
UNIVERSITY OF SOUTHAMPTON

Incremental Search Algorithms for On-Line

Planning.

by

Jason D. R. Farquhar

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

August 2004

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Jason D. R. Farquhar

An on-line planning problem is one where an agent must optimise some objective criterion

by making a sequence of action selection decisions, where the time and resources used in

making decisions count in assessing overall solution quality. Typically in these problems it is not

possible to find an optimal complete solution before an initial action must be executed, instead to

maximise its performance the agent must interleave decision making and execution. This thesis

investigates using decision theoretic techniques to solve these problems by equipping the agent

with the ability to reason about the "complexity induced" uncertainties in its information and

the costs of computation. The basic thinking/execution interleaving is provided by incremental

search, where decisions are made incrementally based upon a guided partial search through the

local space of possible solutions.

The major sub-problems such an agent must solve are; i) decision making—how to make

decisions whilst in a state of "complexity induced uncertainty", ii) search control—which node

to expand next, iii) stopping—when to stop searching. Decision making is treated as a value

estimation problem. By representing the agent's uncertainty in probabilistic terms this can be

solved using decision theoretic techniques. Existing decision making systems are analysed and

new low computational cost approximate decision theoretic algorithms developed. These are

shown to give significant improvements in decision quality. Search control is also treated as an

estimation problem, in this case estimating the expected value of computation (EVC), which

is the expected benefit of a computation in reducing the agent's uncertainty (hence improving

action selection). New, low computational cost, approximations for the EVC are also developed

and shown to give significant improvements in decision quality. Sophisticated stopping can be

achieved by trading-off the EVC of further search against its computational cost. Experimental

results show that integration of the sub-problem solutions is critical to agent performance. The

results also show that (assuming no adverse interactions) improving decision making gives the

greatest improvements, with search control and stopping offering more modest benefits.

Contents

Nomenclature 7

Acknowledgements 9

1 Introduction and overview 1

1.1 The on-line planning problem 1
1.2 The incremental decision model of on-line planning 3
1.3 Test domains 5
1.4 Contributions 7
1.5 Thesis outline 8

2 The agent design problem 10
2.1 The general agent design problem 10
2.2 A state-space model 10

2.2.1 The environment
2.2.2 The objective function 12
2.2.3 Designing Optimal Agents 13
2.2.4 Design time task uncertainty 14
2.2.5 Decision Theory and rationality 15

2.3 Designing bounded optimal agents 18
2.4 Designing bounded rational agents 21

3 Designing deliberative on-line agents 24
3.1 Bounded deliberation 25
3.2 Dynamic deliberation 26

3.2.1 Flexible base-level solvers 27
3.2.2 Anytime algorithms 28
3.2.3 Contract algorithms 29
3.2.4 Multiple methods 30

3.3 Dynamic meta-control 30
3.3.1 Modelling meta-control 31
3.3.2 Meta-meta-control and infinite regress 33
3.3.3 Separable computational cost 34
3.3.4 The meta-control Markov decision problem (MDP) 36
3.3.5 The Value-estimate abstraction 38
3.3.6 The subjective value equivalence assumption 40
3.3.7 The value-estimate MDP 41
3.3.8 Special Properties of the value-estimate MDP 42

2

CONTENTS 3

3.3.9 The value of computation/information 43
3.3.10 Simplifying the value-estimate MDP (i) Meta-greedy policies 44

3.3.10.1 Discussion 48
3.3.11 Simplifying the value-estimate MDP (ii) Macro-Computations 49

3.3.11.1 Modelling the macro-control problem 50
3.3.11.2 Solving the macro-control problem 51

3.4 Summary 56

4 Decision making and value estimation 57
4.1 Explicitly rational base-level solvers 57

4.1.1 The full-observability assumption 58
4.1.2 Approximating the value function 59
4.1.3 The semantics of the value estimate 61

4.2 Incremental search/Predictive control 63
4.3 Value estimation in incremental search 67

4.3.1 Simplifying assumptions 67
4.4 Inference approaches 68

4.4.1 The MINIMIN estimate 68
4.4.1.1 Implementation issues 69

4.5 Learning approaches 70
4.5.1 The gold standard estimate (GSE) 70

4.5.1.1 Implementation issues 71
4.5.2 The Bayesian Problem Solver (BPS) estimates 71
4.5.3 Implementation issues 73

4.6 Hybrid approaches 74
4.7 Generating local state value estimates 74

4.7.1 State local value estimates 75
4.7.2 Clique local value estimates 75
4.7.3 Parent value dependent estimates 75

4.8 Combining the local state value estimates 76
4.8.1 The E{MRP} estimator 76

4.8.1.1 Modelling additional information 77
4.8.1.2 The last incremental decision assumption 79
4.8.1.3 The frontier value independence assumption 80

4.8.2 Analysis 81
4.8.2.1 Implementation issues 82

4.8.3 The approximate E{MRP} estimator 83
4.8.3.1 The normal approximation 84
4.8.3.2 Derivation of the propagation equations 85

4.8.4 Implementation issues 87
4.9 Experimental analysis 87

4.9.1 General methodology 88
4.9.2 Training 88

4.9.2.1 Results 89
4.9.3 Independence tests 91
4.9.4 Testing the decision making quality 92

4.9.4.1 Fixed depth local search spaces 93

CONTENTS 4

4.9.4.2 A* generated, variable depth, local search spaces 98
4.9.5 Summary of experiments 102

4.10 Summary 103

5 Search Control 104
5.1 Approximating the marginal value of computation 105
5.2 Meta-value estimates for MINIMIN 107

5.2.1 Optimistic frontier value estimates 108
5.2.2 General frontier estimates 109
5.2.3 Implementation issues 110

5.3 Meta-value estimates for E{MRP} and ~E{MRP} estimators HI
5.3.1 The MEVC approximation 112
5.3.2 The root value sensitivity approximation, (iF(a;o) 113
5.3.3 The expected step size approximation, ESS 114
5.3.4 Implementation issues 116

5.3.4.1 Implementation for the ~E{MRP} approximations 117
5.3.5 Discussion 119

5.4 Experimental analysis 120
5.4.1 General methodology 120
5.4.2 Results 121

5.5 Summary 124

6 Stopping and Convergence 126
126
127
131
132
134
135
138
138
140
144

6.1 The stopping problem
6.1.1 Meta-greedy stopping policies
6.1.2 Experimental analysis

6.2 Learning and cycle avoidance
6.2.1 Cycle avoidance value updates

6.2 .1 .1 Cycle avoidance for MINIMIM decision makers.
6.2.2 Cycle avoidance for E{MRP} decision makers

6.3 Experimental Analysis
6.3.1 Results

6.4 Summary

7 Conclusions and further work 146
7.1 Conclusions 146
7.2 Further work 152

Bibliography 154

List of Figures

1.1 The On-Line Planning Problem 1
1.2 The generic incremental decision algorithm 4
1.3 Example 8 and 15 puzzle problems 6
1.4 Example grid problem V

3.1 Base-level solvers performance profiles 28
3.2 The meta-level decision problem 31
3.3 The embedded meta-level problem 32
3.4 Prototypical types of time cost 35
3.5 The value of information/observation 38
3.6 The convergence of value distributions under computation 39
3.7 Different cases where information is valuable 44
3.8 Value of perfect information 45
3.9 The meta-greedy algorithm 45
3.10 Optimal stopping problem 54

4.1 Value function approximation 59
4.2 An example of locality in on-line planning 64
4.3 Example labelled local search space, 7 64
4.4 An example of the general incremental search process 65
4.5 Space Time trade-off in incremental search 66
4.6 Maximum reward sub-trees 70
4.7 BPS(2)'S decomposition of 7 into cliques 72
4.8 Using inference to determine the expected value of a future decision 78
4.9 Worst case situation for MINIMIN 82
4.10 The staircase representation of a probability density function, p(zi), and its

cumulative density function, P(a;i) 82
4.11 Graph of Pmax(î for ^ drawn from and 84
4.12 8 and 15 puzzle domains heuristic error distributions 90
4.13 10x10 and 100x100 Grid domains heuristic error distributions 90
4.14 Correlation coefficients for pairs of frontier states 91
4.15 Decision making methods expected performance profiles for fixed depth searches

on the N-puzzle domains 95
4.16 Decision making methods expected performance profiles for fixed depth searches

on the grid domains 96
4.17 Decision making methods expected performance profiles for N-puzzle with A*

search spaces 100

LIST OF FIGURES 6

4.18 Decision making methods expected performance profiles for grid domains with
A* search spaces 101

5.1 Standard normal distribution staircase approximations 118
5.2 Search-control methods expected performance profiles for fixed depth searches

on the N-puzzle domains 122
5.3 Search-control methods expected performance profiles for fixed depth searches

on the grid domains 123
5.4 Comparison of different search control search shapes 124

6.1 Different value of computation estimates as predictors of decision quality . . . 128
6.2 Stopping rules relative performance 130
6.3 Additional costs incurred using MINIMIN updates 134
6.4 Problems with V{P) update on a graph 134
6.5 15-Puzzle experimental results for various update rules 137
6.6 Incremental search algorithms performance profiles for the Puzzle problems . . 141
6.7 Incremental search algorithms performance profiles for the Grid problems . . . 142

Nomenclature

Pr(a;) probability of event x

Pr% (c) probability of random variable X satisfying condition c

(x) probability density function (PDF) for real random variable X

Px(a:), P ^ W cumulative density function (CDF) for real random variable X, i.e.

P^(a;) Complementary CDF for real random variable X, i.e. 1 — Pxi^) =

Ex {/(•)} expectation over random variable X for function /(•)

{X\Y) the average of random variable X, given condition Y

X e X a state from the state space X

y ey an observation from the observation space 3̂

u eU an action from the set of actions U

h e H an abstract feature vector from the feature space H

x:y the range of integer values from x toy

zto-.ti, the sequence of values of variable z from time to to ti

fx the state transition function

fy the state observation function

O an agent observation pair, {u, y)

M an agent architecture

h eB an agent belief state from the belief space B

c E C a computation drawn from the language C

Ca the special computation corresponding to selection and execution of the

Bayes action a

a the current Bayes action, a = max^ V{x, u)

(3 the current second best action

TT a policy

TT* an optimal policy

7rg(V) a greedy policy w.r.t. the value function V

[1x1,1x2] the composite policy formed by acting according to policy TTI initially

and then according to policy 1x2

the value function for the policy TX

V* the value function of an optimal policy

7

NOMENCLATURE

V an estimated value

y an intrinsic value

R an objective function

r an immediate reward function

C a computational cost function

E an environment

T a trajectory function

7 the labelled local search space graph

the normal distribution with mean n and standard deviation a

0 the CDF of the standard normal distribution

H the Heaviside unit step function

5 the Dirac delta function {5y the delta function with origin at y)

Acknowledgements

During the period of my Ph.D. I have had cause to be grateful for the advice, support and

understanding of many people. In particular I would like to thank the following;

• Anna for putting up with my occasional grumpiness and variable working hours and for

her continuous encouragement through the seemingly endless slog of the write-up.

• My parents and siblings for their encouragement and support.

• The Southampton posse, both the Famborough survivors - James and Ant - and the "old

skool" - Phil and Mark.

• To Owen, for his insightful comments and meticulous proofreading of this thesis.

• To the many friends I have made in ISIS who have made my time in ISIS both interesting

and enjoyable.

• And last but by no means least my two supervisors, Chris Harris and Adam Priigel-

Bennett, for giving me the freedom to pursue my own ideas and the encouragement to

keep going when things go wrong.

Chapter 1

Introduction and overview

1.1 The on-line planning problem

My goal is the construction of autonomous intelligent agents to solve real-world problems, such

as control of autonomous vehicles or chemical plants.

The fundamental problem such agents face is to take a sequence of observations of a particular

environment and generate a sequence of actions in real-time in such a way as to optimise some

objective criterion which depends on the agent's "behaviour", i.e. the sequence of environmental

states and agent actions which arise from the agent-environment interaction. Further, the agent

must cope with a range of possible environments and objective criteria, which may be initially

unknown or change dynamically. Figure 1.1 illustrates the on-line planning problem.

Requirements
Agent/Controller

Acts
. r Agent/Controller u Enviroment 7

t Observations

FIGURE 1.1: The On-Line Planning Problem is one of mapping observations to actions in such
a way as to best fulfil the users requirements.

As an example of an on-line planning problem consider an agent which transports widgets in

a factory. The set of possible environments are agent's possible locations within the factory.

The possible objectives are the set of possible goal locations which the agent could be asked to

reach in minimal time. Alternatively, consider an agent which controls a chemical factory. Here,

the set of environments are the possible factory configurations. The range of desired chemical

production rates give the set of possible objective criteria.

Given an on-line planning problem, the problem we face as agent designers is to; "design an

agent which solves the on-line planning problem as well as possible given its limitations, both

CjRbiPTiiR j. 2

physical (in terms of the actions it can execute) and computational (in terms of the decision

procedures it can implement)."

This is an operational definition which imposes no requirements on the agent's internal

operation, only on the externally observable effects of this operation matter, i.e. what counts

is what the agent does, not what it thinks or even whether it thinks at all. This allows great

flexibility in agent design—so long as they perform well we don't care if they perform elaborate

reasoning to construct plans, or just react without thinking. Thus, we view internal operations

of the agent, such as planning or learning, as occurring in the service of finding the right action.

This is important as typically in on-line planning problems the dynamics of the environment

mean the cost of decision making depends on the current context. For example, in a chemical

plant the cost of thinking time increases markedly if a vessel is about to explode! Thus, complex

decision making procedures must "pay for themselves" by improving action selection enough to

offset their cost. The design of the agent must be bounded rational (Russell and Subramaniam

1995; Parkes 1996) and take account of both the theoretical "optimality" of its decisions and

the resources used in reaching them. Further, since it is not typically viable to find an optimal

complete action sequence before an initial action must be executed, the agent's decision making

must be;

• reactive, where it can revise its plans to respond to unforeseen events, and

• incremental, where it commits to the most urgent decision first.

Three main approaches have been used in the literature to solve on-line planning problems;

• the programming approach, where the system designer hand-codes a controller off-line,

• the planning approach, where the agent automatically derives the desired controller on-

line based upon some suitable (partial) world model, and

• the learning approach, where the agent adaptively modifies its controller based upon its

experiences.

Examples of the programming approach include; the reactive systems used in mobile robotics

(Brooks 1982; KaelWing and Rosenschein 1990; Agre and Chapman 1990), Schoppers (1987)

universal planning system, and the controllers developed using traditional feedback control

theory (Jacobs 1974; Bamett and Cameron 1985). AI Planning systems (Drummond and

Tate 1989; Allen, Hendler, and Tate 1990) and Receding Horizon/Model Predictive Controllers

(Mayne, Rawlings, Rao, and Scokaert 2000; Garcia, Prett, and Morari 1989) are examples of the

planning approach. Examples of the third approach include systems based upon Reinforcement

learning (Sutton and Barto 1998) or adaptive control (Astrom and Wittenmark 1994).

The three approaches have different strengths and weaknesses which make them variously

beneficial in different application domains. For example it is hard to beat the simplicity

cji/LPTTEuR j.

(1) identify the current problem to be solved

(2) do

(3) assess the relevance of the possible observations/computations

(4) perform the most relevant observation/computation

(5) until additional information is useless

(6) decide on the best action (sequence) to perform, Ua., using the available
information

(7) change the external action to Ua

(8) update the agent's internal state to reflect the action choice

(9) goto 1

FIGURE 1.2: The generic incremental decision algorithm is an iterative process of problem
identification (1), deliberation (2)-(5), and decision (6).

and efficiency of traditional feedback for fixed-point control of linear time-invariant systems,

however for complex highly predictable problems, such as airline scheduling, planning

approaches are superior. It is also possible to combine these approaches in a single system which

contains planning, learning and programmed (reactive) components. For example the CIRCA

system (Musliner, Durfee, and Shin 1993) combines reactive control modules with classical

planning techniques.

1.2 The incremental decision model of on-line planning

In order to clarify the issues involved in designing on-line agents it is useful to view the agent's

"life" as consisting of a sequence of decision problems where it must choose the next action to

execute. To solve each decision problem the agent uses its sensors and computational resources

to infer from its current information the additional information it needs to make its next decision.

During this deliberation the external action remains fixed, either at some default "null" action

or at the previously chosen action. Then at some point the agent decides that it must stop

deliberating and act so it commits to its choice and changes its external action. This then

changes the agent's decision problem so it begins solving the next incremental decision problem

which is defined by the information it now has available (i.e. including the results of its previous

deliberations) and the consequences of its previous action choice. This is the incremental

decision model of on-line planning. The pseudo-code for the agent's internal operation is given

in Figure 1.2.

This is a totally generic way of describing the operation of an agent function as any or all

of the steps may be null. For example, in a reactive architecture only a single fixed duration

computation is performed based directly on the current observation to choose the action.

However, in classical planning a long sequence of computations is performed to identify an

optimal complete action sequence before the first action is executed, after which the stored

plan is used open-loop to generate later actions. Finally, in learning systems the computations

correspond to updates to the agent's stored information so later action choices are made with

respect to this new information.

As noted previously by other researchers (Pemberton 1995; Russell and Wefald 1989) the

incremental decision model of on-line planning makes clear that consideration of the agent's

finite capabilities requires the agent design address four sub-problems;

1) Decision Making (step 6) - how does the agent make "good" action selections based upon

the often incomplete (and and therefore uncertain) information it has available? These

decisions must take account of the complexity induced uncertainty caused by the agents

computational limitations.

2) Exploration (steps 3-4) - given the agent can only perform a limited amount of

computation to gather information before a decision must be made, how does it structure

its computations so it makes the "best" decisions possible?

3) Stopping (step 5) - given that further computation has both variable costs due to delaying

decision making and benefits due to improvements in the information action choice is

based upon, how does the agent decide when it is time to stop thinking and commit to

actionl

4) Cycle Avoidance (step 8) - given the limited local information the agent has available to

make each decision, how does it modify its operation to avoid repeating past mistakes and

ensure progress towards a solution?

These sub-tasks are highly inter-dependent. The best decision depends on how later decisions

are made and hence on the exploration and stopping strategy used. The best exploration strategy

depends on how the decisions are made and when exploration is stopped. The best stopping

point depends on what further explorations will be made and how decisions are made.

The exploration and stopping problems are only important when computation is limited or

costly, that is when the agent must be bounded rational. They are, meta-reasoning problems

(Russell and Wefald 1989; Horvitz 1990; Parkes 1996) concerned with controlling the agent's

internal problem solving process, and are required to ensure the agent makes best use of its

limited computational resources - too little deliberation can lead to mistakes, while too much

can lead to lost opportunities. The decision making sub-task is essentially the control problem

which traditional planning and control techniques focus on.

Coping effectively with the uncertainty in decision outcomes is a key requirement for any

solution to these problems. In many cases this uncertainty is not inherent in the problem but

due to the complexity of the problem and the computational limitations of the agent. For

example, in theory the optimal first move in chess could be derived from the deterministic rules.

However, this is impossible for any practical agent, so it must make its action choices in a state

of "complexity-induced uncertainty" (Mayer 1994) over the outcome of its actions.

This thesis focuses on the use of Decision Theoretic techniques for coping with this uncertainty

when solving the sub-problems faced by an incremental search agent. There are many

possible ways of representing and making decisions under uncertainty, including; fuzzy

sets (Zadeh 1965), Dempster-Shafer intervals (Shafer 1976), possibilistic representations,

and Bayesian probabilities (Pearl 1988). However, normative or decision-theoretic (DT)

techniques (Neumann and Morgenstem 1944; Russell and Norvig 1995) provide a demonstrably

rational way to make decisions under uncertainty. Normative techniques are desirable because

they have a sound theoretical framework and performance which can be analysed objectively.

They also fit well into the on-line control model presented here if the objective function is treated

as a utility function.

Decomposing the agent design problem in this way helps by allowing us to consider each of the

sub-problems relatively independently (whilst, of course, acknowledging that their interactions

may cause us problems later). This decomposition summarises the overall approach taken in this

thesis to analysing designs for solving the on-line planning problem, where (after some initial

discussion of the basic meta-control techniques available in Chapter's 2 and 3) we focus in turn

on the decision making (Chapter 4), exploration (Chapter 5) and stopping and cycle avoidance

problems (Chapter 6). Thus the reader should keep this model and sub-problem decomposition

in mind as an overview of how the sections of this work fit together.

1.3 Test domains

Throughout this thesis the algorithms developed are tested experimentally on two test domains,

namely the sliding puzzle problems and the grid problems. To test the scalability of the

algorithms two levels of problem complexity are used, the 8 and 15 puzzle problems and the

10x10 and 100x100 grid problems. These two textbook domains were chosen because they are

simple to understand and easy to manipulate—allowing techniques and hypotheses to be quickly

evaluated and understood before moving on to more realistic problems. The puzzle domains

have been the mainstay of heuristic search research for over 30 years, leading Gasching (1977)

to call it the "fruit fly" of heuristic search. Thus, there is a wealth of existing work and results

for comparison.

A generic sliding puzzle problem consists of a n x n grid containing 'n? — 1 numbered sliding

tiles and a "blank", as shown in Figure 1.3. A specific problem gets its name from the number

of tiles, thus the 8-puzzle uses a 3x3 grid and the 15-puzzle a 4x4 grid. The only legal action is

to move one of the tiles horizontally or vertically adjacent to the blank into the blank's position.

In this thesis all actions have fixed unit cost. A solution to the problem is a sequence of actions

CHAPTER 1. INTRODUCTION AND OVERVIEW

7 1 2
4 5

3 6 8

1 2
3 4 5
6 7 8

Start
(a) 8-Puzzle

Goal

4 1 2 3
8 5 6 7
9 13 10 11
12 14 15

1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Start Goal
Cb") 15-Puzzle

FIGURE 1.3: This figure shows example problems for the 8-Puzzle in part (a) and 15-Puzzle in
part (b). Each puzzle consists of a set of numbered sliding tiles and a blank location (indicated
by the shaded square) into which the horizontally or vertically adjacent tiles may move. The

goal location shown is the one used throughout this thesis.

which transform a given starting tile configuration (state) into a particular goal configuration. In

this thesis the goal state is fixed at those shown in Figure 1.3. The starting states are randomly

generated by a 250 step random walk from the goal configuration. The standard heuristic

function for sliding puzzle problems is the Manhattan Distance (Doran and Michie 1966), which

is the sum over all tiles of the horizontal and vertical distance between the tile's current and goal

locations. For example, the Manhattan distance for the tile 7 in the start state of Figure 1.3(a)

is 3 (2 rows + 1 col) and the heuristic estimate for the start state is 5. The Manhattan heuristic

is guaranteed to be an underestimate of the true number of actions required to reach the goal

state. The state space size for a sliding tile puzzle on a n x n grid is (n x n)!/2, thus the

8-puzzle state space size is (3x3) !/2 = 181440, and the 15-puzzle state space size is (4x4) !/2 =

10461394944000 = 1.04x10^ .̂

A generic grid problem also consists of a n x n grid of cells, as shown in Figure 1.4. There is a

single agent on this grid that occupies one of the cells. The agent's only legal actions are to move

from its current cell to one of the horizontally or vertically adjacent ones. Each cell has allocated

to it a fixed randomly selected cost, which is the cost of any move into that cell. In this thesis

the costs are chosen at uniform random from the range 1 to 10. Moves which would take the

agent off the grid also have a randomly allocated cost but leave its current location unchanged.

A solution to the problem is a sequence of actions which moves the agent from a given starting

location (state) to a particular goal location. In this thesis the goal is always at the cell (n, n) and

the starting state chosen at uniform random from the other locations. The standard heuristic for

the grid problems is also the Manhattan distance, which is the sum of the horizontal and vertical

distance between the agent's current and goal states. As the minimum cost of a move is 1 this is

guaranteed to be an underestimate of the true cost of getting to the goal. The state space size for

a generic n x n grid problem is n x n, thus the 10x10 grid problem's state space size is 100 and

the 100x100 grid problem's state space size is 10,000.

CHAPTER]. ZNTRODUCTYONANDOyERyZEW

FIGURE 1.4: This figure shows an example 10x10 grid problem. The point marks the agent's
current location and the arrows indicate the available moves. The shading of each cell indicates
the cost of moving into that cell. The G in the top right marks the goal location. The 100x100

grid is similar with the goal in the top right, except the grid is 10 times bigger.

1.4 Contributions

The principle contribution of this thesis is a systematic investigation into the relative merit of

decision theoretic approaches for solving the various sub-problems (i.e. decision making, search

control, stopping and cycle avoidance) faced by an incremental search based on-line planning

agent. The unique step-by-step approach used in this investigation allows the comparison of the

relative importance of the sub-problems as well as the interactions between the sub-problems

and the benefits offered by the approaches studied. The interplay between the different sub-

problems turns out to be crucial, and often unexpected.

Another contribution is a unique formal analysis of the on-line planning problem and incre-

mental search based on-line planning agents. This analysis clarifies the many assumptions and

approximations inherent in existing incremental search algorithms. Further it suggests areas

where it may be beneficial to relax existing assumptions or introduce new approximations. This

analysis led to another contribution which is the development of novel efficient algorithms for

decision making, search control and stopping based on using parameterised distributions for

value estimation.

The meta-control based on-line planning agent development work in this thesis has been

published as;

Farquhar, J.D.R. and C. Flarris (2001, December). A proposal for an on-line real-time planner.

In J. Levine (Ed.), Proceedings of the Twentieth Workshop of the UK Special Interest Group on

Planning (PlanSigOl), University of Edinburgh, Edinburgh, pp. 276-282.

Farquhar, J.D.R. and C. Harris (2002, July). An Empirical Comparison of Incremental Search

Algorithms for On-Line Planning In Working Notes of the AAAI/KDD/UAI-2002 Joint Workshop

on Real-Time Decision Support and Diagnosis Systems, Edmonton, Alberta, Canada.

(IH/LPTTENR J. j7VTlR<3I)I7(:T]()fV\4J\GD OAfEJCT/IElMf 8

It is intended that further publications will present the remaining work and thesis conclusions.

1.5 Thesis outline

The remainder of this thesis is organised as follows;

Chapter 2 presents a formal state-space model of on-line planning problems as reward

maximisation. The value of a state is identified as a key concept for solving on-line planning

problems. Decision theory is introduced as a principled way of making rational decisions under

uncertainty and used to formalise the concept of bounded optimality. The chapter concludes

with a discussion of the conditions under which explicit deliberation, such as search, may be

useful.

Chapter 3 focuses on the architectural design of deliberative on-line agents. A formal model

of the meta-control problem is introduced and shown to be equivalent to a super-set of the

original on-line planning problem. It is then shown how the meta-control problem can be

approximated as a Markov Decision Problem (MDP). The remainder of this chapter develops

the value estimate MDP approximation which, based upon the subjective value equivalence

assumption, forms the basis for all the meta-control algorithms developed in this thesis. A review

of other meta-control techniques is provided at the relevant points throughout this chapter.

Chapter 4 examines the decision making component of an on-Hne planning agent. Efficient

value estimation is identified as the key step in making effective decisions. Incremental search

is proposed as a method of focusing on the most important local features for value estimation

and spreading decision making effort over task execution. Learning or inference techniques can

be used to develop functions which estimate action values given the information contained in

the local search space. New and existing techniques for value estimation are discussed. This

chapter concludes by empirically comparing the performance of the individual decisions made

using these value estimation techniques.

Chapter 5 is concerned with the search control component of an on-line planning agent. Based

upon the value estimate MDP it is shown that efficiently estimating the expected value of

computation (EVC) is key for effective search control. By identifying how a computation

could affect the agent's decision making the myopic EVC, root state sensitivity, and expected

step size EVC approximations are described. After discussing how these estimates can be

efficiently implemented this chapter concludes by comparing their performance experimentally

when making single decisions.

The first part of Chapter 6 examines the stopping component of an on-line planning agent. It

is shown that whilst stopping is a meta-control problem performance can be improved by using

more accurate estimates for the expected costs and benefits of all further search. The second

part of Chapter 6 examines how an incremental search agent can escape local optima and avoid

cycling forever. Existing cycle avoidance techniques are discussed and value update identified

as the most applicable for on-line planning. The final part of Chapter 6 compares the most

promising incremental search agent designs developed in this thesis for solving complete on-

line planning problems.

Chapter 7 brings together the work of this thesis, draws conclusions and identifies possible

directions for future development.

Chapter 2

The agent design problem

This chapter presents the agent design problem in a more formal way, introduces decision theory

and bounded rationality, and discusses when deliberative approaches are most appropriate to

solving it.

2.1 The general agent design problem

Informally, a general agent design problem concerns a pair of interacting dynamical systems; the

agent which we must specify, and a pre-defined environment within which the agent will "live".

The agent interacts with the environment by taking as input observations and outputting actions.

The observations return partial information about the current state of the environment. The

actions affect the environment in some way changing its current state. The designer's problem

is to construct the agent dynamics such that its interacts with the environment in some pre-

specified desirable fashion. Thus the agent design problem is in fact just a "not so special"

instance of an optimal control synthesis problem (Jacobs 1974), with the environment the plant

and the agent the controller.

2.2 A state-space model

Due to its flexibility and intuitive nature (following (Russell and Subramaniam 1995)) we adopt

a discrete state space formalism for describing the on-line planning problem. For simplicity we

will also use a discrete time representation.

We take a very agent-centric view where the environment contains everything external to the

agent which can influence its operation. In particular, the user and their requirements are part of

the environment. Hence, for a taskable agent an additional observable part of the environment

must include some indication of the users current requirements, such as a key-pad to enter the

goal destination.

10

2.2.1 The environment

We begin by defining the environment.

Definition 2.1 (Environment, E). An environment consists of;

• a set of states, X, where each state, x € A", is a unique complete description of the current

situation,

• a distinguished initial state, xq E X, and time, to,

• a set of actions, U,

• a state transition function, fx{x,u,t) x' for x,x' E X and u E U, which describes

how the agent's actions modify the current state, x, at time t,

• a set of observations y,

• an observation function, fy{x,t) y, for x E X and y E y , which describes how the

agent's observations depend on the current state, x.

Notice, by construction and without loss of generality this model is deterministic and Markov, as

we assume each state contains all the information relevant to the future dynamics of the system.

Any non-Markov and/or non-deterministic problem can be modelled in this way by extending

the state description to include additional unobservable noise or history terms which encode all

the relevant information upon which future transitions or observations could depend.

In abstract terms an agent can be described as a function which maps from observation sequences

into actions, TT(yo:t,uo:t~i,t) —> Uf. Adopting the term from discrete optimal control we will

call this function a policy to distinguish this abstract representation from the more detailed agent

models developed later^.

When an agent is placed in a particular environment E it will produce a particular trajectory,

which consists of the sequence of actions uo-.t the agent executes in response to the observations

it receives, and the sequence of states xo-.t the environment passes through in response to these

actions. We will use the notation T{'k;E) —> {xo:t,uo:t) to denote the trajectory generated by

an agent implementing a policy vr when started in environment E.

2.2.2 The objective function

We assume the user exists in the external world and knows nothing about the agent's internal

state. Thus, the user's requirements can depend only on the agent's externally observable

'Russell and Subramaniam (1995) use the term "agent function" to describe this mapping. I prefer to use policy
because it captures better its abstractness and makes clear the connection to the policies computed by dynamic
programming algorithms.

CHAPTER2 THEAGENTI%%maVPROBLEM 12

behaviour, i.e. the trajectory it generates. Hence, we model the user's requirements in terms

of an objective function over agent trajectories.

Definition 2.2 (Objective Function, R). The objective function is a real-valued function of the

agent's trajectory, R{xo:t,uo:t,0-t) M.

Note, the explicit time-dependence captures the real-time aspects of the problem.

Further, as is usual in optimal control problems, we assume without loss of generality that the

objective function is recursive, Markov and additive such that,

== r(3&r,UT, -r) (2^2)
Teo..t

= r(zo, Mo, 0) + A(a;o:f, 1:<). (2.3)

where r(xo,uo,t) is the immediate reward for taking the given action in this state at this

time, and R{xo:t,UQ:t,ti:t2) is the total accumulated reward for the time's ti to (g of the

trajectory segment (%:(, %()- This is still a general reward function as any reward function

can be represented by suitably extending the state definition to include the necessary additional

information.

This objective function is representative of many real-world situations where the agent has

to achieve multiple conflicting objectives. For example, consider our factory delivery agent

which has to deliver packages to n locations as rapidly as possible. Generally, the correct

delivery of each package has some value dependent on its importance but independent of which

other packages have been delivered, hence the value of multiple package deliveries is just their

summed value.

It should be emphasised that the actual objective function exists externally to the agent. It is

part of the design problem and only the designer need have direct knowledge of it. Whilst, as

noted above, a taskable agent should have some indication of its current objective, this does not

mean the agent requires an explicit representation of the actual objective function. For example,

a taskable navigation robot needs to know its current destination but not necessarily that every

second of delay reduces the objective function by say 6. It is part of the designer's task to decide

whether or not explicitly representing the objective function within the agent is useful.

The objective function defines the agent's current objective, which as noted above, forms part

of the agent's environment. As the environment and objective function may vary independently

of each other, we will use E, R when we wish to emphasise that in this environment the agent's

objective function is R. We will use the term task to refer to the particular environment/objective

function combination which the agent is to solve.

CHAfTERZ THEj^BNTf%%%G#PROaLEM 13

2.2.3 Designing Optimal Agents—Value functions and the Bellman equation

By definition, the objective function depends on the complete (possibly infinite) trajectory the

agent takes, and so the quality of a policy depends on the complete trajectory it induces. Thus,

we define the situation dependent quality, or value, of a policy as;

Definition 2.3 (Value, T4(a;o,to;-E',-R))- The value of a complete policy tt with respect to a

task E, R with initial state xq and time to is defined as the total objective value accumulated

from the future trajectory, T, induced by the policy. That is,

= A(r(7r;E,A,a;o,(o)). (24)

Now, when in the situation xo,to the policy will execute the action uq = TT{fy{xo),-,to)-

Thus, using [MJTT] to denote the policy which initially executes the action (sequence) u and

then operates according to policy tt we can write.

Combining (2.3) and (2.5) the policy value can be decomposed into an immediate reward from

the initial action uq and a future value of the rest of the trajectory,

= r(a;o,uo,(o) + A(T'(7r;^,.R, Oo,a:i),l:oo), (2-6)

where is observation sequence, r(7r;E, A,0o:t-i,3;t)

is the conditional trajectory the policy tt induces from the state xt given that it has already seen

Oo:£- Note, this augmented state is necessary as by definition the policy, tt, can depend on the

trajectory taken so far.

Extending (2.6) to include an arbitrary initial observation prefix, we obtain,

E) = A) (2.7)

where i/t = 7r(/y(a;(), Oozf-i,() and Zf+i = lit,t).

Equation (2.7) is the familiar Bellman equation (Bellman 1957) from dynamic programming

(DP) for the enlarged space of all state and observation prefixes.

By maximising this value over all possible policies we could find the optimal policy for this

task, (denoted 7r|, ̂), i.e.

= &rgmax:%r(^,-R) = argmax%r(a;o; .B, A). (2.8)
Tren Tren

However, performing this maximisation over the extremely large space of all possible policies

is likely to be computationally expensive. For a more efficient alternative, note that the optimal

policy has a corresponding unique optimal value function, V*. By definition V* must satisfy

C%i/LPTE;jR :2. 14

the Bellman equation with respect to the action chosen by the optimal policy. Now, since the

optimal policy picks the best action in each situation, i.e. the one which maximises the future

value, the optimal value function must satisfy Bellman's optimality equation,

(2.9)

= (2-10)

Because this operation backs-up information from successor states to their predecessors it is

also called the dynamic programming backup operation. This equation can be used to compute

the optimal value function directly in a number of different ways, the most direct being dynamic

programming (Bellman and Dreyfus 1962). The optimal policy can be found from the optimal

value function using only local information by maximising the value gradient. That is,

Oo:t_i) = argmax[r(z(,i/*,f) + y*(a;f+i, Oo:*;E, A)]. (2.11)
Ut

In words we can say an optimal policy is one which for any observation sequence realisable in

the environment executes the action which maximises the final objective value when all future

actions are selected according to the optimal policy.

The two equations (2.10) and (2.11) are the key computing optimal and near optimal policies.

Thus, with respect to a particular environment and objective function, the designer (theoretically

at least) can compute the optimal policy. Unfortunately, this is not generally possible for a

number of reasons, one being the fact that the designer will usually be unsure of the agent's

exact environment and objective function.

2.2.4 Design time task uncertainty

At design time the designer will be uncertain about the exact environment the agent will be

operating in, either because his models are incomplete or because the environment is non-

deterministic. Further, the designer does not know in advance with certainty what the user's

requirements, and hence the agent's objective, will be. Thus the designer will be uncertain which

particular task the agent needs to solve. It is a key part of the designer's job to cope with this

uncertainty and design the agent so it performs well in all the the possible environment/objective

function combinations. Optimising the agent design over this set of possible tasks increases the

difficulty of the designers problem.

Further, in general the agent will suffer from some form of perceptual aliasing where, due

to its limited sensing and computational abilities, the agent is unable to distinguish between

some set of tasks. Thus the designer will need some way to trade-off improved performance in

one subset of the indistinguishable tasks against reduced performance in another. To see why

consider an agent which implements a policy, IT. By definition this policy selects actions based

upon observation sequences. Thus, if all observation sequences uniquely identify the current

environment, E e E, and objective, i? G R, then the uniquely identify the optimal action.

Thus, the designer can treat each task independently and use the preceding definition, (2.10) and

(2.11), to compute an optimal policy for each task, The optimal policy over all possible

tasks can then be found by combining the task specific policies, i.e. tt* = UseE Ren '^e,r-

However, if different environments and objectives require different optimal actions but produce

the same observations then there is some ambiguity in the definition of an optimal policy. For

example, given indistinguishable environments Ei and E2 with respective optimal actions

and tfg , is it better to be sub-optimal in Ei or E2 or both? To resolve this ambiguity we

need some way to extend the objective function and optimality criterion so we can trade-off the

different values of the indistinguishable uncertain situations.

2.2.5 Decision Theory and rationality

Many ways of performing this trade-off are possible, such as minimising the worst case

performance, or maximising the probability of optimality. However, normative or decision-

theoretic (DT) techniques (Neumann and Morgenstem 1944; Savage 1954) provide an intuitive

and demonstrably rational approach with an extensive theoretical and empirical heritage. At the

heart of decision theory are the axioms of utility and probability, which respectively provide

a comprehensive theory for representing the relative desirability of alternatives and the agent's

uncertainty, i.e.

Decision Theory = Utility Theory + Probability Theory.

Utility theory requires that we represent the users requirements in terms of a real-valued

utility function over possible outcomes. This function has the property that the ordering of

outcomes with respect to increasing utility is identical to the ordering with respect to the

increasing preference. Utility is thus an aggregate measure of all dimensions of an outcomes

worth, including cost, benefit and risk, relative to the agent and its current situation. The

utility principle (Russell and Norvig 1995, p 473) shows that such a utility function exists

providing the preferences meet certain reasonable consistency relations (known as the axioms

of utility). For example, preferences should be transitive to prevent our agent being used as a

money pump (Binmore 1992, p 95). Probability theory requires that we represent any uncertain

information in a way consistent with the standard axioms of probability.

Decision theory, in its modem form, originates with the work of Ramsey (1931), Neumann and

Morgenstem (1944), Cox (1946) and Savage (1954). A complete description of decision theory

for the uninitiated is well beyond the scope of this dissertation — the interested reader should

see the introductory texts (Savage 1954; Raiffa and Schlaifer 1961; Watson and Buede 1987) or

(von Winterfeldt and Edwards 1986). For applications of decision theory in AI see (Russell and

Wefald 1989; Horvitz 1990; Dean and Wellman 1991; Doyle 1992).

Given utility and probability functions defined correctly, decision theory simply says that when

we are uncertain the most rational thing we can do is try to ensure we do as well as possible

on average, i.e. we should maximise expected utility. Formally, the fundamental theorem of

decision theory defines a rational agent as;

Definition 2.4 (Rational agent). A rational agent selects actions as if it was; (1) assigning

utilities to the possible outcomes of actions, (2) assigning probabilities to the outcomes which

might occur given its current uncertainty, and (3) choosing the actions which maximise expected

utility.

Notice, that the definition of a rational agent does not require the agent necessarily computes

expected utilities, know what one is or is even aware of its own preferences; only that, if it

is to be rational, it must act as if it was performing this maximisation. Also, this definition

is subjective depending on the agent's personal assessments of outcome probabilities (for this

reason DT is sometimes called subjective rational decision theory). Thus, when talking about

decision theoretic rationality one must be careful to define the information available with respect

to which rationality is being assessed.

In the on-hne planning case it is clear that the objective function serves a similar role of

specifying preference as the utility function in decision theory. Hence, in the remainder of this

thesis, we will assume that, (1) the objective function is a correct utility function, and (2) that

all uncertainties (in the design problem) are represented using correct probabilities. Given these

assumptions the optimal action, with respect to complete and correct information about the

uncertainties in the current environment and utility function, is clearly the one which maximises

expected utility. Thus we obtain Russell's (1995) definition of Perfect Rationality (this is

equivalent to Good's (1971) "Type I" rationality, and Simon's (1982) "substantive rationality").

Definition 2.5 (Perfect rationality). A perfectly rational agent for a set of environments, E,

and utility functions, R, selects actions as if it was maximising the expected utility of the of the

outcomes of the actions with respect to the distribution of environments and utility functions.

