UNIVERSITY OF SOUTHAMPTON

Iterative Learning Control Implemented on
a Multi-Axis System

by
James David Ratcliffe

Thesis for the degree of Doctor of Philosophy

in the
Faculty of Engineering, Science and Mathematics
School of Electronics and Computer Science

June 2005

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy
by James David Ratcliffe

This thesis concerns the implementation and comparison of different Iterative Learning
Control (ILC) strategies on a multi-axis gantry robot. The majority of ILC research
focusses on developing new algorithms for different classes of plant, then proving, by un-
dertaking rigorous mathematical and simulation based studies, that the new algorithm
will meet performance and stability requirements. The work presented here strictly con-
cerns the performance of different ILC strategies on a physical plant by experimental
methods alone, demonstrating that ILC can successfully be implemented in industrial
applications. A test facility consisting of a three axis gantry robot and associated pe-
ripheral hardware is designed and built for this purpose. Four tests are developed to
investigate key issues which are of particular importance to ILC implementation, mini-
mum achievable tracking error, long-term stability, robustness to initial state error and
robustness to plant modelling error. A rigorous framework for measuring quantitatively
the performance of different algorithms is established to allow fair comparison. The ex-
perimental analysis is divided into two categories: basic and model-based algorithms.
The work relating to basic algorithms initially uses a standard three-term PID controller
to establish a benchmark performance level, to which the ILC performance can be com-
pared. Combining a basic Proportional (P-type) ILC algorithm with the conventional
PID controller to form a hybrid is found to increase significantly the performance, but
at the expense of long-term stability. To remedy this, a logical progression of different
filtering techniques, band-stop, low-pass, zero-phase-low-pass and a new frequency alias-
ing method are applied to the hybrid controller to steadily improve long-term stability
and subsequently tracking performance. The work relating to model-based algorithms
compares the performance of three previously developed, optimal ILC algorithms: ad-
joint ILC, inverse ILC and norm-optimal ILC. These algorithms operate on the plant
input signal alone, without the requirement for an additional feedback controller. The
three algorithms are found to produce significantly different tracking performance in re-
sponse to disturbances and modelling error. The thesis concludes with an analysis of the
tracking performance generated by each algorithm and a general discussion summarising
algorithm attributes. For the plant used in this experimental work, it is found that the
basic P-type algorithm has a slower convergence rate, but can achieve tracking error

levels similar to more advanced model-based techniques.

Contents

Acknowledgements
1 Introduction
1.1 Philosophy of Learning Controllers
1.2 Motivation for Industry o e
1.3 Project Overview o ot v i it e e e e e e e e e
1.4 Research Objectives o i i i i i i it it e
1.4.1 Experimentally implement ILC
1.4.2 Overcome difficulties presented by multi-axis systems
1.4.3 Develop a framework for comparing different algorithms
1.4.4 Compare ILC to PID feedbackcontrol :
1.4.5 Compare basic and model-based ILC techniques.
1.4.6 Develop algorithms which are long-term stable
1.4.7 Investigate the effects of disturbances.
2 Literature Review
2.1 Origins of Iterative Learning Control
2.2 Algorithm Development,
2.2.1 Basicalgorithmso oo 0oL
2.2.1.1 Petype.o e e e e e e e e e e e
22.1.2 D-alpha it e
2.2.1.3 Combined error derivatives and integrals
2.2.1.4 Higherorder
2.2.2 Variationsof basicILC.
2.2.2.1 Hybridcontrollers
2.2.2.2 Current iterationerror. o000
2.2.23 Anticipatory 0 e s e e e e e e e e e
2.2.2.4 Forgettingfactor,
2225 Timedelays. i i i it vttt
2.2.2.6 Reduced sampling frequency
2.2.2.7 Selection of learning gain oo
2.2.2.8 Cocflicient tests for convergence
2.2.2.9 Non-periodic repeating disturbances
2.2.3 Model-based algorithms
2.2.3.1 Model based controllers
2.23.2 Inverseplantmodels
2233 Robustcontrol L.

X1v

12
12
13

2234 Adaptivecontrollers, 19

Casestudy o i i i i it i i i e e . 20

2.2.3.50 2-Dimensional repetitive process analysis 21

2.2.3.6 Optimal learningcontrol 22

Casestudy o v e . 23

2.2.3.7 Predictivecontrollers 24

Casestudy. i v i it it i . 25

2.2.3.8 Fuzzy/Neural controllers 26

2.2.3.9 Non-minimum phasesystems 26

2.3 Problems Encountered with ILC 27
2.3.1 Initialstateerror e 27
23.2 Longtermstability, 28
2.3.2.1 Frequency domainanalysis 29

2.3.22 Timedomainanalysis 29

2.3.23 Thewaterbedeflfect 30

2.3.2.4 Solutions to long-term instability 31

2.4 Previous Practical Implementation 32
2.4.1 Applicationtorobotics. 00 0o 32
2.4.2 Application tochainconveyors 33
2.4.3 Liquid slosh in industrial packaging 35
2.4.4 Control of paralyzed humanlimbs 35
2.4.5 Plastics manufacture - injectionmolding 36
2.4.6 Military applications L e e 37
2.4.7 Diskdrivecontrol. oL e e e e e e e 38
2.4.8 Controlling wafer temperature in rapid thermal processing 38
2.4.9 Biochemicalindustry e e 39
2.4.10 Torque ripple minimisation for electricmotors 39
2.4.11 Electromechanical valve control in camless engines 40

2.5 SUMMATY o ot e e e e et e e e e e e e e e e e e e e e e 41
Multi-Axis Test Facility and Experimental Procedures 42
31 IntroducCtion . & & & v v vt e 42
32 TestFacility o ¢ v o v i i i e e e e e e e 42
3.2.1 Hardware: Gantryrobot 42
3.2.2 Hardware: Control electronics 46
3.2.3 Hardware: Peripherals 50
3.2.4 Softwaredevelopmentt 02

33 Plant Modelling 0 i i i e e e e e e e e e o4
3.4 Model Verification ¢ i i i i i e e e e e e e e e e . 63
3.5 Test Parameters i i i i v i et e e e e e e e e e e e e e 66
3.6 Typesof Test o 0 i i i i i i et e e e e e e e 67
3.6.1 Long-termstability @0 u.ee.ii.. 67
3.6.2 Robustness to initial-stateerror 69
3.6.3 Robustness to gainuncertainty 70
3.6.4 Robustness to gain and phase uncertainty 70
3.6.5 Testsummary. ittt 70

3.7 Measuring ILC Performance 70

11i

3.8 Summary e e e 74
Implementation of Basic Controllers 76
4.1 Introduction. 76
4.2 PID Feedback Control - Benchmark 76
4.2.1 Algorithm 76

422 Testresults 77

43 PureP-typeILC 80
43.1 Algorithm 80
432 Testresults 80

44 P-type ILC with PID feedback 84
44.1 Algorithm 84
4.4.2 Initial implementation 85
4.4.3 Stability and convergence 91
444 Band-stopfiltering 03
4.4.5 Low-passfiltering, 100
4.4.6 Zero-phasefiltering 102
4.4.6.1 Initial state error tolerance 104

4.4.7 Frequency aliasing e e e e, 106
4.4.7.1 Initial state error tolerance 112

4.5 Convergence analysis 113
4.6 SUmMMmAary it e e e e e e e e e e e e 114
Implementation of Model-based ILC 116
5.1 Introduction i e 116
5.2 Adjoint Algorithm 118
5.2.1 Algorithm development 118
5.2.2 Initial implementation 119
5.2.3 Robustness to initial stateerror 121
0.2.4 Robustness to plant modellingerror 123

5.3 Inverse Algorithm, 128
5.3.1 Algorithm development 128
5.3.2 Initial implementation, 129

5.3.3 Stabilisation using zero-phase filtering 130

5.3.4 Robustness to initial stateerror 132

5.3.5 Robustness to plant modellingerror 133

5.4 Norm-Optimal Algorithm 137
5.4.1 Algorithm development 137

54.2 Fast Norm-Optimal ILC 139
5.4.3 Initial implementation 141
5.4.4 Robustness to initial stateerror 143

5.4.5 Robustness to plant modellingerror 144

0.0 SUMMAIY + + ¢ v v v 4t ettt e e e e e e e e e e e e e e e e e 147
Comparative ILC Controller Performance 149
6.1 Basic Algorithms 149
6.1.1 Filteringcomparison 150

v

6.1.2 Initial state error it e e e e e e e e e e e e e e e e 151

6.2 Model-based Algorithms, 153
6.2.1 Initial implementation 0., . 153

6.2.2 Initialstateerror o e e 155

6.2.3 Robustness to plant modellingerror 155

6.3 Basic ILC Compared to Model-based ILC 158
6.4 SUMIMNALY .« & v ot v e e e e e e e e e e et et s e e e e e e e 160

7 Conclusions and Future Work 161
7.1 Conclusions v v i v i e e e e e e e e e e e e e e e e e e 161
7.2 Future Work o o e e e e e e e e e e e e e e e e e e e 164

A Compliant Arm Design Drawings 166
B Additional Results 169
B.1 PID Controller i v i v i i i i e e e e e e et e e 170
B.2 Basic P-type ILC o i i i it e e e e e e e e e 171
B.2.1 Serieshybridcontroller. 000 171

