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This thesis concerns the implementation and comparison of different Iterative Leaxning 
Control (ILC) strategies on a multi-axis gantry robot. The majority of ILC research 
focusses on developing new algorithms for different classes of plant, then proving, by un- 
dertaking rigorous mathematical and simulation based studies, that the new algorithm 
will meet performance and stability requirements. The work presented here strictly con- 
cerns the performance of different ILC strategies on a physical plant by experimental 
methods alone, demonstrating that ILC can successfully be implemented in industrial 

applications. A test facility consisting of a three axis gantry robot and associated pe- 
ripheral haxdware is designed and built for this purpose. Four tests are developed to 
investigate key issues which are of particular importance to ILC implementation, mini- 
mum achievable tracking error, long-term stability, robustness to initial state error and 
robustness to plant modelling error. A rigorous framework for measuring quantitatively 
the performance of different algorithms is established to allow fair comparison. The ex- 
perimental analysis is divided into two categories: basic and model-based algorithms. 
The work relating to basic algorithms initially uses a standaxd three-term PID controller 
to establish a benchmark performance level, to which the ILC performance can be com- 
pared. Combining a basic Proportional (P-type) ILC algorithm with the conventional 
PID controller to form a hybrid is found to increase significantly the performance, but 

at the expense of long-term stability. To remedy this, a logical progression of different 

filtering techniques, band-stop, low-pass, zero-phase-low-pass and a new frequency alias- 
ing method are applied to the hybrid controller to steadily improve long-term stability 
and subsequently tracking performance. The work relating to model-based algorithms 
compares the performance of three previously developed, optimal ILC algorithms: ad- 
joint ILC, inverse ILC and norm-optimal ILC. These algorithms operate on the plant 
input signal alone, without the requirement for an additional feedback controller. The 
three algorithms are found to produce significantly different tracking performance in re- 
sponse to disturbances and modelling error. The thesis concludes with an analysis of the 
tracking performance generated by each algorithm and a general discussion summarising 
algorithm attributes. For the plant used in this experimental work, it is found that the 
basic P-type algorithm has a slower convergence rate, but can achieve tracking error 
levels similar to more advanced model-based techniques. 
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Chapter 1 

Introduction 

1.1 Philosophy of Learning Controllers 

Feedback control systems are used throughout industry in a multitude of forms and on a 
vast range of different tasks. Yet, no matter how well designed the feedback controller is, 
by the very nature in which it works, there will always be some element of error between 
the controller demand and the value of the actual variable being controlled as discussed in 
the ILC context by Amann, Owens, and Rogers (1996b); Sugie and Ono (1987). Although 
the number of applications is large, most control problems can in fact be classified as 
one of two different types; either trajectory tracking or set-point regulation (Dutton, 
Thompson, and Barraclough, 1998). In trajectory tracking, the controller is supplied 
with a varying input signal. The control objective is to make the output of the system 
under control (now referred to as the plant) follow the trajectory perfectly. All example 
is motion control of a construction robot manipulator. In set-point regulation, the input 
to the controller is constant and the control objective is to hold the output of the plant 
constant even if the plant or the surrounding environment is changing. Examples include 

constant temperature control of a heated room and constant speed control of a conveyor 
belt system carrying a variable payload. 

Within both of these control types, there exists a sub-set of control problems which 
specifically have the nature of being cyclic or repetitive. In the trajectory tracking 

mode, this implies that the trajectory is of finite, constant duration and that, once the 
trajectory has been completed, it is supplied to the system again and this repeats ad 
infinitum. In the set-point regulation mode, the controller must compensate for a load 

which changes cyclically. If feedback control is applied to either of these special cases, the 

error signal generated for each cycle or trial will remain almost identical from repetition to 

repetition. However, Iterative Learning Control (ILC) and Repetitive Control (RC) have 
been designed specifically for these types of control problems. The underlying philosophy 
of these controllers is to find the input signal, which must be supplied to the plant, 
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in order to obtain zero error at the output. In effect, the input signal is progressively 
modified or learnt from trial to trial, based on the error information derived from previous 
trials, as discussed by Aloore and Xu (2000). As the trial number increases, the error at 
each point in the trajectory is steadily reduced. Theoretically, as the number of trials 
tends to infinity, the error reduces to zero and perfect tracking is achieved (Kawamura, 
Miyazaki, and Arimoto, 1985). In practice, zero error is virtually impossible to achieve, 
due to the effect of random disturbances between trials. However, the error can be 

greatly reduced to provide a significant improvement compared to other controllers. The 

work in this document focusses on the implementation of ILC on the trajectory tracking 

type problems. The performance of different iterative learning controllers is evaluated in 

a practical environment and ILC is also compared to standard classical feedback control. 

1.2 Motivation for Industry 

There are many different areas in industry which involve tasks of a cyclic nature, for 

example: vehicle assembly, food processing, bulk manufacture of cheap goods and batch 

processing of chemicals. One factor common to all these industries is the need for the 

production or assembly system to operate as rapidly as possible. While a product is 

in the factory rather than out with the customer, the manufacturing and storage costs 

steadily increase and overall profits are reduced. Hence there is a serious incentive to 

mass produce goods as quickly as possible. Faster assembly lines also mean that less 

machines need to be run in parallel to produce the same quantity of goods per hour. 

Less machinery potentially implies reduced overhead and maintenance costs which are 

also very attractive to industry. 

The main problems with trying to operate machinery faster axe limitations on the phys- 
ical parameters such as velocity, acceleration or temperature, which can be imposed on 

the system. In most cases, the machinery has already been designed to run at maximum 

rate, consequently no further increase can be obtained without significantly raising the 

risk of component failure. Component failure increases system maintenance or stoppage 

time and so negates the overall effect of running the system faster. One obvious solu- 

tion to this problem is to upgrade or redesign the equipment so that it can run at a 
higher rate. However, this is costly and industry is reluctant to take this route. Bear- 

ing in mind the fact that existing machinery must be used, an alternative approach to 

increasing production rate is to modify the way in which the task is performed. This is 

where the control system becomes very important. If the control system can accurately 
follow the reference trajectory, it implies the dead-time allowed for the system to settle 

can be reduced (Barton, 1999). Reducing the dead-time shortens the overall time for 

one iteration, allowing more iterations to be performed in a set period of time, which 

translates into a faster production line. The reasons for initially allowing dead-time in 

the trajectory axe twofold. Firstly, time must usually be allowed for the controller to 
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compensate for the transient dynamics of the plant and allow the system to reach steady- 
state. Secondly, the controller must reduce any steady-state error which may be present 
between the plant output and the reference trajectory, before critical elements of the 

manufacturing process need to be performed. 

For example, consider a C. NC milling machine which is tasked with drilling a set of holes 

through a steel plate as part of an assembly process. The rate at which the holes may 
be drilled is limited by the cutting rate of the drill bit through the steel. However, the 
time taken to reposition the drill bit for each hole is also a significant part of the overall 
machining time. The limitations on this part of the process are not only the velocity 
and acceleration of the machine, but also the performance of the positioning controller. 
The machine cannot begin drilling the hole until the drill bit is positioned within certain 
tolerance bounds. If a poorly designed controller is used, the initial positioning error and 
the transient dynamics induced by the rapid motion of the drilling head will take longer 

to reduce to within the tolerance band. Hence the dead-time must be longer than for a 
controller which can track the trajectory more accurately with less error. 

The three-term, Proportional, Integral and Derivative (PID) controller is widely used 
throughout industry even though the initial concept dates back to 1936 (Franklin, Powell, 

and Emani-Nacini, 1994) and significantly more advanced controllers are now available. 
The PID controller has remained popular for many decades due to a number of factors 

which axe discussed by Barton and Lewin (2000). 

9 There is a wide range of commercially available, low cost, PID controllers. 

* The PID controller is very simple to tune and requires minimal set-up time. 

* In certain industries the technology and mathematics behind more advanced con- 
trollers are not widely applied. 

PID controllers are suitable for many industrial applications. However, their inability to 

compensate for non-linear effects makes the PID controller a poor choice in an age when 

requirements for accurate control axe increasing (Li and Li, 1996). 

Iterative learning control is a good candidate for improving tracking performance of dy- 

namic systems and hence, has the potential to increase significantly the output rate and 

accuracy of industrial processes. Yet there is very little evidence of ILC actually being 

implemented in practice (Longman, 2000). There appear to be three main reasons for 

this. Firstly, the technology is not available in standard 'off-the-shelf' controllers such 
as Programmable Logic Controllers (PLC). Secondly, a majority of published research 
has concentrated on theoretical studies supported by simulation only. Thirdly, there 

are some problems with learning controllers, such as stability issues and robustness to 

non-repeating disturbances, which must be fully resolved before they can be used in in- 
dustry (Kim, Chin, Lee, and Choi, 2000). Industry appears to be reluctant to implement 
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technology which has not been thoroughly tried and tested. One of the main objectives 
of this project is to demonstrate that ILC can successfully be implemented in industrial 

applications, in the hope that ILC will become more widely used. 

1.3 Project Overview 

The research undertaken in this thesis is part of a joint project, involving the University of 
Southampton and the University of Sheffield. The project has been sponsored by the UK 
Engineering and Physical Sciences Research Council (EPSRC) and aims to investigate 

a number of axeas within iterative learning control and repetitive control. The project 
contains a number of work packages: 

1. Design and construction of a multi-axis test facility. 

2. Development and simulation-based evaluation of convergent predictive control al- 
gorithms using optimal control. 

3. Design and analysis software to produce a range of ILC designs for comparison 

and refinement in simulations studies prior to experimental verification on the 

experimental test facility. 

4. Nonlinear iterative learning by adaptive Lyapunov techniques. 

5. Development of theoretical links between repetitive and iterative control paradigms 
using concepts of duality, Lyapunov methods and related techniques. 

6. Experimental verification and assessment. 

The fundamental goals of the project are twofold: One aspect is an analysis of exist- 
ing iterative and repetitive control techniques, leading to the design of new algorithms 
by means of advanced control methodologies. The other aspect is an intensive, thor- 

ough experimental evaluation of new and existing algorithms, focussing particularly on 

compa. ring the performance of different techniques and investigating the robustness of 

controllers with respect to a number of known stabilitY issues. The combination of theo- 

retical and experimental analysis within one project also aims to bridge the existing gap 
between analysis and practical evaluation. 

1.4 Research Objectives 

This thesis is concerned with the experimental components of the larger project and 
focusses particularly on work packages 1,3 and 6, contributing some developments to 

the other packages. The goals of this thesis are therefore more specific than the broad 

overview. 
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1.4.1 Experimentally implement ILC 

The significant lack of practically implemented ILC is one of the main causes for the 
minimal application of ILC usage within industry. Simulations and mathematical analy- 
sis are vital elements of control system development. However, they are of little purpose 
if the resulting algorithms remain untested and unused. The difficulties associated with 
practical implementation, highlight areas where theory can be improved and where en- 
tirely new areas of research need to be developed. By thoroughly testing several new ILC 

algorithms, this project will add to the existing pool of experimental data, which can 
be employed to promote ILC in industry as a viable solution to high precision tracking 

control problems. 

1.4.2 Overcome difficulties presented by multi-axis systems 

The cartesian design of a gantry robot results in negligible cross-coupling between the 

axes, i. e. when one axis moves, the effect, measured on any of the other axes is minimal. 
The robot can therefore be treated as three Single Input Single Output (SISO) systems 

rather than one Multi Input Multi Output (MIMO) system, and the design of the con- 
trol system is significantly simplified. However, three separate controllers must now be 
implemented simultaneously on one control platform. This poses several problems to be 

solved before successful implementation can be achieved. ILC is particularly demanding 

with respect to memory and processor speed, therefore implementation of complicated 
ILC algorithms must be carefully planned so as to fit within the limitations set by the 

control hardware. Maximising the use of controller resources may also allow the develop- 

ment of ILC algorithms which can be implemented on commercial control platforms, such 
as the Programmable Logic Controller (PLC). This would be a significant step towards 

achieving wide-spread use of ILC in industrial applications. 

1.4.3 Develop a framework for comparing different algorithms 

ILC is different from other control techniques, because the tracIdng performance changes 
as the number of iterations increases. Standard measures of performance are therefore 

not particularly suited to ILC. New performance techniques need to be considered specif- 
ically for ILC systems, in order to measure the key aspects which define and affect the 

performance of ILC. 

1.4.4 Compare ILC to PID feedback control 

PID feedback control is still the most populax control system used in industry. Comparing 

the performance which can be achieved by ILC to that achieved by PID feedback is 
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therefore essential, if the advantages and drawbacks of using ILC based systems are to 
be clearly determined. 

1.4.5 Compare basic and model-based ILC techniques 

The most basic ILC algorithm (P-type) uses the previous plant input vector, the previous 
error vector and a scalax gain to generate the next input vector. In comparison, model- 
based ILC requires a model of the plant and additional mathematical techniques to 

achieve the same objective. Regardless of the level of complexity of the algorithm, for 
SISO systems, ILC fundamentally generates a single input vector for each trial. The 

additional complexity of model-based algorithms requires significant extra resources in 

terms of plant modelling time, control system design time, processor speed and memory. 
This leads to the question: does the use of extra resources produce a control system which 
performs significantly better than simpler algorithms? An answer may be obtained by 
implementing both basic algorithms and model-based optimal algorithms on the same 
system and comparing their relative performance. 

1.4.6 Develop algorithms which are long-term stable 

ILC algorithms which become unstable are not an option for industrial applications. 
The loss of product and time caused by any instability is unacceptable. The causes of 
instability need to be investigated and possible solutions assessed. 

1.4.7 Investigate the effects of disturbances 

Initial state error and plant modelling error are often analysed in published ILC research 
by using simulation studies. However, no practical experimentation to date has actually 
investigated the effects of these problems on the performance of the algorithm. A sys- 
tematic approach needs to be developed in order to investigate this aspect of ILC, so 
that future research can be properly directed at solving these problems. 
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Chapter 2 

Literature Review 

2.1 Origins of Iterative Learning Control 

The subset of cyclic control problems defined previously can itself be divided into two 

smaller groups. Iterative learning control applies to one of these groups, while repetitive 
control applies to the other. As more research is performed in both these areas, an 
increasing number of links are being made between the two. However, the original 
approaches to the two control techniques were quite significantly different, as discussed 
by Longman (2000). 

The recognised formal definition for iterative learning control was proposed in 1984 (Ari- 

moto, Kawamura, and Miyazaki, 1984a, b), though Longman (2000) traces initial con- 
cepts back to an article published in Japanese by Uchyama (1978). Similax ideas were 
also independently developed in 1984 by Casalino and Bartolini (1984); Craig (1984). 
However, the articles proposed by Arimoto et a]. (1984a, b) are the most frequently cited, 
so these will be discussed here. 

The theory behind ILC is based on human learning. Learning can be defined as "changes 

in the system that are adaptive in the sense that they enable the system to do the 

same task more efficiently and more effectively the next time" (Oh, Bien, and Suh, 

1988). Arimoto and Naniwa (2000) mathematically define concepts associated with the 
learnability of dynamical systems. Humans learn by practicing or repeating a task until 
it is perfected. During the learning process, mistakes axe frequently made, yet a lot of 
useful information can be extracted from them. At each attempt or iteration of the task, 

one hopes to improve on the last iteration by using knowledge gained from previous 
attempts. Arimoto et al. (1984b) investigated whether this principle could be applied 
to machines, to give them some form of learning autonomy without the need for human 

intervention. At this point, it is necessary to define the main factor which distinguishes 
ILC from repetitive control. 
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o The initial conditions of the system are reset before each iteration commences. 

This is particularly true for robotics applications, where the robot can be homed to 
a starting position before carrying out the required task (Arimoto et al., 1984a). It 

also implies that iterations do not need to follow each other immediately. The variable 
amount of time between iterations can be used to compute the next input sequence 
to the plant. With respect to practically implementing ILC, these characteristics have 
important consequences. By allowing the system time to reset between each iteration, the 
dynamics of the previous iteration are not carried over to the next iteration i. e. whatever 
happened at the end of the previous iteration does not directly affect the performance 
in the next. The pause between iterations allows even very complex algorithms to be 
implemented as there is no processing time constraint. In repetitive control, the initial 

conditions are not reset before each trial and there is no time between repetitions. The 

process is continuous, one repetition flows directly into the next and the final conditions 
from one repetition axe the initial conditions for the next (Hara, Omata, and Nakano, 
1985). This implies that data processing and computation of the next input to the 

plant must be continuous and performed on-line while the system is operating. There is 

therefore a limited time for processing complex algorithms between each sample instant. 

The learning control solution which was proposed by Arimoto et al. was to use the error 
vector generated in the previous iteration to modify the input vector to the plant for the 

next iteration so as to reduce the future error vector. This was defined as 

Uk+l(t) -ý-- Uk(t) + 0(060) 

ek M= r(t) - Yk M (2.2) 

where k is the iteration number, uk+I(t) is the vector of inputs for the next iteration, 

Uk(t) is the vector of inputs for the current iteration, 0(t) is the learning gain matrix, 
60) is the error derivative vector for the current iteration, r(t) is the reference trajectory 

vector and yk(t) is the plant output vector for the current iteration. Vectors are used 
because the calculation to find the next input sequence can be performed off-line as a 

batch process in the time between iterations. 

Having stated the algorithm, the conditions for convergence have been comprehensively 
studied. This can be understood by viewing the task as identifying which types of plant 
the algorithm can be used to control and also choosing a value of learning gain which is 

guaranteed to reduce the error at each iteration. As long as the convergence criteria are 
satisfied, theoretically the algorithm is guaranteed to converge towards zero error, as the 

number of iterations increases to infinity. If the convergence conditions are not met, it 
is highly probable that the algorithm will not reduce the error at the next iteration, but 
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will in fact increase it. This is known as divergence. Virtually all ILC algorithms, no 
matter how complicated, follow the basic format of Equation 2.1. The main variations 
depend on how the error vector is used to modify the current iteration input vector. 

2.2 Algorithm Development 

Since initial work began in iterative learning control, significant effort has been dedicated 

to developing new theories and algorithms. In general, the objectives of the research have 
included one or more of the following: 

9 Reduce the error over the whole cycle as close to zero as possible. 

* Reduce the number of trials needed to achieve near zero error, i. e. faster conver- 
gence to zero. 

" Develop algorithms for different classes of plants. 

" Improve algorithm robustness with respect to modelling errors and random distur- 

bances. 

" Achieve convergence while maintaining intermediate trial performance. 

Initial research looked mainly into using different combinations of proportional, integral 

and derivative error for learning and studied higher order systems which used data from 

more than one trial. The next stage in algorithm development was to include elements 
from other control axeas into ILC. These included model based, optimal, robust and 

predictive approaches. These developments are reviewed in order to provide a compre- 
hensive overview of the diverse range of research which has been performed to date. Case 

studies of specific algorithms axe presented where applicable, to illustrate areas where 

there has been extensive research. 

2.2.1 Basic algorithms 

'Basic controllers' axe iterative learning algorithms which require no knowledge of the 

plant. The controller is connected to an unknown plant and one or more parameters are 

adjusted until the desired performance is obtained. The algorithm developed by Arimoto 

et al. Equation 2.1 also fits into this category. 

2.2.1.1 P-type 

The Proportional or P-type algorithm (Arimoto, Kawamura, Miyazaki, and Tamaki, 

1985b; Kawamura, Miyazaki, and Arimoto, 1988; Mita. and Kato, 1985; Sugie and Ono, 
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1987) is very similar to the algorithm derived by Arimoto et al. (Equation 2.1) which 
is called the Derivative or D-type (Arimoto et al., 1984a, b; Arimoto, Kawamura, and 
Aliyazaki, 1985a; Kawamura et al., 1985). It differs in that the error derivative used in 
the original algorithm has simply been replaced by the error. The next input sequence 
is therefore generated from the current input sequence and the current error multiplied 
by a learning gain. Arimoto et al. (1985b) proposed the modified algorithm: 

Uk+l(t) " Uk(t) + flek(t) (2.3) 

The main advantage gained from using the P-type algorithm is that it does not require 
differentiation to calculate the update. Differentiation in control systems has the po- 
tential to significantly amplify small noise signals. Even if great care is taken to screen 
signal wires and use noise rejecting electronics, in practice, there will always be some 
element of noise present in the control loop. 

Although one may have expected the P-type algorithm to be developed before the D- 

type, this was not the case. The main reason was that, for some time, it was uncertain 
that the convergence proof for the P-type algorithm could be found. Sugie and Ono 
(1991) explain this by specifically concluding that the order of the error derivative must 
match the relative degree of the system. The systems used in early implementations 

of ILC were relative degree 1 and 2, and therefore it was necessary to use higher order 
derivatives. In discrete time systems, relative degree can be considered as a time delay 
between an input and the corresponding output (Jang, Ahn, and Choi, 1994). 

2.2.1.2 D-alpha 

D-alpha lies between P and D types. It uses the technique of fractional calculus to 

obtain a fractional derivative of the error signal (Chen and Moore, 2001). The algorithm 
is essentially D-type: 

Uk+l (S) ý uk (s) + flscek (s) (2.4) 

where 0<a<1. When alpha is zero, the algorithm is P-type and when alpha is one, 
the algorithm is D-type. Ractional calculus has already been successfully implemented 

on standard feedback controllers, such as the three term controller, and has been found 

to improve performance. Applied by Chen and Moore (2001) to ILC, it is possible to 

view fractional calculus as a special type of filter which requires all of the historical error 
data. D-alpha ILC can improve the monotonic convergence of the learning algorithm. 
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2.2.1.3 Combined error derivatives and integrals 

A further development from P and D-type algorithms is achieved by combining several 
terms together. P-D, P-l-D (where I represents the integral) and other combinations 
result. The objective is to use the features of each of these terms to produce an algorithm 
which can be applied to a wider range of plants and can improve convergence properties. 
A PID-type iterative learning controller has been successfully implemented by Kim and 
Kim (1996) on a CNC machine tool. The machine was required to cut circles of radius 
29.7nim and depth 3mm from a sheet of aluminium. The tracking accuracy achieved for 

the first iteration was within 20.37 jim, while for the fifth iteration the error was reduced 
to 8.55 lim, a reduction of 11.82 um. 

2.2.1.4 Higher order 

'Higher order' describes algorithms which use data from more than just one iteration 
(Chen, Wen, and Sun, 1997). For example, a second order algorithm may use the error 
data for the current iteration and the previous one. The theory behind using higher 

order algorithms is to make use of all the data which has been gathered since the process 

commenced operation. Theoretically, using more information should produce a system 
which is more robust to disturbances, initial state error, and can converge faster (Bien 

and Huh, 1989; Chen, Sun, Huang, and Dou, 1992; Chien, 1996). An example of a higher 

order algorithm is: 

N 

Uk+l(t) --.,: uk(t) + E)3n(t)el(t) 

n=O 

(2.5) 

where N is the system order, I=k-n+1 and 8n is the learning gain matrix for the 

n'th iteration. The learning gain matrix need not be the same for each iteration. This 

allows for a more flexible algorithm, as older data can be penalised by using smaller 

gains. Increasing the order of the algorithm has also been found to allow convergence 
for systems with higher relative degree (Ahn, Choi, and Kim, 1993). 

There is some debate as to whether higher order systems axe more useful than first 

order. Sun and Wang (2001b) and Chen, Gong, and Wen (1998a) suggest that higher 

order systems, if designed properly, can achieve fast convergence speeds. Norrl6f and 
Gunnarsson (1999) also conclude that higher order algorithms can be found to be stable 
where first order algorithms are not. However, having performed a rigorous mathematical 
analysis of various order algorithms, Xu and Tan (2001,2002) strictly conclude that first 

order systems converge fastest. Having compared a first order and a second order system 
through practical implementation, Norrl6f (2000) concludes that the second order system 
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does not perform better than a first order system. Another drawback to the second order 
system is that twice the amount of processing memory is required. An advantage may 
be that the second order system has potential to compensate for a plant which varies 
slightly between iterations by smoothing the data from more than one iteration. Overall, 
it is suggested that using the lowest order system is best, but higher order systems can 
be used if necessaxy to improve control of nonlinear plants. 

Xu, Chen, Lee, and Yamamoto (1999) have designed a successful higher order learning 

controller specifically for systems where the controlled variable cannot be measured until 
the end of the process. This is termed terminal iterative learning control arid has potential 
for application in microchip manufacturing processes. 

Moore and Chen (2003) propose the use of a higher order ILC algorithm which operates 
in both the time domain and the iteration domain. The higher order algorithm achieves 
monotonic convergence in the time domain and can also compensate for iteration depen- 
dent disturbances in the iteration domain. For example the controller can compensate 
for disturbances which are repeated every two iterations rather than every iteration. 

2.2.2 Variations of basic ILC 

2.2.2.1 Hybrid controllers 

'Hybrid' describes the combining of two different systems which work together towards 

a common goal. In many of the cases where ILC has been implemented on real physical 
systems, the learning law has been coupled to a standard feedback controller (Barton, 
Lewin, and Brown, 2000; Havlicsek and Alleyne, 1999; Longman, 2000; Tayebi, 2004). 
The objective is to improve the robustness of the controller (Doh, Moon, and Chung, 
1999; Moon and Chung, 1998). The feedback controller can compensate for non-periodic 
disturbances, while the learning controller reduces the periodic disturbances (Kuc, Nam, 

and Lee, 1991). 

Another advantage of using a hybrid system is that the learning controller need not 
operate all of the time. Once the error has been reduced to within tolerance bounds, 

the learning controller can be switched out and the feedback controller will continue to 

operate the system with the same level of accuracy (Barton et al., 2000). The learning 

controller can then monitor the error and can be switched in again, should the error 
begin to increase (due to component wear, for example). Two different arrangements of 
hybrid controller have been investigated. In one case, the learning controller modifies the 

output of the feedback controller (Jang, Choi, and Alm, 1995; Kuc, Lee, and Nam, 1992; 
Moon, Lee, and Chung, 1996), while in the other case, the learning controller modifies 
the input to the feedback controller (Liang and Looze, 1993). Both types can be shown 
to satisfy convergence criteria (Longman, 2000). 
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2.2.2.2 Current iteration error 

The first algorithms to be developed generated the next input sequence to the plant, from 
the input sequence and the tracking error obtained during the previous trial. This made 
these algorithms completely feed-forward by not taking into account the error of the 
current trial (Chien and Liu, 1996). The overall effect was to create a system which was 
not robust to random distutbances. To counteract this, it is possible to use a feedback 

controller in a hybrid arrangement which provides the necessary feedback element. An 

alternative solution is to use the Current Iteration Tracking Error law (CITE) (Owens, 
1992). 

Uk+l(t) ` Uk(t) + (Oek+l(t)) (2.6) 

where ek+1 is the current iteration error. In this example, the algorithm must be com- 
puted at each sample interval, otherwise it is fundamentally non-causal. It can be demon- 

strated mathematically that Equation 2.6 will converge for relative degree one MIMO 

systems with minimum phase. It can also be shown that the algorithm can tolerate a 
high learning gain which leads to faster reduction in tracking error (Chien, 1998). The 
CITE gain has also been found to have a direct influence on the final tracking error 
bound (Chen et al., 1997; Chen, Xu, and Lee, 1996c). Owens and Munde (2000) suggest 
that using the current error is beneficial for three main reasons. 

io The most recent data reflects the current performance of the system. 

e Current error feedback could stabilize unstable plants. 

* The effects of noise and modelling errors can potentially be reduced. 

2.2.2.3 Anticipatory 

Some learning control algorithms use the concept of anticipatory control. The concept 
is explained in detail by Wang (1999) and can be found to apply specifically to the P- 

type basic ILC algorithm. In the original D-type algorithm, the control effort update, 
at one particular sampling interval, consists of the control effort and the tracking error 
derivative from the previous iteration at the corresponding sampling interval. For the 
D-type algorithm, this approach is correct, as the different terms do correspond exactly. 
However, for the P-type algorithm, the approach no longer applies. The P-type law does 

not capture the trend of the error from previous sampling intervals. At one particular 
sampling interval, the error may be recorded as zero. However, this does not guarantee 
that it was zero for the previous sample. In fact, the error gradient may be significantly 
different. The basic P-type law does not make use of this information. 
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Wang (2000) proposes a solution to this problem by using an anticipatory scheme. When 

generating the new input sequence, instead of using the error from exactly the same 
sample instant one trial back in time, the error from one of the following sample instants 
is used. Note that the shift in samples is only a small number and is usually set to 
1. This approach can generate a concise mathematical proof for convergence (Wang, 
1998) and has been found to improve the rate of error reduction in simulations (Ma, 
Low, and Tso, 1993). Sun and Wang (2001a) show that the anticipatory system can also 
relax the convergence conditions for systems with higher relative degree. Wang (1999) 

tested the anticipatory algorithm on a two-link SCARA robot system and obtained good 
convergence results. For a 15 iteration test, the root mean square (rms) error is reduced 
by approximately one order of magnitude after only one iteration. Notably, the error 
reduction is non-monotonic and the rms error increases between iterations 5 and 10, 
following the initial convergence. This is a possible indication of instability. Equation 
2.7 is higher order and contains both an anticipatory and a current iteration error term. 

Uk+I(M) " Uk(M) + Plek(M + 1) - iO2ek+I(M) 
(2.7) 

Where m is the sample interval, ek(M + 1) is the anticipatory error term for the last 
iteration and ek+I(M) is the current iteration error. 

2.2.2.4 Forgetting factor 

In general, a forgetting factor is a gain with magnitude less than one, as discussed by 
Wang (1995). The forgetting factor can be applied to any term of all algorithm to reduce 
the effect of that term on the input update. It has been used on the previous iteration 
input term Uk in an attempt to reduce the effect of high frequency noise and initial 

state error which can otherwise be amplified around the learning loop (Chien and Liu, 

1996). Using the forgetting factor reduces the noise transmission and increases the noise 
immunity of the algorithm. This effect becomes obvious when considering the Nyquist 

plot of a system. In the cases where the poles of the system are very close to the unit 
circle, the forgetting factor has the ability to draw the poles away from the unit circle 
and reduce the risk of instability (Lewin, 1999). 

2.2.2.5 Time delays 

Time delays are very common in control systems. They vary in magnitude from mil- 
liseconds and less, to hours or days. Longer time delays axe frequently encountered in 

chemical batch processing plants. But, delays of a few seconds can also be encountered 
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in other areas of industry. A time delay is described as the period of time which elapses 
between a change in plant input and the corresponding change in the plant output. 

One basic approach to compensating for this time delay is to use a delay shift (Park, 
Bien, and Hwang, 1998). The basic P-type algorithm can be modified by adding the 
delay shift to the error term. 

Uk+ 1W --- Uk W+ Pek (t + Te) (2.8) 

where 7-, is the estimated time delay. This algorithm is successful as long as the time delay 
is correctly estimated. However, if the estimate is incorrect, there is no mathematical 
guarantee that the algorithm will converge. Using an incorrect time delay has potential 
to completely destabilise the system. 

An alternative solution is to implement an ILC algorithm alongside a feedback controller 
equipped with a Smith predictor (Xu, Hu, Lee, and Yamamoto, 2001). The feedback 

controller and Smith predictor stabilise the plant and remove the time delay, while the 
learning algorithm improves the tracking accuracy. Again, an accurate estimate of the 
time delay and the plant model are required for the Smith predictor to work successfully. 
Hu, Xu, and Lee (2001) use a learning controller coupled with a feedback controller and 
a Smith predictor. The ILC modifies the output of the feedback controller and the signal 
is then fed into the Smith predictor. 

