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ABSTRACT 

by Tlmc Duong Nguyen 

Multi-agent systems, in which autonomous agents interact in flexible ways, are an im

portant new approach for developing software systems for a range of real-world prob

lems. Here the notion of an agent (a computer program that is capable of autonomously 

working in its environment and interacting with other agents) is the core building block 

of the system. These software agents interact with one another in order to achieve their 

individual goals or to manage the dependencies that ensue from being situated in a com

mon environment. Now, there are many different types of interaction that can occur in 

such systems. However negotiation, the process of collaborating agents coming to an 

agreement on a specific matter, is one of the most important. It is so important because 

it offers a means for the agents to make a mutual selection of actions which, in tum, is 

simply the de facto means of interaction between autonomous components. 

Against this background, this research developed a model that software agents can use 

to drive their participation in bilateral (pairwise) encounters. Specifically, we consider 

the case in which the agents negotiate over multiple issues (such as the price, quality and 

time of delivery) and where they can engage in multiple, concurrent encounters in order 

to procure the same good or service. The model is targeted at realistic trading scenarios 

(including web service procurement and virtual organization management) and so has to 

be computationally efficient and be able to operate effectively with minimal information 

about its negotiation opponents. 

To this end, we have developed a heuristic-based concurrent model that allows an agent 

to effectively handle simultaneous negotiations with other agents. A versatile coordi

nation mechanism has been created to ensure that all the negotiations are inter-related 

to each other to ensure that only a single high value deal is reached at the end of the 

bargaining process. A commitment model has also been integrated to allow the agents 

to have more flexible behaviors and to stimulate different agents to participate in the ne

gotiation process. Finally, an adaptive negotiation strategy has been introduced, which 

makes use of the information gained during the process, to improve the performance of 

the model in certain scenarios. 
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Chapter 1 

Introduction 

The work presented in this thesis is concerned with automated negotiation between soft

ware agents. Our interests focus on a subset of the domain, called concurrent bilateral 

negotiation, in which an agent engages in a number of parallel pairwise negotiations 

with other agents in order to come to a mutually acceptable agreement on some mat

ter. These negotiations may influence one another in order for that agent to gain more 

benefit from the bargaining process. 

The structure of this chapter is as follows: the background of agents and the automated 

negotiation problem are described in section 1.1, followed by a number of motivating 

examples in section 1.2. Next, the contributions of this work are given in section 1.3, 

followed by the list of publications in section 1.4. Finally, section 1.5 outlines the 

overall structure of this thesis. 

1.1 Negotiating Agents 

In recent years, agent-based computing has emerged as an important new approach in 

computer science. This can be explained by the natural fit between agent-based concepts 

and those required for modelling, designing and building complex distributed systems 

[Jennings, 2001]. While the exact definition of agency is still a point of some debate, 

we use the following definition, which has also been adopted by an increasing number 

of researchers: 

Definition 1.1. an agent is an encapsulated computer system that is situated in some 

environment and that is capable of flexible, autonomous action in that environment in 

order to meet its design objectives [Wooldridge, 1997]. 

1 
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A number of distinguishing characteristics of agent-based approaches are worth high

lighting: (i) agents are autonomous: this means that they have control over their own 

actions and they can act without human intervention; (ii) agents are reactive: they 

sense the changes in their surrounding environment and react in a timely fashion to 

those changes; and (iii) agents are proactive: they do not just respond to the changes 

in their environment, they are able to take the initiative in order to satisfy their goals 

[Wooldridge and Jennings, 1995]. 

Although these aforementioned characteristics help individual agents to act flexibly in 

order to achieve their design objectives, much of the power of the agent-based ap

proach relies on the social! characteristic of the agents [Wooldridge and Jennings, 1995; 

Alonso, 2002]. This characteristic is particularly important because most of the real

world problems that can benefit from using agent-based approaches require or involve 

multiple agents [Bond and Gasser, 1988]. Thus, as several agents are situated in a com

mon environment, there will necessarily be some dependencies between them [Castel

franchi. ] 998] (e.g. if the agents have mutually conflicting goals, the effects of the 

action of one agent will impinge in some way on the goals of another or if they need 

to access a shared and limited resource then, again, the individual action taken will 

affect the other agents). Given this, the agents will need to interact to manage these 

dependencies. 

The systems in which these interactions take place are termed multi-agent systems 

(MAS). Some example systems are: auction houses in which the price of a good is ob

tained as a result of several agents competing against each other [Wurman et al., 2001; 

Sandholm, 1999a], grid environments where agents negotiate to optimize computing re

source allocation over time [Shen ef aI., 2002], information sharing environments where 

agents negotiate with each other for the right to access a common source of information 

[Huhns and Stephens, 1999] and e-commerce environments where agents buy and sell 

goods [Maes et aI., 1999]. 

In these exemplar systems, coordination can be used as the generic term for all types 

of social interaction [Excelente-Toledo et al., 2001; Calisti, 2001]. However, because 

it covers a broad range of topics, it is viewed differently by different researchers. For 

example, Bond and Gasser's view of coordination, as a property of interaction among 

some set of agents performing some collective activity [Bond and Gasser. 1988], con

cerns the outcome of the coordination only. On the other hand, Malone and Crowston's 

view of coordination, as the act of managing the inter-dependencies between activities 

1 Here, social means that the agents interact with one another (via some kind of agent communication 
language [Genesereth and Ketchpel, 199-1-]) in order to pursue their own objectives or to benefit the wider 
community. 
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perfOlmed [Malone and Crowston, 1990], concerns the process of the coordination. Re

gardless of the viewpoint, however, a successful attempt to coordinate agents' actions 

should result in a coherent overall system performance in which actions do not con

fhct with one another. If, however, coordination is unsuccessful then the system may 

behave incoherently (e.g. the community may quickly degenerate into a collection of 

chaotic, incohesive individuals [Jennings, 1996]). In the aforementioned auction house, 

for example, if the coordination attempt succeeds (the agents propose their offers and 

counter-offers in a specific manner that is determined by the auction protocol) then the 

auction is considered legal and the final price will be accepted by all the parties. On the 

other hand, unsuccessful coordination could result in the wasting of time and resources 

and no final price being agreed upon. In the information sharing example, successful 

coordination results in each participating agent being able to access the information it 

needs. However, if coordination fails, the agents may duplicate unnecessary activities or 

block one another from accessing their target information [Huhns and Stephens, 1999]. 

While coherence is one reason why coordination is needed, it is not the only one2
. Other 

motivating factors include the fact that [Jennings, 1996]: 

• global constraints exist: there are global conditions that all the agents must satisfy 

(e.g. the total allowed money for a project is fixed or no more than two agents are 

allowed to access the resource at the same time). If the agents are allowed to act 

individually and each tries to maximize its own profit then the global constraints 

are unlikely be met. 

• solving the problem requires the cooperation of the agents: due to the limited 

information, resources and skills of a single agent, it is unlikely that a problem 

can be solved by only one individual (e.g. building a house requires architects, 

builders and electricians). 

As can be seen, coordination is needed for a variety of reasons and it encompasses a 

variety of behaviors. Consequently, a number of different techniques have been de

veloped to coordinate the behaviors of multi-agent systems [Excelente-Toledo, 2003]. 

These include iteratively exchanging partial global plans until all the constraints are 

satisfied [Durfee and Lesser, 1991], instituting social laws in order to avoid harmful 

interactions [Shoham and Tennenholtz, 1995], using contracting protocols to allocate 

2Even when coordination is not needed (e.g. agents' actions are independent and resources are plen
tiful), it may still be beneficial if the agents are coordinated [Faratin, 2001]. For example, in searching 
for information, an independent discovery by one agent can help reduce the complexity of another by 
sharing its discovery and so pruning its search space [Decker, 1995]. 
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task [Smith, 1980; Davis and Smith, 1983], using authority hierarchies to form organi

zational structures [Carley and Gasser, 1999; Fox, 1981], exchanging bids in a market 

place to allocate tasks [Wellman, 1993] and negotiating to pursue agreements [Lomus

cio et aI., 2003; Jennings et aI., 2001]. 

For the purposes of this research, however, we focus on negotiation between agents that 

are self-interested (i.e. that they try to do as well as they can for themselves). We do so 

because this is the method humans use when attempting to reach an agreement on a vari

ety of issues [Raiffa, 1982; Pruitt, 1981; Hiltrop and Udall, 1995] and we believe it will 

be the dominant operation mode for autonomous agents when facing similar situations 

[Lomuscio et a1 .. 2003; Jennings et a1., 2001]. Such negotiation will become ubiquitous 

because it allows the agents to communicate in a structured manner that should enable 

them to come to an agreement while minimizing the amount of information that needs to 

be revealed to each other3 . Furthermore, automated negotiation among self-interested 

agents is becoming increasingly important in MAS because of the following reasons 

[Sandholm, 1999b]: 

• technology push: with the advent of standardized communication infrastructures 

(the Internet, Grid, Semantic Web), negotiation allows agents from different or

ganizations with different designs to interact in real time in an open environment 

so that they can carry out different transactions. 

• application pull: at the decision making level, there is an increasing demand 

for computer application support for negotiation. Relevant examples include the 

introduction of transactional e-commerce on the Internet for purchasing goods 

[Maes et al., 1999] or information [Kalakota and Whinston, 1996] and the resource

scheduling negotiation system in grid environments [Shen et al., 2002]. 

• efficiency: automated negotiation among agents does not require the intervention 

of humans, thus saving time for human negotiators. Furthermore, in many cases, 

the agents can be more effective in finding strategically beneficial contracts than 

humans in complex negotiation settings [Sandholm, 1999b]. 

In more detail, negotiation is here defined as: 

Definition 1.2. the process by which a group of agents communicate with one another 

to try to reach agreement on some matter of common interest [Lomuscio et af., 2003]. 

3When all the agents are self-interested, any information about the evaluation criteria of one agent can 
be a huge beneficial advantage to another agent (see chapter 2 for more details). 
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In the context of this research, the matter of common interest or the subject of the ne

gotiation is termed a service. It is, in an abstract way, the capability of an agent that can 

be beneficial to the society or to the other agents. This definition is a common concept 

in the domains e-commerce, grid and web services; indeed it is fundamental to the gen

eral area of service-oriented computing [Singh and Huhns, 2005; de Roure et al., 2003; 

Faratin et al., 2003; Payne et al., 2002]. Now, there are a variety of service examples, 

ranging from a simple capability such as data retrieval, onto more advanced capabilities 

such as automatic bidding for goods on the Internet. However, in this context, we are 

primarily interested in e-commerce like scenarios and so term the agent that is capable 

of providing the service the seller and the agent that wants to purchase the service the 

buyer. 

In more detail, an agent's interest in a service at any specific time period of the nego

tiation is represented by a proposal. In most negotiation settings, the agents iteratively 

exchange proposals with one another until one proposal is agreed by all participants (in 

this case, the negotiation successfully terminates with an agreement) or one agent opts 

out (in this case, the negotiation terminates without an agreement). The final proposal 

in a successful negotiation (an agreement) is considered as a statement of the rights 

and obligations of each party to a transaction or transactions [Bannock et al., 1992]. 

Depending on the specifics of the negotiation, a proposal can cover a single issue (e.g. 

price) or multiple issues (e.g. price, quality and quantity). 

In this service-oriented context, there are three broad types of negotiation interactions 

depending on the number of participants: 

• many-to-many: this is the most complex negotiation setting, where there are mul

tiple sellers and multiple buyers participating. This type of negotiation is typically 

dealt with using a complex auction settings such as a double auction [Friedman 

and Rust, 1992; Wurman et (fl., 2001] 

• one-to-many: there are two cases of this type of negotiation: (1) one seller and 

multiple buyers and (2) one buyer and multiple sellers. The former is the standard 

setting of many auctions and it is very popular on the Internet (e.g. http://wvvw . 

ebay. co. uk, http://auctions . yahoo. com) while the latter is the stan

dardcase for price comparison engines (e.g. http://wvvw . deal time . co. uk, 

http://wvvw.pricewatch.com) [Lomuscio et a/., 2003; Anthony. 2003]. 

• one-to-one or bilateral: this is a very common type of negotiation [Jennings et 

al., 2001; Lomuscio et al., 2003] and it involves a single seller and a single 

buyer. Unlike the previous two negotiation types, bilateral negotiation cannot 
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be efficiently handled by auction techniques because these techniques rely on 

competition; thus, they will not be effective in this situation. Furthermore, the 

participating agents are able to exchange information both from the seller to the 

buyer and from the buyer to the seller (e.g. the seller can express its opinion 

about the buyer's proposal via some form of counter-offer, which the buyer can 

then use to refine its offer to send back to the seller) [Lomuscio et al.. 2003; 

Nguyen and Jennings, 2005]. This information exchange allows the agents to 

flexibly express their preferences and, thus, requires more flexible techniques than 

those typically found in an auction to search for offers in the agreement space. 

To this end, this research focuses on applying bilateral negotiation techniques into one

to-many service oriented negotiations between self-interested agents. In particular, we 

aim to use multiple concurrent bilateral negotiations as an alternative to both standard 

bilateral negotiations and to traditional auction techniques that are normally used in 

one-to-many scenarios. The motivation behind this is twofold. In comparison to stan

dard bilateral techniques, the agents can come to the agreement sooner without being in 

a worse position. In comparison to standard auction techniques, the participating agents 

can be more flexible in bargaining with one another and so can avoid the rigidness of 

the standard auction protocols. Consequently, we believe the outcome of the negoti

ation can be more beneficial to the agents than that achieved using either the standard 

bilateral or the standard auction approaches. Furthermore, by using bilateral negotiation 

techniques, the negotiation can be tailored to each individual opponent, potentially giv

ing the negotiating agent more bargaining power and, thus, allowing it to obtain better 

outcomes. 

Given this background, section 1.2 will give more insight into the motivations and the 

benefits of applying such techniques in our chosen setting. 

1.2 Research Motivations and Requirements 

Bilateral negotiation is an important research area because it is a common form of nego

tiation in a range of different domains (including e-commerce, the grid and the semantic 

web) [Lomuscio et al., 2003]. To this end, a number of different models have been de

veloped (see chapter 2 for more details). These models can be broadly characterized by 

the following nomenclature [Jennings et al., 2001]: 

• game theory: using these techniques, a negotiation is considered as a game of two 

players. Here, a game is informally defined as the rules of an encounter between 
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players that have strategies and associated payoffs. This method normally guar

antees to find the optimal solution for all players. However, game theory methods 

are often based on unrealistic assumptions (e.g. the players' evaluation criteria, 

deadlines, pricing structures and so on are often assumed to be commonly known) 

and in many cases the computation required is intractable (since these methods 

normally need to take into account all the possible states of the environment, as 

well as potential behaviors of the players in order to make a decision, this require

ment typically requires unbounded computational capability). Refer to section 2.1 

for a more detailed review . 

• heuristic: these methods are typically built upon realistic assumptions (e.g. each 

agent does not known its opponent's evaluation criteria, deadlines and so on) and 

they take into account the computational requirements of realizing the models. As 

a result, these methods are applicable in more general situations than game theory 

based techniques (e.g. realistic negotiation scenarios, where such assumptions are 

inapplicable to the participating agents). However, the outcomes generated are 

often sub-optimal and they often require extensive empirical analysis in order to 

ascertain their operational characteristics. Refer to section 2.2 for a more detailed 

analysis of heuristic models. 

• argumentation-based: these methods are a relatively new addition to the auto

mated negotiation area. They allow more information (such as threats or appeals) 

to be exchanged during negotiation than their game-theoretic and heuristic coun

terparts. In general, in argumentation-based encounters, the agents can explicitly 

state their opinions with supportive information (e.g. an explanation of why a 

contract is not acceptable). However, this approach has high computational com

plexity since agents have to reason about arguments (both when sending proposals 

and when receiving them) in addition to the basic negotiation proposals [Rahwan 

et al., 2003]. 

In this research, we aim to develop a negotiation model that targets realistic scenarios. 

Specifically, we want our model to be applied in a variety of negotiation contexts that 

are not based on unrealistic assumptions and do not require unrestricted computational 

capabilities. As can be seen from the aforementioned description, heuristics are the 

most suitable method in this regard and thus this is the approach adopted in this work4
. 

We do not adopt one of the standard auction models because in such cases: 

4Even though argumentation-based models can give the agents additional bargaining power, they also 
require the agents to reason about common knowledge (normally represented in an ontology) and the 
computational requirements are much higher than their heuristic counterparts. Furthermore, the scenarios 
we target typically do not require the agents to have such bargaining power in order to obtain good results. 
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• The communication of offers and counter-offers are normally limited to flowing 

in one direction. For example, in a typical auction, the seller agent will have a 

number of proposals from the buyers and it has to select one of these proposals as 

its final contract. Thus, there is no way for the seller agent to modify a particular 

proposal to suit its needs . 

• Most of the auction techniques have the problem of rigidness and high structural

ism. For example, the time it takes to complete the bargaining process is typically 

either fixed or undetermined. Normally, an auction only ends if the deadline has 

passed or when no bid is received within a predefined amount of time. This is 

a problem when the seller agent needs to make an agreement within a specified 

time frame. 

To this end, we propose concurrent bilateral negotiations as an alternative. Specifically, 

instead of using one way communication (only buyers make bids), our approach allows 

two way simultaneous communication of offers and counter-offers. Thus, instead of just 

submitting bids from one agent to another agent, a complete bilateral negotiation will 

be carried out between these two agents (here in this work, this particular negotiation 

is called a thread). Then, when all the negotiations have finished, the agreement that 

has the highest benefit to our agent will be selected as the final one. In such scenarios, 

the agents can now exercise various bilateral negotiation strategies to suit their interests. 

These abilities also allow the agents to possibly increase the social welfare since such 

negotiation allows the agents to come to an agreement that satisfies all of their inter

ests. Furthermore, the time to achieve an agreement can potentially be decreased. In 

auctions, only the search spaces of the seller agents are reduced throughout the negoti

ation. In contrast, by using multiple concurrent negotiations, our model enables all the 

participating agents to narrow their search spaces simultaneously to find possible offers. 

This simultaneously space narrowing can result in both parties coming to an agreement 

quicker if one exists. 

We also do not adopt standard bilateral negotiation models since they are specifically 

designed to handle two agent negotiations. In our target environment, in which there 

is more than one seller, these models do not provide an appropriate solution because 

they only consider negotiation with one of the potential sellers. It can be argued that 

by negotiating sequentially with all the sellers, an agreement can be reached. However, 

organizing the negotiation in this manner will lead to lengthy negotiations and there is 

a problem of orderings. Furthermore, if the buyer's negotiation deadline is restricted, 

5In sequential negotiation, the result of a successful negotiation can be used as the base for the subse
quent negotiations. Thus, different orders in which the buyer agent negotiates with the seller agents will 
result in different outcomes of the encounter. 
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it may not be able to bargain with all the sellers in time. Thus, the buyer agent may 

miss some high value outcomes. In contrast, by negotiating concurrently, the encounter 

will be shorter and the ordering problem is eliminated. Specifically, the buyer agent can 

still use the result of a successful negotiation to influence other ongoing negotiations. 

Moreover, since all the negotiations with the sellers will be carried out concurrently, 

there is less of a problem of finishing within the agents' deadlines. 

Having presented this approach, we now outline two use-case scenarios to motivate the 

discussion further and to illustrate the idea of concurrent negotiation. 

1. Henry decides that he needs a short break to sort out his stress problems at work. 

The weekend is approaching and he decides he will go to Ibiza during this occa

sion. He prefers the cheapest package and he is willing to spend no more than 

£1000 on this trip. Previously, he would do this task via phone; negotiating with 

each travel agent he knows about the price and, later, selecting the cheapest one. 

However, he is currently very busy at work and, furthermore, there is not enough 

time to do this conventionally. Therefore, he would like his personal agent, called 

sigma, to help him sort out this matter. 

Given Henry's requirements, sigma needs to find a travel agent that provides the 

cheapest package in one day, more precisely, within six hours due to the fact 

that no travel agent is working after office hours. From the Yellow Pages, sigma 

finds ten available travel agents (called agent l ) agent2) ... ) agentlO) and each of 

them needs about one hour to find and confirm the details of the package. The 

communication among the agents is freely available and secure via the Internet. 

Conventionally, if sigma negotiates with a single travel agent until it finishes and 

then moves onto the next one, it can only query six out of the ten agents and it 

will miss the other four. This means there is a possibility that sigma could miss 

the best deal. Furthermore, there is also a problem of the order in which the travel 

agents should be queried (e.g. sigma does not know which order the travel agents 

should be processed: should it start with agentl or agent2 ?). 

On the other hand, sigma could negotiate with all the travel agents concurrently 

(see figure 1.1). After all of them finish, sigma selects the agent that provided the 

cheapest package. This allows sigma to complete the given task in time and still 

achieve the desired package (as he does when he does it conventionally). More

over, if the search with one travel agent finishes with an agreement while there are 

still other searches going on, sigma can use this agreement's value to influence 

the other ongoing searches. In some cases, this influencing can lead to an agree

ment with a better value. For example, having obtained an agreement with the 
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Agent }4---------.! 
5 

Criterias 
Place: Ibiza 
Price: £1000 
Days: 2 
Meals & Activities 

FIGURE 1.1: The holiday scenario. 
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agent4' sigma may change its strategy with agent5 to be tougher. Consequently, 

agent5 observes that sigma suddenly becomes a tougher negotiator and so it may 

change its strategy to be more concessionary in the hope of finding a deal. By 

so doing, the offer that agent5 generates may have a higher utility value to sigma 

than if agent5 had not changed its strategy. This, in tum, results in a deal that has 

a higher utility value for sigma. 

Comparing these two methods, it is obvious that by negotiating concurrently, 

sigma is able to complete the given task successfully without any loss in the final 

result and, moreover, it may possibly achieve a better result. 

2. The second scenario concerns virtual organizations (YO), in which a number of 

agents, with different problem solving capabilities and resources, come together 

to form a coalition to provide a compound service to an end user [Norman et al., 

2003]. Now, there are two possible situations in this scenario. The first happens 

when a YO (composed of 3 agents {X, Y, Z} ) has been formed and Z drops out 

(for whatever reason). The current YO should not be dismissed because its main 

objective has not yet been fulfilled. Instead, another agent needs to be summoned 

to replace Z. Given this, the agent that takes charge of the YO, called RA, then 

has to find the new agent within the minimum time and cost (see figure 1.2). The 

second situation happens when a YO has been formed and is operating. Then 

imagine that a new requirement is introduced that the current YO is not capable 

of handling. Again, one or more agents needs to be added to the grouping. 

In both scenarios, since the goals of the agents may conflict with each other (e.g. 

there may be different opinions about price, roles, etc.), changing the formation of 

the YO is achieved via the process of negotiation. Specifically, when RA needs to 
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vo 

Capability: Y 
Price: Py 

FIGURE 1.2: The VO reformation scenario. 
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find a particular agent for a specific requirement, it first requests the list of capable 

agents from a yellow page agent (YP). From this list, RA then needs to negotiate 

with each of the agents in order to find the most suitable candidate. Due to the 

requirement of the VO formation, these negotiations need to be finalized with the 

minimum possible operational time and cost. Thus, only by negotiating concur

rently with all the possible candidates can RA be sure that it gets the best deal in 

the shortest time. In contrast, if this process was to be handled by a traditional 

auction method, a solution for this complex problem may not be guaranteed (e.g. 

the bids from the provider agents might not satisfy all the requirements of RA and 

in such cases, there is no way RA can modify the bids to show its preference. On 

the other hand, if RA negotiates with the candidates simultaneously, its chance of 

finding a mutual agreement with a particular candidate is stronger since both of 

them can implicitly show their preferences to one another.). 

These scenarios are but two illustrations of the various practical scenarios that would 

benefit from using concurrent negotiations. There are clearly many others. Generalizing 

from this, the rest of this thesis focuses on an abstract scenario in which one buyer agent 

seeks to purchase a service that can be provided by a number of potential sellers agents. 

Moreover, we assume the agents all have time limits (hard deadlines) by when the 

negotiation must be completed (which is typical of many negotiations in e-commerce 

settings [Wurman el al., 2001; Anthony, 2003]). For reasons of simplicity, we also 

assume the service will only be provided by a single provider (meaning no partial offers 

will be considered). In such cases, the buyer will negotiate simultaneously with all the 

potential providers and each of these encounters will be handled as a single bilateral 

negotiation (thread). At the end of the encounter, the agreement that has the highest 

value to the buyer is selected as the final one. 
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Now, as agreed above, by using heuristics as the search method, the agents are able to 

operate in incomplete information settings (e.g. they do not need to know how their 

opponents evaluate their proposals; meaning that when these agents select the offers 

to propose to one another, they do not know explicitly whether these offers will be 

accepted or rejected). However, in some cases, it is not uncommon for the agents to 

have some general information about the other agent (e.g. agent A is typically easy in 

negotiating or agent B tends to be a tough negotiator) [Fatima et al., 2001; Zeng and 

Sycara, 1998). Thus, if such information is available, it should be exploited in order to 

benefit the negotiating agent. For example, if agent a knows that agent b is typically 

easy in negotiating, a will try to be harder when negotiating with b so that if it succeeds, 

the utility value it gains will be higher than if it is softer. In general, there are many 

different types of information that might be available to our negotiating agent, however, 

in this work, we consider one special type of information which is related to how the 

other agents generate their counter-offers. Thus, if such information is available, our 

model will try to exploit it in order to try and gain a better outcome for our agent. To 

this end, section 2.5 discusses some of the current learning techniques that are capable 

of exploiting such information and chapter 5 details the method we devised to exploit 

such information and the results we achieved. 

Another important issue to consider is how the concurrent negotiations should be carried 

out. Naturally, each negotiation is a fully featured single bilateral bargaining process 

and can be carried out as an independent encounter. However because they occur si

multaneously, the negotiations could influence one another during the encounter. For 

example, if one negotiation finishes early with an agreement, the agent will have some

thing in the bag and it can switch its negotiation stance in the other ongoing negotiations 

to something tougher (i.e. only conceding very slightly). Thus, if it succeeds, the re

sult achieved will be higher than if it did not change its negotiation stance [Nguyen 

and Jennings, 2003b). Similarly, towards the end of the encounter, if no agreement has 

been reached, the agent could switch its negotiation stance to something that concedes 

more rapidly in order to try and clinch a deal [Nguyen and Jennings, 2004a). Therefore, 

we believe that such mutual influence among the concurrent negotiations should pro

vide our agent with more bargaining power which should, in turn, improve its outcome 

in the bargaining process. Chapter 3 details this aspect of our negotiation model and 

presents the corresponding empirical results. 

In addition to the issue of mutual influence amongst the negotiation threads, handling 

the agreements presents another problem. At the end of the process, only one service 

provider needs to be selected. Naturally, if the buyer negotiates with various providers, 

there is a chance that more than one negotiation will result in an agreement. Thus, after 
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all the negotiations finish, the buyer is left with a number of (temporary) deals. This 

abundance of deals contrasts with the buyer's objective at the beginning of the process 

which is to obtain the whole desired service from a single provider. Given this, the 

question is what should the buyer do in this situation? Consider the following example 

for illustration: 

Agent sigma needs to find a travel agent that provides the cheapest travel package. 

From the Yellow Pages, sigma finds ten available travel agents (called agentl' agent2' 

... , agentlO) and negotiates with them simultaneously. Of the 10 negotiations, three 

were successful with final prices of £200 from agentl' £250 from agent4 and £150 

from agent6, respectively. 

Since sigma only needs one package, it has to select one of the three to become the 

final agreement. However, what will it do with the remaining two offers? The simplest 

solution is to accept the package from agent6 and discard the other two. In order to be 

able to do so in our model, the temporary agreements must be binding on the sellers (see 

section 3.1). This then allows the buyer agent to simply select the agreement that has 

the highest value as the final deal at the end of the negotiation and decline the others. 

This method gives the best outcome to the buyer agent and we discuss it thoroughly in 

chapter 3. 

Although efficient for the buyer agent, this simple solution has the significant drawback 

of treating the participating agents unequally. Once a deal is agreed upon, no seller 

agent can renege and, moreover, that deal might not even be finalized at the end of the 

negotiation process. On the other hand, the buyer agent is freed from being tied to the 

agreements it made. This limitation reduces the desirability for the seller agents to par

ticipate. It also limits the applicability of the negotiation model in realistic negotiation 

settings (i.e. not all scenarios allow the buyer agent to have such a degree of freedom). 

Moreover, although a deal can seem profitable for an agent at the time it occurs (viewed 

ex ante), it might not be so at a latter time (viewed ex post) [Sandholm and Lesser. 

2002]. This applies to both buyer and seller agents. Consequently, the model should 

allow both parties to renege from the deal if necessary (e.g. when presented with a 

better offer from another source or the current temporary agreement is no longer at

tractive). However, it does not necessarily mean that an agent can arbitrarily commit 

and decommit any time it wants to. It does have to be responsible for its action since 

its commitment has an influence on the other agent's behavior [Sen and DUlfee, 1994 l
To this end, there are a number of approaches that can enforce these restrictions on the 

agents' behaviors (see section 2.4 for more details). However, to accommodate this 

problem, a commitment model needs to be developed. This model needs to not only be 
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capable of treating the agents equally, but to be able to enforce the responsibilities into 

the agents' decisions. In this vein, chapter 4 introduces our approach to this problem 

(based upon paying penalties for decommitting) and analyzes the effectiveness of the 

approach empirically. 

To sum up, a number of requirements that need to be satisfied by the negotiation model 

have been identified in this subsection. These include the fact that it should: 

1. be computationally tractable; 

2. operate with incomplete information about the environment and the opponent; 

3. exploit partial information about the environment and the opponent if it is avail

able; 

4. allow agents to have (private) deadlines by when they must reach agreements; 

5. allow the negotiation threads to mutually influence one another; 

6. produce efficient negotiation outcomes; 

7. flexibly handle issues related to commitments so that the agents can reach effective 

deals. 

1.3 Research Contributions 

The work described in this thesis advances the state of the art in the following ways: 

• we have developed a negotiation model that enables an agent to manage multi

ple concurrent bilateral negotiations [Nguyen and Jennings, 2003b]. The only 

other model that deals with this situation is that of [Rahwan et af., 2002] and in 

comparison to this our model: 

- sets the initial strategies for the individual pairwise negotiations in an in

formed way based upon some know ledge of the prevailing market mix of 

agent types (see section 3.4.3) 

- enables the agent to change its individual negotiation strategies in response 

to its assessment of the negotiation behavior of its opponents (see section 

3.4.3) 
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- enables the agent to negotiate in a time-constrained environment in which 

there are deadlines (see section 3.4.1.3) 

• we have actually implemented an agent that can engage in multiple concurrent 

negotiations [Nguyen and Jennings, 2003a; Nguyen and Jennings, 2004a] (note 

that [Rahwan et al., 2002] is an abstract model only). This implementation has 

been used in two large scale system developments in the application areas of web 

service procurement and virtual organization management. 

• we have developed a commitment model for concurrent negotiation that [Nguyen 

and Jennings, 2004b; Nguyen and Jennings, 2005]: 

- allows any agent to back down from a committed deal for any reason it 

deems appropriate by paying a fee to another agent (see section 4.1). 

- enables the buyer agent to have different commitment strategies based on its 

assessment of its negotiation situation and the behavior of its opponents (see 

section 4.2). 

- permits the buyer agent to make a trade-off between the number of agree

ments it reached and the utility value of the final agreement (see section 

4.2). 

• we have developed an adaptive negotiation strategy that exploits any available 

partial information about the sellers in order to make more effective counter-offers 

which, in turn, lead to better final outcomes (see chapter 5). 

1.4 Published Papers 

The following papers have been published from the work contained in this research: 

• T. D. Nguyen and N. R. Jennings. Managing commitments in multiple concurrent 

negotiations. Int. 1. Electronic Commerce Research and Applications, 4(3) (to 

appear), 2005. 

• T. D. Nguyen and N. R. Jennings. Reasoning about commitments in multiple 

concurrent negotiations. Proceedings of the Sixth International Conference on 

E-Commerce, pages 77-84, Delft, The Netherlands, 2004 [Winner of best paper 

award at this conference]. 
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• J. Shao, W. A. Gray, N. J. Fiddian, V. Deora, G. Shercliff, P. J. Stockreisser, T. 

J. Norman, A. Preece, P. M. D. Gray, S. Chalmers, N. Oren, N. R. Jennings, 

M. Luck, V. D. Dang, T. D. Nguyen, J. Patel, W. T. L. Teacy and S. Thompson 

(2004) Supporting Formation and Operation of Virtual Organisations in a Grid 

Environment. Proceedings of The UK OST e-Science Second All Hands Meeting 

2004 (AHM'04), ISBN 1-904425-21-6, Nottingham, UK, 2004. 

• T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang, T. D. 

Nguyen, V. Deora, J. Shao, A. Gray, and N. Fiddian. Agent-based formation of 

virtual organisations. Int. J. Knowledge Based Systems, 17(2-4):103-111,2004. 

• T. D. Nguyen and N. R. Jennings. Coordinating multiple concurrent negotia

tions. In Proceedings of the Third International Joint Conference on Autonomous 

Agents and Multi Agent Systems, pages 1064-1071, New York, USA, 2004. 

