Experimental Results 

A number of CTG examples have been used to demonstrate the efficiency and the 

applicability of the proposed communication-integrated co-synthesis technique 

considering enhanced system models (Section 4.4.1). Also, a performance analysis is 

carried out to show the effect of alternative communication architectures on the 

system solution quality, which gives guidance for the design of communication 

architecture (Section 4.4.2). For details of the simulation set-up, the reader is referred 

to Appendix A. 

4.4.1 Efficiency of the Communication-Integrated Co-Synthesis 

Two sets of examples are used to test the efficiency of the communication-integrated 

co-synthesis technique in terms of energy reduction: (1) a real-life example of GSM 

voice CODEC; (2) a number of synthetic examples. 
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GSM Voice CODEC Example 
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filter 
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Residual pulse 
excitation 

Encoding 

G S M 
channel 

Decoding 

I 
Long-term 

filter 
Residual pulse 
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Figure 4.15: Block diagram of the GSM voice CODEC [2] 

This experiment is concerned with an energy efficient implementation of a real-

life GSM voice CODEC example [2], GSM voice CODEC is a speech 

compression/ decompression algorithm used in Global System for Mobile 

Telecommunication (GSM). GSM voice CODEC consists of two parts: encoder and 

decoder. Figure 4.15 shows the block diagram of the GSM voice CODEC. The 

encoder divides the incoming voice signal into short-term predictable parts, long-term 

predictable parts, and the remaining residual pulse. The resulting parameters of the 

filters and residual pulse are quantised and encoded. Upon receiving the encoded 

voice stream, the decoder decompressed the parameter settings for the filters and the 

residual pulse. Using these settings the original voice signal is reconstructed. The task 

graphs of the encoder and decoder [2] have been derived from the source code of the 

CODEC [143]. Figure 4.16 and Figure 4.17 respectively show the extracted task 

graphs of the encoder and decoder. The encoder consists of 53 tasks, whilst the 

decoder consists of 34 tasks. The task graphs of coder and decoder are combined to 

form a conditional task graph (CTG). The CTG of CODEC consists of 87 nodes, 139 
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ARptorp Shô temi \9 
analysis filtering LARp to rp A"; ortterrn l̂2 
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edges, and two tracks, one track for encoder and another track for decoder. The target 

architecture of CODEC consists of two processing elements (PEs) connected by a 

communication link (CL). A technology library gives the properties of the PEs and CL, 

as well as the implementation properties of the tasks and communications. Details of 

the technology library are given in Appendix B. 

The experiments on the GSM voice CODEC example is used to demonstrate two 

important aspects. Firstly, it used to show the efficiency of the communication-

integrated co-synthesis in terms of energy reduction. Secondly, a comparison is made 

between the implementations of the CODEC example with and without the 

consideration of communication, in order to show the impact of communication on 

energy dissipation. For this purpose three experiments are conducted. 

(1) The proposed co-synthesis is used to perform mapping, scheduling and 

voltage scaling for the CODEC example, without the consideration of 

communication; (NO COMM 10ms) 

(2) The proposed co-synthesis is applied to the CODEC example, taking the 

communication into consideration; (COMM - 1 Cms) 

(3) Experiment 1 and 2 assume a deadline of 10ms. In experiment 3, a deadline 

of 20ms is assumed. The proposed co-synthesis is applied to the CODEC 

example, taking the communication into consideration. (COMM - 20ms) 

The results are given in Table 4.4. As it can be seen, in experiment (2), the energy 

dissipation before DVS is 92.65 mJ, the proposed co-synthesis reduces the energy 

dissipation to 51.47 mJ by applying DVS, which is a reduction of 44.5%. In 

experiment (3), the proposed co-synthesis reduces the energy dissipation from 75.26 

mJ to 44.66 mJ, a reduction of 40.7%. It is clear that the proposed communication-

integrated co-synthesis is efficient in energy reduction. Comparing the results of 

experiment (1) and (2), it can be seen that the example consumes more energy in 

experiment (2) than in experiment (1), as expected. This is because the 

communications consumes energy, and the slack time available for voltage scaling the 

tasks is reduced due to the execution time of communications. 
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Experiment Description 
Energy 

before DVS 
(mJ) 

Energy after 
DVS (mJ) 

Energy 
Reduction 

(%) 
1 NO COMM-lOms 90.97 50.39 44.6 
2 COMM - 10ms 92.65 51.47 44.5 
3 COMM - 20ms 75.26 44.66 40.7 

Table 4.4: Results for the GSM voice CODEC example 

Synthetic Examples 

In order to test the efficiency of the communication-integrated co-synthesis 

technique in terms of addressing the impact of communications, the examples (ctgl -

ctg26) of Chapter 3, Section 3.5.2 have been extended with communications. Two 

types of communication links (CLs) with different baud-rate and power consumption 

are considered, where CLl has baud-rate and power consumption of 115 Kbits/s and 

4mW, CL2 has baud-rate and power consumption of 1 Mbits/s and 35mW. Three 

experiments are conducted on the examples: 

(1) applying the proposed co-synthesis techniques (including mapping, 

scheduling, and voltage scaling) to the examples, where CLl is employed; 

(2) applying the proposed co-synthesis techniques to the examples, where CL2 

is employed; 

(3) to indicate the extra energy dissipation caused by communications, 

experiment is also performed assuming no communication is considered. 

Table 4.5 gives the results of the three experiments. Column 2 shows the 

complexity of the examples in terms of the number of node (task), edge, condition, PE 

and CL; column 3 gives the deadline of the examples. The results of experiment (1) 

are given in Columns 4 - 6 , where column 4 and column 5 are the energy dissipation 

before and after applying DVS; column 6 is the energy reduction achieved by 

applying DVS, which is calculated as (1 - (column 5 / column 4)). Similarly, the 

results of experiment (2) are given in columns 7 - 9 . Column 10 shows the energy 

dissipation after applying DVS in experiment 3 (no communication). For all results 

produced by experiments (1) and (2), as expected, the proposed co-synthesis 
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Example 

No. of 
node/edge/ 
condition/ 

PE/CL 

dead 
-line 
(ms) 

Experiment 1 - CLl Experiment 2 - CLl Exp.3 -
no com, 

Ene. 
(mJ) 

Example 

No. of 
node/edge/ 
condition/ 

PE/CL 

dead 
-line 
(ms) 

Energy 
dissipation (mJ) 

Ene 
Redu. 
(%) 

Energy 
dissipation (mJ) 

Ene 
Redu. 
(%) 

Exp.3 -
no com, 

Ene. 
(mJ) 

Example 

No. of 
node/edge/ 
condition/ 

PE/CL 

dead 
-line 
(ms) Before 

DVS 
After 
DVS 

Ene 
Redu. 
(%) Before 

DVS 
After 
DVS 

Ene 
Redu. 
(%) 

Exp.3 -
no com, 

Ene. 
(mJ) 

comctgl 13/16/2/2/1 105 495.12 330.31 33.29 500.11 302.13 39.59 297.26 
comctg2 13/16/2/3/1 81 471.44 320.92 31.93 441.55 264.16 40.17 256.02 
comctgj 13/16/2/4/1 87 562.69 387.51 31.13 551.51 321.65 41.68 305.42 
comctg4 13/16/2/5/2 95 471.53 315.62 33.06 449.07 234.22 47.84 226.65 
comctgS 13/16/3/2/1 106 575.09 454.63 20.95 565.15 412.68 26.98 407.90 
comctg6 13/16/3/4/1 113 581.43 429.04 26.21 560.16 359.49 35.82 352.48 
comctg? 25/30/2/2/1 246 1372.90 1061.27 22.70 1353.03 922.38 31.83 912.75 
comctgS 25/30/2/3/1 215 1257.86 1012.52 19.50 1250.59 912.83 27.01 892.92 
comctg9 25/30/2/4/1 170 980.36 738.80 24.64 950.64 580.97 38.89 534.17 

comctg 10 25/30/2/5/2 206 1135.40 782.78 31.06 1090.63 667.52 38.79 612.15 
comctgl 1 25/30/3/2/1 211 1125.20 834.49 25.84 1125.34 773.61 31.26 766.21 
comctg 12 25/30/3/3/1 212 1216.63 938.44 22.87 1191.84 811.74 31.89 764.46 
comctg 13 25/30/3/4/1 225 1114.23 780.64 29.94 1079.34 677.68 37.21 648.77 
comctg 14 25/30/3/5/2 194 1120.47 965.69 13.81 1045.56 686.32 34.36 662.52 
comctg 15 25/29/4/2/1 201 1025.41 814.01 20.62 1007.84 719.28 28.63 708.78 
comctg 16 25/29/4/3/1 157 880.33 708.55 19.51 845.50 577.54 31.69 560.25 
comctgl? 25/29/4/4/1 196 970.27 750.03 22.70 969.30 663.86 31.51 623.55 
comctg 18 25/29/4/5/2 162 877.87 714.09 18.66 806.84 535.88 33.58 513.27 
comctg 19 35/41/2/2/1 351 1272.91 949.69 25.39 1260.44 850.12 32.55 837.44 
comctg20 37/45/2/3/1 420 1638.12 1271.03 22.41 1574.76 1118.97 28.94 1086.21 
comctg21 35/41/2/5/2 328 1255.56 978.80 22.04 1175.77 714.03 39.27 678.92 
comctg22 38/48/2/2/1 272 1990.69 1557.13 21.78 1955.89 1458.99 25.41 1437.42 
comctg23 48/60/3/3/1 465 1711.04 1228.65 28.19 1639.60 1009.10 38.45 972.03 
comctg24 46/55/3/5/2 441 1372.63 975.78 28.91 1323.84 750.18 43.33 735.70 
comctg25 59/71/3/3/1 567 3266.17 2437.44 25.37 3250.11 2155.51 33.68 2089.33 
comctg26 93/118/5/5/2 601 2269.86 1589.81 29.96 2328.41 1326.13 43.05 1269.70 

Table 4.5: Results of the co-synthesis techniques considering communications 

technique reduced the energy dissipation effectively by applying voltage scaling. 

Comparing the results of experiments (1) - (3), it can be seen that the examples 

consumes more energy when communications are considered. Also, the energy 

dissipation of the examples in experiment (2) (employing CL2) is less than in 

experiment (1) (employing CLl), for example comctgM consumes 686.32mJ 

employing CL2, while consumes 965.69mJ employing CLl, a reduction of 28.93%. 

This is because CLl and CL2 consumes similar energy per bit (i.e., energy needed to 

transmit a bit through the CL), however, using the faster CL (CL2) leads to shorter 
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execution time for communications, which in turn leaves more slack time for voltage 

scaling the tasks. 

4.4.2 Effects of Alternative Communication Architectures 

In this section, the proposed co-synthesis technique is used to examine the effect of 

alternative communication architectures on the quality of system solutions. 

Experiments are conducted on a CTG, which has 59 nodes and 71 edges, mapped to 

an architecture containing three PEs. The PEs are interconnected by three alternative 

communication architectures as shown in Table 4.6. In case 1 the PEs are connected 

by three dedicated CLs (Figure 4.5(a)); in case 2, the PEs are connected by a shared 

bus (Figure 4.5(b)), whose baud-rate and power consumption are the sum of the three 

dedicated CLs of case 1; in case 3, the shared CL of case 2 is split into two shared CLs 

(Figure 4.5(c)), each has half of the baud-rate and power consumption. 

Communication 
Architecture 

Baud-rate 
(Kbits/s) 

Power 
Consumption 

(mW) 

Case 1: 3 dedicated CLs 
PEs are connected by three 

dedicated CLs, Figure 4.5(a) 
150 23.3 

Case 2; 1 shared CL 
PEs are connected by one 
shared CL, Figure 4.5(b) 

450 70 

Case 3: 2 split shared CLs 
PEs are connected by two 
shared CLs, Figure 4.5(c) 

225 35 

Table 4.6: Comparison of three alternative communication architectures 

The proposed co-synthesis technique is employed to produce solutions for the 

CTG in the three cases. The results are given in Table 4.7. Again, it is clear that the 

proposed co-synthesis techniques improve the energy efficiency for all the cases. 

Additionally, Table 4.7 gives a comparison of the system solution quality under three 

cases. Case 3 (2 split shared CLs) provides better solutions than case 1 (3 dedicated 

CLs). This is because the split shared CL has higher baud-rate than the dedicated CL, 

and the two split shared CLs may allow for greater communication parallelisms. 

Nevertheless, the solution of case 3 is poorer than that of Case 2(1 shared CL). This is 

because, for this particular CTG, there are few communications in parallel, thus the 
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advantage of splitting the CL and thereby increasing parallelism is countered by the 

lower baud-rate of each CL. As it can be seen, a suitable selection of communication 

architecture can significantly improve system quality in terms of energy efficiency. 

The proposed co-synthesis technique selects the appropriate communication 

architecture to reduce energy dissipation for a particular design. 

Case 1 Case 2 Case 3 
Schedule length (ms) 529.6 499.13 499.73 

Deadline (ms) 540 540 540 
Energy before DVS (mJ) 4352.48 4143.83 4200.58 
Energy after DVS (mJ) 3578.89 3291.15 3387.61 
Table 4.7: Results for three alternative communication architectures 

4.5 Concluding Remarks 

This chapter has introduced the concept of enhanced system model, in order to address 

the impact of communication. Consideration of communications is integrated within 

the co-synthesis technique of Chapter 3 to perform mapping, scheduling, and voltage 

scaling for enhanced system models. In the proposed co-synthesis technique, task 

mapping and communication mapping are performed separately, communication 

mapping is carried out simultaneously with the activity scheduling. The scheduling 

and DVS technique are extended to perform scheduling and voltage scaling for 

enhanced system models. Experimental results show that the proposed co-synthesis 

techniques achieve significant energy reduction after considering the impacts of 

communications and heterogeneous PEs. Also, performance analysis is carried out to 

show the effect of alternative communication architectures on the system solution 

quality in terms of energy efficiency. It is shown that a suitable selection of 

communication architecture can significantly improve the system solutions. 



Chapter 5 

Power-Composition Profile Driven Co-

Synthesis 

Dynamic voltage scaling (DVS) employed in the co-synthesis techniques of Chapter 3 

and Chapter 4 aims to reduce dynamic power, which has traditionally been the 

primary source of power consumption. However, as the CMOS feature size continues 

to shrink, leakage power increases exponentially and will become an important source 

of power consumption in < 0.1 ̂ m CMOS technology (Chapter 2, Figure 2.3). This 

justifies the employment of adaptive body biasing (ABB, Chapter 2, Section 2.1.2.2), 

which has recently been proposed to reduce leakage power [60-64]. Nevertheless, 

most of these research [60-64] focus on the circuit level, little research has been 

reported in the system level. This chapter presents a new system-level co-synthesis 

technique to reduce dynamic and leakage power simultaneously for embedded 

systems that contain processing elements (PEs) with DVS and/or ABB capabilities. In 

particular, the presented techniques perform a power management selection at the 

architectural level, i.e., it decides upon which PE to be equipped with which power 

management scheme (DVS, ABB, or combined DVS and ABB [77, 115]) - with the 

aim to achieve high energy saving at a reduced implementation cost. The techniques 

also map, schedule, and voltage scale applications specified as task graphs with timing 

constraints. 

The remaining of this chapter is organised as follows. Section 5.1 outlines the 

motivation of the proposed power-composition profile driven co-synthesis technique. 

Power and delay models used in the technique are introduced in Section 5.2. Section 

5.3 gives two motivational examples to show the main idea of the proposed technique. 

Sections 5.4 and 5.5 detail the problem formulation and present the proposed co-

synthesis technique with power management selection. Section 5.6 gives the extensive 

experimental results. Finally, concluding remarks are given in Section 5.7. 

I l l 
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5.1 Motivation 

Dynamic voltage scaling (DVS) and adaptive body biasing (ABB) are two system-

level energy management techniques, both allowing trade-off between system 

performance and energy dissipation during application run-time (Chapter 2, Section 

2.1.2). The main difference between them is that DVS scales down the circuit supply 

voltage to primarily reduce dynamic power, whilst ABB increases the circuit threshold 

voltage through body biasing to mainly reduce leakage power [60-62, 72]. Certainly, 

either decreasing the supply voltage or increasing the threshold voltage requires 

lowering of the clock frequency. The reported techniques [53, 55, 56, 60-62, 72] 

employ either DVS or ABB to reduce system energy dissipation. However, for 

foreseeable future systems where dynamic power and leakage power are comparable 

to each other, neither DVS nor ABB in isolation can achieve the best energy 

efficiency. Duarte et al [77] showed that a combined DVS and ABB will provide the 

highest energy saving. In such a combined scheme, DVS and ABB compete for the 

redundant system performance (i.e., slack time) to scale down the system's clock 

frequency. Therefore, the difficulty in employing combined DVS and ABB is to 

determine the trade-off between them [63]. Martin et al [115] developed analytical 

models to produce optimal supply voltage and threshold voltage values for energy 

minimisation. Yan et al [144] and Andrei et al [145] addressed the supply voltage and 

body bias voltage scaling problem for task graphs executed on multi-processor 

systems, unlike the previous work [115] which targets single processor systems. 

Although the combination of DVS and ABB [63, 115, 144, 145] (referred to as 

DVS+ABB from now on) provides higher energy saving than DVS or ABB in 

isolation, it increases system cost and complexity. This is because the implementation 

of DVS requires an additional voltage converter and impacts processor verification 

[70]. The implementation of ABB, on the other hand, requires a bias voltage generator 

and a substrate-bias distribution, i.e., additional wiring [60, 62]. Clearly, combined 

DVS+ABB implies larger system cost than separate DVS or ABB. Cost and energy 

are two critical and competing concerns in embedded systems; therefore, it is 
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important to carefully balance these two aspects as early as possible in the design 

phase. 

As a result, one important problem is the selection of the appropriate power 

management scheme (DVS, ABB, or DVS+ABB) for each processing element (PE) in 

the system, in order to find a suitable trade-off between system cost and energy 

dissipation. The work presented in this chapter addresses this problem and introduces 

a new methodology that performs the power management selection (PMS) during the 

co-synthesis. It will be demonstrated that, depending on the ratio of the dynamic 

power to the leakage power (i.e., power-composition profile), it is possible to employ 

PEs with separate DVS or ABB capability to achieve comparable energy saving to 

DVS+ABB PEs while avoiding the extra system cost. In addition to the PMS, the 

proposed power-composition profile aware co-synthesis methodology maps, schedules 

and voltage scales applications given as task graphs with timing constraints. The co-

synthesis provides the designer with a set of possible design solutions, represented by 

Pareto-optimal trade-off points in terms of energy and cost, from which the designer 

can select and decide which PE to be equipped with which power management 

scheme (DVS, ABB, DVS+ABB). 

5.2 Power and Delay Models 

Although Chapter 2, Section 2.1.1 has given basic equations for the calculation of 

dynamic power and leakage power. More elaborate equations are needed to apply 

DVS and or/ABB to the embedded systems. The power and delay models considering 

dynamic power only has been given in Chapter 3, Section 3.1.1. This section derives 

the power and delay models considering both dynamic power and leakage power. 