2.2.2.6 Reduced sampling frequency 

Implementation of learning controllers requires some form of data storage memory which 
holds set-point and error values from previous trials. Hence, learning control is invariably 
implemented in discrete time, using a microprocessor. In discrete ILC systems, the 

sample frequency can have an effect on the algorithm convergence. Hillenbrand and 
Pandit (1999) derive the convergence conditions for a P-type anticipatory system. It is 

found that the algorithm can behave erratically in the first few iterations if the learning 

criterion is simply to reduce the error as the number of iterations increases. A more 

successful algorithm can be produced if the criterion is to reduce the error norm at 

each iteration. Unfortunately, using the error norm has a greater tendency to violate 
the conditions for convergence and the algorithm is more likely to diverge. However, 

by reducing the sample frequency, the system parameters can be adjusted until the 

convergence conditions are satisfied in which case the algorithm will converge. 

A reduced sampling frequency has also been found to limit the impact of initial state 
error. This is because a larger sampling time naturally averages the control output 
and reduces the occurrence of short-duration step inputs. At high sampling frequency, 
the controller can respond to initial error and transients with a series of step inputs, 

with significantly different amplitudes, which induce transient plant behaviour. At low 
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sampling frequency, if the output at the first sample interval is chosen correctly, by 
the second sample interval the tracking error will be small or absent. Drastic control 
adjustments will no longer be required and the algorithm will continue to learn correctly 
(Hillenbrand and Pandit, 2000). 

2.2.2.7 Selection of learning gain 

Irrespective of the complexity of a learning algorithm, the fundamental principle behind 
ILC algorithms is to update the next input sequence to the plant, by using data obtained 
from previous input sequences and some measure of the output tracking error, which is 

multiplied by a learning gain. Tile choice of this learning gain is therefore an issue of 
great importance as it has a fundamental effect on the convergence and stability of the 

algorithm (Glower, 1997; Hwang, Bien, and Oh, 1991). In the most basic algorithms, 
the learning gain is chosen by the designer. In more advanced algorithms, the selection 
process is automated to some extent. Moore (1998,1999) suggests a method which can 
be used to select the learning gain of a simple ILC controller to obtain perfect tracking 

within four trials. Through calculation, simulation studies and practical implementation, 

there are certain trends which can be identified which relate the choice of learning gain to 
the performance of the learning controller. High learning gain produces faster reduction 
of the tracking error from trial to trial, but the steady state error is larger, while low 
learning gain produces a slower reduction of the tracking error, but the steady state error 
can be reduced further. This is because low learning gain causes less amplification of 
noise. 

2.2.2.8 Coefficient tests for convergence 

It is important to determine whether a learning control scheme will be stable, when 
implemented on a plant. A simple method using only the parameters of the plant and 

controller would be particularly useful, as it would allow initial controller designs to 
be evaluated and modified rapidly. Judd, Hideg, and Van Til (1991) propose such a 
technique. The concept is similar to that of the Routh stability test for standard feedback 

control systems. A characteristic polynomial is generated from the chaxacteristics of the 

plant and the controller and is then tested against a set of conditions in order to determine 

whether the complete system will be stable. 

2.2.2.9 Non-periodic repeating disturbances 

ILC is traditionally associated with removing repeating disturbances from periodic sys- 
tems. However, it is possible to construct an ILC style controller capable of suppress- 
ing repeatable disturbances triggered in a random fashion, for example: vibrations and 

16 



shocks in mechanical servo systems. This is an unusual application of ILC, because the 

reference trajectory is continuous and does not need to be repeating. The majority of 
control is performed by an appropriate feedback controller and the ILC element is only 
used when a repeating disturbance occurs. The appropriate moment to switch on the 
ILC is selected by a Likelihood Ratio Test which detects the start of the characteristic 
error waveform, associated with the disturbance. Each time the disturbance occurs, the 
ILC is therefore supplied with the tracking error data until the end of the repeating 
disturbance. The ILC can therefore learn the signal which must be applied during the 
disturbance to minimise the effect on the. plant output. Tousain, Boissy, Norg, Stein- 
buch, and Bosgra (1998) have successfully simulated this type of system with the aim of 
rejecting shock disturbances for a hard disk drive. The format of the learning controller 
is represented by: 

Uk+l(t) ý Fl(Uk(t) + F2ek+l(t)) (2.9) 

where F, and F2 a-re appropriately designed filters. 

2.2.3 Model-based algorithms 

'Nfodel-based algorithms' include any controller which requires prior knowledge of the 

plant. For these controllers to be implemented, it is necessary to generate some form of 

model, which describes the behaviour of the plant. This is then used either during the 
design process, or as paxt of the ILC algorithm itself. 

2.2.3.1 Model based controllers 

The principle behind model based controllers is to obtain an accurate model of the plant 

which can be used in parallel with the real plant to provide information to the controller 

which would otherwise not be available (De Roover and Bosgra, 1997). The model 
is particularly useful for providing information about unknown states, or states which 

cannot easily be measured. As well as feeding the control input into the real plant, it 

is also supplied to the model. If the model is accurate, the output of the real plant and 
the model should be the same. If there is a difference between the two outputs, the error 

can be used to update the model to make it more accurate. 

Phan and Frueh (1996,1999) propose a novel way of implementing a model based con- 
troller by learning the plant model during each iteration. As the reference trajectory is 

constant for each iteration, it is only necessary to learn the dynamics of the plant for this 

trajectory as other dynamics will not be excited. Each time an iteration is performed, a 

set of data for the input and the corresponding output is obtained. Using this data, a set 

of basis functions can be trained to emulate the behaviour of the plant and generate a 
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model. The model is then used for standard model based control. Effectively, this is an 
on-line plant identification technique. Phan and Ruch (1999) implemented this model 
based controller on an experimental apparatus, consisting of a number of parallel steel 
rods held together by a thin spring-steel wire. Actuation force was supplied to one rod, 
while the tip of another rod was required to follow a set trajectory. The model based 

controller successfully reduced the tracIdng error by over one order of magnitude. 

2.2.3.2 Inverse plant models 

The input-output relationship of a plant can be represented by Equation 2.10. If the 
inverse of the plant model can be derived (Equation 2.11) it can be used to directly 

calculate the exact input sequence which must be supplied to the plant to obtain the 
desired trajectory (Xu and Ji, 1998). 

AM = GO (uk(t)) (2.10) 

Uk(t) = -Go r t) -1 

where GO is the true non-lineax model of the plant, GO(-)-l represents the inverse of GO(. ) 

and r(t) is the reference trajectory. With this scheme, there is no requirement for any 
control system. However, model inaccuracies and random disturbances are not taken into 

account. Model inaccuracies generally arise because a linear model is used to describe 

a non-linear plant. Relying upon the inverse model technique is therefore not usually 
suitable for implementation on real systems. The inverse model can however produce 
a good estimate of the signal which needs to be supplied to the plant. Combining the 
inverse model with a learning controller allows learning control to compensate for model 
error (Markusson, Hjalmarsson, and Norrl6f, 2001). 

2.2.3.3 Robust control 

It is often possible to design a control system which will be well matched to a plant 
model and should theoretically provide performance within tolerance bounds. However, 
it is not evident that this controller will be able to cope with disturbances, variations 
in the plant and modelling errors. For example, it is accepted that the model is only a 
representation of the real plant and that it will not be perfectly accurate (De Roover and 
Bosgra, 2000). Yet, standard design procedure uses the model to generate the controller. 
The resulting controller may in fact be poorly matched to the actual plant. Under steady 
state conditions, this may not be noticeable. However in transient conditions the control 
system may become unstable. Robustness analysis can be used to establish whether 
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the performance of a complete system will remain within the design specification, by 
determining how tolerant the system is to disturbances. it is therefore necessary to 
design into any controller a measure of robustness, which will allow the plant to vary to 
some extent without the controller being significantly adversely affected. 

One definition of robustness in a learning control sense is that the error sequence gener- 
ated during a trial remains bounded when bounded noise is present in the system (Sogo 

and Adachi, 1996). Of particular interest is the magnitude of the bounds on the final 

steady state tracking error, as this determines to what extent the error can be reduced 
(Chen, Xu, and Lee, 1996b). Liang and Looze (1993) specifically derive and define ro- 
bustness conditions which are specific to ILC systems. They also determine that, in the 
presence of modelling error, the complementary learning sensitivity must be small for 
input frequencies at which the model uncertainty is large. Due to the inability of learning 

controllers to compensate for non-repeating disturbances, it is essential to incorporate 

robust control techniques when designing learning control systems (Xu and Viswanathan, 
2000; Xu, Viswanathan, and Qu, 2000). 

Sensitivity is an important measure in robustness analysis, as it describes how one com- 
ponent or variable of a system is affected by a change in another component or variable. 
High sensitivity implies that a small change of one variable has a large effect on others. 
Therefore low sensitivity is generally desired when designing a robust controller. 

Tayebi and Zaremba (2003) propose a generic approach to designing robust learning 

control systems. By using a hybrid combination of a standard feedback controller in 

parallel with a learning controller, stability is theoretically guaranteed, as long as the 
feedback controller meets a specified robustness performance condition. If this is true, 
then a simple calculation leads to a performance weighting function, which is applied to 
the input of the learning controller and guarantees overall stability. 

2.2.3.4 Adaptive controllers 

When a control system is initially designed and commissioned, the controller should 
be finely tuned to match the plant and should provide control within maximum error 
bounds. However, as the plant and the surrounding environment change with time, 
the tuning of the controller will no longer match the dynamics of the plant and the 

accuracy of the control will degrade. Adaptive control is concerned with monitoring the 

performance of the controller and adjusting its parameters to compensate for changes 
in the plant and maintain the performance of the overall system. Fyom this definition, 
it is possible to conclude that learning controllers are, by their very nature, adaptive. 
However, in learning control, the whole signal is adapted, while in adaptive control, only 
the parameters of the controller are changed (INorrl6f and Gunnarsson, 2001). Learning 

controllers have an advantage over conventional adaptive controllers because the tracking 
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accuracy can be improved at each trial. With conventional adaptive control the tracking 
accuracy does not improve, it remains constant (Poo and Ma, 1995). Conversely, adaptive 
control is well suited to compensating for non-repeating variations in plant dynamics. 
Combining an iterative learning controller and an adaptive controller can therefore use 
the advantages of both systems (Choi and Lee, 2000). 

H&t6nen, Owens, and Moore (2004) clearly define the difference between a time invaxiant 
ILC law and an adaptive ILC law. This can be summarised by comparing two versions 
of the basic P-type anticipatory ILC algorithm. 

Uk+l Mý Uk W+ 
i3ek 

(t + 1) (2.12) 

This is the time invaxiant version of the algorithm, compared to 

Uk+l(t) ý Uk(t) +, 8k+, (t)ek(t + 1) (2.13) 

which is the adaptive form. Note that the learning gain is not a constant and is updated 
for each iteration by another update law which must be selected appropriately. 

Case study French, Munde, Rogers, and Owens (1999) propose a simple adaptive ILC 

algorithm which allows modification of the learning gain from iteration to iteration by 

means of a separate gain update algorithm. A similar technique has also been investigated 
by Owens and Alunde (2000). The algorithm developed by French et al. is suitable for 
Lineax plants. The main control input update algorithm follows the standaxd P-type 
format, using the current iteration error variation. 

Uk+ IWý uk (t) + (, Oek+ 1) W (2.14) 

While the learning gain # is updated between iterations by 

, 
Ok+l ýA+ c1lek 112 

where c is, in turn, the learning gain adjustment gain. Effectively, the gain is also 
adjusted in an iterative manner by using the previous iteration gain term and a function 

of the overall error in the previous iteration. As the number of iterations heads towards 
infinity, the iteration error will converge to zero and the learning gain 0 converges to a 
final value which is not infinity. 

The basic operation of the algorithm can be reasoned quite logically. When the tracking 

error is large, a smaller learning gain is required, because multiplication with the error 
results in a large change in control effort. However, once the error becomes small, using 
a lower learning gain generates a very small change in control effort. The learning ability 
has effectively been reduced. In the adaptive algorithm, the learning gain is gradually 
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increased as the error reduces so that, even with small error values, the ability to learn is 
not reduced and the algorithm can continue to reduce the error further. As the algorithm 
reaches zero tracking error, the learning gain converges to a non-zero, value. 

In algorithms which are unable to adapt, the selection of learning gain is a compromise 
between convergence rate and steady state tracking error. With the adaptive algorithm, 
both fast convergence and low steady state tracking error can be achieved. 

2.2.3.5 2-Dimensional repetitive process analysis 

Learning control algorithms are generally developed by considering the plant and the 
controller separately. This implies that a transfer function for the overall system is 

never developed. Evaluation of learning gains is through trial and improvement rather 
than through calculation. 2-dimensional analysis proposes several advantages over the 
traditional approach (Owens, Amann, Rogers, and French, 2000). 

e 2-D theory offers a mathematical model to describe the entire process dynamics. 

e 2-D stability theory provides a useful method to show convergence. 

e Proof of the stability of a 2-D learning system will guarantee convergence. 

2-D analysis is particularly applicable to learning control systems because they are nat- 

urally of a two dimensional configuration (Kurek and Zaxemba, 1993). The dimensions 

can be considered as: 

1. Time during an iteration. 

2. The iteration number. 

Systems of this form can be represented in discrete state space, by a local state vector 
of the form: 

X(i, j) Xh (i, j) (2.16) 
XV(ili) 

I 

Where Xh and x'O are the horizontal and vertical state components and i and j are non- 
negative integer-valued horizontal and vertical coordinates. With respect to learning 

controllers, h and i represent the sample or time interval during an iteration while v and 
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j represent the iteration number. The ILC algorithm developed by Arimoto et al. can 
be concisely represented in 2-D system theory (Geng, Carroll, and Xie, 1990). 

U(ili + 1) = U(ili) + Au(ij) (2.17) 

Where Au(i, j) represents the modification of the update which, in the Arimoto equation, 
is derived from the error and a learning gain. The most important aspect of using 2-D 
systems theory is that a framework for analysing the stability of 2-D systems is already 
well established and can be applied directly to learning controllers (Galkowski, Rogers, 
and Owens, 1999). Lee and Lee (1993) have used 2-D systems theory to develop an ILC 

controller with feed-forward and feedback elements for use on a Video Cassette Recorder 
(VCR) servo system. 

2.2.3.6 Optimal learning control 

Optimal control is concerned with providing the 'best' solution to the control task. The 

solution is specified by a criterion to be optimised, which is known as the cost function. 
The cost function must be formulated by the designer and must describe a curve with 
a minimum point. In most learning control algorithms, the cost function includes a 
description of the tracking error, so that the optimal controller attempts to reduce it 
to a minimum (Cben and Fang, 2004; Gunnarsson and Norrl6f, 1999). Many strategies 
implement a descent gradient approach for the minimisation process (Togai and Yamano, 
1985). The algorithm drives the system towards the minimum point by calculating the 
gradient of the cost function and then taking a step in the direction of this gradient. In 

some implementations, if the gradient is not heading towards the minimum point, the 
step is made very small or reduced to zero, because taking a step in this direction would 
in fact be diverging away from the minimum point. Other implementations accept that, 

on average, the gradient will lead towards the minimum point and therefore take the 

same size step, irrespective of the outcome. This implies that, depending on the style of 
algorithm, the size of the step can be chosen automatically by the algorithm (Amann, 
Owens, and Rogers, 1996a), or can be fixed by the designer. 

Optimization based ILC algorithms represent some of the most computationally intensive 

and complicated algorithms developed to date. Yet, it is interesting to note that in the 

majority of cases, the fundamental structure of the learning algorithm is still based on 
the previous input term, together with some form of gain or filter multiplied by the 
error sequence from either the previous, or the current iteration. Where the optimal ILC 

algorithm differs from other ILC formats is that the choice of learning gain is optimally 
calculated by minimising the cost function (Saab, 2003). Often, the gain is in fact a 
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matrix or vector of gains. The performance of the resulting algorithm therefore depends 
fundamentally on appropriate selection of the cost function. 

An example of a Linear quadratic optimal learning control aJgoritlim has been developed 
by Frueh and Phan (1998,2000). Hatzikos, Hdt6nen, and Owens (2004) provide a useful 
summary of optimal ILC development, before investigating the use of Genetic Algorithms 
(GA) to develop an optimal controller which can compensate for nonlinear plants. 

Case study The optimal ILC algorithm developed by Amann, Owens, and Rogers 
(1995) is not simply aimed at optimally reducing the tracking error. The algorithm has 
three properties, the first of which is to reduce the norm of the tracking error at each 
iteration. The second is to choose automatically the step size of the cost function gradient 
and the third is to improve robustness by using causal feedback from the current trial 
and feedforward data from the previous trials. The input sequence to the next iteration 
is found by solving the minimum norm optimization problem 

Uk+l =arg minfJk+1(Uk+1)1 
uk+I 

where the cost fimction is defined to be 

Jk+l(Uk+l) ý Ilek+l 112 + IlUk+l - Uk 112 (2.19) yu 

Where Y and U are t2-spaces, 

ek+l =r- Yk+l (2.20) 

and 

Yk+l ý GUk+l (2.21) 

The cost function attempts to minimise the tracking error, but also attempts to minimise 
the change in the input sequence. The latter aims to prevent excessive control effort from 
being sent to the plant and helps to generate smooth inputs to actuators (Lee, Lee, and 
Kim, 2000). It also makes the learning somewhat conservative. The cost function can 
be written in more familiax form as sums. 

N N-1 
Jk+l ý 

Ee T (t)]T R(t)[Uk+l(t) (2.22) k+l(t)Q(t)ek+l(t) + E[Uk+l(t) 
-Uk Uk Ml 

t=l t=O 

Where Q(t) and R(t) are weight matrices used to adjust the balance between optimally 
reducing the tracking error and limiting the change in the input sequence. By defining 

the inner products of Y and U in 12 space it is possible to simplify the cost function 
further. Using block-diagonal matrices Q and R with Q(t) and R(t) on the diagonal, the 
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definitions of the inner products (-, -) in Y and U are 

N 
(Yl Y2) Yý ylT QY2 E yl (t)TQ(t) Y2 (t) (2.23) 

t=l 

N-1 
T Ul(t)T (Ul U2)U = ul RU2 E R(t)U2(t) (2.24) 

t=O 

To minimise the cost function and hence derive the update law for Uk+I, it is necessary 
to differentiate with respect to Uk+I which produces 

1 494+1 
= -G7Qek+l + R(Uk+l - Uk) =0 (2.25) 

2 49Uk+l 

Rearranging the differentiated cost function to solve for Uk+1 leads to the optimal control 
law. 

Uk+l -` Uk + R-lG T Qek+l (2.26) 

R-'GTQ is equivalent to the adjoint operator G* of G, so the optimal control law can 
be represented by 

Uk+l ` Uk + G*ek+l (2.27) 

The control law, though mathematically correct, is not implementable in practice as it is 

non-causal. There is a requirement to know error data which is not yet available. How- 

ever, it is possible to generate a causal procedure by changing the state-space parameters 
and noting that the transpose contains an element of time-reversal. The details of this 

conversion are presented by Amann et al. (1995) but will be omitted here, as the case 

study aims only to demonstrate how an optimal control algorithm such as Equation 2.27 

can be formulated for ILC. The causal algorithm is implemented in Section 5.4. 

2.2.3.7 Predictive controllers 

Predictive controllers take a slightly different approach to learning control problems as 
compared to other types of controllers. Rather than solely using historical data to alter 
the plant input, the cyclic element of the disturbance is learnt by a prediction algorithm 
which is used to predict future error (Hiit8nen and Owens, 2004). The predicted error 
can then be used to alter the plant input. The significant advantage derived from this 

method is that the controller can compensate for future errors, by adjusting the control 
input at the current time. It allows for improved output regulation and in general the 

control action required to control the plant is reduced (Bone, 1995). This, in turn, 
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reduces stress and vvw on mechanical components and actuators. 

Case study Continuing their work on norm-optimal control (Amann et al., 1996b), 
Amann, Owens, and Rogers (1998) extended the algorithm to include future error predic- 
tion. The derivation of the predictive-optimal controller is similar to that of the original 
optimal controller. The main difference is that the cost function has been modified to 
include the predictive element. 

N 
Jk+I, N(Uk+l) = 

1:, \'-'(Ilek+iII2 + IlUk+i _ Uk+, _, 
112) (2.28) 

i-I 

The new cost function not only includes minimisation of the error and limiting the change 
of the input sequence as for the optimal algorithm, but also considers the error over the 
future N iterations. The A term is an extra design feature which affects the importance 
of more distant iterations by allouring them different weightings. Omitting several stages 
of the computation, the cost function can eventually be differentiated to produce 

I 
iJkl+,, N = -G*ek+l + Uk+l - Uk -. \G*QN-lek+l (2.29) 

which, when set equal to zero and solved for ul, +l gives the input update algorithm as 

Uk+l = Uk + G*U + AQN-I)eL. +l (2-30) 

where QN is solved recursively. 

QN = LNU + AQN-1) = [I + GG*(l + AQN-01-1 V+ AQN-1) (2.31) 

LN: --'ý [I + GG*(Ar + IQN-1)1-1 (2.32) 

In a manner similar to the original optimal algorithm the update equation is not prac- 
tically implementable in this format and must be transformed into a computational 
procedure. However, Equation 2.30 does clearly show the inclusion of the prediction 
term AQN-1. The term N is of particular significance, as it adjusts how many iterations 
ahead the algorithm should predict. This is known as the prediction horizon. It has 
been shown that, as the prediction horizon increases towards infinity (N --+ oo), the 
rate of convergence of the algorithm is maximised. It is also shown that using future 
predictM error as well as past error data can improve the rate of convergence compared 
to non-predictive algorithms. 
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2.2.3.8 Fuzzy/Neural controllers 

Learning controllers are classified under the term 'intelligent' control systems. Fuzzy 
logic and neural network systems also belong to this- group. The key features of these 
controllers is that they monitor the process being controlled and attempt to improve the 
tracking control by learning how to modify the control input. The learning takes place 
automatically without any external assistance. The main disadvantage of fuzzy/neural 

controllers is that they are only useful for poorly defined systems. If the system is well 
defiziM, classicA control techniques are likely to be more appropriate. 

Seo, Park, and Lee (1999) propose a combination of different controllers which can be 
used for non-linear plants. The solution is a hybrid of three controller types. A feedback 

controller is used to stabilise the plant and keep the tracking error within bounds. Either 
a fuzzy logic controller or a neural network is used to learn the non-linearities of the plant 
and subsequently compensate for them. The non-finear compensator also allows the 
gains in the feedback controller to be kept reasonably low. Finally, an iterative learning 

controller is used to improve trajectory tracking and to update the parameters of the 
non-linear compensator. The combination of the three controllers is found to improve the 
control of the non-linear system. Hideg (1998) considers an alternative implementation 
of ILC which uses a neural network to reduce the computational load in the calculation 
of an integration routine. 

2.2.3.9 Non-minimum phase systems 

Non-minimum phase describes a system where any of its zeros are located in the right 
half of the s-plane. In the linear case at high frequencies, minimum phase zeros induce 

a +90 degrees phase shift while non-minimum phase zeros produce a -90 degrees phase 
shift. The characteristic step response of a SISO non-minimum phase system is that the 

output of the plant will initially peak in the direction opposite to the final steady state 

output. This makes non-minimum phase systems very difficult to control because the 

controller must anticipate that the plant v6iU initially react in the opposite direction to 

what is desired. Examples of non-minimum phase systems in engineering practice axe 
limited, but one example is that of a large ship turning at high speed (Dutton et al., 
1998). 

The approach to using ILC for non-miniminn phase systems is to find the inverse model of 
the plant (Ghosh and Paden, 2001). This is not a simple technique, because inverting the 
transfer function of the plant by causal filtering will produce a system which is unstable 
(Ma, rkusson et al., 2001). The solution is to use a technique known as stable inversion 
(Sogo, Kinoshita, and Adachi, 2000). The basic concept is to split the plant into causal 
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G+(s) and anti-causal G-(s) components. 

G(s) = G+(s)G-(s) (2.33) 

Each of these elements can then be treated separately. The causal element will have a 
stable inverse which can be found by causal filtering, while the anti-causal element will 
have a stable inverse which can only be found by anti-causal filtering. Ghosh and Paden 
(1999,2002) also propose an alternative method for finding an approximate pseudo- 
inverse model for non-minimum phase plants. 

Because ILC is fundamentally a batch process, anti-causal filtering can be performed 
on the data for a complete iteration, in the stoppage time before the next iteration 
begins. Having obtained the inverse plant model, it can be used to derive the input 

profile which must be supplied to the plant to obtain perfect tracldng, assuming that 
the plant model is an exact representation of the plant. In practice this is not possible, 
as the model will always be somewhat inaccurate. However, the profile win be a good 
estimate which ILC can refine as tests are performed. Extensive practical implementation 

of iterative leaxning control on non-minimum phase systems has been performed by 
Freeman, Hft6nen, Lewin, Rogers, and Owens (2004a); Freeman, Lewin, and Rogers 
(2004b, c). 

2.3 Problems Encountered with ILC 

Iterative learning control is not an ideal solution to perfect trajectory tracldng. There axe 
a number of issues surrounding the implementation of ILC which need to be addressed. 

2.3.1 Initial state error 

Combined with random disturbances, another critical factor, which specifically affects 
iterative learning control convergence, is the initial state of the plant at the start of an 
iteration. In many algorithms an assumption is made that, after one iteration, the system 
is returned to exactly the same initial conditions in preparation for the next iteration. 
In practice, this is never quite accurate, as there is almost always some initial state error 
(Park and Bien, 2000; Sun and Wang, 2003). It has been demonstrated that initial state 
error can have a significant effect on the stability of ILC algorithms. Much research has 
been perfornied on developing algorithms which are robust to initial state error (Chen, 
Wen, Gong, and Sun, 1999; Chen, Wen, Xu, and Sun, 1996a; Lee and Bien, 1996; Sun 
and Wang, 2001b). 

A procedure for making ILC algorithms robust to initial state error is not to compen- 
sate for the error, but accept that it will be present (Jiang and Unbehauen, 2002; Sun 
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and XV&ng, 2002). For a particular algorithm, mathematical boundary conditions can be 
determined, within which the initial error must lie. As long as the error is within these 
boundaries, the algorithm will not be affected and will remain stable (Jiang and Unbe- 
hauen, 1999). It would seem logical that an algorithm with tolerance to a wide range 
of initial error is superior to others. However, in general, as the tolerance increases, the 
final tracking error also increases and the algorithm is no longer guaranteed to converge 
to zero tracking error. 

An alternative approach to reducing the sensitivity of ILC to initial state error is to 
use initial state learning (Chen et al., 1999). Equations 2.34 and 2.35 give an example 
of a D-type ILC law combined with an initial state learning algorithm. Effectively, the 
process has two systems operating in parallel. The D-type law is standard ILC, while the 
state learning algorithm obtains the initial conditions of the system states. The initial 

state information can be used to modify the initial value of the D-type law to completely 
remove the initial state error (Chen et al., 1996a). 

Uk+l(t) '"' Uk(t) + #814(t) 
(2.34) 

Xk+ 140) = Xk 40) +B (to), 3(to)ek 40) (2.35) 

where x(to) are the initial states of the plant and B is the standard state space system 
matrix from i= Ax + Bu. 

A more recent solution to the initial error problem is to use rectifying action. Rather 

than deriving algorithms which tolerate initial error, Sun and Wang (2002) actively use 
rectifying action to remove the initial error in the first portion of the trajectory and lock 

the system onto the desired trajectory. The rectifying action generates a smooth input 

at the start of the iteration to compensate for the initial error. Once the error has been 

removed, the learning controller can function normally. 

2.3.2 Longterm stability 

Barton ct al. (2000); Gorinevsky (1999); Havlicsek and Alleyne (1999); Huang and Long- 

man (1996); Lewin (1999); Longman, Akogyeram, Hutton, and Juang (2001); Norrl6f and 
Gunnarsson (2002b); Songchon and Longman (2001) amongst others, point out a very 
significant problem with ILC implementation. They are concerned with the long term 
stability of all learning algorithms. It is found, in practice that if a learning algorithm 
is implemented for a large number of iterations, the tracJdng error will begin to increase 

after it is initially reduced. This leads to divergence of the algorithm and total instability 

of the controller (Chen, Dou, and Tan, 2001). Evidently, this is unacceptable in an in- 
dustrial environment. In practice, it is sometimes necessary to sacrifice perfect traddng 
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and fast convergence to obtain an algorithm which will not diverge (De Roover, 1996). 
In fact, it is more important to obtain an algorithm which does not diverge, rather than 
one which converges quickly but then diverges later (De Roover, Bosgra, and Steinbuch, 
2000). Chen and Iongman (1999) have conducted a significant amount of research into 
the reasons why learning control experiences long term instability. It is found that several 
factors can operate to destabilise a system. 

2.3.2.1 FI-equency domain analysis 

The error signal between the reference trajectory and the actual trajectory of a feedback 
control system consists of a continuous spectrum of frequencies. With respect to the 
system being controlled, there exist low frequency and high frequency error components. 
In repeated trajectory tracking problems, the low frequency components are usually 
repeatable from trial to trial, while the high frequency components are random, often 
caused by measurement noise. High frequency components of the error also tend to have 
very small amplitude and so may be considered negligible. Therefore, in order to improve 
tracking, it is necessary to reduce the amplitude of the low frequency components, as 
these tend to have the most influence on overall tracking accuracy. 

The frequency response of a stable plant generally indicates an increasing phase lag at 
higher frequency, which has a destabilizing effect on the controlled plant. When using 
standard feedback control, this is not a problem, as the amplitude of high frequency error 
signals remains relatively small, even as the controller actively reduces the amplitude of 
the low frequency components. In contrast, learning controllers, by their very nature, 
integrate the error signal from trial to trial and eventually the high frequency components 
can build up within the learning loop and drive the system unstable. 

From the moment an iterative controller begins to operate, the low frequency error is 
reduced, while the destabillsing high frequency error is increased. Initially, because 
the low frequency error has significantly larger amplitude, the potential for tracking 
improvement is large and the effect of the slowly increasing high frequency amplitude 
cannot be detected. Later, as the low frequency error becomes negligible, the effect of 
the high frequencies begins to show and the overall tracking error noticeably grows. This 
explains why a learning controller appears to converge to minimal error but begins to 
diverge after a number of iterations (Huang and Longman, 1996). 

2.3.2.2 Time domain analysis 

Basic ILC learns by adjusting the plant input waveform at each sample instant for the 
next iteration, based oil the error which is recorded at the corresponding sample instant 
during the current iteration. At any one sample instant k, no account is taken of the 
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learning which occurs at previous sample instants. Yet, if the corrections made at previ- 
ous samples successfully reduce the tracking error eaxlier in the trajectory, the corrective 
action at k may in fact be greater than necessary. Only the first sample instant is unaf- 
fected by this procedure, while the last sample instant is affected by the leaxning which 
occurs at all other samples. This implies that it is easier to learn the required waveform 
at the start of the trajectory than at the end, as there is far less interaction between 

samples. As the learning in early samples successfully reduces the tracking error at the 
start of the trajectory to near zero, the corrections made to the early part of the trajec- 
tory will become negligible. Effectively, once the early section of the trajectory has been 
learnt, it remains constant. Thus enabling later samples to learn more effectively as they 
are less affected by earlier samples. At each iteration, the learnt section of the trajectory 
increases further along the trajectory, until it reaches the final sample. The complete 
trajectory has now been learnt. However, while learning occurs in the early part of the 
trajectory, the error at the end of the trajectory is likely to fluctuate significantly as the 

corrective action at each iteration is unnecessarily abrupt. 

The tracking performance for one iteration is usually given as a representation of the 

error recorded at each sample. Frequently, the error norm or the mean squared error are 

used. If we consider the effect of learning on the error norm or the mean squared error, 
the emerging pattern of reduction in error followed by an increase becomes observable. 
During the first few iterations, successful learning occurs mainly near the start of the 

trajectory, the error is being rapidly reduced, and as the interactions with later iterations 

have not built up yet, the overall error reduces quickly. As more iterations occur, the error 

reduction at the beginning of the trajectory is minimal, yet the control effort increases 

near the end of the trajectory so that the overall error appears to increase. As learning 

begins to occur at the end of the trajectory, the overall error reduces again and reaches 

a minimum. This effect does not explain long term instability of ILC, but does suggest 

an alternative reason for the observed decrease followed by increase in tracking error 
(Huang and Longinan, 1996). 