B.2.2 Parallel hybrid controller 172

B.23 Low-passfilter i 173

B.2.4 Zero-phasefilter i e 174

B.25 Aliasingfilter ¢ . . . o i e e e e e e e e e 175

B.3 Adjoint ILC o i e e e e e e e e e 176
B4 Inverse ILC . . . i i v i e 179
B.5 Norm-Optimal ILC« o it e i s e e e e e e 182
B.6 Velocity References« . o o i i i i i it ittt e 184

C Additional Test Facility Components 186
C.1 Conveyor Encoder Adapter 186
C.2 Payload Return Chute o v oo 190
C.3 DiSPEeNSer . . . v v v v i e e ettt e e e e e e e e e e e e e e e e s 196
C.4 Complete Test Facilityo 225
Bibliography 226

List of Figures

3.1

3.2

3.3

3.4

3.0

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.29
3.26
3.27
3.28
3.29
3.30
3.31

4.1
4.2
4.3

The Gantry Robot test facility 43
Compliant armmainbody, 44
3D design of the gantry supportstand, 45
Aerotech to Flexlink mounting adapters 47
Standard position control feedbackloop 48
Control set-point amplifiercircuit, 49
Encoder conditioning circuit 0.0 oo .. 49
Test facility layout L e 50
Ignition and emergency stopcircuit o1
Software flowchart i i i i e e e e e e 53
X-axis Bode plot, 21storder. 515
Y-axis Bodeplot, 7thorder, 56
Z-axis Bode plot,4thorder ST
X-axis Bode plot, 7thorder 60
Y-axis Bode plot, 5thorder, . 60
Z-axis Bode plot, 4th order without timedelay 61
X-axis Bode plot, gain and integrator 62
Y-axis Bode plot, gain and integrator. 62
Z-axis Bode plot, gain andintegrator 63
X-axis open loop step response - Displacement) 64
X-axis open loop step response - Velocity) 64
Y-axis open loop step response - Displacement) 65
Y -axis open loop step response - Velocity) 65
Z-axis open loop step response - Displacement) 66
Z-axis open loop step response - Velocity) 66
X-axis reference trajectory (30upm) 68
Y-axis reference trajectory (30upm) 68
Z-axis reference trajectory (30upm). oo e e 69
Combined 3-Dimensional reference trajectory (30upm) 69
Typical mse curve for an unstable ILC system 72

Different mse curves showing varied performance characteristics. 1. Fast
convergence - low error, 2. Fast convergence - large error, 3. Slow conver-
gence - low error, 4. Slow convergence - largeerror 75

mse for 1000 iterations (PID controller) 78
X-axis tracking performance and error at iteration 1000 (PID controller) . 79

3-Dimensional tracking performance at iteration 1000 (PID controller,
blue =reference) e e e e e e e 79

4.4 3-Dimensional tracking error at iteration 1000 (PID controller) 80
4.5 P-type ILC, mse performance compared to PID, (learning gains = 0.1, 1,

L) 81
4.6 X-axis tracking progression (P-type ILC, gain=10) 82
4.7 X-axis error progression (P-type ILC, gain=10) 83
4.8 Z-axis tracking progression (P-type ILC, gain=10) 83
4.9 Z-axis error progression (P-type ILC, gain=10) 84
4.10 Hybrid controller - series configuration 85
4.11 Hybrid controller - parallel configuration 85
4.12 mse for different learning gains (series controller) 86
4.13 3D tracking error compared to PID (series controller, gain = 0.1, iteration

40, red = PID) e e e e e e e e e e e e e e 87
4.14 X-axis tracking error progression (series controller, gain =0.1) 87
4.15 X-axis input demand and tracking error (scries controller, gain = 0.1,

iteration 40) L L e e e e e 88
4.16 Parallel controller - mse for different learning gains 89
4.17 X-axis PID, ILC and tracking error (parallel controller, gain = 100, iter-

ation 20) e 89
4.18 Y-axis PID, ILC and tracking error (parallel controller, gain = 100, iter-

ation 20) L L e e e e e e 90

4.19 Error signal frequency spectra (parallel controller, gain = 100, iteration 40) 90
4.20 Mechanism of instability for resonant systems (a = sinusoid, b = shifted

-180 degrees, ¢ = error signal, d = next iteration input) 92
4.21 Parallel controller for convergence analysis 04
4.22 General ILC structure - possible locationsof filter 94
4.23 Band-stop filter Bode plot o Lo oL 95
4.24 mse (band-stop filter, gain =100) o000 06
4.25 X-axis PID, ILC and tracking error (band-stop filter, gain = 100, iteration

7200) 97
4.26 Y-axis PID, ILC and tracking error (band-stop filter, gain = 100, iteration

200) . i i e 97
4.27 Z-axis PID, ILC and tracking error (band-stop filter, gain = 100, iteration

200) . . e e e e e e e e e e e e e e e e 08

4.28 Error signal frequency spectra (band-stop filter, gain = 100, iteration 40) . 98
4.29 Error signal frequency spectra, truncated below 3.5 Hz (band-stop filter,

gain = 100, iteration 40) L o oo e 99
4.30 X-axis only, PID, ILC and tracking error (band-stop filter, gain = 100,

iteration 300) Lt e e e e e e e e 99
4.31 Low-passfilterBodeplot. 100
4.32 mse (low-pass filter, gain =100) 000, 101
4.33 X-axis PID, ILC and tracking error (low-pass filter, gain = 100, iteration

000 . 102
4.34 3-Dimensional tracking performance at iteration 5000 (low-pass filter, gain

= 100, blue = reference) e e e e e 102
4.35 Zero-phase filtering technique, flowchart, 103
4.36 mse (zcro-phase filter,gain=100) 104
4.37 3-Dimensional tracking performance at iteration 5000 (zero-phase filter,

gain = 100, blue =reference) o000, 104

4.38 X-axis PID, ILC and tracking error (zero-phase filter, gain = 100, iteration

1000) P 105
4.39 mse (zero-phase filter, initial error bounds 0 and 1 mm) 106
4.40 Parallel controller with aliasmodule 107
4.41 Aliasing technique flowchart o000, . 108
4.42 Comparing sampling methods (a = original sinewave, b = with additional

7Hz signal, ¢ = zero order hold, d = with linear interpolation) 108
4.43 X-axis mse comparison for aliasing controller using different alias gap values110
4.44 mse (aliasing filter, gain = 100, aliasgap=70) 111
4.45 3-Dimensional tracking performance at iteration 5000 (aliasing filter, gain

= 100, alias gap = 70, blue =reference) 112
4.46 X-axis PID, ILC and tracking error (aliasing filter, gain = 100, alias gap

= 70, iteration 5000) L e e e e e e e e 112
4.47 mse (aliasing filter, gain = 100, alias gap = 70, initial error bounds 0 and

0 0 1+ 113
4.48 X-axis convergence plots, learning gain = 100 (a = no filtering, b = band-

stop, ¢ = low-pass,d = aliasing) 115
5.1 mse (adjoint ILC, highordermodels) 119

5.2 mse, Beyond iteration 2000 €x431 = 0 (adjoint ILC, high order models) . . 120
5.3 3-Dimensional tracking progression, first 10 iterations (adjoint ILC, high

order models, reference =blue) 000 121
5.4 3-Dimensional tracking performance (adjoint ILC, high order models, it-

eration 5000, reference =blue) i i e 121
5.5 mse (adjoint ILC, high order models, initial error bounds 0, 2, 4, 6, 8 and

010 40 o) T 122
5.6 mse linear scale (adjoint ILC, high order models, initial error bounds 0, 2

and 4IM) b L e e e e e e e e e e e e e e e e e e e 123
5.7 mse (adjoint ILC, Ist ordermodels) 124
5.8 X-axis input demand and tracking error (adjoint ILC, 1st order models,

Fteration 500) - « « v . e e e e e e e e e e e 124
5.9 mse for different scalar gains (adjoint ILC, high order models, gains 1, 1.5,

1.25, 0.75 and 0.5) . . o v v i e e e e e e e e e 125
5.10 3-Dimensional tracking progression (adjoint ILC, high order models, gain

= 0.5) . e e e e e e e e e e e e e e 126
5.11 X-axis tracking performance iterations 490-500 (adjoint ILC, w = 5 X 108,

high order models, gain =0.5,), 127
5.12 X-axis tracking performance iterations 490-500 (adjoint ILC, wi43 = 2 X

10~7||e||2, high order models, gain =0.5,), 128
5.13 X-axis input and error (inverse ILC, w = 0, iteration4) 130
5.14 mse (inverse ILC, highordermodels) 131
5.15 mse (inverse ILC, zero-phase filter, high order models) 132
5.16 3-Dimensional tracking performance (inverse ILC, zero-phase filter, high

order models, iteration 5000, reference =blue) 132
5.17 3-Dimensional tracking progression, first 3 iterations (inverse ILC, high

order models, reference =blue)o oo 133
5.18 mse (inverse ILC, high order models, initial error bounds 0, 1, 2, 3 and 4