The threshold voltage of MOSFET has a linear dependence on Vdd and as 

given by [115]: 

Y ^ - Y M - K - Y ^ - K - K ( s - i ) 
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where V,H, VDD and VBS are the threshold voltage, supply voltage and body bias vokage 

respectively; Vthh ki and kj are constants for a given CMOS technology. The circuit 

delay cl is dependent on the supply voltage and threshold voltage, as given by Chapter 

2, Equation 2.11. Substituting Equation 5.1 into Equation 2.11 yields the expression of 

clock frequency/in terms of and ^6,: 

where ka is given by Equation 2.12. Hence the execution time of a task r is given by: 

f(r) = (5.3) 

where NC(T) is the number of cycle needed to execute task r. There are two major 

sources of power consumption: dynamic power and leakage power, which are given 

by Chapter 2, Equations 2.10 and 2.17. Substituting Equation 5.1 into Equation 2.17, 

the total power consumption consumed by a PE to execute a task can be derived: 

C , = C,,-f V j + L -r,, -k,-e''"' -e''"- (5.4) 

P P 
dyn leak 

i , = ^ (5.6) 

= - ^ ^ - (&7) 
M -

where Pdyn and Pie„k denote dynamic power and leakage power respectively, Ce/f is the 

effective capacitance of the whole PE averaged over the execution duration of the task, 
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Lg denotes the number of gates, ks, ki and k̂  are constants for a given CMOS 

technology. In this chapter, the concept of power-composition profile (PCP) is defined. 

Definition Given a PE and a task T, the power-composition profile (PCP) is 

as the ratio of the dynamic power to the leakage power consumed by the PE to execute 

task T. Mathematically: 

PCP(T,PE)= (S.S) 
P,.AR,PE) 

Since the tasks have different dynamic power and leakage power, the PCP varies from 

task to task. On the other hand, for a task that can be potentially mapped to several 

PEs, its dynamic power, leakage power, and therefore PCP varies with the task's 

mapping. So PCP is a feature of a task and its particular mapping to a PE. The PCPs 

of the tasks can be estimated using, for example, the technique and component library 

outlined by Duarte et al [106]. The concept of PCP will be used in the proposed co-

synthesis techniques to achieve energy efficiency at low system cost (Section 5.5). 

Consider a PE executing a taskr. Assume the PE needs Nci^) cycles to execute 

task T, and the deadline of task t is D. The nominal supply voltage and body bias 

voltage of the PE are Vdd(nom) and Vbs(nom) respectively. The PE is equipped with a 

certain type of power management (PM) scheme (DVS, ABB, or DVS+ABB). 

Equations for the calculation of supply voltage Vdd, body bias voltage Vbs and clock 

frequency f at which the PE can finish executing task r at the deadline D while at the 

same time reduce the energy dissipation as much as possible, are derived in three 

cases: (1) the PE has DVS capability; (2) the PE has ABB capability; (3) the PE has 

DVS+ABB capability. 

(1) If the PE has DVS capability, is kept constant at while and/can 

be dynamically scaled according to the performance requirement: 
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D 
(5.9) 

/ = 

(2) If the PE has ABB capability, Vdd is kept constant at Vdd(nom), while Vbs and/are 

scaled dynamically: 

D 
(5.10) 

/ 
[(l + k^)-Vj^ +k^- f 

(3) If the PE has DVS+ABB capability, VDD and VBS can be scaled simultaneously. In 

this case, there are infinite numbers of {Vdd, Vbs) pairs at which the PE can finish 

executing T at the deadline D. However, there is only one optimal (Vdd, Vbs) pair at 

which the PE consumes the least energy [115]. This optimal (Vdd, Vbs) pair can be 

solved using the following nonlinear programming formulation: 

Minimise 

/ 
(5.11) 

subject to 

/ 
N,(r) [(l+i,)-K„+k,_^F„~V„J 

D 
(5.12) 

Equations 5.1 - 5.12 will be used in the PCP driven co-synthesis methodology of 

Section 5.5. 
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5.3 Motivational Examples 

This section illustrates the main idea behind the proposed co-synthesis methodology 

by means of two motivational examples. The first example demonstrates the impact of 

power-composition profile (PC?) in the selection of various power management (PM) 

schemes for the PEs. The second example shows the influence of task mapping on the 

PCP and why it is important to consider PCP during the task mapping. 

5.3.1 Example 1 

Consider a voice compression task with an execution time of 10ms at nominal supply 

voltage and body bias voltage and a deadline of 13ms (i.e., 3ms slack). Figure 5.1 

shows the normalised energy dissipations of the task when various PM scheme are 

employed for two different PCPs. Consider PCP 1, where both dynamic power and 

leakage power are 4.67mW (i.e., dynamic power / leakage power = 1). The power 

values are derived using Equation 5.4 assuming the 0.07|im Crusoe processor 

constants [115]. As it can be seen, the normalised energy dissipation without any 

voltage scaling is 1.0 {Vdd = IV, Vbs = OV), employing DVS or ABB reduces the 

energy dissipation to 0.789 {Vdd = 0.85V, = OV) and 0.541 {Vdd = IV, Vbs = -0.66V) 

respectively. ABB produces higher energy reduction than DVS because according to 

Equation 5.4, dynamic power is quadratically dependent on supply voltage, while 

leakage power is exponentially dependent on body bias voltage (leakage power is also 

exponential to Vdd, but the constant k4 for Vdd is smaller than for Vbs)- Employing 

DVS+ABB [115] reduces the energy dissipation to 0.537 {Vdd = 0.98V, Vbs = -0.55V). 

This shows that ABB produces similar energy reduction as DVS+ABB. In this case, a 

suitable PM scheme is ABB because of its similar energy reduction to that of 

DVS+ABB but less system cost. 

Now consider PCP 2, where the dynamic power and leakage power are 7.47mW 

and 1.87mW respectively (i.e., dynamic power / leakage power = 4). The normalised 

energy dissipation without any voltage scaling is 1.0 {VDD = IV, VBS = OV). Employing 

DVS, ABB, DVS+ABB respectively reduces the energy dissipation to 0.754 {Vdd = 
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0.85V, = OV), 0.817 = IV, Ft, = -0.66V), and 0.731 = 0.89V, = -

0.18V). As expected, the DVS+ABB again achieves the highest energy reduction. 

DVS performs slightly worse than DVS+ABB, but much better than ABB, because 

the dynamic power is dominating in the total power. There is a trade-off in the 

selection of the PM scheme. One can choose DVS+ABB for lowest energy 

consumption at the expense of extra system cost, or choose DVS with slight 

degradation in energy reduction and reduced system cost. 
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Figure 5.1: Energy dissipation using different PM schemes for two PCPs 

Figure 5.2 shows the normalised energy dissipation of the same task using 

various PM schemes for power-composition profiles (PCP) in the range of 1 to 4, 

considering current and future CMOS technologies (<0.1f.im) [106]. First, consider the 

energy reduction of ABB and DVS+ABB. It can be seen that both schemes have 

comparable energy reduction in the PCP range of 1 to 2.25 (Zone I), but DVS+ABB 

has much higher energy reduction than ABB in Zone II and III. Now consider the 

energy reduction of DVS and DVS+ABB. As it can be seen, the two schemes have 
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comparable energy reduction in Zone III, but DVS+ABB has much higher energy 

reduction than DVS in Zone I and II. Based on these comparisons, it can be observed 

that, for a single task to be executed on a PE, if the PCP is in Zone I, then ABB can be 

selected with little degradation in energy reduction but less system cost when 

compared with DVS+ABB. Similarly, if the PCP is in Zone III, then DVS can be 

selected. Finally, if the PCP is in Zone II, DVS+ABB should be selected because it 

performs much better than either DVS or ABB. Note that the zone ranges of Figure 

5.2 are for the case of 0.07|im Crusoe processor [115] as an example. This 

motivational example shows the importance of taking into account the PCP when 

identifying PM schemes for the PEs in order to produce energy and cost efficient 

designs. 
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Figure 5.2: Energy dissipation using different PM schemes for a range of PCPs 

5.3.2 Example 2 

As mentioned in Section 5.2, a task's PCP depends on its mapping. To examine this 

influence, consider the same task as in the Example 1, but this time it can be possibly 

mapped to two different PEs, which have already been equipped with certain types of 

power management scheme: PEj with DVS capability and PE2 with ABB capability. It 
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is assumed that the execution properties of the task on the two PEs are as shown in 

Table 5.1. It can be seen that, the PCP is 3 when the task is mapped to PEi, and the 

PCP is 2 when the task is mapped to PEz. Hence the two mappings generate different 

PCPs. Next we decide to which PE the task should be mapped with the aim of high 

energy saving. Based on the knowledge that the total power consumption of the task is 

lower on PEi (13.44mW) than on PEi (14.01mW), one may possibly map the task to 

PEi. In this case, the energy dissipation without any voltage scaling is 134.4pJ {Vdd = 

IV, Vbs = OV). Applying DVS reduces the energy dissipation to 102.2|j,J {Vdd = 0.85V, 

Vbs = OV). However, if one maps the task to PEi, although the energy dissipation 

without any voltage scaling (VS) is worse (140.1|iJ), applying ABB reduces the 

energy dissipation to 97.3pJ {VDD = IV, VBS = -0.66V), which is better than being 

mapped to PEi. This is because PE2 has ABB capability, which is able to efficiently 

reduce the energy of the task with a PCP of 2, as shown in Figure 5.2. On the other 

hand, the DVS capability available on PE, is less efficient in reducing energy for the 

task with a PCP of 3. This motivational example shows the influence of the mapping 

on the PCP and the importance to consider the PCP during the mapping to achieve 

good energy saving. 

execution 
time (ms) 

Pdyn 
(mW) 

Pleak 
(mW) 

Ptotal 
(mW) 

PCP 
energy 
before 

VS (^J) 

energy 
after 

VS (̂ LT) 
PEI (DVS) 10 10.08 3.36 13.44 3 134.4 102.2 
PE2 (ABB) 10 9.34 4.67 14.01 2 140.1 97.3 

Table 5.1: Execution properties for different mappings 

Motivational examples have demonstrated that it is necessary to select power 

management (PM) scheme for PEs appropriately depending on the PCP. Clearly, in 

the single PE/single task case the decision upon which PM scheme to employ can be 

taken directly based on the above given observations. Once the execution property of 

the task (including execution time, deadline, dynamic power, leakage power, and, in 

turn, PCP) is known, the selection can be made simply by comparing the PCPs in a 

diagram as shown in Figure 5.2. However, it is important to note that in the case of 

multiple PEs that execute a set of tasks, this problem becomes non-trivial. This has the 

following reasons: (1) The PCPs of tasks cannot be fixed before the actual tasks 
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mapping have been determined, i.e., the PCPs of tasks change depending on which PE 

the tasks are assigned to, and (2) the tasks can have different dynamic power, leakage 

power and PCP, and the distribution of slack time between the tasks is non-uniform in 

order to achieve the best energy saving [55]. In general, the search space of the PMS 

problem is where M is the number of PM schemes (for instance, 4 for None, 

DVS, ABB, DVS+ABB) and |P| is the number of PEs in the system. Furthermore, the 

interrelation between task mapping and PCP hampers the usage of effective 

constructive heuristics. Before introducing our co-synthesis technique with PMS, a 

detailed problem formulation is given next. 

5.4 Problem formulation 

The input to the proposed co-synthesis methodology includes a task graph G(V,E), an 

architecture, and a technology library. In the architecture, the number and type of PEs 

have been decided, but the type of power management scheme (DVS, ABB, or 

DVS/ABB) of each PE is not fixed. Each power management (PM) scheme is 

associated with a cost factor reflecting its hardware overhead, which is given in the 

technology library. Each task TEV in the task graph can be potentially mapped to 

several PEs able to execute it. For each possible mapping, the number of clock cycle 

Nc required to execute the task, the dynamic power Pdyn and the leakage power Puak at 

the nominal supply voltage and body bias voltage are also given in the technology 

library. These values are either based on previous design experience or on estimation 

techniques [133, 134]. The goal of the co-synthesis is to select a suitable PM scheme 

for each PE, and to find a mapping, scheduling, supply voltage and/or body bias 

voltage assignment for the tasks (depending on the PM scheme selected for the PE), 

such that the imposed deadlines are met, and at the same time, the energy dissipation 

and system cost are reduced. The proposed methodology provides the designer with 

trade-offs between two optimisation objectives: energy dissipation and system cost. 

An assumption is made that the tasks are of sufficiently coarse granularity and that the 

PEs can continue operation during the voltage scaling, which allows neglecting the 

scaling overhead in terms of power and time [2]. If such overheads cannot be 
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neglected, techniques such as those presented recently [145] can be used to take the 

overhead into consideration during the optimisation process. 

5.5 PCP Driven Co-Synthesis with Power 

Management Selection 

This section presents co-synthesis methodologies, which, aware of the tasks' power-

composition profile (PCP), perform a power management selection (PMS) with the 

aim to find suitable trade-offs between energy dissipation and system cost. In addition 

it optimises mapping, scheduling, and voltage assignment towards dynamic and 

leakage energy saving. Two alternative methodologies are presented: methodology 1 

performs an exhaustive design space search to find the optimal power management 

selection (Section 5.5.1); while methodology 2 employs a heuristic to search for near-

optimal PMS (Section 5.5.2), leading to shorter computational time compared with 

methodology 1. 

5.5.1 Methodology 1 - Exhaustive Design Space Search 

Methodology 1 is based on two nested optimisation loops, as shown in Figure 5.3. The 

inner loop is a power-composition profile aware mapping. It is responsible for the 

optimisation of the mapping, scheduling and supply voltage and body bias voltage 

assignment for a given power management selection (PMS), which is identified in the 

outer loop. The outer loop exhaustively identifies all possible PMS for the PEs. It 

starts from a PMS with the highest system cost (i.e., all PEs are equipped with 

DVS+ABB scheme) and incrementally moves towards PMS with lower system costs. 

In each iteration, the outer loop 

(1) identifies a possible PMS; 

(2) passes the identified PMS to the inner loop to generate the corresponding 

mapping, scheduling, supply voltage and body bias voltage assignment; 

(3) checks whether there exists another PMS with equal or lower system cost; 
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(4) if such a PMS exists, then an actual PMS is identified, e.g., associate a PE 

with separate DVS or ABB instead of DVS+ABB, and the newly identified 

PMS is passed to the inner loop. 

Input: 
task graph, architecture, 

technology library 

power-composition profiled 
aware mapping 

no 
Terminate? 

yes 

yes 

no 

Output; 
Pareto-optimal solutions 

ly other PMS with equal 
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Perform scheduling 

Evaluation & ranking 

Perform mapping 
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Mapping population 
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Initialise mapping 
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Figure 5.3: Flow of methodology 1 - exhaustive design space search 
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This procedure repeats until there is no PMS with equal or lower system cost. Finally, 

all the solutions (including PMS and the corresponding mapping, scheduling and 

voltage assignment) are evaluated in terms of energy dissipation and system cost. A 

solution a dominates a solution p, if one of the following conditions is met; 

(1) energy(a) < energy((3) AND cost(a) < cost(P); 

(2) energy(a) < energy(P) AND cost(a) < cost(P). 

Solutions that are not dominated by any other solutions consist of the Pareto-optimal 

solutions (Pareto set), which are presented to the designer to give a trade-off between 

energy dissipation and system cost. 

PCP Aware Mapping 

The key feature of methodology 1 is the power-composition profile (PCP) aware 

mapping (the inner loop of Figure 5.3). Taking advantage of the available PCP 

information, it optimises the mapping, scheduling, supply voltage and body bias 

voltage assignment in terms of energy dissipation and timing feasibility for a given 

PMS, which is identified in the outer loop. 

The basic idea of the PCP aware mapping is to, for each task, look at the PCPs 

resulted from all possible mappings, then decide which mapping is preferable. The 

complexity of this process is 0(number of tasks * number of PEs). Denote a specific 

task as z;, a specific PE as PEj, the PCP of t, when it is mapped to PEj as PCPy. 

According to Figure 5.2, there are three cases that r, should be preferably mapped to 

(1) PCPij is in Zone I (Figure 5.2) and PEj has ABB capability or DVS+ABB 

capability; 

(2) PCPij is in Zone II and PEj has DVS+ABB capability; 

(3) PCPij is in Zone III and PEj has DVS capability or DVS+ABB capability. 
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Ideally all tasks need to be mapped according to the PCP. However this is not always 

possible due to the imposed time constraints, area constraints, or lack of PEs with 

suitable voltage scaling capabilities. As will be shown later in this section, to meet 

timing feasibility, some optimised task mappings may not be in accordance with their 

PCP, although this increases energy dissipation. 

01 for (each task r;) { 
02 for (each PEj able to execute { 
03 = 

if {{PCPij e Zone I) and {PEj has ABB or DVS+ABB)) 

if {{PCPy e Zone II) and {PEj has DVS+ABB)) 

if e 2%)ne [OC) aiui orlDT/S-t/LEWB)) 

04 
05 
06 
07 
08 
09 
10 } 
11 if {PE-SETj is empty ) 
12 PE-SETj = all PEs able to execute tt 
13} 
14 generate an initial mapping candidate: for each choose a PE e 

PE-SETi randomly 
15 repeat step 14 to generate a proportion of the initial mapping 

population 
16 generate the remaining proportion of the initial mapping 

population randomly 

Figure 5.4: PCP aware mapping initialisation 

The PCP aware mapping is based on a genetic algorithm (GA). For further details 

concerning the application of genetic algorithm in task mapping the reader is referred 

to Chapter 3, Section 3.4. As shown in Figure 5.3, the first step of the PCP aware 

mapping is mapping initialisation. In this step an initial population of mapping 

genome (each genome represents a mapping candidate) is generated taking account of 

the PCP. A detailed description of the mapping initialisation is given in Figure 5.4 and 

explained as follows. According to the previous discussion of this section, there are 

three cases that T, should be preferably mapped to PEj depending on PCPy (the PCP of 

T, when it is mapped to PEj). Correspondingly, steps 01 - 10 identify the PEs 
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preferable for r, to be mapped to, and include them into PE-SETj. Therefore, PE-SETj 

includes the PEs that have suitable PM scheme to efficiently reduce the energy 

dissipation of Tj. If there is no PE preferable for r„ then all PEs able to execute r, are 

included in PE-SETi (Steps 11 - 12). In steps 14 - 15, PE-SETi is used to generate a 

proportion (50% is found to work practically well) of the initial task mapping 

population. In step 16, the remaining proportion of population is generated randomly 

(i.e., non PCP-aware) in order to increase the diversity of the population. This 

initialisation has been found to improve the optimisation procedure significantly by 

introducing candidates that are likely to evolve into high quality solutions. 

After mapping initialisation, as shown in Figure 5.3, an actual mapping is 

generated for each genome in the population (Perform mapping). Following this, the 

execution order of the tasks are scheduled, using a critical path list scheduler similar 

to [42] (Perform scheduling). After scheduling, supply voltage and/or body bias 

voltage assignments are generated (Perform voltage scaling), where a technique 

adopted from [55] is employed. The technique of [55] addresses DVS only. To enable 

it to address both DVS and ABB, a modification is made, which basically involves the 

distribution of slack time between DVS and ABB. After performing voltage scaling, 

the solutions are evaluated and ranked, using the fitness function: 

Fitness = 
V i T, 

(5.13) 

where E(n,) is the energy dissipation of task Td is the deadline of the task graph, 

and Te is the actual delay of the task graph. The first part of the fitness function is the 

total energy dissipation of all tasks. The second part introduces a penalty factor due to 

deadline violations. Thus the candidates with low energy dissipation and timing 

feasibility are associated with high fitness and rank. The mapping candidates with 

high fitness are selected to evolve a new population by mating and mutating them. 