This is the extended definition of optimality under uncertainty which we were seeking. We can

now define an optimal policy, tt*, with respect to the environment and objective uncertainty as

one which maximises expected utility with respect to the distribution of environments and utility

functions.

TT* argmax ^ Y'T:{E,R)R{T{TX, E,R)). (2.12)

We can also now define the value of a policy (which is maximal for the optimal policy) as its

expected value with respect to the environment and objective uncertainty,

v*. = (2.13)

where xq, to are the initial state and time for the environment E, R.

We have now all the tools in place to specify the agent design problem.

Definition 2.6 (General agent design problem). Given a set of possible environments, E, and

utility functions, R, and a distribution over them PR{E,R), the agent design problem is to

design an agent. A, such that the policy it implements, tta, has maximal expected utility. This

is equivalent to solving the following constrained optimisation problem,

maximise ^ Pr{E,R)R{xE,R{0:oo),UE,R{0.Qo)) (2.14)

a:E,A(t+l)= (E0..oo,

such that UE,R{t) — T^A{yE,R{0-t),UE,R{0-t),t), for E e B, (2.15)

yE,R{t) = fy{xE,R{t),t\E,R), i? G R

where TTAivo-.t, is the free parameter and for an arbitrary variable z, ze,r denotes the instance

of variable z associated with environment E and objective function R.

Directly computing such an optimal policy, under different domain assumptions which limit the

types of environment and utility functions considered, is the focus of most traditional work in

optimal control, classical planning (Drummond and Tate 1989), (Russell and Norvig 1995, Ch.

11), and stochastic control (Bertsekas and Shreve 1978).

2,3 Designing bounded optimal agents

Decision theory via the definition of perfect rationality allows us to, theoretically at least,

determine how a perfect agent should act. In theory then, all that remains to optimally solve

the on-line planning problem is to construct an agent which implements an optimal policy by

providing it with the data and methods required to compute it. This is essentially the traditional

top-down approach to agent design, i.e. start with an abstract problem description, devise a

method for solving it optimally and then implement this method in an agent. By construction,

such an agent will solve our on-line planning problem optimally given sufficient (computational)

resources. Russell and Subramaniam (1995) use the term calculative rationality to describe such

agents. Unfortunately, as is well known, deterministic planning is intractable (Chapman 1987;

By lander 1994). Hence, as on-line planning problems are a super-set of planning problems, on-

line planning is also intractable. Thus, for realistic problem sizes, any agent which implements

an optimal policy will require infeasible computational resources.

One reason deterministic planning is so difficult is because the space of possible initial

environments and objective functions are huge, at least proportional to the state space size which

is exponential in the number of dimensions. Thus, any agent which is to solve all problems in

this set will require either time (to explore all possible trajectories) and/or space (to store the

optimal solution for each possible state/objective pair) which is exponential with respect to the

problem dimensionality.

Russell and Subramaniam (1995) provide a simple example. Consider an agent which is to play

chess under tournament rules. This is clearly an on-line planning problem and is well known

to be very difficult to solve with the space of possible environments equal to the state space

size of Thus, an optimal agent which compute(s) an optimal policy for this problem

requires, either enough memory to store the optimal policy directly, or a fast enough architecture

to compute an optimal policy for each situation encountered so it can move before it runs out of

time. Implementing such an agent is impossible with current technology (and probably always

will be). Further, the success of current chess systems shows that true optimality is unnecessary

for intelligent performance.

Thus, as the on-line planning problem is intractable in general, we cannot expect any realistic

agent to solve it optimally. Therefore, if we wish to use decision theory, and specifically the

principle of maximum expected utility, to guide agent design, we must modify the definition of

rationality to require only feasible amounts of computation.

Simon's (1982) concept of bounded rationality is one such re-definition by requiring an agent to

find some satisficing solution which meets some "aspiration criteria" rather than a DT optimal

one. This simplifies the problem by allowing a much larger range of possible solutions.

However, this redefinition seems somewhat arbitrary and even finding aspiration criteria for

good satisficing solutions of low enough cost is difficult.

A more recent, principled and intuitive re-definition is bounded optimality, which simply

requires the "agent does as well as possible given its computational resources" (Russell and

Wefald 1991). This removes the requirement that the agent optimally solve intractable problems,

and allows the designer to consider trade-offs between complexity and decision quality in order

to make best use of the limited computational resources available.

To make this definition more precise we need some way of defining the agent's computational

limitations. Any agent can only choose actions based upon its currently available information,

i.e. the current observation, %, and some limited modifiable internal state, 6f. Hence, a more

concrete way to specify the solution to an on-line planning problem is in terms of an agent

function or behavioural mapping (Arkin 1998, pp 89), A(yt,bt) —» {ut,bt+i), which maps

from the agents current observable state (i.e. its current observation and internal state) to its

current action choice. Notice that this function operates continuously with one observation,

internal state up-date and external state update (via the action generated which may include a

null "I'm thinking" action) per time-step. Thus, even thinking operations cause the external

state to change via their associated state side-effects. The agent function induces (implements)

an equivalent policy, IT A, which can be found by applying the agent function iteratively to each

observation sequence.

CHAfTERZ 19

To represent the agent's computational limits we follow Russell and Subramaniam (1995) and

decompose the agent function into an architecture, M, and a program, I. The architecture runs

the program and defines the agent's computational resources by restricting the set of mappings

the agent function can implement to those in the architecture's language, C. The program defines

which mapping from the architecture's language the agent performs in each case. Thus an

alternative representation of the agent function is M{yt,bt;l) {ut,bt+i). Thus, we obtain

Russell and Subramaniam's definition of bounded optimality.

Definition 2.7 (Bounded optimality). Given an agent architecture, M, and a distribution over

environments and utility functions, Pv{E,R), a bounded optimal agent is one whose agent

program, I* has maximal expected utility. Thus, if TTM,/ represents the policy (i.e. observation

sequence to action mapping) induced by program I on architecture M, then,

r = arg max Pr(A, E) A(r A))
^ R&Il,EeE

We can now define a refinement to the general agent design problem which takes account of the

agent's computational limitations.

Definition 2.8 (Bounded agent design problem). Given a set of possible environments, E,

and utility functions, R, with a distribution over them Pr(_B, R) and an agent with architecture

M, the agent design problem is to design an agent program I such that the policy the agent

implements has maximal expected utility. This is equivalent to solving the following constrained

optimisation problem,

maximise ^ FX{E,R)R{XE,R{'^'-OO),UE,R{Q'-OO)) (2.16)

* G O..00,

such that (ue,R{t), bE,R{t+1)) = M(yE,R{t),bE^R{t)-, I), for E E B, (2.17)

A), A e R

This seems like progress. We have removed the requirement that the agent solve intractable

problems in real-time, requiring only that it "do the right thing". We have also specified a

complete procedure for finding such an agent - search through the finite space of all possible

agent programs until you find the program whose induced policy has maximal expected value

with respect to the distribution of environments and utility functions.

Unfortunately, one immediately apparent problem with this proposal is that we have not actually

made the problem any more tractable, just allowed the agent to ignore its intractability by forcing

the designer to solve the harder problem of optimisation over agent designs. As Tash (1996)[pp

26] says "the entire burden of decision theoretic computation has not been removed, but merely

shifted to the designer".

CHAPTER2 THE AGENT DESIGN PROBLEM 20

As an example from (Russell and Subramaniam 1995), consider again our chess agent, and

suppose the architecture has a total program memory of 8 megabytes. There are 2^^ %

2Qio,ioo,ooo possible programs that the architecture can represent. To find the bounded optimal

chess computer requires the designer search through this space to find the small number of

programs which play legal chess and for each program compute the expected value of this

program over all possible legal chess positions. This is a harder problem than simply finding the

optimal policy, as it requires both search through the huge space of possible programs and the

evaluation of each program on the huge space of possible chess positions.

Further, the designer cannot, as is assumed in the traditional approach to agent design, simplify

the design problem and guarantee agent optimality by requiring that the agent internally use

rational decision making processes without first solving the full agent design problem to prove

such a design is optimal. Thus, the optimality of an agent can only be assessed from a

viewpoint external to the agent, and specifically not bound by its resource constraints. As

Tash (1996) says, "ultimately, judgement of the [bounded] rationality of the agent rests in

the hands of the designer". This is a severe blow to the traditional approach to agent design

which attempts to produce rational agents by requiring that they make decisions using the same

formalised optimality criteria as the designer would use to judge it, i.e. for bounded rational

agents Rational Algorithm Rational Agent

Note, this does not mean that an agent which makes rational, i.e. utility maximising, decisions

on the basis of its current subjective beliefs is necessarily sub-optimal. Only that is is up to the

agent designer to prove that this is the most effective use of the agent's resources. Indeed, it is

clear that in certain circumstances a rational design will be bounded optimal. For example, when

the optimal policy is simple enough and the agent powerful enough for it to store or compute

the policy on-line with its available resources.

Thus, not only is the designer solely responsible for ensuring the agent design is rational, but

they must solve an intractable design problem to do so!

2.4 Designing bounded rational agents

The above analysis has shown that when designing agents we must take careful account of their

computational limitations, but provides no advice on how to design computationally limited

agents. So far all we seem to have achieved is to show that the traditional agent design method

which assumes calculative rationality is not generally effective for realistic computationally

limited agents. So how can we solve the bounded agent design problem, given that explicitly

optimising over all possible agent programs is generally impractical?

Deciding how to answer this question is at the heart of the recent deliberative/reactive and earlier

declarative/procedural debates in Artificial Intelligence. Note, learning is somewhat orthogonal

to this debate as one can learn both reactive procedures and abstract models.

(:fL4uP]]Ei2:2. 21

Simply put, the deliberative/declarative position is that the best way to generate a good poHcy is

for the agent to explicitly reason about the approximate quality of possible policies with respect

to the given performance criteria. Thus, deliberationists advocate retaining the traditional top-

down design philosophy with modifications for tractability.

The reactive/procedural position, as exemplified by Brooks (1991) or Arkin (1998), is more

pragmatic saying simply that so long as the agent function generates good actions how it got

there is irrelevant. Reactivist's then point out that as explicit representations can easily deviate

from reality they are an unnecessary source of error which we should deliberately avoid (both

for the designer and agent). Instead they suggest we should develop good agent functions based

directly upon the agent's actual operating environment using incremental bottom up design

techniques.

Like many researchers I remain neutral in this debate. It is clear that deliberative systems have

significant problems due to their intractability and the need to keep the representations grounded.

However, it is also clear that reactive systems present the designer with a significantly harder

design task and may have problems with excessive internal state requirements when there are

insufficient local environmental queues to simply "determine actions that have no irreversibly

bad downstream effects" (Kirsh 1991). For example, a reactive implementation of a chess agent

would require exponential amounts of memory to hold the optimal policy.

Between the reactive and deliberative extremes lie a number of hybrid techniques. For example,

one can use explicit representations at design time to find high quality approximate policies, and

then use compilation techniques (Russell and Wefald 1989, pp 40) to turn these into a, hopefully

more compact and efficient, agent function, which may be purely reactive. This is the approach

commonly used in control theory, and has recently been suggested for POMDPs (Boutilier,

Dean, and Hanks 1999) and MDPs. Alternatively, one can construct a hybrid system which

combines deliberative and reactive components within a single system to get the benefits of

both without their drawbacks. A common approach in this vein is to use high speed reactive

components to provide robust low level action executors which are managed by a slower

deliberative component to achieve high level goals. Examples of this approach include the

CIRCA system (Musliner, Durfee, and Shin 1993) and Sloman's (1999) CogAff architecture.

Thus reactive implementations and explicit representations are not mutually exclusive.

Due to their different strengths and weakness I believe that the choice of agent design depends

on a number of factors, including; (1) the structure of the problem (e.g. can good actions

be determined based on local observations), (2) the quality of the designers information (i.e.

do we have accurate domain models), and (3) the agent's abilities (i.e. do we have enough

time for complex deliberation). For example, in relatively simple well understood problems

directly constructing a reactive controller can be very effective. However, it may be that direct

implementation of an optimal policy requires too much space making deliberative or explicit

representations more efficient.

CHAfTERZ THEAGBNTI%%m3VPROaLEM 22

What is clear from this discussion is that whilst reactive procedures can be very effective

in certain situations, there remain cases where deliberative methods are still king, namely

when easily grounded domain models with sufficient predictive power are available and locally

observable environmental queues alone are insufficient to simply identify actions which provide

the required performance level.

Examples of this type of situation abound anywhere an agent may be required to solve a

combinatorial problem as a sub-task of its operation. The classic examples in this vein are

traditional board games such as chess or Othello, here the models are exact and very easily

grounded, and (with our current knowledge) the best action is a very complex function of the

current board state. Thus, it is not surprising that much work in traditional real-time AI has

concentrated on game playing systems (Good 1968; Hamilton and Garber 1997; Russell and

Wefald 1989; Baum 1993). Note, that most game solvers contain some reactive components

in the form of their opening and end-game books, but rely on deliberative procedures for the

majority of the mid-game as (with our current state of knowledge) reactive implementations

would require excessive memory to encode the lookup tables.

Another classic example is high level route planning. High level models (maps) are reasonably

accurate and relatively easily grounded. However the presence of dead-ends means local action

choice can be misleading. In this case the utility of deliberative methods is less clear. Brooks

(1991) describes a reactive robot called "Toto" which performs high-level path planning by

performing what is essentially a potential field calculation on a physically encoded topological

map. The reactive controller then uses this potential field as an additional local observation to

avoid dead-ends. This is a good example of how compilation can be used to turn a deliberative

specification (presumably Djkstra's algorithm) into a fast distributed reactive component -

though in this case one would expect a deliberative system to be simpler, faster, and more

powerful, in that one can easily extend the deliberative version to solve relatively large externally

provided maps.

Thus deliberative methods still have some utility in on-line contexts— though likely only as a

component in a larger hybrid system. However, in order to use deliberative components one

must still solve the problem of ensuring they are bounded rational, i.e. provide the maximal

action selection performance for the expended computational effort.

Chapter 3

Designing deliberative on-line agents

The preceding discussion has shown that deliberative methods still have their place in on-

line contexts - providing they can be modified to operate within the agent's time and space

limitations ̂ Thus the main focus in the sub-field of real-time AI is developing deliberative

algorithms with the necessary space and time performance. The general approach is to meet

the agent's resource limitations by sacrificing decision quality through approximate solution

methods. Thus, the key to developing effective deliberative on-line agents is developing efficient

complexity limiting approximations and solution methods.

Two main approaches have been used to obtain resource limited deliberation;

• Bounded deliberation, where the deliberation component is limited in some way, such

as by limiting search depth, so its resource-usage and solution quality can be accurately

predicted, and worst case performance guarantees given.

• Dynamic deliberation, where the deliberative component is designed so it can dynamically

control its operation to utilise all the available resource to maximise agent performance.

These two approaches have different advantages for different contexts. The run-time perfor-

mance guarantees of bounded deliberative components mean they can be used with conventional

real-time system design and scheduling techniques, with formal correctness guarantees. This is

important for low level mission critical applications where a response must be guaranteed within

strict very short time limits (<100 ms). Hence they have found most use in aerospace robotics

contexts (Myers 1996). Dynamic deliberation is used where there is high variability in problem

difficulty and resource availability. Thus, it tends to be used for less mission critical high level

optimisation tasks where longer time frames and harder problems provide variability for it to

exploit.

'Note, even a deliberative sub-component will have to make some less stringent resource guarantees to be useful.

23

3.1 Bounded deliberation

Ingrand et al.'s Procedural Reasoning System (PRS) (Ingrand, Georgeff, and Rao 1992; Ingrand

and Georgeff 1990; Georgeff and Ingrand 1989) is one example of a bounded deliberation

system. This uses a pre-compiled hierarchical plan-fragment library coupled with a continuously

updated world model to dynamically select actions. The amount of deliberation is bounded

because, i) the depth of the plan hierarchy is bounded, ii) the plan-fragment library is designed

to ensure only a bounded subset of the plan fragments will be applicable in any current state,

iii) plan-fragment matching and choice are implemented as bounded time procedures. Thus

the amount of work required to find a complete plan decomposition for the current situation

is always bounded. Firby's (1989) Reactive Action Package (RAP) planning system achieves

bounded deliberation in a similar way - though it allows plan fragments to be generalised to be

arbitrary programs written in their special language.

Mok (1990) presents an alternative for forward chaining production systems, which provides

a way of computing strict bounds on the execution time of database updates by imposing

limitations on the rule types. Specifically, they require that, (i) rules only assign constants

to variables, (ii) only one rule is fired at a time, and (iii) all rules are pairwise compatible

in the sense that two rules cannot both be enabled and attempt to assign different values to

the same variables. These bounds can then be used to design and debug production systems

to ensure bounded real-time operation. Chen and Cheng (1994) and Tsai and Cheng (1994)

present extensions of this technique which firstly significantly speed up the bound computation

and secondly present rule-base transformation techniques which allow bound calculation(s) to

be efficiently performed for the more expressive OPS-5 language (Tsai and Cheng 1994).

The most common method of bounding deliberation used in practise is to impose a fixed depth

bound on search based deliberative procedures. This is the approach used in model predictive

control (MPC) (Mayne, Rawlings, Rao, and Scokaert 2000) to control constrained non-linear

systems. Bounded, fixed depth lookahead is also the most common way of implementing

Korf's (1990) Real-Time A* (RTA*) algorithm. MPC and RTA* are discussed in more detail in

Chapter 4 as examples of the incremental search approach to on-line decision making.

3.2 Dynamic deliberation

Dynamic deliberation provides a straightforward way of incorporating into deliberative systems

the flexibility to perform trade-offs between decision quality and computational complexity

across a range of problem difficulties and time pressures. The ability to dynamically adjust

computational effort based on the availability of computational resources has been studied

extensively in the AI community since the mid 1980s. These efforts have led to the development

of a variety of techniques such as anytime algorithms (Dean and Boddy 1988), imprecise

computation (Liu, Lin, Shih, Yu, Chung, and Zhao 1991), progressive reasoning (Mouaddib

CHAPTERS. DESIGNING DELIBERATIVE ON-LINE AGENTS 25

and Zilberstein 1997), design-to-time (Garvey, Humphrey, and Lesser 1994), and flexible

computation (Horvitz 1990). The working notes of the 1996 AAAI Fall Symposium on Flexible

Computation (Horvitz and Zilbertstein 1996) or the Garvey and Lesser's (1994) review paper

offer a good sample of such techniques and applications.

What all these techniques have in common is the realisation that; (i) low deliberation cost

sub-optimal or incomplete solutions can result in enhanced system performance, and (ii) the

appropriate level of computational expenditure is context dependent. Hence it is useful for the

system to dynamically trade the result quality against deliberation cost. A dynamic deliberation

system consists of two parts:

1. The base-level computation(s)- which actually make action selection decisions. To

be usable for dynamic deliberation the base-level must be able to trade increases in

computational resource for increased utility results.

2. The meta-level controller- which attempts to increase the expected utility of computation

by custom-tailoring base-level decision making procedures to the specific problem and

context. In particular, we wish to make the computational expenditure sensitive to time

pressure, the value of likely results, and the relative improvement in outcome quality with

more computation.

One can view the dynamic deliberation approach to agent design as an attempt to simplify the

intractable bounded-agent design problem by moving to a higher level of abstraction, where we

optimise over a small set of complex base-level computations rather than individual architecture-

level instructions. This allows us to simplify the bounded agent-design problem by splitting it

into two stages, 1) designing (a set of) base-level computations which provide sufficiently high

action selection quality for a given resource use, 2) designing a meta-controller which optimises

the (sequence of) base-level computations to execute in the current situation. In restricting

attention to such designs we have inherently limited the range of agent programs considered

and hence abandoned the idea of proving the optimality of our agent design in the interests

of simplifying the design problem and improving design modularity. The best we can do as

designers is say that this design seems good in some looser sense, such as being best with

respect to the set(s) of base-level computations considered.

3.2.1 Flexible base-level solvers

The efficiency of dynamic deliberation hinges on the flexibility of the base level to trade

increases in computational resource usage for increased utility results. Thus, the first step in

designing a dynamic deliberative agent is to design the base-level computation(s). We can then

go on to optimise the design of the meta-controller - and then most likely iteratively revise

the base-level and meta-level routines so they interact more effectively. The usefulness of a

base-level design depends on two main factors, 1) its ability to produce (near) bounded-optimal

solutions over a range of resource allocations, 2) the complexity of its associated meta-control

problem which depends on the granularity of the base-level computations.

Broadly speaking, dynamic deliberation systems have tended to use meta-control at two levels

of granularity, the strategic or macro-level and the structural-lswoi. At the macro-level the agent

must select one of a small pre-defined set of deliberation strategies (macros) and determine the

resources to allocate to it. Most of the meta-level control research in the literature is concerned

with macro-level decisions, such as deciding on the amount of time to allocate to an anytime

or contract algorithm (Horvitz 1990; Zilberstein and Russell 1996; Garvey, Humphrey, and

Lesser 1994). The structural-level concerns finer grained decisions about which individual

computational step to perform next. This is the approach studied in this thesis. In some respects

all work on selecting the best node to expand next in a search routine is a type of structural-level

meta-control. Russell and Wefald (1989) and Baum and Smith (1997) use decision theoretic

techniques to develop meta-control algorithms for structural-level computations. The later

chapters of the thesis discuss Russell and Wefald's and Baum and Smith's work in more detail.

Irrespective of their granularity the base-level computations can be classified as one of three

types depending on how they provide variable solution quality with variable resource usage,

viz,

1. Anytime Algorithms / Flexible Computations - which can be interrupted at any time

to provide a solution whose quality improves monotonically with increasing resource

allocation.

2. Contract Algorithms (Russell and Zilberstein 1991) - which require the resource alloca-

tion to be determined before their activation and may not produce a solution until the end

of the contracted allocation.

3. Multiple Methods - here the base-level contains many possible solution techniques based

upon different approximations with varying resource usage and solution qualities.

We can abstractly represent these different models in terms of performance profiles. Figure 3.1

- which represent of the performance of a base-level component in terms of its inputs, including

resource allocation, and the resulting solution value (quality). (Performance profiles are

discussed in detail in Section 3.3.11.1.)

3.2.2 Anytime algorithms

Anytime algorithms are by far the most popular basis for dynamic deliberation in AI because

they offer the most scheduling flexibility—significantly simplifying the meta-control problem.

For example, given a single anytime algorithm with an obvious external deadline, e.g. the end of

the previously executing action, the optimal meta-control policy is to simply run the algorithm

until the deadline, irrespective of the algorithms performance or the likely deadline times. In

2 7

(a) Anytime Algorithm

V
Best Possible
performance

\,
Actual

Performance

(b) Contract Algorithm

V

m4

m3
m2 (p

@—

m l

(c) Multiple Methods

FIGURE 3 . 1 ; The Base-Level Solvers Performance Profiles - (a) Anytime algorithms are
smooth lines, (b) Contract algorithms: The dashed line represents the smoothly varying
upper bound on the algorithms performance, and the solid line the performance of a particular
execution, which is a step function, (c) Multiple methods: Possible performances are a set of
step functions, each one representing the actual performance of one of the available methods.

general however, as will be shown in Section 3.3.11.2, optimally scheduling anytime algorithms

is a hard meta-control problem, especially when making a decision requires the execution of

many interacting sub-tasks.

Much work in real-time AI has focused on producing anytime algorithms (and more generally

any-resource algorithms (Musliner 1993)) for a variety of problems types. Zilberstein and

Russell (1996) show that in many cases developing anytime algorithms does not require radical

changes to AI programming techniques - which inherently use approximation techniques to

avoid intractability. Example techniques include:

• Various forward search techniques such as, iterative deepening (Korf 1985a), truncated

A* or anytime A* (Hansen, Zilberstein, and Danilchenko 1997).

• Asymptotically correct inference algorithms such as, approximate query answering

(Vrbsky and Liu 1995) for set queries, bounded conditioning (Horvitz, Suermondt, and

Cooper 1989) and state space abstraction (Wellman and Liu 1994) for belief network

queries.

• Successive approximation numerical optimisation methods such as; Newton's method,

value iteration and policy iteration (Howard 1960).

• Adaptive algorithms such as provably approximately correct (PAC) learning.

• Randomised algorithms such as Monte Carlo estimation, and (when they store the best

solution so far) randomised optimisation techniques such as genetic algorithms and

simulated annealing.

3.2.3 Contract algorithms

Contract algorithms are similar to anytime algorithms in that result quality monotonically

increases with resource allocation (as shown in Figure 3.1(b)) but they are non-interruptible

iCff/LPTEOR 3. 28

in that they must be told in advance the amount of resource they will receive, and may only

produce a result after this much resource has been used. Contract algorithms are more restrictive

and harder to manage from a meta-control point of view as both solution quality or resource

availability may be uncertain but a prior commitment to resource usage must still be made.

There are many reasons why an algorithm may be non-interruptible. One general case is for

meta-managed algorithms which given a resource bound manage their own internal operation

to maximise performance, resulting in an overall system with a contract flavour. For example,

managing the choice of map resolution in a route finding system or the search depth in a depth-

limited search results in a contract algorithm as improving the solution once one resolution

or depth has finished requires that the process run to completion at a higher resolution/deeper

depth.

The contract model is less restrictive than the anytime model - any anytime algorithm can

be managed as a contract algorithm but not vice-versa. However, Zilberstein, Charpillet, and

Chassaing (2003) show that we can turn any contract algorithm into an anytime one at the

expense of some wasted effort by saving the best result so far and consecutively running the

algorithm with increasing resource limits. Indeed, this is a common way to develop interruptible

anytime algorithms from non-interruptible algorithms, e.g. the iterative deepening searches used

in game systems and Korf's IDA* (Korf 1985a). Zilberstein, Charpillet, and Chassaing (2003)

show that in the case of an unknown deadline doubling the resource allocation for consecutive

runs results in the minimal overhead. Specifically, the anytime version requires at most 4 times

the resource to obtain the same result quality as a single run of the original contract algorithm

with the optimal resource allocation.

Related to the ideas of contract algorithms and anytime algorithms are imprecise computa-

tions (Liu, Lin, Shih, Yu, Chung, and Zhao 1991). Imprecise computations consist of an

uninterruptible (contract style) mandatory part and an interruptible (anytime style) optional part

which increases the output quality with more resource. There has been much work (Liu, Lin,

Shih, Yu, Chung, and Zhao 1991; Chung, Liu, and Lin 1990) on finding optimal polynomial time

meta-control systems for specific types of problem in this area, for example where all optional

or mandatory parts have the same resource requirements.

3.2.4 Multiple methods

A final alternative to developing anytime or contract algorithms is to develop more than one

solution to the base level problem, where each solution is designed to have different resource

usage and solution quality. As multiple methods make no assumptions about the interruptibility

of the solver they are obviously the most general model, and hence the hardest meta-control

problem. Indeed, both contract and anytime algorithms can be thought of as multiple methods

where a set of discrete resource allocations and output performances define the set of possible

base-level methods. In "design-to-time" scheduling Garvey, Humphrey, and Lesser (1994)

present a system for meta-control of complex base level solvers which consist of interacting

Cff/LPTEuR 3. 29

/((a;, 6), Ob) y K /((a;,6),Cj)

/ K

FIGURE 3 . 2 : The meta-level decision problem is to make a sequence of choices based upon
the agent's current beliefs b about whether to execute the current default action (i.e. the
one the base-level solver believes is best) or one of the possible computations {ci,..., c„}.
After executing a computation the meta-level may choose to execute a further sequence of
computations c before the new default action ac- (Note, for brevity f{{x, 6), T) —+ {x', b')

denotes the combined effect on (x, b) of the action sequence T.)

sub-components for which multiple-methods are available. An alternative, simpler, approach to

multiple methods is "progressive processing" (Mouaddib and Zilberstein 1997). Here the meta-

control problem is made more tractable by requiring the sub-components to form a hierarchy

with all but one of the components in each layer being optional, i.e. having an alternative null

implementation.

3.3 Dynamic meta-control

Given a flexible base-level solver, the meta-control problem is to decide how to best manage the

base-level so as to maximise the agent's performance. This is the core problem which must be

solved in any effective dynamic deliberation system and much of the work on real-time AI has

focused upon it. This section reviews the issues associated with meta-control of deliberation and

develops the basic tools and methods we can use to construct effective meta-control systems.

The meta-control problem is a control problem just like the on-line planning problem, so we can

use normative decision theoretic methods to analyse and solve it. To do so we must first develop

a model of the problem the meta-level controller must solve, e.g. which computation to perform

next, how long to deliberate for and when to act, and how these decisions influence the agent's

ability to perform its task. We can then use this model to identify an (approximately) optimal

meta-control policy which can be implemented in the agent.

3.3,1 Modelling meta-control

Simply put, the meta-control problem is one of making a sequence of choices between base-

level computations and execution of the base-level's current default action in such a way that

(ZH/LPTTEaR 3. (lhr.Lj3VE;,4(}E%\r]lS 30

Embedded
Meta-Level
Problem

Orginal
Problem

FIGURE 3 . 3 : The meta-level planning problem is embedded within the original problem such
that at each new state the agent has to find a trajectory from its current beliefs through belief
space which ends in it executing the computation Cq which generates the "right" external action
UQ. This belief space and the agent's meta-control policy are fixed for all base-level states,

though the initial belief state may vary depending on the observations the agent receives.

we maximise the expected utility of the trajectory the agent traverses. Figure 3.2 (adapted from

(Russell and Wefald 1989, p 63)) illustrates this problem. We can model this problem by simply

extending the bounded agent design problem of Section 2.3 Def. 2.8 to include:

1. The set of possible base-level computations which consists of the normal base-level

computations, (c i , . . . , c^}, and the special computation, Cq, which causes the agent to

execute its current default action, a G I/,

2. The base-level solver itself, represented as a meta-architecture, M', which executes base-

level computations, c € C , given the agent's current information, (y, 6), to generate

external actions and update the agent's internal state, M'(y, b; c) {u, b').

3. A meta-Ievel policy, TT, which selects which base level computation to execute based upon

the agent's currently available information, i.e. 7r(y, b) —> c.

Thus, the meta-level design problem is to design a meta-level policy TT which selects base-

level computations which maximise the agent's overall expected utility. In fact, this is just the

bounded agent design problem at a larger level of granularity with the meta-level policy, TF,

representing the agents program, I, which the designer must optimise. However, the reduced set

of possible computations makes this problem simpler than the bounded agent design problem.

In order to perform this optimisation it is more useful to think of the meta-policy as the solution

to a path planning problem defined over the space of the agent's beliefs with computations as

state transitions. As shown in Figure 3.3 the meta-level planning problem is embedded within,

and is a sub-routine of, the original on-line planning problem (defined over physical states and

actions).

As with the agent design problem itself computing an optimal meta-policy can be expressed in

terms of computing the value of the different possible meta-policies. A computational actions

primary effect is to change the agent's internal state, however it will also have some external

side-effects which cause changes in the external state (modelled using the external action the

computation generates) such as consuming time or other resources. Thus, as for any other

action, the future value of a computational action is defined as the value of the trajectory the

agent follows from the combined belief and physical state, {b', x'), the computation puts it in.

That is,

= A(T'([c,7r];E',A,a;,6,<)), (3.1)

= + (3.2)

where {u, b') = M'{fy{x), 6; c) are the agent's external action and internal state after executing

the computation c in state {x,b), and [c, TT] denotes the policy which initially executes the

computation (sequence) c and then operates according to the agent's normal program which

implements the policy TT.

Given this definition the optimal meta-level value function is given in the normal way by the

Bellman optimality equation (2.10),

V*{x,b,t-,E,R) = max.[Vc^Tj-*{x,b,t; E, R)], (3.3)
ce£'

= max[r(a:,%/,()+ y*(/a;(a;,?/,(),6^,t+l;E,.R)], (3.4)
c£C'

from which the optimal meta-control policy can be extracted by greedy value maximisation.

As indicated in Figures 3.2 and 3.3 this computation consists of two sub-problems,

• the original problem of computing and optimising the value of the external actions

executed, and

• the additional embedded meta-control problem of computing and optimising the value

of the sequence of computations executed, which depends on the value of the actions

executed.

Thus, the meta-level design problem is as hard as the original on-line planning problem because

it includes it as a sub-problem. Thus, we cannot as some researchers, e.g. Hacking (1967),

have suggested assume that the meta-level problem is easier than the original one, but must

acknowledge that meta-control may itself require extensive computational resources which will

themselves need to be controlled. Thus we must face the problem of requiring meta-meta-

control, meta-meta-meta-control etc., and analytic regress.

3.3.2 Meta-meta-control and infinite regress

Decision theory requires that the meta-control system pick the computation for execution

which has maximum expected utility. Since computations are deterministic, in the worse

case a deliberative meta-control procedure could identify the maximal utility computation by

performing each of the computations itself and computing the utility of the output - leading

to the contradictory situation where rationality requires meta-control to execute a base-level

computation to decide if it is worth executing. To resolve this contradiction we could use a meta-

meta-controller to select which meta-control computations to apply, but the same arguments

apply in this case, requiring a meta-meta-meta-controller, etc.. Eventually, this regression must

terminate or it will cost more than executing computations without meta-control.

This analysis allows us to draw the following important conclusions,

« Meta-control cannot have complete access to the internal state, h, or exact models of the

base-level computations it is controlling but must use simplified abstract models.

• Meta-control must be advantageous such that the combined meta-controller and base-level

solver require less computation than the base-level solver without meta-control.

Notice, that as optimal meta-control only requires accurate information about possible com-

putation (sequences) values, using abstract base-level models does not mean meta-control

is necessarily sub-optimal. Indeed, as discussed above, one of the main advantages of

anytime/contract algorithms is their simple tractable abstraction in terms of their performance

profile which allows optimal meta-control in some circumstances.

Thus, one of the main tasks when designing meta-control procedures for computationally limited

agents is identifying tractable base-level abstractions which give adequate performance.

3.3.3 Separable computational cost

One of the main sources of complexity in the meta-control problem is that the policy value

depends not only on the external actions executed but also on the sequence of computations

executed to choose each action, i.e. Vci.a.Tr ^ K2,Q,7r- This model allows us to capture

all problem constraints and trade-offs between computation and action, at the expense of

a significant increase in problem complexity as we must optimise directly over all possible

computations and actions.

In many cases this complexity is unnecessary as most computations have only a few external

effects, such as consumption of time or power, upon which the reward function can depend.

Hence, one way to simplify the meta-control problem is to assume that the immediate reward

of a sequence of computations followed by an action execution, i.e. i2(T([c,«]; x, b, t)), can be

decomposed into the addition of the intrinsic value of the action, r^, and the computational cost

of the computations, C. That is,

6,t)) = — C(z, |c|). (3.5)

The intrinsic value of an action is immediate reward from executing the action in the state at

the start of the sequence. The cost of a computational sequence is the reduction in the actions

33

C(.,t)

td
fd)

FIGURE 3 .4 ; This diagram (adapted from (Horvitz 1990, p 39)) shows how a separable time
cost function can be used to represent many of the prototypical types of resource limitations
we would wish to model including, (a) deadline where results after td are useless so the cost
goes to infinity, (b) urgency with each computational step costing ci, (c) urgent-deadline, and

(d) delayed urgency where computation up to the deadline is free.

immediate reward due to executing the computational sequence before the action. Note that in

general, the computational cost can depend on any external effect of the computations, but for

simplicity we have assumed it depends only on the total execution time, denoted by |c|.

Whilst not totally general, as discussed in Horvitz (1988) and shown in Figure 3.4, this

decomposition captures many of the types of resource dependence we are interested in.

Applying this decomposition to the value computation, (3.2), we obtain.

(3.6)

where {x',b',t') are the current state, agent beliefs and time after [c, li]. Applying this

decomposition recursively toVTr{x,b',t') allows us to split it into two largely independent parts.

j=0..oo

(3.7)

(3.8)

where V ,̂ are the intrinsic value and computational cost of the policy, and Cj,Uj,Xj+i,tj-^-i

are respectively the j'th; computational sequence, action executed at the end of this sequence.

this actions resulting state, and arrival time.

A separable time cost allows us to separate the direct external effects of a computational

sequence, which are captured in the computational cost, from its internal effects, which are

captured through its effects on action choice. This is a significant simplification allowing the

value calculation to be split into two independent parts.

(1) calculating the policies intrinsic value, which depends only on the external

actions the agent executes and the states they put it in, and

(2) calculating the policies computational cost, C;r(z, b, t), which depends only on the time

spent on computation in each state.

(TfLAjPTTEjR 3. Cl&f̂ Lj7VZiyl(3f%\rT'JS jkl

Unfortunately, time cost alone does not provide the degree of simplification we require as

the action executed still depends on the agent's exact internal state b. Thus to complete this

simplification we need an abstract model of the agent's internal state and how sequences of

computations alter it.

3.3.4 The meta-control Markov decision problem (MDP)

We require a model of the base-levels operation which is much simpler to analyse and solve.

One way to perform this simplification is to use a state-aggregation abstraction (Holete, Preez,

Zimmer, and MacDonald 1996) to approximate the detailed model by mapping sets of original

states with the same important features into one abstract state. In this abstract space the

discarded information means we cannot be sure exactly what state an action is being executed

in so its effects will be uncertain. Thus, we must use a stochastic model for the actions effects.

Note, this (additional) uncertainty is an artifact of the state-aggregation abstraction and not

inherent to the problem.

Given an abstract model of this form, the meta-level design problem is now to find an optimal

meta-policy which specifies which action or computation to perform in each abstract state. We

can treat this as a Markov Decision Problem (MDP) (Puterman 1994). In a MDP we must

find an optimal state-faction (computation) mapping when the successor state after action

execution cannot be predicted in advance (using this model) but is known with certainty after

the action is executed. In addition, to obey the Markov property the successor state transition

must be conditionally independent of the path taken to that state given the current state and

action, i.e. the likely successor states depend only on the current state and action. For a more

complete introduction to MDPs and their solution methods the interested reader is advised to

see Puterman's (1994) book or any introductory text on stochastic dynamic programming, such

as (Bertsekas and Shreve 1978), or reinforcement learning (Sutton and Barto 1998).

Note, in general state aggregation does not result in a true MDP. This is because the successor

state actually depends on the current base-level state, which can be identified from the trajectory

taken to the state using the non-abstracted domain model. Thus, the abstract successor state

transition can depend on the trajectory as well as the current state and action, violating the

Markov requirement. For the sake of tractability we ignore this subtlety and assume the abstract

state transitions are Markov.

In this case the approximate meta-control MDP is given by,

• A feature detector, f(j>{b) —> cj), which maps the agent's internal state b to some abstract

feature space, $. This abstract feature space is the state space for the MDP,

• A set of abstract actions {ca,ci , . . . ,Cn} corresponding to the set of all possible

computations, including the special computation CQ which causes the agent to execute

it's default action, a e U ,

CHAPTER 3. DESIGNING DELIBERATIVE ON-LINE AGENTS 35

• A reward function r'^{(j),c). A separable time cost is assumed so CQ'S reward is the

executed action's intrinsic reward, r'^{(p,Ca) = = r'(x, a), and all the

other purely computational actions' rewards are their negative time costs, c) =

—C{x,t, |c|). Note, to ensure r'^{4>,c) is a Markov reward function the computational

cost cannot depend on the final physical action executed as in (3.5), so we assume

Vu, C(x, u, t, |c|) = C{x, t, |c|).

• A model of the effects of the computations in the abstract feature space represented as

a stochastic transition function, Pr(<^'|^, c), which gives the probability that the result

of executing computation c in an internal state with feature vector 0 is one with feature

vector (/)'.

This can be computed off-line by sampling a large number of possible belief states,

recording their feature values and using Bayes rule to compute,

Prfd'ld, ==
I?'' cJ

EbeB c) Pr(<;6|6) Pr(6)
Pr(<p)

(3.10)

where we have used the fact that (p — f^{b) and <p' = f^(M'{b; c)) hence (j)' and (j) are

deterministically defined by and conditionally independent given b, c.

The separability of the objective function means the expected value of any abstract belief state

under a meta-policy TT which begins with computation c is given by,

= r" (̂< ,̂c) (3.11)
0'

This is the stochastic version of the Bellman equation. In the particular case of the meta-level

MDP we distinguish between the special action execution computations which have an intrinsic

value, and normal computations to give.

As in the deterministic case the optimal value function, V*, must satisfy the Bellman optimality

equation.

y*((/i) = max
C

+ c)y* (<?!'') (3.13)

Given a value function satisfying this equation the optimal meta-policy can be extracted in

the usual fashion. This recurrence is the basis of many algorithms for solving MDPs. An

extensive literature exists on the efficient solution of MDPs based upon prior models using

off-line dynamic programming methods (Puterman 1994; Bertsekas and Shreve 1978; Hansen

36

Ui
O

U2
o

?!

(a) Value of Information (b) Value of Computation

FIGURE 3 . 5 : These problems adapted from (Tash 1996) present two example cases where
more information may be valuable. In (a) Robbie is unsure whether the goal lies behind door
ui or U2 so information about this is valuable, in (b) Robbie knows where the goal is but is
unsure whether path ui or U2 is shorter so spending resources computing the paths lengths may

be valuable.

and Zilberstein 2001b) and on-line (Sutton and Barto 1998; Barto, Baradtke, and Singh 1995)

methods, or even simultaneously learning the MDP model whilst solving it using reinforcement

learning techniques such as Q-leaming (Peng and Williams 1995). The MDP model is common

whenever we abstract a deterministic sequential decision problem for tractability, as we will see

later many abstract meta-control formulations can be modelled in this way.

