
UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND APPLIED SCIENCE

School of Electronics and Computer Science

The Object and Connection Space Approach To Opening Up
Hypermedia Structure

by

Jon-Paul Griffiths, B.Sc.

Thesis for the degree of Doctor of Philosophy

May 2005

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

THE OBJECT AND CONNECTION SPACE APPROACH TO OPENING UP
HYPERMEDIA STRUCTURE

by Jon-Paul Griffiths

Open hypermedia emphasises the separation of hypermedia structure and data,

typically achieved through the removal of hypermedia mark-up within data. Such

removal enables re-application of the same hypermedia structure to different sets of

data.

However, the internal organisation of hypermedia structure does not follow these

same separation rules as most hypermedia systems continue to embed mark-up

within hypermedia structure. This violates the principles of open hypermedia since

the objects and COIU1ections of a hypermedia structure cannot be re-used within other

hypermedia structures. Hence only entire hypermedia structure re-use is possible.

This is not only an inefficient use of resources, but it highlights the anomaly that the

objects and connections of open hypermedia structure are not actually open to re-

use.

TI1is thesis describes the Object and Connection Space (OCS) data model. It opens

up hypermedia structure by separating the functional and connectional aspects of

hypermedia structure. Once assigned to Object and Connection Spaces the

productive re-use of hypermedia structure can begin, either as individual

hypermedia objects or as collections of selected hyperstructure segments. The thesis

also explores how the OCS data model, via structure re-use, enables improved

structure versioning, in particular the prevention of revision proliferation. And it

considers how the OCS data model benefits the overall maintenance of hypermedia

structure by offering a more logical approach to the repair of broken internal routes

within hypermedia structure.

Contents
Contents .. i

List of Figures ... ix

List of Tables ... xiii

Declaration of Authorship .. xiv

Acknovvledgements .. xv

Chapter 1. Introduction .. 1

1.1. Internal Organisation of Hypermedia Structure .. 1

1.2. The Object and Connection Space Approach .. 4

1.3. Contributions to Computer Science ... 4

1.4. Thesis Structure ... 5

Chapter 2. Hypermedia Background ... 7

2.1. Introduction ... 7

2.2. The Promise of Hypermedia ... 7

2.3. Modern Hypermedia Systems .. 7

2.4. Hyperlnedia Structure .. 8

2.5. Re-use in Hypermedia .. 9

2.6. Elementary Composition of a Hypermedia System ... 10

2.7. The Early years .. 11

2.7.1. Bush ... 12

2.7.2. Engelbart .. 13

2.7.3. Nelson ... 13

2.7.3.1. Preventing Duplication of Re-used Document Content 15

2.7.3.2. Highlighting Re-used Document Revisions ... 15

2.7.3.3. Clickable Re-used Content Segments .. 16

2.8. Monolithic Systems ... 18

2.9. Client-Server Hypermedia Systems ... 19

2.10. The World Wide Web ... 20

2.11. The Dexter Hypertext Reference Model .. 22

2.12. Open Hypermedia Systems ... 23

2.12.1. Similarities between Different Open Hypermedia Systems 24

2.12.2. Microcosm .. 24

2.12.3. Re-use in Open Hypermedia Systems .. 26

2.12.4. A Lack of Consensus ... 26

2.13. The Open Hypermedia Protocol Project .. 28

2.14. Multiple Open Systems .. 28

II

2.15. Structural Computing ... 29

2.15.1. Construct .. 31

2.16. The Fundamental Open Hypermedia ModeL ... 32

2.17. Summary .. 33

Chapter 3. OHP and FOHM .. 34

3.1. Introduction ... 34

3.2. The Open Hypermedia ProtocoL ... 34

3.2.1. Core Architecture .. 35

3.2.2. Core Data Model ... 36

3.2.2.1. Collaboration Classes .. 38

3.2.2.2. Computation Classes ... 38

3.2.3. OHP-Nav Protocol .. 39

3.2.4. Condensed OHP-Nav Data Model ... 41

3.2.5. Linked List Representation .. 43

3.2.6. OHP-Nav Traversal .. 45

3.2.6.1. Carrying Out Link Traversal .. 45

3.2.6.2. Retrieving Individual OHP-Nav Objects .. 46

3.2.7. Implementations .. 47

3.2.7.1. Example OHP-Nav message .. 48

3.2.8. OHP Demonstrations .. 50

3.2.8.1. Hypertext '98 Demonstration ... 50

3.2.8.2. Hypertext '99 Demonstration ... 51

3.3. The Fundamental Open Hypermedia ModeL ... 52

3.3.1. FOHM Background ... 52

3.3.2. Hypermedia Domains .. 53

3.3.2.1. Navigational Hypermedia Domain ... 53

3.3.2.2. Spatial Hypermedia Domain .. 53

3.3.2.3. Taxonomic Hypermedia Domain .. 54

3.3.3. FOHM and Structural Computing .. 54

3.3.4. The FOHM Data Model. ... 55

3.4. Summary .. 58

Chapter 4. Versioning Background .. 59

4.1. Introduction ... 59

4.2. What is Versioning? .. 59

4.3. Versioning Policy .. 59

4.4. Why Version Hypermedia Resources? .. 60

4.5. Hypermedia Versioning Systems ... 60

4.5.1. Design Spaces for Versioning .. 61

III

4.5.2. Xanadu .. 62

4.5.3. HyperPro .. 62

4.5.4. CoVer .. 63

4.5.5. Delta V ... 64

4.5.6. HyperProp .. 64

4.5.7. Hypermedia Versioning Control Framework. .. 65

4.5.8. Chimera Versioning .. 66

4.6. Revision Proliferation ... 66

4.6.1. HyperPro .. 67

4.6.2. CoVer .. 67

4.6.3. HyperProp .. 70

4.7. Summary .. 71

Chapter 5. Referential Integrity Background .. 73

5.1. Introduction ... 73

5.2. Importance of Referential Integrity .. 73

5.3. Forms of Broken Hypermedia Structure ... 74

5.3.1. Dangling Hypermedia Structures ... 74

5.3.2. Specious Hypermedia Structures .. 74

5.3.3. Misaligned Internal References ... 74

5.3.4. Broken Internal Routes ... 75

5.4. Link Repair Strategies .. 76

5.4.1 Passive Approach .. 76

5.4.2. User Onus ... 76

5.4.3. Tightly Coupled Link Repair.. ... 77

5.4.4. System Tools for Pro-Active Users ... 77

5.4.4.1. Forward References ... 77

5.4.4.2. Link Integrity Checkers ... 78

5.4.5. Just-In-Time Link Repairs .. 79

5.4.6. Preventing Broken Links Altogether. ... 79

5.4.6.1. Publishing Model ... 79

5.4.6.2. Hypertext Link Queries ... 79

5.4.6.3. Declarative Links .. 80

5.4.6.4. Dynamic Links .. 80

5.4.7. Prevention via Versioning ... 81

5.4.7.1. Versioning Hypermedia Documents ... 81

5.4.7.2. Versioning Hypertext Links ... 82

5.4.7.3. Versioning Hypermedia Documents and Hypertext Links 82

5.5. Summary .. 83

IV

Chapter 6. Problem Domain Issues .. 84

6.1. Introduction ... 84

6.2. Issue One: Repetitive Hypermedia Objects ... 84

6.2.1. Repetitive Hypermedia Objects in OHP-Nav ... 84

6.2.2. Repetitive Hypermedia Objects in FOHM .. 87

6.2.3. Dynamic Linking ... 89

6.2.4. Repetitive Hypermedia Object Problem .. 90

6.3. Issue Two: I\.epetitive Hypermedia Structure ... 90

6.3.1. Repetitive Hypermedia Structures in OHP-Nav .. 90

6.3.2. Repetitive Hypermedia Structures in FOHM ... 93

6.3.3. Repetitive Hypermedia Structure Problem ... 96

6.4. Issue Three: Revision Proliferation ... 97

6.4.1. The OHP-Version Protocol .. 97

6.4.2. Contextualised Connections .. 101

6.4.2.1. Adjushnents to the FOHM Data Model.. .. l0l

6.4.2.2. Contextualising FOHM Connections .. 102

6.4.2.3. Limiting Revision Proliferation .. 103

6.4.2.4. Embedding Still Causes Revision Proliferation 104

6.5. Issue Four: Hypermedia Structure Maintenance .. 105

6.5.1. Multiple Internal Routes Within Structure .. 106

6.5.2. Broken Internal Routes ... 106

6.5.3. A Confusing Repair Process .. 107

6.6. Summary .. 109

Chapter 7. Opening Hypermedia Structure .. 110

7.1. Introduction ... 110

7.2. Unopen Hypermedia Structure .. 111

7.3. OCS Data Model Objectives .. 112

7.4. C-Level Work ... 113

7.5. Drawing on OHP-Nav .. 113

7.6. "Rock, Paper, Scissors" .. 113

7.7. The Object and COlU1ection Space Data Model... .. 116

7.7.1. The Function Object Space ... 117

7.7.2. The COlU1ection Space .. 118

7.7.2.1. Binary Connection Objects .. 118

7.7.2.2. N-ary Connection Objects ... 119

7.7.2.3. Which to Choose: Binary or N-ary COlU1ections? 119

7.7.3. Comparison with OHS Hypertext Links ... 121

7.8. Connection Objects Explained .. 124

v

7.9. Lightweight vs. Heavyweight Objects ... 126

7.10. COlmecting Connection Objects .. 127

7.10.1. Conjoimnent Operation .. 127

7.10.2. Attachment Operation .. 127

7.10.3. Linking To Hypermedia Structure ... 128

7.11. Issues ... 128

7.11.1. Anchoring ... 128

7.11.2. Object Uniqueness ... 130

7.11.2.1. Re-used Function Objects within a Single Connection Object.. 130

7.11.2.2. Re-used Function Objects in Extemal Connection Objects 132

7.12. XML Specification ... 134

7.13. Class and Instance Relationship ... 136

7.14. Object and Connection Space Example .. 137

7.15. Impact on the OHS Architecture .. 140

7.15.1. Client Application Layer .. 140

7.15.2. Middleware Layer ... 141

7.15.3. Storage Back End Layer.. .. 141

7.16. Added Complexity ... 141

7.16.1. Separating and Building Structure ... 142

7.16.2. Re-using Structure ... 143

7.17. Summary .. 143

Chapter 8. Implications for OHP-Nav and FOHM .. 145

8.1. Introduction ... 145

8.2. Embedding within Hypermedia Objects ... 146

8.3. Application of the OCS Data ModeL .. 147

8.4. Resolving Problem Domain Issues 1 and 2 ... 148

8.4.1. OHP-Nav Single Hypermedia Object Re-use ... 148

8.4.2. FOHM Repetitive Hypermedia Structure Re-use 151

8.5. Imitating OHP-Nav Structural Organisation .. 154

8.6. Applying the OCS Data Model to Connection Objects 156

8.6.1. Why Change the Structure Representation of Connection Objects? 157

8.6.2. Transforming COlmection Objects to FOHM Structures 159

8.6.3. Applying the OCS Data Model to FOHM Structures 161

8.6.4. Scope of the OCS Data Model ... 166

8.7. Summary .. 168

Chapter 9. Applications for Versioning ... 169

9.1. Introduction ... 169

9.2. Recap on Revision Proliferation .. 169

VI

9.3. OCS Solution to Revision Proliferation .. 170

9.4. Different Views of Hypermedia Structure .. 173

9.5. OCS Data Model vs. Contextualised Connections ... 175

9.6. Summary .. 177

Chapter 10. A Versioning Framework ... 179

10.1. Introduction ... 179

10.2. Versioning Framework ... 180

10.3. Versioning Framework Organisation .. 180

10.4. Versioning Example .. 181

10.5. OCS Framework Advantages .. 185

10.5.1. Connection Integrity ... 185

10.5.2. Framework Alterations .. 185

10.5.3. Easier Connections .. 187

10.6. OCS Solutions to Existing Revision Proliferation Problems 187

10.6.1. CoVer .. 187

10.6.2. The Nested Composite Model.. ... 190

10.7. SUInmary .. 192

Chapter 11. Applications for Link Maintenance .. 194

11.1. Introduction ... 194

11.2. Benefiting Link Maintenance .. 194

11.3. A More Logical Approach ... 195

11.4. Versioned Hypertext Links .. 197

11.5. Finding Connections Between Objects ... 198

11.6. Summary .. 200

Chapter 12. Conclusions .. 202

12.1. Introduction ... 202

12.2. Restatement of the Problem ... 203

12.3. The OCS Data Model .. 203

12.4. Scope of the OCS Data Model ... 204

12.5. Problem Domain Issues Answered .. 205

12.5.1 Issue 1: Repetitive Hypermedia Objects .. 205

12.5.2. Issue 2: Repetitive Hypermedia Structure ... 206

12.5.3. Issue 3: Revision Proliferation ... 207

12.5.4. Issue 4: Improved Hypermedia Structure Maintenance 208

12.6. Computer Science Contributions .. 208

12.6.1. CSC1: Extending the Concept of Open Hypermedia 208

12.6.2. CSC2: Promoting the general re-use of hypermedia structure 209

12.6.3. CSC3: Logical approach to hyperstructure representation 210

Vll

12.6.4. CSC4: Improved versioning of hypermedia structure 210

12.6.5. CSC5: Improved hypermedia structure maintenance 211

12.7. Relationship to Existing Research ... 211

12.7.1. Xanadu .. 212

12.7.2. The World Wide Web ... 213

12.7.3. Open Hypermedia .. 213

12.7.4. Structural Computing ... 215

12.7.5. Object Prototyping .. 216

12.7.6. Standard CB-OHS Storage Interface ... 217

12.7.7. Callimachus .. 218

12.7.8. Thelnis ... 220

12.8. Future Work ... 221

12.8.1. Implementation ... 221

12.8.2. Data Models ... 221

12.8.3. Hypeflnedia Domains .. 222

12.8.4. The OCS Framework .. 222

12.8.5. Standardisation of Connection Objects .. 222

12.8.6. Link Maintenance Repair Applications ... 223

12.9. Overall Conclusion ... 223

Appendix A. OCS Representation in XML ... 224

A.l. Introduction ... 224

A.2. Conventional OHP-Nav Primary Objects ... 224

A.3. OCS Function Objects ... 226

A.4. OCS Connection Objects .. 227

A.5. Re-use Example ... 229

A.5.1. Function Object Space .. 230

A.5.2. C01U1ection Object Space CS500 .. 232

A.5.3. Connection Object Space CS501 .. 235

A.6. Converting to OCS Data Model Format Example .. 240

A.6.1. XML for Conventional Hypertext Link. ... 241

A.6.2. XML for OCS Function Objects ... 244

A.6.3. XML for OCS Connection Objects .. 246

Appendix B. Examples of OCS Re-use ... 249

B.l. Introduction ... 249

B.2. FOHM Single Hypermedia Object Re-use ... 249

B.2.1. OCS Solution with FOHM Object Embedding ... 249

B.2.2. OCS Solution without Object Embedding ... 251

B.3. OHP-Nav Repetitive Hypermedia Structure Re-use 254

Vll1

B.3.1. 'Cats Eat' Something Relationship .. 254

B.3.2. Node-less 'Eat' Relationship .. 256

References .. 261

IX

List of Figures
Figure 1.1: Hypertext link composed of hypermedia objects and connections 2

Figure 1.2: Hypermedia objects containing embedded connection data 3

Figure 1.3: Example application of the OCS data model .. 4

Figure 2.1: Hypermedia structure stored separately in a link database 11

Figure 2.2: Evolution of hypermedia systems .. 11

Figure 2.3: What the memex may have looked like .. 13

Figure 2.4: Xanadu permascroll scenario .. 14

Figure 2.5: Transclusion links between different document revisions 16

Figure 2.6: Transclusion link showing re-use between two documents 17

Figure 2.7: Permascroll scenario depicting the transclusion link of Figure 2.6 18

Figure 2.8: Dexter Hypertext Reference ModeL ... 23

Figure 2.9: I\1icrocosm architecture .. 25

Figure 2.10: Structural Computing hypermedia structure service provision 30

Figure 2.11: Construct CB-OHS architecture .. 31

Figure 3.1: Common Reference Architecture data model .. 35

Figure 3.2: OHSWG Core Data Model .. 37

Figure 3.3: Navigation Classes of the OHSWG Core Data Model 40

Figure 3.4: Condensed OHP-Nav data modeL ... 42

Figure 3.5: Common representation of an OHP-Nav hypertext link 43

Figure 3.6: Amended representation of OHP-Nav hypermedia objects 44

Figure 3.7: Generic OHP-Nav OHS environment ... 45

Figure 3.8: Conceptual architecture of the Solent CB-OHS .. 47

Figure 3.9: OHP-Nav message to create an Anchor object.. 49

Figure 3.10: Example Taxonomy .. 54

Figure 3.11: Auld Linky within a Structural Computing environrnenL 55

Figure 3.12: Example FOHM structure ... 57

Figure 4.1: Versioning HyperPro contexts .. 63

Figure 4.2: User Context Nodes of the HyperProp Nested Composite Model 65

Figure 4.3: HyperPro revision proliferation scenario .. 67

Figure 4.4: CoVer revision proliferation example ... 68

Figure 4.5: CoVer revision proliferation solution .. 69

Figure 4.6: Revision proliferation in NCM ... 70

Figure 4.7: Propagation Guided By Perspective .. 71

Figure 5.1: Hypertext link containing two internal routes ... 75

Figure 6.1: OHP-Nav hyperstructures containing identical hypermedia objects ... 85

x

Figure 6.2: Node re-use in OHP-Nav .. 87

Figure 6.3: Two FOHM hyperstructures containing identical objects 88

Figure 6.4: Example of a repetitive segment in two hypermedia structures 91

Figure 6.5: The wrong structural organisation: 'Cats Eat Meat and Fish' 92

Figure 6.6: FOHM hyperstructure containing repetitive structure 94

Figure 6.7: Incorrect re-use of hyperstructure segment .. 95

Figure 6.8: Possible FOHM structure segment re-use ... 96

Figure 6.9: Initial and expected OHP-Nav hypermedia structures 98

Figure 6.10: OHP-Nav hyperstructure after OHP-Version application 98

Figure 6.11: FOHM structure before and after revision to enable versioning l02

Figure 6.12: Example of a contextualised connection ... 103

Figure 6.13: Adding a new revision to an existing FOHM structure during the

Contextual Connection process .. 104

Figure 6.14: Contextualised COlmections causing revision proliferation 105

Figure 6.15: Hypertext link containing hvo internal routes 106

Figure 6.16: Repaired hypertext link ... 107

Figure 7.1: 'Rock, Paper, Scissors' outcomes ... 114

Figure 7.2: 'Rock, Paper, Scissors' hyperstructure outcomes 115

Figure 7.3: Failed RPS hypermedia object re-use prior to application of the

OCS data model .. 116

Figure 7.4: Hypermedia structure: 'Rock defeats Scissors' 117

Figure 7.5: Example of a Function Object Space .. 117

Figure 7.6: Connection Space of binary Connection Objects 119

Figure 7.7: Connection Space of binary and n-ary Connection Objects 119

Figure 7.8: Example of connections being re-used .. 120

Figure 7.9: Comparison of OHS node and links with OCS FW1Ction and

Connection Objects ... 122

Figure 7.10: Example of an n-ary OHS hypertext link .. 123

Figure 7.11: Two examples of n-ary Com1ection Objects ... 124

Figure 7.12: Example of a hypertext network .. 124

Figure 7.13: Conjoin operation ... 127

Figure 7.14: Attachment operation .. 128

Figure 7.15: How should a Function Object be attached to another Function

Object inside a Connection Object? .. 129

Figure 7.16: How a Function Object attaches to another Function Object inside

a Connection Object. ... 130

Figure 7.17: Desired re-use of a Function Object ... 131

Figure 7.18: Undesirable re-use of a Function Object... ... 131

Xl

Figure 7.19: Instance Objects ... 132

Figure 7.20: Attaching externally re-used Function Objects together.. 133

Figure 7.21: Assigning Instance identifiers to Connection Objects 134

Figure 7.22: XML example of a conventional OHP-Nav Endpoint object and OCS

Endpoint Function Object .. 135

Figure 7.23: XML code to create a Connection Object.. ... l36

Figure 7.24: 'Paper defeats Rock' relationship .. 138

Figure 7.25: Object and Connection Spaces to represent RPS relationships 138

Figure 7.26: Incorrect RPS hyperstructure without OCS approach 139

Figure 8.1: OCS solution for the OHP-Nav hyperlinks of Figure 6.1 149

Figure 8.2: OCS solution for the FOHM structure of Figure 6.6 152

Figure 8.3: FOHM hyperstructure containing a re-used structure segment.. 154

Figure 8.4: Imitating OHP-Nav hypermedia structure representation 155

Figure 8.5: OHP-Nav 'Humans Eat Fruit' hyperstructure .. 156

Figure 8.6: OHP-Nav structure of Figure 8.5 assigned to the OCS data model 157

Figure 8.7: Ineffectual application of OCS data model to a COlmection Object 158

Figure 8.8: Transformation of COlmection Objects to FOHM structures 160

Figure 8.9: Application of the OCS data model to the COlmection Objects of

Connection Space CSllO of Figure 8.6 ... 162

Figure 9.1: Original and new hyperstructures after new object revision created. 170

Figure 9.2: Object and Connection Spaces for Figure 9.1 .. 171

Figure 9.3: More COlU1ection Spaces for Figure 9.1 ... 172

Figure 9.4: Independent structures as OHP-Nav structure revisions 175

Figure 9.5: FOHM Contextualised Connections as Connection Objects 177

Figure]0.1: The OCS Versioning Framework. ...]81

Figure 10.2: Original and new hyperstructures after new object revision created.]82

Figure 10.3: COlmection Objects for hyperstructure revisions 182

Figure 10.4: Function Object Revision Information ...]82

Figure 10.5: Function Object revision history ...]83

Figure 10.6: Connection Object revision history .. 184

Figure 10.7: Object Space for Function and Connection Object Revision History ..]84

Figure]0.8: Re-organised Versioning Framework .. 186

Figure]0.9: Object and Connection Spaces for CoVer versioning example 188

Figure 10.10: Connection Spaces recording CoVer revision information 189

Figure 10.11: Connection Spaces recording CoVer evolution history]90

Figure 10.12: Desired solution for NCM revision proliferation problem 191

Figure 10.13: Object and Connection Spaces for NCM solution 192

Figure 11.1: Before repair - OCS depiction of hypertext link of Figure 6.15 195

Xll

Figure 11.2: After repair - OCS depiction of hypertext link of Figure 6.16 196

Figure 11.3: Locating connections \·vithin OHP-Nav vs. the OCS data model 199

Figure AI: OCS Function Object Space for all RPS 'defeats' scenarios 229

Figure A2: Connection Space CS500 .. 230

Figure A3: Connection Space facilitating all RPS 'Defeats' scenarios 230

Figure A4: Conventional hypertext link representation ... 240

Figure AS: OCS Function Objects imitating OHP-Nav objects 240

Figure A6: OCS Connection Objects imitating OHP-Nav connections 241

Figure B.1: OCS solution enabling single FOHM object re-use for the FOHM

structure of Figure 6.3 permitting wholesale object embedding 250

Figure B.2: OCS solution enabling single FOHM object re-use for the FOHM

structure of Figure 6.3 without wholesale object embedding 252

Figure B.3: OCS solution for the 'Cats Eat' relationship of Figure 6.4 254

Figure B.4: Graphical depiction of the OCS solution of Figure B.3 256

Figure B.5: OCS solution for OHP-Nav Node-less relationship of Section 6.3.1 ... 257

Figure B.6: OHP-Nav embedded object reference hypermedia structure of

'Birds Eat Worms' relationship ... 258

Figure B.7: Graphical depiction of the OCS solution of Figure B.S 260

Xlll

List of Tables
Table 1.1: Summary of functions performed by objects of Figure 1.1.. 3

Table 6.1: Hypermedia objects of Figure 6.1 performing the same function 85

Table 6.2: Revision proliferation caused by creating new revision 'A2 v2' 100

Table 7.1: Discovering new node object resource relationships 140

Table 8.1: Summary of re-use within the OCS solution of Figure 8.1 150

Table 8.2: Summary of re-use within the OCS solution of Figure 8.2 153

Table 8.3: Imitating OHP-Nav relationships .. 155

Table 8.4: Summary of re-use within the OCS solution of Figure 8.9 165

Table B.l: Summary of re-use within the OCS solution of Figure B.L 251

Table B.2: Summary of re-use within the OCS solution of Figure B.2 253

Table B.3: Summary of re-use within the OCS solution of Figure B.3 255

Table B.4: Summary of re-use within the OCS solution of Figure B.5 259

xv

Acknowledgements
I would like to dedicate this thesis in loving memory to my Father, Vic, and my

Grandparents, Tom and Cath.

Special thanks must go to my supervisor, Hugh Davis. I ,·vill be forever grateful for

his endless support and advice which was of enormous help. In particular ploughing

through the many drafts of my thesis. His insight into the v.'Orld of hypermedia

proved to be most invaluable.

I must also thank Dr David Millard. He was a first-rate partner when working on

hypermedia implementations. Discussions about the OCS and OHP were ahvays

informative and very beneficial. And most importantly I must thank him for proof

reading this thesis.

I would also like to thank Dr Sigfried Reich. He proved to be a fountain of

knowledge, and was always prepared to drop everything to lend a helping hand. Of

course I need to thank all the members of the Southampton lAM research group for

their help along as well as all the members of the OHSWG (Open Hypermedia

Systems Working Group).

I also need to express my thanks to a special group of friends, Malcolm, Graham,

Evan, Nigel, Jed and Jelmy, who have just about kept me sane during this journey.

Finally I would like to pay special tribute to my parents, Vic and Margaret. Their

love, support and encouragement over the years has been an enormous source of

strength.

And now, at long last, I can finally say I've done it!

Chapter 1.
Introduction
The emphasis of open hypermedia is on the separation of hypermedia structure and

data. This is achieved through removing the hypermedia mark-up within data. Such

mark-up comprises hypertext links and/or embedded anchors. TIle result is

hypertext links are stored as independent entities in link databases. Examples of

systems that practice such open hypermedia include Microcosm [Davis et a1. 1992],

DHM [Gmnb<£k et a1. 1994] and HyperDisco [Wiil and Leggett 1996].

Such an open scheme offers advantages. Because hypermedia documents are not

embedded with hypermedia structure means hypermedia documents can be re-used

to be associated with altogether different sets of documents. Hence it is possible to

produce different views of the same hypertext network. Moreover, storing

hypermedia structure (in the form of hypertext links) as independent entities enables

that same hypermedia structure to be applied to different sets of data. TIlis is not

only an efficient use of resources, but it helps with the discovery of new relationships

between documents (e.g. Microcosm generic links [Davis et a1. 1992]).

Yet despite the advantages listed (and more besides), the internal organisation of

hypermedia structure does not follow these same separation rules.

1.1. Internal Organisation of Hypermedia Structure

TIle internal organisation of hypermedia structure is composed of hypermedia

objects and hypermedia structural connections. Figure 1.1 shows an example.

Hypermedia objects provide the functional information about the structure, such as

the identity of the node(s) referenced by the structure or the direction that the

structure should be followed. The structural connections express which hypermedia

objects are connected to one another.

Document
(Node)

1
Radio

Hypermedia Structural
Connections

L1

Hypermedia
Objects

j \

~
Hypertext Link

Document
(Node)

1
Music

Figure 1.1: Hypertext link composed of hypermedia objects and connections linking two
documents togeth er.

The role of the hypertext link of Figure 1.1 is to establish the 'plays' relationship

between the 'Radio' and 'Music' documents in order to make the association that

'Radio plays Music'. Table 1.1 summarises the functions being performed by the

seven hypermedia objects of the hypertext link.

Unlike the case with open hypermedia which removes all embedded mark-up from

node data, hypermedia structure continues to embed structural mark-up within

individual hypermedia objects. This usually takes the form of embedding connection

data within hypermedia objects. Figure 1.2 shows a sunple example of such a

scenario. The blocks at each end of a connection represent the embedded mark-up

withu1 an object, and the arrowhead (at the other end of the connection) points to the

cOlmected object. When taken together, this mark-up (and only this mark-up)

demarcate that there is a cOlmection between both objects. There is no separation

between hypermedia object and connection.

3

:. 'r'"o ': ' •• -k)'¢,J;·'Z" •

'.D Label Name
~I ,.- "". \:-~::~'~'!.'J , •. "; t e;-."ft- ~ ~ ~ J> ~ ';-I-•. ~l~':-~.i~· ... "\~t~.-... ~.\ ... ;'.';' 1

. Hypermedia-Object Descnption,~,::,,~},:~:,"!li f1:' -:;~ "

Nl points to Radio Declares to \·vhich node (in this case the 'Radio'

document) the hypertext link is referencing.

Al whole object Indicates that the hypertext link is referencing the

w hole ('Radio' document) node.

EI source Indicates that the 'Radio' document is the source of

the hypertext link.

Ll plays Describes the nature of the relationship between the

hvo cOlUlected nodes .

E2 dest Indicates that the 'Music' docwnent is the destination

of the hyp ertext link.

A2 \·",hole object Indicates that the hypertext link IS referencing the

whole ('Music' document) node.

2 points to Music Declares to vvhich node (in this case the 'Music'

document) the hypertext link is referencing.

Table 1.1: Summary of the functions being performed by the hypermedia objects of the
hypertext link of Figure 1.1.

Hypermedia
Object

t
Connections

I
Hypermedia

Object

t

embedded object references

Figure 1.2: Hypermedia objects containing embedded connection data.

Such an embedded approach to the internal organisation of hypermedia structure

violates the principles of open hypermedia as it prevents the objects and connections

of a hypermedia structure from being re-used within other hypermedia structures.

Only entire hypermedia structure re-use is possible. 111is is not only an inefficient use

of resources, but it highlights the anomaly that the objects and connections of open

hypermedia structure are not indeed open.

To this end I devised the Object and Connection Space (abbreviated to OCS)

approach. It provides a da ta model and methodology that defines how hypermedia

4

objects may be connected together in order to build h ypermedia struchue. It is this

data model that is the subject of the thesis.

1.2. The Object and Connection Space Approach

The role of the OCS data model is to conceptually re-structure the internal

organisation of hypermedia structure. This is achieved by separating hypermedia

structure into hypermedia objects and hypermedia connections. Figure 1.3 shows a

graphical example of the OCS approach being applied to the hypermedia structure of

Figure 1.2.

physical
objects

Function Object Space
Connection Space

connection

object references

Figure 1.3: Example application of the OCS data model.

Objects A and B are stored in the FWlction Object Space minus their cOlmection

information. The connection data is stored in the Connection Space. It identifies

which objects are cOlUlected together using references to objects rather than storing

the physical objects themselves .

The reasons for and the advantages gained by separating h ypermedia structure into

separate hypermedia objects and hypermedia cOlmections are the subject of the

thesis.

1.3. Contributions to Computer Science

My contribution to Computer Science is the Object and Connection Space approach

to internally organising the structure of hypermedia structure.

5

The OCS approach has the following advantages:

• It extends the concept of open hypermedia into the realm of hypermedia

structure.

• It promotes the re-use of hypermedia structure.

• Its data model offers a more logical approach to hypermedia structure

representation.

• It enables improved versioning of hypermedia structure.

• It enables improved hypermedia structure maintenance.

1.4. Thesis Structure

The thesis is structured as follows.

Chapter 2 defines hypermedia as well as providing an overview of hypermedia

history .

Chapter 3 describes OHP-Nav and FOHM. It was these two hypermedia structure

data models that led to the development of the Object and Connection Space data

model. It was on their implementation that alerted the need to re-define the

organisation of the underlying data model for hypermedia structure.

Chapter 4 provides an overview of versioning within the hypermedia field as the OCS

data model has a direct impact on hypermedia versioning.

Likewise Chapter 5 examines current approaches to hypertext link maintenance since

the OCS approach also has a bearing on improved hypertext link integrity.

Chapter 6 is a critical chapter as it sets out the specific problems that the OCS data

model is addressing.

Chapter 7 begins the discussion of the OCS data model by describing the basic

concepts behind the OCS methodology.

Chapter 8 explores the implications of applying the OCS data model to the existing

OHP-Nav and FOHM data models.

6

Chapter 9 explains how the OCS data model can benefit the versionu.g of hypermedia

structure.

Chapter 10 demonstrates how the principles of the OCS representation can be used as

a framework for constructu.g different hypermedia structure relationships.

Chapter 11 explams how the OCS data model can improve hypertext lu.k

mamtenance.

And fu.ally Chapter 12 offers conclusions and suggests further work.

7

Chapter 2.
Hypermedia Background

2.1. Introduction

This chapter explores the concept of hypermedia along with a potted history of the

evolution of hypermedia systems. Concurrent to this is a commentary on how re-use

has played a part in shaping hypermedia and hypermedia system development.

2.2. The Promise of Hypermedia

Hypermedia1 offers radically different ways of structuring information. It is not only

an efficient tool for organising large collections of unstructured information, but it

can also be used for the more grandiose task as an idea processing tool. This is

because people think in terms of ideas, facts and evidence, not in terms of screenfuls

of text. Hypermedia reflects these human processes. Ideas can be expressed within

independent objects referred to as nodes. These can be linked, moved and changed as

the thought processes of the writer evolve. New ideas can be developed within new

nodes and linked to existing ideas. Moreover individual ideas are not fixed within a

rigid structure but they can be re-used by being referenced elsewhere. Nodes can be

used to construct flexible networks that model a problem or solution where links

form the glue that binds the nodes together.

2.3. Modern Hypermedia Systems

Modern hypermedia systems reside exclusively within the domain of digital

computers. They act as the interface enabling users to interact directly with chunks of

data (nodes) and to establish new relationships (links) between them. They can be

used to create, annotate, link together and share information from a variety of media,

including text, graphics, audio and programs.

1 The terms hypermedia and hypertext are used interchangeably. Strictly speaking hypertext
is the same as hypermedia but restricted to text information only, i.e. hypermedia without the
multimedia component.

8

Hypertext links can point to whole nodes (e.g. documents) or specific regions \\'ithin

a node. Nodes can be any size; and link-endpoints (that point to nodes) can mark the

node as being source or destination. This describes whether the node is the beginning

or ending point for the hypertext link. Nodes often contain link markers, called

anchors, which when clicked activate other nodes. Hypertext links can be uni­

directional (enabling one-way traversal) or bi-directional (facilitating backward

traversal as well). They can be referential (for cross-referencing purposes) or

hierarchical (showing parent-child relationships). They can also be binary where they

connect just two items, or n-ary where any number of items can be connected. Many

hypermedia systems also offer typed links. They indicate the specific nature of the

relationship shared between nodes rather than just obliquely stating that some

unknown form of relationship exists.

2.4. Hypermedia Structure

Structure refers to inter-data relationships [Niimberg et al. 1996]. Hence hypermedia

structure is what forms the relationships between nodes. Any element that

contributes to the formation of the relationships between nodes can be considered

hypermedia structure. Hypertext links, anchors and the endpoints of links are all

examples of hypermedia structure. This thesis does not consider nodes to be

hypermedia structure as they represent the data that is being connected by

hypermedia structure.

Figure 2.1 uses the example hypertext link of Figure 1.1 to show how it is possible for

hypermedia structure to exist independently of the node resources they are being

used to connect. Figure 1.1 shows two document node resources connected by

hypertext link structure. The two documents, 'Radio' and 'Music', are examples of

node resources. The hypermedia objects (e.g. Anchor Al and Endpoint El) and the

connections between hypermedia objects (e.g. the black line between Anchor Al and

Endpoint El) are examples of hypermedia structure.

As will be explained in Section 2.12 hypertext links (through the concept of open

hypermedia) can be stored as independent entities within link databases. Figure 2.1

shows such an example where the hypertext link of Figure 1.1 has been broken down

into 7 separate hypermedia objects and they have been stored independently (of

nodes) within a link database. Each hypermedia object is an example of hypermedia

structure. The documents (examples of node resources) have also been stored

separately within a document repository.

9

Document Repository Link Database

Radio
N1

A1

Music E1

L1

E2

A2

N2

Figure 2.1: Documents and hypermedia structure stored separately and independently from
one another. Documents are stored in a document repository and hypermedia structure is

stored \,vithin a link database.

Hypermedia structure is important to this thesis, since the role of the OCS data

model is to define how hypermedia objects may be organised when being connected

together to build hypermedia structure (Chapter 7 onwards).

2.5. Re-use in Hypermedia

Re-use also plays an important role in the OCS data model as it is the re-use of

hypermedia objects and cOIUlections between objects that enables the opening up of

hypermedia structure (Computer Science Contribution 1).

As a general concept, re-use is also a recurring th eme throughout hypermedia and

hypermedia system evolution:

• Reference Links. When a source document uses a hypertext link to reference

another document, that destination document is re-used at its original location.

This prevents wasteful duplication of the destination document's contents being

pasted as part of the source document's content. Furthermore it allows the

destination document to be referenced multiple times (i.e. re-used) by several

source documents.

10

• Xanadu Transclusiol1s. These are a specialised form of hypertext link within the

Xanadu hypermedia system (Section 2.7.3). 111rough a combination of recording

document content at one permanent location only and ensuring that only one

copy of a document's content exists, transclusion links help prevent the wasteful

duplication of re-used document content within a hypermedia environment. 111is

is explained in greater detail in Section 2.7.3.1.

• Virtual Documents. These are documents compiled at run-time comprised of re­

used document segments possibly odginating from different source locations.

• Composites. Composites act as a representative element for a group of individual

nodes and links. This is an example of re-use as the individual entities are being

re-used (via references) vdthin the composite.

• Open Hypermedia Links. Because open hypermedia links are stored separately

from document content the links themselves can be re-used to point to multiple

source or destination documents. Microcosm's genedc links are a good example

of open hypermedia links (Section 2.12.3) [Davis et a1. 1992].

• OHS Architecture. A prominent feature of Open Hypermedia Systems is that they

enable integration with (I.e. re-use of) third party client applications (Section

2.12).

• CB-OHS Architecture. This whole architecture is centred round component re­

use. The idea is that all the components of one layer (of a CB-OHS) should be

compatible to be re-used with all the components of another layer of the CB­

OHS (Sections 2.14 and 2.15).

2.6. Elementary Composition of a Hypermedia
System

The essential elements of a hypermedia system are the client, lil1k service and storage

component. 111e evolution of these components within hypermedia systems is shown

in Figure 2.2. The client is used for both viewing and editing the content and

hypermedia structure of electronic documents. 111e link service is used to provide the

hypermedia functionality for the client so that the client can create and navigate

hypertext links. The storage component is used to store hypermedia structure.

Depending on the type of the hypermedia system influences whether the document

content is stored by the client or in the storage component.

(a) Monolithic
System

(e) Structural
Computing
System

(b) Client-Server
System

(c) Open
Hypermedia
System

(I) FOHM
System

Figure 2.2: Evolution of hypermedia sys tems.

2.7. The Early Years

11

(d) Multiple Open
Service
System

Three pioneers essentially introduced the world to the concept of hypertext. They

were Varmevar Bush, Douglas Engelbart and Ted Nelson.

12

2.7.1. Bush

Vannevar Bush is credited as being the grandfather of hypertext. He realised that

even in 1945 all the vvorld 's information could not be reasonably managed vvithout

some form of mechanistic aid for the user. In his seminal paper "As We May Think"

Bush advanced a new method for managing information caUed the memex (memory

extender) [Bush 1945]. Its role was to store a library of information, e.g. books,

records and commwlications, all tied together via associative links.

The basic premise behind the memex was that "any item may be called at will to

select immediately and automatically another" . Thus it was Bush who introduced the

associative link as the foremost structure present within hypermedia. Even in 1945

Bush seemed to accurately foresee the general processes involved when forging a

(hypertext) link beh.veen information items:

When the user is building a trail, he names it, inserts the name in his code

book, and taps it out on his keyboard. Before him are the two items to be

joined, projected onto adjacent viewing positions. At the bottom of each there

are a number of blank code spaces, and a pointer is set to indicate one of these

on each item. The user taps a single key, and the items are permanently

joined ...

Thereafter, at any time, when one of these items is in view, the other can be

instantly recalled merely by tapping a button below the corresponding code

space.

v. Bush, "As We May Think"

Bush reasoned that tying two information items together was akin to how the human

mind works as it too organises information by association.

Bush envisioned the memex to be built within a conventional desk. Figure 2.3 shows

what a memex may have looked like. On top lies a scanning mechanism for

photographing material into memex storage which would be stored on microfilm.

The microfilm would subsequently be viewed on the two translucent screens also

atop the desk. The inside of the desk would contain the internal workings of the

memex mechanism itself along with the microfilm storage area.

13

Figure 2.3: What the memex may have looked like [Crimi 1945].

Due to the technological limitations of the 1940s the memex was never realised .

2.7.2. Engelbart

Some twenty years later another visionary, Douglas Engelbart, took up the hypertext

cause. He envisaged hypermedia as a tool to augment human intellect. To this end

Engelbart developed the NLS/Augment system [Engelbart and English 1968], an all­

encompassing environment designed to be adequate for all a user's works needs,

storing work documentation, and supporting plalU1ing, debugging and

communication (such as e-mail). Engelbart, like Bush, also saw the benefit of links

between data items. This was because at the heart of the NLS was the use of

hierarchical and non-hierarchical links between segments of text. Such links allowed

the general re-use of documents through out the system in order to provide users

with greater management and control of information.

2.7.3. Nelson

Ted (Theodore) Nelson is viewed as the father of hypertext. He is the man

responsible for coining the term 'hypertext' [Nelson 1981]. Nelson imagined

hypertext as the vehicle for extending the ways in which information is utilised and

navigated. His life's work has been devoted to developing the Xanadu project, a

hypermedia system which places the entire world's literature online [Nelson 1999b].

Re-use plays a key role in Xanadu, typified by Xanadu's approach to document

content construction. All Xanadu content data is assigned to permanent addresses

14

which is archived at what is called a permascroll (a scroll of permanent addresses)

[Nelson 1999c]. This is an append-and-read-only sequential repository where content

is stored in no particular order. Figure 2.4 shows an exam pIe.

Xanadu employs content lists in order to present docmnents in the correct sequential

order. They act as the skeletal structure for loading documents with content data. As

indicated by Figure 2.4, content]jsts contain pointers that referentially point to the

text within a permascroll. In this way documents are appropriately structured for

presen ta tion.

Content List

B

referential
pointers

Content List

B

C --
List of

referential
pointers

Content List

referential
pointers

Permascroll (location of actual content data)

Document S Document T Content List

B E
-- - - -

C --
D

D

List of

Correctly sequentially Correctly sequentially referential

ordered document ordered document pointers

Figure 2.4: Xanadu permascroll scenario: Five pieces of text are archived in a permascroll, but
in the wrong sequential order for presentation to the user. To resolve this, two content li sts

have been employed which point at the permascroll to referentially re-structure the text for

final presentation within the appropriate documents.

The net result is that the same Xanadu content data can be re-used to be members of

different documents as the same data can be referentially contained within different

content lists. This is demonstrated within Figure 2.4 by the content data recorded at

permanent location A being included in the content lists for both documents 5 and T.

15

Xanadu uses hypermedia structure to highlight the re-use of the same content

betv,'een different documents. This takes the form of transclusion links. They are

links between documents whose content lists point to the same permanently

addressed text [Nelson 1995]. An example of a transclusion is shov\'n within Figure

2.4 where both docwnents Sand T re-use the content data recorded at permanent

location A.

There are many scenarios "vhere transclusions may be useful. The following three

subsecbons provide three such instances.

2.7.3.1. Preventing Duplication of Re-used Document Content

This subsection follows on from Secbon 2.5 in explaining how transclusion links play

a significant role within Xanadu to help prevent wasteful duplication of re-used

document content. Of importance are Xanadu's constraints of permitting only one

copy of a document's content to be recorded and that that content must be stored at

one permanent location only. Such restrictions mean that transclusions (docwnent

content being used within more than one content Hst) will always reference the same

instance of a given docwnent's re-used content. Thus prevented is the unnecessary

duplication of re-used docwnent content within the hypermedia environment.

This contrasts with traditional hypermedia systems, e.g. the World Wide Web. They

typically take no interest as regards restricting the number of copies that may exist of

a given document's contents. Consequently, the contents of any given document may

be wastefully duplicated throughout the hypermedia system.

2.7.3.2. Highlighting Re-used Document Revisions

Another facility offered by transclusion links is that they can be used to identify what

contents different document revisions have in common. Figure 2.5 shows an

example. Each transclusion link betvveen each document revision indicates where the

same content simultaneously exists (i.e. is being re-used) within each document.

150
151

Document A
v.1

300~----~~~~

Document A
v.2

Document A
v.3

100
7700

7800
175

~?--------' 300

Figure 2.5: Transclusion links between different revisions of the same document.

16

Such use of transclusion links can benefit tracking the developmental progress of

different revisions of a document. For example identifying which document content

segments have been brought forward or discarded during a given document's

evolution.

2.7.3.3. Clickable Re-used Content Segments

Transclusion links can also be made clickable [Nelson 1999a] in order that a user may

click on a transclusion link and move between the different documents that reference

the same content segments. This is a useful facility when quoting one document

within another. Figure 2.6 shows such an example scenario where Document Y

contains a quote from Document X.

Document X

00:21:49 +0900
nd@xanadu.net>
a"<lukka@iki.fi>
s on the projection spaces
marlene@xanadu .net

Best, Ted

+0200, you wrote
was one JPEG in the middle

Transclusion
Link

Document Y

Date: Mon, 21 Feb 2000 23-29:24 +02
From: "Thomas J . Lukka <Iukka@iki.fi:
To: Ted Nelson <ted@xanadu.net>
cc: marlene @xanadu.net
Subject: Re: fw: Notes on the project

Other than for the perspective view an
anything yet! It 's close but not yet qUitE

Thomas

l7

Figure 2.6: Transclusion link showing the re-use of a quote between two documents.

Because the quote in Document Y is an exact reproduction of a segment of Document

X's content, then the quote in Y will be created by pointing at the same permanent

address as the quote source in Document X. Figure 2.7 shows this in terms of a

Xanadu permascroll scenario. The contents of the quote are recorded at permanent

location B, hence both documents' content lists point at permanent location B.

Content List

referential
pointers

Content List

C

A --
List of

referentia l
pointers

Content List

F

List of
referential
pointers

Permascroll (location of actual content data)

Document X Document Y

C E
- - ---

A --G

0 Transclusion
Link F

Correctly sequentially Correctly sequentially
ordered document ordered document

18

Content List

G

F

List of
referential
pointers

Figure 2.7: Permascroll scenario depicting the transclusion link of Fi gure 2.6.

By making transclusions click able, a user who reads the quote can now click on the

quote (marked as a transclusion link) and be taken to the original source of the quote

to learn more about the quote in its original context.

2.8. Monolithic Systems

Monolithic hypermedia systems represent the earliest hypermedia systems to be

implemented. Examples include NLS/Augment [Engelbart and English 1968], ZOG

[McCracken and Acksyn 1984], Neptune [Delisle and Schwarz 1986], Intermedia

[Yankelovich et al. 1988], NoteCards [Halasz 1988], KMS [Acksyn et al. 1988] and

HAM [Campbell and Goodman 1988].

Monolithic hypermedia systems are stand-alone closed systems. They capture all

hypermedia system elements within the one application (Figure 2.2(a)) . The problem

19

\,,,ith this arrangement is that they \",ere designed to provide the entire environment

\,vithin which users could create and view hypermedia material. Hence they were

closed from the environment in which they were operating. Their limitations have

been well documented by Meyrowitz [Meyrowitz 1989]. What is evident is that a

central reason for their lack of success was because they failed to embrace the

concept of re-use:

• Inability to re-use legacy applications. Because neither communication protocols nor

applkation programmer interfaces (A PIs) were published, users would be forced

to forego their favourite browsing and editing tools if wanting to adopt

hypermedia functionality.

• Support proprietary document types only. To re-use existing documents created

outside the monolithic system meant that they had to be converted to a suitable

format. This requires both time and additional effort. Moreover the converted

documents could not be re-used outside the system.

• Support a fixed set of data formats only. Not all document types or documents

stored outside the hypermedia store could participate with hypermedia

functionality as only the documents stored within the hypermedia store could be

linked to.

• Embedded mark-up. Hypermedia mark-up and hypertext links would be inserted

directly into documents. This makes changing the basic link model in the future

difficult as the mark-up in every document would need updating.

TI1is lack of re-use capability meant that users were reluctant to adopt hypermedia

technology. Moreover monolithic hypermedia systems represented isolated islands

of information [Wiil 1998] as existing applications could not be re-used with

monolithic systems and they did not allow the applications of one hypermedia

system to communicate with another hypermedia system.

2.9. Client-Server Hypermedia Systems

In the late 1980s the hypermedia community set about investigating the concept of

open hypermedia. This led to the abstraction of the client application element from

the hypermedia system as shown by Figure 2.2(b). TI1is was to enable hypermedia

systems to re-use third party applications. These systems became known as Client­

Server Hypermedia Systems [Niimberg et al. 1997]. A crucial aspect that made them

20

different to Monolithic Systems was that they specified and published the interfaces

that applications needed to adopt to enable them to be re-used by the hypermedia

system. Two common types of client-server hypermedia systems evolved [Wiil1999]:

• Link Server Systems (LSSs). They manage hypertext links separate from document

content using a link protocol to dynamically apply links to document content at

runtime. Sun's Link Service [Pearl 1989] serves as an example.

• Hyperbase Management Systems (HBMSs). Otherwise identical to LSSs, a key

difference is that they manage both the hypertext link and node data within the

same system. Examples include the Danish HyperBase [Wiil 1993] and the

World Wide Web (Section 2.10).

Client-Server Hypermedia Systems were ultimately rejected as being truly open

systems. The problem was that Client-Server Systems embed hypermedia structure

within document content. This makes hypermedia structure become part of

document content. Thus only those applications that understand this "document

content + structure content" hybrid can participate with the hypermedia system.

Hence, because both the hypermedia structure and document content format are

fixed meant that third party applications CaJU10t be re-used within Client-Server

Hypermedia Systems.

The problem of embedding is a theme that will be revisited within the thesis. This is

because the main problem encountered by the OCS data model when attempting to

re-define the way structure is organised is the embedding of object references in the

hypermedia objects that comprise hypermedia structure.