019 10 134

Viii

5.19 mse linear scale (inverse ILC, high order models, initial error bounds 0, 2

and 4 MIM) s e e e e e e e e e e e e e e e e e e 134
5.20 mse for different scalar gains (inverse ILC, high order models, gains 1, 1.5

and 1.20) e 135
5.21 X-axis tracking performance iterations 490-500 (inverse ILC, zero-phase

filter, w = 1.4, high order models, gain=0.5) 136
5.22 X-axis tracking performance iterations 490-500 (inverse ILC, zero-phase

filter, w = 1||e||?, high order models, gain =0.5) 137
5.23 mse (inverse ILC, 1st order models, zero-phase filter, w, = 0.1||e||?, w;,

e) 138
524 X-axis Pligg forvariousgand r @ i i i i v i v v v vt 141
5.25 mse (norm-optimal ILC, highordermodels) 142
5.26 3-Dimensional tracking performance (norm-optimal ILC, high order mod-

els, iteration 5000, reference =blue) 143
5.27 3-Dimensional tracking progression, first 5 iterations (norm-optimal ILC,

high order models, reference =blue), 143
5.28 mse (norm-optimal ILC, high order models, initial error bounds 0, 1, 2

and 3 mm) e 145
5.29 mse linear scale (norm-optimal ILC, high order models, initial error bounds

0,1,2and 3mm). ¢ .t i e e e e e e e 145
5.30 mse for different scalar gains (norm-optimal ILC, high order models, gains

1,1.5,1.25, 0.75 and 0.5) - -« - e e e e 146
5.31 mse (norm-optimal ILC, Ist ordermodels) 146
5.32 X-axis input demand and tracking error (norm-optimal ILC, 1st order

models, iteration 300) L Lo e e e e e e e e e e 147
5.33 mse (norm-optimal ILC, zero-phase filter, 1st order models) 147
6.1 Comparison of PIigg values for the series controller with varying learning

2 ¥) 150
6.2 Comparison of Pl gg values for the parallel controller with varying learning

2 % o 150
6.3 Comparison of Pligg values for the parallel controller using different fil-

tering techniques L L e 151
6.4 Comparison of Plig values, zero-phase filtering with initial error 152
6.5 Comparison of Pljgg values, aliasing with initialerror 152
6.6 Comparison of PIjgy values calculated from long-term stability test 153
6.7 mse for all three model-based algorithms 154
6.8 Comparison of Pljgg values, adjoint ILC with initialerror 155
6.9 Comparison of Pligg values, inverse ILC with initialerror 156
6.10 Comparison of Pljgp values, norm-optimal ILC with initial error 156
6.11 Comparison of Pl1gg values with 1st ordermodels 157
6.12 Comparison of Pl og values, adjoint ILC with scalar gainerror 157
6.13 Comparison of Pljgg values, inverse ILC with scalar gain error 158
6.14 Comparison of PI o9 values, norm-optimal ILC with scalar gain error . . . 159
6.15 Performance of basic ILC compared to model-based ILC, iterations 1-50 . 159
6.16 Performance of basic ILC compared to model-based ILC, iterations 4800-

G000 . i v i e 160

A.1 3D representation of the compliantarm 166
A.2 Compliant arm lockingpin. i ... 167
A3 Compliant arm piston e e 168

B.1 Y-axis tracking performance and error at iteration 1000 (PID controller) . 170
B.2 Z-axis tracking performance and error at iteration 1000 (PID controller) . 170
B.3 Y-axis input demand and tracking error (series controller, gain = 0.1,

iteration 40) L L L L e e e e e e e e e 171
B.4 Z-axis input demand and tracking error (series controller, gain = 0.1,
iteration 40) L L. L e e e e e e e e 171
B.5 Z-axis PID, ILC and tracking error (parallel controller, gain = 100, iter-
ation 20) L. e e e e e e e e e e e e e e e 172
B.6 Y-axis PID, ILC and tracking error (low-pass filter, gain = 100, iteration
S000) . &« ¢« i i e e e e e e e e e e e e e e e e e . 173
B.7 Z-axis PID, ILC and tracking error (low-pass filter, gain = 100, iteration
B000) . . v e 173
B.8 Y-axis PID, ILC and tracking error (zero-phase filter, gain = 100, iteration
0100 174
B.9 Z-axis PID, ILC and tracking error (zero-phase filter, gain = 100, iteration
D000) . & v s e 174
B.10 Y-axis PID, ILC and tracking error (aliasing filter, gain = 100, iteration
B000) . & vt e 175
B.11 Z-axis PID, ILC and tracking error (aliasing filter, gain = 100, iteration
B000) . . & i e 175
B.12 Y-axis input demand and tracking error (adjoint ILC, 1st order models,
iteration 500) i e 176
B.13 Z-axis input demand and tracking error (adjoint ILC, 1st order models,
iteration 500) L e e e e e e e e e e e e e e e e e e e 176
B.14 Y-axis tracking performance iterations 490-500 (adjoint ILC, w = 5x 1073,
high order models, gain = 0.5,) i i i i i i i i iv... 177
B.15 Z-axis tracking performance iterations 490-500 (adjoint ILC, w = 5x1078,
high order models, gain =0.3,) 177
B.16 Y-axis tracking performance iterations 490-500 (adjoint ILC, w = 2 X
10~7||el|?, high order models, gain =0.5,) 178
B.17 Z-axis tracking performance iterations 490-500 (adjoint ILC, w = 2 X
10~7||e||?, high order models, gain =0.5,) 178
B.18 Y-axis input and error (inverse ILC, w = 0, iteration4) 179
B.19 Z-axis input and error (inverse ILC, w = 0, iteration4) 179
B.20 Y-axis tracking performance iterations 490-500 (inverse ILC, zero-phase
filter, w = 1.4, high order models, gain=0.53) 180
B.21 Z-axis tracking performance iterations 490-500 (inverse ILC, zero-phase
filter, w = 1.4, high order models, gain=0.5) 180
B.22 Y-axis tracking performance iterations 490-500 (inverse ILC, zero-phase
filter, w = ||e]|%, high order models, gain =0.5) 181
B.23 Z-axis tracking performance iterations 490-500 (inverse ILC, zero-phase
filter, w = ||e]|%, high order models, gain =0.5) 181
B.24 Y-axis Pljgp forvariousgandr., 182
B.25 Z-axis Pligg for variousgandr. i i i i e 182

B.26 Y-axis input demand and tracking error (norm-optimal ILC, 1st order

models, iteration 500) e e e 183
B.27 Z-axis input demand and tracking error (norm-optimal ILC, 1st order

models, iteration 500) e e e e e 183
B.28 X-axis velocity reference i e e e . 184
B.29 Y-axis velocity reference i i e e e e e e e 184
B.30 Z-axis velocity reference L o oo o 185
C.1 3D representation of the conveyor encoder bracket 186
C.2 Conveyor drive encoder adapterplate. 187
C.3 Conveyor drive encoder adapter support struts 188
C.4 Conveyor drive encoder shaft adapter. 189
C.5 3D representation of the payload returnchute 190
C.6 Returnchutemainblock 191
C.7 Returnchuterightface. 192
C.8 Returnchuteleft face i i i i i i i i i i ittt .. 193
C.9 Returnchutefront face. i @ i i i i i i i e et e e e e 194
C.10 Return chute payloadramp i i i i i vt vt oo 195
C.11 3D representation of the payload dispenser 196
C.12 Dispenser gearbox topplate o o oL 197
C.13 Dispenser gearbox right plate 0oL . 198
C.14 Dispenser gearbox left plate L 00000 199
C.15 Dispenser gearbox back plate Lo oo oL . 200
C.16 Dispenser gearbox front plate, 201
C.17 Dispenser gearbox baseplate 202
C.18 Dispenser gearbox high speed driveshaft 203
C.19 Dispenser gearbox primary output driveshaft 204
C.20 Dispenser gearbox secondary output driveshaft 205
C.21 Dispenser gearbox assembly 00000 206
C.22 Dispenser baseplate i i o 207
C.23 Dispenser mount bracket 000000 208
C.24 Dispenser mount bracket armso 00000 209
C.25 Dispenser relay bracket o o oo oo e 210
C.26 Dispenser solenoid spacer ringo oo o 211
C.27 Dispenser bearing housing o oo oo ool 212
C.28 Dispenser payload liftarms 0 213
C29Dispenser crank 8rIm ¢« v v v v v v b it e e e e e e e e e 214
C.30 Dispenser crankshaft 215
C.31 Dispenser crankwheel, 216
C.32Dispenser crank pin L . ot e e e e e e e e 217
C.33 Dispenser payloadramp i it v it it 218
C.34 Dispenser gatesideleft o000 219
C.35 Dispenser gatesiderighto oL 220
C.36Dispenser gate top L. L e e e e e e e e e e e e e 221
C37Dispensergate axles i i i it i e e e e 222
C.38 Dispenser chain idler wheel bracketo L. 223
C.39 Dispenser micro-switch brackets 000 . 224