3.3.5 The Value-estimate abstraction

Defining the right feature detector is critical to the effectiveness of the meta-control MDP as the

meta-control decisions are based solely upon the current abstract state. Thus, the feature detector

should capture the features of the agent's current beliefs which are important for making good

meta-level decisions - that is the features which are important for predicting the quality of

the agent's decisions and how the alternative base-level computations improve these decisions.

However, the feature detector should also provide a sufficient abstraction to make the meta-level

design problem tractable and the meta-policy implementable. Thus, the base-level abstraction

must trade-off meta-level decision quality against meta-level policy tractability.

The most important features of the agent's internal state are those which affect which actions it

selects for execution. If the agent is rational, we can treat these selections as being based upon

the agent's current subjective assessments of the expected utility of the action. Notice, as was the

case when defining a rational agent in Section 2.3 we do not require that the base-level explicitly

represent such value estimates, only that it make decisions as if it did, so we can deduce them

for the meta-level design. Therefore, one of the most important features of a rational agent's

internal state are the subjective solution value assessments its decisions imply.

If computation improves the agent's action choices by updating its internal state then these

subjective value assessments must be incorrect in some way. Thus, we can then view the

agent's internal state as encoding the agent's current partial state of information about the

Pr(y(.)) P r (m | c) Pr(y(.)|[c,. . . ,Q,])

_ _ C-n

37

FIGURE 3 .6 : The effect of computation is to converge the agent's estimate of the true value of
a possible solution hence reducing the uncertainty of the estimate, until (given sufficient free

computation) its estimate is certain.

value of possible solutions to its problem, i.e. which are the best actions to perform in this

environment. A computation is then essentially a type of observation, where the agent obtains

additional information by manipulating its prior information (provided by its designer or

computed previously), and making observations. Figure 3.5 illustrates this view where either

direct observation of the world in problem (a) or computation in problem (b) are beneficial

because they both have the effect of improving Robbie's value estimates and hence his action

choices.

Now, as shown in Figure 3.6, assuming the computations are correct, the effect of each individual

computation is to converge the agent's value estimates towards some unknown final (or true)

value - which is the value the agent would calculate given sufficient time to compute an exact

valuation. The effect of a computation therefore depends not only on the agent's current value

estimate, V, but also how close this estimate is to the unknown true value, i.e. if a value estimate

is correct applying computation to refine this estimate will have no effect. Of course, the

agent does not know the true value towards which its computations are converging—if it did

it wouldn't need to perform the computations.

However, the agent may have some knowledge of how close it is to the correct value, say in

the form of bounds on the true value. In the most general terms we can represent all the

agent's current beliefs about the true value in terms of a joint probability distribution over

final values, Pr(V|6) = Pr(V|6, Coo). Given this distribution, a rational agent will select the

Bayes action. This is the action which maximises the expected value w.r.t. this distribution, i.e.

at, = argmaxjj V (U | 6) where V = E { V | 6 } is the agent's current value estimate.

Thus, we see that the joint probability distribution over final values represents a good abstract

feature set for the meta-control problem which captures important features of both the agent's

eventual action selections and the effects of computations. An abstract base-level model using

value distributions consists of:

• n the set of possible solutions.

• a value estimate for each possible solution, vr e H, V is used to denote the vector

containing a value estimate for each solution.

® A feature detector, cj), which maps the agent's internal state b to some abstract

feature space, $,

• pv = Pr(V|(^) = Pr(V|/0(6),Coo), a distribution over future value vectors parame-

terised by the feature set.

Pr(V|^) is essentially a function mapping from abstract features to value distributions.

It can be learnt off-line by in a similar way to Pr((/i'|(^, c) by sampling a large number of

belief states, recording their feature values and true solution values, and then using Bayes

rule to compute, Pr(V|^) = Pr(V, 0)/Pr((^). Note, computing the true solution values

for each training example can represent a significant overhead for this approach.

• An abstract model of the effects of the computations represented as a stochastic transition

function, Pr(p^|pv, c). This is a second order distribution over distributions giving

the probability that the result of updating the distribution of value estimates, PY, with

computation, c, is the new distribution, p'^. As before this can be computed off-line using

(3.10).

3.3.6 The subjective value equivalence assumption

So far, we have treated the value distribution as just an alternative abstract base-level model with

a readily interpretable semantics and overly complex model learning requirement. However, the

main power of the value distribution abstraction is that, when combined with the separable

time cost assumption, it allows us completely separate meta-policy construction from base-level

solution quality computation. This is achieved by making the following assumption.

Assumption 3.1 (Subjective value equivalence). The agent's subjective value distribution is

assumed to be a consistent, reliable, and accurate representation of the actual uncertainty in the

value the agent will realise. Hence the agent can treat its subjective belief that it will obtain a

certain expected value as equivalent to actually obtaining that value.

Thus, we can use these subjective estimates directly for the intrinsic value of an action -

without having to compute the actual value of the agent's trajectory after the action. Following

Tash (1996) we call an agent which makes its decisions on the basis of the subjective value

equivalence assumption locally rational as it considers maximising locally derived subjective

value estimates as an end in its own right, without explicitly considering the longer term

implications of its decisions. Clearly, the performance of such an agent depends critically on the

accuracy of its subjective value distributions as predictors of the actual future value the agent

will realise. This in turn depends on the accuracy of the agent's initial value distributions and

the correctness of the computational mechanisms manipulating them.

This brings to light a subtlety which we have glossed over so far: What is the "true value"

towards which the agents value estimates are converging and upon which the agent bases action

selections? By definition the value of a situation is the "total objective value accumulated by the

future trajectory induced by the policy" (Section 2.2.3 Def. 2.3). This puts us in something of a

"chicken and egg" situation were we need to know the policy to compute the value function, but

CZfZ/LPITEjR 3. ClPf.Lj?VI;/l(jf%\r]lS 219

we need to know the value function to define our locally rational policy. There are two possible

solutions to this problem, either we compute our value function using one policy which we hope

is close to the one the agent will implement and accept that this may lead to poor action choices,

or we use reinforcement learning style techniques (Sutton and Barto 1998) to converge the value

function and agent policy on-line towards a realistic representation of the agent's performance.

For now we put aside this issue, leaving more detailed discussion until Chapter 4, and just

assume that an appropriate value function is available.

3.3.7 The value-estimate MDP

The subjective value equivalence assumption allows us to treat the meta-level design problem

independently of the original planning problem by allowing us to treat the value of a physical

action as equivalent to its current expected subjective value. That is,

- V(i/|6) = E{VM| /^ (6)} = Y]Pr (V | , ^)VW = (VW|/^(6)). (3.14)
V

Note, in the remainder of this section it will be assumed that all values are computed assuming

the default policy TT, so this will not be explicitly stated in the subscript.

As the agent is locally rational, if it was forced to act now its default action would be to execute

the action which it believes has maximum expected value, i.e. the Bayes action. Hence, the

value of CQ, the computation which corresponds to executing the agent's current default action,

is given by,

Vc^{x,b,t) = maxV(ii|6) = max(V(«)|/^(6)) (3.15)

Substituting this into the meta-policy value recursion (3.12) we get,

where we have made the additional assumption that the abstract state (p is sufficient to identify

the current computational cost so, C{x, t, |c|) = C{4>, \c\).

Comparing (3.12) and (3.16) we can see the true power of the value estimate abstraction and the

subjective value assumption is that they allow us to terminate the value recursion by treating the

action execution computation, CQ, as a deterministic transition to a terminal state with known

value. Thus, we can design an approximately optimal meta-policy by solving the meta-level

MDP directly.

3.3.8 Special Properties of the value-estimate MDP

It may be that this MDP is still too hard to solve completely, if for example the feature space $ is

too large. To reduce the complexity further we could use a smaller feature space or use one of the

specialised methods developed for the approximate solution of MDPs (Sutton 1990; Williams

and Baird 1993; Baird III 1995; Gordon 1995; Poupart, Boutilier, Patrascu, and Schuurmans

2002). However, the value-estimate MDP has some special properties which we may exploit to

develop specialised, efficient approximate solution techniques.

Consistency of value distributions. By assumption the intrinsic value of an action is

independent of the agent's internal state. Thus, if a computation c changes the agent's internal

state from (p to some unknown 4>' then, by the standard axioms of probability, we can marginalise

over cj)' to obtain,

Pr(V|(^) = ^Pr(V|,^3Pr(<^' |(^,c) = E{Pr(V|(^')|.^,c} . (3.17)
<P'

In words (3.17) says that the agent's prior value distribution should equal its expected posterior

value distribution, hence the expected future probability mass at any point is constant. This

consistency relation represents an additional rationality requirement which the agent's belief

update procedures must meet, otherwise, as discussed in (Skyrms 1990), the agent could act

irrationally. For example if a computation does not meet this requirement and increases all

the action value estimates by x then the agent would, irrationally, be willing to pay up to x

for this computation—even though it leaves the action choice unaltered and provides no useful

information.

One important consequence of (3.17) is that/or any consistent belief update the agent's prior

expected value should equal its expected posterior expected value. That is,

E{V|(^} = ^ V ^ P r (V | < ^ 3 P r ((/ , ' | (^ , c) =E{E{V|<^ '} |<^,c} . (3.18)

Monotonically increasing Bayes action value. By definition Vc^ = niax„ E {V(u) |^} gives

the expected value of executing the Bayes action now w.r.t. the agent's beliefs cj). Ignoring the

cost of computation, the expectation of Vcc, over future belief states, = E c j =

E{maxu(V(ti)|^')|^,c}, gives the expected posterior expected value of the Bayes action

immediately after the computation, c. Now, by (3.18) E{V|^} = E{(V |^ ') |0 , c} hence if

a=ajgmax^(V(M)|(^) then This result allows us to compare and to

obtain,

= = (3.19)

This follows from Jensen's inequality (f(E{X}) < E{f(X)} for convex /(•)) and the

convexity of maximum. Notice, that equality holds if we can reverse the order of the max and

outer expectation on the RHS, which can only occur if the maximising action is independent of

(V{u)\(p'), i.e. is constant. Thus computation is worthless iff there exists a constant action k

such that argmax„(V(ti)|^') = k forall (/)'. This derivation is essentially as given in (Skyrms

Cff/LPTEuR 3. f)E&SfC%\07V(j 41

Pr
ii

Pr

y("i)
y(u3)

1̂1 'jj

y("3)

—v
(a) (b) (c)

FIGURE 3 . 7 : This diagram (adapted from (Russell and Wefald 1 9 8 9 , pp 76)) shows how the
value of information depends on the agent's value uncertainty. The dark (and light) shaded
regions indicate the areas where improved information about ui's (resp. ug's) value is useful.
In (a) information is worthless as the agent's uncertainty doesn't affect its action choice. In
(b) the possible change in the value of the agent's chosen action is small (as indicated by
the narrowness of the shaded regions), so information has little value. In (c) however a large
area exists where the action choice could change to realise significant additional value, so
information is more valuable. Part (d) demonstrates a case where information about ui or U2
alone has no value as it cannot change the action choice, but combined information about both

may be valuable.

1990, p 92-100) which is a generalisation of Good's (1983) "dynamic probability" to the case

where all that is known is that our value estimates will change.

To summarise, the preceding analysis has shown that the value-estimate MDP has the following

important special properties,

PI Performing additional consistent belief update computation/or/ree cannot decrease the

expected value of the Bayes action.

P2 An additional free consistent belief update computation can only increase the expected

value of Bayes action if it could change the final Bayes action.

P3 Thus, only the final expected value of physical actions matters when assessing the value

of a policy which finishes by executing the Bayes action.

F4 Only the changes in physical actions expected value that cause the Bayes action to change

matter when assessing the marginal benefit of a "compute-then-act" policy compared to

an "act-now" policy.

3.3.9 The value of computation/information

The difference between the value of the Bayes action before and after the computation is the

marginal value of the computation, which is more generally called the value of information.

That the value of computation must always be positive is easiest to visualise if we consider the

simplest case where an agent must choose between two actions, ui and such as the doors or

paths faced by Robbie in Figure 3.5. Figure 3.7 shows four prototypical cases of value estimate

uncertainty the agent may face. Part (a) demonstrates the case where the agent can be very

CHAPTER 3. DESIGNING DELIBERATIVE ON-LINE AGENTS 42

E { y Q, } Cost of Time ^V{ui,t)

Pr(y(uil=r; |^, c)
i

Pr(y(ui)=?;|9!', c)

3- V

E{y(%i)}

(a) The value of free computation (b) The value of computation with time cost

FIGURE 3.8: These diagrams demonstrate the value of perfect information when there are only
two actions ui and U2 whose true values are assumed to be related by V{u2) = fiV{ui)) so
they can be drawn on a 2D graph. Figure (a) shows the case when the computation, c, can
completely resolve the uncertainty in V{ui) (and hence V{u2)) without cost, figure (b) shows
the same case when the time taken to perform the computation reduces V{ui) by a constant

amount.

uncertain, but reducing this uncertainty has no value as it cannot change the agent's decisions.

Parts (b) and (c) show that the marginal value of information about ui or U2 also depends on

the amount of improvement changing the Bayes action will realise, information has a higher

marginal value in (c) as it results in a larger potential value improvement (as shown by the width

of the shaded areas). Finally (d) demonstrates the case where we need to reduce the uncertainty

of both ui and U2 in order to realise any marginal value.

An alternative way of thinking about the same issues is illustrated in Figure 3.8. Here we

assume the intrinsic value of U2 can be represented as a function of the value of ui, i.e.!/(%) =

so we can represent the uncertainty in the agent's value estimates on a single 2D

graph. This situation can occur if both action values depend on a single unknown parameter

(such as the door behind which the goal lies). In this case, ui is the prior Bayes action as it

has greater expected value w.r.t. the agent's current value uncertainty as indicated by the dark

shaded region. Now, if the agent knew V{ui) was less than the value at the point where the two

lines cross, %, then it could improve its action value by choosing action U2- Thus as the total

probability at V{ui) = x must remain constant, see (3.18), the probability of this occurring is

given by the current value distribution for V(ui). Such a change can only improve the value of

the Bayes action, with the extent of improvement given by the light shaded area, labelled AVc-

3.3.10 Simplifying the value-estimate MDP (i) Meta-greedy policies

As discussed in Section 2.2.3 an optimal policy can be constructed for any sequential decision

problem using only local information by greedily selecting the action with maximal optimal

future value, i.e. a* = argmax„[r('u) + V*{u)]. As maximisation is unaffected by addition

(1) Identify the Bayes action w.r.t. our current beliefs, a = argmax^ y (u)

(2) Identify the computation c* which has maximal expected value of computation,
Ay(c) = - C(|c|) -

(3) If AV(c*) > 0 then execute c* otherwise execute u*.

FIGURE 3 .9 : The META-GREEDY a lgo r i t hm

of a constant, like — s a y , the same technique can be used with marginal values. Thus, the

META-GREEDY algorithm presented in Figure 3.9 is optimal if AV(c) = AV*(c) and bounded-

optimal with respect to the base-level if the calculation of AV(c) is cost free. An alternative way

to analyse META-GREEDY is to think of AF(c) = V{c) - is as a measure of the sensitivity

of the Bayes action value to possible value distribution refinements, so META-GREEDY is a hill-

climbing algorithm which performs the most sensitive computations first. This meta-control

algorithm, originally proposed by Good (1968), is found in various forms throughout the meta-

control/bounded optimality literature, see for example (Horvitz 1988; Russell and Wefald 1989).

Unfortunately, calculating the optimal AF*(c) requires that the agent solve the value-estimate

MDP—which is exactly what we are trying to avoid. Thus, one approach to simplifying the

value-estimate MDP is to use the special properties discussed above to develop efficiently

computable approximations which can be used in place of AV*{c) in the META-GREEDY

algorithm. The hope is that if these approximations are sufficiently close to the true AV* (c)

then META-GREEDY will be optimal w.r.t. the approximations and likely near the true optimum.

Before we continue further we need to clarify some idiosyncrasies in terminology. As originally

defined by Howard (1966) and in conventional usage AVc and are referred to as the

"expected value of computation" (EVC) (or more generally information if c represents a general

observation) and the "value of perfect information" (VPI) respectively, see for example (Good

1983; Russell and Wefald 1989; Horvitz 1990). This terminology may cause some confusion

as these quantities are actually marginal values between the meta-policies [CQ] and respectively

[c, TT] and [CQCTT], where TT is the agent's normal policy. For tradition, I will maintain this

inconsistency and use the term "future value" to indicate when referring to the true future value,

i.e.

We start the process of developing an approximation for V* (c) by noting that the monotonicity

of w.r.t. computational effort (property PI) allows us to define the following upper and lower

bounds on the optimal value function,

< V{4.) < (3.20)

from which as c) = Vc,;r'(<̂) = E — C(^, |c|) by (3.12) we obtain,

^,c .W-C(</ , , |c |) < y*(9^,c) < (3.21)

(ZHdJPITENR 3. C)AFJLj7VZiv4(jf%\r]lS 414

Russell and Wefald (1989) call the lower bound, V^cS'^) " C'((^, |c|), a myopic approximation

as it short-sightedly only considers the immediate effect of the computation on the Bayes action

value, ignoring the possible longer term benefits when its effects are combined with those of later

computations. Continuing this analogy I call the upper bound a hyperopia approximation as it

considers all possible effects of the computation after an infeasibility large amount of further

computation.

The upper and lower bound computations can be simplified using property P3 to write V̂ ĉa (^)

directly in terms of the distribution of posterior expected values V' = (V|^'),

V'

Thus, we can compute simple bounds for the optimal value of computation using only

knowledge of the resulting distribution of the agent's expected future value estimates. The

computation of the upper bound, {(/)), can be simplified further by noting that by definition

Pv(V) = P r (V '=V|^ , Coo), hence.

== i; c.Of)} == C«,) rnaucT/^ti) (2̂ :23)

V'

= y ^ P v (V) max V(tt) (3.24)

The computation of the bounds can be simplified further if we work in terms of the marginal

intrinsic value of computing then acting w.r.t. acting now, AFJ = . The advantage of

the marginal values is that property P4 tells us that if the posterior Bayes action equals the prior

Bayes action the marginal change is zero. Hence to compute the marginal value we only need to

consider the cases where the Bayes action changes (as shown by the shaded areas in Figure 3.7

and light shaded area in Figure 3.8). Formally,

== t%c.kA) -- (3.25)

= ^Pr(V' |Q!i, c) max V ' (u) — m a x ^ ^ Pr(V'|^, c)V'(«) (3.26)

V' V'

Pr (V ' | ^ , c) j^maxV'(«) — V'(Q;)

{V':V'(a)<maXu V'(u)}

(3.27)

where, a denotes the Bayes action in original belief state, (f). A similar equation holds for

^^coo,ca Pr(V'|(f, c) replaced by pv(V),

(^) = E Pv (V ') V ' M - V ' W
{V':V'(a)<maXu V'(u)}

(3.28)

(3.27) and (3.28) offer potentially large computational saving when the agent is reasonably

certain of the best action.

As a final step this calculation may be simplified further if we know the ranges of value estimates

where each action is maximal, then we can perform the summation in each region independently

with the maximum operation replaced with the value of the fixed maximal value action. To see

how this is useful consider again Figure 3.8(a), in this case the light shaded area labelled A F

represents the marginal value of computation. It is clear from the figure that the Bayes action

is unchanged unless V{ui) < Vc, when its value is given by V(u2), thus we can compute the

marginal value of computation using,

C) -- vr(%i)]. (3.29)
V(UI)<VC

The lower bound on the marginal value, is called the myopic expected value of

computation (MEVC) as it ignores the effects of any computations after c and forms the basis of

many decision theoretic meta-control systems, including Russell and Wefald (1989), Horvitz

(1990). The upper bound, A V ^ ^ ,̂ is what Baum and Smith (1997) call the value of all

expansions as it represents the value of getting perfect information about all action values and

forms the basis of their Best Play for Imperfect Players (BPIP) (Baum and Smith 1995) meta-

control algorithm. We will encounter these value of computations again later in Chapter 5 when

we consider the search control problem.

3.3.10.1 Discussion

Equations (3.27) and (3.28) represent two reasonably efficiently computable marginal value of

computation approximations which, as shown in (3.21), can be used to approximate Ay*(c)

in META-GREEDY (Figure 3.9). The quality of these approximations obviously depends on

how closely their inherent assumptions reflect the reality of the situation. A f ^ will tend

to provide a good approximation when the optimal meta-policy performs enough computations

to remove almost all the uncertainty in the action values. A ^ ^ will tend to produce good

approximations when the optimal policy performs very few more computations. Note however

that the accuracy of this short-sighted approximation can be improved, at some computational

cost, by simply increasing the range of c's considered to include sequences of computations.

To actually use these bounds in META-GREEDY we require the following information,

• A function Pr(V' |^, c) describing the effects of a computation in terms of the subsequent

distribution of new expected value estimates, and

• A separable time cost function C(c).

To allow efficient bound computation Pr(V'|(^, c) should be structured so it is easy to identify

regions where the Bayes action changes. The basic method for developing such structured

probability estimates is to build a factored model (Kim and Dean 2003) based upon the

CZfLAJPTlEjR 3. /US

observation that in most cases computation's are highly local, depending on and affecting

only a small subset of the agent's internal state. These effects will in turn have localised

influence on the agent's value distributions and Bayes action choice. For example, in a search

framework expanding a node has the local effect of revising that nodes value estimate which

in turn may affect the value estimates of other nodes which depend on it. Thus, by exploiting

detailed information about the operation of the base-level we can decompose Pr(V'|oi, c) in the

following way,

(i) define a feature detector which abstracts the internal state b into a multi-dimensional

vector of feature's 4>,

(ii) construct & factored stochastic model of the effects of computation on the internal state,

Pr(^g|%, c) where is the sub-set of dimensions of cp affected by computation c,

(iii) construct a propagation function which models the effects of these local changes on the

value estimates, Pr(V'|^g, (()). This can be deterministic or stochastic.

In general, learning a stochastic model requires a number of training examples proportional to

its size, which is exponential in the dimensionality of its inputs. Thus the factored model also

has the advantage of simplifying the learning process allowing us to produce more accurate

models for much less training effort. As Pr(V'|^, c) must be evaluated by the meta-level

for each computation considered at every decision point the main effort in developing META-

GREEDY algorithms is in developing such efficient factored implementations. This approach

to developing efficient value of computation approximations is discussed in more detail in

Chapter 5.

3.3.11 Simplifying the value-estimate MDP (ii) Macro-Computations

Another way to simplify the value-estimate MDP is to move to a higher level of abstraction using

macro-computations. A macro-computation, called a computation strategy by Horvitz (1990),

is a recipe or procedure for achieving some high-level objective, such as reducing value estimate

error, which is thought to be useful for solving the agent's problem. In terms of the meta-control

model developed above a macro-computation is a fixed meta-control policy which when

started executes a sequence of computations to achieve some high-level objective. A macro

represents a way of providing the agent with additional prior problem solving knowledge by

compiling in information about how to solve common sub-problems.

In general, a macro consists of two parts, (i) an abstract model of its input/output performance

which provides the information needed by the agent to decide when to use the macro, and (ii)

its decomposition into lower level operations which specifies how to apply the macro in the

current situation. The decomposition may be open-loop, where once started the macro applies

actions irrespective of the agent's actual situation, or closed-loop where the macro adapts to the

agent's situation to provide more robust operation. The use of such higher-level abstractions

has been extensively studied in the classical planning literature (Tate 1977; Korf 1985b) where

it forms the basis of the large scale Hierarchical Task Network (HTN) planners. More recently

macro-actions have been investigated as a way of scaling MDPs to larger problems (Dean and

Lin 1995; Hauskrecht, Meuleau, Kaelbling, Dean, and Boutilier 1998; Parr 1998).

An important issue in modelling and control of macros due to their temporally extended nature

is deciding when the macro-controller can control the macro by monitoring its performance

to interrupt its execution early if necessary. As with the meta-level itself, allowing too fine

grained monitoring makes the macro-control problem more complex (becoming as hard as the

original control problem if we can switch between macro's after each individual action) and can

result in reduced agent performance if the cost of monitoring is a significant computational

cost. However, too coarse monitoring can result in reduced agent performance if we lose

the opportunity to switch to a higher value alternative. The usefulness of monitoring and

interruption depends on the macros run-time performance and particularly whether its output

when interrupted early will help the agent make better decisions, that is whether the macro has

anytime or contract characteristics (Section 3.2).

Given a set, m € VW, of interruptible macros the basic macro-control problem is to choose

which macro to execute and how long to execute it for before either generating a solution, i.e.

executing the Bayes action, or monitoring the macro's performance to decide what to do next.

3.3.11.1 Modelling the macro-control problem

We follow Parr (1998) and model a macro as a pre-defined fixed policy vr™' which is applicable

over a connected sub-set of state-space (which may be the entire state-space) called the macro's

applicable region. This is a totally general model allowing the macro to use any implementation

it wants, such as a FSM or HAM (Parr 1998, Ch. 5), so long as its action choices are Markov.

In the case of macro-computations the preceding analysis suggests the most natural state space

is the agent's abstract belief space, $, where the macro's policy represents choices between

individual base-level computations. However, it is more usual in the real-time AI literature

concerned with scheduling macro-computations (Dean and Boddy 1988; Zilberstein 1993;

Boddy and Dean 1994) to represent macros at a higher level of abstraction in a factored, real

valued, multi-dimensional, space called the macro's quality space, q E R". This is a special

abstraction of the agent's internal state which has a readily interpretable semantics as it assumes

the intrinsic value of the final system output is a monotonically increasing function of the

individual quality dimensions. Formally, this is equivalent to assuming that the Bayes action

value (q) is input monotonic,

Definition 3.1 (Input monotonicity). A function / (q) is input monotonic iff,

Vq,p p > q = > / (p) > / (q) (3.30)

In this abstract quality space, as the macro's effects are Markov, the most general macro model is

a stochastic transition function, Pr(q'|q, m) = Pr(q'|q, 7r™'(q)), which denotes the probability

of getting a solution quality of q' when the current solution quality is q by running the macro, m,

for a single time step. In the real-time AI literature this model is called a Dynamic Performance

Profile (DPP). The DPP can be constructed in a number of ways; it can be learnt off-line or

adaptively on-line during the agent's execution. If the macro policy encoded is known the

DPP can be computed by averaging over the abstracted features as in (3.10). Alternatively, as

Zilberstein (1993) points out, for macros which represent algorithms with known input/output

performance, such as Newton's method which has known convergence properties, the DPP can

be constructed directly.

To model the execution of the macro for longer durations the Performance Distribution Profile

(PDP), Pr(q'|q, m, r) is used. This gives the probability of reaching the state q' after executing

the macro m for r steps starting in state q. The PDP can be used to model the unmonitored

execution of a macro for an extended period, r , as a single macro-action, m,-, whose transition

function is Pr(q'|q, mr) = Pr(q'|q, m, r) . The PDP can either be learnt directly in a

similar to way to the DPP or calculated from the DPP by "unrolling" the individual macro

transitions forward in time using a dynamic-programming type algorithm (based upon the

forward Chapman-Kolmogorov equations (Gillespie 1992)),

Pr(q ' ,r |q, m) = ^ Pr(q ' |s, m) Pr(s, r - l | q , m) (3.31)

Applying this recursion forward in time and normalising for each r gives Pr(q'|q, m, r) .

Another model related to the PDP which is used in many macro-control algorithms is the

expected performance profile (EPP). This gives a macro's expected output quality as a function

of its input quality and the time allocated, i.e. g(q, m, r) = (q'|q, M,T). The performance

profiles presented in Figure 3.1 are prototypical EPPs for the different algorithm types. The

advantage of the EPP is its simple functional form can be used as an approximation for the

full PDP when computing resource allocations. This amounts to a type of certainty equivalence

assumption. The quality of this assumption, and hence any algorithm based upon it, depends on

how well the EPP predicts the true outcome quality. Thus, the EPP should only be used when

the outcome quality can be accurately predicted, that is when the PDP has low variance.

To complete the macro control problem model we also require a reward function. For simplicity

and consistency we again assume a separable computational cost (Section 3.3.3). Thus the

rewards for the Bayes action Cq and executing macro m for duration^ r are respectively,

r(q,Ca) = r(q,Ca,0) = ^^(q) ,

r(q,mT) = r(q,m,T) = -C(q,T).

^In general the reward for each destination state/time pair is given by the averaged reward over all paths to this

state, r (p ' , T|P, m) = Pr(p'|a, m) P r (s , T—L|p, m)[r{s, m) + r (s , T-l\p, m)].

(TtLAJPTEJC 3. Clĥ JLJZVZiylCjfHSrZlS .49

3.3.11.2 Solving the macro-control problem

If we model extended duration macro executions as single compound actions, the macro-

control problem can be modelled as a MDP similar in form to the value estimate MDP of

Section 3.3.7. This should not be too surprising as the macro-control problem is exactly the

same problem, just modelled in a different abstract space. Thus, we can solve the macro-

control problem using any of the techniques discussed previously, or any standard MDP solution

technique. This approach to macro-control has the advantage of producing a guaranteed optimal

policy, w.r.t. the set of macros, which can take account of monitoring costs (Horvitz 1990, p

101) and is adaptive to the macro's actual performance in the current situation.

Indeed, Hansen and Zilberstein (2001a) show how to solve this MDP using standard dynamic

programming techniques for the simplified case of a single macro with an arbitrary performance

profile and significant monitoring costs. Unfortunately, as with any MDP its computational cost

is polynomial in the state space size so computing this policy may be prohibitively expensive,

especially if it must be performed on-line. Hence, as for the value-estimate MDP, much work on

macro-control has focused on developing tractable approximate solution methods which exploit

the special properties of the macro-control MDP.

The meta-greedy algorithm The first macro-control methods proposed (Horvitz 1990) were

based upon the META-GREEDY algorithm described in Section 3.3.10 and Figure 3.9 with the

MEVC. In the case of macros the MEVC of running the macro, m, for a time r is,

T-) -- C(q, r)] - 0-33)

= (3.34)
q'

where Pr(q'|q, m, r) is the macro's PDP and [mo;r, Cq,] indicates that the agent chooses actions

according to the policy m for the first r time steps and then executes the Bayes action.

It is easy to show that if calculating A t ^ (q ; r) is cost free then META-GREEDY is optimal in

the following sense.

Theorem 3.1. META-GREEDY maximises the total value increment, AF(qt; mt, TJ) ijf

the macro's marginal values are,

(i) independent - if executing in q gives q' then forall m ^ m', AF(q ;m,T) =

AF(q'; m, r), i.e. executing one macro doesn't affect the marginal value of another, and

(ii) non-increasing - if executing (m, r) in q gives q' then A y (q ; m, r) > AV{c{\m, r), i.e.

for a single macro the marginal values exhibit diminishing returns.

Proof. Adapting the optimality proof for greedy allocation in the fractional knapsack problem.

Aiming for proof by contradiction, assume META-GREEDY fails and w.l.o.g. that the optimal

allocation is given by A=(ai , 02, - - -, o,n) where ai={mj, 1) indicates macro rrij is run for a one

C3iAfTT%R3. DESfGNZNG DRLmERATYyE ON-LiNE AGENTS 50

time step. Since META-GREEDY fails, then either; (a) there exist i<j such that AF(qi;ai) >

AF(q j ; a j) , or (b) there exist j and (m, 1) 0 {o j , . . . , a „} such that AV{qj]m,l) >

AV{qj-,aj). In both cases the non-increasing assumption requires that aj refer to a different

macro than m, 0%, hence by the independence assumption; in case (a) we can re-order the

allocations greedily without affecting their sum, and in case (b) we can greedily replace a j

by (m, 1) to increase the sum. Thus, META-GREEDY will have the same or greater value than

the optimal allocation A, contradicting its assumed non-optimality. •

This proof is a slight generalisation of the one usually given for the optimality of META-

GREEDY, such as (Hansen and Zilberstein 2001a), which consider only a single macro.

Assuming a separable time cost, A y (Q T ; M , T) will meet the non-increasing requirement when

V'(qf;m, r) is a concave function, i.e. exhibits non-increasing returns, and C(q, |r|) is a convex

function, i.e. exhibits non-decreasing penalties. Thus, we can say that META-GREEDY is optimal

w.r.t. AF(-; ct) in this case. Intuitively, these are the most likely cases in practise—as the

macro converges towards the optimal solution the improvement in solution value with additional

effort usually reduces and, as in the cases of Figure 3.4, usually some external deadline causes

the cost of delay to increase with time.

The optimality of META-GREEDY is easiest to see in the single macro case where the

independence requirement is trivially satisfied. This is the case most commonly studied in the

meta-control literature (Russell and Subramaniam 1995; Hansen and Zilberstein 2001a), as it

corresponds to deciding when to stop a single decision making algorithm. Figure 3.10 (from

Horvitz (1990, p 45)) illustrates this for the case of concave intrinsic value and linear time cost.

In this case the total solution value is maximal when AV (q; m, 1) = AC(1) = C(l), i.e. when

Ay*(q; m, 1) — C(l) = Ay(q ; m, 1) = 0. In fact as Hansen and Zilberstein (2001a) point out

in the single macro case the non-diminishing requirement can be relaxed to the requirement that

once Ay(qt ; m, at) < 0 it remains so for all later times, t' > t. This still guarantees optimality

because META-GREEDY stops when Ay(qt; m, rj) first becomes negative and continuing after

this point can only decrease the summed value. This diagram also illustrates how increasing

the cost of time reduces the optimal thinking time. We will encounter the single macro macro-

control problem again in Chapter 6 when we consider the stopping problem.

Justifying the independence assumption in the multiple macro case is more difficult. However,

independence does hold when the solution value is a linear function of the quality dimensions,

i.e. y(q) = Yl-Wiq{i), and each macro, rrii, depends on and modifies only one of the quality

dimensions q,, so Ay(q;m,%) = Wi{Aq{i)\q,mi). This can occur when each dimension

corresponds to solution quality of an independent (sub-)problem the agent must solve.

An example of this situation is continual computation (Horvitz 2001; Parkes and Greenwald

2001). In this problem the agent does not know the problem, di, it will be asked to solve

next after some time t. However, it has some knowledge of the distribution over the possible

problems, Pr((ij), which it can use to improve its performance by working on the likely

(ZfLAJPTTEUR 3. (%&f̂ LIZVZ:,4/3f%\rr2» 51

_ dC(r)
dt dt

m = y ' (-) - c (.)

FIGURE 3 . 1 0 : The optimal stopping problem is to choose when to stop deliberating so that the
quality of the eventual decision is maximised. Assuming that benefit and cost are both convex
functions of time this diagram clearly shows that this occurs when the benefit rate, dV/dt,

equals the rate of cost dC/dt. (Note, —C is shown to reduce graph clutter.)

problems in advance. An example of this type of problem is predictive pre-fetching of web-

pages. If macro rrii works solely on problem di whose solution quality is quality dimension

q(i), then the expected value of a pre-allocation which has output quality q' is y (q ') =

Pr(cZj)q'(i). Hence, if each macro has diminishing returns the META-GREEDY allocation

w.r.t. AV(qt;mi, 1) = Pr((ij)(Aq(i)|q, m) — C(l) generates an optimal pre-allocation.

Functional Composition. When independence does not hold META-GREEDY is no longer

guaranteed to be optimal. However, in certain circumstances an optimal allocation can still

be constructed without having to solve the full macro-control MDP. Zilberstein and Russell

(1996) show how to construct an optimal macro-allocation for the special case where the

final solution quality, F(q), is given by an input monotonic (see Def. 3.1) function of

some sub-set of the quality dimensions, i.e. y (q) = A(q(<ii), and each of

the q(di), q(d2).. . . are recursively computed by macros with input monotonic expected

performance profiles so {q(dx)} = gx(q(dx,o), • • • ;TX), where is a time allocation. Hence,

^ (q) = A(9o(c(o,o,qo,i(');To,o),gi(-),...).

This structure is representative of many agent problems where generating a solution requires the

solution and combination of results from a hierarchy of sub-problems. Target tracking is one

example of this type of problem where the quality of the low-level sensor influences the quality

of the high-level which in turn influences the quality of the target prediction which influences the

quality of the sensing strategies. Other examples include, literal hierarchical search where the

quality of an abstract solution influences the quality of later detailed searches, object recognition

problems where the quality of the initial features extracted influences the quality of the eventual

recognition, and simple serial processing problems where the quality of solution to one task

influences the solution quality of later tasks.

Zilberstein and Russell (1996) show that, whilst generating an optimal allocation is NP-hard

in general, if the functional dependencies have a tree structure, i.e. each quality dimension

occurs in only one function, then an optimal allocation can be computed using a bottom-up

local compilation routine. Zilberstein and Russell (1996) prove this using an inductive proof. A

simpler direct proof is as follows. Consider an arbitrary parent quality function of degree two^

with child quality functions %(-), qr{-)- Lett/, denote the allocation to all the sub-functions of

the two children and t the parent's allocation. If we make a certainty equivalence assumption and

treat the EPP as representing the true output quality, then the optimal parent value maximising

allocation in state q is given by,

9p(q,'r) (3.35)

subject to the constraint that t + Y^iti(%) + (i) = r . Defining ti = ti(i),(r ==]>]; U(*)

we can decompose this to obtain,

9p(q,T) = (3.36)

As gp is input monotonic and are independent for a given I, r resource allocation qp is

maximised by maximising % and independently. Thus,

9p(q,i') = max gp(maxgz(q,tz),maxgr(q,tr);() (3.37)
tf tr

= max gp(g*(q,t(),g;(q,4);() (3.38)
t,ti,tr>0

Hence, given optimal quality functions for its children, the optimal parent allocation can be

computed by maximising over the total allocations to itself and its immediate children. Applying

this process recursively to the children's quality functions, we see that an optimal quality

function can be computed by recursive, dynamic programming type, bottom-up construction

of optimal quality functions from the input qualities. In this way a compact representation of the

optimal allocation policy can be generated by computing the optimal composite performance

profile for each quality function offline and recording for each parent time allocation which

child allocations generate the optimal parent quality. Then, for any deadline time the optimal

allocation can be generated directly by traversing down this tree of optimal policies. An optimal

macro execution schedule can be generated from this allocation by simply ensuring that child

quahty functions are executed before parent ones.

Zilberstein and Russell (1996) go on to show how the method can be extended to non-

tree structured functional dependencies. Specifically, they consider the case when a quality

function occurs in more than one parent function so the functional dependencies form a directed

acyclic graph (DAG). They present two algorithms for this case which work by iteratively

refining the repeated functions allocation and then using local-compilation to optimise the

other allocations. The CONDITIONING-ALLOCATION guarantees optimal allocations but has

^The proof generalises readily to higher degrees.

C:HL4j?niR 3. DESiGMNG DRLmERATTVE CWY-IJGVIi/lCZEjVTlS 53

exponential complexity, alternatively the TRADING-ALLOCATION algorithm is sub-optimal but

polynomial time.

Garvey et al. (Garvey, Humphrey, and Lesser 1994; Garvey and Lesser 1993) address essentially

the same problem in a multiple-methods framework in their "design-to-time" scheduling system.

In this case however the possible functions and interdependences are severely limited such that;

(1) the quality functions can only be maximum or minimum, and (2) the only interdependencies

allowed are enables and hinders constraints. Enables constraints require some of a maximising

parents child methods (macros) be run in a certain order. Hinders constraints reduce the quality

of result produced and/or increase the run-time of one method when the lowest quality method

is used to compute the result of another. As maximum, minimum and hinders are all input

monotonic local-compilation can be used to compute an optimal parent performance profile and

child allocation. Garvey, Humphrey, and Lesser (1994) describe a branch and bound method to

efficiently perform this computation. As they do not affect the allocation process the enables

constraints are accounted for at the scheduling stage. Garvey et al. then go on to show how this

approach can be extended to the case when some macros must finish before known deadlines.

3.4 Summary

This chapter has discussed the techniques which can be used to develop deliberative Al

components which are suitable for on-line contexts. Two main approaches were presented,

bounded deliberation and the more flexible and popular dynamic deliberation. Dynamic

deliberation breaks the real-time deliberative component into two parts, the base-level solver

and the meta-controller. Two granularities of base-level were identified, strategic (macro) and

structural, which influence the type of meta-controller required. It was shown that in the most

general case both methods require the meta-controller to solve a MDP. In general this MDP

will be too hard to solve directly so simplifying assumptions must be made, such as separable

time cost and subjective value equivalence. It was shown that subjective value distributions have

many useful properties which can make meta-control simpler by allowing the development of

tractable EVC approximations. Based upon these assumptions the M E T A - G R E E D Y algorithm

was developed and shown to be optimal in a wide variety of meta-control situations.

Chapter 4

Decision making and value estimation

This chapter represents the start of the actual implementation of dynamic deliberative on-line

agents based upon the ideas discussed in the previous chapters. Specifically, this chapter is

concerned with the design and implementation of the base-level solver. This is the part of

the agent which solves the core on-line planning problem of using the available information

to decide which physical action to execute next. In terms of the incremental decision model

of Section 1.2 the base-level solver performs step (6) of Figure 1.2. Thus, this chapter will

not be concerned directly with computational resource management, nor how the agent decides

what information to gather (steps (2)-(5) of Figure 1.2), only how to make good decisions w.r.t.

whatever information the agent currently has available.

Of course, the base-level solver must integrate usefully into the larger dynamic deliberation

system so the wider resource management issues cannot be totally ignored. As discussed

in Section 3.2.1 the usefulness of the base-level solver in a dynamic deliberation system depends

on, (1) its ability to produce near bounded-optimal solutions over a range of resource allocations,

(2) the difficulty of its associated meta-control problem. Thus, we should attempt to ensure the

base-level solver makes the best decisions possible for a range of available information qualities

and is structured in such as way as to ease the meta-control problem.