2.10. The World Wide Web

The World Wide Web (WWW) [Berners-Lee et al. 1992] is an example of a Client­

Server HBMS as it stores document content and hypermedia structure together. It is

also the only hypermedia system in widespread use today. This is largely due to its

standardized protocols that are relatively simple to implement [Cailliau and Ashman

1999]. These are the HTML language, which provides standardized hypermedia

services, aJ1d the HTTP protoco1, which provides standardized access between Web

servers and browsers. But it is also these same two protocols that also make the

WWW a closed hypermedia system.

21

First, the HTML format prevents the re-use of an open set of applications \vithin the

Web. This is because both document content and hypermedia structure are melded

together to make a proprietary document format. Thus the Web is bound to only

those applications that understand this document format. And second, the Web

restricts communication to be via HTTP. Other applications that communicate using

different protocols (e.g. CORBA [OMG 1998] or DDE [Microsoft 2004]) cannot be re­

used within the Web.

Of particular relevance is that the hypertext links between HTML documents are

embedded in the source documents. This is one of the major criticisms aimed at the

World Wide Web, because it prevents efficient re-use of hypermedia documents. The

problem being that a Web document cannot be re-used without also being forced to

re-use the other documents referenced by the embedded links.

Thus far all these restrictions have not impeded growth of the World Wide Web. But

in the long term these constraints may prove to be both inadequate and frustrating

for the majority of users as converting all electronic documents to HTML will be a

time consuming and costly exercise. Moreover users may find themselves at a greater

disadvantage after integrating their existing documents with the Web. For example

typical Web browsers do not allow editing bitmap unages. Thus users will lose this

facility when using the Web to access bitmaps.

Moreover, the World Wide Web Community (W3C) do not themselves regard the

Web as a fUlalised system. Evidence of this is the Web community's current focus on

developulg the Semantic Web [Bemers-Lee 1998]. It provides machine-readable

descriptions that add further meanulg to, or replace the content of Web documents.

The ultention is to enable such descriptions to be shared and processed by automated

tools in order to improve resource discovery via the WWW. The idea is that machule­

readable descriptions should enable a more efficient evaluation of the data present

within a Web page compared with encoding data using non-standardised

descriptions in HTML.

However, if the World Wide Web is to be the vehicle for achieving the hypermedia

community's goal of establishing hypermedia as the central paradigm within the

computing environment, then the Web will need to develop into a more open

system.

22

2.11. The Dexter Hypertext Reference Model

Also in the late 1980s the hypermedia community became increasingly frustrated

that hypermedia systems were still not interoperable with one another. This was in

respect of different hypermedia systems still being unable to share the same

hypermedia structure (e.g. links) or even data (e.g. documents). Therefore the Dexter

Hypertext Reference Model [Halasz and Schwarz 1990; Halasz and Schwarz 1994]

was devised. This was to engender discussion about future interoperable

hypermedia system standards. It acted as a data and process model against which

future hypermedia models could be compared. And it defined the terminology and

semantics of basic hypermedia concepts, particularly in respect of links and anchors.

TIle Dexter Model breaks a hypermedia system down into three layers (Figure 2.8).

The storage layer is composed of a hierarchy of data-containing components (e.g.

documents) inter-connected by relational links. Together they comprise the hypertext

network. The within-component layer is responsible for the contents and structure

within components. But the Dexter Model does not elaborate upon this layer as it is

considered to be outside the scope of the hypertext model. TIle role of the run-time

layer is to realise the functionality of users being able to access, view and manipulate

the hypertext network structure.

The Dexter Model also employs two interfaces. The first is the anchoring interface.

Anchors can specify a location, region, item or substructure within a component such

that they do not depend on any knowledge about the internal structure of a

component. TIle second Dexter Model interface is the presentation specification. It

describes how components are presented to the user, for example whether a

component should be opened for viewing or editing.

Runtime Layer
Presentation of the hypertext; user

interaction; dynamics.

• Presentation' Specif,cati~.ns .,.

Storage Layer
A 'database' containing a network of

nodes and links.

,$<": , ,
Anchoring' ".i\:iry ('" \!: "c;'

Within Component Layer
The content/structure inside the nodes.

Figure 2.8: Dexter Hypertext Reference Model (adapted from [Grembcek and Trigg 1994]).

However the shortcomings of the Dexter Model have been well commented

[Malcolm et a1. 1991; Gmnbc£k and Trigg 1994; Leist011994]. For example, like Client­

Server Hypermedia Systems, the Dexter Model did not adequately address the issues

for third party application re-use. This is because it did not envision third party

applications to have control over document content. This is evidenced by the model

failing to distinguish between components whose contents are managed by the

hypermedia system and contents managed by third party applications. Therefore the

Dexter Model was rejected as a complete solution for hypermedia systems. But this

should not diminish the Dexter Model's importance as it proved to be the stepping

stone for advancing towards more open systems, such as Open Hypermedia Systems

which are discussed next.

2.12. Open Hypermedia Systems

The early 1990s onwards saw the development of Open Hypermedia Systems

(OHSs). They were classified as open since they allow third-party applications to be

re-used. This is possible since no hypermedia structure is embedded in docwnent

content, including hypertext links being embedded in source documents or anchor

data being embedded in destination documents. Instead hypertext links (which

include anchor data) are stored as independent entities in link databases. Thus at

display time, links are superimposed on document content along with the relevant

data for the dynamic calculation of anchors to enable them to be positioned within

document content.

The result was that hypermedia systems could link to any document of any content

format, and individual hypermedia documents could be re-used to produce different

24

views of a hypertext network. Both these scenarios \vere not possible with closed

hypermedia systems, such as the World Wide Web (Section 2.10).

Furthermore, applications do not have to subscribe to all the services offered by an

OHS. They can pick and choose which specific services they want to use. For

example clients can continue to use (i.e. re-use) their existing file system instead of

being restricted to a hypermedia system's storage service. The outcome was the

abstraction of the storage element of a hypermedia system as shown by Figure 2.2(c).

2.12.1. Similarities between Different Open Hypermedia
Systems

Examples of Open Hypermedia Systems include Microcosm [Davis et aI. 1992], SP3

[Leggett and Schnase 1994], DHM [Gmnbcek et aI. 1994], Chimera [Anderson et aI.

1994] and HyperDisco [Wiil and Leggett 1996]. These systems have much in

common. They all provide basic associative hypermedia structuring services: the

ability to create, delete and modify links and anchors, and the ability to traverse links

[Wiil and Niirnberg 1999]. They all also superimpose hypermedia structure on

document content at display time. The reduction of an OHS to a solitary link service

component has also meant that most OHSs behave as a middleware service

[Bernstein 1996] - they not only meet the requirements of a wide variety of

applications, but they run on multiple platforms, are distributed, publish

communication protocols and APIs.

2.12.2. Microcosm

A prime example of an Open Hypermedia System is Microcosm [Carr et al. 1994]. It

functions as a set of autonomous communicating processes designed to supplement

the operating system [Davis et aI. 1992]. The Microcosm model is shown in Figure

2.9.

Viewer sends
selection and

action to

Microcosm
Document

Control
System

Dispatcher asks
Microcosm to

display selected
file in appropriate

viewer

........

Link
Dispatcher

Filters

........ I
........

./
./

./

Filter
Manager

.. • Two way message channel

---i.~ One way message channel

- - - Control channel

Figure 2.9: Microcosm architecture.

25

Users interact with a viewer (any application that can display data) in order to send

messages to Microcosm. Microcosm then dispatches the same messages through a

chain of filters. Each filter can either block the message, pass it on, or change the

message prior to passing it on. Dependent on the message contents, some filters may

even add new messages to the chain.

Having passed through the filter chain, Microcosm messages will arrive at the Link

Dispatcher. Its role is to examine each message for actions to carry out (such as links

to follow).

Linkbases (link databases) are particularly important Microcosm filters. They store

all linking information separately from the documents they reference. This means no

embedded mark-up within document data is necessary. Hence all data is accessible

to, and editable by, the application that created it.

When a link request message arrives at a linkbase, the linkbase looks up the source of

the link (stored either in a database or data file) in order to identify details of the

destination of the link. This information is then forwarded to the Link Dispatcher,

which then asks Microcosm to display the selected file in the appropriate viewer.

26

Other Mkrocosm filters include processes to aid navigation (such as the History

Mechanism) and processes to compute dynamic links. Implementing hypermedia

functionality as filters means that the behaviour of the system can easily be varied

without having to change the existing components of the system. This is possible

through dynamically installing new filters or dynamically removing or re-ordering

existing filters.

2.12.3. Re-use in Open Hypermedia Systems

The hypermedia functionality offered by Open Hypermedia Systems has benefited

enormously from the concept of re-use. Microcosm is one such example. Its ability to

store links separately in link databases has meant that hypertext links can be re-used

in their entirety [Davis et al. 1992]. Two Microcosm link types demonstrate this:

• Local Link. This is a link from a particular object at any point in a specific source

document that COlmects to a particular object in a destination document. Thus the

same hypertext link can be re-used multiple times within the same source

document.

• Generic Link. This is a link from a particular object at any position in any source

document that connects to a particular object in a destination document. This

enables the same hypertext link to be re-used multiple times within different

source documents.

2.12.4. A Lack of Consensus

Solving the third party application re-use problem meant that users could continue

to use their favourite applications which could now be emblazoned with hypermedia

functionality. This added further incentive to adopt the hypermedia paradigm when

organising information. However, the hypermedia community next had to agree on

which properties of a hypermedia system should be opened in order to make

hypermedia functionality more readily available to all applications and services in

the computing environment. This resulted in a lack of consensus [Wiil and Leggett

1992]. All OHSs offer the basic hypermedia structuring services, but different OHS

designers also identified additional properties that ought to be opened. For example

Davis [Davis 1995a] lists six properties that should be opened in order to classify a

hypermedia system as truly open:

27

1. Size. Be able to import new nodes, links, anchors and other hypermedia objects

without limitations to the size or the number of objects that the system may

contain.

2. Data Formats. Allow the use and import of any data format, including temporal

media.

3. Applications. Allow any application access to the link service enabling

participation in hypermedia functionality.

4. Hypermedia Data Models. The hypermedia data model should be extensible and

configurable so that new data models can be incorporated.

5. Platforms. Be able to implement the system on multiple distributed platforms.

6. Users. Support multiple users, allowing each individual to maintain their ov\,n

private view of objects in the system.

Due to these contrasting opinions, the characteristics of different OHSs have often

varied. For example:

• Hypermedia Data Models. Different Open Hypermedia Systems often implement

different data models, e.g. the number of endpoints of a link or whether they

have a notion of anchors.

• Hypermedia Services. Some Open Hypermedia Systems support just basic

hypermedia services allowing links and anchors to be attached to existing data,

whilst other systems offer more advanced features such as support for

collaborative authoring of hypermedia structures and contents.

• Hypermedia Structures. All Open Hypermedia Systems support hypermedia

linking structures. However some systems support other types of structure as

well, e.g. composites, information retrieval links, spatial structures, taxonomic

structures, etc.

Such different characteristics tended to result in incompatibility between different

OHSs, e.g. a user being unable to follow a link from one OHS to another. The result

was that each OHS would operate in an isolated and limited manner instead of being

part of a larger unified hypermedia environment.

28

2.13. The Open Hypermedia Protocol Project

The Open Hypermedia Protocol (abbreviated to OHP) was the open hypermedia

community's answer to solve the incompatibility behveen different OHSs [Reich et

al. 1999a]. It is described in further detail in Chapter 3 since it played a significant

role in the conception of the OCS data model. In the meamvhile it is sufficient to say

that the OHP has provided a standardised architectural framework for Open

Hypermedia System components, a Core Data Model for representing hypermedia

structure and a range of standardised Content Handler Interface protocols. Notable

among these protocols is the OHP-Nav protocol. It is a standardised linking protocol

that, although not yet complete, demonstrates how it is possible to share hypermedia

structure between different hypermedia systems. In this way inter-operation

between different OHSs is enabled. A positive outcome from the OHP is that it

makes it easier to program third party applications to communicate with a wide

range of OHSs thereby making hypermedia functionality more readily available

within the computing environment.

2.14. Multiple Open Systems

Following the development of Open Hypermedia Systems was the Multiple Open

Systems (MOS) research thread [Wiil et al. 2001]. Its premise is re-use at all levels of

the OHS architecture. It builds upon the representation of an OHS as a middleware

service2• The intention being to produce a highly flexible architectural framework

where each layer of the OHS architecture is defined as a separate service layer. The

different layers of a Multiple Open System (Figure 2.2(d)) are defined as:

• Application (Services) Layer. This corresponds to the OHS interpretation of an

open set of applications.

• Middleware Services Layer. This is shown as a set of arbitrary services in Figure

2.2(d). It corresponds to the Link Service layer, but is significantly expanded to

provide arbitrary services and not just navigational hypermedia structuring

facilities. This can include collaboration services, integration and interoperability

services as well as hypermedia structure services.

1
- Open Hypermedia Systems' middleware service is encapsulated by a linkserver component
whose service is hypermedia navigation functionality.

29

• Foundation Services Layer. TI1is corresponds to the storage layer of an OHS. Again

it is much expanded, and can include concurrency control services, versioning

control services, as well as hypermedia sh'ucture storage services.

Each service at each layer is also split (modularised) into separate components where

each component provides some well-defined functionality using a well-defined

interface. Such modularisation enables re-use between all layers within an OHS

architecture. For example a single application can use multiple services; a single

middleware service can be used by multiple applications; a single middleware

service can use multiple fow1dation services; and a single foundation service can be

used by multiple middleware services. The result is that Multiple Open Systems are

often referred to as Component-Based Open Hypermedia Systems (CB-OHSs). TI1is

is because a MOS breaks an OHS dovm into multiple arbitrary components.

Construct [Wiil 2001] (Section 2.15.1) is an example of a Multiple Open System. It

provides an environment to assist with the development of different hypermedia

structuring services and collaboration services.

2.15. Structural Computing

Structural Computing [Niirnberg et a1. 1996; Niirnberg 1999] is a specialisation of

Multiple Open Systems research. TI1is is because it adopts the same three-layered

framework as Multiple Open Systems with the exception that instead of an arbitrary

Middleware Services Layer, a Structural Computing System employs a Structure

Services Layer. TI1e difference with the Structure Services Layer is that it is restricted

to providing services that define operations over structure only.

Figure 2.2(e) shows an example of the composition of elements within a Structural

Computing system. Because Structural Computing systems adopt the same three­

layered architecture as MOS research, they too are categorised as CB-OHSs.

Fundamental to Structural Computing is the basic unit of structure called the

structural atom. Structural atoms are based upon the notion of 'relationship', i.e. a

structural atom is used to relate items together. TI1ey are also the elementary

building block for constructing everything within the computing environment. This

includes data items (e.g. a computer file would be modelled as structure with

content), and high-level structural abstractions. In this case structural atoms are

related to one another in order to build hypertext links, taxonomic links and spatial

30

associations. The importance of structure within Structural Computing is such that

Structural Computing elevates structure to be a first class entity and asserts the

primacy of structure over data within the computing environment.

The resu lt is th at Structural Compu ting classifies hypermedia as a subset of

Structural Computing. Advocates of Sh'uctural Computing hold the vie"" that the

notion of hypermedia linking is too closely allied with the practice of link navigation.

TIlis is because using structure to link information items together solely for the

purposes of n avigation restricts the potential applications for structure. Their

reasoning is that structure can also be used to address different problems in multiple

domains [WiiI1999]. Examples of those other domains include hypermedia literature

[Bernstein et a1. 1991], argumentation support [McCall et a1. 1990], information

analysis [Marshall and Shipman 1995], hypermedia art [Leist0l 1994; Sawhney et a1.

1996], and taxonomic work [Niirnberg et a1. 1996]. Figure 2.10 shows a conceptual

overview of open service provision geared towards midd leware hypermedia

structural services.

I Application A I l Application B I App lication C I Application (Services) Layer

i i / i ,
Navigational Taxonomic Metadata Hyperfiction Spatial

structure structure structure structure structure Structure Services Layer
service service service service service

~ - ~ fl -~ -----~ ~ ----~ ¥ --
.......

Concurrency Notification Structure Access Versioning
control control control control control Foundation Services Layer

service service service service service

Figure 2.10: Conceptual overview of Structural Computing hypermedia structure service

provision (adapted from rWiil et al. 2001]).

As with MOS, the focus is on re-use once again. For example, Applications A, Band

C are clients of differen t combinations of structure services. TI,e five structure

services, in turn, are clients of different combinations of fowldation services.

In terms of hypermedia, the attention of Structural Computing h as principally

concentrated on the navigational, spatial and taxonomic domains. TI,e primary

research vehicles have been HOSS [Niirnberg et a1. 1996] and the Construct System

[Wiil et a1. 2000; Wiil 2001] .

3J

2.15.1. Construct

Construct [Reich et al. 1999a] is a Component-Based Open Hypermedia System

developed at .Aarhus and Aalborg Universities in Denmark. It builds on the HOSS

[Nurnberg et al. 1996], HyperDisco [Wiil and Leggett 1997] and DHM [Gmnbcek et

al. 1994] Open Hypermedia Systems. Construct is also an example of a CB-OHS that

implements the OHP architectural framework including some of its protocols, e.g.

OHP-Nav (OHP and OHP-Nav is explained in greater detail in Chapter 3.)

The Construct architecture, as is the case with all Structural Computing systems, is

composed of three layers. An implementation of the architecture is shown in Figure

2.11.

MS IE I Emacs I
wrapper wrapper

Hypermedia
Server

Vital

wrapper

Collaboration
Server

CAOS
editor

Spatial
Server

Application (Services) Layer

Structu re Services Layer

Foundation Services Layer

Figure 2.11: Construct CB-OHS architecture.

The Foundation Services Layer is comprised of two types of component. The first is

the Hypermedia Store (Hyperstore). It handles persistent storage of hypermedia

structure and implements core collaboration services (e.g. transaction, concurrency

control, notification control, access control and version control). The second is the

Service Information Manager (SIM). It provides naming and location services which

enables components to operate in a distributed setting, e.g. over the Internet.

The Structure Services Layer contains three servers. The four example client

applications (at the Application Services Layer) utilise each server to offer a

particular type of functionality. Emacs and Microsoft Internet Explorer offer clients

navigational hypermedia functionality via the Hypermedia Server, Vital offers both

collaboration and hypermedia functionality via the Collaboration Server and

Hypermedia Server respectively, and the CAOS Editor offers spatial functionality via

the Spatial Server (spatial hypermedia is explained in detail in Section 3.3.2.2) .

32

The remainder of this section explains how Emacs communicates \<\'ith the Construct

Hypermedia Server, hO\<\'ever the other three applications (MS IE, Vital and the

CAOS Editor) communicate with their respective servers in essentially the same

manner as described for Emacs.

Emacs is a widely used text editor available on both Unix and MS Windows. It has

been extended with Construct navigational hypermedia services through adding a

new menu to the Emacs interface with five navigational menu items. These are

Traverse Link, Start Link, Create Anchor, Delete Anchor and End Link. The

Construct Emacs application is also an example of an application that uses the OHP­

Nav protocol (Section 3.2.3) to enable communication between it and the

Hypermedia Server. This has been achieved by encapsulating Emacs within a

wrapper \'\'ritten in Java. Its role is to mediate interaction between an application and

a middleware server. Hence the wrapper translates requests from Emacs into the

OHP-Nav protocol and sends them to the Hypermedia Server, and vice versa.

Construct is also mentioned again in the thesis (Section 3.2.8) as it played a

significant role in demonstrating true interoperability between OHSs for the first

time by implementing the OHP-Nav Protocol.

2.16. The Fundamental Open Hypermedia Model

TI1e Fundamental Open Hypermedia Model (FOHM) [Millard 2000a] is a research

tool for investigating inter-domain interoperability. This is the capability of

translating the hypermedia structural abstractions of one domain into the

hypermedia structures of another hypermedia domain. TI1e basis of the research is to

develop a common storage layer that is sufficiently generic to enable the storage of

structures of any hypermedia domain. So far interoperability within the navigational,

taxonomic and spatial domains have been investigated. Figure 2.2(f) shows the

composition of elements within a CB-OHS adapted to FOHM.

The promise of the FOHM architecture is that if all middleware services understand

the same fundamental structure abstractions, then the interfaces between all

middleware service components and the component services of the foundation layer

can be standardised. TI1is means greater interoperability between the components of

an OHS should be possible.

33

Re-use also plays a key role within FOHM since one of its aims is to facilitate the re­

use of structures between all three hypermedia domains. FOHM is described in more

detail in Chapter 3 as it played a critical role in the development of the OCS data

model.

2.17. Summary

Hypermedia system development has gone a long way towards addressing the

hypermedia community's aim of making hypermedia the central paradigm within

the computing environment. Hypermedia systems are no longer the straightforward

"one-size-fits-all" monolithic systems. Today their architectural infrastructure is

much more complex. They are envisioned as open sets of middleware components

built on top of structure-aware backends serving structural abstractions to open sets

of clients.

Re-use has also been a helpful parhler in promoting the advantages of hypermedia.

This has taken many forms, including third party application re-use, hypertext link

re-use within OHSs, as well as the re-use of components within CB-OHSs. The latter

has enabled users to pick and choose which services are most appropriate to their

needs.

However there is (as yet) no widely accepted Open Hypermedia System in the public

domain. This is partly because of the World Wide Web. Its shortcomings have not yet

been realised to their fullest extent. The result has been that the concept of open

hypermedia has not yet caught on with the general public. Another reason is that the

development of hypermedia concepts and hypermedia systems have not stood still.

They have moved beyond the traditional navigational domain, and research is now

focused on how hypermedia functionality can address a wider range of problem

domains, including know ledge management, software development, collaborative

authoring and digital libraries.

34

Chapter 3.
OHP and FOHM

3.1. Introduction

This chapter provides background about the Open Hypermedia Protocol (OHP) and

the Fundamental Open Hypermedia Model (FOHM). Briefly, the OHP is a research

project aimed at enabling interoperability between OHSs, whilst FOHM is a research

project that investigates hypermedia domain interoperability. Together they provide

data models for hypermedia structure.

OHP and FOHM are directly relevant since the role of the OCS data model is to

describe how hypermedia structures (such as those depicted by OHP and FOHM)

can be built through connecting individual hypermedia objects. Moreover it is

precisely due to the shortcomings of how OHP and FOHM connect objects together

within their respective data models that fuelled development of the OCS approach.

3.2. The Open Hypermedia Protocol

Primary interest in the Open Hypermedia Protocol (OHP) stems from my working

with the Open Hypermedia Systems Working Group (OHSWG) [OHSWG 1997]. TIlis

is the group responsible for developing the OHP. Their objective has been to facilitate

construction of interoperable Open Hypermedia Systems. TIlis led to the OHP

research project being devised. Its initial focus was as a standardised protocol to

enable communication between open hypermedia clients and open hypermedia

servers [Davis et al. 1996]. But it soon became apparent that a single protocol was not

sufficient as it was realised that more aspects of Open Hypermedia Systems needed

standardisation. Hence the OHP evolved into the wider reaching aim of developing

an open framework to enable application developers to construct hypermedia-aware

applications [Davis 1996].

3S

3.2.1. Core Architecture

To support interoperability between OHSs, the OHSWG created the Common

Reference Architecture (CoReArc) data model. It is a conceptual architecture "vhich

provides a standardised model upon which to base the layout of the components of

an OHS. It is shown in Figure 3.1.

CoReArc has direct relevance to the OCS since the OCS data model provides the

underlying organisation of hypermedia structure that is dispatched via the interfaces

and passed between the components.

Content Handlers

OffiCe Apps with Wrapper Content Handler Layer

Open Hypermedia Framework
Layer

Hypermedia Database
Layer

Figure 3.1: The Common Reference Architecture (CoReArc) data model.

CoReArc has been designed to support multiple hypertext domains. These include

the navigational, spatial, taxonomic and transclusional hypertext [Nelson 1999a]

domains.

As can be seen by Figure 3.1 the CoReArc model identifies three conceptual layers:

• Content Handler Layer. Represented by client applications. It handles the storage,

retrieval, editing and presentation of contents.

• Open Hypermedia Framework Layer. It consists of a set of serVIces providing

hypermedia services to the applications of the Content Handler Layer. For

example navigation, structuring, integration, collaboration and interoperability.

36

• Hypermedia Database Layer. It provides the storage backend for hypermedia

structures.

The conceptual layers are serviced by two main interfaces:

• Content Handler Intclface (CHI). Enables communication between client

applications and hypermedia servers. It is composed of multiple interfaces

applicable for different hypermedia application domains. For example one CHI

for navigation and another CHI for spatial hypermedia applications.

• Hypermcdia Database Intelface (HDBI). Enables communication between

hypermedia middleware services and hypermedia databases. It supports the

general storage of hypermedia objects, and provides support for collaboration

and distribution in a standardised manner.

CoReArc is a Component-Based Open Hypermedia System (CB-OHS) architecture

(Section 2.14). It effectively mirrors the Multiple Open Service System and the

Structural Computing System architectures shown in Figures 2.2(d) and 2.2(e). Thus

the Content Handle Layer maps onto the Client Application Layer; the Open

Hypermedia Framework Layer maps onto the Arbitrary (or Structure) Service Layer;

and the Hypermedia Database Layer maps onto the Storage Component Layer.

Referring back to Section 2.11 which discusses the Dexter Hypertext Reference

Model. It identified that a major problem with the Dexter Model was that it did not

envision third-party applications to have control over document content. This meant

the Dexter Model did not enable third-party application re-use. The CoReArc data

model improves upon this situation as it explicitly designates that document content

should be handled by the Content Handler Layer. Hence third-party application re­

use is enabled.

3.2.2. Core Data Model

Also identified by the OHSWG as reqmrmg standardisation are the hypermedia

structure data models adopted by Open Hypermedia Systems.

Hypermedia structure data models are the hypermedia objects that make up

hypermedia structures and the semantics that describe how those objects are

connected together. Standardisation of such models means that an application of one

OHS can understand and hence load another OHS's structure. This means each OHS

and its applications are not restricted to the structures created by just that one OHS.

37

For example a standardised navigational data model would allow an application of

one OHS to load and fo llow a hypertext link created by another OHS. This marks a

significant step towards ach ievin g OHS interoperability as it prevents OHSs acting in

an isolated m ann er. It was for these reasons that the OHSWG devised the Core Data

Model [Reich et al. 1999a] (Figure 3.2) .

The OHSWG Core Data Model has direct relevance to the OCS data model since the

purpose of the OCS data m odel is to improve upon the internal organisation of

h yperm edia structures depicted by such hypermedia da ta m odels as the Core Data

Model. Moreover, it was through exp erimentation with and implementation of the

n avigation classes of the Core Data Model (Section 3.2.3) that led to development of

the OCS data m odel.

I
1

1

1

1

I
AbstractObject

ID
Name
Type
Descriptions
CharacteristicSet

rO~b~ti~ C~s..:: - - - - t- __
1 I I I

1 Session Record sessionState :

1 Name. Members ToolsOpen
CouplingMode TelepointerPos 1

1 VirtualClients . State shared Buffer 1
1 DoclDs. Tools 1

CommAddress

1 1
1 ____________ J

Object

•
ContentSpec

URN
Content
MimeType

equal

HMObject

PSpec

LocSpec

Version
Reference
Selection
SelectionContent
Selection Type

equal

• I
NaLoc AxisLoc

Spec AxisList
RevAxisList
Overrun

----------------------- ~~~~~~ Retrieval Class
r--- ---,

I I I I
Context Link Endpoint Anchor

Members EndpointlDs Direction ParentiD
AnchorlD LocSpec

I
Node PSpec

ContentSpec Spec

I
I
I
1

I 1

Computation 1

InParamSet
OutParamSet
Mime TypeSet

I ________ _ __________________ _ _ J execute

I
1

1

I I _ _ ___ ~

Figure 3.2: The OHSWG Core Data Mod el.

TIl e Core Data Model is a unified data model that represents a combination of the

common concepts found within the hypermedia data models of independently

created OHSs. TIlese inclu de the Dexter Hypermedia Model [Halasz and Schwarz

1994], Ch imera [An derson et al. 1994], HOSS [Niirnberg et al. 1997], H yperDisco

[Wiil and Leggett 1996] and Microcosm [Davis and Hall 1997].

38

The result is a common yet extensible hypermedia structure data model. It provides

interoperability among hypermedia servers and ensures openness for inclusion of

new servers (offering new hypermedia services) in the future. To achieve this the

Core Data Model treats the primary characteristics of objects as first class attributes,

and the secondary set of characteristics are kept open for future extensions through

the use of attribute values.

As can be seen in Figure 3.2 the basic element of the Core Data Model is the abstract

class AbstractObject. It consists of an identifier, a name, a set of descriptions, a type,

and a set of characteristics. A characteristic consists of a name (String) and a set of

values (Strings). All objects below the AbstractObject inherit these first class

attributes.

The Core Data Model shows the basic classes and their specialisation into a

navigational data model, collaboration data model and computation data model.

The navigational interface is described in more detail in Section 3.2.3 since it was as a

result of my developing prototypes based on this interface that led to the OCS data

model being created. The other two classes are summarised below.

3.2.2.1. Collaboration Classes

The Collaboration Classes are used to assist collaboration servers and their clients to

mediate interaction between multiple "collaboration-aware" clients. As indicated by

the Core Data Model the collaboration service is assumed to provide two basic

abstractions: Session Record and Session State. The Session Record contains basic

information about a collaborative work session, for example its members and their

logged-in or logged-out status, the documents currently being shared, and the

collaborative mode of sharing (i.e. synchronous or asynchronous). The Session State

is used to describe additional information about the session. This can include the

tools currently open on shared documents in the session, the current position of a

telepointer shared among clients, or a shared buffer used to exchange data between

clients.

3.2.2.2. Computation Classes

The Computation Classes enable lightweight clients access to external services that

offer advanced functionality. A Computation can be thought of as a black box of

functionality [Reich et al. 1999a]. It is defined by its name, a set of input parameter

39

templates, a set of output parameter templates, and a set of mime types for which the

Computation is valid. Clients know the computation function only by its name,

which can be invoked and its results are understood by the client even though its

workings are completely opaque. In this way a generic client can access complex

functionality that would otherwise be unavailable.

For example, a client application may support navigation by finding "similar"

iInages. TI,e notion of similarity may depend on fiI,diI,g characteristics such as the

colour space, colour distribution or other meta-data about the image. Clients can

offer this functionality to the user by relyiI,g on extemal services that are

dynamically discovered and iIwoked which they only need to call rather than

implement themselves. Hence lightweight clients can offer advanced fWLCtionality.

3.2.3. OHP-Nav Protocol

The Navigation Classes within the Core Data Model represent the Open Hypermedia

Protocol Navigational Interface (abbreviated to OHP-Nav) [Davis et a1. 1996; Millard

et a1. 1998b]. Together these objects form a standardised linkiI,g protocol for use in

the navigational hypermedia domaiI,.

The OHP-Nav is but one of the Content Handler Interfaces of the CoReArc data

model (Figure 3.1). It enables users to traverse hypertext liI,ks stored iI, different

OHSs. OHP-Nav acts as the communication medium between Client Applications

and the Navigational Service. The latter's function is to endow the client with

navigational hypermedia functionality, i.e. the ability to retrieve, create, delete,

update and follow hypertext links.

An OHP-Nav hypertext liI,k is composed of the hypermedia objects of the

Navigational Class: Context Link, Endpoint, Anchor, Node and PSpec objects. The

associations between the objects are shown in Figure 3.3.

40

PSpec
0 .. 1 1

HMObject

0 .. 1

C Context Node
~ 1..

,
1..

, 0 .. '
cu
Cl.
U, 1..

,
11 . .-cu

I

0 ..
, 0 .. ' 0 .. ' 0 .. ,1

0.: 0 .. 1 0 ..
,

1
Anchor Endpoint Link

Figure 3.3: Navigation Classes of the OHSWG Core Data Model.

The role of OHP-Nav is to provide a set of standardised services for the creation,

modification, retrieval, update and navigation of the following hypermedia objects:

• HMObject . Th is is an abstract superclass that generates no actual instances. All

th e first class hypermedia objects that contain unjque identifiers (Context, Node,

Anchor, En dpoint an d Link) inherit from HMObject. TIl ese objects are typically

associated with each other through one-to-on e, one-to-many and many-to-many

relationships as depicted in Figure 3.3.

• Context (first-class object). Contexts are objects implemented as collections of

object references su ch that OHP-Nav hypermedia objects can be added or

removed as members of a Context. OHP-Nav Contexts are similar to Hypertexts

in Dexter [Halasz and Schwarz 1994] and Contexts in Leggett and Schnase

[Leggett and Schnase 1994].

• Node (first-class object). A Node3 is either the resource that is being linked to, or it

provides the location of the referenced resource (e.g. a document) via a

ContentSpec.

• ContentSpec (in-lined within Node objects) . A ContentSpec (content specifier)

serves as a proxy object for the Node object for the benefit of the hypermedia

3 The remainder of the thesis distingu ishes between OHP-Nav Node objects and the ordinary
nodes of a hypermedia system (e.g. documents) by referring to the form er as Nodes and the
latter as node resource objects or simply as nodes (with a leading lower-case n).

41

service. An example of a ContentSpec might be a Uniform Resource Name (URN)

[Sollins and Masinter 1994].

• Anchor (first-class object). An Anchor consists of an identifier and optional

location that defines the persistent selection within a Node. TIle location

information is provided by a LocSpec object.

• LocSpcc (in-lined within Anchor objects). A LocSpec (location specifier) identifies

a location in arbitrary content in a client-specific fashion. Examples of LocSpecs

include a byte offset and byte extent in a stream of binary data; a pair of (x,y) co­

ordinates in an image file; or an entire Node object.

• Endpoint (first-class object). Holds the attributes of one end of an OHP-Nav Link

object including the traversable direction value of a hypertext link, e.g. source,

destination or bi-directional.

• Link (first-class object). Represents a relationship between node resources. The

role of an individual Link object is to specify the binding together of zero or

many Endpoint objects. A Link object also contains a description attribute

describing the nature of the relationship shared by the node resources being

connected together by the hypertext link of which the Link object is a member.

An OHP-Nav Link object should not be confused with a hypertext link.

• PSpcc (first-class object). A PSpec (presentation specifier) can be associated with

any hypermedia object. It stores an opaque specification of attributes specific to a

particular application (content handler) that manages the presentation of a

hypermedia object at run-time. For example a PSpec associated with an anchor

can specify the appearance of that anchor within a document, such as the

anchor's colour, style and visibility.

The OHP-Nav protocol is very relevant to the OCS data model and the thesis as a

whole for two reasons. First, OHP-Nav hypermedia objects were used as the test

ground when developing the OCS data model. Second, Chapters 6 and onwards use

OHP-Nav objects to explain and demonstrate the workings and benefits of the OCS

data model.

3.2.4. Condensed OHP-Nav Data Model

TIle OCS data model examples used within the thesis rely on a condensed version of

the OHP-Nav data model. TIlese are the absolute minimum objects necessary for

42

constructing OHP-Nav hypertext links. This makes explaining and demonsh·ating

the workings and the benefits of the OCS data model clearer as there are fewer

objects for the reader to concentrate on. Figure 3.4 sho"vs the revised data model.

L---No_de ----JI 0 .. "
01

1 Aooh" 1° "
01

1 Eodpo;o' 1°··" '1 '--_Lin_k----J

Figure 3.4: Condensed OHP-Nav data model.

The revised data model uses just four inter-connected objects in order to create OHP­

Nav hypertext lirtks: Nodes cOlUlected to Anchors cOlUlected to Endpoints connected

to Link objects.

The associations between the four object types are as follows:

• Node. Can be associated with zero or one Anchors.

• Anchor. Can be associated with zero or one Endpoints; and it can be associated

with zero or more Nodes.

• Endpoint. Can be associated with zero or more Anchors, but can only be

associated with one OHP-Nav Link object as an Endpoint is used to signify the

end of just one OHP-Nav Link object.

• Link. Can be associated with zero or more Endpoints.

HMObjects have been omitted since they are an abstract superclass and no instances

of them are created when constructing OHP-Nav hypertext links. Both PSpecs and

Contexts have been omitted since they are not essential for hypertext link

construction. Another reason why PSpecs have been omitted is because they have

not yet been properly defined by the OHSWG.

Whilst ContentSpec and LocSpec objects are considered part of the condensed OHP­

Nav data model, they are not shown in Figure 3.4 because they are not first-class

entities. Therefore, due to their in-lined status, ContentSpecs are assumed to

automatically be part of a Node object, and LocSpecs are assumed to automatically

be part of an Anchor object.

It should also be noted that the OHP-Nav data model does not represent hypertext

links as entities in their own right. I.e. there is no single OHP-Nav hypermedia object

43

within the OHP-Nav data model that corresponds to a single OHP-Nav hypertext

link. This is because it is not necessary due to the dynamic reh·ieval method

employed by the OHP-Nav protocol when traversing the hypermedia objects of a

hypertext link (Section 3.2.6).

3.2.5. Linked List Representation

The OHP-Nav specification [Davis et a1. 1996] and subsequent implementations (of

OHP Navigation Servers) describe (or at least presume) OHP-Nav hypermedia

objects to be connected to one another in a linked list formation [Reich et a1. 1999a].

This is where hypermedia objects are embedded with (i.e. store) references of the

other hypermedia objects to which they are attached. TIlese object references are

called association lists as they describe which hypermedia objects that a given

hypermedia object is associated with:

• OHP Link objects are embedded with the references to Endpoint objects .

• Endpoint objects are embedded with references to Anchor objects.

• Anchor objects are embedded with references to Node objects.

• And Node objects, being the last item in the linked list, are not embedded with

references to any other objects.

Figure 3.5 shows the object organisation of a typical OHP-Nav hypertext link

commonly used within hypermedia literature.

Source Destination

Connection between
objects --...

Figure 3.5: Common representation of an OHP-Nav hypertext link.

However, in order to depict the differences between the conventional object

reference embedding approach and the OCS data model, this thesis has amended the

44

diagrammatic representation of OHP-Nav objects . TIle new representation of the

OHP-Nav hypertext link of Figure 3.5 is shown in Figure 3.6.

Embedded
Reference

Figure 3.6: Amended representation of OHP-Nav hypermedia objects .

There are three key differences with the new diagrammatic representation:

1. Hypermedia object shapes. Each OHP-Nav object type is assigned a unique shape:

OHP-Nav Link objects are elongated rectangles; Endpoint objects are isosceles

trapezoids; Anchor objects are ovals; and Node objects are small rowld -edged

rectangles. TIle reason for doing this is to ease identification of different OHP­

Nav hypermedia objects when needing to refer to individual objects within thesis

diagrams.

2. Endpoint positioning. Endpoint objects are physically separated from their

associated Link objects. The reason for this change is because for an Endpoint to

be physically touching a Link object implies that the lower object (the Endpoint)

is wholly contained (i.e. embedded) within the Link object. (TIle idea of object

embedding is further explained in Section 3.3.4). But OHP-Nav Endpoint objects

are first class objects (Section 3.2.3), meaning that they are not embedded within

any other hypermedia objects. Hence Endpoint objects are now depicted as being

physically separated from the objects with which they are associated (as is the

case with all other OHP-Nav objects).

3. Embedded associations. TIle amended representation of OHP-Nav hypermedia

objects highlights the linked-list formation between OHP-Nav objects. TIlis has

been achieved by appending a box to one end of the arrows that represent the

connections (i.e. associations) between objects. TIle box at the end of the arrow

45

indicates which object is embedded with the reference, and the arrow direction

shows which object it is referencing.

Emphasising how association lists are embedded within hypermedia objects is

extremely relevant, since the OCS data model identifies such embedding as a

substantial weakness within the OHP-Nav hypermedia data model (Sections 7.2

and 8.2). As a result of this, the OCS data model adopts a different hypermedia

object referencing scheme which is the focus of Chapter 7.

3.2.6. OHP-Nav Traversal

This section describes how OHP-Nav objects are used in their role of enabling

navigation between documents. OHP-Nav objects are relevant since they are an

example of the type of hypermedia objects organised by the OCS data model. Figure

3.7 shows the typical OHS components within a generic OHS environment. This acts

as a useful reference when describing OHP-Nav object retrieval and traversal.

External
Document
Storage

r ----...,
I OHP-Nav I

Client I
I Application
I Document

OHP
Navigational

Server

Hypermedia
Storage

Back End

L __ __ _

Stores hypermedia objects:
Nodes. Anchors, Endpoints

and Link objects

Figure 3.7: A generic OHP-Nav OHS environment.

3.2.6.1. Carrying Out Link Traversal

When a document is loaded into an OHP-Nav Client Application document viewer,

one of the first activities undertaken by the viewer is to identify if any hypertext links

reference the document as their source location. This is achieved by the viewer

querying the OHP Navigation Server for Node objects. Section 3.2.6.2 describes how

individual OHP-Nav objects (Nodes, Anchors, Endpoints and Links) are retrieved

from the Navigation Server.

46

Once the Node objects have been retrieved, the next step is to find the Anchor objects

that reference the retrieved Node objects. TI1is enables the clickable anchor hotspots

to be highlighted within the document. TI1e viewer will then request the Endpoint

objects that reference the retrieved Anchor objects in order to check that the

hypertext links reference this docwnent as their source location. At this point it is

safe for the viewer to insert the highlighted anchor hotspots into the document

content.

When the user clicks on one of the anchor hotspots in the document, the viewer will

proceed to dynamically calculate which other hypermedia objects make up the

associated hypertext link. The viewer will already know which hypermedia Anchor

object corresponds to the clicked anchor hotspot and which source Endpoints are

associated with the Anchor object as both sets of information will have been retained

from when the hypertext link \'\'as first inserted into the document. Therefore the

vie\,ver will begin by finding the rest of the hypermedia objects that make up the

hypertext link by querying the OHP Navigation Service for OHP Link objects that

reference the source Endpoint objects. It will then find the destination Endpoint

objects referenced by the Link objects. The viewer will then request the Anchor

objects referenced by the Endpoint objects. And finally the viewer will query for

Node objects that are referenced by the Anchor objects. Now the viewer can load the

document referenced by the Node into the OHP-aware viewer.

3.2.6.2. Retrieving Individual OHP-Nav Objects

For each hypermedia object of an OHP-Nav hypertext link the Client Application

must request an OHP-Nav object from the Navigation Server. The Navigation Server

then requests the same object from the Storage Back End. TI1e Storage Back End finds

the object and returns it to the Navigation Server. The Navigation Server will then

send the object to the Client Application.

Object reference embedding has a significant bearing on the ease with which

individual OHP-Nav objects can be identified for retrieval. Of importance is which

object type happens to record the connections between objects. For example the

OHP-Nav linked-list representation (Section 3.2.5) stipulates that Anchor objects are

responsible for recording the connection data that lists which Nodes are connected to

which Anchors. TI1US it is relatively easy to traverse from Anchor to Node since

Anchor objects store the Anchor-to-Node connection data. Conversely it also means

that it is more difficult to traverse from Node to Anchor since Node objects do not

store the ID of the connected Anchor. Therefore given a Node object, the

47

Navigational Server has the extra responsibility of having to query the connection

data content of all OHP Anchor objects (stored in the Storage Back End) in order to

discover if any of those Anchors are con.nected to the Node in question. Such

querying can be potentially tinle-consuming and processor intensive.

3.2.7. Implementations

Two prototype systems have been implemented to demonstrate the OHP-Nav

protocol. These are Construct [Wiil 2001] and the Solent system. (Construct's

architecture was previously discussed in detail in Section 2.15.1.)

It is the Solent system [Reich et al. 1999b; Reich et al. 1999a] that is of particular

interest since the work I carried out on designing and programming the Storage Back

End and Retrieval Server influenced the design of the OCS data model (Chapter 7

onwards). This is in respect of investigating the wasteful storage of duplicate

hypermedia objects. Moreover a review of the Solent system provides an

understanding of the environment within which the hypermedia objects organised

by the OCS data model operate.

I MS Word I
wrapper

Navigation
Server

Node­
Viewer Picture­

Viewer

Back End

"Car­
Stereo"

Retrieval
Server

Application Layer

Middleware Layer

Back End Layer

Figure 3.8: Conceptual architecture of the Solent CB-OHS.

Solent is a Component-Based OHS (Section 2.14) made up of several inter­

communicating components (Figure 3.8). All Solent applications are enabled with

OHP-Nav functionality. TIle Middleware Layer comprises a Retrieval Server and a

Navigation Server. TIlis facilitates communication between the Application and Back

End Layers. The Back End comprises a Registration Engine and Storage Engine. The

Registration Engine is a basic broker object with which other components can

48

register. The Storage Engine provides storage and retrieval of arbitrary structures

encoded in XML (eXtensible Markup Language) which are stored in an SQL

database.

3.2.7.1. Example OHP-Nav message

Figure 3.9 shows a typical OHP-Nav message. It is an example of a fragment of a

message used to create an ANCHOR object encoded in XML.

<MESSAGE>

<MESSAGEHEADER>

<SENDER> Picture Viewer Application </SENDER>

<RECEIVER> Navigation Server </RECEIVER>

<SERIAL> SOOl </SERIAL>

<MNAME> ANCHORCREATE </MNAME>

<PROTOCOL> OHP-NAV-1.0 </PROTOCOL>

<CONTEXTIDSET>

<CONTEXTID> C101 </CONTEXTID>

</CONTEXTIDSET>

<PERFORMATIVE> ask </PERFORMATIVE>

</MESSAGEHEADER>

<MESSAGEBODY>

<ANCHORCREATE>

<ANCHOR>

<ID> A1 </ID>

<PARENTID> N1 </PARENTID>

<AXISLOC>

<FWDAXISSET>

<AXIS>

<NAME> characters in </NAME>

<TYPE> CHAR </TYPE>

<VALUESET>

<VALUE> 109 </VALUE>

<VALUE> 118 </VALUE>

</VALUESET>

</AXIS>

</FWDAXISSET>

</AXISLOC>

</ANCHOR>

</ANCHORCREATE>

</MESSAGEBODY>

</MESSAGE>

Figure 3.9: OHP-Nav message to create an Anchor object.

49

Every OHP-Nav message is split into two parts, a MESSAGHEADER and a

MESSAGEBODY.

The MESSAGEHEADER tags are the same per message:

• The SENDER tag specifies which component is sending the message.

• The RECEIVER tag specifies which component is receiving the message.

• The SERIAL tag is the unique ID of the message.

• The PROTOCOL tag specifies the protocol that the MESSAGEBODY follows. In

this case it is an OHP-Nav protocol formatted message, other examples may be

an OHP workflow or computation message.

• The PERFORMA TIVE tag describes how communication takes place between

components. A few examples are listed:

• ask. Used to ask a component to perform a service, e.g. to create an Anchor

object (as is the case with the example XML message fragment shown).

• notifij. Issued by the recipient component of an ask request. The

MESSAGEBODY reports the success (or lack of) on performing an ask request.

• register. This is sent by a component to let all other components know that this

component exists and is available for sending and receiving messages.

• advertise. Issued by one component to inform all other components that they

can subscribe to certain types of messages that emanate from the issuing

50

component. For example a component may advertise that it can let other

components know when it has successfully created a new Anchor object.

• subscribe. Sent in response by other components to an advertise request to let

the advertising component know that they are interested in being informed of

the advertisers' advertised event.

The actual contents of the OHP-Nav message are contained in the MESSAGEBODY.

It describes how an OHP-Nav object (Node, Anchor, Endpoint, Link, Context or

PSpec) is to be created, deleted, modified or retrieved (e.g. LINKCREATE,

ENDPOINTDELETE, ANCHORMODIFY, NODERETRIEVE, etc.). Or it can be used

to declare whether an OHP-Nav object has been successfully created, deleted,

modified or retrieved (e.g. LINKCREATED, ENDPOINTDELETED,

ANCHORMODIFIED, NODERETRIEVED, etc.).

The MESSAGEBODY of the example XML fragment of Figure 3.9 defines how to

create a new Anchor object, hence the MESSAGEBODY contains Anchor-specific

data:

• The anchor is assigned unique identifier AI.

• The P ARENTID tag is an example of an embedded object reference as it specifies,

within the anchor object itself, to which OHP-Nav object this anchor is associated

with. In this case it is Node object NI.

• The AXISLOC tag specifies the location of the hotspot of the link within the

connected node, i.e. it is to span characters 109 to 118 within the content of Node

N1.

3.2.8. OHP Demonstrations

Both the So lent and Construct CB-OHSs were demonstrated at the ACM Hypertext

'98 and Hypertext '99 Conferences.

3.2.8.1. Hypertext '98 Demonstration

The rationale behind the Hypertext '98 demonstrations was to show interoperability

between clients of different Open Hypermedia Systems for the very first time

[Millard et al. 1998a; Bouvin 2000; Millard et al. 2000a]. The demonstrations brought

51

together several clients of the Solent and Construct OHSs that implemented the

OHP-Nav protocol. Four interoperability capabilities were demonstrated:

1. Applications devised for one OHS being able to communicate with other OHS servers.

This was demonstrated by the Solent Picture-Viewer (client of the Solent CB­

OHS) working with the Construct Hypermedia Server.

2. Applications of d~fferent OHSs retrieving the same document. TI1is was demonstrated

by the Solent Picture-Viewer and the Construct Emacs client being connected to

the Construct server and simultaneously retrieving the same document.

3. The ability to author links between client applications that belong to dperent OHSs.

This was demonstrated by one Endpoint object being created using the Solent

Picture-Viewer, and a second Endpoint object being created using the Construct

Emacs client. The Solent Link-Editor was then used to author a link between the

two Endpoints.

4. The ability to follow a link created by client applications that belong to dperent OHSs.

This was demonstrated by a user of the Construct-adapted Microsoft Internet

Explorer clicking and following the link created in Demonstration 3.

The main emphasis of the demonstrations was to show that through a standardised

interface any OHS client application can control and access the structure and content

maintained by another OHS (Demonstrations I, 2 and 4). TI1e demonstrations also

showed that it was possible to connect to hypermedia structure created by another

OHS client and managed by another OHS (Demonstration 3).

3.2.8.2. Hypertext 199 Demonstration

The demonstrations of the Hypertext '99 Conference built on top of the Hypertext '98

demonstrations and were used as an opportunity to show the flexibility of both the

CoReArc framework (Section 3.2.1) and the Core Data Model (Section 3.2.2). TI1is was

achieved by expanding the Solent CB-OHS to use the Computational Interface

(Section 3.2.2.2).