The produced offsprings are inserted into the population to replace the low ranked 

ones. In order to improve the optimisation procedure, a new genetic mutation operator 

is introduced next. 
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PCP aware mapping improvement: To fully exploit the PM scheme of the PE and 

decrease the requirement of PEs with DVS+ABB scheme, in each generation, a 

number of genomes (2% of the population) are picked randomly to be modified as 

follows. The PCPs of a task resulted from its possible mapping are examined. A task's 

mapping to a PE is PCP-aware if: (1) the PE has DVS scheme and the task has a high 

PCP value (3-4); or (2) the PE has ABB scheme and the task has a low PCP value (1-

2). The tasks whose mapping is not PCP-aware are randomly remapped to other PEs 

(if such PE exists) such that the PCP-aware principle is satisfied. Although some of 

the produced genome by the mutation might be infeasible in terms of timing 

behaviour, the mutation has been found to improve the optimisation procedure by 

introducing genes that are likely to evolve into high quality solutions. 

This mapping - scheduling - voltage scaling — evaluation and ranking -

evolvement procedure continues to optimise the mappings until reaching the 

termination criteria: no improved individual has been produced for a certain number 

of generations. In the final optimised mappings, it is possible that some tasks' 

mappings are not in accordance with the PCP. This is because the optimisation 

algorithm changes the initial mappings during the evolvement in order to meet timing 

feasibility, at the expense of increased energy dissipation. 

5.5.2 Methodology 2 - Concurrent PMS and Mapping Optimisation 

Methodology 1 is effective in finding the best PMS. However, it takes a long 

computational time due to its exhaustive search nature. The computational time will 

become unacceptable for systems containing a large number of PEs. To address this 

problem, methodology 2 is introduced next, which takes shorter computational time, 

while, at the same, doesn't lose quality of the produced solutions. 

Methodology 2 uses a genetic algorithm (GA) to optimise the PMS and mapping 

concurrently. To explain the basic idea, consider the genome representation shown in 

Figure 5.5, which encodes both a possible PMS and a mapping. It can be observed that 

this genome is divided into two sections. The PMS genes determine which PE has 

which PM scheme (0 - None; 1 - DVS; 2 - ABB; 3 — DVS+ABB), while the mapping 
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Figure 5.5: Concurrent PMS and mapping genome 
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Figure 5.6: Flow of methodology 2 - concurrent PSM and mapping optimisation 
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genes determine the mapping of tasks onto PEs (1 - PEl ; 2 - PE2; 3 - PES; ). The 

combined genome representation allows the concurrent optimisation of PMS and 

mapping. 

The flow of the methodology 2 is given in Figure 5.6, which is similar to the flow 

of PCP-aware mapping (inner loop of Figure 5.3), apart from several important 

differences, which are detailed next. 

• Initialise PMS & mapping population; the mapping section of the initial 

genomes are initialised in the same way as methodology 1 (Figure 5.4), 

while the PMS section of the initial genomes are created randomly (random 

in the sense that a random choice is taken among the valid possibilities). 

• Perform PMS & mapping: a PMS and mapping is generated for each 

genome in the population. 

• Perform scheduling & Perform voltage scaling: the execution order of 

tasks, as well as supply voltage and body bias voltage assignment, are 

decided in the same way as methodology 1. 

• Evaluation & ranking: the solution resulted from each genome is evaluated 

and ranked in temis of system cost and fitness, which is calculated using 

Equation 5.13. A solution a dominates a solution P, if one of the following 

conditions is met: 

o energy(a) < energy(P) AND cost(a) < cost(P); 

o energy(a) < energy(P) AND cost(a) < cost(P). 

Solutions are ranked according to their Pareto-rank, which is the number of 

other designs in the population, which does not dominate it [88]. For 

example, in Figure 5.7, each circle represents a solution. Each solution's cost 

and energy dissipation are indicated by the position of its circle in the graph. 

The number in each circle indicates the Pareto-rank of the associated 

solution. 
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Figure 5.7: Pareto-rank and Pareto-optimal solutions 

PMS & mapping population evolvement: the genomes with high Pareto-

rank are selected for mating and mutation. The produced offsprings are 

inserted into the population to replace the genome with low Pareto-rank. In 

order to improve the optimisation procedure, the PCP aware mapping 

improvement mutation introduced in Methodology 1 is also employed in 

Methodology 2. 

A record of Pareto-optimal solutions (Pareto set, i.e., designs which are not 

dominated by any other designs in the population) is kept during the optimisation. For 

example, in Figure 5.7, the circles with solid filling consist of the Pareto-optimal 

solutions. The Pareto set are updated after each evolvement, as shown in Figure 5.8. 

When a new solution a, which is not dominated by the ones already in the Pareto set, 

is produced in the evolvement, then (1) a is included in the Pareto set; (2) the 

solutions in Pareto set which are dominated by a are erased. The optimisation 

procedure continues until the termination condition is met; there has been no Pareto 

set update for a certain number of generations (10 is found to lead to good results). 

The evaluation and ranking strategy ensures that the designs are optimised towards 

timing feasibility and high energy saving at reduced system cost. At the end of the 
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optimisation, the Pareto set is presented to the designer to give a trade-off between 

energy saving and system cost. 

energy 

( 2 ) Pareto-optimal solution 

New solution a 

cost 

Figure 5.8: Update of Pareto-optimal solutions 

5.6 Experimental Results 

The proposed power-composition profile (PCP) driven co-synthesis methodologies 

have been implemented on a Pentium III 866/256MB PC running Linux (Appendix A). 

In order to evaluate its effectiveness in terms of achieving energy saving at reduced 

system cost, extensive experiments have been conducted using a number of synthetic 

examples and a real-life GSM voice CODEC example. The deadline of all the 

examples is 120% - 125% of the minimum delay. The technology dependent 

parameters of these PEs are considered to correspond to a 0.07f.im CMOS fabrication 

[115], where the PCPs of the tasks range from 1 to 4. The supply voltage of the DVS 

and body bias voltage of the ABB can be scaled continuously within 0.5 V - IV and 

-l.OV - OV respectively. To indicate the additional cost associated with a PE with 

power management scheme, it is assumed that PEs with DVS or ABB scheme impose 

a 10% system cost overhead compared to their non-DVS/non-ABB counterparts. 

Similarly, the hardware overhead for DVS+ABB PEs is set to 20%. Other overhead 

cost figures can be chosen without influencing the solution quality. The experiments 
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are carried out for methodology 1 (exhaustive design space search. Section 5.5.1) and 

methodology 2 (concurrent PMS and mapping optimisation, Section 5.5.2) 

respectively. 

Experimental results - methodology 1 

Two sets of experiments are used to demonstrate that the combination of DVS-

only and ABB-only PEs can achieve energy saving comparable to DVS+ABB PEs, 

but at a reduced system cost. The first set of experiments are conducted on 5 synthetic 

examples (tgl - tg5), which contain 25 - 69 nodes, 29 — 84 edges and 2 - 3 PEs; the 

second set of experiment is conducted on a GSM voice CODEC example. 

Using the proposed co-synthesis methodology 1 (Section 5.5.1), the results for a 

synthetic example tg3 (48 nodes, 60 edges, 3 PEs) are given in Figure 5.9, where the 

x-axis represents cost factor (relative to the architecture without power management 

scheme), the y-axis represents the energy dissipation (relative to the energy dissipation 

at nominal supply voltage and body bias voltage). Each numbered point represents a 

0.76 

0.74 4-

0.72 

f 07 
O 
"O 
0) 
« 0.68 
g 
2 0.66 

0.64 i-

0.62 

108 

X 
No. 1 

X 
No 2 

X No. 3 

O No. 4 

110 112 

^No 5 

XNo. 6 
XNo 
O No. 9 

114 116 118 

cost factor (%) 

X non-Pareto-optimal 

o Pareto-optimal 

No. 10 
O 

120 122 

Figure 5.9: Co-synthesis results for the tg3 example 
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solution, where a 'o ' represents a Pareto-optimal solution, and a 'x ' represent a non-

Pareto-optimal solution. For example, consider the solutions with cost factor of 110% 

(i.e., all PEs have DVS-only or ABB-only capability). Solutions 1 - 3 are dominated 

by solution 4. Similarly, solutions 5 - 6 are dominated by solution 7; solution 8 is 

dominated by solution 9. Solutions 4, 7, 9 and 10 are Pareto-optimal solutions. The 

proposed co-synthesis methodology discards the non-Pareto-optimal solutions and 

provides the Pareto-optimal solutions to the designer to give a trade-off between 

energy dissipation and system cost. 

Similarly, the co-synthesis methodology is applied to tgl, tg2, tg4 and tg5. The 

generated Pareto-optimal solutions are given in Table 5.2, where each row presents a 

Pareto-optimal solution. Columns 2 - 4 show the power management selection (i.e., 

the numbers of PEs with DVS capability, PEs with ABB capability, and PEs with 

DVS+ABB capability respectively). Employing the power management selection 

indicated in columns 2 - 4 , columns 5 and 6 give the corresponding cost factor 

(relative to the architecture without power management scheme) and energy 

dissipation (relative to the energy dissipation at nominal supply voltage and body bias 

voltage). As expected, for all the examples, using PEs with DVS+ABB capability 

achieves the best energy saving. However, by carefully selecting separate DVS or 

ABB capability for the PEs, comparable energy saving can be achieved with reduced 

system cost. Consider tg3, in the case when all the three PEs have DVS+ABB 

capability (1st row), the energy dissipation is 62.7%. The energy dissipation increases 

to 66.2%, when the three PEs have different voltage scaling capabilities (3rd row). 

This 3.5% of increase in energy dissipation has been achieved through the reduction 

of system cost from 120% to 113.3%. Furthermore, as it can be seen, the system cost 

can be reduced further t o l l 0% (4th row) at the expense of a slight increase in energy 

dissipation (0.9%). Similarly, the Pareto-optimal solutions for tgl, tg2, tg4 and tg5 

also provide trade-offs between energy dissipation and system cost. Based on these 

results, a designer can choose a suitable selection of voltage scaling capabilities for 

the PEs according to the design constraints of the application. The execution time of 

the examples ranges from 43 minutes (tgl) to up to 266 minutes (tg4) due to the 

exhaustive search nature as outlined in Section 5.5.1. 
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Pareto-optimal solutions 
Example Power management selection Cost factor Energy Computational 

DVS ABB DVS+ABB (%) (%) time (min) 

0 0 2 120 61.5 
tgl 1 0 1 115 64.3 43 

1 1 0 110 69.1 
0 0 3 120 63.3 

tg2 
0 1 2 116.7 63.5 92 tg2 
2 0 1 113.3 65.3 

92 

2 1 0 110 68.2 
0 0 3 120 62.7 

tg3 
0 1 2 116.7 65.4 135 tg3 
1 1 1 113.3 66.2 

135 

2 1 0 110 67.1 
0 0 3 120 65.0 

tg4 
1 0 2 116.7 66.1 266 tg4 
1 1 1 113.3 67.8 

266 

2 1 0 110 69.6 
0 0 3 120 62.1 

tg5 
1 0 2 116.7 65.4 153 tg5 
1 1 1 113.3 66.1 

153 

2 1 0 110 69.4 
Table 5.2: Pareto-optimal solutions of the synthetic examples - Methodology 1 

To further validate the proposed co-synthesis methodology 1, it has been applied 

to a real life GSM voice CODEC [2], This example has a task graph of 87 nodes and 

139 edges, and an architecture containing 3 PEs. Details of the example are given in 

Section 4.4.1 and Appendix B. Table 5.3 shows the Pareto-optimal solutions and some 

non-Pareto-optimal solutions generated using the co-synthesis methodology 1. As can 

be seen, the Pareto-optimal solutions provide a trade-off between energy dissipation 

and system cost. Using three PEs with DVS+ABB capability (1st row of Pareto-

optimal solutions), the system cost is 120% and the energy dissipation is 64.3%, while 

using three PEs with DVS capability (4th row of Pareto-optimal solutions), the system 

cost and energy dissipation are 110% and 71.3% respectively. This shows that, in 

some situations, comparable energy saving can be achieved without using PEs with 

DVS+ABB capability. However, a careful identification of voltage scaling capability 

should be proceeded to achieve the desired energy saving. For example, comparing 

the Pareto-optimal solutions and non-Pareto-optimal solutions with the system cost of 
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110%, the energy dissipation of using three PEs with ABB capability (3rd row ofnon-

Pareto-optimal solutions) is 78.3%, much higher than that of using three PEs with 

DVS capability (71.3%). For this example, DVS should be selected for the three PEs. 

This is because, according to the PCPs, most tasks in this example should preferably 

be mapped to PEs with DVS capability. 

Power management 
selection 

Cost 
factor (%) 

Energy 

(%) 

Computational 
time (min) 

DVS ABB DVS+ABB 

Cost 
factor (%) 

Energy 

(%) 

Computational 
time (min) 

Pareto-
optimal 

solutions 

0 0 3 120 64.3 
Pareto-
optimal 

solutions 

1 0 2 116.7 67.1 
Pareto-
optimal 

solutions 1 1 1 113.3 68.2 

Pareto-
optimal 

solutions 
3 0 0 110 71.3 429 

Non-Pareto- 2 1 0 110 73.9 
optimal 1 2 0 110 75.9 

solutions 0 3 0 110 78.3 
Table 5.3: Co-synthesis results of the CODEC exam pie - met hodology 1 

Experimental results - methodology 2 

Two sets of experiments are conducted to validate the proposed co-synthesis 

methodology 2 (Section 5.5.2). Firstly, to show the efficiency of the proposed co-

synthesis methodology 2 (concurrent PMS and mapping optimisation) for the power 

management selection, a comparison is made between the solutions generated by 

methodology 2 and methodology 1 (exhaustive design space search of all possible 

power management selection, Section 5.5.1). Figure 5.10 (a) - (f) shows the Pareto-

optimal solutions for examples tgl - tg5, GSM voice CODEC respectively, using 

methodology 1 and methodology 2. As it can be seen, the Pareto-solutions generated 

by the two methodologies are almost the same. However, methodology 2 requires 

significantly less computational time than methodology 1. Methodology 2 requires 22, 

37, 115, 127, 72 and 254 minutes to generate the Pareto-optimal solutions for tgl -

tg5, and the GSM voice CODEC example respectively, while methodology 1 requires 

43, 92, 135, 266, 153 and 429 respectively (Table 5.2 and Table 5.3). Note that the 

comparison between methodology 1 and methodology 2 is not given for examples 
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with more PEs, since the increased number of PEs caused unacceptable computational 

time using the methodology 1. 
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(e) tg5 (59 tasks, 3 PEs) (f) GSM voice CODEC (87 tasks, 3 PEs) 

Figure 5.10: Comparison beh^een methodology 1 and methodology 2 

In order to show the trade-off between system cost and energy dissipation for 

systems with more PEs, experiments are carried out on 3 groups (group 1 - 3) of 

synthetic examples using methodology 2. Each group contains 5 examples, which 

have the same number of tasks and PEs, but different task execution properties. Figure 

5.11 (a) - (c) shows the produced Pareto-optimal solutions for groups 1 - 3 , where the 

x-axis represents cost factor (relative to the an architecture without power 

management scheme), the y-axis represents the average energy dissipation of the 

examples within the group (relative to the energy dissipation at nominal supply 

voltage and body bias voltage). It can be seen that the Pareto-optimal solutions for 

each group give a trade-off between energy dissipation and system cost. As expected, 

for all the examples, equipping all PEs with DVS+ABB scheme achieves the best 

energy saving (rightmost point). However, by carefully selecting separate DVS or 

ABB capability for the PEs, comparable energy saving can be achieved with reduced 

system cost. Consider example group 1, in the case when all the 5 PEs have 

DVS+ABB scheme, the energy dissipation is 58.4%. The energy dissipation is 

increased to 61.0%, when only 2 PEs have DVS+ABB scheme. This 2.6% of increase 

in energy has been achieved through the reduction of system cost from 120% to 114%. 

The system cost can be reduced further to 110% at the expense of a slight increase in 
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energy (4.3%). The average computational times of the examples in group 1, 2 and 3 

are 158, 202 and 259 minutes respectively, while methodology 1 failed to produce a 

Pareto-optimal solutions for any example in group 1 within 10 hours. 

cost factor (%) 

(a) group 1 (38 tasks, 5 PEs) 

cost factor (%) 

(b) group 2 (46 tasks, 7 PEs) 
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65 

64 
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116 117 118 119 

(c) group 3 (69 tasks, 9 PEs) 

Figure 5.11: Pareto-opdmal solutions - Methodology 2 

5.7 Concluding Remarks 

A new co-synthesis technique aware of the tasks' power-composition profile is 

presented for dynamic and leakage energy reduction. The presented techniques 

perform power management selection during the co-synthesis, thus optimise designs 

not only towards energy reduction but additionally towards system cost reduction. 

Two co-synthesis methodologies are presented: methodology 1 performs an 

exhaustive design space search to identify the optimal power management selection; 

methodology 2 employs a genetic algorithm to optimise the power management 

selection and task mapping concurrently, leading to shorter computational time 

compared with methodology 1. The methodologies have been validated using 

extensive experiments including a real-life GSM voice CODEC example. These 

experiments have demonstrated that, depending on the power-composition profiles, it 

is possible to achieve significant energy reduction without the employment of PEs 

with DVS+ABB scheme, i.e., reduced system cost. The presented co-synthesis 

methodology is most suitable for designs where the designer has the flexibility to 

decide which processing element should be equipped with either DVS, ABB, or 

DVS+ABB scheme. 
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Conclusion 

According to ITRS'2003 [146] the request for embedded computing systems with low 

power consumption, as well as their complexity, will continue to increase. 

Computation intensive applications such as multimedia with enhanced audio and 

video coding and decoding techniques are needed in hand-held devices. Designing 

energy-efficient embedded computing systems for such applications is a challenging 

and difficult task. This is because the limited energy resource available and the 

increased functionality requirement. Furthermore, short design cycle and low cost 

constraint are essential for the success of these products. The work presented in this 

thesis has focused on minimising power consumption (dynamic and leakage) of 

embedded systems at system level of the design flow. To achieve energy-efficient 

designs, three novel co-synthesis techniques capable of reducing dynamic and leakage 

power have been developed to support the design of such embedded systems. In 

particular three key issues have been addressed: 

(1) Dynamic voltage scaling (DVS) was investigated in the context of data and 

control dominated embedded systems. For this purpose, a new conditional 

behaviour aware DVS technique has been proposed. A new mapping 

technique has also been developed specifically for an effective utilisation of 

the conditional behaviour aware DVS, by increasing available slack time. 

(2) Impact of communication on the co-synthesis was investigated. A 

communication-integrated co-synthesis technique has been presented to 

perform mapping, scheduling and dynamic voltage scaling for embedded 

systems taking into account the energy and time cost of communications. 

(3) A new power-composition profile (PCP) aware co-synthesis technique 

capable of reducing both dynamic power and leakage power was proposed. 