4.1 Explicitly rational base-level solvers

As discussed in Section 3.3.5 base-level solvers which make rational decisions, as well as being

desirable from a decision theoretic point of view, are particularly well suited to efficient value-

estimate based meta-control using the META-GREEDY algorithm and EVC approximations.

Meta-control can be further simplified if the base-level solver is explicitly rational.

Definition 4.1 (Explicitly Rational). An explicitly rational system explicitly calculates a set of

local value estimates, V, and makes decisions by greedily maximising this estimated value.

54

CHAPTER4. 55

Explicit rationality saves the meta-controller having to learn and implement a function mapping

from the agent's internal state to the implied value estimates. It is also useful for macro-control

(Section 3.3.11) as the value-estimates can be used as a direct measure of solution quality,

simplifying performance profile construction and macro monitoring.

Thus, we restrict attention to explicitly rational base-levels. This is not as great a restriction as

would first appear, and in fact covers a large range of current agent design possibilities ranging

from reactive systems based upon pre-complied value estimates, such as potential field methods

and utility based behaviour arbitrators (Rosenblatt 2000) through systems which learn value

estimates, such as temporal difference (Sutton 1988) and Q-Leaming (Watkins 1989) to highly

deliberative systems such as pure planning systems which compute value estimates on-line. In

fact the only designs specifically excluded are systems with hardwired state—taction mappings.

In the terminology of Section 3.3.6 an explicitly rational agent is locally rational and makes the

subjective value assumption. Clearly, the performance of such an agent depends critically on

the accuracy of its value estimates. Hence, the main design effort when constructing explicitly

rational agents goes into ensuring its value estimate generation system produces the most

accurate estimates possible. Thus, the main focus of this chapter is on methods and algorithms

for efficiently generating value estimates.

4.1.1 The full-observability assumption

There is a slight change in terminology in this chapter, where values, VQ-, and value estimates,

are defined without reference to the agent's internal state, b, but as functions of the external state,

X, alone. This change has been made for the sake of simplicity and is equivalent to assuming

full-observability. In a Markov domain the current state contains all the information necessary

to predict the future effects of the agent's actions. Thus, if the agent's policy is modelled as

a simple state—>acdon mapping, so 7r{fy(x),b) = then the value function depends on

the state and policy alone, i.e. %r(a;, 6) = Vn{x). Hence, defining K- in terms of x alone is

equivalent to assuming the agent's observations give it complete and correct information about

the current external state, i.e. fy{x) — x, so it can implement a state dependent policy. Further,

it follows from Wittle's principle of irrelevant information (Whittle 1983, Theorem 3.1) that the

optimal policy, vr*, is a function of x alone. So, in the optimal case, restricting the policy in this

way has no adverse effect. Notice, that this assumption also implies that x contains complete

information about the current objective function R.

4.1.2 Approximating the value function

By assumption, our computationally limited agent cannot represent or compute the optimal value

function. Therefore the value estimates used by our explicitly rational agent must be based upon

some simpler approximation to the true value where unimportant distinctions are ignored. In the

(ZFf/LPiisj?'*. 56

y (x Estimate

Mapping to

Feature

Space

FIGURE 4 . 1 : The complicated value function defined over state space, Y(x), is approximated
by mapping it to a (usually smaller) feature space where the value function can be more simply
represented F(h(x)). A side-effect of this mapping is that errors are introduced into the value

estimates. (Note, this is a type of state-aggregation abstraction).

most general terms, this simplification is achieved by decomposing the value function defined

over state space, V{x) —̂ R, into two parts;

(1) one or more feature detectors, {hi, /i2, • • •, hn}, which map from state space to a usually

smaller feature space, h G H, and

(2) a simple estimation function, F(h(a:)) = V{hi{x), h2{x),..., hn{x)), which combines

the feature detectors output to produce the desired value estimate.

Good examples of the feature detectors used in search algorithms are; state space connectivity,

heuristic estimates and lower bounds. Their associated estimation functions are the value

propagation functions such as the Bellman equations. Notice, that the distinction between a

feature detector and estimation function is somewhat arbitrary as in many cases a value estimate

for one state may be used as an input feature for another. This decomposition is illustrated

in Figure 4.1. This figure also emphasises that, in general, the estimation function produces

approximate estimates which include some error component. Special care may be necessary to

account for these errors and stop them being magnified if one value estimate is used as an input

feature for computing another.

Clearly, the correct choice of feature detectors and value estimation function are crucial to

minimising both the error of the value estimates and their cost of computation. The feature

space should preserve only the minimal amount of information necessary for the required re-

construction accuracy, and the estimate function should use the information provided by the

feature detectors to produce the best estimates it can given its resource limits.

For a general function approximation problem defining good features is something of an art,

termed feature engineering in the machine learning literature. However, for the special case of

value function estimation we can use prior knowledge of the problem to identify good candidate

features. For example, the state space connectivity itself is generally a good feature as the value

of one state is strongly dependent on the values of its neighbours. Alternatively we can produce

CHAPTERj. 57

features by relaxing (Pearl 1984, Ch. 4) the original state space to ignore unimportant details

such as distant obstacles in navigation problems, or deleted pre-conditions in STRIPS (Fikes

and Nilsson 1993) style planning (Bonet and Geffner 1999). The relaxed state space may be the

feature space itself or may be used to define other features, such as bounds on the true value.

State space relaxation and value bounds are commonly used for value function approximation in

search based planning systems. Another general method of defining feature detectors is to define

a set of basis functions (the feature detectors) which map the state space to some vector space

where the value function is given in some simple functional form; such a weighted sum, V{x) ~

w^.h(x). This is the approach usually taken to develop tractable value function approximations

in reinforcement learning systems.

Given a set of feature detectors there are two main approaches to developing a value estimation

function;

(1) Learning Approach. Treat computing F(h(x)) as an inductive inference problem and

use machine learning techniques to learn an approximation based upon some training set.

(2) Inference Approach. Use prior information about the properties of the value function

and the feature vectors to define a procedure by which we can infer a value estimate from

the feature values.

Of course, when estimates are themselves features these techniques may be combined to

construct much more powerful hybrid estimation techniques. For example prior information

may be used to constrain the types of learnt estimate function, or leamt estimates may be used

as input features for an estimate function based upon prior information.

For value estimation prior knowledge of the agent's policy is particularly powerful because

it allows us to impose constraints on the relationship between value estimates. Propagation or

inference algorithms based upon these constraints can then be used to define the value estimation

function. Indeed, as Mayer (1994) points out identification of such constraints (or domain

invariants) and efficient propagation techniques is the key step in the development of many

popular value estimation (and problem solving) algorithms. For example, if the agent uses a

greedy policy then the value of one state must obey the Bellman equation with respect to its

neighbours, i.e. V{x) = max„[r(a;,«) + V{x')]. Thus, given a feature set which includes the

local connectivity of a state and estimates for the value of some of these states, we can use

the Bellman equation to propagate refined estimates to other states. Additional information

about the feature set can be used to further refine the estimation process. For example the A*

and branch and bound algorithms use the knowledge that estimates are lower bounds to avoid

having to compute and propagate estimates which can have no effect on the current state's value.

Prior knowledge can be a powerful tool in designing simple and efficient value estimate

functions, and hence powerful explicitly rational agents. Notice however that most of the

existing techniques take no account of the errors in the value estimates they rely on and provide

CHAPTER4. 58

no indication of the errors in their results. The main thrust of this section of the thesis is to

investigate the usefulness of providing such error management using probabilistic inference

techniques. The hope is that this will improve the agent's performance in two ways,

1. it will provide potentially better value estimates from the same feature set, as probabilistic

inference allows us to represent more complex constraints, and

2. the probabilistic value estimates and information about the effects of the possible

refinements can be used directly for value-estimate based meta-control purposes.

4.1.3 The semantics of the value estimate

Irrespective of the approach used to compute the value estimates we must be clear about what

exactly the returned value means. In Section 2.2.3 Def. 2.3 the value of a situation is defined

as the "total objective value accumulated by the future trajectory induced by the poHcy" from

the situation. Thus a value is only defined with respect to a given fixed policy and one must be

careful to always state the policy from which the value is derived.

That values only have meaning w.r.t. a given policy poses something of a problem when

designing an explicitly rational agent. The rationality of its action selections is based upon

the assumption that its value estimates are best effort approximations to the true value of the

action to the agent. Thus, the value we need to estimate, K-, depends on the agent policy, TT,

which for an explicitly rational agent is a greedy policy, TTgiV), w.r.t. the approximate value

function V. Hence to justify the rationality of the greedy policy requires y %

As mentioned earlier (Section 3.3.6) this puts us in something of a "chicken and egg" situation

where we need to know the agent policy to define the values upon which the explicitly rational

agent's policy is based.

Further, it is a fundamental theorem of dynamic programming that the optimal value function,

V*, is the only one whose values are correct w.r.t. greedy action selections, i.e. ^ if

and only ifV = V*. Thus, if our agent is explicitly rational w.r.t. its value function then, unless

it is optimal, this value function cannot be correct.

Thus, not only is a locally rational agent's best value function circularly defined in terms of itself

but (unless the agent is optimal) it is a misleading representation of the agent's true future value.

By assumption we are only concerned with bounded rational agents whose resource limitations

are such that they cannot implement the optimal value function so we are forced to accept the

fact that the agent's value function will be misleading, all we can try and do is ensure this does

not lead to catastrophic mistakes.

How to avoid catastrophic mistakes is unclear but ensuring the estimated value function is as

close as possible to the agent's true one seems like a good start. Too optimistic a value function

may require our resource-limited agent to solve problems which are too hard for it, whereas

a pessimistic one may lead to lost opportunities where the agent could perform better than

predicted. For example, consider a chess position where a queen sacrifice leads to a complex

but guaranteed win in, say, 8 moves. This knowledge may be worse than useless to a resource

limited agent if it makes a mistake a few moves into the sequence because it can only look 4

moves ahead and loses the game. In the reverse situation a pessimistic value function may lead

the agent to accept a draw in a potentially win-able situation, because the value function assumes

it cannot identify the winning line.

Breaking the circular dependency is easier, we simply design our agent so it computes value

estimates based upon some policy, TT, which we believe is sufficiently close to the agent's true

policy to ensure adequate performance, i.e. such that T4 ~ Kr- This approximate policy can

then be used as prior information to define the value constraints in an inference based value

estimation process. Careful choice of the approximate policy allows us to construct high quality

value estimates for low computational cost. As we will see later (Section 4.4.1) this is the

approach used in RTA*, MFC and A-(3 search, which assume a policy consisting of greedy

action selection inside some local region of state space and some default policy outside this

region.

An approximate policy can also be used to compute the value estimates used to train a learnt

approximation. However, a more popular alternative is to simultaneously learn the approximate

policy and its associated value function in the light of the agent's experience in (a model of) its

environment using reinforcement learning (RL) techniques (Sutton and Barto 1998). Providing,

the agent makes locally rational action selections and the value function approximation system

meets certain convergence requirements, it can be shown (Gordon 1995) that this technique will

converge towards a policy which is within some constant factor of the optimal value function,

where the factor is proportional to the error induced by the approximation.

4.2 Incremental search/Predictive control

As mentioned above the correct choice of feature detectors and value estimation function are

crucial to the performance of an explicitly rational agent. In particular for a dynamic deliberative

agent we require the value estimation process to be dynamic so the meta-controller can trade-off

computational effort against value estimate quality. One way of implementing this trade-off is to

define the feature set such that the agent can compute more and/or higher quality features with

additional computational effort. If the value estimation function is defined so it can utilise the

additional features then the meta-controller can control computational effort by controlling the

feature generation process.

One way of providing such an adjustable feature set is by providing the agent with an

incremental search capability. Incremental search is based fundamentally on the assumption

that the planning problem is local such that;

(Tff/LPTER 4. j]US(:KSfC%\r7kL4JK]7V(3y4J\0D Td4jL[;ZrE;S]rf&f/LTTC)ff (X)

4 -
Current
St | te

-Unexplored
Problem—Space

Local
• Explored
Problem—Space

I I I I I Goall • • • • • •

F I G U R E 4 . 2 : In a local domain the agent can decide what to do next based upon only the
information contained in the local region about its current state. Hence only this local region

needs to be explored.

i) when deciding what to do next, the quality of the eventual decision is dominated by a few

relevant state-space features, and

ii) the most relevant features are found within the local neighbourhood of the current state,

as shown in Figure 4.2.

Thus, for a local problem the most important features for decision making (and hence value

estimation) can be obtained easily, and more importantly incrementally, by limited forward

search through the local state space. Route finding in a maze is an example of a deliberately

non-local problem where local information is of little use in finding a good solution. Navigation

in obstacle free flat space is a example of a highly local problem as local information about the

direction an action moves us is very useful in finding a good path to the goal.

An incremental search algorithm relies on two important types of feature,

1. The local connectivity of the state space, represented as a local state space graph. This

is constructed incrementally using the agent's world model to identify the immediate

neighbours of any state.

2. Estimates of relevant state-space features for the states in the local state space, represented

as labels on the nodes and arcs of the local state space graph.

Thus, the input feature set for the value estimator in an incremental search decision making

system is a labelled graph, 7, as shown in Figure 4.3, consisting of sets of states labelled with

their local state features and actions transitioning between states labelled with their features.

For the problems we are interested in the relevant state-space features will generally be action

rewards and state future value estimates, though in general any local state or action feature could

be used. Given these feature detectors the basic operations of an incremental search algorithm

(and the corresponding steps in the generic incremental decision algorithm of Figure 1.2) are,

61

un m

un ui

Frontier, 7 /

FIGURE 4.3; An example labelled local search space, 7 , for input to a value estimator, V('-Y).

This graph consists of a set of states with distinguished initial state zo, represented as nodes
labelled with their local feature sets, Ao(-), hi{-),..and actions represented as arcs between
nodes also labelled with their local feature sets (in this case the transitions immediate reward,
r(x, u)). 7/ is the set of frontier states who have not yet been expanded to add their neighbours

to 7 .

1. Output Prediction. Incrementally generate a labelled local search space graph, 7. (steps

(2)-(5) of Figure 1.2)

2. Control Calculation. Compute value estimates for a range of possible policies based

upon this local search space graph, y(7r|'y) = 14(7), and select the best for execution,

a = argmax^ V{'K\'y), (step (6) of Figure 1.2)

3. Control and Feedback. Execute some initial segment of the chosen policy (usually just

the first action) (step (7) of Figure 1.2) and observe the output to identify the new current

state (step (1)). Then repeat.

Additionally, incremental search may include an adaptation phase after feedback where the

prediction model, i.e. world model and value estimate function, are modified in the light

of experience to more closely represent the current problem or improve problem solving

performance (step (8) of Figure 1.2). One simple method of adaptation which can result in

significant efficiency gains is to retain the current local search space for later problems.

The basic incremental search algorithm is illustrated in Figure 4.4. The incremental aspect

comes partly from the fact that the overall on-line planning problem is solved one action at

a time, and partly because the local search space is incrementally extended to improve the

information upon which the value estimates are based. Simply put, incremental search uses

partial information about the local region around the current state extracted from an internal

world model and local feature detectors to infer the required value function estimates.

Of course, few problems are truly local, and those that are would probably be better solved

by a reactive controller. However, many problems exhibit some degree of locality, and others

can be made so by careful choice of feature detectors. Locality can arise when the problem

is episodic in some fashion, so actions before the start of the next episode have little effect

on later decisions. Uncertainty about the future also tends to increase a problems locality as

the long term effects of early decisions get "smeared out" by the domain uncertainties so only

62

7
for first

sub-problem

\ 7
r for second

J sub-problem

1 ^
r for third

J sub-problem

Time

FIGURE 4 . 4 : An example of the general incremental search process showing how the local
region of state space explored, 7, is incrementally extended as needed to solve each consecutive
sub-problem with only the initial portion of any local policy executed before feedback and

control re-computation.

immediate consequences are important (this is one justification for the discount factor used in

many MDP formulations (Puterman 1994)). A non-local problem can be made more local by

carefully choosing the feature detectors to account for the most important non-local effects. For

example, this can be achieved by computing state value estimates in a relaxed state space were

only the most important non-local effects are modelled. This approach to improving problem

locality is used in many incremental search algorithms. Finally, simply treating a problem as

local tends to increase its locality as later decisions are less relevant to the current one because

they can still be changed.

Given a local problem incremental search has a number of advantages which have made it

popular for solving complex on-line control problems,

• Intuitively it focuses the control effort on the nearby problem where the information is

more accurate, leaving until later the more uncertain future problems.

• As the policy is only computed for a small finite region of state space, general optimisation

techniques and criteria can be used for control calculation, allowing it to be applied to

arbitrarily complex non-linear control problems.

• Feedback provides robustness to external disturbances and model inaccuracies.

• Simple integration of on-line learning techniques to correct model inaccuracies by

modifying the predictive world model or value estimate functions parameters.

• Time vs. Space trade-off. The quality of the value estimates can be increased using either

more time to increase the size of the local search space, or more space to store more

accurate local feature detectors, as shown in Figure 4.5.

Incremental search techniques have been widely studied in the on-line planning literature under

a range of different names, such as real-time search (Korf 1990), on-line search (Koenig et al.

CHAfTER4. DECKWONA&UaMtr/UWDV&LUEESTm&MYON 63

Feature Increasing V
accuracy Accuracy

Local Search Size

FIGURE 4.5: Space Time trade-off in incremental search.

1997) and agent-centred search (Koenig 2001). The best known version of incremental search

is Korf's real time A* (RTA*) (Korf 1990), variants of which have been applied to a wide

range of on-line problems including; STRIPS planning (Bonet et al. 1997), moving-target

search (Koenig and Simmons 1995), robotic exploration (Thrun et al. 1998), and autonomous

navigation in unknown terrain (Stentz and Hebert 1995). Incremental search is also widely

studied in game-playing systems, where it forms the basis of the extremely successful mini-max

search technique (Russell and Norvig 1995, Ch. 5). A variant of incremental search called model

predictive control (MFC) or receding horizon control (RHC) has also recently become popular

for the optimal control of (continuous) non-linear systems (Garcia, Prett, and Morari 1989;

Camacho, Bordons, and Johnson 1999; Mayne, Rawlings, Rao, and Scokaert 2000). Finally, the

use of incremental search as a basis for efficient meta-control has been studied in (Russell and

Wefald 1989; Hansson and Mayer 1989; Pemberton 1995; Baum and Smith 1997).

4.3 Value estimation in incremental search

Implementation of a decision making system based upon incremental search consists of, (i)

designing the world model and local feature detector set, (ii) designing the control calculation

system, and (iii) designing the local search space construction meta-controller. In this

dissertation it is assumed that the world model and local feature detector have already been

provided as part of the problem description. This chapter is concerned with the control

calculation or decision making system. Meta-controller design is addressed in subsequent

chapters.

The problem the control calculation system must solve is what Pemberton (1995, p. 24) calls

the general incremental decision problem.

Definition 4.2 (General incremental decision problem). Given a labelled local state graph, 7,

choose the child of the root state, XQ, whose reward when summed with the rewards of a further

sequence of incremental decisions is maximal.

The approach taken in this dissertation to solving this problem is to estimate and then maximise

the value of this sequence of action decisions, K-. As mentioned above there are three main ways

to construct value estimators, either learn it from examples of the agent's supposed performance.

CHAPTER*. 64

or use prior knowledge (about the agent's actions or the feature detectors) to design an inference

mechanism, or to combine these methods into a hybrid approach which both learns state value

estimates and uses prior knowledge to infer improved value estimates from the learnt ones. The

remainder of this section discusses each of these value estimate construction methods in turn.

4.3.1 Simplifying assumptions

To simplify the value estimation problem we make the following assumptions,

1. The incremental search algorithm will only execute ihe, first action of any control policy,

hence in current state XQ only the value estimates for the root's children, V{xo,ui),

V{XQ, U2), etc., need be computed, where V(XQ,U) = T4,7R(A;O)-

2. The agent's world model is accurate and correct, and its local feature detector for actions

includes (an estimate of) the actions immediate reward, r{x,u).

3. The optimal value function, V*, is well-defined and finite for all states. Specifically, we

restrict attention to multiple goal shortest path problems where;

(a) all transition rewards are bounded negative, i.e. r{x,u) < k < 0, so the state graph

has no non-negative reward cycles and V* < 00,

(b) there are a set of terminal (or goal) states\ at least one of which is reachable

from any state, so optimal trajectories will eventually terminate and V*> —00.

The class of multi-goal shortest path problems is broader than it first appears as any problem with

bounded finite transition rewards, i.e. \r(x,u)\ < k < 00, and no non-negative reward cycles

can be transformed into this form without changing the optimal policy by simply subtracting k

from every transition reward so r'{x, u) = r{x, u) — k. Note, an important side-effect of these

assumptions is that a maximal reward path between any two nodes cannot contain a cycle, hence

any optimal policy forms a forest over state space/ with each tree rooted in a goal state.

4.4 Inference approaches

4.4.1 The MINIMIN estimate

MINIMIN is the classic and simplest incremental search algorithm forming the basis for Korf's

(1990) RTA* algorithm. The fundamental assumption underlying the MINIMIN algorithm is

that, given a local search space 7 the agent's true policy, vr, can be approximated by a policy, TT*,

which maximises the combined value of its trajectory through the local search space, 7, and the

'Note, any state which has a zero cost self-transition is treated as a terminal state.
Hf we allowed more than one optimal act per state then this would be a DAG.

estimated value of some default policy, V^o, from the frontier of the local search space. We can

see this approximation policy as a type of greedy Bayes policy with respect to the local search

space transition costs and the frontier value estimates. The value of TT* is given by,

%r(3:)-%r;,7ro(3:) = n i^[A(T (y ; a ;) ,0 :n- l)+%ro (3 :n)] , (4-1)
IT'

rm-l
max

T=O

(42)

subject to the constraints that; XQ = x, TT' is such that the trajectory always remains within 7,

and XN G 7/ where 7/ is the set of frontier states which includes any terminal states in 7. As

an optimal policy cannot contain cycles it is guaranteed to pass through a frontier or terminal

state in finite time for a finite 7, so Vt^{X) is always well-defined. This value equation can be

re-written in recursive form to give.

= max r(a;,i/) -1- %r.,no(yz(%,'%)) (43)

subject to the boundary condition that = V^o(x) for all states x € 7/. This is just the

normal optimal DP backup equation (2.10) restricted to the local search space 7 with terminal

costs given by V^o.

As the local search space increases in size then the MINIMIN value estimate will tend

towards the optimal value V-̂ *, with the limiting case being when 7 is the entire state space.

Thus, we can treat MINIMIN as either computing the value of the policy [7r*,7r°] or as an

approximation for IT*.

4.4.1.1 Implementation issues

To use MINIMIN for a particular problem we require that a state's local feature detectors provide

an estimate of the state's future value under the default policy, i.e. Ao(a:)%%ro(a;).

The child value estimates, V(xo, u), can be computed efficiently by noting that the value of any

state, X, under [tt*, 7r°] consists of two parts, the value of the best trajectory to a frontier node

Xf, and the value from that node Vj^o{xf). Thus (4.1) becomes,

= inax max i?(r(7r'; x), 0:n—1)-h K-o(^/)
•K',S.t. X„=Xf

(4.4)

= maxrr*(z,Ua;J + %ro(z/)l, (4.5)
S/G7/

where r*{x, Ux^) is the value of the maximal reward path (MRP) from xtoxf. Thus the interior

of the local search space can be abstracted away by treating the choices from x as being between

a set of abstract actions, each of which transitions directly to a frontier node, XF, for an

immediate reward, r*{x,Uxf). As a maximal reward path cannot contain cycles, the set of

maximal reward paths from x to -jf must form a tree, which can be computed efficiently using

(ZH/uPTTEft'*. 66

u f s frontier u f s lost W s frontier
MRP's

FIGURE 4.6; This diagram shows how the root's maximum reward path (MRP) tree can be
used to split the local search space into disjoint sub-trees. The dark shaded region also shows
how this decomposition may not include all the MRPs (and frontier states) reachable after u

(potentially raising u's value estimate).

Djkstra's algorithm. Hence, x's MINIMIN value can be computed without computing the value

of any other states in 7.

By definition, restricting attention to paths in a sub-tree of the roots maximal reward path tree

cannot exclude the maximal reward path from the best sub-tree. Thus, only frontier nodes in a

child's sub-tree of the root's MRP tree need be considered to guarantee the best child's value

estimate is correct, though, as shown in Figure 4.6, this may result in pessimistic estimates for

the other children. This can represent a significant saving in computational effort as each frontier

state need only be considered once and the root's maximal reward path tree can be constructed

during 7's construction.

4.5 Learning approaches

Learning approaches use training information about the feature—rvalue mapping to learn a value

estimate function. Therefore in this section we assume we have available from somewhere

a large set of training examples, D, consisting of mappings from 7̂ to child value estimates

{T4(a;i, ui), VTt(xi,U2),...}, where Vjf(xi,u) indicates that the estimates have been computed

w.r.t. some training policy TT, most likely the optimal policy TT*.

4.5.1 The gold standard estimate (GSE)

The simplest and most direct method for learning the value estimates is to treat the labelled

local search space graph, 7, as a single input feature for the value estimator. Generally 7 will

not map to a unique set of child value estimates. Given this uncertainty normal decision theoretic

arguments prove that the best possible estimate is the expected value given 7 and the distribution

of value estimates the agent is likely to encounter,

V(u\'y) = E { F (U) | 7 , TT} = ^ I ; P r (1 4 (U) = T) | 7 , TT) = ^ P r (X | 7 , TT), (4.6)

where Vnix, u) is the value to the agent of {x, u) and Pr(z|'y, TT) is the probability of being in

state X given the agent has generated feature vector 7. The functional relationship, u) = v,

enables the change of variable from v to x. Following Mayer (1994), we call this the

gold standard estimate as it is the gold standard by which other estimates will be judged.

Unfortunately, as the true distribution Pr(z|'y, tt) and VT^{X, U) are generally unknown we must

use the training set to compute the sample GSE,

y('u|'y)%iE{14(T/)|'y,D}= ^ (4.7)

This is the best value estimate possible given only the information contained in the training set,

D, i.e. no additional prior information.

4.5.1.1 Implementation issues

V{u\'^) can be computed directly using (4.7) and stored in a lookup-table. Unfortunately, the

size of this table is proportional to the number of possible feature vectors. This grows at an

exponential rate with respect to the number of states in 7, i.e. O where n is

the maximum number of states in 7, % are the number of distinct feature values a state

and action can have respectively and \U\ is the number of actions per state. Notice, that the

base of this exponential is usually quite large, e.g. for a problem with only, %=4, 2, |ZY|=4

then %i;!y^=64 giving 1073741824 possible feature vectors for 7 with 5 states. Fortunately,

feature values are usually highly correlated (which is why inference approaches work) so many

of these combinations will not occur in practise. However, the GSE still presents a significant

computational burden both for the agent to simply store the look-up table and for the designer

to generate enough training examples to fill it. For reliable estimates at least one, but preferably

>10, training examples are required per table entry.

One way to reduce this burden at the expense of reduced estimate accuracy is to only use 7's

most relevant features to compute the GSE. For a pure learning solution the relevant features

can be found using machine learning techniques, such as independent/principle components

analysis (ICA/PCA) (Hyvarinen, Karhunen, and Oja 2001) or ARD (Neal 1995). Alternatively,

we can use prior knowledge to identify the relevant features to give a hybrid feature estimator.

The MINIMIN analysis of Section 4.4.1.1 suggests that one such set of relevant features are

frontier states feature values, sub-tree allocations and maximum reward path values from the

root. Considering only this information reduces the lookup table size to 0({vxvr)'^f), where

Vr is the number of distinct maximum reward path values and Uf is the number of frontier

states. This can be a significant complexity reduction. This value estimate is called GSE-frontier

(GSE-F).

CHAfTERj. 68

4.5.2 The Bayesian Problem Solver (BPS) estimates

The GSE provides the best possible value estimate, but is tremendously inefficient in terms of

the training effort and run-time storage required for V{u\^). In fact, the results in Section 4.15

show for the toy problems considered, the GSE requires only on the order of 10 states in 7

to obtain near perfect performance. Unfortunately, obtaining this performance requires look-

up tables 100s of mega-bytes in size. One source of complexity in the GSE is computing and

storing the joint conditional probability table (CPT), Pr(V^(it)=:t;|7,^), needed to compute

E {V{u) I7, TT}. Thus one approach to reducing the GSEs complexity is to develop more compact

and efficient ways of using this CPT.

One standard way of simplifying a CPT is to structure it as a Bayesian network (BN) (Pearl

1988), where any independences between the CPT's component variables are used to decompose

it into intersecting conditionally independent sub-sets of variables, called cliques. This

decomposition allows the probability of a partial assignment to CPT variables to be found by

marginalising over, i.e. integrating out, the the unknown variables in each clique independently.

For example, if the global CPT is decomposed into three cliques as shown in Figure 4.7(b) then

the probability of a partial assignment, e, is given by,

= ^ P r ((T , e) = ^ P r ((7 o u i u 2) , (4.8)

^ ^Pr(o-2|(Toui)Pr(cri|cro)Pr(o-o), (4.9)

= ^Pr(cr2|<7on2)Pr(cri|(7oni)Pr((7o), (4.10)
{crie}

= ^ Pr(cro) ^ Pr(cr2|cron2) ^ Pr(<7ikoni), (4.11)
{CTo:eo} {0-2:62,0-002} {o-i:ei,o-oni}

where, cr is a complete assignment, <7, is the projection of a onto the variables in clique i,

(JiujjO'inj are respectively the projection of a onto the union and intersection of cliques i and j ,

and {ffs'.e} denotes the set of all possible assignments to set s such that partial assignment e is

true. This is essentially the junction tree algorithm (Pearl 1988) for inference in BN.

This approach of decomposing FT:{V{U)\^I,A) into a BN is the method used in Hansson

and Mayer's (1989) Bayesian Problem Solver (BPS), which has been applied to single agent

search (Mayer 1994) and scheduling problems (Hansson and Mayer 1994; Hansson 1998). The

advantage of this decomposition is that the total size of the clique CPTs is much less than the

full CPT, i.e. C'(|c|(t>c^)"=) where |c| is the number of distinct clique types, is the number

of values for each clique variable and Uc is the number of variables in the clique. Notice, this is

an exponential size reduction, potentially reducing both the training effort and run-time storage

requirements by many orders of magnitude. For example in the case discussed for the GSE where

each state has 64 values, decomposing a 5 state 7 into 2 cliques of 3 states with a single state

overlap reduces the storage to 2 * 64^ = 52488, a saving of over 20,000 times.

CH/UPTIENR 4. T/AJLlJIijSSrrZAi/lT'JKZWXf 69

Co

Cl,l C'l.g (^2,1 C 2 , 2

(a)

XL

Xo

fb^

FIGURE 4 . 7 : BPS(2)'S decomposition of 7 into cliques. Part (a) shows the grouping of nodes
into local cliques where all nodes are within 2 arcs of each other (or equivalently within 1 arc
of the seed node), part (b) shows the resulting CPT decomposition into cliques and separators

with redundant cliques removed.

4.5.3 Implementation issues

To construct a BN decomposition of Pr(F(w) I7, A) when 7 is known with certainty we need to

introduce some additional explanatory variables to represent the underlying hidden local world

state and capture the dependencies between cliques. As the quantities we wish to estimate

are the state values, V{x), these are the obvious candidates for the explanatory variables.

Further, the functional dependence between V{x) and x's successor values ensure V{x) is

conditionally independent of all other states values (though not necessarily their feature values).

The roots child action value distributions can now be found using Bayes rule, Pr(F(M)|7, tt) =

Pr(V('u),7|7r)/Pr(7|7r), where Pr('l/(M), 7|7r) can be computed using (4.11) and Pr(7|7r) is a

normalising constant found by marginalisation, i.e. Ylv Pr(y(u) = v, 7|7r).

To construct the cliques we again invoke the locality assumption, which says that the most

important influences on a state value are usually those nearest to it, to limit cliques to locally

connected sub-sets of 7. Hansson and Mayer define a range of possible decompositions

and associated estimation functions, BPS(l), BPS(2),..., BPS(d), based upon the clique size.

Specifically, BPS(d) assumes that the variables associated with state x are conditionally

independent given all states within d actions of x. Thus, all the variables within d actions of

x form a clique centred on x. Figure 4.7(a) shows Hansson and Mayer's preferred BPS(2) clique

decomposition for a tree structured 7. Notice, how adjacent cliques which are sub-sets of one

another are collapsed into a single clique in Figure 4.7(b).

Finally, for efficiency two additional simplifying assumptions are made in BPS. The first is

position-independence which assumes all cliques have the same CPT. This results in a further

reduction in storage and training effort as only one clique CPT need be learnt which is of size

0{{vcv)^'')- The second assumption is that 7 is tree structured. This assumption is necessary

as the complexity of exact inference in a BN is proportional to the number of variables in the

maximal cut-set of the network (Pearl 1988). For a tree this is simply the size of the largest

CZffduPITELR 4. \SiI,[/E^E;S]rDVf/l7T(:W\r 1%)

clique, however for a graph it may be much larger (up to the size of the complete graph in a fully

connected network). Thus, the tree restriction ensures the complexity of computing the BPS

estimate is proportional to the size of 7. A tree version of 7 is constructed in BPS by forward

search from the root state with states reached by more than one path duplicated. Note, this may

introduce errors as two tree nodes which represent the same state may be assigned different

values, and the tree may be exponentially larger than the graph (offsetting any reduction in

computational complexity).

4.6 Hybrid approaches

Hybrid approaches combine aspects of both learning and inference. Learning is used to construct

local state value estimators, V{x), and prior information used to construct inference techniques

to combine the local state value estimates to produce improved global estimates. Hybrid

methods consist of two sub-components,

1. Local state value estimator. This is usually a simple learnt feature—rvalue estimate

mapping, but may include some inference aspects.

2. Combining, global state value estimator. This is usually based upon prior information

about the dependencies between state values, but may include some learning to compen-

sate for biases in the learnt estimates.

As these two components are modular with respect to each other we discuss methods of

implementing each in turn next.

Note, technically BPS is a hybrid method as it uses learning to construct the clique CPTs (which

we can think of as probabilistic local value estimators) and prior information (in the form of the

degree of locality assumed) to define the cliques inter-dependencies and hence the method used

to combine local clique CPTs to compute the improved global value estimates. Also MINIMIN is

easily hybridised using learnt functions for the frontier state's future value estimates so (x) =

V{x\'y). In essence this hybrid, called M M - C A L , calibrates MINLMLN's frontier value estimates

using the training examples to remove any bias and hopefully improve its performance.

4.7 Generating local state value estimates

As discussed earlier (Section 4.1.2) we are primarily interested in probabilistic methods for

combining the value estimates, so we treat the state V{x) learning problem as one of learning

the state's value distribution, P r (V (x) | 7) . In this dissertation three methods for learning and

generating the state value distributions have been tried based upon different independence

assumptions for V{x) w.r.t. the features in 7. These are; state feature estimators, clique feature

estimators and parent state value dependent estimators.

CHAPTER*. DECKmDNA&UOAKr/UWDV&LUEESTQ&MTON 71

4.7.1 State local value estimates

These are the simplest value estimates where it is assumed that the state value estimate depends

only on the states individual feature set, so Pr(F(x) |7) % Pr(y(a;)|h(a;)).

4.7.2 Clique local value estimates

The next simplest value estimators, like BPS, invoke a locality assumption to assume that the

state values depend on only the features of clique of nodes in the immediate neighbourhood

of X, so Pr(y(a;)|7) % Pr(y(a:)|7a;), where 7̂ ; is a sub-set of 7 centred around the state

X. However, unlike BPS, computing this estimate does not require any probabilistic inference

as V{x) is assumed to be independent of its neighbours value estimates. In this dissertation

only cliques which contain only x and its parent state are considered. So Pr(y(x') |7) %

Pr(F(a;')|h(a:'), h('u), h(a;)), where u is the action taken to get from the parent state x to the

current state x'.

4.7.3 Parent value dependent estimates

The final value estimator performs a limited form of probabilistic inference where the value

of state x' is assumed to depend only on its local features, h(a;), h(u) and the true value of

its parent state x. As only a distribution over parent values is known under this assumption

estimating Pr(F(a;)|7) becomes a problem of Bayesian belief updating, where the child states

value distribution is given by,

Pr(y(a;')|7) R, Pr(y' |py,h%K) = A:Pr(h' |y3Pr(y' |py,K) (4.12)

where A; is a normalising constant given by A: = / P r (h ' | F ') P r (y | py, h„) (iy . Note, for

brevity the following abbreviations have been used; V=V{x), V'=V{x'), py = Pr(F(a;)),

h'=h(a;) and h„=h('u). To complete this estimate we require two CPTs, the state features

likelihood, P r (h ' | y) , and, the child's prior value distribution given the parent distribution and

transition, Pr (F ' | py, h^).

The likelihood can be found by simply learning Pr(V, h) from which Bayes rule gives

Pr(h |F) = Pr(V, h) / P r (F) . The child's prior distribution could also be learnt, but this

CPT may be excessively large. Instead the approach taken in this work is to note that if

7r{x)=u then = r{x,u) + Vt^(X') and the child's prior distribution is known to be

P r (y) =]iy{V=V'+r{u)), where r{u) = r{x,u). Assuming this happens with probability

Ps then

Pr (y ' | Py, hit) = Pa Py (y ' + r M) + (1 - Ps) P r (y ' | Py, hu, ^(a:)?^^!). (4.13)

To estimate ps we simply assume that all children have equal probability of being the correct

successor so Ps=l/\U\. For P r (y | py, h„, 7r(x)^ii) we use either the unconditional value

distribution, Pr(y), which pessimistically assumes we have no prior information about the

child's distribution, or the state local value distribution, Pr (y |h ') , which is less pessimistic

but mathematically unsound as h ' is used in both the prior and likelihood during the update

calculation. These distributions have the advantage of requiring no additional learning as

they can be computed directly from Pr(F, h) using Pr(V') = Pr(y, h) and Pr(y |h) =

Pr(V, h) /Pr(h) . Hence, we have either.

or.

Pr(V"|i)y, h', hLw) == Py(T/'4-r(T/)) 4- (1 , (4.14)

Pr(y'| py, K) = t Pr(h'|y') + (1 - p,) Pr(y|h')] . (4.15)

4.8 Combining the local state value estimates

Given probabilistic estimates for the state values in the local search graph, 7, the combination

component combines these estimates to compute more accurate global value estimates for the

root's children V{xo,ui), V{xo,U2), etc. Efficiently performing this combination relies upon

making useful assumptions about dependencies between value estimates, usually based upon

some assumption about the policy the agent will execute (such as that it is greedy w.r.t. some

approximate value function).

4.8.1 The E{MRP} estimator

One key issue for value estimation which has not yet been discussed is the incremental nature

of the agent's operation and in particular the dependence of its future action choices on the

additional information gathered before the choice. Thus, knowing when and what additional

information the agent will have in the future can be critical to accurately computing a decisions

value and hence making good decisions. In this section we develop the expected maximum

reward path (E{MRP}) estimator, which provides the agent with a limited ability to consider

the value of additional information.

As an example of when taking account of future additional information can be valuable, consider

again Figure 3.5 where Robbie must choose behind which of two doors lies a goal. If the

goal has unit value then without additional information Robbie's expected decision value is 0.5.

However, if he knows that by the time the choice must be made he will have identified the correct

door his expected decision value assuming the additional information is 1. Thus, Robbie's best

decision when choosing between a guaranteed reward of 0.55, say, and choosing a door, depends

critically on knowing what additional information he has at the door choice point.

CjPLAJPTlEjR 4. \44j.LfE^E;Sjri&f/lT2(:W\r 73

Thus an incremental search agent needs to consider the value of the information (Section 3.3.9)

it will have available in the future when deciding on the best current action. Doing so requires

firstly predicting when and what additional information the agent will gather and secondly using

this prediction to compute how valuable the information will be for improving its future action

choices. As control of information gathering is a meta-control task whereas action choice is

a decision making one consideration of additional information requires the decision making

system model and solve the combined embedded meta-control/original problem of Section 3.3.1

Figure 3.3. In that section this model was deemed intractable so again we cannot require the

agent solve it directly but must instead develop some tractable approximation.

The learning and inference methods discussed earlier represent two such approximations.

Learning methods avoid considering the value of additional information by assuming this value

is already included in the training sets value estimates. The MINIMIN approximation simply

assumes there are no more incremental decisions and hence no additional information, allowing

it treat the current frontier state value estimates and the policy derived from them as fixed.

4.8.1.1 Modelling additional information

To model the acquisition of additional information and how this information effects the value

of a rational agent's decisions we use the value estimate abstraction discussed in Section 3.3.5.

This relies on the following assumptions,

1. the agent's current set of value estimates, V, are assumed to be unbiased estimates of the

true value given the agent's current beliefs 6, i.e. V = E {V|6}.

2. the effect of additional information, i, is modelled as a conditional distribution over future

value estimates, Pr(V' |V, i),

3. in any situation the agent selects the Bayes action w.r.t. its beliefs at that time, so 7r(a;) =

argmax^y(r , Ti).