TI1e Hypertext '99 demonstrations centred on showing how the CoReArc framework

could readily contain new client applications at the client application layer (e.g. the

"Car Stereo" client) and contain new servers at the middleware layer (e.g. the

Retrieval Server). It was also demonstrated how new object classes could be added to

the Core Data Model (e.g. the Retrieval Class) which in turn enables the creation of

52

new protocols. For example the introduction of the Retrieval Class led to the

Computation protocol being developed.

Both sets of demonstrations at both conferences were successful, and were met with

great acclaim by the hypermedia community at large.

More importantly for my research was that through developing the server and

storage components for the Solent CB-OHS, it made me appreciate the amount of

wasteful and inefficient use and storage of general hypermedia structure that the

OHP-Nav data model unwittingly encouraged (Sections 6.2 and 6.3). It was this that

led me towards developing the OCS data model.

3.3. The Fundamental Open Hypermedia Model

TI1e Fundamental Open Hypermedia Model (FOHM) [Millard 2000a] is a data model

developed at Southampton University that was designed to investigate the common

features of interoperability within the navigational, spatial and taxonomic hypertext

domains. It therefore presents a further platform upon which to explore the OCS

data model as it provides access to a generic model of hypermedia structure enabling

the OCS data model to be applied to the spatial and taxonomic hypermedia domains

as well as the traditional navigational hypermedia domain.

However my initial interest in FOHM, as regards the OCS data model, sprung from

experimentation with FOHM structure versioning [Griffiths et al. 2002] which is

explained in Section 6.4.2.

3.3.1. FOHM Background

FOHM came about as a result of OHP work on Component-Based OHSs. In the CB­

OHS architecture (Figure 3.1), OHSs implement middleware components for each

hypertext domain. These components are responsible for mapping the hypermedia

structures, required by clients, into and out of the structures stored in an all purpose

back-end server. This means that each middleware component must be adapted so

that it can translate the structures in all other domains into its own domain. The

problem is that there are an open number of domains, theoretically in the hundreds

and upwards, that a middleware component must be adapted to interoperate with.

53

FOHM was devised so that such adaptations of middleware components are

unnecessary. FOHM research investigates the capabiEty of one hypertext domall1

being able to interpret a second hypertext domain as if it was the first. For example

using a navigational browser to follow a hypertext link from a navigational

workspace into a spatial workspace whereby the navigational browser would

attempt to interpret the spatial workspace as if it was a navigational workspace

[Millard et al. 2000b]. To this end the intent behind FOHM is to define a common

storage layer sufficiently generic so that it can store the structures required by all

current and future domains.

3.3.2. Hypermedia Domains

FOHM's remit is to investigate interoperability between the navigational, spatial and

taxonomic hypermedia domains.

3.3.2.1. Navigational Hypermedia Domain

The navigational domain is the most well known hypermedia domain. It is the

domain of the World Wide Web [Berners-Lee et al. 1992], and has been the main

focus of the majority of the OHSWG's efforts taking the form of OHP-Nav. Figure 3.6

shows an example of a typical OHP-Nav hypertext link.

3.3.2.2. Spatial Hypermedia Domain

Spatial hypermedia allows users to organise their information visually such that

relationships between node object resources4 are expressed by their visual

characteristics, e.g. proximity, colour or shape. Spatial hypermedia expresses

classification within nodes where some nodes can be said to be more related than

others. For example a node slightly misaligned with other nodes might express

uncertainty as to whether the node is actually part of the relationship. Examples of

spatial hypermedia systems include VIKI [Marshall and Shipman 1997] and CAOS

[Reinert et al. 1999].

4 A node in this instance means a referenced arbitrary resource rather than an OHP Node
which is a proxy object for a given resource.

54

3.3.2.3. Taxonomic Hypermedia Domain

Taxonomic hypermedia allows the same pieces of information (called artefacts) to be

categorised into different views (called perspectives). Users can navigate the

taxonomic hierarchy by moving between overlapping sets and can reason about the

relationships that node object resources have with one another.

Figure 3.10: Example Taxonomy.

Figure 3.10 provides a taxonomic hierarchy example (adapted from [Millard et al.

2000b D. Two users have categorised three artefacts. But they have different opinions

on how the three artefacts ought to be split. The two perspective objects represent the

different categorisations for the three artefacts.

3.3.3. FOHM and Structural Computing

FOHM's role within the Structural Computing enviroJUnent is as a Content Handler

Interface supported by a dedicated structure server. This is reflected by FOHM's

implementation as a structure server, called Auld Linky (Figure 3.11) [Michaelides et

al. 2001; Griffiths et al. 2002; Millard 2003]. It is a simple stand-alone server that

stores hypermedia structure represented in the FOHM format that serves FOHM

structures expressed in XML. Queries are sent to Linky in the form of a FOHM XML

pattern that is matched against Linky's stored structures. Those that match are then

returned.

55

Application

FOHM API

FOHM Auld Linky
Structure Server Structure Server

Figure 3.11: Auld Linky placement within a Structural Computing environment.

FOHM's ability to model generic structure means that it can. utilise the structural

characteristics of one hypermedia domain to transform the representation of

hypermedia structure within another domain [Millard and Davis 2000]. For example

anchors (of the navigational hypermedia domain) can improve the granularity of

referencing (i.e. pointing) within spatial or taxonomic hypermedia structures.

Spatial domain structures (such as sets, queues, lists and stacks) can also be used to

enhance traversal in the navigational hypermedia domain. For example the

endpoints of a link in the navigational domain are ordinarily arranged as a set.

During typical link traversal users arrive at all endpoints except the starting one.

FOHM can change this experience by allowing navigational endpoints to be

structured differently, e.g. if arranged as a stack, users would arrive at those

endpoints either side of the starting endpoin.t.

3.3.4. The FOHM Data Model

The FOHM data model is essentially composed of four object types: Associations,

Bindings, References and Data objects. They are very similar to the four basic object

types fow,d in the OHP-Nav data model (Section 3.2.4).

• Association (first-class object). Represents a relationship between Data objects or

other Associations. An Association can contain any number of Bindings, but it

may only be cOlmected to at most one Reference object. Every Association

contains a feature space which is a list of features that all the objects of the

56

Association must map to. Like OHP-Nav Link objects, FOHM Associations are

depicted as elongated rectangles.

• Binding (embedded within Association objects). Attaches References to

Association objects. A Binding can be contained by at most one Association and

be connected to at most one Reference object. Bindings also contain a feature

value of the Association object's feature space. Bindings are diagrammatically

depicted as semi-circles.

• Reference (first-class object). Points at or into Data objects or Association objects. A

Reference object can be connected to at most one Binding and either connected to

one Data or Association object. FOHM References are depicted as circles.

• Data (first-class object) . An object that serves as a \",rapper for some piece of data

that lies outside the scope of the model. For example a document, file or streamed

data. A Data object can be connected to one Reference object only. FOHM Data

objects are depicted as small rectangles.

Figure 3.12 shows an example of a FOHM structure: a navigational link that points to

a spatial list. The top-most Association is a navigational link since it has a direction

feature space and its Bindings contain navigational directions. The bottom-most

Association represents a spatial relationship whose Data objects are ordered in a list

(indicated by each Binding containing a nwnerical value).

57

Figure 3.12: Example FOHM structure.

Connections between FOHM's objects bear similarities to OHP-Nav, but at the same

time FOHM's cOlU1ections are subtly different. Only three of FOHM's four object

types are primary objects. TIlese are Associations, References and Data objects.

Bindings are not primary objects as the FOHM data model explicitly prescribes that

they are always wholly contained within Associations.

Figure 3.12 shows Binding objects to be wholly contained (i.e. embedded) within

Association objects by the absence of a connection arrow between Association and

Binding objects, and that the Binding object physically touches the bottom of the

Association object.

As was the case with the OHP-Nav representation of hypermedia objects, so too the

thesis has amended the cOlU1ections between FOHM objects. These changes have

already been shown in Figure 3.12. TIle amendment takes the form of appending a

box to one end of the connection arrow to indicate which object contains the

embedded referencing object information.

Connections between FOHM objects generally take one of two arrangements:

1. One FOHM object can contain an embedded (i.e. stored) reference to the other

FOHM object (as is the case with the linked list arrangement for OHP-Nav

objects). TIle wli-directional arrows between FOHM objects in Figure 3.12

indicate which objects store the embedded reference enabling association with a

secondary object.

58

2. Alternatively any FOHM object can be wholly contained vvithin another FOHM

object. For example a Reference being wholly contained by a Binding object.

This act of embedding references and/or wholly containing objects has a negative

effect on hypermedia structure re-use and hyperstructure versioning. Coupled with

the OHP-Nav embedding of object references, it was with these problems in mind

that the OCS data model was developed (Chapter 7 onwards).

3.4. Summary

This chapter has described the OHP-Nav and FOHM data models. OHP is an OHS

interoperability project that has led to standardized interfaces (e.g. OHP-Nav), a

conceptual OHS architecture (the CoReArc model) and standardised data models

(e.g. the OHP-Nav data model). OHP-Nav provides a good vehicle for experimenting

with hypermedia structures of the navigational domain, and by working with

members of the OHSWG to devise the Solent CB-OHS it brought to my attention the

problematic linked-list representation of connections between OHP objects, hence the

need for the OCS data model.

Continuing in the same vein as the OHP is the FOHM research project. It investigates

navigational, spatial and taxonomic inter-domain interoperability. It aims to benefit

the construction of hypermedia middleware servers so that each server is not

required to translate the structures of different domains into its own domain. It was

through experimentation with versioning FOHM structure (Section 6.4.2) that (again)

highlighted the deficiencies in the linked-list representation of connections between

structural objects.

59

Chapter 4.
Versioning Background

4.1. Introduction

This chapter sets the background to hypermedia versioning. Selected are a range of

systems that adopt different strategies for versioning hypermedia structure (Section

4.5). Also examined is the problem of revision proliferation (Section 4.6). These are

under investigation since the OCS data model not only provides an improved

framework within which to version hypermedia structure (Chapters 9 and 10), but it

also addresses the problem of revision proliferation (Chapter 9) too.

4.2. What is Versioning?

Versioning is the act of orgarnsmg, co-ordinating, managing and tracking the

development of the same changing resource at different stages of its evolution. The

hypermedia versioning systems of this chapter version either just node data (e.g.

documents), hypermedia structure (whole hypertext links and/or the individual

hypermedia objects that comprise links) or a combination of both (e.g. hypertext

networks composed of both nodes and links).

As regards the OCS data model, its interest lies in versioning individual hypermedia

objects, the connections between hypermedia objects (of a hypermedia structure) and

hypertext structures as a whole (e.g. links). It does not include the versioning of node

resources referenced by versioned structures.

4.3. Versioning Policy

The typical versioning policy whenever an attempt is made to update an existing

hypermedia resource is to preserve (or freeze) it. This is by creating a new copy (i.e. a

new revision) of the resource. It is upon this copy that the update can be enacted.

Meanwhile the original copy of the hypermedia resource remains untouched, hence

it is preserved.

60

4.4. Why Version Hypermedia Resources?

Many benefits are afforded by versioning hypermedia resources:

• Enables hypermedia resources to be preserved as they evolve over time.

• Access to previous revisions of hypermedia resources.

• Hypermedia resources (e.g. hypertext networks, nodes or links) can be rolled

back to their previous versioned state after changes have been made to them.

This offers a failsafe baseline for experimentation [0sterbye 1992].

• The maintenance of alternative revisions. This is again useful for

experimentation.

• Enables evaluation of developmental progress through comparing different

revisions [Bendix et al. 2001].

• Provides a historical record of a hypermedia resource's evolution.

• Supports hypermedia collaborative work when needing to freeze revisions where

many users are working on a shared resource [Whitehead 2001b].

• Useful in application areas where the connections represented by hypermedia

structures cannot afford to be broken such as inter-document relationships within

legal and audit documents [Whitehead 2001b].

• Offers solutions for the problem of link maintenance through position tracking

(see Chapter 5).

4.5. Hypermedia Versioning Systems

This section provides a summary of well known hypermedia versioning systems. It is

not an exhaustive list since there have been many hypermedia versioning systems

over the past 20 years [Vitali 1999]. Particular systems have been selected because

they represent different approaches to versioning and/or they suffer some form of

revision proliferation (this term and how it affects particular versioning systems is

discussed in Section 4.6).

61

The section begins v,'ith an overview of Jim Whitehead's Hypertext 2001 paper

[Whitehead 2001 b] which describes the different approaches for the storage of

hypermedia revision histories. These are an essential part of a hypermedia version

system because without some form of recorded version history, much versioning

functionality is lost. Whilst revision objects would still be preserved, there would be

no way of knowing how or even if one revision is derived from another.

The subsequent subsections make reference to this terminology to describe the

hypermedia versioning systems under review.

4.5.1. Design Spaces for Versioning

Whitehead identifies three strategies for recording the version histories of

hypermedia resources. These are:

• Vcrsioncd-Object approach. This approach records each revision of a resource as a

separate object. The version history is recorded by a separate container, and the

relationship between version history container and members is referential, often

recorded by the container itself. The predecessor/successor relationships between

revisions are either embedded within the members or recorded within separate

first-class relationship entities. If the latter case is true, then these objects are also

referentially contained by the version history container. TIle advantage of the

Versioned-Object approach is that revisions can belong to other containers beside

the original version history container, e.g. configurations.

• Within-Object approach. This approach utilises a version history container that

physically includes all derived object revision members. This has the advantage

that all revisions are locked within a single object, thereby guaranteeing the

stability of references to these objects. But the disadvantage is that revisions

cannot participate in other containment structures, unless a replica of a specific

revision is created and placed into the other container. An example of such a

system is ReS [Tichy 1985].

• Independent Relationship Object approach. This approach records the version history

predecessor/successor relationships as separate first class objects. Hence there is

no container set that represents a version history as a single entity. TIle advantage

is that there is less overhead since no version history containers need updating

whenever a new object revision is derived from an existing revision. The

disadvantage is that referential integrity cannot be guaranteed when attempting

to retrieve all revision objects of a version history. For example some relationship

62

entities may be located across an organisational boundary that is not accessible

when building the version history. Hence the entire version history may fail to be

built.

Regarding the recording of the revision histories of hypertext links, if they are

independent entities (i.e. separate from their referencing nodes), then their revision

history can be recorded by any of the three above strategies. But for links wholly

embedded (i.e. contained) in node resources, when the node is versioned so too is the

link. Therefore the version history of embedded links will be the same as that of the

nodes that contain them.

4.5.2. Xanadu

One of the earliest systems to consider hypermedia versioning was Project Xanadu

(Section 2.7.3). It operates an implicit form of versioning, i.e. it implicitly enables

versioning to be carried out without the system having to expressly make versioning

commands available for clients.

Xanadu versioning works by new revisions of Xanadu documents directly re-using

the content that is the same between old and new revisions. This is through the latter

document revision's content list pointing at the same content list referenced by the

old revision. Any new content for the new revision is assigned its own permanent

address, and this is included within the new revision by its content list also pointing

at the permanent address of the new content.

Xanadu's version history is represented by the Independent Relationship Object

approach. Transclusion links (not embedded in content lists) [Nelson 1999a] indicate

how content lists, and the content referenced by content lists, are derived from one

another.

4.5.3. HyperPro

HyperPro [0sterbye 1992] is a hypermedia system that versions nodes, but not links

(at least not explicitly). It is an example of the Versioned-Object approach since

individual versioned nodes are referentially captured within version sets, a form of

composite. HyperPro can also capture the state of an entire hypertext network within

contexts, another form of composite. Contexts referentially group together version

sets whose revisions (within the version sets) make up a hypertext network. A

hypertext network is versioned by versioning contexts. In this way HyperPro can

63

support unpbcit lunited link versioning smce any links located inside versioned

contexts are versioned too.

Figure 4.1 shows an example adapted from [0sterbye 1992]. Context G1 is the ul.itial

state of the hypertext network where A, B, C and D are version sets containing

ul.dividual node revisions interconnected by version links. Contexts G2 and G3 show

later revisions of the hypertext network. New node revisions (withul. version sets)

have been added as well as new interconnecting links.

Figure 4.1: Versioning HyperPro contexts.

Node revisions can be selected one of two ways: Generic Version Links point to

entire version sets. They compute their destination node by retrieving the node

identified by the context's recorded selection criteria, e.g. latest revision.

Alternatively a Specific Version Link can be used to point to specific node revisions

inside version sets.

4.5.4. CoVer

CoVer is a separate hypermedia version server designed to assist the authoring of

hypermedia documents [Haake 1992; Haake and Haake 1993; Haake 1994]. Its

difference is that it combines task- and state-based versioning within a single

conceptual model.

Task-based versioning involves breaking a job (e.g. writing a paper) into multiple

tasks (e.g. writing each individual chapter sequentially or in paralJel). A task is a

composite that holds references to subtasks and/or objects that together determine

the task's current state. Objects within a task can be a combination of nodes, e.g.

documents or document segments, bnks or composites. The role of tasks is to

monitor the revisions of the various objects used and created in the contex t of

performing a job.

64

Co Ver uses state-based versioning to record every legal state of the versioned nodes,

links and composites that are used to complete a task. It also groups each set of

derived objects within version sets which also record their evolution history. CoVer's

use of referential containers, e.g. tasks and version sets, mark it out as adopting the

V ersioned -Object approach to versioning.

CoVer can freeze nodes in their entire state. But freezing the state of a link or

composite means implicitly freezing any other objects (e.g. nodes, links or

composites) referenced by the frozen link/composite. This can lead to revision

proliferation as described in Section 4.6.2.

4.5.5. DeltaV

The Delta V protocol [VVhitehead 2001 a; Kim et a1. 2004] builds on the features and

data model of the WebDAV (Web-based Distributed Authoring and Versioning)

protocol [VVhitehead and Goland 2004]. It provides an open, standards-based

infrastructure to support the versioning of Web pages through extending the HTTP

protocol.

Delta V is an example of a versioning system for the Web. It can record the individual

states of evolution of a Web page, and it can record a snapshot of the current

revisions of multiple Web pages. TI1e latter is equivalent to being able to freeze the

state of a hypertext network. The Delta V protocol cannot version hypertext links as

separate entities since they are embedded within Web pages. But embedded

hypertext links can be implicitly versioned when the containing Web page is

versioned. Hence the history of a versioned Web page's hypertext links is the same as

the history of the versioned Web page itself.

4.5.6. HyperProp

HyperProp [Soares et al. 1993a] is a hypermedia system designed to provide an

environment for hypermedia application construction. Its data model, which

revolves around the Nested Composite Model (NCM), marks HyperProp and its

approach to versioning as different because the NCM implements a specialist

composite called the User Context Node. It relates individual nodes (e.g. text,

graphic, audio along with other User Context Nodes) to each other by containing one

node within another through embedded object reference linking.

65

For example, to organise a textbook, a User Context Node may be created which

represents the overall textbook. It may also contain a set of User Context Nodes that

represent chapters, and each chapter may contain a further set of nodes which

represent chapter sections. Hence in this way nodes are said to be nested within one

another. Figure 4.2 shows an example.

Chapter

Sections

Pages

Figure 4.2: User Context Nodes of the HyperProp Nested Composite Model.

111e NCM [Soares and Casanova 1994; Soares et a1. 1999] enables individual nodes,

including User Context Nodes, to be versioned. But it does not version hypertext

links. However the objects and relationships of a hypertext network can be

represented by a User Context Node which can be frozen . Hence any links

connecting nodes within the network will also be implicitly frozen. But freezing a

User Context Node means capturing the current state of all objects contained by that

User Context Node. 111e drawback with this approach is that it causes revision

proliferation as explained in Section 4.6.3.

4.5.7. Hypermedia Versioning Control Framework

111e Hypermedia Versioning Control Framework (HVCF) [Hicks et a1. 1998] is one of

the few systems that offer complete version control for both documents and open

hypertext links (i.e. hypertext links that are stored separate from document content).

111e HVCF takes the form of a hypermedia versioning server incorporated as part of

the HB3 Open Hyperbase Management System [Leggett and Schnase 1994]. It

provides versioning as an "all-or-nothing" approach [0sterbye 1992], i.e. every object

(data or structure) of HB3 is versioned, and all object manipulation requests

automatically pass through the version server.

66

The HVCF enables applications to select basic operations offered by the version

server, e.g. creation, deletion, update and retrieval operations for individual

revisions. These are then used to implement application-specific versioning policies

that give applications full control as to when and which objects (or groups of objects)

are versioned. TI1is can apply to individual hypertext links, or an entire hypertext

network. TI1e latter is versioned by collecting links and documents into composites

and then versioning them.

The HVCF is an example of the Versioned-Object approach since every HB3 object is

automatically assigned to a version set composite which records object evolution.

The HVCF also employs a delta storage algorithm technique in order to reduce

storage requirements for all object revisions.

4.5.8. Chimera Versioning

The Chimera approach to versioning ['Vhitehead et al. 1994] is an example of a

scheme that versions hypermedia structure only, and not the data (i.e. documents)

they relate. Thus ensues a not unrealistic scenario where data objects and

hypermedia structure are stored and versioned independently of one another. This is

not dissimilar to the OCS data model which since it models hypermedia structure

only, is also concerned with versioning hypermedia structure only.

Chimera versioning focuses on the use of configuration objects. TI1ese are a restricted

form of composite object that record collections of pointers to hypermedia structure

revision objects. They name, collect and version any subset of hypermedia structure

that might be affected by modification to an external data object. For example

recording the anchors that reference an external document's content. This makes it

easier to identify the new structural revisions that must be created to make sure that

any external data objects continue to reference their intended resources via Chimera

structures. Chimera is an example of the Versioned-Object approach to versioning

structure.

4.6. Revision Proliferation

Revision proliferation is the generation of unintended object revisions when an

existing revision is being modified [Conradi and Westfechtel 1998]. It is a recurring

problem within hypermedia resource versioning.

67

Three example cases of revision proliferation are highlighted in HyperPro, CoVer

and the Nested Composite Model. Two further examples of revision proliferation

occurring in OHP-Nav and FOHM are also described in Section 6.4. Revision

proliferation was one of the four problem domain issues that led to development of

the OCS data model (Sections 6.4.1 and 6.4.2.4).

4.6.1. HyperPro

0sterbye in the same paper that discusses HyperPro [0sterbye 1992] also discusses

circumstances that can lead to revision proliferation. TI1is is where versioning is

permitted on nodes only, and links are semantically considered part of the node

(whether physically embedded or not) such that every link change constitutes a

change to the node. Figure 4.3 shmvs an example. (Dashed lines represent version

sets.)

'~0)
r \ -

J .--

\~0)

Figure 4.3: HyperPro revision proliferation scenario.

Hypertext link K has frozen node A as its source. If K is modified so that it is re­

directed from node B to C, then a new copy of link K is created shown as link M.

Also, a new copy of node A is created since changing a link associated with a frozen

node amoll1ts to an attempt at changing that node. TI1is is an example of revision

proliferation since new node revisions are created, but the only difference between

the previous and new node revisions is that the associated links have been changed,

not the actual node content itself.

4.6.2. CoVer

TI1is example of revision proliferation is based on a CoVer example from [Haake

1994]. Figure 4.4(a) shows an initial hypertext subnetwork. Composite 'Cl vI'

contains two nodes: 'AI vI' and 'A2 vI'. They are connected to one another by

independent link 'Ll vI '.

(a) Initial hypertext subnetwork. (b) Hypertext subnetwork after
creating a new revision of A2 v1 .

Figure 4.4: CoVer revision proliferation example.

68

Revision proliferation (i.e. the creation of wmecessary revision objects) occurs when

the client elects to create a new revision of A2, shown as 'A2 v2' in Figure 4.4(b). In

order to maintain the connections within the hypertext subnetvvork new revisions of

link LI and composite CI are automatically created . 'LI \'2' is necessary to connect

new 'A2 v2' to existing 'AI vI', and 'CI v2' is needed to contain the new structural

arrangement. However the automatic creation of the new objects should not really be

necessary since the only difference between the old and new revisions is that the new

revisions now reference 'A2 v2' instead of 'A2 vI'. No worthwhile object content

update has taken place.

TIle designers of the CoVer system have devised their own system to tackle the

problem of revision proliferation. TIlis is by CoVer only recording explicit revisions

and omitting implicit revisions. Explicit revisions are the new revisions deliberately

intended by the client, e.g. 'A2 v2' . Implicit revisions are the new revisions

automatically created as a side-effect of creating the explicit revisions, e.g. 'CI v2' and

'Ll v2'.

The CoVer solution is shown in Figure 4.5. This time only the version sets of the

revision objects of Figure 4.4 are shown. Figure 4.5(a) shows the state of the version

set of composite CI both before and after node A2 has been modified (previously

indicated by Figures 4.4(a) and (b)). The ellipse d epicts the version set of composite

Cl. The entity within the version set marked Explicit-VI indicates that the version set

only comprises vI of CI and is an explicit object. The explicit entity contains the

version sets of AI, Ll and A2. Version Set CI also possesses a task log. It records

within which task the explicit object vI of CI was created.

69

Task Log Task Log
{E-V1} T1-1 I T1-1 {E-V1}

T2-1 {E-V2}

(a) Version set of composite C1 . (b) Version set of node A2.

Figure 4.5: CoVer revision proliferation solution.

Figure 4.5(b) shows the CoVer representation of A2 after it has been modified. A2's

version set (the eWpse) comprises two revisions. The task log indicates that the first

revision of A2 (Explicit-VI) was created as part of task TI-I, i.e. at the same time as

'CI vI'. The second revision (Explicit-V2) was created as part of later task T2-I.

The implicit revisions (i.e. 'LI v2' and 'CI v2') generated by the creation of explicit

revision 'A2 v2' can be calculated by combining the task log data, explicit objects and

making certain versioning asswllptions. The assumptions are that when the content

of a composite is changed, a new revision of it will be created; and that when the

endpoint of a link is changed, a new revision of that link will also result.

Therefore in order to swap 'A2 v2' in place of 'A2 vI', the following assumed

versioning actions occur: 'LI vI' is updated to enable it to reference a new revision of

A2, and 'CI vI' is updated so that it contains new revisions of A2 and Ll.

However this solution does not completely eradicate the problem of revision

proliferation. This is because the implicit objects (generated as a result of revision

proliferation) are still necessary in order to describe the state of the hypertext

subnetwork after 'A2 v2' has been created. Instead the CoVer solution only saves on

the storage of implicit objects. But this is at the expense of having to implement a

much more complicated scheme that just reproduces the implicit objects whenever a

client wants to explore the state of composite CI when it contains 'A2 v2' .

Furthermore the CoVer explicit object solution also makes pattern matching more

complicated to perform. For example in order to match a hypermedia pattern against

all structures stored by the CoVer hypermedia system, then CoVer must wldergo the

complicated process of re-building each and every hypermedia structure based on

the explicit object and task log data in order to carry out such a comparison.

70

Section 10.6.1 presents the OCS data model solution which eradicates the revision

proliferation problem as depicted within the CoVer paper.

4.6.3. HyperProp

The developers of the Nested Composite Model also recognised the dangers of

revision proliferation [Soares et al. 1993b]. In this case the problem manifested itself

when an attempt is made to modify a frozen node which is a member of one or more

frozen nested composites. Usual versioning policy dictates that new revisions would

be created of all the nested composite nodes, but a potentially large number of

undesirable (and seemingly unnecessary) nodes would result.

Figure 4.6 illustrates the problem. The initial hypertext network is shown in Figure

4.6(a) where node 'D vI' is contained by User Context Nodes 'E vI', 'B vI' and 'F vI';

'E vI' is also contained by 'C vI', and 'B vI' is contained by 'A vI'. The problem is that

the creation of revision 'D v2' leads to the generation of five new User Context Nodes

as shown by Figure 4.6(b).

C v1 A v1 F v1

(a) Initial hypertext network.

C v1 C v2 A v1 A v2 F v1 F v2

,,+ ___ contains

o v1 0 v2

(b) Revision proliferation caused by
creating a new revision of 0 v1 .

relationship

Figure 4.6: Revision proliferation in NCM.

C v1 A v1 F v1

(a) Initial hypertext network with
highlighted current perspective.

71

C v1 C v2 A v1 F v1

o v1 0 v2

(b) Propagation Guided By Perspective solution
when creating a new revision of 0 v1.

Figure 4.7: Propagation Guided By Perspective.

The solution by the NCM versioning model is to limit, but not eradicate, the amowlt

of revision proliferation that takes place. This is by a technique called "Propagation

Guided By Perspective" . It allows users to restrict revision proliferation to only those

User Context Nodes that belong to the perspective5 through which the new revision

was created. Figure 4.7(a) shows an example where the current perspective is '0 vI' ,

'E vI' and 'C vI'. Figure 4.7(b) shows the results of applying Propagation Guided By

Perspective where only new revisions of 'E vI' and 'C vI' are created.

Section 10.6.2 illustrates the OCS data model solution which, unlike the NCM

solution, offers the opportunity to eradicate the revision proliferation problem

depicted by Figure 4.6.

4.7. Summary

This chapter has provided background to h ypermedia versioning. This is to set the

scene for the OCS data model's approach to versioning hypermedia structure

(Chapters 9 and 10).

Selected within this chapter has been a range of h ypermedia systems that offer

different approaches to versioning. For example the use of a separate versionin g

server (CoVer, HVCF), systems that version nodes not links (HyperPro, HyperProp),

5 This is the route chosen by the user from th e top-most composite down to the node being

manipulated .

72

systems that version links not nodes (Chimera), systems that version nodes and links

(HVCF), and systems that version nodes embedded with links (Delta V).

Also examined has been the problem of revision proliferation. Different systems

(CoVer and HyperProp) have been identified that have devised their ovvn strategies

for dealing with the problem of unwanted object revisions. Chapters 9 and 10 also

explain the OCS data model's own solution for the revision proliferation problems

encowltered by these systems.

Chapter 5.
Referential Integrity
Background

5.1. Introduction

73

This chapter explores the background to hypermedia referential integrity. This is the

reliability of the references between objects of a hypermedia system. It is under

investigation since a major benefit of the OCS data model is that it enhances the

manner by which the referential integrity of hypermedia structure objects can be

maintained (Chapter 11).

This chapter mainly concentrates on hypertext link referential integrity solutions for

the navigational domain. This is because most hypermedia research has focused on

this area since the majority of hypermedia systems specialise in this domain.

Moreover, the general popularity of the Web has increased awareness of the need for

link maintenance (of the navigational domain variety) even more so.

5.2. Importance of Referential Integrity

The role of hypermedia structure is to COlmect resources together. Hence referential

integrity is a big issue as the success of hypermedia (as a concept and in practical

application) is dependent on resource references pointing to the correct resource.

Broken referential connections present a problem for three primary reasons [Ingham

et al. 1996]:

1. Annoyance for the user attempting to follow the reference to the resource.

2. Results in a tarnished reputation for the reference supplier (i.e. the individual

who offered the reference for traversal).

3. Possible lost opportunity for the owner of the resource pointed at by the

reference.

74

5.3. Forms of Broken Hypermedia Structure

There are essentially four forms of broken hypermedia structure. These are dangling

hypermedia structures, specious hypermedia structures, misaligned internal

references, and broken internal routes.

Although this section is couched in terms of generic broken hypermedia structures

each one can also be translated in respect of broken hypertext links of the

navigational domain. This is useful because it is usually in terms of hypertext links

that these hypermedia referential integrity problems are considered.

5.3.1. Dangling Hypermedia Structures

Dangling hypermedia structures occur \,,,,hen a hypermedia structure no longer

references a valid resource [Davis 1995b; Ashman 2000a]. This may be caused by one

of two reasons. The first is that the referenced resource has been deleted. The second

is that the characteristics, upon which the hypermedia structure identifies the

referenced resource, have been changed. For example a World Wide Web hyperlink

may dangle if the destination document is moved to a new location and the link

(embedded within the source document) is not updated to reflect the destination's

new locality.

5.3.2. Specious Hypermedia Structures

Specious hypermedia structures occur when a different resource is moved to the

same location as an existing resource. The result is that any hypermedia structure

that referenced the original resource will now point at the wrong resource.

5.3.3. Misaligned Internal References

Misaligned internal references occur when a hypermedia structure points to the

incorrect content within a given resource. This is also known as 'the content

referencing problem' or 'the editing problem' [Davis 1998]. Misaligned internal

references can occur when the referenced resource's content has been edited. For

example a navigational hypertext link may point specifically to the second paragraph

of a given document, but the content of that paragraph may later be moved to

another area of the document. However if the anchor remains pointing to the second

paragraph, the link's anchor will now be pointing at the wrong internal content.

7S

In a sense misaligned internal references are an implicit form of specious hypermedia

structure. This is because both types of hypermedia structure are broken as a result

of them referencing the wrong location within a given resource. In the case of

specious hypermedia structures, the broken structure is clearly pointing at the wrong

internal content since it is referencing the wrong node resource. Therefore the

distinction between the two types of broken hypermedia structure (specious and

misaligned internal references) is based on the cause that leads to the structure

breaking. For specious hypermedia structures, the cause of the break is because the

entire content has moved to another location. For misaligned internal references, the

cause of the break is because the referenced resource's content has been edited.

5.3.4. Broken Internal Routes

'Broken internal routes' (within a hypermedia cormection) are a fourth Jesser-known

form of broken hypermedia structure. They occur when a hypermedia structure

contains more than one internal route and one of those internal routes breaks in such

a manner that its direct repair has an adverse effect on any other wlbroken routes

within the same hypermedia structure.

Figure 5.1 shows an example of a hypermedia structure containing more than one

internal route. The first route expresses 'Trees Grows Leaves'. It is composed of

objects Nl, AI, El, Ll, E2, A2 and N2. The second route shows 'Trees Grow Acorns'.

It is composed of objects Nl, AI, El, Ll, E2, A2 and N3.

Figure 5.1: Hypertext link containing two internal routes.

Figure 5.1 can be used to provide an example of a broken internal route. For instance,

the content of the 'Acorns' document may have been modified in such a way that

76

Anchor A2 now points to incorrect content within the 'Acorns' document. Thus the

link now contains broken internal route N1 through to N3. This internal route is

broken because it requires Anchor A2 to be updated. But the internal route Nl

through to N2 is not broken as it does not require Anchor A2 to be updated. The

process of and the implicatjons arising from repairing the broken internal link of the

example of Figure 5.1 form the subject of Section 6.5.

In the meantime, the problem of broken internal routes will not be discussed again in

this chapter as little (if any) research has been conducted on them. But it is a problem

that is directly relevant to the OCS data model, hence it is expanded upon in much

greater detail in Section 6.5. Furthermore, Chapter 11 discusses the OCS data model

solution to this problem.

5.4. Link Repair Strategies

This section lists some of the researched solutions into maintaining hypertext link

integrity. [Davis 1998] and [Ashman 2000a] provide an exhaustive list of link

maintenance solutions. What is clear is that there is no ultimate one-size-fits-all

solution.

5.4.1 Passive Approach

This is the "Do Nothing" approach. Users making links to resources beyond their

control (as is often the case when linking to World Wide Web documents) usually do

so in good faith. It is not generally expected that resources will change significantly.

Therefore it is hoped that links will not break very often.

5.4.2. User Onus

The most straightforward method for detecting and repairing broken hypertext links

is to make it the responsibility of document owners to manually maintain their own

links [Davis 1998]. Hence each document owner must continually check that their

links reference a valid document (to avoid dangling links), that they reference the

correct document (to avoid specious links), and that they point to the correct data

within the referenced document content (to avoid anchor misalignment links).

The problem with this solution is that it places too much emphasis on user effort. The

repetitive and time-consuming nature of these manual traversals almost certainly

77

means that users will not continue indefinitely v,7ith this link repair strategy [Fielding

1994].

5.4.3. Tightly Coupled Link Repair

Hypermedia systems that control access to both the links and nodes can enforce

rigorous referential link integrity. This enables detection and repair of dangling,

specious and anchor misalignment links.

Hyperbase Management Systems (HBMSs) are an example of an open hypermedia

approach to tightly coupled link repair as all access to node data is conducted via the

hyperbase. Therefore whenever a document is manipulated the HBMS can ensure

that their links remain valid. However the problem \'I'ith this approach is that any

external tool wishing to access a document of the hyperbase will have to be adapted

to negotiate this transfer with the hyperbase.

Tightly coupled systems have also been devised for the Web. The Atlas distributed

hyperlink database system [Pitkow and Jones 1996] is one example. It works by

assigning an Atlas Server to each Web server. The Atlas Server's role is to record a

back link between all source and destination documents into a local database. When

a destination document is modified, the Atlas system that records that destination

document's back link, queries the local database for broken links. If found, that Atlas

system then informs the source document's Atlas system to repair any links broken

at the source end. Again the problem with this approach is that all the tools used for

modifying documents must be adapted to communicate with the Atlas database.

5.4.4. System Tools for Pro-Active Users

Another range of link maintenance solutions is for the hypermedia system to provide

tools that enable pro-active users to maintain the integrity of their hypertext links.

5.4.4.1. Forward References

Forward references [Ingham et al. 1996] are one of the simplest tools that Web page

publishers have at their disposal. They correct dangling hyperlinks caused by

documents moving to new locations. A forward reference consists of a dummy

document being placed at the old document location which contains a link pointing

to the document's new location. Forward references are only meant as a temporary

solution whilst users update their hyperlinks to point to the new document location.

78

The problem is that it can never be knovvn whether all users have updated their

browsers to point to the new URL. This means it can never be known whether it is

safe to remove the forward reference.

5.4.4.2. Link Integrity Checkers

Link integrity checkers can greatly automate the link integrity inspection process

[Davis 1998]. Examples include spiders, robots and crawlers. Their primary purpose

is for detecting and possibly repairing dangling links.

Web link integrity agents traverse the hypertext structure by retrieving documents to

check their existence. They then recursively retrieve all other documents referenced

by the checked documents to make sure that they exist too; and so the agent

continues. If it is found that one or more documents are missing, the agent can either

report this fact to the appropriate user (the method adopted by MOMSpider

[Fielding 1994]) or attempt to perform link repair itself (the method preferred by the

CLT/WW [Creech 1996]).

Link integrity agents are also employed for independently stored OHS links. These

agents iterate over and test the links held at centralised link databases. They can also

test for specious and anchor misalignment links if the link database records the last

modification date of each document and the last modification date of the links that

reference them. If the document was modified after the last time its links were

modified, then the referenced document has either been swapped for a new

document or its contents have been changed. Hence the link endpoints may no

longer point to correct document content. The OHS can then wam the link holder of

these potential dangers. Microcosm is an example of an OHS that implements such a

scheme [Zhang et al. 2004].

The problem with link integrity checkers is that they are often reduced to little more

than waming beacons. Either the agent cannot update links embedded in the

document (since they are not its owner), or it does not know how to repair the broken

link. For example if the document contents have been changed, then the link integrity

agent will probably not know where to re-position the link endpoints within the

modified document content.

79

5.4.5. Just-In-Time Link Repairs

Just-In-Time link repair schemes are so called, because they identify and repair

anchor misalignment links just at the time when a document is about to be viewed

[Vanzyl et al. 1994; Davis 1999]. They are used when links are stored separately from

document content.

To carry out Just-In-Time link repair the link server must record a copy of the content

at or around the anchor (of the link pointing at specific document content) at the time

when the anchor is created. When the document is opened for viewing, the

application can then examine the content pointed at by the anchor to check whether

it is the same as that expected. If not, then a search algorithm can be executed in

order to locate the correct content. The new anchor can then be written back to the

link database.

The advantage with Just-In-Time link repairs is that documents may be edited by any

application without needing to directly refer to the link service. But the disadvantage

is that link repair can only be handled by the application, not the link server, since

the representation of the offset of the anchor is opaque to the link service. This means

that all viewing applications must be adapted to perform Just-In-Time link repair.

5.4.6. Preventing Broken Links Altogether

Some link maintenance solutions focus on preventing hypertext links from becoming

broken in the first place.

5.4.6.1. Publishing Model

The Publishing Model permits hyperlinks to be made solely to read-only media

[Vanzyl et al. 1994; Brush 2002]. TI1is solves all dangling, specious and anchor

misalignment problems as referenced documents cannot be deleted, moved or their

contents changed. But it is an unrealistic general proposition to assume that

documents will never change.

5.4.6.2. Hypertext Link Queries

Another option is to do away with the notion of static hypertext links altogether.

Instead hypertext links can be expressed as queries in order to identify the document

itself. Such link queries are commonly found on the Web used to create virtual

80

documents - documents compiled at runtime comprised of different document

segments originating from different locations. This addresses dangling links caused

by document movement. But if the destination document is deleted, then the link

will continue to dangle.

5.4.6.3. Declarative Links

Declarative links [Davis 1999] do not represent link anchors as specific points in

document content. Instead the user selects an area of document content and asks the

system if there is more information about that particular content segment. An

example of a declarative linking scheme is Microcosm generic links (Section 2.12.3).

They match any occurrence of a given text string within any document.

TIle advantage with declarative links is that start anchors are relatively easy to

implement. For example a user selection of text can be dispatched to the link service,

which queries if any links exist that match this content that can be followed from the

given context. But declarative end anchors are comparatively more difficult to

implement since the scope over which documents to search for finding all

occurrences of some given content may be left undefined. Thus the time to resolve

such a query could be very large indeed.

5.4.6.4. Dynamic Links

Dynamic links [Ashman et al. 1997] are created at run-time as and when they are

needed. Dynamic links are created by executing a link computation specification.

TIl is is a set of instructions that describe a range of attributes that if present within a

document's content enable that document to participate within the dynamic link.

Dynamic links are neither permanently stored in link databases or embedded within

documents. Instead, the results of the dynamic computation are discarded after use.

TIlerefore if the dynamic links are needed again, they must be re-computed.

An example of a useful application for dynamic links is a dictionary link where links

can be formed between any occurrences of any English word to its dictionary

definition. The text object is the source of the link, and the retrieved data is the

destination. TIle dictionary link can be invoked on almost 100% of words within a

given text document. Thus the dictionary link is most economically implemented as

a dynamic link since the dictionary link type can potentially create a large number of

links, most of which will never be used.

81

Dynamic links improve referential integrity due to them not being stored anywhere

within the hypermedia system, this means that individual hypertext links do not

need to be maintained. Consequently no dangling, specious or anchor misalignment

links should occur. This is possible since dynamic links are not instantiated until the

moment of use. At this point the computation (upon execution) can adapt its record

of the links' source and/or destination references as a result of any changes to the

data it is about to create links between.

However a major drawback with dynamic links is that they are computed. The

problem being that hypertext link relationships are often a personal choice that

reflects the personal associations made by an author. Thus it is typical that many

links will not be able to be computed using a set of rules or algorithms. Hence

dynamic links are often not a suitable method for authoring hypertext links.

5.4.7. Prevention via Versioning

Hypermedia versioning (Chapter 4) is another effective solution for maintaining the

referential integrity of hypertext links [0sterbye 1992; Vitali 1999]. It is the most

important referential integrity solution as regards the OCS data model since a key

benefit of the OCS data model is that it improves hypermedia versioning (Chapters 9

and 10).

5.4.7.1. Versioning Hypermedia Documents

Versioning just hypermedia documents can prevent all three link maintenance

problems. It solves the problem of anchor misalignment links since document

content cannot be changed. Therefore all existing link endpoints will continue to

point at the same anchor hotspots. It prevents dangling links because versioned

documents cannot be deleted. And it prevents specious links because versioned

documents cannot be swapped for other documents in their place.

However versioning does bring disadvantages. Firstly, there will be many more

documents and links to manage. Not only will new revisions of documents be

created whenever a document is modified, but new copies of links will also be

created to reference the new document revisions in order to maintain the same inter­

document relationships as the original document revision. And secondly there is

extra overhead when links are stored separately. This takes the form of an additional

attribute that must be appended to each link anchor in order to identify to which

revision of the document a given link belongs [Davis 1998].

82

5.4.7.2. Versioning Hypertext Links

Versioning hypertext links can help referential integrity when links are stored

separately from document content. TI1is is because there is a danger that changing

the content of the individual hypermedia objects that make up a hypertext link (or

even deleting them) can cause link breakage. For example dangling links can arise if

one or more of the objects within a link are deleted, or if the document location

details stored by the link's hypermedia objects (e.g. OHP-Nav Node or FOHM Data

objects) are changed. There is also a danger of anchor misalignment links occurring if

the anchor identification content recorded within a link is amended to point to a

different area within a document when no document content has actually been

changed.

Such link breakages can be prevented if links are versioned whereby any alterations

to a link lead to the existing link being preserved and a new revision of the link being

created containing the new linking data. But hyperlink versioning cannot correct

specious links. If a document has been moved to the same location as an existing

document, then the versioned link will still point to the newly positioned document

rather than the original at the new location.

5.4.7.3. Versioning Hypermedia Documents and Hypertext Links

Versioning both hypermedia documents and separated hypertext links together can

further improve the referential integrity of links between documents.

The danger with versioning documents alone is that the existing unfrozen links (that

reference the original document) may be overwritten with new reference data so that

they point at the new document revisions instead. TIms the original frozen document

revisions may no longer be linked. If the hypertext links were versioned too, then

new revisions of the existing links referencing the original document would be

created at the same time as a new revision of the document was created. Hence both

original document and referencing links would be preserved.

The disadvantage with this combined approach is that it combines the disadvantages

of both separate versioning schemes, i.e. many more documents and links will

probably end up having to be managed. Thus consideration has to be given as to

which document and link changes should lead to new revisions as, like with the

separate schemes, it is unreasonable to expect every single document and link change

to be recorded.

83

5.5. Summary

The focus of this chapter has been existing research on hypermedia referential

integrity. This is to aid understanding of how the OCS data model can improve the

referential integrity of hypermedia connections (explained in Chapter 11).

Three forms of broken hypermedia structure are the most prevalent: dangling,

specious and misaligned intemal references. TI,e most and current research centres

on hypertext link maintenance for the navigational domain. Therefore these research

solutions have been the main preoccupation of this chapter.

What is evident is that there is no ultimate solution to the broken link problem.

Instead a range of solutions has been developed. They include:

• Do nothing and hope that the links won't break.

• Assume that the users, who will be the victim of any broken links, are sufficiently

meticulous to routinely check their links for breakages.

• Use tightly coupled link repair schemes. These control access to both links and

nodes which enables rigorous referential link integrity to be enforced. Examples

include HBMSs.

• Encourage the owners of the documents that have caused links to break to adopt

a pro-active approach. This can range from forward references to link integrity

checkers.

• Perform Just-In-Time link repair whereby broken link detection and/or link

repair is carried out just at the moment when the link is about to be called into

use.

• Adopt measures that prevent hypertext links from breaking in the first place.

This can include adopting the Publishing Model, representing hypertext links as

queries, or using declarative links.

• Version all hypermedia documents and/or hypermedia links.

It is the last solution that is of most interest since the OCS data model benefits and

provides an environment for hypermedia structure versioning. Thus the OCS data

model widens the scope for using versioning as part of a referential integrity solution

for hypermedia structural resources.

84

Chapter 6.
Problem Domain Issues

6.1. Introduction

As reported in Chapter 3 it was in developing the Solent CB-OHS and

experimentation with versioning FOHM structures that inspired conception of the

OCS data model. Four problematic issues arose as a result of this work:

PDl: The use and storage of hypermedia objects that carry out the same

function.

PD2: The use and storage of identical hypermedia structure.

I PD3: The dangers of revision proliferation.

PD4: The confusion caused by repairing broken internal routes.

This chapter details the exact nature of these problems, for it was to address these

issues that led to the development of the OCS data model.

6.2. Issue One: Repetitive Hypermedia Objects

Experimentation with the Solent CB-OHS and Auld Linky revealed that m an y of the

hypermedia objects that belonged to different hypermedia structures actually

fulfilled the same role as one another.

6.2.1. Repetitive Hypermedia Objects in OHP-Nav

Figure 6.1 displays three OHP-Nav hypertext links, man y of whose hyp ermedia

objects perform the same role. Such objects are indicated by being cOlm ected together

by thick grey lines with circles at each end. It is even possible that some 'identical'

objects exist within the same hypermedia structure, an example of which is indicated

85

by Endpoints El and E2 both specifying a bi-directional value within the hypertext

link denoted by Ll.

L1 L2 L3

Figure 6.1: OHP-N av hyperstructures containing 'identical' hypermedia objects.

As a remin.der to the reader, Table 6.1 pinpoints which hypermedia objects of Figure

6.1 carry out the same function. Section 3.2.3 describes the roles performed by each of

the individual hypermedia objects that make up OHP-Nav hypertext links.

Object Function

Link objects L2 and L3 Describe the same link type (Drives).

Endpoints E3 and E5 Specify the same direction (Source).

Endpoints E4 and E6 Specify the same direction (Destirlation).

Endpoints E1 and E2 Specify the same direction (Bi-Dir).

Anchors AI, A2 and A4 Point to the whole resource.

Anchors A3 and A6 Point to the same hotspot (Chapter 2).

Nodes N2 and N3 Point to the same document (Woman) .

Table 6.1: Hypermedia objects of Figure 6.1 performing the same function .

Because the objects of Table 6.1 appear identical in their functionality, it would seem

sensible to be able to re-use a single copy of each object where that object's

functionality is duplicated elsewhere. For example use a single 'Drives' Link object in

place of L2 and L3; or use a single 'whole resource' Anchor object in place of Anchors

AI, A2 and A4.

However, despite some of those objects seemingly sharing the same role, they cannot

be considered identical due to the manner by which OHP-Nav organises structure.

This is because each object is embedded with the different identifiers of the objects to

which they are associated in the linked-list fashion described in Section 3.2.5. For

86

example Anchor Al is embedded with Node Nl 's object identifier; Anchor A2 is

embedded with Node N2's object identifier; and Anchor A3 is embedded with Node

N3's object identifier.

TIle result is that neither Link objects, Endpoints or Anchors can be re-used as

independent entities. TIlis is for two reasons.

1. Single functionally identical objects may have different content because they are

embedded with different object reference identifiers within their content. Hence

one functionally identical object cannot be directly swapped for another. The two

hypermedia objects L2 and L3 provide a good example of this problem. TIley are

both functionally identical since they both describe a 'Drives' relationship. But

they actually have different content from one another as each Link object is

embedded \'\'ith different connection data. E.g. L2 is embedded with connection

data pointing to E3 and E4; and L3 is embedded with connection data pointing to

E5 and E6. TIlerefore even though both L2 and L3 are functionally the same, they

cannot be swapped with one another because they are still physically different

from one another due to embedded content.

2. The linked-list nature of object reference embedding means that each object type

can only be re-used in association with the objects it references. A Link object can

only be re-used with the Endpoints it references; Endpoints can only be re-used

with the Anchors they reference; and Anchors can only be re-used with the

Nodes they reference. Hence neither object type can be used as a single object.

