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Electric propulsion (EP) devices such as gridded and Hall effect ion thrusters
(HET) offer significant mass savings compared to chemical rockets. In addition to
enhancing existing mission possiblities. it is also true that cutting edge EP systems are
an enabling technology for certain high AV missions. Although ion and HET thrusters
are currently used operationally, there still remains a need for further understanding of
the physics associated by the devices in order to enhancing performance and reliability.

The hollow cathode (HC) is a device commonly used in electron bombardment ion
thrusters to provide a primary ionising current source, while a secondary cathode 1s
often used as a plume neutraliser. Although HCs are often used, the internal plasma
physics is still poorly understood and they exhibit operational modes the cause of
which has not been fully explained. This is primarily due to the difficulties associated
with recording experimental data from within the very small scale cylindrical cathode.

In order to gain further understanding of the hollow cathode internal physics. a
numerical model was developed. Due to the degree of rarefaction and low density, the
neutral flow was modelled using a Direct Simulation Monte Carlo (DSMC) model. It
was found that the flow was rarefied in the cathode plume, and numerically transi-
tional in Knudsen number within the ‘throat’ (tip) of the hollow cathode.

Due to the predicted plasma density in the cathode, a Particle-in-Cell (PIC),
Monte Carlo Collision (MCC) model was then added to the existing neutral gas model.
This was validated against some standard test cases and experimental data for cathode
conditions. It was found that the hollow cathode plasma exhibits a dense emitting
region extending a short distance inside. The model was then used to characterise
the discharge and arguments based on the emitting region hypothesis are extended to

explain the results.
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gas species, is omitted for two reasons: (a) there is no gas dynamic
data available and (b) it is not available in sufficient quantities to be a
viable propellant for the hollow cathode. . . . . . . . ... .. ... ..
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speed of light in a vacuum, 3 x 10° m s~ !
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unit vectors

electron mass adjustment factor (fluxes hence altered by /f)

particle velocity distribution fn., m=3

Relative velocity between two particles, m s!

particle velocity magnitude distribution fn., m=3

acceleration due to gravity at Earth’s surface, 9.81 m s 2

post-collision scattering velocity, m s™!
Planck constant; i = h/27

. ~ -2 -9
current density, C m™=- s~

Boltzmann’s constant. 1.38065x10723] K~}
number density, m™3

molecular speed ratio, m s~ !, eq. (3.47)
stream velocity, m s7!
thermal velocity, m s71

rocket exhaust velocity, m s71, eq. (1.2)
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Chapter 1
Introduction

This chapter provides general background material covering spacecraft propulsion,
in particular electric propulsion. The origin of the fundamental limitation in the
performance of chemical rockets is discussed in detail here because it coincidentally
introduces some useful terminology for later sections.

The following sections cover the objectives of the research presented and the struc-

ture of its presentation in the ensuing chapters.

1.1 Rocket Propulsion

Space missions are usually characterised by the magnitude of the velocity increment,
AV, required to complete them. This velocity change is a fixed parameter for a given
mission: regardless of the spacecraft mass, the velocity change must be completed.
Typical values of AV for a variety of missions are shown in table 1.1. It can be shown
that the amount of AV that a spacecraft can obtain is a function of the available

fuel mass and the propulsion exhaust velocity. This can be derived from the rocket

equation:
dr dM .
Mission AV (km s™)
Escape from 480 km altitude orbit 3.15-7.59
Earth orbit to Mars orbit and return 14
Earth orbit to Jupiter orbit and return 64

North-South Station keeping for 1 year ~ 41-51 m s™*

Table 1.1: Magnitude of AV required for some typical space missions. Adapted from
Fearn [32].



where A7 refers to spacecraft mass and v, is the rocket exhaust velocity. The solution

of this equation is

M, .
AV =, In (;’\](j) , (1.2)

where Ay is the initial spacecraft mass and A/, is the mass at time ¢. If AM is the

mass of propellant consumed, then the result becomes

Aly \
AV = v, In (W) . (1.3)
This result is important because it tells us that the total AV that is available is
proportional to the rocket exhaust velocity, ve,. Such a result may similarly be derived
by considering the standard metric of propulsion performance, specific impulse, which
is defined as ’
Iy = i (1.4)
mgo

where T is thrust. 7 is propellant flow rate (kg/s) and go is the gravitational ac-
celeration. If we take 7" = rv,,. then the expression for specific impulse beconies
Lsp = vea/go. In other words, the performance of any propulsive device that relies on
the expelling of propellant is fundamentally related to the absolute exhaust velocity
of the propellant. The reason why electric propulsion (EP) receives so much attention
is due to the fact that EP thrusters can provide v,, far in excess of conventional chem-
ical rockets. Table 1.2 shows the characteristics of a wide range of electric propulsion
devices. In the table. row five shows values for Iy, which, for the more advanced EP
rockets, are of the order of thousands. Compare this to the fact that the maximum

I, for the most advanced chemical rocket — liquid bi-propellant — is around 430.

1.1.1 The specific impulse limit in chemical rockets

Why do chemical rockets fall so short of electric rockets? In order to answer this
question, it is worth briefly examining some basic compressible nozzle flow theory. In
fact, as will become clear, the hollow cathode acts in a gas dynamic sense in the same
way as a converging-diverging nozzle, so the following analysis will be useful later.
Consider figure 1.1. This shows an example of a converging-diverging nozzle. The
minimum area or throat point is shown with a dotted line. Subscripts e refer to exit
conditions. There are various expressions that relate the pressure, temperature and
Mach number ratios for such a nozzle that are derived from elementary isentropic
compressible flow theory. From these expressions, it is possible to understand the
fundamental limit on chemical rockets. For further derivation of the following, see

Anderson [2] or Hill and Peterson [43]. For the quasi 1D nozzle in figure 1.1, the

o



M, >1

A = Flow direction

Figure 1.1: A converging-diverging nozzle. Subscripts ¢ and . represent combustion
chamber conditions and nozzle exit plane conditions respectively.

relation o
) T\ 7Y ,
%“ - TO (1.5)

holds, where, for a perfect gas, p is pressure, T temperature and ~ the ratio of specific
heats. The temperature ratio is
T ~v—1 ,
T 2 ’ (1.6)
where A7 is the Mach number. Substituting (1.6) into (1.5) gives

/(1]
~ _]. B R
%: 1+ . (1.7)

The exhaust velocity v, = M,a., where a, is the sound speed: a, = /vR1,. So. if we

solve (1.7) for A, we obtain

9 NG »
I Pe

for the Mach number. In a similar way, the exit plane temperature is given by re-
arranging (1.5) so that
(v=1)/v

T,=T 2 (1.9)
Po



NMultiplying the above by the sound speed gives us the exit plane velocity:

v, = Ml (1.10)
(v=1)/~ ) (e 11/~

. 2 p ! I ) Y 1Y )

Vi = <@) — 1| vR1y (])_(> (1.11)
71 \pe Po

2vRT, 0\ 7B ,

=0 - <&> . (1.12)

v—1 Do

This result is particularly revealing. Optimisation of v., by way of maxinising the
pressure ratio is somewhat futile because v, will converge to some finite ideal value as
Po/pe — oo (i.e. pe/po — 0). The utility of very high pressure ratios is not sufficient
to overcome the structural cost: it is sufficient for p./py < 0.01. The result is that
for a given propellant, the only variable that significantly affects v, is the chamber
temperature Ty. v, is fundamentally limited by the maximum temperature that the
chamber walls can endure. Such temperature limits are around 3500 K for some
Titanium-Nickel allovs, perhaps higher for ceramics.

As an example, a liquid oxygen-liquid hydrogen rocket has v = 1.22 and R = 519.6
for the chemically reacting gas in the chamber. The pressure ratio is around 2500 -
25 atm chamber pressure and 1072 atm exit pressure [2]. The theoretical upper limit

of v., 1s

o s —1)
Me= \/ [ET N

a. = 1/(1.22)(519.6)(3500)(0.00040-150) = 735.65 m s~
Ver = (5.31)(735.65) = 3905 m s~ !
= I, = 3905/9.81 ~ 398

Where equation (1.11) was used instead of (1.12) so the magnitudes of the Mach num-
ber and sound speed can be shown. Clearly then, chemical rockets have fundamental
limits associated with them. The question is, how do electric rockets overcome this?
Since there is a wide range of EP systems, specific explanations are best left to fol-
lowing section. It suffices to say that in each case, energy is added to the the exhaust

by other methods instead of, or in addition to, the nozzle expansion.

1.2 Electric propulsion

There are two good review papers that attempt to cover the field of electric propul-
sion: Fearn [32] and, more recently, Martinez-Sanchez and Pollard [58]. The most

logical mechanism for classification of the many devices is by the primary mechanism
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by which the exhaust velocity is raised. This classification system is not flawless since
there is inevitably much overlap. Indeed, all gas propellant electric rockets derive
some thrust via conventional gas dynamic expansion of the propellant, albeit a very
small amount in some cases. Classification by (electro-) thermal, magnetic and elec-
trostatic propulsion; this ordering is broadly representative of increasing complexity
and performance, although there are several exceptions. An overview of the most
successful devices is given in table 1.2. The table, adapted and abbreviated from
Martinez-Sanchez and Pollard [58] is shown to give an impression of the comparative
performance and requirements of current operational devices.