C.40 3D representation of the completed test facility

xil

lllllllllllllll

List of Tables

3.1 Gantry support stand components - Flexlink. 46
3.2 Test Specifications L L e e e e e e e e e e e e 70
4.1 PIDgainsforeachaxis., 77
4.2 PID controller, mean mse for 1000 iterations 78
4.3 Series PID and P-type ILC, Pl for different learning gains 86
4.4 Parallel PID and P-type ILC, Pl for different learning gains 88
4.5 Hybrid controller with band-stop filtering, PIjgg values. 96
4.6 Gantry robot closed loop bandwidths 100
4.7 Hybrid controller with low-pass filtering, PIjgo values 101
4.8 Hybrid controller with zero-phase filtering, Pljgg values 103
4.9 Zero-phase filtering with initial error, Gain = 100, PIgq values 105
4.10 Simulated mse values for different filters in the test case 109
4.11 Plypo values for different aliasgap 110
4.12 Hybrid controller with aliasing, alias gap = 70, PI1gg values 111
4.13 Aliasing with initial error, Gain = 100, Pljpg values 113
5.1 Adjoint ILC, PIijggvalues 0 i i i i i i ittt 119
5.2 Adjoint ILC tolerance to initial error, PI1gg values 122
5.3 Adjoint ILC, 1st order models, PI1jgg values 125
5.4 Adjoint algorithm, gain modelling error, Pl1jpg values 127
5.5 Inverse ILC, long-term stability test PIjgg values 131
5.6 Inverse ILC tolerance to initial error, Pljpg values 133
5.7 Inverse ILC, tolerance to scalar gain error, Pljgg values 136
5.8 Inverse ILC 1st order models, Pljggvalues 137
59 gandr valuesusedinexperiments 141
5.10 Norm-optimal ILC long-term stability test, Pligg values 144
5.11 Norm-optimal ILC tolerance to initial error, Pl1jgp values. 144
5.12 Norm-optimal ILC tolerance to scalar gain error, Pligp values 144
5.13 Norm-optimal ILC 1st order implementation, Pljgg, values. 148
6.1 Model-based ILC algorithms, high order models, PIsgpo values. 154

X1il

Acknowledgements

Thanks to my family for their continuous encouragement and enthusiasm towards my re-
search. Many a good discussion analysing the similarities between human and machine
learning has proved invaluable for developing ideas on ILC implementation. Thanks
particularly to my Mum, Dominique for proof reading the entire document. Of course,
many thanks to my project supervisors, Paul Lewin and Eric Rogers and to the UK En-
gineering and Physical Sciences Research Council (EPSRC) for supporting and funding
this research. Finally, special thanks to my colleagues Chris Freeman, Jari Hat6nen and
David Owens for their friendship and excellent advice pertaining to control systems.

X1V

Chapter 1

Introduction

1.1 Philosophy of Learning Controllers

Feedback control systems are used throughout industry in a multitude of forms and on a
vast range of different tasks. Yet, no matter how well designed the feedback controller is,
by the very nature in which it works, there will always be some element of error between
the controller demand and the value of the actual variable being controlled as discussed in

the ILC context by Amann, Owens, and Rogers (1996b); Sugie and Ono (1987). Although
the number of applications is large, most control problems can in fact be classified as

one of two different types; either trajectory tracking or set-point regulation (Dutton,

Thompson, and Barraclough, 1998). In trajectory tracking, the controller is supplied
with a varying input signal. The control objective is to make the output of the system

under control (now referred to as the plant) follow the trajectory perfectly. An example
is motion control of a construction robot manipulator. In set-point regulation, the input
to the controller is constant and the control objective is to hold the output of the plant
constant even if the plant or the surrounding environment is changing. Examples include
constant temperature control of a heated room and constant speed control of a conveyor

belt system carrying a variable payload.

Within both of these control types, there exists a sub-set of control problems which
specifically have the nature of being cyclic or repetitive. In the trajectory tracking
mode, this implies that the trajectory is of finite, constant duration and that, once the
trajectory has been completed, it is supplied to the system again and this repeats ad
infinitum. In the set-point regulation mode, the controller must compensate for a load
which changes cyclically. If feedback control is applied to either of these special cases, the
error signal generated for each cycle or trial will remain almost identical from repetition to
repetition. However, Iterative Learning Control (ILC) and Repetitive Control (RC) have
been designed specifically for these types of control problems. The underlying philosophy
of these controllers is to find the input signal, which must be supplied to the plant,

1

in order to obtain zero error at the output. In effect, the input signal is progressively
modified or learnt from trial to trial, based on the error information derived from previous
trials, as discussed by Moore and Xu (2000). As the trial number increases, the error at
each point in the trajectory is steadily reduced. Theoretically, as the number of trials
tends to infinity, the error reduces to zero and perfect tracking is achieved (Kawamura,

Miyazaki, and Arimoto, 1985). In practice, zero error is virtually impossible to achieve,
due to the effect of random disturbances between trials. However, the error can be
greatly reduced to provide a significant improvement compared to other controllers. The
work in this document focusses on the implementation of ILC on the trajectory tracking
type problems. The performance of different iterative learning controllers is evaluated in
a practical environment and ILC is also compared to standard classical feedback control.

1.2 Motivation for Industry

There are many different areas in industry which involve tasks of a cyclic nature, for
example: vehicle assembly, food processing, bulk manufacture of cheap goods and batch
processing of chemicals. One factor common to all these industries is the need for the

production or assembly system to operate as rapidly as possible. While a product is
in the factory rather than out with the customer, the manufacturing and storage costs
steadily increase and overall profits are reduced. Hence there is a serious incentive to
mass produce goods as quickly as possible. Faster assembly lines also mean that less

machines need to be run in parallel to produce the same quantity of goods per hour.
Less machinery potentially implies reduced overhead and maintenance costs which are

also very attractive to industry.

The main problems with trying to operate machinery faster are limitations on the phys-
ical parameters such as velocity, acceleration or temperature, which can be imposed on
the system. In most cases, the machinery has already been designed to run at maximum
rate, consequently no further increase can be obtained without significantly raising the
risk of component failure. Component failure increases system maintenance or stoppage
time and so negates the overall effect of running the system faster. One obvious solu-
tion to this problem is to upgrade or redesign the equipment so that it can run at a
higher rate. However, this is costly and industry is reluctant to take this route. Bear-
ing in mind the fact that existing machinery must be used, an alternative approach to
increasing production rate is to modify the way in which the task is performed. This is
where the control system becomes very important. If the control system can accurately
follow the reference trajectory, it implies the dead-time allowed for the system to settle
can be reduced (Barton, 1999). Reducing the dead-time shortens the overall time for
one iteration, allowing more iterations to be performed in a set period of time, which
translates into a faster production line. The reasons for initially allowing dead-time in
the trajectory are twofold. Firstly, time must usually be allowed for the controller to

2

compensate for the transient dynamics of the plant and allow the system to reach steady-
state. Secondly, the controller must reduce any steady-state error which may be present
between the plant output and the reference trajectory, before critical elements of the

manufacturing process need to be performed.

For example, consider a CNC milling machine which is tasked with drilling a set of holes
through a steel plate as part of an assembly process. The rate at which the holes may
be drilled is limited by the cutting rate of the drill bit through the steel. However, the
time taken to reposition the drill bit for each hole is also a significant part of the overall

machining time. The limitations on this part of the process are not only the velocity
and acceleration of the machine, but also the performance of the positioning controller.

The machine cannot begin drilling the hole until the drill bit is positioned within certain
tolerance bounds. If a poorly designed controller is used, the initial positioning error and
the transient dynamics induced by the rapid motion of the drilling head will take longer
to reduce to within the tolerance band. Hence the dead-time must be longer than for a

controller which can track the trajectory more accurately with less error.

The three-term, Proportional, Integral and Derivative (PID) controller is widely used
throughout industry even though the initial concept dates back to 1936 (Franklin, Powell,

and Emani-Naeini, 1994) and significantly more advanced controllers are now available.

The PID controller has remained popular for many decades due to a number of factors
which are discussed by Barton and Lewin (2000).

e There is a wide range of commercially available, low cost, PID controllers.

e The PID controller is very simple to tune and requires minimal set-up time.

e In certain industries the technology and mathematics behind more advanced con-

trollers are not widely applied.

PID controllers are suitable for many industrial applications. However, their inability to
compensate for non-linear effects makes the PID controller a poor choice in an age when

requirements for accurate control are increasing (Li and Li, 1996).

[terative learning control is a good candidate for improving tracking performance of dy-
namic systems and hence, has the potential to increase significantly the output rate and
accuracy of industrial processes. Yet there is very little evidence of ILC actually being
implemented in practice (Longman, 2000). There appear to be three main reasons for
this. Firstly, the technology is not available in standard ‘off-the-shelf’ controllers such
as Programmable Logic Controllers (PLC). Secondly, a majority of published research
has concentrated on theoretical studies supported by simulation only. Thirdly, there
are some problems with learning controllers, such as stability issucs and robustness to
non-repeating disturbances, which must be fully resolved before they can be used in in-
dustry (Kim, Chin, Lee, and Choi, 2000). Industry appears to be reluctant to implement

3

technology which has not been thoroughly tried and tested. One of the main objectives
of this project is to demonstrate that ILC can successfully be implemented in industrial

applications, in the hope that ILC will become more widely used.