For example if wanting to re-use Endpoint El (of Figure 6.1) then it can only be

re-used in conjunction with Anchor AI, and Anchor Al can only be re-used in

conjunction with Node Nl.

TIle only OHP-Nav object types that can be re-used as independent entities are

Nodes. TIlis is because they do not contain an embedded reference to another object

type. Figure 6.1 contains an example of two Nodes (N2 and N3) that are functionally

identical. Hence the two structures denoted by Link objects L1 and L2 can be re­

organised to share a single copy of the 'Woman' Node. This new arrangement is

shown in Figure 6.2. Node N3 has been eliminated, and Anchors A2 and A3 now

jointly reference N2.

87

L1 L2

Figure 6.2: Node re-use in OHP-Nav.

As demonstrated, the opportunity for individual object re-use within the OHP-Nav

data model is very limited. For example Table 6.1 shows that there is scope for re­

using 7 individual objects within the three hypertext links of Figure 6.1. This would

eliminate the need for 8 (repetitive) objects. But all the OHP-Nav data model can

allow is the re-use of one object, N2, which has meant that only one other object, N3,

can be deleted.

6.2.2. Repetitive Hypermedia Objects in FOHM

Re-use of individual objects within FOHM is also largely ruled out. This is due to

either the wholesale embedding of one FOHM object within another, or the

embedding of object references within FOHM objects. The reader is reminded of the

roles performed by each of the individual objects that make up FOHM structure by

referring to Section 3.3.4.

Object embedding prevents re-use of the embedded object as a single object since its

re-use also necessitates re-use of the containing object as well. This particularly

applies to Binding objects as they are always embedded within an Association object.

Thus they can never be re-used as single objects. Embedded Bindings also means that

Associations cannot be re-used as single objects since all embedded Bindings within

an Association will automatically be re-used along with the Association itself.

Furthermore, Reference objects cannot be re-used as single objects as any embedded

Data or Association objects (within the Reference object), or Data or Association

objects pointed at by the Reference object's embedded references, will be re-used too.

Likewise, Data objects that are already embedded within Reference objects cannot be

88

re-used as single objects as they cannot be re-used without the containing Reference

object.

However there is one exception. Data objects which are not embedded in Reference

objects can be re-used as single objects since FOHM Data objects do not contain

embedded references to other object types nor do they contain embedded objects.

Figure 6.36 provides an example of the difficulty of re-using single FOHM objects

which appear to contain identical functionality.

B1
Binding embedded ~
within Association

Data object
embedded within

Reference

A1 A2

Figure 6.3: Two FOHM hyperstructures containing 'identical' hypermedia objects.

Three examples of single object re-use failure within Figure 6.3 are noticeable:

1. Despite Bindings BI and B2 being fwlctionally identical to B3 and B4, each

Binding cannot be re-used in place of the other because the Bindings are wholly

contained within their associated Associations. Hence each Association (AI and

A2) would have to be re-used too.

2. References RI through R5 can also be considered functionally identical since they

all describe 'whole resource' References. But they still cannot be re-used in place

of one another. RI cannot be re-used, because it contains embedded object D1.

Hence RI cannot be re-used without also re-using DI, the problem being that R2

to R5 do not contain any embedded Data objects. Furthermore, objects R2

through R5 cannot be re-used in place of one another as single objects because in

each case it would mean re-using the objects they reference, i.e. objects D2

through to D5.

6 One object being embedded within another is shown by th e two objects touching each other

such that the top object is the containing object and th e object immediately below is the
contained object.

89

3. Even though Data objects 01 and D3 are functionally identical (i.e. they describe

the same content), they still cannot be re-used in place of another. This is because

they are structurally different - one is an embedded object whilst the other is a

referenced object. As a consequence Data objects 01 and 03 are actually stored

twice in their different manifestations. The data within Dl is stored as embedded

content within object R1 since D1 is embedded within R1; and object D3 (not

embedded within a Reference object) is stored as an individual object.

Once again, as was the case with OHP-Nav, the opportunity for individual object re­

use is severely limited. This time it is due to object reference embedding combined

with the practice of embedding entire FOHM objects within one another.

6.2.3. Dynamic Linking

Dynamic linking (Section 5.4.6.4) offers a potential solution to the problems posed by

embedded object references.

Generally they are used within the field of navigational hypermedia to connect

document node resources together. As described in Section 5.4.6.4 dynamic links rely

on computation specifications, executed at rW1-time, to identify which documents are

to be connected together.

The reason why dynamic links can help with the problem of hypermedia object

reference embedding is because these types of links are not stored anywhere within

the hypermedia system. Instead, they are dynamically created and discarded after

use. Therefore if there are no hypertext links within the system, then there are no

hypermedia objects. If there are no hypermedia objects, then there are no embedded

object references. Thus with the removal of permanent hypertext links within the

hypermedia environment, there is no longer a hypermedia object organisation

problem that needs to be solved through adopting the OCS data model.

However, as also explained in Section 5.4.6.4, the use of dynamic links to connect all

documents together within the hypermedia environment is neither practical nor

realistic. This is because link relationships are often a personal choice that reflect the

personal associations made by an author. In most cases such personalised links

CaJU10t be computed based on a set of rules. Consequently most hypertext links

remain haJ1d-made and the problem of embedded hypermedia object references

remains.

90

6.2.4. Repetitive Hypermedia Object Problem

There are two reasons ,'vhy repetitive hypermedia objects within hypermedia

structure are flagged as a problematical issue.

1. Storage Space. It is a waste of resources to store duplicate objects. Moreover the

greater the number of objects in storage, then the more objects there are to search

through. Thus it will take longer to locate relevant objects. If multiple objects are

being dispatched across a network, but more than one are 'identical', then more

objects will be sent than is really necessary.

2. Open Hypermedia. Embedded hypermedia object references mean that single

hypermedia objects are not open to re-use. This is because each object can only be

used in conjunction with the objects to which it is physically attached.

6.3. Issue Two: Repetitive Hypermedia Structure

When creating structures with the So lent CB-OHS and Auld Linky it was often

observed that the segments of one structure were found repeated within other

independent structures. Therefore it seems intuitive that such repetitive structure

segments should be able to be re-used within the same or between different

structures.

6.3.1. Repetitive Hypermedia Structures in OHP-Nav

Figure 6.4 shows two OHP-Nav hypermedia structures. The only differences

between them are the destination Nodes: Hyperlink A has 'Meat' as its destination,

whilst Hyperlink B has 'Fish' as its destination.

91

Hyperlink A Hyperlink B

Figure 6.4: Example of a repetitive segment in two hypermedia structures.

Both hypertext links contain functionally identlcal segments that represent the same

relationship, namely that 'Cats Eat' something. This common relationship is indicated

by both segments being highlighted within Figure 6.4. It therefore seems logical to re­

use the highlighted segment of Hyperlink A in place of the highlighted segment of

Hyperlink B such that connected objects Nl to A2 replace N3 to A4. But a direct

swap is not possible due to OHP-Nav embedded object references for n"TO reasons.

The first reason is because Anchors contain embedded references to Nodes. This

means that in order to make A2 reference N4, then A2's content (i.e. its embedded

reference) needs changing. But making such changes will prevent that same structure

from being re-used at its original location. For example if Hyperlink A's re-used

segment was changed to reference N4, then when the segment is once again used in

relation with HyperIink A, the segment's destination will now point to 'Fish ' Node

N4 instead of 'Meat' Node N2.

The second reason is because the re-use of Hyperlink A's highlighted segment would

also necessitate the re-use of Node N2. TI1is is because A2 contains an embedd ed

object reference that points directly at N2. TI1e problem is that N2 is not meant to be

part of the re-used segment. Hence this particular highlighted segment cannot be re­

used on its own. If re-use were to proceed anywa y, then the wrong structural

organisation would result, namely that 'Cats Eat Meat and Fish' (Figure 6.5). This is

not the intended structural organisation for Hyperlinks A and B as the two

relationships are meant to be recorded as separate structures.

92

N4

Figure 6.5: The wrong structural organisation: 'Cats Eat Meat and Fish' .

However, OHP-Nav does enable a limited form of structure segment re-use. As

indicated by the 'Cats Eat' relationship example above, any structure segment

wanting to be re-used must pass two tests:

1. No segment objects must contain references to objects outside of the re-used

segment.

2. The segment objects must not be changed in order to be re-used.

The result is that all re-used structure segments will comprise at least one Node

object since Nodes are the only object type that do not contain embedded references

to other objects. The only Anchors permitted within re-used structure segments will

be those whose embedded references point at existing Nodes within the structure

segment. This is to ensure that rule 1 is never violated. Likewise, if the structure

segment also contains Endpoints, then their embedded references must also point at

existing Anchors of the structure segment. And if the structure segment contains any

Link objects, then their embedded references must also point at existing Endpoints

within the structure segment.

With these restrictions in mind, OHP-Nav only allows a limited number of re-usable

structure segments to be created within Hyperlink A. They are:

• N1 on its ovvn.

• N1 and AI.

• N1, A1 and E1.

93

• N2 on its own.

• N2 and A2.

• N2, A2 and E2.

• NI, AI, EI, LI, E2, A2 and N2.

However setting OHP-Nav's limitations aside, there are many more potentially re­

usable structure segments that exist within Hyperlink A. This includes a Node-less

'Eat' relationship comprising AI, EI, LI, E2 and A2. Such a relationship could be

applied to an altogether different set of Nodes, for example to create 'Birds Eat

Worms'. Thus there exists a Boolean algebra of possible arrangements, including

things that 'Eat Meat' and 'Eat Fish'. But OHP-Nav does not permit such

arrangements because Al and A2 are embedded with references to Nodes NI and

N2 which would have to be re-used as well.

6.3.2. Repetitive Hypermedia Structures in FOHM

The opportunity for repetitive hypermedia structure segments appearing within

FOHM structures is even more striking. This is because the same substructure

segment may be repeated more than once within the same hypermedia structure

itself. Such a situation is possible due to FOHM Reference objects being able to

reference Association objects. The result is a potential for very large structures.

Figure 6.6 shows an example.

94

A1

Figure 6.6: FOHM hyperstructure containing repetitive structure.

Figure 6.6 shows two highlighted segments which are sh'ucturally identical as all

objects within both segments perform the same roles and are connected to one

31lother in the same fashion. Yet they are not considered the same. This is because

each object is embedded with the different identifiers of the objects to which they are

attached (in a linked list fashion). For example Binding B3 is embedded with object

identifier R3, whilst the seemingly identical object Binding B6 is embedded with

object identifier R6. Consequently the two hypermedia substructure segments are

two separate entities consisting of separate objects and connections.

The reason why the two segments cannot be re-used in place of one 31lother is due to

the connections that the repeated substructures have with objects external to the

repeated segments. If the first segment were re-used at the position of the second

segment, then the incorrect structural formation of Figure 6.7 would result.

95

Of note is the confusing role of object R5 which re-attaches itself back into the re-used

segment. The original role of R5 (when the two segments are separate) is to point to

object A3 of the second segment. But segment re-use means that A2 now replaces A3.

Thus the new role of object R5 is to point to A2 (as well as taking on the role of RS

which points to D6). Thus the overall result is an erroneous loop within the structure

which produces the wrong structural formation .

A1

Figure 6.7: Incorrect re-use of hypers tructure segment.

However, like OHP-Nav, FOHM does offer limited re-use capability which enables

certain structure segments to be re-used. For example the original FOHM

h yperstructure of Figure 6.6 could be re-organised to incorporate the re-used

structure segments comprising R3, R4, 02 and 03. TI1is is shown in Figure 6.S. Such

re-use is possible because FOHM References can be referenced by multiple Binding

objects. Hence Binding B6 can connect to Reference R3, and Binding B7 can C01U1ect

to Reference R4.

96

A1

Figure 6.8: Possible FOHM structure segment re-use.

However this solution is not as efficient compared with re-using the original

highlighted segment of Figure 6.6 since objects A3, B6, B7, BS and RS are still not

being re-used. Moreover the structure designer may actually want the structural

layout of Figure 6.6 since it provides a clearer representation of the structure. I.e. the

overall hypermedia structure is effectively divided into three separate segments

which may be considered easier to create and maintain compared with the more

complicated re-use scheme of Figure 6.S.

6.3.3. Repetitive Hypermedia Structure Problem

The inability to re-use hyperstructure segments is identified as a problem issue for

two reasons.

1. Storage Space. It is a waste of resources to duplicate objects arId cOlUlection data.

As with Issue I, the more objects in storage, then the greater the number of

objects there are to search through. This means it takes longer to locate relevant

structural formations of objects. Also, if the same structural formations exis t

within a single hypermedia structure that is being dispatched across a network,

97

but each segment is duplicated as a separate segment, then more data will be

dispatched than is really necessary.

2. Open Hypermedia. Again, this situation violates the notion of open hypermedia as

whole segments of hypermedia structure cannot be re-used since structure can

only be used in relation to the specific objects that it connects.

6.4. Issue Three: Revision Proliferation

Versioning hypermedia structure offers real benefits as described in Chapter 4.

Consequently experimentations took place in versioning both OHP-Nav and FOHM

structure. Versioning OHP-Nav structures resulted in creation of the OHP-Version

protocol (Section 6.4.1); and experimentation with versioning FOHM structure led to

the Contextualised Connections approach (Section 6.4.2). However both approaches

encountered the very real problem of revision proliferation (also described in

Chapter 4).

6.4.1. The OHP-Version Protocol

The purpose of the OHP-Version protocol [Griffiths et al. 2002] is to enable

versioning of all OHP-Nav hypermedia objects. It provides creation, deletion, update

and retrieval operations for all hypermedia objects. Its primary mandate is to create a

new revision of an object whenever an attempt is made to update an existing object.

For example changing the contents of an Anchor object so that it points to a different

intemal location within a given resource will result in creation of a new revision of

that Anchor object. The original Anchor object will persist with original content,

whilst the new Anchor revision will contain the updated content.

But as already mentioned a key problem faced by OHP-Version is revision

proliferation. When a new revision of an OHP-Nav hypermedia object is created it

can lead to the creation of more objects than just the expected new revision. This is

due to the embedded linked list formation between OHP-Nav hypermedia objects.

Figure 6.9 provides an OHP-Nav example. The user wants to write new content to

Anchor object 'A2 vI' of Hyperstructure A. This is meant to result in the formation of

Hyperstructure B, where new Anchor object 'A2 v2' is simply appended to the

hypermedia structure as shown.

98

Hyperstructure A Hyperstructure B

Figure 6.9: Initial and expected OHP-Nav hypermedia structures.

However the hyperstructure will not turn out as intended. Instead it takes the

formation displayed in Figure 6.10. This is because OHP-Nav causes revision

proliferation to take place where, as can be seen, more new object revisions have

been created than just the one expected new revision.

New Hyperstructure A

Figure 6.10: Resulting OHP-Nav hyperstructure after OHP-Version application.

The problem lies with OHP-Nav embedding object references within hypermedia

objects whereby object references become part of an object's internal content. E.g.

Node object identifiers form part of an Anchor object's content; Anchor object

identifiers form part of an Endpoint object's content; and so on (Section 3.2.5).

This has consequences when attempting to tie the new revision into existing

Hyperstructure A of Figure 6.9. That is, attaching Anchor 'A2 v2' to Node 'N2 vI' and

Endpoint 'E2 vI'.

99

Difficulties arise because the object identifiers required to reference the ne\v revision

need updating. In the case of the example, this means updating object 'E2 vI' since it

is Endpoint objects that are responsible for storing Anchor object identifiers.

(Remember that Nodes do not need store Anchor object identifiers, therefore Node

'N2 vI' does not need updating.)

But it is this act of updating the object reference identifiers located within other

objects that will, in tum, cause a new revision of that object (containing the object

reference identifier) to be created too (since its content, i.e. the object reference

identifiers, is being modified). Once again, attempting to tie this object back into the

original hypermedia structure may lead to further revision proliferation since it may

also be necessary to update more object reference identifiers found in other objects.

This revision proliferation will continue until there are no more references vvithin

other hypermedia objects that need updating. Indeed, the only time that revision

proliferation does not occur is when updating a Link object. This is because no other

object type stores references to them. Hence when a Link object is updated, only the

one new revision of that object is created.

Figure 6.10 shows the revision proliferation that occurs as a result of attempting to

create a new revision of object 'A2 vI'. Instead of just one new object revision being

created a further two objects are also created. The steps that lead to the

hyperstructure of Figure 6.10 are listed in Table 6.2.

100

Step Action'" ' , ."'

1 New revision 'A2 v2' is created.

2 Attempting to connect 'A2 v2' to 'N2 vI' succeeds. This is because Node

objects do not store the embedded object reference between Nodes and

Anchors. This is the Anchor's responsibility. Hence the Node's contents

are not updated which means that no new revision of the Node needs to

be created.

3 Attempting to connect 'A2 v2' to 'E2 vI' causes 'E2 vI' to be modified as

Endpoints store the connections between Endpoints and Anchors.

Hence 'E2 v2' is created.

4 Attempting to connect 'E2 v2' to 'LI vI' causes 'Ll vI' to be modified as

Link objects store the connections between Link objects and Endpoints.

Hence 'LI v2' is created.

5 Attempting to connect 'LI v2' to 'EI vI' succeeds. This is because

Endpoints do not store the embedded reference between Link objects

and Endpoints. This IS the Link object's responsibility. Hence the

Endpoint's contents are not updated which means no new revision of

the Endpoint need to be created.

Table 6.2: Revision proliferation caused by creating new revision 'A2 v2'.

This is a far from ideal situation. Many more objects have been created than

expected. In this case the two additional objects 'E2 v2' and 'LI v2'. These are

duplicates of the original objects. The only difference between the new and original

revisions is that the new revisions point to different hypermedia objects (i.e. they are

embedded with different hypermedia object reference identifiers). This can cause

great confusion for clients as the new object revisions are not only unexpected and

unintended, but are seemingly pointless additions to the hyperstructure. Creating

new objects just to store updated object references is simply not good versioning

practice.

Even the intended final hypermedia structure formation as shown by Hyperstructure

B in Figure 6.9 is confusing. What does this formation represent? Does it represent

the new revision of the hyperstructure formation whereby the latest hyperstructure

revision is meant to comprise a total of three Anchor objects? Or is the new

hyperstructure formation simply a container for two different revisions of

hypermedia structure that are recorded within the same hyperstructure?

101

For the second scenario it would mean that the first hyperstructure revision would

comprise Anchor 'A2 vI', but not Anchor 'A2 v2'. And the second hyperstructure

revision would comprise Anchor 'A2 v2', but not Anchor 'A2 vI '.

The OHP-Version protocol adopts the position of the second scenario whereby a

versioned hypermedia structure acts as a container for different revisions of

hypermedia structure. It uses Configuration Objects that record which object

revisions are members of which hypermedia structure revision. For example

Hyperstructure B could be represented by two Configuration Objects:

• Configuration A would record the early hyperstructure revision as comprising:

'Nl vI', 'AI vI', 'El vI', 'Ll vI', 'E2 vI', 'A2 vI' and 'N2 vI';

• Configuration B would record the later hyperstructure revision as being: 'Nl vI',

'AI vI', 'El vI', 'Ll vI', 'E2 vI', 'A2 v2' and 'N2 vI'.

But at the end of the day the OHP-Version protocol is still confronted with the

problem of revision proliferation. This is due to the conventional object reference

embedding approach of the OHP-Nav protocol.

6.4.2. Contextualised Connections

A different method was adopted when experimenting with versioning FOHM

structures. This was called Contextualised Connections (also known as FOHM

versioning) [Griffiths et al. 2002]. It reduces revision proliferation, but does not

completely eradicate it. Like the OHP-Version protocol, the Contextualised

Connection approach provides creation, deletion, update and retrieval operations for

all FOHM hypermedia objects. It also creates new revisions of objects whenever

attempts are made to update existing objects. However, the Contextualised

Connections approach is different from OHP-Version, because it draws on virtual

objects within FOHM structure to assist with revision selection.

6.4.2.1. Adjustments to the FOHM Data Model

Before FOHM versioning can take place certain adjustments need to be made to the

basic composition of FOHM structure:

1. Binding objects need to be promoted to become first class objects so that they are

no longer enclosed within Association objects. This enables Bindings to be

versioned separately from Associations.

102

2. The FOHM data model needs updating to allow multiple connections between

objects. This enables a FOHM object to be connected to multiple object revisions.

Figure 6.11 shows an example of the new structural arrangements that FOHM

structure can undertake.

Binding embedded
within Association -

(a) FOHM structure using original
hypermedia object connection ru les .

(b) FOHM structure using revised
hypermedia object connection rules.

Multiple connections
for a single object

Figure 6.11: Example of FOHM structure organisation before and after it was revised to
enable versioning.

6.4.2.2. Contextualising FOHM Connections

FOHM objects continue to store embedded object references that point at the object

identifiers of one or more other FOHM objects as described in Section 3.3.4. However

for each object that references a versioned object, instead of connecting directly to the

versioned object, it instead stores a search pattem. This search pattem effectively acts

as a pointer to a virtual object, i.e. an object that does not physically exist. The virtual

object's role is to act as an informal pointer to a set of related revisions. Figure 6.12

shows an example where Binding B1 contains an embedded object reference to

Reference R1 (a virtual object) where R1 represents a set of related revisions.

103

'\'W--- Context data

Figure 6.12: Example of a contextualised connection.

Which object revision is selected (either 'Rl vI' or 'Rl v2') is determined by context.

Every revision object stores context data [Bailey et al. 2002]. It provides an indicator

for the circumstances under which the object revision should be retrieved. Context

data can take many forms. For example an object revision's context data may list the

revision's creation date, or the age of the client for whom the object is suitable (e.g. in

respect of child, teenager or adult). Which object revisions are selected is determined

at rWltime by matching the client's context (data) against the object revision's context

data [Michaelides et al. 2001; Weal et al. 2001].

Figure 6.12 shows the context data enclosed within Context objects (represented by

hexagon objects). Context data can have a direct relationship with versioning as the

context data of an object revision can be used to store versioning information. Figure

6.12 shows an example where the context data is used by each revision to specify

whether it is the first or second revision of Reference object Rl .

6.4.2.3. Limiting Revision Proliferation

Contrary to the OHP-Version protocol approach, FOHM versioning removes object

reference embedded information that points objects to specific objects revisions. This

means that no existing objects need to be updated whenever a new revision of an

existing object is appended to a FOHM structure. Thus no new revision of an existing

object needs to be created since no existing objects are being modified. Consequently

revision proliferation is prevented.

104

Figure 6.13 shows an example. AddiI1g a new revision of Reference object R1 to the

existing structure of Figure 6.12 leads to only one new revision being created sho\lvn

as 'R1 v3'. No other objects need to be created.

~ New revision

Figure 6.13: Adding a new revision to the existing FOHM structure of Figure 6.12 during the

Contextual Connection process.

However the Contextualised Connections process does not eliminate revision

proliferation completely as demonstrated in the next section.

6.4.2.4. Embedding Still Causes Revision Proliferation

Revision proliferation still occurs when attempting to append a new object to an

existing FOHM hypermedia structure. This time it is when the new object is not a

new revision of an existing revision set, but is a totally brand new object. The

problem is that object references continue to be embedded as part of a FOHM object's

content.

Revision proliferation results because any existing FOHM object that is to reference

the new object must have its connection data (i.e. embedded object reference)

updated in order to reference the new FOHM object. But this means that the existing

FOHM object's content is being modified. Therefore versioning policy dictates that a

new copy must be created of that updated object. TIms a new (and Ulmecessary)

copy of that object will have to be created. TIle original copy preserves the original

embedded c01mection data, whilst the new copy contains the new reference.

lOS

Figure 6.14 sho\I\ls an example. If new Reference object R2 (which is not a revision

object of existing Reference object Rl, but an altogether new object) is to be appended

to Binding object Bl, then Bl has to be updated to include an embedded reference to

Reference object R2.

~ New FOHM object
appended to structure

(a) Example of a FOHM hypermedia
structure.

(b) Revision proliferation after applying
new object R2 to the structure.

Figure 6.14: Contextualised Connections causing revision proliferation.

For those reasons as already stated in Section 6.4.1 the creation of new objects just to

store changed object references is not good versioning practice. The creation of the

new attached object revision is illogical. Virtually the same action as appending a

new object revision to the structure (via Contextualised Connections) has been

enacted, but the result is a different structural formation (compared to that generated

by Contextual COlmections).

6.5. Issue Four: Hypermedia Structure
Maintenance

TIle problem of structure maintenance, as described in Chapter 5, is a general one.

TIle Solent CB-OHS and Auld Linky are no exception to suffering the three structure

maintenance problems described in Section 5.3: dangling hypermedia structures,

specious hypermedia structures and misaligned internal references.

No research has (as yet) been undertaken into considering structure repair strategies

for either OHP-Nav or FOHM once structure has become broken. But what is

apparent is that, no matter what repair scheme may be investigated in the future, it

106

will certainly be adversely affected by the nature of OHP-Nav and FOHM's

connections between objects. I.e. the embedding of cOlUlection information (between

objects) within the hypermedia objects themselves. Such embedding impinges

efficient and logical repair of broken structure.

In particular it can cause the repair of OHP-Nav or FOHM structures comprised of

more than one internal route to be especially confusing. This was one of the main

reasons as to why the OCS data model was developed.

6.5.1. Multiple Internal Routes Within Structure

An example of a hypermedia structure that comprises more than one internal route is

shown in Figure 6.15. This diagram was first introduced in Section 5.3.4.

Figure 6.15: Hypertext link containing two internal routes.

The example OHP-Nav hypertext link of Figure 6.15 has two internal routes. The first

route expresses 'Trees Grow Leaves'. It is composed of objects Nl, AI, El, Ll, E2, A2

and N2. The second route shows 'Trees Grow Acorns'. It is composed of objects Nl,

AI, El, Ll, E2, A2 and N3.

6.5.2. Broken Internal Routes

A broken structure problem specific to internal routes is when one route breaks in

such a manner that the direct repair of that broken route will have an adverse effect

on any other unbroken routes contained within the same structure.

The example first introduced in Section 5.3.4 which involved Figure 6.15 will now be

expanded upon. The example centres on the content of the 'Acorns' document having

107

been modified in such a way that Anchor A2 now points to incorrect content ""ithin

the 'Acorns' document. Thus as far as the link to the 'Acorns' document is concerned

Anchor A2 needs updating. However the 'Leaves' document has not been modified,

therefore the link to the 'Leaves' document does not require Anchor A2 to be

updated as A2 continues to point to the correct content. The upshot is that A2 cannot

be directly repaired (for the benefit of the 'Acorns' document link) without negatively

affecting the 'Leaves' document link. Consequently the internal route structure of the

(overall) hypermedia structure must be re-arranged in order to both repair the

structure and maintain the status quo. The desired repaired link solution is sho\l\Tn in

Figure 6.16.

~ Insertion of new object

Figure 6.16: Repaired hypertext link.

The first thing to notice is that no functional content of any pre-existing hypermedia

object needs amending. Instead, the update to Anchor A2 is resolved by creating a

new copy of it, and then making the update to that new object. This new hypermedia

object (shown as Anchor A3) is necessary so that the 'Acorns' document is referenced

correctly. Original Anchor A2 must continue to exist so that the 'Leaves' document is

referenced correctly. Finally, the overall arrangement of the hypertext link must be

updated so that the two internal routes (within the hyperlink) connect the

appropriate documents together. Anchor A2 is disconnected from Node N3, and new

Anchor A3 is c01Ulected to Endpoint E2 and Node N3.

6.5.3. A Confusing Repair Process

The act of re-arranging a hypermedia structure (such as those of OHP-Nav or

FOHM) which comprise multiple internal routes can be a potentially confusing

process. This is because the hypermedia objects of these structures contain embedded

object references and it is their update that can often throw up unwelcome surprises

for the client. This is for two reasons.

108

1. The connection information is embedded in some object types, but not others. For

example the connection data between OHP-Nav Anchor and Endpoint objects is

stored in Endpoints, but not Anchors. Thus clients must be aware of which

objects to modify when connecting hypermedia objects together when repairing

hypertext links. This can cause confusion as it leads to some objects being

updated whilst others are ignored.

2. Having to update the contents of objects purely to establish connections between

objects Call muddy the practice of link maintenance. This is because the client will

often be required to make additional updates to the contents of objects that are

not obvious judging by the structure maintenance solution. Therefore it can be

puzzling as to why certain hypermedia objects are being updated.

The link maintenance solution of Figure 6.16 provides examples of both potential

problems described above when OHP-Nav hypertext links are composed of objects

containing embedded object references.

In order that the objects of the hypertext link can be re-arranged from the first

formation of Figure 6.15 to the second formation of Figure 6.16 it is necessary to

update Endpoint E2. This is not because any functional aspect of the object needs to

be changed, e.g. the intemal route's direction, but because Endpoints store the

Endpoint-to-Anchor connection data. Hence existing Endpoint E2 needs to be

updated to enable new Anchor A3 to be attached to it.

This clearly interferes with the pellucidity of the structure maintenance process as

the client must have the knowledge that in order to COlmect Endpoint E2 to Anchor

A3 that it is E2 that has to be updated with the relevant connection information and

not Anchor A3. Moreover such object content modifications are confusing since the

link maintenallce solution makes no indication that the intemal object content of

Endpoint E2 should be modified. Therefore the need to and the act of updating this

object may come as a complete surprise.

The client must also update the content of original Anchor A2. This is despite that the

functional content of this object is not meallt to be updated since a new object has

been created in its place (object A3). But this modification is necessary so that A2 is

no longer cOlmected to Node N3. It has to be updated, because it is Anchors that

store the cOlmection data between Node and Anchor objects. Again the client must

be aware that it is the Anchor and not the Node that must be updated. Once again

this is another source of confusion because the whole point of the link solution is that

109

original Anchor A2 is left intact smce it is needed for the 'Trees Grow Leaves'

document route.

6.6. Summary

This chapter has listed the four issues that led to the creation of the Object and

Connection Space (OCS) data model. They were found through combined

experimentation with OHP-Nav structure and the arbitrary structure served by the

Solent CB-OHS, and FOHM structure served by the Auld Linky CB-OHS.

TI1e first issue under investigation is the inefficient utilisation of individual

hypermedia objects. TI1e conventional representation of hypermedia structure

severely limits the re-use of individual hypermedia objects. This means that many

hypermedia objects are used and stored that fulfil the same role which is an

unnecessary waste of resources. TI1e OCS data model solution to this problem is

covered in Chapters 7 and 8.

The second issue discussed is the inability to re-use entire segments of structure

repeated within other hypermedia structures. Once again this is an inefficient

utilisation of resources especially as FOHM structures can be very large making the

prospect of repeating hypermedia structures that much more likely. The OCS data

model solution to this problem is also covered in Chapters 7 and 8.

The third issue is the problem of revision proliferation. Namely the needless creation

of new revisions of hypermedia objects when carrying out normal hypermedia object

versioning. OHP experimentation in the form of the OHP-Version protocol

highlighted the full extent of this problem. The FOHM solution, in the form of

Contextualised Connections, limits revision proliferation somewhat, but did not

completely eradicate it. TI1US the problem of revision proliferation persists. TI1e OCS

data model answer is described in Chapters 9 and 10.

The final issue is the topic of structure maintenance. Embedding data object

references in hypermedia objects obscures clarity when repairing broken hypermedia

structure in particular when repairing broken internal routes. How the OCS data

model tackles this problem is explained in Chapter 11.

Chapter 7.
Opening Hypermedia
Structure

7.1. Introduction

110

This chapter describes the basic concepts behind the Object and Connection Space

(OCS) data model. Also examined are the OCS data model's aims and objectives,

namely to open up hypermedia structure to enable the re-use of hypermedia objects

and the connections between objects. This is in an effort to generate hypermedia

structures composed of re-usable objects. The net result is a prevention of wasteful

and unnecessary duplication of resources. A key benefit is that it also lessens the

burden of general hypermedia object storage.

In the process this chapter identifies how the OCS data model addresses Computer

Science Contributions I, 2 and 3 (of Chapter 1) and Problem Domain Issues 1 and 2

(of Chapter 6).

CSCl : Extending the concept of open hypermedia into the realm of

hypermedia structure.

CSC2: Promoting the general re-use of hypermedia structure.

CSC3: Offering a more logical approach to hypermedia structure

representation.

PDl: The use and storage of hypermedia objects that carry out the same

function .

PD2: The use andstorage of identical hypermedia structure.

1 I 1

7.2. Unopen Hypermedia Structure

Hypermedia structure has a dual role. One role is to provide functionality (the

functional role), and a second role is to connect items together (the cOlmectional role).

Items for cOlmection can be documents, or they can be the individual hypermedia

objects that make up hypermedia structure. It is the latter role (the connecting

together of hypermedia objects) that is of interest as regards the OCS data model.

• Functional role. Expresses the function of an object. For example an OHP-Nav

Anchor object describes the content (within a node resource object) referenced by

an OHP-Nav hypertext link.

• Connectional role. Describes which other objects a given hypermedia object is

cOlmected to. For example to which OHP-Nav Endpoints and/or OHP-Nav Node

objects a given OHP-Nav Anchor object is connected.

The typical approach adopted by conventional hypermedia objects, e.g. OHP-Nav

and FOHM objects (Sections 3.2.3 and 3.3), is to combine both the functional and

connectional roles within each hypermedia object. This is through the embedding of

connection data (i.e. object references) within the same hypermedia objects that are

also used to record the function of the object. Such object reference embedding is

described in Sections 3.2.5 and 3.3.4.

However there is no particular reason why such embedding is the norm. It is usually

an oversight by hypermedia structure data model designers. Their focus is so often

concentrated on getting the high-level structural abstractions to work, e.g. hypertext

links, that attention is rarely given to the lower level aspects of the structure, i.e. the

cOlmections between hypermedia objects. At least that was the case until the

development of the OCS data model.

Nonetheless the problem with combining the functional and connectional roles

within single objects is that it leads to closed hypermedia structure. Clearly this stands

in direct contrast to the aim of openness within an open hypermedia environment

(Section 2.12).

Conventional hypermedia structure can be regarded as closed according to this

definition of what makes a hypermedia system open:

112

An Open Hypennedia System is open, because it is able to link to and from

/ Jocument content without altering the document content itself.

By the same token:

Hypermedia structure can be said to be open if it can link to and from other

structure without having to alter the (linked) structure itself.

As already stated, a major role for hypermedia structure is to connect hypermedia

objects together. Thus hypermedia structure is already capable of linking to and from

structure. But when linking to existing structure, that existing structure must also be

altered . Hence conventional hypermedia structure is considered closed . TIlis is

because in linking to existing structure, that structure's connectional data (describing

to which objects it is connected) must be updated.

TIle benefit to be gained if structure is open is the opportunity to re-use existing

hypermedia structure. This not only makes for efficient use of structure, but it also

benefits hypermedia versioning (Chapter 9) and hypermedia structure maintenance

(Chapter 11). Moreover re-use is a crucial feature of open hypermedia (Section 2.12),

therefore it is only natural that hypermedia structure should also be re-usable too.

Chapter 8 in particular describes the advantages when opening up the structure of

OHP-Nav and FOHM hypermedia objects.

7.3. oes Data Model Objectives

TIle aim of the OCS data model is to address the internal organisation of hypermedia

structure. Specifically on how hypermedia objects are connected together. To this end

the OCS data model separates the object and connection data as recorded within

hypermedia structure. Separation enables re-use of the same hypermedia object and

connection data to construct re-usable hyperstructure. TIlat h ypermedia structure

can then be used to form new relationships between different node resource objects

within hypermedia networks. The immediate benefits are saving on wlJlecessary

duplication of resources. TIle same hypermedia objects and connections (between

hypermedia objects) can be shared by multiple (possibly wlrelated) hypermedia

structures. It is through separating hypermedia objects and connections that enables

the Computer Science Contributions of Chapter 1 and the Problem Domain Issues of

Chapter 6 to be realised.

113

7.4. C-Level Work

Looking at the OCS data model from the point of view of Engelbart's A-B-C level of

work [Engelbart 1998; Niirnberg 2002], the research on the OCS data model can be

categorised as C-level work. This is where A-level is the primary work, B-level

supports the primary work, and C-level provides support for the support work. On

its own the OCS data model does not fulfil the primary work of an organisation. Its

purpose is to act as a support tool to enable the primary work to be carried out. That

is, the OCS data model is a tool of the hypermedia system for ensuring that the

internal hypermedia objects of hypermedia structure are organised to their optimum

so as to improve the hypermedia system's overall efficiency.

Through its low-level activities the OCS data model aims to benefit structure

manipulation at all layers of the Open Hypermedia System architecture: Client

Application Layer, Middleware Layer and Storage Back End Layer (Section 7.15).

7.5. Drawing on OHP-Nav

The thesis mainly looks to the OHP-Nav data model (Section 3.2) for example

hypermedia structures upon which the OCS approach can be applied. However, the

Object and Connection Space is not restricted to just this data model as explained in

Chapter 8. TIle OHP-Nav data model was chosen as it is a hypermedia structure

representation with which I am very familiar as I have used it to develop Open

Hypermedia Systems [Reich et al. 1999b; Millard 2000a] and research hypermedia

concepts [Griffiths et al. 1999; Griffiths et al. 2002]. Moreover the OHP-Nav data

model is a recognised data model within the hypermedia community [Niirnberg

1999].

7.6. "Rock, Paper, Scissors"

For the most part the examples used throughout the rest of the thesis are based on

the "Rock, Paper, Scissors" game (abbreviated to the RPS game) [World RPS Society

2002]. The game consists of two players who challenge each other by shaping their

hands to form one of either rock, paper or scissors. The contest has six possible

outcomes shown by Figure 7.1.

114

(a) Rock defeats Scissors (b) Paper defeats Rock

(c) Scissors defeats Paper (d) Rock draws with Rock

(e) Paper draws with Paper (f) Scissors draw with Scissors

Figure 7.1: 'Rock, Paper, Scissors' outcomes.

Each outcome of the RPS game can be modelled as a different hypermedia structure

(Figure 7.2). Such hyperstructures provide a useful demonstration for the benefits of

the Object and Connection Space approach when generating re-usable

hyperstructures.

115

(a) Rock defeats Scissors (b) Paper defeats Rock (c) Scissors defeats Paper

(d) Rock draws with Rock (e) Paper draws with Paper (f) Scissors draws with Scissors

Figure 7.2: 'Rock, Paper, Scissors' hyperstructure outcomes.

Looking Figure 7.2 it is evident that re-use opportunities already exist within the six

"Rock, Paper, Scissors" hypermedia structures. For example functionally all the

'Defeats' Link objects are the same, all the 'Source' Endpoint objects are the same, all

the 'Destination' Endpoints are the same, all the unmarked Anchors are the same, all

the 'Rock' Nodes are the same, all the 'Paper' Nodes are the same and all the 'Scissors'

Nodes are the same.

An example of their direct re-use is shown in Figure 7.3 where all hypermedia objects

that can be re-used have been re-used. As can be seen such an arrangement does not

make it clear as to how the objects are being re-used in respect of the relationships

they are trying to show, e.g. 'Rock Defeats Scissors' or 'Rock Draws with Rock'.

Moreover it also creates incorrect relationships, such as 'Scissors Defeats Rock'. This

was one of the reasons why the OCS data model was devised so that re-used

hypermedia objects can be organised in such a fashion so that there can be no doubt

as to what structural relationships are being expressed within a given hypermedia

structure.

116

Figure 7.3: All RPS hypermedia objects are subject to re-use, but they fail to make clear the
relationships they are trying to express .

In respect of the hypermedia structure examples used throughout the thesis, the

thesis focuses on just the three 'Defeats' relationships. This is because they provide

the most interesting cases for hyperstructure re-use. The three 'Draws' relationships

have only been included in Figures 7.1, 7.2 and 7.3 for completeness. Re-use as

regards their hyperstructure formations is not considered hereafter.

7.7. The Object and Connection Space Data Model

The OCS data model opens up hypermedia structure (Computer Science

Contribution 1) by allocating the hypermedia objects of a hypermedia structure to a

FWlction Object Space (Section 7.7.1) and the connections between hypermedia

objects to a Connection Space (Section 7.7.2). In line with the premise of open

hypermedia [Reich et a1. 1999a] and Structural Computing [Reich et al. 1999a;

Niirnberg and Schraefel 2003], hypermedia objects are promoted as first class

entities. They have their own identity and are referencable.

The connections between hypermedia objects are also promoted as first class entities.

They have their own identity and are referencable. It is this allocation to Object and

Connection Spaces that opens up and hence facilitates the re-use of hypermed ia

objects and connections.

In many respects the OCS approach is applying the principles of open hypermedia

separation to the internal organisation of hypermedia structure, i.e. the separation of

linking information from being embedded within node data. This idea is expanded

upon in Section 7.7.3.

117

Figure 7.4 shows the example hyperstructure used throughout the rest of this chapter

to demonstrate the capabilities of the OCS approach. It depicts the relationship 'Rock

defeats Scissors'.

Figure 7.4: H ypermed ia structure 'Rock defeats Scissors'.

7.7.1. The Function Object Space

The Function Object Space records the hypermedia objects that are used within one

or more physically created hypermedia structures. Figure 7.5 shows an example of a

FW1Ction Object Space. It records all the objects that make up the OHP-Nav

hyperstructure of Figure 7.4.

Function Object Space
ID: OS1

Figure 7.5: Example of a Function Object Space.

Once assigned to the Function Object Space, objects can be subjected to re-use by

Connection Spaces (Section 7.7.2). Hypermedia data objects after they have been

assigned to the OCS are referred to as Function Objects. This is because these object

118

types express the functional role of a hypermedia object, e.g. the functional role of an

OHP-Nav Endpoint object is to describe the overall direction of a hypertext link.

Thus OCS Function Objects are virtually the same as conventional hypermedia

objects. The main difference being that they do not record any connection

information. Function Objects, like conventional hypermedia objects, continue to

serve as first class entities with their own identity.

Appendix A lists an XML specification for OCS Function Objects (Section A.3). The

appendix also includes examples of Function Object instances in Sections A.S and

A.6.

7.7.2. The Connection Space

The Connection Space records specific connections between Function Objects. They

are captured within a special type of object called a Connection Object. They assume

the connectional role of a hypermedia object (see Section 7.2). Connection Objects are

lightweight objects compared with Function Objects since they only contain

connection information. In this regard Function Objects are considered heavyweight

objects (this is explained in Section 7.9).

Appendix A specifies the XML specification for OCS Connection Objects (Section

A.4) along with examples of actual Connection Object instances (Sections A.S and

A.6).

Connection Objects can consist of binary or n-ary connection formations.

7.7.2.1. Binary Connection Objects

A binary Connection Object contains a single connection between two Function

Objects. Figure 7.6 shows an example of the connections of the hyperstructure of

Figure 7.4 broken down into binary cOlmections. (Section 7.8 explains the

diagrammatic depiction of Connection Objects.)

Connection
Object ----#I

Function Object
Stub ---1-.1-.

Actual connection
between

Function Objects
1

I'
1
1

Connection Space
ID: CS1

1

1
1

1

1
1
1
1
1

1 10: C3 10: C4 L _______ ~ L ______ J

1
1 L __ ~~C~ _ __ I L_..!.e: c:.6 _ _ J

Figure 7.6: Connection Space composed of binary Connection Objects only.

7.7.2.2. N-ary Connection Objects

11 9

An n-ary Connection Object contains several connections between Function Objects.

Figure 7.7 shows an example of the cormections of the hyperstructure of Figure 7.4

broken dovvn into a variety of binary and n-ary connections.

Connection Space
10:CS2

r----------------,

r------- r-------

10: C11 10: C12

Fi gure 7.7: Connection Space composed of binary and n-ary Connection Objects .

7.7.2.3. Which to Choose: Binary or N-ary Connections?

The capability of representing a hyperstructure's connections as both binary and/or

n-ary formations is necessary as each connection formation offers both advantages

120

and disadvantages. Depending on which connection formations are chosen

influences the type of re-usability that can take place. It is left to the discretion of the

client to determine which hyperStructure connection formation is most appropriate

for their re-use purposes. It is this flexibility that makes the OCS data model a

powerful mechanism for efficient hyperstructure re-usability.

The ideal solution is to represent all hyperstructure c01U1ections as binary Connection

Objects. This offers the most flexibility as it enables every connection (within a given

hyperstructure) to be re-used. For example Connection Objects CI, C2 and C3 (of

Figure 7.6) could be joined together to form the hyperstructure sho\l\rn in Figure 7.8.

r---------,
-----------------, r----------------, J J

I I I I I
: I I I I

I I I I I
I I + I I +, I
I I I I I I
I I I I I I

" 10: C1 I I W: C2 I I I
I I I I I

I I I I I I
~_ - ____ - - __ - - ____ , L ________________ I ~ __ ~o.:. ~ ___ :

Figure 7.8: Example of connections being re-used.

TI1e disadvantage with representing all hyperstructure c01U1ections in binary format

is that many Connection Objects will often have to be created (one Connection Object

for every connection within the hyperstructure). This can substantially increase the

amount of object management and storage. Moreover, representing structure as

binary Connection Objects may be inefficient. TI1ere is the possibility that many of

the connections may never be re-used for building new hyperstructure formations.

It is for these reasons that the OCS data model offers the variable approach of

representing hyperstructural connections in n-ary format as well. This solution

means that fewer Connection Objects need to be created thereby reducing the

amount of object management and storage. This is possible because n-ary Connection

Objects enable clients to create COlmection Objects comprising just the specific

connection arrangements guaranteed to be re-used in the future. For example a client

may only want to re-use the structural arrangement represented by cOlmection object

CIO of Figure 7.7 hence it is stored as a single entity.

However the disadvantage with n -ary COlmection Objects is that they have the

potential to limit hyperstructure re-use as it may not always be possible to re-use the

individual cOlmections between Function Objects. For example the individual

C01U1ection between Function Objects L1 and EI (of C01U1ection Object CIO of Figure

121

7.7) cannot be re-used as a cOlU1ection in its o""n right as it is now a member of the

larger Connection Object CIG. If that COlU1ection Object is to be re-used, then all the

Function Objects of the Connection Object (LI, EI, E2, Al and A2) will also be re­

used as well.

To solve this problem all the client has to do is create new Connection Objects that

describe the desired hyperstructural connections. Even though more COlU1ection

Objects have been added to the Connection Space this is not a particularly "object

expensive" solution as Connection Objects are deemed lightweight objects as

explained in Section 7.9.

7.7.3. Comparison with OHS Hypertext Links

As stated at the beginning of Section 7.7 the OCS approach can be regarded as

applying the open hypermedia principle of separating links from nodes to the

internal organisation of hypermedia structure. Figure 7.9 shows how the individual

objects and connections between objects (within hypermedia structure) may be

viewed as being equivalent to separated OHS nodes and links.

122

OHS node OHS link OHS node

~ ~ ~
Defeats

(b) Internal structure of the hypertext link.

Function Object Space
10: 051

Function Object --f-_

Function Object --+-~

Scissors

(a) Two node resource objects connected
by a hypertext link.

Hypermedia object __

Connection between
hypermedia objects --

Hypermedia object __

_ Equivalent to
OHS node

__ Equivalent to. OHS
hypertext link

+- Equivalent to
OHS node

(c) The internal hypermedia objects and
connections within a hypertext link can be

considered equivalent to OHS nodes
and links.

Connection Space
ID: C52

r--------

10:C5

Connection Object

(d) Allocation of internal hypermedia objects and connections
to Function Object and Connection Spaces.

Figure 7.9: Comparison of OHS node and links w ith OCS Function and Connection Objects .

An obvious comparison is between FUl1ction Objects and OHS nodes. This is

because, like OHS nodes, Function Objects do not contain embedded linking data

that state to which other Function Objects it is connected.

123

Another obvious comparison is between binary Connection Objects (Section 7.7.2.1)

and OHS hypertext links. Like OHS links, binary COlUlection Objects are separated

from the resources (i.e. Function Objects) they are used to connect, and like the

majority of OHS links, COlUlection Objects are used to form connections between tvvo

resources only.

However, n-ary COlUlection Objects (Section 7.7.2.2) are somewhat different to

conventional separated OHS hypertext links. When an OHS hypertext link IS

considered n-ary, it usually means that it is a single link emanating from a single

node resource pointing to two or more node resources (e.g. Figure 7.10).

Buffalo

OHS n-ary link ~ Tolerates

Zebra

Figure 7.10: An example of an n-ary OHS hypertext link.

This is not usually what is meant by an n-ary Connection Object arrangement. A

Connection Object is typically taken to be a grouping together of multiple

cOlUlections that do not necessarily reference the same Function Object. Normally the

connections link all the Function Objects into some form of sequence, although this

does not necessarily have to be the case. Figure 7.11 shows an example of both

scenarios.

In this respect an n-ary COlUlection Object is less like a h ypertext link and more like a

hypertext network. A simple example of a hypertext network is shown in Figure 7.12

for comparison.

7.8.

~----------------I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I ID: C20 I
~ ________________ J

(a) N-ary Connection Object that
connects all Function Object
stubs within the Connection
Object.

r-----------------~

I
I ID: C21 L _________________ I

(b) N-ary Connection Object that
does not connect all Function
Object stubs present within
the Connection Object.

Figure 7.11: Two examples of n-ary Connection Objects.

OHS links

/
is a type of are made of

/ cuts

OHS nodes

Figure 7.12: Example of a hypertext network.

Connection Objects Explained

124

There are a couple of points worth making as regards the diagrammatic depiction of

Connection Objects.

• A Connection Object is denoted by a dashed box.

• Actual connections (within Connection Objects) are marked with an arrowhead

at each end. The arrowheads signify the bi-directionality of Connection Object

125

connections. TIlis means that the OCS data model permits traversal to and from

any object member (of a Connection Object) in any direction.

• A Connection Object can be used to connect Function or Connection Objects

together.

• Any Function or COlUlection Objects recorded within a Connection Object are

object stubs. Hence all object members are referential. This is akin to Whitehead's

Versioned-Object approach [Whitehead 2001b] where the relationship between

version history containers (read Connection Object) and members (read intema1

Function and COlUlection Object members) are referential.

• The OCS data model makes no assumptions about how connections are formed

between object stubs. Referencing individual object stubs can be by specific object

IDs or by some form of attribute data. An example of the latter approach is an

object stub cOlUlecting to other OHP-Nav Endpoint object stubs based on a

particular navigational direction attribute that they might hold. TIle OCS data

model also has no preference as to whether the connections between objects are

hand-made or computed7 [Aslunan et al. 1997; Aslunan 2000b]. TIlis thesis adopts

the simplest option whereby object stubs are connected together via specific

Function and/or Connection Object IDs. The thesis also assumes that the

cOlUlections are hand-made.