The PCP aware co-synthesis enables an efficient power management scheme 

140 
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selection so that significant energy saving can be achieved without extra 

system cost. 

The following Section 6.1 summarise the main contributions made by the presented 

work, and Section 6.2 outlines some relevant areas for future research. 

6.1 Summary and Research Contributions 

Energy management techniques including dynamic voltage scaling (DVS) and 

adaptive body biasing (ABB), which are capable of trading off energy against 

performance at run-time by means of changing the processing element's (PE) 

operational state in terms of supply voltage (DVS) or threshold voltage (ABB), as well 

as clock frequency, have recently become viable in practice. The work presented in 

this thesis has focused on the energy minimisation of distributed embedded systems 

that contains PEs with DVS and/or ABB capabilities. 

Chapter 3 has introduced a new conditional behaviour aware DVS technique for 

data and control dominated embedded systems expressed as conditional task graphs 

(CTGs). This technique exploits system slack time taking into account the conditional 

behaviour of the application, in order to reduce the system energy dissipation. The 

proposed DVS technique starts with a more conservative scaling factor at the 

beginning of the scheduling process, and incrementally modifies the scaling factor 

when more slack time is identified, thus achieves the highest possible energy saving 

and at the same time guarantees the timing feasibility for all possible condition values. 

To further reduce the energy dissipation of data and control flow dominated embedded 

systems, a mapping technique has been developed specifically to effectively exploit 

the energy reduction capability of the proposed conditional behaviour aware DVS 

technique. This is achieved through a mapping optimisation based on a genetic 

algorithm, which carefully balances the design between energy minimisation and 

timing feasibility. The mapping optimisation is guided by an energy estimation based 

on the proposed DVS technique. Extensive experiments have been conducted 

including a real-life example of a vehicle cruise controller. These experiments have 
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shown that up to 35% energy saving can be achieved by using the proposed 

conditional behaviour aware DVS technique. Performing the proposed mapping 

optimisation reduces the energy dissipation further. The experimental results also 

shows that the proposed mapping optimisation achieves significantly better energy 

saving, compared to a previously reported mapping algorithm, and this energy saving 

can be achieved within a reasonable amount of computational time. 

In Chapter 4, the capability of the co-synthesis technique proposed in Chapter 3 

has been extended, in order to address the impact of the communications on embedded 

systems design. The concept of enhanced system model, which captures the time and 

energy cost of the communications, has been introduced for this purpose. In the 

extended co-synthesis technique, task mapping and communication mapping have 

been decoupled to avoid infeasible mappings. As a result, the search space of task 

mapping is restricted to feasible mapping solutions only, reducing the computational 

time while maintaining the full possible optimisation potential. Furthermore, the 

conditional behaviour aware DVS technique of Chapter 3 has been extended to 

address the enhanced system model with no penalty in the utilisation of slack time. 

Extensive experiments have been conducted including a real-life GSM voice CODEC 

example. These experiments have shown that the extended co-synthesis technique can 

achieve significant energy reduction after considering the impact of communication. It 

is also shown that an appropriate selection of communication architecture is essential 

in order to achieve energy efficiency. 

Chapters 3 and 4 have focused on the reduction of dynamic power, which has 

traditionally been the primary source of power consumption for > 0.1 |im CMOS 

technology. Chapter 5 considers the trend of increasing leakage power in deep sub-

micron technology, which justifies the employment of adaptive body biasing (ABB) to 

reduce leakage power. A new co-synthesis technique has been introduced in Chapter 5 

employing DVS and ABB to reduce the dynamic power as well as leakage power. A 

key feature of the proposed co-synthesis technique is its awareness of the tasks' power 

composition profile (PCP). By taking advantage of the PCP information, the proposed 

co-synthesis technique performs a power management selection (PMS) for the PEs, 
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i.e., it decides upon which PE to be equipped with which power management scheme 

(DVS, ABB, or combined DVS and ABB). As a result, the design is optimised not 

only towards energy saving but also towards system cost reduction. In addition, the 

proposed co-synthesis performs mapping, scheduling and voltage scaling (DVS and/or 

ABB). Two methodologies have been developed. Methodology 1 performs an 

exhaustive design space search to identify the optimal power management selection. 

Methodology 2 employs a genetic algorithm to optimise the power management 

selection and task mapping concurrently, leading to shorter computational time 

compared with methodology 1. A new improvement strategy has been developed to 

aid the genetic algorithm evolvement by carefully pushing the optimisation into 

promising search space. The proposed PCP aware co-synthesis technique has been 

validated using a large number of experiments, which show that, depending on the 

PCP, it is possible to achieve significant energy reduction without the employment of 

PEs with combined DVS and ABB capability, i.e., reduced system cost. The presented 

approach is most suitable for system-on-chip (SoC) designs where the designer has the 

flexibility to decide which processing element should be equipped with either DVS, 

ABB, or combined DVS and ABB capability. 

In conclusion, the main aim of this thesis was the development of co-synthesis 

techniques for energy-efficient distributed embedded system. A detailed investigation 

into the co-synthesis of data and control dominated embedded systems has shown that 

significant energy reduction can be achieved through dynamic voltage scaling taking 

into account of the conditional behaviour of the application, as well as through an 

appropriate mapping of the application onto the target architecture. Furthermore, it 

was shown that the consideration of communication and a suitable selection of 

communication architecture during the co-synthesis are essential for energy-efficient 

designs. Finally, considering the trend of increasing leakage power in deep sub-

micron technology, it was shown that the power composition profile aware co-

synthesis enables an efficient power management scheme selection so that significant 

dynamic and leakage energy reduction can be achieved without extra system cost. In 

essence, system-level co-synthesis techniques that consider energy management, as 
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presented in this thesis, should be given serious consideration when designing low 

power embedded computing systems. 

6.2 Future Research Directions 

During the course of this work, a number of relevant challenging research topics have 

been identified. In the following a short introduction of two interesting topics for 

future research is given. 

6.2.1 Online Voltage Scheduling of CTG 

The conditional behaviour aware dynamic voltage scaling (DVS) technique presented 

in this work (Chapter 3) produces a schedule table for conditional task graphs (CTGs). 

The DVS technique is offline, i.e., the voltage settings are calculated before 

application run-time, assuming that the actual execution time (AET) of a task under 

nominal supply voltage always equals a given worst case execution time (WCET). 

However, depending on the input data, the AET of a task is usually shorter than the 

WCET. The difference between WCET and AET results in slack time that can be 

exploited by DVS. Because the amount of the extra slack time is unknown until run-

time, offline DVS is incapable of predicting and utilising the extra slack time. It would 

be interesting to develop an online DVS, which identifies the extra slack time and 

accordingly re-calculates the voltage settings at the run-time of applications, aiming to 

further energy reduction. Since the online DVS is performed at run-time, its algorithm 

complexity should be low enough to avoid unacceptable time overhead. The benefit of 

online DVS has been illustrated by the recent work [147]. Useful work need to be 

conducted further to exploit the online slack time with low time overhead. 

6.2.2 Co-Synthesis of Network-on-Chip 

The importance of communication in embedded system design has been shown in 

Chapter 4. A key element in system-on-chip (SoC) design is the on-chip 

communication that interconnects the SoC cores. SoCs complexity is increasing with 
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the continuing scaling down of CMOS technology. According to ITRS'2003, an 

average SoC will contain more than 50 cores in 2008 and 100 cores in 2012. One 

promising solution to providing scalable, energy-efficient and reliable communication 

for such SoCs is a new interconnection design methodology - Network-on-Chip 

(NoC). The NoC model, which is drawn from knowledge developed by the 

networking and parallel computing communities, is to view the SoC as a micro-

network of components. In NoCs, cores communicate with each other by sending 

packets over the network. This facilitates modular and structured design with 

increased bandwidth. 

NoCs differ from wide-area network because they have less area resources but 

more wire resources, and because they are more application-specific and less non-

deterministic. The design experience in wide-area networks does not necessarily apply 

to NoCs. New co-synthesis techniques are needed to determine the network 

architecture, the flow control and the message routing algorithm for NoC-based 

designs. Another distinctive characteristic of NoCs is the energy constraint. Whereas 

computation and storage energy greatly benefits from device scaling, the global 

communication in SoCs will consume increasingly higher energy. Hence, 

communication energy minimisation is a necessary concern in NoC design. Work is 

needed to be done in all layers of the communication protocol stacks (physical layer, 

data link layer, network layer, transport layer, and application layer) to achieve a 

balanced trade-off between communication energy and network performance. Also, 

the trend of lower supply voltage, increased interconnect density and faster clock rates 

exposes on-chip communication to increased transient failures caused by capacitive 

and inductive crosstalk, power supply noise, etc. Traditional fault tolerant algorithms 

for wide-area networks are infeasible in the NoC domain due to the limited on chip 

area resource. New techniques must be developed if fault tolerant NoCs are to become 

possible. The fault tolerant algorithms for NoCs must take the energy constraint into 

account. 
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Simulation Set-up 

This appendix describes the simulation set-up used to generate the experimental 

results in Chapters 3, 4 and 5. The appendix is organised as follows. Section A.l 

briefly introduces the development environment of the simulation tools. Sections A.2 

and A.3 introduce the implementation of graph and genetic algorithm respectively. 

Details of the simulation flow are illustrated in Section A.4. Section A.5 explains the 

organisation of the input files to the simulation flow. 

A.l Development Environment 

The simulation tool for the experiments of this work has been developed using the 

C++ programming language in a Pentium/Linux PC. The development flow is 

illustrated in Figure A.l, where the input to the GCC C++ compiler is user C++ code 

(source code), and the output is simulation tool (executable code). Three C++ libraries 

are employed in the development flow, besides the GNU Standard C++ Library 

provided by the C++ compiler, the other two libraries are LEDA and GAlib, which are 

for the implementation of graph and genetic algorithm respectively, as introduced next. 

LEDA 
GAlib 

User C++ code GCC C++ compiler 

GNU 
Standard 

C++ Library 

Simulation tool 

Figure A.l: Simulation tool development flow 

146 



Appendix A Simulation Set-up 147 

A.2 Implementation of Graph 

Since the system specification of this work is task graph and conditional task graph, 

the implementation of graph abstraction and graph algorithm is an important element 

influencing the efficiency of the simulation tool. In this work, task graph and 

conditional task graph have been implemented using the data types graph and GRAPH 

provided by LEDA [148]. LEDA is a C++ library containing efficient 

implementations of all graph data types and algorithms, as well as many abstract data 

types (e.g., sets, queues, lists). An instance G of the data type graph consists of a list V 

of the nodes and a list E of edges. Two lists of edges are associated with every node v: 

out_edges{v) = {e e E \ v=source(e)}, i.e., the list of edges starting from v, and 

in_edges{v) = {e e E \ v=target(e)}, i.e., the list of edges ending in v. While an 

instance G of the data type GRAPH (parameterised graph) is a graph whose nodes and 

edges contain additional data. Every node contains an element of a data type vtype, 

and every edge contains an element of a data type etype. Data types vtype and etype 

are defined by user to store information associated with individual nodes and edges. 

For example, in this work, the data type vtype contains the node id number, node type 

(disjunction node, conjunction node, or normal node), and the data type etype contains 

the edge id number, edge type (conditional edge or normal edge), conditional value, 

etc. Figure A.2 illustrates the implementation of a task graph. Note the in_edges{ni) is 

empty because nj is the source node. Programming with LEDA has dramatically 

decreased development time. 

node list V 

edge list E 

« / 

Figure A.2: Implementation of task graph 
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A.3 Implementation of Genetic Algorithm 

The implementation of genetic algorithm (Chapter 3, Section 3.1.3) is another 

important factor in the efficiency of the simulation tool, which is carried out using 

GAlib [149]. GAlib is a C++ library of genetic algorithm components. It contains a set 

of C++ genetic algorithm objects and includes tools for using genetic algorithm to do 

optimisation. The applying of GAlib mainly involves two classes: a genome and a 

genetic algorithm. Each genome instance represents a single solution to a specific 

problem. The genetic algorithm instance uses a user-defined objective function to 

determine the quality of each genome. It uses the genome operators (mutation and 

crossover) to generate new individuals. There are three steps need to be done to solve 

an optimisation problem using GAlib: (1) to define a representation for the problem 

solution (e.g., Chapter 3, Figure 3.17); (2) to define the genetic operator (e.g.. Chapter 

5.5, Section 5.5.1); (3) to define the objective functions (e.g.. Chapter 3, Equation 

3.11). GAlib provides many built-in representations and genetic operators, which, in 

many cases, can be used with little or no modification. Appropriate representation, 

genetic algorithm type, genetic operators, as well as the parameters which decide how 

genetic algorithm behaves, are quite important for achieving an efficient genetic 

algorithm, which are described as follows. For the representation used in this work, 

the reader is referred to Chapter 3, Section 3.4 and Chapter 5, section 5.5.2. The 

genetic algorithm employed in this work is of steady state type, i.e., not all of the 

individuals in the solution pool are replaced by the new individuals. The generation 

gap is set to 70%. The crossover is carried out by a random two-point crossover. The 

genetic algorithm parameters are set as follows: the population size is 25, the 

crossover probability is 0.7, and the mutation probability is 0.03. Experimental results 

of Chapters 3, 4 and 5 have proved the efficiency of these parameters for the specific 

problems of this work. 
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A.4 Simulation Flow 

This section describes the simulation flow employed in the DVS-based co-synthesis 

(Chapters 3 and 4), and the concurrent power management selection (PMS) and 

mapping optimisation (Chapter 5). 

DVS-Based Co-Synthesis 

Using the development environment illustrated in Figure A.l, a simulation tool 

has been developed to produce the experimental results of Chapters 3 and 4. The flow 

of the simulation tool is given in Figure A.3. As it can be seen, the input to the 

simulation tool is three files (Section A.5): 

(1) a graph file that gives a description of the conditional task graph; 

(2) an architecture file that describes the number and type of processing 

elements (PEs) in the architecture, as well as the communication links (CLs) 

interconnecting the PEs; 

(3) a technology library file which gives the parameters of the PEs and CLs, and 

the execution properties of the tasks. 

The output is three files giving the co-synthesis solution: a mapping file, a schedule 

table file, and a statistics file which includes the information of the solution (e.g., 

energy dissipation of the application before and after applying DVS, energy reduction 

achieved by applying DVS). As shown in Figure A. 3, the simulation tool consists of 

four processing objects (solid fill) and seven data objects (no fill), which are listed in 

Table A.l. Firstly, the simulation tool reads the three input files and initiates objects 

GRAPH, ARCHI and LIBRARY. Secondly, based on the information provided by 

objects GRAPH, ARCHI and LIBRARY, object GA MAP performs mapping 

optimisation based on a genetic algorithm. For each mapping candidate produced in 

the process of mapping optimisation, object GA MAP calls object SCHEDULE to 

perform communication mapping and activity scheduling, and calls object DVS to 

perform voltage scaling, the produced co-synthesis solution are stored into objects 
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Figure A.3: Simulation flow of DVS-based co-synthesis 
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dissipation. Object GA MAP continues the mapping optimisation until a termination 

condition is met. Finally, the co-synthesis solution and its statistics are written into the 

output files. For details of the algorithm used in objects GA MAP, SCHEDULE, 

DVS and EVALUATE, the reader is referred to Chapter 3, Sections 3.3 and 3.4, and 

Chapter 4, Section 4.3. The termination condition of object GA MAP is; the 

improvement achieved over ten continuous iterations is no more than 1%. The 

selection of parameters used in object GA MAP has a significant impact on the 

optimisation efficiency, which has been given in Section A.3. 

Object Description 
GRAPH nodes, edges and conditional behaviour of the conditional task graph 

ARCHI 
number and type of the PEs and CLs, and the interconnection 

topology 
LIBRARY parameters of the PEs, CLs, tasks and communications 

GA_MAP 
for a given simulation input (input files), performing genetic 

algorithm based task mapping 

SCHEDULE 
for a given simulation input and a task mapping, performing 

communication mapping & activity scheduling, produce a schedule 
table 

DVS 
for a given simulation input and a schedule table, applying DVS to 

the schedule table 
MAPPING mapping of tasks to PEs, and mapping of communications to CLs 

SCHTABLE schedule table (Chapter 3, Section 3.1.2) before applying DVS 
DVS TABLE schedule table after applying DVS 
EVALUATE evaluate the co-synthesis solution in terms of area, timing and energy 
STATISTICS information concerning the quality of the co-synthesis solution 

Table A.l: Description of the objects within the simulation tool 

Concurrent PMS and Task Optimisation 

The simulation flow employed in the concurrent power management selection 

(PMS) and mapping optimisation is similar to Figure A,3, apart from some details due 

to the consideration of leakage power and PMS, which are given next. 

• Object LIBRARY includes additional information concerning leakage power. 

• Object LIBRARY does not specify the power management scheme of the 

PEs, which is to be decided by object GA MAP. 

• Object GA MAP performs concurrent PMS and task mapping optimisation. 
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• Object DVS scales supply voltage and body bias voltage simultaneously to 

reduce both dynamic power and leakage power. 

• Object EVALUATE evaluates the co-synthesis solutions according to their 

Pareto-rank (Chapter 5, Figure 5.7). 

• The termination condition of object GA MAP is; there has been no Pareto 

set update for 10 iterations. 

For details of the algorithms used in the concurrent PMS and mapping optimisation, 

the reader is referred to Chapter 5, Section 5.5.2. 

A.5 Input Files 

This section explained the organisation of the three input files to the simulation flow: 

graph file, architecture file and technology file. Figure A.4 shows parts of an example 

graph file, where part 1 lists the nodes of the tasks, part 2 describes the edges between 

the nodes, part 3 lists the conjunction nodes of the conditional task graph, and part 4 

describes the conditional value of the edges. For example, the conditional task graph 

described in Figure A.4 has 35 nodes and 41 edges where edge 0 starts from node 0 

and ends at node 1. There are two conjunction nodes: nodes 6 and 12. Edges 4, 5, 17, 

18 are conditional edges, which are associated with condition value 2, -2, 1, -1 

respectively. 

//part 1: nodes of the graph 
(NODES NODEO) 
(NODES NODEl) 

(NODES NODES3) 
(NODES N0DE34) 

//part 2: edges of the graph 
(EDGES EDGED (Connect NODEO NODEl)) 
(EDGES EDGEl (Connect NODES NODES)) 

(EDGES EDGE39 (Connect NODESl MODE33)) 
(EDGES EDGE40 (Connect NODESS N0DES4)) 

//part S: conjunction nodes 
(JOINNODE NODES N0DE12) 
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//part 4: conditional value of the edges 
(CONDITION 2 EDGE4) 

(CONDITION -2 EDGES) 
(CONDITION 1 EDGE17) 
(CONDITION - 1 EDGE18) 

Figure A.4: File description of a conditional task graph 

Figure A. 5 shows an example architecture file, where part 1 and 2 respectively 

list the PEs and CLs in the architecture and their type, part 3 gives the interconnection 

topology. For example, the architecture described in Figure A.5 contains three PEs: 

PEO of type 0, PEl of type 0 and PE2 of type 1. There are two CLs, CLO and CLl, 

which are of type 0 and type 1 respectively. The "conn" property of CLO is 

7=2^^+2'+2^, which means CLO links PEO, PEl and PE2, while the "conn" property of 

CLl is 6= 2^+2^, which means CLl links PEl and PE2. 