1.3 Project Overview

The research undertaken in this thesis is part of a joint project, involving the University of
Southampton and the University of Sheffield. The project has been sponsored by the UK
Engineering and Physical Sciences Research Council (EPSRC) and aims to investigate
a number of areas within iterative learning control and repetitive control. The project

contains a number of work packages:

1. Design and construction of a multi-axis test facility.

2. Development and simulation-based evaluation of convergent predictive control al-

gorithms using optimal control.

3. Design and analysis software to produce a range of ILC designs for comparison
and refinement in simulations studies prior to experimental verification on the

experimental test facility.
4. Nonlinear iterative learning by adaptive Lyapunov techniques.

5. Development of theoretical links between repetitive and iterative control paradigms
using concepts of duality, Lyapunov methods and related techniques.

6. Experimental verification and assessment.

The fundamental goals of the project are twofold: One aspect is an analysis of exist-
ing iterative and repetitive control techniques, leading to the design of new algorithms
by means of advanced control methodologies. The other aspect is an intensive, thor-
ough experimental evaluation of new and existing algorithms, focussing particularly on
comparing the performance of different techniques and investigating the robustness of
controllers with respect to a number of known stability issues. The combination of theo-

retical and experimental analysis within one project also aims to bridge the existing gap

between analysis and practical evaluation.

1.4 Research Objectives

This thesis is concerned with the experimental components of the larger project and
focusses particularly on work packages 1, 3 and 6, contributing some developments to
the other packages. The goals of this thesis are therefore more specific than the broad

overview.

1.4.1 Experimentally implement ILC

The significant lack of practically implemented ILC is one of the main causes for the

minimal application of ILC usage within industry. Simulations and mathematical analy-
sis are vital elements of control system development. However, they are of little purpose

if the resulting algorithms remain untested and unused. The difficulties associated with
practical implementation, highlight areas where theory can be improved and where en-
tirely new areas of rescarch need to be developed. By thoroughly testing several new ILC
algorithims, this project will add to the existing pool of experimental data, which can
be employed to promote ILC in industry as a viable solution to high precision tracking

control problems.

1.4.2 Overcome difficulties presented by multi-axis systems

The cartesian design of a gantry robot results in negligible cross-coupling between the
axes, i.e. when one axis moves, the effect, measured on any of the other axes is minimal.
The robot can therefore be treated as three Single Input Single Qutput (SISO) systems
rather than one Multi Input Multi Output (MIMQO) system, and the design of the con-
trol system is significantly simplified. However, three separate controllers must now be
implemented simultaneously on one control platform. This poses several problems to be
solved before successful implementation can be achieved. ILC is particularly demanding
with respect to memory and processor speed, therefore implementation of complicated
ILC algorithms must be carefully planned so as to fit within the limitations set by the
control hardware. Maximising the use of controller resources may also allow the develop-
ment of ILC algorithms which can be implemented on commercial control platforms, such
as the Programmable Logic Controller (PLC). This would be a significant step towards
achieving wide-spread use of ILC in industrial applications.

1.4.3 Develop a framework for comparing different algorithms

ILC is different from other control techniques, because the tracking performance changes
as the number of iterations increases. Standard measures of performance are therefore
not particularly suited to ILC. New performance techniques need to be considered specif-

ically for ILC systems, in order to measure the key aspects which define and affect the

performance of ILC.

1.4.4 Compare ILC to PID feedback control

PID feedback control is still the most popular control system used in industry. Comparing
the performance which can be achieved by ILC to that achieved by PID feedback is

3

therefore essential, if the advantages and drawbacks of using ILC based systems are to

be clearly determined.

1.4.5 Compare basic and model-based ILC techniques

The most basic ILC algorithm (P-type) uses the previous plant input vector, the previous
error vector and a scalar gain to generate the next input vector. In comparison, model-
based ILC requires a model of the plant and additional mathematical techniques to
achieve the same objective. Regardless of the level of complexity of the algorithm, for
SISO systems, ILC fundamentally generates a single input vector for each trial. The
additional complexity of model-based algorithms requires significant extra resources in
terms of plant modelling time, control system design time, processor speed and memory.
This leads to the question: does the use of extra resources produce a control system which
performs significantly better than simpler algorithms? An answer may be obtained by
implementing both basic algorithms and model-based optimal algorithms on the same

system and comparing their relative performance.

1.4.6 Develop algorithms which are long-term stable

ILC algorithms which become unstable are not an option for industrial applications.
The loss of product and time caused by any instability is unacceptable. The causes of

instability need to be investigated and possible solutions assessed.

1.4.7 Investigate the effects of disturbances

Initial state error and plant modelling error are often analysed in published ILC research
by using simulation studies. However, no practical experimentation to date has actually
investigated the effects of these problems on the performance of the algorithm. A sys-
tematic approach needs to be developed in order to investigate this aspect of ILC, so
that future research can be properly directed at solving these problems.

Chapter 2

Literature Review

2.1 Origins of Iterative Learning Control

The subset of cyclic control problems defined previously can itself be divided into two
smaller groups. Iterative learning control applies to one of these groups, while repetitive
control applies to the other. As more research is performed in both these areas, an
increasing number of links are being made between the two. However, the original
approaches to the two control techniques were quite significantly different, as discussed

by Longman (2000).

The recognised formal definition for iterative learning control was proposed in 1984 (Ari-
moto, Kawamura, and Miyazaki, 1984a,b), though Longman (2000) traces initial con-
cepts back to an article published in Japanese by Uchyama (1978). Similar ideas were
also independently developed in 1984 by Casalino and Bartolini (1984); Craig (1984).
However, the articles proposed by Arimoto et al. (1984a,b) are the most frequently cited,

so these will be discussed here.

The theory behind ILC is based on human learning. Learning can be defined as “changes
in the system that are adaptive in the sense that they enable the system to do the
same task more efficiently and more effectively the next time” (Oh, Bien, and Suh,
1988). Arimoto and Naniwa (2000) mathematically define concepts associated with the
learnability of dynamical systems. Humans learn by practicing or repeating a task until
it is perfected. During the learning process, mistakes are frequently made, yet a lot of
useful information can be extracted from them. At each attempt or iteration of the task,
one hopes to improve on the last iteration by using knowledge gained from previous
attempts. Arimoto et al. (1984b) investigated whether this principle could be applied
to machines, to give them some form of learning autonomy without the need for human

intervention. At this point, it is necessary to define the main factor which distinguishes

ILC from repetitive control.

e The initial conditions of the system are reset before each iteration commences.

This is particularly true for robotics applications, where the robot can be homed to
a starting position before carrying out the required task (Arimoto et al.,, 1984a). It
also implies that iterations do not need to follow each other immediately. The variable

amount of time between iterations can be used to compute the next input sequence
to the plant. With respect to practically implementing ILC, these characteristics have
important consequences. By allowing the system time to reset between each iteration, the
dynamics of the previous iteration are not carried over to the next iteration i.e. whatever
happened at the end of the previous iteration does not directly affect the performance
in the next. The pause between iterations allows even very complex algorithms to be
implemented as there is no processing time constraint. In repetitive control, the initial
conditions are not reset before each trial and there is no time between repetitions. The
process is continuous, one repetition flows directly into the next and the final conditions
from one repetition are the initial conditions for the next (Hara, Omata, and Nakano,

1985). This implies that data processing and computation of the next input to the
plant must be continuous and performed on-line while the system is operating. There is
therefore a limited time for processing complex algorithms between each sample instant.

The learning control solution which was proposed by Arimoto et al. was to use the error
vector generated in the previous iteration to modify the input vector to the plant for the
next iteration so as to reduce the future error vector. This was defined as

ug41(t) = uk(t) + B(t)eéx(?) (2.1)

ex(t) = r(t) — yx(t) (2.2)

where k is the iteration number, uxg,1(f) is the vector of inputs for the next iteration,
uy(t) is the vector of inputs for the current iteration, B(t) is the learning gain matrix,
& (t) is the error derivative vector for the current iteration, r(t) is the reference trajectory
vector and yi(t) is the plant output vector for the current iteration. Vectors are used

because the calculation to find the next input sequence can be performed off-line as a

batch process in the time between iterations.

Having stated the algorithm, the conditions for convergence have been comprehensively
studied. This can be understood by viewing the task as identifying which types of plant
the algorithm can be used to control and also choosing a value of learning gain which is
guaranteed to reduce the error at each iteration. As long as the convergence criteria are
satisfied, theoretically the algorithm is guaranteed to converge towards zero error, as the
number of iterations increascs to infinity. If the convergence conditions are not met, it
is highly probable that the algorithm will not reduce the error at the next iteration, but

8

will in fact increase it. This is known as divergence. Virtually all ILC algorithms, no
matter how complicated, follow the basic format of Equation 2.1. The main variations

depend on how the error vector is used to modify the current iteration input vector.

2.2 Algorithm Development

Since initial work began in iterative learning control, significant effort has been dedicated
to developing new theories and algorithms. In gencral, the objectives of the research have

included one or more of the following:

e Reduce the error over the whole cycle as close to zero as possible.

e Reduce the number of trials needed to achieve near zero error, i.e. faster conver-

gence to zero.
e Develop algorithms for different classes of plants.

¢ Improve algorithm robustness with respect to modelling errors and random distur-

bances.

e Achieve convergence while maintaining intermediate trial performance.