• Each connection to a Function Object always connects to an entire Function

Object. This is indicated by each connection end (i.e. arrowhead) pointing at the

whole Function Object and not inside the Function Object. TIle reason for this is

because Function Objects are treated as opaque atomic entities.

• Each cOlUlection to a COlUlection Object can either point at (i.e. connect to) the

entire Connection Object or it can point at (i.e. COlUlect to) intemal objects within

the Connection Object. This latter capability is explained in Section 7.11.1.

7 Hand-made connections are individual connections that are explicitly created by a user,
whilst computed connections are those automatically created based on some sort of
computation perhaps making use of attribute data.

126

7.9. Lightweight vs. Heavyweight Objects

Connection Objects are considered lightweight objects. 111at is they are assumed to

be small in size. 111e only type of data they contain is cOlmection information which

generally does not amount to a great deal of data.

In contrast Function Objects are considered heavyweight objects as a Function Object

can drastically vary in size, and in many cases be significantly larger than typical

Connection Objects. Examples of actual Function and Connection Objects expressed

in XML can be found in Sections A.S and A.6.

Function Objects represent the functionality of hypermedia structures. And as such

their content is determined by the hypermedia data model (e.g. OHP-Nav or FOHM)

that represents the hypermedia structure of the hypermedia server. As the OCS data

model can be employed to organise the structure of any hypermedia structure data

model, then the potential size of Function Objects is not known in advance. 111US

these objects may contain any content which can be any size.

For example it is possible for OHP-Nav Node objects to contain the actual document

content that the hypermedia structure is being used to C01U1ect. Thus they can be

very large indeed. Conversely they can be very small as they may only contain the

URL reference pointing to the document content location. 111e important point is that

a Function Object's size is a completely unknown factor compared with a COlmection

Object.

111e OCS data model takes the deliberate stance that Function Objects will in most

cases be larger than Connection Objects. Therefore, via its re-use capabilities, the

OCS data model prevents the creation of Function Objects that duplicate the same

hypermedia function. 111US fewer Function Objects need to be stored. This saves Back

End storage space especially if they are large Function Objects. Also, smaller message

sizes can be sent between OHS components where only one Function Object needs to

be sent instead of many if that particular Function Object is re-used multiple times

within the same message. This can be a significant saving of transmission time if that

Function Object contains a lot of data.

127

7.10. Connecting Connection Objects

Critical to making hypermedia structure re-usable is the ability to COlUlect

COlUlection Objects together. Two methods are employed: conjoinment and attachment

operations.

7.10.1. Conjoinment Operation

The conjoimnent operation is a form of pattern matching [Michaelides et al. 2001;

Griffiths et al. 2002]. It enables existing connections within Connection Objects to be

joined to one another. The operation works by connecting two or more Connection

Objects together via a common Function Object. Figure 7.13 shows the two

Connection Objects with IDs CI0 and C11 (of Figure 7.7) being conjoined via

Function Object AI. This produces the new hypermedia structure shown as

Connection Object C18.

-------------,

+
conjoin

operation

r------------,

10: Ctt L ____ ~

ID: Ct8

Figure 7.13: Conjoin operation.

7.10.2. Attachment Operation

The attachment operation creates new connections between Connection Objects and/or

Function Objects. Figure 7.14 shows how two Connection Objects (0£ Figure 7.6) can

be attached to create a new hypermedia structure. The Corulection Objects are

attached at Function Object El (of COlUlection Object Cl) and FWLCtion Object Al (0£

Connection Object C3).

I
I
I
I +
I attach
I 10: C1 operation

I L ________ _ __ _

128

--- - -,
I I
I I
I I
I I
I I
I I
I I
I I
I
I 10: C3 I
-----~

ID: C7 L... ___________ _

Figure 7.14: Attachment operation.

7.10.3. Linking To Hypermedia Structure

Both Connection Object operations (shown by Figures 7.13 and 7.14) demonstrate

that the OCS data model fulfils Computer Science Contribution 1 - the opening up of

hypermedia structure. This means that the OCS data model makes it possible for

hypermedia structures to link to and from other hypermedia structures without

having to alter either of the linked structures. This is because in each case neither of

the existing structures (being conjoined or attached) need to be amended in order to

produce the new structural formations. Instead any new arrangements are recorded

within new Connection Objects.

7.11. Issues

The OCS data model brought forth a number of issues that need addressing. Two of

the most pressing are described in this section.

7.11.1. Anchoring

The first issue is the problem of anchoring within Connection Objects. Some form of

anchoring mechanism is necessary in order to join Connection Objects together. This

is to enable Connection Objects to reference other Connection Objects and to

reference Function Objects within Connection Objects.

129

Figure 7.15 provides an example scenario where a user ""ants to attach OHP Node

Nl to OHP Anchor Al of COlmection Object C30. The question is how should OHP

Node Nl reference Al whilst it is a member of C30?

+
attach

ID:C30 L... _____ _ _ _ ___ _

Figure 7.15: How should a Function Object be attached to another Function Object inside a
Connection Object?

This is a similar problem to the anchoring problems faced by hypermedia data

models in the past [Halasz and Schwarz 1994]. In these previous cases the question

has been how to identify referencable regions within node object resources. Many

different anchoring schemes have been devised. For example the OHP-Nav data

model uses LocSpecs (location specifiers) [Reich and Millard 1999; Reich et al. 1999a;

Reich et al. 2000]. They can choose anchors by using forward and/or backward axes

to count the nwnber of characters within text documents to a given location.

Likewise, many different anchoring solutions can be adopted within the OCS data

model. For example Function Objects can be identified using just FWlCtion Object

IDs. Or the position of a Function Object can be traced via tree-like navigation from

the root FWlCtion Object. Alternatively, pattern matching might be used where the

client describes the structural arrangement of the Function Objects against which to

match.

The anchor solution adopted thus far takes the form of the traditional node and

anchor referencing mechanism. The node argument specifies the Connection Object,

and the anchor argument specifies either the Connection Object within a COlmection

Object or the FWlCtion Object itself. Fmlction and Connection Objects are identified

via their respective identifiers.

130

For example in order to locate FWKtion Object Al of Connection Object C30 of

Figure 7.15, then the client would specify {node: C30, anchor: AI} . Figure 7.16 shows

the attachment operation depicted by Figure 7.15. The heptagon object graphically

represents a COlmection Object. It is identified as Connection Object C30 by its nod e

entry (shown as 'N'), and the anchor by which other objects can attach (e.g. Node Nl)

is identified as Al by its anchor entry (marked 'A') .

Figure 7.16: How a Function Object is attached to another Function Object inside a
Connection Object.

7.11.2. Object Uniqueness

The ability to re-use Function Objects makes for efficient utilisation of hypermedia

structure. However, it also presents potential difficulties when attempting to

uniquely identify FW1ction Objects which are being re-used. This problem m anifes ts

itself in two key areas.

7.11.2.1. Re-used Function Objects within a Single Connection
Object

111e first problem is when organising connections between FW1ction Objects w ithin a

single Connection Object. The difficulty lies with how to identify which specific

FW1ction Object an internal COJU1ection is meant to reference when that FW1ction

Object is being re-used in more than one place within a COlmection Object. An

example demonstrates.

The idea is to create the hypermedia structure of Figure 7.17 where Function Object

Al is independently re-used in two places. In one place it is attached to El and Nl,

13 1

and in another it is attached to E2 and N2. But because Al is re-used by independent

objects there is a danger of creating the incorrect hyperstructure of Figure 7.18.

Re-Used

Figure 7.17: Desirable hyperstructure. Figure 7.18: Undesirable hyperstru cture.

The solution adopted by the OCS data model is the use of Instance Objects. An

Instance Object is not a real object (like a FW1ction or Connection Object), but a

virtual FW1ction Object. It works by a Function Object (that is being re-used) being

referenced by a second identifier (called an Instance Object identifier) for every place

(within a Connection Object) that the FW1Ction Object is being re-used . This allows

clients to uniquely identify are-used FW1ction Object at the different places it is re­

used within a given hypermedia structure.

Figure 7.19 shows the assignment of Instance Object identifiers to enable the re-use of

Function Object AI. As Al is used twice, there are only six Function Objects (in the

Function Object Space) rather than seven which would be the usu al case w ithout re­

use. Despite AI 's re-use, its properties are not modified with any Instance Object

identifier information. Instead this information is written to the Connection Space as

it is to the Function Object stubs within Connection Object C30 that the Instance

Object identifiers are assigned. This is shoV\TJ1 by 'il' and 'i2 ' markings being

appended to both uses of Function Object AI.

Object Space
/0: 052

Connectlon Space
/0: CS3

r-------------, , , , , , , , ,
, , , , , , ~ , , , , , , , , , , , , , ,
' " , , ,
L ____ _ ':!:.~O _ _____ ,

Figure 7.19: Instance Objects.

132

Instance
Objects

The use of Instance Objects is an efficient solution. No new Function Objects are

created nor have any existing FW1Ction Objects had to be updated8 . All instance

information pertaining to a particular Instance Object is stored within the C01U1ection

Object within which it resides. This is because the different instances of a Function

Object only exist within a COlUlection Object. This solution is akin to how re-use is

carried out in Xanadu [Nelson 1999a] (Section 12.7.1).

7.11.2.2. Re-used Function Objects in External Connection Objects

The second problem is an extension of the first. How to associate a Function Object

(within one Connection Object) with another Function Object re-used in multiple

places within a second Connection Object?

Figure 7.20 shows an example where three COlU1ection Objects are to be c01U1ected

together as indicated by the arrows in the diagram. Connection Object C51 is to be

conjoined to C01U1ection Object C50 via the leftmost Function Object AI, and

C01U1ection Object C52 is to be conjoined to C01U1ection Object C50 via the rightmost

Function Object AI. The difficulty is how to associate each Al Function Object in

COlUlection Objects C51 and C52 with the correct corresponding Al Function Object

in Connection Object C50.

8 This is relevant as regards the danger of object revision proliferation as explained in
Chapter 9.

Connection Space
ID:CS4

------------------,
I '
I I

I
I

Figure 7.20: Attaching externally re-used Function Objects together.

133

Once agam the solution adopted by the OCS data model is the use of Instance

Objects. FW1ction Objects that are external to COlU1ection Objects containing re-used

FW1ction Objects can refer to re-used Function Objects using their Function Object

identifier combined with that Connection Object's internal Instance Object identifier.

Figure 7.21 shows the solution using Instance Objects for the problem represented

within Figure 7.20.

ID: C50

Connection Space
ID: CS4

,.-------. r------
I I I
I I I
I I I
I I I
I I I
I I I ,
I I I
I I I
I I I
I I I
I I I
liD: C51 I liD: C52
L. ______ I L _____ _

--------------1

ID: C53

Figure 7.21 : Assigning Instance identifiers to Connection Objects .

134

The implementation of Instance Objects shows that the OCS data model fulfils

Computer Science Contribution 2 and Problem Domain Issue 1 - the ability to re-use

the functionality of the same hypermedia objects.

7.12. XML Specification

Appendix A shows the XML representation for OCS Function and Connection

Objects.

The appendix specification centres on the original Darmstadt OHP-Nav XML

specification [Reich and Millard 1999]. This is to demonstrate how straightforward it

is to adapt the four primary OHP-Nav objects (Node, Anchor, Endpoint and Link

objects) for use within the context of the OCS data model.

The Darmstadt OHP-Nav XML specification has been chosen because not only is it

one of the latest OHP-Nav specifications, but it is also a specification with vvhich I am

particularly familiar since it was the protocol used when I was involved with

devising the inter-communication between components of the Solent CB-OHS [Reich

et al. 1999b; Reich et al. 1999a].

Section A.2 shows the original XML specification for the four OHP-Nav primary

objects whilst Section A.3 shows the XML specification of the same OHP-Nav object

types adapted to the OCS FWlction Object format. This enables comparison between

the two formats. Figure 7.22 shows an instance of an OHP-Nav Endpoint object in

both formats.

<ENDPOINT>

<ID> EI <lID>

<DIRECTION> source
</DIRECTION>

<ANCHORID> Al
</ANCHORID>

</ENDPOINT>

Conventional OHP-Nav Endpoint.

<ENDPOINT>

<ID> EI <lID>

<DIRECTION> source
</DIRECTION>

</ENDPOINT>

135

OCS Endpoint Function Object.

Figure 7.22: Example of a conventional OHP-Nav Endpoint object and an OCS Endpoint
Function Object (both expressed in XML format).

As can be seen, the only difference between the two object representations is

that a Function Object does not record connection data unlike a conventional

OHP-Nav object. Hence an OCS Function Object can continue to be used in

the same functional manner as a conventional OHP-Nav object. The

connection data is now recorded within OCS Connection Objects.

Section A.4 shows the XML representation for OCS Connection Objects. An XML

example of an instance of an OCS Com1ection Object is shown in Figure 7.23. It

reveals how Connection Object C51 of Figure 7.21 can be constructed.

<CONNECTION OBJECT>

<ID> C5I <lID>

<CONNECTION LIST>

<CONNECTION>

<BOND> ATTACH </BOND>

<OBJECT>

<ID> Al <lID>

<IOBJECT>

<OBJECT>

<ID> NI <lID>

<IOBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION OBJECT>

Figure 7.23: XML code to create Connection Object C51.

The XML tags work as follows:

136

The <CONNECTION_LIST> captures the connections that make up a Connection

Object. The <CONNECTION> tags identify the individual connections between objects.

The <BOND> tag describes whether an attach or conjoin operation is being used to

connect the objects together. And finally the <OBJECT> tags specify the identity of

the objects that are being connected together.

Appendix A also includes two further examples (in much greater detail) of XML

code used to represent actual instantiations of OCS Function and Connection Objects.

Section A.S demonstrates how the same Function Objects can be re-used by multiple

Connection Objects, and Section A.6 shows how a range of conventional OHP-Nav

objects can be converted to the OCS data model format.

7.13. Class and Instance Relationship

On outward appearance, the relationship between Connection and Function Objects

may be considered analogous to the relationship shared by a class and its instance

objects9• But on closer inspection it becomes clear that this is not actually the case.

A class is essentially a template that describes the data and behaviour associated

with objects (i.e. the instances) of that class. TI1is is similar to the role of a Connection

Object as it too acts as a template. In this case it instructs which Function Objects are

to be connected together.

However a key difference is that a Connection Object does not guide which object

types may be connected together. (This would be a Connection Object's role if it really

were a class.) A Connection Object has no interest in vvhat object types it is

cOlU1ecting together. TI1is is left to the discretion of the Connection Object designer.

For example a Connection Object could be used to connect an OHP-Nav Node to an

9 A class instance object should not be confused with an OCS Instance Object (Section 7.11.2).
The former is an object of a class whilst the latter is a virtual object (either Function or

Connection Object) that is being re-used within a hypermedia structure.

137

Anchor (\vhich is correct), or a Node to an Endpoint (which is incorrect). In either

case, the COlUlection Object takes no interest in \vhich arrangement is chosen.

Moreover a COlUlection Object does not fulfil the true role of being a class since a

COlmection Object is an object in its own right with its own identity, and, like a

Function Object, can be re-used (within other COlUlection Objects).

As regards Function Objects being compared with instance objects. Yes, Function

Objects are instance objects, but they are instance objects of the object types they are

used to describe, e.g. OHP-Nav Nodes, Anchors, etc. They are not instance objects of

Connection Objects since a Function Object is not a type of COlmection Object.

7.14. Object and Connection Space Example

This section demonstrates the re-use capability of the Object and Connection Space

approach. It uses the "Rock, Paper, Scissors" game as an example (Section 7.6).

The hyperstructural relationship that 'Rock defeats Scissors' has already been created

in Section 7.7 and is displayed in Figure 7.4. That same section also illustrates how

that hyperstructure can be assigned to a Function Object Space (Figure 7.5) and a

Connection Space (Figure 7.7).

On inspection of the COlmection Space it would seem sensible to be able to re-use the

'Defeats' relationship represented by COlmection Object CIO to express the other RPS

relationships. Adoption of the OCS data model now makes this possible. Virtually all

the objects and connections in the Object and COlUlection Spaces can be re-used to

create the 'Paper defeats Rock' relationship (Figure 7.24).

138

Figure 7.24: The 'Paper defeats Rock' relationship.

The overall arrangement of the FW1ction Object and Connection Spaces necessary to

represent both the 'Rock defeats Scissors' and 'Paper defeats Rock' hyperstructures is

shown in Figure 7.25.

Function Object Space
10:OS I

Connection Space
ID: CS2

�-----------------� ,------
1 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

: ID:CIO
-----------------,
1-------
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 ID: GI I 1 ~ ______ I

1------
1
I
1
1
1
1
I
1
1
1
1

~_~~C.2~_1

1-------
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 ID: GI4 1
~ ______ I

Figure 7.25: The Function Object and Connection Spaces necessary to represent 'Rock defeats
Scissors' and 'Paper defeats Rock' relationships.

As can be seen only 1 new Function Object (N3) and 3 new Connection Objects (C13,

C14, and C16) have needed to be appended to the Object and Connection Spaces of

139

Figures 7.5 and 7.7 111 order to create the 'Paper defeats Rock' hyperstructure

relationship lO.

If the OCS data model were not adopted then it would not be possible to re-use the

'Defeats' hyperstructure as represented by Connection Object CIO. Instead duplicate

objects and connections would have to be created in order for that relationship to be

re-used. This is wasteful of resources.

However, if the 'Defeats' relationship was re-used to represent both the 'Rock defeats

Scissors' and 'Paper defeats Rock' relationships without the OCS data model then an

incorrect hyperstructure would result. This is shown in Figure 7.26.

Figure 7.26: Incorrect hyperstructure without OCS approach.

Whilst the hypersh'ucture of Figure 7.26 does express the relationships that 'Rock

defeats Scissors' and 'Paper defeats Rock', it also expresses some invalid

relationships: 'Paper defeats Scissors' (the reverse is true) and 'Rock defeats Rock'

(which is a draw).

TI1is example has demonstrated that the OCS data model fulfils Computer Science

Contribution 3 and Problem Domain Issue 2 - the ability to re-use hypermed ia

structure, i.e. inter-cOlmected hypermedia objects. This has been possible through re­

using Connection Objects which enable the same cOlmections (as recorded by

Connection Objects) to be re-used in the same or in different hyperm edia structures.

In the case of the example above the Connection Object being re-used is CIO.

10 It should be noted that Connection Object CIS has been added to Connection Space CS2.
This Connection Object was not included in th e original version of CS2 in Figure 7.7 since the
node and anchor terminology of Connection Objects had not been introduced at that time.

140

7.15. Impact on the OHS Architecture

Through its low-level activities (Section 7.4) the OCS data model can benefit

structure manipulation at all layers of the Open Hypermedia System architecture.

7.15.1. Client Application Layer

Client Applications can benefit in many vvays when organizing hypermedia structure

according to the OCS data model.

• Easing Structure Creation. Existing structures, in the form of Function and

Connection Objects, can be re-used. This aids hypermedia structure creators as

there is less 'new' structure to create which can be included as members of any

structure that needs creating.

• Structure Versioning and Hypertext Link Maintenance. The impact that the OCS data

model has on structure versioning and link maintenance forms the topic of

Chapters 9 and 11 respectively.

• Discovery of New Relationships. New relationships can be discovered between the

node resources that hypermedia structure is being used to connect. Table 7.1

shows how investigating the following Function Object types of an OHP-Nav

hypertext link can reveal other potentially related node resources.

Object Type New Relationships Discovered

Nodes Identifies other hypertext links that reference the same node

resource.

Anchors Finds other hypertext links that reference the same content

within any node resource. This is useful for locating node

resources that share the same or similar content.

Endpoints Identifies other hypertext links of the same direction.

Links Finds relationships (i.e. links) of a certain type.

Table 7.1: Discovering new node object resource relationships.

Such relationships are easier to find when using the OCS approach, because the

same Function Object may be being re-used within different Connection Objects

(i.e. different relationships between node resource objects). Therefore it is only

141

necessary to search for that Function Object's identifier within other COlmection

Objects in order to re-create (and hence identify) other related hypertext links.

• Reduced Message Sizes. The size of messages dispatched between Structure Server

and Client Application can potentially be reduced. Fewer Function Objects need

to be sent between components if the same items are being re-used within the

structure being transmitted.

7.15.2. Middleware Layer

The notion of separating hypermedia connections from hypermedia objects makes

the OCS data model a re-usable concept as the OCS approach can be adopted by any

hypermedia server regardless of the domain they serve.

The OCS data model also assists hypermedia domain interoperability as it enables

the hypermedia objects of one domain to be directly re-used within other domains.

Individual hypermedia objects (or blocks of inter-cOlmected objects) can be re-used

without also having to re-use the other objects to which they may be cOlmected

within other structures (of possibly other domains). TI1is is a particularly useful

facility for FOHM as its data model promotes the notion of utilising the same

structures within different hypermedia domains.

7.15.3. Storage Back End Layer

TI1e OCS data model offers optimization at the storage level. The re-use of

hypermedia objects should mean fewer objects to store in the Storage Back End. This

not only benefits the Storage Back End as fewer objects need storage, but it also

benefits the maintainers of the Storage Back End as fewer objects need management.

7.16. Added Complexity

For all its benefits, there is no avoiding the fact that the OCS data model does bring

added complexity to the organisation of hypermedia structure. Notably, hypermedia

objects must now be allocated to separate Function and Connection Spaces. (The

available options are discussed in Section 7.16.2.) But it is this very act of separation

that brings the many advantages (Section 7.15).

142

The process of separating structures can be compared to the added complexity when

operating an independent linking scheme (e.g. OHP-Nav) versus operating a much

simplified link embedding scheme (e.g. HTML of the World Wide Web). This is

because the independent link approach requires more components to administer:

Client Applications, Hypermedia Servers and Storage Back Ends. Moreover there are

a greater number of messages to send between components to carry out hypermedia

functions. The result is greater time spent ""hen creating and following links.

But adopting independent links also offers many advantages. Noticeably being able

to re-use the same Client Applications with multiple OHSs, and being able to re-use

the same links with different documents (e.g. Microcosm generic links). Therefore

despite the added complexity it is oft argued that the advantages of operating an

independent linking scheme outweigh the disadvantages.

The same can also be concluded about the OCS data model. Whilst it brings added

complexity, it also brings many advantages. Prominent are the re-use of hypermedia

objects, collections of connected objects, improved structure versioning and

improved link maintenance.

Chapter 8 explores the implications of applying the OCS data model to OHP-Nav

and FOHM data models. In particular Chapter 8 discusses how the predicted

additional complexity impacts upon performance in terms of the extra number of

hypermedia objects generated and saved as a result of organising hypermedia objects

according to the Object and Connection Space approach.

What follows is a list of the major added complexity that the OCS data model

introduces when manipulating structure in the general case.

7.16.1. Separating and Building Structure

Adoption of the OCS data model adds the complication that hypermedia structure

must be separated into Function and Connection Objects. However some of this

complexity can be reduced if the structure is organised into connection arrangements

that imitate an existing open hypermedia data model's conventional connection

arrangements, e.g. OHP-Nav. This can make users already familiar with an existing

open hypermedia structure data model more at ease with the OCS data model.

Section 8.5 explains how the OCS data model can be used to emulate OHP-Nav

connection patterns.

143

Once the structure has been separated into FWlction and Connection Objects, there is

the added complexity that that same structure then has to be re-built to enable Client

Applications to use it in some fashion, e.g. for traversal. Section 8.S also describes

how the OCS data model retrieval process can mimic the OHP-Nav re-building of

structure.

7.16.2. Re-using Structure

One of the components of the OHS architecture (Client Application, Hypermedia

Server or Storage Back End) has to determine which Function Objects (of a

hypermedia structure) it is possible to re-use. The three choices are:

• Client Application. The client can determine which structure to re-use as and when

it creates the structure.

• Hypermedia Server. The Hypermedia Server can determine which structure is re­

usable when the Client Application sends the structure for storage via the

Hypermedia Server.

• Storage Back End. Once the structure has been sent for storage, the Storage Back

End component can then determine which structure segments are identical and

can be re-used.

There is then the added complexity that once a Function Object or Connection Object

has been re-used, it will be necessary to uniquely identify each different re-use

instance of it. This is to ensure that the correct re-used Function or Connection Object

is referenced by other structural objects. However this added complexity has been

solved by the introduction of Instance Objects as described in Section 7.11.2.

7.17. Summary

This chapter has introduced the Object and Connection Space data model. The main

aim of which has been to open up hypermedia structure. This has been accomplished

through the separation of hypermedia objects and connections.

Critical to the OCS data model are the introduction of two special object types:

Function and Connection Objects. Function Objects are conventional hypermedia

objects minus their connection data, and COlULection Objects describe the C01ULections

between Function Objects. Through combination of these two object types, re-use of

144

the same hypermedia objects and connections is possible in order to create re-usable

hypermedia structures. Such structures can then be used to forge new relationships

between node resource objects of a hypertext network.

TIle chapter also points out how the OCS data model fulfils Computer Science

Contributions 1, 2 and 3 (of Chapter 1), and Problem Domain Issues 1 and 2 (of

Chapter 6). But a majority of the chapter has focused on the underlying mechanisms

of the OCS data model. This has included explaining hO\", Connection Objects

connect Function and/or COlUlection Objects together. A further issue has been

anchoring within Function Objects, i.e. how to reference a specific Function Object

within a given COlUlection Object. And a final capability under examination has been

how to uniquely identify re-used Function Objects within a given hyperstructure.

TIlis is the cornerstone of being able to build hyperstructure composed of re-used

objects.

145

Chapter 8.
Implications for OHP-Nav
and FOHM

8.1. Introduction

This chapter explores the implications of applying the Object and Connection Space

approach to the OHP-Nav and FOHM data models previously described in Chapter

3. It shows how through converting the organisation of OHP-Nav and FOHM

structure to FUl1ction and Connection Objects, the OCS data model satisfies

Computer Science Contributions 1 and 2 (of Chapter I), and resolves Problem

Domain Issues 1 and 2 (of Chapter 6).

Restated they are:

CSC1: Extending the concept of open hypermedia into the realm of

hypermedia structure.

CSC2: Promoting the general re-use of hypermedia structure.

PD1: The use and storage of hypermedia objects that carry out the same

flll1ction.

PD2: The use and storage of identical hypermedia structure.

The contention of this chapter is that the conventional organisation of structure

within OHP-Nav and FOHM unnecessarily restricts the opportUJ1ity for hypermedia

object and connection re-use. This is contrasted with the application of the OCS data

model which by comparison facilitates greater hypermedia structure re-use (CSC2).

A further benefit brought about by the OCS data model is that fewer hypermedia

objects are created . This has the knock-on effect that fewer objects need to be stored

by the hypermedia system, subsequently less hypermedia object management will be

deemed necessary.

146

8.2. Embedding within Hypermedia Objects

The main reason why the implementation of both the OHP-Nav and FOHM data

models are inefficient is because they embed hypermedia object references within the

hypermedia objects themselves. This is in the linked-list fashion as described in

Sections 3.2.5 and 3.3.4:

• OHP-Nav data model. Link objects store embedded references to Endpoints;

Endpoints store embedded references to Anchors; and Anchors store embedded

references to Nodes.

• FOHM data model. Bindings store embedded references to Reference objects; and

Reference objects store embedded references to Data objects or Association

objects.

TI1e two data models are inefficient because they prevent the re-use of single objects

and the re-use of structure segments (Sections 6.2 and 6.3). TI1is occurs for two

reasons:

1. Hypermedia objects that would otherwise be functionally identical may have

different content because they are embedded with different object reference

identifiers within their content. The result is that one functionally identical object

cam10t be swapped for another.

2. Embedding object references means that each OHP-Nav or FOHM object can

only be re-used in association with the objects that it stores the references to.

Thus if an object contains a reference to a second object, then the first object can

only be re-used in conjunction with the referenced object. Hence the first object

cannot be re-used in isolation as a single entity. Moreover, hypermedia structure

designers will often be prevented from creating structure segments comprising

the objects of their choice. This is because a structure segment, in addition to

containing the existing objects of the segment, must also contain the secondary

objects referenced by the existing objects of the segment. TI1is is whether these

extraneous secondary objects are meant to be members of the segment or not.

The FOHM data model further inhibits hypermedia object and connection re-use

because it permits wholesale object embedding, i.e. one FOHM object being entirely

contained within another FOHM object. TI1e problem is that this prevents the re-use

of embedded objects as separate entities because any re-use of the embedded object

would also necessitate re-use of the container object. Wholesale object embedding

147

also prevents the re-use of container objects as separate entities since when the

container object is re-used, the embedded object within it will also automatically be

re-used as well.

8.3. Application of the oes Data Model

The role of the OCS data model is to re-organise the functional and connectional data

within hypermedia objects. This is achieved by assigning hypermedia objects (minus

their embedded object references) to FW1ction Objects, and transforming the

embedded object reference data to become Connection Objects. This results in

embedded object reference data no longer forming part of the content of hypermedia

objects. Such separation enables the OCS data model to facilitate hypermedia object

and connection re-use. Hence the issue of re-using single objects and segments of

hypermedia structure is resolved:

1. Removing object reference identifiers from being embedded within individual

hypermedia objects means functionally identical objects can now share the same

content. Thus fW1Ctionally identical objects can be re-used in place of one another.

2. Hypermedia structure designers are no longer forced to re-use all the objects that

would otherwise be pointed at by embedded reference identifiers. Instead

structure designers can use OCS Connection Objects to pick and choose which

objects and/or connections to re-use.

As regards FOHM wholesale object embedding, the OCS data model leaves the

decision on whether to embed whole objects within one another as a design choice

for OCS hypermedia structure creators. This is because it may be the case that there

is no benefit to be gained from separating an embedded object from its containing

object. For example, if both the embedded object and its container are only ever re­

used as a pair then no advantage is gained by separating the two objects whereby an

additional object (i.e. the embedded object as an independent object) is created that

requires additional object management and storage.

However, as a rule, the OCS data model does not encourage wholesale object

embedding since as already explained in Section 8.2, a greater range of re-use

opportunities exist if the embedded object and its container are separated from one

another.

148

8.4. Resolving Problem Domain Issues 1 and 2

In defining Problem Domain Issues 1 and 2, Sections 6.2 and 6.3 outline four

particular problem scenarios where the OHP-Nav and FOHM embedded object

reference teclmiques hamper the re-use of individual objects and whole segments of

hypermedia structure. This section describes how adopting the OCS data model

resolves two of those problem scenarios. These are: enabling the re-use of OHP-Nav

single objects (Section 8.4.1) and enabling the re-use of FOHM structure segments

(Section 8.4.2).

Appendix B describes how the OCS data model resolves the remaining two

scenarios.

8.4.1. OHP-Nav Single Hypermedia Object Re-use

Adopting the OCS approach enables re-use of the 15 functionally identical objects

within the three hypertext links of Figure 6.1 of Section 6.2.1. Figure 8.1 shows an

example OCS solution, and Table 8.1 presents a summary of the object re-use taking

place.

Function Object Space
10: 0560

Connection Space
10: C560

~-----------------

--------------1
: I
I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I I
I
I ID:C62 I ______________ ..J

149

Examples of
re-used
Function
Objects

Figure 8.1: OCS solution enabling individual OHP-Nav hypermedia object re-use for the

hypertext link structures of Figure 6.1.

The three Connection Objects C60, C61 and C62 build the three h ypertext links of

Figure 6.1. Thanks to the OCS data model, it is now possible to re-use 7 single objects

whereas before (Section 6.2.1) it was only possible to re-use 1 single object.

150

, ~', -! \~ -" ",C, tj.";o

'- j' ::~;~':~r -:l/;'i>~:~~;{~\~~~~""" "
, v aitie' ':;' " '

,Description i" " .

No. of objects to build original hypertext links 21

No. of functionally identical objects 15

No. of objects to build OCS solution 16

No. of FW1ction Objects 13

No. of Connection Objects 3

Re-used object count 7

Re-used object list L2 for L3

E1 for E2

E3 for E5

E4 for E6

Al for A2, A4

A3 for A6

N2 for N3

Eliminated object count 8

Eliminated object list L3, E2, E5, E6, A2, A4, A6,

N3

No. of overall objects saved 5

No. of equivalent hypermedia objects saved 8

Table 8.1: Summary of the re-use taking place within the OCS solution of Figure 8.1.

Table 8.1 shows that the OCS data model solution uses a total of 16 objects. This

compares with a total of 21 objects used by the OHP-Nav object reference embedding

approach. Hence the OCS solution saves 5 objects.

However, of the 16 OCS objects produced, only 13 are Function Objects. It is here

where the real comparison between the OCS approach and the conventional

approach should take place. The OCS Function Objects are the heavyweight objects

(Section 7.9) which contain actual hypermedia object information and are identical to

the hypermedia objects produced by the conventional approach except they do not

contain embedded connection information. The remaining 3 OCS objects are

Connection Objects. These are lightweight objects which do not contain a great

amount of data. TI1erefore the true comparison is between the 13 objects produced by

the OCS approach versus the 21 hypermedia objects generated by the conventional

approach.

In this way the OCS solution actually achieves a greater saving of 8 equivalent

hypermedia objects compared with the original OHP-Nav object reference

151

embedding approach. Therefore due to the OCS data model it has been possible to

eliminate 8 hypermedia objects from storage.

8.4.2. FOHM Repetitive Hypermedia Structure Re-use

Section 6.3.2 explains how the FOHM data model prevents the re-use of the identical

FOHM structure segment within. Figure 6.6. The goal is to re-use the first highlighted

segment twice within the same hypermedia structure so that the highlighted segment

is not only used at its original location but also in place of the second highlighted

segment.

Whilst not possible using the FOHM embedded object reference approach, such re­

use is possible when adopting the OCS data modeL The OCS solution is shown in

Figure 8.2 along with Table 8.2 which summarises the object re-use taking place.

I
I
I

, I

I '
I
I
I '

' I
I

, I
I
I "
I
I

, I
I
I
I

, I
I
I

Connection Space
ID:CS90

Figure 82: OCS solution enabling the same structure segment to be re-used twice within th e
same FOHM structure of Figure 6,6.

The OCS solution shown in Figure 8.2 permits wholesale object embedding. This is

because no object re-use benefit is gained by separating any of the embedded objects

from their containers since neither an embedded object or container of an embedded

object needs to be re-used as a single object.

153

D<es-c1i~ion '. ~ ~~: -~,~.,~~).:~.: ~~ ~ ,~,"!I-' ',;' - " ~.\ "i J"

.'" ".> '" Value ,-

No. of objects to build original FOHM sh'ucture 17

No. of functionally identical objects 14

No. of objects to build OCS solution 13

No. of Function Objects 10

No. of Connection Objects 3

Re-used object count 7

Re-used object list R1 for R2

A2 for A3

R3 for R6

R4 for R7

R5 for R8

D2 for D4

D3 for D5

Eliminated object count 7

Eliminated object list R2, A3, R6, R7, R8, D4, D5

No. of overall objects saved 4

No. of equivalent hypermedia objects saved 7

Table 8.2: Summary of the re-use taking place within the OCS solution of Figure 8.2.

Connection Object C90 records the connections that make up the top non-highlighted

structure segment, and C91 records the connections of the first highlighted structure

segment.

C92 is the Connection Object responsible for building the whole hypermedia

structure. It re-uses Connection Object C91 twice. Each use of the Connection Object

is assigned a different instance identifier in order to denote that C91 is being re-used

in different places within the same COImection Object (i.e. within the same structure).

The first instance, marked as iI, is used to build the first highlighted segment, and

the second instance, marked as i2, is used to build the second highlighted segment.

As Table 8.2 shows, this OCS solution uses a total of 13 objects. This compares with

the 17 objects needed to build the FOHM structure using the conventional FOHM

object reference embedding approach (Figure 6.6). Thus the OCS solution saves a

total of 4 objects. However, because 3 of the OCS objects are Connection Objects

(deemed to be lightweight objects), then the real saving amounts to 7 equivalent

hypermedia objects.

154

Figure 8.3 displays the hypermedia sb·ucture produced by COIlnection Object C92. Of

relevance is that the second highlighted segment contains the same objects and

connections as the first highlighted segment.

A1

Figure 8.3: FOHM hyperstructure containing a re-used structure segment.

8.5. Imitating OHP-Nav Structural Organisation

As pointed out in Section 7.16 adopting the OCS data model brings the added

complication that hypermedia structure must now be divided into FW1.ction and

Connection Objects. That same section also points out that some of this complexity

can be reduced by organising OCS structure into connection arrangements that

imitate an existing open hypermedia data model's conventional connection

arrangements. The intention being to make users already familiar with the existing

155

hypermedia data model feel more at ease with the OCS data model representation.

Such imitation can be achieved, for example, by modelling OCS object-cOlUlection

relationships on OHP-Nav object-cOlUlection relationships. Table 8.3 shows how this

is possible.

DHP-Nav Relationship DeS Data Model Relationship

Anchor stores reference to single Connection Object connecting single

Node. Anchor to single Node.

Endpoint stores reference to single COlUlection Object connecting single

Anchor. Endpoint to single Anchor.

Link stores references to one or more Connection Object connecting single

Endpoints. Link to multiple Endpoints.

Table 8.3: Imitating OHP-Nav relationships.

Figure 8.4 shows OHP-Nav hypermedia structure 'Rock defeats Scissors' organised

into a Connection Object arrangement that mimics conventional OHP-Nav

cOlU1ections.

Connection Space
10: CStOO

-------- - -- --- ---
1
1
1
1

,.1
1

'. 1
1
1

.1'
1 10: CtoO L _ _ _____ _ __ _ _ _ _ _ _

1
1
1
1
1
1
1
1
1
1
'I
1 10: CtOt

- ---- - - - 1
1
1
1
1
1
1
1
1
1
1

10:C103 1
L _______ J

r - -- - --...,

1
1
1
1
1
1
1
1
1
1

~_f.e:E!2~_
1-- ---- 1

1
1
1
1
1
1
1
1
1
1 fO:Ct04
1

Figure 8.4: Imitating OHP-Nav hypermed ia structure representation.

When it comes to re-building structure, because OHP-Nav embeds connection data

in individual hypermedia objects, then for every Function Object retrieved, its

associated COlUlection Object will also have to be retrieved as well. For example to

rebuild structural segmen t E2 to A2 (of Figure 8.4), then when FW1ction Object

156

Endpoint E2 is retrieved so will Connection Object C4 in order to determine that E2

is connected to A2.

8.6. Applying the OCS Data Model to Connection
Objects

TI1is section explores whether it is worthwhile applying the OCS data model to OCS

Connection Objects. This is because, like OHP-Nav and FOHM structures, OCS

Connection Objects are also comprised of objects and connections. TI1is means it is

possible to apply the OCS data model to individual Connection Objects. Figures 8.5

and 8.6 highlight the similarities between an OHP-Nav structure and an OCS

Connection Object.

Examples ___

of objects

~

__ -- Examples of
connections

Figure 8.5: An OHP-Nav hypermedia structure expressing the 'Humans Eat Fruit'

relationship .

Function Object Space
', IO:OS110 ,

Function
Objects

Function Object
stubs

Connection Space
10: CS110

~ _______ r---------
IO:C112

157

------,
1
1

1
1

1
1
1
1

1
1
1
1
1

1
1
1

_-+-If-- Examp les of
connections

1 10: CIII 1 L ________________ I -~ ~-f,----: ----------------~
1 1

Examples~
of objects • , : .

' I
1 conjoin
1
I
1

I
1
I
I ' L ______ ~~~~ _____ _

Figure 8.6: An example of how the elements of the structure of Figure 85 can be assigned to
Object and Connection Spaces via the OCS data mod eL

In question is whether the same advantages afforded to OHP-Nav and FOHM

structures can also be afforded to OCS Connection Objects. I.e. can the internal

objects and connections within Connection Objects be re-used in order to prevent the

wasteful storage of unnecessary object and connection entities?

In order to apply the OCS data model to Connection Objects, they must first be

represented as FOHM structures. Subsections 8.6.1, 8.6.2 and 8.6.3 explain why this

FOHM transformation is necessary. This is followed by Subsection 8.6.4 which

explains what (if any) benefits are gained from applying the OCS data model to

Connection Objects.

8.6.1. Why Change the Structure Representation of
Connection Objects?

The reason why the OCS data model should not be applied directly to Connection

Objects (without first being converted to a FOHM structure) is because such action

158

does not produce any meaningful object re-use opportunities. Figure 8.7 shows an

example where the OCS data model is applied directly to Connection Object Cll1 (of

Figure 8.6). It shows FWlction Object Space OS120 containing the FWlction Object

stubs of Connection Object Cll1 which have been converted into independent

Function Object entities, and Connection Space CS120 containing an example

Function Object arrangement.

Function Object stubs (from
Connection Object C111)

converted into independent
Function Objects

Function Object stubs that point
to other Function Object stubs (in

OS 120) which point to actual
Function Objects

. Function Object Space
10:OS120

Connection Space
ID:CSI20

r------------------

ID:CI21
~ ___ ~_L __ ~ _______ _

Figure 8.7: Ineffectual application of the OCS data model to Connection Object Cll1 of
Figure 8.6.

Applying the OCS data model directly to Connection Object Cll1 is essentially a

pointless exercise because the object re-organisation taking place within new

Connection Space CS120 could equally and more efficiently be carried out directly

within original C01U1ection Object Cll1. This is for two reasons:

1. The only role that each FWlction Object of OS120 plays is to act as a pointer to the

Function Objects of original Function Object Space OSllO, e.g. Link object L10 in

OS120 acts as a stub for L1 in OSl10. Hence the Function Objects of OS120 are

redundant creations which lead to unnecessary object management and storage.

TIlerefore new Function Object Space OS120 and the FWlCtion Objects within it

159

need not exist. It would be more efficient if Connection Object C121 referred

directly to the Function Objects of 05110 instead.

2. New Connection Space CS120 and the COlUlection Objects within it also need not

exist. This is because CS120 only has access to_ the same objects (to re-organise) as

original Connection Object C1ll. This is because each Function Object within

05120 acts as a pointer to a corresponding Function Object in 05110. Thus CS120

only has opportunity to organise the FWlction Object stubs in the same

formations as C1ll. Therefore it would be more efficient to leave C1ll to do such

object organising, and not bother creating Connection Space CS120 in the first

place.

8.6.2. Transforming Connection Objects to FOHM
Structures

The reason why Connection Objects are converted to FOHM structures is to reveal

the object and cOlUlection data that make up the connections between each Function

Object stub. Hence it is to these FOHM structures that the OCS data model is

applied. Any re-use that takes place via the OCS data model is between the objects

and COlUlections within these FOHM structures.

Figure 8.8 shows an example where Connection Objects C111, Cl12 and Cl13 (of

Figure 8.6) have been converted to FOHM structures.

160

----~~-------- All--------~~----l

IO:CIII

.l.- Type of connection
I between Function and/
I or Connection Object

I
I

Points to an area within
a Function or

Connection Object

.......l- Points to a Function or
I Connection Object

I
~----------------------------~

r---------------------,
A13 A14

10: C113

Figure 8.8: Transformation of Connection Objects Clll, C1l2 and C1l3 to FOHM structures.

Each FOHM object within a transformed Connection Object has the following role:

• Data objects. Each Data object (within a Connection Object) corresponds to a

Function or Connection Object stub . For example Data object DIG (in Connection

Object Clll) has content El which means it corresponds to FWlction Object E1.

• Association objects. Each FOHM Association object represents a single connection.

In Connection Object Clll there are three Association objects which means that

there are a total of three connections within this Connection Object. One example

of a cOlUlection is All attaching Dll to D12 which signifies that FWlction Link

161

object L1 is connected to Endpoint object E2. A FOHM Association object also

denotes the type of relationship between each connected Function and/or

Connection Object, i.e. they may be conjoined (Section 7.10.1) or attached (Section

7.10.2).

• Reference objects. When needing to reference a Function Object within an existing

Connection Object, the ID of that Function Object is recorded within a FOHM

Reference object. For example in Connection Object C113, Node N2 wants to

attach to Anchor A2 which is located inside Connection Object C11I. Therefore

A2 is recorded as the Reference value within R22 of 'attach' Association A16.

• Binding objects. Their role is to form the bridge between a Reference and

Association object. They have a valueless state since neither Function nor

Connection Objects are attached or conjoined to one another in any particular

order.

8.6.3. Applying the oes Data Model to FOHM Structures

Once an ocs Connection Object is converted to a FOHM structure, the OCS data

model can then be applied to the internal connections within the Connection Object.

Figure 8.9 shows an example of applying the OCS data model to the three

Connection Objects of Figure 8.8.

Function Object Space
ID: 05130

Connection Space
ID:C5130. .'

R1

This is the same instance of
C130. Each instance (of

C130) attaches to a different
Function Object via a different

• anchor within C130, e.g.
instance 1 of R10 attaches to
E2, whilst instance 2 of R1 0

attaches to A2.

1 1
1 1
1 1
1 1
1 1
1 1
I ' 1
1 . '.' 1 . ~cm . L ___________ ";;; '_ . _________ :.... ______ J

r--------------------
1 1
1 1
I 1

' 1 1

I :
1
1 1

. 1
I ' 10:C132
~--:....------~--- ______ I
r--------------------

10: C133

~--------------------

162

Figure 8.9: An example OCS solution having applied the OCS data model to the Connection
Objects of Connection Space CSll 0 of Figure 8.6.

Figure 8.9 shows that a significant number of FW1Ction Objects referenced within the

Connection Objects of COIU'1ection Space CS130 are not recorded within Function

Object Space OS130, e.g. objects El, L1 and C112. The reason for this is because all

163

these objects already exist in FW1ction Object Space OS110 and/or Connection Space

CSllO. They were created as part of the earlier OCS solution to describe 'Humans Eat

Fruit' shoV\Tn in Figure 8.6. Therefore those objects do not have to be re-created within

new Function Object Space OS130. Instead, COlU1ection Space CS130 can simply pick

and choose which Function and/or Connection Objects to re-use from OS110 or

CSllO. Such re-use capability prevents needless creation of an additional 9 Function

Objects: Nl, AI, El, Ll, E2, A2, N2, Clll and C1l2.

The net result is that only three Function Objects need to be recorded within new

Function Object Space OS130. They are:

• Association Object A10. This is a re-usable Association object used to attach two

Function or Connection Objects together, e.g. AlO is used to attach Connection

Object Clll to Node N2 within Connection Object C133.

• Association Object A1S. This is a re-usable Association object used to conjoin two

Function or Connection Objects together, e.g. All is used to conjoin Connection

Object Cl12 to Clll within COlmection Object C133.

• Reference Object R10. This is a re-usable Reference object that enables a

Connection Object to reference a whole Function or COlmection Object. For

example RIO enables the whole of N2 to be referenced within COlU1ection Object

C133.

Figure 8.9 also shows Connection Space CS130 to be comprised of 4 Connection

Objects: C130, C13l, C132 and C133.

The role of COlU1ection Object C130 is to group together the combination of objects

frequently re-used within the FOHM structure of Figure 8.8. These are the 'attach'

Association (AlO) whose two embedded Bindings are connected to two 'whole'

References (RIO il and RIO i2).

COlmection Objects C13l, C132 and C133 correspond to Connection Objects Clll,

C112 and C113 of Connection Space CSllO (of Figure 8.6). As can be seen COlU1ection

Objects C13l and C132 re-use C130 10 times. Such re-use prevents creation of 13

additional Function Objects (Rll, All, R12, R13, A12, R14, R15, A13, R16, R17, A14,

R18 and R19). This is because every re-use of C130 prevents the creation of an extra 3

Function Objects (equivalent to AlO and 2 instances of RIO) that would otherwise

have to be recorded in Function Object Space OS130.

164

Figure 8.8 shows the total number of objects that would be needed to create the

FOHM structure representation of the three Connection Objects Clll, Cl12 and Cl13

if no re-use was possible. But adopting the OCS solution to enable re-use within

Connection Objects C13l, C132 and C133 (of Figure 8.9) means that the only objects

that need to be recorded in Function Object Space 05130 are Ala, A15 and RIO. Thus

the following objects (from Figure 8.8) need not be created: DlO, Rll, Dll, All, R12,

R13, D12, A12, R14, R15, D13, A13, R16, D14, R17, D15, A14, R18, R19, 016, R20, D17,

R21, D18, A16, R22, R23 and D19.

165

De~~~non' ' ' ': '~:t"~ ~ . ":: '.'. ?/~./' >'Valu~ ~ . ['

No. of objects to build FOHM representation of 31

the 3 Connection Objects

No. of functionally identical objects 30

No. of objects to build OC5 solution (excluding 7

previously created Function and Connection

Objects in 05110 and C5110)

No. of Function Objects (excluding previously 3

created Function Objects in 05110)

No. of Connection Objects (excluding previously 4

created Connection Objects in C5ll 0)

Re-used object count 11

Re-used object list AIO for All, A12, A13,

A14, A16

RIO for R11, R12, R13, R14,

R15, R16, R17, R18, R19,

R23

El for DlO, D14, R20, R2l

Ll for Dll

E2 for D12

A2 for D13, R22

Al for 015

Nl for D16

C112 for D17

Clll for D18

N2 for D19

Eliminated object count 28

Eliminated object list A11, A12, A13, A14, A16,

R11, R12, R13, R14, R15,

R16, R17, R18, R19, R20,

R2l, R22, R23, DlO, 011,

Dl~ Dl~ Dl~ Dl~ Dl~

017,0]8,019

No. of overall objects saved 24

No. of equivalent hypermedia objects saved 28

Table 8.4: Summary of the re-use taking place within the OCS solution of Figure 8.9.

166

Table 8.4 summaries the re-use taking place within the OCS solution of Figure 8.9. It

shmvs that the application of this OCS solution leads to the generation of 7 new OCS

objects comprising 3 Function Objects and 4 Connection Objects. This compares with

the 31 objects that would have to be created if it were not possible to apply the OCS

data model. This is calculated by adding up all the objects within the FOHM

structure of Figure 8.8. Thus the OCS solution of Figure 8.9 makes an overall saving

of 24 OCS objects. However, because 4 of those objects are COIU1ection Objects

(considered to be lightweight objects), there is actually a saving of 28 equivalent

Function Objects.

8.6.4. Scope of the oes Data Model

In terms of purity of principle it would be ideal if the structure author could choose,

at some indeterminate point within the lower level of connections within

hypermedia structure, when to stop applying the OCS data model. But is this a

practical or sensible action to carry out?