• T. D. Nguyen and N. R. Jennings. A heuristic model for concurrent bilateral 

negotiations in incomplete information settings. Proceedings of the Eighteenth 

International Joint Conference on AI, pages 1467-1469, Acapulco, Mexico, 2003. 

• T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang, 

T. D. Nguyen, V. Deora, J. Shao, A. Gray, and N. Fiddian. Conoise: Agent

based formation of virtual organisations. Proceedings of the Twenty-third Annual 

International Conference of the British Computer Societys Specialist Group on 

Artificial Intelligence (SGAI), pages 353-366, Cambridge, UK, 2003 [Best Paper 

Award]. 

• T. D. Nguyen and N. R. Jennings. Concurrent bilateral negotiation in agent sys

tems. Proceedings of the Fourth DEXA Workshop on e-Negotiations, pages 839-

844, Prague, Czech Republic, 2003. 

1.5 Thesis Structure 

The remainder of this thesis is structured in the following way: 

• Chapter 2 investigates current work in the field of bilateral negotiation models, 

commitment models and applied learning in negotiation. Specifically, it discusses 

the requirements of the models, how they perform, and their relative advantages 

and disadvantages against the requirements identified in section 1.2. 
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• Chapter 3 presents the core negotiation model that has been developed in this 

research. This model uses a heuristic approach and is capable of handling mul

tiple concurrent negotiations about a single service. The mechanisms and the 

components of the model are detailed and we discuss how it performs in specific 

situations. It is then evaluated by being applied in various negotiation environ

ments. The results are compared against a sequential model and Rahwan et aI's 

model to show its performance and efficiency. 

• Chapter 4 details the commitment manager that has been incorporated into the 

negotiation model. This commitment manager enables the agents to back down 

from previously committed deals by paying a decommitment fee. We present 

various commitment tactics and strategies for the buyer agent to apply in specific 

settings. These strategies are then evaluated empirically and the results highlight 

which strategies are effective in which circumstances. 

• Chapter 5 extends the negotiation model by introducing an adaptive negotiation 

strategy to help the buyer gain a better outcome in both one-off and repetitive 

negotiation scenarios. Specifically, if partial information about the participating 

agents is available, this strategy is able to exploit it to give the buyer additional 

bargaining power. Through empirically analysis, it is shown that the buyer can 

indeed obtain better value using this strategy than if it is not doing so. 

• Chapter 6 highlights the main conclusions of this thesis and discusses the remain

ing open questions. 



Chapter 2 

Related Work 

This chapter discusses the current state of the art in the fields of automated negotiation, 

commitment handling mechanisms and applied learning in negotiation. As noted in 

section 1.2, there are a number of different approaches to solve the negotiation prob

lem. In the first part of this chapter, the main approaches are detailed. We start with an 

introduction to game theory in section 2.1, followed by discussions of computational 

heuristic-based models in section 2.2 and auction protocols in section 2.3. The second 

part of the chapter details the current existing commitment and applied learning mod

els. First, the most dominant approaches to handling commitments among the agents, 

including the leveled commitment contracts, are discussed in section 2.4. Next, section 

2.5 continues with a description of the different learning techniques that we believe can 

be useful in our negotiation model. Finally, section 2.6 concludes the chapter. 

2.1 Game Theory 

Game theory is a framework designed to model and analyze the decision making mech

anism of independent entities in a common environment. Since its conception in [Neu

mann and Morgenstern, 1944], this framework has been used to study various social 

subjects such as economics and politics [Romp. 1997; Osborne and Rubinstein, 19941 

In recent years, game theory has been used to study interactions among intelligent 

agents, including negotiation [Johansson, 1999; Kraus, 2001]. To explore this area, 

this section first provides a general introduction to game theory and then goes on to 

discuss in detail its application in modeling automated negotiation. 

18 
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In more detail, game theory models the decision making mechanism of different enti

ties (which are intelligent agents in our case). These agents are assumed to be rational 

(which means that they reason strategically [Osbome and Rubinstein, 1994]) and they 

have mutual interdependencies among themselves [Romp, 1997]. Specifically, being 

rational means that the agents act in their own self-interest, being aware of their al

ternative options, forming expectations about the outcomes of their actions and having 

clear preferences over these outcomes. The assumption of reasoning strategically pre

supposes that when deliberating about their actions, the agents take their knowledge 

of expectations about the other agents' behaviors into account. The final assumption, 

mutual interdependencies, is present because game theory mostly considers situations 

in which the agents are mutually interdependent (i.e. the welfare of one agent is fully or 

partially determined by the other agents' actions. This, in tum, provides the incentive 

for each agent to reason strategically to find an optimal action, in order to achieve the 

most desirable outcome [Romp, 1997]). 

Game theory uses mathematics to formally express its concepts and solutions. Each 

instance of a problem being considered is called a game. The basic elements of a game 

are players, actions, strategies, information, pay-offs, and equilibria [Kraus, 200n The 

objective of the game's modeler is to use the rules of the game (which are composed of 

players, actions and outcomes) to find the equilibria. 

• players: the individual entities that make decisions (which are software agents in 

our case). In any game, there are always at least two players. 

• actions: the available options for each player to make a choice from. 

• strategies: a description of how each player can use the actions to play the game. 

• information: what is available to each player before that player has to make a 

decision (e.g. the information about the environment or the other player's strate

gies). 

• pay-offs: what a player will receive when the game terminates, given the actions 

of all the players in that game. 

• equilibria: a set of strategies, one for each player, such that no player has incen

tive to unilaterally change its action. The concept of specific equilibria will be 

described later in this section. 

Formally, there are two ways in which a game can be represented: strategic game and 

extensive game. A strategic game is defined as the tuple (N, (Ai), (,(;i)). Here, N 
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denotes the set of players. For each player i E N, Ai is the set of available actions 

for i. An action profile a is a set a = {ai}, i E N, in which ai E Ai is the action of 

player i. The set of action profiles is called A. The set of pay-offs is called C. The 

link between A and C is given by a function 9 : A --+ C, which associates an action 

profile with a pay-off; and a preference relation ~t over C. For any two actions aI, 

a2 E Ai, the preference relation ~i of each player i over Ai is defined as follows: 

al ~i a2 ¢? g(al) ~t g(a2). Typically, this preference relation ~i is represented by a 

utility function Ui : A --+ JR.; ui(al) ~ ui(a2) ¢? al ~i a2. 

In a strategic game, an equilibrium is a solution (an action profile), in which none of 

the players acting individually, has an incentive to deviate from this solution. One of 

the most commonly used concepts is the Nash equilibrium and this is defined as follows 

[Osborne and Rubinstein, 1994]: 

Definition 2.1. A Nash equilibrium of a strategic game (N, (Ai), (~i)) is a profile a* E 

A with the property that for every player i E N we have: 

where a~i = a* \ at. From this definition, it can be seen that for a* to be a Nash 

equilibrium, each player i shall not be able to find another action that produces a better 

outcome than at, given that every other player j chooses aj. This concept of Nash 

equilibrium captures a steady state of the playing of a strategic game, in which all 

the players act rationally and hold correct expectations about other players' behaviors 

[Osborne and Rubinstein, 1994]. 

To illustrate this concept, consider the classic example of the Prisoner's Dilemma, in 

which there are two suspects of a crime (players) being questioned in separate cells 

[Osborne and Rubinstein, 1994]. If both confess, each of them will be sentenced to 

three years. If both of them deny being involved, each of them will be convicted of a 

minor offense and be sentenced for one year. If only one of them confesses, he will 

not be charged but the other suspect will receive the sentence of four years. Table 2.1 

represents the pay-offs of the players in this game (in each cell, the first number repre

sents the column player's pay-offs and the second number represents the row player's 

pay-offs. The lower the pay-off, the better for the player). 

As can be seen, the players will benefit best if they both deny (since the sum of their 

payoff is smallest). However, each of the players does not have the incentive to do so. 

Instead, no matter what the other player's chosen action, each player prefers Confess 

than Deny (for example, if the column player chooses Deny, the row player prefers 
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Deny Confess 
Deny 1,1 0,4 

Confess 4,0 3,3 

TABLE 2.1: The pay-off matrix of the Prisoner's Dilemma. 

Confess over Deny because the pay-off is better (0 compared to 1). Similarly, if the 

column player chooses Confess, the row player prefers Confess for the better pay-off 

(3 compared to 4). Consequently, the action profile (Confess, Confess) is the Nash 

equilibrium of this game. However, this outcome is not as good for either player as 

(Deny, Deny) - hence the dilemma. 

However, the concept of a strategic game is too abstract to model problems when the 

timing of the decisions needs to be taken into account and when the amount of informa

tion available to each player is different at each period [Kraus, 2001]. For this reason, 

a more advanced form of game, called an extensive game, is introduced. This form of 

game explicitly describes the sequential decision problems for the players in a strategic 

situation. Unlike a strategic game, in which the players make their decisions only once, 

an extensive game requires each player to consider its action at multiple times during 

the course of the game. 

Formally, an extensive game is represented by the tuple (N, H, P, (.ti)). Here, N de

notes the set of players involved, H the set of history sequences (it can be either finite 

or infinite). Each member h E H is called a history, which is composed of the actions 

of the players: h = (a k
), k E [1, K]. h is a tenninal history if K is finite. The set of 

terminal histories is denoted by Z. P is a function that maps a member i E N to each 

non-terminal history . .ti is the preference relation for the player i over Z. The initial 

history, 0, is the starting point of the game. 

At any non-terminal history h E H, A(h) denotes the set of available actions that player 

P(h) can choose: A(h) = {a : (h, a) E H}. A strategy Si of player i E N is a function 

that maps an action a E A(h) to h for which P(h) = i. The set of strategies for 

player i is denoted by Si. A strategy profile S is the order set S = (si)Vi E N where 

Si is the strategy of player i. Given a strategy profile s, the outcome 0(8) is defined 

as the terminal history that results when each player i E N follows Si. Based on these 

concepts, the definition of a Nash equilibrium is defined as: 

Definition 2.2. A Nash equilibrium of an extensive game (N, H, P, (.ti)) is a strategy 

profile 8* with the property that for every player i E N we have: 
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To illustrate the concept of Nash equilibrium in extensive game form, figure 2.1 presents 

a sample game [Romp, 1997]. Here, we have N = {I, 2}; P(0) = 1; P(h) = 2 for 

all non-terminal histories h =1= 0; 51 = {L, R}; 52 = {L, R, do the same as 1, do the 

opposite of I}. The pay-off matrix of this game is represented in table 2.2. 

(0,0) 

(5,1 ) 

(1,5) 

(1, 1) 

FIGURE 2.1: A sample game in the extensive form. 

L R do the same as 1 do the opposite of 1 
L 0,0 5,1 0,0 5,1 
R 1,5 1,1 1,1 1,5 

TABLE 2.2: The pay-off matrix of the sample extensive game. 

As can be seen, this sample game has three Nash equilibria: 

1. player 2 threatens to always choose L, irrespective of player 1 's action. If player 

1 believes this threat, he will choose R. 

2. player 2 promises to always choose R, irrespective of player 1 's action. If player 

1 believes this promise, he will choose L. 

3. player 2 promises to always do the opposite of player 1 's action. If player 1 

believes this promise, he will choose L. 

However, the first two equilibria are not plausible. In the first equilibrium, player 2 

threatens to always choose L, irrespective of player 1 's action. This is optimal only if 

player 1 chooses R. However, if player 1 chooses L, choosing L is not in the best interest 

of player 2 since its pay-off will be lower than if he chooses R. Therefore, this threat 

of player 2 is not credible to player 1. Similarly, the promise of player 2 in the second 

equilibrium is, also, not credible to player 1 (because if player 1 chooses R, choosing R 
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is not optimal for player 2). Only the third equilibrium provides the optimal solution to 

both the players. 

To overcome this problem, the concept of subgame perfect equilibrium or SPE is intro

duced. In order to explain this concept, we first have to define the concept of a subgame: 

Definition 2.3. The subgame of the extensive game r = (N, H, P, (.ti)) that follows 

the history h E H is the extensive game r(h) = (N, Hlh' Plh, (.tiIJ) in which Hlh is 

the set of sequences hi of actions for which (h, hi) E H; Plh is defined by Plh(h' ) = 

P(h, hi) for each hi E Hlh and .tilh is defined by hi .tilh hI! ¢:} (h, hi) .ti (h, hI!) for 

each hi, hI! E Hlh. 

Given this definition of a subgame, a sub game perfect equilibrium is defined as: 

Definition 2.4. A SPE of an extensive game r = (N, H, P, (.ti)) is a strategy profile 

s* with the property that for every player i E N we have: 

Basically, a subgame perfect equilibrium of an extensive game r is a Nash equilibrium 

s* if and only if for each subgame r(h), s*(h) is also a Nash equilibrium of that sub

game. This concept of subgame perfect equilibrium eliminates the Nash equilibria that 

are not credible to the players. For example, the first two Nash equilibria of the exten

sive game described in figure 2.1 are not subgame perfect equilibria (e.g. (L,L) is not 

a Nash equilibrium in the former case and (R,R) is not a Nash equilibrium in the latter 

case). The only subgame perfect equilibrium of this game is that player 1 chooses L 

and player 2 chooses R. This is reasonable given the fact that player 1 is the first player 

to make the decision. 

As previously mentioned, these discussions about game theory assume that all the play

ers have complete information about the environment and the history of the game. How

ever, these situations are not the only concern of game theory. In fact, game theory also 

studies situations in which the players' actions, as well as their planned future moves, 

are not revealed. The solution that game theory proposes for each player in this situa

tion uses probability theory to form expectations of the other players' actions. Specif

ically, these expectations are used as the probability measures to help each player to 

select an appropriate strategy [Osborne and Rubinstein, 1994]. This type of incom

plete information game is usually complex and the outcome depends very strongly on 

the specifics of the problem at hand. Thus, a detailed review of incomplete infor

mation games is not presented in this introduction (see [Fudcnbcrg and Tirole, 1991; 

Gibbons, 1992] for more details of this type of game). 
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Another aspect of these discussions is that the players are considered to be individual 

self-interested entities, that try to maximize their own utility function. This is the char

acteristic of non-cooperative game theory [Romp, 1997]. The other type of game theory 

with respect to this characteristic is cooperative game theory, in which the players are al

lowed to enter into binding and enforceable agreements with one another [Osbome and 

Rubinstein, 1994]. In cooperative games, the players make binding agreements to coor

dinate their strategies, whereas in non-cooperative games the players use their strategies 

to maximize their own benefit, irrespective of the other players' actions. Therefore, in 

our opinion, non-cooperative game theory is a more suitable basis for studying realistic 

negotiation scenarios and is the approach that we focus on in this section. 

Against this background, we present our view on some of the most popular negotiation 

models that uses game theory approaches. 

2.1.1 Kraus's Negotiation Model 

This section reviews Kraus's game theory based bilateral negotiation model [Kraus, 

2001; Kraus and Schechter, 2003]. This model considers the situation in which there 

are two agents bargaining over the right to use a resource (e.g. printers or satellites). One 

agent, called the Attached Agent (A), is already using the resource that the other agent, 

called the Waiting Agent (W), needs. Now, W starts the negotiation process to obtain 

access to use the resource. If no agreement can be found, W opts out and causes some 

damage to the resource (such as destroying it), which will affect A. During the time of 

negotiation, A still uses the resource for its own purpose. The resource is composed of 

M units and the purpose of the negotiation is to find an agreement, which is an ordered 

pair (SA, sw) where SA + Sw = M and Si is agent i's portion of the resource. The set 

of possible agreements is S = {(SA, Sw )ISA, Sw E N+, SA + Sw = M}. 

The negotiation protocol used in this model is based on Rubinstein's model of altemat

ing offers [Rubinstein, 1982]. For each agent i E {A, W}, i can only take actions in the 

negotiation at certain pre-determined times in the set T = {O, 1,2, ... }. At each time 

t E T, the agent whose tum it is to make a proposal at time t will propose its offer. The 

other agent can either accept the offer, reject it, or opt-out of the negotiation. If the pro

posed offer is accepted by the other agent, the negotiation terminates with an agreement. 

If the other agent opts out, the negotiation terminates with a conflict outcome (Opt). If 

the other agent has decided to reject the offer but not opt-out, the negotiation moves to 

the next time period, t + 1, where it is the tum of the other agent. If the negotiation 

continues forever without reaching an agreement and without any of the agents opting 
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out, the outcome of this negotiation is called a disagreement. This protocol is called the 

simultaneous response protocol alternating offers. 

In more detail, each agent i E {A, W} has a utility function over all possible outcomes 

U i
: 

ui : {I sU {Opt} I x T} U {Disagreement} -7 JR. 

This utility function has the following assumptions: 

1. Disagreement is the worst outcome: The agents prefer any possible outcome 

over disagreement. 

Vx E {I sU {Opt} I x T},i E {A, W}: Ui(Disagreement) < Ui(x). 

2. The resource is valuable: For agreements that are reached within the same time 

period, each agent prefers to get a larger portion of the resource. 

Vt E T; r, s E S; i E {A, W} : ri > Si =? Ui((r, t)) > Ui((s, t)). 

3. Costlbenefits over time: It is assumed that the agents have a utility function with 

a constant cost or gain due to delay. At each period, A has a constant gain CA > 0 

and W has a constant loss Cw < o. 

4. Agreement costs over time: It is assumed that W prefers to obtain the resource 

sooner rather than later, whereas A prefers to obtain the resource later rather than 

sooner. 

5. Cost of opting out over time: At time t E T, if there is an agreement s E S that 

A prefers over W's opting out in the next period t + 1, A may agree to s. This 

agreement is denoted SW,t. The set of agreements that are not worse for any agent 

than opting out is denoted Possiblet . 

T 
{

UW((OPt, t)) > UW((Opt, t + 1)) 
Vt E : 

U A ( ( Opt, t)) < U A ( ( Opt, t + 1)) 
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6. Range for agreement: For every t E T, 

• The property ofthe non-emptiness of Possiblet is monotonic; thus, if PossibleH1 i-
0, then Possiblet i- 0. 

• If it is still possible to reach an agreement in the next time period, W prefers 

to opt-out at period t or agree to SW,t than to wait until the next time period 

t + 1 and agree to SW,Hl. However, A's preference is reversed and A prefers 

to agree to SW,Hl at period t + 1 than to agree to SW,t at period t. 

{ 

UW((SW,t, t)) 2 UW((SW,t+l, t + 1)) 

If Possiblet i- 0 then UW((Opt, t)) 2 UW((SW,t+l, t + 1)) 

uA((SW,t+l, t + 1)) 2 UA((SW,f, t)) 

• If it is still possible to reach an agreement then A prefers SW,t at period t to 

opting out in the next period t + 1: 

If Possiblet i- 0 then UA((SW'f, t)) 2 UA((Opt, t + 1)). 

7. Possible agreement: In the first two time periods, 0 and 1, there is an agree

ment that is preferable to both A and -VV over opting out: Possibleo i- 0 and 

Possible 1 i- 0. 

The model considers two situations: complete and incomplete information games. In 

the first situation, the agent has complete information about the other agent including 

its utility function. If the agent uses subgame peifect equlibrium strategies and the 

aforementioned assumptions are satisfied then an agreement will be reached in the first 

or second period. This agreement is Pareto optimal l : 

• W loses more than A can gain: If Icwi > CA and~,1 + CA ~ M then W will 

offer (~,l + CA, ~l - CA) in the period 0 of the negotiation and A will accept 

this offer . 

• W loses less than A can gain: If Icwl < CA, any offer made by W at the first time 

period will be rejected by A. In the next time period, A will make a counter-offer 

(~,l, S!,l) and W will accept this counter-offer. 

In the incomplete information game, the agents do not have information about the other 

agent's utility function. To solve this problem, one more assumption is made, namely 

1 A solution is Pareto optimal if there is no other solution that is better for one agent and not worse for 
the other [Sandholm. 1999bJ. 



Chapter 2 Related Work 27 

that there is a finite set of possible types of agent, where each type defines the util

ity function of the agent. Each agent only belongs to a specific type. However, W 

and A do not know the type of each other. Instead, each of them has a belief system, 

which is a probability distribution, about the type of the opponent. Similar to the com

plete information game, if the agents use subgame perfect equlibrium strategies and the 

aforementioned assumptions are satisfied then the negotiation ends in the second pe

riod. However, unlike the complete information game, an agreement is not guaranteed. 

Thus, there is a possibility that W will opt-out if A's offer does not meet W's demand. 

Against the requirements stated in section 1.2, this model is: 

• computationally tractable: since the negotiations in both the complete and incom

plete information games finish within two negotiation periods and the offer gen

eration mechanism is clearly defined and requires simple calculation, this model 

satisfies this criterion. 

• incomplete information: this model performs best with complete information 

games (as would be expected). However, the situation is not the same in in

complete information games. To be able to cope with this specific game type, the 

model puts forward the assumption about the agents' types and the probability 

distribution of this type of the agent. When these assumptions are satisfied, the 

model guarantees to terminate within two negotiation periods but is not able to 

guarantee that the agreement reached is an equilibrium. 

• partial information: this model exploits the information about the opponent in 

searching for offers. 

• negotiation deadline: because the negotiation will always terminate after at most 

two negotiation periods, this model is able to satisfy this requirement. 

• concurrent negotiations: this model is not designed for and, thus, is incapable of 

handling multiple concurrent negotiations. 

• efficient outcomes: in the complete information game, the model guarantees to 

provide a Pareto optimal solution. However, this is not the case in the incomplete 

information game, in which this claim cannot be guaranteed in all situations. 

• commitments: this model is not designed for and, thus, is incapable of handling 

commitments amongst the participating agents. 
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As can be seen, the most important disadvantage of this model is that it has a number of 

unrealistic assumptions. In the complete information negotiation game, the agents must 

know everything about the other agent including its utility function. This situation is 

not common in typical negotiation scenarios. In the incomplete information negotiation 

game, the possible types of agent are limited, which leads to an approximation of the 

complete information case. This assumption is the core requirement and the model is 

not able to perform without it. As a result, this model is not applicable in practical 

situations. 

The second disadvantage of this model is the obsolete negotiation process. The negoti

ation always terminates after a fixed number of rounds and the result can be determined 

even before the negotiation starts. Consequently, the whole negotiation process could 

be efficiency reduced to a simple choice functions with both agents having no incentive 

to deviate from the chosen result. 

2.1.2 Fatima's Negotiation Model 

Fatima et al. define a bilateral negotiation model that focuses on a single-issue item 

(price) [Fatima ct ai., 2001]. The two agent participants in this model are assumed to 

have fixed negotiation deadlines and they do not have complete information about each 

other. However, this model does assume that each agent has partial information about 

the opponent (this information is private and only available to it), which includes: 

• a finite set of possible values for the reservation price of the opponent and a binary 

probability distribution over these values. 

• a finite set of possible values for the negotiation deadline of the opponent and a 

binary probability distribution over these values. 

Each agent does not have information about what type of strategy the opponent uses in 

the negotiation. Under such uncertainty, the aim of this model is to determine how each 

agent can exploit the partial information to select the best strategy that will maximize 

its utility. 

Formally, one of the two agents plays the role of a buyer (b) whereas the other plays the 

role of a seller (8). b prefers to pay less for the good whereas 8 prefers to sell the good 

for a high price. The negotiation deadlines for band 8 are Tb and TS, respectively. The 

range of prices that are acceptable for an agent a is denoted as [P!in' P!ax]. There exists 
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an interval, called price-surplus, which is [P~in' p!axl that contains the prices that are 

acceptable to both band s. At time t of the negotiation, pL.,s denotes the price offered 

by b to s. When s receives this offer, it uses its utility function Us to evaluate the offer. 

If Us (p~--->s) is greater than the value of the counter-offer P;--->b that s is ready to send to b 

at time t' > t then s will accept this offer. Otherwise, s will send its counter-offer P~/--->b 

to b. The action A that s will take at time t is defined as: 

For each agent a, at time t < Ta, the value of the offer!counter-offer that a generates is 

calculated using equation 2.1: 

t { P~in + Fa ( t) (P~ax - P~in) for the buyer 
P - (2.1) 

a--->b - P~in + (1 - Fa(t))(P~ax - P~in) for the seller 

where Fa(t) is the aj(t) function in Faratin's model (see section 2.2.1). The strategy 

for each agent a is a tuple (P~ax' P~in' Fa(t), Ta). 

Given this information, each negotiation environment for b is defined as the tuple2
: 

where: 

• IS = {T{, T~ IT{ < Tn is a two element vector that contains possible values for 

s's deadline. 

• as is the probability that s's deadline is Tr Thus, 1 - as is the probability that 

s's deadline is T~. 

• a~ is the value of as on the basis of which the buyer selects an optimal strategy. 

• ps = {P{, P~ I P{ < pn is a two element vector that contains possible values for 

s's reservation price. 

2The environments for s can be defined analogously. 
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• f3s is the probability that s's reservation price is P{. Thus, 1- f3s is the probability 

that s's reservation price is pr 
• f3~ is the value of f3s on the basis of which the buyer selects an optimal strategy. 

• T b, pb and Ub are the buyers deadline, reservation price and utility function, re

spectively. 

TS, o:s, ps and f3s are the private information that b has about s. There are 6 possible 

environments that are defined based on the values of T{, T~, Tb and Ub: 

• Ef: when T~ < Tb and b gains utility with time (Ub is an increasing function of 

time). 

• E~: when T{ < Tb < T~ and b gains utility with time. 

• Eg: when Tb < T{ and b gains utility with time. 

• Et: when T~ < Tb and b loses utility with time (Ub is a decreasing function of 

time). 

• E~: when T{ < Tb < T~ and b loses utility with time. 

• Eg: when Tb < T{ and b loses utility with time. 

For each agent a, a strategy sa is a function that maps its negotiation environment Ea 
and time T to the counter-offer vector at time T + 1 (see equation 2.1). Assume 0 is the 

outcome that has resulted from sa then sa is the optimal strategy for a if it maximizes 

ua(o). 

Given each environment Ef for b, the aim of the model is to find the corresponding 

optimal strategy Sf. There are two situations: 

• When f3s = 1: 

Ef: There are two possible strategies: 

s~ = (P!in' P{, Boulware3 
, Tt) if T ~ T{ 

s~ = (P!in' PI', Boulware, T{)VT. 

3This tactic starts with a high value offer and maintains its value until the time is almost exhausted, 
whereupon it concedes up to the reservation value. For more information on Boulware tactics, see section 
2.2.1. 
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Let a~ denote the value of as below which s~ is better than s~ and above 

which s~ is better than s~. a~ depends on B;, which is the length of the time 

interval between T{ and Tl : B; = T~ - T{. 

In this environment, the optimal strategy Sf is s~ when as > a~ and s~ 

otherwise. 

E~: For all values of as, the optimal strategy S~ is: 

Sb = { (P!in' P{, Boulware, Tn if T ~ T{ 

2 (P{, p b, Boulware, (Tb - Tt)) otherwise 

Eg: For all values of T, the optimal strategy sg is (P!in' p b, Boulware, T b). 

E~: For all values ofT, the optimal strategy S~ is (P!in' P{, Conceder, T~). 

Eg: The optimal strategy sg is: 

Sb _ { (P!in' P{, Conceder, Tn if T ~ T{ 
5 - (P{, p b, Conceder, (Tb - Tt)) otherwise 

Eg: For all values of T, the optimal strategy sg is (P!in, p b, Conceder, T b). 

• When j3s =1= 1: 

There are two possible strategies: 

s~ = (P!in' P{, Boulware / Conceder, T) 

s~ = (P!in' P~, Boulware / Conceder, T) 

Let j3~ denote the value of j3s below which s~ is better than s~ and above which 

s~ is better than s~. j3~ depends on B~, which is the difference between P{ and 

P s . BP = ps _ ps 
2· S 2 1· 

The optimal strategy Sb is s~ when j3s > j3~ and s~ otherwise. 

As can be seen, all the possible negotiation environments can be classified into one of 

the above situations. After the environment has been classified, the optimal negotiation 

strategy is chosen accordingly. 

Now, against the requirements stated in section 1.2, this model is: 

4This tactic starts with a high value offer and then quickly concedes up to the reservation value (see 
section 2.2.1 for more details). 
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• computationally tractable: the optimal strategy specified in any environment is 

a time-dependant tactic from the responsive mechanism in Faratin's model (see 

section 2.2.1). Consequently, this requirement is satisfied. 

• incomplete information: this model copes with incomplete information situations 

by making assumptions about the opponent's characteristics (the value of the op

ponent's reservation price and negotiation deadline). If these assumptions are 

satisfied, this model is able to find the optimal strategy. 

• partial information: this model exploits the information about the opponent in 

searching for offers. 

• negotiation deadline: this model satisfies this requirement because the participat

ing agents all have deadlines. 

• concurrent negotiations: this model is not designed for and, thus, is incapable of 

handling multiple concurrent negotiations. 

• efficient outcomes: this model is able to find the optimal strategy in any environ

ment. Consequently the agreement, once reached, is optimal for both agents. 

• commitments: this model is not designed for and, thus, is incapable of handling 

commitments amongst the participating agents. 

This model presents a clear evaluation of different situations that could happen in a 

negotiation episode. Each situation is carefully analyzed to find the optimal negotia

tion strategy for the buyer agent. However, this model has a number of disadvantages. 

Firstly, it is assumed that there are a fixed number of different seller's types (in terms of 

their deadlines and reservation prices). This assumption is the basic requirement, with

out which the model is not capable of performing at all. Realistically, this assumption 

is not plausible: not every negotiation episode allows the buyer to acquire the informa

tion about the opponent. Thus, to be widely applicable, the model needs to be able to 

perform without relying on this assumption. Secondly, the assumption that this model 

makes is that there are only two types of sellers. There are six corresponding environ

ments to be analyzed. Consequently, if the number of seller types is increased to n, the 

number of corresponding environments to be analyzed will be 2 (n + 1) and the ana

lyzing spaces will be dramatically increased. This increase will eventually reduce the 

practicability of the model, especially when the number of sellers is increased. 



Chapter 2 Related Work 33 

2.1.3 Appraisal of Game Theory 

Generally speaking, game theory techniques have been applied in various social sci

ences and have proved to be successful in modeling social phenomena. This success 

can be explained by: (1) game theory's capability of conceptualizing a synthetic and 

formal prototypical context as a game which is open to experimental analysis and (2) 

its ability to predict and explain these games in a manner, using formal notions [Castel

franchi and Conti, 1998]. Furthermore, game theory has introduced new concepts such 

as Pareto optimality and Nash equilibrium that can be used in evaluating the efficiency 

of other negotiation models. 

However, when applied in the automated negotiation domain, the game theory approach 

has a number of limitations [Jennings et al., 2001]: 

• Game theory fails to generate a general model that can govern rational choice in 

inter-dependent situations [Zeng and Sycara, 1997]. Instead, game theory only 

produces a number of highly specialized models that are only applicable to spe

cific types of inter-dependant decision making. As noted by Binmore: " ... conclu

sions (of non-cooperative models) only apply to one specific game. If the details 

of the rules are changed slightly, the conclusions reached need no longer be valid" 

[Binmore, 1992], p.196. 

• Most of game theory based models often have the assumption that the agents have 

perfect computational rationality. This means that it is assumed the mutually ac

ceptable solutions within a feasible range of outcomes can be found without any 

computational requirement. This assumption is not plausible in most real world 

cases. Knowing that a solution exists does not imply that it can be found. Al

though this notion of perfect rationality is helpful in designing and proving prop

erties of a negotiation system, it is not useful in practice. As noted by Sandholm: 

" ... future work should focus on developing methods where the cost of search 

(deliberation) for solutions is explicit, and it is decision-theoretically traded off 

against the bargaining gains that the search provides. This becomes particularly 

important as the bargaining techniques are scaled up to combinatorial problems 

with a multi-dimensional negotiation space as opposed to combinatorially simple 

ones like splitting the dollar" [Sandholm, 1999a], p.223. 

• Similarly, most of the game theory based models only prove that they are useful 

if the agents have a perfect knowledge about the game, including the information 

about the opponent's strategies and preferences. However, again this assumption 
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does not hold in most real world cases. Typically, the agents are self-interested 

and only act on their interests. Thus, they will keep their strategies and prefer

ences as private information, in order to avoid being exploited by the opponent. 

Given this condition, most of the game theory based models fail to operate or the 

optimality of the outcome is not guaranteed. 

Even though game theory based techniques are a useful tool in analyzing a negotiation 

model, especially when the preferences and possible strategies of the participants can 

be characterized [Jennings et al., 2001], we do not adopt this approach in our work 

because of these limitations. 

2.2 Heuristic-Based Bilateral Negotiation Models 

This section focuses on models in which the participating agents use some form of 

heuristic search to find the offers or counter-offers to propose to one another. Unlike the 

assumptions in game theory, these agents do not have perfect rationality; nevertheless, 

they still try to maximize their benefits, but only within their capabilities. These models 

generally impose fewer restrictions than the game theory based ones and focus more on 

the deliberation mechanism of the agents. In this section, we review three of the most 

prominent models: (1) Faratin's model, which uses heuristic as the search technique, 

(2) Luo et aI's model, which uses Constraint Satisfaction (CSP) as the search technique 

and (3) Rahwan et aI's model, which also uses CSP as the search technique and has the 

capability of handling concurrent negotiations. 