To apply this model to the problem of predicting the effects of additional information on the

value of future action choices, consider the case shown in Figure 4.8, where in some future state

X the agent has to select one of the actions {ui, tX2,..., tin}- Assume the agent knows that by the

time it reaches x its new set of value estimates will be V with probability Pr(V). As the agent

is explicitly rational it also knows that when its estimates are V a potentially better estimate for

the expected value of its policy from x can be inferred using the standard dynamic programming

backup equation,

y(a;) = max[r(a;,w) + = max ^(a;, it). (4.16)

(:fL4JP7jER<f. 74

Current
State

Pr

Y[x,ui)

V(z, ug)

V{X,U3)

~V{x,Ui)

FIGURE 4.8: Given distributions for the expected value of the different outcomes of a future
decision, V{x,Ui), the agent's inference procedure allows it to determine the expected value of

the decision itself, V{x) (under certain simplifying assumptions outlined in the main text).

Hence, the total probability that V{x)=v can be found by summing probabilities for all the cases

where x has the same backed-up value.

Pr(y(a:)='u)

V

= Pr

^Pr^V, msx.V{x.u) =v^ ,

\mayiV{x,u) =v^ .

(4.17)

(4.18)

Notice, this calculation implicitly assumes that the Vs (of x's successors) are correct so Pr(V)

gives the actual probability that the world is such that the agent will obtain the indicated value.

In this case, as the agent will actually pick the maximum value action (4.18) gives the probability

that the world is such that the action the agent picks will realise the value v. Integrating both

sides to transform from probability density function (PDF) to cumulative density function (CDF)

we obtain;

PT{V(X)<V) = Fv (^m.ax.V{x,u) <v^ . (4.19)

Now, the maximum of a set can only be less than v if all the members of the set are individually

less than x, so the max can be replaced with an AND and the inequality brought inside to give;

Pr(y(z)<i;) = Pr ^AND V(x,u} < v ^ ,

Pr(y(a;, Mi)<f, y (z , 'U2)<i', - - -)-

(4.20)

(4.21)

Equation (4.21) is the general equation for inferring the Bayes action's value distribution given

a joint distribution over the future values of the possible action choices.

In the case considered here the agent can use (4.21) to compute an improved estimate for re's

value distribution given Pr(V' |V, i) which represents its current belief about the likely effect

C]3/lfTEuR 4. l/XLLJJI:fiS]lDk[A]rrC>Af 75

of the additional information it will acquire given its current value estimates. So,

Pr(y(a;)<'u|V,i) =Pr(y'(a;,^/i)<^;, y'(a;, U2)<'U, (4.22)

4.8.1.2 The last incremental decision assumption

Equation (4.21) provides a way of inferring an improved value distribution for a single state,

X, assuming Bayes action selection and that at x the agent's estimated action values reflect

the true expected values. To correctly model the effects of additional information we need to

extend this model to cater for differing information availabilities, and hence different estimated

value function distributions, at different future states. Unfortunately, it is unclear how to do this

efficiently.

The problem is that the agent's future policy depends on both its current state and its current

estimated value function (because the agent selects actions based upon its estimated value

function). Further, the effect of additional information on agent's future value estimates depends

on its current estimates, as discussed in Section 3.3.5. Thus, predicting value of the agent's

future policy requires the changes in the state and estimated value function be modelled together.

As future estimated value functions are only known stochastically finding the best current action

is equivalent to solving a MDP defined over the combined space of states and value function

estimates. The problem is that the size of this MDP is O {{(vx)")"') making it infeasible to

compute a solution on-line.

In essence by asking the agent to optimise its current actions with respect to the unknown

outcome of future information gathering operations, i.e. observations, we are asking the agent

to solve a partially observable Markov decision problem (POMDP) (Sondik 1978) with the

true state values the hidden world state. Current state of the art POMDP systems can only

solve problems with, at most, 10s of physical states, (Littman, Cassandra, and Kaebling 1995;

Kaelbling, Littman, and Cassandra 1997; Zhang and Zhang 2001), so attempting to solve the

state value function POMDP in real-time is clearly infeasible.

To avoid this problem we simply assume that the current decision is the last incremental

decision (Pemberton 1995) such that for every subsequent decision the value estimates are

fixed, allowing the remainder of the policy to be executed open-loop. It is assumed that the

values become fixed because immediately after this decision the agent obtains its last piece

of additional information, i, which allows it to fix a states value where the probability of any

particular value is given by the current future value distribution, Pr (V' |V, i). The advantage of

this assumption is that only one stochastic transition must be considered - the one caused by the

information gathered immediately after this decision is made which resolves all the local search

space's future values exactly. Hence, under this assumption the action selection MDP is only

0((%2

CHAfTER4. 76

Fixing the value function for all future decisions also allows us to compute the value of the

Bayes policy (i.e. greedy value maximisation given 7 and the frontier value estimates) from any

state recursively backward from the frontier states using, V{x) = maxu(r(a;,«) + V{x)), or

forward using MINIMIN'S approach,

y(z) = max [r*(z, Uz J + = max [y(a;, J], (4.23)
XF€'YF ' •' XF^LF

where as before 7^ is the set of frontier states in local search space 7 and is an abstract action

representing transition to frontier state Xfhy the best possible route whose reward is r * (x, Uxf) •

Hence, an improved value distribution can be computed for any state using.

Pr(y(a;)<%,|V,z) = Pr (AND < J V, t)
\Xfe^f I ' i J

(4.24)

Notice, that only information about the distribution of the frontier states future value estimates

is required for this computation, so it can be simplified by only predicting future values for these

states.

4.8.1.3 The frontier value independence assumption

Equation (4.24) could be used directly to infer child value estimates by explicit enumeration

over the space of possible frontier state estimated values. Unfortunately, this space is very

large, 0{vx^), making actually performing this computation prohibitively expensive. Further,

the design effort required in simply learning and storing the conditional probability table,

Pr(V'|V ,i), even when restricted to frontier states only, makes this direct implementation

problematic.

To simplify this computation further additional assumptions about the structure of Pr(V'|V,2)

are required. The structure of (4.24) itself suggests one simplifying assumption is to treat

the frontier states values as independent. This assumption allows us to treat Pr(V'|V,z)

as a factored model where rize-yy Pr(y(z) |V, %). This is the frontier value independence

assumption and has two significant benefits. Firstly, it allows (4.24) to be rewritten as,

Pr(y(a;)<%;|V,%)= [%Pr(r;(a;,«3:y) + y'(a;/)<T;|V,%). (4.25)

Which, because the Pv{r*{x,Uxf) + V'{xj) < 'u|V,i) can be computed independently and

combined later reduces the computational effort to 0(%My). Secondly, learning and predicting

the distribution of future value estimates is much simplified as only individual states' value

distributions are required (hence allowing the use of the state value estimate generating methods

developed in Section 4.7).

Of course, it is unlikely that the frontier value independence assumption holds in practise,

especially if the state space is a graph so nearby frontier nodes may have future trajectories

CHAPTER4. 77

P g - l g - 1 g - e g - e g - e

FIGURE 4 . 9 ; Assuming all frontier nodes have identical independently distributed future values
drawn from Pr (Y) this diagram shows the worst case situation for MINIMIN where it picks the
action ui as it has the frontier node with the highest expected value whereas E { M R P } picks

the alternative action which has n frontier nodes each of which is worse than g by e.

in common. For example in a grid navigation problem states near the goal will be on the agent's

future trajectory from many states, making their values highly dependent. One way of avoiding

this independence assumption without increasing the inference complexity suggested by Russell

and Wefald (1989, p. 148) uses the inequality Pr(A, B,...) < min[Pr(^), Pr(B), . . .] to define

the alternative approximation,

Pr(F(a;)<u|V,i) < min Pi(r*(x,Uxy) + V'(xf) < vlVji). (4.26)

Unfortunately this approximation was found to give very poor performance so frontier value

independence is assumed in the remainder of this thesis.

In either case the E{MRP} estimate for value of the agent's poHcy from state x is found by taking

the average of x's updated value distribution. In the terms of the notation used in Section 3.3.7

this estimate is equivalent to computing a myopic value estimate for state x assuming a policy

consisting of a computation, Cj, which generates the information, i, immediately followed by

executing the Bayes action w.r.t. the resulting value estimates,

E{MRP} = = E { y W | V , 2} (4.27)

4.8.2 Analysis

The last incremental decision and frontier value independence assumptions represent a pair of

strong assumptions which in combination enable the efficient inference of state value estimates

which take some account of the predicted effects of later information gathering on the operation

of an incremental search agent. Whether these assumptions are justified and whether the

additional informations effects accounted for are significant enough to justify the computational

complexity are two of the questions which the empirical analysis at the end of this chapter

attempts to answer.

Pemberton (1995, Ch. 5) provides an analysis which shows that the benefits of the E{MRP}

approximation compared to the simpler MINIMIN estimator are severely limited. This analysis

proceeds from the worst case situation for MINIMIN shown in Figure 4.9. In this case the

expected value of the MINIMIN choice, E{MM}, is simply E{MM} = g+E {y} . As the frontier

values are all independent identically distributed (i.i.d.) the combined CDF for the frontier nodes

CfLAJ^niRj. T/̂ ULI/Ef&STjDkLATltDJXr 78

P(zi+3)
P(a:i+2)

^ i + l •^I-\-Z X

FIGURE 4 . 1 0 : The staircase representation of a probability density function, P (I I) , and its

cumulative density function, P(xi).

below U2 is given by, JJi Pr(Fi<y) = (Pr(1/<y))" so E{MRP}'s expected value is given by,

0128)

I3{A/DtP}== g --e 4-
J _QQ dy

Now, lim„_^oo(Pr(l^<y))'^ —̂ 7i{y—y'^) where is an upper-bound on V and 7Y is the

Heaviside step function, so in the limit E{MRP}'s advantage is E{MRP}-E{MM}=—e + —

E{y}. Results from the field of extreme value statistics indicate that whilst the exact rate at

which this limit is reached with increasing n depends on the exact shape of Py(y), in general it

is reached more rapidly for less peaked, heavier tailed distributions. Thus E{MRP}'s advantage

depends strongly on having few good nodes in the MINIMIN sub-tree and many good but sub-

optimal frontier nodes in the E{MRP} sub-tree (so n is large). Of course, this situation is

unlikely to occur in practise so in most cases E{MRP}'s advantage would be much lower. This

analysis also shows that E{MRP}'s advantage reduces as the state value estimate's accuracy

improves, i.e. becomes more peaked.

4.8.2.1 Implementation issues

To implement the E{MRP} estimator we require a representation for the probability distributions

which makes the implementation of the probability product of (4.25) as simple as possible.

Baum and Smith (1997) suggest this is simplest if the CDF has the piece-wise constant

"staircase" shape shown in Figure 4.10. This implies that the PDF is a discrete set of impulses,

or spikes. A discrete V automatically produces such a staircase distribution and one can

be constructed as an approximation for any continuous V. In this way the product can be

implemented using a merge sort style algorithm in 0{nsnf ln{nf)) time, where n j is the

number of frontier nodes and Ug is the number of spikes per frontier distribution. If necessary

the cost of inference can be controlled by approximating the Py with a distribution with less

spikes, by for example using the algorithms in (Smith 1992).

The local state future value distributions, P r (y (x)|V, i), depend on the additional information,

i, which must be estimated from 7. Hence, Pr(y(a;) |V,i) % 'Fx{V'{x)\^). As in the GSE

CHAPTBRj. 79

and BPS cases this CPT is too large to learn or store so we approximate it by assuming that the

amount of information is independent of the node's position in 7. Hence, a single CPT can be

used for all x's, which can be learnt by one of the local methods described in Section 4.7.

Correctly computing E{MRP} requires 0{\l{\nsnfln{nf)) effort to compute the improved

global value estimates for the roots children and C(|7|) effort to compute the r*(xo,Xf). By

considering only the frontier nodes in each child's sub-tree of the roots MRP tree, as was

suggested for MINIMIN, this effort can be reduced to 0{nsnf ln{nf) + I7I), at the expense

of more pessimistic estimates.

A further efficiency improvement suggested by Pemberton (1995) is based on the observation

that (4.25) effectively filters out the effects of any distribution below the point where the best

few nodes CDFs are near zero, i.e. their lower bounds. Thus, an effective approximation is

to use only the k best frontier nodes distributions, reducing inference effort to 0{nsk\a.{k)).

This value estimator, called fc-E{MRP}, also has the benefits of weakening the independence

assumptions upon which the E{MRP} estimate relies as only the k best nodes need be

independent and enabling the use of branch and bound techniques to find these best k frontier

nodes. However, decision making performance may reduce as only k frontier nodes are

considered.

4.8.3 The approximate E{MRP} estimator

Even with all the approximations and simplifications described above at 0(71577./ In(n/) + I7I)

time complexity the E{MRP} estimator may be too expensive to use. The time cost of

propagation is particularly important if we wish to use the estimates as part of the meta-control

procedure to decide how to best extend 7 as updated E{MRP} estimates will be required after

each change to 7. This section presents the development of an new approximation, called

~E{MRP}, which uses parameterised distributions to reduce the cost of computing improved

value estimates to C ' (n / + | 7 |) or a very low constant overhead per node expansion.

4.8.3.1 The normal approximation

The key to this approximation is to replace the arbitrary distributions used in the E{MRP}

estimator by parameterised distributions which can be propagated through (4.25) analytically.

To minimise the enor introduced by this approximation the parameterised distribution should

approximate the true distribution, Pr(y%z)|7), with as little error as possible and propagate

through (4.25) with little additional error.

It was decided to use a Gaussian for the parameterised distribution. This choice can be justified

intuitively by appeal to the central limit theorem. If we assume the distributions parameters

capture the important features upon which the true value depends, then the changes introduced

by additional information can be thought of as small additional random fluctuations. If the

80

A
IJ'

(a) (b)

FIGURE 4 . 1 1 ; Graph OFPMIN(YI,V^) FORFI, V2 drawn from A/0,1 andW]̂ ,̂ normal distributions.
In (a) /u = 0 and a varies, in (b) cr = 1 and fx varies.

estimator is good and there are a large number of these fluctuations then by the central limit

theorem the net effect will be to give a normal distribution. As shown in Figure 4.12 and

Figure 4.13 empirically derived state local future value distributions have a strongly Gaussian

feel, bearing out this intuition.

Figure 4.11 shows the result of propagating a pair of normal distributions through (4.25). As this

diagram shows the result of propagating a pair of normal distributions only deviates significantly

from normality when the distributions have very different standard deviations. Further, as

Figure 4.11(b) demonstrates the filtering effect of (4.25) means that only the better distribution

has any effect when they are more than a few standard deviations apart. Therefore, we would

expect that in most circumstances the output of propagating a pair of normal distributions

can be well approximated by another normal distribution. This is an important property as it

significantly simplifies the use of our approximate propagation routine by allowing additional

distributions to be incrementally included as they are encountered.

4.8.3.2 Derivation of the propagation equations

In this section the detailed mathematical derivation of an approximation for (4.25) for normal

distributions is presented. We begin by defining the basic functions we shall be using and some

of their useful properties.

The standard normal distribution, M{x), and its CDF, $(z), are defined as,

1 1.2 /"= iT 1
.AfOc)

— 0 0

(4.29)

(:H4JP7jER<L 81

Using these definitions the normal distribution with mean ij. and standard deviation a and its

associated CDF are given by,

= $ I I .(4.30)
A

To approximate (4.25) assume each of the the frontier states, Xi € 7 / , future value estimates are

normally distributed with known mean and standard deviation, so Pr(F(a:i)=u) = •N'ni,ai{v).

The improved global value distribution for some interior state, x, is given by substituting these

distributions into (4.25). Noting that when V{x) is normally distributed then Pr(F(a;)<'u) =

$(•«) this gives.

Pr(y(a;)<i,) =]]^Pr(y(zJ<i ;) =
o",:

(4.31)

Initially, assume 7 has only two frontier states, XQ and xi then x's PDF is given by,

Py W ^ ^ + ^1,(71 (u)$ f ^ I . (4.32) dv 0-1

In order to find the properties of this distribution, i.e. its mean and standard deviation, we use its

moment generating function, which is defined by M(z) = E {e^^} = e^^px(a:)<iz and

has the useful property that E {X™} = , i.e. the nth moment of X is given by the nth

derivative of M{z) evaluated at 0. For py (w) the moment generating function is given by.

TkfCz): I a t 1 a / - J ,
Ob \ ^0 y \ \ y \ Ob

Bringing the exponential inside and combining it with the normal distribution gives,

2\

M(z)
1 1 / 1

I — exp \ zv — - '
J - 0 0 O-Q

1 I 1 / w — /il
H exp \ zv — - \

(Tl \ 2 V «Tl
$

V — FLL

CRI

V - FJ-O

CTQ

dz.

(4.33)

dz. (4.34)

Denote the integral of the first additive term as /o,i and the second as /i_o- The two integrals

have symmetric terms so consider 7o,i first. Completing the square gives.

exp z f
Ob - \

(t; - 2%;//o +
CRI

(4J5)

/ OnZ'
expl/^oz +

2_2\ foo

V^CTQ
exp

1 / - Q-gz + //Q

2 I
0 () dz. (4.36)

Using the substitution w = we obtain,

To perform this integration we require the following integral identity,

MS{Y)DYD. = / 2 J _ ^ J (^) G (^) (4.38)
—oo ,/ —oo

where x' = and y' = This identity follows because the substitutions are

equivalent to rotating the integral axes parallel to oa; + 6 where the upper bound is constant.

Using this identity the following useful definite integral can be derived,

1 12 12
/ J\f{x)^{ax + h)dx = / —e 2^ e 2^ dydx,

J —00 J — 00 J — 00

J — 0 0 J — 0 0

where the last step follows because f ^ A f (x) d x = 1. Using this identity (4.37) becomes,

I „ , = e x p L . + , = e x p L z + # 1 $ ^ 4 l ± J ^
2 / ' y i + (cro/o-i)^/ \ 2 / \ -\/crg 4-(Ti /

(440)

Substituting this and its symmetrical partner for J j o into (4.34) we obtain the final definition of

Py's generating function,

(441)

Using this definition after some mathematical effort we find py ' s first and second moments

simplify to,

\ V ° ' o + (^ i / v27r

M(0) — Ci + A''! + (^0 ~ '^1 + /^o ^ /^i)$
\ V ° 0 +

+
e

1 I MQ —Ml

(Zo + cr̂ erg +0-1
(4.43)

Using these equations py's updated mean and variance can be computed in the usual way as

CHAPTER4. 83

jj. = M(0), cr̂ = M(0) - iJ?. Hence, as the best (in terms of minimising Kullback-Leiber

divergence) normal approximation for any distribution has the distributions mean and variance,

we can optimally approximate the propagation of two normal distributions to some interior node

with another normal distribution given by py(u) % This is the constant time normal

distribution propagation method we have been seeking.

4.8.4 Implementation issues

By extracting common terms (4.42) and (4.43) can be evaluated in constant time, requiring

only two function evaluations (an exp and a $) and a few arithmetic operations. Using lookup

tables for the function evaluations this allows us to reduce the propagation overhead to tens

of machine operations. Further, the product of (4.25) can be decomposed into Uf—l binary

products. Recursively applying the normal distribution propagation procedure with the same

decomposition allows us to compute the combined effect of all Uf frontier states in linear,

0 (n f) , time.

If necessary, the computational effort can be further reduced as for the E{MRP} estimator

by only considering frontier states in each child's sub-tree and/or only propagating the k best

frontier states values, to give the ~fc-E{MRP} estimator.

4.9 Experimental analysis

This chapter has presented five main methods for implementing the decision making component

of an on-line planning agent; MINIMIN, GSE, BPS, E { M R P } , ~ E { M R P } . Except for GSE all

these methods make significant simplifying assumptions to increase their efficiency. This section

empirically compares these methods to determine if the assumptions are justified and assess the

relative merits of each approach with regard solely to decision making performance.

4.9.1 General methodology

To ensure the comparisons are as fair as possible, in this and all subsequent experimental

analysis, we make what Hansson (1998) has called the "opaque state bias" assumption. Under

this assumption decision making methods are not allowed direct access to the current state and

decision problem but only the indirect information provided by the feature detectors contained

in the labelled local search graph. This assumption prevents the use of non-scalable methods

which condition on the true current state and enforces a consistent information regime to allow

easy comparison of different algorithms. Notice that only the problem specific information is

restricted. The decision making system can utilise any amount of domain specific information,

such as learnt correlations between feature vectors and true values, to improve its performance.

(3HArngR4. 84

Indeed, one of the aims of these experiments is to assess what type of domain specific

information is most useful.

In the experiments reported in this thesis the available features are;

1. the state connectivity for non-frontier states of 7,

2. the transition rewards, r{x, u), for transitions within 7, and

3. a domain specific heuristic estimate of the value of the optimal trajectory from the state,

h{x). For the two experimental domains considered here the heuristics are,

• N-Puzzle - the Manhattan distance heuristic (Doran and Michie 1966), this is the

sum over all tiles of the Manhattan distance between the tiles current and goal

locations.

• Grid - the Manhattan free space heuristic, this is the Manhattan distance between

the state and the nearest goal.

In this chapter to focus solely on decision making performance all experiments will be conducted

using the same set of labelled search graphs.

4.9.2 Training

Except for MINIMIN, all the decision making systems described in this chapter require some

off-line training to learn a local feature set to value estimate (distribution) mapping function.

This section describes the training methodology used to perform this learning. Due to the size

of the problem spaces the agent will work with the basic approach taken in this work is to build

a training set by randomly generating a representative set of example problems, computing the

feature values and their associated true values, and then learning from this set.

Clearly, to be useful the training set should be representative of the distribution of problems

the agent will need to solve. This distribution depends on the agent's actual decision making

abilities as the problems an incremental search agent encounters later in its "life" depend on its

earlier decisions (and recursively on the training itself). Of course, at training time the exact

agent implementation is unknown. So a hopefully realistic generic incremental search agent is

used to generate training examples. Specifically, the training set is generated in the following

way:

1. Generate a start state generated at uniform random from the domains problem space.

2. Run a RTA* style incremental search^ from this state for a limited number of steps,

recording a random sample (%!%) of the states expanded. These are the training

examples.

^This uses fixed depth a-pruned 7 construction and MINIMIN decision making with the heuristic values as frontier
state value estimates.

CZHLAJPTHEjC 4. ttliJLZErliSnriAf/tTTfDZSr 135

3. Post-process the training example states to compute the (near) optimal values for the states

children, V*{x, u), using a time limited IDA* search (Korf 1985a).

The result of this training process is a set of training examples consisting of sampled states

and their associated children's estimated optimal value, {V*{x,Ui),V*{x,U2) • • •]• Notice,

that this training regime computes the optimal value from each state as an approximation for

the agent specific value. As mentioned in Section 4.1.2 this may be over-optimistic causing a

reduction in agent performance. This is especially true for the E{MRP} estimators where using

the distribution of V* to represent the distribution of new values is equivalent to assuming that

after this decision the agent gets perfect information about the frontier states true values.

4.9.2.1 Results

The results of training the state local value estimator based on the state's heuristic value for

the 4 problem domains considered are presented in Figure 4.12 for the puzzle domains, and

Figure 4.13 for the grid domains. Examining these distributions we note that;

• In all the domains the distributions have Gaussian shape with a single central peak and

relatively symmetric tails. This justifies to some extent the normal approximation used in

the ~E{MRP} estimator.

• In all the domains the heuristic values are quite poor predictors of the true value, as seen

by the wide spread of the true value distributions. The average variance is %10 for the grid

problems and %4 for the puzzle problems. These are both more than twice the average

transition costs of 5 and 1 respectively.

• As one would expect in all cases the heuristics are significantly biased and underestimate

the true goal distance, as seen by the fact that the heuristic value is always at or below the

lower bound of the true value distribution. This is most significant in the grid domains

where the heuristics underestimate the mean true value by a factor of %5.

The poor quality of the heuristics as future value estimators proves the necessity for value

estimate techniques to improve the decision making quality. The significant bias of the heuristic

estimates also suggests that MINIMIN'S decision making could be significantly improved by

simply calibrating its frontier future value estimates to remove this bias. In later experiments we

test this hypothesis using the MM-CAL hybrid value estimator.

4.9.3 Independence tests

The E{MRP} estimators make strong assumptions about the independence of frontier states

future values. The validity of these assumptions was tested directly by computing the correlation

coefficient between pairs of frontier states true values. The procedure used was;

#(V(x)=vlh(x))
#(V(x)=vlh(x))

(a) 8-Puzzle (b) 15-Puzzle

FIGURE 4.12: Counts of the true value of states with given heuristic value, for (a) the 8-Puzzle
and (b) 15-PuzzIe. Sample states generated using complete enumeration for the 8-puzzle, and
a depth 10 RTA* search from 6,000 uniform sampled start states recording 0.5% of expanded

states for the 15-puzzle.

#(V(x)=vlh(x)) #(V(x)=vlhW)

>'300 V
>-̂100

(a) 10x10 Grid (b) 100x100 Grid

FIGURE 4.13: Counts of the true value of states with given heuristic value, for (a) the 10x10
grid, and (b) 100x100 grid, both with action costs selected uniform randomly from the range
[1,10]. Sample states generated using complete enumeration for 50,000 uniform randomly
sampled problems for 10x10 grid and a depth 10 RTA* search from 50,000 uniform randomly

sampled start states for the 100x100 grid with 10% of expanded states recorded for training.

(1) generate a problem sampled at uniform random from the domain problem space,

(2) compute the near optimal value of all states in the problem using time limited IDA*(Korf

1985a),

(3) choose at uniform random a start state,

(4) generate a fixed depth local search space for each depth up to depth 10,

(5) for each pair of frontier states at each depth record their optimal values, binned according

to the state's heuristic values.

The correlation coefficients were then calculated from the stored information. As this procedure

requires the computation of the optimal value for all states in the problem space it could only

be conducted for the smaller 8-puzzle and 10x10 grid problems. The results of this analysis,

(ZH/LPTTEfZ/f. 87

cor(V*(i):VU)|h(i).h(i)) corCV'OiV̂ m̂ihlO.hU))

(a) (b)

FIGURE 4 . 1 4 : These graphs plot the correlation coefficients between pairs of frontier states
true values, where the state pairs have been binned according to their heuristic values. Plot (a)

gives the results for the 8-puzzle and (b) the 10x10 grid.

presented in Figure 4.14, clearly show that for the 8-puzzle the frontier state correlations are

quite low, <0.25, hence in this domain the independence assumption is not too unrealistic. They

also show that frontier states with similar low heuristic values tend to be better correlated. This

is what we would expect if similar paths are taken by nearby states in proximity to the goal.

In contrast. Figure 4.14(b) shows that for the 10x10 grid frontier states correlations can be quite

high, being almost perfectly correlated for large heuristic values. This is actually an artifact of

the domain's limited size and top right goal location which means there are very few states with

large heuristic values, specifically 1 with heuristic value 19, 2 with heuristic value 18, etc. Thus,

results for heuristic values above %12 should be discarded to remove this artifact. However, the

high correlations, > 0.3, of the remaining states indicate that the independence assumption may

be unrealistic in this case.

4.9.4 Testing the decision making quality

This section presents an experimental comparison of the different decision making methods

performance profiles, which gives the decision quality as a function of the local search space

size. The criteria chosen for assessing decision quality is the expected move error, which for a set

of starting states z E is defined as]^g.g^Pr(a;)(y*(z)-y*(o!)) =E{y*(a;) —

where a is the action chosen by the decision making method. For explicitly rational agents a is

given by a = argmax^ V{u\j). In words the expected error is the expected loss in reward from

using this decision making method for this decision then following an optimal trajectory, rather

than just following an optimal trajectory directly. Notice, that this measure is concerned only

with decision making quality not value estimate quality. This criterion was chosen as it directly

measures the quality of the decision making systems most important output—its decisions. It

also takes account of the importance of the decision as highly sub-optimal decisions weigh more

highly than slightly sub-optimal ones. This is important in the grid domain where the loss from

sub-optimal decisions can range from 0 to 18.

CHAPTER4. 88

As the shape of the local search space can be critical to decision making performance two sets of

experiments were conducted with the local search space was constructed using either full-width

fixed depth search or A* search (Pearl 1984). The full-width fixed depth tests allow for simple

analysis and comparison with the systems for which only full-width results are available, namely

the GSE, GSE-F and BPS systems. The A* local search spaces should be more representative

of the types of search space constructed by a meta-control system, and hence give a better

indication of true decision making performance.

All the experiments in this section were conducted using the following procedure:

1. Generate a problem and initial state sampled at uniform random from the domain problem

space.

2. Generate local search spaces of increasing size or depth up to some bound using either

the fixed-depth or A* generation procedures.

3. Run the decision making system on the local search space, recording the action it would

have chosen and other summary information.

4. Compute the optimal solution and its value for each child of the initial state.

5. Use the computed optimal values to compute and record the decision making systems

expected move error.

All algorithms (except BPS(2)) were implemented and tested within a single generic C++

incremental search framework using the same graph construction, heuristic evaluation, and

performance assessment code to minimise implementation specific artifacts. The algorithms

tested were;

Minimin MINIMIN using heuristic values for frontier state va lues ,and only considering

frontier states in a states MRP sub-tree for computing the states value.

MM-Cal (1-E{MRP}) MINIMIN with calibrated frontier state values, E { F (a :) | / i (a ;) } .

GSE The gold standard estimator.

GSE-F The gold standard estimator, using only frontier states r* and h{x) information.

E{MRP} E{MRP} u s i n g s ta te loca l v a l u e e s t ima to r s , PT{V{x)\h(x)), a n d the MINIMIN

e f f i c i e n c y h a c k o f o n l y c o n s i d e r i n g f r o n t i e r s ta tes in a s t a t e s M R P sub- t r ee .

-E{MRP} The rv,E{MRP} version of E{MRP}.

fc-E{MRP} E{MRP} propagating only the k frontier states with best expected value. (Note,

only results for 5-E{MRP} are presented.)

BPS(2) Mayer's (1994) published BPS(2) results. Only available for the 8-puzzle.

''Note, this is an irrational decision making method as the heuristic values are strongly biased estimators of the
future value of a frontier node.

CHAPTER* 89

4.9.4.1 Fixed depth local search spaces

The results of the fixed depth experiments are presented in Figure 4.15 for the puzzle domains

and Figure 4.16 for the grid domains. The notable features of these results are;

• The good performance of BPS, E{MRP}, 5-E{MRP} and ~E{MRP}, relative to

MINIMIN.

• The high performance, particularly for low numbers of states of MM-CAL on the grid

problems.

• The near indistinguishable performance of E{MRP} and ~E{MRP}.

• The extreme performance of the GSE and GSE-F algorithms, which, on the 8-puzzle,

can equal that of any other algorithm with almost 1,000 times fewer states.

• The rapidly improving performance of all the algorithms for deep searches on the 8-puzzle

and 10x10 grid.

The most important result of these experiments is that it is possible to significantly exceed

the decision making quality of a naive decision making method such as MINIMIN. The

improvements are most pronounced on the puzzle problems (Figure 4.15), where BPS(2) offers

the best advantages exhibiting a consistent 0.1 reduction in expected error for all search depths

greater than 3 on the 8-puzzle. Viewed in the other orientation BPS(2) reaches an error of 0.5

at depth 6 for 90 states whereas MINIMIN reaches the same performance level at depth 13 for

2,000 states. Thus, BPS requires significantly less effort, over 20 times less in the best case, for

the same level of performance.

Analysis of the E{MRP} algorithms. Figure 4.15(a) shows that the E{MRP} algorithms are

less advantageous than BPS at lower depths, requiring an additional 2 or 3 levels of search to

reach BPS performance levels for depths <10 or 1,000 states. However, at higher depths they

perform as well as BPS, even slightly exceeding it for very deep searches. It is hypothesised that

the reduced performance of E{MRP} for shallow depth searches arises because the E{MRP}

algorithms only utilise information from frontier states when constructing their estimates. For

shallow searches, when the frontier states value estimates are likely to be unreliable, BPS can

use the interior states feature values to improve its final estimate quality, whereas E{MRP}

estimates must rely solely on the frontier state information. As the search space gets larger the

important, lowest value, frontier estimates will tend to get more accurate so ignoring interior

states becomes less important. The decreasing deviation between the GSE and GSE-F algorithms

for increasing search depth on the 8-puzzle bears out this hypothesis to some extent.

On the grid domains the advantages of the E{MRP} algorithms relative to MINIMIN are equally

pronounced with consistent improvements of 0.4 in error or 7 levels of search on the 10x10 grid

(:fL4uPT]iR<L 90

Mmimin
MM-Cal(1-E{MRP!)

E{MRP!
5-E{MRP}
~E{MRP)

GSE
GSE-F
BPS(2)

P 0.5

u 0.4

100 1000

Nodes

10000 100000

(a)

a
-o

U

0.9

0,85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0,45

0.4
1

\ \
• \

\ •

Minimin
MIVI-Cal(1-E{MRP})

EjMRP}
5-E(MRP)
~E{MRP}

-5̂ ^ —+4-
! ^ "

t"--* ¥-
1 :
I'i

10 100 1000

Nodes

(b)

FIGURE 4.15: Decision making methods expected performance profiles for fixed depth search
on the (a) 8-Puzzle and (b) 15-Puzzle. Each point represents a search depth. The BPS(2) results
are taken from (Mayer 1994, Fig. 3-9). All other results are averages over 10,000 problems for
the 8-puzzle and 3,000 problems for the 15-puzzle. The error bars indicate the mean's sample

variance. Note the log-scale on the x-axis, and non-zero y-axis in (b).

CZfLAjrniRj. V̂ LLIJIif&STTTkLATTtjWXr 91

1,2

W

I

0.6

0.4

0.2

Minimin
MM-Cal(1-E{MRP1)

E{MRP)

~E{MRP)
GSE-F

I k

- • « . - •

- « .

J
10 100

Nodes

(a)

Minimin —
WIM-Cal(1-E|MRP)) -

ÊMRP) -
5-E{MRP} —
-E^MRP} —

\
'!?• -if-

\ "A
• r a -

-S-. ic,
-••A-

10 100 1000

Nodes

(b)

FIGURE 4.16: Decision making methods expected performance profiles for fixed depth local
search spaces on the (a) 10x10 grid and (b) 100x100 grid. Each point represents a search
depth. The results are averages over 10,000 problems with error bars indicating the mean's

sample variance. Note, the log-scale on the x-axis.

GHAPTERj. 92

and more than 30 levels of search (or about 7 times fewer states) on the 100x100 grid. This is

inspite of the invalidity of the E{MRP} estimates due to the high correlations between frontier

value estimates. However the fact that MM-CAL algorithm performs equally well or better

on these problems indicates that the performance is due more to the frontier value estimate

calibration than the probabilistic propagation. This is not too surprising as in these domains the

heuristic estimates underestimate the true costs by about a factor of 5. Hence, MINIMIN puts

excessive importance on the reward of the path taken to a node, allowing it to get mislead into

preferring a decision which leads to a frontier node with good reward to it but poor reward from

it. Calibration corrects this problem, hence improving MINIMIN'S performance. This emphasises

the importance of correct value estimate calibration for decision making performance. Note, this

effect is not apparent in the puzzle domains as the heuristics estimates are only about 0.6 times

the true cost so calibration will not generally change MINIMIN'S decision.

The reduced performance of E { M R P } relative to M M - C A L and 5 - E { M R P } on the 100x100 grid

(Figure 4.16(b)) for low search depths, is assumed to be an indication of the break-down of the

E{MRP}'s independence assumptions because performance appears to be inversely related to

the degree of independence assumed.

The near indistinguishable performance of E{MRP} and ~E{MRP} indicate that, at least on

these domains, the approximations introduced by ~E{MRP} do not significantly reduce perfor-

mance. In fact, the superior performance of ~E{MRP} on the 100x100 grid (Figure 4.16(b)),

at low search depths, indicates that these approximations can actually be beneficial. This is

somewhat surprising given that ~E{MRP} approximates the frontier value functions with a

Gaussian and uses an approximate propagation routine, both of which should introduce errors

which would reduce the final estimate accuracy. To explain this superiority two possibilities

suggest themselves: the first is that the normal approximation for the state value estimates

makes the computed estimates less sensitive to the sampling noise in these distributions shown

in Figure 4.13(b). The second possibility is that somehow the approximations reduce the effect

of the independence assumptions, and hence indirectly improve performance in this domain. In

either case the fact that -^EjMRP} does not significantly reduce performance is encouraging

given the reduction in computational complexity it provides.

The performance of 5-E{MRP} is less encouraging as it performs worse than ~E{MRP} despite

requiring significantly more computational effort.

Analysis of the GSE algorithms. The extremely high performance of the GSE algorithms

indicates that there is a lot of information contained in the local search space not used by the

other decision making algorithms. Further, the near identical performance of GSE-F indicates

that most of this useful information is contained in the frontier states, (at least for larger search

spaces). Unfortunately, the GSE is not the way to extract this information. Its tables required

8hr of training and 100Mb just for the fixed width local search spaces on the relatively small

8-puzzle. The frontier only table took 400Mb and 2 days of training to get a partial table for the

10x10 grid. The required the table sizes made it impossible to implement these algorithms for

the larger problems.

The pitfalls of toy problems. The improving performance of all the algorithms for deep

searches on the 8-puzzle and 10x10 grid should serve as a warning to be wary of using toy

problems to assess performance. These performance improvements are due to the finite size of

the problem space meaning the local search space has a high probability of encountering what

(Mayer 1994) calls beacon states. These are states whose heuristic values are obvious signposts

to the goal location. In the puzzle domains the beacons are states with heuristic values less than

5, as from these states greedy action selection is almost certain to optimally lead to the goal. In

the 10x10 grid the effect is due simply to the local search space including a significant portion

of the very small 100 state problem space, so any remaining un-explored paths are almost sure

to lead to the goal.

4.9.4.2 A* generated, variable depth, local search spaces

When attempting to identify the best local decision it is very likely that improved information

about the true value of some frontier states will be more important than others, improving

decision quality more rapidly for less effort. An effective meta-controller will expand these

states first, creating a variable depth local search space. The experiments in this section test

the ability of the decision making methods to cope with such variable depth local search

spaces. They have been conducted using the same methodology as above, except an A* search

terminated after a given number of nodes have been expanded is used to construct the local

search space. The assumption was that A* should produce search spaces similar to those

produced by a good meta-controller.

For these experiments an additional decision making method called ANTI-THRASH has been

introduced. As the name implies the aim of this algorithm is to overcome A*'s well known

thrashing problem where the node A* expands next jumps seemingly at random over the set

of frontier states. Usually, thrashing is seen as a problem for maintaining locality of reference

for efficient memory caching in A* implementations. However, as A*'s selection criteria is

identical to MINIMIN'S, thrashing can also present a problem for MINIMIN decision making.

The problem is that because the heuristic estimates are optimistic one node can appear better

than another either because it is actually better or because it hasn't been expanded as deeply and

is less well informed. This causes A* to have a risk seeking behaviour where it ignores deeper

better informed frontier states if some less well-informed node that has some, no matter how

small, chance of being optimal. For generating complete solutions this is fine as it guarantees

the solution produced is optimal as all possibly better paths have already been explored and

disproven. However, for local decision making the high probability of the MINIMIN node being

misleading significantly reduces decision quality. A N T I - T H R A S H attempts to make decision

CHAfTER4. 94

making less risk seeking by only changing the bes t node if the n e w MINIMIN front ier node is

deeper in the search tree, and hence bet ter i n fo rmed .

The results of the A* experiments are presented in Figure 4.17 for the puzzle domains and

Figure 4.18 for the grid domains. The most notable features of these results are;

• The significant improvement in decision making performance compared to full-width

search space construction for all the algorithms on the 8-puzzIe (% 1000 x fewer states),

and more modest improvements on the 15-puzzle (% 3x fewer states).

• The reduction in performance compared to full-width search space construction for all the

algorithms on the grid domains.

• The non-monotonic performance of MM-CAL and 5-E{MRP} on the puzzle problems

and MM-CAL on the grid problems.

• The poor performance of A* in all domains compared to the very high performance of

ANTI-THRASH on the 15-Puzzle and 100x100 grid for deep searches.

The most important result of this set of experiments is that E{MRP} and ~E{MRP} still perform

consistently better than MINIMIN in all the domains, with an increased relative advantage on the

15-puzzle and grid domains. Thus, the E{MRP} algorithms are still making more effective use

of the available information.

A*'s contradictory effects on puzzle and grid problems. On comparing these results with

the fixed width results (Figure 4.15 and Figure 4.16) it is apparent that using a truncated A*

constructed local search space has the contradictory effect of improving performance on the

puzzle problems but reducing performance on the grid problems. This effect is attributed to the

relative quality of the heuristics for guiding search space construction.

As noted earlier (Section 4.9.2.1) the heuristics are much better predictors of true value in the

puzzle problems than the grid problems. Thus, the heuristics provide better guidance to A*

for search space construction in the puzzle problems leading to improved search performance.

The remarkable improvements in the 8-puzzle are likely due to the more accurate heuristics

improving search space construction to such an extent that it significantly increases the chances

of encountering a beacon state in the small state-space.

In the grid domains the opposite effect appears to hold, where the heuristics so massively

underestimate the true value as to increase the chance of A* being mislead down blind alleys.

For example, A* may prefer to expand a state with a low path cost, i.e. r*{x,xf) the cost of

getting from x to X f , which leads away from the goal than one with a higher path cost which

leads to the goal because the former's heuristic value underestimates the true cost of getting to

the goal from its end-point.