//part 1: PEs in the architecture 
{PE_A1,L0 
(PE 0 type 0) 
(PE 1 type 0) 
(PE 2 type 1) 

} 

//part 2: CLs in the architecture 
{LINK_ALL0 
(CL 0 type 0) 
(CL 1 type 1) 

} 

//part 3: interconnection topology 
{LINK_C0NN 
(CL 0 conn 7) 
(CL 1 conn 6) 

} 

Figure A.5: File description of an architecture 

Figure A.6 shows an example technology library file, where part 1 gives the 

parameters of the PEs and tasks, part 2 gives the parameters of the links, and part 3 

gives the data amount of the communication on the edges. A brief description of all 

parameters is given in Table A.2. The technology file shown in Figure A.6 is for the 

concurrent PMS and mapping optimisation (Chapter 5). The technology file for the 
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DVS-based co-synthesis (Chapters 3 and 4) is very similar, except that there is no 

parameter concerning the leakage power and ABB. 

Parameter Description 
pe type the type of the PE 

dvs whether the PE is DVS-enabled 
abb whether the PE is ABB-enabled 

&eq (PE) the nominal frequency of the PE 
vmax the nominal supply voltage 
vmin the minimum supply voltage 

vbsmax the nominal body bias voltage 
vbsmin the minimum body bias voltage 

k l , k2, k3, k4, k5, vthl, ceff, Ig technology constants (Chapter 5, Sections.2) 
execyc cycle number needed for execution 
dynpwr dynamic power 
leakpwr leakage power 

stpwr (CL) static power of CL 
freq (CL) frequency of CL 

dynpwr (CL) dynamic power of CL 
amount data amount of communication 

Table A.2: Parameter description of the technology library file 

//part 1: parameters of PEs and tasks 
{PE 0 
{pe_type GPP)(dvs 1)(abb 1) 
(freq 4.21e+09)(vmax 1)(vmin 0.5)(vbsmin -1) 
( k l 0 . 0 6 3 ) ( k 2 0 . 1 5 3 ) ( k 3 1 . 8 7 4 0 7 e - 0 7 ) ( k 4 1 . 8 3 ) ( k 5 4 . 1 9 ) 
(vthl 0.244) (ceff l.lle-09) (Ig 4e + 06) (vbsmax 0) 
(task 0)(execyc 1.22e08)(dynpwr 12.46)(leakpwr 4.67) 
(task 1)(execyc 7.998e07)(dynpwr 7.78)(leakpwr 4.67) 

(task 33)(execyc 1.85e08)(dynpwr 4.67)(leakpwr 4.67) 
(task 34)(execyc 1.51e08)(dynpwr 4.67)(leakpwr 4.67) 

//part 2: parameters of CLs 
{CL 0 
(stpwr 0)(freq 3e09)(dynpwr 1) 
} 

//part 3: communication amount 
{COM_AMOUNT 
(com 0)(amount 12) 
(com 1)(amount 10 0) 

(com 39)(amount 6) 
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(com 40)(amount 30) 
} 

Figure A.6: File description of an technology libraiy 



Appendix B 

GSM Voice CODEC Benchmark 

A GSM voice CODEC example [2, 143] was used in the experiments of Chapter 4 and 

Chapter 5. This appendix details the system specification of the GSM voice CODEC 

example. 

B.1 Conditional Task Graph of the GSM Voice CODEC 

GSM voice CODEC is a speech compression/decompression algorithm used in Global 

System for Mobile Telecommunication (GSM). GSM voice CODEC consists of two 

parts: encoder and decoder. The task graphs of the encoder and decoder [2] have been 

derived from the source code of the CODEC [143] (Figure 4.16 and Figure 4.17). The 

task graphs of encoder and decoder are combined to form a conditional task graph 

(CTG). The following listing describes the conditional task graph of the GSM voice 

CODEC, which is used as the input to the experiments of Chapter 4 and Chapter 5. In 

the listing, PRs 1-53 correspond to the tasks 0-52 in the task graph of Figure 4.16, PRs 

54-87 correspond to the tasks 0-33 in the task graph of Figure 4.17. 

// CTG file for GSM voice CODEC 

//part 1: nodes 
//encoder tasks 

(PROCESS PRl) 
(PROCESS PR2) 
(PROCESS PRS) 
(PROCESS PR4) 
(PROCESS PRS) 
(PROCESS PR6) 
(PROCESS PR7) 
(PROCESS PRS) 
(PROCESS PR9) 
(PROCESS PRIO) 
(PROCESS PRll) 

156 
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(PROCESS PR12) 
(PROCESS PR13) 
(PROCESS PR14) 
(PROCESS PR15) 
(PROCESS PR16) 
(PROCESS PR17) 
(PROCESS PR18) 
(PROCESS PR19) 
(PROCESS PR2 0) 
(PROCESS PR21) 
(PROCESS PR22) 
(PROCESS PR23) 
(PROCESS PR24) 
(PROCESS PR2 5) 
(PROCESS PR26) 
(PROCESS PR27) 
(PROCESS PR2 8) 
(PROCESS PR29) 
(PROCESS PR3 0) 
(PROCESS PR31) 
(PROCESS PR32) 
(PROCESS PR3 3) 
(PROCESS PR34) 
(PROCESS PR35) 
(PROCESS PR36) 
(PROCESS PR3 7) 
(PROCESS PR38) 
(PROCESS PR3 9) 
(PROCESS PR4 0) 
(PROCESS PR41) 
(PROCESS PR42) 
(PROCESS PR4 3) 
(PROCESS PR44) 
(PROCESS PR45) 
(PROCESS PR4 6) 
(PROCESS PR47) 
(PROCESS PR4 8) 
(PROCESS PR4 9) 
(PROCESS PR50) 
(PROCESS PR51) 
(PROCESS PR52) 
(PROCESS PR53) 

//decoder tasks 
(PROCESS PR54) 
(PROCESS PR55) 
(PROCESS PR56) 
(PROCESS PR57) 
(PROCESS PR58) 
(PROCESS PR5 9) 
(PROCESS PR60) 
(PROCESS PR61) 
(PROCESS PR62) 
(PROCESS PR63) 
(PROCESS PR64) 
(PROCESS PR65) 
(PROCESS PR66) 
(PROCESS PR67) 
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(PROCESS PR68) 
(PROCESS PR69) 
(PROCESS PR7 0) 
(PROCESS PR71) 
(PROCESS PR72) 
(PROCESS PR73) 
(PROCESS PR74) 
(PROCESS PR75) 
(PROCESS PR76) 
(PROCESS PR77) 
(PROCESS PR78) 
(PROCESS PR7 9) 
(PROCESS PR80) 
(PROCESS PR81) 
(PROCESS PR82) 
(PROCESS PR83) 
(PROCESS PR84) 
(PROCESS PR85) 
(PROCESS PR86) 
(PROCESS PR87) 

//part 1: edges 
//encoder communications 

(ARCS ARCl (Connect PRl PR2 ) 
(ARCS ARC2 (Connect PRl PR 8 ) 
(ARCS ARC 3 (Connect PRl PRll ) 
(ARCS ARC4 (Connect PRl PR14 ) 
(ARCS ARC 5 (Connect PRl PR17 ) 
(ARCS ARC 6 (Connect PRl PRIO ) 
(ARCS ARC 7 (Connect PRl PR13 ) 
(ARCS ARCS (Connect PRl PR16 ) 
(ARCS ARC 9 (Connect PRl PR19 ) 
(ARCS ARCIO (Connect PR2 PR3 ) 
(ARCS A R C H (Connect PR2 PRIO ) 
(ARCS ARC 12 (Connect PR2 PR21 ) 
(ARCS ARC 13 (Connect PR2 PR53 ) 
(ARCS ARC14 (Connect PR3 PR4 ) 
(ARCS ARC 15 (Connect PR4 PR5 ) 
(ARCS ARC 16 (Connect PR5 PR6 ) 
(ARCS ARCl 7 (Connect PR6 PR7 ) 
(ARCS ARC 18 (Connect PR7 PR8 ) 
(ARCS ARC19 (Connect PR7 PRll ) 
(ARCS ARC2 0 (Connect PR7 PR14 ) 
(ARCS ARC21 (Connect PR7 PR17 ) 
(ARCS ARC22 (Connect PR 8 PR9 ) 
(ARCS ARC23 (Connect PR9 PRIO ) 
(ARCS ARC24 (Connect PRIO PR13 
(ARCS ARC25 (Connect PRIO PR2 0 
(ARCS ARC26 (Connect PRll PR12 
(ARCS ARC27 (Connect PR12 PR13 
(ARCS ARC28 (Connect PR13 PR16 
(ARCS ARC29 (Connect PR13 PR2 0 
(ARCS ARC30 (Connect PR14 PR15 
(ARCS ARC31 (Connect PR15 PR16 
(ARCS ARC32 (Connect PR16 PR19 
(ARCS ARC3 3 (Connect PR16 PR20 
(ARCS ARC34 (Connect PR17 pRia 
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(ARCS ARC35 (Connect PR18 PR19 
(ARCS AaC36 (Connect PR19 PR20 
(ARCS ARC 3 7 (Connect PR19 PR53 
(ARCS ARC38 (Connect PR2 0 PR21 
(ARCS ARC39 (Connect PR20 PR29 
(ARCS ARC4 0 (Connect PR2 0 PR37 
(ARCS ARC41 (Connect PR20 PR45 
(ARCS ARC42 (Connect PR21 PR22 
(ARCS ARC 4 3 (Connect PR2 2 PR23 
(ARCS ARC4 4 (Connect PR22 PR28 
(A&CS ARC45 (Connect PR2 3 PR24 
(ARCS ARC46 (Connect PR24 PR2 5 
(ARCS ARC4 7 (Connect PR24 PR2 7 
(ARCS ARC48 (Connect PR2S PR2 6 
(ARCS ARC4 9 (Connect PR26 PR27 
(ARCS ARC50 (Connect PR2 7 PR28 
(ARCS ARC 51 (Connect PR28 PR2 9 
(ARCS ARC52 (Connect PR29 PR30 
(ARCS ARCS 3 (Connect PR3 0 PR31 
(ARCS ARCS 4 (Connect PR30 PR36 
(ARCS ARCSS (Connect PR31 PR32 
(ARCS ARC56 (Connect PR32 PR33 
(ARCS ARCS 7 (Connect PR32 PR3S 

(aacs ARC58 (Connect PR3 3 PR34 
(ARCS ARC59 (Connect PR34 PR3S 
(Aacs ARC 6 0 (Connect PR3 5 PR3 6 
(ARCS ARC61 (Connect PR3 6 PR3 7 
(Aacs ARC62 (Connect PR37 PR38 
(ARCS ARC 6 3 (Connect PR3 8 PR3 9 

(aacs ARC 6 4 (Connect PR3 8 PR4 4 
(A&CS ARC65 (Connect PR39 PR40 
(aacs ARC66 (Connect PR40 PR41 
(ARCS ARCS 7 (Connect PR4 0 PR4 3 
(ARCS ARC 6 8 (Connect PR41 PR42 
(ARCS ARC 6 9 (Connect PR42 PR43 
(ARCS ARC70 (Connect PR43 PR44 
^a:cs ARC 71 (Connect PR44 PR4S 
(ARCS ARC 7 2 (Connect PR4 5 PR46 
(ARCS ARC 7 3 (Connect PR46 PR47 
(ARCS ARC74 (Connect PR46 PR52 
(ARCS ARC 7 5 (Connect PR4 7 PR4 8 
(ARCS ARC 7 6 (Connect PR48 PR49 
(ARCS ARC77 (Connect PR48 PR51 
(ARCS ARC 7 8 (Connect PR4 9 PR5 0 
(ARCS ARC79 (Connect PR50 PR51 
(ARCS ARC8 0 (Connect PR51 PR52 
(ARCS ARC81 (Connect PR52 PR53 

//decoder communications 
(ARCS ARC82 (Connect PR54 PR62 
(ARCS ARC83 (Connect PR54 PR75 
(ARCS ARC84 (Connect PRS4 PR7 8 
(ARCS ARCSS (Connect PR54 PR81 
(ARCS ARC86 (Connect PRS4 PR84 
(ARCS ARC87 (Connect PR54 PR77 
(ARCS ARC88 (Connect PR55 PR60 
(ARCS AaC89 (Connect PR5 5 PR61 
(ARCS ARC90 (Connect PR55 PR62 
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ARC91 (Connect PR5 6 PR63 ) 
ARC92 (Connect PR5 6 P'R&a ) 
ARC 9 3 (Connect PR5 6 PR65 ) 
ARC94 (Connect PR5 7 PR66 ) 

(ARCS ARC 9 5 (Connect PR5 7 PR67 ) 
(ARCS ARC96 (Connect PR5 7 PR68 ) 
(ARCS ARC 9 7 (Connect PR5 8 PR69 ) 
(ARCS AaC98 (Connect PR5 8 PR70 ) 
(ARCS ARC99 (Connect PR58 PR71 ) 
(ARCS ARClOO (Connect PR5 9 PR73 
P^iCS ARClOl (Connect PR60 PR61 
^a:CS ARC102 (Connect PR61 PR62 
^a:CS ARC103 (Connect PR62 PR65 
(ARCS ARC104 (Connect PR63 PR64 

ARC105 (Connect PR64 PR65 
(ARCS ARC106 (Connect PR65 PR68 
(ARCS ARC107 (Connect PR66 PR67 
(ARCS ARC108 (Connect PR67 PR68 
(ARCS ARC109 (Connect PR68 PR71 
(ARCS ARCllO (Connect PR69 PR7 0 
(ARCS Aaciii (Connect PR7 0 PR71 
(ARCS ARC112 (Connect PR71 PR72 
(ARCS ARC113 (Connect PR71 PR74 
^acs ARC114 (Connect PR72 PR77 
(ARCS ARC115 (Connect PR72 PR8 0 
(ARCS ARC116 (Connect PR72 PR83 
(ARCS ARC117 (Connect PR72 PR86 
(ARCS A R C H 8 (Connect PR73 PR75 
(ARCS Aacil9 (Connect PR73 PR7 8 
(ARCS ARC120 (Connect PR73 PR81 
(ARCS ARC121 (Connect PR73 PR84 
^aiCS ARC122 (Connect PR75 PR76 
(Aacs A2C123 (Connect PR76 PR77 
(ARCS ARC124 (Connect PR77 PR8 0 

(aacs ARC125 (Connect PR77 PR87 
(ARCS ARC12 6 (Connect PR7 8 PR7 9 
(ARCS ARC12 7 (Connect PR7 9 PR8 0 
(ARCS ARC128 (Connect PR80 PR83 
(ARCS AaC129 (Connect PR8 0 PR8 7 
(ARCS ARC130 (Connect PR81 PR82 
(ARCS ARC131 (Connect PR82 PR83 
(ARCS ARC132 (Connect PR83 PR86 
^a^s ARC133 (Connect PR83 PR87 
(ARCS ARC134 (Connect PR84 PR85 
(ARCS ARC13 5 (Connect PR85 PR86 
(ARCS ARC136 (Connect PR86 PR74 
(ARCS ARC137 (Connect PR86 PR87 

B.2 Technology Library File 

The technology library file gives the parameters of three different processing elements 

(PEs) used in the GSM voice CODEC example. The PE parameters have been derived 
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from the 0.07|j,m Crusoe processor [115]. Furthermore, the technology file also gives 

the execution properties of the 87 tasks, where tasks 0-52 correspond to the tasks 0-52 

in the task graph of Figure 4.16, tasks 53-86 correspond to the tasks 0-33 in the task 

graph of Figure 4.17. The technology library file also gives the parameters of two 

different communication links and the communication amount between tasks. For the 

meaning of the parameters, the reader is referred to Section A. 5 and Table A.2. 