2.2.1 Faratin's Negotiation Model 

Faratin et al. develops a model for service-oriented bilateral negotiation [Faratin, 2001; 

Sierra et al., 2002]. Here, a service has the same intuitive meaning as the one we 

adopted in this work (see section 1.1). This negotiation model is influenced by two 

application domains: business process management (ADEPT) [Jennings et af., 1998] 

and telecommunication service management [Faratin et at., 2000]. 

In this model, the negotiation protocol is a modified version of Rubinstein's model 

of alternating offers (see section 2.1.1) that allows the agents to iteratively exchange 

proposals. The protocol terminates either successfully (if both parties agree on a specific 

solution) or unsuccessfully (if one of the agent reaches its negotiation deadline). 
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In more detail, each agent i can take one of two possible roles: a client (c) or a server 

(8) and i has the deadline t~ax beyond which it cannot continue its negotiation. The 

object that the agents bargain over is referred to as a contract, which is composed of n 

issues. For each agent i, each issue j is a tuple (D}, w}), where D; = {min;, max}} 

is the interval of possible quantitative values for each issue and w} is the weight of this 

issue, or how i values j. ~i is a scoring function ~i : D} --+ [0, 1] that gives a value to 

an issue j. The scoring function of a contract x = (Xl, ... ,xn ) is then defined as: 

Vi(X) = L W~~i(Xj). 
l:S;j:S;n 

Normally, c and 8 have opposing interests (e.g. c wants to have a low price for a service, 

whereas 8 wants to obtain a high price for it). This typically leads to opposing scoring 

functions for c and 8: given an issue j, if Xj ~ Yj then ~C(Xj) ~ ~C(Yj) {::} ~S(Xj) :S 
~S(Yj). 

Once the set of negotiation issues is set, the negotiation process starts with an alternate 

succession of offers and counter-offers of values for these issues. The contract proposed 

by an agent a to the other agent b at time t is denoted as X~---7b and the value of issue 

j proposed from a to b at time t is denoted as X~---7b [j]. For convenience, the model 

assumes that there exists a linear set of instances of a common global time and there is 

no delay in message transmission during negotiation. 

Given this background, Faratin introduces the responsive mechanism that aids the agents 

in deliberating during the negotiation process. Specifically, this mechanism helps the 

agents to decide: 

• what initial offers should be sent out 

• what is the range of acceptable agreements 

• what counter offers should be generated 

• when negotiation should be abandoned 

• when an agreement is reached 

In more detail, the responsive mechanism generates offers and counter-offers using lin

ear combinations of simple functions (called tactics). Tactics generate an offer for a 

single negotiation issue using a single criterion (such as time or resource available to 
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the agents) which is motivated by the computational and informational bounds of the 

agents. When a receives an offer x~-.a from b at time t, a evaluates this offer using its 

scoring function. If the value of this offer is greater than the value of the counter-offer 

X~~b that a is ready to send to b (va(x~-.a) > va(x~~b))' then a will accept this offer. 

Otherwise, a will send its counter-offer x~~b to b. 

For an agent to generate the counter-offer, Faratin introduces three independent sets of 

tactics: 

1. Time dependent: these tactics (see figure 2.2) reflect the behavior of the agents 

with regard to their deadlines. Each tactic in this set is differentiated by the shape 

of the concession curve which is a function depending on time. For an agent a at 

time t, the value of the issue j that a will propose to b is calculated as: 

xt [.J = { minj + o:j(t) (maxj - minj) 
a-.b J minj + (1 - o:j(t))(maxj - minj) 

if Vja is decreasing 

if Vja is increasing 

where o:j(t) is a function whose value is dependant on the relation between t and 

t':nax. Two families of o:j(t) function are proposed: 

( ) ( 
min(t t a ) 1 • polynomial: o:a t = K,O: + 1 - K,a) ( a' max ) 7J 

J J J tmax 

(1 min(t,t:hax) )i31 a 
• exponential: o:j (t) = e - t?i-.ax nKj 

a 
K j 1"----------""'---

~ = 0.02 

o 
t max 

FIGURE 2.2: The time dependent tactics. 
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where K-j is the constant that when multiplied by the size of the interval, de

termines the value of the issue j in the initial proposal and f3 is the value that 

determines the convexity degree of the curve. If f3 < 1, these tactics are related 

to Boulware tactics [Raiffa, 1982], which maintain a low value until the deadline 

approaches, whereupon the value will be conceded up to the reservation value. 

In contrast, if f3 > 1, these tactics are related to Conceder tactics [Pruitt, 1981], 

which quickly concede to their reservation value. 

2. Resource dependent: these tactics reflect the behavior of the agents with regard 

to the resource that is available to them at time t of the negotiation. The resource 

could be money, the number of agents interested in the negotiation or time. These 

tactics use a similar formula to the time dependent ones but with a different func

tion for aj(t): 

where resourcea(t) is the function that measures the quantity of the resource at 

time t for a. For example, if the resource is time then resourcea(t) = min(O, t-

tr:nax) . 

3. Behavior dependent: these tactics generate counter-offers based on the previous 

offers from the opponent. There are three different families of these tactics: rel

ative tit-for-tat, random absolute tit-for-tat and average tit-for-tat. These tactics 

are designed to empirically evaluate the relative success of the agents when imi

tating the behaviors of the opponents. 

As can be seen, this negotiation model focuses on the process of the negotiation, unlike 

the models based on game theory that focus on the outcome of the negotiation. Conse

quently, this model is applicable for designing autonomous agents that can negotiate. 

The time dependent tactics introduced in the responsive mechanism are functions that 

have their values defined based on the relation between the negotiation time and the 

deadline of an agent. Different emphasizes can be placed on different time periods (e.g. 

Boulware tactics keep the value high up until the deadline approaches while Conceder 

tactics quickly concede to theirs reservation value). Moreover, the computational com

plexity of these tactics is polynomial. As a result, these functions are chosen as the 

basic strategies in our negotiation model described in chapter 3. 

Against the requirements stated in section 1.2, this model is: 
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• computationally tractable: all the mechanisms proposed in this model are de

signed to be computationally tractable. Specifically, the responsive mechanism 

uses heuristic search to find the offer and this method requires very little compu

tation. 

• incomplete information: this model requires no specific information about the 

opponent and makes no special assumptions about the agents' capabilities. Thus, 

it is applicable in the incomplete information setting. 

• partial information: this model does not exploit the information about the oppo

nent even when it is available. 

• negotiation deadline: this model satisfies this requirement because the participat

ing agents all have deadlines. 

• concurrent negotiations: this model is not designed for and, thus, is incapable of 

handling multiple concurrent negotiations. 

• efficient outcomes: since the responsive mechanism uses heuristic techniques to 

search for offers, the agreement reached is not guaranteed to be optimal. 

• commitments: this model is not designed for and, thus, is incapable of handling 

commitments amongst the participating agents. 

Although this model is well developed and evaluated, there are still some points for fur

ther improvement. Firstly, this model is naturally designed for handling bilateral nego

tiation and, thus, is incapable of handling multiple concurrent negotiations. However, 

the mechanisms and tactics presented are effective and have polynomial complexity, 

thus they can be used in each bilateral negotiation context in our model. Moreover, no 

commitment handling mechanism is implemented in this model (since it is focused on 

the standard bilateral case, the final agreement once reached is binding on both agents). 

Finally, the agent in this model can perform without any particular information about 

the opponent. However, in many of the typical negotiation scenarios, partial informa

tion about the opponent is available and can be exploited to lead to more beneficial 

agreements. This model lacks the ability to exploit such information. 

2.2.2 Luo's Negotiation Model 

[Luo et al., 2003] introduce a model that focuses on bilateral multi-issue negotiation. 

The agents that participate in this model are the buyer (b) and the seller (8). The ap

proach that this model adopts is based on the Prioritized Fuzzy Constraint Satisfaction 
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Problems (PFCSP) [Dubois et al., 1994; Dubois and Prade, 1999]. This technique helps 

the agents to decide whether to accept an offer proposed from the opponent and, if not, 

what counter-offer to send back. This technique is chosen for a number of reasons: 

• Typically, the preferences of b can only be vaguely stated (e.g. when b goes 

looking for a car, he may not have a clear idea about the specific car that he 

wants. Instead, b may only have vague preferences about the car such as it must 

be cheap, economical and safe). Fuzzy constraints are well suited to describe 

these types of preferences. 

• When the offers are exchanged between the agents, it is not typical for an offer to 

be completely acceptable or completely unacceptable with regard to one agent's 

constraints. Rather, an offer is likely to satisfy an agent's constraints to some 

degree. The PFCSP framework is suitable for capturing this partial satisfaction 

because fuzzy constraints can be satisfied or violated partially. 

• For each single attribute of the negotiation subject, fuzzy constraints allow b to 

express its preferences over different values. Similarly, fuzzy constraints allow b 

to express preferences over different combinations of the attributes of the negoti

ation subject. 

• Fuzzy constraints can be used to model b's preferences on trade-offs between 

different attributes of the negotiation subject. 

• Not all the constraints have the same level of importance. For example, one might 

be more important than the others. By introducing priority into fuzzy constraints, 

the different levels of importance can be captured. 

The negotiation protocol used in this model is that of alternating offers (see section 

2.1.1) with an extension to have the capability of offering rewards. The agents in this 

model exchange proposals found in their search spaces, until either the proposal is ac

cepted by both of the agents or the search space of one agent becomes empty. Specif

ically, buses PFCSP to represents its preferences and s has a finite set of available 

products, where each product has certain associated restrictions (the buyer must satisfy 

these restrictions if it wants to get hold of this product) and rewards (the buyer will have 

some extra benefit if it decides to take this product). Each agent has an individual set of 

possible primitive actions that are available during negotiation. 

Specifically, at its tum, b submits a set of constraints to s and asks s to do one of the 

following: 
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• find: find a product that satisfies the set of submitted constraints. 

• refind: find an alternative product that satisfies the submitted set of constraints. 

This is sent when b is not happy with the previous product offered by s. 

• deal: terminate the negotiation with an agreement. This is sent when b is happy 

with the previous product offered by s. 

• fail: terminate the negotiation without an agreement. This is sent when s cannot 

offer any product that satisfies the submitted set of constraints and b is unable to 

relax any of its constraints. 

With regard to s, when s receives the set of constraints and the requested action from 

b, it tries to do as b requests. The basic assumption is that s will try to obtain the best 

deal that is possible. If b is not satisfied with the previous offer of s, s tries to find a 

trade-off with the same profit to send to b. Only when s is unable to find this trade-off 

does it make some concessions (find an alternative product with less profit or offer some 

reward). Now, s always wants to achieve an agreement since it can only obtain a profit if 

an agreement is made. Therefore, when b does not accept its offer (even with a reward) 

and an alternative product could not be found, s will ask b to relax its constraints. 

Against the requirements stated in section 1.2, this model is: 

• computationally tractable: this model is CSP based and, thus, uses CSP tech

niques to explore the search space to find the optimal solution. Although most 

of the search algorithms guarantee to find optimal solutions, they do not take the 

computational requirement into account [Kowalczyk and Bui, 2001]. On the other 

hand, search algorithms that are computationally tractable cannot guarantee the 

optimal result [Yokoo and Ishida, 1999]. 

• incomplete information: this model requires no specific information about the 

opponent and makes no special assumptions about the agents' capabilities. Thus, 

it is applicable in the incomplete information setting. 

• partial information: this model does not exploit the information about the oppo

nent even when it is available. 

• negotiation deadline: the negotiation in this model terminates only if the search 

space of one agent becomes empty. This is not guaranteed to happen and so this 

requirement is not satisfied. 
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• concurrent negotiations: this model is not designed for and, thus, is incapable of 

handling multiple concurrent negotiations. 

• efficient outcomes: this model is guaranteed to find a Pareto optimal solution 

when it is available. 

• commitments: this model is not designed for and, thus, is incapable of handling 

commitments amongst the participating agents. 

A strong point about this model is that by using fuzzy constraints, human preferences 

and desires can be represented naturally. Furthermore, the fact that each proposal more 

or less satisfies the requirements of the agents gives the model the flexibility that is not 

available in others models (such as those based on game theory). 

However, the most noticeable disadvantage of the model is the computational require

ment of the search algorithm as previously mentioned. In order to cope with this prob

lem, this model assumes that the space of possible agreements is limited. If the size of 

this space is increased, the computational complexity of the search algorithm is expo

nentially increased. This assumption reduces the applicability of the model in practical 

negotiation situations. Furthermore, even though the model is able to handle multiple 

issues, the seller agent is not able to vary the values of the issues attached to a proposal. 

Thus, the seller, when faced with a refusal from the buyer, has to find a completely new 

offer to send to the buyer instead of modifying its current offer. This limitation greatly 

reduces the potential search space, which, in tum, results in less beneficial agreements. 

2.2.3 Rahwan's Negotiation Model 

[Rahwan et al., 2002] introduce a negotiation model that deals with multiple concurrent 

bilateral negotiations. Each individual negotiation thread uses a Constraint Satisfaction 

Problem (CSP) technique to search for possible agreements. Specifically, there is an 

agent, called the buyer b, that wants to negotiate with a number of different agents, 

called the sellers, in order to find the best possible deal for a product. For each seller 

s, b creates a single bilateral negotiation agent, called the sub-negotiator c, to negotiate 

with s. Each sub-negotiator shares the same preferences with b but can have different 

possible negotiation strategies. After all the sub-negotiators are created, b acts as a 

central agent that will coordinate the actions of sub-negotiators. 

In a specific negotiation between c and s, both agents use constraints to represent their 

preferences. Each agent iteratively searches for a prospective solution from its solution 



Chapter 2 Related Work 42 

space using constraint based reasoning (constraint propagation) techniques. These tech

niques involve the reduction of the search space into one that contains feasible solutions 

that satisfy the other agent's proposed constraints. A specific utility value is then se

lected and, finally, the constraint propagation technique is used to determine the values 

of the attributes of the product. The selection of the utility value is specified by a ne

gotiation strategy. In this model, the strategy imposed is a simple one that has its value 

either staying the same (trade-off) or being reduced by a constant amount (concession). 

The trade-off option will be selected only if there is more than one instance of the set of 

attribute values for the same utility value. 

The coordination of the sub-negotiators is done via the means of the coordination strat

egy. Thus, during negotiations, each sub-negotiator reports its status to b. After re

ceiving all the information, b assesses the situation and issues instructions to the sub

negotiators accordingly. There are three coordination strategies available: 

• desperate strategy: b uses this strategy if it wants to close a deal as soon as pos

sible. As soon as a sub-negotiator reaches a deal with a particular seller, b closes 

all the negotiations with the other sellers. If there are multiple deals reached, the 

one with the highest utility value will be chosen. 

• patient strategy: b uses this strategy if b has no time constraints. All the negoti

ations will be carried out until they all finish. At that point, the seller that offers 

the deal with the highest utility value will be chosen. 

• optimized patient strategy: this strategy is similar to the patient strategy. How

ever, if there is a deal made from a negotiation, the constraint set of all the other 

negotiations will be updated to avoid unnecessary deals which are not as good as 

the one already found. After all the negotiations finish, the seller that offers the 

deal with the highest utility value will be chosen. 

Against the requirements stated in section 1.2, this model is: 

• computationally tractable: similar to Luo et aI's model (see section 2.2.2), this 

model does not satisfy this requirement. It still has to face the trade-off between 

the computational tractability and the optimality of the final solution. 

• incomplete information: this model requires no specific information about the 

opponent and makes no special assumptions about the agents' capability. Thus, it 

is applicable in the incomplete information setting. 
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• partial information: this model does not exploit the information about the oppo

nent even when it is available. 

• negotiation deadline: similar to Luo et aI's model, this model does not satisfy this 

requirement. 

• concurrent negotiations: this model is capable of handling multiple concurrent 

negotiations. 

• efficient outcomes: this model is not guaranteed to find an optimal solution. 

• commitments: this model is not designed for and, thus, is incapable of handling 

commitments amongst the participating agents. 

One of the good points of this model is the capability of handling multiple concurrent 

negotiations using sub-negotiators. However, the model only proposes a conceptual ap

proach to solving the concurrent negotiation problem without analyzing it theoretically 

or practically. This lack of evaluation eventually reduces its practicability. Also, be

cause this model is based on CSP, it has the same disadvantages as Luo et aI's model 

(i.e computationally intractable and unrealistic assumptions about the finite space of 

possible agreements). Consequently, the practicability of this model is reduced. Fur

thermore, the buyer agent in this model does not change its behavior throughout the 

negotiation. We believe, by modifying its behavior according to the characteristics of 

the seller it is negotiating with, the buyer will achieve better deals (in terms of the utility 

value of the final agreement; see section 3.5.4 for more details). Finally, the coordina

tion mechanism of this model does not take into account the potential of partial infor

mation about the opponents. In many typical negotiation scenarios, partial information 

about the opponents is available and can be exploited. 

2.3 Auction Protocols 

Another very important area of negotiation is auctions (see section 1.2). Auctions are 

mainly used for modeling one-to-many (single-sided) or many-to-many (double-sided) 

negotiations and have proven to be one of the most popular and effective ways in trading 

goods over the Internet [Bapna et af., 2001]. In this section, we only consider the single

sided auctions because they model the one-to-many negotiation case which is the most 

relevant to our research area. 
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Here, an auction is defined as a bidding mechanism, which consists of a set of auction 

rules that determine how to select the winner and how much the winner has to pay 

[Wolfstetter, 20021 Typically, each auction consists of an auctioneer that attempts to 

sell a good for the highest possible price and a number of bidders that attempt to buy 

the good with the lowest possible price. The auctioneer sets the rules of the auction that 

the bidders must comply with. Each bidder uses a different strategy that follows the 

rules of the auction whilst trying to maximize its individual utility. 

In an auction, the value of the good on offer is one of the most important criteria that dif

ferentiates different auctions settings. In private value auctions, the agent's preferences 

determine the value of the good (e.g. the auction of a cake that the winner will eat), 

whereas in public/common value auctions an agent's value of the good is determined 

by the values of the other agents (e.g. the auction of treasury bills). Correlated value 

auctions combine the aspect of both private and public value auctions, where the value 

of the good for an agent is partly determined by its own preferences and partly on the 

others' values (e.g. the auction of a contract within a project) [Sandholm, 1999a1 Here, 

private value auctions are the most relevant mechanism with respect to our negotiation 

domain since our negotiators operate in incomplete information settings and so do not 

have access to other agents' preferences. 

A number of auction protocols have been developed, each of which has different prop

erties under the three auction settings presented above. However, the following four 

protocols are the most widely used [Klemperer, 1999]: 

• English auction: This is ajirst-price, open-cry and ascending auction. The auc

tion starts when the auctioneer announces the reservation price for the good and 

allows the bidders to publicly raise their bids. The auction ends when no bidder 

is willing to raise its bid anymore and the winner is the highest bidder. The best 

strategy for each bidder is to make small increments to the current bid until the 

bid reaches the valuation price of the bidder. 

• Dutch auction: This is an open-cry and descending auction. The auction starts 

when the auctioneer announces an artificially high reservation price for the good 

and awaits for a bid from any bidder. If a bidder makes a bid at that price, the 

auction ends and this bidder becomes the winner. If, however, no one bids for the 

good at that price then the auctioneer successively lowers the price until a bid is 

forthcoming. 

• First-price sealed-bid auction: This is a one-shot auction, in which each bidder 

submits a bid for the good. The bids are sealed and unknown to the other bidders. 
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The auction ends when all the bids are collected and the winner is the highest 

bidder. 

• Vickrey auction: This is a one-shot, second-price and sealed-bid auction, which 

operates almost exactly as afirst-price sealed-bid auction. The only difference is 

that the winner only has to pay the price of the second highest bid. In this auction, 

the strategy for each bidder is bidding their true estimation for the good. 

With regarding to the service or the good being auctioned, most of these auction mech

anisms allow only negotiation about the single issue of price. This simplification has 

helped make auctions the dominant negotiation mechanism in today's electronic mar

ket [Bapna et al., 2001]. However, also because of this simplification, these traditional 

techniques are not suitable to solve the multi-issue negotiation problem, which is the 

target of our research. To address this shortcoming, a number of auction types have 

been introduced that deal with multiple issues and agent deadlines [David et at., 2002; 

Vulkan and Jennings, 2000]. Basically, these auctions target the environment that con

sists of one buyer agent and a number of seller agents and given their extensions they 

are clearly relevant to the research outlined in this thesis. In these auctions, the buyer 

publishes its preferences about the attributes of the goods together with its scoring func

tion. The target sellers then use this information to compose their bids and submit to 

the buyer. After a fixed amount of time, if no new bid is submitted, the auction is 

terminated. The winner is the seller that submits the bid that has the highest utility 

value according to the buyer's scoring function. However, although these mechanisms 

deal with multiple issues, they are not chosen as our approach because of the following 

reasons: 

• These techniques limit the capability of the participating agents. As can be seen, 

the seller agents are only allowed to use the specification of the buyer in creating 

their bids. They are not allowed to state their preferences to the buyer and they do 

not know how the buyer truly evaluates their bids. On the other hand, the buyer 

agent is only allowed to make a selection from the bids submitted by the sellers. 

The buyer is not allowed to modify any submitted bid and send it back to the 

seller as a counter-proposal. Consequently, the winner's bid may not be in the 

best interest of either the buyer or the sellers. 

Our concurrent bilateral approach overcomes this problem by allowing the buyer 

and the sellers to exchange two-way information by explicitly stating their pref

erences via the means of proposals. At each negotiation period, any agent can put 

forward its proposal, representing its preference of the good or the service, to the 
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other agent. If this proposal suits the other agent's preferences, it will be accepted. 

Otherwise, a counter-proposal made by the opponent will be sent back if its dead

line is not reached. By negotiating in this way, if an agreement is reached, it will 

be suitable for both agents and, furthermore, the social welfare will be increased. 

• The time it takes to come to an agreement using most auction techniques is not 

flexible. Normally, it is fixed or indeterminate. Using concurrent negotiations 

can potentially provide a solution to this problem. Traditionally, in the aforemen

tioned auction protocols, the buyer tends to select the winner at the last period of 

the negotiation because it will have a greater number of choices than if it does 

so at an earlier period. On the other hand, by allowing the agents to exchange 

two-way information, once a proposal is accepted by both parties, the negotiation 

may stop before the actual deadline is reached. This shortening can result in more 

efficiently resource and time saving for the participating agents. 

In short, auction techniques are simple and easy to carry out. Even though they do offer 

the capabilities of handling multiple attributes and deadlines, they still limit the capa

bilities of the participating agents (as mentioned above). As a result, these techniques 

are not chosen as our approach. 

2.4 Commitment Protocols 

As mentioned in the section 1.2, not only does the model need to provide basic negoti

ation capabilities, it also needs to impose certain restrictions on the agents' behaviors. 

On one hand, the agents are required to have responsibilities for their decisions (e.g. in 

a bilateral negotiation, one agent should not be allowed to freely agree on a deal and 

later on dishonor it since this will have a negative effect on the other agent). On the 

other hand, however, they should be allowed to have some freedom in their choice of 

actions (in a sense that they are self-interested and rational). In order to achieve such 

a balance, a method of handling commitments among the participating agents must be 

provided. To date, there are a number of different mechanisms that can do this. To this 

end, we discuss what is probably the foremost approach, the Contract Net Protocol in 

section 2.4.1 and then the next two most prominent mechanisms, namely Contingency 

Contracts and Leveled Commitment Contracts in sections 2.4.2 and 2.4.3, respectively. 
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2.4.1 The Contract Net Protocol 

Introduced during the 1980s, the aim of the Contract Net Protocol (CNP) is to provide 

a solution to the task distribution phase of cooperative problem solving among agents 

[Smith, 1980; Davis and Smith, 1983]. It is mainly based on the contracting mechanism 

that businesses use to control the exchange of goods and services and provides a simple 

solution to the problem of finding an appropriate agent to work on a given task. Figure 

2.3 gives an overview of the CNP. 

1. A manager broadcasts the existence of tasks 

3. The manager awards a contract to the most 
appropriate agent 

M 

8 
8 

3 

5. The chosen agent can send a decommitment 
request to the manager 

2. Agents evaluate the announcement and submit 
bids 

4. The contract can be sublet 

8 
8 

6. The contract is then given to the next appropriate 
agent 

M 8 
8 

FIGURE 2.3: The overview of the contract net protocol. 

Basically, when an agent has a task to be solved, it will make an announcement to other 

agents and become a manager. The other agents that have the capability to perform the 

task will be considered the contractors. From the manager's perspective, the process is 

as follows: 

• Broadcast an announcement for the task that needs to be solved (step 1). 
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• Receive and evaluate bids from potential contractors (step 2). 

• Award a contract to the most appropriate contractor (step 3). 

• Wait for the selected contractor to finish the task. Reallocate the task to another 

contractor if the original contractor terminates the contract early (steps 5 and 6). 

The manager can also terminate the contract if the task no longer needs to be 

finished. 

• Synthesize the final results from the allocated contractor. 

From the contractor's perspective, the process is: 

• Receive and evaluate the task announcement (step 2). 

• Respond to that announcement with either a bid (if it is capable of handling the 

task) or a decline (if it cannot perform the task - step 2). 

• Perform the task if the bid is accepted (step 3), can sublet the task to another 

contractor and become a manager (step 4). 

• Terminate the contract early if required to (for any appropriate reason - step 5). 

• Report the results. 

The roles of manager or contractor do not need to be specified in advance. Any agent 

can be a manager simply by broadcasting a task announcement and any agent can be a 

contractor by answering a specific announcement. Thus, further task decomposition is 

possible; a contractor for a task can become a manager and sublet the task to another 

contractor. These manager-contractor links form a hierarchy of nodes, referred to as the 

contract net. 

This protocol offers a basic commitment handling capability in the sense of a graceful 

performance degradation [Huhns and Stephens, 1999]. When a contract is given to the 

contractor, it is not considered binding on that particular agent. If, for some reason, the 

contractor could not finish the task, it does not mind losing its efforts and the manager 

could simply reallocate the task to another contractor. In that situation, the contractor 

simply sends a termination message to the manager, announcing it decommitment from 

the contract. Similarly, if the manager no longer needs the task to be done, it will simply 

send a termination message to the contractor and the contract will be terminated. 



Chapter 2 Related Work 49 

Speaking more generally, the contract net protocol provides a mechanism for symmet

rically coordinated behavior [Faratin, 20011 It is a distributed coordination architec

ture that is applicable in cooperative agents contexts (it can only work under the as

sumptions that the agents are cooperative) and has been integrated in a range of ap

plications, including the allocation of computational jobs among processors in a net

work [Malone et al., 1988], distributed meeting scheduling [Sen and Dlllfee, 1994; 

Sen and Durfee, 1998] and in cooperative coordination protocols [Decker and Lesser, 

1995]. 

Against the requirements stated in section 1.2, this commitment model is: 

• computationally tractable and flexible: the design of this commitment model is 

simple and straightforward. Thus, when being applied in the agent contexts, its 

computational complexity is tractable. 

• efficient: it is not applicable to be used in our context so this criterion cannot be 

asserted. 

The CNP provides a mechanism for handling commitments among agents. It is flexible 

in that the participating agents are not tied to their commitments, they are allowed to 

back down if they want to. To decomrnit, an agent just sends an appropriate message to 

the other agent and the contract will be amended accordingly (either being terminated 

or reallocated). Even when the contract has been carried out partially, the agents do 

not mind losing their efforts without any compensation [Sandholm and Lesser, 2001]. 

This is possible because the CNP only considers cooperative environments in which 

the agents are not self-interested. However, this assumption is highly problematic for 

our work because we are concerned with self-interested and rational agents. Thus, each 

agent has its specific goals and objectives and it is not willing to lose its efforts for 

nothing. Thus, this particular mechanism is not used in this work. 

2.4.2 The Contingency Contracts Protocol 

The contingency contracts protocol has been introduced to solve the commitment prob

lem in non-cooperative environments [Raiffa, 1982]. This protocol is based on a game 

theory approach that focuses on modeling probabilistically known future events among 

self-interested agents. The contract is obligated upon future events; that is, an agent is 

allowed to break its commitment if any specified contingency condition happens. For 
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this, an event verification mechanism is required in order to monitor the contingency 

events and later, enforce the validity of the contract. 

In more detail, assume that two agents band 8 negotiate about a service c. There are a 

number of future events that could have some effects on c (namely el, e2, ... ). Using 

the notion of contingency contracts, the final contract (which is agreed upon by both 

agents) will be represented as (xo, x e1 , Xe2 , •.. ). Here Xo represents the price that b 

agrees to pay 8, X ei E {true,jalse} represents the statement that if ei happens and x ei 

is true, any agent is allowed to back down from this contract. Under this notion, a non 

contingency contract is represented as (xo, false, false, ... ). 

To illustrate this mechanism, assume that band 8 negotiate about buying a news sub

scription service (only an issue of price will be considered). There are only two future 

events, namely el = [8 stops selling the service] and e2 = [8 increases the price of its 

service]. Now under the notion of contingency contract, (£100, true, false) means that 

b will pay 8 £100 for using 8'S service. If 8 stops selling the service, any agent can back 

down. However, none of them is allowed to back down even when 8 increases the price 

for its subscription service. 

Against the requirements stated in section 1.2, this commitment model is: 

• computationally tractable andjiexible: this model is only computationally tractable 

if the number of future events is small (when this number gets larger, it is cumber

some to include all the potential values for all the events). Furthermore, it is not 

flexible in the sense that if an unexpected future event happens that has not been 

prescribed, an agent will not be allowed to back down from its commitment even 

though that event might have a severe negative effect on the agent's outcome. 

• efficient: for the buyer to make use of the situation, all the future events must be 

determined (otherwise, it will not be able to renege). This is not applicable in our 

case since not all the future events are known to the agents in advance. Thus, this 

criterion is not satisfied. 

Thus, although this mechanism is applicable for self-interested agents in non-cooperative 

environments, there are a number of associated problems that means this approach is 

not suitable as a basis for our work. 

The first, and the biggest, problem is that all the contingency conditions must be enu

merated beforehand. This is inappropriate in many real world contexts since target envi

ronments are invariably dynamic. This means that not all the future events are known in 
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advance and, therefore, it is impossible for the agents to make use of this commitment 

protocol efficiently. 

The second problem is associated with the number of contingency conditions that need 

to be considered in the contract. If this number increases, this protocol can become 

cumbersome in monitoring all the future events. Furthermore, the state of the contract 

can be affected not only by these future events alone, but also by combinations of these 

events [Sandholm and Lesser, 1993; Rosenschein and ZIotkin, 1994]. For example, in

stead of allowing the agents to decommit based on individual events (el' e2), it might be 

a combination of a number of them (el and e2)' This leads to a potential combinatorial 

explosion of possible future states, each of which may be associated with a different 

contingency. Consequently, this may result in a combinatorial explosion in representing 

the contract. 

2.4.3 The Leveled Commitment Contracts Protocol 

The most recent approach to handling commitment among autonomous agents is the 

work by Sandholm and Lesser on the leveled commitment contracting protocol (LCC) 

[Sandholm and Lesser, 200n This protocol is based on the original Contract Net Pro

tocol (see section 2.4.1) but differs in the sense that agents can drop their existing con

tracts only by paying a pre-agreed penalty fee to their opponents (rather than paying no 

fee). The protocol is built upon the intuition that agents should be able to decommit 

unilaterally from a contract for whatever reason they deem appropriate, as long as they 

pay some penalty fee. This means no explicit conditioning on future events is needed, 

as well as no event verification mechanism (as per contingency contracts). The reason 

why it is called "leveled commitment" is that different decommitment penalties deter

mine correspondingly different levels of commitment. The larger the penalty, the lower 

the probability that an agent will decommit [Sandholm, 1999b]. Similar to some of the 

game theory based negotiation models (see section 2.1), the agents need to have infor

mation about their opponents (their actual and alternative commitment options) in order 

to calculate the Nash equilibrium decommitment thresholds. 

Typically, an agent will decommit if it needs to do so. However, there is one inter

esting observation about this protocol. Once a contract is made, it can happen that a 

rational agent may decide not to decommit since it believes there is a chance that the 

other agent will decommit. If this is the case, the former agent could back out of its 

commitment without paying the penalty whilst collecting a penalty fee from the other 

agent. Consequently, some contracts are kept, even though they are inefficient for both 
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agents. Nevertheless, it can be shown that leveled commitment contracts can enable 

deals in scenarios where both agents will not be benefit from full commitment contract 

[Andersson and Sandholm, 1999]. Furthermore, there are situations in which leveled 

commitment contracts will give higher expected payoffs to both agents than any full 

commitment contracts and for any full commitment contract, there is always a corre

sponding leveled commitment contract that will give higher expected utility than or, at 

least, equal value for both agents [Sandholm and Lesser, 2001]. 

Against the requirements stated in section 1.2, this commitment model is: 

• computationally tractable and flexible: this model satisfies both constraints since 

the design is simple and straightforward. No special computational requirement 

is needed to compute the penalty value. 

• efficient: this commitment handling mechanism satisfies this criteria since it only 

provides a method to handle commitments, but it does not actually affect the 

outcome of the negotiation game in which the agents are involved. 