95

^A*+cal(1-E{MRP))
A*+E{MRP}

, A'+5-E{MRP}
^ A*+~E{MRP)
')0^*+anti-thrash

" ! >

Nodes

(a)

Nodes

1000

A*+cal{1-E(MRP})
A*+EfMRPl

A*+5-E{MRP}
A'+~E{MRP}

A*+anti-thrasti ' '

1000

(b)

FIGURE 4.17: Decision making methods expected performance profiles with A* local search
space construction on the (a) 8-Puzzle and (b) 15-Puzzle. The results are averages of 3,000
test problems error bars indicate the mean's sample variance. Note the log-scale, and non-zero

y-axis in (b).

96

® 1.5

A*+oal(1-E{MRP})
A*+E{MRP}

A*+5-EflVIRP)
A*+~E{MRP)

A*+anti-thrash

Nodes

(a)

A*+cal(1-E{MRP))
A'+E{MRP}

A*+5-E{MRPl
A*+~E{MRP)

A*+anti-thrash

—#r— f-—$—$—"i

1000

Nodes

(b)

FIGURE 4.18: Decision making methods expected performance profiles with A* local search
space construction on the (a) 10x10 grid and (b) 100x100 grid. The results are averages of

3,000 test problems and the error bars indicate the mean's sample variance.

CHAPTERj. 97

Non-monotonic A:-E{MRP} performance profiles. The most striking result on examination

of Figure 4 . 1 7 and Figure 4 . 1 8 are the non-monotonic performance profiles for the A : -E{MRP}

algorithms, particularly 1 - E { M R P } (M M - C A L) , in all domains. This is believed to be caused

by an adverse interaction between the decision making system and A*'s assessment of what the

best frontier node is.

Consider, the M M - C A L case. M M - C A L always moves toward the frontier node which has

maximal expected value, given its heuristic value. Now, it turns out that, for large heuristic

values, the estimated expected value does not improve as rapidly as the heuristic value. Thus,

A* can continue extending one part of the local search space (for which r*(x,xf) + h{xf)

is still decreasing) long after M M - C A L has decided that another direction is more desirable

(because r*{x,xf) -I- V(xf\h(xf)) is lower). As M M - C A L won't change its mind until A*

disproves its favoured alternative (by expanding it) A*'s additional effort is wasted. In fact this

additional effort can be positively detrimental because it may increase the delay between A*

causing M M - C A L to switch to a less informed alternative and this alternative being proved bad.

Hence, increasing the chance that the search will be stopped while M M - C A L believes a less

informed estimate is better. Essentially, in this case calibration exaggerates the thrashing effect

which causes MINIMIN'S problems.

A similar argument holds in the 5 - E { M R P } case, and to a much lesser extent for E { M R P } and

~ - E { M R P } , except in these cases the combination of good value estimates which tend to occur

in the best sub-tree smooth out the thrashing effect by requiring A* disprove a number of states

before the decision maker switches to a less well-informed alternative.

This analysis, and the dramatic reductions in decision making performance possible, serve to

emphasise that the meta-control and decision making systems must be carefully designed to

work together to obtain good performance.

Very good performance of ANTI-THRASH vs. MINIMIN. The significantly superior perfor-

mance of ANTI-THRASH compared to MINIMIN on all domains indicates that thrashing is indeed

a significant problem with truncated A* search and that A N T I - T H R A S H is effective in combating

it.

That ANTI-THRASH performs better than all the other algorithms for deep searches on the harder

15-puzzle and 100x100 grid problems is quite surprising, especially as the E { M R P } algorithms

use more of the available information to make their decisions. The fact that the ANTI-THRASH'S

relative performance improves in a similar range to when 5 - E { M R P } performance reduces

indicates that this effect is likely also due to calibration induced thrashing of the E { M R P }

decisions.

CHAPTERj. 98

4.9.5 Summary of experiments

There are two main points to take away from these experiments;

• f i r s t ly tha t i t is p o s s i b l e t o m a k e be t t e r d e c i s i o n s t h a n n a i v e m e c h a n i s m s s u c h as MINIMIN

b y m a k i n g m o r e e f f e c t i v e u s e of t he ava i l ab le i n f o r m a t i o n , a n d

® secondly that the integration of decision making and meta-control must be very carefully

managed to maximise overall performance and avoid adverse interactions. If the

interaction is managed well, as with ANTI-THRASH on the 15-puzzle, it can produce very

significant benefits, however when managed poorly, as with A* and MM-CAL on the grid

problems, it can result in massive reductions in overall performance.

4.10 Summary

This chapter has examined the decision making component of a dynamic deliberative agent.

Incremental search was chosen as a framework for developing a flexible decision making

component as it provides a relatively simple mechanism to trade-off decision quality against

computational effort. As they simplify meta-control integration, it was decided to focus on

explicitly rational decision making systems, which make decisions by maximising an explicitly

computed value estimate. The key function of an explicitly rational decision making system is

computing value estimates and the core of this chapter investigated on this problem. In all five

main approaches to computing value estimates were described. Three of these; MINIMIN, GSE

and BPS are based upon previous work. The other two, E{MRP} and ~E{MRP}, represent new

approaches to value estimation in single agent search and ~E{MRP} in particular is a totally

novel, highly efficient value estimation method. The effectiveness of these value estimation

methods was experimentally tested using fixed depth and A* meta-control routines on 4 problem

types, the 8-puzzle, 15-puzzle, 10x10 grid and 100x100 grid. The results of these experiments

were encouraging in demonstrating that the sophisticated value estimate systems can improve

decision making performance. However, the results also made clear that the right combination

of decision making and meta-control is critical to overall performance. With this in mind meta-

control is studied next.

Chapter 5

Search control and estimating the

value of computation

This chapter extends the incremental search agent design of the previous chapter to include

meta-control. This chapter focuses on the search control aspect of the meta-control problem and

will not be concerned directly with decision making nor deciding when to stop exploration. The

general problem the search control system must solve is,

Definition 5.1 (General search control problem). Given a decision making system, a labelled

local state graph, 7, and that only a limited number of computations will be executed before

a decision is made, choose the computation to execute which, on average, maximises the final

decisions value.

In terms of the incremental decision model of Section 1.2 the search-control system performs

step (3) of Figure 1.2. In general, a computation could be any operation which modifies the local

state graph, such as computing a new heuristic value for a state or expanding all frontier nodes

1 level deeper. However, the only computations considered in this dissertation are individual

frontier state expansions.

Of course search-control must be integrated within the larger incremental-search agent. Thus,

because they integrate well with explicitly rational decision makers, we restrict attention to

search-control systems based on tractable implementations of the META-GREEDY algorithm of

Section 3.3.10. We can think of such systems as explicitly meta-rational, in that they explicitly

calculate a set of local marginal value of computation estimates, A V , and select computations

by greedily maximising this value. Thus, the search-control has a similar structure to decision

making, that is (i) identify useful features, (ii) compute estimated computation values, (iii)

execute the maximum value option and repeat.

As with explicitly rational decision making, the performance of explicitly rational search control

depends critically on the accuracy of the value estimates. Thus, the main focus of this chapter is

on algorithms for efficiently generating accurate marginal value of computation estimates.

99

CHAPTBR^ SEARCHCOATROL 100

5.1 Approximating the marginal value of computation

As defined in Section 3.3.10 the marginal value of a computation is the change in the value of

the agent's trajectory when it is made to execute the computation, c, next compared to executing

the current Bayes action action, a, next. That is,

== (5.1)

where TT indicates that after the initial computation or action execution the agent continues in

its normal operation of executing further computations or actions. The agent's best estimates

for are computed by the decision maker. Thus the main difficulty in computing AV{c) is

estimating the future value of the computation

Note, for brevity in the remainder of this thesis the dependence of a value or value estimate on

the current root state x and the agent's default policy TT will be left implicit when clear from

context. Thus, V = VT^{XQ), and V{u) = «) = K,7r(2;o)-

As mentioned in Section 3.3.10 we can think of AV{c) as a measure of the sensitivity of

the expected value of the agent's final decision to the additional information provided by the

computation. For explicitly rational decision makers this decision depends on the relative value

of the root's child action value estimates, V{u), and in particular on the estimated value of

the Bayes action. Thus, as the final decision depends on how the decision maker computes

these estimates the value of computation also depends on how the actions' value estimates are

computed. Further, as the results of Section 4.9.4.2 demonstrated, to avoid adverse interactions

and wasted effort it is particularly important that the meta-level know how the decision maker

chooses actions and what information it uses. Thus, the approximations developed in this

chapter are specific to the decision making system used.

As with the value function itself AV{c) can be approximated using either inferred, learnt or

hybrid estimation functions. For search control only hybrid meta-value estimation functions are

considered as learning is computationally intractable.

Learning the marginal value of computation is intractable because, as shown in Figure 3.7, the

marginal value of expanding one frontier state is highly dependent on the relative value of other

frontier states and how these values are likely to change. For example, if one state is definitely

inferior then confirming this has little value (Figure 3.7(a)). However, if it is potentially the best

frontier node then expanding it to confirm its superiority may be very valuable (Figure 3.7(c)).

In either case the value of expanding a state depends on the likelihood of it being better than all

other states. Thus, the meta-value is inherently non-local and any learnt function will depend on

the entire set of local state space's value estimates. In Section 4.5.1 it was shown that training

and storing a learnt value estimator (the GSE) which depends on the entire local state space is

effectively intractable. In fact, the meta-value learning problem is harder than the GSE case

because a marginal value must be learnt for each possible computation, and there is at least one

101

computation per frontier state. Thus, the overall complexity of the meta-value learning problem

is where Uf is the number of frontier states, 6^"^^ is an upper-bound on the

number of possible local search spaces' with effective branching factor b containing less than n

states, and | y | is the number of distinct state future values.

Hybrid estimators (Section 4.6) avoid the complexity of the learning systems by learning a

simple local future value distribution estimator and using knowledge of how the value of

expanding one node depends on the values of other nodes to define an inference mechanism

which works for any local search space and frontier values. This approach of constructing

hybrid value of computation estimators based upon identifying a factored model is essentially

the one outlined in Section 3.3.10.1 and similar to that used in (Russell and Wefald 1989) and

(Baum and Smith 1997).

The key step in developing such estimators is to use knowledge of the decision making

systems detailed operation to identify the functional form of the dependency between the

states' local value estimates and the inferred global value estimates for the agent's policy,

V{xo) — f{V{xi), V{x2),...). The function / is called the propagation function as it transmits

information from the states' local value estimates to the global estimates upon which decision

making is based. The propagation function can then be used to calculate how this value will

change with the computation's different outcomes,

Pr(y'(a:o)=7;|V, c) = Pr(/(y(a;i), - - .)=^|V, c). (5.2)

Thus, given a learnt distribution over the set of new frontier states local value estimates,

Pr(V'|V, c), we can use the propagation function to infer a distribution over new global value

estimates for the roots child actions, V'{u), and hence for the Bayes action. The distribution

over future global value estimates can then be used in a number of different ways to estimate the

value of the computation.

As computations are restricted to frontier state expansions, to develop a factored model of the

effects of computation, we make the following simplifying assumptions,

(i) computations affect only the expanded states value, and

(ii) frontier value independence (Section 4.8.1.3), i.e. the outcome of a computation only

depends on the state's local information.

Thus, the effect of a computation, c^, which expands the state x only depends on and

modifies that states local information, and is independent of everything else. This significantly

simplifies the problem of learning a model of the computation's effects as Pr(V'|V, c^) =

Pr (y(a ;) |y (z) , h(z)). This distribution over posterior local state value estimates may be the

'This, loose, upper bound follows by counting the number of possible edge choices in a depth first traversal of a
n node tree. This upper bounds the number of trees as the edge order is unique to the traversal which is unique to the
tree.

CHLAJPTNEIT 5 . 5;JEYLFTCHR(:C)ART%()L 102

same distribution used by the decision maker, or specially learnt. Note, the factored model

developed in this way is almost identical to the one used by the E{MRP} estimator.

One significant problem with using the value of computation, AF(c) , for search control is that

potentially it needs to be re-computed for each computation after every expansion. Thus, even if

AV(c) can be computed in linear time this gives a search control overhead per node expansion

of 0{nf). Russell and Wefald (1989) suggest only updating the AV{c) estimates after every

"gulp" of G node expansions to reduce this overhead to 0{nsnf/G). The cost of this reduction

is potentially increasing the total number of expansions required due to the reduced accuracy

of the Ay(c) estimates used for search control. Alternatively, Baum and Smith (1997) suggest

increasing the gulp size exponentially as more node expansions are performed. This has the

advantage of re-computing the estimates more frequently early on when the overhead is lower

and the estimates are likely to change rapidly, without incurring an overhead for larger searches.

When the gulp size increases at the rate g this reduces the overhead per node expansion to

C)(7ialogg(m/)).

Computing a hybrid AV{c) approximation consists of two related parts,

• identifying the propagation function based on the decision makers operation, and

• using the distribution over future global value estimates w.r.t. a computation's possible

outcomes to compute an estimate for the marginal value of computation.

The next sections present the development of such meta-value approximation schemes for the

two inference based value estimate functions of Chapter 4 ; M I N I M I N , E { M R P } .

5.2 Meta-value estimates for M I N I M I N

MINIMIN'S value estimates are computed using equation (4.5). Now, by assumption the r{x, u)

in the local search space are correct so r* (x, UXJ) is fixed for each XF. Thus, the propagation

equation for the computation, c, which expands the set of frontier states Xj E Xc to give updated

local value estimates V'{xf) is,

V'ix) = max max w, max (a:, -t- y ' f z j)] (5 . 3)

where lo = MAX^^g^y^;^^ r*^{x,Uxf) + V { x f) is the original M I N I M I N value of all the

frontier states not expanded by c. This is constant for all computation outcomes as computations

are assumed to only affect the expanded states, LO acts as a filter on the effect of changing V'{xj)

preventing any change which would lower it below u from having any influence. Thus the value

of expanding a node depends on how the expansion changes the states estimated value relative

to w.

CHAPTERS. SEARCH CONTROL 103

5.2.1 Optimistic frontier value estimates

If, as is assumed in A*, V(x) is optimistic then expanding a state can only make its value worse

and u has the effect of preventing any frontier state(s) but those with the best MINIMIN value

from having any effect on the agent's current value estimate. Note, there may be more than one

frontier state with the best MINIMIN value. This is the case examined by Russell and Wefald

(1989) with their DTA* algorithm. Russell and Wefald point out that only if one of the current

best MINIMIN value frontier states is expanded before the decision is made could the agent

change its decision and hence the computation have any value. As all the MINIMIN frontier

states must be expanded for any sequence of expansions to have any value, we might as well

expand them first. This reasoning leads to A*'s search ordering where best value frontier states

are expanded first.

In fact, the current decision is unchanged unless the MINIMIN value of the current preferred

action, V{a), is made worse than the MINIMIN value of the next best action V{P). Thus, only

if all frontier states in the sub-tree below a with MINIMIN value better than V{P) are expanded

to make all their values worse than V((3) can any sequence of computations have positive value.

So once again we might as well expand these states first. To decide on the order for expanding

states within this set Russell and Wefald introduce the hardest first criterion. Basically, this

says that we should expand next the node which is least likely to be worse than ¥{(3) because

this is the node which is most likely to actually prove that a is actually the best action choice.

Russell and Wefald note that this is a slight generalisation of the commonly used A* tie breaking

strategy of favouring the node with the lowest heuristic value. Lower heuristic values have lower

errors and hence are less likely to prove worse than u if, as is generally true, heuristic error is

an increasing function of heuristic value.

Thus, in the special case of MINIMIN decision making with optimistic frontier estimates near

optimal search control can be implemented without explicitly computing the value of the

possible computations using the hardest first search-ordering.

5.2.2 General frontier estimates

In the general case V{xj) may be optimistic or pessimistic so potentially any node could be

expanded to become better than u. Therefore, there is no clear criterion for identifying which

states must be expanded for any sequence of computations to have value, and we must actually

compute an estimate for the expected value of a (set of) state expansion(s) for search control.

The propagation equation (5.3) allows us to easily compute the new estimated value of executing

the action, u, immediately after the (sequence of) computation(s), c, denoted Vc,u- Hence we can

find the myopic expected value of computation (MEVC), = Vcca ~ using equation

(ZHdjrnSRjx 104

(3.27) of Section 3.3.10. That is,

, (5.4)

where V'{u) = Vc,u is computed using the propagation equations to propagate the new value

for the expanded state to the roots action value estimates.

The MEVC computation (5.4) simplifies considerably if we assume "sub-tree independence" (Russell

and Wefald 1989) so a computation only affects a single root action value, V{u). Under this

assumption all the root's action values except the one affected by the computation are constant.

Depending on which action value is affected (5.4) simplifies to one of two cases. Firstly, if the

computation does not effect V{oi) then the Bayes action will remain unchanged unless the new

MINIMIN value is better than V{A) = w. Hence, only the cases where V'{c) > UJ need be

considered. Let, Pc(v) = Pr(y '(c) |V, c) denote the probability of the new MINIMIN value of

the states expanded by computation c having value v. Then when c does not effect V(a) the

MEVC is given by,

-- w]. (5.5)
V>UJ

However, if the computation only affects V{a) then the Bayes action will be unchanged unless

a 's new value is worse than the value of the next best action, V{P)- Thus, only the cases where

V'ia) < V{f5) need be considered. Further, a 's new MINIMIN value cannot be made worse than

the MINIMIN value of its non-expanded states. Denote this value by w as it also represents the

value of the best non-expanded a leaf. As a 's new value cannot be less than u the Bayes action

can only change and the MEVC be non-zero if a; < V{f3). Then when c only effects V{a) the

MEVC is given by,

== I)r(l/'(oOrV% c)[T/(/3) - l/"(a)], (5.6)

y'(a)<y(/3)

==]»Z:]Pc(%)[T/X/3) - k;] t Pc(t;)ri/(/3) - (5.7)

5.2.3 Implementation issues

The MEVC computation can be simplified by moving to continuous space and transforming

from PDFs to CDFs in the following way. Consider first, the case when c does not effect V{a),

(5.5) becomes,

roo roo
/ Pf,{v)[v — io]dv = / ^^{v)vdv — I p^{v)u;dv. (5.8)

tJ CO J UJ J (jJ

6%&iRC%fCC%VTRC^ 105

Using ±e fact that p(2/)(f%/ = P^(z) so - p(a;) = and integrating by parts,

fOO
== / _F^Xt;)dv--wP>(w), (5^0

roo
]?;>(%)(&;. (5.10)

where we have used the fact that, by THopital's rule, lim^̂ -̂ oo — 0 if p(f) tends to

zero in the positive limit faster than Ijv^. This is true of all distributions with finite variance,

which are the only ones considered here. Similarly, for the case when c only effects V{a), (5.7)

becomes.

PcW[/)-(;]c('u, (5-11)
J UJ

'C,Co / Kc\
-oo

where /) = V{P) for brevity. Multiplying out the brackets, collecting terms and then integrating

by parts gives.

= / Pc(^)/)(^^ - / Pc(%;)w(fi; - / (5.12)
V —oo Vw

^Pc(^) - c j P c W - [?;PcW]g + / ^ P c W d ^ ,
*/ W

(5.13)

•P
Pc(i;)dt;. (5.14)

Combining these results we have the following equation for the myopic value of a computation,

c, for a MINIMIN decision maker.

Ay^ = j I T 1 - if c does not effect ^(0:)

foj Pc(v)dv if c only effects V(a)

where u! is the MINIMIN value of the states in the a sub-tree not expanded by c, /? is the value

of the second best action, and Pc(v) is the probability that the new MINIMIN value of the states

expanded by c less than v. Equation (5.15) can be used to rapidly calculate the MEVC by a

simple integration of CDFs. In the discrete case this integration becomes a summation, and the

complexity of computing the MEVC is ©(n^) per state, where Us is the number of steps in the

discrete distribution. Equation (5.15) is a generalisation of a similar result stated without proof

for discrete integer valued distributions in (Russell and Wefald 1989, p 146).

One problem with using the MEVC for search control is that its myopic nature can cause it

to significantly underestimate the value of a computation. This can lead to the situations,

such as that illustrated in Figure 3.7(d), where computation is clearly still worthwhile but no

single computation has non-zero MEVC. For example, if more than 1 frontier state below a

has MINIMIN value better than V{P) then expanding only one of these nodes cannot change

the agent's decision and hence has zero value. This short-sightedness can be overcome in a

number of ways such as using Russell and Wefald (1989)'s hardest-first tie-breaking rule of the

(ZH/LPTTENR J. 6LEL4J%(:ff(:()fV7jR(]I, 106

previous section to decide between zero MEVC computations or one of the alternative value of

computation approximations presented in this chapter.

A more direct approach is simply to look further head in the MEVC calculation by considering

sets of computations. Fortunately, equation (5.15) is still valid for sets of state expansions,

c, provided its conditions are met. For computational tractability, the number of sets of

computations considered must be limited in some way as the number of possibilities is

exponential in the set size. For example, Russell and Wefald only consider sets which are

constructed incrementally by adding states according to the "hardest first" heuristic. The frontier

value independence assumption means the new MINIMIN value distribution of the set is simply

the product of their individual distributions, i.e. Pg(f) = jQ^ (f) .

5.3 Meta-value estimates for E{MRP} and ~E{MRP} estimators

The E{MRP} estimator (Section 4.8.1) computes updated global value estimates for the state

X based on the assumption that the Bayes action choice at x is made after the current frontier

value estimates have been updated with the additional information, i. Under the E{MRP}'s

assumptions and the additional frontier value independence assumption the state's updated value

distribution is computed using (4.25). This value distribution computed in this way is called the

E{MRP} CDF. Notice, that for the E{MRP} estimator the frontier states value estimates are

distributions and the effect of expanding a state is to give it a new distribution. Let Fx (v) —

'Priy'{x)<v\V{x),i) denote the old future value distribution for the frontier state x. Then, the

propagation function for the computation, c, which expands the set of frontier states Xj E ^ to

give updated state future value distributions . {v) is.

==][][]3r (r;(2,?4c,) <: , (5-16)

= Pr(w<?;) Pr^r*(a;,%/zy) + y'(a;j)<';;|Pz^J, (5.17)
Xj

== (5.18)

where, P^W = Pr(w<i;) = + is the

original E{MRP} CDF for all the frontier states excluding those in and Pc('y| P') =

YlxjeXc Pr(r*(a;, + V'(xj) < v\P^^) is the new E{MRP} CDF for all the frontier states

updated by c.

By the frontier value independence assumption Pr(a;<u) is independent of the computations

outcome. Thus, as Pr(w<'u) is constant at each v, x's new E{MRP} CDF is a linear function of

the new E{MRP} CDF of the states expanded by c, i.e. Pr(y'(a;)<'u) = k Pc(f| P')-

Decision making is done with respect to the expected value of the root's actions, {V'{u)). Let,

Pg('u) denote the new E{MRP} CDF for the frontier states below u affected by the computation

CHAPTERS S&U&aHCONTROL 107

c, and Pw(f) the original E{MRP} CDF for those not affected by c. Then, using (5.18), «'s new

global future value estimate is given by,

< y ' („ , | P y = f (5.19,
-oo

5.3.1 The MEVC approximation

If we assume sub-tree independence, so a computation cannot effect both the current Bayes

action's value and some other action's value, then equations (5.18) and (5.19) can be used to

compute a MEVC approximation for the value of computation. As for the MINIMIN MEVC

estimate there are two cases to consider. Firstly, if c only effects V{a) then.

C,Ca Pr(Pc |V, c) (y ' (a) | p̂)̂] - (y ' («) | p^:)) dPc, (5.20)

where the integral is over the entire range of new value distributions and (y'(a)|pg) is

computed using (5.19). Secondly, if c only effects V(u) then MEVC is given by,

c.c, Pr(Pc |V, c) Pc), y(a)] - <ipc. (5.21)

To actually compute these values we need to define an integrable set of new distributions for

and a second order distribution over these new distributions. In general, these quantities must

be learnt. However, in certain circumstances they can be derived from the existing distribution

information, VT:{V{xj) = t;|V, i).

As defined in the derivation of the E{MRP} estimator (Section 4.8.1) x's original future

value distribution, Pr(F(x)=w| V, i), represents the probability that the effect of the additional

information, i, is to resolve the uncertainty about the value of x to the correct exact value, v.

Thus, if we assume that the computation c realises exactly the same information about each

state expanded as contained in i, then c must have the same effect with the same probability.

Now, by definition for a set of frontier states Xc the E{MRP} propagated CDF, P;f^(?;|i) =

YlxePî c N), gives the probability that the expanded states new E{MRP} estimate is less than

V, when the states take on exact values according to their combined probability distribution.

Thus, = dPxc{'v)/dv, gives the probability that the new E{MRP} estimate for these

states is exactly v. Hence, if c expands the set of frontier states then, with probability

PXci"") = Pc('^), the new E{MRP} value estimate for all the states updated by c is exactly

V and their new value distribution is an impulse, i.e. p'dy) = Sy(y) — 5{y—v).

Let Pc(f) = HxeXc Pr(y(a;)<'u|V, i) denote the original E{MRP} CDF for the states updated

by c, and Pc('u) their PDF. Then, assuming c has the same effect on the states it expands as i, the

(ZHAfTTUZJ. 108

MEVC can be computed when c only effects V{Q) using,

- / PcW (majc[y(/3), (F ' W | =6,)] - (y%o:)|) d?;, (5.22)
J —00 ^

where the upper limit follows because v is exact and hence a lower bound on (y'(oi)|pg

and the Bayes action can only change if (y ' (a) | p^ =5^)<y(/3). If c only effects V{u) then the

MEVC is given by,

roo .
= / Pc(^) (max[(y 'Ml =J ,) , y(a)] - y (a)) (5.23)

This approximation suffers from the same short-sightedness problems as in the MINIMIN case.

Fortunately, the E{MRP} estimator already includes the effects of the additional information, i,

which can be used to derive alternative marginal value of computation estimates which do have

this problem.

5.3.2 The root value sensitivity approximation, dV{x^

As mentioned earlier (Section 4.8.1.3) the E{MRP} estimate is equivalent to estimating the

intrinsic value of the policy, [cj, CQ.], consisting of executing the computation, c,, which generates

the additional information i and then executing the Bayes action w.r.t. the updated action value

estimates. Hence an actions E{MRP} estimate V{u) is actually g. and the root states

E{MRP} estimate V{XQ) is Therefore the root state's E{MRP} estimate is a direct

measure of the future value of the information, i.

Now, as above, assume that the computation c is part of Q so it has the same effect on the states

it expands. Consider the case when c has already been executed and the frontier values updated

to reflect the information it provides. Executing c again will not realise any new information

and hence has no value. The value of V^. (XQ) computed in this new situation is a measure

of the value of the remaining computations, Cj — c. Hence, the change in (â o) before

and after the computation gives a measure of the contribution of c to the total value of c%, i.e.

AV{c) % V{ci) — V(ci — c). Essentially, this gives us a non-myopic estimate for the value of

c which includes its effects on the future value of the computation Q which is carried after it

finishes.

Unfortunately, whilst for any particular computation outcome the change in IQ may have

positive or negative value, its expected change is zero. This is because V .̂ is defined as the

average value of the Bayes action over final frontier value assignments after Ci is executed. As

the probability of any particular set of final frontier value assignments is unaffected by executing

c first, the average must also be unaffected. Hence, = V^̂ a.ca •

To overcome this problem we instead compute the expected absolute change in IQ . This gives

a measure of how much of the uncertainty in the true value of IQ is due to c, and hence how

(ZH/UrrERjx Sf%LRCffC%%VTTHaL 109

much the uncertainty would be reduced by executing c. The variance of gives a similar

measure. The absolute value is preferred as it weights all changes equally which is desirable

as the changes represent true marginal values. We denote this measure by dV{xQ) because it

computes the sensitivity of the root's E{MRP} value to changes in the values of a subset of the

frontier states. It is given by,

(fy(zo) = / p , W <y'(3;o)| - (y(zo)) dv. (5.24)

5.3.3 The expected step size approximation, ESS

One problem with dV^xo) is that it treats all changes in the value of the root as equally

important, irrespective of whether the Bayes action choice has changed. Thus, it tends to over-

value expansions which reduce the uncertainty in the Bayes actions value but are unlikely to

change it. To overcome this problem Baum and Smith (1997) suggest an alternative non-myopic

approximation called the expected step size, ESS.

The ESS is based upon the observation that the E{MRP} estimate of the current Bayes action,

(F(a)), gives a direct measure of the value of the agent's current information, whereas the

E{MRP} estimate for the value of the root state, (F(xo)), gives a measure of the value of

the additional information i. The difference between these two values gives a measure of the

marginal benefit of the additional information i assuming the agent executes the Bayes action

after i. Hence, assuming i is generated by the computation c ,̂ its MEVC is given by,

Ay(2) = Ay(Q) = <y(zo)) - (y W) = (5.25)

Baum and Smith call this the expected value of all future expansions, denoted C/aii leaves, as c,

represents the expansion of all the current frontier states to exact values. Now, if we again

assume that the computation c is a subset of Cj then the change in /S.V{i) before and after c is a

measure of its contribution to i's total marginal value, i.e. AV(c} % AV(ci) — AV{ci — c). The

advantage of this measure over dV{xQ) is that changes in V{a) which do not change the Bayes

action have no net marginal value because they affect V{xo) and V(a) equally.

Given this reasoning the expected change in AV'(j), denoted dAV{i), seems a natural non-

myopic measure of the marginal value of the computation c,

/

OO

Pc(?;) [Ay(%| p^ = - Ay(%)] d?,, (5.26)
-OO

/ OO -j

P , W <y(a;o)|p;:=<^,) - (y M | p ^ = 6 ^ > - (y(:ro)) + (^(c^)) (5.27)
-OO L

where a' = max^ V'{u) is the new Bayes action after the computation. Unfortunately, as

Baum and Smith point out, this is actually equal to the negative of the MEVC. The problem

is that, as noted above, by definition the average change in (^(zo)) is zero, so (^(xo)) and

CHAPTBRS^ S&U%3fCONTROL 110

(y(zo)l Pc =^v) cancel and (5.27) becomes,

fOO p
(f A F M - / PcW (y(a))-(y(a') |p;:=J^) d?; = -MEVC(c), (5.28)

which, as can be seen by comparison with (5.4) is in fact just the negative of c's MEVC.

To overcome this problem Baum and Smith suggest we instead compute the expected absolute

change in AV(ci),

= / PcW IAy(z| = 6̂) - Ay(2)| (fi;, (5.29)
-oo
roo

di;, (5.30) PcW (^ W) ! Pc =^1,) - (y(a')l Pc =^1,) - (^(a:o)) +

Baum and Smith justify this measure by noting that, as for the dV(xo) case, all changes in

AV{i) are equally important. Increases, indicate that our current information was is serious

error and much less reliable than we thought and therefore help avoid potentially costly blunders.

Decreases indicate that we are becoming more sure of our current information and hence getting

closer to committing to action.

However, we do not in fact use d\/S.V{i)\ but a closely related approximation that differs from

(5.30) only in that we require that a ' = a. This is the ESS,

ESS(c) = j ^^{v)\lsy{i\^'^=5v,a'=a) — lS.V{i)\dv, (5.31)

dt;, (5.32)

Pc(i;) dy(a;o) - ^^(0:)

00
00

PcW <^(3:0)1 Pc =^1,) - (^ W l Pc - (^(3:0)) +
0 0

0 0

db. (53%

The ESS is identical to d\lS.V{i)\ when the computation does not change the Bayes action.

However, when the Bayes action does change the ESS underestimates (y(ai')|pg=6i,), which

can have either a positive or negative effect on the total absolute change. Thus, the net effect

of this approximation is to introduce an additional source of error into the value of information

estimates. Notice, that (5.33) degenerates to dV{xo) if c does not affect V{Q), as in this case

{V{a)) is a constant and cancels leaving only the expected absolute change in dV{xo). This

fact can be used to further speed up the calculation of the ESS.

5.3.4 Implementation issues

Examining the equations for the value of computation approximations developed in this section,

that is; (5.22) and (5.23) for the MEVC, (5.24) for the dV{xQ), and (5.33) for the ESS, we

see that they all rely critically on efficiently computing the new average E{MRP} estimate

for the root node or one of its children with respect to the computations possible outcomes.

111

(F'(-)l Pc —Sy). Fortunately, due to the linearity of the propagation equations and the special

form of the computations outcome distribution, these averages can be computed in constant

time.

The required new average E{MRP} value for a state x can be found using the propagation

function (5.19). In the specific case considered here, where P'^v) = H{v — y), this simplifies

to,

J —oo JV--oo '^y+
poo

= 0 - M l - P ^ W)] % + / (1 - P ^ W X ? , , (5.36)
A +

where we have used the fact that, df{x)/dx = —d{l — f{x))/dx, and that H{v—y) = 0 below y

to eliminate the first integration in (5.35) and integration by parts for the second. The notation y"

and denote the limits approaching y from the negative and positive directions respectively.

Using the fact that lim^^oo f (1 — P^(t;)) = 0 when p^(u) tends to zero faster than v^, this

simplifies to,

roo

(1/"(%)|;4 =4,) == %(1 --I)w(%/+)) 4- / (1 -- (5.37)
J y +

To complete the computation of (y'{x)\ p^ =5y) we need P^('u). This can be found by inverting

(5.18) with the original distributions to give, P(^('u) = Pv{V{x)<v)/Pc{v)- Substituting this

into (5.37) gives,

where Pz(t;) = Pr(y(x)<t;) and Pc{v] are the original E{MRP} CDFs for the state x and the

computation c respectively. Computing the integral in (5.38) still requires significant computa-

tional effort. However, if Pc('y) is a piecewise constant staircase distribution (Section 4.8.2.1)

this can be reduced to constant time. Let Vi denote lower bound of the ith step of Pc('u), then as

Pciv) is constant between its steps the integral in (5.38) can be simplified to,

« = f (- S i) r (- S i) ' " £ (• - » 3) - "

= — — r / + (5.40)
JY.

= iJi+i - 'Ui - / Pa;(z)dz - / P3;(z)dz^ + i('Ui+i), (5.41)
^cy'^i) \J —OO V —oo /

where Pc(z) can be taken outside the first integral because it is constant over the range

of integration. Hence, if J^''^P:j.{z)dz can be computed in constant time, by for example

,SfL4J%(:rf(:C)ArT]ROL 112

pre-computing it and caching the results, then by working back-wards from oo (so /(wi+i)

is computed before I{vi)) the integral I can be computed iteratively in constant time for

consecutive steps in c's CDF. Notice, this is a significant saving as the naive approach of

computing the integral directly for each of Pa.(z)'s steps could take up to n/ x n, iterations

because Pxi^) is a combination of all n / frontier states.

Thus, if the outer integrals over c's outcomes in equations (5.22), (5.23), (5.24) and (5.33), are

also computed backwards from oo the updated averages can be computed in constant time per-

outcome. Hence the overall complexity of computing the any of the MEVC, dV{xo) or ESS

approximations is C(rac), where ric is the number of steps in c's outcome distribution.

5.3.4.1 Implementation for the ~E{MRP} approximations

The ~E{MRP} estimator has exactly the same propagation function, (5.18), as E{MRP} so

the same value of computation approximations can be used, namely MEVC, dV{xo) and ESS.

Indeed, as I'xiz) and Pc^(z) are both normally distributed it should technically be possible to

compute (5.38) exactly. However, this requires evaluating the following integration,

\ / ' ch;, (5.42)
$ w-ps

where (HXJCTX) and (//c, Cc) are the mean and standard deviations for respectively x and c's

distributions. Unfortunately, I was unable to find a analytic solution to this integral.

Instead the value of computation measures are calculated using (5.41) by approximating Pc('u)

with a discrete staircase distribution. P^ (z) does not have to be discretised as it can be integrated

exactly. If Px{z) is the normal distribution then,

== jf"' dzYiz, (5.43)

dz. (5/14)
.mn e \ (T

—OO ^ —oo ^ \

<7

]\k)k that))/(&; == go == --

Using this to substitute for in the integral and integrating by parts we obtain.

F's(z)dz == (%i - ' (5.45)

Thus, as f^ '^Pxlz jdz can be computed in C(l) time the value of computation measures can

be computed in 0(nc) time in the continuous case using the same techniques as for the discrete

case.

(ZH/LPTENR 5. 1 1 3

#(a:)
5-Step Approx

10-Step Approx
5-Step Quadrature Approx

FIGURE 5.1; This diagram shows three staircase approximations for the standard normal
distribution's CDF, two found by allocating equal probability to each step, and another based
upon Gaussian quadrature. Surprisingly, the 5-step quadrature based approximation gives
equivalent equivalently accurate (t^'(a:)| p^) approximations as the 10-step equal allocation.

The quality of this approximation is clearly dependent on the accuracy of Pc(i;)'s discretisation.

However, as the cost of the computation increases linearly with the number of steps in the

approximation, we must trade-off approximation accuracy against computational cost. Thus,

placing the steps in the staircase approximation is very important. Initially, the staircase was

constructed to minimise the total absolute error, by allocating equal probability mass to each

step. However, in use it was found that the tails of the distribution were most important to

accurately computing (F'(x)| =5^) and hence the value of computation. A discretisation

based upon Gaussian quadrature was used to approximate the tails more accurately and improve

the accuracy of the value of computation calculation. This was found to give a significant

improvement in approximation accuracy, with a 5-step quadrature approximation having

equivalent accuracy to a 10-step equal allocation. Thus, 5-step quadrature based discretisation

has been used for all the experiments in this dissertation. These discrete approximations are

illustrated in Figure 5.1.

5.3.5 Discussion

Baum and Smith present a novel way of computing the ESS efficiently for discrete staircase

distributions in N E G A M A X game trees by propagating influence functions up and down the

tree. In a N E G A M A X (Pearl 1984, p 228) tree each state attempts to maximise the negative

of its children's values. The influence functions are derived from the linearity of the E{MRP}

propagation equation (5.18) and give the marginal change in some linear function of a parent

state's PDF, g{x) = YlT=-oo g W Pi W , as a linear function of the change at a single leaf, so

Ag{x) = ('u)^Pc('u), where I^iv) is the influence of c on x. Because the value

distributions and influence functions must be computed for every state in the local search space

this method requires 0{nfnsd) time to propagate the influence functions and 0{nfnsd) space

to hold them, where d is the average depth of the local search space.

6%LtRC%rCC%VTRC^ 114

The method developed in this section represents a new alternative approach (inspired by Baum

and Smith's work) to computing the ESS (and other related marginal value of computation

measures). As this method does not require propagation through all the interior nodes of the

local search space it requires a factor proportional to the local search space's depth less time and

space than Baum and Smith's influence function approach. This represents a significant saving

for resource limited agents. Further, the derivation presented in this section is more general than

Baum and Smith's in that it applies equally well to continuous and discrete distributions. This

flexibility allowed the easy development of new and efficient value of computation measures for

continuous parameterised distributions.

5.4 Experimental analysis

This chapter has presented five main methods for implementing the search control component

of an incremental search agent, two for MINIMIN decision makers; A* and MEVC, and three for

E{MRP} and ~E{MRP} decision makers; MEVC, dV^xo) and ESS. This section presents an

empirical comparison of these methods to examine if the assumptions they are based upon are

justified and assess their relative merits for improving decision making performance.

5.4.1 General methodology

The general methodology used is identical to that of Section 4.9.4.2 except that one of the value

of computation measures developed in this chapter is used to select the states to be added to the

local search space. The search-control procedures tested are;

A*+AT Conventional A* search control with minimum heuristic value tie-breaking, and

ANTI-THRASH decision making. This gives a base-line for comparison with the

results of Section 4.9.4.2.

MEVC+HF MINIMIN decision making with MEVC search control and hardest first tie-

breaking. Hardness is the amount by which a frontier states expected value must

change to make it worse than V{(5) for a sub-tree states or better than V{a) for

non-alpha sub-tree states.

dV{xo) E{MRP} decision making with discrete distributions and dV(xo) search control.

ESS E{MRP} decision making with discrete distribution and ESS search control.

^dV{xQ) ~E{MRP} decision making with dV{xo) search control.

•^ESS ~E{MRP} decision making with ESS search control.

(Cff/irniR 5. f%EL4J%(:ff(:c)ArT]%c)L 115

As before all the algorithms were implemented and tested within a single generic C++

incremental search framework using the same graph construction, heuristic evaluation, and

performance assessment code to minimise implementation specific artifacts. Further, all

experiments are conducted on the same set of problems as used in Section 4.9 so the results

are directly comparable.

5.4.2 Results

The results of these experiments are presented in Figure 5.2 for the puzzle domains and

Figure 5.3 for the grid domains. Figure 5.4 also presents examples of local search spaces

constructed by the different search control algorithms for a 50x50 grid problem for comparison.

Comparing these results with the equivalent results for the purely A* based search control results

presented in Figure 4.17 and Figure 4.18 the following features can be identified,

• Significant improvement in decision making performance on the grid problems for the

E{MRP} based algorithms, much better than even with full-width search. As shown in

Figure 5.4 this is probably due to the improved accuracy of the calibrated future value

estimates leading to much better directed local search space construction, which provides

more accurate information to the decision making system.

• The indistinguishable but high performance of the E{MRP} algorithms on the "small"

10x10 grid and 8-puzzle problems. In a small problem it quite likely the search will

encounter a number of "beacon" states in the same sub-tree, on the edge of the basin

of attraction of the goal. The E{MRP} propagation function combines and magnifies the

importance of these states to focus decision making and search in this direction (this effect

is also shown in Figure 5.4 where the E{MRP} algorithms are much more goal directed

than A*). On the small problems this magnification outweighs the differences in search

control leading to effectively identical performance.