In the interests of brevity and relevance, detailed discussions of thermal and mag-
netic EP devices are omitted. Since the work in this study relates to the hollow
cathode, it is only worth considering devices that make miost use of it. The ion
thruster is such a device, and can be considered a flagship device within electric
propulsion. Brewer [16] is the author a book on the ion thruster, and much research
has been conducted since. The success of the NASA Deep Space 1 mission that used
an ion thruster for primary propulsion is further testimony to this [97]. In an gridded
ion thruster. a plasma is formed behind an electrode grid. as the name suggests. The
grid serves accelerate ion beam-lets. Since positive ions are expelled, the thruster
becomes negatively charged. This means that the plume must be neutralised. This
is true of hoth gridded and grid-less ion thrusters (hall effect thrusters). A hollow
cathode is used to expel electrons corresponding to the ion current of the plume. so
that the spacecraft does not become electrically charged. The method by which the
working plasma is generated in a gridded ion thruster is used to further classify the
device. The working plasma can be formed using a DC discharge (Kaufmann type),
with the current provided by a hollow cathode, by RF excitation of the propellant
(the German Radio-frequency Ion Thruster - RIT) or by tuned Electron Cyclotron
Resonance (ECR). Figure 1.2 shows a diagram of a Kaufmann type ion thruster. The
solenoid (or fixed magnet) plays an important role: the magnetic field in the chamber
serves to increase the ionising electron residence time hecause the electrons follow
helical paths along magnetic field lines. The increase in electron path results in a
corresponding increase in ionisation probability. From a practical point of view, it
is generally accepted that gridded ion thrusters require a more complex collection of
auxiliary equipment compared to grid-less (hall effect) thrusters. Hence, currently
Hall effect ion thrusters are considered the more robust general purpose EP device.
Nonetheless, ion thrusters are still competitive for station keeping applications and

offer higher I, generally than HETs (see table 1.2).
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Name Resistojet Arcjet HET [on Prr FEEP sclf-tield MPD

NMain type Thermal Thermal Magnetic Electrostatic magnetic Electrostatic NMagnetic
Sub type (magnetic) (Thermal)
Propellant NI, N, Xe Xe Teflon Cs -
Power (W) 500 500-20 K 300-6000 200-4000 1-200 1075-1 200-4000 KK
Loy () 350 500-800 1600 2800 1000 6000 2000-5000
n 80% 27-36% 50% G5% 7% 80% 30%
Peak Voltage (V) 28 200 300 900 1000-2000 6000 100
Mass (kg/IKW) 1-2 0.7 2-3 3-6 120 - -
Lifetime () 500 > 1000 > 7000 10000 107 pulses - -
status Operational  Operational Operational Operational  Operational Development Lal
Mission NSSK NSSIKK NSSIK, mid AV NSSK, precision orbit  precision orbit large AV
large AV correction correction
Table 1.2: Key features and performance of current electric propulsion devices. Adapted and condensed from Martinez-Sanchez and

Pollard [58]
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Figure 1.2: Illustration of an ion thruster. Regions denoted Il and Il refer to the
coupling plasma, main discharge plasma and ion beam plasma respectively.

1.2.1 Micro-propulsion

Kaufmann type ion thrusters suffer a particular problem when miniaturisation is
considered. Consider the ionisation chamber of a DC discharge gridded ion thruster.
Here, the efficiency is closely related to obtaining the maximum ionisation probability
for each electron passing from the cathode to the anode (see fig 1.2). A magnetic field
is applied to the main discharge region so that the electron follow a longer path (since
in the presence of a magnetic field. charged particle trajectories are helical [40]). If
the chamber size is reduced, the same ionisation efficiency can only e retained with
a corresponding increase in magnetic field strength.

Research has been carried out by Wirz et al. [108] on a 3.3 ¢cm chamber diameter
thruster. Even for such a small discharge chamber, the group managed to produce rea-
sonable performance through modification of the configuration: the accepted wisdom
regarding chamber configuration, particularly magnet configuration, does not hold
for these smaller chambers. Wirz et al. [108] concluded that more extensive testing
with electromagnets is required to optimise performance. It was also concluded that
along with a small discharge chamber, there was a requirement for a small current

source, either field emitter or hollow cathode (for simplicity, the research of Wirz et al.



[108] used a planar cathode). Hutchinson and Gabriel [46] provided an analysis of a
micro ion thruster, and also built and tested a micro hollow cathode. Initial results
are promising. although the complexities of experiniental testing of hollow cathodes
remain.

Similarly, Sandonato’s group have completed experimental and numerical analysis
of a variety of configurations of a 5 cm chamber diameter thruster (90 91]. The group
developed numerical and analytical models of the discharge chamber in order to study
the effects of miniaturisation on propellant utilisation efficiency. Again, by the use of
unconventional magnetic confinement configurations, they feel that the 5 cm chamber
ion thruster would provide good theoretical performance.

As the requirement for even smaller thrusters presents itself, some have suggested
that due to exotic behaviour of the hollow cathode under some conditions (it can
produce very high energyv ions) that the main chamber be dispensed with completely.
This leaves the hollow cathode thruster, which is still only in the design stage. Gessini
et al. [38] is, at the time of writing, attempting to measure the thrust (and hence
predict specific impulse) for hollow cathodes operating without any auxiliary discharge
chamber and accelerator grids.

For even lower thrust applications, the Colloid thruster array concept — currently
receiving much interest — remains the primary micro-thrust candidate. Of course, at
this stage of the development of micro thrust devices, several other possibilities exist.
most notably MEMS arrays of resistojets [47] and perhaps the MEMS ion thruster
concept of Yashko et al. [110].



1.3 Objectives of this research

The fundamental problem with understanding hollow cathode physics is that taking
experimental measurements within the cathode is fraught with difficulty; these prob-
lems will be discussed in detail in the literature review (following chapter). Although
there are several reasonable hypotheses, there is no generally accepted description
of the structure of the internal plasma. In addition, there have been almost no ex-
periments relating to the neutral gas flow, and the comparative effect neutral gas
dynamics may have on the discharge characteristics. In light of these statements, the
objectives of the work presented here follow. Using a numerical description of gas and

plasma mechanics:
e Investigate and characterise the neutral gas flow in the hollow cathode:

— Condition of the flow,
— Scale of the forces present.

— effect of varying cathode geometry/configuration.
e Iy to understand the structure of the internal plasma during discharge:

— Fundamental structures (sheaths, etc),

— Scaling with mass flux and current,

— effect of varying cathode geometry/configuration.
Aslong as the standard methods for validation and comparison of the numerical model
with experimental data are followed, it is expected that the conclusions that can be
drawn regarding the gas and plasma structure can help clarify current understanding

of hollow cathode physics.



1.4 Thesis structure

The following chapter contains a review of previous hollow cathode research, including
the more important experiniental studies, analytical models and numerical models.
This is followed by a discussion of the problems associated with computational fluid
dynamic (CFD) analysis of very low pressure plasmas. Since the cathode is funda-
mentally simply a current source, a section covering electron emission is provided.
Finally, in order to quantify the collisional processes present in the bulk discharge, a
mean free path analysis conecludes the chapter.

Chapter 3 contains a presentation of the numerical method used in this research.
This begins with a description of the fundamentals of particle simulation CFD. and is
followed by the methods by which inter-particle collisions are implemented. Finally,
the particle-in-cell (PIC) plasma model is presented. The chapter is concluded with
some notes on the numerical stability of the model and adjustments that can be made
to ensure stability.

Any study that involves the use of a simulation to further the understanding of a
device is of little value unless the simulation code is validated. Chapter 4 is devoted to
the presentation of various numerical studies of both individual components and the
overall validity of the code. This includes comparing the output to sonie standard.
well-known cases. Of course, this represents only a part of the verification of the
model, comparison to hollow cathode data is contained in the discussion chapter.

Results produced for this work are divided into two chapters: 5 and 6. This
division occurs because chapter 5 contains results obtained in the first phase of the
research that characterise the neutral gas flow in the hollow cathode. Some of the

work presented in chapter 5 is contained in references [24] and [25]:
e Francis T. A. Crawford and S. B. Gabriel. “Modelling small hollow cathode
discharges for ion micro-thrusters.” AIAA paper 2002-2101, May 2002.
e Francis T. A. Crawford and S. B. Gabriel. “Microfluidic model of a micro hollow
cathode for small ion thrusters (invited).” AIAA paper 2003-3580. June 2003.

Chapter 6 contains results that describe the full discharge. Reference [26] contains

some early results similar to those in chapter 5:

e Francis T. A. Crawford and S. B. Gabriel. “Numerical simulation of the hollow
cathode plasma using a PIC-DSMC code.” In Proceedings of the 28th Interna-

tional Electric Propulsion Conference, Toulouse, France. March 2003.

The seventh chapter contains a discussion and analysis of the results in the previous
two chapters, including comparison to experimental cathode data. Conclusions and

recornmendations for further work are as usual found in the final chapter.

10



Chapter 2

Background and Literature review

This chapter contains a review of some of the more important previous hollow cath-
ode research (including experimental results, and modelling). Next, approaches to
computational fluid dynamic analysis of very low density gases and plasmas are re-
viewed. Since the hollow cathode is fundamentally an efficient electron emitter, there
is a section devoted to an analysis of electron emission at the particle energies ex-
pected within the hollow cathode plasma. Finally, an analysis and comparison of the
mean free paths for the many collision types present in the hollow cathode plasma is
presented. This allows a first estimate as to which types of collision will dominate the
cathode plasma transport, and thus the collision models that are needed in a realistic

hollow cathode simulation.

2.1 The Hollow Cathode

The hollow cathode is a special type of cathode used in several different types of elec-
tric propulsion rocket. For example, two HCs are used in DC discharge ion thrusters
(one discharge and one neutraliser), while hollow cathode neutralisers are used for any
thruster that produces an ion beam, Hall Effect Thrusters (HET), for instance. In ad-
dition to the obvious importance of the hollow cathode in terms of convention electric
propulsion, there is also much interest in the use of hollow cathodes -~ or micro hollow
cathodes — for micro-propulsion applications. An illustration of the HC is shown in
figure 2.1, the diagram is a cut-through of the device. It is essentially an open ended
cylinder with a constricted end (the ‘tip’ or ‘orifice’). Neutral gas is injected from the
left. During operation, a plasma is present in the enclosed region (sometimes referred
to as the ‘insert region’). The diagram shows an examiple of a ‘keeper’ anode, this is
a familiar arrangement. but by no means a necessary component.

The ‘insert’ or ‘dispenser’ is made of a low work function material to enhance

electron emission. In early cathodes, no insert was used, and the interior was simply
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Figure 2.1: The hollow cathode. This a slice through the cathode: it is cylindrical.

coated with Bariunm. Modern cathodes make use an insert made of porous tungsten
impregnated with a 4:1:1 mixture of BaO, CaO and Al>O3. This lowers the work
function, allowing a very large current density to pass from the cathode to tlie plasma
located adjacent to the insert. The current flow within the cathode is then axial,
through the tip and outward towards either an anode (or keeper/anode pair), or
in some cases, another plasma. Depending on whether or not there is a free space
between cathode and keeper through which plasma can escape, the configuration is
referred to as ‘open keeper’ or ‘closed keeper’.

Some of the components in the diagram are relevant only during initialisation of
the discharge, but are shown for completeness. In particular, the heater is essential for
startup, but switched off during operation: ion bombardment from the plasma heats
the cathode. The keeper itself is of primary use only during startup; it is possible
remove the keeper completely if required.