Of the three commitment mechanisms considered in this section, Lee is the most ad

vanced since it is both computational feasible and able to provide an acceptable solution 

to the target commitment problem. Moreover, it is simpler than the contingency con

tracts in the sense that no future events need to be considered in advance and, thus, there 

is no need for a verification mechanism. However, there are a number of key problems 

that still need to be addressed [Nguyen and Jennings, 2004b]: 

• The original Lee only covers a two person game. Since our target environment 

consists of more than two agents, we need to extend the protocol to accommodate 

this situation. 

• The original Lee only reasons about decommitment. However, this is not suffi

cient to make the model applicable. Specifically, deciding when to commit is an 

equally important issue and we need to reason about this as well. 

• Lee requires the agents to have information about the actual and alternative op

tions of their opponents in order to be able to calculate the Nash equilibrium 

decommitment thresholds [Sandholm, 1999b]. This assumption is unrealistic in 

our target environments (recall, our agents need to be able to operate with incom

plete infonnation about the environment and the opponent) and, thus, needs to be 

relaxed. 
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• Lee typically assumes a fixed penalty for decommitting (pre-determined before 

the negotiation happens), regardless of the stage of the process at which the com

mitment is broken. Again, we believe that this assumption is unrealistic in many 

scenarios where the time an agent drops its commitment may have different ef

fects to the other agent's outcome. For example, the earlier an agent drops its 

commitment, the easier for the other agent to find a suitable replacement. 

Against this background, we decided to adopt the Lee protocol, however we need to 

extend it so that it is suitable for our target environment. This extended commitment 

model is an important contribution of this thesis and is defined in chapter 4. 

2.5 Learning Techniques 

Next, we look at the aspect of exploiting different sources of information in bargaining 

in order to gain better outcomes. Naturally, the agents in our target environment do not 

have access to every aspect of their environment. In particular, they do not have access 

to complete information about their opponents. Hence, they need to be able to act under 

uncertainty [Russell and Norvig, 2003]. However, in many situations, it is possible that 

they may have some partial information about their opponents (see section 1.2 for more 

detail). 

Given this situation, most heuristic-based negotiation models can operate without com

plete information about their environment (as discussed in section 2.2). If, however, 

some partial information exists, it would improve the performance of the agents if they 

could exploit this (e.g. by adopting an appropriate negotiation strategy). Such exploita

tion can lead to optimal results (see section 2.1.2)5 or can improve the performance 

of the model [Zeng and Sycara, 1998]6. Against this background, this section looks 

at how partial information can be represented using probability theory and processed 

using various learning techniques to improve negotiation performance. 

We start with a brief recap of probability theory in section 2.5.1 (the partial information 

that we are interested in is typically represented as a probability distribution), followed 

by two different approaches to machine learning (reinforcement learning techniques in 

section 2.5.2 and statistical learning techniques in section 2.5.3). A brief introduction 

5The agent in this negotiation model makes use of the information about the other agent's reservation 
value, as well as their negotiation deadlines, to find a Pareto optimal solution. 

6Information about the other agent's preferences helps improve the efficiency of the Bayesian learning 
algorithm employed in this model. 
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to weighted learning techniques is given in section 2.5.4 to conclude our discussion on 

learning techniques. 

2.5.1 Probability Theory 

Probability theory is chosen to represent partial information in our negotiation model 

because it is a common and well understood means of summarizing the uncertainty 

about the knowledge an agent possesses [Russell and Norvig, 2003]. 

In more detail, an agent's belief is represented by a proposition. Probability theory 

uses a language to state propositions. The basic element of the language is the random 

variable (the name of the variable is denoted with a capital letter, such as X, and the 

value of the variable is denoted with a lower case letter, such as x). Each variable has 

a domain that consists of the possible values it can take. There are three different types 

of domains that define the types of the variable: 

• Boolean random variable: the domain of each variable consists of only two pos

sible values: true orfalse. For example: the variable Tough (representing whether 

an agent is typically tough in negotiating) might have the domain of (true, false). 

• Discrete random variable: the domain of each variable consists of a finite number 

of possible values. For example: the variable Strategy (representing the chosen 

negotiation strategy of an agent) might have the domain of (tough, conceder, 

linear) (see section 2.2.1 for more detail). 

• Continuous random variable: each variable can take a real number as a possible 

value. The domain of each variable can be either the entire set of real numbers or 

some subset. For example, the variable Price (representing the price of a holiday 

package, see section 1.2) might have the domain of [0,1000]. 

The unconditional or prior probability of a proposition a, P(a), is the degree of belief 

assigned to it in the absence of any other information. For example, if the unconditional 

probability that an agent is a tough negotiator is 0.4, then: 

P(Tough = true) = 0.4 or P(Tough) = 0.4 

For random variables, such as Strategy, P(Strategy) denotes the probabilities of all the 

possible values of this variable. 
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{ 

P(Strategy = tough) = 0.2 

P(Strategy) = (0.2,0.3,0.5) <=? P(Strategy = conceder) = 0.3 

P(Strategy = linear) = 0.5 

The statement, P( Strategy), defines a prior probability distribution for the discrete 

random variable Strategy. For continuous variables, it is impossible to list all the distri

bution probabilities. Instead, the probability that a random variable X takes on a value 

x is defined as a parameterized function of x. For example, let the random variable X 

denote the price of a bike, then the statement P(X = x) = U[100,200](x) expresses 

the belief that X is distributed uniformly between £100 and £200. 

Now, probability distributions for continuous variables are called probability density 

functions. These density functions differ in meaning from discrete distributions. For 

example, P(X = 150) = U[100, 200] (150) = 0.01. This does not mean that there is 

a 1% chance that the price will be exactly £150. Instead, the technical meaning is that 

the probability that the price is in a small region around £150 is equal to 0.01 divided 

by the width of the region: 

lim P(150 ::; X ::; 150 + dx)dx = 0.01 
dx---+O 

Unconditional probability is not applicable if the agent has obtained some evidence that 

is concerned with the previous unconditional random variable (e.g. variable a might 

not have a particular value if variable b has not been set to have another particular 

value). In such cases, conditional or posterior probabilities must be used. In this case, 

P(alb) denotes the probability of a given b. For example, P(toughlconsistant) = 0.7 

indicates that if an agent is observed to be consistently keeping its offer's value close 

to its initial value and no other information is available, then the probability that this 

agent is a tough negotiator is 0.7. The formula to define conditional probability from 

unconditional probability is given as: 

P( Ib) = P(a /\ b) 
a P(b) 

where P(b) > 0 and P(a/\ b) denotes the probability of both propositions a and b. This 

equation can also be written as: 

P(a /\ b) = P(alb)P(b) (2.2) 
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which is called the product rule. This is also true for the other way around: 

P(a 1\ b) = P(bJa)P(a) (2.3) 

The probability distribution for continuous random variables can be expressed in a sim

ilar way to the probability distribution for discrete random variables: 

P(X, Y) = P(XJY)P(Y) 

where P(XJY) give the values of P(X = XiJY = Yi) for each possible i, j. 

From equations 2.2 and 2.3, we have: 

P(bJa)P(a) = P(aJb)P(b) 

Dividing by P(a) (assuming P(a) > 0) we have: 

P(bJa) = P(~~~(b) (2.4) 

This equation is known as the Bayesian rule or Bayesian theorem. The more general 

version of this rule, with a background evidence e, is expressed as follows (assuming 

P(X, e) > 0): 

P(YJX ) = P(XJY, e)P(Y, e) 
,e P(X, e) 

(2.5) 

This equation represents the general Bayesian rule. 

Next, we look at different learning techniques and their applications in the negotiation 

domain. As will be seen, each has the own advantages and disadvantages. 

2.5.2 Reinforcement Learning Techniques 

Reinforcement learning is a technique in which the agents rely upon their past expe

rience to improve their behaviors [Kaelbling et at., 1996; Sutton and Bal10, 1998]. A 

reinforcement learning system must provide a scalar evaluation (e.g a reward) for each 
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output an agent has chosen. The idea behind is that if an action produces favorable 

results, that tendency should be strengthened (reinforced) and, correspondingly, weak

ened if it produces unfavorable results [Mitchel, 1997]. Figure 2.4 shows the general 

procedures that an agent must follow using reinforcement learning. 

Agent 

State Action 

Environment 

[1] The agent senses the environment 

[2] The agent makes a decision about the next 
action to execute by analysing its current 
circumstances (state). 

[3] The agent executes the selected action 

[4] The agent obtains a reinforcement reward for 
the action it performed. 

[5] Go to [1] 

FIGURE 2.4: Agent's general procedure in RL (taken from [Mitchel, 1997]). 

RL tasks are naturally divided into two types: sequential and non-sequential. In non

sequential tasks, an agent needs to learn to map from states to actions that maximizes the 

expected intermediate payoffs from executing different actions. Any action selected by 

the agent will have no effect on its future states and, thus, its future payoffs. On the other 

hand, in sequential tasks, the agent needs to carefully evaluate its actions on the basis of 

their long-term consequences [Sandholm and Crites, 1995]. Among the reinforcement 

learning techniques, Q-Iearning is the most widely employed in multi-agent learning 

and has been applied in a variety of multi agent systems [Claus and Boutilier, 1998; Sen 

and Weiss, 1999; Excelente-Toledo, 2003]. In short, Q-Iearning works by estimating the 

values of state-action pairs and by selecting the action that maximize this estimation. 

In more detail, let Q(a, s) denote the value of doing action a in state s. This value is 

directly related to the agent's utility value as U(s) = maxaQ(a, s). Now assume that in 

state s action a is selected and an immediate payoff T is received and the current state 

moves to s' . In this case, the value for Q (a, s) is updated as follows: 

Q(a, s) f- Q(a, s) + a(T + ImaxaIQ(a', s') - Q(a, s)) 

where a is the learning rate and a ~ I ~ 1 is the discount factor (see [Russell and 

Norvig, 2003] for more detail on these parameters of a Q-Iearning model). 

In a stable and Markovian environmenr7, this algorithm is guaranteed to converge to 

the correct Q-values [Mitchel , 1997]. Even though Q-Iearning does not specify which 

7 An environment in which the transition from the current state only depends on the current state and 
the action taken in it, without any influence from the history that led to the current state. 
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action should be taken at each step, typically, in practice, a method is usually provided 

that both ensures sufficient exploration and selects actions that have higher value es

timates. One such example is the Boltzmann distribution [Hastings, 1997], where the 

probability of selecting action ai from state sis: 

where t is a computational temperature parameter that controls the amount of explo

ration, usually annealed gradually overtime. 

Since it does not require a model for either learning or action selection, this method 

has been applied into a number of multi-agent systems and it has proven to be useful in 

specialized situations [Sandholm and Crites, 1995; Sridharan and Tesauro, 2000; Arai 

et aI., 2000]. However, there are a number of problems with reinforcement learning. 

First, in our target negotiation model, we are unable to give a value for each action 

of our agent. Since we target incomplete information scenarios, we do not know how 

the other agents evaluate the action of our agent and, thus, such reinforcement values 

cannot be obtained. Furthermore, our target environment is not stable and Markovian; 

the actions of the participating agents might depend on the whole history of behaviors 

in the encounter, not just on the behavior in the current state. Thus, it is not guaranteed 

to give the optimal result. Consequently, this learning technique is not adopted in our 

model. 

2.5.3 Statistical Learning Techniques 

Here, we look into statistical learning techniques and how they can be applied to dif

ferent negotiation situations. In general, these techniques use data and hypotheses to 

make predictions. The target domain is represented by a number of different random 

variables. Data is the instantiation of some (or all) of these random variables and the 

hypotheses are the probabilistic theories of how the domain works [Russell and Norvig, 

2003]. The general rule is the predictions are then made using the posterior probabil

ities of the hypotheses. To illustrate this, consider the Bayesian learning method (the 

most powerful statistical method) as applied in the Bazaar negotiation model [Zeng and 

Sycara, 1998]: 

Here, the negotiation is a game of 2 players, following Rubinstein's model of alternating 

offers (section 2.1.1) that terminates with either Accept (denotes the final agreement 
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reached) or Quit (implies that no agreement is found). A negotiation is then modeled 

by a lO-tuple (N, lVI, 6., A, H, Q, D, P, C, G), where: 

• N is the set of players, 

• M is the set of issues covered in the negotiation (i.e. price, quantity ... ), 

• 6. is the set of vectors of each and every dimension of an agreement in the nego

tiation, 

• A is the set of all the possible actions that can be taken by every player: A _ 

6. U {Accept, Quit}. For each player i EN, Ai is the set of possible agreements: 

Vi EN: Ai C A, 

• H is the set of sequences (finite or infinite) that satisfies: 

- The elements of each sequence are defined over A, 

- The empty sequence <I> is a member of H, 

- If (akh=l, ... ,K E Hand L < K then (akh=l, ... ,L E H, 

- If (akh=l, ... ,K E Hand aK E {Accept, Quit} then ak tj. {Accept, Quit} 

'Ilk E {1, ... , K - 1}, 

- Z is the set of terminal history. Z 

aK E {Accept, Quit}. 

{h} h 

• Q is the function that associates each non-terminal history (h E H\Z) to a member 

of N. 

• D is the set of relevant information entities. It represents the players' knowledge 

and beliefs about the following aspects of the negotiation: 

- The parameters of the environment, which can change over time (i.e. the 

overall product supply, demand and interest rate). 

- Beliefs about other players, including: 

1. Beliefs about the factual aspects of other agents, such as their payoff 

functions, the resources that they have, etc. 

2. Beliefs about the decision making process of other agents, such as their 

reservation prices, etc. 

3. Beliefs about the meta-level issues of other agents, such as their risk

taking attitudes, etc. 



Chapter 2 Related Work 60 

• P is the probability distribution defined over D: P = {Ph,i} Vi E N, h E {H\ Z}. 
This distribution is a concise representation of each player's knowledge at each 

stage of the negotiation, 

• C is the set of costs of executing an action a for agent i (communication or time 

related). C = {Ci,h,a} Vi E N, hE {H\Z}, a E Ai, 

• For each terminal history hE Z, player i E N, a preference relation ~i on hand 

Ph,i(X), x E Q. ~i in tum results in an evaluation function Eft,i) [Gi(X, h)] that 

will be used in selecting which action to be executed. 

• For each player i, a negotiation strategy is a sequence of actions (a7, k = 1, ... , L) 

where a7 E Ai\{Accept, Quit}, Vk = 1, ... , K - 1 and af E {Accept, Quit}. 

• Before the negotiation starts, each player i has a certain amount of knowledge 

about D (including knowledge about the environment as well as other players) 

denoted as PO,i, 

• Suppose player i has been interacting with another player j for k times (i has 

sent exactly k proposals to j and has received either k or k + 1 proposals from j, 

depending on whom has initiated the negotiation) and neither Accept or Quit has 

been proposed. Assume that the following information is available to each player 

z: 

1. All the actions that have been taken by all the agents up to date. Formally, 

each and every history h that is a sequence of k actions is known to i. Let 

Hi,k denote the set of these histories, 

2. The set of subjective probability distributions over D: PHi,k-l,i 

h E Hi,k-d is known to i. 

Given the concepts, in order to reply to the most recent action taken by other participant, 

i takes the following steps: 

1. Update its subjective evaluation about the environment and other players using 

the Bayesian rule (equation 2.5). Thus, given prior distribution PHi,k-l,i and the 

newly incoming information Hi,k> generate the posterior distribution PHi,k,i. 

2. For h E Hi,k> select the best action from Ai according to the following recursive 

evaluation criteria: 
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v; _ { E~,i)[Gi(X, h)] if h E Z 

2,k,h - maXaiEAi{ -Ci,ai,h + Jx[Vi,k+l,(h,ai) X Ph,i(X)]dX} otherwise 

To illustrate the Bazaar negotiation framework, consider the following example. The 

negotiation is considered only from the viewpoint of the buyer and the relevant infor

mation set n consists of only one item: its belief about the supplier's reservation price 

RPsupplier. An agent's reservation price is the maximum (minimum if it is the supplier) 

price that it consider acceptable. As shown in figure 2.5, if RPsupplier ::; RPbuyen a 

zone of agreement exists, in which any point within it can become an agreement. The 

negotiation only finishes successfully if this zone exists and, if it does, the negotiation 

will consist of a series of concessions from both players. Eventually, a proposal within 

this zone will be reached and agreed by both players. 

Buyer's initial offer Supplier's initial offer 

1 
t==zone of Agreement=-r 

1 

RPsupplier RPbuyer 

FIGURE 2.5: An example of reservation prices and the zone of agreement. 

The main point of using Bayesian learning in this case is to predict the possibilities of 

potential values for RPsupplier. As the buyer gains more accurate information about this 

value, it will be able to make more advantageous offers for itself [Zeng and Sycara, 

1998]. In particular, partial belief about RPsupplier can be represented by a set of 

hypotheses Hi, i = 1, ... , n where HI can be RPsupplier = £100 and H2 can be 

RPsupplier = £90 for example. A priori knowledge of the buyer is the probabilistic 

distribution over Hi (i.e. P(HI ) = 0.5, ... ). Later, when a proposal from the suppliers 

arrives (Ojfersupplier), its value together with the domain knowledge8 will be used to 

update the posterior subjective evaluation over Hi. 

Given the encoded domain knowledge (in the form of conditional statements and the 

signal, e), the buyer can update its belief about RPsupplier using the standard Bayesian 

updating rule (extended from equation 2.5): 

(2.6) 

8The set of observations, such as "usually in business, people will offer a price that is 17% higher than 
the reservation value". This is represented by a set of conditional statements, for example P(el I HI) = 
0.3 where el represents "O!fersupplier = 117". 
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For the purpose of illustration, suppose that the buyer knows that RPsupplier is either 

£100 or £90. This means the buyer has only two hypotheses: HI: RPsupplier = £100 

and H 2 : RPsupplier = £90. Prior to the negotiation, the buyer does not have any 

other additional information; its a priori knowledge is summarized as P(HI ) = 0.5 and 

P( H 2 ) = 0.5. Additionally, assume that the buyer is aware of the observation "suppliers 

will typically offer a price which is above their reservation price by 17%". Part of this 

observation is encoded as P(el I HI) = 0.3 and P(el I H 2 ) = 0.05, where el denotes 

the event that the supplier demands £117 for the good under the negotiation. Now, if the 

buyer receives the offer of £117 from the supplier, its posterior estimation of RPsupplier 

can be calculated (using equation 2.6) as follows: 

Now assume that the negotiation strategy that the buyer uses is a simple "propose a 

price which is equal to the estimated RPsupplier" [Zeng and Sycara, 1998]. Prior to the 

negotiation process, based on its belief (HI and H 2 ), the buyer will offer £95. After 

receiving the proposal of £117 from the supplier, the buyer will offer £98.57 as the 

counter offer. Since this value is calculated based on a more accurate estimation of the 

supplier's utility structure, it might result in a potentially more beneficial final outcome 

for the buyer. Furthermore, it is also possible for both players to come to agreement 

more efficiently. In fact, it is shown via empirical evaluation that the greater the zone of 

agreement, the better the learning agents seize the opportunity [Zeng and Sycara, 1998]. 

As can be seen, Bazaar provides a negotiation model that uses Bayesian learning to 

improve its operational efficiency. However, the main problem of this particular ne

gotiation model is that its complexity dramatically increases as the set of negotiation 

issues and/or the set of subjective probability distributions increase (it only works well 

with a single issue and one probability distribution). Moreover, it requires a complete 

parametric model in order to be able to operate [Bui et al., 1996; Heckennan, 1999]. 

Nevertheless, the benefit of using Bayesian learning in a multi agent negotiation model 

is that it can provide a learning framework that does not require a large sample in order 

to be able to operate. For this reason, this particular learning technique is adopted as a 

part of our learning framework (discussed in section 3.4.3 and chapter 5). 
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2.5.4 Weighted Learning Techniques 

The other learning techniques that we want to address in this section is the family of 

techniques called weighted learning [Atkeson et at., 1997]. In particular, we are inter

ested in the most two prominent techniques, namely kernel density estimation [Wand 

and Jones, 1995] and function smoothing techniques [Moore et al., 1995]. Similar to 

other learning methods, these techniques aim to improve the agent's performance based 

on the past experiences and the values of the offers and counter-offers received during 

the negotiation process. Unlike Bayesian learning, these techniques provide a simple 

way of finding structure in data sets without the imposition of a parametric model. Ba

sically, any information gained prior to the negotiation is processed offline and it can 

then then be augmented by online learning that reflects new information emerging from 

the ongoing encounter. 

Weighted learning is usually selected for its lowcomputational complexity and its effec

tiveness in learning [Wand and Jones, 1995; Moore et at., 1995]. Now, complexity is a 

very important constraint in our model since our agents are bounded in their computa

tional power (see section 1.2). Moreover, with weighted learning, most of the learning 

can be done offline and the online part has the complexity of n log n for the KDE 

[Wand and Jones, 1995] and n 2 for the function smoothing techniques (see section 5.1). 

More importantly, when learning about one aspect of the opponent (i .e. their negotiation 

strategies), these techniques do not require complete information (in Bayesian learning, 

a priori distribution must be given in advance). Nevertheless, the more information that 

is available, the better the performance of our model (see section 5.3 for more details). 

2.6 Summary 

Having presented existing negotiation, commitment and learning models, this section 

discusses the advantages, as well as disadvantages of such models. First, table 2.3 sum

marizes our discussions about existing negotiation models9 . As can be seen, there are a 

number of existing bilateral negotiation models that each adopt a different approach to 

solve the negotiation problem. Consequently, the performance of these models vary in 

different negotiation settings. There are also trade-offs between different approaches. 

For example, most game theory based models guarantee to find an optimal solution but 

9In this table, V denotes the fact that the corresponding requirement is fully satisfied, * denotes the 
fact that the corresponding requirement is only partially satisfied, unknown denotes the fact that there is 
not enough information to assess the corresponding requirement, and x indicates that the corresponding 
requirement is not satisfied. 
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are not computationally tractable, whereas most heuristic-based models are computa

tionally tractable but cannot guarantee optimality. 

Kraus Faratin Fatima Luo Rahwan 
Number of agents 2 2 2 2 n 
Number of issues I&n n I n n 
Approaches (Game-theory, esp, G H G&H cSP CSP 
Heuristic) 
Protocols (Interactive) I I I I I 
Computationally tractable y' y' y' x x 
Incomplete information * y' * y' y' 
Partial information y' x y' x x 
Negotiation deadline y' y' y' x x 
Concurrent negotiation x x x x y' 
Efficient outcome y' x y' y' x 
Commitment handling x x x x x 

TABLE 2.3: The comparison matrix of existing negotiation models. 

In addition, there is very little work which specifically addresses the problem of multiple 

concurrent encounters (only Rahwan et aI's model). Now, this is a particular problem 

in situations where there are a number of providers that offer the same service and only 

one of them needs to be chosen. Particularly, one of the inherent drawbacks of not being 

able to handle this situation is that the agent has to a priori identify a single partner to in

teract with. While this is acceptable if there is only one provider of the desired service, 

it is inefficient in an uncertain setting if there are multiple providers of the service and 

each has different characteristics. In this multiple provider case, there are two alterna

tives: (1) negotiate sequentially with all the providers or (2) negotiate concurrently with 

them. The former case has the disadvantage that it may result in lengthy negotiation en

counters, but has the advantage that it is comparatively easy to use the outcome of one 

negotiation to dictate behavior in subsequent ones. For example, if an agent reaches an 

agreement of price p for service S in negotiation i, then in all subsequent negotiations, 

p can be viewed as its reservation price since it can always claim this agreement. The 

latter case has the advantage of taking less time, but the disadvantage that coordinating 

behaviors among the negotiation threads is more difficult lO . 

Against this background, we concentrate on the concurrent case and develop a coordi

nated bidding model in which the various negotiation threads mutually influence one 

another. By mutually influencing, we mean that the progress and agreement in one ne

gotiation thread is used to alter the behavior of the agent in another thread for the same 

service. For example, having obtained a good deal in one thread, the agent may adopt 

a tougher stance in its other threads, to see if it can get an even better deal than the one 

it can fall back on. Based on these observations, we introduce a concurrent negotiation 

!OSuch coordination is necessary to ensure the agent does not end up with mUltiple agreements for the 
service when only one is required. 
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model that is capable of handling multiple negotiations simultaneously. The details of 

this work are expressed in chapter 3. 

With regard to commitment handling capabilities, in traditional bilateral negotiation 

(full commitment contracts), a contract, once made, is considered binding to both parties 

(i.e. neither agent can drop its commitment no matter how future events affect its status) 

[Kraus, 1993; Andersson and Sandholm, 1999]. However, there are many situations in 

which one agent will gain better utility values if it can drop its current commitment 

(i.e. it is offered a proposal that has higher utility value than the current agreement it 

is holding). By being tied to its current commitment, the chance of an agent having 

a better deal is lost. In our concurrent negotiation context, since the buyer only seeks 

to buy the service from a single provider, if it is limited to only a single agreement, it 

will have no chance of getting a high value deal. Thus, full commitment contracts are 

undesirable in our target contexts. 

On the other hand, if the agents are allowed to freely back down from their commit

ments, there is no guarantee that an agreement will be honored in the future. Therefore, 

the result of a negotiation is uncertain and could result in a waste of time and resource 

for all the participants. This will, in tum, reduce the desirability of engaging in the 

bargaining encounter of the agents. Consequently, a method to control and enforce 

commitments among the agents is desirable. 

Amongst the available mechanisms to handle commitment, the Contract Net Protocol is 

targeted at cooperative environments and, thus, is inapplicable. The contingency con

tracts protocol is able to handle non-cooperative scenarios and self-interested agents. 

However, it is only useful if the number of contingency conditions is small and all the 

future events are known to the participating agents beforehand. Again, these assump

tions are somewhat limited and unrealistic. Thus, we choose not to adopt this approach 

in our negotiation model. On the other hand, the leveled commitment contracts proto

col provides an efficient and computation feasible mechanism to handle commitment 

among the agents. It does force the agents to have responsibility for their behaviors, 

whilst allowing them to have the freedom to back down from their commitments if they 

have the incentive to do so. For this reason, this approach is selected as the base for 

the commitment handler in our model. However, we need to extended the original LCC 

protocol to accommodate multiple agents situations as well as other important improve

ments (see chapter 4 for more details). 

With regard to learning capabilities, we would like to retain the practicability and low 

computational requirements of our model (as per section 1.2). Thus, our target learning 

environment must be based only on the data gathered from the interactions between our 
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buyer and the participating seller agents. Also we do not want to introduce unrealistic 

assumptions about the agents in our scenarios (related, for example, to assumptions 

about knowledge about the agents' preferences or deadlines). Furthermore, we do not 

want to employ additional structures to govern the learning process since this is likely 

to require additional computational and resources for our agent. Given all of this, the 

learning domain that we target can be considered unsupervised in that the causal relation 

between the action of our agent and its outcome cannot be determined 11. 

There are a number of unsupervised learning techniques that could potentially be em

ployed in this scenario; each of which has its own advantages and disadvantages. The 

most common model, and the one that is often used in multi-agent research, is that of 

reinforcement learning (see section 2.5.2). Such techniques are popular because they 

do not require a model to be set up and are also able to provide good results in spe

cialized negotiation situations [Kaelbling et al., 1996]. Thus the learner is not told 

which actions to take, but instead must discover which actions yield the most reward 

by trying them. Nevertheless, their main disadvantage is the fact that for every action 

an agent selects, there must be a feedback given and this is not always feasible in our 

negotiation contexts l2 . Furthermore, in order to generate correct feedback values for the 

model to work, most of these techniques employ assumptions similar to those of game

theory (see section 2.1). Although such assumptions provide the agent with appropriate 

feedback values for their actions, converging to a good learning performance, the prac

ticability of such learning models is limited [Kaelbling et al., 1996]. Consequently, we 

do not employ this kind of technique in our learning model. The same broad criticisms 

can be leveled at many of the other forms of unsupervised learning including analytical 

learning or instance-based learning [Alpaydin, 2004]. 

On the other hand, the weighted learning approach (see section 2.5.4), is an unsuper

vised learning technique that does not require a parametric model (unlike Bayesian 

learning, it can operate without the explicit probability representation of the learning 

data). It also does not require a feedback for each action step (since its learning struc

ture is based only on the interactions amongst the participating entities). As can be seen, 

11 Supervised learning techniques (such as neural networks, statistical machine learning) are controlled 
using an external mediator whose role is to adjust the parameters so that the causal relation between the 
input and output parameters is justified (instructive). In contrast, unsupervised learning does not have 
that requirement [Michie et af .. 1994l. 

I2In our model, the agents operate in an incomplete information scenario. The only information that 
they get from the other agents is their proposals. Consequently, an appropriate feedback is unable to be 
given to each of the agent's action. One can argue that a randomized feedback could be used instead of a 
proper value, however, we believe that by doing this way the performance of the learning model will be 
greatly reduced. 
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such advantages suit our target learning domain and, thus, it is selected as the base for 

our learning model, described in chapter 5. 



Chapter 3 

The Concurrent Bilateral Negotiation 

Model 

This chapter introduces a new model for concurrent bilateral negotiations, denoted eCN 

(e-commerce Concurrent Negotiation). Its aim is to address the shortcomings of the cur

rent models described in chapter 2 and to implement the basic negotiation requirements 

discussed in section 1.21. The sections start with a description ofthe internal reasoning 

of the buyer agent in section 3.1 and the negotiation protocol in section 3.2. The list of 

symbols that are used throughout this thesis is then detailed in section 3.3. Next, we 

go on to the design of the concurrent negotiation model in section 3.4, followed by the 

experimental results in section 3.5 and the practical application of the model in section 

3.6. Finally, section 3.7 summarizes. 

3.1 The Buyer's Internal Reasoning Process 

We start the section with a brief discussion of the model. The negotiation environment 

that the model targets consists of one agent, called the buyer, seeking a service sand 

with n agents (called the sellers) that are capable of providing s. Each agent has its 

own negotiation deadline (tmax for the buyer and tkrnax for each seller k), after which 

the negotiation cannot continue. At each negotiation time period, the interest of each 

agent, both in buying and selling s, is represented by a proposal ¢. ¢ is composed of m 

issues, where each issue j is an attribute of s (e.g. price, quantity, etc.). 

1 ExcIuding the requirements related to commitments and learning which will be dealt with in chapters 
4- and 5, respectively 
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FIGURE 3.1: The buyer's internal reasoning process. 
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no 

In particular, the buyer agent's internal reasoning process, or how it engages in and final

izes the negotiations, is expressed in figure 3.1. The process starts with a pre-negotiation 

phase, in which the buyer prepares the strategy for each of its threads2
, based on its be

lief about the current market situation and the information about the other agents (see 

section 3.4.3). After this phase, all the negotiations are carried out concurrently (where 

each negotiation follows the protocol described in section 3.2). The status of each ne

gotiation is reported back to the buyer and this may in tum affect the other ongoing 

negotiations (see section 3.4.3). After all the negotiations have finished, the buyer goes 

into a post-negotiation phase in which it finalizes a deal with the agent that has provided 

the highest value agreement and declines all deals with the other agents. This finaliza

tion phase is necessary in order to deal with the problem of concurrent encounters. As 

it currently stands, if the buyer accepts an offer from a seller then this is viewed as bind

ing on the seller (for a specified period of time, which is assumed to be no longer than 

t max ). However, it is not binding on the buyer. Thus, the buyer may accept offers from 

multiple sellers in anyone negotiation episode. However, when it has completed all the 

negotiations, the buyer willjinalize one of the accepted deals with one of the sellers and 

decline the others, thus freeing them from their commitments to the proposal. This two 

phase process is necessary so that the buyer can use accepted deals as a base line for its 

2Each thread handles a negotiation with a particular seller (see section 3.4.2 for more detail). 
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subsequent concurrent negotiations.3 

3.2 The Negotiation Protocol 

As discussed in section 1.1, the agents participating in the negotiation need to communi

cate and interact with each other. An interaction protocol is therefore needed to control 

the flow of communication among the agents, so that chaotic situations are avoided. 

Once specified, the agents must follow the protocol strictly in order to make the result 

of the negotiation valid. In the scope of this research, we will not consider the situation 

where agents do not follow the protocol. 

concurrent negotiations 
with available sellers 

finalize, decline 

FIGURE 3.2: The execution states of the model. 

.. , 
\. 

In more detail, figure 3.2 shows five execution states of the negotiations. First, all the 

negotiations are started simultaneously (system state transits from starting state 1 to 

negotiating state 2). During the life time of the bargaining process, any negotiation that 

terminates with an agreement will move its state from negotiating state 2 to agreement 

state 3, whereas those that terminate without an agreement will move their states to 

failure state 4. After all the negotiation terminates, the system state will move from 

state 3 and 4 to the terminal state 5, at which point the buyer agent finalizes the deal that 

has the highest utility value and declines all the other accepted agreements (represented 

by the dotted lines). 

3This is obviously biased in favor of the buyer. In chapter 4, we relax this constraint so that sellers 
can also renege on deals. 
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FIGURE 3.3: The negotiation protocol. 

In each thread, the negotiation with the corresponding seller agent will be carried out via 

the negotiation protocol detailed in figure 3.3. This protocol is based on Rubinstein's 

model of alternating offers (section 2.1.1). Specifically, there are five states in this 

protocol in which state 1 is the initial state and states 4 and 5 are the termination states. 