2.3.2.3 The waterbed effect 

The waterbed effect states that, for any feedback control system, the attenuation of 
certain error frequencies results in the amplification of the error at other frequencies. It is 
derived from the sensitivity function for a discrete feedback controller relating command 
to error. Use of the Bode integral theorem on this sensitivity function concludes that in 
the logarithm space, the attenuation of certain frequencies is equal to the amplification 
of the frequencies which are not attenuated. Feedback control does not specifically 
target any frequencies for reduction. In general, dominant frequencies are attenuated 
and amplification occurs at frequencies which are less significant, resulting in improved 

control. Learning controllers are frequently feed-forward and, with correct design, can be 

made to bypass the waterbed effect so that attenuation of certain frequencies does not 
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amplify others. However, when a learning controller is coupled to a feedback controller 
in a hybrid arrangement, the waterbed effect will be present (Songchon and Longman, 
2001). 

2.3.2.4 Solutions to long-term instability 

The design engineer is not completely devoid of tools to prevent long term instability. A 

number of solutions can be implemented to help prevent the problem from occurring. 

* Switch off the learning controller when the tracking error is sufficiently reduced 
(Barton et al., 2000). 

o Use a low-pass cut-off filter to remove high frequency components of the signal 
(Longman, 2000). 

* Implement phase-lead compensation (Longman, 2000). 

The first solution is very simple to implement and is particularly suited to a hybrid, 

feedback and learning controller. The controller monitors the tracking error over each 
trial and, once it reaches either a tolerance boundary or, better still, reaches a minimum, 
the learning controller is switched off. The feedback controller maintains the same level 

of tracking accuracy and there is no further learning. A second boundary can be used to 

switch the leaxning controller on again, if the error increases due to changes in the plant, 
for example due to wear. The drawback is that the ability to learn is switched off for 

the majority of the time the system is operating and there is no opportunity to improve 

system performance on a continuous basis. 

The second solution involves using a low pass cut-off filter to remove the high frequency 

components of the error signal, so that they axe not integrated around the learning loop 

(Chen and Longman, 1999). The filter must prevent all frequencies above a critical value 
from being transmitted (Lee, Bang, Yi, Son, and Yoon, 1996). The critical frequency 

can be determined from the point at which a Nyquist plot of the system goes outside 
the unit circle and is usually chosen as the Nyquist frequency. Zheng and Alleyne (2003) 

and Rotaxiu, Ellenbroek, and Steinbuch (2003) independently propose modifications to 

this approach, which use an adaptive filter to vary the cut-off frequency. This allows the 

bandwidth of the control system to be increased at certain points during the iteration 

period where high frequency components of the error signal need to be learnt, while 

allowing a lower cut-off frequency during other segments of the iteration where high 

frequency signals would have a destabilising effect. 

Unfortunately, introducing a cut-off filter induces additional phase lag which destabiliscs 

the system. To counteract this, non-causal, zero-phase batch filtering can be performed 
between iterations to prevent phase lag from being introduced (Pandit and Buchheit, 
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1999). Because no filter is perfect, a small amplitude of high frequency signals will still 
remain in the learning loop. Over time, these can build up and render the controller 
unstable after thousands of iterations of stable operation. A solution is to use the quan- 
tization effect, inherent in digital control systems. If the quantization level is larger than 
the amplitude of the noise leaking through the filter, the quantization effectively removes 
the remaining noise because it cannot be recorded (Chen and Longman, 1999). 

The third solution involves a low pass cut-off filter and a phase lead compensator 
(Yongqiang and Wang, 2003). It can be used when the maximum cut-off frequency using 

a filter alone is not high enough to remove disturbances which have significant effect on 
the error. The phase lead compensator shifts the Nyquist plot so that the frequency at 
which the plot leaves the unit circle is made higher. It allows the cut-off frequency to be 

raised until all the critical disturbance frequencies are passed to the learning controller 

and can be removed. 

2.4 Previous Practical Implementation 

Most published iterative learning control research tests and proves new theories by us- 
ing simulation examples. The work in this thesis is strictly concerned with evaluating 
different ILC strategies on a real physical system. Simulations are used in this work, but 

only to test and optimise algorithms, before they axe implemented on the real plant. 

It is also important to note that ILC research is not completely devoid of practical im- 

plementation studies. A number of experiments have been performed on a variety of 
different dynamic systems and in all cases, ILC has been found to improve the perfor- 

mance of the control system. A selection of these studies is included to illustrate the 
diversity of applications involving ILC. 

2.4.1 Application to robotics 

Iterative learning control was originally introduced by Arimoto and co-workers specif- 
ically to improve the trajectory tracldng capabilities of robots. Since then, many ILC 

simulation studies have been based around robotic applications for example Arimoto 

et al. (1984b, 1985a); Bondi, Casalino, and Gambardella (1988); Kawamura et al. (1985, 

1988); Mita and Kato (1985); Togai and Yamano (1985); Wang and Cheah (1998). 

Longman (2000) and Elci, Longman, Plian, Juang, and Ugoletti (1994) describe the 

practical implementation of basic ILC on a seven axis industrial robot. The robot must 

perform a rapid trajectory move, which maximises the interaction of the axes and induces 

non-linear dynamics such as Coriolis and centrifugal effects. The seven axes are each 

controlled separately as if the robot consisted of seven SISO systems. The non-linear 
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effects and interactions between axes are simply treated as repeatable disturbances. Even 

using a simple learning controller, the tracking error is shown to be reduced by up to 
a factor of 1000 in 12 iterations. This demonstrates that iterative learning control is 
well suited to controlling individual subsystems of a larger overall system, with little 
knowledge of how the subsystems interact with each other (Hwang, Kim, and Bien, 
1993). 

De Luca and Panzieri (1994) implement a simple ILC algorithm for controlling a two link 

robot arm and specifically investigate how the learning controller can compensate for the 

effect of gravity on a flexible link robot. The difficulty with flexible link robots is that the 
joint angles cannot be used to determine the exact position of the end effector as would 
be the case for a rigid link robot. The flexing of the robot arm during motion, results in 

an error between the actual position of the end effector and the position calculated from 
joint angle measurements. De Luca and Panzieri use an optical transducer attached to 
the robot flexible link to measure the deflection of the arm and feed the information into 
the controller. Coupled with the effect of gravity, this is a complex dynamic problem. 
The learning controller requires no prior knowledge of the plant and yet successfully man- 
ages to compensate exactly for the effects of gravity. Gunnarsson and Norrl6f (2001); 

Norrl6f (2002); Norrl6f and Gunnaxsson (2001) have also performed significant practical 
implementation on robots particulaxly with respect to optimal learning control. They 
have compared three different algorithms by practical implementation on a robot arm 
(Norrl6f and Gunnarsson, 2002a). The algorithms are taken from different areas of re- 
search and include a classical P-type, a model-based design and an optimization-based 
technique. All algorithms are found to reduce the tracking error, as the number of iter- 

ations increases. However, the model-based and optimization algorithms can potentially 
result in faster convergence and smaller steady state error. The general conclusion is 
that, if a basic algorithm can meet performance requirements, it should be used, as sim- 
plicity is an advantage in practical implementations. 

' 
If the basic algorithm performance 

is unsatisfactory, more advanced algorithms need to be developed, which process more 
information about the plant. 

2.4.2 Application to chain conveyors 

Conveyor systems axe extensively used in industry for transporting all manner of goods 
between the components of a larger system. For most applications, the control system 

required is very basic, the system may even be operated completely open-loop or by 

means of limit switches, which trigger different processes. However, in processes requiring 
greater accuracy, the performance of the controller becomes very important. 

Consider an assembly line where a conveyor moves the product through a series of work- 

stations and different components are added at each stage. The position of the product 
must be controlled very accurately, so that there is minimal relative error between the 
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product and the work-station while the components are being added. The task can be 
performed in one of two ways, described as either indexing or synchronising (Barton and 
Lewin, 2000). In indexing mode, the work-station remains stationary, the conveyor must 
move the product to the work-station, then wait while the assembly task is performed 
before moving the product on to the next work-station. In synchronising mode, the 
conveyor runs at constant velocity. The work-station must match the velocity of the 
conveyor and perform the assembly task while moving. When the task is complete, the 

work-station rapidly returns to its initial position ready to synchronise velocity with the 

next product. Both of these implementations require accurate position control. 

Barton et al. (2000) implemented learning control on a chain conveyor system with the 
aim of improving the tracking performance of a synchronising system. A hybrid con- 
troller was used which consisted of a learning controller coupled with a 3-term feedback 

controller. A series formation was used whereby the learning controller output was sup- 
plied to the feedback controller, so as to adjust the reference trajectory and achieve 
perfect tracking. Due to the continuous nature of the task, the implementation was, in 
fact, more appropriate to repetitive control. However, the formulation of the problem 
was from an iterative learning viewpoint. Moore (2000) explains in detail the differences 
between the implementations of ILC and RC and concludes that it is possible to develop 

what is essentially an ILC controller, specifically designed for continuous repetitive sys- 
tems which do not include resetting between trials. The algorithm was a basic P-type 

with current iteration error feedback. 

Uk+ 1M` Uk M+ Kek+l W (2.36) 

Note that u and e are scalars, not vectors, to represent correctly the repetitive implemen- 
tation. Three values (0.01,0.05,0.10) were used for the learning gain K and the mean 
squared tracking error was recorded for each trial. The results show that, irrespective 

of the value for learning gain, the performance of the hybrid controller was significantly 
improved over that for the 3-term controller alone and the error could be reduced to 

approximately 14% of the 3-term controller value. The main factor affected by changing 
the learning gain was the rate of error reduction. With K=0.1 the error was reduced 
to the same level as for K=0.01, but in 20 trials rather than 150. However, it is 

worth noting that for all values of learning gain, the system eventually became unstable 
if the learning controller was allowed to operate for every iteration. For higher gain, the 

onsct of instability was much sooner than for lower gain. This problem was solved by 

switching off the learning controller once the error had been sufficiently reduced. The 
3-term controller, then, continued to operate the system at the same error level without 
any further learning. 
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2.4.3 Liquid slosh in industrial packaging 

When a package containing a fluid is accelerated, motion is induced in the fluid. This is 
known as slosh (Grundelius and Bernhardsson, 2000). Automated packaging machines 
are extensively used in industry to package fluids. The machine first builds the container, 
then fills it before finally sealing it. Slosh is a significant problem in this process because 
if the liquid experiences sufficient acceleration, it can splash out of the container or con- 
taminate the sealing surfaces which results in incorrectly scaled packages. However, the 
motion of tile fluid under acceleration is very repeatable and, if tile correct acceleration 
profile can be found, the slosh can be kept to a minimum. 

Grundelius (2000); Grundelius and Bernhaxdsson (2000) propose a solution to reduce the 
liquid slosh in a packaging process by using iterative learning. The task is to learn the 

acceleration profile which keeps the liquid slosh below a specified height up the side of 
the container. In the experiments, the height of the slosh is measured by using a laser 
displacement sensor. The feedback to the controller consists of the height of the slosh 
on both the front and rear faces of the container, respective to the direction of motion. 
Before the learning algorithm can be applied, a reasonably good estimate of the optimal 
acceleration profile must be generated from models of the fluid behaviour. This is the 

profile which is supplied to the plant for the first iteration. The learning algorithm takes 
the form 

Uk+l ý-- QUk + Llek, + L2ek2 (2.37) 

where Q, LI and L2 are matrices which represent time varying filters, selected from 
process model parameters, ek, and ek2 axe the fluid surface elevation errors for the front 
and rear surfaces of the container. The filters also affect the level of learning during 
an iteration. There are two error terms in this algorithm taking into account both the 
displacement on the front surface and on the rear surface. Use of either a linear or 
non-linear process model for selection of the filters produces results which show that the 
liquid slosh can be significantly reduced by the learning controller, and particularly the 

slosh near the end of the iteration. 

2.4.4 Control of paralyzed human limbs 

Paralysis can be the results of several factors such as neurological disorders or spinal 
injuries. The central nervous system and the brain are no longer in control of muscles 
because the nerves whi(fi carry the stimulation and feedback signals are somehow dam- 

aged and do not function propcrly. However, the muscles are still functional and can be 

stimulated externally to generate movement. One method known as Functional Electri- 

cal Stimulation (FES) uses electrical impulses to stimulate the muscles. If the correct 
sequence of pulses is supplied to muscles, then motion can be restored in paralysed axeas 
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of the body. The main difficulty in this process is determining the stimulation sequence 
required to obtain the desired motion. 

Dou, Tan, Lee, and Zhou (1999) offer one solution to this problem by implementing an 
iterative learning controller, which learns the stimulation pattern required to obtain con- 
trolled movement of a paralysed patient's axm. The control signal to the arm is provided 
by means of the FES technique, while feedback is provided by means of a angle measur- 
ing transducer attached to the moving joint. Only the elbow joint is considered. The 

wrist and shoulder joints axe held stationary. The reference trajectory is a set of angular 
displacements whicil occur over a period of two seconds. The controller implemented on 
the patient is of a hybrid nature using a PD-Type feedback controller and a higher order 
ILC controller in parallel. The ILC controller takes the form 

i 

Uk+l(t) = uk(t) + Loi(t)ek-i+l(t+ 1) 

i=l 

(2.38) 

where j is the order of the controller. Results in both simulation and practical implemen- 

tation demonstrate that ILC significantly improves the tracking of the paralysed arm. 
In the practical implementation, at the first iteration hardly any motion of the arm is 

perceptible as the tracking is non-existent. However, by the tenth iteration, the tracking 
becomes efficient. For this particular implementation, the higher order algorithm appears 
to be more successful than the first order algorithm. 

2.4.5 Plastics manufacture - injection molding 

Injection molding is a high-speed manufacturing process, which allows large quantities 

of products to be made at low cost. The molding process can generate very intricate 

shapes. However, accurate molding of intricate shapes requires the parameters of the 

injection molding machine such as temperature and pressure to be controlled accurately. 

Havlicsek and Alleyne (1999) investigate improving the accuracy of pressure regulation 

within the injection and packing phases of a molding cycle. Pressure during these stages is 

regulated by means of electro-hydraulic valves and feedback to the controller is by means 

of thin-film pressure transducers. The controller used is of the Hybrid type with a feed- 

back controller and a lcaxning controller operating in parallel. The feedback controller 

stabilises the plant, while the learning controller modifies the output of the feedback con- 
troller to compensate for repeating disturbances. The output from the hybrid controller 

can be represented by 

Wk M 
-, = Gfb (s) ek M+ Uk* W (2.39) 

where Wk(t) is the input to the plant, Gfb(s)ek(t) is the feedback control signal and uk*(t) 
is the filtered feed-forward signal from the iterative learning controller. The iterative 
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learning component of the controller uses the basic PD-type format. 

Uk M` Uk-1 (t) + Q(S) (Kpek-I (t) + KA-1 (0) (2.40) 

U*W ý-- Q (S) Uk W k (2.41) 

where Kp and Kd are respectively the proportional and derivative learning gains. Q(s) 
is a Q-filter with zero phase lag, used to remove noise from the feed-forward output of 
the controller and improve robustness of the system. 

Results generated by practical implementation on a molding machine demonstrate that 

after six iterations, the learning controller is capable of reducing the tracking error by 

at least an order of magnitude. It is suggested that after six iterations, the learning 

controller may be switched off to prevent the onset of instability. The feedback controller 
will then continue to operate alone with the same level of error reduction. 

2.4.6 Military applications 

Iterative learning is not strictly restricted to motion control systems. Chen, Wen, Xu, and 
Sun (1998b); Chen, Xu, and Wen (1998c) apply iterative learning-based identification 

to determine the drag coefficient of a projectile fired by artillery and a bomb dropped 

by an aircraft. Determining the drag coefficient of either of these weapons is critical to 
improving taxgeting accuracy. 

In iterative learning control systems, the objective is to learn the input to the plant, 

which gives zero error tracking. In iterative learning-based identification, the inputs and 

outputs are already known, so that the task consists in learning the function which links 

them together. The technique involves several stages. Firstly, the number of iterations 

over which the identification will take place must be chosen. An arbitrary drag coefficient 

curve is then chosen and used to calculate the output, based on the input. The calculated 

output and the actual output are compared, the error is found and is used to update 

the drag coefficient in an iterative manner. The bomb drag coefficient is updated using 

a first order D-type algorithm. 

[Cdf(t)lk+l ý [Cdf(t)lk + 0(060) (2.42) 

where Cdf is the drag coefficient curve. Whereas the projectile drag coefficient is up- 
dated using a higher order D-type algorithm. In both studies, the iterative identification 

techniques compare well to other identification techniques such as optimal dynamic fit- 

ting. The iterative technique allows less restriction on the initial estimate of the drag 

coefficient curve. 
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2.4.7 Disk drive control 

Optical (CD/DVD) and hard disk drives (HDD) are used extensively in the entertainment 
industry, for storing music and films and in the computing industry, for storing data and 
programs. Data tracks are read from the disk by means of an optical or electro-magnetic 
read head, which must accurately follow the track to prevent read errors. Track following 
is performed by sensors which monitor the error between the track and the read head. 
The error is greatly amplified and used to control a motor which moves the read head onto 
the track. Tracking errors occur due to both periodic and non-periodic disturbances, the 

periodic disturbances having more significant effects. Periodic disturbances arise due to 
track decenter and track eccentricity. Track decenter occurs when the center of rotation of 
the tracks does not correspond with the center of rotation of the disk. Track eccentricity 
implies that the tracks are not perfectly round, but are somewhat elliptical. 

Moon et al. (1996) have developed an iterative learning controller capable of learning 

the periodic disturbances and reducing the tracking error. The controller is a hybrid 

composed of a feedback controller and a learning controller operating in parallel. As 

it is not desirable for the learning controller to learn the non-periodic disturbances, a 
filter has been added into the learning algorithm to prevent high frequency components 

of the signal being used in the learning process. Results show a reasonable reduction of 
the periodic tracking error when the learning controller is implemented. Adaptive feed- 
forward and repetitive control algorithms are now standard in most DVD and HDD drives 
(Chew and Tomizuka, 1990; Onuki and Ishioka, 2001; Zhou, Steinbuch, and Leenknegt, 

2004). 

2.4.8 Controlling wafer temperature in rapid thermal processing 

Microchip manufacture requires the thermal processing of a silicon wafer involving a 

number of techniques (including annealing, oxidation, nitridation, chemical vapour de- 

position and cleaning) to build up the electronic circuit. Conventional processing uses a 
furnace to heat the silicon wafers to the correct temperatures. A more recent technique 

known as Rapid Thermal Processing (RTP) has advantages over furnace processing be- 

cause all of the manufacturing processes can be performed within a single unit, with a 

reduced thermal budget. However, RTP is not currently a popular technique as it is very 
difficult to maintain an even temperature over the entire surface of the silicon wafer. 

Yang, Lee, Alm, and Lee (2003) consider the temperature control of a RTP unit capable 

of accepting 8 inch silicon wafers. The temperature of a test wafer is measured in three 
locations by thermocouples and heat is supplied by tungsten-lialogen lamps arranged 
in three arrays. The overall plant is therefore a3 input, 3 output, MIMO system. In 

addition, the plant is highly nonlinear and very sensitive to noise. 
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Conventional PI feedback control is unable to control the wafer temperature suitably 
due to the highly interacting nature of the inputs and outputs. Similarly, conventional 
model-based control tecliniques are unsuitable, because the non-linearity of the plant 
results in large error between the model and the real plant dynamics. To overcome these 
problems, a Batch Linear Quadratic Gaussian (BLQRG) optimal learning controller is 
developed to learn the required control signal for the three arrays of lamps which will 
accurately control the wafer temperature. The optimal ILC algorithm is not only able to 
leaxn between iterations, but also operates real-time, so that the controller can respond 
to disturbances as they occur, rather than wait till the next iteration. 

2.4.9 Biochemical industry 

Iterative learning control has been successfully implemented in the biochemical industry. 
Choi, Choi, Lee, and Lee (1996) discuss the practical implementation of ILC on the 
fed-batch cultivation of Acinetobacter calcoaceticus RAG-1. This microorganism is used 
to produce emulsan, a chemical with good emulsifying properties for crude oil. Ethanol 
is an important factor for the microorganism as it is a carbon source aiding cell growth, 
cell maintenance and emulsan production. However, too much ethanol has a negative 
effect on the microorganism. Therefore the ethanol level must be carefully regulated. 

Choi et al. (1996) implement a hybrid iterative learning controller and PI-type feedback 

controller to improve the control of ethanol supply to the microorganism over a number 
of batches. The learning controller is of basic P-type and uses the inverse plant model 
as the learning gain function. Results from practical implementation demonstrate that 
using the learning controller improves the yield from one batch by approximately 20% 

after only three iterations. 

A more recent implementation investigated by Mezghani, Roux, Cabassud, Le Lann, 
Dahhou, and Casamatta (2002) uses an optimal ILC on a chemical batch reactor which 
can be used to manufacture pharmaceutical products. The cost function is used to 

minimise the error while simultaneously limiting the change in the output at the next 
iteration, thus restricting sudden changes in the control effort. Sliding window filtering 
is also performed to smooth the output and reduce the effect of extreme control effort 
values. 

2.4.10 Torque ripple minimisation for electric motors 

Permanent Magnet Synchronous Motors (PMSM) axe becoming increasingly popular in 
industrial servo applications. However, their construction intrinsically results in torque 

variations which occur as the drive shaft rotates. This is particularly noticeable if the 

motor is required to rotate under load at low speed. Torque pulsations result in reduced 
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servo performance, unnecessary noise and undesirable mechanical vibrations. The main 
sources of torque ripple are cogging and flux harmonics. Cogging is due to the magnetic 
attraction between the permanent magnets on the rotor and the stator, which tries to 
turn the rotor so that the stator teeth and the rotor magnets are aligned. Flux harmonics 

occur in the air gap between stator and rotor, because a perfect sinusoidal variation in 
flux is difficult to achieve. 

Qian, Panda, and Xu (2004) have successfully implemented two ILC schemes significantly 

reducing the level of torque ripple. The first scheme is a standard time-based higher order 
P-type algorithm which simultaneously uses data from the past iteration and also from 

the current iteration (CITE). A forgetting factor is implemented in order to reduce the 
impacts of measurement noise, initial state error and variable system dynamics. However, 

use of the forgetting factor limits the extent to which the repeating tracking error can be 

reduced. To overcome this problem, a second algorithm is developed which uses a Fourier 

series representation of the previous iteration input instead of the actual input used. The 

Fourier series representation intrinsically averages the effect of noise and non-repeating 
disturbances, without requiring a forgetting factor. During experimental tests, both ILC 

techniques produce similar performance with respect to ripple reduction, reducing it by 

a factor of three. The Fourier based approach performs slightly better than the time 
based approach. 

2.4.11 Electromechanical valve control in camless engines 

The ability to adjust the valve timing of an internal combustion engine can significantly 
improve power output, engine efficiency and reduce emissions. Valves actuated by a cam 

mechanism offer limited variation in valve timing. An increasing interest is noticeable 
in the development of electromechanically actuated valves, which can be operated at 

any time by a command signal from the engine management system. However, the 

performance requirements of these valves are very demanding. The valve must open and 

close extremely quicIdy, but the contact velocity, as the valve mechanism reaches the 

limit of travel in either direction, must be kept as small as possible to reduce component 

wear and eventual failure. These opposing criteria produce a system which is extremely 
difficult to control. However, because of the repeating nature of the motion which the 

valve must undergo, the system is well suited to ILC. 

Hoffmann, Peterson, and Stefanopoulou (2003) have simulated and experimentally as- 

sessed the performance of a simple learning controller in series with a feedback controller. 
The feedback controller is only operated in the last stages of the valve motion, when the 

open loop plant is naturally unstable and requires feedback control in order to be sta, 
bilised. The learning controller is able to adjust both the plant input and the reference 
trajectory to the feedback controller and consequently ILC can learn the required actu- 

ation voltage to achieve a slow contact velocity. The target contact velocity of 0.1 m/s 
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is successfully achieved after 35 iterations. 

2.5 Summary 

From a review of ILC literature, it can be concluded that all ILC algorithms are based 

on the same fundamental principle, which uses the input from the previous trial and 
a modification of the error sequence to develop the input for the next trial. In basic 

algorithms, the error modification is generally simple and often takes the form of a scalar 
gain. For model-based algorithms, the model is frequently used to filter the error vector, 
in order to generate more rapid error reduction. Techniques from a variety of other 
control methodologies such as optimal, adaptive and robust have been applied to ILC 

with the aim of improving convergence rate and stability to unknown and un-modelled 
disturbances. 

ILC has been successfully applied to a number of industrial applications including in- 
jection molding, robot control, disk drive control and chemical batch processes. The 

use of ILC in these examples has greatly improved the performance of the plant be- 
ing controlled. However, in general more experimental data is required, so as to direct 
theoretical research towards the problems which arise when ILC is used in industrial 

applications. 
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Chapter 3 

Multi-Axis Test Facility and 
Experimental Procedures 

3.1 Introduction 

It is essential to test new ILC algorithms on a plant which resembles an existing industrial 

process, if ILC is to have wider application in industry. The following sections describe 
the design and construction of the test facility, used to evaluate the ILC algorithms 
discussed in later chapters. Different elements of the construction: haxdware, interfaces 

and software are discussed with sufficient detail to allow a replica of the test facility 
to be constructed. The plant is modelled by means of frequency response tests, which 
produce a continuous-time transfer function for each axis. The models are validated by 

comparing simulated and experimental step responses. Finally, at the end of this chapter 
a series of test procedures are established to allow a fair comparison of the performance 
produced by different algorithms. 

3.2 Test Facility 

3.2.1 Hardware: Gantry robot 

The experimental work presented in this thesis has been performed in its entirety, on 
a 3-axis, industrial gantry robot as shown in Figure 3.1. The robot is a commercially 
available unit manufactured by Acrotech Inc. USA. and consists of three individual, 
linear motion axes which, when controlled simultaneously allow the robot end-effector to 
be positioned anywhere within a cuboid work envelope. The end-effector consists of an 
electromagnet on a compliant arm, the design of which is shown in Figure 3.2 (further 
details of additional compliant arm components are in Appendix A). The purpose of the 
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FIGURE 3.1: The Gantry Robot test facility 

end-effector is to hold ferroniagnetic materials. while they are moved by the robot. It 
has not been used within the scope of experiments performed in this thesis. In order to 
avoid confusion, each axis has been assigned an identifier, either X, Y, or Z, to specify 
which of the axes is being discussed. 

The X-axis is the lowest horizontal axis which moves parallel to the conveyor located 
beneath the robot. The X-axis actually consists of two units. an Aerotech model 
ALA10064-M brushless dc, permanent magnet, linear motor of 1025mm physical length, 

providing 640mm of effective travel. which appears on the left-hand side of Figure 3.1 
and a. free nuining Aerotech inodel AL1310064-M linear slide, oil the right side of Figure 
3.1. The second horizontal Y-axis is mounted across the two X-axis units and is also an 
Aerotech model ALA10052-NI brushless dc. permanent magnet. linear motor of physical 
length 950inin, providing 520mm of effective travel. The Y-axis moves in a direction per- 
pendicular to the conveyor. The Z-axis is a short. vertical, linear motion stage consisting 
of a 2mm lead, Aerotech model ATS100-100, ball-screw slide powered by an Aerotech 

model BM75, brushless dc, rotary motor. The Z-axis is mounted oil the carriage of the 
Y-axis linear motor. The resulting dimensions of the cuboid work envelope are 640 x 
520 x 100mm (X-Y-Z). 

The gantry robot is mounted above the conveyor on a custom built stand. which has 

been constructed from extruded aluminium beams mid brackets, supplied by Flexlink. A 

three dimensional design of the stand can be seen in Figure 3.3 and a list of components is 

presented in Table 3.1. The Aerotech motors could not be bolted directly to the Flexlink 

components, because the mounting techniques are incompatible. Therefore four adapter 

plates were manufactured to provide a bridge between the two systems, the design call 
be seen in Figure 3.4. The entire assembly is bolted to a wooden bench 0.87m above the 
floor. Tile mountings are therefore not completely rigid and do have a degree of flexibility. 
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FIGURE 3.3: 3D design of the gantry support stand 

The significance of this flexibility is important especially when considering the stability 
of ILC algorithms and is discussed in relation to obtained results in Chapters 4 and 5. 

The axis position measurement, required for closed loop control and for evaluation of 
tracking performance. is determined by means of optical, quadrature, incremental en- 
coders. Renishaw RGH22 linear encoders with a resolution of 1 pin are used for the X 

and Y-axes, while a 1000 pulse per revolution (ppr) (4000 counts per revolution ((! I)r) 
in quadrature) Acrotech rotary encoder is used for the Z-axis, giving a resolution of 0.5 

t1m. 

The three axes are powered by performance matched Aerotech model BA10 linear am- 
plifiers. The amplifiers are operated in velocity control mode and therefore the signals 
from the encoders must be fedback to the amplifiers. In order to determine the motor 
speed setpoint, the amplifiers require a ±10 Volt control signal, supplied by tile main 
control hardware. The amplitude of the control determines speed, while the sign specifies 
direction of motion. In effect. the complete control system consists of two closed loops 

operating together as shown in Figure 3.5. The controller calculates the set-point, while 
the drive performs local velocity control. 
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TABLE 3.1: Gantry support stand components - Flexlink 

Description Component code Quantity 
Angle bracket - diecast - 8Ox8Ox82 XAIFA 84 A 10 
Angle bracket - diecast - 42x42x39 XLFA 44 B 6 
Large foot - diecast XCFF 88x260 2 
Foot plate for 88x88 XCFB 88 F 2 
Support beam 44x88 XCBM 1024x44x88 2 
Support beam 44x88 XCBM l5Ox44x88 2 
Support beam 44x44 XCBM 882x44 I 
Support beam 88x88 XCBM l20x88 2 
Support beam 88x88 XCBM 432x88 2 
End cap - polyamide XCBE 44x88 10 
End cap - polyamide XCBE 44 10 
T-bolts 17mm XLAT 17 50 
M8 Lock nuts XLAN 8f 50 

3.2.2 Hardware: Control electronics 

There are many commercially available controllers such as programmable logic con- 
trollers, industrial computers, digital signal processors and single chip micro-controllers, 
capable of controlling the gantry robot. However, these tend to have built-in control func- 
tions, typically limited to the three-term or PID controller. More advanced devices use 
their own programming language, consisting of basic functions, which allow the operator 
to program the control technique within restrictive limits. Neither of these approaches is 
suitable for the implementation of ILC because many required techniques (for example: 
matrix manipulation and dynamic memory management) are not readily available. This 
suggests that the algorithm should be implemented with some form of computer-based 
programming language, providing the flexibility to program any form of algorithm, and 
able to access the computer's own memory structure for saving data from previous it- 

erations, which is a key requirement of ILC. The 'C' language is a particularly suitable 
choice for implementing real-time control because calculations and manipulations are 
highly optimiscd and are performed in a minimum number of processor clock cycles. 