There are two categories downstream configurations to consider: a coupling plasma
and an anode. In the first case, for instance during operation of an ion thruster, the
current from the cathode flows to another plasma. In the second case, an anode
of some type is placed downstream. For experimental investigation of the hollow
cathode, the anode configuration is generally used, although there is also research
conducted using the cathode in the ‘in-thruster’ configuration. In the case of most
experiments discussed later, the cathode is in the diode (simple cathode-anode, no
external coupling plasma) configuration. This setup has traditionally been used for
cathode experimentation, although doubts have recently been raised over the validity
of this approach due to the proposed interference of the external discharge structure
with the discharge characteristics (see Rudwan [8§]).

The hollow cathode often exhibits two different operational modes, shown in figure

12



2.2. At low discharge current and mass flow rate, the ‘plume’ niode exists. Typical
of this mode is a noisy, high voltage discharge with a characteristic bright plasma
plume downstream of the tip. In contrast. ‘spot’ mode occurs at higher currents and
mass flow rates. This mode is associated with low anode voltage and an intense spot
adjacent to the orifice. The presence and explanation of these modes is still under
investigation: there is a long list of theories and contradicting experimental evidence
(see Edwards [31] for further discussion). It has been variously proposed that the

modes result from
e location and size of the keeper - Mandell and Katz [57]
e structure of the tip plasma sheath - Csiky [29]

e cxtent of emitting area within cathode - Philip [79], also Wells and Harrison
[106]

e location and configuration of anode - Rudwan [88]

The final item (the most recent) attempts to fully explain the phenomena using a
more unified theory; in fact Rudwan [88] suggests that the transition characteristics
and presence of the modes is entirely down to the external configuration of the anode,
rather than cathode parameters. Rudwan is the only author to critically compare
his theory to that of the others. One factor that contributes to the complexity of
spot/plume transition is the presence of an hysteresis effect. Figure 2.2 demonstrates
the spot and plume regions, along with an impression of the transition hysteresis.
The following subsections cover sonie elements of research carried out into hollow
cathode physics. Hollow cathodes are mentioned by many authors since they are
used as an auxiliary device for both gridded and Hall effect ion thrusters: the most

rigorously researched devices within the field of electric propulsion.

2.1.1 Experimental Cathode Research

Measurements of the plasma properties within and in the plume of the hollow cathode
have been carried out by several authors for many vears. Since the design has evolved
only to a small extent, many of the early work (late 1970s) remains valid for the trends
it shows, see in particular that of Siegfried and Wilbur [94, 95, 96]. Unfortunately,
the transition from mercury propellant to inert gas propellant represents something
of a discontinuity in data available on the hollow cathode plasma. Today, inert gases
are exclusively used for Ion thrusters, so further design optimisation of the mercury
device is not required. Table 2.1 shows some of the characteristic results obtained by

various experimenters from 1969 to the present day.
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Propellant  Cathode m (Aeq) Iy (A) T. (eV) ne (m™) Vy, (V)
Internal Plasma
Fearn and Phillip (1973) Hg UK-10 (T5) 0.014-0.12 1.5 0.1-0.6 1010 10" 4.5-75
Sicgfried (1978) Hg SERT-11I 0.1 2.0 0.6 1.5 x 1016 4% 10 4.0-8.0
6.0 0.4-0.6 1017 3% 10%  4.0-6.0
Ahmed Rudwan (2002)  Xe, Ar, Kr UK-25 (T6) 0.1-4 1-5 0.8 1 x 10% - 6 x 10%
External Plasma
Csiky (1969) Hg SERT-II 0.05 0.3 1.5-2.0 1o'e - 107 11
2.0 (.5 107 10% 11
Siegfried (1978) Hg SERT-I1 0.1 2.0 2-5 5 x 1010 - 3x 10" 12-28
6.0 0.6 3 x 1017 5 x 10Y 11-12
Singfield (1990) Xe UK-10 (T5) 0.175-0.475 1.1 0.4-2.2 no data 813
Friedly (1992) Xe High I, 0.37 20 2.0 5x 10Y 12
40 2.9 5x 10" 13-15
60 3.8 6 x 10" 15-17
Monterde (1997) Xe UK-25 (T6) 1.67-3.11 5-10 0.3-04 1 x 107 5x 107 ~ 102 12
Edwards (1997) Xe, Ar, Kr UK-25 (T6) 0.3-1.2 215 15 5x 107 3x 10" 16-30
“rofton (2003) Xe UK-25 (T6) (.2-24 4-8 1.15 1o data 10

Table 2.1: Experimental data describing plasma properties of the hollow cathode. This table was originally complied hy Edwards [31]

and has been adapted and extended to include among others the results of the original author.

Cathodes with names such as UK-25

refer to the those that acconpany RAE/DERA/Qinctiq gridded ion thrusters where the number refers to the main discharge chamber
diameter in centimetres. SERT refers to the US ‘Space Electric Rocket Test” program that evolved to provide the NASA DS-1 ion

thruster.
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Figure 2.2: Hollow cathode operating modes. ¢p is discharge voltage (i.e. the anode
voltage when operating in diode configuration), /; is the discharge current.

It is clear from table 2.1 that most data collected on the hollow cathode plasma re-
lates to the external plasma (the ‘coupling’ or ‘discharge’ plasma). The lack of data on
the internal plasma is not due to a lack of interest in internal conditions: it is because
experimental investigation of the hollow cathode internal plasma is fundamentally
very difficult; indeed that is a major motivation for theoretical/numerical research.
The use of Langmuir probes within the cathode itself is dismissed by some authors
because the presence of a probe would be expected to significantly alter the internal
plasma in any case. It is difficult to imagine a way of inserting Langmuir probes right
into the heart of the internal discharge without significantly disrupting the discharge
itself. Such disruption occurs because the interior is very small and there is a linut
to the minimum size that Langmuir probes can be manufactured to without them
being destroved by the plasma. As can be seen from the table, however, there are
two instances of internal hollow cathode measurement using probes: Fearn and Philip
34] and Siegfried and Wilbur [96]. Monterde et al. attempted such measurements,
but they remain unpublished: the data in the table is for external (coupling plasma)
probe measurements, see ref. [63].

Fearn and Philip [34], in a continuation of the initial research of Philip [79] at-
tempted to take measurements of plasma conditions in the hollow cathode interior. A
cylindrical Langmuir probe was inserted into the cathode. Fearn notes in [34] that the
electron density values (shown in table 2.1) were too low due to the interaction of the

probe with the discharge plasma. The probe also indicated plasma potentials in the
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range 4.5 to 7.5 V. It should be noted that the cathodes used in the Fearn and Philip
experiments were both (a) running with Mercury propellant and (b) much smaller
than the current cathodes (tip diameter of the order 0.3 mim compared to around 1.2
mm for the TG cathode).

Siegfried and Wilbur [96], using a cathode similar to Fearn and Philip (small,
Mercury propellant) took measurements using a Langmuir probe, approaching the tip
of the cathode from both the upstream and downstream directions. Unfortunately.
the discharge tended to be extinguished by the probe when the probe came closer than
4-5 mm from the tip. This indicates the degree of interference such measurements
encounter; as can be seen in the table, the values for electron density within the
cathode vary by a great extent.

The final set of data relating to internal conditions is that of Rudwan. This data
was obtained without an intruding probe via spectroscopic analysis of the plasma.
The design of the cathode itself tends to complicate spectroscopic techniques, but it
is still possible to examine the cathode along its axis, and this was precisely what
was done by by Rudwan. Unfortunately, examination of the plasma in this manner
results in an integration of the spectroscopic data along the axis: axial gradients, that
must exist, are not resolved. Rudwan records a variation in density of nearly four
orders of magnitude for a 5 A discharge as mass flow rate is varied from 1.0 to 3.0 mg
s~ !, and admits that the process of integrating the spectroscopic measurements axially
introduces significant error. Current research by Pottinger and Gabriel [80] is aimed at
overcoming the difficulties of spectral analysis by using a modified cathode. In these
experiments, the ‘instrumented cathode’ first suggested by Rudwan is introduced.
This modified cathode has had holes drilled in a radial direction through the cathode
insert section and tip. This means that spectroscopic probes can examine the plasma
through a range of radial holes that extend axially along the cathode. The advantage
is clear: axial gradients can now be resolved. Unfortunately, these results are very
recent and are yet to be published.

What can be concluded is that experimental investigation of the interior of the hol-
low cathode is wrought with difficulties and uncertainties. Although some of the new
non-intrusive techniques such as the instrumented cathode may vield more reliable
data, these methods are still in their infancy.

There are almost no experimental data relating to the gas dynamics of the hollow
cathode. The two exceptions are Gessini et al., who measured thrust, and Fearn and
Patterson, who attached a pressure transducer in the propellant supply pipe of their
cathode. The experiments of Gessini et al. are ongoing at the time of writing, although
some preliminary discussions and results are contained in [37] and [38]. Fearn and

Patterson [33] found a linear relationship between propellant supply pipe pressure and
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mass flow rate in the case of cold gas flow (no discharge) - this would be expected.
They also reported significant divergences from the linear depending on the condition

of the discharge.

2.1.2 Analytical

For the purposes of this discussion, the distinction between analytical and numerical
modelling of the hollow cathode refers to the complexity of the solution; although the
models that are discussed in this section are often solved numerically, the solution
method is trivial. This is not true of the CFD methods discussed in the following
section.

Analytical models of the hollow cathode consist largely of phenomenological 1-D
models that assume the length of the cathode is much longer than its diameter. A
summary of analytical cathode models is given in table 2.2. The original cathode
model was proposed by Siegfiied and Wilbur [95] in response to their excellent ex-
perimental results (recall from table 2.1 that the Siegfried and Wilbur [94] results are
considered some of tlie highest quality). The model is based on a current balance that
describes the emission scaling. The research of Katz et al. [50, 51, most recently] has
been concerned with the development of an analytical quasi 1D model of the hollow
cathode. The quality of the research of the Katz group is very highly regarded, and
the degree of correlation between the 1-D cathode model and experimental data is
very good. The experimental data against which the model was compared was that of
the neutraliser cathode for the NSTAR (NASA Deep Space 1) gridded ion thruster.
Of primary concern was the accurate prediction and improvement of cathode compo-
nent lifetime. Interestingly, the recent work of Katz et al. [51] suggests that resonant
charge exchange (CEX) collisions are essential to understanding the behaviour of the
hollow cathode; this conjecture is considered in this thesis. Some of the theoreti-
cal ideas contained in the Katz model were also proposed by Malik and Fearn [56].
Recently, a new analytical model has been developed by Rossetti et al. [86]. While
this model lacks the maturity of that of Katz et al., it has been demonstrated that
it provides a better description of the thermal environment (the Katz et al. method

currently assumes uniform temperature within the cathode).