First, the buyer's thread starts the negotiation (state transits from 1 to 2) by proposing 

an initial offer to the opponent (state transits from 2 to 3). At this point, the opponent 

has three options: (1) accept the offer which terminates the negotiation (state transits to 

5) and causes the seller to wait for the buyer to finalize the deal (see section 3.4.1); (2) 

withdraw from the negotiation (state transits to 4) which signals the termination of the 

negotiation; or (3) propose a counter-offer to the buyer (state transits to 2) which causes 

the negotiation to move to the next period. Typically, the agents iterate between states 

2 and 3, exchanging counter-offers until either the offer is accepted by the opponent 

or one of them reaches its negotiation deadline and withdraws. The primitives that the 

agents are allowed to use in the negotiation protocol are specified in table 3.1. 

3.3 The List of Symbols 

To start the process of formalizing our model, table 3.2 lists the symbols that are used in 

developing the model. These symbols are listed together with a brief description of their 

meaning. The detailed explanations of the terms, as well as the working mechanism, 

are expressed in the subsequent sections. In what follows, all symbols will have the 

meaning given here unless explicitly stated to the contrary. 
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I Actions I Content I Context 

start(b, s) none the buyer b sends this message 
to start the negotiation with 
the seller s. 

propose(i, y, ¢) the contract the agent i sends a contract ¢ 
to the agent y. 

accept(i, y, ¢) the contract the agent i accepts the con-
tract ¢ proposed by the agent 
y. 

withdraw(i) none the agent i withdraws from the 
negotiation. 

finalize( k) none the buyer finalizes the deal 
with the seller k. 

decline(k) none the buyer declines the previ-
ous agreement made with the 
seller k. 

TABLE 3.1: The interaction primitives. 

3.4 The Concurrent Negotiation Model 

This section describes the negotiation model that complies with the protocol of sec

tion 3.2. This description starts with the basic definitions and concepts of the model 

(see figure 3.4). Next, the concept of a negotiation thread is described, followed by a 

discussion of the coordinator. 

Buyer Agent 

FIGURE 3.4: The model's components. 

3.4.1 Definitions and Concepts 

This section details the concepts of a negotiation contract, how it is structured and 

evaluated, and a negotiation strategy. 
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I Symbols I Description 

n the number of seller agents participating in one en-
counter 

't, y a general agent, can be the buyer agent or any seller 
agent 

b the buyer agent 
k a generic seller agent 
Sk, k E [1, n] a specific seller agent 
A the set of all participant agents 
S the service under negotiation 

cP a general proposal, a contract 
m the number of issues in one proposal 

J a generic issue 
D j the quantitative domain for the issue j 
I the set of negotiation issues 
AS, AC, An the set of generic, conceder and non conceder seller 

agents (indicating different types of seller, according 
to our buyer agent's classification), respectively 

S the set of all the available negotiation strategies 
Sc, Sz, St the set of conceder, linear and tough negotiation 

strategies (indicating different types of negotiation 
behaviors that our buyer agent may engage in re-
sponse to the sellers' offers), respectively 

tmax the negotiation deadline of the buyer agent 
t· 'Lrnax the negotiation deadline of the seller i 
Ui the utility function of agent i 
U i

( cP) the utility value of contract cP according to agent i's 
utility function 

f3 the parameter to decide which class a strategy will be 
(see section 3.4.1.3) 

6 the parameter to decide which class an evaluation 
function will be (see section 3.4.1.2) 

a the parameter to decide which class a seller will be 
(see section 3.4.3) 

r the buyer's reservation value for all the negotiation 
threads 

TABLE 3.2: The list of symbols (a bold symbol represents a set). 

3.4.1.1 Contracts 

As defined in section 1.1, a service, the object that the buyer and the seller are bargain

ing over, represents the capability of an agent in performing tasks. Here, a contract 
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represents one agent's interest in a service to the other agent at a specific point in the 

negotiation encounter. 

Each contract ¢ can have a single or multiple issues. The set of all the negotiation 

issues is called I : I = {issuel, ... , issuem }. The number of issues, m, in one contract 

is finite and is agreed upon by the buyer and all the sellers in the pre-negotiation phase 

and it is not changed throughout the negotiation encounters. 

By means of an illustration, figure 3.5 represents a sample contract taken from the hol

iday scenario in section 1.2. This contract consists of 5 issues, namely package price, 

direct flight, hotel rating, meals included and extra activities. Each issue comprises a 

single value and its domain can be either finite (fixed number of choices) or infinite (a 

real number). At this time, for reasons of simplicity, we choose to use a quantitative 

representation for all negotiation issues (thus the domain of each issue can only contain 

numerical values)4. As can be seen, the domain for the issue package price is infinite, 

whereas the domains of the other issues are finite. 

Issues I Values I Domains 

package price 895.0 0.0 ... 1000.0 
direct flight ° 0, 1 
hotel rating 2 1,2,3,4,5 

meals included 1 0,1,2 
extra activities ° 0, 1 

FIGURE 3.5: The sample contract with each issue's domain. 

Formally, for agent i E A, each issue j E I is a tuple {x~, D~, s~, wj} where: 

• D
J
i
.: is the value domain {XJi . ,x

J
i
. } for j where XJi. . and XJi. are the rnini-

m'ln max mtn max 

mum and maximum acceptable values that x~ can have, 

• x~: is the current quantitative value of the issue x~ E Dj, 

• wj: is the weight, or how i values j with regards to I. The weights are normalized: 
,\,m i_ 
Dj=l Wj - 1, 

• sj: is the step value of the issue: 

4For qualitative issues, we choose to have their values represented by a corresponding quantitative 
representation. For each issue, this is done via a transformation function that converts each qualitative 
value into a quantitative numerical value within a predefined range (e.g. the issue direct flight and extra 
activities). Refer to [Faralin. 2001] for more details. 
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- for the issues with finite domains, the value of x~ can only be one of a 

number of finite options in Dj, but not all. In these cases, s~ specifies how x~ 

can be changed within Dj: xj must either be of the form xj = xtin + k * s~ 
or x~ = x~max - k * s~ where kEN. One example is the hotel rating issue: 

D1 = [1,5] but x1 can only take one value from the set {I, 2, 3, 4, 5}. In this 

case, s1 is set to 1, allowing x1 to have the desired values. 

- for the issues with infinite domains, the value of x~ can be any value in D~. 

In these cases, s~ is insignificant and its value is assumed to be 0 (e.g. xi 
can be any value in [0, 1000]; thus si is set to 0). 

Issues Values Domains x Xmin X ntax S w 

package price 895.0 0.0 ... 1000.0 895.0 0.0 1000.0 0.0 0.6 
direct flight 0 0, I 0.0 0.0 1.0 1.0 0.1 
hotel rating 2 1,2,3,4,5 2.0 1.0 5.0 1.0 0.1 

meals included I 0, 1,2 1.0 0.0 2.0 1.0 0.1 
extra activities 0 0, I 0.0 0.0 1.0 1.0 0.1 

FIGURE 3.6: The internal representation of the sample contract. 

The tuple {xtin' x~max ' wj} represents agent i' s preference over the issue j. To ill us

trate this quantitative issue representation, figure 3.6 shows the sample contract with 

all the issues fully expanded. As can be seen from this figure, the agent values the is

sue package price most (WI = 0.6) and considers the rest to have the same importance 

(Wj = 0.1; j E [2,5]). 

3.4.1.2 Contract Evaluation 

An agent differentiates different contracts by assigning them a score or a utility value 

[Binmore, 1992]. The higher the value, the better the contract is from the agent's point 

of view. In more detail, for each agent i E A and issue j E I, i has a scoring function 

UJ : Dj ----+ [0,1]' which represents i's preferences of j's value (xj) with regards to its 

domain (Dj). The higher UJ is, the more i prefers j. Generally, we can always assume 

i's preference for increasing values of x~ are ascending (i.e. the higher the value of x~, 

the higher the value of UJ). If this is not the case (e.g. for the issue package price, here 

the smaller the price the more the buyer prefers), we can simply reverse the value of the 

UJ function (i.e. U'/ = 1 - UJ). 

In general, i's scoring function about xj, UJ, can be of three types: 

1. as the value of xj goes from xt;n to xjmax linearly, the value of UJ increases 

linearly. 
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FIGURE 3.7: Three families of UJ functions. 

2. as the value of x; goes from xLin to x;rnax linearly, the value of UJ first increases 

slowly until x; approaches x;rnax' at that time the value of UJ increases dramati

cally toward 1. 

3. as the value of XJi. goes from XJi. . to XJi. linearly, the value of U
J
i first increases 

m'tn max 

dramatically until x; approaches x;rnax' at that time the value of UJ increases 

slowly toward 1. 

We choose to have a function of UJ with one parameter 6 to represent these types (see 

equation 3.1). Specifically, the instances or the function corresponding to the types are 

named: no-pre! (6 = 1.0), max-pre! (6 < 1.0) and min-pre! (6 > 1.0) (see figure 3.7). 

(3.1) 

Given UJ, V j E I, the formula for Ui , the utility function of agent i for the contract ¢, 

is given in equation 3.2. This utility function is capable of consolidating all the individ

ual preferences of the issues into a single value. Because the weights are normalized: 

L:,~l wj = 1, the value of Ui is always in the range [0,1]. 

m 

Ui (¢) = L UJ(x;) * w} (3.2) 
j=l 

To illustrate the utility function U i , consider the sigma agent of section 1.2 with the 

sample contract ¢ in section 3.4.1.1. Assume sigma has no strong preference with regard 

to the individual issues' values and therefore chooses the no-pre! for UJ functions (6 = 
1.0). Here, ¢ has 5 issues: package price, direct flight, hotel rating, meals included and 
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extra activities. The individual Uj functions and the value for Ui are calculated as (from 

equation 3.1): 

• Ui = 1 - (0.895-0'0)1.0 = 0 105 
1 1.0-0.0 . 

• Ui = (0.0-0'0)1.0 = 00 
2 1.0-0.0 . 

• Ui = (0.25-0.0) 1.0 = 0 25 
3 1.0-0.0 . 

• Ui = (0.5-0'0)1.0 = 0 5 
4 1.0-0.0 . 

• Ui = (0.0-0'0)1.0 = 00 
5 1.0-0.0 . 

Then by equation 3.2, the overall utility for the contract is: 

Ui (¢) = 0.105 * 0.6 + 0.0 * 0.1 + 0.25 * 0.1 + 0.5 * 0.1 + 0.0 * 0.1 = 0.138 

3.4.1.3 Negotiation Strategies 

This subsection looks at the behaviors of the buyer's threads during negotiation. These 

behaviors are specified by the negotiation strategies. Specifically, a negotiation strategy 

is the sequence of decisions that an individual thread will make during negotiation. 

These decisions could be either deciding the initial offer to send to the seller, selecting 

an offer to propose, accepting the offer proposed by the opponent or withdrawing from 

the negotiation (as per figure 3.8). 

find counter-offer 
offer(b) 

deadline 
reached? 

is offer(k) 
acceptable? 

withdraw 

accept 

FI G URE 3.8: A general strategy structure. 
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In more detail, in order to decide whether to accept an offer qi (offer(k)) from a seller k, 

the values of all the issues of ¢k are compared against the values domain for the set of 

negotiation issues (see section 3.4.2). If all the issues' values are within this domain, the 

utility value U(qi) is calculated as described in section 3.4.1.2 and compared against 

the reservation value, (see section 3.4.2). ¢k is then accepted if and only if U( ¢k) > ,. 

In order to generate an offer ¢b---->k (offer(b)) to propose to the seller, the offer's utility 

value U is calculated. Based on this value, a set of offers, e, that all have the utility 

value U, are generated. From this set, an offer ¢ is picked as the chosen offer to send 

to the seller. The specific way that this set is generated is not prescribed here but see 

section 3.5.2 for the specific exemplar view in the empirical evaluation. 

With regard to the capability of finding the utility value of ¢b---->k to propose to the seller, 

we consider the set of negotiation strategies S to be composed of the class of time 

dependent strategies advocated by Faratin for bilateral negotiations in uncertain envi

ronments with time constraints (see section 2.2.1). These strategies are selected both 

for their ability to represent different relations between the negotiation time and the ne

gotiation deadline, as well as their polynomial complexity. Specifically, these strategies 

fall into three broad categories, namely: conceder (Sc), linear (Sz) and tough (St) where 

S = ScUSzUSt (see figure 3.9). All ofthe strategies start with the same initial value that 

is generated in relation to the deadline and the reservation value. The conceder strategy 

quickly lowers its value until it reaches its reservation value. The linear strategy drops 

to its reservation value in a steady fashion. Finally, the tough strategy keeps its value 

until the deadline approaches and then it rapidly drops to its reservation value. 

initial .-.-. value -'- <Q 
\ '- ~ t 

...... ~ 

\ '\ 1\5> 
Q) \ 1; . ;...J 
:l \ 61<;» .... 

\ 
iii 
> \ °0 1\5> \ .... 

\ "c ;...J 
Q) 

:I: \ 610.: 
0 61 .... \ \ 1\5> "- ..... "...J \ ..... 

reservation - __ 
value '--------------~"""'-__+ 

o time --. 

FIGURE 3.9: Strategy classes. 

In more detail, these three categories of strategy can be expressed by one function: (see 

equation 3.3). At time t E [1, tmax ], the utility value of the proposal that could be sent 

(¢b---->k) is calculated as: 
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(3.3) 

where bb is the initial proposal utility value (depending on the chosen strategy), t E 

[1, tmaxl is the specific time period at which the counter-offer needs to be found and f3 is 

the parameter that decides the shape of the function (see section 3.5.2 for specific values 

of f3). 

3.4.2 The Negotiation Threads 

An individual negotiation thread is responsible for dealing with an individual seller 

agent on behalf of the buyer. Each such thread inherits its preferences from the buyer 

agent and has its negotiation strategy specified by the coordinator (see section 3.4.3). 

Specifically, the preferences that each thread inherits from the buyer agent are: 

• the negotiation deadline: All the threads have tmax as their negotiation deadline, 

• the values domain for the set of negotiation issues: This is the set D = {D1 , 

D2 , ... , Dm} where Dj = {X~in' x~ax}; j E I (see section 3.4.1.2). Any pro-
J J 

posal from a seller k is considered valid if and only if'll j E I : xj E D j, 

• the reservation value "(: The thread only accepts a valid proposal ¢k->b from the 

seller k at time t if Ub( ¢k->b) > ,. 

The values domain is the criteria each thread uses to decide whether an offer from a 

seller satisfies its basic requirements. Each issue is considered to be valid if its value 

lies in the domain. If all the issues are valid, the offer is considered valid. If, however, 

one issue is invalid then the offer is rejected. The value of, represents the highest utility 

value of an agreement that the buyer has already accepted from a seller (it is initially set 

to 0, meaning that the buyer does not yet have any agreement). The buyer can always 

revert back to this agreement even if all other negotiations fail. Thus, even when an 

offer from another seller is valid, it may not be accepted by the thread. Specifically, 

an acceptable offer is only accepted by the thread if its utility value "/ is greater than 

,. If this is the case, the thread will notify the coordinator about this new and better 

agreement. Then,' will replace, as the new reservation value for all other ongoing 

threads. 

A more detailed view of the structure of each thread is presented in figure 3.10. As 

can be seen, each thread is composed of three subcomponents, namely communication 
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Process the 

FIGURE 3.10: A single negotiation thread. 

(represented by the dotted lines), process (represented by the bold lines) and strategy 

(represented by the normal lines). The communication subcomponent is responsible 

for communicating with the coordinator (as shown in section 3.1). Before each round, 

it checks for incoming messages from the coordinator and if there are any, it passes 

them to the process subcomponent. After each round, it reports the status of the thread 

(including the proposals and the deal's value if an agreement is reached) back to the 

coordinator. The process subcomponent processes messages from the communication 

subcomponent. This can either be changing the reservation value l' or changing the 

strategy (see section 3.4.3 for more details). The strategy subcomponent is responsible 

for making offers/counter-offers, as well as deciding whether or not to accept the offer 

made by the seller agent. It uses the reservation value as the basis for deciding whether 

to accept the seller's offer; in this case any offer with a value greater than this reservation 

value is accepted, otherwise a counter-proposal is made (unless the deadline has passed 

in which case a withdraw is sent). 

3.4.3 The Coordinator 

The coordinator is the most important component of the buyer agent (see figure 3.4). It 

is responsible for synchronizing all of the negotiation threads' behaviors and choosing 

an appropriate negotiation strategy for each thread. This section details its design. 

The first task of the coordinator is to select the initial negotiation strategies for the 

threads. It is important to select the right negotiation strategies at the start because 

choosing inappropriate negotiation strategies can lead to poor outcomes. 



Chapter 3 The Concun'ent Bilateral Negotiation Model 81 

Prior to the encounter, the coordinator assumes some information about the classifica

tion classes of the available sellers that the threads will negotiate with (e.g. the tough

ness of the sellers) in order to help it select the strategies (see section 2.5 for more 

detail). This information is given as a probabilistic distribution over the classification 

classes. If no information is available, all the classes are assumed to have the same 

Probabilistic distribution ( b \ I ). num er 0 c asses 

In addition, there are two matrices that aid the coordinator's decision: the percentage 

of success matrix (PS) and the payoff matrix (7f). The former measures the chance of 

having an agreement as the outcome of the negotiation when the buyer applies a strategy 

to negotiate with a specific type of the seller (e.g. when applying a tough strategy with a 

tough seller, the chance of having an agreement is 15%). The latter measures the average 

utility value of the agreement reached in similar situations (e.g. when applying a tough 

strategy with a tough seller, the average utility value of the agreement, once reached, 

is 0.7). The values of these matrices are updated after all the negotiation threads have 

finished. 

Given this information, the coordinator calculates the probability of the first seller be

longing to a specific class and, based on this, the expected utility of applying the cor

responding strategy to handle this particular seller. It then selects the strategy ). E S 

that provides the highest expected utility and applies). to the thread that will handle the 

negotiation with this agent. The expected utility function, EU().), that the coordinator 

uses is defined as: 

A 

EU()') = LPS()" a) . 7f()., a) . P(a) (3.4) 
a 

where P(a) is the probability that the seller agent belongs to specific class a. After fin

ishing with the first seller, the coordinator uses Bayes rule (see section 2.5.3) to update 

the probabilistic distribution it has and continues with the second seller. This process 

is repeated until the coordinator finishes allocating the strategies to all the negotiation 

threads. 

To illustrate this idea, consider the following example. Assume that the coordinator has 

the following data prior to negotiation: 

• there are 100 participating sellers: n = 100; AS = {Sl) S2, ... ) SlOO}. 

• there are three available negotiation strategies that it can select for a given thread: 

S = {Se) Sz) St}, 
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• there are two types of sellers: A = {A c, An} 

• the classification information about the sellers is: the probability that the first 

seller is a conceder, P(Sl E AC) or P(c), is 0.45 and the probability that the first 

seller is a non-conceder, P(Sl E An) or P(n), is 0.55. 

• the values of the matrix PS are given in table 3.3 

PS AC An 

Sc 0.35 0.75 
Sz 0.25 0.28 
St 0.6 0.15 

TABLE 3.3: The sample matrix PS. 

• the values of the matrix 1[" are given in table 3.4 

1[" AC An 

Sc 0.5 0.4 
Sz 0.35 0.4 
St 0.7 0.65 

TABLE 3.4: The sample matrix 1[". 

Based on this information, the values for EU functions are calculated, using equation 

3.4, as follows: 

• EU(Sc) = 0.35 * 0.5 * 0.45 + 0.75 * 0.4 * 0.55 = 0.2438 

• EU(Sz) = 0.25 * 0.35 * 0.45 + 0.28 * 0.4 * 0.55 = 0.10 10 

• EU(St) = 0.6 * 0.7 * 0.45 + 0.15 * 0.65 * 0.55 = 0.2426 

As can be seen, because strategy Sc gives the highest expected utility value, it is chosen 

as the strategy for the first thread. In other words, the highest expected utility is achieved 

when considering seller Sl as a non-conceder. The probability distribution P( n) is then 

calculated as (from equation 2.5): 

P( lAs \ ) = P(AS \ slln)P(n) = (n - 1) . P(n) = 99·0.55 = 0 45 
n Sl P(As \ sd n 100 .54 
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Since there are only two types of seller: conceder and non-conceder, we have P( c) = 

1 - P(n). 

P(cIAS \ 31) = 1 - P(nIAS \ 3d = 0.4555 

Here, P( clAs \ 3d is understood as the probability that the second seller is a conceder. 

Similarly, P(nIAS \ 31) is understood as the probability that the second seller is a non

conceder. Again, the values for EU functions for the second seller are calculated, using 

equation 3.4, as follows: 

• EU(Sc) = 0.35 * 0.5 * 0.4555 + 0.75 * 0.4 * 0.5445 = 0.2431 

• EU(Sz) = 0.25 * 0.35 * 0.4555 + 0.28 * 0.4 * 0.5445 = 0.1008 

• EU(St) = 0.6 * 0.7 * 0.4555 + 0.15 * 0.65 * 0.5445 = 0.2444 

As can be seen, because strategy St gives the highest expected utility value, it will be 

chosen as the strategy for the second thread. The coordinator keeps applying these steps 

again and again, until it finishes allocating the strategies to all the threads. 

The second task of the coordinator is to coordinate the threads, specifically, to monitor 

the reservation value, (see section 3.4.2). During the encounter, whenever the coordi

nator receives the status that a negotiation thread has accepted an offer from a seller with 

the utility value ,', it replaces the value of, with " and sends a request to change the 

reservation value to all other ongoing negotiation threads (as detailed in section 3.4.2). 

The final task of the coordinator is to classify the sellers during negotiation and change 

the negotiation strategies for the threads. The coordinator does this to make sure the 

threads use appropriate strategies when bargaining with the sellers. For example: if 

seller 31 is willing to concede to reach an agreement, it is possible for b to exploit 31 

by keeping b's offer consistently low; thus, if an agreement can be made, it will be of 

higher value for b than if b does not follow this strategy. On the other hand, if seller 32 

consistently keeps its offer value high after a number of negotiation periods, b may need 

to negotiate in a more concessionary fashion in order to come up with a deal. 

From the buyer's viewpoint, the sellers are characterized based on the utility value of 

their proposals. Because the seller's evaluation functions or strategies consist of private 

information, the value of the proposals that are sent to the buyer are the only information 

the buyer can use to characterize the sellers. In more detail, the sellers are classified into 
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two categories, namely conceder and non-conceder. At time t: 2 < t ::; tmax , called 

the analysis time, the coordinator tries to determine if a given seller is a conceder or a 

non-conceder. In particular, assume O~ is the utility value of the offer that seller agent 

k made at time T : 1 ::; T ::; t according to the buyer agent's preferences. Then seller 

k is considered a conceder if 'lIT E [3, t] : O~~-~gkl > ex where ex is the threshold 
1"-1 r-2 

value set on concessionary behavior. Similarly, seller k is considered a non-conceder if 

'liT E [3, t] : O~~-~gkl < ex. If the agent falls into neither category, it is judged as not 
7-1 r-2 

classified. 

Let the set of conceder and non-conceder agents be represented by A C and An, re

spectively. Now, given the set of strategies S = {Sc, Sz, St} and the set of agents 

A = {b, A c, An}, the coordinator changes the strategy for each negotiation thread 

based on the type of the agent it is negotiating with, in order to try to obtain better out

comes. Agents belonging to the set A C are willing to concede in order to end up with 

agreements. Therefore, if the agent negotiates toughly with some of them (keeping its 

offer consistent), it may obtain a deal that has a higher value than if it continues ne

gotiating in its present manner. However, if the agent negotiates in this way with all 

the agents, it may not obtain any deals at all. Therefore, for reasons of balance, the 

agent will negotiate in a tough manner with a subset of the agents (FtC % ) in A c. For the 

remainder of the agents in A c, the strategy remains unchanged. Similarly, if the agent 

believes a particular agent is in the set An then in order to make sure it obtains a deal 

with some of them, it makes some of its own threads more conciliatory. Thus, for the 

agents belonging to the set An, a percentage of them (F,/:%) will have their behavior 

made conciliatory, while the remainder have their strategies unchanged. There is no 

change to agents whose behavior cannot be classified. 

Having defined the model, the next step is to see how it performs in different contexts 

so that its relative advantages and disadvantages can be ascertained. This analysis will 

be empirical in nature and is reported in the next section. 

3.5 Evaluation 

This section evaluates our concurrent model (eCN) previously described in this chapter 

in a range of different environments and assesses its performance in terms of the util

ity value of the final agreement and the number of agreements achieved. In this work, 

empirical evaluation is used as the method of measurement for a number of reasons. 

Firstly, because this model is heuristic-based, its behavior cannot be theoretically pre

dicted (see section 2.2). Secondly, there are a number of internal variables which control 
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the behavior of our model as well as external variables which define the environment in 

which our model is being used (see section 3.5.2). These variables are interrelated and 

need to be considered in a broad range of situations. Empirical techniques allow us to 

manipulate these variables, conduct the experiments and analyze the results. Thus, they 

are suitable for our evaluation purpose. In more detail, the evaluation technique we use 

is called exploratory studies [Cohen, 1995]. With this method, general hypotheses are 

formed to express the intuitions about the causal factors within our model. The exper

iments are then conducted and generate the results that either support these hypotheses 

or go against them. 

The structure of this evaluation section is as follows: the experiment sets (e.g. the set 

of both internal and external variables being tested) are discussed in section 3.5.1. The 

design principles (e.g. how to conduct the experiments and how the results are gathered 

from these tests) are described in section 3.5.2. The assumptions about the seller agents 

are detailed in section 3.5.3. Finally, the hypotheses are presented and evaluated in 

sections 3.5.4, 3.5.5 and 3.5.6. 

3.S.1 Experimental Setup 

There are three sets of experiments in this evaluation. The first set is designed to com

pare the performance of our concurrent model with a sequential negotiation model, 

which has the same setup but where all the negotiations happen sequentially (the de

tails are expressed later in this section). This sequential model is chosen as a control 

in order to emulate the traditional way of doing negotiations when there are multiple 

providers. By evaluating the results of the two models, the advantages, as well as the 

disadvantages, of negotiating concurrently can be shown. In more detail, this set of 

experiments deals with the requirements associated with deadlines and computational 

tractability (see section 1.2). 

There are a number of internal variables that control the behavior of our model. In 

each negotiation environment in which our model is evaluated, these variables have 

different effects. Therefore, the second set of experiments is designed to find the most 

influential variables and to find out how to set their values in order to gain the best 

overall performance in each environment. With this experiment set, the requirements of 

incomplete information and computationally tractable (see section 1.2) are evaluated. 

The final set of experiments is designed to compare the performance of our model 

against the only other concurrent model in the literature: Rahwan et aI's (see section 

2.2.3). We experiment with both models in the same environment and plot the results 
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achieved. Here, the requirements of mutually influence and efficient negotiation out

comes (see section 1.2) are evaluated. 

3.5.2 Design Principles 

As previously mentioned, the main purpose of this chapter is to evaluate the negotiation 

model. Since the evaluation method is empirical, the results of our model running 

in different environments are gathered and compared with other (standard) results to 

highlight the cases where our model performs either well or poorly. From these cases, 

hypotheses can be stated about our model's specific characteristics. 

In our evaluation, the variables or parameters that have their values set by the experi

menter are called the independent variables (see table 3.5), while those that have their 

values gathered after the experiments are called the dependent variables (see table 3.6) 

[Cohen, 1995]. In either case, these variables must either be of type categorical (each 

variable belong to a specific category), ordinal (the variables can be ranked but the dis

tance between two variables is meaningless) or interval (the variables can be ranked and 

the distance between two variables is meaningful) [Cohen, 1995]. 

I Variables I Descriptions I values 

n the number of seller agents [1,30] 
m the number of negotiation issues [1,8] 
tmax the negotiation deadlines of the agents [5,30] 
Xi. 

Jrnin 
minimum acceptable value for an is- [0,20] 
sue 

Xi. 
Jmax 

maximum acceptable value for an is- [30,50] 
sue 

i the weight of an issue ..!. 
Wj m 

6 the parameter for the buyer's evalua- 1 
tion function (see section 3.4.1.2) 

j3 the parameter of the negotiation strat- [0.01,0.2], 
egy (see section 3.4.1.3) [0.95,1.05], 

[10,20] 

TABLE 3.5: The independent variables. 

The environments in which our model are run would ideally cover all the possible en

vironments that could realistically happen. However, according to [Friedman. 1984], 

every theory must involve some simplification, as none can include all the possible fea

tures of reality. This is also the case for our evaluation. Although our model is not 

theoretically bounded (e.g. the number of participating sellers has no upper limit, nor 
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does the number of issues or the negotiation deadlines), we choose to ignore extreme 

situations that we believe are unlikely to happen in our target environment. Even though 

one can argue that these extreme situations could happen, we believe it is unlikely to be 

the case. 

I Variables I Descriptions 

number(T) the total amount of time required to complete the ne-
gotiation 

number(P) the total number of proposals exchanged during ne-
gotiation 

PI the performance improvement of the concurrent 
model 

U the utility value of the final agreement 
N the number of successful negotiations 

TABLE 3.6: The dependent variables. 

In our experiments, each environment is characterized by the independent variables, in

cluding the number of seller agent participants, n, the number of negotiation issues, m, 

the deadlines for the agents and the preferences of the agents about the set of negotiation 

issues. Since there are an infinite number of possible environments, selecting a finite 

subset of these is necessary to assess the performance of our model. To this end, n is 

simplified to be in the range of [1, 30] and m in the range of [1, 8]. Recall from section 

3.4.1.1 that agent i's preference for issue j is represented by the tuple {x~min' x~max' w~}. 

The tuple [xLin' x~maJ is an interval independent variable whose scale is infinite. To 

simplify this problem, we randomly set the value for X}min in the interval of [0, 20] and 

x~max in the interval of [30, 50]. The values for w; are simply set to ~, meaning that 

the weight of all issues have the same value. The negotiation deadline for each agent is 

an ordinal independent variable, whose value is randomly chosen, ranging from 5 (very 

short deadline) to 30 (long deadline). 

The second simplification we use in our evaluation is our strategic parameters. In evalu

ating individual issues (see section 3.4.1.2), the buyer uses the no-pre! function with the 

value of 6 set to 1.0. The three categories of negotiation strategies (see section 3.4.1.3) 

have the following ordinal scale for the value of j3: [0.01,0.2] for boulware, [0.95,1.05] 

for linear and [10,20] for conceder. These ordinal scales are chosen to represent the 

characteristic shape of each category. 

In order to highlight the benefit of negotiating concurrently, we decide to test our model 

against a traditional negotiation model, in which all the negotiations happen sequen

tially. In this model, the number of participants, together with their preferences, are 
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exactly the same as in our modeL The only difference between two models is the way 

the buyer handles the negotiations with the sellers. In the sequential model, the buyer 

starts with the first seller. After this negotiation is completed, the buyer negotiates with 

the second seller and carries on this way, until it finishes negotiating with all of them5 . 

If the buyer reaches an agreement of value p in negotiation i, then in all subsequent 

negotiations, p will be its new reservation value. 

To illustrate the operation of the sequential negotiation model, we use the sample sce

nario described in section 1.2. Assume that in the concurrent model, sigma uses 10 

threads to concurrently negotiate with the sellers {81' 82, ... , 81O} and each thread k 

uses strategy strategYk E S. The sequential model is then constructed to have 10 nego

tiations processing sequentially. First, sigma negotiates with 81 using strategy strategY1 

until it finishes with 81, then it carries on with 82 using strategy strategY2, and so on until 

it finishes with 810. Prior to each negotiation k, if I is the utility value of the highest 

value agreement reached so far, I will be used as the reservation value for negotiation 

k. 

During the evaluation, the performance of the concurrent model is assessed by com

paring the utility value of the final agreement with the one from the sequential modeL 

Assume Uc and Us are the utility values of the final agreements from the concurrent 

and sequential model, respectively; then the relative perfonnance improvement of the 

concurrent model over the sequential one, or PI, is calculated as (Uc;;sUs). This equa

tion indicates the difference in percentage terms of the two agreements' values; if PI 

is positive, the concurrent model outperforms the sequential one and vice versa if PI is 

negative. 

The results are gathered from a series of experiments in different environment settings. 

Each experiment consists of a number of negotiation episodes (either 1000 or 2000), 

each such episode is a complete run of our eCN model in a single negotiation envi

ronment. The results are averaged and put through a regression test to ensure that all 

differences are significant at the 99% confidence level. 

PS AC An 
Sc 0.25 0.75 

Sz 0.25 0.25 

St 0.75 0.25 

TABLE 3.7: The initial matrix PS. 

5We overcome the sellers' ordering problem of sequential negotiations (see section 1.2) by running 
the sequential model n times and averaging the utility value achieved. In each run, the negotiation order 
of the sellers is randomly re-generated. 
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Prior to each experiment, the initial values for the matrix PS and 7r are given in tables 3.7 

and 3.8, respectively. These values represent the initial assumption about the strategies' 

distributions and will be updated after each negotiation episode. 

7r Ae An 

Se 0.5 0.5 
Sz 0.5 0.5 
St 0.5 0.5 

TABLE 3.8: The initial matrix 7r. 