The resulting control system used during experimentation consists of a Pentium 4, Desk- 
top PC, running the Linux: operating system and using 'C' for software development. 
Linux: is also particularly well suited to real-time control applications because interrupt 
handling routines generate significantly shorter delay latencies than other operating sys- 
tems. The ±10 Volt control set-points are generated by a 16 channel, 12-bit Digital 
to Analogue (D/A) expansion card, while the encoder generated signals are read by a 
separate 4 channel, quadrature decoder expansion card. Strict sample interval timing is 

achieved by means of a third, binary input expansion card with an on-board timer capa, 
ble of generating interrupts at precise intervals. Interrupts axe generated at the required 
sampling frequency. The computer must then service each interrupt and calculate the 
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RGURE 3.4: Aerotech to Flexlink mounting adapters 

next control set-point in the time period of one sample instant, before the next interrupt 

occurs. This open architecture control system using separate cards for each task involved 

in closed-loop control, allows the computer based controller to be very flexible. The soft- 
ware programmer also has direct control over every aspect of the closed-loop system, 
rather than relying on pre-programmed routines commonly supplied with commercially 
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FIGURE 3.5: Standard position control feedback loop 

available control expansion cards. 

To complete the control system hardware, two additional custom designed, signal pro- 
cessing circuits are required: 

oA current amplifier circuit. 

*A circuit for reducing the count frequency produced by the robot encoders. 

In order to match the output circuitry of the D/A expansion card, which can supply 
a maximum of 2mA of current, with the input circuitry of the motor amplifiers, which 
can sink up to 5mA of current, a current amplifier circuit had to be built. Initially a 
basic non-inverting current amplifier was designed, assembled and installed into the test 
facility. However, the output of this circuit was found to be highly erratic when it was 
connected to the signal transmission wires. Investigation of the problem, revealed that 
the output of the simple circuit was sensitive to capacitative loads. The long transmission 

wires between the current amplifier circuits and the motor power amplifiers produced 
sufficient capacitance to react with the current amplifier output resistance and add an 
extra pole in the feedback loop, resulting in oscillations and unpredictable behaviour. 

Therefore a new circuit was designed, a schematic of which can be found in Figure 3.6. 

This circuit diagram represents a single amplifier, which is used for one axis of the robot. 
The resistor and capacitor at the output produce a phase lead compensator network, 

which cancels the extra pole and restores closed-loop stability. 

The required velocities of the robot axes and the high resolution of the encoders produce a 

pulse train of frequency too high for the encoder expansion card to read. In consequence, 

a frequency reducing circuit has been designed which reduces the count frequency. Figure 

3.7 shows a schematic of the electronic circuit for one encoder. The count frequency is 

reduced by a factor of 32. Therefore the position resolution, as seen by the computer, is 
32 times less detailed than the encoder resolution, resulting in 321Lm for the X and Y-axes 

and 16pm for the Z-axis. The main difficulty which arose in designing this circuit was to 

reduce the count frequency while preserving the A and B channel phase difference. The 

phase information is used by the expansion card to determine which direction the motor 
is travelling in, and is therefore an essential element of the feedback loop. The differential 
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FIGURE 3-6: Control set-point amplifier circuit 

amplifiers on the input (left) of the circuit convert the RS422 signal produced by the 

encoders into a single ended 0-5V signal. The sequence of five J-K flip-flops arranged 
in a line reduce the input frequency by a factor of 32, each flip-flop reduces the input 
frequency by a lialf. The remaining J-K flip-flop, NOT gate and Exclusive OR (EOR) 

gates adjust the relative phase between the outputs A* and B* to inatch the phase of 
the inputs A and B. 

A- 

1. 

FIGURE 3.7: Encoder conditioning circuit 
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3.2.3 Hardware: Peripherals 

In addition to the hardware directly associated with the control of the gantry robot, 
there are additional components which are necessary in order to complete the system 
and ensure safe operation. In future, the test facility will be expanded to include two 

plastic chain conveyors. a payload accumulator and a dispensing mechanism. It may 

also be possible to use a second robot to take payloads from the main conveyor and feed 

them into a return mechanism. The peripheral hardware has therefore been designed 

to allow for significant expansion of the test facility. A general layout of the existing 
infrastructure is presented in Figure 3.8. 
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FIGURE 3.8: Test facility layout, 
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*12 V Supply 

+5 V Supply 

Space for power drives 

In addition to the control computer and robot hardware, the test facility also includes 

two large drive cabinets, five smaller breakout boxes and steel conduit for signal cables. 
The drive cabinets house the high power amplifiers and drives as well as a selection 

of individual power supply units in a cooled environment, which is screened from Radio 

Frequency Interference (RFI). Different components of the test facility have varied power 
supply requirements, ranging from 240V alternating current (ac) for cooling fans and low 

voltage power supplies, 110V ac for the motor amplifiers, ±12V direct current (dc) for 

the control signal amplifier circuits. -12V dc for the main ignition and emergency stop 

circuit and +5V for the encoder circuits. The drive cabinets have been named 'Pick' and 
'Place' to reflect the operation which a robot would perform at that location along the 

From Hardware 

Pick Signals 
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conveyor; Picking payloads off. or placing them on. 

The breakout boxes serve as connection points to which external hardware such as robots 
and conveyors can be connected. They also act as signal routing points. where. signals and 
power cables from different components of the test facility can be connected to multiple 
other components. 

Signal and power lines are run in separate. earthed conduit and each cable is screened to 
help minimise RFI from being transmitted from power lines to signal lines. A combined 
ignition and emergency stop circuit (see Figure 3.9) runs between the computer and the 
drive cabinets and controls the inain three-phase 415V ac supply to the entire system, 
ensuring that the plant can be shut down completely should a problem arise. 

FIGURE 3,9: Ignition and vinergency stop circuit 

The ignition, stop circuit is powered from a 12V dc supply and uses one master relay 
(Relay mstr) in the Pick cabinet to control six slave relays. There are three slave relays 
in each drive cabinet, one for each phase of the 415V grid supply. The slave relays mimic 
the state of the master relay, if the master is energised. all six slave relays are also. 
As a standard safety precaution, the three stop buttons operate in the normally closed 

position. In this waýy, a fault in the ignition circuit immediately shuts down the. plant. 
The start button operates in the normally open position and has a spring mechanism 

which maintains this state unless the button is pushed and held down. Therefore, the 

master relay uses a self latching circuit to remain on once the start button is released. 
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3.2.4 Software development 

A highly modular approach has been used for developing the control software. The 

control task can be broken into a number of different sections, most of which are not 
directly associated to the control algorithm, but are required to control the expansion 
cards and correctly manage the data generated by the test facility. The advantage of this 

approach is that the implementation of a new algorithm requires changes to only a few 

elements of the software. This reduces development time and simultaneously increases 

program reliability and stability because there is less scope for creating bugs or errors. 
The different modules are: 

e User Menus - simple, text-based screens which allow the operator to specify 
test parameters, such as the required number of iterations per test, adjustment of 

control gains and tuning parameters and selection of which data to save. 

41 Reference profile generator - creates a sampled. data reference profile which 

meets the specification defined by the user. 

0 Control algorithm - the main control algorithm uses the reference profile and 

position data from the encoder signals to generate the control set-point for the 

current sample instant. 

0 Homing routines - before any ILC test can begin, the robot must be correctly 

initialised to a reference point and then homed to the starting location. After eadi 

iteration, the robot must be re-homed to a starting location. 

0 Expansion card functions - used to operate the expansion cards and exchange 

data between the computer and the robot. 

0 Data saving routines - temporarily store data in memory during an iteration, 

then download it to disk between iterations. 

0 Matrix manipulations - including matrix multiplication, addition, subtraction 

and inversion are required for model-based algorithms. 

0 Miscellaneous Functions - such as emergency stop shut-down procedures, ran- 
dom number generation and timed delay generation. 

0 Core program - this module manages all of the other modules, sequences them 

correctly and runs the program. 

Figure 3.10 shows the software flowchart which details the sequence of steps performed 
by the program, from startup through to test completion. With reference to Figure 

3.10, initially the program obtains user specified information and test constants, such as 

control gains and tuning parameters. Next, the expansion cards axe initialised and the 
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reference profiles are generated, based on the user specified information. The program is 

now ready to prepare the robot for testing and then perform the test. At this stage, two 

program loops define the sequence of events which runs the test. The outer loop applies 
to each iteration, while the inner loop applies to all of the sample instants within an 
iteration. The robot is homed to a specified starting location, and the program verifies 
if the required number of iterations has been performed. If the answer returns 'yes', 
the system is shutdown safely. If not, the prograin enters the inner sample loop and 
generates a new control set-point. Once the required number of samples for one iteration 
is achieved, the program returns to the outer loop and verifies if the required number of 
iterations has been met. The process continues until all iterations are complete. 
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Transfer-data from memory to hard disk 

FIGURE 3.10: Software flowchart 
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3.3 Plant Modelling 

An essential aspect of any control system implementation is the development of mathe- 
matical models which adequately describe the dynamic behaviour of the plant which is to 
be controlled. For more advanced algorithms, system models are an essential component 
of the real-time controller. But, accurate models also allow the control system to be 
designed, tested and refined in a simulation environment, shortening development time 
and reducing the risk of the controller damaging the real plant by supplying unsuitable 
inputs. 

Control system designers generally use one of two approaches to model plant dynamics. 
These are the frequency-domain, transfer function and the time-domain, state-space 
representations. l7rom a plant modelling perspective, the state-space approach tends to 
be more suitable when specific paxameters pertaining to the plant such as mass, stiffness, 
friction and inertia are known or can be measured. State-space methods are well suited to 
describing non-linear plant dynamics, while transfer function models axe only appropriate 
for linear plants. The transfer function approach tends to treat the plant itself as a 'black 
box' and is concerned only with the relationship between the input and output. This 

makes the transfer function approach more suitable for the axes of the gantry robot, for 

which no physical data is known. 

Frequency domain modelling invariably involves supplying a known input to the plant 
and measuring the output. A mathematical function can then relate the input and output 
sequences. Commonly used input sequences are sine-waves, white noise or coloured noise. 
The sine-wave, spectrum approach has been used in this project. If a sine-wave of known 
frequency and amplitude is supplied to an open-loop, linear system, the output will also 
be a sine-wave, but with a different amplitude and shifted phase. The ratio of the input 

to output amplitudes is recorded as gain in decibels (dB) while the phase shift is recorded 
in degrees. If a sufficiently large range of frequencies are tested, a Bode plot representing 
the frequency domain response of the plant can be produced. Key features of the Bode 

plot can indicate plant dynamics such as poles, zeros and resonances. Using the Bode 

plotting rules in reverse it is possible to construct an approximate transfer function of 
the plant by hand. 

As each axis of the gantry robot is an integrating plant, each transfer function has a pole 

at the origin, implying that the plant is not open loop stable. To perform open loop 

sine-wave spectrum tests, the axes were homed to a known starting position before each 
frequency was tested. For low frequencies, the amplitude of the input sine-wave had to 
be made sufficiently smO to ensure that the axes remained within their travel limits. 

As the sine-wave frequency increased, the input amplitude could also be increased to 

compensate for the reduced open loop plant gain. 127 different frequencies ranging from 

0.628rad/s (O. lHz) to 477rad/s (76Hz) were used to generate the X-axis Bode plot, while 
129 frequencies from 0.628rad/s (O. lHz) to 879rad/s (140Hz) and 139 frequencies from 
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0.628rad/s (O. lHz) to 1005rad/s (160Hz) were used for the Y and Z-axes respectively. 
Having developed approximate transfer functions by hand, the models were then refined 

using a least-inean-square optimisation technique to minimise the error between the 

measured gain response and the transfer function gain response. 

The resulting transfer function model for the X-axis is: 

GX21 
(s + 3.64 x 105)(S + 500.2 1) (s + 35.88 : ý-- j400.76) 

x 
s (s + 69.73 ± j459.64) (s + 30.53 ± j378.98) 

x 
(s + 30.46 ± j336.23)(s + 27.47 j249.8)(s + 10.78 ± j223.56) 

x ... (s + 32.59 ± j297.99) (s + 21.14 j239.36) (s + 10.64 ± j220-02) 

x 
(s + 14.06 ±j 195.13) (s + 10.59 j 169.44) (s + 8.83 j 124-71) 

x (s + 10.67 ±j 192.24) (s + 10.45 j 141.63) (s + 8.51 j 119-75) 

x 
(s + 5.33 ±j 106.87) (s + 3.36 ± j83.93) (3.1) 
(s + 6.05 ± j86.78) (s + 12.02 ± j79.09) 

This is a 21st order system including numerous pairs of resonant poles and zeros. These 

resonances are largely caused by the flexibility of the support stand and laboratory bench 

on which the robot is mounted. A Bode plot comparing the measured frequency response 

and the frequency response of the model can be seen in Figure 3.11. The model inatches 

the plant dynamics well. 
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The Y-axis model is 7th order, represented by the transfer function: 

GY7 (8) (s+148.20) 

s(s + 78-54 ± j533.34) 

x 
(s + 49.24 ± j526.52)(s + 42.06 ± j87.01) 

x6 -0.000726S (3.2) 
(s + 213.42 = j151.47)(s + 43.31 ± j87.19) 

The Bode plot in Figure 3.12 compares the measured and modelled frequency responses 
for the Y-axis. There are significantly fewer resonant frequencies in the dynamic response 
of the Y-axis than for the X-axis. 

Magnitude plot 

V 

0 

m 

10,10,10,10, 
rad/s 

Phase plot 
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C, 

0 
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rad/s 

FIGURE 3.12: Y-axis Bode plot, 7th order 

The Z-axis model is 4th order, represented by the transfer function: 

Gz4(s) = 
(s + 473.5 1) (s + 199.02) 

X e-0.000746s (3.3) 
s (s + 989.06) (s + 266.22 ±j 157.8 1) 

The corresponding Bode plot comparing measured and modelled frequency responses can 
be seen in Figure 3.13. The Z-axis has the least number of resonant frequencies because 

the mass moved by this axis is small compared to the other axes. Therefore movement 
of tile Z-axis has the, least influence oil tile support stand and laboratory bench. 

Although transfer function models of the gantry robot are less complex to derive than 

state-space models, most model-based ILC algorithms are derived in the time-domain 

and therefore require state-space representations of the plant. However, by using suit- 

able modelling software it is possible to convert the transfer functions into state-space. 
Firstly, the transfer function must be converted to discrete form. and secondly the dis- 

crete transfer function is converted to state-space. 
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RGURE 3.13: Z-axis Bode plot, 4th order 

The models (Equations 3.1,3.2 and 3.3) have been converted to state-space format and 
have been rank tested for controllability and observability. Numerous states of the X 
and Y-axis models have proven both uncontrollable and unobservable. Observing the 
pole-zero plots for these axes, reveals that several pairs of poles and zeros are located 

very close to each other. Therefore the modelling softwaxe used for state-space conver- 
sion has difficulty generating fully observable and controllable models. This creates a 
significant problem for niodel-based ILC which, intrinsically, requires models as part of 
the controller. In order to solve this problem, the order of the models has been reduced 
until all states arc both cOntrollable and observable. The small time delays present in 
the high order models have also been removed, as they are insignificant compared with 
the controller sample frequency. Because of this, the effect of time delays on system 
performance has not been considered in this thesis. 

The model order reduction and removal of time delays results in the transfer function 

and 10OHz sample frequency state space models: 

* X-axis 7th order model 

Gx, 
(S + 500.19) (s + 4.90 x 105) 

x-- 
s(s + 69.74 ± j459.75) 

... x 
(s + 10.99 j 169.93) (s + 5.29 ±j 106.86) 

(3.4) 
(s + 10.69 ±j141.62)(s + 12.00 ±j79.10) 
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6.6005 -2.3565 0.9446 -0.4595 0.2714 -0.0901 0.0520 
8 0 0 0 0 0 0 
0 4 0 0 0 0 0 

Ax7 0 0 2 0 0 0 0 (3-5) 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 0.2500 0 

0.0039 
0 
0 

BX7 = 0 (3.6) 

0 
0 

L01 

CX7 = 
[ 12.8124 -5.4858 1.2727 0.3408 -0.9787 0.6174 -0.5210 X 1()-4 

(3.7) 

D v., = 
[0] (3.8) 

* Y-axis 5th order model 

Gy, (s) =- 
(s + 148.20) (s + 49.24 ± j526.52) (3.9) 

s (s + 78.54 ± j533.34) (s + 213.42 ±jI 51. i-7) 

4.1893 -0.9049 0.4034 -0.0926 0.0349 

8 0 0 0 0 

Ay 0 2 0 0 0 (3.10) 

0 0 2 0 0 

0 0 0 0.5000 oj 

0.0039 

0 
By, = 0 (3.11) 

0 

0 

CY, = 1.5218 -6.3645 0.1684 1.2760 -1.3748 X 10-4 (3.12) 

Dy5 = 
[0] (3.13) 
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* Z-axis 4th order model 

GZ4 09) = 
(s + 473.5 1) (s + 199.02) 

s(s + 989.06)(s + 266.22± j157.81) 

2.8854 -0.7589 0.3421 -0.1092 

Az4 
4 0 0 0 
0 1 0 0 
0 0 0.5000 0 

0.0039 

Bz,, 
0 
0 
0 

Cz,, 26.1368 -4.4846 -3.7900 5.0430 X 10-4 

DZ4 0] 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

These models axe referred to as 'high order' in this document. The Bode plots comparing 
the dynamic response of these new models with the experimental data can be found in 
Figures 3.14,3.15 and 3.16 for the X, Y and Z-axes respectively. The modelling error 
introduced by model order reduction is more noticeable in the phase responses than 
for the gain responses. However, the additional error is minimal, compared with the 

advantage of having full state controllability and observability. 

Certain robustness tests described in Section 3.6.4 deliberately use simplified plant mod- 
els to investigate the robustness of ILC controllers. These models are first order represen- 
tations of the plant consisting of a gain and an integrator. In each case, the gain of the 

first order model has been chosen to approximate the gain of the plant at low frequency. 

The associated transfer function and 10011z sample frequency state-space models are: 

9 X-axis lst order model 

Gx, 
0.05 (3.19) 

s 

A=[1] (3.20) 

B=0.0078 (3.21) 

C=0.0064 (3.22) 

D=[0] (3.23) 
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FIGURE 3.14: X-axis Bode plot, 7th order 
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FiGURE 3.15: Y-axis Bode plot, 5th order 

o Y-axis Ist order inodel 

Gy, (s) = 
0.05 

8 

60 
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FIGURE 3.16: Z-axis Bode plot. 4th order without time delay 

A=[11 (3.25) 

B=0.0078 (3.26) 

C=0.0064 (3.27) 

D=0] (3.28) 

e Z-axis Ist order model 

Gz, (s) 
0.03 

(3.29) 

A (3.30) 

B=0.0039 (3.31) 

C=0.0077 (3.32) 

D=0J (3.33) 

The Bode plots for these, first order models (! an be found in Figures 3.17,3. 18 and 
3.19. As expected, the majority of the dynamic response information has been lost when 
the models are reduced to first order. However, the low frequency gain and phase are 

consistent with the experimental data. These less accurate models are referred to as '1st 
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FIGURE 3.18: Y-axis Bode plot, gain and integrator 
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FIGURE 3.19: Z-axis Bode plot. gain and integrator 

3.4 Model Verification 

Having developed models which accurately represent the frequency response character- 
istics of the plant, it is standard practice to verify their accuracy in the time domain by 

performing step response tests. A unit step input is supplied to the the open loop plant 

and the resulting output is recorded and compared to the output of a similar test, per- 
formed with the model in simulations. The step response tests can highlight modelling 

errors which need to be corrected before the model can be used in control systems. 

Figure 3.20 presents both measured and simulated (with the high order model), unit 

step response data for the X-axis, during the transient behaviour of the plant, before 

it reaches steady state conditions. The graph appears as a ramp rather than a, step, 

because it displays the displacement data recorded directly by the incremental encoder. 

The integrating nature of the plant implies that a step input becomes a ramp at the 

output. 

Figure 3.21 presents an artificial recreation of a step output by differentiating the dis- 

placement data presented in Figure 3.20 to obtain an approximate ineasure of axis veloc- 

ity. The resolution of the measured data plot is poor due to the effects of measurement 

noise, sampling and quantisation. However, it is clear that the response of the model 

matches the measured data well. The amplitude and phase of the transient response 

oscillations are recreated accurately by the model, as is the steady-state magnitude. The 

simulated velocity plot emphasizes the high order dynamic response of the plant, because 

the transient oscillations are far from being pure sinusoids. They are a produced by a 
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FIGURE 3.20: X-axis open loop step response - Displacement) 

combination of liumerous frequencies combined together. 

X-axis step response 

E 

FiGURE 3.21: X-axis open loop step response - Velocity) 

Figures 3.22 and 3.23 display the equivalent displacement and velocity data for the Y- 

axis. There is only a small component of error during the initial transient response 
and the steady state behaviour is accurate. The lower order of the Y-axis dynamic 

response, compared to the X-axis, is clearly visible, because the transient oscillations 

are significantly more sinusoidal. Tile Y-axis also has a much shorter settling time than 

the X-axis. This is related to the smaller component of mass which the Y-axis moves. 
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Y-ax's slop response 
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Fic. URE 3.23: Y-axis open loop step response - Velocity) 

Figures 3.24 and 3.25 present the data for the Z-axis step response. The measured and 
simulated responses are very similar in both displacement and velocity charts, confirming 
the accuracy of the Z-axis model. The step response is comparable to that of the Y-axis, 

except that there is only a single overshoot and no further oscillations. 
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3.5 Test Parameters 

To compare the performance of different control algorithms, a rigid framework must be 

established to ensure that the comparison is meaningful. It is important to provide each 

algorithm with the same test conditions. A structured set of test procedures significantly 

reduces variation and increases test repeatability. But, it must also be recognised that 

certain environmental factors, for example, temperature, humidity. machine wear and 

machine lubrication cannot be controlled with any degree of accuracy. The effects caused 
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by these variables is minimal and has been limited by performing all tests within a 
minimal time frame (typically one month). 

The following parameters have been defined: 

All tests are performed in ILC format with a pause between each iteration. This 
pause is a direct requirement of ILC sYStems and is used for algorithm calculation 
and plant input generation. 

The axes are hoined to a starting location before each iteration. This is the second 
key requirement of ILC systems. 

" Homing is performed to within ±32 microns of the required position. 

" After homing, the axes are held still for 2 seconds to allow structural vibrations to 
cease. 

" Each axis has a reference trajectory which is used for all tests (see Figures 3.26, 
3.27 and 3.28). 

" The combined references produce a 3-dimensional 'pick-and-place' operation with 
a time period of 2 seconds per iteration (see Figure 3.29). 

"A sample frequency of IkHz is used for testing the basic algorithms, resulting in 
2000 samples per iteration. 

"A sample frequency of IOOHZ is used for testing the model-based algorithms. This 
frequency was deemed adequate, giving 200 sample instants per iteration. 

" Before commencing the collection of test data, the robot is operated for 300 itera- 
tions to allow components and lubrication to reach normal operating temperatures. 

3.6 Types of Test 

As well as establishing general rules for operating the plant, a series of tests have been 
developed to investigate four key aspects of ILC performance, long-term stability, robust- 
ness to initial state error, robustness to model gain uncertainty and robustness to model 
gain and phase uncertainty. These tests have been implemented in the same manner for 

each algorithm. 

3.6.1 Long-term stability 

Testing long-term stability involves operating the algorithm continuously for a large num- 
ber of iterations. Experience gained through the implementation of different algorithms 

67 



0.04 

OM5 

0.03 

0025 

0.02 

0,015 

0.01 

0,005 

0 
0 

0.16- 

0.14 - 

0.12 - 

0.1 - 

0.08- 

0.06- 

0.04 

0.02 

0 
0 

X-ams 

0,2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
time (s) 

FIGURE 3.26: X-axis reference trajectory (30upm) 
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FIGURE 3.27: Y-axis reference trajectory (30upm) 

on tile gantry robot tends to suggest that if an algorithm is inherently unstable, the 
instability will be identifiable within 100 to 200 iterations, sometimes as few as 3 or 4 

iterations. The long-term stability test is therefore defined as a batch of 5000 consecu- 
tive iterations. This test does not guarantee algorithm stability for an infinite number of 
iterations. However, in comparison to the few hundred iterations which can be achieved 
by inherently unstable algorithms, the 5000 iteration test is a good indicator of long 

term-stability. The high order models are used for this test. 
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FIGURE 3.29: Combined 3-Dimensional reference trajectory (30upm) 

3.6.2 Robustness to initial-state error 

To measure controller robustness. initial state error is deliberately introduced at the 

start of each iteration by adding a bounded, pseudo-random value to the home location 

of each axis. This specifically adds error to the initial position of the robot. The value 
is pseudo-randoni because it is generated by a seeded random number generator, where 
the seed is the iteration number. Therefore, within one test, the initial displacement for 

each iteration appears to be random. However. within a range of tests, the same offset is 

generated for corresponding iterations. The initial offset is also scalable. This is achieved 
by selecting the maximum bound within which the pseudo-random number can occur. 
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The high order models axe used for this test and the tests are = for 5M iterations. 

S. S. 3 Robuotimeza to EaRm u1mcaTtalaty 

To test this, the high order plant models axe deliberately aheTed by multiplying them 
by a zcgw gain value, selected by the operator. Multiplying the models by a sc&lar 
g9n corresponds to a vertical shift of the galn on the Bode plot. The shape of the gain 
plot d3e3 not change with respect to frequency and the scalar g&in has no effect on the 
system phase. This is a simple modification to the plant models used to the 
robustness of the algorithm to modelling error and uncertaJinty. The tests Oze run for 
5,30 iterations. 

S-3dfi lRcb=tmsz3 tO Eem Smdl IP)h&Z(B UMCWt9mV 

This has been evaluated using first order plant models that provide a very appr=ýmata 
repiesentation of both the gain and phase response characteristics of the plant. This 
allov,, rs the testing of algorithm robustness in the presence of dgniflcant modeMag e= 
emd uncertainty. The tests axe rzm for 500 iterations. 

S4.5 T83t nummazy 

The ma: m &azactedstics of each test axe su=auised iu taUe 3.2. 

TABLE 3.2: Test Specificatio= 

Test Description Models 
FLým--Lg-term Tests t-helo-ng-term stability of the algorithm Egh 500 

Xmitial error Pseudo-random homing signal Egh 5CO 

-Plobustnew 
I Multiplies the plant model by a scalax gain High 5CO 

Rclaztness 2 Uses fwst oTder plant models I Low 5GO 

3.7 Maw urn, mg HIC Performames 

T'heze ýs currently very little published research which discusses tý-, Jmlques for memuz- 
ýng, the relative and stand alone performance of ILC systems. Standard techniques for 

elgerithm comparison used to date, generally involve plotting a measure of the trackng 

e=--T for each trial and then subjectively evaluating which plot is best. Hn ILC systems, 
w=erous factors can be used to describe the performance of an algorithm. Therefore this 

apprvach depends on which factors axe considered more important than others. With 
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thýz in mind, a numerical performance index hu been deveýoped, which addresses =d 
evalue. tes four of the main performance indicatoirs of ILC systems. 

Four veziables which are of particulaz importance, when descrýhing the performance of 
si HLC algorithm are (Xu and Tan, 2002): 

" Convergence speed 

" Minimum trwking error 

" Transient perfomance 

" Long-term stabffity 

Figure 3.30 shows the typical mean squared error (mse) plot for an unstable HLC system. 
The mse is a representation of the tracIdng performance obtained during each iteration 

and indicates whether the traddng performance is generally improving, remaining con- 
stint oz becoming worse. For a vector a of length N, the mse is de2ned mathematically 
by: 

EN 2 
1=1 ek 

N 

The mse is used in this document to repre3ent the general level of trac2dng error achieved 
et each iteration. However, there is an alternative measure, which is also popular withLa 
the ILC comznunity, namely the norm of the error. This usually refers to the 92 norm, 
&Ened by. 

led, ç5) 

The 12 norm is the square-root of the sum of squazes, effectively a represemtatýom of the 
Zength or size of the vector to which it is applied. 

Key pazameters used to describe ILC performance are also indicated in Rgtzre 3.30. ea 
ýa the initial mse value, i,,,, is the number of iterations required to rea& mir-ýM= error, 

e, i,, is the minimum mse value and i,, is the number of iterations until the mss begins to 
kcireeze and effectAvely the system becomes unstable. In the cezes where the centrouer 
is unemble, often the number of iterations to mkimum error i", a and the number of 
iterations to instability i,, will be the same, defining a singRe point of minimum error emin 
Howiver, these points have been defined sepazately, because for some controllers, the mae 
dew appeaz to remain constant at the minimum value eý,, j,, for a number of iterations, 

Befaire the instability becomes apparent and the mse noticeably increases. The typkal' 

mzz plot for a stable systemwhich displays monotonic convergence is endlez, except that 
the i,, point is never rewled and the mse dow not increase as the number of iterations 
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Lmcrewes- Of thess Pazameters, ime Imd emin aze Most CC=GMRY Used to desczibe MC 

perlamnance because these are the most easily Measured vazft-biez. The general s2lape of 
Figure 3.33 applies equalRy well to the typical shape of the error norm curve. 

Ty"I Uftftblg *M 

0.9 

UP 
-0 1 

DA - 

D. 3 

0 10 20 30 40 so eo nw so 100 

FIGURE 3.30: Typical znze curve for an unstable HLC system 

When control engineers describe the performance of ILC systems, they tend to discuss 

quaLtatavely the shape and characteristics of the mse or no= chart. When directly 

cempazing two curves plotted on the same chart, it may be a reasonabRe method of 
ccmps&-wn, because it is usually clear which algorAhzn ach;. aves the lowest tra6ting er- 
ror or fastest convergence speed. However, the comparison is very subjective and the 

=Mc. "m6oms depend ultimately on which characteristics are recognized as s! gnfficznt by 

the engýneen If the two performance curves cannot be plotted on the same chart, the 

=-mpeziza-an becomes less obvious. It is therefore ne-cessezy to extract the relevant im"Cir- 

mat! oa- kom the performance curve in a reliable and repeatable mtnner. For consistency, 
tt is a=umsd that the mse curve is used rather than the norm carve. 

The proposed performance index involves calculating the axes. under the mee curve for 

tlza first-ff iterations, where N can be selected appropriately for the 8' MtBM3 baýmg ans-7- 

yzed. This results in the Performance Index for N iteirations, Pliv (R&tcliffe, Lswk, 
P-cgerz, HMBnen, Hazte, and Owens, 2005a). It is suggested that most MC systems 

aj rity exhibit learning behaviour during the first 100 iterations. Within this time, the mm 
of the RB&, m! ng has been achieved sad the system hw- reached, ox is near, the mirlm= 
tzwkýmg ezrox value. Therefore it is appropriate to compare the performance of 6go- 

rithms during taks period. The practical implementation results in Chapters 4 End 5 
have been compared using P1100. 

Pf, ff, is s! mp2e to calculate. Considu the azea beneath the =s pýct as divided into 
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xectazguRax columns. If the width of each iteration column is taken as unity, this makes 
t, 'ýz P11co a simple summation of the f=t ICO mse values. For the geneml case F1jV, thýs 
!a fa=ally defined as: 

N 
FIN = 

Emse, 

n=l 

wýýezs n io the fteration number. 

(3.36) 

The value of Pljv represents the performance of the algorithm with respect to both 

convergence rate and minimum error levei. Consider Figure 3.31 which shows typical 
mse pýots for syste= with different performance chazacteelstics: 

Fwt convergence and low final error. 

2. Fmat convergence but large final exror. 

S. Slow convergence but low final erroz. 

4. Mow convergence and large final error. 

The most desirtble chaxacteristics are fast convergence and low finel error. These gsa- 
ezxeý. e the smallest area beneath the mse curve and hence the smillIest vake of Pljoo. 
Amy ot: xer combination will produce a Razger P11M, unless one of the characterietks hez 

-h paxtacularly a peztkulafly outstanding perfDrmance, such as large final error but wit 
fwt convezgence, or slow convergence but with extremely s=&U error. En either case a 

zmaZ P12M can be generated. MnAch algorithm peiforms better is then dependent Uppon 

which chwextezistic is more important for a particulaz application. 