The question is asked, because it is possible that the OCS data model could be

applied to the intemal connections within structure indefinitely. For example, the

OCS data model can be applied to top-level structure. E.g. OHP-Nav hypertext links

or FOHM Association relationships. This is the approach strongly recommended by

this thesis to be adopted for all hypermedia structure. TI1e OCS data model can then

be applied to the Connection Objects generated as a result of having previously

applied the OCS data model to top-level structure. Such an act has just been

demonstrated in Subsections 8.6.2 and 8.6.3. TI1e OCS data model can then be applied

to even lower level structure, e.g. to the connections produced as a result of having

previously applied the OCS data model to Connection Objects. TI1e process could

then continue even further by applying the OCS data model to the internal

connections subsequently produced after the previously described application of the

OCS data model. And so the practice could continue.

TI1e question should really be at what point is it advisable to stop separating the

functional and connectional properties of low-level Connection Object structures?

This is because ultimately the connections between structural objects (i.e. Function

Objects) must be explicitly declared at some point. If the Connection Objects are

forever being broken down into more and more fine grained structure, then Function

Objects will never be able to be joined together (via Connection Objects) to enable

creation of appropriate high-level structures, such as hypertext or taxonomic links.

167

Subsection 8.6.3 already ans\'\'ers this question. It shows that application of the OCS

data model when organising the internal connections within Connection Objects

does not actually produce useful structure. This is for two reasons.

First, applying the OCS data model to Connection Objects does not enable a great

deal of heavyweight object re-use to occur. This is because Connection Objects do not

contain a great deal of data, i.e. they are lightweight objects as explained in Section

7.9. This stems from the objects within a Connection Object only being object stubs.

The only values they contain are their identity, a marker indicating if they are

instance objects, or an anchor value. Thus there is no significant heavyweight object

data to re-use.

Second, application of the OCS data model to the internal connections within an OCS

Connection Object does not fare better when attempting to save on the number of

needlessly created objects. Without the OCS data model only the original COlmection

Object exists. But application of the OCS data model to a COlmection Object leads to

many more Function and COlmection Objects being created. E.g. Figure 8.9 shows

that 7 new OCS objects are created in the example scenario of Subsection 8.6.3.

However as already stated these additional objects do not bring any significant re­

use opportunities. The opportunity for re-use would be much improved if the object

stubs were already recorded separately from the COlmection Objects and contained a

greater amount of data (i.e. heavyweight data). But this is not the case. Thus applying

the OCS data model to COlmection Objects actually creates more objects than it saves,

and incurs the cost of extra object management and storage.

Therefore it can be concluded that the scope of the OCS data model should end with

its application to top-level hypermedia structures such as OHP-Nav and FOHM

structures. However, a different conclusion would be reached if the Connection

Objects (after the first application of the OCS data model) did contain a greater

amount of information, then it would be useful and sensible to continue applying the

OCS data model in order to continue the process of re-organising internal structure.

Perhaps in the future as more cOlmection information is assigned within hypermedia

objects, it would be beneficial to once again re-apply the OCS data model at lower

level connections within internal structure.

168

8.7. Summary

This chapter has described how the OCS data model can be applied to the OHP-Nav

and FOHM data models. A major problem with the original representation of OHP­

Nav and FOHM structures is that their objects contain embedded object references.

However the OCS data model approach of dividing OHP-Nav and FOHM

hyperstructures into separate Function and Connection Objects has shown that much

more hyperstructure re-use is now possible. This is because it removes the

hypermedia object reference embedding within hypermedia objects. Thus Computer

Science Contribution 2 is fulfilled as the OCS data model promotes the general re-use

of hypermedia structure.

Furthermore, this chapter has shown how the OCS data model enables the re-use of

individual hypermedia objects and hypermedia structure segments which satisfies

Problem Domain Issues 1 and 2. Moreover such re-use means that generally fewer

objects need to be generated in order to create the same hypermedia structures using

the original OHP-Nav and FOHM approaches.

Also demonstrated is how the OCS data model realizes Computer Science

Contribution 1 by extending the concept of open hypermedia to individual

hypermedia objects and hypermedia segments. This is because the OCS data model

enables individual hypermedia objects to be attached to one another without having

to alter the content of either attached hypermedia object. And the same applies to

hypermedia structure segments, as structure segments can be attached to individual

hypermedia objects or other structure segments without having to alter the content

of either participating structures.

The chapter has also explained how the OCS data model can be used to emulate

OHP-Nav's structural connections. This ability is useful for assisting those users

already familiar with the connection arrangements of existing hypermedia data

models. And, also examined has been the scope of the OCS data model in respect of

whether it is effective to apply the OCS data model to OCS Connection Objects.

However, it was determined that the adoption of the OCS data model should end

with its application to top-level structures only, e.g. OHP-Nav and FOHM structures.

Chapter 9.
Applications for
Versioning

9.1. Introduction

169

This chapter explores how the Object and Connection Space data model benefits the

versioning of hypermedia structure. Its main contribution is that it prevents revision

proliferation. This is due to the OCS data model removing object reference

embedding. A second important contribution is that the OCS data model provides a

simple mechanism enabling different views of hypermedia structure versions to be

presented to versioning clients. Consequently the OCS data model satisfies

Computer Science Contribution 4 (Chapter 1) and resolves Problem Domain Issue 3

(Chapter 6) .

CSC4: Improved versioning of hypermedia structure.

PD3: The dangers of revision proliferation.

9.2. Recap on Revision Proliferation

The background as well as advantages of versioning hypermedia structure have been

described in Chapter 4. At the same time the problem of revision proliferation was

also discussed (Section 4.6) [Conradi and Westfechtel 1998]. What follows is a brief

recap.

Essentially the problem of revision proliferation occurs when attempting to create a

new revision of an existing hypermedia object. Revision proliferation causes the

unnecessary creation of new hypermedia objects being appended to a hypermedia

structure. Section 6.4 highlighted how it is a problem for conventional organisations

of hypermedia structure, such as the OHP-Nav and FOHM data models. This is due

to the embedding of references between hypermedia objects within the hypermedia

objects themselves. Section 6.4 reported how the OHP-Version protocol and

170

Contextualised Connections approach were investigated as potential solutions, but

failed to prevent revision proliferation from occurring.

9.3. oes Solution to Revision Proliferation

It is through separating the fw1ctional and cOlmectional roles of hypermedia objects,

via the OCS data model, that solves the revision proliferation problem (PD3). The

result is that when a new revision of an existing FW1Ction Object is created, only the

one new Function Object will result. Moreover the OCS data model ensures that the

nev,' hyperstructure formation will be exactly as expected. Also importantly the

presentation of the different revisions of the hypermedia structure will be

unmistakable to clients.

The scenario presented by Figure 6.9 of Section 6.4.1 can be used as an example to

demonstrate the OCS solution to the revision proliferation problem. The desired

before and after hyperstructure formations are shown in Figure 9.1. The intention is to

create a new revision of object 'A2 vI' such that the new revision replaces the original

revision within the existing structure. The new structure formation is shown as

Hyperstructure B.

Hyperstructure A Hyperstructure B

Figure 9.1: The before and after hyp ermedia structuresll hav ing created a new object revision.

Figure 9.2 shows an example of the Object and Connection Space arrangements that

can be employed to record both the original and the new revision of object A2. The

11 Neither hyperstructure's connections (between objects) are endowed w ith object reference

embedded blocks or directionality arrows since the two hypers tructures are generic
hypers tructures and are not representative as having been organised according to a specific
hypermedia data model (as yet).

] 71

Object and Connection Spaces also record each hypersb-ucture formation (i.e.

Hyperstructure A or B) as a different hyperstructure revision to ensure that the

correct hyperstructure containing the appropriate revision of Anchor A2 is created.

This is further explained in Section 9.4.

Connection Object C203 produces Hypersb-ucture A and Connection Object C204

generates Hyperstructure B.

Function Object Space
/0: OS200

Connection Space
ID:CS200

1-------.------ -----

1
'I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 10: C200

1
1
1
1
1
1
1

· 1
I ·
1
1
1
1
1
1
I IO:C203

r--------
1
1

1
1

1

10: C201

Figure 9.2: Object and Connection Spaces for Figure 9.1.

The Connection Space of Figure 9.2 is not the only Connection Space arrangement

that can produce the desired hyperstructure revisions. Many different Connection

Spaces can be used to describe each hyperstructure revision. Figure 9.3 provides two

further examples of different Connection Spaces that are equally valid for generating

the correct hyperstructure revisions. Connection Objects C210 and C211 of

Connection Space CS210 produce the respective original and new h yperstructure

revisions. And Connection Objects C224 and C225 of Connection Space CS220 also

produce the respective initial and new revisions of hyperstructure.

Connection Space
W: CS210

/0: C210 10: C211

Connection Space
W: CS220

------------------, r-~------, , ,
, ' , ,
, ' , ' , , , ,
, ' , '
, . /0. C220 ' L _______ ..:. _________ ,

10: C221

r--------, , , , , , , , , , , , , , , ,
, 10: C222

--------------1 ,--------------1

10:C224

, , , , , , , , , , , , , ,
, 10: C225

Figure 9.3: More Connection Spaces for Figure 9.1.

172

For all OCS solutions the Function Object Space will contain the same FWlCtion

Objects as shown in the FWlction Object Space of Figure 9.2. 111ese are the original 7

Function Objects used to create the initial hyperstructure revision plus an additional

FWlCtion Object CA2 v2') used to replace 'A2 vI' to create the second hyperstructure

revision.

The contents of the Function Object Space demonstrate that the OCS approach

generates only 1 new Function Object for each new Function Object revision created.

This is unlike the conventional approach of embedding object references that can

173

lead to a seemingly random array of new data objects being created when only 1 new

object is expected. (In the case of the OHP-Version protocol example of Section 6.4.1

two additional objects were needlessly created.)

The three Connection Space examples create the correct and expected hyperstructure

formations for both the original and new hypermedia structure revisions. Each

Connection Space represents each hyperstructure revision as a separate entity

(Hyperstructure A separate from Hyperstructure B) as shown by Figure 9.1.

Consequently there is no confusion as to the nature of tll.e hyperstructure in terms of

whether it represents the entire hyperstructure revision or whether it is acting as a

container for all revisions within the same hypermedia structure. (This was noted as

a potential problem within Section 6.4.1.)

However it must be conceded that overall more objects are generated as a result of

the OCS approach. This is in regards to Connection Objects. But this is not really a

big issue since Connection Objects are only lightweight objects. Therefore they do not

contain much information which means they are not a particular burden for the

hypermedia system in terms of object storage as explained in Section 7.9. But it is

precisely because of the presence of these Connection Objects that ensure that the

different revisions of hypermedia structure comprise the expected Function Objects

and take up tll.e anticipated structural formations.

Section 10.6 also shows how the OCS framework (which is an extension of tll.e

concept of the OCS data model) in conjunction with a versioning policy can eradicate

the revision proliferation problems encountered by both the CoVer hypermedia

versioning server (Section 4.6.2) [Haake 1994] and the Nested Composite Model of

Hyper Prop (Section 4.6.3) [Soares et al. 1993b].

9.4. Different Views of Hypermedia Structure

A further advantage of the OCS data model is that Connection Spaces allow different

revisions of the whole hypermedia structure to be constructed without having to

embed additional versioning data within Function Objects. This capability is akin to

open hypermedia's ability to present different views of networks of documents by

changing the links between the documents as once again none of the connected

documents need to be modified in order to participate in each hypermedia network

VIew.

174

In the case of the OCS data model, it uses COlUlection Objects to represent the

different revisions of a hypermedia structure. Thus for the example hypermedia

structure revisions of Figure 9.1 the first hypermedia structure revision (represented

by Connection Object C203 of Figure 9.2) is made up of Connection Objects C200 and

C201, and the second hypermedia structure revision (represented by COlUlection

Object C204) is composed of COlUlection Objects C200 and C202.

The versioning alternatives for representing different views of hypermedia structure

revisions are often inefficient compared with the OCS approach. There are two

obvious alternatives to the OCS approach:

1. The first alternative is to have one hypermedia structure that comprises both

revisions within itself. Hyperstructure B of Figure 6.9 shows an example of such a

hypermedia structure. It comprises both the hypermedia structures depicted in

Figure 9.1. This solution requires the hypermedia structure server to have much

more complicated functionality. The server must be able to distinguish that there

are two or more revisions of a hyperstructure within the same hypermedia

structure, and it must also be able to determine which objects belong to which

revision of the structure. Moreover this approach will also have impact on

normal (non-versioning) hypermedia structure navigation as the normal

operation of the hypermedia structure server will have to change as well. For

example clients may be forced into having to specify additional versioning

operations when navigating or writing new objects to the server as each object

will be treated as a revision regardless of whether it is going to be versioned or

not. The end result is that clients may have to have an understanding of

versioning even if it is not relevant to their work.

2. TIle second alternative is to create separate hypermedia structures that reflect the

different revisions of the one hypermedia structure. Figure 9.4 shows an example

of two separate structure revisions for the example hypermedia structures of

Figure 9.1. The first revision would be composed of the original objects of the

original structure, but the second revision would be composed of entirely new

objects - no re-use would be possible. This solution leads to the creation of seven

additional objects. Clearly this is wasteful of resources as only one object has

actually changed.

175

Hyperstructure A Hyperstructure B

Figure 9.4: Independent structures as OHP-Nav stru cture revisions .

Adoption of the OCS approach means that the normal operation of the

hyperstructure server does not necessarily have to change when versioned objects

are introduced into the system. This is because when the OCS approach has already

been used to represent the hypermedia structure, little effort has to be wldertaken to

organise the COlUlection Objects to express the hypermedia structures in their

different revisions.

The ability to display different revisions of hypermedia structure also applies to the

general case. That is to say that the OCS data model can display any views of

h ypermedia structure without having to embed any data within the Function Objects

themselves.

9.5. OCS Data Model vs. Contextualised
Connections

This chapter has already demonstrated how the OCS data mod el resolves the

revision proliferation problems faced by the OHP-Version protocol. This has been via

the example scenario of Section 9.3 which compared the OCS solution against the

OHP-Version revision proliferation problems described in Section 6.4.1. Thus what

remains is to identify how the OCS data model improves upon the FOHM

Contextualised COlUlections approach.

A major failing with the Contextualised COlUlections approach is when attempting to

append an ordinary non-versioned object to an existing FOHM stru cture. Section

6.4.2.4 identifies the root of the problem:

176

The problem is that object references continue to be embedded as part of a

FOHM object's content.

Revision proliferation results because any existing FOHM object that is to

reference the new object must have its connection data (i.e. embedded object

reference) updated in order to reference the new FOHM object. But this means

that the existing FOHM object's content is being modified. Therefore versiorung

policy dictates that a new copy must be created of that updated object. Thus a

new (and unnecessary) copy of that object will have to be created. The original

copy preserves the original embedded connection data, whilst the new copy

contains the new reference.

The OCS data model automatically resolves this Contextualised Connections revision

proliferation problem because it removes object reference embedding. Thus,

whenever a non-versioned object (or even a revision of an existing object) is

appended to existing objects within a structure, no UlUlecessary objects are created.

This is because there are no embedded object references that need to be updated

within OCS structures.

Instead, the existing COlUlection Object that record s the connections for the exis ting

structure can be updated by being re-organised to include the addition of the new

(non-versioned) object. Thus the only additional object required is the new object

itself.

Alternatively, if the evolution of the COlUlection Object structure from one sb·uctural

layout to another is to be preserved, then a new COlUlection Object can be created .

The original COlUlection Object will record the state of the Connection Object before

the new (non-versioned) object was appended, and the new Connection Object will

record the updated structural layout containing the newly appended object.

Figure 9.5 shows how the COlUlections of the FOHM Contextualised Connection

example of Figure 6.14 (of Section 6.4.2.4) can be modelled using OCS Connection

Objects.

ID:C230

ConneClion Space
ID: CS230

ID: C231

177

New non-versioned
FOHM object
appended to structure

~----------------
L __________________ J

(a) Original Connection Object
prior to appending object R2.

(b) New Connection Object after R2 has been appended to
B 1. Note that Connection Object C230 continues to exist in
order to record the previous FOHM connection layout.

The structural layout adopted within the figure assumes that both revisions of object R1 are to be
present within the same hyperstructure revision. Also note that there is no virtual object R1 .
Instead B1 points directly to 'R1 vi ' and 'R1 v2'.

Figure 9.5: Modelling the connections of the FOHM Contextualised Connection exampl e of
Figure 6.14 (of Section 6.4.2.4) using OCS Connection Objects.

9.6. Summary

The purpose of this chapter has been to explain how the OCS data model benefits the

versioning of hypermedia structure. Consequently the chapter has also explained

how the OCS data model achieves Computer Science Contribution 4.

The OCS data model's approach of removing object reference embedding from

hypermedia objects means that revision proliferation can be significantly reduced if

not eliminated. TIlliS the unnecessary duplication of hypermedia objects usually

brought about as a result of structure versioning is prevented. The benefi ts are not

only the prevention of wasteful storage of objects, but also the prevention of the

formation of potentially confusing hypermedia structures. Hence Problem Domain

Issue 3 of Chapter 6 has also been resolved.

Moreover the OCS data model also eases the process by which client applications can

view different revisions of a hypermedia structure. This is because the OCS data

model enables individual hyperstructure revisions to be preserved as separate

structures by being recorded within separate Connection Objects. Thus clients only

have to consult a single object (i.e. a Connection Object) in order to immediately

identify which hypermedia objects are members of a given hypermedia structure

178

revision. This compares with alternate versioning strategies, such as the OHP­

Version protocol, which combine different hyperstructure revisions within the same

structure. This has the significant drawback that the hypermedia structure server

must be that much more functionally complex so that it can distinguish between

different revisions of structure that reside within the one overall structure.

179

Chapter 10.
A Versioning Framework

10.1. Introduction

The principles of the OCS data model (i.e. object and connection separation) can be

used as the basis for creating frameworks in order to establish relationships between

any and all generic objects.

The intent of this chapter is to show how the OCS data model can be used to create

relationships beyond the traditional relationships considered thus far, i.e. the joining

together of hypermedia objects to form structures for the navigational, taxonomic

and spatial domains. The example considered is a framework for a hypermedia

versioning scheme.

The emphasis is to show how the OCS data model is more flexible and efficient

compared with object reference embedding. In the process this chapter provides

further evidence as to how the OCS data model addresses Computer Science

Contributions I, 2, 3, 4 and 5.

CSCl: Extending the concept of open hypermedia into the realm of

hypermedia structure.

CSC2: Promoting the general re-use of hypermedia structure.

CSC3: Offering a more logical approach to hypermedia structure

representation.

CSC4: Improved versioning of hypermedia structure.

CSC5: Enabling improved hypermedia structure maintenance.

180

10.2. Versioning Framework

The reason why a versioning framework in particular is being investigated is

because, as discussed in Chapter 4, this is an oft talked about area within the

hypermedia community where there is (as yet) no ideal hypermedia versioning

system.

But the aim of this chapter is not to suggest an ideal hypermedia versioning system.

Its real aim is to show how the OCS data model can be used to form relationships

between any generic objects. Hence this versioning framework is a theoretical

exercise. However the versioning framework is still useful in providing an indication

as to how the OCS data model can improve the overall versioning process (CSC4).

10.3. Versioning Framework Organisation

The role of the versioning framework is to record revision information about

Function and Connection Objects. When an update is made to a Function or

Connection Object, a new revision of the affected object is created and the original

revision is preserved.

The versioning framework is comprised of the following 5 basic objects:

• Function Objects. These are the objects being versioned and are exactly the same

as conventional Function Objects (Section 7.7.1).

• Connection Objects. Like Function Objects, these are the objects being versioned

and are exactly the same as conventional Connection Objects (Section 7.7.2).

• Revision Information Objects. Store revision data about Function or Connection

Objects, e.g. creation date and modification date.

• Version Managers. Group together related Function or Connection Object

revisions.

• Revision Tree Connection Objects. Record the evolution history of Function or

Connection Objects, i.e. how each revision is related to one another in terms of

sibling, child or parent.

J 81

The versioning framework is represented as an wlderlying Object and COlUlection

Space shown by Figure 10.1.

All framework objects of the Function Object Space are treated as generic Function

Objects, and they are all cOlUlected to one another via COlUlection Objects (such as

those in the COlUlection Space shown). Such an arrangement means that the

relationships between framework Function Objects can be altered any time by simply

re-organising the framework COlUlection Objects. No framevvork Function Objects

ever need updating during such organisation since they are not embedded with any

connection data. The advantages gained from this function and connectional

separation are the subject of Section 10.5.

Note, that when a Connection Object is subjected to versioning, it is treated the same

as a versioned Function Object. Hence the versioned Conrlection Object appears as a

'Function Object' within the Function Object Space in Figure 10.1.

Function
Objects

10.4.

Function Object Space Connection Space
for DeS Versioning Scheme Framework Ior DCS Versioning Scheme Framework

Connection Objects

Figure 10.1: The OCS Versioning Framework.

Versioning Example

Function
Object
Stubs

This section describes an example of a FOHM segment of structure being versioned.

It centres on a structure author who intends to create a new revision of Reference

Object 'R1 vI' of the hyperstructure of Figure 10.2(a) so that new revision 'R1 v2'

182

replaces it within the new hypersh'ucture formation shown by Figure 10.2(b). Every

Function Object minus the Reference FWlCtion Object is re-used in both structures.

(a) Original
Hyperstructure

(b) New
Hyperstructure

Figure 10.2: Original and new hyperstructure
revisions.

Connection Space
for Connection Objects

r-------- r--------I

fD: C300 vI L ______ _ fD: C300 v2 L ______ _

1
I
1
1
1
1

Figure 10.3: Connection Objects for
hyperstructure revisions.

As is the usual case with the OCS data model (Chapter 7), each different hypermedia

structure formation is represented as a separate COlUlection Object. Figure 10.3

shows both the original and new structure formations recorded as Connection

Objects 'C300 vI' and 'C300 v2' respectively.

Function
Objects

Revision
Information Objects

Version Managers

Revision Tree
Connection Objects

Connection Space
for Function Object Revision Information

r--------

lO: cBl L _______ -' 10: cR1

Figure 10.4: Function Object revision information .

~--------I

I 1
. I
1 1
1 I
1 1
1 1
1 1
1 1
1 1
1 I
1 1
1 I
I 1
1 1
1 1
I 1
I 1
1 I
I 1
1 1
I I
1 1
1 I
1 1
1 I
I 1
1 fD: cDl I L _______ -'

183

The revision information for each Function Object is captured by Revision Function

Objects and FWlCtion Object Version Managers. TIle revision information is related to

each Function Object via Connection Objects as shown by Figure 10.4.

TIle evolution of each revision is captured by Revision Tree Connection Objects. TIle

relationships between the different related revisions are shown in the FWlction

Object Revision History Connection Space of Figure 10.5. Connection Object rtR1

shows the evolution of Reference Object 'R1 vI' to 'R1 v2'. However Connection

Objects rtB1 and rtD1 only contain one member since only one revision of each object

has thus far been created.

Connection Space
for Function Object Revision History

r-------- ~--------I

I I
I I
I I
I I
l- _ _ '!:::!!L?! __ J

Figure 10.5: Function Object revision his tory .

Figure 10.6 shows the two Connection Spaces used to record the revision information

and evolution history about the two Connection Objects of Figure 10.3.

In respect of Whitehead's strategies for recording the version histories of hypermedia

resources [Whitehead 2001b], the OCS Versioning Framework fulfils the criteria for

adopting the Versioned-Object approach. This is because the Revision Tree

Connection Object (which corresponds to Whitehead's version history container)

records the relationship between itself and its members as referential. Furthermore,

the Revision Tree Connection Object is responsible for recording the

predecessor/successor relationships between object revisions. Thus the

predecessor/successor relationships are recorded separate from the versioned objects

themselves.

Connection
Objects

Revision
Information Objects

Version Managers

Revision Tree
Connection Objects

Connection Space
for Connection Object Revision History
r--------------
I
I
I"
1

1

1

1

1
1

I
I .
1
I
1
1

1
I
1

I
I ··
I
I "
1
I
L ___ _ l.0~c9.?~ _____ ~

Connection Space
for Connection Object Revision

History
r--------I

I
I
I
I
I
I
I
I
I
I
I

10: rtC300 I L _______ _

Figure 10.6: Connection Object revision history.

184

Figure 10.7 shows the Function Object Space containing all the Function Objects (i.e.

versioning objects) used to capture the versioning information that describe the

transition of the structural segment from Figure 10.2(a) to 10.2(b).

Function Object Space
for Function and Connection Object Revision History

Figure 10.7: Function Object Space for Function and Connection Object Revision History.

The important point to note about the versioning framework is that all framework

objects (Function Objects, Connection Objects, Revision Information Objects and

Version Managers) are made to relate to one another via Connection Objects. This

means that none of the original Function or Connection Objects eBl vI', 'Rl vI', 'Rl

v2', 'Dl vI', 'C300 vI' and 'C300 v2') being versioned need to be updated with any

additional versioning information as a result of them being versioned. This is

185

possible because the OCS framework superimposes the cOlU1ection data that connects

the versioning information (recorded in separate Function Objects) to the original

objects now being versioned.

The net result is that the versioning process of hypermedia structure no longer needs

to be as much of an "all-or-nothing" approach ([0sterbye 1992], Section 4.5.7). This is

because the objects being versioned do not have to be amended in order to

participate in the versioning process. Hence the versioning framework demonstrates

how the OCS data model can further improve the versioning of hypermedia

structure (CSC4).

10.5. oes Framework Advantages

Applying the principles of the OCS data model for relating generic objects within a

generic framework offers substantial advantages over using embedded references.

Three are listed.

10.5.1. Connection Integrity

An OCS framework provides a better guarantee of connection integrity between

objects. The management of connections between objects need no longer be under the

control of individual hypermedia objects, i.e. individual objects being embedded

with the references of the objects to which they are attached. Instead all connections

can be recorded by Connection Objects such that a specialised authority for example

in the shape of a Connection Object server can be set up to act as a dedicated

component for maintaining just the connections between objects. In this way the

concept of the OCS framework meets the criteria of Computer Science Contribution 5

as it offers the potential for improved hypermedia structure maintenance.

10.5.2. Framework Alterations

Because all objects are referenced by Connection Objects, this means that all objects

can be re-positioned anywhere within the framework without needing to update the

objects themselves. I.e. objects can be moved to be associated with different objects,

or re-used to be associated with multiple objects simultaneously.

This is possible because such object movement does not affect the objects themselves.

For example a user may decide to re-position the Version Manager object of the

186

versioning framework so that it is associated directly ,,..,ith Function and COlUlection

Objects instead of with Revision Information Objects. The new arrangement is shovm

in Figure 10.S. This is a very straightfonvard operation as it is only necessary to

modify the Connection Objects that dictate the object associations and not the objects

(represented as Function Objects) themselves. This shows how the OCS framework

meets Computer Science Contribution 1 as all framework objects are open (Section

7.2). That is, one framework object can be cOlUlected to another framework object

without either having to be amended.

Connection Space
for OCS Versioning Scheme Framework v2

~-------------~-l

I
1
1
1
1
1
1
1
I.
1
I
1
.1
1
I
1
l
1 1
1 . 1
~ _______________ J

1- - - - - - - - - - - - - - --I

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
~ _______________ J

Figure 10.8: Re-organised Versioning Framework.

Furthermore individual objects can even be re-used within completely different

frameworks altogether. Re-use of the framework objects within another framework

has no side-effects on the other framework or vice versa. Hence Computer Science

Contribution 2 is met as the OCS framework promotes the general re-use of

framework objects.

Such object movement would not be possible if the object references were embedded

in the objects themselves. Every time an object is moved to be associated wi th

different objects, either or both sets of objects would have to be updated witl1. new

object referencing data. Furthermore independent re-use of individual objects would

also not be possible.

187

10.5.3. Easier Connections

Devising Com1ection Objects in order to describe cOlmections between framework

Function Objects is an easier process compared with choosing within which objects

to embed object references. This is because designing the connections within the

COlmection Object does not have as critical an impact as choosing where to embed

object references.

If it is decided that the wrong connections have been established within a given

COlmection Object, then that Com1ection Object can simply be re-configured to

reflect the correct connections without having to make any changes to the framework

Function Objects themselves. Such a logical approach to representing hypermedia

structure (CSC3) makes its maintenance that much more straightforward (CSC5).

If the object references were embedded, then such changes would not be possible

without having to make changes to every embedded object involved in one such

connection.

10.6. oes Solutions to Existing Revision
Proliferation Problems

TI1e OCS data model's approach to modelling relationships within a generic

framework can offer alternate solutions for the CoVer and Nested Composite Nodes

revision proliferation examples of Sections 4.6.2 and 4.6.3 respectively.

10.6.1. CoVer

TI1e CoVer versioning approach to tackle revision proliferation (Section 4.6.2) [Haake

1994] can be simplified if versioning via the OCS framework. TI1is subsection

describes one possible OCS framework solution for the CoVer revision proliferation

scenario depicted by Figures 4.4 and 4.5. TIw scenario is to enable new node revision

'A2 v2' to replace node 'A2 vI' within the hypertext subnetwork.

TI1e OCS solution is to use the OCS framework to model every CoVer revision object

(composites, nodes and links) as an OCS framework Function Object. The

connections between the objects can also be modelled as Connection Objects. Hence

the example scenario presented by Figures 4.4 and 4.5 can be modelled as shown by

Figure 10.9.

Function Object Space
for CoVer objects

Connection Space
for CoVer Objects

188

1- ---- --- -------------1 1------------------ ---1
1 1 1 1
.1 1 1 J
1 1 1 1
1 1 1 1
1 1 1 1
1 1 J 1
~ ___ ____ ~0:..~:1~ ':! ______ _ ~ ~ _____ __ /~~c:320~~ _______ ~

r--------

Connection Object
relationship _' ----'-_.
"contains"

ID: C0311 vi L ______ _

r--------I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

10: C0311 v2 1 L _______ ~

Connection Object
relationship
"contains"

Figure 10.9: Object and Connection Spaces for the CoVer versioning example.

The OCS framework solution consists of 5 Function Objects CAl vI', 'LI vI', 'A2 v}',

'A2 v2' and 'CI vI ') and 4 Connection Objects.

The objects of Figure 4.4(a) are depicted by the four Function Objects in the FWlCtion

Object Space: 'AI v}', 'LI vI', 'A2 vI' and 'CI v}'. The connections between the objects

of Figure 4.4(a) are represented by Connection Objects 'C03I0 v}' and 'C0311 v}' .

'C0310 vI' depicts the connections between nodes Al and A2 via link Ll. And

Connection Object 'C0311 vI' shows the relationship between composite 'CI vI' and

the original node and link revisions (grouped together via 'C0310 v}'). Hence 'C0311

vI' portrays the original state of the overall hypertext subnetwork.

When a new revision of node object 'A2 v}' is created (via the OCS framework), only

a new revision of that object is created. This is 'A2 v2' which is added to the FWlCtion

Object Space of Figure 10.9. No other new Function Object revisions need to be

created. This is the desired result of the CoVer example, but the CoVer versioning

solution also creates the potentially confusing implicit revisions as well.

The new arrangement of the connected node and links revisions CAl vI' connected to

'LI v}' connected to 'A2 v2') is captured within Connection Object 'C0310 v2' (which

itself is derived from 'C03I0 vI '). Neither a new explicit or implicit object revision

needs to be created of link 'Ll vI' (unlike with CoVer) since only its cOlUlection

arrangement has changed which is recorded by the Connection Object. The new

node and link arrangement are also members of composite 'CI vI', therefore they are

connected to 'CI v}' as depicted by Connection Object 'C0311 v2'. Once again,

189

neither a new explicit or implicit object revision need to be created of composite 'C1

vI' (w11ike with CoVer) since only its cOlmection arrangement has changed which is

again recorded by the Com1ection Object. Hence the new state of the hypertext

subnetwork containing 'A2 v2' otherwise shown by Figure 4.4(b) is represented by

the OCS framework COlU"'lection Object 'C0311 v2'.

The evolution history of each Function Object (AI, L1, A2 and C1) and each

COlmection Object (C0310 and C0311) can also be captured within other Com1ection

Spaces as shown by Figures 10.10 and 10.11. TI1ese mimic the version sets of Figure

4.5.

1--------1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

10: cAt 1 L- _ _______ ..t

Connection Space
for CoVer Function Object Revision Information

--------1

10:cL1 L- ______ _

1
1

r-------------

1
1
1
1
1
I
1
1
1 1
I /D:cA2 1 L ____________ ~

1--------
1
1

10:cCI
'----,-----

1-------------- r-------------I
1
1
1
1
1
1

10: cC031 0 10: cC0311

1
I
I
1
1
1
1
1

L.. ____________ _

Figure 10.10: Connection Space recording CoVer revision informatipn.

Connection Space
for CoVer Function Object Revision History

. ,--------1
, 1 ,. , , , , , , , , ,
, ID: rtAt ,

~-------, ,
1
1
I . , , , , ,
I.

, ' ,
1' 1 ,. I
, I

, 10: rtC0310 :
L- ______ _

,--------1 , ,
, 1
, 1
, 1
, 1 , ,
, 10:rtU ,
---------'

, ,
I 1
, I
, ·· 1
I' , ,
·1 , , , , ,. , ,
, 10: rtC0311 I .'.
L ______ J

r-- -- ---, , , ,
. , , , , , , , ,

1
1

10:rtA2. ,
_______ J

,--------, , ,
I ,
1 ,
, I
I ,
I I
I 10: rtCl I
________ ..J

Figure J 0.11: Connection Space recording CoVer evol ution his tory.

190

What this example demonstrates is that it is not necessary to create duplicate

heavyweight objects eLl v2' and 'CI v2') when attempting to associate a newly

created revision with existing revisions of a hypertext subnetwork. Admittedly more

objects have been created (compared with the CoVer solution), but these are only

lightweight COlU1ection Objects and not heavyweight Function Objects, i.e. new

revisions of composites, nodes or links have not needed to be created.

Furthermore, the OCS framework approach offers a less complicated approach to re­

creating each state of the hypertext subnetwork compared with the CoVer approach.

The OCS framework approach only requires retrieval of either Connection Object

'C0311 vI' or 'C0311 v2' in order to re-build both states of the versioned h ypertext

subnetwork, i.e. one state comprising 'A2 v!' and the other comprising 'A2 v2'. This

benefits pattern matching since an OCS-compliant hypermedia server does not need

to partake in complicated re-build procedures to re-construct different revisions of a

hypermedia structure that are to be pattern matched against.

10.6.2. The Nested Composite Model

The OCS framework can provide an alternate solution for the NCM Propagation

Guided By Perspective approach (Section 4.6.3) [Soares et a1. 1993b].

191

This subsection focuses on the example scenario presented by Figures 4.6 and 4.7.

The desired solution is that new revision 'D v2' can be referentially contained by the

same User Context Nodes that contain original revision 'D vI'. This is shown in

Figure 10.12. But, because each User Context Node contains an embedded reference

to the children nodes it contains, then the desired scenario calUlot be achieved

without the mass duplication of objects (i.e. revision proliferation) as shown by

Figure 4.6(b). Here, many heavyweight objects ('C vI', 'E vI', 'B vI', 'A vI' and 'F vI')

are being duplicated where the only difference between the new and original

revisions is that the new revisions contain the different identifiers of the User

Context Nodes within which they are contained. No function data of any User

Context Node has changed (other than in 'D v2'). TIlis is a wasteful solution. Soares

at al. concur, and as such have devised the compromise Propagation Guided By

Perspective solution (Figure 4.7(b)).

User
Contexts

Node

C v1 A v1 F v1

contains
relationship

Figure 10.12: Desired NCM solution for HyperProp revision proliferation problem.

However, the OCS framework can produce the desired solution without causing the

revision proliferation of heavyweight objects. This is achieved by the OCS

framework modelling every NCM User Context Node as a FWlction Object; and

modelling the relationship of one User Context Node being contained in illlother

User Context Node via Connection Objects. Hence the initial and desired scenarios

presented by Figures 4.6(a) and 10.12 respectively can be depicted by the Object and

Connection Spaces of Figure 10.13.

Function Object Space
for NCM objects

192

Connection Space
for NCM Objects

r--- -----I
1 1
1 1 _
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 10: C0320 vI 1 L _______ ~

r--------

Connection Object
-,-- retationship

"contains"

10: C0321 vI L ______ _

1----------- - --------,

1 .' 1
1 1
1 1

1
1
1
: Connection Object

,----i-_t_ relationship
1 "contains"
1
1
1
1

______ -'r::r:.o.!2!::! ________ :

Figure 10.13: Object and Connection Spaces for NCM example.

The hypertext subnetwork of Figure 4.6(a) is modelled by the Function Object Space

containing the 6 revisions, 'C vI', 'E vI', 'D vI', 'A vI', 'B vI' and 'F vI', along with

Connection Objects 'C0320 vI', 'C0321 vI' and 'C0322 vI' in the Connection Space.

The initial hypertext subnetwork arrangement is represented by 'C0322 vI'. It shows

'D vI' contained by 'E vI', 'B vI' and 'F vI '; 'E vI' contained by 'C vI', and 'B vI'

contained by 'A vI'.

The hypertext subnetwork of Figure 10.12 can easily be created by the OCS

framework - all that needs to be done is the re-organisation of the connections within

Connection Object 'C0322 vI' . This produces 'C0322 v2' which ensures that'D v2' is

contained within the same User Context Nodes as 'D vI'. Hence Connection Objects

'C0322 vI' and 'C0322 v2' together represent the desired hypertext subnetwork of

Figure 10.12 as 'D vI' and 'D v2' are contained within the same User Context Nodes.

All this has been achieved without any revision proliferation of User Context Nodes.

The evolution history of the User Context Nodes (which would be captured by

COlmection Objects) is not shown as hopefully this should be intuitive.

10.7. Summary

This chapter has shown how the OCS data mod el can be used to provide a

framework for governing the relationships between any and all objects within a

hypermedia environment. That is to say the OCS data model can be used in a grea ter

193

capacity than to simply join together hypermedia objects to create the conventional

linking structures employed within the navigational, taxonomic and spatial domains.

The example considered within the chapter is a framework for a hypermedia

versioning scheme.

The strength of the OCS framework is that it offers the flexibility that objects (of the

framework) can be moved around at whim to be connected to any and all objects

(within the originating framework or other separate frameworks). This is a useful

capability since connections between objects are not necessarily static. For example

hypermedia system users may wish to include new data within an existing system,

to achieve this they may wish to attach new objects to existing objects in order to

contain this new data. If the existing hypermedia objects are organised as Function

Objects within COlmection Objects, then this can be more easily achieved compared

with if the hypermedia objects contained object reference embedding data.

This chapter has also provided further examples as to how the OCS data model

meets Computer Science Contributions I, 2, 3, 4 and 5.

• CSC1: The OCS framework has extended the concept of open hypermedia

(Section 7.2) into the realm of generic hypermedia structure so that all generic

objects are open.

• CSC2: The OCS framework also promotes the general re-use of hypermedia

structure since framework objects cannot only be re-used within their original

framework, but within completely independent frameworks too.

• CSC3: The OCS framework also offers a more logical approach to hypermedia

structure representation as the connections between framework objects are not

inhibited by object reference embedding.

• CSC4: Although not the specific aim of this chapter, the OCS versioning

framework has provided further evidence as to how the OCS data model can

improve the versioning of hypermedia structure.

• CSC5: TI1e OCS framework has also showed how the principle of object and

connection separation (the cornerstone to the OCS data model) can benefit

hypermedia structure maintenance.

Chapter 11.
Applications for Link
Mai ntenance

11.1. Introduction

194

This chapter explores how the Object and Connection Space data model can improve

hypertext link maintenance. TI1e chapter focus is on repairing the specific structure of

hypertext links because, as identified in Chapter 5, this is a commonly recurring

problem quoted in hypermedia research literature. But the solutions offered in this

chapter can just as equally be applied to the maintenance of all types of h ypermedia

structure.

In the process this chapter explains how the OCS data model satisfies Computer

Science Contributions 3 and 5 (of Chapter 1) and resolves Problem Domain Issue 4

(of Chapter 6).

CSC3: Offering a more logical approach to hypermedia structure

representation.

CSC5: Enabling improved hypermedia structure maintenance.

PD4: The confusion caused by repairing broken internal routes.

11.2. Benefiting Link Maintenance

TI1is chapter focuses on three primary ways that the OCS data model can benefit

hypertext link maintenance (CSC5):

1. TI1e breakdown of OCS hypermedia objects into FW1Ction and Connection

Objects provides a more logical approach tow ards repairing broken hypertext

links.

195

2. The ease with which hypertext links can be versioned as a result of the OCS da ta

model (as demonstrated by Chapters 9 and 10) also offers an opportunity to

improve link maintenance.

3. Link maintenance can be further improved due to the COllllections between

FWlction Objects being recorded separately within Connection Objects. This

means that the focus of connection maintenance can be concentrated on just the

connections between objects.

11.3. A More Logical Approach

Section 6.5 of the Problem Domain Chapter explained how object reference

embedding muddies the process of repairing broken internal routes within

hypermedia structure. This can be remedied by the OCS data model as it prevents a

seemingly random selection of objects being updated when repairing broken

hypertext links. This is what tends to be the case when repairing hypertext links

whose hypermedia objects are cOlUlected together via object reference embedding as

explained in Section 6.5.3.

The broken hypertext link scenario of Section 6.5.2 depicted by Figures 6.15 and 6.16

can be used as an example. Figures 11.1 and 11.2 show a possible OCS representation

for the corresponding broken and repaired hypertext links.

Function Object Space
ID: 08400

Connection Space
10: C8400

------- ------ -----,

10: C400

I
I
I
I
I
I
I
I
I

~-r-I +- Broken Function
Object

Figure 11.1: Before repair - the OCS representation of hypertext link of Figure 6.15.

New Function
Object

Function Object Space
ID: OS400

Connection Space
ID: CS400

~ - -- - - - - -- - -- - -- - --I

1
1
1
1
1

1
1

196

-+---+-+- New connect ion

Function
Object stub

+-~-New connection

~ _______ ~: £41jE ________ I

Figure 11.2: After repair - the OCS representation of hypertext link of Figure 6.] 6.

The main benefit of the OCS data model is that it restricts the repair of broken object

functionality to be carried out within the FWlction Object Space, and it restricts

connection re-organisation to only be enacted within the Connection Space. This

makes it clearer to understand which objects are to be updated and "vhy.

For example, in the case of the broken hypertext link of Figure 11.1, Anchor A2 is

identified as the broken object. The solution (as prescribed by Section 6.5.2) is to

create a new copy of the Anchor object and update it with the correct anchor data for

the modified 'Acorns' document. Anchor A2 cannot itself be updated since it is

required for the 'Trees Grow Leaves' route. The OCS solution is to repair this broken

fmlctionality within the FWlCtion Object Space. It does this by creating the

aforementioned Anchor object (shown as Function Anchor Object A3 in Figure 11.2)

and adding it to FWlction Object Space OS400. The OCS solution does not update any

other Function Objects since the fmlctionality of no other Function Objects is broken.

To ensure that both internal routes point to the correct node object resources, the link

repair solution (as already described in Section 6.5.2) also involves re-organising the

overall hypermedia structure. Because the OCS data model restricts connection

updates to COlUlection Objects only, this means that this connection update is

restricted to just COlUlection Space CS400. This update is performed by inserting a

new FWlCtion Object stub that represents new object A3 into Connection Object C400.

Stub A3 is then cOlUlected to existing stubs E2 and N3, and stub N3 is disconnected

from stub A2. No Function Objects are updated as part of the object re-organisation

process since no object functionality of any Function Objects has been updated . This

is because the premise of the OCS data model is that no Function Objects store

connection data.

197

This is a much clearer method compared ''\lith the object reference embedding

approach to link repair as described in Section 6.5.3. TIle problem with the latter

approach is that it does not distinguish between repair to object functionality and

repair to connection organisation. TI1US, as described in Section 6.5.3, object reference

embedding link repair can be a very confusing process. For example when repairing

the broken hypertext link of Figure 6.15, the object reference embedding approach

actually updates the content of objects that are not considered broken, e.g. E2 and A2.

TIle reason for their update is not to fix broken functionality, but to repair the overall

structure of the link by re-directing their embedded object references. But such

distinctions are not made clear by the object reference embedding approach. Hence

uncertainty can result as to why particular objects (and not other objects) have been

updated. This problem is not encountered within the OCS data model since

connection updates are restricted to Connection Objects. TIlerefore the OCS data

model does not confusingly appear to update unbroken hypermedia objects. Thus

the repair of intemal routes within hypermedia structure is much more

comprehensible. In this way the OCS data model satisfies Computer Science

Contribution 3 and Problem Domain Issue 4 as well as enabling overall improved

hypermedia structure maintenance (Computer Science Contribution 5).

11.4. Versioned Hypertext Links

Another way that the OCS data model can improve link maintenance is through

versioning the hypertext links themselves. As has been seen in Chapter 9 the OCS

data model offers a straightforward approach for carrying out hypermedia structure

versioning.

However, the fact that hypertext links are independently stored and managed from

the documents they reference opens up further risks for broken hypertext links

[Davis 1999; Ashman 2000a]. This can take the form of deliberate or accidental

hypertext link manipulation where the individual objects that make up a hypertext

link may be deleted or their contents changed. TIle net result being that the hypertext

link is now broken.

The introduction of versioned hypertext links offers the means to combat these

potential problems. TIlis is by freezing hypertext links prior to any changes being

enacted upon them. Thus if broken, the hypertext link can be rolled back to its

previous working state.

198

A greater advantage is gained when hypertext link versioning is used in conjw1Ction

with an independent document versioning scheme. If old hypertext link

arrangements are preserved then they can be used to reference previous document

revisions. This makes traversal between previous document revisions possible as

versioning clients can follow the previous revisions of the hypertext links that existed

between those old document revisions. Moreover if the user decides to retum the

documents back to their previous state via the document versioning scheme, then

their associated hypertext links will also be able to be restored as well.

11.5. Finding Connections Between Objects

Another positive outcome of the OCS data model is that the functional and

connectional aspects of hypermedia objects (i.e. Function and Connection Objects)

can be managed by separate components. This provides a good opportunity for

improved hyperlink maintenance as link maintenance can be focused specifically on,

for example, a specialised Connection Object server as described in Section 10.5.1.

TI1is offers two notable advantages:

1. Maintenance is more straightforward. Connection Objects are lightweight

objects. This makes them easier to deal with since they only describe cOlmection

information. Therefore it is quicker and easier to examine and monitor them as

there is less data to wade through to in order to carry out link maintenance. This

is contrasted with conventional hypermedia objects composed of embedded

object references where there is more data to analyse since they store the

function data in addition to the connection data.

2. The OCS model allows the option of using a single Connection Object to record

the Function Objects that comprise an entire hypertext link. This means clients

do not have to spend time and effort querying the entire Storage Back End

database searching for each cOlmected object. TI1US when Function Objects have

to be updated or Connection Objects re-arranged as part of the link repair

process, it is easier to locate the Function Objects in order to carry out that repair.

TI1is is in contrast with the conventional object reference embedding approach.

Here, exhaustive searching must always be carried out to determine which

objects are connected to one another. There is always a degree of uncertainty for

the client as to whether they have located all hypermedia objects that are

199

members of a given hypertext link. This adds doubt as to whether all relevant

objects have actually been repaired.

(a) OHP-Nav representation of Hyperlink A.

Function Object Space
10: OS410

(c) OCS Function Object Space for Hyperlink A.

(b) Storage of the individual OHP-Nav objects of
Hyperlink A when recorded within a Storage Back
End database using embedded object references.

Connection Space
10: CS410

1-------------------------
I
I
I
I
I
r
I
I
I
I
I
I
I
I
I fD: C410

(d) OCS Connection Space for Hyperlink A.

Figure 11.3: Locating connections within OHP-Nav versus the OCS data model.

Figure 11.3 enables a comparison to be made between how the hypermedia object

members of a hypertext link can be located when a hypertext link is represented

using the OHP-Nav object reference embedding data model and the OCS data

model.

TIle hypertext link in question is shown in Figure 11.3(a). It is recorded as Hyperlink

A. Figure 11.3(b) shows how the individual objects of OHP-Nav Hyperlink A would

be recorded within a Storage Back End database when adopting the conventional

object reference embedding approach between objects.

Potential problems can develop when attempting to search for OHP-Nav objects that

are connected together in such a linked-list embedded object reference arrangement

(as described in Section 3.2.5). For example when searching for objects connected to

200

Node N2, after the first referencing Anchor A2 has been retrieved, ho,,,, does the

client know whether there are additional Anchors that reference Node N2? The

solution is to perform exhaustive searching in order to be sure. In this case it vvill

discover additional Anchor A3. But then how does the client know when to stop

searching? TIl ere may indeed be more Anchors that reference Node N2 not

necessarily managed by this hypermedia server, but in other distributed hypermedia

servers. The client must then apply the same exhaustive searching to all the objects of

the hypertext link to be certain that all hyperlink object members have been

retrieved.

Figures 11.3(c) and (d) show one possible representation as to how Hyperlink A may

be represented using the OCS data model. Figure 1l.3(c) shows the Function Object

Space and Figure 1l.3(d) shows the COlUlection Space. Figure 1l.3(d) shows the

connections between the Function Objects of Hyperlink A to be contained ,,\'ithin one

Connection Object. The use of this solitary Connection Object means that the client

will immediately know which Function Objects are members of Hyperlink A. As

regards to which objects are associated with Node N2, the client can see exactly

which Anchors are connected to N2 without having to conduct exhaustive searches

over the object database that store this Connection Object or over other object

databases distributed over a computer network.

11.6. Summary

This chapter has described how the OCS data model can benefit the maintenance of

hypertext links. The chapter also explains how the OCS data model satisfies both

Computer Science Contributions 3 and 5, and resolves Problem Domain Issue 4.

TIuee areas where link maintenance is significantly improved by the OCS data

model have been discussed, thus satisfying Computer Science Contribution 5.

The first was the OCS data model easing the process of repairing the broken internal

routes within structure without adversely affecting other unbroken internal routes.

This is possible because the OCS data model provides a more logical approach to

hypermedia structure representation. TIlis addresses Problem Domain Issue 4 and

meets Computer Science Contribution 3.

201

TIle second area was the ease with which hypertext links can be versioned as a result

of the OCS data model. As explained this offers yet another opportunity for

improving link maintenance.