Also, prior to each negotiation episode, there is a 50% chance that the probability dis

tribution of the sellers (classified according to their selected negotiation strategy, see 

section 3.5.3) is given to the buyer agent. If it is not the case, no probability distribution 

information is given to the buyer. 

3.5.3 The Seller Agents 

In our evaluation, each seller is characterized by 3 independent variables, namely (i) the 

values domain for the set of negotiation issues, (ii) the negotiation strategy and (iii) the 

negotiation deadline. As can be seen, there are an infinite number of possible sellers, 

similar to the negotiation environments. To simplify this problem, we select the value 

for each variable as follows: 

• the values domainfor the set of negotiation issues: This is the seller's preferences 

for the service (similar to the ones of the buyer's thread described in section 3.4.2). 

These domains are randomly generated so that each domain does intersect with 

the corresponding domain of the buyer's preference. For example, if the buyer's 

value domain for an issue j is [a, b] then the corresponding value domain for the 

seller will be generated as [c, d] that satisfies a ::; c ::; b ::; d. 

• the negotiation strategy: Each seller is assigned a random strategy selected from 

a predefined list of alternatives. This set is composed of time-dependant and 

behavior-dependant tactics (as per section 2.2.1) with randomized values for each 

tactic's attribute. The negotiation strategies of the sellers are fixed and do not 

change throughout the negotiation episode6 . 

6Future work will consider the situations where the seller agents also adapt their strategies to the 
behaviors of the buyer agent. 
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• the negotiation deadline: The deadline for each seller is generated in a similar 

fashion to the one of the buyer (ranging from 5 to 30). 

The values for these variables are generated prior to each negotiation episode and kept 

unchanged throughout that period. 

We now tum to the specific hypotheses. 

3.5.4 Comparing Concurrent and Sequential Negotiations 

Here, we are interested in the performance of the eCN model and its sequential coun

terpart. Thus, both models are experimented with under the same evaluation setup and 

the results are recorded to be compared. The actual results are detailed follows. 

HYPOTHESIS 1. The time to complete the negotiation will be less for the concurrent 

model than for the sequential one 7. 

EVALUATION. Figure 3.11 shows the percentage of time saved by performing the 

negotiation concurrently as compared with sequentially. As can be seen, this saving 

is proportional to the number of participating agents. The reason for this saving is 

that by negotiating concurrently, the time consumed for all the threads is not more 

than the largest deadline of the sellers and the buyer. Each agent is only allowed 

to continue the negotiation until its deadline at which point it must stop. Thus, for 

each negotiation thread with a seller k, the longest period it is allowed to continue is 

min(tmax, tkmaJ. As a result, our model's negotiation will stop at the latest period t = 

min (tmax , max(t1max , t 2max ... tnmaJ). On the other hand, when negotiating sequen

tially, the buyer needs to wait for the first negotiation to finish, then it can start the 

second negotiation and so on. In general, each negotiation could last until the deadline 

min (tmax , tkmaJ. Thus, the overall negotiation could finish at t = min(tmax , t1maJ + 

min(tmax , t2maJ + ... + min(tmax, tnmaJ in the worst case. 

HYPOTHESIS 2. The number of proposals that will be made in the concurrent model is 

less than the number in the sequential one. 

EVALUATION. Figure 3.12 shows the number of proposals saved (as a percentage) by 

performing the negotiation concurrently compared with sequentially. As can be seen, 

7Here, we assume that each time unit is one negotiation round instead of the actual execution time. 
Nonetheless, the model is able to handle a large number of sellers (1000) in real-time using multi-threaded 
java implementation in a typical development PC (see hypothesis 11). 
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FIGURE 3.11: Percentage of time saved. 
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the average number of proposals made in the concurrent model is less than the num

ber in the sequential model and this difference increases in proportion to the number of 

participating agents. From our experiments, we observe that the total number of agree

ments reached in the concurrent model is more than in the sequential model (greater 

than 50% more). This means, in the concurrent model, more negotiations terminate 

before their deadlines have elapsed. Thus, the total amount of time it takes to complete 

all the negotiations in the concurrent model is less than in the sequential model. As the 

number of proposals made in each negotiation is relative to the time it takes to complete 

the negotiation, the number of proposals made in the concurrent model is less. 
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FIGURE 3.12: Percentage saving in the number of proposals sent. 

HYPOTHESIS 3. To realize the benefits of concurrent negotiations, the buyer agent's 

deadline cannot be too short. 

EVALUATION. Figure 3.13 shows the performance of the concurrent model with differ

ent values of the buyer's deadline. This shows the longer the buyer's deadline, the better 

the performance improvement. This occurs because if the buyer's deadline is short (less 

than 15 units in this case), the time when one negotiation thread reaches an agreement 
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is necessarily close to the deadline. Thus, it has little effect on the other negotiation 

threads. On the other hand, if the buyer's deadline is longer, once a negotiation thread 

finishes with an agreement, it can be used to influence the other threads. Hence, this 

would give better deals. However, when the buyer deadline is too long, the change in the 

subsequent performance improvement is less. This is because by the time an agreement 

has been reached in one thread that is close to the buyer's deadline, a number of other 

threads may have already terminated due to their deadlines having been reached. This 

results in the newly reached agreement having little effect on our model. As a result, 

the changes in performance improvement of our model are only marginal. 
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FI G URE 3.13: Performance versus deadline. 

HYPOTHESIS 4. The final agreements reached by the concurrent model will have, on 

average, higher or equal utility for the buyer than those of the sequential model (assum

ing the deadline is not too short). 

EVALUATION. When a thread negotiates with a seller, it tries to find an offer that is 

acceptable to that particular seller. This is achieved by exploring the space of agree

ments in some way. In the sequential model, each thread starts with a reservation value 

Is, which can either be the initial preference value (if this is the first encounter or no 

agreement has yet been reached) or the value of the previous best agreement reached 

in an earlier negotiation. Moreover, this value remains unchanged until the particular 

negotiation thread finishes. On the other hand, in the concurrent model, each thread 

starts with a reservation value Ic erc = Is at t = 0), which is the initial preference value 

of the agent. This value may then be changed during the course of the negotiation as a 

result of an agreement obtained in another thread. This, in tum, narrows the space of 

agreements for the buyer to only those that have a higher utility value than the current 

reservation value. Hence, if the buyer reaches an agreement, the utility value of this 

agreement will be greater than the one it already has. Assuming all the threads have 

sufficient deadlines, whenever an agreement is reached, the search space of all the con

current negotiation threads will be reduced simultaneously. Thus, on average, the buyer 
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strives to reach a higher utility value for a greater proportion of the negotiation time 

with more sellers than it does in the sequential model. This means the performance of 

the concurrent model is often better than the sequential one. 

However, in some cases, by narrowing the space of agreements, no intersection with 

the seller's space of agreements may be found in the concurrent model. Therefore, 

the agents will not be able to reach an agreement and so the utility value of the final 

agreement is reduced. In these cases, the overall performance of the concurrent model 

will be less than its sequential counterpart. Our experimental results indicate that in 

all environmental settings, on average, the results of the concurrent model are better 

than the sequential, ranging marginally from 1.5% to 2.5% depending on the number of 

participating sellers (see figure 3.14). 

Moreover, it can also be seen that the performance of the concurrent model decreases 

slightly as the number of sellers increases. This is because in the sequential model, the 

more sellers that participate, the higher the chance the buyer will have in finding an 

agreement. In some cases, this results in obtaining a higher value for the final agree

ment. On the other hand, the number of participating sellers does not have that strong an 

impact on the performance of the concurrent model. As a result, the differences between 

the value of the agreements reached by the concurrent and the sequential model in these 

cases are reduced. Thus, the overall performance improvement of the concurrent model 

decreases. 
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FI G URE 3.14: The improvement rate. 

As can be seen, by negotiating concurrently, the time elapsed to complete each negotia

tion episode is significantly reduced compared to negotiating sequentially. Furthermore, 

the buyer agent is also able to obtain a higher number of successful negotiations and a 

better utility value for the final agreement once reached. Next, we aim to find the most 

influential variables and to find out how to set their values in order to gain best overall 

performance in each environment. 
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3.5.5 Tuning the Performance of the Concurrent Model 

This section is concerned with the internal performance of our model or, alternatively, 

how different parameters affect our model's performance in a single environment. As 

described in section 3.4, eCN is composed of many parameters. These parameters are 

designed so that the eCN is flexible in different environments. The values of these 

variables must be set appropriately, otherwise, our model may not perform well. Given 

this, it is important to find the right combinations of the variables in each environment. 

To do this, we run eCN with different values for a particular parameter in a single 

environment and report the results in the following hypotheses. 

HYPOTHESIS 5. Changing the strategy in response to the agent's assessment of the 

ongoing negotiation is equal or better than not doing so. 

HYPOTHESIS 6. Assuming that it is beneficial to change the strategy during the negoti

ation, the analysis time should be moderately early (to have time to have some effect), 

but not too early (so that it is reasonably accurate). 

EVALUATION. To evaluate these hypotheses, we varied the analysis time (see section 

3.4.3) relative to the buyer's deadline (see figure 3.15). As can be seen, the best perfor

mance improvement is obtained when the sellers are analyzed about a third of the way 

into the negotiation period. This is sufficiently near the beginning to be able to have an 

effect on the rest of the negotiations, but sufficiently far into the encounter to make a 

reasonable approximation about the type of the negotiation opponent. With respect to 

hypothesis 5, the outcome of analysis time equal to 100% is equivalent to an agent that 

does not change its strategy during the encounter. As can be seen, this leads to poor 

outcomes and so changing (at any time) is not worse, and in most cases, is beneficial. 
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FIGURE 3.15: Performance versus analysis time. 

HYPOTHESIS 7. When dealing with sellers in AC, the tougher the buyer negotiates the 

better the overall outcome it will obtain. 
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EVALUATION. To evaluate this hypothesis, we varied Pt
C (see section 3.4.3) through all 

possible values. To this end, figure 3.16 shows the more tough the agent is, the better the 

outcome it obtains. This is because when dealing with a conceding seller, if the buyer 

keeps its offer consistent, as the deadline approaches, the seller will quickly lower its 

proposal value close to its reservation value (if it has a deadline shorter than that of the 

buyer threads). Thus, if an agreement is reached at this point, its utility value for the 

buyer will be higher than that obtained if the buyer adopts any other strategy. 

On the other hand, the value of P;: (see section 3.4.3) does not have a strong impact 

on the performance of our model. This is because if a seller is not willing to concede 

in order to find an agreement (e.g. it keeps its proposal value close to its maximum), it 

does not matter how the buyer behaves and no agreement will be reached. 
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FI G URE 3.16: Performance versus degree of response toughness. 

HYPOTHESIS 8. When analyzing the seller, different values for the conceder threshold 

have different effects on the outcome of eCN. 

EVALUATION. To evaluate this hypothesis, we varied a (see section 3.4.3) through all 

possible values (values that are greater than 1.5 or less than 0.1 do not have an impact 

on the sellers' classification process). Figure 3.17 shows the results. 

As can be seen, as the value of a goes up, the utility of the final agreement for the buyer 

decreases. This is because the higher the conceder threshold is, the fewer the number 

of conceder sellers there will be. Now, since the buyer can press the more conciliatory 

sellers for high value deals (see hypotheses 7), if that number is decreasing, so will the 

utility of the final agreement. On the other hand, it can also be noticed that the buyer 

will gain the highest number of agreements if the threshold is set to 0.5. Which means, 

in general, the value of a should be set to 0.5 in order to give the buyer the highest 

possible number of final agreements together with an acceptable utility value. 

8If the seller has a longer deadline then no agreement will be reached. 
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Next we compare the periormance of our model with the only other concurrent nego

tiation in the literature (section 2.2.3). In particular, we run both models in the same 

environment and measure the differences, in terms of both number of successful nego

tiations (N) together with the average utility value of the final agreement (A). 

3.5.6 Performance Against Rahwan's Model 

Having evaluated our model against the sequential negotiation case and having obtained 

the best set of parameters that it can use, we now consider its periormance against a 

more realistic benchmark. Specifically, the controls we used in this set of experiments 

are the optimal solution (optimal), desperate (D), patient (P) and optimized patient 

(OP). In more detail, the optimal mechanism operates in a periect information situation 

in which the agents know the preferences and strategies of other agents. Given this, 

the buyer agent is able to find the Pareto optimal agreement for each thread if such an 

agreement exists. If no such agreement exists, the utility of that thread is considered to 

be O. The individual agreement that maximizes the buyer agent's utility is then selected 

as the optimal solution. The other three controls are based on the theoretical work of 

Rahwan et al. (see section 2.2.3), which is the only other extant model that deals explic

itly with concurrent encounters. Basically, D terminates all the negotiations whenever 

an agreement is found in anyone thread, P waits until all the negotiations finish and 

then selects the highest value agreement as the final answer, and OP extends P in that 

whenever an agreement is found, its value is broadcast to all other ongoing threads so 

that they will not accept a lower value agreement. 
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HYPOTHESIS 9. The concurrent model will achieve more and higher utility agreements 

than the controls. 
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FIG URE 3.18 : Final utility value for varying numbers of sellers. 

EVALUATION. To evaluate this hypothesis, we average the utilities achieved with vary

ing numbers of seller agents and varying deadlines . The results of eCN, the controls and 

the optimal are displayed in figure 3.18. As can be seen, our model is between 6-8% 

better than the closest control and between 11-21 % lower than the optimal. Amongst the 

controls, D has the worst utility (since it terminates whenever an agreement is reached), 

P has a better utility (since it waits until all the negotiations finish and selects the best 

deal), and OP provides the best utility (since it is an improved version of P). Conse

quently, from now on, we will only focus on OP as the main point of comparison. 

Fundamentally, the eCN model differs from the others in the way that the buyer agent 

behaves both prior to and during the negotiation process. Unlike the controls, in which 

the strategy employed by the buyer stays constant throughout the negotiation episode, 

each negotiation thread in our model will change its strategy if it believes there is a 

benefit in so doing. Recall from section 3.4.3, our agent selects its initial strategies 

based on its beliefs about the opponents that it is likely to encounter9 . Specifically, as the 

sellers have different objectives, they are likely to behave differently. Some desperately 

want to sell their services, while others will only agree to a deal if it will benefit them 

more than what they already have. Since we do not know the exact characteristic of 

each seller, our initial strategy selection is not guaranteed to be accurate. However, 

we overcome this problem by reclassifying the sellers during the negotiation process 

(based on their actual behaviors rather than the general market beliefs). Based on this 

9Naturally, these beliefs may not necessarily be true. Therefore we examine the effect of the accuracy 
of this initial selection on our model 's performance in hypothesis 12. 
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classification, some of the threads change their strategies. In some cases, this flexible 

behavior of the buyer agent helps it finds high value agreements that would not have 

been found otherwise. Consequently, this increases the buyer's utility and leads to an 

improvement in our model's performance. The improvement in utility is particularly 

marked when the buyer can recognize a conceder seller and can negotiate in a very 

tough manner to obtain a high value deal (as per hypothesis 5). 

I No of sellers I 5 I 10 I 15 I 20 I 25 I 30 

eCN 1418 1615 1710 1762 1802 1830 
op 1389 1593 1690 1744 1776 1804 
optimal 1686 1827 1887 1908 1928 1946 

TABLE 3.9: Number of successful negotiations. 

In terms of agreements made, as can be seen from table 3.9, our model produces more 

agreements than the others. This improvement can also be explained by the adaptive 

nature of our strategy selection. Compared to the controls, the number of times our 

strategy selection leads to a conflict is lower than the number of times it leads to an 

agreement. This, in tum, leads to a modest increase in the number of successful negoti

ations. 

HYPOTHESIS 10. The larger the number of participants, the closer the utility produced 

by the concurrent model is to the optimal. 

EVALUATION. Here, we measure the differences in the results obtained by the eCN 

model with the optimal as the number of participants increases. The results with respect 

to utility and number of agreements are displayed in table 3.10. 

I No of sellers I 5 I 10 I 15 I 20 I 25 I 30 

U(eCN) 0.56 0.61 0.64 0.66 0.68 0.70 
U(eCN) tb > 15 0.62 0.67 0.70 0.72 0.75 0.76 
U(optimal) 0.76 0.77 0.78 0.79 0.80 0.81 
N(eCN) 1418 1615 1710 1762 1802 1830 
N(eCN) tb > 15 1499 1672 1753 1797 1830 1860 
N(optimal) 1686 1827 1887 1908 1928 1946 

TABLE 3.10: Buyer's perfonnance with varying numbers of sellers. 

As can be seen, the greater the number of participating sellers, the closer our result is 

to the optimal. Specifically, the gap between the results decreases from 26% to 13% 

as the number of sellers increases from 5 to 30. This is explained by the fact that 

the buyer only finalizes the deal with the seller that provides the highest value deal. 

Thus, as the number of sellers increases, so does the number of agreements reached by 

the threads. Since these agreements are used to influence other ongoing threads, the 

utility value of the final agreement will be improved. This is also the situation for the 
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number of successful negotiations. With 5 sellers, the agent only succeeds in 84% of the 

encounters. However, this rate increases to nearly 94% when there are 30 participating 

sellers. Furthermore, if we only consider cases where the buyer has a sufficient deadline 

(larger than 15 units in this case), our results come even closer to the optimal (the gap 

decreases from 18% to 6%, whereas the success rate is increased from 89% to 96%). 

Again this is mainly due to the accuracy of our classification process (see hypothesis 3). 

HYPOTHESIS 11. As the number of participating sellers increases, the concurrent model 

will produce broadly similar results to those of hypotheses 9 and 10. 

EVALUATION. To evaluate this hypothesis, we increase the maximum number of par

ticipating sellers from 30 to 1000 and record the outcome of eCN. To this end, figure 

3.19 and 3.20 show the corresponding number of agreements made and the average final 

utility value, respectively. 
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FIG URE 3.19: Number of agreements vs number of sellers. 

As can be seen, the predictions of hypotheses 9 and 10 are correctwhen the number 

of seller agents are scaled up to 1000. Moreover, the gap between our model's results 

and those of the optimal is reduced as the number of sellers increases. This is the case 

for both the number of successful negotiations, as well as the average utility value of 

the final agreement reached. This occurs because as the number of sellers increases, 

the buyer agent will have more choices in securing a good value deal. Although the 

performance improvement is somewhat marginal, it is still able to outperform the con

trols. This indicates that our model is likely to be most effective when there are small 

to medium numbers of agents. 

HYPOTHESIS 12. The more accurate the agent's information about the probability dis

ttibution of agent types, the better the performance of the concurrent model. 



Chapter 3 The Concurrent Bilateral Negotiation Model 

0.9 ·r-----,;-:----------------. 

0.8 

2: 0.7 

~ 0.6 -_. 
"iij 
> 0.5 

~ 0.4 · 

'5 0.3 
"iij 
;§ 0.2 

0 .1 

O~~~-_-~-~-~-_-~-~ 

--+--OP 

o 
o 

number of sellers 

'" '" o '" o 
o 

-'-Optimal 

o 
o 
o 

FIGURE 3.20: Final utility value vs number of sellers. 

100 

EVALUATION. To ensure our model can perform robustly in unpredictable environ

ments, this set of experiments evaluates its reliance on the accuracy of information an 

agent holds about the marketplace. Specifically, we consider the degree to which the 

probability distribution P (defined in section 3.4.3) matches reality and what impact 

this has on the initial selection of negotiation strategies. 

The initial selection of strategies is only part of the story since the buyer agent can 

reclassify the sellers and change its strategy. Nevertheless , it can be observed from 

figure 3.2110 that the accuracy of this information does indeed have an effect on the 

result of the process, albeit by a small figure (1-2%). In our experiments, about 9% 

of the agreements were reached in threads before the sellers' classification occurs and 

some of these initial agreements become the final solutions at the end of the encounter 

process. Thus, the aforementioned small improvement was made by improving these 

early agreements. 

3.6 Practical Applications 

One of the key motivations behind the development of this model was that it should 

be applicable in practical contexts. To this end, eCN has been used in two real-world 

applications. 

lOHere, the unknown plot corresponds to the case where P has equal values throughout, 50% to the 
case where half of the values in P are correct, and 100% is where P reflects the actual strategies of the 
sellers. OP does not use P in its decision making and optimal also operates with the correct values for 
the sellers ' strategies. 
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FIGURE 3.21 : The accuracy of the belief versus the performances. 

First, this basic concurrent negotiation model has been successfully implemented in a 

commercial project (iService) developed by BT [Thompson et aI., 2004]. This project 

focuses on automatically handling web services among customers. Here, a customer 

can request for a number of services and iService will try to provide and govern these 

services (see figure 3.22). In this case, our negotiation model is responsible for finding 

an alternative replacement for a service provider if the selected one ceases functioning. 

Specifically, when an agent that provides a particular web service to the client stops 

functioning (for whatever reason), eCN was called to search for an alternative provider 

from the pool of potential candidates. 

eCN 

~ iService 

A~ 
user 

FIGURE 3.22: The iService framework. 

In more detail, iService operates in a multi-agent environment that is composed of a 

number of different service providers. Now each such provider can provide a range of 

services. In this context, end users can submit their requests by telling iService which 

services they want and the constraints that need to be satisfied (e.g. time, quantity and 

so on). Based on this information, iService tries to provide the users with solutions to 

their requests, in terms of composing the offerings from a number of service providers 

and, later, executing the composite solution. For example, user A might request to have 
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ADSL installed in his office by Friday. Then from the list of providers that is available 

to A, iService might propose the following solution: 

1. A BT phone line will be installed by a BT engineer on Tuesday. 

2. A service check on the line will be carried out by BT on Wednesday to ensure its 

quality is appropriate for installing ADSL. 

3. The ADSL service will be installed on Thursday by AOL. 

Now, assume that when this composite solution is carried out, the first two steps com

plete successfully, but the third one fails because AOL is suddenly unable to provide 

the desired ADSL service. As it is expensive and inappropriate to replan the composite 

solution, an alternative solution for the third step must be found. In particular, an alter

native service provider must be found that has the similar capabilities (ADSL provider) 

as the failed service provider (AOL in this case) and that satisfies the constraints created 

by both the user and the partially executed solution (i.e. it has to start and finish on 

the same day). In such cases, there are likely to be a number of alternative potential 

providers in the marketplace, each of which can provide the same ADSL service but 

with varying installation prices and degree of availability for the same day service. In 

order to find the most appropriate provider, eCN is then invoked to simultaneously ne

gotiate with each of them. By negotiating in this way, iService is able to find the most 

suitable alternative service provider in the shortest time possible. 

Second, our model has also been used in the CONOISE project [Norman et al., 20031 

CONOISE is concerned with establishing and maintaining virtual organizations (VOs) 

and has been applied to both a personalizing media packaging scenario [NOlman et al., 

2004] and a Grid scenario [Shao et al., 20041 In the context of CONOISE, eCN is 

responsible for the dynamic operation phase of the VO, when it needs to extend (by 

adding a new member) or modify its structure (by replacing an old member). 

Specifically, CONOISE involves a number of agents working together to achieve the 

objectives of the virtual organization. Once the VO has been formed, a number of 

agents are recruited to provide an agreed set if services under an agreed service level 

agreement contract. Now, if nothing changes, then this grouping should be able to 

fulfill its commitments. However, in such complex and dynamic systems this is rarely 

the case. In particular, there are two situations that need particular attention: 

1. The user submits a new (additional) requirement that cannot be provided by the 

current VO. Thus, a new agent needs to be added. Moreover, since the current 
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VO is already in operation, it is not sensible to completely reform the VO just to 

incorporate this new requirement. 

2. One agent in the current VO ceases to provide a required service. This will typi

cally disrupt the operating phase of the current VO in that a particular service may 

no longer be available or there may be insufficient capacity of the desired service. 

Thus, in either case, an alternative agent needs to be found and this needs to be 

done in a timely fashion. 

Now in both of these situations, negotiation provides a feasible solution for managing 

the restructuring of the VO with minimal interruption. Again it makes sense to conduct 

these negotiations concurrently and so eCN is employed to this end. 

3.7 Summary 

This chapter has outlined the design of our negotiation model for managing concur

rent bilateral encounters. The model itself is composed of two main components: the 

coordinator and the negotiation threads. Each negotiation thread is responsible for bar

gaining with a specific agent and all of the threads are controlled by the coordinator. 

The coordinator attempts to classify the agents it is negotiating with before and during 

negotiation and then attempts to apply appropriate strategies according to each specific 

agent type. Each component was designed so that it is computationally tractable and it 

is flexible when applied into different environments. 

The eCN model developed in this section was evaluated by conducting a series of ex

periments and producing empirical results. Our aim in doing this was to assess the 

effectiveness of this model in a range of different scenarios. Specifically, we showed 

that the performance of eCN is better, in terms of the overall utility value of the agree

ment, than that achieved from a sequential model. We also showed that the amount of 

time and the number of proposals required to complete the negotiation is less in eCN. 

Moreover, eCN gives better results than the only other concurrent model in the litera

ture, both in terms of the number of agreements reached and the average utility value of 

the final agreement. This result remains even when the number of participating sellers 

is scaled up. In order to obtain such results, it was necessary for the agent to change 

its negotiation strategy in response to the seller's behavior in a particular negotiation. 

In particular, when dealing with conceder sellers, the tougher the agent negotiates, the 
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better the overall outcome it gains. The model has also been applied in two large-scale 

projects in the areas of web service procurement and virtual organization management. 

In the next phase of our research, we extend our concurrent model with the capability 

of handling commitments among the participating agents. This helps increase the desir

ability for the sellers to participate in the negotiation encounter and also makes the eCN 

model more robust and flexible. The details of this are given in the next chapter. 



Chapter 4 

Flexible Commitments in Concurrent 

Negotiations 

This chapter presents an extension to the basic negotiation model described in chapter 3. 

In particular, it aims to integrate a commitment handling capability into the negotiation 

model so that the agents will have more flexible and realistic behaviors with respect 

to the way in which they handle the contracts they make. In particular, we remove 

the unrealistic assumption of the previous chapter that seller agents cannot renege on 

their commitments. Specifically, the underlying motivation is to achieve the desired 

commitment capabilities that were discussed in section 1.2. 

Thus far, our model has operated under the assumption that all the agreements made 

during the negotiation encounter are binding on the sellers but not on the buyer (see 

section 3.1). This assumption was considered necessary because it allows the buyer to 

accept multiple agreements and, later, select the one that maximize its profit. It was 

also considered because it enables us to focus on the the buyer's reasoning component 

when there is greater certainty. However, this assumption is clearly biased towards 

the buyer and, thus, may make the seller agents less inclined to join the negotiation. 

Furthermore, it is not applicable in most realistic settings since rarely is the buyer given 

such a privileged position. Thus, we introduce a commitment handler to relax this 

constraint by allowing any agent to unilaterally renege on its commitment l 
. 

To this end, this chapter is structured in the following way. First, the commitment 

protocol is introduced in section 4.1. The buyer's internal commitment strategies are 

1 Here we do not look into the problem of how these commitments will be enforced since it is not the 
main focus of this research. Instead, we assume that there will be an external institution that with enforce 
these restrictions on the participating agents [Dcllarocas. 2000], 

105 
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then discussed in section 4.2. Then, section 4.3 details the results of applying the pro

tocol and the buyer's commitment strategies in various negotiation settings, focusing 

on the impact of handling commitments to the concurrent model. Finally, section 4.4 

concludes. 

4.1 The Commitment Protocol 

In this research, the model we used is based on the leveled commitment contracts (see 

section 2.4.3). This is chosen because of its ability to allow the agents to unilaterally 

decommit from their previously acknowledged agreements for any reason they deem ap

propriate (the importance of being able to do this is argued for in section 1.2). However, 

we cannot just take this model as is because there are a number of associated problems 

that need to be rectified before we can apply it in our concurrent context (again, see sec

tion 2.4.3). Therefore, we have modified Sandholm and Lesser's commitment protocol 

and combined it with our negotiation protocol (from section 3.2). The details of our ex

tended protocol are given in sections 4.1.1 (where we discuss our modified negotiation 

protocol) and 4.l.2 (where we discuss our commitment protocol), respectively. 

However, before we detail the protocols, we define the basic terms that are used to 

describe the commitment model (see table 4.1). Specifically, this table gives a brief 

description of their meaning and the detailed explanations follow in the subsequent 

sections. 

4.1.1 The Extended Negotiation Protocol 

The negotiation protocol described in section 3.2 was designed to handle the basic ne

gotiation scenarios where the agreements can be arbitrarily made by the participating 

agents2
• Specifically, it gave the buyer agent the advantage of committing to a number 

of agreements simultaneously, without worrying about the future consequences of over 

committing itself (recall, the buyer is allowed to select the single highest value agree

ment at the end of the encounter and decline all the other previously accepted agree

ments without any penalty to itself). This is clearly inappropriate for the reasons noted 

above. Thus, the negotiation protocol should be modified so that in anyone round, there 

is a maximum of one agreement that can be made from any agent. This is to ensure that 

2If an offer is considered acceptable by both agents, it will be selected as an agreement for both agents. 
However, this agreement is binding on the seller only, giving our buyer the right to renege at the end of 
the negotiation. 
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I Symbols I Description 

U(cp, t) the utility value of contract cp at time t according to 
the buyer agent's utility function 

Ui(cp, t) the utility value of contract cp at time t according to 
agent i's utility function 

P the penalty fee that one agent needs to pay another 
agent if it decides to break a previously made com-
mitment (see section 4.1.2) 

Po the initial penalty value (see section 4.1.2) 

Pm ax the final penalty value (see section 4.1.2) 
jL the degree of acceptance for an offer, for the buyer 

to consider whether or not to accept an offer from a 
seller (see section 4.1.2) 

T the threshold value for jL (see section 4.1.2) 
w the maximum number of concurrent agreements that 

the buyer will take at anyone time (see section 4.1.2) 
n the set of currently holding commitments of the 

buyer (see section 4.1.2) 

TABLE 4.1: The list of commitment symbols (a bold symbol represents a set). 

in that particular round, the buyer will not end up with more than one agreement and 

then, later, have to pay an unnecessary decommitment penalty. 

In our previous negotiation protocol, an agreement is made in one step when an agent 

accepts the offer made by the other agent (by sending an agreement message). However, 

when the buyer agent sends out a number of counter-offers to different sellers, there is 

the possibility that more than one of them will return an agreement. Thus, in order 

to ensure that a maximum of one agreement can be made at anyone round, a more 

elaborate procedure for accepting an agreement is needed. In this work, we use a two 

step approach for reasons of simplicity and efficiency. Now, an agreement is created 

only if an acknowledgement message is received after the agreement is sent. Thus, 

there is now an option for any agent to send a withdraw message after the agreement 

has been received to indicate that no agreement is made. In either case (acknowledge or 

withdraw), that particular negotiation will be terminated. 

Specifically, in each thread, the negotiation with the corresponding seller agent will 

be carried out via the negotiation protocol detailed in figure 4.1. Compared to our 

negotiation protocol previously described in section 3.2, there are now six states in 

this protocol in which state 1 is the initial state and states 4 and 6 are the termination 

states. Specifically, the buyer's thread starts the negotiation (state transits from 1 to 2) 
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by proposing an initial offer to the opponent (state transits from 2 to 3). At this point, 

the opponent has three options: 

1. accept the offer (state transits to 5), the buyer is notified and either accepts the 

offer (state transits to 6) or withdraws (state transits to 4). If the buyer also accepts 

the offer, the seller will wait for the buyer to finalize the deal (see section 3.4.1); 

2. withdraw from the negotiation (state transits to 4) which signals the termination 

of the negotiation; 

3. propose a counter-offer to the buyer (state transits to 2) which causes the negoti

ation to move to the next period. 

withdraw 

FIGURE 4.1: The extended negotiation protocol. 

4.1.2 Extended Leveled Commitment Contracts 

Once the buyer agent and a seller decide to reach an agreement in a particular negoti

ation (after an acknowledgement is received), that agreement is considered as an inter

mediate commitment contract. It is considered binding on both agents until either the 

execution time (the buyer's deadline) is reached or one agent decides to drop out. Here, 

an intermediate commitment contract is defined as: 

Definition 4.1. An intermediate commitment contract C between the buyer agent band 

a seller k at time tk is a tuple C(cp, t k) = (cp, t k, Po, Pmax), where 
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• </J is the contractthat has been agreed by both parties band k (see section 3.4.1.1). 

• tk is the time when the acknowledgement between band k is received. 

• Po is the initial penalty (the fee to pay if the deal is broken at contract time, tk)' 

• Pm ax is the final penalty (the fee if the deal is broken at execution time, tmax ). 

Here, Po and Pmax are two values that have been agreed by the buyer agent and all the 

participating sellers before the encounter begins. Unlike the original leveled commit

ment contract, here an agent will pay different amounts of penalty fee, depending on the 

time when it decides to break its commitment. The motivation behind this is that if an 

agent decides to break a commitment early, it will be easier for the other agent to find 

an alternative. Thus, the decommitting agent does not have to pay as much penalty as 

if it decides to break at a later time. For this reason, Po is typically set at a lower value 

than that of Pm ax . 