Initial rescarch looked mainly into using different combinations of proportional, integral
and derivative error for learning and studied higher order systems which used data from
more than one trial. The next stage in algorithm development was to include elements
from other control areas into ILC. These included model based, optimal, robust and

predictive approaches. These developments are reviewed in order to provide a compre-
hensive overview of the diverse range of research which has been performed to date. Case

studies of specific algorithms are presented where applicable, to illustrate areas where

there has been extensive research.

2.2.1 Basic algorithms

‘Basic controllers’ are iterative learning algorithms which require no knowledge of the
plant. The controller is connected to an unknown plant and one or more parameters are
adjusted until the desired performance is obtained. The algorithm developed by Arimoto
et al. Equation 2.1 also fits into this category.

2.2.1.1 P-type

The Proportional or P-type algorithm (Arimoto, Kawamura, Miyazaki, and Tamalki,
1985b; Kawamura, Miyazaki, and Arimoto, 1988; Mita and Kato, 1985; Sugie and Ono,

9

1987) is very similar to the algorithm derived by Arimoto et al. (Equation 2.1) which
is called the Derivative or D-type (Arimoto et al., 1984a,b; Arimoto, Kawamura, and
Miyazaki, 1985a; Kawamura et al., 1985). It differs in that the error derivative used in
the original algorithm has simply been replaced by the error. The next input sequence
is therefore generated from the current input sequence and the current error multiplied
by a learning gain. Arimoto et al. (1985b) proposed the modified algorithm:

ui41(t) = ur(t) + Bex(t) (2.3)

The main advantage gained from using the P-type algorithm is that it does not require
differentiation to calculate the update. Differentiation in control systems has the po-
tential to significantly amplify small noise signals. Even if great care is taken to screen
signal wires and use noise rejecting electronics, in practice, there will always be some

element of noise present in the control loop.

Although one may have expected the P-type algorithm to be developed before the D-
type, this was not the casc. The main reason was that, for some time, it was uncertain

that the convergence proof for the P-type algorithm could be found. Sugie and Ono
(1991) explain this by specifically concluding that the order of the error derivative must
match the relative degree of the system. The systems used in early implementations
of ILC were relative degree 1 and 2, and therefore it was necessary to use higher order
derivatives. In discrete time systems, relative degree can be considered as a time delay

between an input and the corresponding output (Jang, Ahn, and Choi, 1994).

2.2.1.2 D-alpha

D-alpha lies between P and D types. It uses the technique of fractional calculus to
obtain a fractional derivative of the error signal (Chen and Moore, 2001). The algorithm

is essentially D-type:

uk+1(8) = uk(s) + Bsex(s) (2.4)

where 0 < a < 1. When alpha is zero, the algorithm is P-type and when alpha is one,
the algorithm is D-type. Fractional calculus has already been successfully implemented
on standard feedback controllers, such as the three term controller, and has been found
to improve performance. Applied by Chen and Moore (2001) to ILC, it is possible to
view fractional calculus as a special type of filter which requires all of the historical error
data. D-alpha ILC can improve the monotonic convergence of the learning algorithm.

10

2.2.1.3 Combined error derivatives and integrals

A further development from P and D-type algorithms is achieved by combining several

terms together. P-D, P-I-D (where I represents the integral) and other combinations
result. The objective is to use the features of each of these terms to produce an algorithm

which can be applied to a wider range of plants and can improve convergence properties.
A PID-type iterative learning controller has been successfully implemented by Kim and
Kim (1996) on a CNC machine tool. The machine was required to cut circles of radius
29.7mm and depth 3mm from a sheet of aluminium. The tracking accuracy achieved for

the first iteration was within 20.37 pum, while for the fifth iteration the error was reduced

to 8.55 um, a reduction of 11.82 ym.

2.2.1.4 Higher order

‘Higher order’ describes algorithms which use data from more than just one iteration
(Chen, Wen, and Sun, 1997). For example, a second order algorithm may use the error

data for the current iteration and the previous one. The theory behind using higher
order algorithms is to make use of all the data which has been gathered since the process

commenced operation. Theoretically, using more information should produce a system
which is more robust to disturbances, initial state error, and can converge faster (Bien
and Huh, 1989; Chen, Sun, Huang, and Dou, 1992; Chien, 1996). An example of a higher

order algorithm is:

N
ups1(t) = ug(t) +) Balt)e(t) (2.5)

n=0

where N is the system order, l = k —n + 1 and 3, is the learning gain matrix for the
n’th iteration. The learning gain matrix need not be the same for each iteration. This
allows for a more flexible algorithm, as older data can be penalised by using smaller
gains. Increasing the order of the algorithm has also been found to allow convergence

for systems with higher relative degree (Ahn, Choi, and Kim, 1993).

There is some debate as to whether higher order systems are more useful than first

order. Sun and Wang (2001b) and Chen, Gong, and Wen (1998a) suggest that higher
order systems, if designed properly, can achieve fast convergence speeds. Norrlof and
Gunnarsson (1999) also conclude that higher order algorithms can be found to be stable

where first order algorithms are not. However, having performed a rigorous mathematical
analysis of various order algorithms, Xu and Tan (2001, 2002) strictly conclude that first
order systems converge fastest. Having compared a first order and a second order system
through practical implementation, Norrlof (2000) concludes that the second order system

11

does not perform better than a first order system. Another drawback to the second order
system is that twice the amount of processing memory is required. An advantage may
be that the second order system has potential to compensate for a plant which varies

slightly between iterations by smoothing the data from more than one iteration. Overall,
it is suggested that using the lowest order system is best, but higher order systems can

be used if necessary to improve control of nonlinear plants.

Xu, Chen, Lee, and Yamamoto (1999) have designed a successful higher order learning
controller specifically for systems where the controlled variable cannot be measured until

the end of the process. This is termed terminal iterative learning control and has potential

for application in microchip manufacturing processes.

Moore and Chen (2003) propose the use of a higher order ILC algorithm which operates
in both the time domain and the iteration domain. The higher order algorithm achieves
monotonic convergence in the time domain and can also compensate for iteration depen-
dent disturbances in the iteration domain. For example the controller can compensate

for disturbances which are repeated every two iterations rather than every iteration.

2.2.2 Variations of basic ILC

2.2.2.1 Hybrid controllers

‘Hybrid’ describes the combining of two different systems which work together towards
a common goal. In many of the cases where ILC has been implemented on real physical
systems, the learning law has been coupled to a standard feedback controller (Barton,
Lewin, and Brown, 2000; Havlicsek and Alleyne, 1999; Longman, 2000; Tayebi, 2004).
The objective is to improve the robustness of the controller (Doh, Moon, and Chung,
1999; Moon and Chung, 1998). The feedback controller can compensate for non-periodic
disturbances, while the learning controller reduces the periodic disturbances (Kuc, Nam,

and Lee, 1991).

Another advantage of using a hybrid system is that the learning controller need not
operate all of the time. Once the error has been reduced to within tolerance bounds,
the learning controller can be switched out and the feedback controller will continue to
operate the system with the same level of accuracy (Barton et al., 2000). The learning
controller can then monitor the error and can be switched in again, should the error
begin to increase (due to component wear, for example). Two different arrangements of
hybrid controller have been investigated. In one case, the learning controller modifies the
output of the feedback controller (Jang, Choi, and Ahn, 1995; Kuc, Lee, and Nam, 1992;
Moon, Lee, and Chung, 1996), while in the other case, the learning controller modifies
the input to the feedback controller (Liang and Looze, 1993). Both types can be shown

to satisfy convergence criteria (Longman, 2000).

12

2.2.2.2 Current iteration error

The first algorithms to be developed generated the next input sequence to the plant, from
the input sequence and the tracking error obtained during the previous trial. This made
these algorithms completely feed-forward by not taking into account the error of the
current trial (Chien and Liu, 1996). The overall effect was to create a system which was
not robust to random distutbances. To counteract this, it is possible to use a feedback
controller in a hybrid arrangement which provides the necessary feedback element. An
alternative solution is to use the Current Iteration Tracking Error law (CITE) (Owens,

1992).

up+1(t) = ur(t) + (Ber41(t)) (2.6)

where ej41 is the current iteration error. In this example, the algorithm must be com-
puted at each sample interval, otherwise it is fundamentally non-causal. It can be demon-
strated mathematically that Equation 2.6 will converge for relative degree one MIMO
systems with minimum phase. It can also be shown that the algorithm can tolerate a

high learning gain which leads to faster reduction in tracking error (Chien, 1998). The
CITE gain has also been found to have a direct influence on the final tracking error

bound (Chen et al., 1997; Chen, Xu, and Lee, 1996¢). Owens and Munde (2000) suggest
that using the current error is beneficial for three main reasons.

e The most recent data reflects the current performance of the system.
e Current error feedback could stabilize unstable plants.

e The effects of noise and modeclling errors can potentially be reduced.