To SEOW a folir compazLson of algoflthm parkmmmee, sevexal twt pw&msters mu- t be 

laeld conotmt: 

o The plant (ox plant model in simulation). 

o The reference trajectory. 

o The value of IV. 

o The mse value for the first iteration (el). 

VwliLtýcn Am any of these parametem wiH affect Pljv Am a way whirh does not correspond 
d, mactly to a change An performance. 

Fazumeter ez is perhaps the most difficult of these values to hold constant. However, 

tý! s can be achieved if the plant input is set to zem for the duraton of the Erst iteratlon. 
The plant output should therefore remain constant, and the value of al will be the msB 
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equWalent to the reference trajectory. With el held constant, it ýz loec? l to remove the 
FIN dePSmd8ncY On the unft of Inse, by nonmallaing the mse so that el = 2. 

Nt ýs now possible to define upper and lower bounds on the value of PIN by consideTAng 
two extxeme cases of traddng performance. Firs- tRy, if the a1gsrithm azl2leves perfect 
trtcldng after only one iteration of leamdng, as spedfie& previcudy, the mse for the first 
iteration is normalised to 1, but by the second iteration the mse will be 0. Hirespective 

of the value of N, the mse will remain equal to 0 for all n>1. Therefore the s= of the 

mce will result in PIN (min) =1 which defines the loweir bound. In the opposite case, 
when the algorithm leax2m nothing at any iteration, the mse will be equal to I for each 
iteration, therefore the upper bound can be defined as Pliv (max) =N. ff the algorithm 
becomes unstable and the calculated PlIv is larger them N, then it is set to N by default. 
Consequently, the PIN value will therefore Ris between the bounds 1 :5 PIff :5N. The 

closer the value of PIN is to 1, the better the tracidng peirformamce. 

5.0 OUMM&TY 

The muRti-axis test facility including all hardware and Coftwaze has been described in 
det6l. The frequency response m: ethod used to generate transfer function models of 
each &ýds has then been discussed and the matching Bode plots, transfer functions and 
stste-space models have been presented. As the highest order models are both uncon- 
troll, able and unobservable, the order of the models has been reduced until all statw are 
cont7rollable and observable. The time delays have also been removed. Finally, first order 
modeýs used for robustness testing have been deflned. The high order models have been 

vezi8ed by comparAng experimental and simulated step response tests. 

A atzuctured framework has been established to allow the fair comparison of different 

HI, (C algorithms. Test pazameters have been stated and the four tests used to investigate 

vazicus aspects of algorithm behaviour have been dsflned. FinaRy, a new perfannazce 
index designed specifically for ILC systems has been developed. The index takes four of 
the =ost cigni8cant performance indicators into consideration and produces a repeatable 

muznezical performance rating which ranges from I when perfect traddng is achieved in 

ýut one iteration, to IV, when the algorithm learns nothing or becomes unstable within 
the ast IV iteiraticas of a test. 
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4. n rmtradluctblm 

Me three term or PID feedback controUer, developed over 60 years ago, fz a' 22 vidsly 
used in industry in a very diverse range of applications. Simplicity of deaggM and ewe 
of tun! ng are two of the qualities which make it particularly attractive to industry. P: D 

comtxoR has been implemented on the robot and acts as a benchmark againet w1jch the 
MC comtzoUers can be compared. Basic P-type ILC, ftnplemenlzed alone hw been found 
to The partAculazly batUy suited to a naturally integrating plant. However, the hybm'd 

czml-imetion of PID feedback with assistance from P-typs ILC produces a sigafficant 
Increws in tzackýng perfonnance. Long-tenn stability issues have been considered md 
a r&-, gB cd ffitering techniquez implemented to resolve problems of high frequency naise 
and resonant disturbance. 

(Generally, data specific to the X-sads is presented within this chapter, while the dsta 

fcr the Y emd Z-axes axe included for completeness in Appendix B. In certs! = cezes, 
t, 'za d-p-ts, for the Y and Z-axes axe more appropriate and are therefore included. Whez-e 

powihRe, the data for all three axes is presented simultaneouslRy using a S-Dimsnsicnal 

chant. Mis emphasises the fact that a multi-axis plant is being utilized for experLmentrI 
e7zlustýoa of ILC strategies. 

1 4.2 KID Feedb&&K (conntroR - Beimcbmark 

, U;. n ARFvirfithm 

PED feedback controR consists of three terms acting on the =ent sample enrox. In 

Esnez-al, the px0portional component provides the majority or the controR effort, while 
the Lntegml component seeks to remove steady state erro'T and the dazi-'rati've C^-MPOMent 
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reduces the rize time under tr=- ient co nditions. Fýom a frequency response perspectm, 
the PID controller can be considered as a simplified lead-lag compensator, which can be 
bnpýemented to adjust the gain and phase mazgins of the open loop pRant and improve 
the bandwidth of the control system. The controUez, can be represented as: 

U(t) = Kpe(t) + Ki e(t) dt + Kd 
de(t) (4.2) 

-I dt 

where Ky, Ki and Kd are the proportional, integrai =d derivative gaL= resuBctlVely. 
Ga! n tuning is frequently achieved by means of the ZlegRer-Mchols method (Vegaer and 
Nichols, 2942). This technique relies an causing the plant to oscillate by increw! ng the 

proportional gain. Once the frequency of oscillation and the gain irequired axe established, 
At is possible to calculate the necessary values of integral amd derivative control which 
wE se. w- a starting point for tuning. However, this tecnlque Vez net su! ted to the 

gantry robot because excessively lazge values of proportional gain could be supplied to 

the plant before any fonn of oscillatiom could be detected, resulting in meaningless Values 
of integr al and derivative gain. Instead, the gains were a4ýustsd through experimentle.! CM 
and simulation studies. The resulting PID gains for each a. -do are as shown in Table 4.1. 

TABLE 4.1: PM gal= for e&ch =is 

P gain I gak D galm 

X- T 6607 TWO 1 0.2 1 
Y F 8-00 -- 1 300 I 0.2 
Z:: ý ý 

I 

Tke proportional gains are the maýdmum values which could be implemented, whiRe 

generating only minimal vibrations. The integral and deriva; tive gains are idemtkal for 

ezzh eods, because theze values were found to pz-oduce a good responss Eom the system. 

4.2.2 usat Tes-unhts 

FD ccntrol is a feedback driven system, which inherently reqWres error between the 

pRant output and the reference, for a new control input to be gsnezateýR. Because of this 

requirement, FID control can never achieve perfect tracking with mem error. Moreover, 

a PED controlleir has no ability to learn from previous experinients wad the. -efFore, in 

a control system which is required to follow a repeatkg trajeýctory, while neglecting 

environmental variations, the controller will produce the same level of tracking tccumcy 

a. each repetition of the task. Implementation of a PID controller on the gantry robot 

yieR& the results in Figuze 4.1. 

Egue 4.2 shows a plot of the nme generated for each aýds during a ROM iteratAon test. 
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FIGURE 4.1: mse for 1000 iterations (PID controller) 

Clearly the performance of the controller at iteration I is the same as the performance 
at iteration 1000. Table 4.2 displays the mean values of nise obtained over tile 1000 
iteration test. Calculating the mean removes the effect of tiny variations in performance 
which occur from iteration to iteration due to variations in non-linear factors such as 
friction. These are the benchmark values used for comparison with other controllers. 
The values for each axis differ significantly, because they correspond to the amplitude of 
the reference trajectories. The Y-axis reference describes a larger displacement than for 

the X and Z-axes, therefore the cumulative tracking error for the Y-axis is potentially 
larger. 

TABLE 4.2: PID controller, mean mse for 1000 iterations 

I Axis I mse (MM2)1 

x 1.76 
y 14.37 
z 0.63 

In Figure 4.2, the reference trajectories, associated X-axis displacements and tracking 

errors achieved during iteration 1000 are shown. It is immediately obvious that the PID 

controller produces a significant level of residual tracking error, tile majority of which 

can be accounted for by a time lag in the output response, which appears as a phase 

shift on the chart (similar results for the Y and Z-axes can be found in Appendix B). 

Figure 4.3 displays the same information but in 3-Dimensional format with the data for 

all axes on the same chart. The resolution of the chart does not emphasise the magnitude 
of the residual tracking error. Figure 4.4 displays the measured tracking error, also in 
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FIGURE 4.2: X-axis trackin, g performance and error at iteration 1000 (PID controller) 

3-dimensional format. On this chart. perfect tracking would be represented by a point 
located at the origin. Consequently. Figure 4.4 clearly demonstrates there is potential 
for an improvement in tracking performance. 
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FIGURE 4.3: 3-Dimensional tracking performance at iteration 1000 (PID controller, 
blue reference) 
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-8 

Fic, URE 4.4: 3-Dimensional tracking error at iteration 1000 (PID controller) 

4.3 Pure P-type ILC 

4.3.1 Algorithm 

This is the most basic form of ILC algorithm which uses the input from the previous 
iteration together with a function of the error generated by that input. In this particular 
example, the function is a scalar gain. In this implementation. the anticipatory form of 
the algorithin is used. Therefore, the control algorithm is represented by: 

Uk -I 
(t) ý Uk M+ aek (t + 1) (4.2) 

as discussed in Section 2.2.2.3. The algorithm is implemented alone, there is no additional 
feedback control of any kind and only the feed-forward signal generated by the learning 

controller is fed to the plant at the following iteration. In addition, all sample instants 

of the memory profile for the first iteration (uo) are set to zero. This forces the learning 

controller to learn the required profile from zero information. 

4.3.2 Test results 

Figure 4.5 shows how the mse performance of the P-type algorithm varies for different 

values of scalar learning gain, as compared with the constant mse generated by the PID 

feedback controller. The learning controller has difficulty in matching the performance of 
the PID controller. In the case of the Y-axis. the learning controller results in an ruse, over 
2 orders of magnitude larger than that produced by the PID controller. For a learning 

gain equal to 1, the mse plots for all three axes terminate at iteration 68. This occurred 
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because the input demand to the Y-axis caused the robot to exceed the maximum travel 
limits in the Y direction and the software automatically shut-off the hardware for safety. 
For a learnin gain equal to 10, the Y-axis was not operated. accounting for the inse 9 
remaining constant at the value of iteration 1. The learning controller did not produce 
monotonic convergence and the stability of the system is questionable. given that in some 
cases the mse increases from trial to trial. 

lo, 
x-axm rrae 

PID 
4- 2 _W=0A 
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S o 
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.r 10 F 
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FI(-ullE 4.5: P-type ILC. inse performance compared to PID, (learning gains 0.1,1, 
10) 

The mse plot demonstrates that the pure feed-forward P-type learning controller is par- 
ticularly badly suit(A to the gantry robot. due to the, integrating effect of tile plant, 
which adds -90 degrees phase shift to the frequency response and implies that the plant 
is open-loop unstable. The controller must also learn an input profile which resembles 
the derivative of the reference trajectory, rather than the reference trajectory itself. The 

error vector generated at the first iteration, when the robot is not yet in motion, is in 

fact equal to the reference trajectory. This explains why a large number of iterations are 

required for the controller to learn tile derivative of the reference, based onl oil data y 

obtained from the reference. 

Though the learning process is particularly slow in these experiments, it does provide 
the opportunity to observe the mechanism by which the algorithm develops the required 
input profile in both the time and iteration domains. This process was described briefly 

in Section 2.3.2.2. Effectively, the controller must learn the first part of the profile before 

it can learn later sections, because the plant output is a continuous profile without dis- 

continuities and thcrefore, the tracking performance achieved at the final sample instant 

depends on the performance achieved during all the previous sample instants. Con- 

versely, the tracking performance achieved at the first sample instant does not depend 
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on the performance at any other time. 

Figure 4.6 demonstrates this principle visually. Tile chart represents the motion of the 
X-axis with respect to time, but also with respect to iteration. Figure 4.7 represents the 

corresponding error variation for the same test. The first sample of every iteration lies 

on the vertical plane defined by time ý 0. Equally, the final sample of every iteration lies 

on the plane defined by time = 2. The required displacement defined by the reference 
trajectory at the first and final sample instants is zero. Therefore for iteration 1, no 
learning is required at these points. because the error is zero. However, at iteration 2, 

the robot uloves in response to tile new input profile defined by the learning algorithm. 
The cumulative effect of the motion throughout the iteration now results in a large error 
being generated at the final sample instant, as the controller has actually caused the 

performance at this sample instant to worsen. by attempting to reduce the error during 

the previous sample instants. As the number of iterations increases, the error recorded at 
the final sample instant undergoes large amplitude oscillations, influenced by the motion 

of the axis, earlier in the profile, until the wave of learning reaches tile later stages of the 

trajectory. Only then does the error at the final sample stabilise back towards zero. 
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0,02 

0 

(5 
-002 

-0.04 
0 

200 

Fic. uRE 1.6: X-axis tracking progreshion (P-type ILC, gain 10) 

Figures 4.8 and 4.9 show similar plots for the Z-axis. In these examples, the progression 

of learning is clearly visible. Notice how the tracking progression chart should settle on 
the shape defined by the reference trajectory, while the error progression chart should 

settle on the horizontal plane defined by error 0. For both the X and Z-axes, the 
P-type learning controller produces very slow error reduction. Increasing the learning 

gain is one possible solution to this problem. However, it produces larger input demands 

which can saturate the linear motor drives. This is especially true for the Y-axis where 
large inputs are automatically required to make this axis follow the reference trajectory, 

which has a larger displacement that the other axes. 
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FIGURE 4.7: X-axis error progression (P-type ILC, gain = 10) 
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FIGURE IS: Z-axis trackiiig progression (P-type ILC, gain 10) 

Given that the P-type ILC requires many iterations to match the performance of the PID 
feedback controller and, for certain demands, is proven unable to match the performance, 
it is of little use when the overall objective is to improve the tracking performance beyond 

the capabilities of the PID controller. However. the ILC has clearly demonstrated the 

ability to learn and adapt the feed-forward input to the plant, while attempting to 

generate zero error. For the gantry robot, the simple P-type ILC has some potential and 
should not be discarded without further investigation. 
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4.4 P-type ILC with PID feedback 

4.4.1 Algorithm 

The main reason for the poor tracking performance demonstrated by the P-type ILC 

alone, is that it is poorly suited to an integrating plant. However, a feedback controller 

can be used in combination with the ILC, to form a hybrid arrangement. The feedback 

controller is then able to compensate for the integrating plant and to remove the large 

majority of the trw! king error, while the ILC learns to improve upon the performance of 
the PID in order to generate superior error reduction, as the number of trials increases. 

An added benefit with this arrangement, is that the performance achieved at iteration 

I is equal to that of the PID controller alone and the ILC can immediately build upon 

this performance, without requiring a large number of iterations to match it. 

Having combined two controllers into one, it is essential to select a suitable configura- 
tion. Drawing an analogy with components in an electrical circuit, there exist two main 
configurations for the combined PID and ILC controller: parallel and series. 

Figure 4.10 shows the block diagram representation of the series arrangement. In this 

configuration, the two controllers operate in turn on the plant input signal. In effect, the 

ILC is used to learn the input demand to the PID controller, which will compensate for 

the error produced. Fundamentally, the PID controller still generates error with respect 
to the input received, but because the ILC has already adjusted this input, the error 
between the PID output and the original reference trajectory is reduced. 

Similarly, Figure 4.11 shows the block diagram representation of the parallel arrangement. 
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Eýý output 

FIGURE 4.10: Hybrid controller - series configuration 

The feedback and learning controllers both operate on the plant input simultaneously. 
As discussed previously, the PID controller will always generate residual tracking error 
and the TLC will use this remaining error to learn the required input trajectory. During 
iteration 1, all of the control effort is generated by the PID controller. As the number 
of iterations increases, gradually the percentage of the control effort generated by the 
TLC increases, while the PID has less and less effect. As the number of iterations tends 
towards infinity, the TLC learns the perfect input profile, the output error is reduced to 
zero and the PID ceases contributing to the control effort. This configuration is similar 
to using the TLC controller alone, except that the transition from PID to TLC results in 

significantly improved performance during the earlier iterations. This arrangement also 
has the added advantage of increased robustness to non-repeating (iteration dependent) 

errors and sudden changes in plant dynamics (due for example to changes in payload) 
because the PID controller can immediately compensate for these. 

Output 

4.4.2 Initial implementation 

Both the series and paxallel configurations have been implemented on the gantry robot, 
this allows comparison between the two methods. In both cases, the PID controller gain 
values were identical. 

Figure 4.12 displays the mse performance for the series arrangement when the learning 

gain a is set to 0.1,0.01,0.001 and 0.0001. The benchmark PID performance is also 
included on the plots. In comparison to the P-type ILC alone, the hybrid arrangement is 

able to improve the tracking performance beyond the limitations of the PID controller. 
The mse can be reduced by over two orders of magnitude on all three axes, which is 

a significant achievement. Varying the learning gain now produces the expected linear 

effects on error reduction. High gain results in faster error reduction in comparison to 
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FIGURE 4.12: mse for different learning gains (series controller) 

lower gain, which produces slower error reduction, because the algorithm is numerically 
unable to make large changes to Uk-1. The P110() values associated with each series 
controller learning gain are presented in Table, 4.3. 

TABLE 4.3: Series PID and P-type ILC, PI100 for different learning gains 

Gain X-axis Y-axis Z- *s 
0.1 100.000000 100.000000 100.000000 
0.01 43.726610 43.429009 44.523145 

0.001 91.931639 91.466577 90.020137 
0.0001 99.045063 99.177682 98.709156 

Figure 4.13 displays the 3-Dimensional tracking error plot obtained during iteration 40 

with a learning gain of 0.1. compared to the error produced Iýy the PID controller. The 

blue oval near the origin represents the maximum error amplitude of the hybrid controller 

which has much smaller bounds than the PID controller. 

The overall tracking performance has been increased, but not without cost. From Figure 

4.12 it can be seen that the ruse plots for high gain values suddenly stop short of the 
500 iterations required for the test. For example, with gain 0.1, only 40 iterations are 

achieved, while with gain 0.01,400 iterations are achieved. In both cases, the tests 
had to be interrupted because the robot was experiencing severe mechanical vibrations 
of amplitude, large enough to necessitate the system to be shut down. The controller 
became unstable, as confirmed by the increase in mse following the initial reduction 

which is prominent in the X-axis plot. For gain 0.1, these vibrations are clearly visible 
in the tracking error progression plot for the X-axis (Figure 4.14). After the initial error 
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FIGURE 4.13: 3D tracking error compared to PID (series controller, gain = 0.1, itera- 
tion 40, red PID) 

reduction, ripples begin to appear as early as iteration 10 and by iteration 40, the entire 
system is dominated by vibrations. 
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FIGURE 4.1 1: X-axis tracking error progression (series conlroller, gain 

The IoNver section of Figure 4.15 confirms the severity of the error oscillations and the 

upper section indicates that they are a result of the input supplied to the plant (similar 

results can be seen in Appendix B for the Y and Z-axes). 

Figure 4.16 displays the equivalent mse plots for the parallel hybrid arrangement. The 

characteristics of these plots are almost identical to those of the series configuration. 
Higher learning gain results in faster convergence. but also in a more rapid onset of 
instability. It is relevant to point out that the learning gain is generally much larger than 
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FiGURE 4.15: X-axis input demand and tracking error (series controller, gain = 0.1, 
iteration 40) 

for the series arrangement because the learning controller needs to develop the trajectory 
from zero information, and the output of the learning controller is not amplified by the 
PID. The PIIOO values associated with each parallel controller learning gain are presented 
in Table 4.4. 

TABLE 4.4: Parallel PID and P-type ILC, PI100 for different learning gains 

Gaiii 1 1 X-axis i Y-axis 1 Z-axis 
100 1 100.000000 100.000000 100.000000 
10 1 29.952786 37., 575756 47.441492 
1 85.399418 88.731863 91.938774 
1 98.368823 98.680485 99.300515 

The input and error plots for the parallel configuration controller (Figures 4.17 and 4.18 
for the X and Y-axes and Appendix B the Z-axis) confirm that this system is equally 
susceptible to vibrations. For the parallel configuration, both the PID and ILC outputs 
are displayed because both have a direct effect on the plant. 

The improvements in tracking performance gained by using ILC are of little importance, 
if the algorithm is unstable and oscillates after a small number of iterations. It is thereý- 
fore necessary to modify the controller so that these oscillations do not occur. In order 
to achieve. this objective, a thorough understanding of what causes oscillation is essen- 
tial. It is clear from both Figures 4.15 and 4.17 for the X-axis that the vibrations are 
not random but consist of distinct frequencies. Tile Z-axis is not particularly affected 
by vibrations. Frequency domain analysis of the parallel configuration tracking error at 
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FIGURE 4.16: Parallel controller - mse for different learning gains 
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FIGURE 4.17: X-axis PID, ILC and tracking error (parallel controller, gain = 100, 
iteration 20) 

iteration 20 with learning gain 100, produces the frequency spectra in Figure 4.19. The 

error present on the Y and Z-axes is the result of very low frequency components rep- 

resenting the fundamental frequencies of the reference trajectories. However, the X-axis 

error dominantly consists of frequency components at 12 and 13 Hz (75 and 81 rad/s), 
frequencies which are not related to the reference trajectory. Detailed analysis of the 
frequency spectra also reveals a small component of the Y-axis error, also at frequencies 

12 and 13 Hz. which corresponds to the ripples in Figure 4.18. 
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FIGURE 4.18: Y-axis PID, ILC and tracking error (parallel controller, gain = 100, 
iteration 20) 
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FIGURE 4.19: Error signal frequency spectra (parallel controller, gain - 100. iteration 
40) 

To find the source of these 12-13 Hz vibrations, it is necessary to return to the frequency 

response Bode plots which were used during plant modelling. The X-axis Bode plot 
(Section 3.3. Figure 3.11) has resonant peaks at 75 and 85 rad/s which correspond 

perfectly to the 12 and 13 Hz vibrations. The Y and Z-axes exhibit natural resonance 

at approximately 250 and 400 rad s (40 and 63 Hz) respectively (comparatively higher 

frequencies, not significant to the measured vibrations). This suggests that the relatively 
low, natural resonance of the X-axis is the fundamental source of the ILC instability. 

90 



The source of the X-axis resonance was briefly discussed in Section 3.2.1 and is related 
to the design of the robot and supports. Inherent to the mechanical construction of the 
robot, the X-axis carries the weight of both other axes. Therefore, when the X-axis is 

required to move, large forces must be applied to overcome the inertia. As the entire 
robot is mounted on a support structure, in turn mounted on a wooden bench, the applied 
forces are sufficient to cause the support structures to flex. Combined with the high 
inertia, the resulting spring-mass-damper system produces low frequency resonances. 

The small amplitude vibrations in the Y-axis are likely due to an unusual cross-coupling 
effect between the axes. As the X-axis vibrates, the bench and support structure flex. 
However, both the bench and support are more flexible furthest from the laboratory 

wall. This end of the Y-axis therefore experiences larger amplitude vibrations than the 

end nearest the wall. The X-a)ds vibrations effectively cause the Y-axis to pitch up and 
down at the same frequency, inducing small elements of sinusoidal error into the tracking 

performance. 

4.4.3 Stability and convergence 

The X-axis resonance only becomes problematic when the ILC is added to the feedback 

controller, although it could be assumed that the ILC would leaxn to compensate for 

what is fundamentally a repeating disturbance. However, the learning controller does 

not act to cancel out the growing resonant frequency, a fact which can be explained by 

considering the effect of a sinusoidal signal at the plant output -180 degrees out of phase 
with the input (Chen and Longman, 2002). 

For the sake of graphical clarity, it is necessary to assume that the input signal which 
gives perfect output tracking has been learnt. The error of the input and output signals 
is therefore zero. Effectively, this is equivalent to using a reference trajectory (r(t)) of 

zero and allows the effect of the superimposed sinusoid to be studied independently of 
the main reference, where the input signal (Uk(O) is the zero reference, plus a sinusoid 

of amplitude 1 unit (Figure 4.20a). The -180 degrees phase shift induced by the plant 

at this frequency generates the output signal (Yk(O) shown in Figure 4.20b which is 

arbitrarily assigned an amplitude of I unit for simplicity. Remembering that the error 

signal is generated from: 

ek(t) = r(t) - Yk(t) (4-3) 

the resulting error is shown in Figure 4.20c. In effect, the -180 degree phase shift has been 

completely removed from the error signal by subtracting the output from the reference 

and, when the learning controller: 

Uk+l(t) " Uk(t) + aek(t + 1) (4.4) 
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calculates the input for the next iteration, the amplitude of the input oscillation is actu- 
ally increased rather than decreased. Figure 4.20d shows the new input signal (Uk+l(t)) 
if the learning gain a=1. 
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FIGURE 4.20: Mechanism of instability for resonant systerns (a = sinusoid, b= shifted 

-180 degrees, c= error signal, d= next iteration input) 

When the frequency response of the plant passes through the -180 degrees point (w7r), 

the P-type leaxning controller incorrectly compensates for the error at frequencies above 

w7r and actively increases error. Resonant frequencies automatically add -180 degrees of 

phase shift and hence axe paxticularly dangerous to the stability of the learning algorithm. 
In order to stabilise the P-type learning controller, it is necessary to prevent the growth 

of resonant frequencies. The simplest approach is to switch the leaxning off once the 

mse has been reduced to a sufficient level (Barton et al., 2000). However, the system is 

then no longer able to compensate for gTadual changes in the plant, caused by weax or 
temperature for example. 

It is also possible to investigate the instability of the parallel hybrid controller by means 

of a convergence criterion discussed by Steinbuch and van de Molengraft (2000). The 

system is represented by Figure 4.21 where G(s) is the plant, K(s) is a stabilizing feed- 

back controller, L(s) is a learning filter and Q(s) is a robustness filter. If the reference 

trajectory is taken as zero (rk = 0) then the analysis is as follows. The error at each 
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iteration is: 

ek ý rk - Yk (4.5) 

=0- (ekK + fk)C (4.6) 

= -fkG - ekKG (4.7) 

ek(1 + KG) = -AG (4.8) 

ek (4.9) 

The learning update rule is: 

fk+l 
= Q(fk + Lek) (4.10) 

then eliminate f: 

ek+l ' 
-G fk+l (4.11) 

1 +GK 
-G 

= 1+GK 
Q(fk + Lek) (4.12) 

ek+l =Q1+ 
-G L ek (4.13) 

1+GK 

) 

which determines how the error signal evolves from trial to trial. To achieve monotonic 
convergence, ek+I must be smaller than ek. Therefore monotonic convergence will occur 
if. 

L)l < (4.14) IT -GK 

Effectively, the plot of Equation 4.14 in the complex plane must lie within the unit circle 
to guaxantee monotonic convergence. In the complex plane, a phase shift of -180 degrees 

implies that the plot moves to the right of the graph. As the criterion causes the plot 
to start at a magnitude of 1 on the real axis, a phase shift of -180 degrees immediately 

violates the conditions for monotonic convergence. This agrees with the theory presented 

earlier in this section. The criterion is used to analyse the convergence of the parallel 
hybrid controller in Section 4.5. 

4.4.4 Band-stop filtering 

Removal of specified frequencies from a given signal immediately suggests the use of 
digital filtering techniques. Digital filters can be designed to achieve specific levels of 

attenuation at given frequencies. On a Bode plot of the filter transfer function, it corre- 
sponds to a significant drop in gain at the frequencies which need to be filtered. Ideally, 
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FiGURE 4.21: Parallel controller for convergence analysis 

the specified frequencies are removed, while the remaining signals are unchanged. How- 

ever, standard filtering techniques generally achieve a variation in gain coupled with an 
undesired variation in phase, which affects signals transmitted through the filter. 

In an ILC context, it is possible to choose the signal which will be filtered. Fundamentally, 
the choice is between the plant input and the output. VVhich of these is chosen should 
not matter (Longman, 2000), because the filter will always be situated within the control 
loop. Figure 4.22 illustrates this with a block diagram representation of an ILC based 

control system, indicating the four possible locations of the filter: 

1. error signal (related to the plant output) - 

2. ILC generated signal (before storing in memory). 

3. plant input. 

4. measured displacement (plant output). 

It is important to remember that no filter is perfect. The signal is only attenuated, not 
eliminated. Therefore, signals within the stop band of the filter will pass through, but 

should have very small amplitude. ILC, by design, has an outer control loop, but also 
an inner iteration loop. The iteration loop adds new data to the previous input signal. 

Output 

FIGURE 4.22: General ILC structure - possible locations of filter 

At each trial, more data is added to this loop, and once in the loop, the data is locked 
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in until the system is shut down. While the majority of data is useful, unwanted signals 
are also stored and can build up over time', eventually resulting in instability. Filters 

applied in locations 1,3 and 4 only have only one attempt at removing unwanted data 
before it enters the iteration loop. However, a filter designed at location 2 is within the 
ILC loop. Therefore, at each iteration unwanted data can actively be removed from the 
loop and does not build up. If the unwanted data is not fully removed on the first pass 
of the filter, it can be removed after successive iterations. 

If a single frequency needs to be removed from a signal, a band-stop filter is most ap- 

propriate. Careful design of a digital, 2nd order, Chebychev, Band-stop filter results in 

the frequency response characteristics shown in the Bode plot of Figure 4.23. The de- 

sign parameters provide 20 dB of attenuation between frequencies of 12 to 14 Hz (75-87 

rad/s) for a 1kHz sample frequency. The choice of transfer function results in a phase 

plot, significantly shifted only around the region of attenuation. Above and below the 

attenuated frequencies, the phase shift asymptotically approaches 0. This filter is well 

matched to the 12 and 13 Hz resonant frequencies of the X-axis. 
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FIGURE 4.23: Band-stop filter Bode plot 

Observing the mse plots, generated by implementing the band-stop filter (Figure 4.24), 

the onset of instability appears to have been prevented. The mse is improved beyond 

that achieved by the PID controller by 1 to 1.5 orders of magnitude, depending on the 

axis. After a small increase between iterations 20 and 40, it also appears to hold at a 
constant value. However, the tests were terminated at 200 iterations, as the robot started 
producing high levels of audible noise. The PI100 values for the hybrid controller with 
additional band-stop filtering are presented in Table 4.5. 

Figures 4.25,4.26 and 4.27 display the PID and ILC components of the plant input and 
the tracking error achieved at iteration 200. Clearly, the ILC input signals, particularly 
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TABLE 4.5: Hybrid controller with band-stop filtering, PIIOO values 

Gain X-axis Y-axis I ý-ý s 
100 5.600302 6.861328 1 19.4ýýO 
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FIGURE 4.24: mse (band-stop filter, gain = 100) 

for the Y-axis, still contain high frequency components. 

Figure 4.28 confirms that the 12 and 13 Hz resonant frequencies have been successfully 
attenuated, and the main frequency component of the X-axis error is now directly re- 
lated to the frequency of the reference trajectory. Týuncating the spectrum below 3.5 
Hz improves the resolution at higher frequencies and produces the spectrum in Figure 
4.29. Frequency components in the range 35 to 45 Hz (219 to 282 rad/s) are paxticularly 
noticeable in the Y-axis error, and correspond well to the Y-axis resonant frequency. Al- 

though the addition of the band-stop filter has successfully removed the X-axis resonant 
frequency, the Y-axis resonance is now rendering the system unstable. 

To investigate whether resonances are the sole cause of the vibration, the X-axis was 
operated alone with the 12-14 Hz band-stop filter. Figure 4.30 displays the X-axis inputs 

and error at iteration 300, when the test was terminated. By iteration 80 a grinding noise 
could be heard from the X-axis, which increased in intensity at every iteration. The ILC 
input signal in Figure 4.30 is heavily corrupted by high frequency signals, which are the 
likely source of this noise. Spectrum analysis of both the plant input and the tracking 

error, revealed a full range of frequency components up to the 500 Hz Nyquist frequency, 

with no single frequency particularly dominant. 