Previously, the seller agent was not allowed to renege from its contract, only the buyer 

agent could (simply by sending a decline message to the appropriate seller agent). Now, 

all the agents are treated equally. Thus, if one decides to decommit, for whatever reason, 

it has to pay a fee to the other agent. To this end, if an agent i decides to decommit at 

time t < tmax from a commitment contract C(</J, tk), the penalty fee it has to pay is 

calculated as follows: 

i ( t - tk ) p(t) = U (</J, t) x Po + t
max 

_ tk X (Pmax - Po) (4.1) 

This equation is chosen to represent a linear relationship between the penalty value 

with the time the contract is broken. As can be seen, the closer the break time is to the 

execution deadline, the larger the penalty fee will be (assuming that Pmax 2: Po). If, 

however, the relationship between the penalty value and the broken time is not linear, 

any other formula can be used (the only condition is that the closer the break time is to 

the execution deadline, the larger the penalty fee will be). 

By means of an illustration, consider the following example. Assume the buyer's dead

line (tmax ) is 10, the initial penalty (Po) is 5% and the final penalty (Pmax) is 10%. Now 

let a deal with an expected utility value 0.58 be made at time 6. If, at time 7, the buyer 

wants to decommit, by (4.1), it has to pay: 
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p(t) 0.58 x (0.05 + 1
7
0-=-66 x (0.10 - 0.05)) 

0.58 x 0.0625 

0.03625 

whereas if it decommits at time 9 then it will face a larger penalty: 

p(t) 0.58 x (0.05 + 1
9
0-=-66 x (0.10 - 0.05)) 

0.58 x 0.0875 

0.05075 

4.2 The Buyer's Commitment Strategies 

110 

Since the buyer agent now has to pay a fee every time it breaks a contract, it cannot sim

ply just agree on all deals and, later, select the highest value one as the final agreement 

(as it did in chapter 3). Thus, when presented with a potential agreement from a specific 

seller, the buyer has to decide whether it should take this deal or reject it. By follow

ing the extended negotiation protocol (as per section 4.1.1), the buyer can eliminate 

the chance of committing to unnecessary intermediate agreements in anyone round by 

simply selecting the acceptable offer that has the highest value in that particular round 

as the contract to commit to. 

Furthermore, the buyer agent also has to deal with the situation in which it receives what 

is an acceptable offer but at an early time in the negotiation, which has a comparatively 

low utility value. In such situations, it has to decide whether it should take this offer or 

wait for a better one. Since that offer is acceptable to the buyer, it means that there exists 

an intersection of all the negotiation issues for both agents. Thus, there are potentially 

more than one possible agreements from this negotiation. However, since the buyer does 

not have any information about the seller's reservation values or its negotiation strategy 

(see section 1.2), it is not able to know whether that offer has the highest utility value 

in that perspective (since there might be other potential offers with higher utility values 

from that particular negotiation). If it decides to take the offer, it may lose the chance of 
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obtaining a higher value deal at a later time3
. However, if the buyer decides to wait for 

the next offer, there is also the chance that no further deal will be forthcoming because 

the next offer will fall outside of the agreement zone or the seller might have reached 

its negotiation deadline (the buyer also has no information about this). To capture this 

decision problem, when presented with a contract c/J that has utility value of U (c/J, t) 

from seller k at time t, the buyer will accept c/J as an intermediate contract if all the 

following conditions are satisfied: 

1. Ifit already has another commitment C(c/J/, tk') with another agent k' and this deal 

has not been broken, the utility gained by taking this new offer must be greater 

than that of the current deal, after having paid the decommitment fee. That means 

U(c/J, t) > U(c/J/, tk') + p(t)4. 

2. The degree of acceptanceS (f-l) for c/J must be over a predefined threshold (T). This 

threshold specifies how the buyer should accept the offers, whether it is greedy 

(likely to accept any possible deal) or patient (only accepts deals that provide a 

certain expected utility value). Here, f-l is calculated by comparing the utility value 

of c/J with the predicted utility value of the next set of contracts from other sellers 

(described below), also taking into account the relation between the current time 

and the buyer's deadline. Specifically, the formula for calculating f-l is: 

f-l(c/J) = U(c/J, t) - p(t) x _t_ 
max{Uexp(ki1 t) 1 ki E As \ k} tbmax 1 

(4.2) 

where p(t) is the decommitment fee that the buyer has to pay if it has already 

committed to a deal with another seller (if it has not, p(t) is 0) and Uexp(ki, t) is 

the predicted utility of the next proposal from seller ki. The value of Uexp(ki, t) is 

calculated as: 

dU(t , t - 1) 
Uexp(ki , t) = U(ki1 t) + d ( ) x 1 dU(t , t - 1) I, (4.3) 

u t - 1, t - 2 

where dU(t 11 t2) is the distance, in terms of utility value, between two offers from 

seller ki at times tl and t2: dU(t 11 t2) = U(ki1 t1) - U(ki1 t2)' 

3This is possible since seller agents typically start from their reservation value and lower their require
ments step by step until either the lower limit is reached or an offer is accepted. Thus if the buyer waits, 
the next offer might be of higher value than the current one. 

4If the buyer is currently holding more than one commitment (discussed later in this section), the 
utility gained by taking this new offer must be greater than that of any of the currently committed deals 
(after paying all the associated penalties). 

SIt represents the buyer's evaluation about an offer from a particular seller with respect to the issue of 
commitment. 
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To illustrate the operation of the buyer commitment reasoning process in more detail, 

consider the following example. Assume there are 4 participating sellers, the buyer's 

deadline (tbmaJ is 6, the initial penalty (Po) is 10%, the final penalty (Pmax) is 20%, and 

the threshold (T) is 0.8. Assume the buyer has committed on a deal with seller 4 at time 

2 with the expected utility value of 0.21. The utility values of previous offers from all 

the sellers are displayed in table 4.2. 

I agent I t=l t=2 I t=3 I 
kl 0.03 0.12 0.16 

k2 0.01 0.04 0.10 

k3 0.1 0.19 0.23 

k4 0.11 0.21 -

TABLE 4.2: Utility values of the offers. 

Now at time 3, the buyer has to decide whether it will accept the offer </J( k3) from seller 

k3. Since it is already committed to a deal with k4' if it wants to take </J(k3) , it will have 

to pay a decommitment fee to k4 • By (4.1), the fee it has to pay is: 

p(3) = 0.21 x 0.1 + -- x (0.2 - 0.1) = 0.026 ( 
3 - 2 ) 
6-2 

As can be seen, U(k31 3) < U(k41 2) + p(3), so the first condition is violated. Thus, the 

buyer will reject </J(k3) and remain with its commitment to k4. 

I agent I t=l I t=2 I t=3 I t=4 I t=5 

kl 0.03 0.12 0.16 0.28 0.4 

k2 0.01 0.04 0.10 0.30 0.26 

k3 0.1 0.19 0.23 0.31 0.36 

k4 0.11 0.21 - - -

TABLE 4.3: Utility values of the offers (cont.). 

At time 4, however, seller k4 decides to renege on its current deal and pay the decom

mitment fee to the buyer. According to equation (4.1), it has to pay: 

p(4) = 0.21 x 0.1 + -- x (0.2 - 0.1) = 0.0315 ( 
4 - 2 ) 
6-2 

As can be seen, this decommitment from k4 leaves the buyer with no agreement. Now, at 

time 5, the buyer has to decide if it should take up the offer from kl (table 4.3 shows the 
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utility values of the offers from all the sellers). Since it has no intermediate agreement, 

the first condition is satisfied. To evaluate the second condition, the buyer first calculates 

the value for Uexp(k1 ) 5) and Uexp (k2 ) 5) using (4.3): 

-0.04 
Uexp (k2 ) 5) = 0.26 + x 0.04 = 0.252 

0.2 

() 
0.05 

Uexp k3 ) 5 = 0.36 + - x 0.05 = 0.391 
0.08 

The value of f.L(¢(k 1)) is then calculated, using equation (4.2), as: 

This time, since f.L( ¢( k1)) > T, the buyer will commit to this deal. It keeps on bargaining 

in this way until its deadline is reached. If, at that time, there is an intermediate deal 

that has not been broken, this deal is selected as the final agreement. If, however, no 

such deal exists, the negotiation is considered unsuccessful and terminated without an 

agreement. 

From the above example, it can be seen that selecting different values for T will cause 

the buyer to have various degrees of acceptance for any incoming offer. This will, in 

turn, directly affect the performance of the model. There are various possible values 

for T, however, only two of these really cause a major difference in the result (see 

hypothesis 16). Thus, in what follows, we propose two commitment strategies for the 

buyer: the first one is greedy where T is set to 0 (which lets the buyer commit to any 

possible deal) and the second one is patient where T is set to 0.5 (which will prevent the 

buyer from committing to early deals with lower utility values and will cause it to wait 

for a better opportunity). 

Up until this point, we have only considered the situation where the buyer agent com

mits to a maximum of one intermediate contract at one time. However, it is possible for 

the buyer to commit to more than one contract at anyone time and then, later, select 

the best one and decommit from the others. This represents a cautious approach and 

avoids the risks associated with committing to only one contract which is then revoked 

near the deadline, leaving the agent with insufficient time to find a replacement. The 

downside of this approach, however, is that if the sellers do not renege, the buyer may 

end up paying a significant part of its utility value as the penalty fee. Nevertheless, in 

some cases it may be beneficial for the buyer to consider the option of having multiple 
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commitments during the bargaining process. To capture this, assume that the maximum 

number of commitments that the buyer will hold at anyone time is w 2 1 and let n be 

the set of contracts that the buyer is currently committed to: In I::; w. Assuming that 

at time t, there is an offer cp from seller k that has f.1( cp( k)) > T (see equation 4.26
) and 

U(cp(k), t) > U(cp', tk') + p(t) VC(cp', tk,) E n then this offer will be accepted by the 

buyer. This, in tum, means the following steps will be taken: 

1. If n is not full (i.e. In 1< w), C(cp, t) will be added to n: n = n n C(cp, t) 

2. If n is full (i.e. I n 1= w) select C (cp', tk') E n that has the minimum value of 

U(cp', tk') and decommit from that contract. Then, C(cp, t) will be added to n: 
n=nnC(cp,t) 

Now if a seller k that has a contract C(cp(k), tk) decides to withdraw its commitment, 

that contract will be subtracted from n: n = n \ C(cp(k), tk). Then at the end of the 

bargaining process, if there is more than one contract in n, the buyer simply selects the 

one that has the highest utility value as the final agreement and decommits from all the 

others. 

Having defined the commitment protocol, the next step is to see how it performs in 

different contexts so that its relative advantages and disadvantages can be ascertained. 

As before, this analysis will be empirical in nature and is reported in the next section. 

4.3 Evaluation 

This section evaluates the extended commitment model described in this chapter in a 

range of different environments. Here we assess its performance in terms of the utility 

value of the final agreement and the number of agreements achieved (as per chapter 3). 

Once again, empirical evaluation is used as the method of measurement for the same 

reasons as outlined in section 3.5. Again, general hypotheses are formed to express the 

intuitions about the causal factors within the model. The experiments are then conducted 

and generate the results that either support these hypotheses or go against them. The 

structure of this section consists of two parts: the experimental setup is described in 

section 4.3.1 and the hypotheses are presented and evaluated in section 4.3.2. 

6If 10 1< w, p(t) is considered to be O. If not, p(t) is the penalty the buyer will have to pay to break 
from the contract C (¢/, tk') E 0 that has the minimum value of U (cpt, tk' ). 
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4.3.1 Experimental Setup 

This evaluation focuses on the effect of being more flexible with respect to commit

ments, particularly on the commitments requirement stated in section 1.2. For this rea

son, we reuse the basic experimental environment from section 3.5.2 and only add/up

date the commitment related settings. Specifically, the penalty fee (both initial and final) 

is an ordinal independent variable, whose value is randomly chosen, ranging from 5% 

(small) to 100% (equal to the value of the contract). Similarly, the T threshold ranges 

from 0 to 1.5 with two special values: 0 (meaning the buyer is greedy and will commit 

to any intermediate deal that it can get hold of) and 0.5 (meaning the buyer is patient and 

will only engage in a deal that provides high expected utility value but it is not too strict 

on accepting offers from seller). Setting T to be greater than 1.5 makes no different to 

the outcome of the mode (the buyer will never accept any offer from a seller). To sum 

up, the independent variables are given in table 4.4 and the dependent ones are listed in 

table 4.5, respectively. 

I Variables I Descriptions values I 

Po the initial penalty fee [5,100] 

Pmax the final penalty fee (Pmax ~ Po) [5,100] 
T the f.L threshold [0,1.5] 
w the number of concurrent commitments [1,4] 

TABLE 4.4: The independent variables. 

The seller agents in this evaluation are characterized in a similar fashion to ones set 

up in the previous experiments (see section 3.5.2). The only difference is that now if 

a seller has committed to a deal, it has a chance of being made an outside offer with 

the utility value of 1.0 (which is the highest possible utility value). Thus, there is a 

probability that it will decommit. To this end, we consider three types of sellers: 

• loyal: once a seller has committed to an intermediate deal, it will not renege from 

it (this is equivalent to the sellers in the experiments in chapter 3). 

• loose: a seller always breaks a committed deal if it is presented with a better 

option. 

• partial: if a seller finds a better option, it will break a committed deal with a 

percentage of probability. In this experiment, we set this percentage to be 50%, 

meaning that half of the time a seller finds a better deal, it will renege and half of 

the time it will stay with its current deal. 
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I Variables I Descriptions 

U the utility value of the final agreement 
N the number of successful negotiations 
D the number of decommitments made by buyer 

TABLE 4.5: The dependent variables. 

4.3.2 Hypotheses 

Here, we want to evaluate the performance of our commitment model against different 

seller's types, in terms of the number of successful negotiations and the average utility 

value of the final agreement obtained. Next, we aim to find the most influential variables 

and to find out how to set their values in order to gain best overall performance in each 

environment. We now tum to the specific hypotheses. 

HYPOTHESIS 13. When dealing with loose or partial sellers, the higher the penalty fee 

is, the lower the number of final agreements reached by the buyer. 

penalty fee (Po· PmaJ 

~Ioyal _partial -""-Ioose 

o 
o 

FIGURE 4.2: Number of successful negotiations for varying penalty fee. 

To evaluate this hypothesis, we measure the number of final agreements achieved with 

varying types of seller agents (see figure 4.2). As can be seen, the number of final 

agreements reached by the buyer is dramatically reduced as the penalty fee is increased. 

Specifically, when dealing with loose sellers, around 97% of the negotiations are suc

cessful when the penalty fee is 5%. As the penalty fee increases to 100%, this success 

rate drops down to only 84%. Similarly, the figures when dealing with partial sellers 

are 98% and 92%, respectively. This decreasing trend is explained by the deliberation 

mechanism of the buyer. Specifically, assume that the buyer has already made a com

mitment with seller k and now it is presented with another offer from seller k'. If it 
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decides to take this new offer from k', it will have to pay k a decommitment fee p. As 

the penalty fee is increased, so is p. Thus, in some cases, the buyer cannot afford to 

take this new offer and it has to stay with its commitment to k. Later on, if k decides to 

break its commitment, the buyer is left with no intermediate agreement. As such, there 

may not be enough time for the buyer to find another replacement deal and, thus, no 

final agreement can be reached. On the other hand, if the buyer can take the offer from 

k', the probability that k' will renege is less than that of k . Thus, a final agreement can 

be reached. 

Another observation is that the more loyal the seller is, the greater the number of final 

agreements that the buyer makes. This difference is caused by the probability of the 

sellers breaking their commitments. Since a loyal seller never reneges, once it has 

committed, its contract is kept until either it is declined by the buyer or it is selected as 

the final agreement. Therefore, once an intermediate deal is reached, a final agreement 

is always guaranteed to exist. However, this is not the case for the other types of sellers. 

Once they have committed, it is not guaranteed that they will actually stay faithful with 

their commitments. If a seller breaks a contract, the buyer has to find a replacement. If 

it fails to do so, no final agreement will be achieved. Thus, the less loyal the sellers are, 

the fewer chances there are for the buyer to reach a final agreement. 

HYPOTHESIS 14. The higher the penalty fee, the lower the utility of the final agreement 

gained by the buyer. 
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FIGURE 4 .3: Final utility value for varying penalty fee. 

As can be seen from figure 4.3, this trend is true for all seller types . Specifically, when 

dealing with loose sellers, the average utility of the final agreement for the buyer drops 

from 0.61 to 0.46 when the penalty fee goes from 5% to 100%. The corresponding 

figures for partial and loyal sellers are 0.62 to 0.43 and 0.63 to 0.40, respectively. The 
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reason for this decrease in the final utility value is that the higher penalty fees mean more 

chance that the buyer will commit to an early agreement (and stay with this commitment 

until either its deadline is reached or the corresponding seller decides to renege) . These 

early commitments by the buyer have two main effects. First, such agreements tend to 

have lower utility value for the buyer, compared to the contracts that are offered at a later 

stage (the buyer cannot afford to take these contracts due to high decommitment fees). 

Second, once that commitment is later broken, the buyer will have to find a replacement. 

Even if it is successful in finding one, since there is not much time for bargaining, the 

utility value of this newly found agreement is likely to be less than that of the previous 

deal. Consequently, the utility gained by the buyer is reduced. 

Furthermore, with increasing penalty fee, the more loyal the seller, the lower the value 

of the final agreement gained by the buyer (see figure 4.3). The reason for this obser

vation is because the buyer benefits from the decommitment fee gained when a seller 

reneges from a committed deal. As per our experimental setup, loose sellers decommit 

more often than partial sellers and loyal sellers never renege. Thus, as the penalty fee 

increases, the buyer will benefit more when dealing with less loyal sellers. 

HYPOTHESIS 15. The buyer decommits less frequently as the penalty fee increases. 
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FIGURE 4.4: Number of buyer's decommitments for varying penalty fee. 

Figure 4.4 shows the average number of decommitments made by the buyer for vary

ing penalty fees and different seller types. Since the buyer's deliberation includes the 

decommitment fee it has to pay if it want to replace its current intermediate deal (see 

equation 4.1), the less it has to pay, the more favorable it will be to take up a better deal. 

Thus, even when a seller offers an intrinsically higher value contract than the current 

deal it has, the buyer may be better off sticking with its existing commitment in order to 
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avoid paying a hefty fine. This is why the buyer almost never reneges when the penalty 

fee is close to 100%. 

HYPOTHESIS 16. The more patient the buyer, the higher the utility for the final agree

ment. However, the chance of having a final agreement is reduced. 
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Fr G U RE 4.5: Performance vs degree of acceptance. 

We start by looking at the performance of the model with a number of different values 

for the degree of acceptance (specifically T E [0.1 , 1.5]). For simplicity, we fix the 

penalty fee value at (Po = 5, Pmax = 10) and assume we are dealing with partial sellers. 

These values are chosen just to give us an idea of how the results could potentially be 

and a detailed analysis will follow. The results are displayed in figure 4.5. 

As can be seen, as the value of T increases, the utility value for the final agreement 

decreases. This is because in a particular negotiation, if the buyer tends to ignore the 

current offer from the seller, in favor of a higher value one at a later time, there is a 

possibility that a high value offer will not be forthcoming (e.g. the seller may run out of 

time or be at the limit of its reservation values) . Thus, towards the end of the encounter 

it will have to settle for a lower value deal (because this is better than no deal) . This, in 

tum, puts a downward trend on the final utility value achieved. 

On the other hand, the number of final agreements reached increases as the value of T 

increases up to 0.5, then it decreases. Now, since we are dealing with partial sellers, if 

they are presented with a better outside offer, they have the chance to renege and may 

leave the buyer with no agreement at hand. When the value for T is small (less than 

0.5 in this case), the buyer tends to take up any offers that are available to it at an early 

time. Later, when the seller that is sharing the commitment with the buyer decides to 

back down, there might not be enough time for the buyer to recover from this loss and 
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thus it might end up with no agreement at the end of the encounter. However, if it is 

too strict on accepting intermediate deals, it also risks the chance of having obtained no 

deal at alL This is the situation when the value of 7 increases past OS From figure 4.5, 

it can be seen that by setting value of 7 at around 0.5, the buyer will achieve the highest 

number of final agreements with a reasonably good final utility value. 
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FIGURE 4 .6: Final utility value for varying penalty fee. 

We extend the aforementioned result by comparing the results of having two different 

values for 7 : greedy (7 = 0) and patient (7 = 0.5) in the experiments with different 

penalty values, as well as different seller types. Recall, the greedy buyer will commit to 

any offer that it can take (if it is more beneficial than the one it currently has , taking into 

account the decommitment fee it will have to pay). In contrast, the patient buyer will 

only commit to an offer that has significantly greater value (compared with the one that 

it currently has) . As it only accepts higher value contracts compared to its counterpart, 

the patient agents' final agreements always have higher utility value than those of the 

greedy agent (see figure 4.6). 

However, even though it can gain better utility value than its greedy counterpart, the pa

tient agent manages to get fewer agreements than its counterpart (see figure 4.7). This 

is because the patient agent only accepts a deal if the degree of acceptance (p,) of this 

deal is greater than a threshold (in this case, 7 = 0.5). Thus, not all the deals proposed 

by the sellers satisfy this condition. Indeed, in some cases, none of the proposed con

tracts satisfy this condition. This limits the chance of the buyer having an agreement at 

the end of the negotiation. On the other hand, the greedier the agent is, the higher the 

chance that an offer will be accepted. Consequently, the greedy agent will be able to 

reach more agreements than the patient one at the end of the bargaining process. 
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FIGURE 4 .7: Number of successful negotiations for varying penalty fee. 
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HYPOTHESIS 17. When dealing with loyal sellers, the buyer is better off committing 

to a maximum of one contract at anyone time. For other seller types, the buyer should 

commit to a maximum of two contracts. 
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FIGURE 4.8: Number of agreements vs buyer's maximum commitments. 

Figure 4.8 shows the number of agreements obtained by the buyer at the end of the 

encounter when it varies the number of commitments it can hold at any one time (here 

w E [1 , 4]). As can be seen, when holding more than one commitment, the buyer 

increases its chance of reaching an agreement when dealing with non-loyal sellers. In 

particular, when w is increased from 1 to 2, the buyer gains 0.9% more final agreements 

when dealing with partial sellers and 2% more when dealing with loose sellers. This 

improvement can be explained simply by looking at the behaviors of the sellers. As 

the sellers are not loyal, when presented with an outside offer, they may renege. If this 
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happens near the end of the negotiation process and the buyer can only commit to a 

single contract, it will leave the buyer very little time to find an alternative (and in some 

cases it will not be able to do so) . On the other hand, if the buyer is holding more 

than one contract and an agent reneges then it has something that it can fall back on 

and it is less vulnerable to being left with no agreement. For values of w > 2, however, 

the improvement is comparatively minor because when the buyer is committing to more 

than one contract, the chance that all the sellers renege is significantly reduced compared 

to the situation when the buyer can only have one commitment at a time. This, in tum, 

has a very slight impact on the number of agreements achieved. 
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FIGURE 4.9: Final utility value vs buyer's maximum commitments. 

The final utility achieved by the buyer with varying values for w is displayed in figure 

4.9. As can be seen, when w > 2, the utility gained is dramatically reduced (8% 

decrease when w goes from 2 to 3 and 16% decrease when w goes from 3 to 4). This 

is because if the buyer agent has more contracts at the end of the negotiation process, 

it will end up paying a significant penalty fee for breaking them. When w = 2, the 

situation is similar to that of dealing with loyal sellers. However, when negotiating with 

partial or loose sellers, w = 2 gives similar results and, in some cases, is better than 

setting w to 1. The reason for this is because as the non-loyal seller agents can renege 

on their commitments and if they do so towards the end of the negotiation process, the 

buyer will gain additional penalty fees from those sellers and is still left with at least 

one intermediate contract in hand. Thus, at the end, it is still able to have the final 

agreement, but it does not have to pay a decommitment fee to any other seller agent. 

As can be seen, when dealing with loyal sellers, the buyer does not necessarily need to 

have more than one commitment since it can be sure that the sellers will never renege 

from their deals . However, when dealing with partial or loose sellers , the situation is 
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different. The greater the number of commitments it holds, the higher the number of 

final agreements it is likely to obtain. Nevertheless, the final utility value reached is 

decreased because it will have to pay a large amount of penalty fees to decommit from 

these commitments. To this end, the buyer is best setting w to 1 when dealing with 

loyal sellers and w to 2 when dealing with other types of seller to ensure that it will 

achieve the highest possible utility value together with an acceptable number of final 

agreements. 

4.4 Summary 

The basic concurrent negotiation model presented in chapter 3 assumes that the buyer 

has the right to commit to any number of intermediate agreements and then, without 

penalty, be able to select one of these to be the final agreement. This assumption was 

required to minimize the buyer's uncertainty initially; however, it gives the buyer agent a 

privileged position over the seller agents and thus limits the desirability of participating 

in the bargaining encounter from their perspective. To overcome this, the commitment 

protocol discussed in this chapter provides a method to relax this constraint and to treat 

all the agents equally. Thus in the revived protocol, if any agent decides to break off its 

commitment, it will have to pay a penalty fee to the other agent, regardless of its role. 

In order to adapt to this change, the internal reasoning of the buyer agent has been 

modified. Specifically, when faced with an intermediate acceptable offer, instead of 

taking it promptly (as per chapter 3), it has to reason whether or not it should take it. 

To do this, the agent embodies a number of different commitment strategies, ranging 

from greedy (desperately seeking deals) to patient (waiting for a good opportunity). 

It can also choose to hold different numbers of concurrent commitments which gives 

it flexibility in different negotiation contexts. In particular, when dealing with loyal 

sellers, it does not necessarily need to have more than one concurrent commitment but 

it should hold two concurrent commitments when dealing with other types of seller in 

order to gain best possible outcome. 

Using empirical evaluation, we have shown that our concurrent model performs well 

in a variety of contexts. Naturally, since this commitment protocol puts the buyer in 

a less favored position, the performance of our model drops compared with the basic 

concurrent model. However, it is now much more realistic and practically plausible. 

From the experiments conducted, the most notable observation is that the higher the 

penalty fee, the lower the utility of the final agreement gained by the buyer. Another 
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observation we obtained is that the more patient the buyer, the higher the utility for the 

final agreement. However, the chance of having a final agreement is reduced. 

Having made the model more realistic, the next step is to see if we can make the overall 

negotiation process more efficient (in terms of exploiting potential information about 

the sellers, if applicable). To this end, we aim to use a variety of learning techniques 

to improve the performance of the model by introducing a learning based negotiation 

strategy. This work is detailed in the next chapter. 



Chapter 5 

Adaptive Negotiation 

The buyer agent in our basic concurrent model described in chapter 3 operates in an in

complete information environment. This means it can negotiate without knowledge of 

its opponents' utility functions, evaluation criteria and reservation values. The same as

sumption remains in our model for handling commitment discussed in chapter 4. Such 

an assumption is made because it means the model can be applied in almost all negoti

ation settings. Nevertheless, there are situations in which partial information about the 

seller agents is sometimes available [Fatima et al., 2001; Zeng and Sycara, 1998]. In 

such cases, this information can be exploited to give the buyer an advantageous stance in 

its bargaining. To this end, this chapter investigates the application of machine learning 

techniques to exploit such information in our negotiation model. 

In more detail, this chapter is structured in the following way. First, a new leaming

based negotiation strategy for the buyer agent is introduced in section 5.1. Next, section 

5.2 gives an example of how this strategy can be appliedin one particular negotiation 

context. As before, we evaluate it empirically and the results are detailed in section 5.3. 

Finally, section 5.4 concludes. 

5.1 A Learning-Based Negotiation Strategy 

Even though agents rarely have complete information about the opponents that they 

are dealing with in realistic situations, it is not uncommon to have some information 

about them [Fatima et ([/.. 2001; Zeng and Sycara, 1998]. Given this, in this chapter, 

we consider the situation where the buyer agent does indeed have some information 

about the sellers that it will negotiate with. In particular, we assume it has information 
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about how the sellers generate their offers, which it then uses to help it make a better 

value counter-offers. We focus on this case because such information may be available 

from different sources (e.g. in the travel agent scenarios detailed in section 1.2, from 

its previous holiday arrangements, sigma knows that most of the travel agents start 

with very high price offers and then quickly lower down their prices as time goes by). 

However, before we detail the situation, we define the basic terms that are used to 

describe the learning model in table 5.1. This table gives a brief description of their 

meanings and the detailed explanations follow in the subsequent sections. 

I Symbols I Description 

Fs the set of available negotiation strategy functions for 
the seller 

i, is a specific negotiation strategy function 
Pf the set of parameters that goes with a specific negoti-

ation strategy function i 
Pi a specific parameter that belongs to Pf 

QPi the quantitative range of Pi 
E(f) the different between the utility values generated by 

the buyer and the actual utility value from the seller 

i 
Hk the set of counter-offers made by seller k to buyer b 

Hbk the set of offers made by buyer b to seller k 
RPk the buyer's predicted lower limit of k's reservation 

value 
D.t the number of negotiation rounds after which b will 

start applying the learning strategy 
D.k buyer b's assumption about the difference between its 

deadline and seller k's deadline 
D.E the error threshold that determines if b's prediction 

should be used to generate a new offer 
D.u the utility value threshold that b uses to generate a 

new offer 

TABLE 5.1: The list of learning symbols (a bold symbol represents a set). 

In particular, in this chapter we are interested in the functions that the sellers use in order 

to generate counter-offers to respond to the buyer's offers. To this end, we assume that 

the buyer agent knows the set F s of strategy functions that the sellers will use, but it does 

not know which specific function (i.e. which is E F s) is used by a particular seller. We 

believe this is a reasonable assumption since most of the dominant negotiation strategies 

can be found in the literature and, thus, are available to the buyer. Specifically, at time t, 

assume seller k generates counter-offer ¢L->b using the strategy function is E F s (which 
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takes the tuple (Hk' Hbk , t, tkmaJ as the input parameters). The utility value of ¢~--->b' 

Uk, is calculated as follows: 

where Hk is the set of previous counter-offers made by k to date: Hk = {¢r--->b I t' < t} 

and Hbk is the set of offers proposed by the buyer to date Hbk = {¢b--->k I t' < t} and 

t kmax is the negotiation deadline of k. 

By means of illustration, consider a negotiation strategy function is E F s which imple

ments the time dependent strategy described in section 3.4.1.3: 

where bk is the initial proposal utility value (depending on the chosen strategy) and (3 is 

the parameter that decides the shape of the function. As can be seen, this particular is 
does not take into account the previous offers. Hence, Hk and Hbk are not used. 

Another example is the Relative Tit-for-Tat function discussed in section 2.2.1: 

where ¢~~k' ¢~=.lk E Hbk are the previous offers from the buyer and ¢~~b E Hk is the 

previous offer made by k. 

Now that the buyer knows that such functions exist, however, it does not know the 

accompanying parameters (such as (3, bk and Hk). Given this information, the buyer's 

task is to try and determine the function that a seller is using (with the accompanying 

parameters) in order to try and predict the reservation values of the seller. If this can 

be achieved, an offer that is close to that value will be generated and proposed to that 

particular seller. If accepted, it will give the buyer a much higher value return than 

might otherwise be the case. 

In more detail, figure 5.1 illustrates the underlying operation of this approach in a par

ticular negotiation. In this figure, the thin arrows represent the buyer's offers (the longer 

arrow is the predicted value offer) and the thick arrows represent the seller's counter

offers. Typically, the agents will start from one end of their reservation values and go 
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towards the other end. If an offer falls in the zone of agreement, it is likely to be ac

cepted (there are some situations in which our buyer agents will not accept, see sections 

3.4.1.2 and 4.1.2). Then, as can be seen, if the buyer can reasonably identify the seller's 

reservation value, it can generate an offer that is likely to be accepted by that seller and 

that has a higher utility value than that of either the seller's counter-offers or its typically 

generated offers. 

predicted value 

Supplier's initial offer 

t t 
Zone of Agreement 

RPsupplier RPbuyer 

FIGURE 5.1: Buyer's prediction of the seller's reservation value. 

Specifically, in order to predict seller k's reservation value, the buyer operates under 

the assumption that k's strategy function Is will give the value that initially starts from 

a high value for k (low for b) then go down to a lower value for k (higher for b) near 

k's deadline. However, since the buyer does not know either the Is that k uses, nor its 

deadline t kmax ' it attempts to find a function I E F s that gives the values that are closest 

to the value of the counter-offers that k has proposed to b so far. 