• Excellent performance of ANTI -THRASH on the puzzle domains, particularly the 15-

puzzle where for large numbers of states it is the best of all the algorithms studied,

compared to its poor performance on the grid domains. As in Section 4.9 this is attributed

to the good heuristic quality of the puzzle domains meaning A* performs particularly

well.

• Superior performance of the approximate E{MRP} algorithms on the 15-puzzle. As in

Section 4.9.4.2, this is attributed to the ability of the normal approximation to smooth out

the noise in the sampled heuristic estimates.

e Relatively poor performance of MEVC+HF, particularly for deeper searches. MEVC

clearly performs significantly better than pure A*, particularly on the grid problems,

however it is much worse than the other search control algorithms. This is hypothesised to

be caused by the myopic assumption of the MEVC becoming less valid for larger searches

CHAPTERS. SE&RCHCCWTROL 116

causing it to fall back on the hardest-first tie-breaking rule. As hardest-first is effectively

A* search control for large search MEVC degenerates to A*.

Overall these results are encouraging but not spectacular. They do show that it is possible to

improve significantly on A*'s performance for the strongly biased low quality heuristics of the

grid problems. However, when the heuristics are more accurate, such as on the puzzle problems,

the benefits of more complex search control are marginal. The superior performance of A*

ANTI-THRASH for deep searches on the 15-puzzle is particularly discouraging, as it implies that

in this case sophisticated search control is actually detrimental to performance.

5.5 Summary

This chapter has examined the search-control component of an incremental search agent. The

search control component's role is to identify which is the best frontier state to expand next

such that it maximises the quality of the agent's decisions and hence its overall performance.

It was decided to focus on explicitly meta-rational search control systems, which select states

for expansion by maximising an explicitly computed marginal value of computation estimate,

because they integrate well with explicitly rational decision makers.

Clearly, the key function in explicitly rational meta-control is computing the value of compu-

tation estimates. As computing the true value of computation is intractable, due to the size

of the agent's belief space, the main focus of this chapter was on developing tractable hybrid

approximations. The value of computation approximations developed are specific to the decision

making system because the value of expanding a state depends on its effect on the decision

makers decision. The key step in developing a tractable value of information approximation is

identifying the propagation function which determines how a particular computation's outcome

affects the decision makers action value estimates and hence its decision making. By identifying

the propagation functions for the MINIMIN and E{MRP} decision making systems, 5 value of

information approximations were developed.

The A* and MEVC approximations for MINIMIN decision makers were developed from previous

work, particularly (Russell and Wefald 1989), and a new derivation of the equations for the

MEVC's efficient implementation presented. For the E{MRP} decision makers three value of

information approximations, MEVC, dV{xQ), and ESS, were developed. It was then shown

how these approximations could be efficiently computed using a new method for the efficient

computation of (y'{x)\ =Sy). It was also shown how this derivation could be readily extended

to work with continuous distributions, and hence '-^E{MRP} decision makers.

The performance of the search control systems developed in this chapter was assessed

experimentally on the same 4 problem types as used in Chapter 4. The results of these

experiments were encouraging in that they demonstrated that E{MRP} based decision making

and search control has clear advantages for low quality highly biased heuristics. However, the

(Zff/LPTnENR 5. j%EL4J%Cff(:OAmR()L 1 1 7

A*+AT
MEVC+HF

ESS
ESS
dVM

~dV(r)

1000

Nodes

(a)

A'+AT
MEVC+HF

ESS
- E S S
dV(r)
dVr)

1000

Nodes

(b)

FIGURE 5.2; Search-control methods expected performance profiles on the (a) 8-Puzzle and
(b) 15-Puzzle. All results are averaged over 3,000 problems. The error bars indicate the mean's

sample variance. Note the log-scale on the x-axis.

C2i/lfTE!jR 5. SJS/LR(:ff(:C)ArT3tCUL 118

% oa -

A*+AT
MEVC+HF

ESS
ESS

dV(r)
dV(r)

Nodes

(a)

a 0.6

A*+AT
MEVC+HF

ESS
ESS

dV(r)

r''¥-U •

10 100 1000

Nodes

(b)

FIGURE 5.3: Search-control methods expected performance profiles on the (a) 10x10 grid and
(b) 100x100 grid. The results are averaged over 10,000 problems for the 10x10 grid and 2,000
problems for the 100x100 grid. The error bars indicate the mean's sample variance. Note the

log-scale on the x-axis.

CHAPTERS S&i&GHCCWTROL 119

- i

(a) A* (b) A*+1-E{MRP}

(c) dy(a;o) (d) ESS

FIGURE 5.4: This diagram shows the local search spaces constructed by the different search
control strategies after 200 and 400 state expansions for a single 50x50 grid problem with the
goal in the bottom right. Shading indicates distance from the start state. Part (a) shows A*
which is clearly the least goal directed algorithm, part (b) shows A* with calibrated heuristics
which increase goal direction but may cause the search to get lost down a "blind-alley" as
shown in the second picture. Parts (c) and (d) show E{MRP} based search control which is
more goal directed that A* but doesn't get lost like calibrated A*. Part (d) shows that ESS is

more goal directed that dV{xo).

superior performance of ANTI -THRASH decision making on the 15-puzzle demonstrates there is

still some way to go in developing efficient search control systems.

Chapter 6

Putting it all together: Stopping and

Convergence

The previous chapters have developed the decision making (Chapter 4) and search control

(Chapter 5) components of an incremental search agent. This chapter ties these two components

together to make a complete incremental search agent. This requires the addition of a meta-

control system to terminate the search at the correct point and learning capabilities to prevent

cycles and ensure convergence towards the goal.

The performance of ANTI -THRASH in the results of Section 4.9.4.2 and Section 5.4.2 clearly

demonstrate that stopping the search at just the right point can have a significant effect on

decision making performance, ANTI -THRASH simulates a normal A* search with MINIMIN

decision making which is stopped immediately before the search depth increases. Therefore it

is hoped that effective stopping will similarly improve the performance of the decision making

and search control algorithms developed previously.

Learning and adaptation is required to provide the incremental search agent with some memory

so it can avoid repeating its previous mistakes and cycling forever. Learning can also improve

an incremental search agents real-time performance by allowing it to avoid repeating work by

caching previous results.

6.1 The stopping problem

The general stopping problem is;

Definition 6.1 (General stopping problem). Given a decision making system and a search

control system, choose when to stop working on the current decision so that, on average, the

agents total task reward is maximised.

120

C2&IPTER& 121

The stopping problem is concerned with scheduling the agents computational resources over

the entire problem solving episode. In fact, the stopping problem can be modelled as a macro-

control problem (Section 3.3.11) where the agent must decide when to interrupt the current

extended duration decision-making macro (consisting of search control and decision making)

and switch to the next one. This macro control problem is complicated by the fact that the

quality of the macros output and resources consumed executing it influence the performance

of subsequent decision-making macros. Thus, given an appropriate model of the decision-

making macros operation and the resource cost, any of the macro-control algorithms discussed

in Section 3.3.11.2 could be used to solve the stopping problem.

As discussed in Section 3.3.11 existing solutions to the stopping problem fall into two main

camps; (1) META-GREEDY solutions based upon approximations for the marginal value of

further computation (Russell and Wefald 1989; Horvitz 1990; Baum and Smith 1997), and

(2) solutions based upon solving the macro-control MDP using dynamic programming (Hansen

and Zilberstein 2001a) or reinforcement learning (Harada and Russell 1999; Bulitko, Levner,

and Greiner 2002; Markovitch and Sella 1996). In this dissertation, because the explicitly meta-

rational search control systems developed in the previous chapter inherently compute marginal

value of computation estimates, only META-GREEDY solutions are considered. Studying how

dynamic programming or reinforcement learning could be used to improve stopping problem

solution quality is an area of ongoing research.

6.1.1 Meta-greedy stopping policies

As defined in Section 3.3.11.2 a META-GREEDY stopping policy stops execution of the current

decision-making macro once the estimated marginal value for further computation, AV{c), is

less than the marginal cost of computation, AC(|c|). Thus, implementing a META-GREEDY

stopping policy requires estimates for both the marginal value and cost of computation.

The most obvious approach to estimating the marginal value of computation is to use one of the

approximations developed in the previous chapter—that is either the MEVC, dV(xQ) or ESS

approximations. The problem with this approach is that these estimates can be very unreliable

and (particularly the MEVC) significantly underestimate the value of further computation, which

can cause META-GREEDY to stop the search prematurely. Therefore, a more reliable and

cautious marginal value of computation estimate is used for the stopping rule than for search

control.

Russell and Wefald's (1989) solution to this problem is to compute estimates for the value and

costs of a set for state expansions and stop when the cost of this set is greater than its benefit. The

sets value is estimated using the MEVC and the cost estimated as C(\nb'^\) where, C is the cost

function, n is the number of states expanded, h domains estimated branching factor, and d the

depth to which the node is to be expanded. They construct the set of computations considered

incrementally using the hardest-first criterion of Section 5.2.1. Baum and Smith's solution is

122

dVixQ) dV{xo)

m 0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Estimated Search Value

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Estimated Search Value

(a)

av(,)
MEVC

0.2 0.4 0.6 0.8 1 1.2

Estimated Search Value

1.2

0.8

0.6

0.4

0.2

T 1 1 r
A V (i)

~ A V (<)

0 0.2 0.4 0.6 0.8 1 1.2

Estimated Search Value

1.4

(b)

FIGURE 6.1: Example results of the various methods for estimating the value of computation
as predictors of true decision quality, and hence the value of further search, found by averaging
over 3,000 8-puzzle problems. Part (a) shows the results for the single step estimators, dV{xQ),
and ESS (the continuous versions performed similarly). Note, the single step MEVC results
are not shown as they were all 0. Part (b) the results for the all further computation estimators
MEVC and Ay(i) . The results show that whilst both types of estimate are very poor estimators
of the true value (as shown by their high variances) the all further computation estimators are

much better in that they are at least smoothly increasing with increasing error.

to use Ay(i) = {V{xo)) — {V{a)) (defined in Section 5.3.3), which they call leaves, to

estimate the expected value of all further computations. They estimate the cost of performing

all the computations necessary to realise this value using a learnt function which takes account

of the "opportunity cost" of continuing to work on the current problem as opposed to starting

the next one.

Figure 6.1 shows that these non-myopic MEVC and AV{i) estimates are considerably better

predictors of the true search value than the single computation step estimators, dV{xo), and

ESS. In these results the MEVC estimates are computed for M I N I M I N decision making based

upon expanding all the frontier states in the a sub-tree. The combined future value distribution

for the expanded states is found assuming frontier value independence using (4.25). Notice,

that all the estimators tend to significantly overestimate the value of further computation, as the

Cf&lPTER& 123

curves are consistently above the a; = y line. Further, the high variance of the non-myopic

estimates indicates they are still very noisy predictors of the true search value.

Now, the non-myopic MEVC or AV{i) estimates compute the benefit of all future compu-

tations. However, the META-GREEDY stopping rule is based upon the relative cost/benefit of

computation. Therefore to use these estimates we require either; (1) an estimate for the cost of

the computation required to realise this value, or (2) an estimate for the rate of change of this

value. In this work both approaches have been tried.

The first approach taken is to estimate the number of nodes which must be expanded to realise

the value of all further computations, and hence the cost of this computation. In many cases

most of the local search spaces frontier nodes have little or no influence on decision making.

Thus, assuming all frontier nodes must be expanded would tend to overestimate the computation

required. Instead, the amount of computation required is estimated by simply counting the

number of nodes with greater than zero expansion value, as computed by the ESS or dV{xo)

estimates, denoted risig. If search control provides good estimates for the value of individual

computations this should be a good estimate of the number of significant nodes.

The second approach directly estimates the local rate of change of future value, dV(i)/dt, using

a k step moving average of the absolute changes in the total future value estimate. That is.

dt k
A

(6.1)

where n is the current expansion number, k is the length of the averaging window, and Vc^

is the non-myopic value of future computation estimate used (either MEVC or AV{i)). The

moving average filter is required to smooth out the noise in the underlying signal, which the

gradient estimate tends to magnify. The absolute change in is used because both increases

and decreases in the value of further computation are deemed valuable. Increases indicate that

our previous estimate was wrong so we shouldn't stop whereas decreases indicate that we are

moving towards being sure of our decision. In practice using the absolute value tends to stop the

search terminating early on when the value estimates are still very uncertain.

Throughout this dissertation the cost of a single computation is assumed to be constant, C(l),

for the duration of the current decision. This constant indicates the relative importance of

minimising computational effort verses maximising the intrinsic value of the solution computed.

For example, (7(1) = 0.1 indicates that a reduction in the solution cost of 1 is worth 10 node

expansions and C(l) = 0.001 that a unit cost reduction is worth 1,000 node expansions. Thus

when the cost of computation is estimated by counting the number of significant nodes, %§,

the META-GREEDY Stopping rule is simply to stop when < M,igC(l) which is equivalent to

stopping when < C(l). Similarly, when the value of one more node expansion is estimated

directly the META-GREEDY stopping rule is to stop when <; (7(1).

CH/LPTTEijR 6. f;71CWPf%7V(j,4J\GD 124

lij

0.7

0.6

0.5

0.4

LQ 0.3

0.2

0.1

M M 1 1 1 1 1
#Nodes — 1 —
VJnfty —X—

VJnfty/n_sig a

: ; w

I i

0.65

50 100 150 200 250 300 350 400 450 500

<#Nodes>

(a) 8-Puzzle

#Nodes
VJnfty

<dVJnfty>_20
VJnfty/n_sig

MEVC/n_alpha
I I

50 100 150 200 250 300 350 400 450 500

<#Nodes>

(b) 15-Puzzle

#Nodes #Nodes
Vjnf ty - -X

<dV infty>_20
V_lnfty/n_sig - - o -

MEVC/n_alpha - • MEVC/n

P 0.5
LU
13 0.45 •a 0.25

S 0.4

90 100 40 50 60

<#Nodes>

(c) 10x10 Grid

100 1 5 0 200 250 300 350 400 450 500

<#Nodes>

(d)100xl00(]nd

FIGURE 6.2; Representative comparative performance results for stopping rules based upon
~ A y (?) for; (a) the 8-puzzle, (b) 15-puzzle, (c) the 10x10 grid and (d) the 100x100 grid
domains. The results show the expected decision quality verses the expected number of
node expansions required, with each point representing a particular threshold tested. The
MEVC/n.alpha results were found using hardest first (HF) search control and MINIMIN
decision making. The results using A* search control were almost identical. All other results
were found using the ~ESS search control procedure and ~E{MRP} decision making. The

results for the other E{MRP} based search control functions were similar.

6.1.2 Experimental analysis

The relative performance of the different stopping rules was tested by running the appropriate

search-control and decision making algorithm on a random selection of test problems for a wide

range of computational costs and recording the error in the final decision at the point the stopping

rule would have terminated the search. The stopping rules tested were.

#Nodes

Coo

stop when a certain number of nodes have been expanded.

stop when Vc^ = Ay(i) becomes less than C(l) (labelled VJnfty).

(CHAPTER 6. Zni3RPEVGyUVDCOArKERC%%VCE 125

^oo/"sig Stop when Vc^/n^ig drops below C(l), where Mgig is the number of frontier

states with non-zero estimated expansion value (labeled VJnfty/n_sig).

(M%oo stop when the 20 step moving average of the absolute change in Vc^ drops

below C(l) (labelled <|dV_infty|>_20). A 20 step average was chosen after

initial experiments indicated this gave the best performance.

MEVC(a)/na stop when MEVC(a)/na drops below C(l), where MEVC(a) is the myopic

EVC estimate for expanding all frontier nodes in the a sub-tree, and Ua is the

number of a's frontier states, (labelled MEVC/n_alpha).

For the #Nodes stopping rule thresholds of; 2, 5, 10, 20, 50, 140, 200, 400, 600, 800 and

1000 nodes were used. All other stopping rules were tested with the computational costs,

C(l)'s, ranging from 0.005 to 2. Thus, the results measure stopping performance across a

wide range of computational resource availabilities. Representative results from these tests are

presented in Figure 6.2. In these tests MEVC+HF (Section 5.2.1) search control was used with

MINIMIN decision making for the MEVC/n_alpha results. The results for A* search control were

almost identical. All other results used the ^ESS search control method of Section 5.3.3 with

~E{MRP} decision making. The results for the other E{MRP} based search control techniques,

i.e. ESS, dV{xo) and r^dV{xo), were similar.

These results clearly show that an intelligent stopping test can significantly improve the

performance of the search control and decision making system. Reducing the average effort

required by E{MRP} decision makers to reach a certain performance level compared to node

based stopping by up to 20% on the 8-puzzle, a factor of 5 or more on the 15-puzzle, and

about a factor of 2 on the grid problems. For MINIMIN decision makers with MEVC+HF search

control MEVC(a)/na stopping reduces search effort below that required by ~ESS with node

based stopping for all but the 100x100 grid. Compared to node based stopping the results

of Section 5.4.2 show this is a significant reduction in effort. That all the AV{i) based

stopping rules gave similar performance improvements, indicates once again that AV{i) is a

reasonably good indicator of the true value of further search. However it is unclear which

stopping rule is best over all. On the smaller 8-Puzzle and 10x10 grid problems the Koo/'"'sig

estimate gives generally best performance, particularly for low numbers of nodes. The reduced

performance of {\dVc^ /dt\)20 for low numbers of nodes on these small problems is attributed

to the averager introducing a lag which prevents the system stopping as early as it should in

some cases. On the larger 15-Puzzle and 100x100 grid problems identifying the best stopping

rule is more difficult. K^o/'^sig still appears to be best for less than about 50 nodes. However,

above this point {\dVc^/dt\)20 dominates in the 15-puzzle and Vc^ for the 100x100 grid. The

reducing performance of the E{MRP} algorithms for greater than about 250 nodes on the

100x100 grid demonstrates that improved stopping cannot always make up for the decision

making algorithms problems, as shown in Figure 5.3(b) where ~ESS decision making also has

worsening performance at this point.

Due to its better performance with shallower searches, and reasonable performance in all other

cases the Vc^/n^ig stopping rule is used in the remainder of this dissertation.

6.2 Learning and cycle avoidance

Up to this point the analysis has focused on ensuring that the agent's individual decisions are as

near to optimal as possible given the agents current beliefs. The assumption so far has been that

by making the best locally rational decisions the agent will make the best sequence of decisions.

This assumption is fatally flawed. Locally rational decision making is effectively just greedy

hill-climbing and hence prone to getting stuck in local optima. For an incremental search agent

which must execute some action such local optima manifest themselves as the agent cycling

repeatedly through the same sequence of states. Thus, a complete incremental search agent

requires some mechanism to "kick" it out of local minima, and send it on its way towards the

goal. This section discusses how learning and memory can be used in this way to guarantee the

agent eventually convergences on a solution.

The importance of cycle avoidance can be demonstrated by considering results from using an

incremental search agent based upon a depth 10 A* search on the 15-puzzle. Without cycle

avoidance this agent solved less than 10% of 1,000 test problems in 1,000 steps or less. With a

simple cycle avoidance mechanism (using the a update method described later) the same agent

can solve all 1,000 problems in less than 1,000 steps.

There is a vast literature on techniques for escaping local optima in local search, including:

1. Randomised decision making to break cycles, such as used in simulated annealing (Kirkpatrick,

Gelatt, and Vecchi 1983).

2. Trajectory traces, such as Tabu lists (Glover and Laguna 1997), used to directly penalise

re-visiting places the agent has been before.

3. Value function refinements used to adapt the approximate value function to remove local

minima. Examples include the Bellman backups used in real-time dynamic programming

(RTDP) (Barto, Baradtke, and Singh 1995) algorithms such as Korf's LRTA* (Korf 1990),

or the adaptive penalty terms used in reactive search (Battiti 1996).

Current incremental search algorithms have tended to use a combination of randomised tie-

breaking and RTDP based value function refinements for cycle avoidance and convergence

guarantees. This is the approach followed in this thesis.

Value function refinements can improve the agent's performance in two ways,

1. Improve short term performance within a problem by helping avoid cycles.

CHAfTER6. STOM%NGVU#)CONVERGENCE 127

2. Improve long term performance across problems by improving the quality of the

approximate value function.

As Korf (1990) points out in his original RTA* paper the same value function updates cannot

fulfil both these objectives. The purpose of updating a states value estimate is to revise it

to better reflect the true future value of any trajectory starting from the state. Now, if we

re-visit a state during a single problem solving episode then this means that the agents old

estimate for the future value was wrong, or it would have solved the problem. However, if the

agent re-visits a state in a different problem solving episode then the value of the path it took

previously may be correct. Thus the two objectives require different types of update; cycle

avoidance updates should be based upon the pessimistic assumption that the path followed

from the state was wrong, and long term performance optimising updates should be based

upon optimistically assuming that the path followed from the state was right. To achieve

both objectives simultaneously requires two updated values for each visited state; a pessimistic

update which is only used for the current problem and an optimistic one which is retained across

problems.

Using only one type of update can result in reduced agent performance. In the RTA* algorithm

cycle avoidance is effected by updating the root states value estimate with the revised MINIMIN

value of the second best action, V{xo) <— F(/3). As explained below this is a correct cycle

avoidance update if the state space is a tree. However, retaining this updated value across

problems may lead to reduced performance as the updated values will be pessimistic for states

for which the best action, a, was the right action to take. To improve performance across

problems LRTA* updates the root states value estimate with the revised MINIMIN value of the

best action, V{xo) <— V{a). Providing the initial value estimates are optimistic and the optimal

values are finite, this update is guaranteed to converge the value estimates to the optimal values.

This was initially proven by Korf for LRTA* and later generalised to any trial based RTDP

algorithm using a Bellman backup procedure (Barto, Baradtke, and Singh 1995). However, as

Korf points out and illustrated in Figure 6.3, this update can reduce performance within a single

problem.

In this dissertation only single problem solving episodes are considered, so we focus on the use

of value updates to escape from local minima. Using a second update procedure to improve

performance across problems is a possible area for future research.

6.2.1 Cycle avoidance value updates

Even when only considering how to optimise single episode problem solving performance

determining the best value function update is more difficult than would at first appear. In tree

structured state spaces V{I3) update is correct, as noted above. To see why consider the simple

problem shown in Figure 6.4. Because the problem is tree structured (ignoring for now the

dotted line from c to S), after leaving S via a in order to re-visit S the agent must again pass

CHAPTBR& &naM%NGV^#)CONVERGENCE 128

©
V{Q) updates y(/3) updates

step y(g) y(i) y(G) y(g) y (i) y(G)
0 0 0 0 0 0 0
1 0 ^ 1 0«— CO
2 0<-2 O^jW
3 1^-3 solved

21
22 solved

FIGURE 6.3; This diagram shows how using Bellman value function updates can actually
result in worse problem solving performance the first time a problem is encountered. The
agent starts in state S and has to get to state G for minimal cost. The table shows the updates
performed to the current state and trajectory followed for the two update types. Clearly F(/3)
update solves the problem in 2 steps for an optimal cost of 21, whereas V{a) takes 22 steps for

a total cost of 42.

FIGURE 6.4: This diagram demonstrates the problems with using V{P) for cycle avoidance
on a graph. The agent is in state S and the local search space is shown by the solid lines, the
numbers indicate the states future value estimate, so the best frontier nodes is c. Consider the
case when the agent moves to c and finds that it can travel back to S along the dotted line. As
d's frontier value of 6 has not yet been proven incorrect it should consider this as the future

value of S. Thus, updating S with the (3 sub-tree's value of 10 is incorrect in this case.

through a. Now it is clearly sub-optimal to transition from a to 5* and then back to a, hence it

is only worthwhile re-visiting S if it is better to leave it again via some other action. Thus, the

value of the best trajectory after re-visiting S is the value of the best action from it excluding a,

which is by definition V {15). However, if the state space is a graph, the agent can potentially re-

visit S without first passing through a, as shown by the dotted line in Figure 6.4. This (literally)

short-circuits the above reasoning as now it may be worthwhile re-visiting S to leave it again via

a, for example if this is a better path to d. Thus, V{I3) is no longer the best trajectory to follow

after re-visiting S, and the V{(3) update may be overly pessimistic. On a graph the only thing

one can be sure of on revisiting a state is that the best frontier value from that state was wrong.

Thus, the cycle avoidance updates used on graphs tend to be based upon "rules of thumb" which

were found to give good performance in the past. The following lemma shows that there is great

flexibility in choosing the update procedure.

Lemma 6.1 (Convergence on ergodic domains). For a finite ergodic domain, where every

state is reachable from every other state, providing the value of very node is initially finite and

(:fL4JPTf%R 6. 129

made strictly worse every time it is visited by a finite amount bounded below by some constant

then a greedy incremental search agent will eventually reach the goal.

Proof. Since the value of nodes in a cycle becomes progressively worse each time round the

cycle eventually one of them will become worse than the fixed value of a node not in the cycle,

causing the agent to leave the cycle. Further, as the updated state values are always finite, in

a finite state space with finite initial state values the agent must eventually visit every state,

including the goal state. To do otherwise implies the agent would have to traverse forever some

finite cycle of states, which is impossible if the values of states not in the cycle are finite. •

This lemma is based on Russell and Wefald's Lemma 3 (1989, p 126) which in turn is a

generalisation of Korf's original (1990) proof. Thus, an incremental agent will eventually solve

any finite problem so long as a value update always makes node values worse by a finite amount.

This is not to say that all value updates are equal, the optimal update should make a node just

bad enough to stop cycles but not so much that it prevents revisiting a state if it turns out the

a move was a wrong turn. In the absence of any other guidance the value update rules used in

this dissertation for the different incremental search systems have been selected based upon an

empirical analysis of a range of possible rules.

6.2.1.1 Cycle avoidance for MINIMIM decision makers.

Russell and Wefald (1989) performed an extensive empirical analysis of a number of value

update rules for MINIMIN decision making. Update rules they tested included, (1) a update with

the MINIMIN value of the best action. (2) (3 update with the MINIMIN value of the second best

action. (3) a x 1.1 update with the MINIMIN value of the best action plus 10%, (4) a + 1 update

with the MINIMIN value of the best action plus 1, (5) /? + 1 update the MINIMIN value of the

second best action + 1. Notice, that all these rules obey the requirements of Lemma 6.1 and

so guarantee eventual convergence. In their experiments on the 15-puzzle they found that the

a X 1.1 update gave the best results closely followed by a + 1 update.

I have repeated this empirical study but based upon the above analysis of the problems with the

V{a) and V{I3) updates on graphs have included an additional update, denoted /?-leaf, which

updates the root's estimate with the second best frontier state's value. /?-leaf is a valid update

for graph structured domains. Further, a depth limited A* search has been used to construct the

local search space rather than RTA*'s a-pruned search as used by Russell and Wefald (1989). As

a final efficiency measure the A* search is terminated early if it tries to re-expand a previously

visited state. This additional termination criteria is justified by noting that that because a fixed

CHAjPTTSfZf). 130

600

500

400

300

200

100

alpha —1—
aIpha+1 X

alpha X 1.1 « -
beta a

bsta+l —H—
beta leaf - -o- -

RTA* + alpha -- ••

2000 3000 4000 5000

<Nodes>

6000 7000 8000

FIGURE 6.5: 15-Puzzle experimental results for various update rules. The incremental search
agent used a depth limited A* search control procedure to construct the local search space
and MINIMIN decision making. Each point represents the average number of nodes expanded
and deviation from optimality over the same 1,000 randomly generated problems for depth
bounds of 3, 5,7 and 10. Searches were terminated at 1,000 steps and deviations of 1,000 steps

recorded.

depth search expands interior states less deeply than root states the re-expansion of a previously

visited interior state is unlikely to make it look worse than its previously updated value.'

The results of these experiments for the 15-puzzle are presented in Figure 6.5. These results

clearly show the superiority of the depth limited A* search over RTA*'s a-pruned search,

particularly for deeper searches. The reduction in node expansions is to be expected as A* search

will generally construct much smaller local search spaces than RTA*'s a pruning, with the

degree of reduction increasing with increasing search depth.^ That depth limited A*'s solution

quality is better than RTA*'s at the same depth bound with the same update rule (for example

at depth 7 A*'s average solution length is «200 whereas RTA*'s is «250) is slightly more

surprising as in the vast majority of cases both algorithms make the same action selections. The

only differences in this case come down how the algorithms break ties between states with the

same value. RTA* breaks ties randomly, whereas A* picks the state with the lowest heuristic

value. As noted previously, when heuristic error is proportional to heuristic value, A*'s strategy

is equivalent to breaking ties towards the state with best expected future value. Thus, A*'s

superior performance indicates using some information about the errors in the agents current

estimates is useful for improving performance.

'Russell and Wefald (1989) erroneously state that a reduced depth re-expansion cannot improve a states value
estimate. This is incorrect because the interior states neighbours may have had their values updated after it last had
its value updated. These revised values could then be used to improve the interior states estimate. To see how this
can occur, consider again Figure 6.4. If S is updated with the value of 6 from the second best frontier state and in the
process of reaching c the value of A is updated to be greater than 10 then the correct future value for S is now 10, the
value of the (3 sub-tree. Thus, in this case, re-expanding S can increase its value, potentially preventing an additional
cycle round the S —> a ^ c loop.

^Note, these results cast some doubt on the results reported in (Russell and Wefald 1989) where they claim that
using DTA* on the 15-puzzle results in "a total solution cost about 25% less on average", than SRTA*. However, as
SRTA* is a variant of RTA* which uses a pruning and DTA* uses A*, these results indicate that the majority of this
improvement is likely due to the change in search control rule rather than DTA*'s decision theoretic stopping rule.

Ŝ t%?%VGVUYDC%%VVERGEA%% 131

These results also show that for depth limited A* search whilst a update gives the best overall

performance, the update function is not particularly important for search depths greater than 7.

This is in stark contrast to Russell and Wefald's results which showed a strong update function

dependence at all depths with a + 1 and a x 1.1 giving best performance. This is again attributed

to A*'s tie-breaking strategy which, because it avoids states with high heuristic values, will tend

to avoid previously visited states more strongly than RTA*. Thus, a state's value does not

have to be made as much worse to prevent cycling, reducing the cycle avoidance advantages

of increasing a states value more than strictly necessary. However, increasing a state's value

more than necessary can still introduce additional cycles, causing the overall effect of the non-a

update rules to be a reduction in solution quality for shallow depths. This effect is reduced at

deeper depths as the agent is less likely to make a wrong turn and need to re-visit a previously

visited state. The fact that a update performs better than /3-leaf update implies that the situation

described in Figure 6.3 does not occur frequently in the 15-puzzle. The remaining variation in

solution performance for different update rules for low search depths can be attributed to the

different updates influencing A*'s tie-breaking rules in different ways.

As it gave the overall best performance a update will be used for cycle avoidance with depth

limited A* search and MINIMIN decision making in the remainder of this dissertation.

6.2.2 Cycle avoidance for E{MRP} decision makers.

Determining a good cycle avoidance function for the E{MRP} estimators poses two particular

problems. Firstly because decision making is based upon distributions we must identify an

appropriate distribution with which to update the root state. Secondly, because a states value

distribution may be optimistic or pessimistic with respect to its true value, it is easily possible

that a local search indicates the root states true value is actually better than its current one.

Thus, using this value to update a node is not guaranteed to prevent cycles as it violates the

requirement of Lemma 6.1 that a states value get worse each time it is visited. In fact, updating

a nodes value in this way may induce more cycles than no update, as the updated roots value

may be better than its immediate children causing greedy action selection to return to the root

state immediately after leaving it.

A number of possible distribution update rules were developed and tested, including; updating

with the E{MRP} estimate for the best (a) sub-tree, updating with the E{MRP} estimate for

the second best {(3) sub-tree, updating with the future value distribution from the frontier state

with best expected future value, or using any of these updates plus an addition constant to ensure

the updated value gets worse every cycle. Initial experiments showed that because the sub-tree

based updates included the effects of all frontier states in the sub-tree they tended to produce

optimistic updated value distributions, which induced additional cycling. Using the best frontier

states value distribution suffered from the same problem to a lesser extent but still induced some

cycling when its value distribution was better than the root state's children. To totally remove

Cf&LPTER& 132

cycling required including an additional constant of about the maximum single action cost to

ensure the roots updated value got worse after each visit.

Whilst not a totally satisfactory solution, the approach of using the future value distribution of

the best frontier state plus an additional constant was found to give the best performance, and

is used with E{MRP} decision making in the remainder of this dissertation. Investigating more

principled cycle avoidance update rules for use with distribution based estimators is clearly an

area for future work.

6.3 Experimental Analysis

This section presents comparative performance results for complete on-line planning agents

consisting of; decision making, search control, stopping and cycle avoidance components. As

such it represents the culmination of the incremental search agent development presented in

this thesis and a final test of whether the effort expended on developing sophisticated decision

theoretic decision making and meta-control methods is worthwhile.

The experiments were conducted using the same general methodology and C++ implementation

framework as used in Sections 4.9.4.2 and 5.4, where the system was presented with a set of

randomly generated problems from each domain. The problems were actually the same ones

uses throughout this thesis as the same generation procedure was used. The main difference

from the preceding experiments is to chain the individual decisions together by executing the

action recommended by the decision making system after the stopping rule terminates the

search. The root state is then updated with the result of the action and a new incremental search

procedure started. Before the new incremental search is begun all previously acquired state

space information, except for the root's updated value, is deleted. Thus decision making is

essentially memory-less. This process of decide and execute is repeated until either the agent

transitions into a goal state, or a domain dependent maximum number of action executions is

reached. The limits uses were; 800 for the 8 puzzle, 1,000 for the 15 Puzzle, and 800 for the

grid problems.

The algorithms tested were;

A*+MD Depth limited A* search for local search space construction. Decision making

using the MINIMIN child value estimate (Section 6.2.2) and minimum heuristic

value tie-breaking, a + 1 update (Section 6.2.1.1) is used for cycle avoidance.

HF+MEVC Hardest first (Section 5.2.1) search control with MENC{a)/na (Section 6.1.1)

stopping used for local search space construction. Decision making as for A*+MD.

Cycle avoidance using the best frontier states MINIMIN value worsened by a

Cf&UPTER& 133

problem specific constant (1 for the puzzle domains and 10 for the grid domains).^

This is essentially Russell and Wefald (1989) DTA* algorithm.

ESS ESS (Section 5.3.3) search control with a Vc^/ns\g (Section 6.1.1) stopping rule

used for local search space construction. Decision making based upon the E{MRP}

(Section 4.8.1) child value estimates. The best expected value frontier states value

distribution worsened by an problem specific constant (5 for the puzzle domains

and 10 for the grid domains) root update is used for cycle avoidance (Section 6.2.2).

~ESS As for the ESS but using Gaussian distributions to approximate state future value

distributions and the Gaussian approximation based algorithms; ~ESS for value of

computation based search control (Section 4.8.3).

dV{xQ) As for the ESS but using the dV{xo) value of computation estimate based search

control (Section 5.3.2).

^dV{xo) As for ~ESS but using the r^dV{xo) value of computation estimate based search

control.

6.3.1 Results

The results of these experiments are presented in Figure 6.6 for the puzzle domains and

Figure 6.7 for the grid domains.

The contrast presented by these results could not be more striking. On the grid problems the

E{MRP} based incremental search algorithms provide at least a factor of 2 reduction in total

node expansions required compared to A * + M D at an equivalent solution quality. This reduction

improves to a factor of 10 or more for increasing solution quality and search effort. However,

on puzzle domains the advantages are much reduced, with at best a 50% search effort reduction

for the 8-Puzzle and, more importantly, at least a factor of 2 increase in search effort on the 15-

Puzzle. The results also show the generally poor performance of HF+MEVC which performs

worse than any other algorithm on the Puzzle domains, and only beats A * + M D for shallow

searches on the grid problems.

These results clearly demonstrate the non-linear effect of improving individual decision making

on an incremental search agent's overall problem performance. The non-linearity arises because

when the agent makes better decisions, its solutions are shorter and thus it has less chance to

make a wrong decision. However, if it makes bad decisions, it gets more chance to compound its

mistake by making more bad decisions. On the grid problems the results in Figure 5.3 showed

that the E{MRP} algorithms had a clear decision making advantage over depth limited A* (as

simulated by A*+ANTI-THRASH). Thus using the E{MRP} decision making procedure in an

^the additional constant was required to prevent the agent returning to states which were given low updated values
because MEVC(a)/nc, stopped them being searched deeply.

C%&IPTER& 134

A'+MD
HF+MEVC -

800 900 1000 1 ^ 13M
<Nodes>

1MW i!ao i@m

(a)

300

250

200

50

ESS -ESS —X—
dV(r) - -

~dV(r) G
A*+MD — • - - •

HF+MEVC - -o- -

5000 1MW ISWM
<Nodes>

20000 25000

(b)

FIGURE 6.6: These graphs present the performance of the incremental search algorithms
developed in this dissertation on (a) the 8-Puzzle and (b) the 15-Puzzle. Each point represents
a particular stopping test threshold and gives the average over over 1,000 test problems of the
total number of nodes expanded and the deviation from optimality of the solution found by this
algorithm at this threshold. If the algorithm did not solve the problem it's deviation is recorded

as 1,000. Error bars are not presented to reduce graph clutter.

(ZflAjoTTSfCfx S^nCkPf%7V(jv4jVI) C%]fVT(E%%(3f%\M:i; 135

50

45

40

35

30

g
lu 25

I
^ 20

15

10

5

ESS —^
-ESS
dV(r) "

"-dV(r) €}
A'+MD —* -

. A'+MEVC —e- -

50 100 150
<Nodes>

250 300

(a)

180

160

140

120

100

ESS
ESS
dV(0
dV{r)

A-+MD
HF+MEVC

a 80 -

2000 4000 6000 8000 10000 12000 14000 16000 18000

<Nodes>

(b)

FIGURE 6.7: These graphs present the performance of the incremental search algorithms
developed in this dissertation on (a) the lOxlO-Grid and (b) the lOOxlOO-Grid. Each point
represents a particular stopping test threshold and gives the average over over 1,000 test
problems of the total number of nodes expanded and the deviation from optimality of the
solution found by this algorithm at this threshold. If the algorithm did not solve the problem

it's deviation is recorded as 1,000. Error bars are not presented to reduce graph clutter.

Ca%fTER& STOn%NGVU#)CONVERGENCE 136

incremental search agent results in a significantly higher performance. However, on the 15-

Puzzle Figure 5.2(b) indicated that for more than about 100 states expanded A*+ANTI-THRASH

was better. As the average solution length on the 15-puzzle is around 80 this corresponds

anywhere to the right of 80,000 total nodes expanded in Figure 6.6(b). Thus, as A*+ANTI-

THRASH simulates depth limited A*, the superiority of this algorithm is unsurprising.

The case of the 8-Puzzle is slightly more complex, as the results of Figure 5.2(a) showed that the

E{MRP} algorithms had little or no advantage over A*+ANTI-THRASH. Thus, we would expect

the algorithms incremental search results to be similar. That the E{MRP} algorithms exhibit a

modest advantage in this case can be attributed to their more intelligent t^oo/'^sig based adaptive

stopping rule. By preventing the incremental search agent wasting effort on simple decisions this

allows the agent to obtain equivalent solution quality for less effort, or equivalently improved

solution quality for the same effort by re-allocating the effort to the harder decisions. However,

the advantages provided by intelligent stopping are more modest because the agent is unlikely to

encounter many "easy" decisions in solving a problem, and because an effective search control

procedure already prevents the agent wasting too much effort by solving the easy problem more

rapidly. Indeed, the ability of depth limited A*'s search control to prevent it wasting time on

easy problems is one of the reasons why it performs so much better than a-pruned RTA*.

The generally poor performance of HF+MEVC also bears out this hypothesis, as the results

of Section 5.4.2 showed that hardest first based search control performed much worse than the

E{MRP} based search control procedures. Further, the only point where HF+MEVC shows a

significant advantage over A*+MD, i.e. on the 10x10 grid at shallow depths, is also the only

point where hardest first showed a significant advantage over A* ANTI-THRASH.

These results demonstrate two main points,

1. The primary factor influencing the performance of an incremental search agent is the

efficiency of its decision making, in terms of the number of states which must be expanded

to reach a certain decision quality. Increasing the efficiency of an agent's decisions can

have a non-linear effect in improving the agent's overall performance.

2. Of secondary importance is effective stopping-control which allows the agent to focus its

effort on making the hard decisions, where it is most useful.

This non-linearity is also the cause of some of the fluctuations in the agent's performance profile

for low numbers of nodes where it is easily possible for reducing the effort expended on each

individual decision to increase the number of decisions to be made and hence increase the total

effort expended. This effect is particularly apparent in Figure 5.2 on the 15-Puzzle where for low

total node expansions many of the algorithms require more node expansions for reduced decision

quality. The remainder of the fluctuations are presumably due to the noise in the sampling

process used. In particular the reduction in A*+MD's performance at about 15,000 nodes in

Figure 5.2(b) is due to the fact that at these particular depths it is unable to solve one of the

problems tested in less than 1,000 steps.

C2&IPTER& 137

In addition to these main points note that, when the E{MRP} algorithms performed well, the

approximate algorithms performed better than the exact ones, with ~ESS performing best on

the 8-Puzzle and ^dV{xo) best on the 100x100 grid. Again this is attributed to the approximate

algorithms being less sensitive to the noise in the sampled future value distributions.