TIle final area U1lder discussion was the structure maintenance advantage gained by

recording Function and Connection Objects separately. This setup allows the focus of

connection maintenance to be more precisely concentrated on just the connections

between objects enabling an opportrulity for more efficient link repair to take place.

Also discussed was the idea of using a single Connection Object to record the

Function Object layout of an entire hypertext link. This saves on searching effort to

locate Function Objects to repair and/or locate Connection Objects that may need re­

organising as part of the structure repair process.

Chapter 12.
Conclusions

12.1. Introduction

202

This chapter forms the conclusion to the thesis. A major part of the chapter considers

how the OCS data model has achieved the Computer Science Contributions set out in

Chapter 1 and met the Problem Domain Issues of Chapter 6.

The Computer Science Contributions restated are:

CSCl: Extending the concept of open hypermedia into the realm of

hypermedia structure.

CSC2: Promoting the general re-use of hypermedia structure.

CSC3: Offering a more logical approach to hypermedia structure

representation.

CSC4: Improved versioning of hypermedia structure.

CSC5: Enabling improved hypermedia structure maintenance.

The Problem Domain Issues restated are:

PDl: The use and storage of hypermedia objects that carry out the same

function.

PD2: The use and storage of identical hypermedia structure.

PD3: The dangers of revision proliferation.

PD4: The confusion caused by repairing broken intemal routes.

203

The remainder of the chapter provides an overall view of the OCS data model,

considers the OCS data model in relationship to existing research and looks at the

future work that can be carried forward as a result of this research.

12.2. Restatement of the Problem

The nature of the problem is the intemal organisation of hypermedia structure. As

noted in Chapter 1, the role of hypermedia structure data models (e.g. OHP-Nav and

FOHM) is to specify which hypermedia objects should be cOlmected to one another.

This is with a view to creating linking structures used within the navigation,

taxonomic and spatial hypermedia domains.

However these same hypermedia data models also implicitly describe how

hypermedia objects should be attached to one another. And it is here where the

problem lies.

The typical method is to embed hypermedia object references (describing to which

objects an object is attached) within the hypermedia objects themselves (Section

3.2.5). This means that these references (i.e. connectional data) become part of the

content of the hypermedia object itself. As reported by the Problem Domain Issues

Chapter 6 this is both a wasteful and inefficient mechanism for cOlmecting objects.

12.3. The oes Data Model

The Object and Connection Space data model reforms the way that the underlying

structure of hypermedia data models is organised. I.e. it addresses how hypermedia

objects should be attached to one another.

As with the majority of Open Hypermedia Systems the OCS data model maintains

hypermedia objects as first class entities. However, a significant difference is that the

OCS data model also acknowledges the importance of connections between

hypermedia objects. Therefore it also elevates the connections between hypermedia

objects to be first class too.

To this end the OCS data model separates the functional and connectional roles of

hypermedia objects (Section 7.2). This is where the strength of the model lies.

204

• The fW1Ctional role of a hypermedia object is the purpose or function that that

object is programmed to carry out. For example the role of an OHP-Nav Anchor

is to point at intemal content \'\'ithin a node resource.

• The connectional role describes to which object a given hypermedia object is

connected.

The OCS data model allocates the functional aspect of hypermedia objects to

Function Object Spaces. They contain Function Objects which are hypermedia objects

minus their connection data. The connectional roles of hypermedia objects are

allocated to Connection Spaces. They contain COlmection Objects which describe the

cOlmection data used for attaching hypermedia objects together.

A further characteristic of the OCS data model is that its approach to the intemal

organisation of hypermedia structure is analogous to the open hypermedia principle

of separating links from nodes. This \,vas remarked upon in Section 7.7.3. For

example Function Objects (Section 7.7.1) are akin to OHS nodes, because, like OHS

nodes, FW1Ction Objects do not contain embedded linking data. And binary

COlmection Objects (Section 7.7.2.1) can also be considered akin to OHS links,

because, like the majority of OHS links, binary COlmection Objects are used to form

connections between two resources only.

However, n-ary Connection Objects (Section 7.7.2.2) are different to conventional

separated OHS hypertext links. This is because n-ary Connection Objects are more

like hypertext networks since they can be used to group together a set of connections

that do not necessarily reference the same Function Object. The advantage offered by

n-ary COlmection Objects is that they enable efficient re-use for both Function and

COlUlection Objects. This is because they allow creation of specific cOlmection

arrangements that are more suited to being re-used in the future (Section 7.7.2.3).

12.4. Scope of the oes Data Model

The scope of the OCS data model was also commented upon in Section 8.6. Of

interest was that the OCS data model was found to be inefficient when applied to the

intemal cOlUlections within a Connection Object. This is despite that Connection

Objects are themselves a form of hypermedia structure.

The reason for this is because Connection Objects are comprised of object stubs (not

independent objects) that only contain lightweight object data. Hence application of

205

the OCS data model to Connection Objects actually creates more objects than it saves.

This results in extra object management and storage, but at the same time it does not

lead to significant heavyweight object data re-use. Therefore it was concluded that

the scope of the OCS data model should end at the top-level of hypermedia structure,

e.g. OHP-Nav and FOHM structures.

12.5. Problem Domain Issues Answered

This section accumulates the evidence presented throughout the thesis as to how the

OCS data model resolves the 4 Problem Domain Issues of Chapter 6. This section

essentially forms a summary of the thesis.

12.5.1 Issue 1: Repetitive Hypermedia Objects

Sections 7.17 and 8.7 describe how the OCS data model has addressed this issue.

The concern stated in Section 6.2 is that many hypermedia objects replicate identical

functionality within the same or multiple hypermedia structures. To counteract such

unnecessary duplication of objects, the OCS data model facilitates individual

hypermedia object re-use.

The conventional approach of hypermedia object representation prevents individual

object re-use, as hypermedia objects are embedded with object reference data. If a

hypermedia object were to be re-used, then many of the objects that are also

members of the same hypermedia structure are forced into being re-used as well

(Section 8.2).

Re-use is achieved within the OCS data model by separating the functional and

connectional roles of hypermedia objects (Section 7.7). TIley are split into Function

and Connection Objects. Hypermedia objects effectively become Function Objects,

i.e. they contain just the functional purpose of a hypermedia object. They do not

contain the connection data that describes which objects are connected together.

Hence when a Function Object is re-used, just the single object is re-used. No other

associated Function Objects are forced to be re-used, because there is no connection

data present in the Function Object.

Re-use is enabled by Connection Objects (see Section 7.7.2) and Instance Objects

(Section 7.11.2). TIle latter enables unique identification of re-used Function Objects

206

\'\'ithin the same hypermedia structure. Function Objects can also be re-used by being

attached to entire structures, i.e. Connection Objects (Section 7.11.1), as well as

different Function Objects.

Detailed examples of Function Object re-use are shown in Chapter 8. OHP-Nav and

FOHM structures are re-organised according to the OCS data model in order to

compare the OCS data model against the conventional object reference embedding

approach of hypermedia structure organisation. The chapter also shows how the

number of objects carrying out the same function can be reduced versus the

embedded reference approach (Section 8.4).

Further examples of Function Object re-use are shown in Chapter 9. This is because

versioning via the OCS data model also re-uses Function Objects within versioned

structures as part of the versioning strategy.

Finally, Chapter 10 introduces the idea of using the OCS data model as a generic

framework for representing all connections for all generic hypermedia structures.

Framework objects are assigned as Function Objects that can be re-used anywhere

within a single framework or within multiple frameworks.

12.5.2. Issue 2: Repetitive Hypermedia Structure

Sections 7.17 and 8.7 describe how this issue is met by the OCS data model.

The focus of Section 6.3 is that the segments of one hypermedia structure are often

repeated within the same or other independent structures. The OCS data model

employs Connection Objects to facilitate re-use of structural segments.

Conventional hypermedia structure representation makes the re-use of a solitary

segment of structure largely unattainable. This is due to object reference embedding

once again. Any attempt to re-use a structural segment, means that any objects

outside that segment but still attached to the segment (through one of the segment

objects holding an embedded reference pointing to an outside object) would also

have to be re-used (see Section 6.3 and Figure 6.4).

To remedy this, OCS Connection Objects group together objects (Function and/or

COlmection Objects) describing how they are connected to one another. They enable

re-use by not writing any connection data within the connected objects themselves.

Hence both COlmection and Function Objects can be re-used without any of their

associated objects being re-used too.

207

Connection Objects can be organised into binary or n-ary arrangements (Section

7.7.2). TI1is allmvs efficient hyperstructure re-usability as it enables small or large

segments of structure to be re-used. Examples of hypermedia structure re-use via

Connection Objects are shown in the "Object and Connection Space Example" of

Section 7.14.

Chapter 8 shows how the conventional organisation of structure within OHP-Nav

and FOHM, i.e. object reference embedding, restricts the opportunity for hypermedia

connection (i.e. structure) re-use. It also illustrates how application of the OCS data

model enables a block of Function and Connection Objects to be re-used without

having to amend any of the objects or connections re-used within that block (Figures

8.2 and 8.3).

Examples of Connection Object re-use are shovm in Chapter 9, as versioning via the

OCS data model uses Connection Objects to record different revisions of hypermedia

structures. Additional examples are shown in Chapter 10 where all the connections

between framework objects are represented as Connection Objects. This enables the

framework to re-use any and all framework objects anywhere within a single

framework or within multiple frameworks.

12.5.3. Issue 3: Revision Proliferation

Section 9.6 describes how this issue is addressed by the OCS data model.

Revision proliferation is the creation of unexpected new hypermedia objects when

attempting to create a single new revision of an existing hypermedia object. Once

again this problem is caused by the conventional representation of hypermedia

structure with embedded object references.

Chapter 9 explains how the OCS data model, through separating the fw1Ctional and

connectional roles of hypermedia objects and allocating them to Function and

Connection Objects, solves the revision proliferation problem. This is because when a

new revision of an existing Function Object is created, only the one new Function

Object will be created.

The OCS data model also ensures that the new hyperstructure formation will be

exactly as expected, i.e. no new unexpected revisions being added to the structure

caused by revision proliferation (Section 9.3).

208

12.5.4. Issue 4: Improved Hypermedia Structure Maintenance

Section 11.6 describes how this issue is addressed by the OCS data model.

TIle focus of this problem domain issue is repairing broken internal routes within

hypermedia structure without adversely affecting other unbroken internal routes

within the same hypermedia structure (Section 6.5). TIle presence of embedded

object references makes structure repair a particularly confusing process. This is

because users often end up having to update the embedded references in unbroken

objects in order to connect new objects that have been created as part of the new

repaired organisation of structure (Section 6.5.3).

Chapter 11 demonstrates how the breakdown of hypermedia objects into OCS

Function and Connection Objects provides a clearer and more logical approach

towards repairing broken internal routes within hypermedia structure. TIlis is

because the repair as regards fixing functionality (e.g. changing an anchor's hotspot)

is confined to Function Objects, and the repair as regards fixing the formation of

structure (e.g. which object should be connected to which) is confined to Connection

Objects. The net result is that only the expected objects are updated.

12.6. computer Science Contributions

TIlis section identifies how the OCS data model achieves the 5 Computer Science

Contributions set out within Chapter 1 of the thesis.

12.6.1. CSC1: Extending the Concept of Open Hypermedia

A major contribution of the OCS data model is that it opens up hypermedia structure

(Section 7.17).

Section 7.2 explains how conventional hypermedia structure is not open. TIlis is due

to the embedding of object references within hypermedia objects which amalgamates

the functional and connectional roles of hypermedia structure within individual

hypermedia objects.

209

Section 7.2 provides a definition for open hypermedia structure:

Hypermedia structure can be said to be open if it can link to and from other

structure without having to alter the (linked) structure itself.

The OCS data model satisfies this open hypermedia structure definition by

separating the functional and connectional roles of hypermedia objects, i.e. removing

the embedding of object references within the objects themselves.

The key to openiJ1g up hypermedia structure is the role of Connection Objects. This is

because a Connection Object is able to connect Function or Connection Objects

together without having to amend the content of any objects it is connecting. The

result is that FW1ction Objects can connect to other Function Objects ,,,·ithout having

to amend either Function Object, and Connection Objects can be connected to other

Connection Objects without either Connection Object being modified. This is

possible because Connection Objects superimpose connection data, that describes

which object is connected to which, on top of the objects themselves.

Opening hypermedia structure enables opportunities for re-using structure (CSC2),

improved versioning (CSC4) and structure maintenance (CSC5).

12.6.2. CSC2: Promoting the general re-use of hypermedia
structure

Sections 7.17, 8.7 and 10.7 summarise how the OCS data model promotes the general

re-use of hypermedia structure.

This Computer Science Contribution is achieved via the separation of the object and

connection data which allows opportunity for hypermedia structure to be re-used to

form new relationships between different node resources within hypermedia

networks.

The overall impact is a saving on unnecessary duplication of resources (Section 7.14).

Evidence of hypermedia structure re-use is provided by Chapter 8 where OHP-Nav

and FOHM hypermedia structures re-use Function and Connection Objects within

multiple hypermedia structures. Re-use of specific Function Object types also allows

identification of other related node resources (Section 7.15.1).

Chapter 9 shows how objects are re-used to efficiently model different revisions of

hypermedia structures. This is followed by Chapter 10 which shows how the OCS

210

framework can promote the general re-use of hypermedia structure. This is possible

as framework objects cannot only be re-used \vithin their original frame\,vork, but

within completely independent frameworks too.

12.6.3. CSC3: Logical approach to hyperstructu re
representation

The OCS data model offers a more sensible approach for representing hypermedia

structure (Section 11.6). This is due to the functional and connectional separation of

hypermedia structure.

It is more logical that function information should be allocated to one object type

(Function Objects), and connection information should be assigned to a different

object type (Connection Objects). This is contrasted v,ith the conventional

representation of hypermedia structure that combines both types of information

within a single object type, i.e. a hypermedia object with object reference embedding.

Adoption of the OCS data model results in hypermedia structure creation becoming

a two step process. The functionality of an object is determined by manipulating its

content; and an object's connection with other objects is determined by assigning it to

one or more Connection Objects.

The benefit of this logical approach is noticeable in Chapter 11 (which is also

summarised in Section 12.6.5) where the OCS data model makes the repair of broken

internal routes within hypermedia structure a more straightforward process. This is

because fixing the broken functionality of a hypermedia structure is confined to

updating individual Function Objects, and repairing the arrangement of a structure

is limited to updating Connection Objects.

12.6.4. CSC4: Improved versioning of hypermedia structure

Chapters 9 and 10 demonstrate how the OCS data model improves hypermedia

structure versioning.

The OCS data model approach to verslOnmg removes the problem of revision

proliferation and ensures that the formation of the versioned structures take shape as

expected. This is explained in Section 9.3.

The OCS data model also improves the overall versioning process by making clearer

the presentation of the different revisions of versioned hypermedia structure to

211

clients. This is achieved by Connection Objects preserving the before and after

versioning states of hypermedia structures. Figures 9.2 and 9.3 of Section 9.3

exemplify this feat by shmving how the different revisions of overall structure are

captured (within separate Connection Objects) when a revision of a Function Object

is modified.

Chapter 10 also shows how the principles of the OCS data model can be used to

create a versioning framework within which hypermedia structure can be versioned.

The framework is able to capture revision information about individual Function and

Connection Objects as well as record the evolution history of Function and

Connection Objects.

12.6.5. CSC5: Improved hypermedia structure maintenance

Chapter 11 describes how the OCS data model benefits the overall maintenance of

hypermedia structure.

Firstly the OCS data model clarifies the process by which broken internal routes

within hypermedia structure are repaired. This has already been summarised in

Section 12.6.3 and is more fully explained in Section 11.3.

Because the OCS data model makes versioning easier (Chapter 9), this also has a

positive knock-on effect for link maintenance. If any changes are committed on

hypermedia structure (either Function or Connection Objects) that break the

structure (e.g. a Function Object within a Connection Object being deleted), then the

(now) broken hypermedia structure can be rolled back to a working version (Section

11.4).

A third improvement is when entire structures are housed within single Connection

Objects. This makes it easier to locate any broken Function and/or Connection

Objects that need fixing since all object identifiers are made available to the repair

client. This compares against the embedded object references approach where

exhaustive searching is necessary since the repair client can never be certain that all

hypermedia objects have been identified for repair. Section 11.5 provides an example.

12.7. Relationship to Existing Research

This section looks at a range of related research to the work on the OCS data model.

212

12.7.1. Xanadu

Re-use plays a key role in both Xanadu and the OCS data model. A comparison

between Xanadu content lists and OCS COlmection Objects is worth drawing

attention to.

As explained in Section 2.7.3 Xanadu [Nelson 1999a] uses content lists as a container

for loading documents with content data. This is achieved through content lists

holding referential pointers that point to the addresses where document content is

permanently stored. Moreover a content list can also point to another content list.

This allows the content of the referenced content list to be re-used by the referencing

content list in the structured order already set out by the referenced content list. The

relevance is that Xanadu does not embed the data referenced by Xanadu content lists

with actual cOlmection data. It is upon this foundation that the same Xanadu content

data can be re-used as members of different documents.

OCS Comlection Objects are similar to content lists since both act as containers of

information. In the case of Comlection Objects, they contain a record of comlected

Function and/or Connection Objects. Like Xanadu content lists, Comlection Objects

also do not embed connection data within the Function and/or Connection Objects

they are connecting together. Also like Xanadu, OCS COlmection Objects can

reference other Connection Objects so that the content of the referenced COlmection

Object can be re-used by the referencing COlmection Object in the same structured

order already set out by the referenced Comlection Object. In this way both Function

and Comlection Objects can be re-used by multiple Comlection Objects to become

members of different hypermedia structures.

OCS Instance Objects can also be compared with the mamler by which Xanadu re­

uses the same piece of text within content lists. This is because in order to re-use the

same piece of text, Xanadu creates new pointers to point at the permanent address of

the text to be re-used. Thus Xanadu can re-use any original text in more than one

place within a document. This is akin to how OCS Instance Objects (Section 7.11.2)

enable the re-use of Function Objects within the OCS data model. This is because an

Instance Object acts as a reference pointer to the actual Function Object that it

represents within a given hypermedia structure.

As explained in Section 2.7.3.3 Xanadu transclusion links can be make clickable in

order to identify where the same document content simultaneously exists (i.e. is

being re-used) within different documents. The OCS data model can also imitate this

process so it too can make shared structure visible to the user. A key feature of the

213

OCS data model is to enable the sharing of the same Function and Connection

Objects between different hypermedia structures. This means that hypermedia

structures can be queried in order to identify vvhich OCS objects are being

simultaneously re-used within other structures. TIlerefore if desired by users,

connections can be forged between the simultaneously shared structure to highlight

their re-use akin to Xanadu transclusion links.

12.7.2. The World Wide Web

As reported in Section 2.10 the World Wide Web is a closed hypermedia system as it

embeds hypertext links within documents and does not store links separate from

document content. TIlis means that it is not possible to apply the OCS data model

directly to Web hypertext links. Indeed the World Wide Web is a prime example of

how embedding connection data can be harmful since documents containing

embedded references cannot be re-used without being forced to re-use the other

referenced documents.

However, certain similarities can be drawn between the OCS data model and the

Semantic Web (also described in Section 2.10). For example the Semantic Web is

intended as a more efficient way of representing data on the WWW. Likewise, the

OCS data model also offers a more efficient way to organise structure within Open

Hypermedia and Structural Computing Systems.

Of interest is also the Semantic Web's attention on improving resource discovery.

TIlis is because by different mechanisms the OCS data model can further improve

resource discovery too. Section 7.15.1 describes how this is possible through the

analysis of shared resource structure. For example when the OCS data model is

applied to the OHP-Nav protocol, new relationships can be revealed between the

node resources that hypermedia structure is being used to connect. E.g. if the same

OHP-Nav Anchor is being shared between different hypermedia structures then this

will identify other hypertext links that reference the same node content within any

node resource. TIlis can be useful for locating node resources that share the same or

similar content.

12.7.3. Open Hypermedia

The OCS data model has a natural relationship with the concept of open hypermedia

since they are both motivated by the removal of embedded connection information.

For open hypermedia (Section 2.12), this is the removal of embedded hypertext link

214

data within document content, and for the OCS data model, this is the removal of

embedded object referencing connection information within the individual

hypermedia objects that make up a hypertext link. Indeed, it was this idea of dis­

embedding hypertext link information from document content that inspired

innovation of the OCS data model. ll1e reasoning behind this was that if embedded

connection data can be removed from the documents being linked together, then

why should embedded connection data continue to exist within the hypermedia

structures being used to link those same documents together?

ll1e OCS data model also shares a direct relationship with open hypermedia since, as

described in Chapter 1, the role of the OCS data model is to "conceptually re­

structure the internal organisation of [open] hypermedia structure". Moreover it was

the OHP-Nav protocol (an example of a standardised linking protocol) that was used

to demonstrate (principally in Chapters 7 and 8) the viability of the OCS data model.

The relevance here is that linking protocols are an essential element of an Open

Hypermedia System since the premise of open hypermedia is to separate hypertext

links from document content, and linking protocols are used by OHSs to manage the

separated hypertext links. ll1erefore any OHS that store its links as separate entities

should be able to apply the OCS data model to structurally re-organise its hypertext

links. It makes no difference whether the links are compliant with the standardised

OHP-Nav protocol and data model, or are proprietary to a specific OHS. Of

importance is that the Open Hypermedia System represents a hypertext link as a set

of individual hypermedia object types akin to the individual object types that make

up OHP-Nav hypertext links, e.g. Link, Anchor and Node. Therefore the OCS data

model can be applied to generic Open Hypermedia Systems in much the same way

as described for OHP-Nav. I.e. separating the functional and connectional roles of

individual OHS hypermedia objects into Function and COlU1ection Objects. Examples

of OHSs with proprietary linking protocols include Microcosm [Carr et a1. 1994],

Chimera [Anderson et al. 1994] and HyperDisco [Wiil and Leggett 1996].

The improvements will be the same as those described for OHP-Nav compliant

OHSs. The first, for example will be the removal of any embedded reference

connection data within individual hypermedia objects. Thus extending the concept of

open hypermedia into the structural organisation of hypertext links themselves.

Further improvements include enabling generic OHSs to benefit from efficient

hypermedia object re-use, enhanced hypermedia object and hypertext link

versioning, and improved hypermedia object and hypertext link maintenance.

215

Another significant relationship shared bet\veen the OCS data model and open

hypermedia is the importance both attach to the concept of re-use. Open hypermedia

focuses on the re-use of whole hypertext links. This is made possible through

hypertext links being stored independently of document content. Such re-use enables

hypertext links to point to multiple source or destination documents. Microcosm's

generic links provide a good example. The OCS data model adopts the same view

that re-use is important, but its focus is at a lower level. Namely the re-use of

individual hypermedia objects (via Function Objects) and blocks of structure (via

Connection Objects). Taken together it is these individual hypermedia objects that

comprise the re-usable hypertext links of open hypermedia.

12.7.4. Structural Computing

Automatically it can be inferred that there is a natural relationship between

Structural Computing and the OCS data model since Structural Computing classifies

hypermedia (the branch of structure that the OCS data model organises) to be a

subset of the field of Structural Computing. Therefore it follows that if the OCS data

model can be applied to hypermedia then there must be some scope for applying the

OCS data model within Structural Computing.

As discussed in Section 2.15 Structural Computing promotes the view that

'relationship' should be the atomic building block within a computing environment

[Nurnberg et al. 1997]. To this end the 'relationship' attribute is encapsulated within

the structural atom - the most fundamental basic unit of structure for building

everything within the computing environment. This includes data items (e.g. a

computer file) and high-level structural abstractions, e.g. hypertext links, taxonomic

links and spatial associations.

The OCS data model shares this same sentiment of structure as it too utilises

structure as an entity for relating items together. For example the OCS Connection

Object is used to connect (i.e. relate) Function Objects and/or Connection Objects

together. Moreover, both Structural Computing and the OCS data model

acknowledge the critical role that structure plays at establishing relationships

between elements as they both elevate structure to be a first class entity (Section 7.7).

Like the OCS data model, Structural Computing holds the view that structure should

not be embedded within data. Structural Computing's stance is that structural

abstractions, e.g. hypertext links and taxonomic links, should be stored separately

from the data they are used to organise.

216

However, the difference with the OCS data model is that most Structural Computing

systems continue to embed connection data within the structural atoms used to build

structural abstractions. HOSS [Niirnberg et a1. 1996] and Construct [Wiil et a1. 2000;

Wiil 2001] are examples of Structural Computing systems that embed connection

data within their atomic building blocks. Therefore there would appear to be a role

for the OCS data model within the Structural Computing environment where the

OCS data model can be used to separate the embedded structural connection

information from structural data within structural atoms. (Or stated more clearly,

remove the cOlmection information embedded within individual structural atoms.)

TIle revised structural organisation would result in structural connections being

grouped within OCS Connection Objects and the structural functional data (of

structural atoms) being represented as OCS Function Objects.

The benefits for Structural Computing would be the same as for open hypermedia,

namely atomic structure re-use, improved structure versioning and improved

structure maintenance.

Evidence of the suitability of the OCS data model within a Structural Computing

setting has been demonstrated in Chapter 8 by its application to the embedded

connections within FOHM structure. The relevance of FOHM is that it provides

generalised structural abstractions for the navigational, taxonomic and spatial

domains.

12.7.5. Object Prototyping

TI1e approach to re-use by COlmection Objects (i.e. the ability of Connection Objects

to re-use both Function and Connection Objects) enables comparisons with

JavaScript object prototyping [FlaImagan 1997].

As is the case with most object-oriented languages, a JavaScript class acts as a

template which describes the data aI1d behaviour associated with the objects of that

class. Objects are typically created using a class constructor where all objects are

initialised in the same way and each object is assigned its own copy of the class

properties. However JavaScript also offers object prototyping as an alternative

method for specifying the properties of aI1 object of a class. A prototype object is a

special object associated with the constructor of that class. Any properties defined by

the class prototype object are shared by all objects of the class. TI1is means objects do

not get their own unique copy of the prototype properties. It is here where the

comparison with the OCS data model lies.

217

Re-used Function and Connection Objects share similarities with object prototypes

since both are examples of objects/properties that can be re-used in multiple places.

Connection Objects can also be compared with JavaScript class objects. This is

because, like JavaScript object prototypes, Connection Objects generally contain both

shared and non-shared data. The shared data takes the form of Function Objects

which can be simultaneously shared between multiple Connection Objects. The non­

shared data is the record of which Function Objects are connected together.

However a central difference between the OCS data model and object prototyping is

on their approaches to re-use. In the OCS data model, it is the C0l1l1ection Object (i.e.

an object) that orchestrates re-use. Whilst in object prototyping, re-use is orchestrated

by the class itself.

Another difference is the degree of re-use each offers. Connection Objects are more

flexible since individual Connection Objects can implement different re-use

situations, i.e. each Cormection Object can include or omit different Function or

Connection Objects for re-use, and they can organise them in different linking

patterns. TI1is is in contrast with object prototyping. TI1e only data that can be shared

is that data assigned to the object prototype (whether relevant or not). Individual

class objects have no choice on what is or is not shared. Furthermore individual class

objects have no choice on whether to participate in the sharing process - it is always

the case that all objects instantiated from the class will re-use the object prototype

data.

12.7.6. Standard CB-OHS Storage Interface

TI1e developers of Construct (described in Section 2.15.1) have been working on the

definition of a standardised CB-OHS storage interface [Wiil 2000b]. TI1is is to enable

interoperability at the Open Hypermedia Framework Layer of the CoReArc data

model (Figure 3.1). The Standard CB-OHS Storage Interface comprises a core set of

services and a set of extensions dealing with more advanced services in the areas of

access control, concurrency control, version control and notification control. TI1e

Interface has thus far been implemented as a basic service in the Construct

development environment [Wii12001].

The OCS data model is related to the Standard Storage Interface as they both centre

round the further definition of structure. In the case of the OCS data model this is the

breakdown of hypermedia objects into Function and Connection Objects. TI1e

Standard Storage Interface, on the other hand, breaks structure down into Units [Wiil

218

2000a]. A Unit is a basic storage entity that is opaque to the system that manages and

stores it. The Unit is an example implementation of Structural Computing's

structural atom (Sections 2.15 and 12.7.4). It is the responsibility of the Storage

Interface to provide persistent storage of Units.

A Unit is comprised of the following characteristics:

• Binary Attribute. Can contain binary data.

• Attribute. Can contain all types of attribute values.

• Relation. Can contain references to other Units.

• Behaviour. Can contain computations.

A Unit can be compared to a Function Object as they both represent hypermedia

objects. But the major difference between them is that Units are embedded with the

references of the other Units to which they are connected (as indicated by the Unit

'Relation' characteristic). This is in contrast to Function Objects where connection

data is stored separately in COlUlection Objects.

Therefore there would appear to be scope to apply the OCS data model to the basic

Unit storage entity in order to separate a Unit's functionality from its connection

information. This would result in the 'Binary Attribute', 'Attribute' and 'Behaviour'

characteristics of each Unit being recorded within a single Function Object, and a

Unit's 'Relation' characteristic being captured within one or more Connection

Objects. The advantages gained would include more fine grain control over Storage

Interface Units since Units would become re-usable and there would be greater

opportunity for Unit versioning and improved maintenance.

12.7.7. Callimachus

Callimachus is a CB-OHS that provides an environment for the development and

operation of structure servers [Tzagarakis et a1. 2003]. Such structure servers are used

to define structural models comprising new structural abstractions and services for

new hypermedia domains. It is related to the work of the OCS data model as it too is

concerned with the construction of hypermedia structure, and it utilises similar

abstractions to OCS Function and Connection Objects.

One such similar abstraction is Structure Templates. They present patterns for

structure that act as specifications of the structural model for a given hypermedia

219

domain .. In this way Callimachus operates structure servers through being guided by

Structure Templates which provide domain specific abstractions and constraints.

Structure Templates can be compared to OCS Connection Objects as both are used to

assist with the dynamic building of structure. Hmvever the difference is with the role

that each plays. Connection Objects describe how a spec~fic structure is to be built, i.e.

they identify which specific Function or Connection Objects are to be connected to one

another. This is unlike Structure Templates which do not contain the connection

information (between objects) to build actual structure. Structure Templates act more

like classes in that Structure Templates guide the structure server as to which object

types are permitted (and expected) to be attached to one another. For example

specifying the number of Node objects that can COl111ect to an Anchor object, or the

number of destination Endpoints that can connect to a Link object. Hence unlike

Connection Objects, Structure Templates are not capable of describing how a specific

structure should be built.

Callimachus also employs Abstract Structural Elements. They are the basic structural

primitive that a Structure Template uses to build hypermedia structure. Each

Abstract Structural Element has a number of generic attributes that are programmed

depending on the structural type that it is representing. One such attribute is endsets.

An endset acts as a placeholder for recording the IDs of other structural objects. This

enables related objects to be connected together in order to create high-level

structural abstractions, such as navigational or taxonomic links. The Abstract

Structural Element is an example implementation of Structural Computing's

structural atom (Sections 2.15 and 12.7.4).

Abstract Structural Elements can be compared with OCS Function Objects since both

form the basic block for building hypermedia structure. But a key difference between

them is that the connection information between objects continues to be embedded

within Callimachus' Abstract Structural Elements. As explained above, such

information is recorded by the endset attribute within an Abstract Structural

Element.

Therefore it can be concluded that Callimachus would benefit from application of the

OCS data model to its Abstract Structural Elements. This would be in order to

separate an Abstract Structural Element's function and connection information.

However, the OCS data model might also benefit from Callimachus' implementation

of Structure Templates. This is because a similar mechanism to Structure Templates

can be used to declare the structural models that Connection Objects should adhere

to when connecting Function and/or Connection Objects together.

220

12.7.8. Themis

Themis [Anderson et al. 2003a; Anderson et al. 2003b] provides a Structural

Computing framework to facilitate the rapid construction of tools for a variety of

hypermedia domains. Its focus is to reduce the size of the client application code that

is responsible for creating instances of client application data structures. An example

of an application data structure might be the layout of an address book containing

structural labels such as name, address and phone number. Themis reduces

application data structure code by removing such code from the applications

themselves, and transforming it into structure templates which are recorded in

structure servers. Thus the client can load the template from the Themis structure

server, and use that template to create new instances of the data structure. Hence the

client no longer needs to store the application structure data creation code.

An obvious comparison is between Themis Templates and OCS Connection Objects.

This is because both are examples of structure being used to create structure. Themis

Templates are used to create instances of structure, whilst COlUlection Objects are

used to create the connections between objects within hypermedia structure.

Moreover they adopt similar approaches to re-use. A Themis Template can reference

(i.e. re-use) other templates as part of its definition, just the same as Connection

Objects can re-use other Connection Objects when defining COlUlections between

hypermedia objects.

But the two structure mechanisms can also be regarded as fundamentally different to

one another since they operate at different levels of structure. A Themis Template is

like a class, i.e. it is waiting for user input in order to create an instance of the

structure defined by the Template. This compares with a COlUlection Object which is

an example of a structure already instantiated with data. That data being the specific

Function and/or Connection Objects that comprise the Connection Object content.

Themis also employs a conceptual element called the Themis Atom [Anderson et al.

2003a] which represents an atomic unit of structure. It can be compared with an OCS

Function Object, because like OCS Function Objects, they are not embedded with

connection data. Thus the same Atom can be grouped with different sets of Atoms.

However Themis Atoms are not used in the same way as Function Objects. This is

because Themis does not model the connections between Atoms, i.e. it does not have

a mechanism like Connection Objects that model the connections between Function

Objects. Instead Atoms are grouped together within collections. Hence, unlike the

221

OCS data model, Themis does not allow the connections bet\veen objects to be re­

used.

12.8. Future Work

There are several areas that can be drawn out of the OCS data model that can be

investigated as future work.

12.8.1. Implementation

The first activity to be undertaken would be an implementation of the OCS data

model. A suitable starting point would be to test the OCS data model's approach

upon actual OHP-Nav and FOHM structures. This is because, not only am I familiar

with these two hypermedia models, but it \vas against these two data models that the

operation and benefits of the OCS data model have been described within the thesis.

Other notable features to test include the impact that the OCS data model will have

upon the number of hypermedia objects (Function and Connection Objects) that

would be created and/or saved as a consequence of applying the OCS data model.

Under assessment would also be the number of additional messages necessary to be

sent around the network in order to store, build and retrieve hypermedia structure.

This would be coupled wHh analysis of any added complexity that the OCS data

model would bring when creating overall top-levels of structure, such as hypertext

links.

Also to be investigated would be the effect the OCS data model would have upon

hypermedia object re-usability, hypermedia object versioning and hypermedia object

referential integrity. This would reveal to what extent the general manipulation and

management of individual hypermedia objects would be improved through

application of the OCS data model.

12.8.2. Data Models

Thus far the impact of the OCS data model has been considered in relation to two

data models, OHP-Nav and FOHM. TI1erefore a natural avenue for future research is

to explore application of the OCS model to other hypermedia structure data models,

e.g. the HURL hypermedia model [Hicks et al. 1998].

222

12.8.3. Hypermedia Domains

The OCS data model throughout the thesis has primarily concentrated on the

navigational domain. But the OCS data model can just as equally be applied to other

hypermedia domains as well, e.g. the taxonomic domain.

This is because the taxonomic domain records relationships for hierarchical

classification schemes, but often it cannot be decided to which classification an object

should belong. Hence objects are often assigned to more than one hierarchical

structure. This is where the OCS data model can be useful as it enables objects to be

re-used between structures. Firstly this would enable more economical object

storage. Secondly, by re-using the same object between two or more structures, it

gives an immediate indication of a shared relationship between those structures. And

finally, it highlights the undetermined relationship about the classification finality of

the object between the structures.

12.8.4. The OCS Framework

The OCS framework concept (described in Chapter 10) can be expanded beyond

versioning just structure. For example, it can be used as the basis for connecting

documents within hypermedia networks. In which case documents would be

represented by Function Objects and hypertext links by Connection Objects.

12.8.5. Standardisation of Connection Objects

The OCS data model can significantly benefit the OHSWG standardisation effort.

Rather than focusing just on the standardisation on generalised hypermedia objects,

the OHSWG should also concentrate their efforts on standardising OCS Connection

Objects. OHP is comprised of many hypermedia object types where each object type

has a different functional role. It has been because of the range of functions that an

object may perform that has resulted in the OHSWG taking a long time to decide

which objects should form the structure of the OHP. The problem is that there is a

potentially unlimited range of functionality that the OHP can address. However,

what all hypermedia objects have in common is that they are all connected to other

objects, i.e. they all have some form of connection data. Therefore, it is also this

connectional aspect of structure that should be standardised separate to an object's

functional aspect.

12.8.6. Link Maintenance Repair Applications

The maintenance of generic structure connections can also benefit from the

standardisation of OCS Connection Objects. This is because if all connections

between objects are standardised, then this will ease the process of creating structure

repair applications. The knock-on effect is that it should encourage development of

structure repair applications. Thus if more structure repair applications are available,

then users \-"ill be more likely to adopt them for maintaining their structure.

12.9. Overall Conclusion

Connection data should not be mixed in with the function data of a hypermedia

object. This is the basic idea behind the OCS data model. The result is that separating

a hypermedia object's function and connection data can spawn many benefits. Not

least the opening up of hypermedia structure to enable re-usability, improved

structure versioning and structure maintenance. This is evidenced by the OCS data

model meeting the 4 Problem Domain Issues and achieving the 5 Computer Science

Contributions.

However there is some cost in adopting the OCS data model. Whilst the OCS data

model significantly benefits the organisation of structure it also adds to its

complexity (Section 7.16). And it is often the case that more objects are generated

when adopting the OCS data model. But these are often only lightweight Connection

Objects. Of more significance is that the OCS data model typically reduces the

number of heavyweight Function Objects (Section 7.9).

Taken as a whole, the OCS data model has a positive impact for computer users and

the general computing environment. It eases structure creation, enables discovery of

new relationships, reduces message sizes, assists hypermedia domain

interoperability and offers optimization at the storage level (Section 7.15). It also

assists the OHSWG by directing them to concentrate their standardisation efforts on

the connections between generic hypermedia objects.

224

Appendix A.
oes Representation in
XML

A.1. Introduction

This appendix describes one possible XML representation for OCS Function and

Connection Objects. It centres on a simplified form of the original Darmstadt OHP­

Nav XML specHication [Reich and Millard 1999] \-\'hich focuses on the four primary

objects: Node, Anchor, Endpoint and Link. It does not include PSpec or Context

objects as these are unnecessary for basic hypertext link construction and

presentation.

A.2. Conventional OHP-Nav Primary Objects

This section lists the simplified form of the conventional XML definitions of the

Node, Anchor, Endpoint and Link objects used by the Solent CB-OHS.

<!-- Simplified NODE element.

Does not include Computation or PSpec elements. -->

<!ELEMENT NODE (ID, NAME?, CONTENTSPEC, (%abObjInfoi))>

<!ELEMENT ID (#PCDATA»

<!ELEMENT NAME (#PCDATA»

<!ELEMENT CONTENTSPEC (URL?, CONTENT?, CHARACTERISTICSET?,
VERSION?, MIMETYPE?»

<!ELEMENT URL (#PCDATA»

<!ELEMENT VERSION (#PCDATA»

<!ELEMENT CONTENT (#PCDATA»

<!ELEMENT MIMETYPE (#PCDATA»

<!ENTITY %abObjInfo "MYTYPE?, DESCRIPTIONSET?,
CHARACTERISTICSET?">

<!ELEMENT MYTYPE (#PCDATA)>

<!ELEMENT DESCRIPTIONSET (DESCRIPTION*»

<!ELEMENT DESCRIPTION (NAME, VALUE»

<!ELEMENT NAME (#PCDATA»

<!ELEMENT VALUE (#PCDATA»

<!ELEMENT CHARACTERISTICSET (#PCDATA»

<!-- Simplified ANCHOR element.

225

Includes the locSpec entity as just the AXISLOC element.

Does not include Computation or PSpec elements -->

<!ELEMENT ANCHOR (ID, NAME?, PARENTID, AXISLOC,
(%abObjInfoi))>

<!ELEMENT PARENTID (#PCDATA»

<!ELEMENT AXISLOC (FWDAXISSET, REVAXISSET?, VERSION, ID»

<!ELEMENT FWDAXISSET (AXIS*»

<!ELEMENT REVAXISSET (AXIS*»

<!ELEMENT AXIS (NAME?, TYPE, VALUESET»

<!ELEMENT TYPE (#PCDATA»

<!ELEMENT VALUESET (VALUE*»

<!-- Simplified ENDPOINT element.

Does not include Computation or PSpec elements. -->

<!ELEMENT ENDPOINT (ID, NAME?, DIRECTION, (%abObjInfo),
ANCHORID)>

<!ELEMENT DIRECTION (#PCDATA»

<!ELEMENT ANCHORID (#PCDATA»

<!-- Simplified LINK element.

Does not include Computation or PSpec elements. -->

<!ELEMENT LINK (ID, NAME?, (%abObjInfo), ENDPOINTIDSET?»

<!ELEMENT ENDPOINTIDSET (ID, ID*»

226

A.3. Des Function Objects

OCS Function Objects are essentially the same as conventional OHP-Nav objects

(Section A.2). The only difference being that they do not contain embedded

references to other Function Objects.

As was the case with the conventional representation of OHP-Nav (Section A.2), the

example XML representation of OCS Function Objects also does not include PSpec or

Context objects. The XML simplified definitions of Node, Anchor, Endpoint and Link

objects are listed.

<!-- Simplified OCS Function NODE element.

Does not include Computation or PSpec elements.

This element is the same as a conventional Node element
since it does not contain any embedded object references.

All elements within an OCS NODE are the same as defined
in Section A.2. -->

<!ELEMENT NODE (ID, NAME?, CONTENTSPEC, (%abObjInfo;))>

<!-- Simplified OCS Function ANCHOR element.

Includes the locSpec entity as just the AXISLOC element.

Does not include Computation or PSpec elements.

Note that the PARENTID element is omitted since it is a
form of object reference embedding.

All elements within an OCS ANCHOR are the same as defined
in Section A.2. -->

<!ELEMENT ANCHOR (ID, NAME?, AXISLOC, (%abObjInfo;))>

<!-- Simplified OCS Function ENDPOINT element.

Does not include Computation or PSpec elements.

Note that the ANCHORID element is omitted since it is a
form of object reference embedding.

All elements within an OCS Endpoint are the same as
defined in Section A.2. -->

<!ELEMENT ENDPOINT (ID, NAME?, DIRECTION, (%abObjInfo))>

227

<!-- Simplified LINK element.

Does not include Computation or PSpec elements.

Note that the ENDPOINTIDSET element is omitted since it
is a form of object reference embedding.

All elements within an OCS Link object are the s~e as
defined in Section A.2. -->

<!ELEMENT LINK (ID, NAME?, (%abObjInfo))>

A.4. OCS Connection Objects

OCS Connechon Objects record the connections between OCS Function Objects.

This XML representation enables basic Connechon Object manipulahon to occur. It

should be remembered that it is only an example XML representahon, other XML

representations of Connechon Objects are possible and perfectly acceptable.

<!-- Connection Object -->

<!ELEMENT CONNECTION OBJECT (ID, CONNECTION_LIST?»

<!ELEMENT ID (#PCDATA»

<!ELEMENT CONNECTION LIST (CONNECTION*»

<!ELEMENT CONNECTION (OBJECT*»

<!-- An OBJECT can be a Function Object or a Connection
Object. If bond entity is missing, then it is presumed to
be an ATTACH bonding operation. -->

<!ELEMENT OBJECT (BOND?, OBJECT_TYPE?, ID, INSTANCE ID?,
INT_ANCHOR?)>

<!-- BOND can join together Connection Object to Connection
Object, Connection Object to Function Object (and vice
versa), or Function Object to Function Object. Both
Connection Objects and Function Objects are identified
via OBJECT element.

BOND can produce new Connection Objects or replace
existing Connection Objects. To produce a new Connection
Object, then use a new ID or do not assign any ID at the
CONNECTION_OBJECT level. To replace an existing
Connection Object, i.e. so one of the Connection Objects

being bonded takes on the role of the entire bonded
Connection Object, then use their existing ID at the
CONNECTION OBJECT level. -->

<!ENTITY % BOND "ATTACH I CONJOIN">

228

<!-- OBJ_TYPE used for clarity in defining what type of object
(either a Function or Connection Object) is being
described. -->

<!ENTITY % OBJ TYPE "FUNCTION I CONNECTION">

<!-- An OBJECT is identified as an Instance Object if it has
an INSTANCE ID. -->

<!ELEMENT INSTANCE ID (#PCDATA»

<!-- INT ANCHOR is an internal anchor within a Connection
Object, although it can be used for Function Objects, but
these are assumed to be opaque. -->

<!ELEMENT INT ANCHOR (OBJECT»

<!-- Operations that can be enacted on Connection Objects. -->

<!-- Creating a Connection Object. -->

<!ELEMENT CONNECTION OBJECT CREATE (CONNECTION OBJECT»

<!ELEMENT CONNECTION OBJECT CREATED (CONNECTION_OBJECT»

<!-- Deleting a Connection Object. -->

<!ELEMENT CONNECTION OBJECT DELETE (ID»

<!ELEMENT CONNECTION OBJECT DELETED (ID»

<!-- Modifying a Connection Object. -->

<!ELEMENT CONNECTION_OBJECT_MODIFY (ID,
CONNECTION_OBJECT_TEMPLATE, MODTYPE»

<!ELEMENT CONNECTION OBJECT MODIFIED (ID»

<!ELEMENT CONNECTION OBJECT TEMPLATE (ID?, CONNECTION LIST?»

<!ENTITY % modType "REMOVE I CREATE I ADD I DELETE">

<!-- Retrieving a Connection Object. -->

< !ELEMENT CONNECTION_OBJECT_RETRIEVE (ID,
CONNECTION OBJECT TEMPLATE?»

- -

<!ELEMENT CONNECTI ON OBJECT RETRIEVED (CONNECTION OBJECT »

A.S. Re-use Example

229

This section bsts the XML code to describe an Object and Connection Space re-use

example. Figure Al displays the FWlction Object Space, and Figures A2 and A3

display the Connection Spaces.

This example shows how the OCS data model enables the same Function Objects to

be re-used to produce different hypermedia structures in order to portray different

relationships. The example also shows the use of Instance Objects, in this case

Anchor object AI, being re-used within Connection Object C500.

Function Object Space
/0: OS500

Figure A.1: Function Object Space listing all Function Objects required for all RPS
'Defeats'scenarios.

A.S.1.

I
I
I
I
I
I
I
I
I
I
I
I

Connection Space
JO: CS500

L ____ .-!~G~O~ ____ _

------,
I
I
I
I
I
I
I
I

JD:G50! I L ____ J

-----,
I
I
I
I
I
I
I

I ID:G502 I L ____ J

-----,
I I
I I
I I
I I
I I
I I
I I

I JD:G503 I L ____ J

Figure A.2: Conn ection Space CS500.

Connection Space
10: CS501

Rock defeats Scissors Scissors defeat Paper Paper defeats Rock

Figure A.3: Connection Space facilitating all RPS 'Defeats' scenari os.

Function Object Space

Here are the separate Fm1Ction Objects of Figure A.1.

<!-- Link Function Object Ll -->

<LINK>

<I D> Ll <l ID >

<DESCRIPTI ONSET>

<DESCRI PTI ON>

230

<NAME> type </NAME>

<VALUE> defeats </VALUE>

</DESCRIPTION>

</DESCRIPTIONSET>

</LINK>

<!-- Endpoint Function Object El -->

<ENDPOINT>

<ID> EI </ID>

<DIRECTION> source </DIRECTION>

</ENDPOINT>

<!-- Endpoint Function Object E2 -->

<ENDPOINT>

<ID> E2 </ID>

<DIRECTION> destination </DIRECTION>

</ENDPOINT>

<!-- Anchor Function Object Al -->

<ANCHOR>

<ID> Al </ID>

<AXISLOC>

<FWDAXISSET>

<AXIS>

<TYPE> whole </TYPE>

<VALUESET/>

</AXIS>

</FWDAXISSET>

</AXISLOC>

</ANCHOR>

<!-- Node Function Object Nl -->

<NODE>

<ID> NI </ID>

<CONTENTSPEC>

231

<URL> C:\rock.html </URL>

<MIMETYPE> text/html </MIMETYPE>

</CONTENTSPEC>

</NODE>

<!-- Node Function Object N2 -->

<NODE>

<ID> N2 </ID>

<CONTENTSPEC>

<URL> c:\scissors.html </URL>

<MIMETYPE> text/html </MIMETYPE>

</CONTENTSPEC>

</NODE>

<!-- Node Function Object N3 -->

<NODE>

<ID> N3 </ID>

<CONTENTSPEC>

<URL> C:\paper.html </URL>

<MIMETYPE> text/html </MIMETYPE>

</CONTENTSPEC>

</NODE>

A.S.2. Connection Object Space CSSOO

Here are the Connection Objects of the Connection Space of Figure A.2.

<!-- CSOO: A single Connection Object expressing the 'Defeats'
relationship. -->

<CONNECTION OBJECT>

<ID> C500 </ID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> Ll </ID>

</OBJECT>

<OBJECT>

<ID> El </ID>

</OBJECT>

</CONNECTION>

<CONNECTION>

<OBJECT>

<ID> Ll </ID>

</OBJECT>

<OBJECT>

<ID> E2 </ID>

</OBJECT>

</CONNECTION>

<CONNECTION>

<OBJECT>

<ID> El </ID>

</OBJECT>

<OBJECT>

<ID> Al </ID>

<INSTANCE ID> 01 </INSTANCE_ID>

</OBJECT>

</CONNECTION>

<CONNECTION>

<OBJECT>

<ID> Al </ID>

<INSTANCE ID> 02 </INSTANCE_ID>

</OBJECT>

<OBJECT>

<ID> E2 </ID>

</OBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

233

234

<!-- C501: Connection Object to connect Al to Nl (Rock). -->

<CONNECTION OBJECT>

<ID> C50I <lID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> Al <lID>

<IOBJECT>

<OBJECT>

<ID> NI <lID>

<IOBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

<!-- C502: Connection Object to connect Al to N2 (Scissors).

-->

<CONNECTION OBJECT>

<ID> C502 <lID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> Al <lID>

<IOBJECT>

<OBJECT>

<ID> N2 <lID>

<IOBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

<!-- C503: Connection Object to connect Al to N3 (Paper). -->

<CONNECTION OBJECT>

<ID>C503</ID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> A1 <lID>

</OBJECT>

<OBJECT>

<ID> N3 <lID>

</OBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

A.S.3. Connection Object Space CSS01

235

The three Connection Objects of the Connection Space of Figure A.3 together create

the three hyperstructure relationships: 'Rock defeats Scissors', 'Scissors defeat Paper'

and 'Paper defeats Rock'.