2.2.2.3 Anticipatory

Some learning control algorithms use the concept of anticipatory control. The concept
is explained in detail by Wang (1999) and can be found to apply specifically to the P-
type basic ILC algorithm. In the original D-type algorithm, the control effort update,
at one particular sampling interval, consists of the control effort and the tracking error
derivative from the previous iteration at the corresponding sampling interval. For the
D-type algorithm, this approach is correct, as the different terms do correspond exactly:.
However, for the P-type algorithm, the approach no longer applies. The P-type law does
not capture the trend of the error from previous sampling intervals. At one particular
sampling interval, the error may be recorded as zero. However, this does not guarantee
that it was zero for the previous sample. In fact, the error gradient may be significantly
different. The basic P-type law does not make use of this information.

13

Wang (2000) proposes a solution to this problem by using an anticipatory scheme. When
generating the new input sequence, instead of using the error from exactly the same
sample instant one trial back in time, the error from one of the following sample instants
is used. Note that the shift in samples is only a small number and is usually set to
1. This approach can generate a concise mathematical proof for convergence (Wang,
1998) and has been found to improve the rate of error reduction in simulations (Ma,
Low, and Tso, 1993). Sun and Wang (2001a) show that the anticipatory system can also
relax the convergence conditions for systems with higher relative degree. Wang (1999)
tested the anticipatory algorithm on a two-link SCARA robot system and obtained good
convergence results. For a 15 iteration test, the root mean square (rms) error is reduced
by approximately one order of magnitude after only one iteration. Notably, the error
reduction is non-monotonic and the rms error increases between iterations 5 and 10,
following the initial convergence. This is a possible indication of instability. Equation
2.7 is higher order and contains both an anticipatory and a current iteration error term.

ui+1(m) = ug(m) + Grex(m + 1) — Boegy1(m) (2.7)

Where m is the sample interval, ex(m + 1) is the anticipatory error term for the last

iteration and ex41(m) is the current iteration error.

2.2.2.4 Forgetting factor

In general, a forgetting factor is a gain with magnitude less than one, as discussed by
Wang (1995). The forgetting factor can be applied to any term of an algorithm to reduce
the effect of that term on the input update. It has been used on the previous iteration

input term u; in an attempt to reduce the effect of high frequency noise and initial
state error which can otherwise be amplified around the learning loop (Chien and Liu,
1996). Using the forgetting factor reduces the noise transmission and increases the noise
immunity of the algorithm. This effect becomes obvious when considering the Nyquist
plot of a system. In the cascs where the poles of the system are very close to the unit

circle, the forgetting factor has the ability to draw the poles away from the unit circle

and reduce the risk of instability (Lewin, 1999).

2.2.2.5 Time delays

Time delays are very common in control systems. They vary in magnitude from mil-
liseconds and less, to hours or days. Longer time delays are frequently encountered in
chemical batch processing plants. But, delays of a few seconds can also be encountered

14

in other areas of industry. A time delay is described as the period of time which elapses
between a change in plant input and the corresponding change in the plant output.

One basic approach to compensating for this time delay is to use a delay shift (Park,
Bien, and Hwang, 1998). The basic P-type algorithm can be modified by adding the

delay shift to the error term.

Urt1(t) = ur(t) + Ber(t + 7.) (2.8)

where 7 is the estimated time delay. This algorithm is successful as long as the time delay
is correctly estimated. However, if the estimate is incorrect, there is no mathematical
guarantee that the algorithm will converge. Using an incorrect time delay has potential

to completely destabilise the system.

An alternative solution is to implement an ILC algorithm alongside a feedback controller
equipped with a Smith predictor (Xu, Hu, Lee, and Yamamoto, 2001). The feedback
controller and Smith predictor stabilise the plant and remove the time delay, while the
learning algorithm improves the tracking accuracy. Again, an accurate estimate of the
time delay and the plant model are required for the Smith predictor to work successfully.
Hu, Xu, and Lee (2001) use a learning controller coupled with a feedback controller and
a Smith predictor. The ILC modifies the output of the feedback controller and the signal

is then fed into the Smith predictor.

2.2.2.6 Reduced sampling frequency

Implementation of learning controllers requires some form of data storage memory which
holds set-point and error values fromn previous trials. Hence, learning control is invariably
implemented in discrete time, using a microprocessor. In discrete ILC systems, the
sample frequency can have an effect on the algorithm convergence. Hillenbrand and
Pandit (1999) derive the convergence conditions for a P-type anticipatory system. It is
found that the algorithm can behave erratically in the first few iterations if the learning
criterion is simply to reduce the error as the number of iterations increases. A more
successful algorithmm can be produced if the criterion is to reduce the error norm at
each iteration. Unfortunately, using the error norm has a greater tendency to violate
the conditions for convergence and the algorithm is more likely to diverge. However,
by reducing the sample frequency, the system parameters can be adjusted until the
convergence conditions are satisfied in which case the algorithm will converge.

A reduced sampling frequency has also been found to limit the impact of initial state
error. This is because a larger sampling time naturally averages the control output
and reduces the occurrence of short-duration step inputs. At high sampling frequency,
the controller can respond to initial error and transients with a series of step inputs,
with significantly different amplitudes, which induce transient plant behaviour. At low

15

sampling frequency, if the output at the first sample interval is chosen correctly, by
the second sample interval the tracking error will be small or absent. Drastic control
adjustments will no longer be required and the algorithm will continue to learn correctly

(Hillenbrand and Pandit, 2000).

2.2.2.7 Selection of learning gain

Irrespective of the complexity of a learning algorithm, the fundamental principle behind

ILC algorithms is to update the next input sequence to the plant, by using data obtained
from previous input sequences and some measure of the output tracking error, which is

multiplied by a learning gain. The choice of this learning gain is therefore an issue of
great importance as it has a fundamental eflect on the convergence and stability of the
algorithm (Glower, 1997; Hwang, Bien, and Oh, 1991). In the most basic algorithms,
the learning gain is chosen by the designer. In more advanced algorithms, the selection
process is automated to some extent. Moore (1998, 1999) suggests a method which can
be used to select the learning gain of a simple ILC controller to obtain perfect tracking

within four trials. Through calculation, simulation studies and practical implementation,
there are certain trends which can be identified which relate the choice of learning gain to
the performance of the learning controller. High learning gain produces faster reduction

of the tracking error from trial to trial, but the steady state error is larger, while low
learning gain produces a slower reduction of the tracking error, but the steady state error

can be reduced further. This is because low learning gain causes less amplification of

noise.

2.2.2.8 Coefficient tests for convergence

It is important to determine whether a learning control scheme will be stable, when

implemented on a plant. A simple method using only the parameters of the plant and
controller would be particularly useful, as it would allow initial controller designs to

be evaluated and modified rapidly. Judd, Hideg, and Van Til (1991) propose such a
technique. The concept is similar to that of the Routh stability test for standard feedback
control systems. A characteristic polynomial is generated from the characteristics of the

plant and the controller and is then tested against a set of conditions in order to determine

whether the complete system will be stable.

2.2.2.9 Non-periodic repeating disturbances

ILC is traditionally associated with removing repeating disturbances from periodic sys-
tems. However, it is possible to construct an ILC style controller capable of suppress-

ing repeatable disturbances triggered in a random fashion, for example: vibrations and

16

shocks in mechanical servo systems. This is an unusual application of ILC, because the
reference trajectory is continuous and does not nced to be repeating. The majority of
control is performed by an appropriate feedback controller and the ILC element is only
used when a repeating disturbance occurs. The appropriate moment to switch on the
ILC is selected by a Likelihood Ratio Test which detects the start of the characteristic
error waveform, associated with the disturbance. Each time the disturbance occurs, the
ILC is therefore supplied with the tracking error data until the end of the repeating
disturbance. The ILC can therefore learn the signal which must be applied during the
disturbance to minimise the effect on the plant output. Tousain, Boissy, Norg, Stein-
buch, and Bosgra (1998) have successfully simulated this type of system with the aim of
rejecting shock disturbances for a hard disk drive. The format of the learning controller

is represented by:
uk+1(t) = F1(uk(t) + Faex+1(2)) (2.9)

where F; and F5 are appropriately designed filters.

2.2.3 Model-based algorithms

‘Model-based algorithms’ include any controller which requires prior knowledge of the
plant. For these controllers to be implemented, it is necessary to generate some form of
model, which describes the behaviour of the plant. This is then used either during the

design process, or as part of the ILC algorithm itself.

2.2.3.1 Model based controllers

The principle behind model based controllers is to obtain an accurate model of the plant
which can be used in parallel with the real plant to provide information to the controller
which would otherwise not be available (De Roover and Bosgra, 1997). The model
is particularly useful for providing information about unknown states, or states which
cannot easily be measured. As well as feeding the control input into the real plant, it
is also supplied to the model. If the model is accurate, the output of the real plant and
the model should be the same. If there is a difference between the two outputs, the error

can be used to update the model to make it more accurate.

Phan and Frueh (1996, 1999) propose a novel way of implementing a model based con-
troller by learning the plant model during each iteration. As the reference trajectory is
constant for each iteration, it is only necessary to learn the dynamics of the plant for this
trajectory as other dynamics will not be excited. Each time an iteration is performed, a
sct of data for the input and the corresponding output is obtained. Using this data, a set

of basis functions can be trained to emulate the behaviour of the plant and generate a

17

model. The model is then used for standard model based control. Effectively, this is an
on-line plant identification technique. Phan and Frueh (1999) implemented this model
based controller on an experimental apparatus, consisting of a number of parallel steel
rods held together by a thin spring-steel wire. Actuation force was supplied to one rod,
while the tip of another rod was required to follow a set trajectory. The model based
controller successfully reduced the tracking error by over one order of magnitude.