// Technology file for GSM voice CODEC 

//part 1: parameters of PEs and tasks 

//parameters of PEO 
{PE 0 
(pe_type GPP)(dvs 1)(abb 1) 
(freq 4.21e+09)(vmax 1)(vmin 0.5)(vbsmin -1) 
(kl 0.063) (k2 0.153) (k3 1.87407e-07) (k4 1.83) (kS 4.19) 
(vthl 0.244) (ceff l.lle-09) (Ig 4e+06) (vbsmax 0) 
(task 0)(execyc 3617)(dynpwr 9.42097)(leakpwr 5.53295) 
(task 1) (execyc 23628) (dynpwr 9.25273) (leakpwr 4.76656) 
(task 2)(execyc 542)(dynpwr 7.43023)(leakpwr 6.58907) 
(task 3)(execyc 34 60)(dynpwr 8.07511)(leakpwr 6.8788) 
(task 4)(execyc 132)(dynpwr 13.2716)(leakpwr 5.42079) 
(task 5)(execyc 315)(dynpwr 11.9164)(leakpwr 3.97213) 
(task 6)(execyc 160)(dynpwr 13.8324)(leakpwr 4.86002) 
(task 7)(execyc 52)(dynpwr 12.4304)(leakpwr 5.32733) 
(task 8)(execyc 552)(dynpwr 13.1408)(leakpwr 4.61702) 
(task 9)(execyc 527)(dynpwr 7.06572)(leakpwr 4.14971) 
(task 10) (execyc 55) (dynpwr 5.60772) (leakpwr 5.60772) 
(task 11)(execyc 552)(dynpwr 6.26195)(leakpwr 3.08424) 
(task 12)(execyc 323)(dynpwr 8.14054)(leakpwr 4.00952) 
(task 13)(execyc 52)(dynpwr 12.5239)(leakpwr 6.16849) 
(task 14) (execyc 552) (dynpwr 8.13119) (leakpwr 5.8881) 
(task 15) (execyc 527) (dynpwr 12.608) (leakpwr 5.14975) 
(task 16)(execyc 471)(dynpwr 10.2808)(leakpwr 8.41158) 
(task 17)(execyc 41)(dynpwr 7.77604)(leakpwr 7.17788) 
(task 18) (execyc 862) (dynpwr 6.31803) (leakpwr 5.83203) 
(task 19) (execyc 3617) (dynpwr 9.05646) (leakpwr 6.83207) 
(task 20)(execyc 728)(dynpwr 11.0752)(leakpwr 2.94405) 
(task 21)(execyc 5013)(dynpwr 11.5986)(leakpwr 4.2899) 
(task 22)(execyc 329)(dynpwr 11.5893)(leakpwr 7.10311) 
(task 23) (execyc 1140) (dynpwr 9.86958) (leakpwr 5.08433) 
(task 24)(execyc 1966)(dynpwr 6.84142)(leakpwr 4.37402) 
(task 25)(execyc 981)(dynpwr 12.2809)(leakpwr 4.54225) 
(task 26) (execyc 148) (dynpwr 12.0753) (leakpwr 3.81325) 
(task 27)(execyc 200)(dynpwr 12.5239)(leakpwr 6.16849) 
(task 28)(execyc 759)(dynpwr 7.17788)(leakpwr 4.03756) 
(task 29)(execyc 5013)(dynpwr 5.55164)(leakpwr 4.72918) 
(task 30)(execyc 329)(dynpwr 7.40219)(leakpwr 3.81325) 
(task 31)(execyc 1140)(dynpwr 7.19657)(leakpwr 2.14963) 
(task 32)(execyc 1966)(dynpwr 9.81351)(leakpwr 4.20579) 
(task 33)(execyc 981)(dynpwr 9.02843)(leakpwr 4.05625) 
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(task 34)(execyc 148)(dynpwr 8.41158)(leakpwr 8.41158) 
(task 35)(execyc 200)(dynpwr 7.71996)(leakpwr 5.36472) 
(task 36)(execyc 728)(dynpwr 7.06572)(leakpwr 4.14971) 
(task 37)(execyc 5013)(dynpwr 8.99104)(leakpwr 3.15901) 
(task 38)(execyc 5014)(dynpwr 14.0286)(leakpwr 3.72913) 
(task 39)(execyc 544)(dynpwr 9.25273)(leakpwr 7.57042) 
(task 40)(execyc 1966)(dynpwr 6.28064)(leakpwr 4.93479) 
(task 41)(execyc 981)(dynpwr 11.2154)(leakpwr 2.80386) 
(task 42)(execyc 148)(dynpwr 8.18727){leakpwr 3.02817) 
(task 43)(execyc 120)(dynpwr 6.82272)(leakpwr 2.52347) 
(task 44)(execyc 759)(dynpwr 8.50504)(leakpwr 4.57964) 
(task 45)(execyc 5013)(dynpwr 11.0098)(leakpwr 6.74795) 
(task 46)(execyc 561)(dynpwr 6.6358)(leakpwr 2.7104) 
(task 47) (execyc 544) (dynpwr 4.86002) (leakpwr 4.48617) 
(task 48) (execyc 259) (dynpwr 11.9631) (leakpwr 6.72926) 
(task 49)(execyc 228)(dynpwr 14.5801)(leakpwr 4.11233) 
(task 50)(execyc 395)(dynpwr 6.16849)(leakpwr 5.04695) 
(task 51) (execyc 120) (dynpwr 8.67327) (leakpwr 6.28064) 
(task 52)(execyc 3617)(dynpwr 6.07503)(leakpwr 3.27117) 
(task 53)(execyc 2882)(dynpwr 10.0191)(leakpwr 4.93479) 
(task 54)(execyc 162)(dynpwr 11.0285)(leakpwr 7.66388) 
(task 55)(execyc 162)(dynpwr 6.31803)(leakpwr 5.83203) 
(task 56)(execyc 200)(dynpwr 7.77604)(leakpwr 4.37402) 
(task 57)(execyc 73)(dynpwr 6.47691)(leakpwr 3.8039) 
(task 58)(execyc 10 0)(dynpwr 10.1687)(leakpwr 4.7 852 5) 
(task 59)(execyc 228)(dynpwr 9.37423)(leakpwr 6.5143) 
(task 60)(execyc 148)(dynpwr 5.24322)(leakpwr 5.0376) 
(task 61)(execyc 2952)(dynpwr 9.76677)(leakpwr 7.991) 
(task 62)(execyc 228)(dynpwr 8.27138)(leakpwr 5.74791) 
(task 63)(execyc 148)(dynpwr 10.2621)(leakpwr 6.56103) 
(task 64) (execyc 2952) (dynpwr 8.89758) (leakpwr 4.1871) 
(task 65)(execyc 981)(dynpwr 7.29003)(leakpwr 6.72926) 
(task 66) (execyc 148) (dynpwr 9.75743) (leakpwr 7.06572) 
(task 67)(execyc 2952)(dynpwr 13.8324)(leakpwr 4.86002) 
(task 68)(execyc 228)(dynpwr 8.67327)(leakpwr 6.28064) 
(task 69)(execyc 395)(dynpwr 10.4677)(leakpwr 8.22465) 
(task 70)(execyc 63)(dynpwr 11.5426)(leakpwr 6.21522) 
(task 71) (execyc 2000) (dynpwr 10.0939) (leakpwr 3.9254) 
(task 72)(execyc 160)(dynpwr 7.77604)(leakpwr 4.37402) 
(task 73) (execyc 2882) (dynpwr 10.2621) (leakpwr 6.56103) 
(task 74)(execyc 115)(dynpwr 8.55177)(leakpwr 5.46752) 
(task 75)(execyc 63)(dynpwr 9.86958)(leakpwr 5.08433) 
(task 76) (execyc 15200) (dynpwr 9.81351) (leakpwr 3.27117) 
(task 77)(execyc 123)(dynpwr 9.5892)(leakpwr 7.23396) 
(task 78)(execyc 552)(dynpwr 11.1033)(leakpwr 5.71987) 
(task 79)(execyc 16370)(dynpwr 8.97235)(leakpwr 2.24309) 
(task 80)(execyc 115)(dynpwr 8.63589)(leakpwr 4.44879) 
(task 81) (execyc 552) (dynpwr 11.5426) (leakpwr 6.21522) 
(task 82)(execyc 867)(dynpwr 7.89754)(leakpwr 4.25252) 
(task 83)(execyc 1060)(dynpwr 8.82281)(leakpwr 6.1311) 
(task 84)(execyc 63)(dynpwr 8.14054)(leakpwr 4.00952) 
(task 85) (execyc 1469) (dynpwr 10.3369) (leakpwr 2.74778) 

(task 86)(execyc 15596)(dynpwr 9.42097)(leakpwr 3.66371) 
} 

// parameters of PEl 
{PE 1 
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(pe_type GPP)(dvs 1)(abb 1) 
(freq 4.21e + 09) (vmax 1) (vmin 0.5) (vbstnin -1) 
(kl 0.063)(k2 0.153)(k3 1.87407e-07)(k4 1.83)(k5 4.19) 
(vthl 0.244) (ceff l.lle-09) (Ig 4e+06) (vbsmax 0) 
(task 0)(execyc 3617)(dynpwr 7.38349)(leakpwr 1.9627) 
(task 1) (execyc 23628) (dynpwr 9.92566) (leakpwr 6.89749) 
(task 2)(execyc 542)(dynpwr 5.60772)(leakpwr 3.73848) 
(task 3)(execyc 34 60)(dynpwr 5.8 60 06)(leakpwr 4.4 2 075) 
(task 4)(execyc 132)(dynpwr 7.58911)(leakpwr 5.49556) 
(task 5)(execyc 315)(dynpwr 10.3275)(leakpwr 5.56099) 
(task 6)(execyc 160)(dynpwr 9.29012)(leakpwr 3.79456) 
(task 7) (execyc 52) (dynpwr 8.74804) (leakpwr 2.4674) 
(task 8)(execyc 552)(dynpwr 9.5705)(leakpwr 5.38341) 
(task 9)(execyc 527)(dynpwr 11.2154)(leakpwr 7.47696) 
(task 10) (execyc 55) (dynpwr 10.7668) (leakpwr 6.05634) 
(task 11)(execyc 552)(dynpwr 13.6735)(leakpwr 4.08429) 
(task 12) (execyc 323) (dynpwr 10.2808) (leakpwr 8.41158) 
(task 13)(execyc 52)(dynpwr 5.44883)(leakpwr 4.83198) 
(task 14)(execyc 552)(dynpwr 13.8511)(leakpwr 3.90671) 
(task 15)(execyc 527)(dynpwr 8.38354)(leakpwr 3.76652) 
(task 16)(execyc 471)(dynpwr 10.8322)(leakpwr 6.92553) 
(task 17)(execyc 41)(dynpwr 9.15927)(leakpwr 3.9254) 
(task 18)(execyc 862)(dynpwr 7.58911)(leakpwr 5.49556) 
(task 19)(execyc 3617)(dynpwr 14.0286)(leakpwr 3.72913) 
(task 20) (execyc 72 8) (dynpwr 5.8881) (leakpwr 3.45 809) 
(task 21)(execyc 5013)(dynpwr 10.0752)(leakpwr 3.00948) 
(task 22)(execyc 329)(dynpwr 11.0098)(leakpwr 6.74795) 
(task 23) (execyc 1140) (dynpwr 8.57981) (leakpwr 7.30873) 
(task 24)(execyc 1966)(dynpwr 6.44888)(leakpwr 2.89732) 
(task 25)(execyc 981)(dynpwr 9.76677)(leakpwr 7.991) 
(task 26)(execyc 148)(dynpwr 7.29003)(leakpwr 2.05616) 
(task 27)(execyc 200)(dynpwr 6.47691)(leakpwr 3.8039) 
(task 28)(execyc 759)(dynpwr 8.41158)(leakpwr 5.60772) 
(task 29) (execyc 5013) (dynpwr 12.7856) (leakpwr 4.03756) 
(task 30)(execyc 329)(dynpwr 11.2154)(leakpwr 7.47696) 
(task 31)(execyc 1140)(dynpwr 7.73865)(leakpwr 3.47678) 
(task 32)(execyc 1966)(dynpwr 8.07511)(leakpwr 6.8788) 
(task 33)(execyc 981)(dynpwr 8.76673)(leakpwr 4.31794) 
(task 34)(execyc 148)(dynpwr 8.01904)(leakpwr 2.26178) 
(task 35)(execyc 200)(dynpwr 7.09376)(leakpwr 3.18705) 
(task 36)(execyc 728)(dynpwr 10.6547)(leakpwr 8.03773) 
(task 37) (execyc 5013) (dynpwr 9.68266) (leakpwr 3.40202) 
(task 38)(execyc 5014)(dynpwr 7.6265)(leakpwr 7.32742) 
(task 39)(execyc 544)(dynpwr 11.2715)(leakpwr 5.55164) 
(task 40) (execyc 1966) (dynpwr 13.1408) (leakpwr 4.61702) 
(task 41)(execyc 981)(dynpwr 6.16849)(leakpwr 3.17771) 
(task 42)(execyc 148)(dynpwr 7.06572)(leakpwr 4.14971) 
(task 43)(execyc 120)(dynpwr 9.59854)(leakpwr 2.55151) 
(task 44)(execyc 759)(dynpwr 7.09376)(leakpwr 3.18705) 
(task 45)(execyc 5013)(dynpwr 7.16853)(leakpwr 4.98152) 
(task 46) (execyc 561) (dynpwr 7.40219) (leakpwr 3.81325) 
(task 47) (execyc 544) (dynpwr 12.7108) (leakpwr 3.17771) 
(task 48)(execyc 259)(dynpwr 7.6078)(leakpwr 2.67301) 
(task 49)(execyc 228)(dynpwr 12.3931)(leakpwr 3.49548) 
(task 50)(execyc 395)(dynpwr 7.98165)(leakpwr 5.10302) 
(task 51)(execyc 120)(dynpwr 11.608)(leakpwr 5.21518) 
(task 52) (execyc 3617) (dynpwr 8.67327) (leakpwr 6.28064) 
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(task 53) (execyc 
(task 54) (execyc 
(task 55) (execyc 
(task 56) (execyc 
(task 57) (execyc 
(task 58) (execyc 
(task 59) (execyc 
(task 60) (execyc 
(task 61) (execyc 
(task 62) (execyc 
(task 63) (execyc 
(task 64) (execyc 
(task 65) (execyc 
(task 66) (execyc 
(task 67) (execyc 
(task 68) (execyc 
(task 69) (execyc 
(task 70) (execyc 
(task 71) (execyc 
(task 72) (execyc 
(task 73) (execyc 
(task 74) (execyc 
(task 75) (execyc 
(task 76) (execyc 
(task 77) (execyc 
(task 78) (execyc 
(task 79) (execyc 
(task 80) (execyc 
(task 81) (execyc 
(task 82) (execyc 
(task 83) (execyc 
(task 84) (execyc 
(task 85) (execyc 
(task 86) (execyc 

2882)(dynpwr 7.29003)(leakpwr 3.9254) 
162)(dynpwr 6.3928)(leakpwr 4.82264) 
162)(dynpwr 7.65453){leakpwr 4.49552) 
200)(dynpwr 7.41153)(leakpwr 4.73852) 
73)(dynpwr 10.4677)(leakpwr 4.48617) 
100)(dynpwr 10.3743)(leakpwr 3.64502) 
228)(dynpwr 9.76677)(leakpwr 7.991) 
148)(dynpwr 10.4677)(leakpwr 2.61693) 
2952)(dynpwr 6.2713)(leakpwr 4.00952) 
228)(dynpwr 11.0285)(leakpwr 7.66388) 
148)(dynpwr 10.3275)(leakpwr 5.56099) 
2952)(dynpwr 7.991)(leakpwr 6.0283) 
981)(dynpwr 9.59854)(leakpwr 2.55151) 
148)(dynpwr 12.1127)(leakpwr 4.71048) 
2952)(dynpwr 9.3462)(leakpwr 9.3462) 
228) (dynpwr 14.9539) (leakpwr 3.73848) 
395)(dynpwr 7.58911)(leakpwr 5.49556) 
63)(dynpwr 13.1408)(leakpwr 4.61702) 
2000)(dynpwr 9.5705)(leakpwr 5.38341) 
160)(dynpwr 11.9444)(leakpwr 4.87871) 
2882)(dynpwr 9.9537)(leakpwr 4.0656) 
115)(dynpwr 8.74804)(leakpwr 8.07511) 
63)(dynpwr 8.22465)(leakpwr 2.05616) 
15200)(dynpwr 10.2808)(leakpwr 8.41158) 
123)(dynpwr 5.24322)(leakpwr 5.0376) 
552)(dynpwr 13.8511)(leakpwr 3.90671) 
16370) (dynpwr 12.5519) (leakpwr 3.33659) 
115)(dynpwr 11.8136)(leakpwr 3.14032) 
552)(dynpwr 9.75743)(leakpwr 7.06572) 
867)(dynpwr 6.16849)(leakpwr 3.17771) 
1060)(dynpwr 10.4677)(leakpwr 8.22465) 
63)(dynpwr 9.55181)(leakpwr 3.53286) 
1469)(dynpwr 8.86954)(leakpwr 3.28051) 
15596)(dynpwr 9.67331)(leakpwr 4.34598) 

// parameters of PE2 
{PE 2 
(pe_type GPP)(dvs 1)(abb 1) 
(freq 4,21e+09)(vmax 1)(vmin 0.5)(vbsmin -1) 
(kl 0.063)(k2 0.153)(k3 1.87407e-07)(k4 1.83)(k5 4.19) 
(vthl 0.244) (ceff l.lle-09) (Ig 4e + 06) (vbsmax 0) 
(task 0) (execyc 3 617) (dynpwr 9.42097) (leakpwr 5.53295) 
(task 1)(execyc 23628)(dynpwr 9.25273)(leakpwr 4.76656) 
(task 2)(execyc 542)(dynpwr 7.43023)(leakpwr 6.58907) 
(task 3)(execyc 3460)(dynpwr 8.07511)(leakpwr 6.8788) 
(task 4)(execyc 132)(dynpwr 13.2716)(leakpwr 5.42079) 
(task 5)(execyc 315)(dynpwr 11.9164)(leakpwr 3.97213) 
(task 6)(execyc 160)(dynpwr 13.8324)(leakpwr 4.86002) 
(task 7)(execyc 52)(dynpwr 12.4304)(leakpwr 5.32733) 
(task 8)(execyc 552)(dynpwr 13.1408)(leakpwr 4.61702) 
(task 9)(execyc 527)(dynpwr 7.06572)(leakpwr 4.14971) 
(task 10)(execyc 55)(dynpwr 5.60772)(leakpwr 5.60772) 
(task 11)(execyc 552)(dynpwr 6.26195)(leakpwr 3.08424) 
(task 12)(execyc 323)(dynpwr 8.14054)(leakpwr 4.00952) 
(task 13) (execyc 52) (dynpwr 12.5239) (leakpwr 6.16849) 
(task 14)(execyc 552)(dynpwr 8.13119)(leakpwr 5.8881) 
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(task 15)(execyc 527)(dynpwr 12.608)(leakpwr 5.14975) 
(task 16)(execyc 471)(dynpwr 10.2808)(leakpwr 8.41158) 
(task 17)(execyc 41)(dynpwr 7.77604)(leakpwr 7.17788) 
(task 18)(execyc 862)(dynpwr 6.31803)(leakpwr 5.83203) 
(task 19)(execyc 3617)(dynpwr 9.05646)(leakpwr 6.83207) 
(task 20)(execyc 728)(dynpwr 11.0752)(leakpwr 2.94405) 
(task 21) (execyc 5013) (dynpwr 11.5986) (leakpwr 4.2899) 
(task 22)(execyc 329)(dynpwr 11.5893)(leakpwr 7.10311) 
(task 23) (execyc 1140) (dynpwr 9.86958) (leakpwr 5.08433) 
(task 24)(execyc 1966)(dynpwr 6.84142)(leakpwr 4.37402) 
(task 25) (execyc 981) (dynpwr 12.2809) (leakpwr 4.54225) 
(task 26)(execyc 148)(dynpwr 12.0753)(leakpwr 3.81325) 
(task 27)(execyc 200)(dynpwr 12.5239)(leakpwr 6.16849) 
(task 28) (execyc 759) (dynpwr 7.17788) (leakpwr 4.03756) 
(task 29)(execyc 5013)(dynpwr 5.55164)(leakpwr 4.72918) 
(task 30)(execyc 329)(dynpwr 7.40219)(leakpwr 3.81325) 
(task 31)(execyc 1140)(dynpwr 7.19657)(leakpwr 2.14963) 
(task 32)(execyc 1966)(dynpwr 9.81351)(leakpwr 4.20579) 
(task 33)(execyc 981)(dynpwr 9.02843)(leakpwr 4.05625) 
(task 34)(execyc 148)(dynpwr 8.41158)(leakpwr 8.41158) 
(task 35)(execyc 200)(dynpwr 7.71996)(leakpwr 5.36472) 
(task 36)(execyc 728)(dynpwr 7.06572)(leakpwr 4.14971) 
(task 37)(execyc 5013)(dynpwr 8.99104)(leakpwr 3.15901) 
(task 38)(execyc 5014)(dynpwr 14.0286)(leakpwr 3.72913) 
(task 39)(execyc 544)(dynpwr 9.25273)(leakpwr 7.57042) 
(task 40)(execyc 1966)(dynpwr 6.28064)(leakpwr 4.93479) 
(task 41)(execyc 981)(dynpwr 11.2154)(leakpwr 2.80386) 
(task 42)(execyc 148)(dynpwr 8.18727)(leakpwr 3.02817) 
(task 43)(execyc 120)(dynpwr 6.82272)(leakpwr 2.52347) 
(task 44)(execyc 759)(dynpwr 8.50504)(leakpwr 4.57964) 
(task 45)(execyc 5013)(dynpwr 11.0098)(leakpwr 6.74795) 
(task 46) (execyc 561) (dynpwr 6.6358) (leakpwr 2.7104) 
(task 47)(execyc 544)(dynpwr 4.86002)(leakpwr 4.48617) 
(task 48)(execyc 259)(dynpwr 11.9631)(leakpwr 6.72926) 
(task 49)(execyc 228)(dynpwr 14.5801)(leakpwr 4.11233) 
(task 50)(execyc 395)(dynpwr 6.16849)(leakpwr 5.04695) 
(task 51)(execyc 120)(dynpwr 8.67327)(leakpwr 6.28064) 
(task 52)(execyc 3617)(dynpwr 6.07503)(leakpwr 3.27117) 
(task 53) (execyc 2882) (dynpwr 10.0191) (leakpwr 4.93479) 
(task 54)(execyc 162)(dynpwr 11.0285)(leakpwr 7.66388) 
(task 55)(execyc 162)(dynpwr 6.31803)(leakpwr 5.83203) 
(task 56)(execyc 200)(dynpwr 7.77604)(leakpwr 4.37402) 
(task 57)(execyc 73)(dynpwr 6.47691)(leakpwr 3.8039) 
(task 58)(execyc 100)(dynpwr 10.1687)(leakpwr 4.78525) 
(task 59)(execyc 228)(dynpwr 9.37423)(leakpwr 6.5143) 
(task 60)(execyc 148)(dynpwr 5.24322)(leakpwr 5.0376) 
(task 61)(execyc 2952)(dynpwr 9.76677)(leakpwr 7.991) 
(task 62)(execyc 228)(dynpwr 8.27138)(leakpwr 5.74791) 
(task 63)(execyc 148)(dynpwr 10.2621)(leakpwr 6.56103) 
(task 64)(execyc 2952)(dynpwr 8.89758)(leakpwr 4.1871) 
(task 65)(execyc 981)(dynpwr 7.29003)(leakpwr 6.72926) 
(task 66)(execyc 148)(dynpwr 9.75743)(leakpwr 7.06572) 
(task 67)(execyc 2952)(dynpwr 13.8324)(leakpwr 4.86002) 
(task 68) (execyc 228) (dynpwr 8.67327) (leakpwr 6.28064) 
(task 69) (execyc 395) (dynpwr 10.4677) (leakpwr 8.22465) 
(task 70)(execyc 63)(dynpwr 11.5426)(leakpwr 6.21522) 
(task 71) (execyc 2000) (dynpwr 10.0939) (leakpwr 3.9254) 
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(task 72) (execyc 
(task 73) (execyc 
(task 74) (execyc 
(task 75) (execyc 
(task 76) (execyc 
(task 77) (execyc 
(task 78) (execyc 
(task 79) (execyc 
(task 80) (execyc 
(task 81) (execyc 
(task 82) (execyc 
(task 83) (execyc 
(task 84) (execyc 
(task 85) (execyc 
(task 86) (execyc 