Given that A*+MD and MEVC+HF use the same decision procedures and in many situations

grow the local search space in the same way, the generally poor performance of HF+MEVC

must be attributed to its stopping rule. This indicates that, except for the 10x10 grid at shallow

depths, the MEVC(a)/nQ. stopping rule is actually less effective than simply stopping at a fixed

depth bound. The atrocious performance of MEVC+HF on the 100x100 grid makes this point

particularly clear. Clearly, there remains a lot of work to be done in identifying an improvement

on fixed depth stopping for MINIMIN decision makers.

6.4 Summary

This chapter completes the development of a incremental search agent for on-line decision

problems presented in this dissertation by adding stopping and cycle avoidance components to

the search control and decision making components developed in the previous two chapters. The

stopping component is responsible for determining when it is no-longer worthwhile continuing

to work on choosing the current action as the resources could be better spent elsewhere, either

in executing the chosen action or working on the next problem. The cycle avoidance component

provides the agent with some adaptive memory which allows it to escape from local minima and

avoid endlessly repeating the same mistakes.

The stopping problem is essentially a macro-control problem of deciding when the value of

spending additional computational resources solving the next problem is worth more than

continuing to work on the current problem. As the E{MRP} based decision making systems

already provide estimates for the value of information which can be used in a META-GREEDY

stopping rule, this is the approach studied in this dissertation. Developing a META-GREEDY

stopping rule requires estimates for the marginal value and cost of continuing to work on the

current problem. It was found that the best estimates were provided by the non-myopic AV{i)

estimate for the value of all further computation rather than the single computation estimates

used for search control. Two stopping rules were developed from the AV(i) estimate. The first

estimated the cost of the computations required to realise this value by counting the number of

states with non-zero individual expansion value. The second used AV{i) to estimate the value

of a single computation by computing a moving average of its rate of change. Tests of these

stopping rules revealed that, compared to naively stopping after a certain number of nodes have

been expanded, they significantly improved decision making performance in all domains. As

estimating the rate of change of AV{i) using a moving average introduced a slight lag in the

stopping decision, it was decided to use the stopping rule based upon computing the cost of

further search in the experiments in the rest of this thesis.

Cycle avoidance is critical to the performance of an incremental search agent, allowing it to

avoid past mistakes and guarantee that it will, eventually, solve its problem. Of the many

possible cycle avoidance mechanisms this dissertation only considered methods based upon

updating a state's future value estimate each time it is visited. It was shown, using a lemma

due originally to Korf (1990), that, in an ergodic state space, if such an update makes a state

look worse by a finite amount each time the state is visited it is guaranteed to eventually escape

from any cycle and reach the goal. Thus there is great flexibility in choosing a cycle avoidance

value update rule. For maximum performance the update rule should not make a state so much

worse that it stops the agent re-visiting it if it turns out it has made a wrong turn. A number of

possible update rules were tested for depth limited A* and E{MRP} based incremental search

agents. As a result of these tests it was found that for depth limited A* based agents updating

with the estimated value of the path through the best frontier state gave best performance. For

the E{MRP} agents updating with the estimated future value distribution of the path through

the best frontier state worsened by a problem specific constant gives best performance.

The performance of the incremental search agents developed in this chapter was assessed

experimentally on the same 4 problem types used throughout this dissertation. The results

of these experiments were somewhat mixed. The E{MRP} based incremental search agents

were found to give significantly, between 2 and 10 times, better performance than depth limited

A* on the grid problems. The E{MRP} based agents also performed better on the 8-puzzle

domain, in this case reducing total problem solving effort by up 50%. However, on the 15

puzzle E{MRP} based agents failed miserably, performing at least a factor of 2 worse than depth

limited A*. Analysis of these results indicated that the primary determiner of incremental search

agent performance is the efficiency of the search control and decision making sub-systems. On

the grid problems the E{MRP} systems performed significantly better than A* due to their

use of calibrated future value estimates. This resulted in significantly better incremental search

agent performance. On the 15-puzzle the E{MRP} system performed slightly worse than depth

limited A*. The iterative operation of the incremental search agent magnified this performance

disadvantage to give the overall performance reduction. The 8-puzzle results demonstrated

the advantages of an intelligent stopping rule, where, despite have similar decision making

efficiencies, the E{MRP} based agents gave superior performance as they avoided wasting

search effort on easy decisions.

The main conclusion to draw from the results of this chapter is that (assuming the agent has

effective cycle avoidance routines and does not suffer adverse interactions between its sub-

components) the biggest improvements in incremental search agent performance are achieved

by improving the efficiency of the agents decision making by effective search control and value

inference techniques. Improving how the agent allocates search effort between incremental

problems by improving its stopping rule offers smaller but still significant performance

improvements. Overall, these results demonstrate that value of computation based meta-

control (in the form of search control and stopping routines) may provide significant benefits

to incremental agent performance.

Chapter 7

Conclusions and further work

7.1 Conclusions

The stated long-term goal of my research is the construction of "autonomous intelligent agents

able to solve real-world problems", such as control of autonomous vehicles or chemical plants.

Fundamentally, such agents must solve an on-line planning (or optimal control) problem which

consists of taking a sequence of observations and deciding in real-time upon a sequence of

actions to execute which optimise some objective criterion dependent on the sequence of states

visited and actions executed. Using dynamic programming arguments it was shown that on-line

planning problems can be solved optimally by greedy local hill-climbing w.r.t. the total objective

value the agent can get from each state (the state values). Thus, computing state values is of key

importance to solving on-line planning problems and was the focus of much of the work in

this dissertation. A formal state space model of on-line planning problems was presented in

Chapter 2.

The problem we face as agent designers is to design an agent which solves the on-line planning

problem as well as possible given the agent's physical and computational limitations. Such an

agent design must be bounded rational (Russell and Subramaniam 1995; Parkes 1996) in that

the agent's decision making procedures must "pay for themselves" by improving action choice

enough to offset their computational cost. This notion was formalised in decision theoretic terms

in Chapter 2, where it was also shown that proving an agent design is bounded optimal (i.e.

the best possible) is generally intractable. Hence, agent designs are usually based on empirical

experience. This dissertation contributes to the body of empirical experience by evaluating agent

designs based on decision theoretic principles.

Three main types of agent design have been used in the literature to solve the on-line planning

problems; 1) the programming design where the designer hand codes the action choices, 2) the

planning design where the agent chooses actions based upon some internal world model, and

3) the learning design where the action choice procedure is adaptively modified based upon

139

CHAfTER7. WW

the agent's experiences. This dissertation focused specifically on planning (or deliberative)

designs. Whilst each design has its individual strengths and weakness, Chapter 2 concluded that

planning designs are most useful when "easily grounded world models with sufficient predictive

power are available and locally observable environmental queues alone are insufficient to simply

identify actions which provide the required performance level".

In real-world open environments domain uncertainty and real-time issues prevent a deliberative

agent from generating a complete solution before acting. Instead the agent must interleave

decision making and execution to maximise real-time performance. In Chapter 3 two designs for

deliberative AI components suitable for on-line contexts were presented; bounded deliberation,

where the action choice procedure has a guaranteed maximum resource usage, and dynamic

deliberation, where a meta-controller can adaptively trade-off the action choice procedure's

resource usage against its decision quality. Dynamic deliberation is potentially more efficient

than bounded deliberation as it allows the agent to exploit any variance in time pressure and

problem difficulty to make best use of the resources available. Hovyever, as demonstrated in this

work, designing a meta-controller to realise this benefit is far from trivial.

In the dynamic deliberative agent designs studied in this dissertation the basic thinking/execution

interleaving is provided by incremental search, where decisions are made incrementally based

on a partial search through the local space of possible solutions. Incremental search was

chosen because it provides a relatively simple mechanism to trade-off decision quality against

computational effort by varying the amount of search performed per decision. An effective

incremental search based agent design must address four main sub-problems;

1. Decision Making - how does the agent make "good" action selections based upon

the often incomplete (and and therefore uncertain) information it has available? These

decisions must take account of the complexity induced uncertainty caused by the agent's

computational limitations.

2. Search Control - given the agent can only perform a limited amount of search to gather

information before a decision must be made, how does it order its local search space

expansions so it makes the "best" decisions possible?

3. Stopping - given that further computation has both variable costs due to delaying decision

making and benefits due to improvements in the information action choice is based upon,

how does the agent decide when it is time to stop thinking and commit to action?

4. Cycle Avoidance - given the limited local information the agent has available to make

each decision, how does it modify its operation to avoid repeating past mistakes and hence

ensure progress towards a solution?

The search control and stopping problems are meta-control problems concerned with effective

management of the agent's computational resources. Decomposing the agent design problem in

this way helps by allowing each of the sub-problems to be considered independently (whilst.

(Zfl/LPTnaR 7. (:CW\R:Z,LrSfOffS 141

of course, acknowledging that their interactions may cause us problems later). This was

the approach taken in this dissertation where the agent design is developed and analysed

incrementally by adding additional abilities to previously developed designs.

Clearly, the four sub-problems are highly inter-dependent requiring that the agent be carefully

designed so the sub-problems solutions do not interact adversely. Indeed, one of the main results

of this dissertation is to show that improving one component in isolation can actually result in

reduced overall agent performance. For example, Section 4.9.4.2 showed that improving search

control by using truncated A* search instead of fixed depth search on grid problems reduces

agent performance. This dissertation investigated the use of decision theoretic techniques to

cope with the uncertainty in these problems caused by the agent's computational limitations.

Chapter 4 examined the decision making component of a dynamic deliberative agent. Only

explicitly rational decision making systems, which make decisions by greedily maximising

explicitly computed local state future value estimates, were studied because they simplify meta-

control integration. Storing the true future value for every state is intractable so the local values

required must be estimated on-line from the information contained in the local search space

constructed by the incremental search. To improve the quality of the value estimates specially

chosen local feature detectors, such as heuristic estimates or lower bounds, were used to label

the local search space with additional useful information.

The information contained in the labelled local search space can be used to compute local state

value estimates by either using prior information to define a way of inferring value estimates,

or using machine learning techniques to learn a value estimation function, or using a hybrid

technique which combines the inference and learning techniques. The MINIMIN estimate,

which is based on the invariants implied by the Bellman backup equations, was presented as

an inference technique. This is the estimation technique underlying A* and Korf's RTA*.

The gold standard estimate, GSE, which learns a function mapping directly from labelled

local search spaces to local value estimates, was presented as an optimal learnt estimate.

Unfortunately, the GSE requires exponential memory making it impractical for general use.

Hansson and Mayer's BPS algorithm was presented as an alternative learnt estimation function.

This uses additional assumptions to offset GSE'S memory requirements. The E{MRP} estimate

was developed as a hybrid technique based upon probabilistic inference. This uses strong

assumptions about frontier states future value independence to define a probabilistic equivalent

of the Bellman backup equation. The E{MRP} estimates, by treating the agent's current frontier

value estimates as uncertain, allow the agent to take some account of any additional information

it may obtain in the immediate future. This is a hybrid technique because the likely effects

of the additional infomation are learnt. The ~E{MRP} was developed as a computationally

efficient approximation of the E{MRP} based upon approximating probability distributions with

parameterised Gaussian distributions. This approximation is one of the key contributions of this

dissertation.

Cf&LPTER Z 142

The five possible value estimate methods were tested experimentally in Section 4.9 on 4 problem

types, the 8-puzzle, 15-puzzle, 10x10 grid and 100x100 grid. These experiments demonstrated

that the labelled local search space contains much information which can be exploited by

sophisticated value estimate systems to improve decision making performance well over that

of MINIMIN. The BPS, E{MRP} and ~E{MRP} algorithms were all reasonably effective at

exploiting this information. However, the significantly better performance of GSE demonstrates

there is much potential for further improvement. Performing the same tests using A* based

search control demonstrated the importance of coordinating the search control and decision

making components. Poor coordination results in thrashing where the agent performs additional

search which has no beneficial (and may even have a detrimental) effect on value estimation,

wasting resources and reducing overall performance.

The search-control component of an incremental search agent is examined in Chapter 5. In

Section 3.3.1 it was shown that the meta-control problem could be modelled as a Markov

decision problem (MDP) which, like the original planning problem, can be solved using greedy

local hill-climbing w.r.t. the computation's expected future value. Unfortunately, as the meta-

control MDP is actually more complex than the original on-line planning problem, computing

the true value of computation is intractable. The value estimates computed by the decision

making system provide useful information for estimating the true value of information. Thus, it

was decided to focus on explicitly meta-rational search control systems, which choose the local

search space expansions to execute by greedily maximising explicitly computed approximations

to the marginal value of computation.

The key step in developing a tractable marginal value of computation approximations is

identifying a propagation function which shows how a particular computation outcome affects

the agent's decision making. By identifying the propagation functions for the MINIMIN and

E{MRP} decision making systems, 3 types of value of computation approximation can be

developed. The myopic expected value of computation (MEVC) approximation estimates

the value of computation by assuming the decision will be made immediately after the next

computation so all other frontier values are fixed at their current values. The root state

sensitivity {dV{xQ)) approximation estimates the value of computation in terms of the expected

absolute change in the estimated value of the root state. The expected step size (ESS)

approximation estimates the value of computation in terms of the expected absolute change in

the marginal value of all further computations. The efficient computation of the dV{xo) and ESS

approximations was made possible for E{MRP} decision makers using a new technique for the

efficient computation of a state's updated expected value after the computation, {V'{x) | =Sy).

It was also shown how this derivation could be readily extended to work with continuous

distributions, and hence for ^E{MRP} decision makers.

The performance of the search control systems was evaluated in Section 5.4 compared against

A*. These experiments showed that value of computation based search control could be effective

in improving the quality of decision making by avoiding the thrashing problems encountered

earlier. These benefits are particularly apparent for low quality feature detectors. However, the

CC^K%L%%QNSyUM)FURTHERlVORK 143

superior performance of ANTI-THRASH decision making on the 15-puzzle demonstrates there

is still some way to go in developing search control systems. As expected the short-sighted

nature of the MEVC approximation was found to give significantly poorer performance than the

non-myopic dV(xo) and ESS approximations.

The stopping and cycle avoidance components of an incremental search agent were examined

in Chapter 6. The stopping problem is also a meta-control problem which can be solved by

greedily maximising an estimate of the marginal value of further computation. The estimates for

the value of a single computation developed for search control were shown to be poor predictors

of the true value of continuing to search, so two new value of computation estimates were

developed. For the MINIMIN decision makers this was computed by making the MEVC estimate

less short-sighted by considering sets of computations. For the E{MRP} decision makers the

value estimates computed as part of the decision making process can be used to directly estimate

the marginal value of all further computation. Given these estimates the stopping rule is simply

to stop when the estimated marginal value of computation exceeds its estimated cost. Tests of

these stopping rules revealed that, compared to naively stopping after a certain number of nodes

have been expanded, they significantly improved decision making performance in all domains,

though again the MEVC estimator generally performed worse than the E{MRP} one.

Cycle avoidance is critical to the performance of an incremental search agent, allowing it to

avoid past mistakes and guarantee that it will, eventually, solve its problem. Of the many

possible cycle avoidance mechanisms this dissertation only considered methods based upon

updating a state's future value estimate each time it is visited. It was shown, using a lemma

due originally to Korf (1990), that in an ergodic state space if the value update makes each

state look worse by a finite amount each time it is visited then a greedy agent is guaranteed to

eventually escape from any cycle and reach the goal. Thus there is great flexibility in choosing

a cycle avoidance value update rule. For maximum performance the update rule should not

make a state so much worse that it stops the agent re-visiting it if it has made a wrong turn.

A number of possible update rules were tested for depth limited A* based incremental search

agents. Surprisingly these results showed that, so long as the convergence requirements were

met, agent performance was relatively insensitive to the update rule used, particularly for deeper

searches.

The performance of complete incremental search agents, consisting of decision making,

search control, stopping and cycle avoidance was evaluated in Section 6.3. The results of

these experiments were somewhat mixed, with the E{MRP} based incremental search agents

performing significantly better on the grid problems, and slightly better on the 8-puzzle. On the

15-puzzle however E{MRP} performed much worse than depth limited A*. Analysis of these

results indicated that (assuming no adverse interactions) the primary determiner of incremental

search agent performance is the efficiency of the search control and decision making sub-

systems, with the iterative operation of the incremental search agent magnifying slight efficiency

improvements into significant performance advantages. The stopping rule was found to have

CHAPTER?. CCWCLUSKWKfyUMDFURTHERVMMUC M4

a less dramatic but still significant effect on agent performance by reducing the search effort

wasted on easy decisions.

The main conclusions to draw from this dissertation can be summarised in four main points,

1. Effectively managing the interaction between the decision making, search control and

stopping components of an incremental search agent is critical to its performance. Poor

interactions can lead to thrashing and significantly reduced performance. Well managed

interactions, such as the combination of MINIMIN decision making with A* search

control and fixed depth stopping in A*+MD, can compensate for the poor performance

of one component (MINIMIN decision making in A*+MD's case) to give high overall

performance.

2. The most significant improvements to an incremental search agent's performance (assum-

ing no adverse interactions) can be obtained by improving the way in which it exploits

the information already contained in the local search space to improve the efficiency of

its decision making. Probabilistic inference techniques, such as E{MRP} and BPS, are

promising ways of doing this.

3. The efficiency of the agent's decision making can also be improved by using sophisticated

search control procedures to ensure the local search space only contains the information

most useful for decision making. However, in order to avoid thrashing problems the search

control and decision making systems must be carefully coordinated. Value of computation

based greedy search control techniques, such as dV{xo) and ESS, are promising ways of

doing this.

4. An incremental search agent's performance can also be improved using sophisticated

stopping control to manage how it allocates effort to individual sub-problems. However,

effective search control limits the benefits available in this way so it gives the smallest

improvements over-all. Again, to avoid thrashing problems stopping control must be

carefully coordinated with decision making. Value of computation based greedy search

control techniques are promising ways of doing this.

7.2 Further work

There are considerable possible avenues for future work suggested by the results contained in

this dissertation.

Once it is realised that value estimation can be cast as a probabilistic inference problem

there is considerable scope to develop alternative value estimation techniques. In particular,

it would be interesting to develop approximate E{MRP} estimation algorithms using alternative

parameterised distributions. Mixtures of Gaussians and truncated exponential distributions

appear to be particularly appropriate to this task. Also, the success of parameterised probabilistic

Cf&LFTERZ 145

propagation in reducing the computational cost of E{MRP} estimation indicates a similar

approach may be useful for reducing the computational cost of the GSE and BPS estimators.

One significant potential advantage of probabilistic inference for value estimation which has

not been tested is its ability to exploit the information contained in multiple feature detectors

(heuristics) to improve decision making performance. Thus, an alternative to developing a single

high quality heuristic is to use multiple lower quality heuristics. Similar techniques utilising

many of low quality feature detectors (such as mixture of experts, bagging, and boosting) have

recently been used with some success in machine learning contexts and it would be interesting

to see if this success could be replicated in on-line planning contexts. The multiple heuristic

estimates produced by pattern databases represent one obvious way of producing the required

multiple feature detectors.

Alternatively, a significant problem with the search control and decision making techniques

developed in this dissertation is that they require the entire local search space be stored in

memory to operate. For severely resource limited agents or very difficult decision problems

this is clearly infeasible. Hence developing a low-memory version of these procedures would

be advantageous. Using an adaptive iterative deepening technique such as IDA*_CR (Sarkar,

Chakrabarti, Ghose, and de Sarkar 1991) appears to be one possible way of doing this.

However, one significant problem with this approach is efficiently re-generating an interior

nodes expansion value to allow sub-tree pruning in the depth first search.

Another problem with the incremental search agents developed in this dissertation is that they

forget the local search space between problems. This is very inefficient, and modifying the

algorithms to only forget the information no-longer valid in the new problem is one way of

improving the agent's performance. This would also have the side-benefit of improving the

agent's cycle avoidance behaviour.

The generally high performance of ANTI-THRASH and fixed depth A* search (when used with

reasonably accurate heuristics) indicates that to get best performance A* searches should only

be stopped when the depth increases. However, using a fixed depth for an entire task seems

wasteful. Thus, it would be interesting to investigate whether using meta-control techniques

to control the depth of the A* search is beneficial. Note, this differs from the HF+MEVC

technique tested in Section 6.3 in that a stopping decision could only be made when the depth

increases. This could be done using the value of computation estimation techniques developed

in this dissertation. Alternatively, as the number of decisions is quite small the meta-controller

could be learnt directly. Indeed, given the poor quality and significant bias of the future value

of computation estimates used for stopping in this dissertation, a learnt stopping rule may be

beneficial even for E{MRP} based decision makers.

Bibliography

Agre, P. and D. Chapman (1990). What are plans for? In P. Maes (Ed.), New Architectures for

Autonomous Agents: Task-level Decomposition and Emergent Functionality. Cambridge,

Mass: MIT Press.

Allen, J. R, J. Hendler, and A. Tate (1990). Readings in Planning. Morgan Kaufmann.

Arkin, R. C. (1998). Behaviour-Based Robotics. Cambridge, MA: MIT Press.

Astrom, K. and B. Wittenmark (1994, December). Adaptive Control (2nd ed.). Addison-

Wesley.

Baird III, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In International Conference on Machine Learning, pp. 30-37.

Bamett, S. and R. Cameron (1985). Introduction to Mathematical Control Theory (2nd ed.).

New York, NY: Clarendon Press.

Barto, A. G., S. J. Baradtke, and S. P. Singh (1995). Learning to act using real-time dynamic

programming. Artificial Intelligence 72(1-2), 81-138. Also published as UMAss Amherst

Technical Report 91-57 in 1991.

Battiti, R. (1996). Reactive search: Toward self-tuning heuristics. In V. J. Rayward-Smith,

I. H. Osman, C. R. Reeves, and G. D. Smith (Eds.), Modern Heuristic Search Methods,

pp. 61-83. Chichester: John Wiley & Sons Ltd.

Baum, E. B. (1993). How a Bayesian approaches games like chess. In Games: Planning

and Learning, Papers from the 1993 Fall Symposium, Menlo Park CA, pp. 48-50. AAAI

Press. Technical Report FS-93-02.

Baum, E. B. and W. D. Smith (1995, September). Best play for imperfect players and game

tree search; Part I - Theory. Technical report, NEC Research Institute, 4 Independence

Way, Princeton, NJ 08540.

Baum, E. B. and W. D. Smith (1997). A Bayesian approach to relevance in game playing.

Artificial Intelligence 97, 195-242.

Bellman, R. and S. E. Dreyfus (1962). Applied Dynamic Programming. Princeton, N.J.:

Princeton Univ. Press.

Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.

146

BIBUOCKLAPHTr 147

Bertsekas, D. P. and S. E. Shreve (1978). Stochastic Optimal Control: The discrete time case.

Volume 139 of Mathematics in Science and Engineering. Academic Press.

Binmore, K. (1992). Fun and Games: A text on Game Theory. D.C. Heath and Company,

Massachusetts.

Boddy, M. and T. L. Dean (1994). Deliberation scheduling for problem solving in time-

constrained enviroments. Artificial Intelligence 67(2), 245—285.

Bonet, B. and H. Geffner (1999, September). Planning as heuristic search: New Results. In

Proceedings of the Fifth European Conference on Planning (ECP-99), Durham, United

Kingdom. Springer.

Bonet, B., G. Loerincs, and H. Geffner (1997). A robust and fast action selection mechanism

for planning. In Proceedings of the 14th National Conference on Artificial Intelligence

(AAAI-97), Providence, Rhode Island, pp. 714-719. AAAI Press / MIT Press.

Boutilier, C., T. Dean, and S. Hanks (1999). Decision-theoretic planning: Structural

assumptions and computational leverage. Journal of Artificial Intelligence 11, 1-94.

Brooks, R. (1982). A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation RA-2(1), 14—23.

Brooks, R. A. (1991). Intelligence without reason. In J. Myopoulos and R. Reiter (Eds.),

Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-

91), Sydney, Australia, pp. 569-595. Morgan Kaufmann publishers Inc.: San Mateo, CA,

USA.

Bulitko, v., I. Levner, and R. Greiner (2002, July). Real-time lookahead control policies. In

Proceedings of the AAAI/KDD/UAI-2002 Joint Workshop on Real-Time Decision Support

and Diagnosis Systems., Edmonton, Alberta, Canada.

Bylander, T. (1994). The computational complexity of prepositional STRIPS planning.

Artificial Intelligence 69, 161-204.

Camacho, E. P., C. Bordons, and M. Johnson (1999). Model Predictive Control. Springer

Verlag.

Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence 32, 333-379.

Chen, J. and A. M. K. Cheng (1994). A fast, partially parallelizalbe algorithm for predicting

execution time of EQL rule-based programs. In International Conference on Parallel

Processing.

Chung, J. Y., W. S. Liu, and K. J. Lin (1990). Scheduling periodic jobs that allow imprecise

results. IEEE Transactions on Computers 39, 1156-1173.

Cox, R. (1946). Probability, frequency, and reasonable expectation. Americian Journal of

f Ayjzcj ;/^(l), 1-13.

Dean, T. and M. Boddy (1988). An analysis of time-dependent planning. In Proc. Seventh

National Conference on Artificial Intelligence, pp. 49-54.

148

Dean, T. and S.-H. Lin (1995). Decomposition techniques for planning in stochastic domains.

In Proceedings of the 1995 International Joint Conference on Artificial Intelligence.

Dean, T. L. and M. P. Wellman (1991). Planning and Control. San Mateo; Morgan

Kaufmann.

Doran, J. and D. Michie (1966). Experiments with the graph traverser program. In Proc.

Royal Society ofLundon, Volume 294 of A, pp. 235-259.

Doyle, J. (1992). Rationality and its roles in reasoning. Computational Intelligence 8(2),

376-409.

Drummond, M. and A. Tate (1989). AI planning: A tutorial and review. Technical report.

Artificial Intelligence Applications Institute, Division of Informatics, The Unversity of

Edinburgh, 80 South Bridge, Edinburgh EHl IHN.

Pikes, R. E. and N. J. Nilsson (1993). STRIPS: a retrospective. Artificial Intelligence 59(1-2),

227-232.

Firby, R. J. (1989, January). Adaptive Execution in Complex Dynamic Domains. PhD. thesis,

Yale University.

Garcia, C., D. Prett, and M. Morari (1989). Model predictive control: Theory and practice -

A survey. Automatica 25(3), 335-348.

Garvey, A., M. Humphrey, and V. Lesser (1994). Task interdependencies in design-to-time

real-time scheduling. Technical report. University of Massachusetts.

Garvey, A. and V. Lesser (1993). Design-to-time Real-Time Scheduling. IEEE Transactions

on Systems, Man and Cybernetics, Special Issue on Planning, Scheduling and

Control 23(6), 1491-1502.

Garvey, A. and V. Lesser (1994, May). A survey of Research in Deliberative Real-Time

Artificial Intelligence. Journal of Real-Time Systems 6(3), 317-347.

Gasching, J. C. (1977). Exactly how good are heursitics: Toward a realistic predictive

theory of best-first search. In Proceedings of the Fifth International Joint Conference

on Artificial Intelligence, Boston, MA, pp. 434-441.

Georgeff, M. P. and F. F. Ingrand (1989, August). Decision-making in an embedded reasoning

system. In Proc. IEEE International Conference on Robotics and Automation, pp. 972-

978.

Gillespie, D. T. (1992). Markov processes : an introduction for physical scientists. Boston:

Academic Press.

Glover, F. and M. Laguna (1997). Tabu Search. Kluwer Academic Publishers.

Good, I. J. (1968). A five year plan for automatic chess. Machine Intelligence 2, 89-118.

Good, I. J. (1971). Twenty-seven principles of rationality. In V. P. Godambe and D. A.

Sprott (Eds.), Foundations of Statistical Inference, pp. 108-141. Toronto: Hold, Rinehart,

Winston.

BIBLIOGRAPHY 149

Good, I. J. (1983). Good thinking: The foundations of probability and its applications.

Mineapolis: University of Minnesota Press.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. In A. Prieditis

and S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine

Learning, San Francisco, CA, pp. 261-268. Morgan Kaufmann.

Hacking, I. (1967, December). Slightly more realistic personal probability. Philosophy of

Science 34, 311-325.

Hamilton, S. and L. Garber (1997). Deep Blue's hardware-software synergy. Com-

puter 50(10), 29-35.

Hansen, E. and S. Zilberstein (2001a). Monitoring and control of anytime algorithms; A

dynamic programming approach. Artificial Intelligence 126, 139-157.

Hansen, E. A. and S. Zilberstein (2001b). LAO* : A heuristic search algorithm that finds

solutions with loops. Artificial Intelligence 729(1-2), 35-62.

Hansen, E. A., S. Zilberstein, and V. A. Danilchenko (1997). Anytime heuristic search: First

results. CMPSCI Technical Reports 97-50, University of Massachusetts Amherst.

Hansson, O. (1998). Bayesian Problem Solving Applied to Scheduling. PhD. thesis.

University of California, Berkeley.

Hansson, O. and A. Mayer (1989). Heuristic search as evidential reasoning. In Proceedings

of the fifth workshop on uncertainty in Artificial Intelligence, Windsor, Ontario, pp. 152-

161.

Hansson, O. and A. Mayer (1994). DTS; A decision-theoretic scheduler for space telescope

applications. In M. Zweben and M. S. Fox (Eds.), Intelligent Schedulling, Chapter 13, pp.

371-388. Morgan Kauffman.

Harada, D. and S. Russell (1999). Extended abstract: Learning search strategies. In Proc.

AAAI Spring Symposium on Search Techniques for Problem Solving under Uncertainty

and Incomplete Information, Stanford, CA. AAAI.

Hauskrecht, M., N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier (1998). Hierarchical

solution of Markov decision processes using macro-actions. In Uncertainty in Artificial

Intelligence, pp. 220-229.

Holete, R., M. Preez, R. M. Zimmer, and A. J. MacDonald (1996). Hierarchical A*:

Searching abstraction hierarchies efficiently. In Proceedings of the Thirteenth National

Conference on Artificiail Intelligence (AAAI-96), pp. 530-535.

Horvitz, E. (1990). Computation and action under bounded resources. PhD. thesis, Stanford

University.

Horvitz, E. (2001). Principles and application of continual computation. Artificial Intelli-

gence 72(5(1-2), 159-196.

150

Horvitz, E., H. Suermondt, and G. Cooper (1989). Bounded conditioning: Flexible inference

for decisions under scarce resources. In Proc. of the Fifth Workshop on Uncertainty in

Artificial Intelligence, North-Holland, pp. 182-189.

Horvitz, E. and S. Zilbertstein (Eds.) (1996). Fall Symposium on Flexible computation in

Intellligent Systems, Menlo Park, CA.

Horvitz, E. J. (1988, August). Reasoning under varying and uncertain resource constraints. In

Proceedings of the Seventh National Conference on Artificial Intelligence, Minneapolis,

MN, pp. 111-116. Morgan Kaufmann, San Mateo.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. New York: Technol-

ogy Press and John Wiley and Sons.

Howard, R. A. (1966). Information value theory. IEEE Transactions on Systems Science and

Cybernetics SSC-2{1), 22-26.

Hyvarinen, A., J. Karhunen, and E. Oja (2001). Independent Component Analysis. John

Wiley and Sons.

Ingrand, F. F. and M. P. Georgeff (1990, November). Managing deliberation and reasoning

in real-time ai systems. In Proc. Workshop in Innovative Approaches to Planning ,

Scheduling, and Control, pp. 284—291.

Ingrand, F. F, M. P. Georgeff, and A. S. Rao (1992, December). An architecture of real-time

reasoning and system control. IEEE Expert 7(6), 34-44.

Jacobs, O. (1974). Introduction to Control Theory. New York, NY: Oxford University Press.

Kaelbling, L. P., M. L. Littman, and A. R. Cassandra (1997). Planning and acting in partially

observable stochastic domains. Unpublished Technical Report.

Kaelbling, L. P. and S. J. Rosenschein (1990). Action and planning in embedded agents. In

P. Maes (Ed.), New Architectures for Autonomous Agents: Task-level Decomposition and

Emergent Functionality, pp. 35-48. Cambridge, Mass: MIT Press.

Kim, K.-E. and T. Dean (2003). Solving factored MDPs using non-homogeneous partitions.

Artificial Intelligence 147(1-2), 225-251.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing.

Science 220, 671-680.

Kirsh, D. (1991). Today the earwig, tommorow man. Artificial Intelligence 47(3), 161-184.

Koenig, S. (2001). Agent-centered SQWch.. Artificial Intelligence Magazine 22(2), 109-131.

Koenig, S., A. Blum, T. Ishada, and R. Korf (Eds.) (1997, July). Proceedings of the AAAI-

97 Workshop on On-Line Search, Providence, Rhode Island. AAAI Press. Available as

AAAI Technical Report WS-97-10.

Koenig, S. and R. G. Simmons (1995). Real-Time Search in Non-Deterministic Domains. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp.

1660-1669.

Bf&LfOCHbiPHY 151

Korf, R. (1985a). Depth-first iterative-deepening: An optimal admissible tree search.

Artificiall Intelligence 27, 97-109.

Korf, R. E. (1985b). Macro operators: A weak method for learning. Artificial Intelligence 26,

35-77.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence 42, 1189-211.

Littman, M. L., A. R. Cassandra, and L. R Kaebling (1995). Efficient dynamic programming

updates in POMDPs. Technical Report CS-95-19, Brown University.

Liu, J., K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao (1991). Algorithms for

scheduling imprecise computations. IEEE Transactions on Computers 24(5), 58-68.

Markovitch, S. and Y. Sella (1996). Learning of resource allocation strategies for game

playing. Computational Intelligence 72(1), 88-105.

Mayer, A. E. (1994). Rational Search. PhD. thesis. University of California at Berkeley.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert (2000, June). Constrained

model predictive control: Stability and optimality. Automatica 36{6), 789-814.

Mok, A. (1990). Formal analysis of real-time equational rule-based systems. In Proc. of the

Real-Time Systems Symposium, pp. 308-318. IEEE.

Mouaddib, A.-I. and S. Zilberstein (1997). Handling duration uncertainty in meta-level

control of progressive processing. In M. Pollack (Ed.), Proceedings of the I5th

International Joint Conference on Artificial Intelligence (IJCAI-97), pp. 1201-1206.

Morgan Kaufmann.

Musliner, D. (1993). CIRCA: The cooperative intelligent real-time control architecture. PhD.

thesis, Computer Science Deptarment, University of Michigan.

Musliner, D., E. Durfee, and K. Shin (1993). CIRCA; A cooperative intelligent real-time

control architecture. IEEE Trans. Sys. Man, and Cybernetics 23(6), 1561-1574.

Myers, K. L. (1996). A procedural knowledge approach to task-level control. In Proceedings

of the Third International Conference on AI Planning Systems.

Neal, M. (1995). Bayesian Learning for Neural Networks. Springer-Verlag.

Neumann, J. V. and O. Morgenstem (1944). The Theory of Games and Economic Behaviour.

Pricenton University Press.

Parkes, D. and L. G. Greenwald (2001). Approximate and compensate: A method for risk-

sensitive meta-deliberation and continual computation. InAAAIFall Symposium on Using

Uncertainty within Computation. AAAI.

Parkes, D. C. (1996). Bounded rationality. Technical report. Computer and Information

Science Department, University of Pennsylvania.

Parr, R. E. (1998). Hierarchical Control and Learning for Markov Decision Processes. PhD.

thesis, Princeton University, University of California at Berkeley.

Pearl, J. (1984). Heuristics. Addison-Wesley.

BHUJOGRAfHY 152

Pearl, J. (1988). Probablistic Reasoning in Intelligent Systems. Morgan Kaufmann.

Pemberton, J. C. (1995). Incremental Search Methods for Real-Time Decision Making. PhD.

thesis, University of California, Los Angeles, University of California, Los Angeles.

Peng, J. and R. J. Williams (1995). Incremental multi-step Q-leaming. Machine Learning 22,

283-290.

Poupart, P., C. Boutilier, R. Patrascu, and D. Schuurmans (2002, July 28-August 1).

Piecewise linear value function approximation for factored MDPs. In Proceedings of the

Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on

Innovative Applications of Artificial Intelligence (AAAI/IAAI-02), Menlo Pare, CA, USA,

pp. 292-299. AAAI Press.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic

Programming. New York: Wiley.

Raiffa, H. and R. Schlaifer (1961). Applied Statistical Decision Theory. Harvard University

Press.

Ramsey, F. P. (1931). Foundations of Mathematics and Other Logical Essays. London:

Routledge and Kegan.

Rosenblatt, J. (2000). Maximizing expected utility for optimal action selection under

uncertainty. Autonomous Robots 9(1), 17-25.

Russell, S. and P. Norvig (1995). Artificial Intelligence a Modern Approach. Prentice Hall

International Inc.

Russell, S. and D. Subramaniam (1995). Provably Bounded-Optimal Agents. Journal of

Artificial Intelligence 2, 575-609.

Russell, S. and E. Wefald (1989). Do the right thing: Studies in Limited Rationality. The MIT

Press.

Russell, S. J. and W. Wefald (1991). Principles of metareasoning. Artificial Intelligence 49,

362-395.

Russell, S. J. and S. Zilberstein (1991). Composing real-time systems. In Twelfth Interna-

tional Joint Conference on Artificial Intelligence, pp. 212-217.

Sarkar, U., P. Chakrabarti, S. Ghose, and S. de Sarkar (1991). Reducing re-expansions in

iterative-deepening search by controlling cutoff bounds. Artificial Intelligence 50, 207-

221.

Savage, L. J. (1954). The Foundations of Statistics. New York: Wiley.

Schoppers (1987). Universal plans for reactive robots in unpredicatable environments. In

Proceedings Internations Joing conference on Artificial Intelligence, pp. 1039-1046.

Shafer, G. (1976). A mathematical theory of evidence. Princeton University Press.

Simon, H. A. (1982). Models of Bounded Rationality. M. I. T. Press.

BaUJOGRAfHY 153

Skyrms, B. (1990). The dynamics of rational deliberation. Cambridge, Massachusetts:

Harvard University Press.

Sloman, A. (1999). What sort of architecture is required for a human-like agent? In

M. Wooldridge and A. Rao (Eds.), Foundations of Rational Agency. Kluwer Academic

Publishers.

Smith, W. D. (1992, December). Approximation of staircases by staircases. Technical Report

92-109-3-0058-8, NEC Research Institute Inc., 4 Independence Way, Princeton, New

Jersey.

Sondik, E. J. (1978). The optimal control of partially observable markov processes over the

infinite horizionrdiscounted costs. Operations Research 26(2), 282-304.

Stentz, A. and M. Hebert (1995). A complete navigation system for goal acquisition in

unknown environments. Autonomous Robots 2(2), 127-145.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine

Learning 3, 9-44.

Sutton, R. S. (1990). Integerated architectures for learning, planning, and reacting based

on approximating dynamic programming. In Proceedings of the Seventh Int. Conf. on

Machine Learning, pp. 216-224. Morgan Kaufmann.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An Introduction. Cambridge,

MA: MIT Press.

Tash, J. K. (1996). Decision Theory Made Tractable: The value of Deliberation with

Application to Markov Decision Process Planning. PhD. thesis, University of California,

Berkeley.

Tate, A. (1977). Generating project networks. In Proceedings of the Fifth International Joint

Conference on Artificial Intelligence, pp. 888-893.

Thrun, S., A. Buecken, W. Burgard, D. Fox, T. Froehlinghaus, D. Hennig, T. Hofmann,

M. Krell, and T. Schmidt (1998). Map Learning and High-speed Navigation in RHINO. In

D. Kortenkamp, R. Bonassso, and R. Murphy (Eds.), Artificial Intelligence-Based Mobile

Robotics: Case Studies of Successful Robot Systems, pp. 21—52. MIT Press, Cambridge

Mass.

Tsai, H. and A. M. K. Cheng (1994). Termination analysis of 0PS5 expert systems. In

National Conference on Artificial Intelligence, pp. 193-198.

von Winterfeldt, D. and W. Edwards (1986). Decision Analysis and Behavioral Research.

Cambridge University Press.

Vrbsky, S. and J. Liu (1995). Producing monotonically improving approximate answers to

database queries, pp. 117-133. Kluwer Academic Publishers.

Watkins, C. J. (1989). Models of Delayed Reinforcement Learning. PhD. thesis, Cambridge

University, Psychology Department, Cambridge, United Kingdom.

BBLfOGRAPffy 154

Watson, S. R. and D. M. Buede (1987). Decision Synthesis: The Principles and Practice of

Decision Analysis. Cambridge Univesity Press.

Wellman, M. and C. Liu (1994). State-space abstraction for anytime evaluation of

probabilistic networks. In Proceedings of the 10th Conference on Uncertainty in Artificial

Intelligence, Seattle, WA.

Whittle, R (1983). Optimization over time. Volume 2 of Wiley Seris in probability and

methematical statistics. Wiley.

Williams, R. and L. Baird (1993, November). Tight performance bounds on greedy policies

based on imperfect value functions. Technical Report NU-CCS-93-14, Northeastern

University.

Zadeh, I. A. (1965). Fuzzy sets. Information and Control 8, 338—353.

Zhang, N. and W. Zhang (2001). Speeding up the convergence of value iteration in partially

observable markov decision processes. JAIR 14, 29-51.

Zilberstein, S. (1993). Operational rationality thorugh compilation of anytime algorithms.

PhD. thesis. Computer Science Division, University of California.

Zilberstein, S., F. Charpillet, and P. Chassaing (2003). Optimal sequencing of contract

algorithms. Annals of Mathematics and Artificial Intelligence 39{\-2), 1-18.

Zilberstein, S. and S. Russell (1996). Optimal composition of real-time systems. Artificial

Intelligence 52(1-2), 181-213.