Table 4.6 displays the calculated closed loop bandwidths for each axis. The plant increas- 
ingly attenuates frequencies higher than the bandwidth, therefore very high frequency 
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FIGURE 4.25: X-axis PID. ILC and tracking error (band-stop filter. gain = 100, iter- 

ation 200) 
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FIGURE 4.26: Y-axis PID, ILC and tracking error (band-stop filter. gain ý 100, itera- 
tion 200) 

components should be significantly attenuated at the plant output and should not be 

fed back into the controller. The likely source of these signals is measurement noise, 

caused 1ýy random disturbances. non-linear effects such as quantization and electroinag- 

netic interference. Measurement noise cannot be totally eradicated from practical control 

systems. In ILC implementation it is a particularly important problem, because it can 
build up within the iteration loop. When low amplitude, high frequency noise, is added 
to noise already in the leaxning memory, some components will cancel out, while others 
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FIGURE 4.27: Z-axis PID, ILC and tracking error (band-stop filter, gain = 100. itera- 
tion 200) 
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FIGURE 4.28: Error signal frequency spectra (band-stop filter, gain = 100, iteration 
40) 

will reinforce each other. With time, the amplitude of the noise grows and corrupts the 
low frequency signal which the ILC is compensating for. This characteristic is typical 

of the waterbed effect, proposed iýy Songchon and Longman (2001), which is based on 
Bode's integral theorem and is discussed in Section 2.3.2.3. Once the noise amplitude 
reaches a significant level, the plant is forced to respond to the noise signal as well as the 

main control input, which translates into mechanical noise as seen in the error signal. 
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FIGURE 4.29: Error signal frequency spectra. truncated below 3.5 Hz (band-stop filter, 

gain = 100, iteration 40) 
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FIGURE 4.30: X-axis only, PID. ILC and tracking error (band-stop filter, gain 100, 
iteration 300) 

Implementing the band-stop filter has demonstrated an improvement in long term sta- 
bility, by preventing the buildup of resonant frequencies. However, it has highlighted 

that measurement noise has an equally negative effect on controller performance. The 

next development therefore concerns the removal of measurement noise. 
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TABLE 4.6: Gantry robot closed loop bandwidths 

wI ýdt h ((Lz) 
x 
y 
z 

12.7 
7.1 
4.7 

4.4.5 Low-pass fiRtering 

The band-stop filter was replaced by a 3rd order Chebychev low-pass filter, providing 
20 dB of attenuation at a cutoff frequency of 15 Hz (94 rad/s). Frequencies above and 
just below the 15 Hz cutoff also experience increased attenuation. The same filter is 
implemented on all axes and is designed to prevent the lowest resonant frequency of the 

robot from appearing on any of the axes, as well as preventing the build up of high 
frequency noise. The frequency response characteristics of the filter are shown in Figure 
4.31, where the phase response characteristics are not as desirable as for the band-stop 

filter, because below the cut off frequency, the phase shift still is significant at I Hz. The 

filter transfer function matched to the I KHz sample frequency is defined by: 

Y(Z) 0.0133 - 0.0131z-1 - 0.0131Z-2 + 0.0133z-3 

U(Z) =I-2.8678z-1 + 2.7440z-2 - 0.8753z-3 
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FIGuRE 4.31: Low-pass filter Bode plot 

le 

Figure 4.32 displays the mse performance for the long-term stability test of M iter- 

ations, using the parallel configuration PID-ILC hybrid controller and a learning gain 

of 100. Long-term stability has been achieved, and the 50DO iterations axe successfully 
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completed without any need for interruption. Additionally, there is no sign of increasing 

ruse and the ILC component of the input in Figure 4.33 shows no indication of resonance, 
oscillation or noise (see Appendix B for Y and Z-axis data). Table 4.7 presents the PI, oo 
values for the hybrid controller with low-pass filtering. 

TABLE 4.7: Hybrid controller with low-pass filtering, PI100 values 

Gain X-axis I Y-axis I 

100 24.270728 125.672166 178.473221 
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FIGURE 4.32: mse (low-pass filter, gain = 100) 

Low-pass filtering is a possible viable solution for producing an industrial variant of the 

P-type learning controller. However. careful analysis of the vertical axis in the mse plots 

in Figure 4.32 reveals that all three axes have gained less than one order of magnitude 

ruse reduction, whereas in the filter-less implementation the error was reduced by at least 

2 orders of magnitude. 

Figure 4.34 showing the 3-Dimensional tracking performance at iteration 5000 confirms 

the poor overall performance. There is significant error between the reference and the 

output, which resembles the error produced by the PID controller alone. The error is 

produced by pliwse lag introduced into the control loop as a result of low-pass filtering. 

Phase lag is added at frequencies which the ILC is required to learn, therefore the learning 

controller is unable to compensate accurately for the error measured at each sample 
instant. because the error occurs later in the iteration than expected. 

This observation confirms the proposal of Elci, Longman, Phan, Juang, and Ugoletti 

(2002) which concludes that whenever the filter phase is non-zero below the cut-off 
frequency, a forcing function will produce non-zero error after convergence. 

101 



X-axis 

0.5 - 

0 

-05 - 

0 0! 2 0! 4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0 

-1 

-2 0 0! 2 0'4 0! 6 0! 8 1 1.2 1.4 1.6 1.8 2 

2 

0 

-2 0 0! 2 0! 4 0.6 0! 8 1 1! 2 1.4 1.6 1.8 2 
Tý (s) 

FIGURE 4.33: X-axis PID, ILC and tracking error (low-pass filter, gain = 100, iteration 
5000) 
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FIGURE 4.34: 3-Dimensional tracking performance at iteration 5000 (low-pass filter, 

gain = 100, blue = reference) 

4.4.6 Zero-phase filtering 

The technique required to overcome low frequency phase shift is zero-phase filtering 
(Markusson et al., 2001: Wang and Longman, 1996). Zero-phase filtering is difficult 
to achieve in continuous control environments. because it is inherently a non-causal 
procedure, requiring data from future. in addition to past sample instants. However, 
it is much simpler to implement within the ILC framework, where data is intrinsically 

processed in batches. The required sequence of events is presented in the. flowchart, 
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FIGURE 4.35: Zero-phase filtering technique, flowchart 

Figuze 4.35. On the first pass of the filter, the frequencies in the stop-band are attenuated 
and phase shift is added to the vector. When the filtered data is reversed and ffit'szed 
for the second time, the stop-band frequencies are attenuated again and the same phase 
shift is added, in reverse time, thus cancelling out the phase shift from the first pass. 
The result is a filter with double the attenuation in the stop-band and zero phase shift. 
Care must be taken to ensure that the initial samples of the fiRtezed vector are suitable 
for the plant. In this example, the voltage for the first sample should be zero. Table 4.8 

presents the PIloo values for the hybrid controller with zero-phaze ffitering. 

TABLE 4.8: Hybrid controller with zero-plime filtering, P1100 w1ues 

wds 

The low-pass filter described in Section 4.4.5 has been implemented on all three exes 

uzing the zero-phase protocol. Figure 4.36 shows the mse tracking performance for 50M 

iterations with learning gain 100. The system is long-term stable as expected, and the 

mse has now been reduced by almost 2 orders of magnitude for each wds. The system 
has produced a performance which compaxes well with the unfiltered controller. 

Figure 4.37 shows the overall improvement in reference tracking, where the errox between 

t1he reference and the measured output is minimal. The graphical resolution used in the 

3-diznensýonal plot results in an output signal, which merges into therefeirence slgMaI 

Figure 4.38 displays the input and error waveforms obtained at iteration 5WO for the 

X-ax! s: the tracking error and PID input still show signs of resonance, as they contain 

n2 Hz frequency components (corresponding data for the Y and Z-axes can be found 

L2 Appendix B). These are small amplitude oscillations, excited by the high gain of 
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FIGURE 4.36: inse (zero-pliase filter, gain 100) 
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Fic, URE 4.37: 3-Dimensional tracking performance at iteration 5000 (zem, -pliase filter, 
gain = 100, blue - reference. ) 

the feedback controller, whereas the ILC input is a very smooth waveforni, completely 
devoid of high frequency components. Therefore, while the feedback controller may excite 

resonance, the zero-phase filter ensures that it does not build up within the iteration loop 

and the amplitude does not increase. 

4.4.6.1 Initial state error tolerance 

Having achieved a long-term stable learning controller, it is now possible to investigate 

robustness to disturbance. The basic P-type algorithm does not use a model of the plant 
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FIGURE 4.38: X-axis PID, ILC and tracking error (zero-phase filter. gain = 100, 
iteration 5000) 

for input calculation and therefore is not suitable for testing robustness with respect to 

modelling errors. 

Deliberate shifting of the homing position, generates large errors during the first sampling 
instants of the trajectory. The high gain of the feedback controller, amplifies the error 

and produces a sizeable step input for the first sample. If the step demand is too large, the 

power amplifiers are unable to supply the necessary current, resulting in a current trip, 

which shuts the amplifiers off. The hybrid controller could not tolerate initial position 

error with bounds up to 2mm, without causing an over-current trip. The results for 

initial bounds of 0 and Imm can be seen in Figure 4.39. 

The measured effect of initial position error is dependent on the ratio of initial error bound 

to the total displacement required by the reference trajectory. Tile Z-axis performance 

is most affected by small initial error, because its total travel range is 10mm. imm 

of error represents 10% of the trajectory as compared to the X and Y-axes, where it 

corresponds to 2.7% and 0.7% respectively. Initial error has a direct effect on the steady 

state tracking error level, and causes increased variation in the mse, but the stability 

and initial convergence rate are not compromised. Table 4.9 displays the PI100 values 

for initial error bounds 0 and I iiiiii. 

TABLE 4.9: Zero-phase filtering with initial error, Gain = 100, PIIOO values 

I Error bound (±mm) 11 X-axis I Y-axis I Z-axis I 

0 4.074121 5.475265 7.926918 
1 4.240410 5.459859 8.356485] 
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FIGURE 4.39: ruse (zero-phase filter. initial error bounds 0 and 1 mm) 

4.4.7 Frequency aliasing 

The zero-phase filtering technique has proved vcrýy successful in achieving long-term sta- 
bility and good levels of error reduction by removing high frequency noise and suppressing 
natural resonance. An alternative approach is proposed, based on Shannon's sampling 
theorem, to alias high frequency tracking error information and produce a low-pass filter 

with perfect cut off and no induced phase shift. 

Shannon's sampling theorem states that "if a function f (t) contains no frequencies higher 
thau W Hz, it is completely determined by giving its ordinates at a series of points spaced 
112W seconds apart" (Shannon, 1998). Effectively, to record a signal of a given frequency 
in a discrete-time system. the sample frequency must be at least twice the frequency of 
the signal. If this requirement is not met, then frequency aliasing occurs and the higher 
frequency components of the original signal are lost. 

In most applications. aliasing is a drawback, usually redressed by means of anti-aliasing 
filters. In this application, aliasing is beneficially used to remove the effects of the unde- 

sired frequencies from the learning controller. The controller configuration has exactly 
the same components as the original parallel system. However, there is an additional 

aliasing module attached to the learning controller in place of the filters used in previ- 
ous sections (Figure 4.40). The aliasing module samples the output generated by the 
learning controller at a frequency less than twice the resonant frequency of the plant. In 

this way, the resonant frequency is aliased to a lower frequency at which the plant does 

not resonate and the aliasing filter allows the ILC to learn frequencies below the alias 

cut-off. As long as the resonant frequency is greater than the frequencies which need to 
be learnt to satisfy the reference demand, the loss of data caused by aliasing does not 
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prevent the learning controller from improving the performance of the overall system. 
High frequency signals. which are aliased to lower frequency, should not have an effect 
ou stability, as long as the convergence criterion in Section 4.4.3 is still satisfied. 

Output 

FIGURE 4.40: Parallel controller with alias module 

In the following analysis. 'alias frequency' is used to describe the sample frequency of 
the aliasing filter. 'Feedback frequency' is used to describe the sample frequency of the 

remaining control system (1kHz). 'Alias gap' is used to relate the alias frequency to the 
feedback frequency. The alias gap is the number of feedback frequency sample instants 
between each alias frequency sainple instant. 

Using a zero-order-hold approach for the aliasing module is not suitable, as the aliasing 
filter generates a signal, which relates poorly to the original non-aliased signal, due to 
large step changes in the control voltage. However, because the ILC approach obtains 

all of the data from the previous trial before generating the input for the next trial, it 

is possible to use a non-causal approach to generate a much smoother output from the 

aliasing module. 

In a non-causal approach, instead of holding the signal value constant between aliasing 

samples, it is possible to calculate the gradient between adjacent samples and join thein 
by linear interpolation, a technique which is commonly used in practical signal processing, 

e. g. Unser (2000). In a parallel feedback ILC controller arrangement the aliasing process 
for the ILC component is defined by the flowchart in Figure 4.41. Following the successful 

completion of an iteration, the ILC algorithm computes the next ILC component of 
the plant input vector at feedback frequency. This input vector is likely to contain 

unwanted frequencies. The aliasing module then re-sainples the input vector at the 

aliasing frequency, removing all frequencies above the aliasing cut-off. The data between 

aliasing frequency sample instants is deliberately lost, so as to remove high frequency 

components. The input vector now consists of far fewer sample instants than are required 
for real-time operation. Linear interpolation is used to connect the aliasing frequency 

sample instants, so that a smooth signal is produced when the interpolated signal is 

re-sainpled at f(Tdl)a(7k frequency. During tile next iteration, each sample instant of the 

aliased ILC vector is summed with the input produced by the feedback controller. 

The linear interpolation method reconstructs a smooth approximation of the aliased ILC 

signal. Figure 4.42 demonstrates the principle, when applied to a sine-wave of frequency 
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FicURE 4.41: Aliasing technique flowdiart 

0.5 Hz and amplitude I unit. In Figure 4.421) the sino-wave is superimposed with an 

extra 7 Hz sine-wave of amplitude 0.1 units. Figure 4.42c shows the same signal as in b, 

sampled at 10 Hz with a zero-order-hold. Figure 4.42d interpolates between the sample 
instants of Figure 4.42c to produce a smoother signal, closely resembling the original 
0.5Hz sine-wave. 
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FIGURE 4.42: Comparing sampling methods (a = original sinewave, b= with additional 
7Hz signal, c zero order hold, d with linear interpolation) 

To investigate the ability of different filters. to accurately recreate a desired signal from 

a corrupted signal, the test case of a 0.5 Hz. amplitude =1 unit sine-wave corrupted 

with a 7Hz, amplitude = 0.1 unit sine-wave has been used in simulation studies. The 

performance of each filtering technique is measured by finding the error between the 
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desired signal and the filter output, then calculating the mse. A 3rd order, low-pass, 
Chebychev filter with 20 dB attenuation at a cutoff frequency of 6 Hz has been designed 
for a sample frequency of IkHz, using a suitable discrete filter design toolbox. The 
filter is applied to the test case in both low-pass and zero-phase modes. The aliasing 
technique is also implemented, with an aliasing frequency of 10 Hz. Table 4.10 shows the 
mse results for each filter. The low-pass filter produces the highest mse and therefore 
recreates the desired signal the least accurately. This is mainly due to the large phase 
shift induced in the output signal. The aliasing technique improves the mse by almost 
one order of magnitude, because the phase shift is no longer present. The most accurate 
output signal is produced by the zero-phase filter, which improves the mse a further order 
of magnitude beyond that of the aliasing technique. The zero-phase filter is particularly 
well suited to this test signal because the sine-wave is very smooth. With respect to the 

number of manipulations which must be performed to achieve zero-phase filtering, the 

simple aliasing technique performs well. 

TABLE 4.10: Simulated mse values for different filters in the test case 

Filter type mse (units) 
Low pass 0.01809 

Zero-phase 0.00024 
Aliasing 0.00287 

In a series configuration, the ILC generates a ramped reference signal, which the PID 

controller forces the plant output to follow. However, implementation of the PID and 
aliasing ILC controllers in paxallel form is particulaxly important to generate a smooth 
overall control signal. The aliasing ILC controller generates a signal built up from straight 
line approximations of the perfect control signal, which the PID controller adjusts into 

a smooth control input to the plant. 

The aliasing filter distinguishes itself from standard filters because, below the alias cut- 
off, there is no additional phase shift added at the sample instants. The filter is essentially 

zero phase, so there is no need to filter the data twice and, as above the alias cut-off, 
higher frequencies cannot physically be transmitted, the cut-off is perfect. These are the 

characteristics of an ideal low-pass, zero-phase filter. In comparison, even a carefully 
designed standard low-pass filter only attenuates signals of frequency higher than the 

pass band and a small component of these frequencies will leak through the filter and 
cause the learning controller to eventually become unstable. 

The aliasing filter has been implemented on the X-axis with a range of values for the 

alias frequency. Figure 4.43 shows the mse performance with alias gaps 50,60 70 80, 
90 and 100, corresponding to sample frequencies 20,16.7,14.3,12.5,11.1 and 10 Hz 

respectively. An alias gap equal to 50 (20 Hz) produces an unstable ILC controller. At 

20 Hz, the sampling theorem predicts that 10 Hz signals can be transmitted across the 
filter and the 12 and 13 Hz resonances are therefore aliased to 10 Hz. The amplitude of 
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the resulting 10 Hz signal eventually builds up in the iteration loop and causes instability. 
The PI100 values associated with each alias gap are presented in Table 4.11. 

TABLE 4.11: PI100 values for different alias gap 

Alias gap j j: ý ý-is 

50 3.527176 
60 3.443724 
70 3.422716 
80 3.406701 
90 3.457099 
100 3.496470 
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FIGURE 4.43: X-axis mse comparison for aliasing controller using different alias gap 
values 

If the alias gap is reduced to 40 (25 Hz) the system becomes unstable more rapidly. At 

this frequency, 12.5 Hz signals can be transmitted across tile filter, therefore the 12 Hz 

resonant frequency can pass un-attenuated and rapidly causes instability. If the alias 
gap is increased to 60 (16.66 Hz) the amplitude of the resonance when aliased to 8.3 Hz 
is sufficiently small for the controller to remain stable. Increasing the alias gap further 
has little effect on the tracking performance. until the low frequency error which needs 
to be learnt is also filtered and lost. 

However, an alias gap of 70 provides a good safety margin between the resonant frequen- 

cies and the maximum transition frequency, without adversely affecting tracking error 

reduction. Figure 4.44 displays the mse for 5000 iterations. recorded during a long-term 

stability test. This variant of the hybrid algorithm achieves both long-terin stability 

and excellent error reduction. The mse is reduced by at least 3 orders of magnitude, 
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approaching 4 orders of magnitude for the Y and Z-axes. Table 4.12 presents the PI100 

values for the hybrid controller coupled with the aliasing filter. 

TABLE 4.12: Hybrid controller with aliasing, alias gap = 70, PIIOO values 

Gain X-axis Y-axis Z-axis I 

100 3.441941 4.392282 6.108810] 
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FIGURE 4.44: mse (aliasing filter, gain = 100, alias gap ý 70) 

This performance translates across to the 3-Dimensional tracking plot (Figure 4.45) as 

an output coincident with the reference trajectory, which is a substantial improvement 

over the feedback controller alone. 

Figure 4.46 verifies that the ILC input signal remains free of noise and resonance (similar 

plots for the Y and Z-axes (-an be found in Appendix B). As with the zero-phase filter, 

the feedback controller excites small amplitude oscillations at the resonant frequencies. 

The aliasing filter is particulary well suited to the reference trajectories used in this 

project, because they are derived from linear variations in velocity (velocity reference 

profiles can be found in Appendix B). Due to the integrating nature of the plant, the 

learning controller is required to learn a profile which closely resembles the derivative 

of the reference. As the aliasing filter does not smooth sharp corners in the profile, 
the output from the ILC matches the reference derivative more accurately than that 

produced by other filtering methods. 
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FIGURE 4.45: 3-Dimensional tracking performance at iteration 5000 (aliw9ing filter, 

gain = 100, alias gap = 70, blue = reference) 
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FIGURE 4.46: X-axis PID, ILC and tracking error (aliasing filter, gain 100, alias 
gap = 70, iteration 5000) 

4.4.7.1 Initial state error tolerance 

Large amplitude control signals generated in response to initial error bounds of 2mm and 
greater. cause the amplifier drives to trip. therefore the initial state error test is limited 

to a 1mm bound. A bound of Imm produces a more significant effect on tracking per- 
formance in the aliasing filter implementation than the zero-phase filter implementation, 

because the minimum tracking error level is one to two orders of magnitude smaller. 
The inse plot therefore shows more substantial variation, though the maximum steady 
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state tracking error remains lower than for the zero-phase filter implementation. In the 

presence of initial error, the hybrid controller remains stable and there is negligible effect 
on the initial convergence rate. 
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FIGURE 4.47: ruse (aliasing filter, gain = 100. alias gap = 70, initial error bounds 0 

and 1 mm) 

Table 4.13 displays the PIIOO values for the aliasing system with initial error bounds of 
0 and lmin. 

TABLE 4.13: Aliasing with initial error, Gain - 100, PIIOO values 

Error bound (±ziiiii) X-axis Y-axis Z-axis 

0 3.441941 4.392282 6.108810 
1 3.625103 4.398072 6.572404 

4.5 Convergence analysis 

Using the monotonic convergence criterion (Equation 4.14), Nyquist plots have been 

generated for the parallel hybrid controller in the case when no filtering is applied, and 

when band-stop, low-pass and aliasing are applied. Zero-phase low-pass filtering has not 
been plotted, because of the difficulties involved in generating a suitable transfer function 

for the anti-causal filter. Figure 4.48 shows the convergence plots for the X-axis when 
the leaxning gain is 100. The plots for the Y and Z-axes produce similar results and 
have therefore been omitted. 

Plot (a) clearly shows that the controller implementation without filtering, cannot achieve 
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monotonic convergence. The plot rapidly moves out of the unit circle, which defines the 
bounds of the convergence criterion. This corresponds well to the mse results obtained 
from the plant in Figure 4.16, where the nise for gain 100 increases, following tile initial 

reduction 

Plot (b) shows the convergence analysis when the band-stop filter is included. The plot 
remains within the unit circle, suggesting that monotonic convergence should be achieved. 
However, the results in Section 4.4.4 indicate that the system stability suffers due to 
high frequency noise, which builds up in the learning loop. The discrepancy between 

the theoretical analysis and experimental data (-all be understood by noticing that tile 

convergence plot approaches the unit circle as frequency increases. Small modelling 
errors in the transfer function of the plant at high frequencies imply that the simulated 
convergence analysis can remain within the unit circle, while in reality. the convergence 
analysis for the real plant may exit the unit circle. The frequencies at which the plot 
leaves the unit circle are likely to be of very small amplitude and therefore a significant 
amount of time will pass before their effect becomes noticeable. This analysis corresponds 
well to the experimental data in Figure 4.24 because 200 iterations are implemented 
before the high frequency error components become significant. 

The convergence curve for the low pass filter implementation is presented in plot (c). The 

plot clearly leaves the unit circle, indicating that monotonic convergence is impossible. 
Referring back to Figure 4.32, this is precisely what occurs in reality. For all three axes, 
the nisc reduces rapidly at the start of thc test. reaches a minimum, but then increases 

to a final steady state value. Monotonic convergence is not achieved, even though the 

system remains stable for the 5000 iteration test. In the zero-phase implementation of the 

low-pass filter, a phase of 0 degrees implies that the plot travels to the left of the graph 

along the real axis, moving nearer the origin and further into the unit circle. The large 

lobes which leave the unit circle in plot (c) will therefore not occur and the conditions 

for monotonic convergence will be satisfied. 

Plot (d) repi-esents the convergence analysis for the aliasing technique using ail alias gap 

of 70. Frequencies above 7.15 Hz cannot exist within the learning loop and therefore the 

plot does not leave the unit circle and monotonic convergence is achieved, as supported 

by the mse curves in Figure 4.44. 

4.6 Summary 

PID feedback control lias been implemented on the gantry to serve as a benchmark 

for performance. Subsequently. P-type ILC alone was found to perform very poorly 

when controlling an integrating plant. The result was improved, when feedback control 

and ILC were combined in two hybrid variants. The feedback controller compensated 

for the integrating plant and provided a reasonable level of tracking accuracy during 
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FIGURE 4.48: X-axis convergence plots, learning gain = 100 (a = no filtering, b 
band-stop, c= low-pass, d= aliasing) 

the first few iterations, while the fLC improved the performance of the PID. In both 

series and parallel configurat ions, the resulting controller was found to excite natural 

plant resonances which grew at each iteration and eventually destabilised the controller. 
The mechanism behind this instability has been analysed and is well understood. The 
build up of high frequency noise in the iteration loop has a similar effect on stability. 
Several filtering techniques were progressively applied to the learning controller output 
in an attempt to attenuate resonance and noise. Zero-phase filtering and a new aliasing 
technique were found to be particularly efficient for providing long-term stability and 
low residual tracking error. 
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Chapter 5 

Implementation of Model-based TLC 

5.1 Introduction 

These ILC algorithms intrinsically use plant modelling data as a means of improving 

algorithm performance. While the performance of model based feedback controllers def- 
initely depends on the accuracy of the model, ILC has the ability to compensate for 

modelling errors and thus further reduce tracking error. The ability to predict how the 
plant will behave in response to a given input, allows the use of mathematical techniques 
related to optimal, robust and adaptive control. This chapter describes the implemen- 
tation of three previously developed ILC algorithms, formulated using optimal control 
methodologies: adjoint, inverse and norm-optimal ILC. Robustness of these algorithms 
with respect to initial state error, and plant modelling error has also been investigated. 

Many model based ILC algorithms are developed in the thne domain using state-space 

models. which consider the response of the plant for infinite positive time. Given the 
finite-time. infinite iteration nature of the ILC framework, it is only necessary to represent 

accurately the behaviour of the plant during the iteration period. Consider the discrete 

state space equations: 

x(t + 1) = Ax(t) + Bu(t) 

y(t) = Cx(t) 
(5.1) 

It is assumed that CB :A0, the system is invertible and that it is SISO. If one iteration 

contains m sample instants, the input and output vectors are represented by: 

Uk ý [Uk(O) Uk(l) ... Uk(rn - 1)IT (5.2) 

Aý [Yk(l) Yk(2) ... Yk (7n)]T (5.3) 
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From these definitions, it is possible to derive the convolution sum solution of the state 
equations (Equations 5.1) as discussed by Longman (2000), which can be represented 
by: 

t-1 
y(t) ý CAtx(O) + 1: CAt-'-'Bu(i) 

i=O 
(5.4) 

Assuming that x(O) =0 HAt6nen, Owens, and Moore (2003a) represent this ill matrix 
form: 

y=Gu (5.5) 

where: 

CB 00... 0 
CAB CB 0 ... 0 

G CA2 B CAB CB ... 0 (5.6) 

CA'-'B CA'-2 B CA'-3 B ... CB 

The elements of G are the Markov parameters of the plant. It is assumed that G is an 
invertible matrix. The size of the G matrix depends ultimately on the sample frequency 

and the iteration time period. If the sample frequency is high and the time period is long, 

the G matrix becomes very large, which poses a problem when the inverse matrix must 
be calculated. The numerical resolution of the inverse matrix solver results in a solution 

which is singular. The sample frequency has therefore been chosen as 10OHz and is used 
for all three algorithms to allow a fair comparison of performance. Higher sampling rates 
require significant memory. for example if the sample frequency is JOOOHz, the resulting 

matrices have dimensions 2000 x 2000, corresponding to 4,000,000 elements. Using the 

'double' storage type (64 bits) this results in a matrix requiring requiring 30.52 MB of 

storage space. With three axes operating simultaneously, this immediately requires 91.56 

NIB. just to store the plant models, which is a very large demand on memory resources. 

However, tile chosen sample frequency of 10OHz, coupled with the 2 second time period of 
the reference trajectories, produces G matrices with dimensions 200 x 200, corresponding 
to 40,000 elements, requiring 0.31 MB of storage space. Matrices of this size require 

minimal memory resources and can therefore be stored in full, in the control hardware. 

Observing the construction of the G matrix (Equation 5.6), the first column contains 

all of the numerical values required to construct the remaining columns. Therefore, it is 

possible to compress the matrix into a vector representation, corresponding to the first 

column, and significantly reduce the amount of storage space required. In the adjoint 

and inverse ILC algorithms. there are a limited number of matrix operations which must 
be performed using the G matrices. Therefore it is not difficult to develop functions 
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which can perforin these operations based on the vector representation of G. 

The model-based algorithms described in this chapter are implemented differently from 
the basic algorithms discussed in Chapter 4. Unlike the basic algorithms, which re- 
quire a feedback controller to compensate for the integrating plant, these algorithms are 
implemented alone with no additional input from other controllers. Therefore, the mse 
recorded at iteration 1 is not a result of the feedback controller; the input during iteration 
1 is held at zero and the mse corresponds directly to the reference trajectory. 

5.2 Adjoint Algorithm 

5.2.1 Algorithm development 

Hdt6nen, Harte. Owens, Ratcliffe. Lewin, and Rogers (2003b) have developed a modift- 
cation of the original steepest descent ILC algorithm proposed by F'uruta and Yamakita 
(1987). Using the plant model G. the input update algorithm is defined as: 

Uk+l ý Uk + fk, IGT ek (5.7) 

where 6k-, -, represents a learning gain, which is automatically selected at each iteration 
by ininimisation of the cost function: 

112 + WC2 J(6k+l) ý Ilek-1 
kýl (5.8) 

where w is a tuning parameter selected by the design engineer and is used to adjust 
algorithm robustness. This cost function represents two design objectives. The first 

objective is to achieve small tracking error and is analogous to achieving fast convergence 
and low residual inse. The second objective which is to keep the magnitude ()f 6k+l small, 

conflicts with the first, because previous experiments demonstrated that smaller learning 

gain results in slower convergence. The tuning parameter has been added, to improve the 

robustness of the algorithm, with respect to non-linear and non-repeating disturbances, 

as the algorithm learns more cautiously. 

The solution of the cost function (Equation 5.8) yields a learning gain update defined 
by: 

JIG Tek 1 12 
Iýk4l ýw+ JjGGTekF (5.9) 

Practical implementation of the algorithm consists in calculating Equation 5.9 followed 

by Equation 5.7 during the time between iterations. 
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5.2.2 Initial implementation 

Initial implementation of the adjoint ILC algorithm is performed using the high order 

plant models and with ýu set to zero. The algorithm therefore seeks to minimise the 

error norm. without limiting the magnitude of the learning gain and is able to achieve 

an optimal error convergence rate. The first tests consisting of 10 iterations confirm that 

the adjoint algorithm does converge and functions as expected. Gradually increasing the 

required number of iterations reveals that long-term stability and low residual tracking 

error (, an also be achieved. Table 5.1 presents the. P1,00 values for the long-term stability 

test, where PIIOO is defined as the sum of ruse values over 100 trials. 