Thus, for each function I E F s, let Pj be the set of accompanying parameters that I 
uses (i.e. Pjtime_dependent = {!jk,,8}). Although b does not know the exact value that k 

uses for each parameter p E Pj , it is assumed to know the quantitative range of each 

parameter (i.e. !jk E [0 ... 0.1],,8 E [0 ... 2]) I. Obviously, b knows the elements of the 

set Hk and Hbk • 

Now at time t > 6,}, a number of offers/counter-offers have been proposed by both 

agents. Given this, our agent will then perform a Brute Force search in the set F s 

to find the function that best explains the seller's negotiation offers. Specifically, for 

each I E F s, b will attempt to find a value for each parameter p E Pj so that the 

value generated by I will have the least error value (E) calculated by the standard error 

function given in equation 5.1: 

t'<t 

E(f) = 2:)I(t') - U(¢k~b))2 (5.1) 
t'=l 

1 Again, we believe this is a reasonable assumption because for each parameter, normally, its value 
will be within a defined range to be effective 

2In earlier rounds, the buyer uses a standard negotiation strategy as per section 3.4.1.3. 
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This equation is selected based on the standard error function that is normally used 

in a typical neural network [Dayhoff 1990; Specht, 1991], which allows the buyer 

to calculate the average differences between the values that the targeting I function 

generates and the actual values of the counter-offers that the seller k has proposed. 

function findFunction() return I, Pf 
/* return a function f and its set of parameters Pf */ 
input 

nF: the number offunctions in F; 
F = {II ... InF}: the set of available strategy functions; 
Pfi = {Pil·· . Pin): the setofparametersforfunctionfi E Fs; 

output 
I E F: the selected function; 
p{ the exact value for each member of the parameters off; 

begin 
minError := Maxlnt; 

1:= 0; 
Pf := 0; 
fori = 1 to nF do begin 
/* go through each function f in F */ 

Pj; := findParameters(fi); 
/* find the set of parameters Pf that gives the smallest error value */ 
Ci := checkError(fi, PfJ; 
if (Ci < minError) then begin 
/* if this error value is smaller than what we currently have then this 
combination off and Pf is saved */ 

min Error := Ci ; 

1:= Ii; 
Pf :=Pj;; 

end 
end 
return I, Pf; 
/* at the end, return the saved combination */ 

end 

FIGURE 5.2: Buyer's algorithm to find the closest matching strategy function. 

Given such information, the buyer attempts to find the specific function that seller k is 

using. To this end, figure 5.2 details the algorithm that our buyer uses (the details of the 

two functions that this algorithm uses, namely findParameters and checkError 

are expressed in figures 5.3 and 5.4, respectively). Basically, for each function I E F s , 

it tries to find the set of parameters Pf that give the lowest error rate, which, in our 

cases, means that the differences between the calculated values and the actual values 

of the counter-offers received are minimized for that particular function. After that, it 
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assumes that the function that has the lowest error rate is the matching function that k 

IS usmg. 

Specifically, in order to find the set of values for the parameters of a given function f, 

the buyer uses a divide-and-conquer technique (the algorithm is detailed in figure 5.3). 

Now, since the quantitative range for each parameter is continuous, it is impossible for 

the buyer to try every possible value (given it is possible to have more than one para

meter for each function, the computational complexity would increase exponentially). 

Thus, for reasons of simplicity, we adopt a simpler approach. Basically, for each para

meter Pi E Pj , the range QPi = [minpi' maxpJ is equally divided into s points that will 

cover the whole range of QPi. Then, for each parameter, the buyer will set the value at 

each point to the temporary set of values for Pj and continue for the next parameters. If 

the combination of values gives the lowest error rate so far, it is selected as the final set 

of values for Pj. This process continues recursively until all combinations have been 

tested. 

Next, figure 5.4 details the algorithm based on equation 5.1 to determine the differ

ences between the values generated by a given strategy function f and a particular set 

of parameters Pj compared with the values of the actual counter-offers proposed by the 

seller. The algorithm starts from the time when the first counter-offer has been received 

and it continues up until the previous round. At each time period, it measures the dif

ferences between the calculated and the actual value and, finally, calculates the overall 

error value. 

After using algorithm 5.2, the buyer will have the function that most closely matches 

what seller k has been offering so far. Now, this matching is only approximated since 

the buyer does not actually know the utility function of k and it therefore has to use its 

own function. However, it does give the buyer some indication of what the next move 

of k might be. From this, the next step is to predict what is the lower limit of seller 

k's reservation value (RPk ). To this end, we assume a seller will typically offer a value 

that is closer to its reservation value at the time that is close to its negotiation deadline. 

Thus, if we know the deadline of k, we can obtain some idea of what the reservation 

value of k will be. However, since this information is unavailable to the buyer, it cannot 

make such a prediction. Nevertheless, the buyer can attempt to estimate the negotiation 

deadline of k (Tk ) by considering the following options: 

• 01: The seller's estimated deadline is the same as the buyer's: Tk = t brnax . 

• 02: The seller's estimated deadline is greater than that of the buyer's: Tk 

tbrnax + D.k. 
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function findParameter(j) return Pf 
/* return the best set of parameters Pf for this function */ 
input 

f: a strategy function E F s; 
n{ the number ofparameters off; 
Pf = {Pl . .. Pnf}: the set of parameters off; 
QPi = [minpi' maxpJ the quantitative domain ofparameter Pi; 

output 
p{ the exact value for each member of the parameters off; 

procedure testSingleParameter(pI ndex) 
/* check all the possible values for each single parameter plndex */ 
begin 

for i := minp I d to maxp I d do begin p n ex p n ex 

/* go through each possible value of parameter plndex */ 
pI ndex Value := i; 
tempSet := tempSet + pIndexValue; 
/* add this value to a temporary set of parameter tempSet */ 
if (pI ndex < n f) then begin 
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/* if plndex is not the last parameter then check the next one recursively */ 
testSingleParameter(pI ndex + 1); 

else begin 
/* if plndex is the last parameter then measure the error value */ 

error Value := checkError(j, tempSet); 
if (error Value < min Value) then begin 
/* if this error value is smaller than what we currently have then 
the value of tempSet is saved */ 

minValue:= errorValue; 
minP!:= tempSet; 

end 
end 
tempSet = tempSet - pIndexValue; 
/* remove this value from tempSet */ 

end 
end 
begin 

minValue := Maxlnt; 
minP!:= 0; 
tempSet := 0; 
testSingleParameter( 1); 
/* start checking the first parameter */ 
return minP!; 

end 

FIGURE 5.3: Buyer's algorithm to find the best value set of parameters for a given 
function. 
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function checkError(f, Pj ) return E 
input 

f: a strategy function E F s; 
Pj = {Pl ... Pn f}: the set of parameters off; 

output 
E: the measured error; 

begin 
E:=O; 
for i := 1 to t - 1 do begin 

E := E + sqr(f(i) - U(C/>1-->b)); 
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/* measure the difference between the generated value and the actual one */ 
end 
E := sqrt(E); 
return E; 

end 

FIGURE 5.4: Buyer's function to measure the differences between a given function 
and the value of the seller's counter proposal. 

• 03: The seller's estimated deadline is less than that of the buyer's: Tk = tbmax -

6.k. 

Initially, the buyer assumes that all three options have the same probabilities (i.e. P(Ol) = 

P(02) = P(03) = ~). At each negotiation round, the buyer picks the option that has 

the highest probability and applies it to the selected function in order to calculate the 

seller's reservation value. Then it selects an offer that is close to that value and proposes 

it to the seller. The aforementioned probability distribution will be updated accordingly 

(if the offer is accepted, the probability of that particular option is increased and if the 

offer is rejected then the probability of that particular option is decreased). Formally, at 

time t > 6. t , the steps that the buyer agent takes are as follows: 

1. find the function f E F s and its set of parameters Pj so that the error value E(f) 

is smallest. 

2. if E(f) > 6.E (the error threshold), process with its initial negotiation strategy 

(as selected by the coordinator) and continue to the next round. 

3. select Oi, i E [1,3] so that P(Oi) is highest. If there is more than one option, 

choose randomly between them. 

4. estimate the seller's deadline Tk and use it to predict the lower limit of the seller 

k's reservation value (RPk ) using the reverse utility function of the buyer (since 
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the actual utility function of k is not available to b so it has to be approximated). 

Specifically, for each negotiation period t' < t, calculate seller k's reservation 

value up to that time RPk(t'). Finally, these values are averaged to get the final 

value for RPk . 

5. propose an offer with utility value of max(RPb, RPk - 6.u) to k. 

6. in the next round, update the probability distribution P( 0) according to the re

sponse of k. 

To illustrate the operation of our approach, the next subsection considers a specific 

instance of such an adaptive strategy. 

5.2 An Example Adaptive Negotiation Strategy 

Assume that the buyer negotiates with one seller, k, about a single issue (a contract ¢ 

is composed of a single value x). The negotiation deadline for b is 10 and for k it is 

15. The reservation values for bare [X
b
1 . = 10, X b

1 = 90] and for k are [xkl . = 
mln max mln 

50, xLax = 160]. The strategy that k uses is fk(t) = (tk~ax) 10°4°, here the parameters 

Pj are {ok = 0, {3 = 0.4} and the buyer uses the strategy fb( t) = (-t _t -) 6:~~, here the 
bmax 

parameters Pj are {Ob = 0, {3 = 0.15} . Let band k use a linear utility value function 

(see section 3.4.1.2): 

Assume that b knows that the set of strategies function F s is composed of 2 families of 

functions (taken from Faratin- section 2.2.1): 

where the range for Ok is [0 ... 0.1] and (3 is [0 ... 2]. The other parameters that b has 

are: 6.k = 3, 6.E = 0.1, 6.u = 0, P(Ol) = 0.5, P(02) = 0.3, P(03) = 0.2. Thus, it 

is assumed that k's estimated deadline is 10 since P( 01) has the highest probability. 
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Given all this, let table 5.2 show the history of the negotiation process after 4 rounds. In 

this table, Ub( ¢k) denotes the utility value of the seller's counter-offer calculated using 

the utility function of b (it is negative since the value of the offer from k is beyond 

the acceptable range for b). In order to use the closest matching strategy algorithm (of 

figure 5.2), these values must be converted to be in the range of [O,l]. This is done via 
. I . U 'b (,"" (t)) Ub(r/Jk(t)) a sImp e converSIOn: 'f'k = Ub«h(l)). 

1 2 3 4 
k 160 159.87 159.29 158.03 
b 10 10.01 10.18 10.79 

Ub
( ¢k) -0.87 -0.87 -0.86 -0.85 

U'b(¢k) 1 1 0.99 0.97 

TABLE 5.2: Negotiation history sample. 

Now, using the closest matching strategy algorithm (see figure 5.2), iI together with 

PI = {Ok = 0.0, f3 = 0.34} gives the smallest error E(j) = 0.0018. Since E(j) < !:1E , 

b will try to predict the value RPk in order to generate an offer to propose. The utility 

function U,b that b will use is based on Ub (section 3.4.1.2): 

thus, 

(5.2) 

1 2 3 4 
Uk 1 1 0.99 0.97 

¢(k) 160 159.87 159.29 158.03 

TABLE 5.3: Predicted utility value for seller k. 

Using iI, together with PI = {Ok = 0.0, f3 = 0.34}, the predicted utility values for 

seller k are given in table 5.3. Now using equation 5.2 and the input values in table 5.3, 

we have the following: 

RPk (2) = 49.76 

RPk (3) = 78.80 

RPk (4) = 92.1 
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The average of these numbers, 73.56, is the predicted value of RPk (as detailed in 

section 5.1). This value is within the quantitative range of b and has the utility value 

of U = 0.206 according to the buyer's utility value function. Thus the buyer will 

propose an offer with value U + 6.u or 0.206 to k. Since it is within k's range, it 

will be accepted. On the other hand, if b only uses the standard negotiation strategy 

(allocated by the coordinator), the offers it will propose to k are displayed in table 5.4. 

From this, only the offers at 10 will be accepted by k since their values are within 

k's acceptable domain, which is [50, 160]. Nevertheless, they have lower utility value 

for b compared with what it would have achieved had it followed the closest matching 

strategy algorithm (0.01 compared to 0.206). Furthermore, b is able to find an agreement 

at time 5, which is at least 5 rounds earlier than if it negotiates in a standard way. This 

early achievement can then be used as a basis for other negotiations in our concurrent 

negotiation setting in order to achieve better outcomes for b. 

1 2 3 4 5 6 7 8 9 10 
Ub(¢b~k) 1.00 1.00 1.00 1.00 0.99 0.97 0.91 0.77 0.50 0.01 

¢b...,k 10.00 10.01 10.03 10.18 10.79 12.66 17.42 28.07 49.63 89.00 

TABLE 5.4: b's generated offers to propose to k. 

As can be seen from this example, if the buyer agent can accurately predict the reser

vation value of a seller (based on its previous counter-offers), it is sometimes able to 

secure a good outcome compared to negotiating in the way outlined in chapter 3. How

ever, this need not always be the case since the buyer uses a number of assumptions in 

order to make the prediction. Thus, we would like to test the algorithm in various nego

tiation settings in order to investigate its performance. The details of this evaluation are 

given in the subsequent section. 

5.3 Evaluation 

Here we evaluate our adaptive negotiation approach, focusing particularly on its perfor

mance in terms of the utility value of the final agreement and the number of agreements 

achieved (as per chapter 3). Once again, empirical evaluation is used as the method 

of measurement here to evaluate the requirement partial information stated in section 

1.2. Again, general hypotheses are formed to express the intuitions about the causal 

factors within the model and the experiments are then conducted to either support these 

hypotheses or go against them. The structure of this section consists of two parts: the 

experimental setup is described in section 5.3.1 and the hypotheses are presented and 

evaluated in section 5.3.1. 
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5.3.1 Experimental Setup 

For our experimental setup, we reuse the basic experimental environment described in 

section 3.5.2 and only add/update the commitment related settings. For simplicity, we 

assume that F s is composed of only different time dependent strategies. Thus: 

The parameter set Pj is composed of two parameters, 5k and {3, with the quantitative 

domains of [0 ... 0.1] and [0 ... 2], respectively. To sum up, the independent variables 

are given in table 5.5 and the dependent ones are listed in table 5.6. 

I Variables I Descriptions values 

t max buyer's deadline [20 ... 30] 
Fs strategy functions h,h 
5k member of Pj [0 ... 0.1] 
{3 member of Pj [0 ... 2] 

.6.t applied learning time [4 ... 10] 

.6.k assumed difference between the deadlines [1 ... 6] 
.6.E error threshold [0.001 ... 0.1] 
.6.u utility added value [-0.01 ... 0.01] 
ps percentage of sellers that only use f E F s [0 ... 100] 

TABLE 5.5: The independent variables. 

The seller agents in this evaluation are characterized in a similar fashion to the ones set 

up in the previous experiments (see section 3.5.2). The only difference is that in any 

given experimental run, a fixed percentage of the sellers (PS) will now use the strategy 

that belong to F s' The rest of the sellers will use different strategies (e.g. tit-for-tat and 

trade-off - see section 2.2.1 for more details). 

I Variables I Descriptions 

U the utility value of the final agreement 
N the number of successful negotiations 
A the accuracy of the buyer's prediction 

TABLE 5.6: The dependent variables. 
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5.3.2 Hypotheses 

In a similar way to section 4.3.2, we want to evaluate the performance of our model; 

specifically by using the new adaptive negotiation strategy against different types of 

sellers. We aim to assert the results in terms of the number of successful negotiations 

and the average utility value of the final agreement obtained. Next, we aim to find the 

most influential variables and to find out how to set their values in order to gain best 

overall performance in each environment. We now turn to the specific hypotheses. 

HYPOTHESIS 18. If there are sufficient sellers that use the predefined strategy functions , 

the buyer gains better outcomes using the learning negotiation strategy. 

0.76 .,..---------:----------, 

0.74 

0.6 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

% of sellers that use predefined functions 

-+-eCN _ eCN+L -.-Optimal I 

FIGURE 5.5: Final utility value for varying ps. 

To this end, figure 5.5 shows the average utility value of the final agreement achieved 

by the buyer in our standard concurrent negotiation (eCN - as detailed in chapter 3) and 

with the learning negotiation strategy applied (eCN + L). We also include the optimal 

outcome which is computed as per section 3.5.6. As can be seen, the greater the per

centage of the sellers that use only the predefined strategy functions (PS), the greater 

the utility value the buyer agent can obtain and the smaller the gap between the result 

achieved and the optimal. This can be explained by two reasons. First, the buyer agent 

in (eCN + L) uses the same basic negotiation strategy as eCN, the learning strategy is 

only used when the agent is reasonably certain that it can recognize its opponent strat

egy. If it is not certain, it will use the specific negotiation strategy allocated by the 

coordinator, just like its counterpart in eCN. Now in most cases, this ensures that the 

result achieved by (eCN + L) is not less than that of eCN. Second, when the prediction 

of the seller's reservation value (RPk ) is accurate (see below), the offer generated by the 
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buyer is likely to be accepted by that seller. This will, in tum, give the buyer a reason

ably high utility value since the generated offer is based on the value of that prediction 

and this is close to the seller's actual reservation value. 
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FIGURE 5.6: Buyer's prediction accuracy vs sellers ' types. 

To validate this line of argument, we measured the accuracy of the prediction of the 

seller's reservation value compared with the actual value (we consider a prediction is 

accurate if the generated value differs from the actual value by less than 5%). The 

results are displayed in figure 5.6. As can be seen, 11.5% of the buyer's predictions are 

accurate when 100% of the participating sellers use the predefined strategy functions3 . 

When these predictions are accurate, this helps the buyer to propose high value offers to 

the seller that get accepted. Consequently, the final utility value achieved is increased. 

TABLE 5.7: Number of successful negotiations. 

Now, not only does the final utility value increase, the number of successful negotiations 

also rises, albeit somewhat modesty (see table 5.7). Recall the example in section 5.2, 

if the buyer only uses the strategy allocated by the coordinator, it might only come to an 

agreement at time 10 (the other times, its offer value is outside the range of the seller). 

Now if the deadline of the seller is less than 10, no agreement will be reached. On the 

other hand, by using the adaptive negotiation strategy, the buyer is able to come to an 

3The accuracy is somewhat limited because the buyer has to make its predictions based on its as
sumption about the seller's deadline and utility function and these are very difficult to approximate in the 
environments we consider. 
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agreement at time 5, which also has a higher utility value than the one it might have 

generated at time 10. As can be seen, in some cases, by making a correct prediction, 

the buyer is sometimes able to find an agreement where no agreement would be found 

if the buyer only follows the standard negotiation strategy. 

HYPOTHESIS 19. The learning strategy performs most effectively when it is given suf

ficient negotiation time. 
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FIGURE 5.7: Buyer's prediction accuracy vs applied learning time. 

To evaluate this hypothesis, we measured the buyer's prediction accuracy with different 

values of the applied learning time (the time in which the adaptive strategy starts to 

be applied - 6.t ) (see figure 5.7)4. As can be seen, the accuracy increases from 6.5% 

when 6.t = 4, to 11.5% when 6.t = 7 and then decreases afterwards . Similarly, the 

average final utility value achieved also increases and decreases in the same fashion. 

This fluctuation is caused by the number of samples that the buyer uses to analyze and 

learn the seller's reservation value. If the sample size is too small (less than 7 in this 

case), it is likely that there will be more than one possible combination of the function 

and its parameters that give the smallest error value. Thus, it is more likely that the buyer 

will not be able to select the correct combination. Consequently, the value learned is 

inaccurate. On the other hand, if the sample size is too large (greater than 7 in this case), 

there may not be a combination that gives an error value within the error threshold and, 

thus, the buyer will not be able to make a prediction. Overall then, we conclude that 

the buyer is better off applying the learning strategy after 7 rounds of counter-offers 

received. 

4This hypothesis is similar to hypothesis 6 in a sense that we have to determine when the buyer agent 
should adapt its strategy based on the behaviors of the corresponding seller. However, here we do not 
measure the analysis time as a percentage of the buyer deadline since we are now concerned with the 
actual sample size for our learning algorithm to be applied. 
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HYPOTHESIS 20. In order for the model to achieve good performance, the error thresh

old should not be set too low. 
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FIGURE 5.8: Buyer's prediction accuracy vs error threshold. 

To evaluate this hypothesis, we measure the average utility value of the final agreement 

with different values of the error threshold (llE) (see figure 5.8). As can be seen, the 

average value increases from 0.693 when llE = 0.001 to 0.717 when llE = 0.05 and, 

broadly speaking, stays at the same value when llE > 0.05. When llE is low (less 

than 0.05 in this case), there are many situations when the buyer accurately predicted 

the value for RPk (very close to the actual value) but it produces an error value E(f) 

just above llE and thus the learning strategy was not be used to generate the offers to 

propose to that seller. This causes the buyer to revert back to its standard negotiation 

strategy and miss the chance of obtaining a good agreement. On the other hand, when 

llE is high, it makes almost no difference to the buyer's results since most of the pre

dicted values will produce an error value E(f) that is less than llE, thus, there a very 

little change to the final outcome. 

We also look at the effect of the utility threshold (ll u ) on the performance of the model. 

Recall this was introduced as a method for compensating for the error when predicting 

the value of RPk . Now, since the buyer uses a number of assumptions when making its 

prediction about the seller's reservation value, it is unlikely that the predicted value will 

match the actual one. Thus, by applying llu to the final utility value of the offer that 

is proposed to the seller, we expect to minimize the difference between the predicted 

value and the actual one. To evaluate this hypothesis, we measured the average utility 

value of the final agreement for different values of llu (see figure 5.9). As can be seen, 

in general, it turns out that setting a non-zero value for llu does not improve the utility 

value of the final agreement. The reason for this is that in our experiments, by applying 
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a non-zero value of 6.u into the predicted value of RPk, it either takes the new value of 

RPk out of the range of the seller or the utility gained is lower than that which could be 

achieved if the buyer just follows the standard negotiation strategy. Thus, the value for 

this parameter should be set to 0 in all cases. 

5.4 Summary 

This chapter has introduced an adaptive negotiation strategy that the buyer agent can 

use in order to negotiate more effectively and obtain better outcomes. It is based on 

predicting the seller's reservation value and generating offers based on this predicted 

value. This learning strategy is an add-on to the buyer's negotiation strategy developed 

in chapter 3 and does not standalone. Specifically, in order to make the prediction, 

the buyer makes use of the values of the previously proposed counter-offers by that 

particular seller. It then attempts to find a particular strategy that generates the values 

that is close to these proposed values_ Then if this match is sufficiently close, this 

strategy will be used to predict the reservation value of the seller and this particular 

value will then be used in generating the next offer to be proposed to that particular 

seller. If it is not sufficiently close, however, then the buyer just continues using the 

strategy that was formally allocated by the coordinator. 

The learning strategy has a number of parameters that the buyer can alter in order to 

provide flexible behavior in a range of different contexts. It operates under the assump

tion that the sellers use particular types of negotiation strategies. In such cases, our 
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empirical evaluation shows that the buyer is able to gain better outcomes if this assump

tion is satisfied. In particular, our buyer agent was able to obtain an 8% increase in the 

average utility value of the final agreement when all the seller agents only use these ne

gotiation strategies. Moreover, in this case, the number of successful negotiations also 

increase, albeit only modesty. However, we have also shown that the buyer is still able 

to gain benefit from this strategy even when this assumption is only partly satisfied. As 

the percentage of these sellers (those that use the aforementioned negotiation strategies) 

increases from ° to 90, our buyer obtains an increase in the average utility value of the 

final agreement that ranges from 3% to 7.5%, respectively. Similarly, the number of 

successful negotiation also increases. 



Chapter 6 

Conclusions and Future Work 

This chapter presents the conclusions from the work undertaken in this thesis and dis

cusses the main ways in which this research can be carried forward in the future. It starts 

with a recap of the contribution of this research (section 6.1), followed by an outline of 

the areas where further research is still needed (section 6.2). 

6.1 Research Contributions 

The work presented in this thesis has developed a model to manage multiple concur

rent negotiations in complex service-oriented negotiation settings. Specifically, novel 

mechanisms were developed for: 

• the managing phase: allowing a buyer agent to negotiate simultaneously with a 

number of service provides in order to obtain a single high value agreement at the 

end of the bargaining encounter (chapter 3). 

• the commitment handling phase: flexibly handling commitment and decommit

ment to negotiated contracts among the participating agents so that agents can 

make rational choices about their negotiation contracts (chapter 4). 

• the learning phase: using heuristic-based learning to enable the buyer agent to 

negotiate more effectively by enabling it to learn the opponent's reservation value 

so that it can obtain a high value deal (chapter 5). 

In more detail, in the managing phase, we have developed a novel coordination mech

anism that allows the buyer agent to manage and control multiple bilateral negotiations 
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simultaneously. In particular, we have presented a method for coordinating the various 

threads involved in the concurrent negotiations. Specifically, the agent uses multiple 

concurrent threads to negotiate, in which each thread handles a single provider. The 

result (an agreed contract) from a finished thread can then be used to influence other 

ongoing threads (so that they can alter their negotiation behaviors in the search for bet

ter deals). We have also presented a method to classify the seller agents, both prior to 

the negotiation and during the encounter. It is also shown, through empirical evalua

tion, that this classification helps the buyer agent in achieving a higher value agreement 

in terms of utility value obtained. Our model is computationally tractable (since it is 

heuristic-based) and is capable of working with incomplete information about the other 

agents (we do not require any special assumption; however, if we know about the proba

bility distribution of the seller type, it will increase the performance of our model). The 

model has been empirically evaluated to show that it is capable of saving both time and 

resources in completing the negotiations (in comparison to the corresponding sequential 

model). The results are achieved while still producing a better outcome in terms of both 

the utility value gained and the number of agreements reached. Furthermore, we have 

also shown that our model outperforms the only other existing model in the literature 

(namely the work of Rahwan et al). 

The model developed in this thesis has also been applied in two real world settings. 

First, it was successfully used in a commercial project developed by BT that focuses 

on automatically handling web services among customers. In this case, the model is 

responsible for finding an alternative replacement for a provider if the selected one 

ceased functioning. Second, the model was also used in the CONOISE project, that 

focuses on establishing and maintaining a Virtual Organization amongst a number of 

agents from different sources. Similarly, in this case, it was used to find an alternative 

provider to ensure that the generated VO operates smoothly. 

Next, in the commitment handling phase, we have successfully extended the original 

leveled commitment [Sandholm, 1999b] so that it can be used in our multiple providers 

context. The commitment model is introduced to relax the constraint imposed in our 

basic concurrent model that any agreement made during the negotiation is binding on 

the seller only. Thus, in the initial model, the buyer has the exclusive right to back down 

from its previously agreed deals without any penalty to itself. This is clearly unrealistic 

and unfair to the other agents. In the modified model, once committed to a deal, if 

any agent decides to back down, it will have to pay a penalty fee to the other partner. 

This applies equally to both the buyer and the seller agents; thus the privileged position 

of the buyer agent is removed. To accommodate these changes, the buyer's internal 

reasoning process is modified. Instead of taking any acceptable offers, it commits to 
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an offer if and only if that offer is better than what it currently has and it satisfies the 

degree of acceptance test (which takes into account a number of parameters including 

the predicted value of the next offer from all the sellers, how much time it has left, and 

so on). In addition, the buyer also has an option of keeping more than one commitment 

at any time. In this way, it can ensure that its chance of obtaining an agreement at the 

end of the process is increased. However, we show that the value of the final agreement 

it ends up with is often not as high as the one it would have had if it had only made a 

single commitment. 

Finally, in the learning phase, we have used a heuristic approach to analyze the sellers 

based upon the counter offers they make. Specifically, we aim to predict the reservation 

value of individual sellers in order to determine which offer to propose to them. In par

ticular, by having an idea of the reservation value of the seller, the buyer agent can make 

an offer which is likely to be accepted by that particular seller. Thus, the underlying mo

tivation is that if this offer is accepted, it will be more beneficial for the buyer agent, 

in terms of utility value, than what could be achieve if the buyer follows the standard 

negotiation strategy. In more detail, we develop an algorithm to predict the reservation 

value that is composed of three main steps: (1) collect the samples (which is the offers 

that have been proposed by a particular seller), (2) find the closest matching negotia

tion function and its parameters based on those samples and (3) measure the difference 

between the values generated by this function and the actual values received. If this 

difference is reasonably small, an offer based on the predicted value will be proposed to 

the sellers. In a similar way to the previous phases, empirical evaluation has been used 

to show that by applying this learning based strategy, the buyer agent manages to obtain 

better outcomes in a number of different negotiation scenarios. 

When taken together, these three phases provide an extensive and flexible concurrent ne

gotiation model that a buyer agent can use to find the most appropriate service provider 

when there are a number of different possibilities. The commitment and the learning 

phases are designed to smoothly integrate with the managing phase, but they can also 

be used together to create a more complex and efficient negotiation model. 

To sum up, against the requirements stated in section 1.2, our eCN model is 

1. computationally tractable: all the mechanisms and algorithms developed in eCN 

are heuristic-based and have very little computational requirement. 

2. incomplete information: eCN is able to operate without any explicit information 

about the participating seller agents. 



Chapter 6 Conclusions and Future Work 146 

3. partial information: eCN is able to exploit partial inforrnation about its opponents 

(e.g. inforrnation about their strategies, types and so on) to gain benefit for the 

negotiating agent if such inforrnation is available. 

4. deadlines: all the agents in eCN have hard negotiation deadline. 

5. concurrent negotiations: eCN is particularly designed to handle this special type 

of negotiation. 

6. efficient negotiation outcomes: it has been shown that, via empirical evaluation, 

eCN outperforrns existing models in the literature and the results obtained are 

close to the optimal that could have been achieved with complete inforrnation. 

7. commitments: eCN has a commitment model which is: 

• computationally tractable and flexible: similar to the basic negotiation model, 

all the mechanisms and algorithms developed to handle commitments are 

heuristic-based and have very little computational requirement. 

• efficient: again, it has been shown, via empirical evaluation, that the results 

obtained are close to the optimal. 

From the results achieved in the real world applications, as well as from our empirical 

results, we believe that our model can efficiently and effectively perforrn in a variety of 

negotiation settings. However, there are still a number of ways in which this model can 

be enhanced and these are detailed in the next section. 

6.2 Future Work 

There are a number of directions in which this work can be extended. First, the negoti

ation protocol used in our model requires that all the provider agents put forward their 

decisions at a single time period (see section 3.2 and 4.1.1). This is required in order 

for the buyer agent to make an inforrned decision about which offer to accept and which 

counter-offers to be proposed otherwise. However, in many practical scenarios, not all 

the providers agents will give their responses at the same time. Rather, it is more likely 

that the sellers will negotiate with each of the negotiation threads in an asynchronous 

manner and thus their corresponding decisions will need to be made at different time. 

This time frame variability will mean that the buyer will not be able to have all the offers 

from the sellers before making its decision. This is likely to have an adverse affect on 
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the model's perfonnance because the model has not been designed to accommodate this. 

Thus, future extensions to this work should consider the situation where the buyer agent 

negotiates with different providers in different time frames. To this end, one possible 

solution to this is that instead of making decisions based on each individual negotiation 

thread, the buyer agent will make its decision based on the previous responses from all 

the provider agents. This, we believe, can potentially give the buyer sufficient infor

mation to make it decisions. Also, we have only considered the situations in which the 

buyer adapts its negotiation strategy based on its analysis of the participating sellers. 

We have not considered scenarios in which the sellers also have this capability for the 

reason of efficiency for the buyer's tactics. This limitation needs to be addressed in the 

future work in order to increase the applicability of our concurrent negotiation model. 

The next potential extension is considered with the commitment model. In the work 

described in this thesis, we have mostly focused on the committing strategy for the buyer 

agent (i.e. when it should commit, how many commitments it should take on at anyone 

time, and so on). However, we have not looked in detail at the problem of the sellers 

decommitting. In our model, the buyer agent is passive with regards to these situations. 

Specifically, if a particular seller decides to back down from its contract (for whatever 

reason), our buyer agent needs to find a replacement. Now, depending on the situation, 

it might or it might not be able to secure one. However, we believe that if the buyer 

actively analyzes the sellers' behavior (possibly by taking into account the negotiation 

history of the sellers), it can minimize the risk of not ending up with an agreement at 

the end of the negotiation process. Thus, in the future, we would like to investigate the 

situation where the buyer could potentially look for a better replacement and actively 

decommit from its previously agreed contract, leaving itself a higher chance of securing 

a good final outcome. 

The final main area of future work involves improving the way in which the buyer agent 

can modify its behavior according to the sellers' responses. The motivation behind this 

is to more flexibly change the buyer's negotiation strategy during the negotiation in or

der to obtain a higher value offer at the end of the bargaining process. In our basic 

concurrent model, this has been done via our sellers' classification process (see sec

tion 3.4.3), where the buyer potentially adopts different strategies based on the sellers' 

counter-offers received to date. This is a one time action that is perfonned, roughly 

about a third of the way to the deadline for the buyer agent, and it has been empirically 

shown to improve the perfonnance of the model. We then extended this functionality by 

specifying an adaptive negotiation strategy for the buyer (see chapter 5). This strategy 

was designed to be broadly applicable because it is built upon relatively few assump

tions about the sellers that the buyer agent is negotiating with. Basically, it analyzes 
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the counter-offers received from a seller in a particular negotiation thread in order to 

try and predict that seller's lower reservation value and, later on, to use that value to 

generate an offer for the buyer agent to propose. The underlying intuition is that, if 

this offer is accepted, it is likely to give the buyer a higher utility value compared to 

the value of the offer generated by other negotiation strategies. However, although the 

empirical results show a reasonable improvement in the performance (about 8% in the 

cases we considered), the accuracy of the prediction is still somewhat low. Given this, 

future extensions should look into this area and attempt to increase the accuracy of the 

classification process and to extend the applicability of the adaptive negotiation strat

egy. In the former case, we could take into account other assumptions about the sellers 

such as their pricing structure or their negotiation deadline distribution. In the latter 

case, the algorithm needs to be extended to accommodate more generalized negotiation 

strategies such as those of game theory based or eSP-based models. 
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