2.1.3 Numerical

In contrast to the analytical approach, numerical models tend to make fewer assump-
tions by specifying a more fundamental description of the cathode. In doing so, the
method of numerical solution becomes much more complex. Detail regarding the var-

ious methods is contained in the following chapter, but a broad overview is provided
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Author(s) ref. | description

Siegfried and Wilbur (1983) [95] | Cwrrent balance; Fixed length emission re-
gion; internal ionisation. Sheath approxima-
tion to obtain emission current.

[51] | 1-D incompressible continuity, momentum,
energy; sheath approximation; predicts CEX
collisions essential.

Rossetti et al. (2002-) [86] | Thermal balance; similar to Katz et al. [51].
but model based primarily on thermal gradi-
ent in cathode.

Katz et al. (2002-)

Table 2.2: Analytical cathode models. All are 1D models that assume some emitting
plasma region and model the three species low using 1D approximations.

by table 2.3. By comparison to table 2.1 it is clear that the body of experimental
research far outweighs that of numerical research. Given the rather dire assessment
given previously of the problems associated with experimentally investigating hollow
cathode internals, this may be surprising; It turns out that there are some significant
problems faced by the numerical experimenter as well.

The research of Murray et al. [65, 66] and Jugroot and Harvey [48, 49] remain the
only attempts at numerical modelling of the internal hollow cathode plasma (barring
that contained in this document, of course). Murray et al. [65] built a Navier-Stokes
solver and succeeded in modelling the internal neutral gas flow. The research may
have yielded some very useful research, but was abandoned during the implementation
of the plasma code (some initial results can be found in Murray et al. [66]). The work
of Jugroot and Harvey [49] was aimed more at the ion thruster discharge chamber,
so the cathode research was limited to a basic neutral gas only flow model using a
commercial CED code. Results were similar to Murray et al. [65]. The problem that
both encountered was that while a Navier-Stokes model is usually applicable in the
insert region of the cathode, it is not in the near vacuum downstream region. These
issues of local and global rarefaction of the fluid flow are discussed in detail in the
following section.

There has been somewhat more research carried out regarding the plume region
of the cathode. As was mentioned, Jugroot and Harvey [49] modelled the discharge
chamber of the UK-25 ion thruster. More relevant to the hollow cathode is the col-
laboration(s) of Crofton and Bovd. Here, experimental research of Crofton has been
compared to numerical modelling of the downstream plume region of the hollow cath-
ode. The most recent available data [28] shows good comparison between experimental
and numerical in some respects, although there are still some major discrepancies.

Many authors using particle methods to model Hall effect thruster and ion engine

plumes resort to very primitive cathode models that are good enough for a neutraliser
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Code type Model  Geometry
Internal
Murray (1997) | Navier-Stokes, 3-species plasma Neutral UK-10 (T5)
Jugroot (2000) | Navier-Stokes Neutral UK-25 (T6)
External
Jugroot (2000) | PIC-DSMC (particle electron)  Plasma UK-25 (T6)
Boyd (2003) PIC-DSMC (fluid electron) Plasma n/a (keeper only)

Table 2.3: Numerical modelling of the hollow cathode. The MHD plasma simulations
of Murray were never completed, but initial results can be found in Murray et al. [G5].

current source but of little relevance here. An example of the implementation of these

basic cathodes can be found in Szabo [100].

2.2 Approaches to CFD in electric propulsion

Many electric propulsion thrusters are characterised by being very low flow rate (an
exception would be a large MPD, for instance). The ion thruster is just such a device.
Since the thruster is operated only in a vacuum, a rather interesting fluid environment
ensues. Fundamentally. the problem is that the flow is expected to start off at very
low pressure and expand to become nearly collisionless on the downstreamn boundary.
Flows under these conditions can behave in a very different manner to ‘conventional’
(atmospheric pressure) fluid flows. The degree of rarefaction of a gas is measured with

a non-dimensional characteristic known as the Knudsen number, defined as

A
Kn= —, 2.1
e 2.)

vy

where \ is the mean free path between collisions and L is the characteristic dimension
of the problem. It turns out that although this definition gives a good impression of
the overall Knudsen number, it is possible to have regions of high rarefaction. In this

case. L can be defined as the scale length of the macroscopic flow gradients [9]

L=t (2.2)

dp/dx
It is necessary to ask the question: what does Knudsen number mean in terms of
the selection of a given method to solve a problem? First, it is necessary to classify
the methods available. " Table 2.4 summarises the methods that are to be consid-
ered. Three models are shown. All are fundamentally solutions to the Boltzmann (or
Boltzmann-Vlasov equations in the case of a plasma), but differing assumptions are

made. In the case of the Navier-Stokes equations, only first order terms in Kn are
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Name plasma | validity Notes
Navier-Stokes [35] | MHD 0 < Kn < 0.1 | The standard modern fluid de-
scription.  Solution (compara-

tively) easy and fast.

Burnett [1] NMHD 0 < Kn < 0.3 | Higher order accurate version
of Navier-Stokes. Increase in
complexity.

DSMC [9] PIC 0 < Kn < > | Direct solution to Boltzmann

equation, efficient only for rar-
efied flows.

Table 2.4: Fluid models.

included. The Burnett equations include first and second order Kn terms, while the
direct simulation Monte Carlo (DSMC) niethod takes a completely different approach
and makes no assumption about the rarefaction of the flow.

The fundamental difference between a method like the DSMC and the Navier-
Stokes equations is that the former describes the gas using a molecular model, while
the latter assumes the gas to be a continuum. It is best to understand the limits
using a diagram such as that shown in figure 2.3 [9]. The diagram simply gives an
overview of the validity of traditional fluid models (Navier-Stokes, Euler) compared to
the Boltzmann equation. It is necessary to point out that solution of the Boltzmann
equation for non-trivial cases — those in more that one dimension with — is nearly
impossible on current comiputers; if it were possible this entire discussion would be
moot as a direct Boltzimann solver would simply be used. For more discussion on the
reasons why solving the Boltzmann equation either analytically or numerically, see
Bird [9. §3.2]. In a continuum model, a Maxwellian velocity distribution is assumed
at all points in the flow: the intermolecular spacing is small and the collision rate is
high. In a Molecular model, the velocity distribution of the gas molecules can vary by
an arbitrary amount from a Maxwellian. Figure 2.3 can be further explained by the
fact that Navier-Stokes equations represent an expansion of the Boltzmann equation
to first order Kn. This was demonstrated by the Chapman-Enskog theory [21]. Not
shown in the figure is the second order accurate in Kn model: the Burnett equations
[1]. This model extends upon the validity of the Navier-Stokes equations somewhat.
But only, of course, until third order Kn terms become significant. The Burnett equa-
tions are more complex — and more troublesome — to solve that the Navier-Stokes
equations. This increase in complexity of higher order continuum Kn methods leads
to a catch-22 situation: the Boltzmann equation is prohibitively expensive to solve
numerically, but so are increasingly high order Kn Chapman-Enskog expansions. Ei-
ther approach is very difficult even on todays computers. An efficient model that is

independent of Kn is what is required. In fact, this model need not be particularly
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Figure 2.3: Rarefaction limits of various fluid descriptions.

efficient at Kn < 0.1 because the Navier-Stokes or Burnett equations are both effi-
cient and accurate in that region. Of course this model is the aforementioned Direct
Simulation Monte Carlo method of Bird [9]. There also exists an extension to the
method that accounts for charged particle dynamics (i.e. the presence of a plasma).
It is for the reasons outlined above that the vast majority of CFD modelling of electric

propulsion components tends to use molecular simulation models.

2.3 Electron Emission

When used in an ion thruster in either discharge chamber or neutraliser role, the hol-
low cathode is still basically a cathode. The fundamental electron emission processes
are now introduced and discussed. There are two classes of emission to consider:
space-charge limited and emission limited. The former occurs when the current den-
sity is limited by the presence of excess electrons near the emitting surface. In the
context of hollow cathodes, we are usually considering the latter: emission-limited
current. although it is uncertain as to whether the hollow cathode is emission limited
for all surfaces. Most authors choose to simply consider the ubiquitous Richardson-
Dushmann model with Schottky correction [31 88] for field-enhanced emission (FEE).
The fact that the predicted current is often underestimated by this model 1s at-
tributed to factors such as secondary electron emission and filament formation and
subsequent emission [33]. In fact, it is worth critical examination of the accuracy of
the Richardson-Dushmann model in terms of a more comprehensive description; this
is covered in the following section. The subsequent section discusses the phenomena

of secondary electron emission in the context of hollow cathode plasma conditions.
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Figure 2.4: Thermo-Field electron emission. The cathode is at ¢, and is located at
x = 0. The plasma is quasi-neutral for x > L at at potential of ¢,. The sheath has
shape v1 —e~% and the electric field is shown in the lower plot for this sheath via
E = —do/dx. The field strength that enhances electron emission is then E..

2.3.1 Thermo-Field

Consider a plasma adjacent to an emitting surface. The space charge present within
the sheath can in some cases enhance the emission current from the surface. Under
these conditions, the current density from a cathode is limited by the maximuni rate
at which it can expel electrons: a function of temperature, surface field strength and
the work function of the material. There are two models that are typically used to
predict electron emission as a function of the thermal and electric field environment.
The commonly used Richardson-Dushmann equation is in essence simply a model of
thermionic emission that can be corrected for the presence of an electric field via the
Schottky correction. The model of Murhpy and Good [64] is a more accurate — albeit
more abstract — description of the phenomena. Figure 2.4 illustrates the situation.
A sheath of potential ¢, — ¢, forms adjacent to the cathode. The emission is enhanced
by the fact that there is an electric field applied at the surface due to the sheath. The

emission enhancing field strength is simply —d¢/dz evaluated at the cathode surface.