TABLE 5.1: Adjoint ILC, PI100 values 

X-axis Y-axis Z-axis 

1.786522 1.544323 2.955504 

Figure 5.1 shows the mse performance obtained by all three axes during a 5000 iteration 

test. Initial convergence is rapid, the error is reduced by 3 to 4 orders of magnitude within 
100 iterations. The algorithm then continues to learn, achieving steady state minimum 
tracking error by iteration 1500. The steady state mse, has upper and lower bounds, 

which are several orders of magnitude apart, implying that the tracking performance for 

consecutive iterations varies significantly. Ideally. the mse should reach a minimum value 

and remain constant. As it does not, the performance of the algorithm is reduced. 
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FIGURE 5.1: mse (adjoint ILC, high order models) 

The variation is likely to be caused by one or more factors, which include: random 

and non-repeating disturbances. noise. and high learning gain when the tracking error is 
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small. If tile learning gain is large, the algorithm may effectively try to learn too much at 
each iteration, the plant input is altered more than necessary and the performance varies 
accordingly. The influence of learning gain is relativel *v straight forward to investigate. 
The 5000 iteration test is repeated, but at iteration 2000 the learning gain 1ýk+l is set 
to zero for all further iterations. The tracking performance should therefore be equal 
for iterations 2000 to 5000. because the input to the plant remains constant. Figure 5.2 

shows the mse results for this test. Clearly the performance beyond iteration 2000 varies 
in a similar manner to the performance recorded before iteration 2000, which strongly 

suggests that tile variation is caused hy random disturbances, for which the learning 

controller cannot compensate. 
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FIGURE 5.2: mse, Beyond iteration 2000 fk+1 =0 (adjoint ILC, high order models) 

The adjoint algorithm clearly achieves the 5000 iteration. long-term stability target with- 

out any need for filtering or additional stabilising controllers. The source of adjoint algo- 

rithm stability, when compared to other controllers, is the inherent filtering effect caused 
by multiplying the error vector by the matrix GT. Although the mse in Figure 5.1 varies 

significantly between upper and lower bounds after minimum error has been achieved, 

these bounds do not show signs of increasing as the number of iterations increases. 

The 3-Dimensional displacement of the robot axes, recorded during the first 10 iterations 
(Figure 5.3) dcpi(7ts how the algorithm learns the reference trajectory. During iteration 

1 the robot does not move, corresponding to a point centered at the origin. During 

iteration 2 all three axes move in the positive displacement direction only. this is because 

of the integrating nature of the plant and because all points on the reference trajectory 

are positive with respect to the origin. By iteration 3, the shape of the trajectory is 

beginning to develop quite clearly, however the amplitude of motion is far too small. 
At subsequent iterations, the algorithm steadily increases the amplitude of the input to 
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match the plant output with the reference. At iteration 5000, the measured displacement 

and reference are almost coincident (Figure 5.4). 
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FIGURE 5.3: 3-Dimensional tracking progression. first 10 iterations (adjoint ILC, high 

order models. reference = blue) 
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FIGURE 5.4: 3-Dimensional tracking performance (adjoint ILC, high order models, 
iteration 5000, reference blue) 

5.2.3 Robustness to initial state error 

Due to the purely feed-forward nature of the adjoint algorithm, it is poorly suited to 

compensating for initial state error. The feed-forward nature of the algorithm does have 

an advantage over feedback based inethods, because the plant input deniands do not 

contain steps or spikes which could damage or overload the robot. Figure 5.5 displays 
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the ruse curves corresponding to initial homing bounds of 2,4,6,8 and 10 mm compared 
to the mse generated without initial error. 
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FicURE 5.5: mse (adjoint ILC, high order models, initial error bounds 0,2.4.6,8 and 
10 n1m) 

Increasing the initial error causes a direct increase in minimum mse and a reduction in 

convergence rate, but does not compromise stability. In each plot, the mse remains within 

upper and lower bounds and does not increase in an unstable manner. With respect to 

the Z-axis, initial error tolerance is particularly interesting, because ±10 min of initial 

error corresponds to 200% of the reference trajectory magnitude, although very little 

useful learning occurs. Initial error in industrial applications are likely to be relatively 

much smaller than this if the plant and controller have been well designed. PI1OO values 
for initial error bounds between 0 and 10 mm are displayed in Table 5.2. 

TABLE 5.2: Adjoint ILC tolerance to initial error, PI100 values 

Error bound (±miii) X-axis I Y-axis Z-Lxis 
0 1.786522 1.544323 2.955504 
1 1.886287 1.421555 7.204663 
2 2.639053 1.518545 11.953511 
3 3.697247 1.561097 23.326395 
4 5.250543 1.956606 36-321979 
5 6.889515 2.499595 48-145670 
6 8.964593 2.095541 64.102576 
7 11-182576 

M 

2.427005 87.464704 
8 13-866400 2.796461 100-000000 
9 16.175517 

, 
2.334881 100-000000 

10 2.465911 100-000000 
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The general shape of each ruse curve is very similar, because the pseudo random error 
is seeded by the iteration number. Larger tracking error is produced as the initial error 
bound increases, because the algorithm attempts to compensate for the error measured 
during the previous iteration. At the following iteration, the initial error is different and 
therefore the compensation made by the algorithm is incorrect. 

The increase in ruse for each increment of initial error is clearer in Figure 5.6, which 
displays the results for 0,2 and 4mm of initial error for the first 50 iterations on a linear, 

rather than logarithmic scale. Each 2mm increase of initial error, produces a larger 
increase in inse. The variation in nise is also larger as the tipper and lower bounds move 
further apart. 
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FIGURE 5.6: ruse linear scale (adjoint ILC, high order models, initial error bounds 0, 
2 and 4mm) 

5.2.4 Robustness to plant modelling error 

The adjoint algorithm has been implemented, using the first order plant models. The lack 

of information pertaining to phase and high frequency gain plant dynamics has a limited 

effect on the resulting tracking performance. The mse plots obtained for a 500 iteration 

test (Figure 5.7) show minimum error levels approaching one order of magnitude larger 

than when using the high order models. During 500 iterations, the algorithm remains 

stable and the inse continuously decreases. Table 5.3 shows the PI100 data produced 
by the Ist order models. The plant input signals (Figure 5.8 and similar Figures in 

Appendix B for the Y and Z-axes) remain smooth and the error signals do not contain 
resonances. 

Stability and convergence rate are inore noticeably affected by low frequency gain error. 
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FIGURE 5.8: X-axis input demand and tracking error (adjoint ILC, lst order models, 
iteration 500) 

Figure 5.9 displays the mse plots generated using the high order models, when multiplied 
by scalar gains 1.5,1.25.0.75 and 0.5. Variation in the gain has minimal effect on the 

ininininin nise level, but produces changes in the shape of the inse curve, as the error 

converges to minimum mse. With gain larger than 1, the convergence rate during the 
first iterations (approximately 10) is slower than for gain equal to 1. However, during 

the following 30-60 iterations. the convergence rate tends to be faster. If the gain is 

smaller than 1, the convergence rate is significantly slower and if it is too small (0.5), 

the algorithm is unstable. 
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TABLE 5.3: Adjoint ILC, 1st order models, PI10o values 

X-axis Y-axis Z-axis 
2.713064 2.235936 4.191850 

The influence of scalar gain modelling error can be evaluated, by systematically consider- 
ing the effect on Equations 5.7 and 5.9. Multiplying a frequency domain transfer function 
by a scalar gain is directly equivalent to multiplying all elements of the state-space G 

matrix by the same gain value. A scalar gain of 1.5 therefore results in all elements of 
G being multiplied by 1.5. In the input update (Equation 5.7), GT modifies the shape 
of the error vector to produce an input modification, which rapidly converges to the 

optimal input. If the magnitude of the G matrix elements are larger, the error vector 

adjustment is more pronounced and learning occurs more rapidly. However, the learning 

gain calculated by the gain update equation (5.9), depends upon the. ratio G 2/ (GG T)2' 

which is equivalent to G2/G4, and increasing the scalar gain of G reduces the learning 

gain 1ýk+l - When the scalar gain is equal to 0.5, the resulting learning gain can be 4 times 
larger than for scalar gain 1. This explains why the algorithm becomes unstable as the 

scalar gain is reduced, because the algorithm overcompensates for the error recorded at 

each iteration. 
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FIGURE 5.9: mse for different scalar gains (adjoint ILC, high order models, gains 1, 
1.5,1.25.0.75 and 0.5) 

Figure 5.10 shows the robot displacement for scalar gain 0.5 during 7 iterations. The 

modifications made by the learning algorithm to the plant input are of a magnitude 

large enough to cause the displacement to oscillate between two modes of operation. 

In the first mode, the displacement in the positive direction is too large, while in the 

second mode, the displacement in the negative direction is too large. As the displacement 
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amplitude increases at each iteration, the required displacement eventually exceeds the 
travel limits of the robot and the control system automatically shuts down. 
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FIGURE 5.10: 3-Dimensional tracking progression (adjoint ILC, high order models, 
gain = 0.5) 

The instability observed with scalar gain 0.5. is due to the increased magnitude of learning 

gain fk+l. The timing parameter w ha-s been designed into tile algorithm, specifically 
to reduce the magnitude Of fk- I and produce a controller which is more robust. Tuning 

parameter w can therefore be used to compensate for the scalar gain of 0.5. A trial 
and improvement method was used to tune w and produce a stable controller. Stability 

was achieved for any value of w larger than 5x 10-8. but as w increased, the minimum 
recorded mse level also increased. The required value of w is dependent on both the 

plant matrices G and tile error vector for the first iteration. 

Figure 5.11 displays the displacement profiles for iterations 490 to 500, with scalar gain 
0.5 and w set to 5x 10-8 (corresponding Y and Z-axis figures can be found in Appendix 

B). The tracking error at most sample instants is substantial, yet the correction made 
by the algorithm at each iteration is minimal. This is due to the fact that a fixed value is 

used for the tuning parameter. A value of w equal to 5x 10-8 is the minimum required to 

inaintain stability din-ing the initial stages of learning. However, as the error decreases, 

the artificially reduced learning gain fk-I excessively limits the amount of information 

which can be learnt at each iteration and the convergence rate is slowed. 

To restore a high convergence rate. while maintaining stability. the magnitude of W must 

adapt to suit the current level of tracking error. As the error reduces, W must also be 

ma, de smaller. A suitable function is of the form: 

Wk+l = wo + w, I lel 12 
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10-8, high order models, gain = 0.5, ) 

where wo and w, are two new tuning parameters, which must be appropriately selected 
to inatch the operation of the control system. Parameter wo (, an be used to guarantee 
stability by setting a baseline magnitude for Wk+l, while wi I Jel 12 adapts C44+1 to match 
the change in tracking error. 

Figure 5.12 displays the displacement profiles for iterations 490-500 when the scalar gain 
is 0.5 and LUk+l =2x 10-71 JeJ12 (corresponding Y and Z-axis figures can be found in 
Appendix B). The adaptive variant of the gain tuning parameter has clearly improved the 

convergence rate and mininmin trm-king error, though the Z-axis performance remains 

poor in comparison to the other axes. Table 5.4 presents the PI100 values for various 

scalar gains and tuning parameter settings. The poor performance of the Z-axis can be 

corrected by setting Wk+1 = 0. The required Z-axis travel is sufficiently small, that the 

initial overshoot caused by the increased learning gain does not exceed axis travel limits. 

By iteration 100, the output displacement resembles the reference trajectory well. 

TABLE 5.4: Adjoint al. -orithm, gain modelling error, P1100 values el 

Scalar gain X-axis Y-axis Z-axis 

1.5 0 2.182499 1.982648 4.650866 
1.25 0 2.088590 2.315949 3.645411 
0.75 0 3.035958 2.454343 6.282407 
0.5 0 100.000000 100.000000 100.000000 
0.5 5x 10-8 1.685481 11.737366 69.209067 
0.5 2x 10 71 JeJ12 5.640472 3.309684 39.097583 
0.5 W, =0 - 11.13238ij 
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C, 0 

5.3 Inverse Algorithm 

5.3.1 Algorithm development 

Inverse model based systems utilise the fundamental equation: 

Gu 

Assuming that a plant inverse can be calculated, Equation 5.11 can be rearranged in the 
form: 

G-ly (5.12) 

If the plant dynamics and the desired output are known, Equation 5.12 theoretically 

generates the required input signal. which must be supplied to the plant. In effect there is 

no requirement for any form of controller, the perfect input signal is calculated in advance. 
However, in practical implementation. the use of this concept invariably leads to a system 
which significantly lacks robustness. The tracking performance also depends ultimately 
on the accuracy of the model, which frequently lacks detailed information with respect 
to plant dynamics and in particular. non-linear effects. These two factors are critically 
important to any control system and invariably prevent the practical implementation of 
Equation 5.12. 

The ILC framework generates the opportunity to overcome these problems, by adapting 
the calculated input signal u at each iteration, to overcome modelling errors. However, 
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the robustness of inverse ILC algorithms still requires investigation. 

Harte, Hdt6nen, and Owens (2004) propose an optimal, inverse plant ILC algorithm, 
which has a similar structure to the adjoint algorithm presented in Section 5.2. The 
input update algorithm is defined as: 

uk+l = uk +, Ok+IG-lek (5.13) 

where 0 is the learning gain which is automatically selected at each iteration, by min- 
imisation of the cost function: 

J(, 3k+l) = Ilek+l 112 + W, 3k2+1 (5.14) 

and w is a tuning parameter. The cost function seeks to minimise tracking error, while 
maintaining small learning gain to improve robustness. Minimising the cost function 

yields the gain update equation defined by: 

flk+l ý-- 
IlekI12 

112 w+ Ilek 

5.3.2 Initial implementation 

(5.15) 

The first implementation of the inverse algorithm was performed with W equal to zero, 
therefore producing a maximum learning gain of 1. The test ran for 4 iterations, then 

was stopped due to excessive mechanical vibration in the structure of the robot. Analysis 

of the plant inputs and tracking errors (Figure 5.13 for the X-axis and associated Figures 
in Appendix B for the Y and Z-axes) reveals that the input voltages are contaminated 
with high frequency noise. Frequency spectrum analysis determines that the X-axis plant 
input contains a particulary distinct 25 Hz (157 rad/s) frequency component, while the 
X-axis error consists mainly of frequencies between 0 and 12 Hz (0-75 rad/s). Referring 
back to the X-axis Bode plot (in Section 3.3) this corresponds to a distinct dip in the 

gain plot, caused by a resonant zero pair, at which frequency the plant cannot resonate. 

Observing the input update algorithm (Equation 5.13) reveals that the plant inverse 

model acts as a filter for the error vector. The frequency response characteristics of this 
filter are equivalent to the inverse of the Bode plot, therefore the anti-resonance becomes 

a strong resonant peak and higher frequencies are allowed to pass more easily than low 
frequencies. At each iteration, the X-axis filter enhances 25 Hz frequencies, which axe 
added to the input for the next iteration. The plant cannot resonate at 25 Hz, but the 
high frequency components of the input provide sufficient excitation energy to stimulate 
the plant resonant frequencies between 10 and 12 Hz. The mechanism which drives the 

resonant frequency is similar to that found in basic algorithms in Chapter 4, the input 
becomes saturated with noise, the plant resonates and the control system is unusable. 
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FIGURE 5.13: X-axis input and error (inverse ILC, w=0. iteration 4) 

The use of ýu for stabilising the plant has been investigated. By reducing tile, learning gain, 
there is less amplification of high frequency signals and the plant input is less corrupted 
at each iteration (Ratcliffe. Harte. HR6nen, Lewin, Rogers, and Owens, 2004a). 

The mse curves in Figure 5.14 represent the learning performance, when using W values 
of 0,0.0001,0.001,0.01,0.1 and 1. Although the controller is unusable after 4 iterations 

with w equal to zero. the advantage of using the inverse model is immediately noticeable. 
The error reduction rate is very fast and the mse is reduced by 4 orders of magnitude 
in just 3 iterations. Increasing the magnitude of Lo extends the time before the system 
becomes unusable. but at the expense of convergence rate and minimum mse. Funda- 

mentally, trying to use L,; as a means of stabilisation is simply delaying the build up of 
high frequency signals, not preventing it. 

5.3.3 Stabilisation using zero-phase filtering 

Zero-phase filtering was successfully implemented in Section 4.4.6 to stabilise the basic 
P-tYpe algorithm. by removing high frequency noise and resonances. This technique 
is equally well suited to the instability which exists in the inverse algorithm (Ratcliffe, 
Rogers. Harte. HAt6nen. Lewin. and Owens, 2004b). The low pass transfer function 
(Equation 4.15) is modified to match the 10014z sample frequency and is implemented 

using the zero-pha-se methodology, on the plant input vector generated by the inverse 
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FIGURE 5.14: mse (inverse ILC, high order models) 

algorithm. The filter transfer function is: 

y(Z) 
= 

0.102693 -ý 0.002934z-1 + 0.002934z-2 + 0.102693z -3 
u(z) 1-1.644597z-1 + 1.091881Z-2 - 0.236029z-3 

(5.16) 

Figure 5.15 shows the ruse curves recorded during a 5000 iteration long-term stability 
test, implemented with the zero-phase filter and with w equal to zero. The filtering 
technique has successfully stabilised the algorithm, which is able to reduce the mse by 
5 orders of magnitude within three iterations. The absence of increasing ruse suggests 
that the algorithm will remain stable for many further iterations. The PI100 values are 
presented in Table 5.5. 

TABLE 5.5: Inverse ILC, long-term stability test PIjOO ValUeS 

X-axis Y-axis Z-axis I 

1.003734 1.000653 1.01-13-24T] 

In a similar manner to the adjoint algorithm, the mse for consecutive iterations varies 
between upper and lower bounds. This is due to the purely feed-forward nature of the 
algorithm and the high gain of the inverse model which amplifies the effect of non- 
repeating disturbances. Figure "). 16 confirms that the displm-ement profiles at iteration 
5000 are free of resonances and match the reference trajectory well. 

The rapidity of convergence can be seen in Figure 5.17. which displays the displacement 

profiles for iterations I to 3. Iteration I is a point centered at the origin. while iteration 
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2 resembles the reference trajectory closely and by iteration 3 the tracking is equivalent 
to that achieved during iteration 5000 in Figure 5.16. 

5.3.4 Robustness to initial state error 

Figure 5.18 displays the mse curves corresponding to initial errors of 0,1,27 3, and 
4mm. Within the period of 500 iterations., the stability of the inverse algorithm is not 
compromised by the presence of initial error. There is no indication that the mse tends 
to increase after the initial reduction. The algorithm can successfully tolerate : ýA mm of 
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error, while still being able to improve the mse level by 1 to 2 orders of magnitude. In 
contrast to the adjoint algorithm. beyond ±4 mm of initial error. the step input calculated 
by the algorithm at the start of the iteration is too large for the power amplifiers, therefore 
no data can be recorded. The step input is produced by the algorithm. as it attempts to 
compensate for the initial displacement and is a result of the large low frequency gain of 
the inverse plant model. PIjOO values are presented in Table 5.6. 

'I , ABLE 5-6: Inverse ILC tolerance to initial error. PIloo values 

Error bound (ýiiliii) 1 1 X-axis Y-axis Z-axýils 
1.003734 1.000653 1.011324 

1 1.120421 1.004857 1.973230 
2 1.497030 1.017098 4.829746 
3 2.076974 1.038256 9.79,5388 
4 3.051135 1.067486 16.522295 

The linear representation of the mse for the first 50 iterations (Figure 5.19), highlights 
the increased variation in inse for each increment of initial error, but, also emphasizes the 
lack of change in convergence rate. minimum ruse still being achieved in 2 to 3 iterations, 
irrespective ofthe hiiiial error. 

5.3.5 Robustness to plant modelling error 

The effect of model gain error is investigated by multiplying the high order models with 

scalar gains of 0.5,0.75,1.25 and 1.5. The inverse algorithm is unusable for gains 0.5 

and 0.75, because the axis displacement required during iteration 2 is significantly larger 
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than the travel limits of the robot. Gains of 1.25 and 1.5 produce very similar results to 

the original gain of 1, as shown in Figure 5.20. There is no noticeable effect on stability 

or minimum inse. However. each increase in scalar gain tends to slow the convergence 

rate slightly, achieving inininium inse 3 to 4 iterations later. 

With reference to the input update algorithm previously mentioned (Equation 5.13), the 

error vector is multiplied by G-1. If the the scalar gain is increased, the inverse model 

gain decreases and the learning correction is smaller. Conversely, if the scalar gain is 
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decreased, the inverse model gain incree-ses and the learning correction is larger. This 

explains why the convergence rate with gains 1.25 and 1.5 becomes progressively slower 
and why the input demand with gains 0.75 and 0.5 is too high. 

Adjustment of the learning gain by means of the tuning parameter w corrects the scalar 
gain error. Figure 5.21 (associated Figures for the Y and Z-axes are in Appendix B) 
displays the displacement profiles for iterations 490 to 500 when w is set to 1.4, the 

mininnnn value which permits the axis displacement to remain within travel limits. Sini- 

ilarly to the adjoint algorithm, the fixed value of w is well matched to the error profile 
for the first iteration. but is too large at subsequent iterations and compromises both 

convergence rate and minimum mse. Tuning parameter w must be reduced as the error 

reduces, if good performance is to be maintained. 

The adaptive variant of w: 

Wk+I ý WO + WI 1 jel 12 (5.17) 

is equally well suited to the inverse algorithm and when WO =0 and w, = 1, the minimum 

mse and convergence rate are improved as demonstrated in Figure 5.22 (see Appendix 

B for Y and Z-axes), for which the model scalar gain is 0.5. ýVj =1 is particularly well 
tuned for this experiment, because with reference to the gain update (Equation 5.15), 

the learning gain j3k-j is always equal to 0.5 an(] compensates exactly for the incorrect 

inverse model gain, which is 2. Table 5.7 presents the PIoo values for all tests involving 

scalar modelling error. 

The effects of model order reduction on the inverse algorithm performance are minimal. 

135 



X-ým 

0035 

OM 

0.025 

-E 0.02 

Oý015 

001 

0,005 

-O. DO5' I 
0 002 004 006 O. D8 OA 0.12 0,14 0,16 018 0.2 

Tim (s) 

FIGURE 5.21: X-axis tracking performance iterations 490-500 (inverse ILC. zero-phase 
filter, w=1.4, high order models. gain = 0.5) 

TABLE 5.7: Inverse ILC, tolerance to scalar gain error, PI100 values 

Gain Iw X-axis Y-axis Z-axis 
1.5 0 1.118844 1.128620 1.127984 

1.25 0 1.040381 1.041540 1.054823 
0.75 0 100.000000 100.000000 100.000000 
0.75 0.4 7.825125 1.222498 36.441080 
0.75 llle112 1.117947 1.126110 1.139603 
0.5 0 100.000000 100.000000 100.000000 
0.5 1.4 14-154051 1.448858 53.769616 
0. 

.5 llle112 1.005563 1.000994 1.011805 

The mse reduction compares well with the higher order models and the error converges 
within 4 to 5 iterations. Convergence rate and minimum tracking error and have not 
been significantly affected and stability is still maintained. The inverse algorithm is 
implemented for 500 iterations, using the zero-phase filter and the 1st order models. As- 

sociated mse plots can be found in Figure 5.23. Note that the Y-axis tuning parameter 
must be set to 0.11jej 12. to limit the Y-axis learning gain and prevent the robot from 

exceeding travel limits during the first iteration. This is due to a low frequency gain 
discrepancy between the actual plant and the first order model, which is greatly ampli- 
fled by inverting the model. P1100 values for the first order model implementation are 
presented in Table 5.8. 
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TABLE 5.8: Inverse ILC 1st order modelsi PI, oo values 

X-axis I Y-axis I Z-aXýISJ 

1.013886 1 1.002984 1 1.030281 

5.4 Norm-Optimal Algorithm 

5.4.1 Algorithm development 

The fundamental concepts underlying the discrete norni-optimal (NOILC) algorithin are 

presented in Section 2.2.3.6. The optimised input update algorithm has a very similar 

structure to the adjoint algorithm: 

Ukýl ý Uk + R-1G T Qek-I (5-18) 

Q and R are matrices, which adjust the balance between the rate of error reduction and 
the rate of input signal change respectivel. y. In general, the components of Q and R are 
chosen by: 

Q= qI (, i. m) 

R= rl (5.20) 

where q and r are scalars and I is the identity inatrix of appropriate dimensions. 

The distinguishing feature of the norin-optillial algorithin, is that future tracking error 
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ek, I is used rather than past error ek. This fundamentally makes the algorithm non- 

causal, resulting in a system which should be impossible to implement. However, Amann 

et al. (I 996b) overcome non-causality. bY means of ail additional optimal feedback control 
formulation of the algorithm. The resulting controller generates both feed-forward control 
between iterations and feedback control at each sample instant and consists of three 

equations: 

9 Matrix gain equation 

K(t) =AT K(t + 1)A _4_ CTQ(t + )C _ [A T K(t + 1)B 

x JB T K(t + 1)B + R(t + I)J-1 BT K(t + 1)A] (5.21) 

where K(t) is a matrix gain which has the terminal condition K(N) =0 and is a solution 

of this R, i(. (. a, ti equation. 

9 Predictive component equation 

I+ K(t)BR-l(t)B TI-I 

xfAT 4- 1 (t + )+CTQ(t+l)ek(t+l)l (5.22) 

wliere Zk. 1 (N) = 

* Input update equation 
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Uk+ I (t) ý Uk (t) -[fBT K(t)B + R(t) IIBT K(t) 

xA fXk- I (t) - Xk(t) I]+ R-'(t)B Týk+l (t) (5.23) 

Implementation of the algorithm is as follows. The matrix gain K (5.21) can be calculated 
before the system operates. and bence. does not contribute to the real-time processing 
load. The predictive term (5.22) must be calculated between each iteration. Note that 
this equation has a terminal condition. rather than an initial condition and must therefore 
be computed in descending sample order. The input update (5.23) must be calculated 
at each sample instant and therefore particularly contributes to the real-time processing 
load and has a significant influence on the minimum sample time. The system states are 
estimated by means of a full state Luenberger observer (Luenberger, 1971). 

5.4.2 Fast Norm-Optimal ILC 

Fast convergence speeds an(] small residual tracking error should make the NOILC algo. - 
rithm very attractive to industry. because they result in shorter manufacturing time and 
less product wastage. However. in the original format. the NOILC algorithm requires 
a high performance controller, if it is to be implemented with a high order model at 
fast sampling frequency. This is mainly due to the large numbers of multiplications, 
additions, subtractions, matrix transpositions and matrix inversions which need to be 

performed between each sainple interval. To remedy this problem. a fast version of the 

algorithm (F-. NOILC) can be used. which allows the majority of calculations to be per- 
formed during the design and commissioning of the controller (Ratcliffe. van Duinkerken, 
Lewin, Rogers. HAt6nen, Harte, and Owens. 2005b). The remaining calculations are sig- 
nificantly reduced in number and consist solely of multiplications, additions and subtrac- 
tions. The F-NOILC algorithm is derived by identifying numerous simplifications which 

(-an be made to the NOILC algorithm. The matrix gain equation is already performed 

off-line in the NOILC implementation and there is no change for the F-NOILC. 

Now consider the predictive component equation (5-22). The only variables in this equa- 
tion are the tracking error Pk and the predictive term itself ýk+j all of the other terms 

can be combined together to produce constant matrices: 

a(t) =f I+ K(t)BR-'(t)B TI-I (5.24) 

0(t) = a(t)A T (5.25) 

, ý(t) = a(t)CTQ(t + 1) (5.26) 
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leading to the simplified predictive component equation: 

3(04-1(t + 1) + -y(t)ek(t + 1) (5.27) 

Exactly the same concept can be applied to the input update equation (5.23): 

A(t) = IB T K(t)B + R(t) I-' BT K(t)A (5.28) 

w(t) = R-l(t)B T (5.29) 

resulting in the simplified input update equation: 

Uk+ IMý Uk(t) - AM {Xk-1(t) 
- Xk(t) I+ W(OG-1(t) (5-30) 

The resulting implementation therefore requires that seven matrices in total be supplied 
to the real-time controller. 

e state inatrices, A, B and C 

9 F-NOILC matrices. 3. ý, A and w 

If the matrices Q and R need to be adjusted. then the F-NOILC matrices must be 

recalculated and downloaded again to the controller. 

It must be stated that the F-NOILC algorithm does use significantly more memory than 
the NOILC algorithm because, the. memory allocation is static rather than dynamic. 
The NOILC can recycle memory once calculations are complete. However it is worth 
observing that the process of recycling the memory takes time. and therefore decreases 

the amount of time available for computation of the algorithm. Currently, hardware 

constraints favour the F-NOILC algorithm because it is relatively easier and cheaper to 

upgrade memory than to upgrade the central processor of the control hardware. 

With respect to the improvement in computation speed, due to the reduced number of 
calculations, it is possible to calculate exactly the time required to perform each algebraic 
operation for both the NOILC and the F-NOILC. then find the total time for each variant. 
However, the results of this process still ultimately depend on the characteristics of the 

controller, the operating system and the efficiency of the program functions (Machado 

and Galhano, 1995). In simulation studies using an identical setup for both variations of 
the algorithm, the F-NOILC algorithm can be calculated almost three times faster than 
the NOILC algorithm. Potentially. this implies that the algorithm can be implemented 

at three times the sampling frequency on an existing controller, or can be used at the 
current sample frequency on a controller which is three times slower and therefore likely 
to be cheaper. 
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5.4.3 Initial implementation 

The matrices Q and R fundamentally determine the performance of the controller. There- 
fore, before any meaningful experiments relating to stability and performance were un- 
dertaken, the effects of adjusting Q and R had to be investigated. Experiments were 
performed in which Q and R were diagonal matrices defined by Q= qI and R= rl. All 
the combinations of scalars q and r given in Table 5.9 were implemented for a period of 
100 iterations, following which. PI, oo was calculated for vach test. 

TABLE 5.9: a and r values used in exl)eriments 
1 0.1 ý 1 10 100 1000 10000 100000 1000000 

100 10 1 0.1 0.01 0.001 0.0001 

Because the algorithm has two tuning parameters. the results of these experiments are 
best displayed in three dimensional format. relating q and r to PI100. Figure 5.24 

shows the data for the X-axis. Results for the Y and Z-axes are in Appendix B. It 

is immediately noticeable that all three plots are similar, particularly for the X and Y 

axes, for which the low frequency gain of the. linear motors is practically identical. 
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FIGURE 5.24: X-axis PI, oo for various q and r 

10' 

Because q affects the rate of error reduction and r limits the input change, interpreting 

the information in the plots becomes a simple task. To the right of the chart is a region of 

poor tracking performance where the P1100 value is near to or equal to 100 indicating that 

virtually nothing is learnt during the 100 iterations of the test. As could be expected, 

this corresponds to a small value for q and a large value for r. With these settings, 

the algorithm is far too conservative. As the ratio of q to r increases, gradually PI100 

reduces, indicating that the performance is improving. This is represented by the slope 
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to the right side of the chart. As the q, r ratio continues to increase, PIloo is reduced 
to values very close to 1. indicating that the perfect trajectory is learnt in almost one 
iteration. The balance of error reduction to input change is now approaching optiniality. 
Temporarily increasing q, r has little effect on the performance, until the system becomes 
unstable and PI100 reverts to 100. This is represented by the channel followed by the 
steep slope to the left of the chart. Therefore it is the ratio of q to r that determines 
controller performance, rather than the actual values for each parameter. If a larger range 
of q and r values were used. the chart would still present a channel cutting diagonally 

across it. q and r values of 100 and 0.001 respectively produce a suitable compromise 
between performance and stability, and were used in all further experiments. 