<!-- C504: Connection Object that creates 'Rock defeats
Scissors' .

It connects Al (instance 01) of C500 to Al of C501
(Rock); and connects Al (instance 02) of C500 to Al of
C502 (Scissors). -->

<CONNECTION OBJECT>

<ID> C504 <lID>

<CONNECTION LIST>

<CONNECTION>

<BOND> CONJOIN </BOND>

<OBJECT>

<ID> C500 <lID>

<INT ANCHOR>

<OBJECT>

<ID> A1 <lID>

<INSTANCE ID> 01 </INSTANCE_ID>

</OBJECT>

<lINT_ANCHOR>

</OBJECT>

<OBJECT>

<ID> C501 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

</OBJECT>

<lINT_ANCHOR>

</OBJECT>

</CONNECTION>

<CONNECTION>

<BOND> CONJOIN </BOND>

<OBJECT>

<ID> C500 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<INSTANCE ID> 02 </INSTANCE_ID>

</OBJECT>

<lINT_ANCHOR>

</OBJECT>

<OBJECT>

<ID> C502 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

</OBJECT>

<lINT_ANCHOR>

</OBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

236

237

<!-- CSOS: Connection Object that creates 'Scissors defeat
Paper' .

It Connects Al (instance 01) of csoo to Al of CS02
(Scissors); and connects Al (instance 02) of csoo to Al
of CS03 (Paper). -->

<CONNECTION OBJECT>

<ID> C505 <lID>

<CONNECTION LIST>

<CONNECTION>

<BOND> CONJOIN </BOND>

<OBJECT>

<ID> C500 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<INSTANCE ID> 01 </INSTANCE_ID>

<IOBJECT>

<lINT_ANCHOR>

<IOBJECT>

<OBJECT>

<ID> C502 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<IOBJECT>

<lINT_ANCHOR>

<IOBJECT>

</CONNECTION>

<CONNECTION>

<BOND> CONJOIN </BOND>

<OBJECT>

<ID> C500 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<INSTANCE ID> 02 </INSTANCE ID>

<IOBJECT>

<lINT_ANCHOR>

<IOBJECT>

<OBJECT>

<ID> C503 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<IOBJECT>

<lINT_ANCHOR>

<IOBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

238

<!-- C506: Connection Object that creates IPaper defeat Rock'.

It connects Al (instance 01) of C500 to Al of C503
(Paper); and connects Al (instance 02) of C500 to Al of
C501 (Rock). -->

<CONNECTION OBJECT>

<ID> C506 <lID>

<CONNECTION LIST>

<CONNECTION>

<BOND> CONJOIN </BOND>

<OBJECT>

<ID> C500 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<INSTANCE ID> 01 </INSTANCE_ID>

<IOBJECT>

<lINT_ANCHOR>

<IOBJECT>

<OBJECT>

<ID> C503 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<IOBJECT>

</INT3\NCHOR>

<IOBJECT>

<ICONNECTION>

<CONNECTION>

<BOND> CONJOIN </BOND>

<OBJECT>

<ID> C500 <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<INSTANCE ID> 02 </INSTANCE ID>

<IOBJECT>

<lINT_ANCHOR>

<IOBJECT>

<OBJECT>

<ID> C50I <lID>

<INT ANCHOR>

<OBJECT>

<ID> Al <lID>

<IOBJECT>

<lINT_ANCHOR>

<IOBJECT>

<ICONNECTION>

<ICONNECTION_LIST>

<ICONNECTION_OBJECT>

139

A.G. Converting to OCS Data Model Format
Example

240

This section lists the XML code for the scenario depicted by Figure 8.4. It provides an

example as to how the OCS data model can be used to imitate the conventional

representation of OHP-Nav hypermedia structure. For ease, Figure 8.4 has been

reproduced here as Figures A.4, A.5 and A.6.

Figure A4: Conventional OHP-Nav embedded object referencing hypertex t link
representation of Figure 8.4.

Object Space
10: 08100

Figure AS: OCS Function Objects imitating conventional OHP-Nav objects.

Connection Space
ID: CS100

1- - - - - - - - - - - - - - - - -I

1 1
1 1
1 I
1 1
1 1
I I
I I
I I
I 1
I ID:C100 I L ________________ I

'ID:C10t ID: C103
L ______ _

r-------,

1
1
1
I
1
1
1
1
I

I I
I I
L _Ip': E!!!?.. _ I
------- 1
I I
I I
I I
I I
I I
I I
I I
I 1
I I
I I
I ID: Ct04 1
~ ______ I

241

Figure A.6: OCS Connection Objects imitating conventiona l OHP-Nav connections.

A.6.1. XML for Conventional Hypertext Link

This subsection lists the XML code necessary for the conventional embedded object

referencing hypertext link of Figure A.4.

<!-- Conventional Link object Ll. -->

<LINK>

<ID> Ll <l ID >

<DESCRIPTIONSET>

<DESCRIPTION>

<NAME> type </NAME>

<VALUE> defeats </VALUE>

</DES CRIPTI ON>

</DESCRIPTI ONSET>

<ENDPOINTIDSET>

<ID> El <lID>

<ID> E2 <lID>

</ ENDPOINTIDSET >

</ LINK>

<!-- Conventional Endpoint object El. -->

<ENDPOINT>

<ID> EI </ID>

<DIRECTION> source </DIRECTION>

<ANCHORID> Al </ANCHORID>

</ENDPOINT>

<!-- Conventional Endpoint object E2. -->

<ENDPOINT>

<ID> E2 </ID>

<DIRECTION> destination </DIRECTION>

<ANCHORID> A2 </ANCHORID>

</ENDPOINT>

<!-- Conventional Anchor object Al. -->

<ANCHOR>

<ID> Al </ID>

<PARENTID> Nl </PARENTID>

<AXISLOC>

<FWDAXISSET>

<AXIS>

<NAME> characters in </NAME>

<TYPE> CHAR </TYPE>

<VALUESET>

<VALUE> 29 </VALUE>

<VALUE> 38 </VALUE>

</VALUESET>

</AXIS>

</FWDAXISSET>

</AXISLOC>

</ANCHOR>

<!-- Conventional Anchor object A2. -->

<ANCHOR>

<ID> A2 </ID>

242

<PARENTID> N2 </PARENTID>

<P.xISLOC>

<FWDAXISSET>

<AXIS>

<NAME> characters in </NAME>

<TYPE> CHAR </TYPE>

<VALUESET>

<VALUE> 50 </VALUE>

<VALUE> 57 </VALUE>

</VALUESET>

</AXIS>

</FWDAXISSET>

</AXISLOC>

</ANCHOR>

<!-- Conventional Node object Nl. -->

<NODE>

<ID> Nl </ID>

<CONTENTSPEC>

<URL> C:\rock.html </URL>

<MIMETYPE> text/html </MIMETYPE>

</CONTENTSPEC>

</NODE>

<!-- Conventional Node object N2. -->

<NODE>

<ID> N2 </ID>

<CONTENTSPEC>

<URL> c:\scissors.html </URL>

<MIMETYPE> text/html </MIMETYPE>

</CONTENTSPEC>

</NODE>

243

244

A.6.2. XML for oes Function Objects

This subsection lists the XML code for the Function Objects (shown by figure A.S)

when the OHP-Nav hypertext link is converted to the OCS data model.

<!-- oes Link Function Object LI. -->

<LINK>

<ID> LI </ID>

<DESCRIPTIONSET>

<DESCRIPTION>

<NAME> type </NAME>

<VALUE> defeats </VALUE>

</DESCRIPTION>

</DESCRIPTIONSET>

</LINK>

<!-- oes Endpoint Function Object EI. -->

<ENDPOINT>

<ID> EI </ID>

<DIRECTION> source </DIRECTION>

</ENDPOINT>

<!-- oes Endpoint Function Object E2. -->

<ENDPOINT>

<ID> E2 </ID>

<DIRECTION> destination </DIRECTION>

</ENDPOINT>

<!-- oes Anchor Function Object AI. -->

<ANCHOR>

<ID> Al </ID>

<AXISLOC>

<FWDAXISSET>

<AXIS>

<NAME> characters in </NAME>

<TYPE> CHAR </TYPE>

<VALUESET>

<VALUE> 29 </VALUE>

<VALUE> 38 </VALUE>

</VALUESET>

</AXIS>

</FWDAXISSET>

</AXISLOC>

</ANCHOR>

<!-- OCS Anchor Function Object A2. -->

<ANCHOR>

<ID> A2 </ID>

<AXISLOC>

<FWDAXISSET>

<AXIS>

<NAME> characters in </NAME>

<TYPE> CHAR </TYPE>

<VALUESET>

<VALUE> 50 </VALUE>

<VALUE> 57 </VALUE>

</VALUESET>

</AXIS>

</FWDAXISSET>

</AXISLOC>

</ANCHOR>

<!-- OCS Node Function Object Nl. -->

<NODE>

<ID> Nl </ID>

<CONTENTSPEC>

<URL> C:\rock.html </URL>

<MIMETYPE> text/html </MIMETYPE>

</CONTENTSPEC>

</NODE>

245

<!-- OCS Node Function Object N2. -->

<NODE>

<ID> N2 <lID>

<CONTENTSPEC>

<URL> c:\scissors.html </URL>

<MIMETYPE> text/html </MIMETYPE>

<ICONTENTSPEC>

</NODE>

A.6.3. XML for OCS Connection Objects

246

This subsection lists the XML code for the Connection Objects shown by Figure A.6

that imitate the connections within the conventional hypertext link of Figure A.4.

<!-- OCS Link Function Object Ll connected to OCS Endpoint
Function Objects El and E2. -->

<CONNECTION OBJECT>

<ID> ClOO <lID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> Ll <lID>

<IOBJECT>

<OBJECT>

<ID> El <lID>

<IOBJECT>

<ICONNECTION>

<CONNECTION>

<OBJECT>

<ID> Ll <lID>

</OBJECT>

<OBJECT>

<ID> E2 <lID>

<IOBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

247

<!-- OCS Endpoint Function Object EI connected to OCS Anchor
Function Object AI. -->

<CONNECTION OBJECT>

<ID> C10l <lID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> El <lID>

<IOBJECT>

<OBJECT>

<ID> Al <lID>

<IOBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

<!-- OCS Endpoint Function Object E2 connected to OCS Anchor
Function Object A2. -->

<CONNECTION OBJECT>

<ID> C103 <lID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> E2 <lID>

<IOBJECT>

<OBJECT>

<ID> A2 <lID>

<IOBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

<1-- OCS Anchor Function Object Al connected to OCS Node
Function Object NI. -->

<CONNECTION OBJECT>

<ID> CI02 </ID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> Al </ID>

</OBJECT>

<OBJECT>

<ID> NI </ID>

</OBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

<1-- OCS Anchor Function Object A2 connected to OCS Node
Function Object N2. -->

<CONNECTION OBJECT>

<ID> CI04 </ID>

<CONNECTION LIST>

<CONNECTION>

<OBJECT>

<ID> A2 </ID>

</OBJECT>

<OBJECT>

<ID> N2 </ID>

</OBJECT>

</CONNECTION>

</CONNECTION_LIST>

</CONNECTION_OBJECT>

248

249

Appendix B.
Examples of oes Re-use

B.1. Introduction

This appendix section follows on from Section 8.4. It describes how the OCS data

model resolves the remaining two scenarios outlined in Sections 6.2 and 6.3. These

are enabling the re-use of single FOHM objects (Section B.2) and the re-use of whole

segments of OHP-Nav structure (Section B.3).

B.2. FOHM Single Hypermedia Object Re-use

Section 6.2.2 explains how the FOHM data model prevents the re-use of the

functionally identical objects within the two FOHM structures of Figure 6.3.

As reported in Section 8.3 the OCS data model leaves the decision on whether to

embed whole objects within one another as a design choice for OCS hypermedia

structure creators. Therefore Section B.2.1 provides an OCS solution that includes

wholesale object embedding and Section B.2.2 provides an OCS solution that

precludes wholesale object embedding.

8.2.1. oes Solution with FOHM Object Embedding

Figure B.1 shows the OCS data model solution that allows wholesale object

embedding. This is coupled with Table B.1 which summarises the re-use taking place

within this OCS solution.

R1

01

A1

Function Object Space
ID: OS70

03

Connection Space
ID:CS70

A2

04 05

',-- ---- ---'-------, " r - - - - - - - - - - - - - - - - - - I ,
I , , , ,
I , ,
" I , , , , , , ,
" I
, !D: C70 L _______________ ~ !D: ClI

I
I
I
I
I

250

Figure B.1: OCS solution enabling single FOHM object re-use for the FOHM structure of
Figure 6.3 that permits wholesale object embedding.

The OCS solution produces an overall total of 10 objects. This is a saving of 1 object

over the original structure of Figure 6.3. However 2 of the OCS solution objects are

COlmection Objects. Because these are considered lightweight objects, then there is

actually a greater saving of 3 equivalent hypermedia objects over the original

structure of Figure 6.3. Table B.l records the eliminated objects as R3, R4 and R5.

They have been replaced by a single copy of R2 within COlmection Object C71.

251

IF '~\ \l"' --:, w N!' ~I~"'t~~ni:":rt.l '\ .. ",,' " ':~'>-:" ,'. :: •• ,' •• ,- ~,~ ~,' ~: " , J!. \' f: I ".l.' ,

-·Description'~;"'''p.'::~:;' :~i,'~~~J':i~'\"~; .".':"',, \ ·~·.l·'·,'·L-; . ':Value'i, .< ~_',~~t:~')r~~
~I , • .> • 1 "':,'t . ': i:~

No. of objects to build original FOHM structures 11

(using object embedding)

No. of functionally identical objects 4

No. of objects to build OCS solution 10

No. of Function Objects 8

No. of Connection Objects 2

Re-used object count 1

Re-used object list R2 for R3, R4, R5

Eliminated object count 3

Eliminated object list R3, R4, R5

No. of overall objects saved 1

No. of equivalent hypermedia objects saved 3

Table B.1: Summary of the re-use taking place within the OCS solution of Figure B.1.

8.2.2. oes Solution without Object Embedding

This second OCS solution does not allow wholesale object embedding. In this

scenario the embedded objects are separated from their container objects. I.e. Bl and

B2 are separated from AI; B3, B4 and B5 are separated from A2; and Dl is separated

from Rl. Hence the original structure of Figure 6.3 can be perceived as containing a

total of 17 objects. Figure B.2 shows the OCS solution together with Table B.2 which

presents a summary of the re-use occurring within the OCS solution.

A1

01 02

Function Object Space
10: os71

04

Connection Space
10: CS71

r-------------- --

R1

05

I I
I I

: I
' I I

I I
I I
I I
: I
I I
I I
I I
: I
I I ' I
I I I
I I I
I II I
I I I
I I I I
I I , I
I ' ID: C72 I ' I ID: C73 I L _______________ ~ L _________________ _

25:2

Figure B.2: OCS solution enabling single FOHM object re-use for the FOHM structure of
Figure 6.3 without utilising object embedding.

TI1is OCS solution demonstrates that separating embedded objects from their

containing objects allow greater single object re-use. For example:

• Al no longer contains embedded Bindings BI and B2. Hence Al can now be re­

used in place of A2.

• Bindings BI, B2, B3, B4 and B5 have been dis-embedded from Associations Al

and A2. TI1is enables BI to be re-used in place of B3, and B2 to be re-used in place

ofB4.

• Data object DI has been separated from Reference Rl. This aIJows RI (now

without DI) to be re-used in place of References R2, R3, R4 and R5. And it also

allows DI (now a separate object) to be re-used in place of D3.

253

. , ,t, .• ~C~l.:~", , "': ::':', ".' ·'~'.;'N~~r,;~~fi1~~~~'\<,:,~f\ :,iValue'::'
" , , " Description', ,f;':i~'

No, of objects to build original FOHM structures 17

(v"ithout object embedding)

No. of functionally identical objects 13

No. of objects to build OCS solution 11

No. of Function Objects 9

No. of Connection Objects 2

Re-used object count 8

Re-used object list Al for A2

Bl for B3

B2 for B4

RlforR2,R3,R4,R5

Dl for D3

Eliminated object count 8

Eliminated object list A2, B3, B4, R2, R3, R4, R5,

D3

No. of overall objects saved 6

No. of equivalent hypermedia objects saved 8

Table B.2: Summary of the re-use taking place within the OCS solution of Figure B.2.

Table B.2 shows that this OCS solution uses a total of 11 objects. This compares with

the 17 objects that are needed to construct the two FOHM structures if built without

FOHM object embedding. Hence the OCS solution saves 6 objects overall, and 8

equivalent hypermedia objects if excluding Connection Objects (because they are

considered lightweight objects).

The total 11 OCS solution objects also equals the total number of objects used to

construct the two FOHM structures if built using FOHM object embedding (as

described in Section 6.2.2). But if the 2 Connection Objects are excluded, then there is

actually a saving of 2 equivalent hypermedia objects over the original object­

embedded structure of Figure 6.3. Moreover this approach of separating embedded

objects from their containers also offers more opportunities for re-use in the future

since more objects are available from which to select for re-use.

B.3.

254

OHP-Nav Repetitive Hypermedia Structure Re­
use

Section 6.3.1 explains how OHP-Nav object reference embedding prevents the

general re-use of hypermedia sh'ucture segments. The two scenarios described are

the 'Cats Eat' something relationship and the Node-less 'Eat' relationship.

B.3.1. 'Cats Eat' Something Relationship

Section 6.3.1 explains how the conventional OHP-Nav object reference embedding

approach prevents the highlighted structure segment of H yperlin.k A from being re­

used in place of the highlighted segment of Hyperlink B within Figure 6.4.

Adopting the OCS data model allows such structure segment re-use to take place.

The OCS solution is shown in Figure B.3 along with Table B.3 which summarises the

object re-use within the OCS solution.

L1

N1

Function Object Space
fO: OS80 .

I ,
Connection Space

fO:CS80

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I L _____ _ /~ ~8~ _____ _

,-------,
1
1
1
1
1
1
1
1
1
1
1
1

10: C82 1 -- ______ 1

Figure B.3: OCS solution enabling structure segment re-use for th e OHP-Nav 'Ca ts Ea t'
something relationship of Figure 6.4.

This OCS solution uses Fm1Ction Objects N1, A1, El , L1 and E2 to create the

highlighted structure segment of Hyperlink A (the 'Cats Eat' something relationship).

Together these Function Objects are recorded as single Connection Object C80. This

enables that segment to be re-used within any hypermedia structure. This is

demonstrated by Connection Objects C81 and C82 which re-use the highlighted

segment C80 to build Hyperlinks A and B respectively.

255

,
Description

,"
\ ~ 4 ~... ',,_ ~

,:, ~Vhlue
No. of objects to build original OHP-Nav 14

structures

No. of functionally identical objects 12

No. of objects to build OCS solution 10

No. of Function Objects 7

No. of Connection Objects 3

Re-used object count 5

Re-used object list Nl for N3

Al for A2, A3, A4

El for E3

Ll for L2

E2 for E4

Eliminated object count 7

Eliminated object list N3, A2, A3, A4, E3, L2, E4

No. of overall objects saved 4

No. of equivalent hypermedia objects saved 7

Table B.3: Summary of the re-use taking place within the OCS solution of Figure B.3.

As Table B.3 shows, this OCS solution uses a total of 10 objects (7 Function Objects

and 3 Connection Objects), 5 objects are re-used, and 7 objects have been eliminated.

This compares with the 14 hypermedia objects used to build the original Hyperlinks

A and B. Hence a total of 4 objects are saved. But because 3 of the OCS objects are

Connection Objects (considered to be lightweight objects) there is actually a saving of

7 equivalent hypermedia objects.

A further benefit with adopting the OCS data model is that it enables Hyperlinks A

and B to remain as two separate structures even though they share the same

structure segment. This is possible because each structure is represented by different

Connection Objects, i.e. C81 and C82. Hence when the two structures are constructed

they are built as separate structures. Figure B.4 shows the hypermedia structures as a

result of instantiating C81 and C82, i.e. Hyperlinks A and B sharing the same

hypermedia structure segment.

L1

Hyperlink A

Re-used hypermedia
structure segment

256

L1

Hyperlink B

Figure B.4: Hyperlinks A and B of the 'Cats Eat' something relationship sharing the same
structure segment as described by the OCS solution of Figure B.3.

8.3.2. Node-less IEatl Relationship

Section 6.3.1 also described how it would be useful to be able to create are-usable

Node-less 'Eat' relationship comprising objects A1, EI, LI, E2 and A2. This is not

possible using OHP-Nav object reference embedding, but is possible using the OCS

data model.

The OCS solution is shown in Figure B.S. This solution relies on the existing Function

Objects within Function Object Space OS80 (Figure B.3) along with two new Function

Objects shown in Function Object Space OS81. Figure B.5 also includes Connection

Space CS81 which contains the appropriate Connection Objects to build the

necessary OHP-Nav hypermedia structures. Table B.4 is included to underscore how

and where the re-use is taking place within the OCS structures.

N5

Function Object Space
10: OS81

N6

1
1
1
1
1

. 1

1
1
1
1
1
1
1
1
1
1

Connection Space
10: GS81

ID: C84

257

1.- _____________ _

!... ______ .!.~ ~B~ _______ I

1
1
1
1
1
1
1
1
1
1
1
1
1

ID: CB5 1 L.. _____________ _ ID: CB6 1 L.. _ ______ ______ _

Figure B.5: OCS solution for the OHP-Nav Node-less relationship of Section 6.3.1. It also
utilises Function Object Space OS80 of Figure B.3

The 'Eat' relationship is captured by Connection Object C83. It can be used to create

an assortment of different 'Eat' relationships. Three examples are shown. The original

'Cats Eat Meat' and 'Cats Eat Fish' structures are captured by Connection Objects C84

and C8S respectively, and new relationship 'Birds Eat Worms' is caphlred by

Connection Object C86.

Figure B.6 shows the latest relationship 'Birds Eat Worms' as it would be represented

by the conventional OHP-Nav object reference embedding approach that prevents

re-use of the 'Eat' relationship. This is to aid understanding Table B.4 which describes

the hypermedia object re-use and the number of hypermedia objects saved as a result

of adopting the OCS solution of Figure B.S.

258

L3

Hyperlink C

Figure B.6: OHP-Nav hypermedia structure depicting the 'Birds Eat Worms' relationship
using the conventional object reference embedding approach .

259

No. of objects to build original OHP-Nav 21

structures

No. of functionally identical objects

No. of objects to build OCS solution

No. of Function Objects

No. of Connection Objects

Re-used object count

Re-used object list

Eliminated object count

Eliminated object list

No. of overall objects saved

No. of equivalent hypermedia objects saved

17

13

9

4

5

L1 for L2, L3

E1 for E3, E5

E2 for E4, E6

A1 for A2, A3, A4, AS, A6

N1 for N3

12

L2, L3, E3, E5, E4, E6, A2,

A3, A4, AS, A6, N3

8

12

Table B.4: Summary of the re-use taking place within the OCS solution of Figure B.5.

As indicated by Table B.4, this OCS solution uses a total of 13 objects. This compares

with a total of 21 objects if using the OHP-Nav object reference embedding approach.

Thus a total of 8 objects have been saved, and if the 4 Connection Objects are

excluded (because they are deemed to be lightweight objects), then there is actually a

saving of 12 equivalent hypermedia objects.

Figure B.7 shows the three hypermedia structures (each containing the same Node­

less 'Eat' relationship) created as a result of instantiating C84, C85 and C86.

Hyperlink A

Re-used hypermedia
structure segment

Hyperlink B

260

Hyperlink C

Figure B.7: Graphical depiction of the hypertext links of the OCS solution of Figure B.5.

261

References
Acksyn, Robert M., McCracken, Donald L. and Yoder, Elise A. 1988. KMS: A

Distributed Hypermedia System for Managing Knowledge in Organizations.

Communications of the ACM, 31(7), 820-835.

Anderson, K., Taylor, R. and Whitehead, E. J. 1994. Chimera: Hypertext for

Heterogeneous, Software Environments. Pages 94-107 of: ECHT'94. Proceedings

of the ACM European Conference on Hypermedia Technology, 18-23 September

1994, Edinburgh, UK.

Anderson, Kenneth M., Sherba, SusaIme A. and Van Lepthien, William. 2003a.

Structural Templates and Transformations: The Themis Structural Computing

Environment. Journal of Network and Computer Applications, 26(1), 47-71.

Anderson, Kenneth M., Sherba, Susanne A. and Van Lepthien, William. 2003b.

Structure and Behavior Awareness in Themis. Pages 138-147 of: Hypertext '03.

Proceedings of the fourteenth ACM conference on Hypertext and Hypermedia, 26-30

August 2003, Nottingham, U.K.

Ashman, Helen, Garrido, Alejandra and Oinas-Kukkonen, H. 1997. Hand-Made and

Computed Links, Precomputed and Dynamic Links. Pages 191-208 of: HIM

'97. Proceedings of the Hypermedia - Information Retrieval - Multimedia, 1997,

Germany.

Ashman, Helen. 2000a. Electronic Document Addressing: Dealing with Change.

ACM Computing Surveys, 32(3), 201-212.

Ashman, Helen. 2000b. Relations modelling sets of hypermedia links and navigation.

Computer Journal, 43(5), 345-363.

Bailey, Christopher, Hall, Wendy, Millard, David E. and Weal, Mark J. 2002. A

Structural Approach to Adaptive Hypermedia. Proceedings of the 2nd

International Conference on Adaptive Hypermedia and Adaptive Web Based

Systems, May 2002, Malaga, Spain.

Bendix, Lars, Dattolo, A. and Vitali, Fabio. 2001. Software Configuration

Management in Software and Hypermedia Engineerin.g: A Survey. Handbook

of Software Engineering and Knowledge Engineering, Volume I, 532-548.

262

Bemers-Lee, Tim, Cailliau, Robert, Groff, Jean-Francois and Pollerman, Bemard.

1992. World Wide Web: The Information Universe. Electronic Networking:

Research, Applications and Policy, 1(2), 52-58.

Bemers-Lee, Tim. 1998. Semantic Web Road Map. World Wide Web Consortium (W3C).

Available as http://www.w3.orgIDesignlssues/Semantic.

Bemstein, M., J. Bolter, M., Joyce, M. and Mylonas, E. 1991. Architectures for volatile

hypertext. Pages 243-260 of Hypertext '91. Proceedings of the third annual ACM

conference on Hypertext, 15-18 December 1991, San Antonio, Texas, USA.

Bemstein, M. 1996. Middleware: A Model for Distributed System Services.

Communications of the ACM, 39(2), 86-98.

Bouvin, Niels Olof. 2000. Experiences with OHP and issues for the future. Pages 13-22

of OHS 6. Proceedings of the Sixth Workshop on Open Hypermedia Systems, ACM

Hypertext 2000, 30 May - 3 June, 2003, San Antonio, Texas, USA.

Brush, A. J. Bemheim. 2002. Annotating Digital Documents for Asynchronous

Collaboration. Technical Report for Department of Computer Science and

Engineering, University of Washington.

Bush, Vannevar. 1945. As We May TI1ink. Atlantic Monthly, 176(1), 101-108.

Cailliau, Robert and Ashman, Helen. 1999. Hypertext in the Web - a History. ACM

Computing Surveys (electronic edition), 31(4).

Campbell, Brad and Goodman, Joseph M. 1988. HAM: A General Purpose Hypertext

Abstract Machine. Communications of the ACM, 31(7),856-861.

Carr, Les A., Hall, Wendy, Davis, Hugh c., De Roure, Dave C. and Hollom, R. 1994.

TI1e Microcosm Link Service and its Application to the World Wide Web.

Proceedings of the First World Wide Web Conference, 25-27 May 1994, Geneva,

Switzerland.

Conradi, Reidar and Westfechtel, Bemhard. 1998. Version Models for Software

Configuration Management. ACM Computing Surveys, 30(2), 232-282.

Creech, Michael L. 1996. Author-Oriented Link Management. Computer Networks,

28(7-11), 1015-1025.

Crimi, Alfred D. Sketch of memex, Life Magazine, 1945.

263

Davis, Hugh c., Hall, Wendy, Heath, Ian, Hill, Gary J. and Wilkins, R. J. 1992.

Towards An Integrated Environment with Open Hypermedia Systems. Pages

181-190 of: ECHT '92. Proceedings of the ACM conference on Hypertext, 30

November - 4 December 1992, Milan, Italy.

Davis, Hugh C. 1995a. Data Integrity Problems in an Open Hypermedia Link Service.

PhD Thesis, University of Southampton.

Davis, Hugh C. 1995b. To Embed or Not to Embed ... Communications of the ACM,

38(6), 108-109.

Davis, Hugh C. 1996. Proceedings of the 2.5 Open Hypermedia System Working Group

Meeting, 7-8 December 1996, Southampton, UK.

Davis, Hugh c., Lewis, Andy and Rizk, Antoine. 1996. OHP: A Draft Proposal for a

Standard Open Hypermedia Protocol. Pages 27-53 of: OHS 2. Proceedings of the

Second Workshop on Open Hypermedia Systems, Hypertext '96, 16-20 March 1996,

Washington DC, USA.

Davis, Hugh C. and Hall, Wendy. 1997. The Microcosm Approach to Open

Hypermedia (A Technical Overview). Tutorial, Hypertext '97, 6-11 April 1997,

Southampton, UK.

Davis, Hugh C. 1998. Referential Integrity of Links in Open Hypermedia Systems.

Pages 207-216 of: Hypertext '98. Proceedings of the ninth ACM conference on

Hypertext and Hypermedia, 20-24 June 1998, Pittsburgh, Pennsylvania, USA.

Davis, Hugh C. 1999. Hypertext link integrity. ACM Computing Surveys (cZectronic

edition),31(4).

Delisle, Norman M. and Schwarz, M. 1986. Neptune: A Hypertext System for CAD

Applications. Pages 132-143 of: Proceedings of the International Conference on

Management of Data, 28-30 May 1986, Washington DC, USA.

Engelbart, D. C. and English, William K. 1968. A Research Center for Augmenting

Human h1tellect. Pages 396-410 of: AFIPS Conference. Proceedings of the 1968 Fall

Joint Computer Conference, December 1968, San Francisco, CA, USA.

Engelbart, Douglas C. 1998. Keynote Speech. OHS 4. Proceedings of the fourth

International Workshop on Open Hypermedia Systems, Hypertext '98, June 1998,

Pittsburgh, USA.

264

Fielding, Roy. 1994. Maintaining Distributed Hypertext Infostructures: Welcome to

MOMspider's Web. Proceedings of the First International World-Wide Web

Conference, May 1994, Geneva, Switzerland.

Flannagan, David. 1997. Javascript: The Definitive Guide. O'Reilly & Associates.

Griffiths, Jon-Paul, Reich, S. and Davis, Hugh C. 1999. The ContentSpec Protocol:

providing Document Management Services for OHP. Pages 29-33 of: OHS 5.

Proceedings of the Fifth Workshop on Open Hypermedia Systems, Hypertext '99,

February 1999, Darmstadt, Germany.

Griffiths, Jon-Paul, Millard, David E., Davis, Hugh c., Michaelides, Danius T. and

Weal, Mark J. 2002. Reconciling Versioning and Context in Hypermedia

Structure Servers. Pages 118-131 of: MIS 2002 (Metainformatics International

Symposium 2002). Proceedings of the, 7-10 August 2002, Esbjerg, Denmark.

Gmnbcek, Kaj, Hem, J. A., Madsen, 0.1. and Sloth, 1. 1994. Cooperative Hypermedia

Systems: A Dexter-based Architecture. Communications of the ACM, 37(2), 64-

74.

Gmnbcek, Kaj and Trigg, R. H. 1994. Design Issues for a Dexter-based Hypermedia

System. Communications of the ACM, 37(2), 40-49.

Haake, Anja. 1992. CoVer: A Contextual Version Server for Hypertext Applications.

Pages 43-52 of: ECHT '92. Proceedings of the ACM conference on Hypertext, 30

November - 4 December 1992, Milan, Italy.

Haake, Anja. 1994. Under CoVer: The Implementation of a Contextual Version Server

for Hypertext Applications. Pages 81-93 of: ECHT '94. Proceedings of the ACM

European conference on Hypermedia technology, 19-23 September 1994, Edinburgh,

Scotland, UK.

Haake, Anja and Haake, Jorge M. 1993. Take CoVer: Exploiting Version Support in

Cooperative Systems. Pages 406-413 of: SIGCHI. Proceedings of the conference on

Human factors in computing systems, 24-29 April 1993, Amsterdam, The

Netherlands.

Halasz, Frank and Schwarz, Mayer. 1990. The Dexter Hypertext Reference Model.

Pages 95-133 of: Proceedings of the Hypertext Workshop, National Institute of

Standards and Technology, 16-18 January 1990, Gaithersburg, MD, USA.

265

Halasz, Frank and Schwarz, Mayer. 1994. The Dexter Hypertext Reference Model.

Communications of the ACM, 37(2), 30-39.

Halasz, Frank G. 1988. Reflections on NoteCards: Seven Issues for the Next

Generation of Hypermedia Systems. C0111l11unications of the ACM, 31(7), 836-

852.

Hicks, David L., Leggett, John J., Niirnberg, Peter J. and Schnase, J. L. 1998.

Hypermedia Version Control Framework. ACM Transactions on Information

Systems, 16(2), 127-160.

Ingham, D., Caughey, S. and Little, M. 1996. Fixing the "Broken-Link" Problem: The

W30bject Approach. Pages 1255-1268 of: Proceedings of the Fifth

International World-Wide Web Conference, May 1996, Paris, France.

Kim, Sunghun, Pan, Kai , Sinderson, Elias and Whitehead, E. James Jr. 2004.

Architecture and Data Model of a WebDAV-based Collaborative System.

Pages 48-55 of: CTS '04. Proceedings of the 2004 Collaborative Technologies

Symposium, Western MultiConference, 18-21 January 2004, San Diego,

California, USA.

Leggett, J. J. and Schnase, J. L. 1994. Viewing Dexter with Open Eyes. Communications

of the ACM, 37(2), 77-86.

Leisbol, G. 1994. Aesthetic and rhetorical aspects of linking video in hypermedia.

Pages 217-223 of: ECHT '94. Proceedings of the ACM European Conference on

Hypermedia Technology, 18-23 September 1994, Edinburgh, UK.

Malcolm, Kathryn c., Poltrock, Steven E. and Schuler, Douglas. 1991. Industrial

Strength Hypermedia: Requirements for a Large Engineering Enterprise.

Pages 13-24 of: Hypertext '91. Proceedings of the third annual ACM conference on

Hypertext, 15-18 December 1991, San Antonio, Texas, USA.

Marshall, C. C. and Shipman, Frank M. 1995. Spatial Hypertext: Designing for

Change. Communications of the ACM, 38(8), 88-97.

Marshall, Catherine C. and Shipman, Frank M., III. 1997. Spatial Hypertext and the

Practice of h,formation Triage. Pages 124-133 of: Hypertext '96. Proceedings of

the eighth ACM conference on Hypertext, 6-11 April 1997, Southampton, UK.

266

McCall, R., Bennett, P., D'Ooronzio, P., Ostwald, J., Shipman, Frank M. and Wallace,

N. 1990. PHIDIAS: Integrating CAD graphics into Dynamic Hypertext.

Hypertext: concepts, systems and applications, 152-165.

McCracken, Donald L. and Acksyn, Robert M. 1984. Experience with the ZOG

human-computer interface system. International Journal of Man-Machine

Studies, 21(4), 293-310.

Meyrowitz, Norman K. 1989. The Missing Link: Why We're All Doing Hypertext

Wrong. The Society of Text: Hypertext, Hypermedia, and the Social Construction of

Information, 107-114.

Michaelides, D. T., Millard, D. E., Weal, M. J. and De Rome, D. 2001. Auld Leaky: A

Contextual Open Hypermedia Link Server. Pages 59-70 of OHS 7. Proceedings

of the Seventh Workshop on Open Hypermedia Systems, Hypertext 2001, Aarhus,

Denmark.

Microsoft. 2004. Dynamic Data Exchange. MSDN Library, Microsoft. Available as

http://111sdn.microsoft.comllibraryldefault.asp.

Millard, David E., Chandler, David, Pind, L., Sloth, Lennert, Davis, Hugh c.,
Niirnberg, Peter J., Reich,S., Wiil, Uffe K., Gmnbcek, Kaj, Anderson, Kenneth

M. and Griffiths, Jon-Paul. 1998a. Talking OHP-Nav - Demonstrating

Interoperability in Open Hypermedia Systems. Hypertext '98 Demonstration.

The ninth ACM conference on Hypertext and Hypermedia, 20-24 June 1998,

Pittsburgh, USA.

Millard, David E., Reich, S. and Davis, Hugh C. 1998b. Revvorking OHP: the Road to

OHP-Nav. Pages 48-53 of OHS 4. Proceedings of the Fourth International

Workshop on Open Hypermedia Systems, Hypertext '98, Pittsburgh, USA.

Millard, David E. 2000a. Hypermedia Interoperability: Navigating the Information

Continuum. PhD Thesis, University of Southampton.

Millard, David E. and Davis, Hugh C. 2000. Navigating Spaces: The Semantics of

Cross Domain Interoperability. Pages 129-139 of OHS 6. Proceedings of the Sixth

Workshop on Open Hypermedia Systems, Hypertext 2000, 30 May - 3 June 2000,

San Antonio, Texas, USA.

Millard, David E., Davis, Hugh C. and Moreau, Luc. 2000a. Standardizing Hypertext:

Where Next for OHP? Pages 3-12 of OHS 6 - The Sixth Workshop on Open

267

Hypermedia Systems, Hypertext 2000. Proceedings of the, 30 May - 3 June 2000,

San Antonio, Texas, USA.

Millard, David E., Moreau, Luc, Davis, Hugh C. and Reich, S. 2000b. FOHM: A

Fundamental Open Hypertext Model for Investigating Interoperability

between Hypertext Domains. Pages 93-102 of Hypertext 2000. Proceedings of the

eleventh ACM on Hypertext and Hypermedia, 30 May - 3 June 2000, San Antonio,

Texas, USA.

Millard, David E. 2003. Discussions at the Data Border: From Generalised Hypertext

to Structural Computing. Journal of Network and Computer Applications, 26(1),

95-114.

Nelson, T. H. 1981. Literary Machines. Eastgate Systems Inc.

Nelson, T. H. 1995. The Heart of Connection: Hypermedia Unified by Transclusion.

Communications of the ACM, 38(8), 31-33.

Nelson, T. H. 1999a. Xanalogical Structure, Needed More Now Than Ever: Parallel

Documents, Deep Links to Content, Deep Versioning, and Deep Re-Use. ACM

Computing Surveys (electronic edition), 31(4).

Nelson, T. H. 1999b. The Unfinished Revolution and Xanadu. ACM Computing

Surveys (electronic edition), 31(4).

Nelson, T. H. 1999c. The Xanadu Model: A Pictorial View of Referential Documents

and Content Linking. Floating World: Preliminary 1999 Specifications. Available

as http://xanadu.com/zigzag/fUJ99/XUmodel.html.

Niirnberg, Peter J., Leggett, J. J., Schneider, E. R. and Schnase, J. L. 1996. Hypermedia

Operating Systems: A New Paradigm for Computing. Pages 194-202 of

Hypertext '96. Proceedings of the seventh ACM conference on Hypertext, 16-20

March 1996, Washington DC, USA.

Niirnberg, Peter J., Leggett, John J. and Sclmeider, Erich R. 1997. As We Should Have

Thought. Pages 96-101 of Hypertext '97. Proceedings of the eighth ACM conference

on Hypertext, 6-11 April 1997, Southampton, UK.

Niirnberg, Peter J. 1999. Proceedings of the First Workshop on Structural Computing.

Pages of First Workshop on Structural Computing, Hypertext'99. Proceedings of

the, 21-25 February 1999, Darmstadt, Germany.

268

Niirnberg, Peter J. 2002. Building Metainformatical Bridges. Pages 6-8 of MIS 2002.

Proceedings of the Metainfor711atics International Symposium 2002, 7-10 August

2002, Esbjerg, Denmark.

Niirnberg, Peter J. and Schraefel, Monica C. 2003. Relationships Among Structural

Computing and other Fields. Journal of Network and Computer Applications,

26(11), 11-26.

OHSWG. 1997. OHSWG Compendium. Available as http://www.csdl.tamu.edulohsl.

OMG. 1998. The Common Object Request Broker: Architecture and Specification,

Technical Report. Object Management Group (OM G), Revision 2.2.

0sterbye, Kasper. 1992. Structural and Cognitive Problems in Providing Version

Control for Hypertext. Pages 33-42 of ECHT '92. Proceedings of the ACM

conference on Hypertext 1992, 30 November - 4 December 1992, Milan, Italy.

Pearl, Amy. 1989. Sun's Link Service: A Protocol for Open Linking. Pages 137-146 of

Hypertext '89. Proceedings of the second annual ACM cOI~ference on Hypertext,

1989, Pittsburgh, PA, USA.

Pitkow, James E. and Jones, R. Kipp. 1996. Supporting the Web: A Distributed

Hyperlink Database System. Pages 981 - 991 of WWWS. Proceedings of the Fifth

World Wide Web Conference, May 1996, Paris, France.

Reich,S., Wiil, Uffe K., Niirnberg, Peter J., Anderson, Kenneth M., Millard, David E.

and Haake, Jorge M. 1999a. Addressing Interoperability in Open

Hypermedia: The Design of the Open Hypermedia Protocol. New Review of

Hypermedia and Multimedia, Volume 5, 207-248.

Reich, S., Wiil, Uffe K., Nurnberg, Peter J., Anderson, Kenneth M., Millard, David E.

and Haake, Jorge M. 2000. Addressing Interoperability in Open Hypermedia:

The Design of the Open Hypermedia Protocol. New Review of Hypermedia and

Multimedia, 207-243.

Reich, Siegfried, Griffiths, Jon-Paul, Millard, David E. and Davis, Hugh C. 1999b.

Solent - A Platform for Distributed Hypermedia Applications. Pages 802-811

of Proceedings of the 10th International Conference on Database and Expert Systems

Applications, 30 August - 3 September 1999, Florence, Italy.

Reich, Siegfried and Millard, David E. 1999. OHP-Nav DTD (version 1.3 Darmstadt).

Available as http://www.ifs.uni-linz.ac.atlifc;/staff/reich/ohs/docs/def.:;.html.

269

Reinert, 0., Bucka-Lassen, D., Pedersen, C. A. and Nurnberg, Peter J. 1999. CAOS: A

Collaborative and Open Spatial Structure Service Component ''''ith

Incremental Spatial Parsing. Pages 49-50 (~f: Hypertext '99. Proceedings of tIle

tenth ACM Conference on Hypertext and Hypermedia, 21-25 February 1999,

Darmstadt, Germany.

Sawhney, N., Balcom, D. and Smith, 1. 1996. HyperCafe: narrative and aesthetic

properties of hypervideo. Pages 1-10 of Hypertext '96. Proceedings of the seventh

ACM conference on Hypertext, 16-20 March 1996, Washington DC, USA.

Soares, L. F. G., Rodrigues, N. L. R. and Casanova, M. A. 1993a. An Open

Hypermedia System with Nested Composite Nodes and Version Control.

TeclmicnI Report, Departamento de Informatica, PUC-Rio. Rio de Janeiro,

Brasil.

Soares, L. F. G., Filho, G. L. d. S., Rodrigues, R. F. and Muchaluat, D. 1999. Versioning

Support in the HyperProp System. Multimedia Tools and Applications, 8(3), 325-

339.

Soares, L. F. G. , Casanova, M. A. and Colcher, S. 1993b. An architecture for

hypermedia systems using MHEG standard objects interchange. Information

Services and Usc, 13(4), 131-139.

Soares, Luiz Fernando G. and Casanova, M. A. 1994. Nested Composite Nodes and

Version Control in Hypermedia Systems. Pages of Proceedings of the Workshop

on Versioning in Hypertext Systems, ECHT '94, September 1994, Edinburgh, UK.

Sollins, Karen and Masinter, Larry. 1994. RFC 1737: Functional Requirements for

Uniform Resource Names. Internet Engineering Task Force (IETF). Available as

http://www.ie~forghfchfc1737.txt.

Tichy, W. F. 1985. RCS - A System for Version Control. Software-Practice and

Experience, 15(7), 637-654.

Tzagarakis, Manolis, Avramidis, Dimitris, Kyriakopoulou, Maria, Schraefel, Monica

c., Viaitis, Michalis and Christophodoulakis, Dimitris. 2003. Structuring

Primitives in the Callimachus Component-Based Open Hypermedia System.

Journal of Network and Computer Applications, 26(1), 139-162.

Vanzyl, Adrian J., Cesnik, Branko , Heath, Ian and Davis, Hugh C. 1994. Open

Hypertext Systems: an Examination of Requirements, and Analysis of

270

Implementation Strategies, Comparing Microcosm, HyperTED and the

WWW. Available as http://www.injwiss.uni-konstanz.de/Res/openhyperl1ledia.html.

Vitali, Fabio. 1999. Versioning Hypermedia. ACM Computing Surveys (electronic

edition),31(4).

Weal, Mark J., Millard, David E., Michaelides, Danius T. and De Roure, David. 2001.

Building Narrative Structures Using Context Based Linking. Pages 37-38 of

Hypertext '01. Proceedings of the twelfth ACM conference on Hypertext and

Hypermedia, 14-18 August 2001, Aarhus, Denmark.

Whitehead, E. James Jr., Anderson, Kenneth M. and Taylor, R. N. 1994. A Proposal

for Versioning Support for the Chimera System. Pages 45-54 of Proceedings of

the Workshop on Versioning in Hypertext Systems, ECHT '94, Edinburgh, UK.

Whitehead, E. James, Jr. 2001a. WebDAV and Delta V: Collaborative Authoring,

Versioning, and Configuration Management for the Web. Pages 259-260 of

Hypertext '01. Proceedings of the twelfth ACM conference on Hypertext and

Hypermedia, 14-18 August 2001, Aarhus, Denmark.

Whitehead, E. James, Jr. 2001b. Design Spaces for Link and Structure Versioning.

Pages 195-204 of Hypertext '01. Proceedings of the twelfth ACM conference on

Hypertext and Hypermedia, 14-18 August 2001, Aarhus, Denmark.

Whitehead, E. James Jr. and Goland, Yaron Y. 2004. The WebDAV Property Design.

Software - Practice and Experience, 34(2), 135-161.

Wiil, Uffe K. 1993. Experiences with HyperBase: A Hypertext Database Supporting

Collaborative Work. SIGMOD Record, 22(4), 19-25.

Wiil, Uffe K. and Leggett, John J. 1996. TI1e HyperDisco Approach to Open

Hypermedia Systems. Pages 140-148 of Hypertext '96. Proceedings of the seventh

ACM conference on Hypertext, 16-20 March 1996, Washington DC, USA.

Wiil, Uffe K. and Leggett, J. J. 1997. Workspaces: The HyperDisco Approach To

Internet Distribution. Pages 13-23 of Hypertext '97. Proceedings of the eighth

ACM conference on Hypertext, April 6-11, Southampton, UK.

Wiil, Uffe K. 1998. Open Hypermedia: Systems, Interoperability and Standards.

Journal of Digital information, 1(2).

271

Wiil, Uffe K 1999. Multiple Open Services in a Structural Computing Environment.

Pages 34-39 of Proceedings of the First Workshop on Structural Computing,

Hypertext '99,21-25 February 1999, Darmstadt, Germany.

Wiil, Uffe K and Nilrnberg, P. J. 1999. Evolving Hypermedia Middleware Services:

Lessons and Observations. Pages 427-436 of Proceedings of the Symposium on

Applied Computing, 28 February - 2 March 1999, San Antonio, Texas.

Wiil, Uffe K 2000a. Using the Construct Development Environment to Generate a

File-Based Hypermedia Storage Service. Pages 147-159 of Proceedings of the

Second International Workshop on Structural Computing, Hypertext 2000, 30 May -

3 June 2000, San Antonio, Texas, USA.

Wiil, Uffe K 2000b. Towards a Proposal for a Standard Component-Based Open

Hypermedia System Storage Interface. Pages 23-30 of OHS 6. Proceedings of the

Sixth Workshop on Open Hypermedia Systems, Hypertext 2000, 30 May - 3 June,

2003, San Antonio, Texas, USA.

Wiil, Uffe K, Nilrnberg, Peter J., Hicks, David L. and Reich, Siegfried. 2000. A

Development Environment for Building Component-Based Open

Hypermedia Systems. Pages 266-267 of Hypertext 2000. Proceedings of the

eleventh ACM on Hypertext and Hypermedia, 30 May - 3 June 2000, San Antonio,

Texas, USA.

Wiil, Uffe K 2001. Development Tools in Component-Based Structural Computing

Environments. Pages 82-93 of OHS 7. Proceedings of the Seventh Workshop on

Open Hypermedia Systems, Hypertext '01, 14-18 August 2001, Arhus, Denmark.

Wiil, Uffe K and Leggett, John J. 1992. Hyperform: Using Extensibility to Develop

Dynamic, Open and Distributed Hypertext Systems. Pages 251-261 of ECHT

'92. Proceedings of the ACM conference on Hypertext 1992, 30 November - 4

December 1992, Milan, Italy.

Wiil, Uffe K , Hicks, David L. and Nilrnberg, Peter J. 2001. Multiple Open Services: A

New Approach to Service Provision in Open Hypermedia Systems. Pages 83-

92 of Hypertext '01. Proceedings of the twelfth ACM conference on Hypertext and

Hypermedia, 14-18 August 2001, Arhus, Denmark.

World RPS Society, The. 2002. The Official Rock Paper Scissors Strategy Guide.

Available as http://www.worldrps.coml.

272

Yankelovich, N., Haan, B. J., Meyrowitz, N. K. and Drucker, S. M. 1988. Intermedia:

The Concept and the Construction of a Seamless information Environment.

IEEE Computer, 21(1), 81-83, 90-96.

Zhang, Li, Bieber, Michael, Millard, David E. and Oria, Vincent. 2004. Supporting

Virtual Documents in Just-in-Time Hypermedia Systems. To appear in the

ACM Symposium on Document Engineering 2004, 28-30 October 2004, Milwaukee,

Wisconsin, USA.