Murphy-Good Model

Fundamentally, electron emission from a metal lattice is described in terms of a (po-
tential) barrier at the surface that an electron must overcome to leave the surface. The
general form of the Murphy-Good description follows this description. Two values are

needed: the probability of a given electron of energy W surpassing the barrier, and
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the nuniber of electrons incident on the barrier in some time period. In this way, the
emission current density can be related to the surface temiperature 7. work function

¢ and electric field strength E, by [64]

00

Jr-r(Eg, T 0) =¢ D(E.W) N(W. T, 0) dW, (2.3)

—1

where 1V is the total energy of an electron incident on the potential barrier at the
conductor surface and —W, is the effective constant potential of the electron within
the metal. D(E,, W) is the probability that an electron of energy 1V penetrates the
barrier and N(W. 7Ty, ¢) is the so-called ‘supply function” the number of Fermi-Dirac
electrons within energy range dW incident on the barrier per unit time and surface
area. While this model provides a useful description of electron emission from first
principles, constructing and integrating expressions of D(FE,, W) and W(W, 1. ¢) is
prohibitively complex. Further details concerning the numerical evaluation of D and
N over a range of conditions can be found in Murhpy and Good [64]. It turns out
that for a limited range of 7 and E,, simplifications can be made and an approximate

model constructed.

Richardson-Dushmann Model

The Richardson-Dushmann equation is actually the limit of eq. (2.3) as Es — 0. The
result is that the purely thermionic emission current density emitted from a material

of work function ¢ is given by

_ o Ammee(kT)? —e¢
(T.0)= —— "2 Texp | — | . 2.4
jr(T. o) 3 R (2.4)
where T is the temperature of the material and ¢ is the average transmission coeflicient,
which is in turn a function of the reflection coefficient, r. ¢ is assumed to be unity in
the basic form of the Richardson equation [62]. The constant

B drmek?

Ag = T (2.5)

that constitutes the first few terms of eq. (2.4) is referred to as Richardson’s constant
(1.2 x 105 A m~2). For a constant non-unity value of , it is often assumed that ¢
is still unity and that Ag is modified, although for the vast majority of metals, Ag
does not deviate from the theoretical value, see Shelton [93] for a discussion of the
experimental evaluation and accuracy of Ag. The Schottky correction is introduced

to adjust the work function of the material due to the presence of an electric field.
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The correction is

ek,

: 2.6)
P (2.6)

Ao(FEy) =

where F is the electric field strength at the surface of the emitting material. This
value is subtracted from the original work function to give the effective work function:

0e(E;) = © — A¢. The final description of the current density becomes

o
~I
—

jr-r(Te, 0. Ey) = AT exp ( kT

As can be seen, a large F, will tend to reduce ¢ and so increase the net current density.
Indeed. due to the location of the effective work function (within the exponentional).
small values of A¢ can result in much increased j.

Coulombe and Meunier [23] give an excellent comparison of the M-G and R-D mod-
els. The authors conclude that since the R-D equation is fundamentally and adjusted
thermionic eniission model, it is at its most valid under circumstances where there is
significant thermal emission. Significant inaccuracies in the case of cold cathodes in
an almost pure field-emission mode were also noted: in all cases the R-D equation
underestimates the emitted current. It should be noted that there is a description of
cold field emission known as the Fowler-Nordheim equation [22]. This expression is
not relevant here because it is applicable only in very strong field cases. For the pur-
poses of this research, the cathode is always ‘hot’; i.e. some significant fraction of the
current density is due to thermal effects. This indicates that the discrepancy between
the true (M-G) and approximate (R-D) descriptions will be small. The other factor
is that the R-D model is far more tractable for the purposes of practical numerical

implementation [23].

Energy of emitted electrons

The final point to consider regarding direct electron emission is the energy distribution
of the electrons that are successfully emitted. We know that electrons far inside the
emitting solid are governed by Fermi-Dirac statistics, the question is, how does this
relate to the emitted energy distribution? Mondinos [62] gives a review of the theory
of thermionic emission and notes that while there is a large body of theoretical and
experimental work relating to the energy distributions of electrons emitted in the pure
field (Fowler-Nordheim) emission regime, there is little relating to thermal emission
(with the exception of some brief data given by Shelton [93] and some theoretical
work of Terpigor’yev [103]).

Mondinos does, however, give a derivation of the emitted electron energy distrib-

ution based on the premise that only the tail of the Fermi-Dirac distribution contains



electrons whose energy exceed the work function of the material (this is in fact the
basis of the Richardson-Schottky equation inn any case). Before presenting the ex-
pression, the reflection coefficient, r. needs to be defined. r, strictly r(E. k), is the
probability that an electron travelling toward the swface of a metal from within is
reflected back. where E'is the electron energy and kj is the electron wave-factor par-
allel to the surface. Recall from the discussion of the Richardson-Schottky expression
that the transmission coefficient is usually assumed to be unity, and that this was as
a result of setting r to unity. In this case, something similar is done: first we assume
r is a function of the internal electron energy only, r(E), and hence that r = 1 for
E > Er + ¢, and r = 0 otherwise (where Er is the Fermi level). In other words, if
the electron energy exceeds that of the barrier then the electron is emitted, otherwise
it is reflected back into the metal. According to this assumption, it can be shown that

the energy distribution of emitted electrons is [62]

me Ow — VEIE, ) € for 0
£ = o3 exp | — 57 € exp i) or e > 0. (2.8)
0. for e <0

where E; and T are as before the surface field and temperature and e is defined
e =F — V. (2.9)

E is the electron energy and V... = (Er + ¢,.) is the total potential barrier that the
electron must pass, thus ¢ > () must be true for an emitted electron. What this means
it that if energies, E, are selected from the Fermi-Dirac energy distribution, then it
is possible to find € and hence obtain the post-emission energy of the electron. The
¢ > 0 case of equation (2.8) now provides the energy of an emission capable electron
after it has penetrated the potential barrier. If it is assumed that the surface of the
material is a uniform crystalline layer, then the electron will have a single velocity
component perpendicular to the surface. In the case of a ‘rough’ surface, the velocity
vector may include a deflection angle away from the surface face perpendicular. It is
worth noting that the emission energy as predicted by equation 2.8 is a function of
the surface temuperature, the work function, and the local surface field.

The Fermi energy of Tungsten can be deduced using information such as the base
electron configuration and atomic radius to be Ex = 5.94 eV (see Harrison [41]). Using
this, it is possible to construct an example to demonstrate the shape and comparative
magnitude of emitted electrons using eq. (2.8). Figure 2.5 demonstrates this. In the
figure, only electrons that have positive € are emitted. The full barrier (including
Fermi energy and work function) is shown. It is worth noting that the shape of the

distribution is fundamentally part of the tail of the Fermi-Dirac distribution, and
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Figure 2.5: Electron energy distribution for electrons that are successfully emitted.
Plotted using equation (2.8) using Tungsten as the material (¢ = 4.5 eV) at 1500
K. There is assumed to be no external applied field (Fy = 0), so this example is
representative of pure thermionic emission. Note: the energy distribution is essentially
the tail of a Fermi-Dirac distribution, and additionally that the bulk of the emitted
electrons have energies a few times higher that the thermal energy of the emitting
surface.

the the energies of the majority of emitted electrons tend to be a few times the
thermal energy of the emitter (1500 K. equivalent to 0.13 eV in this example). This
is consistent with both the few experimental observations that exist, see Hirsch [44]
for example, and the alternative theoretical analysis of Terpigor’yev [103].

A final point with respect to figure 2.5 is that the plot is intentionally constructed
on a scale that gives a qualitative impression of the comparative magnitudes of the
Fermi, work function and emission energies. Unfortunately, at this scale it is difficult
to make out the energy of electrons for which ¢ is only slightly above V,,,,. For such
electrons, as eq. 2.8 shows, as ¢ — 0, so f(E) — 0 as well. In practical terms, this
means that there will be a vanishingly small number of electrons emitted with very
low energies. This means that the energy distribution of emitted electrons is neither

a pure Fermi-Dirac shape, nor a Maxwell-Boltzmann shape.

2.3.2 Secondary electron

Electron emission can occur as a result of particles impacting the emitting surface.
This secondary electron emission (SEE) takes the form of either emission due to heavy

particle bombardment (usually ions) or that due to electron impact. A comprehensive
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review that covers both electron and ion impact is given by Schou [92]. The degree of
SEE is generally measured in terms of the vield d.. which is the number of emitted
electrons per external impact. In stable discharges (i.e. electron and/or ion impact
cases) the value of d, will have an effect on the absolute cuwrrent emitted from a
conducting surface. For transient cases, a significant 4, can lead to violent cascade
effects: the breakdown characteristics of plasma discharges will change significantly
for small variation in d,.. The value of SEE §,, is a function of both emitter material
and Impact energy. although to a first approximation, for similar materials, dg can
be considered to be related to impact energy only.

When an energetic ion (KeV range) strikes a surface, a cascading recoil in the
material atoms occurs. During this cascade, some bound electrons may beconie ex-
cited and disassociate. This is the underlying process that leads to electron emission
[92]. Chalise et al. [19] recently conducted experiments with an ion gun to measure
secondary electron emission. The setup used Helium ions and a stainless steel cold
cathode. The authors state that secondary electron emission due to kinetic ion ini-

pact does not occur below ion velocities of around 107 cm s™!; equivalent to about
200 eV. This correlates with authors such as Carter [17] and Rudwan [88] who, while
discussing the possibility of SEE contributing to hollow cathode current. estimate
that d,, will be much less than 0.02 for ion impact energies in the 10 eV range (for
Carbon).

In contrast to the single (atomic cascade) mechanism for ion-induced SEE, there
are two ways in which electron emission occurs under electron impact. The direct
form of emission occurs when a high energy electron ionises a surface atom. The
second form is nmiore complex and occurs when a combination of electron scattering.
conduction and excitation occurs due to electron impact [92]. In terms of practical
data, Ordonez and Peterkin Jr. [76] give a review of current theory surrounding SEE
for a variety of materials. As is the case for ion impact, SEE vields only become
significant at high impact energies. For typical metals, it is shown that d, < 1 for
electron impact energies below 100 eV. For the energy ranges encountered in the
hollow cathode, up to 25 eV depending on cathode-keeper voltage, d, would be nich
less than 0.1. It is likely, however, that secondary electron emission due to electron
bombardment may be significant in the hollow cathode. This is because the insert
coating, that contains Barium Oxide, is known to exhibit very high Jg, exceeding 9

in some cases at 500 V [109)].