Long term stability. low ruse and fast convergence are all achieved by the norm-optimal 
algorithm, as demonstrated by the ruse curves in Figure 5.25. As with the adjoint and 
inverse algorithms, the mse varies between upper and lower bounds. But, the variation 
is noticeably smaller, being only one order of magnitude rather than two. The likely 

cause for this reduction is the feedback component of the norin-optinial algorithm. which 
compensates for non-repeating disturbances and noise. The tracking performance at 
iteration 5000 (Figure 5.26) is better than the level achieved by the other model-based 
algorithms. 
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FIGURE 5.25: mse (norm-optimal ILC, high order models) 

Figure 5.27 shows the displacement trajectories for iterations I to 5, highlighting the 

rapidity with which the algorithm learns. As compared to the inverse algorithm, although 
the X and Y-axes converge equally fast. the Z-axis converges slightly slower. P1100 values 
for the long-term stability test are presented in Table 5.10. 
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5.4.4 Robustness to initial state error 

The feedback component of the norm-optimal algorithm responds more immediately to 
initial error than the preceding adjoint and inverse algorithms. Therefore, larger step 
inputs are produced at the beginning of tile iteration, and the initial error bound is 
limited to ±3nini, before the step inputs become too large for the plant. Figure 5.28 
displays tile inse curves for initial errors of 0,1,2 and Ulm. Within the 500 iteration 

test, stability is not compromised by increasing the initial error. Table 5.11 displays the 
P1100 data for different initial error bounds. 
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TABLE 5.10: Norm-optimal ILC long-term stability test, PIIOO values 

1 X-axis 1 Y-axis 1 Z- 
1 1.002534 1 1.000888 1 1.0 

TABLE 5.11: Norm-optimal ILC tolerance to initial error, PIIOO values 

Error bound (±mm) 1 1 X-axis I Y-axis I Z-axi-s-] 
0 1.002534 1.000888 1.065946 
1 1.013238 1.001251 1.179414 
2 1.044823 1.002520 1.508222 
3 1.097886 1.004743 2.083286 

The linear scale representation of the mse plots for the first 50 iterations (Figure 5.29), 
depicts the increase in both minimum mse and ruse variation, as the initial error increases. 
The convergence rate is not affected by initial error. 

5.4.5 Robustness to plant modelling error 

The scalar gain error test is executed with the norm-optimal controller, using the high 

order plant models. The mse plots for gains 0.5,0.75,1.25 and 1.5 (Figure 5.30) show 
very little variation in minimum mse, and convergence rate. Smaller scalar gain tends 
to produce slightly slower convergence rate. Unlike the adjoint and inverse algorithms, 
the norm-optimal controllcr is particularly robust with respect to gain discrepancy and 
is able to compensate for scalar gains 0.75 and 0.5, without any adjustment of tuning 

parameters. This attribute is most likely a result of the built-in optimal feedback con- 
troller, which is able to use real-time data to correct the majority of the modelling error. 
The PI100 values for all tests involving scalar gain error are presented in Table 5.12. 

TABLE 5.12: Nomi-optimal ILC tolerance to scalar gain error, PIIOO values 

Scalar gain 1 1 X-axis I Y-axis I Z-axis 
1.5 1.033856 1.025520 1.130277 

1.25 1.015170 1.010434 1.092580 
0.75 1.007166 1.015424 1.052615 
0.5 1.080867 1.079621 1.066248 

The 1st order model test produces the mse curves in Figure 5.31. Minimum mse and 
convergence rate are unaff6cted, but stability becomes a serious issue. After the initial 

reduction, the X-axis mse plot clearly increases from iteration 150 onwards, growing by 

almost one order of magnitude by iteration 500. This clearly indicates that the algorithm 
is unstable. 

Analysis of the plant input and error profiles shown in Figure 5.32 indicates that the 
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FIGURE 5.29: mse linear scale (norm-optimal ILC, high order models, initial error 
bounds 0,1,2 and 3 min) 

X-axis suffers from resonant frequency build up. Spectrum analysis confirms that a 
frequency of 14.5 Hz (91 rad/s) is dominant in both the input and error signals. With 

reference to the X-axis Bode plot (in Section 3.3), 14.5 Hz corresponds to the second 
highest resonant frequency. The lack of dynamic information relating to the resonant 
frequencies in the Ist order models is leading to algorithm instability. 

Corrective measures for the resonance take the form of the zero-phase filter discussed in 
Section 5.3.3. The norm-optimal algorithm coupled with the zero-phase filter produces 
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the mse plots in Figure 5.33. Following the initial learning, the mse remains steady 
and stability has been restored. Table 5.13 presents the PI100 data for the 1st order 
model implementation. Compared with the performance achieved using high order plant 
models. the controller achieves very similar performance, when implemented with the Ist 

order models, which lack detailed dynainic response data. There is a small improvement 

in the X-axis performance and a slight reduction for the Y and Z-axes. 
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5.5 Summary 

Three optimality based. iterative learning control algorithms have been successfully im- 

plemented on the gantry robot. producing excellent levels of mse reduction, coupled 

with fast convergence rates and long-term stability. The adjoint and norm-optimal al- 

gorithins are implemented without any requirement for additional filtering or external 

control. Tile inverse algorithm requires the use of a zero-phase filter to achieve stability, 

without which, only 4 iterations can be achieved before the input becomes heavily cor- 
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TABLE 5.13: -Norm-optimal ILC Ist order implementation, PIjOO, values 

X-axis Y-axis Z-axis--] 
1.001088 1.001818 1.0ýý2 

rupted by frequencies associated with resonant zero pairs of the plant. Each algorithm 
is tested with respect to initial state error and plant modelling error. 

The adjoint algorithm (-an tolerate high levels of initial error without loss of stability and 
without producing a harsh input to the plant. First order models can be substituted for 
high order models, with minimal loss of performance. An adaptive version of the gain 
tuning parameter can be used to overcome the instability caused by a modelling gain 
error of 0.5. 

The inverse algorithm can tolerate initial error up to a bound of ±4mm before the 

plant input becomes unsuitable for the gantry robot. In a similar manner to the adjoint 

algorithm, an adaptive gain tuning parameter compensates for a gain modelling error of 
0.5. The algorithm is more sensitive to gain discrepancy and the tuning parameter must 
also be used to correct a small low frequency gain error when the first order models are 
imPlemented. 

The effects of norni-optimal matrices Q and R on algorithm performance are investigated 

and scalar values q= 100, r=0.001 were selected for use in all other tests. The 

algorithm (: an tolerate initial error up to a bound of ±3nun, without any variation in 

convergence speed and without loss of stability. Scalar modelling gain errors of 0.5 to 
1.5 are tolerated without difficulty and minimal variation in performance. The lack of 
dynamic information in the first order models causes the build-up of resonant frequencies, 

which can be prevented by the use of zero-phase filtering. 
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Chapter 6 

Comparative ILC Controller 

Performance 

This chapter discusses the relative performance of each ILC algorithm implemented as 
part of this work. This is important. because one major reason for choosing to implement 

an model-based ILC algorithm, must be that the resultant system performance is superior 
to that which can be achieved using a simpler approach, that requires less knowledge of 
the plant. The performance index PIN defined in Chapter 3, which is the sum of the 
first N iterations in a test, is used for this analysis. Using PIN, it is not possible to 
compare the performance of basic algorithms with model-based algorithms numerically 
because the mse for the first trial is not equal. Therefore a discussion comparing the 
different inse plots is developed instead. 

6.1 Basic Algorithms 

Figure 6.1 displays the performance index results for the series controller arrangement 
with different values of learning gain. With gain equal to 0.0001, the algorithm learns 

very slowly and, within 100 iterations. the tracking error is barely smaller than for the 
feedback controller alone. Increasing the gain by a factor of 10 causes a noticeable 
improvement in performance, producing PI100 values between 90 and 92. Of the gains 
used in this test, 0.01 produces the greatest improvement in performance, with PI100 
between 43 and 45. A gain of 0.1 causes rapid learning, but also accelerates the build 

up of noise and resonance in the iteration loop and therefore causes the plant to become 

unstable within the first 100 iterations. 

Figure 6.2 displays the performance index results for the parallel controller arrangement. 
Comparison with Figure 6.1 for the series arrangement, highlights how the PIIOO follows 

a similar pattern. confirming that the series and parallel implementations of a feedback 
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Pl,, Senes czritrolWr with diffemnt leaming gains 

FIGURE 6.1: Comparison of PI100 values for the series controller with varying learning 

gain 

controller assisted by TLC perform and behave in a similar manner. 

PI,, Parallel writroller with different learning gains 

8 

FIGURE 6.2: Comparison of P1,00 values for the parallel controller with varying learn- 
ing gain 

6.1.1 Filtering comparison 

Filtering techniques permit a learning gain of 100 to be used in the parallel controller 
implementation, without loss of stability. The. choice of filter also has a significant effect 
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on learning performance. as demonstrated by Figure 6.3. The low-pass filter clearly 
produces the worst performance, due to the large phase shift which is added to tile, 
filtered signal at low frequency, causing the ILC to compensate incorrectly for lileasured 
tracking error. The band-stop filter produces a slightly improved performance but still 
causes large phase shift on either side of the stop band. The zero-phase and aliasing 
techniques produce similar performance, though the aliasing technique is best. because 

the linear interpolation used in the aliasing technique is particularly well suited to the 

reference trajectories and does not over-smooth the plant input. as the zero-phase filter 

does. 

PI,, Parallel contmlier, different filters 
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S 
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FIGURE 6.3: Comparison of PIIO() values for the parallel controller using different 
filtering techniques 

6.1.2 Initial state error 

The hybrid ILC was tested for robustness to initial state error using both the zero-phase 
filtering and aliasing techniques. Positioning error with a bound of ±Imm could be 

tolerated before the feedback controller generated an input step. which was unsuitable 
for the plant. Figures 6.4 and 6.5 display the PII()o data for the zero-phase filter and 

aliasing techniques respectively. The PI100 values for the zero-phase filter are generally 
higher than for the aliasing technique as discussed ill the previous Section. 

The initial cri-or bound has mininial effect on tile Y-axis performance, while tile influence 

on the Z-axis is greatest. This is to be expected. because the =Inun bound constitutes 

a greater portion of the Z-axis reference than of the Y-axis reference. The increase in 

PIIOO value for each example is less than 0.5 and is not a substantial change. because 

the feedback controller rapidly removes tile initial error at the start of the trajectory, 
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resulting in minimal inipact on the learning controller. 
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FIGURE 6.5: Comparison of PIIOO values, aliasing with initial error 
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6.2 Model-based Algorithms 

6.2.1 Initial implementation 

The implementation of each inodel-based algorithm produces zero motion of the robot 
for the first iteration. The error for the first iteration is therefore equal to the reference 
trajectory and the mse is significantly larger than in the basic algorithm implementation. 
Once the model-based algorithm has successfully, reduced the error to a minimum, the 

ratio of minimum ruse to first iteration inse is much larger than for the basic algorithm, 

so the P1,00 values become sinaller. 

Figure 6.6 presents one of the key results of this thesis. It is a comparison of the tracking 

performance produced by the three optimal ILC controllers, recorded during the long- 
term stability test. The small values of PIjOO for the three algorithms indicate that they 
all perform well. However, the inverse and norm-optimal algorithms perform particularly 
well, because they produce P1100 values fractionally larger than 1. This implies that they 
learn the majority of the required plant input in one iteration. The performance of the 

adjoint algorithm is noticeably worse, because the input update mechanism requires a 
larger number of iterations to overcome the integrating nature of the plant. The Z-axis 

performance is noticeably worse for all three algorithms, because of the scaling effect 
which the reference trajectory has on the calculation of the norinalised mse. 
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FIGURE 6.6: Comparison of PI100 values calculated froin Iong-terin stability test 

It is possible to conclude that the algorithm which produces the best performance during 

the first 100 iterations. when test conditions are optimal. is the inverse ILC. This is 

logical. because the accuracy of the plant models has been verified and found to be high. 
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Therefore, the inverse algorithm produces an excellent estimate of the required plant 
input for iteration 2. 

Direct comparison of the long-terin stability inse plots (Figure 6.7) suggests that the 

norm-optimal algorithm consistently produces mse values, smaller than the other two 
algorithms. The P1100 comparison is more biased by initial learning rate than consistent 
minimum mse, therefore the inverse algorithm performs best under these criteria. 
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FIGURE 6.7: mse for all three niodel-based algorithms 

Table 6.1 presents the P15000 values for the long-term stability tests. Using this variant 

of the index, P45000(min) = 1. while PI5()()O(max) = 5000 and the comparison is more 
bia. sed to consistent mse reduction. This is a good example of how N in PIN must 
be carefully chosen to influence which characteristics the performance index emphasises 

most. 

TABLE 6.1: Model-based. ILC algorithms. high order models, P15000 values 0 
I Algorithin 11 X-axis I Y-axis I Z-axis I 

Adjoint 1.885475 1.551208 3.411915 
Inverse 1.105030 1.005053 1.438905 

Norm-Optimal 1 1.013335 1.001809 1.141605 

The a-djoint algorithin still produces the poorest performance, but the norni-optinial 

performance clearly surpasses that of the inverse algorithm, because the norm-optimal 

algorithm converges slightly slower than the inverse, but maintains lower and less variable 

inse. 
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6.2.2 Initial state error 

Figures 6.8.6.9 and 6.10 present the P11oO values for the adjoint. inverse and norni- 
optimal algorithms respectively, when initial position error is added at the start of the 
iteration. The adjoint algorithm is able to tolerate the largest initial error (--LlOmm) 

without loss of stability. However, the impact on tracking performance is very clear. 
Increasing the initial error exponentially increases the PI100 values for the X and Z- 

axes. for which the initial error is a significant percentage of the reference trajectory. 
As the error bound reaches ±8inni the Z-axis is stable but no useful learning occurs 
and PI100 = 100. In comparison. the effect on the Y-axis is minimal, there is a general 
tendency for P11oo to increase, but the variation is highly non-linear. because the initial 

error is only a small percentage of the reference trajectory and the effect of non-repeating 
disturbances is still visible. 

P11, Initial state ermr, Adpnt ILC 

0 

FIGURE 6.8: Comparison of PIoo values, adjoint ILC with initial error 

The effect of initial error on the inverse and norm-optimal algorithms follows the same 
trends as for the adjoint algorithm. However. the magnitude of the PIIOO values is much 
smaller. Therefore the initial error has a less pronounced effect on tracking performance. 
In particular, the norm-optimal algorithm is able to tolerate ±3mnI of error for the 
Z-axis, producing a PI100 = 2.083. while the a4joint and inverse algorithms produce 
PI100 = 23.326 and PIIOO = 9.795 respectively. 

6.2.3 Robustness to plant modelling error 

The relative performance of tile model-based algorithms, when implemented with Ist 

order models, follows the same trends as with high order models. Figure 6.11 presents 
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FIGURE 6.10: Comparison of PIIOO values, norm-optinial ILC willi initial error 

the PI100 data, showing that the adjoint algorithin produces the poorest performance, 

while the performance of the inverse and norm-optimal algorithms is better. The ad- 
joint algorithm is also significantly more affected by the reduction in modelling accuracy. 
Compared with Figure 6.6 for the high order models. the X, Y and Z-axis PIIOO val- 
ues have increased from 1.787,1.544 and 2.956, to 2.713,2.236 and 4.192 respectively. 
However, the adjoint algorithm appears to be more robust with respect to model order 

reduction than the other model-based algorithms, because it is implemented without 
any additional stabilisation techniques, unlike the inverse algorithm, which intrinsically 
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requires zero-phase filtering for all implenientat ions and the norm-optimal algorithm, 

which requires zero-phase filtering in the Ist order model implementation. 
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FIGURE 6.11: Comparison of PIloo values with 1st order models 

Figures 6.12,6.13 and 6.14 display the, PIIOO values for the adjoint, inverse and norin- 

optimal algorithms respectively, when scalar gain error is induced in the plant models. 

The general trend is for the tracking performance to decrease, as the scalar gain moves 

away from I in either the positive or negative direction. This is to be expected, because 

the accuracy of the model is effectively reduced. 
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FIGURE 6.12: Comparison of PIjOO values, adjoint ILC with scalar gain error 
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For the adjoint algorithm, the decrease in performance is particularly noticeable for scalar 
gains less than 1. The performance reduces much faster than if the scalar gain is larger 
than 1. ft must also be noted that. for scalar gain 0.5, the algorithm is unstable for the 
X and Y-axes. The PI, oo values presented in the chart are the result of learning gain 
reduction by using the tuning parameter Wk-1 =2X 10-71jeI12 for the X and Y-axes 

and Wk- I=0 for the Z-axis. 

P1,00 Scalar gain wror, Inverse ILC 

0a 

0. 

06 

04 

0.2 

0 

FIGURE 6.13: Comparison of PIjOO values, inverse ILC with scalar gain error 

This effect is more noticeable for the inverse algorithm, where the algorithm is unstable 
for gains 0.75 and 0.5. The PIIOO values are a result of learning gain reduction using 
Wk+1 = 11jell' for both cases. Note how Wk-1 is correctly chosen for scalar gain 0.5, 

where the performance is equivalent to a scalar gain of 1. but not for scalar gain 0.75, 

where the performance is worse. This could be corrected by a4justing the value of wi. 

The performance of the norni-optimal algorithni is affected very little by scalar gain 

error. No adjustment of tuning parameters is required and the increase in PI100 values 
is insignificant. 

6.3 Basic ILC Compared to Model-based ILC 

PIN cannot be used to compare the performance of basic and model-based algorithms, 
due to the different methods of implementation. It is therefore necessary to make a 

qualitative comparison based on mse performance. plots alone. Figures 6.15 and 6.16 

show the long-term stability mse results for the P-type parallel controller with aliasing, 

compared to the three model-based algorithms. The convergence rate of the hybrid P- 

type controller is noticeably slower than that of the inverse and norm-optimal algorithms, 
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but is significantly faster than for the adjoint algorithm. The minimum mse level also 
compares very well to the inverse and norm-optimal implementations. 
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FIGURE 6.15: Performance of basic ILC compared to model-based ILC, iterations 1-50 

The most noticeable difference between the basic and model-based algorithms is the sig- 
nificantly smaller variation in the mse of the hybrid P-type controller. The norm-optimal 

algorithm produces the least variation in inse of the three inodel-based algorithms, but 

the hybrid P-type remains more constant, because of the high gain feedback controller 
being coupled to the learning controller, which compensates for non-repeating distur- 

bances. The adjoint and inverse controllers have no feedback control and therefore the 
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FIGURE 6.16: Performance of basic ILC compared to model-based ILC, iterations 
4800-5000 

nise variation is greatest, while the norni-optinial controller does have feedback control 

and the mse variation is smaller. Implementing the adjoint and inverse algorithms in 

a hybrid arrangement with feedback control is likely to improve the steady state inse 
level, but has not been investigated here, because these ILC algorithms are designed to 

be operated without the need for feedback control. 

6.4 Summary 

On this experimental apparatus, the performance of the basic P-type algorithm with 

aliasing compares well with the more advanced model-based methods. The tracking cr- 

ror is reduced to levels similar with the norin-optinial ILC. The P-type algorithm also 

results in much less variation in mse from trial to trial, because the high gain feedback 

controller is able to compensate for non-repeating disturbances. The purely feed-forward 

algorithms, adjoint and inverse ILC are particularly sensitive to non-repeating distur- 

bances. resulting in a wide variation in mse values after the initial learning. However, 

these algorithms are significantly more tolerant to initial state error. because they do 

not produce harsh step inputs at the start of the trial, in an attempt to compen-sate for 

the initial error. All of the model based algorithms shows a good degree of robustness 
to plant modelling error, if suitable measures. such as the use of filtering or adjustment 

of tuning parameters are implemented. 
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Chapter 7 

Conclusions and Riture Work 

7.1 Conclusions 

Four iterative learning control algorithms: basic P-type, adjoint, inverse and norm- 
optimal have been implemented on a custom built test facility, designed to represent 
a 'pick and place' application, which is found in many different industrial applications. 
Each algorithm has been tested with respect to long-term stability, robustness to ini- 
tial state error and robustness to plant modelling error. A performance index has been 

proposed to allow a fair, quantitative evaluation of algorithm performance, to evaluate 
the four main factors which define performance: long-term stability, convergence rate, 
transient performance and minimum tracking error. 

The P-type algorithm is found to be unsuitable for integrating plants when implemented 
alone, because the input profile which the algorithm must learn bears no relation to the 
shape of the reference trajectory, but is related instead to the derivative of the reference. 
The addition of a PID feedback controller is used to compensate for the integrating 

plant by providing a good estimate of the input profile, which the ILC can build upon, 
correct and refine. Both variants of the hybrid controller: series and parallel were tested 

and found to produce similar performance characteristics even though the systems are 
distinctly different. 

The hybrid, PID with P-type ILC controllers successfully improve the tracking perfor- 
mance well beyond the level which can be achieved by the PID controller. Increasing the 
learning gain improves the convergence rate, but also accelerates the onset of instabil- 
ity, which manifests itself by an increase in mse following the initial reduction and the 
mechanical vibration of the robot. 

Investigating the mechanism of instability reveals two processes which occur simultane- 
ously and corrupt the learnt input profile. The first mechanism is related to resonant 
frequencies within the mechanical construction of the plant. Resonant frequencies rapidly 
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add 180 degrees of phase lag to the tracIdng error signal. The P-type algorithm is unable 
to tolerate phase shift larger than 180 degrees, because the simple structure of the algo- 
rithm enhances the resonance instead of reducing it. The second mechanism is concerned 
with the build-up of noise and non-repeating disturbances within the iteration loop. At 

each iteration the majority of the information supplied to the learning controller is use- 
ful for reducing tracking error. However, the learning controller is unable to compensate 
for random and non-repeating components of the error signal. These accumulate in the 
iteration loop, their magnitude increasing at each iteration, until the plant input signal 
becomes sufficiently corrupted and causes the plant to behave erratically. 

The use of several filtering techniques was investigated in an attempt to remove resonant 
and non-repeating disturbances from the iteration loop after each iteration. Band-stop 
filtering successfully limits the magnitude of resonant frequencies and a carefully designed 
filter causes minimal phase shift either side of the stop band. However, the band-stop 
filter is unable to remove high frequency noise signals. Low-pass filtering successfully 
attenuates resonances as well as noise and achieves long-term stability. But the phase 
shift caused by adding the filter, severely limits the improvement in tracking performance 
which can be gained by using a learning controller. The zero-phase filtering method is 

paxticulaxly well suited to ILC systems and doubles the attenuation of resonant and noise 
frequencies without inducing any phase shift. This results in an excellent reduction in 
tracking error and long-term stability. 

A new approach using frequency aliasing to remove unwanted frequencies was also pro- 

posed as an alternative to traditional filtering. The error signal is sampled at a lower 

frequency than the feedback control frequency and the reduced sampling points are con- 

nected by linear interpolation. The linearised signal is then re-sampled at the same 
frequency as the feedback controller and fed to the plant. This technique makes use of 
Shannon's sampling theorem to alias unwanted frequencies to a lower frequency, hence 

preventing them from building up in the iteration loop. The aliasing technique is pax- 

ticulary well suited to the gantry robot and improves tracking performance beyond the 

level of the zero-phase filter implementation. The aliasing technique also has potential 
for use in repetitive control systems, where zero-phase filtering is much more difficult to 

achieve. 

Initial implementation of the adjoint algorithm revealed that it is inherently long-term 

stable, without any requirement for feedback control or any form of signal filtering. 

The majority of the tracidng error is removed within 50 iterations and minimum nise is 

achieved in 1500 iterations. In contrast, the inverse algorithm converges rapidly to the 

reference trajectory within 2 iterations, but becomes unstable within 4 iterations. Use 

of the learning gain tuning parameter w extends the period of stability at the expense of 

convergence rate. Zero-phase filtering must be used to achieve a system which is truly 
long-term stable. The norm-optimal algorithm is long-term stable without additional 

control or filtering and achieves minimum nise in 4 to 5 iterations. Investigation of 
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the parameters q and r revealed that their ratio, rather than individual magnitudes, 
determines the performance of the algorithm. 

Algorithms which are assisted by feedback control, such as the hybrid P-types and the 
norm-optimal are less affected by initial state error than purely feed-forward algorithms, 
because the high gain feedback controller rapidly reduces the error within the first few 
sample instants, resulting in minimal impact on the feed-forward learning controller. 
The performance of purely feed-forward algorithms is particularly affected by initial error, 
because the algorithm attempts to compensate for the error in the previous iteration. But 
the initial error at the next iteration is different, and the compensation made between 
iterations is incorrect. However, the purely feed-forward algorithms, particularly the 
adjoint algorithm, can tolerate much larger initial error bounds, without producing large 

step inputs to the plant. This results from the absence of a high gain feedback controller 
as part of the algorithm. 

The effects of model order reduction on the performance of the model-based algorithms 
axe different. The adjoint algorithm is able to tolerate the use of Ist order models without 
loss of stability, but the tracking performance is noticeably reduced. In comparison, the 
lack of dynamic data in the ist order models causes the norm-optimal algorithm to 
become unstable. Stability is restored by means of zero-phase filtering. The inverse 

algorithm is least affected, because the tracking performance only degrades fractionally 

and stability is maintained by the zero-phase filter, which is intrinsically required by the 
algorithm. 

In contrast, scalar gain error has least effect on the norm-optimal controller, which call 
tolerate gain discrepancy of both a positive and negative nature with minimal loss in 

performance. The adjoint and inverse algorithms require the use of the tuning parameter 

Wk+1 to compensate for scalar gains smaller than 1. In general, the larger the gain 
discrepancy in either direction, the larger the impact on tracking performance. 

The combination of ILC with a feedback controller produces a hybrid which is far better 

equipped to compensate for non-repeating disturbances, resulting in a system which con- 

sistently produces low tracking error with very little variation between iterations. Model- 

based algorithms tend to learn much more rapidly and are capable of tolerating larger 

initial error without loss of stability. Algorithms such as the inverse or norm-optimal 

should be implemented when very rapid convergence to minimum error is required in 

a minimum number of iterations, for example when the iteration time period is large 

(minutes or hours) such as chemical batch processing or hard disk drive track placement. 
If the plant is associated with an ongoing task where thousands or millions of iterations 

are performed in batches, for example food processing or robotic assembly, the simplicity 

of a hybrid PID-P-type ILC becomes more attractive. The slightly longer convergence 
to minimum error is insignificant in comparison with the improved constancy of error 

reduction, easier programming and ease of tuning. 
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7.2 Future Work 

Further development of the work presented in this thesis involves the investigation of 
repetitive control on the gantry robot and associated peripheral devices, Repetitive 

control techniques are remarkably similar to iterative learning control techniques, except 
that the algorithm must be computed in real-time as the test proceeds: there is no 
stoppage time between repetitions and the data cannot be processed in batches. The 
terminal conditions at the end of each repetition axe the initial conditions for the next 
repetition, there is no resetting between trials. Repetitive control is therefore well suited 
to an extension of the test facility, which involves the conveyor beneath the gantry robot. 
When the conveyor moves at a constant velocity, the robot must synchronise both velocity 
and position to place objects on it accurately. 

The robot will be required to place payloads consisting of tins of peas onto the moving 
conveyor with high accuracy. The conveyor is a6 meter long, type XK plastic chain 
conveyor from Flexlink. The position of the conveyor is measured by means of a rotary 
encoder mounted onto the conveyor by means of a mounting bracket (design drawings 

can be found in Appendix C Section CA). Applications of this type occur frequently in 
industry and axe paxticulaxly used in food processing, where containers must be filled with 
food or liquids. The payloads will then travel the length of the conveyor, where they will 
slide down a return chute (design drawings can be found in Appendix C Section C. 2) onto 
a second conveyor, which will lift the cans into a storing and dispensing mechanism. A 

custom built dispenser will isolate individual payloads from the storage slide and prepare 
them for the gantry robot to collect with its electromagnet end effector (design drawings 

can be found in Appendix C Section C. 3). In this way, the payloads will be continuously 
cycled around the plant and many repetitions will be performed with a minimal number 
of payloads. A design drawing of the completed test facility can be seen in Appendix C 
Figure C. 40. 

In particular, this test facility will enable the investigation of the effects of variation in 

payload upon tracking performance. Changes in mass and the associated inertia will be 

of particular importance to the evolution of the plant input, for example, the impact 

of removing a payload for one repetition, on the tracking performance for the following 

payload. 

The initial stages of algorithm learning, during the first repetitions, will be of particular 
importance to industrial applications. If the trajectory tracking is particularly poor 
during the first trials, the gantry may not collect the payload, and may not place it on 

the conveyor at all. In these cases, payloads and learning time will be wasted, which 

will have an impact on throughput. When the robot does eventually collect the first 

payload, the change in system dynamics may have a significant impact on tracking error 

and stability. 
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Testing both repetitive and iterative learning control on the same plant will allow the 
investigation of the similarities and differences which exist between the two learning 

niechanisms. 

It will also be possible to investigate the use of a dual learning loop system, where the 
inner learning loop is used to match the plant output to the reference trajectory, while 
the outer loop is used to adjust the reference trajectory itself. For example, if the robot 
is controlled by a learning controller, but the conveyor is controlled by standard feedback 

control, the improvement in robot tracking performance will be insignificant compared 
to the error discrepancy between the robot and the conveyor. It may be possible to use 
a second learning loop to adjust the reference trajectory of the robot to compensate for 

the conveyor error and reduce the relative error. 

Finally, the zero-phase method can be implemented with success within the ILC frame- 

work although, its implementation in the repetitive control framework is hindered by the 

problems inherent to filtering the data forwards and backwards in batches while the plant 
is in operation. The aliasing technique developed in this thesis successfully stabilises the 
hybrid P-type ILC and allows excellent tracking performance. Its application could be 

adapted to continuous operation of the plant in repetitive control, requiring only a few 

calculations at each sample instant, implying that the aliasing technique could therefore 
be a very powerful tool for repetitive systems. 
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Appendix A 

Compliant Arm Design Drawings 

FIGURE A. 1: 3D representation of the compliant arm 
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Appendix B 

Additional Results 
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B. 1 PID Controller 
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FIGURE B. 1: Y-axis tracking performance and error at iteration 1000 (PID controller) 
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FIGURE B. 2: Z-axis tracking performance and error at iteration 1000 (PID controller) 
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B. 2 Basic P-type ILC 

B. 2.1 Series hybrid controller 
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1.2 Parallel hybrid controller 
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FIGURE B. 5: Z-axis PID, ILC and tracking error (parallel controller. gain = 100, 
iteration 20) 
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2.3 Low-pass filter 
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FIGURE B. 6: Y-axis PID. ILC and tracking error (low-pass filter, gain = 100, iteration 
5000) 
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B. 2.4 Zero-phase filter 
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FIGURE B. 8: Y-axis PID. ILC and tracking error (zero-phase filter, gain = 100, itera- 

tion 5000) 
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5 Aliasing filter 
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FIGURE B. 10: Y-axis PID, ILC and tracking error (aliasing filter, gain = 100, iteration 
5000) 
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B. 3 Adjoint ILC 
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FIGURE B. 13: Z-axis input demand and tracking error (adjoint ILC, Ist order models, 
iteration 500) 
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BA Inverse ILC 
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FIGURE B. 18: Y-axis input and error (inverse ILC, w 0, iteration 4) 
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B. 5 Norm-Optimal ILC 
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B. 6 Velocity References 
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Appendix C 

Additional Test Facility Components 

CA Conveyor Encoder Adapter 

Fic, URE C. 1: 3D represciitation of the conveyor encoder bracket 
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FIGURE C. 3: Conveyor drive encoder adapter support struts 
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Payload Return Chute 
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RGURE C. 5: 3D representation of the payload return chute 
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C. 3 Dispenser 
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FIGURE C. 18: Dispenser gearbox high speed drive shaft 
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FIGURE C. 22: Dispenser base plate 
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Dispenser solenoid spacer ring 



006 

t, 
0-7 

cii 1,00's 

04 

E 

cu 

-0 0 cn 
s ý5 EE 

C/) M ,E 
CU 0 U) = 

4-- 06 

00 
(D 0 

(D 
LLJ 

FIGURE C. 27: DisPenser bearing housing 

212 



FIGURE C-28: Dispenser payload lift arms 
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CA Complete Test Facility 

FIGURE C-40: 3D representation of the completed test facility 
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on the gantry robot tends to suggest that if an algorithm is inherently unstable, the 
instability will be identifiable within 100 to 200 iterations, sometimes as few as 3 or 4 

iterations. The long-term stability test is therefore defined as a batch of 5000 consecu- 
tive iterations. This test does not guarantee algorithm stability for an infinite number of 
iterations. However, in comparison to the few hundred iterations which can be achieved 
by inherently unstable algorithms, the 5000 iteration test is a good indicator of long 

term-stability. The high order models are used for this test. 
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