2.2.3.2 Inverse plant models

The input-output relationship of a plant can be represented by Equation 2.10. If the
inverse of the plant model can be derived (Equation 2.11) it can be used to directly

calculate the exact input sequence which must be supplied to the plant to obtain the
desired trajectory (Xu and Ji, 1998).

yi(t) = G°(ui(t)) (2.10)

uk(t) = -G°(r(t)) " (2.11)

where G is the true non-linear model of the plant, G%(-)~! represents the inverse of G9(")

and r(t) is the reference trajectory. With this scheme, there is no requirement for any
control system. However, model inaccuracies and random disturbances are not taken into

account. Model inaccuracies generally arise because a linear model is used to describe
a non-linear plant. Relying upon the inverse model technique is therefore not usually
suitable for implementation on real systems. The inverse model can however produce
a good estimate of the signal which needs to be supplied to the plant. Combining the
inverse model with a learning controller allows learning control to compensate for model

error (Markusson, Hjalmarsson, and Norrlof, 2001).

2.2.3.3 Robust control

It is often possible to design a control system which will be well matched to a plant
model and should theoretically provide performance within tolerance bounds. However,
it is not evident that this controller will be able to cope with disturbances, variations
in the plant and modelling errors. For example, it is accepted that the model is only a
representation of the real plant and that it will not be perfectly accurate (De Roover and
Bosgra, 2000). Yet, standard design procedure uses the model to generate the controller.
The resulting controller may in fact be poorly matched to the actual plant. Under steady
state COIldiFiOIlS, this may not be noticeable. However in transient conditions the control

system may become unstable. Robustness analysis can be used to establish whether

18

the performance of a complete system will remain within the design specification, by
determining how tolerant the system is to disturbances. It is therefore necessary to
design into any controller a measure of robustness, which will allow the plant to vary to
some extent without the controller being significantly adversely affected.

One definition of robustness in a learning control sense is that the error sequence gener-
ated during a trial remains bounded when bounded noise is present in the system (Sogo
and Adachi, 1996). Of particular interest is the magnitude of the bounds on the final
steady state tracking error, as this determines to what extent the error can be reduced
(Chen, Xu, and Lee, 1996b). Liang and Looze (1993) specifically derive and define ro-
bustness conditions which are specific to ILC systems. They also determine that, in the
presence of modelling error, the complementary learning sensitivity must be small for
input frequencies at which the model uncertainty is large. Due to the inability of learning
controllers to compensate for non-repeating disturbances, it is essential to incorporate
robust control techniques when designing learning control systems (Xu and Viswanathan,

2000; Xu, Viswanathan, and Qu, 2000).

Sensitivity is an important measure in robustness analysis, as it describes how one com-
ponent or variable of a system is affected by a change in another component or variable.
High sensitivity implies that a small change of one variable has a large effect on others.
Therefore low sensitivity is generally desired when designing a robust controller.

Tayebi and Zaremba (2003) propose a generic approach to designing robust learning
control systems. By using a hybrid combination of a standard feedback controller in

parallel with a learning controller, stability is theoretically guaranteed, as long as the
feedback controller meets a specified robustness performance condition. If this is true,
then a simple calculation leads to a performance weighting function, which is applied to

the input of the learning controller and guarantees overall stability.

2.2.3.4 Adaptive controllers

When a control system is initially designed and commissioned, the controller should
be finely tuned to match the plant and should provide control within maximum error
bounds. However, as the plant and the surrounding environment change with time,
the tuning of the controller will no longer match the dynamics of the plant and the
accuracy of the control will degrade. Adaptive control is concerned with monitoring the

performance of the controller and adjusting its parameters to compensate for changes
in the plant and maintain the performance of the overall system. From this definition,

it is possible to conclude that learning controllers are, by their very nature, adaptive.
However, in learning control, the whole signal is adapted, while in adaptive control, only
the parameters of the controller are changed (Norrléf and Gunnarsson, 2001). Learning
controllers have an advantage over conventional adaptive controllers because the tracking

19

accuracy can be improved at each trial. With conventional adaptive control the tracking
accuracy does not improve, it remains constant (Poo and Ma, 1995). Conversely, adaptive
control is well suited to compensating for non-repeating variations in plant dynamics.
Combining an iterative learning controller and an adaptive controller can therefore use
the advantages of both systems (Choi and Lee, 2000).

Héatonen, Owens, and Moore (2004) clearly define the difference between a time invariant
ILC law and an adaptive ILC law. This can be summarised by comparing two versions

of the basic P-type anticipatory ILC algorithm.

ur+1(t) = ur(t) + Ber(t + 1) (2.12)

This is the time invariant version of the algorithm, compared to

Ur+1(t) = up(t) + Brs1(t)er(t + 1) (2.13)

which is the adaptive form. Note that the learning gain is not a constant and is updated
for each iteration by another update law which must be selected appropriately.

Case study French, Munde, Rogers, and Owens (1999) propose a simple adaptive ILC
algorithm which allows modification of the learning gain from itcration to iteration by
means of a separate gain update algorithm. A similar technique has also been investigated

by Owens and Munde (2000). The algorithm developed by French et al. is suitable for
Linear plants. The main control input update algorithm follows the standard P-type

format, using the current iteration error variation.

ur+1(t) = ur(t) + (Bex1)(¢) (2.14)

While the learning gain 8 is updated between iterations by

Bi+1 = Be + cllexl® (2.15)

where ¢ is, in turn, the learning gain adjustment gain. Effectively, the gain is also
adjusted in an iterative manner by using the previous iteration gain term and a function
of the overall error in the previous iteration. As the number of iterations heads towards

infinity, the iteration error will converge to zero and the learning gain 8 converges to a

final value which is not infinity.

The basic operation of the algorithm can be reasoned quite logically. When the tracking
error is large, a smaller learning gain is required, because multiplication with the error
results in a large change in control effort. However, once the error becomes small, using

a lowcr learning gain generates a very small change in control effort. The lcarning ability
has effectively been reduced. In the adaptive algorithm, the learning gain is gradually

20

increased as the error reduces so that, even with small error values, the ability to learn is
not reduced and the algorithm can continue to reduce the error further. As the algorithm

reaches zero tracking error, the learning gain converges to a non-zero value.

In algorithms which are unable to adapt, the selection of learning gain is a compromise
between convergence rate and steady state tracking error. With the adaptive algorithm,

both fast convergence and low steady state tracking error can be achieved.

2.2.3.5 2-Dimensional repetitive process analysis

Learning control algorithms are generally developed by considering the plant and the
controller separately. This implies that a transfer function for the overall system is
never developed. Evaluation of learning gains is through trial and improvement rather
than through calculation. 2-dimensional analysis proposes several advantages over the
traditional approach (Owens, Amann, Rogers, and French, 2000).

e 2-D theory offers a mathematical model to describe the entire process dynamics.

e 2-D stability theory provides a useful method to show convergence.

e Proof of the stability of a 2-D learning system will guarantee convergence.

2-D analysis is particularly applicable to learning control systems because they are nat-
urally of a two dimensional configuration (Kurek and Zaremba, 1993). The dimensions

can be considered as:

1. Time during an iteration.

2. The iteration number.

Systems of this form can be represented in discrete state space, by a local state vector

of the form:
zh 1, 7
z(i,j) = { xvé— j;] (2.16)

Where 2" and z? are the horizontal and vertical state components and i and j are non-
negative integer-valued horizontal and vertical coordinates. With respect to learning

controllers, h and ¢ represent the sample or time interval during an iteration while v and

21

j represent the iteration number. The ILC algorithm developed by Arimoto et al. can
be concisely represented in 2-D system theory (Geng, Carroll, and Xie, 1990).

u(i,j +1) = u(i, j) + Au(s, j) (2.17)

Where Au(i, j) represents the modification of the update which, in the Arimoto equation,
1s derived from the error and a learning gain. The most important aspect of using 2-D
systems theory is that a framework for analysing the stability of 2-D systems is already
well established and can be applied directly to learning controllers (Galkowski, Rogers,
and Owens, 1999). Lee and Lee (1993) have used 2-D systems theory to develop an ILC
controller with feed-forward and feedback elements for use on a Video Cassette Recorder

(VCR) servo system.

2.2.3.6 Optimal learning control

Optimal control is concerned with providing the ‘best’ solution to the control task. The
solution is specified by a criterion to be optimised, which is known as the cost function.

The cost function must be formulated by the designer and must describe a curve with
a minimum point. In most learning control algorithms, the cost function includes a
description of the tracking error, so that the optimal controller attempts to reduce it
to a minimum (Chen and Fang, 2004; Gunnarsson and Norrlof, 1999). Many strategies
implement a descent gradient approach for the minimisation process (Togai and Yamano,
1985). The algorithm drives the system towards the minimum point by calculating the
gradient of the cost function and then taking a step in the direction of this gradient. In
some implementations, if the gradient is not heading towards the minimum point, the

step is made very small or reduced to zero, because taking a step in this direction would
in fact be diverging away from the minimum point. Other implem<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>