2.3.3 1on wall neutralisation

There is a final method by which current may be drawn from a conductor to a plasma,

albeit indirectly. When an ion strikes a conducting wall, there is a possibility that
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it may be neutralised. There are two mechanisms by which this can occur. First,
the ion may be neutralised on contact with a metal atom if an Auger electron is
present at the time of ion impact. In metals, at ion impact energies in the 1-100 eV
range, the probability of this state occuring is typically around 0.5, although the exact
chemistry of the surface will have a significant effect on the rate of Auger electron ion
neutralisation. The second method by which neutralisation can take place is via lon
tunneling. If the incident ion has sufficient energy to overcome the potential barrier
at the metal surface, then direct chemcial reaction can occur between the ion and
metal atoms. Again, this method clearly depends heavily on the reactivity of the ion
and metal atoms, although in this case there is a minimum energy below which the
neutralisation cannot take place. It is generally reasonable approximate the cut-off
energy as being the same as the work function of the metal under consideration.

In a similar way to the above discussion regarding secondary electron emission. the
complexity of solid atomic structure and complex chemistry is replaced by a coefficient
representing the yield or neutralisation probability, and this value can be determined
experimentally. The neutralisation probability, d,,, is then a coefficient with value in
the range [0, 1]. For insulators, or materials that will not tend to for chemical bonds.
d, can be effectively zero. In the case of metals. 4, could be high, although is typically
around 0.5.

Unfortunately, there is very little research available in the literature that covers the
value of 4,,. This is probably because in many cases the value is unimportant compared
to other forms of electron emission and ion loss. Another reason for the apparent lack
of data for this value is the difficulty of making experimental measurements to quantify
it. Barbeau and Jolly [4] state that it is possible to take measurements about neutrals
generated via ion neutralisation. However. in their experiments, Barbeau and Jolly
are only able to take measurements of returned neutrals in excited states: this means
that their data takes only high energy ion collisions into account. Further, in the case
of the sheath expected in a hollow cathode, electron energy gain in the sheath may
cause collision ionisation of free neutrals, so that despite the neutralisation rate, there
is also an ion source within the sheath. Considering the sheath and surface together,
the overall neutralisation yield may be small. Other authors of numerical simulation
codes for low pressure plasma have expressed dismay at the absence of such data;
Nanbu et al. [72] for instance, in simulations of etch rate in semiconductor processing
plasmas tried cases for 6, = 0.1 and 6,, = 0.5 and found significant differences in the
niacroscopic results of the simulation. Clearly, the way to proceed in this case is to
be aware that the effect of varying §, must be characterised fully and the results of
the characterisation taken into account when results are presented.

This concludes the discussion of electron emission mechanisms. The following
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section proceeds to analyse and compare the collision processes that occur within the

bulk plasma of the hollow cathode.

2.4 Mean free path analysis

Particles in a plasma undergo a wide variety of collisions. In order to produce a
realistic model of the hollow cathode plasma, the dominant collision types need to
be included. By extrapolating mean free paths based on collision cross sections, an
assessnment of the more important collision types can be made.

The reaction rate between two species can be written
RIQ = NM1N2v12019. (210)

where, for collision between species 1 and 2, n is density, vqo is relative velocity and
o is collision cross section. This leads to another definition of collision rate, namely

that the interaction frequency of species 1 with species 2 is

Rl?

1251

V2 = = N2t120712. (2.11)

From this, we can define approximate expressions that are useful for estimating mean
free path. In particular, depending on the comparative magnitudes of v, and w5, there

will be three cases:

1.ovy > v = vp =1

v v 1 ‘
A= 4~ 1 = : (2.12)
V12 TNoV1012 01272
2. U1 =~ Uy
1 ‘
S . (2.13)
T12M3
3. Uy > U = Vo & Uy
v v
A= "L~ L (2.14)

V12 naUa012

Before the mean free path analysis of the various collision types can begin, some
reference parameters need to be set. It is acceptable to assume that the most col-
lisional region of the entire hollow cathode flow will be the emitting plasma region
in the insert. Of course, data on this region is sparse; it is precisely the objective of
this research to learn more about this region. For the purposes of this analysis, ap-
proximate experimental estimates suffice. Re-examining table 2.1 we can see that the
upper estimates for plasma density are of the order 10°° m—? (Siegfried and Wilbur

95] or Monterde et al. [63]). From the same table of experimental data, it is clear that

29



the electron temperature should be 1 eV. We choose to set the ion temperature to
1 eV also, and the neutral temperature equal to the wall temperature, set to 1700 K
(0.15 eV). This results in a Debye length of A\p ~ 1 um. But what of the neutral den-
sity? Again, it is one of the objectives of this research to predict the neutral density.
Since estimates of ionisation fraction based on experimental data vary so widely, there
is little consensus regarding neutral density. If it were assumed that the ionisation
fraction is 1, then n; = n, would be implied. It is clear, however. from analyses of
particle fluxes at hollow cathode mass flow rate values, that the density is likely to
be perhaps 10?2 m™3. In any case, an upper estimate will tend of overestimate the
importance of collisions involving neutrals, which is preferable to ignoring potentially
relevant collision processes. In the following discussion, it should be noted that while
these conditions are for the bulk plasma, the energies and densities will be different
within the sheath. In particular. the electron energy will be higher than 1 eV and
that, by definition, n; # n..

The final point to make is to specify how we rate a mean free path as denoting
collisions that are significant. If, on average, a particle undergoes one collision of a
certain type while moving from one side of the insert section of the cathode to the
other, then it has A = 2 mm. Thus, if A is significantly bigger than 2 mum, then the

collision is insignificant, if it is much less than 2 min it is significant.

2.4.1 Electron-Neutral

There are three types of collision to consider when examining electron-neutral col-
lisions: elastic momentum transfer, inelastic momentum transfer (excitation) and
ionisation. These can be seen in ficure 2.6. In the figure, only the excitation level
with the highest o is shown. It is a standard trick to include on the dominant few
excitation levels in cases such as this (in fact, there is insufficient data available on

the lower levels for Xenon).

Elastic momentum transfer

For elastic collisions between electrons and neutrals, case one applies because v, > vp.

The expression is
1

i
Uen, nTl

/\elasmc ~
~
en

(2.15)

where the maximum elastic o€%"“ at a temperature of of 1 eV (from fig. 2.6) is
~ 107 m? and n, ~ 10> m~3. In the figure, very low energy electrons have much

higher cross-sections; we assume that there are few of these, even in the thermal
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Figure 2.6: e-Xe collision cross sections vs. electron energy. The data is from Puech
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and Mizzi [82]
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plasma. The path length is

‘ 1
elastic ~_ ~ ; 9 16
Al T 1 © 0.1 mm. (2.16)
Clearly, many collisions may take place within the volume of the maximum plasma
density region. This means we expect momentum transfer between the electrons and

neutrals to be significant, and such collisions should be included in the model.

Inelastic momentum transfer

Examining figure 2.6 again, it is clear that the excitation collision level shown has
a cross section an order of magnitude lower than even the ionisation collision. The

: . ‘ citation o~ 1020 12
same expression applies as before, except that the maximum 4" is ~ 10 0 m?,

so that
)\emcit(ztion ~ 1

As expected, this is much larger. and if this collision were particularly difficult to

~ 10 mm. (2.17)

evaluate, it could be omitted. It is however wise to include excitation for two reasons.
First, many authors suggest that ionisation within the cathode emitting region occurs
is a multilevel phenomena where the neutrals are first excited before being ionised.

This suggests that this collision type would be more important within the sheath and
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so should be included. Secondly, as will be seen in the discussion of the implementa-
tion of such collisions. if elastic momentum transfer collisions are evaluated (previous

subsection), then it becomes trivial to do so for inelastic collisions.

Tonisation

Since we plan to develop a model that is self consistent in the generation of a plasma,
we must have some provision for ionisation. This means that ionisation collisions
have to be included, and we would expect the mean free path to be small enough
else the analysis is incorrect. Figure 2.6 shows that the mean free path is an order of

magnitude larger than that for the dominant excitation:

)\i‘ff”s”‘“"" ~ ml()‘lgl- e ~ 1 mm. (2.18)
The analysis verifies this: ionisation should be included. Indeed, this verifies the
assumption that the neutral density needs to be as high as 10%? within the cathode
for internal ionisation to take place at all (although there is some debate as to the
amount of ionisation that takes place in the hollow cathode interior). Clearly, the
density may be much lower externally, but the distance over which collisions need to

occur is much larger (the cathode-anode separation distance).

2.4.2 Charged particle

There are four different types of collisions that involve exclusively charged partici-
pants. In this section the various types of Coulomb collision are considered, before
analysing the significance of recombination collisions. In order to evaluate Coulomb
collisions, a couple of auxiliary constants need to be calculated. The 90° scattering

impact parameter, by is given by

2
b ¢ (2.19)

dregmu?’

for single charged species (i.e. assuming Z = 1). We will also need the value of the

ratio of the maximum to 90° impact parameters:

A= bmaa ~ )\—D; (2.20)

so that the Coulomb logarithm, In A, can be calculated. The above approximation
to A is given by Goldston and Rutherford [40] and is valid where nA}, > 1: ie. a
plasma. For reference parameters, nA} ~ 100. In a departure from the method used

for other collision types, it makes more sense for Coulomb collisions to consider the
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mean collision rate, {v), instead of collision cross section. This is because Coulomb
collisions ‘always occur’ by their nature. It is still possible to derive an effective mean
free path so that the significance can be compared to other collision types.
Electron-ion Coulomb

From the definition of mean free path, A\, = v./v;. An expression for the mean

electron-ion collision frequency is given by [40]

1
22netln A

(vei) = - (2.21)

3 4 3
1272e2mé (eT,)>
where 7; is in units of eV. The 90° scattering impact parameter for this case is

2 2
c - ¢ ~ 7.0 x 1071 1. (2.22)

T dmegme?  4-7 -6 9.1 X 10-°1 - 6000002

bo

Further, the Coulomb logarithm is then In A ~ In(Ap/by) = 7.26. The collision rate

is then .
L9020, 4. 79
o) = 2T e 120 o e, (2.23)
\ 3 ‘ 5 3
1272 €} -v/9.1 x 10312
so that the mean free path becomes
oulo Ue 600000
)\5?“10’"’7 = e _ = 0.3 mm (2.24)

Ve 2.1 x 109

As expected, this is then significant; electron-ion Coulomb collisions should be in-
cluded. If electron-ion collisions are significant and the plasma is both quasi-neutral
and has similar electron and ion temperatures, then we should expect electron-electron

and lon-ion collisions to be significant. An assessment of this follows.