160)(dynpwr 7.77604)(leakpwr 4.37402) 
2 8 82)(dynpwr 10.2621)(leakpwr 6.56103) 
115)(dynpwr 8.55177)(leakpwr 5.46752) 
63)(dynpwr 9.86958)(leakpwr 5.08433) 
15200)(dynpwr 9.81351)(leakpwr 3.27117) 
123)(dynpwr 9.5892)(leakpwr 7.23396) 
552)(dynpwr 11.1033)(leakpwr 5.71987) 
16370)(dynpwr 8.97235)(leakpwr 2.24309) 
115)(dynpwr 8.63589)(leakpwr 4.44879) 
552)(dynpwr 11.5426)(leakpwr 6.21522) 
867)(dynpwr 7.89754)(leakpwr 4.25252) 
106 0)(dynpwr 8.822 81)(leakpwr 5.1311) 
63)(dynpwr 8.14054)(leakpwr 4.00952) 
1469)(dynpwr 10.3369)(leakpwr 2.74778) 
15596)(dynpwr 9.42097)(leakpwr 3.66371) 

//part 2: parameters of CLs 

// parameters of CLO 
0 

(stpwr 0)(freq 3e+09)(dynpwr 1) 
} 

// parameters of CLl 
{CL 1 
(stpwr 0)(freq 6e+09)(dynpwr 2) 
} 

//part 3: communication amount 
{C0M_AM01INT 
(com 0) amount 330) 
(com 1) amount 16) 
(com 2) amount 16) 
(com 3) amount 16) 
(com 4) amount 16) 
(com 5) amount 26) 
(com 6) amount 28) 
(com 7) amount 26) 
(com 8) amount 240) 
(com 9) amount 320) 
(com 10 (amount 16) 
(com 11 (amount 240) 
(com 12 (amount 16) 
(com 13 (amount 36) 
(com 14 (amount 16) 
(com 15 (amount 16) 
(com 16 (amount 16) 
(com 17 (amount 16) 
(com 18 (amount 16) 
(com 19 (amount 16) 
(com 20 (amount 16) 
(com 21 (amount 16) 
(com 22 (amount 16) 
(com 23 (amount 16) 
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(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 

24)(amount 
25)(amount 
26)(amount 
27)(amount 
28)(amount 
29)(amount 
30)(amount 
31)(amount 
32)(amount 
33)(amount 
34)(amount 
35)(amount 
36)(amount 
37)(amount 
38)(amount 
3 9)(amount 
40)(amount 
41)(amount 
42)(amount 
43)(amount 
44)(amount 
45)(amount 
46)(amount 
47)(amount 
48)(amount 
49)(amount 
50)(amount 
51)(amount 
52)(amount 
53)(amount 
54)(amount 
55)(amount 
56)(amount 
57)(amount 
58)(amount 
59)(amount 
60)(amount 
61)(amount 
62)(amount 
63)(amount 
64)(amount 
65)(amount 
66)(amount 
67)(amount 
68)(amount 
69)(amount 
70)(amount 
71)(amount 
72)(amount 
73)(amount 
74)(amount 
75)(amount 
76)(amount 
77)(amount 
78)(amount 
79)(amount 
80)(amount 

2 6 ) 
1 6 ) 
1 6 ) 
1 6 ) 
2 8 ) 
1 6 ) 
1 6 ) 
16) 
2 6 ) 
16) 
16) 

240) 
16) 
8 0 ) 
8 0 ) 
80) 
8 0 ) 
324) 
100) 

80) 
80) 
26) 
2) 
32) 
28) 
160) 

240) 
324) 
100) 

80) 
80) 
26) 
2) 
32) 
28) 
1 6 0 ) 
240) 
324) 
100) 
80) 
80) 
26) 

2 ) 

3 2 ) 
28) 

160) 

2 4 0 ) 
3 2 4 ) 
100) 
80) 

80) 

2 6 ) 

2 ) 

32) 
28) 

160) 

2 4 0 ) 
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(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 
(com 

81)(amount 
82)(amount 
83)(amount 
8 4 ) 
85) 
86) 

9 0 ) 
91) 
9 2 ) 

(amount 
(amount 
(amount 

87)(amount 
88)(amount 
89)(amount 

(amount 
(amount 
(amount 

93)(amount 
94)(amount 
95)(amount 
96)(amount 

(amount 
(amount 
(amount 
amount 
amount 

102)(amount 
103)(amount 
104)(amount 
105)(amount 
106)(amount 
107)(amount 
108)(amount 
10 9)(amount 
110)(amount 
111)(amount 
112)(amount 
113)(amount 
114)(amount 
115)(amount 
116)(amount 
117)(amount 
118)(amount 
119)(amount 
12 0)(amount 

(amount 
(amount 

12 3)(amount 
124)(amount 
12 5)(amount 
12 6)(amount 
12 7)(amount 
12 8)(amount 
12 9)(amount 
13 0)(amount 
131)(amount 
132)(amount 
13 3)(amount 
134)(amount 
13 5)(amount 
13 6)(amount 

9 7 ) 
9 8 ) 
9 9 ) 
100) 
101) 

121) 
122) 

2 4 0 ) 
16) 
16) 
16) 
16) 
16) 
7) 
2 
2 

7 
2 

2 
7 
2 
2 

7 
2 

2 ) 

16) 
24) 
80) 
240) 
24) 
80) 
240) 
24) 
80) 
240) 
24) 
80) 
320) 
240) 
26) 
28) 
26) 
240) 
16) 

16) 

16) 
16) 
16) 
16) 

16) 

26) 
16) 
16) 
16) 
28) 
16) 
16) 
16) 
26) 
16) 
16) 
16) 
240) 



Appendix C 

Dummy Task in Task Graphs 

This appendix introduces the concept of dummy task, and shows how dummy task 

provides extra modelling capability to task graphs. 

A dummy task is a task with zero execution time, or a task with non-zero 

execution time but not allocated to any physical processing element (PE). Dummy 

tasks do not consume any resources but can provide extra modelling capability to task 

graphs. The source and sink task are examples of dummy task with zero execution 

time (Chapter 1, Section 1.3.1). The introduction of the source task and the sink task 

makes it possible to model applications containing several concurrently running but 

nearly decoupled tasks, as shown in Figure C.l. Some tasks in the task graph may 

have a release time, i.e., the tasks cannot be initiated until a certain time after the 

invocation of the task graph. Also, some tasks may have various deadlines. Release 

times can be modelled by inserting dummy tasks between certain tasks and the source 

task, as shown in Figure C.2. These dummy tasks are associated with a certain 

\̂ 45 introducing source 
and sink tasks 

(2^ normal task 

(2^ dummy task 

an application containing 
decoupled tasks 

task graph 

Figure C.l: A task graph modelhng an application containing decoupled task* 

169 



Appendix C Dummy Task in Task Graphs 170 

execution time but are not mapped to any physical PE. Similarly, multiple deadlines 

can be modelled by inserting dummy nodes between certain tasks and the sink task, as 

shown in Figure C.3. 

an application containing 
a task with release time 

execution 
time = r 

introducing dummy 
tasks 

( 2 ) normal task 

( 2 ) dummy task 

complete task graph 

Figure C.2: A task graph modelling tasks with release times 

source 

an application containing 
multiple deadlines 

introducing dummy 
tasks 

^2) normal task 

(2^ dummy task 

execution 
time = d - d ' 

complete task graph 

Figure C.3: A task graph modelling multiple deadlines 



References 

[1] G. D. Micheli, R. Ernst, and W. Wolf, Readings in hardware/software co-
design, Morgan Kaufmann Publishers, 2001. 

[2] M. T. Schmitz, B. M. A1 Hashimi, and P. Eles, System-level design techniques 
for energy-efficient embedded systems, Kluwer Academic Publishers, 2004. 

[3] T.-Y. Yen and W. Wolf, Hardware-Software Co-Synthesis of Distributed 
Embedded Systems, Kluwer Academic Publishers, 1996. 

[4] W. H. Wolf, "Hardware-software co-design of embedded systems," 
Proceedings of the IEEE, vol. 82, no. 7, 1994, pp. 967-89. 

[5] "BOSCH's Controller Area Network," http://www.can.bosch.com/, 2004. 

[6] "Philips Semiconductors I2C-bus," 
http://www.semiconductors.philips.com/buses/i2c/index.html, 2004. 

[7] "About RapidIO," http://www.rapidio.org/about 2004. 

[8] C. Drosos, M. Zayadine, and D. Metafas, "Real-time communication protocol 
development using SDL for an embedded system on chip based on ARM 
microcontroller," in Proceedings Euromicro Conference on Real-Time Systems, 
2001, pp. 89-94. 

[9] J. Staunstrup and W. Wolf, Hardware/software co-design principles and 
practice, Kluwer Academic Publishers, 1997. 

[10] W. Wolf, "A decade of hardware/software codesign," Computer, vol. 36, no. 4, 
2003, pp. 38-41. 

[11] G. D. Micheli, "Computer-aided hardware-software codesign," IEEE Micro, 
vol. 14, no. 4, 1994, pp. 10-16. 

[12] G. D. Micheli and R. K. Gupta, "Hardware/software co-design," Proceedings 
of the IEEE, vol. 85, no. 3, 1997, pp. 349-65. 

[13] D. D. Gajski and F. Vahid, "Specification and design of embedded hardware-
software systems," IEEE Design & Test of Computers, vol. 12, no. 1, 1995, pp. 
53-67. 

[14] B. P. Dave, G. Lakshminarayana, and N. K. Jha, "COSYN: Hardware-software 
co-synthesis of heterogeneous distributed embedded systems," IEEE 

111 

http://www.can.bosch.com/
http://www.semiconductors.philips.com/buses/i2c/index.html
http://www.rapidio.org/about


References 172 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1, 
1999, pp. 92-104. 

[15] N. K. Jha, "Low power system scheduling and synthesis," in Proceedings 
IEEE/ACM International Conference on Computer Aided Design, 2001, pp. 
259-63. 

[16] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-VincenteUi, "Design 
of embedded systems: formal models, validation, and synthesis," Proceedings 
of the IEEE, vol. 85, no. 3, 1997, pp. 366-90. 

[17] G. D. Micheli, Synthesis and optimization of digital circuits, McGraw-Hill 
Education, 1994. 

[18] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI design: a 
systems perspective. Second ed, Addison-Wesley Publishing Company, 1993. 

[19] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level synthesis: 
introduction to chip and system design, Kluwer Academic Publishers, 1992. 

[20] J. P. Elliott, Understanding behavioral synthesis: a practical guide to high-
level design, Kluwer Academic Publishers, 1999. 

[21] P. Ashenden, The designer's guide to VHDL, Second ed, Morgan Kaufmann 
Publishers, 2001. 

[22] S. Palnitkar, Verilog HDL, Second ed. Prentice Hall PTR, 2003. 

[23] J. Bhasker, A SystemCprimer. Star Galaxy Publishing, 2002. 

[24] S. Devadas, A. Ghosh, and K. Keutzer, Logic synthesis, McGraw-Hill, 1994. 

[25] N. A. Sherwani, Algorithms for VLSI physical design automation. Third ed, 
Kluwer Academic Publishers, 1995. 

[26] S. H. Gerez, Algorithms for VLSI design automation, John Wiley & Sons, 
1998. 

[27] M. Sarrafzadeh and C. K. Wong, An introduction to VLSI physical design, 
McGraw-Hill Science/Engineering/Math, 1996. 

[28] R. K. Gupta, Co-synthesis of hardware and software for digital embeded 
systems, PhD Thesis, Stanford University, 1993. 

[29] R. K. Gupta, G. D. Micheli, and C. N. Coelho, "Program implementation 
schemes for hardware-software systems," Computer, vol. 27, no. 1, 1994, pp. 
48-55. 



References 173 

[30] B. Stroustrup, The C+ + programming language, Addison Wesley Professional, 
1997. 

[31] H. M. Deitel and P. J. Deitel, Java, Prentice Hall, 2002. 

[32] R. Leupers and P. Marwedel, Retargetable Compiler Technology for 
Embedded Systems - Tools and Applications, Kluwer Academic Publishers, 
2001. 

[33] J. A. Rowson, "Hardware/software co-simulation," in Proceedings Design 
Automation Conference, 1994, pp. 439-440. 

[34] A. Hoffmann, T. Kegel, and H. Meyr, "A framework for fast hardware-
software co-simulation," in Proceedings Design, Automation and Test in 
Europe, 2001, pp. 760-4. 

[35] M. El Shobaki, "Verification of embedded real-time systems using 
hardware/software co-simulation," in Proceedings EUROMICRO Conference, 
1998, pp. 46-50. 

[36] M. Varea and B. Al-Hashimi, "Dual transitions Petri Net based modelling 
technique for embedded systems specification," in Proceedings Design, 
Automation and Test in Europe, 2001, pp. 566-71. 

[37] A. Dasdan, D. Ramanathan, and R. K. Gupta, "A timing-driven design and 
validation methodology for embedded real-time systems," ACM Transactions 
on Design Automation of Electronic Systems, vol. 3, no. 4, 1998, pp. 533-53. 

[38] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich, "Scheduling 
hardware/software systems using symbolic techniques," m Proceedings 
Seventh International Workshop on Hardware/Software Codesign, 1999, pp. 
173-7. 

[39] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele, "Representation of 
process mode correlation for scheduling," in Proceedings IEEE/ACM 
International Conference on Computer Aided Design, 1998, pp. 54-6. 

[40] R. P. Dick, D. L. Rhodes, and W. Wolf, "TGFF: task graphs for free," in 
Proceedings Sixth International Workshop on Hardware/Software Codesign, 
1998, pp. 97-101. 

[41] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, "Scheduling of 
conditional process graphs for the synthesis of embedded systems," in 
Proceedings Design, Automation and Test in Europe, 1998, pp. 132-38. 



References 174 

[42] P. Eles, A. Doboli, P. Pop, and Z. Peng, "Scheduling with bus access 
optimization for distributed embedded systems," IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems, vol. 8, no. 5, 2000, pp. 472-91. 

[43] L. Benini, A. Bogliolo, and G. D. Micheli, "A survey of design techniques for 
system-level dynamic power management," IEEE Transactions on Very Large 
Scale Integration (VLSI) Systems, vol. 8, no. 3, 2000, pp. 299-316. 

[44] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, "Predictive 
system shutdown and other architectural techniques for energy efficient 
programmable computation," IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems, vol. 4, no. 1, 1996, pp. 42-55. 

[45] C. H. Hwang and A. H. Wu, "A predictive system shutdown method for 
energy saving of event-driven computation," ACM Transactions on Design 
Automation of Electronic Systems, vol. 5, no. 2, 2000, pp. 226-41. 

[46] P. Krishnan, P. M. Long, and J. S. Vitter, "Adaptive disk spindown via optimal 
rent-to-buy in probabilistic environments," Algorithmica, vol. 23, no. 1, 1999, 
pp. 31-56. 

[47] D. P. Helmbold, D. D. E. Long, T. L. Sconyers, and B. Sherrod, "Adaptive 
disk spin-down for mobile computers," Mobile Networks and Applications, vol. 
5, no. 4, 2000, pp. 285-97. 

[48] F. Doughs, P. Krishnan, and B. Bershad, "Adaptive disk spin-down policies 
for mobile computers," 'm Proceedings Second USENIXSymposium on Mobile 
and Location Independent Computing, 1995, pp. 121-37. 

[49] Y. H. Lu and G. De-Micheli, "Adaptive hard disk power management on 
personal computers," in Proceedings Ninth Great Lakes Symposium on VLSI, 
1999,pp. 50<3. 

[50] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli, "Policy 
optimization for dynamic power management," IEEE Transactions on 
Computer Aided Design of Integrated Circuits and Systems, vol. 18, no. 6, 
1999, pp. 813-33. 

[51] E. Y. Chung, L. Benini, A. Bogliolo, and G. De-Micheli, "Dynamic power 
management for nonstationary service requests," in Proceedings Design, 
Automation and Test in Europe, 1999, pp. 77-81. 

[52] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, "Power 
optimization of variable-voltage core-based systems," IEEE Transactions on 
Computer Aided Design of Integrated Circuits and Systems, vol. 18, no. 12, 
1999, pp. 1702-14. 



References 175 

[53] T. Ishihara and H. Yasuura, "Voltage scheduling problem for dynamically 
variable voltage processors," in Proceedings International Symposium on Low 
Power Electronics and Design, 1998, pp. 197-202. 

[54] G. Quan and X. Hu, "Energy efficient fixed-priority scheduling for real-time 
systems on variable voltage processors," in Proceedings Design Automation 
Conference, 2001, pp. 828-33. 

[55] M. T. Schmitz and B. M. Al-Hashimi, "Considering power variations of DVS 
processing elements for energy minimisation in distributed systems," in 
Proceedings International Symposium on System Synthesis, 2001, pp. 250-5. 

[56] Y. Zhang, X. Hu, and D. Z. Chen, "Task scheduling and voltage selection for 
energy minimization," in Proceedings Design Automation Conference, 2002, 
pp. 183-8. 

[57] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, "Energy-efficient mapping and 
scheduling for DVS enabled distributed embedded systems," 'm Proceedings 
Design, Automation and Test in Europe, 2002, pp. 514-21. 