Electron-electron Coulomb

The same method used above to develop the electron-ion Coulomb collision mean free
path could be applied here, except that now an approximation can be introduced to

simplify the analysis [40]:

. 4 )
(Vee) ~ —5 1nA3 o i) (2.25)
eamé(eT,)> /Me
so that 21 x 10
Z.1 X
(Vo) =2.1x10° (2.26)

~ 102 /102
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So the Coulomb collision frequency v, =~ 14;. The mean free path is the same:
/\g’g“["mb = ¥¢/Vee &~ 0.3 mm; if electron-ion Coulomb collisions are included, then so
should electron-electron collisions. This is not necessarily generally true; it is true in
this case because the plasma is both quasi-neutral. and has single charge electrons

and single charge ions (or at least n?™ < n,).

TIon-ion Coulomb
The ion-ion collision frequency for single charged ions is given by [40)]

ne*In A

(Vi) = ; T - (2.27)
1272¢2m? (eT;)>

If this is compared to equation (2.21). it is clear that since

1 3 1 3
(veymé (eT.)3 V2 = (vym? (eT))F, (2.28)

then the ion-ion rate in terms of the electron-electron rate is
\ — /T \NE 9 —31 , _
<]/747;> _ <l/ez/ & E _ 2.1 x 10 ' 91 x 10 - 3 % 106 (229)
V2V m \ T, V2 218 x 10-28 ‘

This means that the mean free path is \§?4"" = v, /u;, ~ 0.4 mm. This is around
a third larger than the electron-electron mean free path, but is still significant as

predicted.

Recombination

There are two types of recombination collision to consider: three body and radiative.
It is reasonable to suggest that if we are considering a plasma in which some types two-
body collisions occurring so infrequently that they can be ignored, then the reaction
e+e+ AT = e+ A is likely to be very insignificant. Such an assumption is confirmed
by Goldston and Rutherford [40], who state that in the few-eV range, the three body
recombination rate will never exceed that of radiative recombination for plasmas of
density lower than 10** m~2. Further, multistage three body recombination (e + A =
A7, then AT + A~ = A) will not be considered because the attachment coefficient
that specifies the number of electron-neutral collisions that must take place to create
one negative ion is infinite for the inert gases: only inert gas propellants are used in
this work. Radiative recombination is likely to be far more likely as the collision relies
on only one electron and one ion being in close proximity: e + AT = A + p. where
p is a photon. Regardless of the intricacies of the collisions, it turns out that there

is an alternative argument based on experimental observations that can help predict
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the comparative significance of recombinations. Following the logic of Szabo [100].
the relative importance of recombination can be assessed in terms of a comparison
of the recombination rate with the ion and neutral fluxes. Mitchner and Kruger [61]

state that for a bulk recombination rate given by

dn,
CZ = —an.n;. (2.30)
the constant « is
a=1.09x 1072n,T %, (2.31)

although there is some debate over the accuracy of this expression for very high

temperatures [100]. For the above parameters (7, = 1 eV and n, = n. = 10°° m™?),

-
a—=1.09x 10°20.10% (g) * 560 x 107, (2.32)
S0 J
Z = 560 x1079-10% .10 = —5.6 x 102! m~3 5 1. (2.33)
dt
Consider the maximum plasma density region within the cathode: a cylinder of radius

1 mm and length 4 mm, for example. The volume of this shape is 12.6 x 107% m?,

so the recombination rate within the cathode is approximately —7.1 x 103 s™!. For
Xenon, this is equivalent to a neutral mass flux of 15.4 x 107% mg s™!. This is about
five orders of magnitude smaller than typical cathode propellant flow rates. Further,
even if the lonisation fraction is as small as 1072, typical ion fluxes within the plasma
will still be several orders of magnitude larger than the recombination mass flux.
Based on this logic, recombination collisions need not necessarily be included as part
of a cathode model. It turns out, however, that a simple radiative recombination
method based on the rate quoted above is trivial to implement in the context of the
other collision types that are necessary. For this reason, radiative recombination is

included.

2.4.3 Neutral-Neutral

To evaluate the mean free path for neutral-neutral collisions, the cross section can be
approximated to 7wd?, where d is the molecular diameter. Of course, more elaborate
expressions for cross section exist, but this suffices for now. Xenon has a molecular
diameter of 5.74 x 107 m, so o,, ~ 107 m?. Using case two this means that

Ann ~ 0.1 mm, (2.34)

AETEERSTIEE
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so it appears that neutral-neutral collisions should be included. It should be noted,
however, that depending on the mass flux and orifice dimensions, neutral-neutral
collisions could become very insignificant (leading to nearly collisionless flow).

A discussion of dissociation phenomena in high temperature neutral-neutral col-
lisions is moot because (a) we consider only mono-atomic insert gas species, so that
vibrational dissociation of non-trivial molecules does not apply and (b) the energies
of the neutral particles will never be high enough to cause ionisation; only electron-
neutral collisions involve such energies, since electrons may gain energy in the anode-
cathode fall and sheaths. The second point raised could be debated on the grounds
that ions may gain high energies and, via charge exchange, transfer such energies to
neutrals. Even taking this into account, it remains unreasonable to suggest that based
on experimental estimates of ion energies and charge exchange rates, many neutrals
will gain energy equivalent to their own ionisation energy. This issue of ion-neutral

collisions 1s now addressed.

2.4.4 Ion-Neutral

There are two types of ion-neutral collision to analyse: momentum transfer and charge
exchange. The former is similar to neutral-neutral momentum transfer considered
above, with the exception that fact that the two species may not be in thermal
equilibrium with one another. The latter involves the reaction

Agow + ‘4?a,st = Afasf/ + A7 (235)

slow?

and an alternative method must be used for the cross section.

Momentum transfer

The significance of neutral-neutral collisions does not imply significance of ion-neutral
collisions, although, of course, ignoring one implies ignoring the other; for example,
even if the ions do not perturb the neutrals to a great extent, if the neutrals have a
large impact on ion dynamics then the collision must be included. The asymmetry
in the significance of collisions can stem from different densities (n, > n; in this
case) or possibly that the two species are not in thermal equilibrium (7; # T,).
In light of this, the analysis for both 7, = T, and T; # T, is considered. As for
the neutral-neutral case, the collision cross section can be approximated based on
molecular diameter. For Xenon, o,; = 0y, = 7d®> ~ 107 m?. For the case of no
thermal equilibrium, at 1700 K, the neutral v, = \/m ~ 500 m s~ ! and at 1
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eV the ion vy, = /2kT /m ~ 1200 m s~!. This means v; =~ 3v,. so
3 / 1 T

" n 11 11
Apj = — = R - — = 3.3 mm, 2.36
" V19 T19U; N4 3 0197y 31018 .10%0 3 HHL ( )
and ; ;
’I/‘, ’I/!L .
Aip = — = ~ ~ 0.3 mm. (2.37)

Vo OpUnf, Opom, 10718 1022
Clearly, theu, in the presence of higher energy ions, neutral-ion collisions become more
frequent. Given that even faster ions may be found in sheath regions, it would be
wise to include neutral-ion momentum transfer; it should be noted that ion-neutral
collisions are a border-line case that depend heavily on the ionisation fraction 7;/n,.
The result of this analysis is interesting in the context of the interior cathode dynamics.
Due to the high ratio n, /n;, it seems that the ion species may tend to be forced toward
the neutral temperature and bulk velocity within a short distance inside the cathode (a
millimetre, perhaps), while the comparatively low ion density means that ion heating
of the neutral gas may not be very significant. Of course, it is questions such as these
that are intended to be examined in the results section later. At this stage all that
is required is to say that if question of ion-neutral dynamics is important (as it may
be), then ion-neutral collisions need to be included. Although we have concluded that
lon-neutral collisions are relevant already, it should be remembered that there is still

charge exchange to consider.

Charge exchange

The classical expression describing the variation of resonant charge exchange (CEX)

collision cross section for is given by Rapp and Francis [83] as
Oeer = (k1 In(vy) + k2)? x 10720 m?, (2.38)

where v; is the 1on velocity and for Xenon the constants are: by = —0.8821 A? and
kr = 15.1262 A2, In fact, there is a more recent model based on new experimental
results given by Miller et al. [60]. For the purposes of this discussion we use the Rapp
and Francis model since the cross sections given by the two methods do not differ
considerably for the parameters specified. The Miller et al. model is discussed further
later. For CEX collisions, v; > v,, by definition, so case 1 is used:
AT ! = ! \
e Teextn  (—0.8821 - In(500) + 15.1262)2 x 1020 . 102
1
7.9 x 10719 .10%

~ 0.13 mm, (2.40)

Q
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Collision type Model ref. o (m?) X (mm) Included
§2.4.1 Electron-Neutral

e-A (elastic) MCC 68] 1018 0.1 *
e-A (inelastic) MCC 68] 1020 10 *
e-A (lonisation) NMCC [68] 10719 1 *
§2.4.2 Coulomb
e-e MCC 40] n/a 0.3 *
e-AT MCC 40] n/a 0.3 *
AT-A* NCC [40] n/a 0.4 *
§2.4.2 Recombination
e-A7T (radiative) empirical  [101] - - *
e-e-A™ (3 body) 7 [101] - -
2.4.3 Neutral-Neutral
AA DSMC 9] 107 0.1 «
A-A (dissociation) - 9] n/a -
§2.4.4 Neutral-Ion
AAT MCC 70] 107 0.3 X
A-A* CEX MCC 70] 107 0.13 X

Table 2.5: Collision types, cross sections and mean free paths of the various collisions
that can occur in the maximum density region of the hollow cathode discharge. The
right-hand column denotes those collision types that are included in the numerical
model; the adjacent column shows the preceding section number that contains the
discussion of that collision type.

where the ion thermal velocity at 1700 K is used. Interestingly, the CEX m.f.p.
will increase as the ion temperature increases. This implies that charge exchange
collisions are likely to be significant in determining the interaction between neutral
gas and plasma. In fact. in sheath regions where the ions density is significantly
higher, it has been proposed that such collisions are integral to understanding the

cathode [51].

Summary

Table 2.5 gives an overview of the collision types included in the discussion contained
in previous sections. The table gives the characteristic mean free path for the cathode
interior plasma and accordingly whether they need to be included in an accurate

cathode model.

e All forms of electron-neutral collisions are significant, although only the exci-

tation level(s) with the largest o need be used. It seems that electron-neutral
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elastic momentum transfer may be one of the most significant forms of collision

present.