[58] J. Luo and N. K. Jha, "Power-conscious joint scheduling of periodic task 
graphs and aperiodic tasks in distributed real-time embedded systems," in 
Proceedings IEEE/ACM International Conference on Computer Aided Design, 
2000, pp. 357-64. 

[59] F. Gruian and K. Kuchcinski, "LEneS: task scheduling for low-energy systems 
using variable supply voltage processors," in Proceedings Asia and South 
Pacific Design Automation Conference, 2001, pp. 449-55. 

[60] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano, 
M. Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. 
Sakurai, "A 0.9-V, 150-MHz, 10-mW, 4 mm^, 2-D discrete cosine transform 
core processor with variable threshold-voltage (VT) scheme," IEEE Journal of 
Solid-State Circuits, vol. 31, no. 11, 1996, pp. 1770-9. 

[61] K. Nose, M. Hirabayashi, H. Kawaguchi, S. Lee, and T. Sakurai, "VTH-
hopping scheme to reduce subthreshold leakage for low-power processors," 
IEEE Journal of Solid-State Circuits, vol. 37, no. 3, 2002, pp. 413-9. 

[62] M. Miyazaki, G. Ono, and K. Ishibashi, "A 1.2-GIPS/W microprocessor using 
speed-adaptive threshold-voltage CMOS with forward bias," IEEE Journal of 
Solid-State Circuits, vol. 37, no. 2, 2002, pp. 210-17. 

[63] J. T. Kao, M. Miyazaki, and A. P. Chandrakasan, "A 175-MV multiply-
accumulate unit using an adaptive supply voltage and body bias architecture," 
IEEE Journal of Solid-State Circuits, vol. 37, no. 11, 2002, pp. 1545-54. 



References 176 

[64] C. H. Kim and K. Roy, "Dynamic VTH scaling scheme for active leakage 
power reduction," in Proceedings Design, Automation and Test in Europe, 
2002, pp. 163-7. 

[65] D. Wu, B. M. Al-Hashimi, and P. Eles, "Scheduling and mapping of 
conditional task graphs for the synthesis of low power embedded systems," in 
Proceedings Design Automation and Test in Europe, 2003, pp. 90-5. 

[66] D. Wu, B. M. Al-Hashimi, and P. Eles, "Scheduling and mapping of 
conditional task graph for the synthesis of low power embedded systems," lEE 
Proceedings: Computers and Digital Techniques, vol. 150, no. 5, 2003, pp. 
262-273. 

[67] A. P. Chandrakasan and R. W. Brodersen, Low power digital CMOS design, 
Kluwer Academic Publishers, 1995. 

[68] M. Pedram, "Power minimization in IC design: principles and applications," 
ACM Transactions on Design Automation of Electronic Systems, vol. 1, no. 1, 
1996, pp. 3-56. 

[69] T. D. Burd and R. W. Brodersen, "Design issues for Dynamic Voltage 
Scaling," in Proceedings International Symposium on Low Power Electronic 
Design, 2000, pp. 9-14. 

[70] T. D. Burd and R. W. Brodersen, Energy efficient microprocessor design, 
Kluwer academic publishers, 2002. 

[71] J. P. Halter and F. N. Najm, "A gate-level leakage power reduction method for 
ultra-low-power CMOS circuits," in Proceedings Custom Integrated Circuits 
Conference, 1997, pp. 475-8. 

[72] K. S. Khouri and N. K. Jha, "Leakage power analysis and reduction during 
behavioral synthesis," IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, vol. 10, no. 6, 2002, pp. 876-85. 

[73] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, "Low-power CMOS 
digital design," IEEE Journal of Solid State Circuits, vol. 27, no. 4, 1992, pp. 
473-84. 

[74] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. Jane 
Irwin, M. Kandemir, and V. Narayanan, "Leakage Current: Moore's Law 
Meets Static Power," Computer, vol. 36, no. 12, 2003, pp. 68-75. 

[75] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, "A dynamic 
voltage scaled microprocessor system," IEEE Journal of Solid State Circuits, 

35, no. 11, 2000, pp. 1571-80. 



References 177 

[76] K. Roy, S. Mukhopadliyay, and H. Malinioodi-Meiniand, "Leakage current 
mechanisms and leakage reduction techniques in deep-submicrometer CMOS 
circuits," Proceedings of the IEEE, vol. 91, no. 2, 2003, pp. 305-27. 

[77] D. Duarte, N. Vijaykrishnan, M. J. Irwin, H.-S. Kim, and G. McFarland, 
"Impact of scaling on the effectiveness of dynamic power reduction schemes," 
in Proceedings IEEE International Conference on Computer Design, 2002, pp. 
382-7. 

[78] V. Gutnik and A. P. Chandrakasan, "Embedded power supply for low-power 
DSP," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 
5, no. 4, 1997, pp. 425-35. 

[79] "Transmeta Coperation: Crusoe Processor," http://www.transmeta.com/cmsoe/. 
2004. 

[80] "AMD PowerNow! Technology," 2002. 

[81] "Intel XScale Technology," http://www.intel.com/design/intelxscale/, 2004. 

[82] R. K. Gupta, C. N. Coelho, Jr., and G. De Micheh, "Synthesis and simulation 
of digital systems containing interacting hardware and software components," 
in Proceedings 29th ACM/IEEE Design Automation Conference, 1992, pp. 
225-30. 

[83] R. K. Gupta and G. De Micheli, "System-level synthesis using re-
programmable components," in Proceedings European Conference on Design 
Automation, 1992, pp. 2-7. 

[84] R. Ernst, J. Henkel, and T. Benner, "Hardware-software cosynthesis for 
microcontrollers," IEEE Design & Test of Computers, vol. 10, no. 4, 1993, pp. 
64-75. 

[85] J. Henkel, T. Benner, R. Ernst, W. Ye, N. Serafimov, and G. Glawe, 
"COSYMA; a software-oriented approach to hardware/software codesign," 
Journal of Computer and Software Engineering, vol. 2, no. 3, 1994, pp. 293-
314. 

[86] J. Henkel, R. Ernst, U. Holtmann, and T. Benner, "Adaptation of partitioning 
and high-level synthesis in hardware/software co-synthesis," in Proceedings 
IEEE/ACM International Conference on Computer Aided Design, 1994, pp. 
96-100. 

[87] P. Eles, Z. Peng, K. Kuchchinski, and A. Doboli, "System level 
hardware/software partitioning based on simulated annealing and tabu search," 
Design Automation for Embedded Systems, vol. 2, no. 1, 1997, pp. 5-32. 

http://www.transmeta.com/cmsoe/
http://www.intel.com/design/intelxscale/


References 178 

[88] R. P. Dick and N. K. Jha, "MOGAC: a multiobjective genetic algorithm for 
hardware-software cosynthesis of distributed embedded systems," IEEE 
Transactions on Computer Aided Design of Integrated Circuits and Systems, 
vol. 17, no. 10, 1998, pp. 920-35. 

[89] J. G. D'Ambrosio and X. Hu, "Configuration-level hardware/software 
partitioning for real-time embedded systems," in Proceedings Third 
International Workshop on Hardware/Software Codesign, 1994, pp. 34-41. 

[90] P. V. Knudsen and J. Madsen, "PACE; a dynamic programming algorithm for 
hardware/software partitioning," in Proceedings Fourth International 
Workshop on Hardware/Software Co-Design, 1996, pp. 85-92. 

[91] P. B. Jorgensen and J. Madsen, "Critical path driven cosynthesis for 
heterogeneous target architectures," m Proceedings Fifth International 
Workshop on Hardware/Software Codesign, 1997, pp. 15-9. 

[92] Y.-K. Kwok and I. Ahmad, "Dynamic critical-path scheduling: an effective 
technique for allocating task graphs to multiprocessors," IEEE Transactions on 
Parallel and Distributed Systems, vol. 7, no. 5, 1996, pp. 506-21. 

[93] M.-Y. Wu and D. D. Gajski, "Hypertool: a programming aid for message-
passing systems," IEEE Transactions on Parallel and Distributed Systems, vol. 
l,no. 3, 1990, pp. 330-43. 

[94] K. Tindell and J. Clark, "Holistic schedulability analysis for distributed hard 
real-time systems," Microprocessing & Microprogramming, vol. 40, no. 2-3, 
1994, pp. 117-34. 

[95] M. Weiser, B. Welch, A. Demers, and S. Shenker, "Scheduling for reduced 
CPU energy," in Proceedings First USENIXSymposium on Operating Systems 
Design and Implementation, 1994, pp. 13-23. 

[96] K. Govil, E. Chan, and H. Wasserman, "Comparing algorithms for dynamic 
speed-setting of a low-power CPU," in Proceedings International Conference 
on Mobile Computing and Networking, 1995, pp. 13-25. 

[97] T. Paring, T. Burd, and R. Brodersen, "The simulation and evaluation of 
dynamic voltage scaling algorithms," in Proceedings International Symposium 
on Low Power Electronics and Design, 1998, pp. 76-81. 

[98] Y. Shin and K. Choi, "Power conscious fixed priority scheduling for hard real-
time systems," in Proceedings Design Automation Conference, 1999, pp. 134-
9. 



References 179 

[99] Y. Shin, K. Choi, and T. Sakurai, "Power optimization of real-time embedded 
systems on variable speed processors," in Proceedings IEEE/ACM 
International Conference on Computer Aided Design, 2000, pp. 365-8. 

[100] S. Lee and T. Sakurai, "Run-time voltage hopping for low-power real-time 
systems," in Proceedings Design Automation Conference, 2000, pp. 806-9. 

[101] E. Zitzler, J. Teich, and S. S. Bhattacharyya, "Optimizing the efficiency of 
parameterized local search within global search: a preliminary study," in 
Proceedings Congress on Evolutionary Computation, 2000, pp. 365-72. 

[102] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler, "Hybrid 
global/local search strategies for dynamic voltage scaling in embedded 
multiprocessors," in Proceedings Ninth International Symposium on 
Hardware/Software Codesign, 2001, pp. 243-8. 

[103] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, "Synthesizing energy-efficient 
embedded systems with LOPOCOS," Design Automation for Embedded 
Systems, vol. 6, no. 4, 2002, pp. 401-24. 

[104] M. C. Johnson, D. Somasekhar, and K. Roy, "Models and algorithms for 
bounds on leakage in CMOS circuits," IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 18, no. 6, 1999, pp. 714-725. 

[105] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and E. G. Friedman, 
"Managing static leakage energy in microprocessor functional units," in 
Proceedings International Symposium on Microarchitecture, 2002, pp. 321-32. 

[106] D. Duarte, Y.-F. Tsai, N. Vijaykrishnan, and M. J. Irwin, "Evaluating run-time 
techniques for leakage power reduction," in Proceedings 15th International 
Conference on VLSI Design, 2002, pp. 31-8. 

[107] Y.-F. Tsai, D. Duarte, N. Vijaykrishnan, and M. J. Irwin, "Implications of 
technology scaling on leakage reduction techniques," in Proceedings Design 
Automation Conference, 2003, pp. 187-190. 

[108] Z. Chen, M. Johnson, L. Wei, and K. Roy, "Estimation of standby leakage 
power in CMOS circuits considering accurate modeling of transistor stacks," 
in Proceedings International Symposium on Low Power Electronics and 

1998, pp. 239-244. 

[109] Y. Ye, S. Borkar, and V. De, "A new technique for standby leakage reduction 
in high-performance circuits," in Proceedings Symposium on VLSI Circuits, 
1998, pp. 40-1. 

[110] W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte, and Y.-E. 
Tsai, "Exploiting VLIW schedule slacks for dynamic and leakage energy 



References 180 

reduction," in Proceedings International Symposium on Microarchitecture, 
2001, pp. 102-113. 

[111] S. i. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, 
"1-V power supply high-speed digital circuit technology with multithreshold-
voltage CMOS," IEEE Journal of Solid-State Circuits, vol. 30, no. 8, 1995, pp. 
847-854. 

[112] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, "Gated-
V<sub>dd</sub>: A circuit technique to reduce leakage in deep-submicron 
cache memories," in Proceedings International Symposium on low Power 
Electronics and Design, 2000, pp. 90-95. 

[113] F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, and C. Hu, 
"Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI," 
IEEE Transactions on Electron Devices, vol. 44, no. 3, 1997, pp. 414-422. 

[114] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, "Design and optimization of 
low voltage high performance dual threshold CMOS circuits," in Proceedings 
Design Automation Conference, 1998, pp. 489-494. 

[115] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, "Combined dynamic 
voltage scaling and adaptive body biasing for lower power microprocessors 
under dynamic workloads," m. Proceedings International Conference on 
Computer Aided Design, 2002, pp. 721-5. 

[116] A. Doboli and P. Eles, "Scheduling under data and control dependencies for 
heterogeneous architectures," in Proceedings IEEE International Conference 
on Computer Design, 1998, pp. 602-608. 

[117] K. Kuchcinski, "Embedded system synthesis by timing constraints solving," in 
Proceedings Tenth International Symposium on System Synthesis, 1997, pp. 
50-57. 

[118] S. Chakraborty, T. Erlebach, S. Kunzli, and L. Thiele, "Schedulability of 
event-driven code blocks in real-time embedded systems," m Proceedings 
Design Automation Conference, 2002, pp. 616-21. 

[119] Y. Xie and W. Wolf, "Allocation and scheduling of conditional task graph in 
hardware/software co-synthesis," in Proceedings Design, Automation and Test 
in Europe, 2001, pp. 620-5. 

[120] R. B. Ortega and G. Borriello, "Communication synthesis for embedded 
systems with global considerations," in Proceedings Fifth International 

OM 1997, pp. 69-73. 



References 181 

[121] R. B. Ortega and G. Borriello, "Communication synthesis for distributed 
embedded systems," in Proceedings IEEE/ACM International Conference on 
Computer Aided Design, 1998, pp. 437-44. 

[122] P. V. Knudsen and J. Madsen, "Integrating communication protocol selection 
with hardware/software codesign," IEEE Transactions on Computer Aided 
Design of Integrated Circuits and Systems, vol. 18, no. 8, 1999, pp. 1077-95. 

[123] P. Pop, P. Eles, and Z. Peng, "Scheduling with optimized communication for 
time-triggered embedded systems," m Proceedings Seventh International 
Workshop on Hardware/Software Codesign, 1999, pp. 178-82. 

[124] M. R. Stan and W. P. Burleson, "Bus-invert coding for low-power I/O," IEEE 
Transactions on Very Large Scale Integration VLSI Systems, vol. 3, no. 1, 
1995, pp. 49-58. 

[125] L. Benini, G. De-Micheli, E. Macii, D. Sciuto, and C. Silvano, "Address bus 
encoding techniques for system-level power optimization," in Proceedings 
Design, Automation and Test in Europe, 1998, pp. 861-6. 

[126] D. E. Goldberg, Genetic algorithms in search, optimization, and machine 
learning, Addison Wesley Professional, 1989. 

[127] T. Baeck, U. Hammel, and H.-P. Schwefel, "Evolutionary computation: 
Comments on the history and current state," IEEE Transactions on 
Evolutionary Computation, vol. 1, no. 1, 1997, pp. 3-17. 

[128] M. Palesi and T. Givargis, "Multi-objective design space exploration using 
genetic algorithms," in Proceedings Tenth International Symposium on 
Hardware/Software Codesign, 2002, pp. 67-72. 

[129] D. Sciuto, F. Salice, L. Pomante, and W. Fornaciari, "Metrics for design space 
exploration of heterogeneous multiprocessor embedded systems," in 
Proceedings Tenth International Symposium on Hardware/Software Codesign, 
2002, pp. 55-60. 

[130] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, "Energy estimation for 
32-bit microprocessors," in Proceedings Eighth International Workshop on 
Hardware/Software Codesign, 2000, pp. 24-8. 

[131] Y.-T. S. Li and S. Malik, "Performance analysis of embedded software using 
implicit path enumeration," in Proceedings Design Automation Conference, 
1995, pp. 456-61. 

[132] T. Y. Yen and W. Wolf, "Performance estimation for real-time distributed 
embedded systems," IEEE Transactions on Parallel and Distributed Systems, 
vol. 9, no. 11, 1998, pp. 1125-36. 



References 182 

[133] V. Tiwari, S. Malik, and A. Wolfe, "Power analysis of embedded software: a 
first step towards software power minimization," IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems, vol. 2, no. 4, 1994, pp. 437-45. 

[134] V. Tiwari and M. T.-C. Lee, "Power analysis of a 32-bit embedded 
microcontroller," in Proceedings Asia and South Pacific Design Automation 
Conference, 1995, pp. 141-8. 

[135] P. Pop, Scheduling and communication synthesis for distributed real-time 
systems. Licentiate thesis, Linkopings University, 2000. 

[136] J. Liu, P. H. Chou, and N. Bagherzadeh, "Communication speed selection for 
embedded systems with networked voltage-scalable processors," in 
Proceedings Tenth International Symposium on Hardware/Software Codesign, 
2002, pp. 169-174. 

[137] H. Kopetz and G. Grunsteidl, "TTP - a protocol for fault-tolerant real-time 
systems," Computer, vol. 27, no. 1, 1994, pp. 14-23. 

[138] J. Luo, L.-S. Peh, and N. Jha, "Simultaneous dynamic voltage scaling of 
processors and communication links in real-time distributed embedded 
systems," in Proceedings Design Automation and Test in Europe, 2003, pp. 
1150-1. 

[139] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, 
"Simultaneous Communication and Processor Voltage Scaling for Dynamic 
and Leakage Energy Reduction in Time-Constrained Systems," in Proceedings 
International Conference on Computer Aided Design, 2004. 

[140] W. Stallings, Data & Computer Communications, Prentice-Hall Inc., 2000. 

[141] T. L. Adam, K. M. Chandy, and J. R. Dickson, "A comparison of list schedules 
for parallel processing systems," Communications of the ACM, vol. 17, no. 12, 
1974, pp. 685-90. 

[142] G. C. Sih and E. A. Lee, "A compile-time scheduling heuristic for 
interconnection-constrained heterogeneous processor architectures," IEEE 
Transactions on Parallel and Distributed Systems, vol. 4, no. 2, 1993, pp. 175-
87. 

[143] "GSM 06.10." http://kbs.cs.tu-berlin.de/~iutta/toast.html. 

[144] L. Yan, J. Luo, and N. K. Jha, "Combined Dynamic Voltage Scaling and 
Adaptive Body Biasing for Heterogeneous Distributed Real-time Embedded 
Systems," in Proceedings International Conference on Computer Aided 

2003, pp. 30-37. 

http://kbs.cs.tu-berlin.de/~iutta/toast.html


References 183 

[145] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, 
"Overhead-conscious voltage selection for dynamic and leakage energy 
rduction of time-constrained systems," m Proceedings Design, Automation 
and Test in Europe, 2004, pp. 518-523. 

[146] "International technology roadmap for semiconductors," http.-//public.itrs.net/, 
2003. 

[147] J. Ahmed and C. Chakrabarti, "A dynamic task scheduling algorithm for 
battery powered DVS systems," in Proceedings International Symposium on 
Cirquits and Systems, 2004, pp. 813-816. 

[148] "The LEDA user manual. Version 4.1," http://itp.nat.uni-
magdeburg.de/docs/MANUAL/MANUAL.html. 

[149] "GAlib - a C++ library of genetic algorithm components," 
http.7/lancet.mit.edu/ga/. 