It was shown that Coulomb collisions are relevant. The table omits informa-
tion on Coulomb collision cross sections because these have little meaning: the
Coulomb ‘collision’ is a continuous phenomena rather than a discrete binary
collision. The effective mean free over which Coulomb collisions perturb the

plasma was determined from the mean collision rate.

It is possible to rule out the inclusion of recombination collisions, because the
recombination mass flux is several orders of magnitude smaller than the neutral

and 1lon fluxes.

Neutral-neutral collisions would not be deemed important if we adhere to the
assumption that the ionisation fraction is 1 and the plasma density is 10%. In
fact, the neutral density is likely to be two to three orders of magnitude larger,

so such collisions are relevant.

Ion-neutral momentum transfer collisions are likely to be significant only In
regions of abnormally high ion energy, but are included because they are trivial

to compute once neutral-neutral collisions are calculated.

Resonant charge exchange collisions are found to be significant particularly at
comparatively lower ion energies. Some authors consider resonant CEX essential

to hollow cathode plasma dynamics: it would be wise to assess this assertion.
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Chapter 3

Numerical Method

3.1 Direct particle simulation

The approach that shall be taken to presenting the numerical methods used in this
research is one where the underlying collisionless ‘billiard ball’ kinetic model is first
described, with the plasma and collisional elements discussed second. There is a
certain degree of replication present between the work of Birdsall and Langdon [12]
(collisionless plasma), Bird [9] (rarefied gas dynamics) and Hockney and Eastwood [45]
(general theory of sparse many-particle systems). Underlying both the Moute Carlo
models for collision selection and the particle-in-cell (PIC) model for electrical (plasma
induced) forces is a basic, collisionless, charge neutral direct gas model. Presentation
of this trivial collisionless charge neutral model first is useful because it removes any
chance of repetition and sets up a common terminology that the following chapters
that cover Monte Carlo and PIC niethods can use. The greatest level of clarity
is obtained by extracting the simple underlying model and then later applying the
complexities of the MCC and PIC methods. Indeed, this separation of the common
material from the specifics of either method is how the code is structured; in essence
it is a collisionless charge neutral gas model. Subroutines for Monte Carlo collisions
and plasma effects can simply be ‘plugged in’ to enhance the physical description as
required.

Accordingly, this section covers collisionless un-charged particle kinetics, including
particle transport, wall interactions, sampling and numerical methods used to replicate

equilibrium conditions in a set of particle velocities and positions.

3.1.1 Particle model

The collisionless charge neutral model of particle dynamics is really painfully trivial.

It is simply the case of points moving around in a domain, the only complexity is
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that which involves the interaction with surfaces and inlet /exit boundaries. Particle
information that needs to be stored includes position vector x. velocity vector v. and
species s. For more complex models, data such as internal energy niay also be stored.
Using this information, a set of particles may be moved around in a domain.

For a particle at x,, we move the particle for a given time period Atf at velocity v

to find the new position X4 a¢):
Xipar =X + VAL (3.1)

The exact value of At is irrelevant in this section; clear limits will be described
according to the stability of the collisional or plasma parameters described later.

Motion in Cartesian space is trivial,

x + ult
Xeoar = |y +vAL | (3.2)
z 4+ wAL

movenient in cylindrical coordinates with rotational symimetry is not.

Particle motion in axially symmetric cylindrical coordinates

Birdsall and Langdon [12, §14.12] give information regarding position advance in
cylindrical co-ordinates, but not for axi-symmetry. Bird [9] provides an entire chapter
on the subject. including validation cases for his method. The exact procedure is now
presented.

A particle initially at 71, z; and, by axi-symmetry # = 0, moves with with velocity

uy, v, wy. Motion in the z direction is as before:
Zeear = 2 + Ul At (3.3)

The problem is associated with motion in the r—f plane: the particle has an initial
circumferential velocity component, wy that will take the particle out of the plane of
synimetry.

Figure 3.1 shows a schematic of the movement of a particle from r; to r. The
movement out of plane by a distance w; At has the effect of increasing the new radial
position . This is not a problem: evaluation of the new radial position r can be seen
on the diagram. The problem lies in the fact that the new velocity vector now lies
out of the plane of symmetry.

This means that before the move is complete. v;, w; must be rotated through 6 so

that they again lie in the 7z plane. This is accomplished using the standard method
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Figure 3.1: Movement of a particle in the r—# plane.

for rotation of a vector through angle ¢ [107, §14.5]:

, , .
T coso  sino T
Yy’ —sing coso/ \y
Hence, the new velocity components become

v = vy cosf + wy sinf, (3.5)

w= —v;sinf + w; cosb. (3.6)

This form is not particularly useful in the context of a numerical simulation: it is best
to remove all explicit evaluations of trigonometric functions. Examining figure 3.1

again, notice that

sin @ = w1 At /7, (3.7)
cosf =r; + v At/r. (3.8)

The final expression for the rotation of the velocity components back into the plane

of symmetry becomes

(251
v = (vy (ry + vi AL) + w?At) /r (3.9)
(—vun At + wy(ry + v A)) /7

where, from fig. 3.1

r=/(r1 + 11402 + (0, At)2. (3.10)



Notice in this final equation that the condition » > 0 is always maintained regard-
less of the magnitude or direction of v, and wy. Movement of particles in cylindrical
coordinates with rotational symmetry can be entirely prescribed using eq. (3.9). Re-
sults presented in this document do not extend to coordinate systems beyvond axially

symmetric cylindrical polar.

Surface interaction

Surface interaction is an important element of particle simulations as they provide
boundary conditions to the simulation. The properties and behaviour of various
boundary interactions are now presented. For the purposes of the ensuing discussion,
the terms ‘wall” and ‘surface’ are used interchangeably. The term ‘boundary’ is a
broader expression not necessarily imply a solid surface/wall. Within the context of
wall collisions, all surfaces conserve mass: for any collision the mass influx must be
the same as the mass out-flux. The only exception to this is that in a plasma model,
walls that absorb a net current also by definition absorb a net mass flux.

The thermal accommodation coefficient, a, is a measure of the extent by which a

particle assumes the energy of the surface that it collides with. Specifically,

g, =" (3.11)
4; — Gu

where ¢; and ¢, are the incident and reflected energv fluxes and ¢, represents the
energy flux that would be carried from the wall if the wall and gas were in thermal
equilibrium. The TMAC is a function of the wall material. If the surface is irregular on
a microscopic level, a, is closer to unity. If the surface is very smooth, the a, becomes
smaller. Typically, a. =~ 0.9. In particle simulations, implementation a,. = 0 is simple:
the velocity and position relative to the particle direction are simply reversed. In the
case of fully diffuse reflection, the particle is given a randomly sampled Maxwellian
velocity based on the wall temperature (for isothermal walls) or based on the particle’s
energy (for adiabatic walls). If a. is between 0 and 1, then the reflection is diffuse
with probability a.; this approach is valid for many particles and is a method used by
many authors [9 101].

Surfaces where a. = 0 are very useful in particle simulations. These surfaces
involve zero energy and mass flux across them. This means that the gas conditions on
one side of such a surface are as though there is an identical gas occupying the other
side. These surfaces are referred to as specularly reflecting surfaces and are powerful
because they can be used to represent planes of symmetry. Figure 3.2 provides a
qualitative view of the difference between diffuse and specular surfaces. In a plasma

simulation, if a specularly reflecting surface is coupled with a Neumann boundary
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(a) Specular, a, =0 (b) Diffuse, a, ~ 1

Figure 3.2: Illustration of wall collisions at different thermal accommodation coeffi-

clent.

for the field equation(s), then a plane of symmetry can be reproduced. Further, in
a plasma context, a, = 0 boundaries are literally zero current density boundaries

because the reflected velocity is simply the incident velocity in reverse direction.

Sampling

The procedures for displaying results from particle simulations are fairly trivial. At
the most basic level, a scatter plot of particle positions can be produced. although
this serves little purpose other than a qualitative impression of density. Generally,
macroscopic quantities are extracted using a mesh. Particle positions are interpolated
onto the mesh and data extracted. There is usually no need to define a mesh explicitly
for particle sampling when one is available due to the PIC or MCC algorithms. It
is possible to sample many macroscopic quantities by storing only five pieces of data

per cell per species:
e Number of real particles, n.equivalent to Fli, the super-particle ratio).
e Velocity components, u., U, U,.
e Square of velocity magnitude, V? = u? + u? + u2.

For each particle in a cell the above data is stored. When enough samiples have
been taken, tvpical macroscopic quantities can be calculated. For a sample of N
computational particles of species a, these are shown in table 3.1. Further data can
be extrapolated from these fundamental values. Procedures for a gas mixture are not
relevant in this document, but are not significantly more complex; see Bird [9, section
1.5].

One form of information that it is possible to extract from particle simulations

is velocity probability density functions (or electron energy distribution functions).
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Property Expression

Density ne =n/NVe m™?
Mass density pa =nm/NVe kg m™?
Kinetic energy E, = imV?/N J
Stream velocities u;/N ms !
Temperature Vi = (uz/N)* + (u/N)* + (u./N)?

T, =m{V?—V2)/3k K

Table 3.1: Extracting macroscopic fluid properties from particle data. m is molecular
mass of species a. Further properties can be extrapolated from these using gas laws,
etc.

When a traditional Navier-Stokes CFD code is used, velocity PDFs are assumed
to be a perfect Maxwellian, by definition. Indeed, it can be argued that if PDFs
that are perfectly Maxwellian are extracted from a particle simulation, then the user
should switch to a Navier-Stokes code! PDFs, be they of particle velocities or electron
energies, are extracted in a similar way to that described above. A volume of interest is
selected, and particles are sampled from that volume. The difference is that particles
are delineated by their energy into data bins rather than by position into spatial cells.
It should finally be noted that if sufficient particles are used in a simulation, the
PDFs can be extracted directly from the particle data at the post-processing stage:
the regions of interest need not be specified at run-time.

Finally, it is useful to record data concerning particle impact on surfaces. This
allows both shear and normal data to be used for the purposes of estimating heat flux

and surface forces.

Particle interaction algorithms

While Birdsall and Langdon [12] provide cover plasma particle modelling (PIC), and
Bird [9] provides collisional particle simulation {DSMC), it is Hockney and Eastwood
[45] who give an overview of particle simulation from a ‘neutral” perspective. This view
allows for a more concise definition of the computational problems and solutions that
exist when particle interaction is to be considered. The two fundamental algorithms

in their most simplistic fornis are now presented:

Particle-particle collision: Consider calculating collisions between a
collection of n particles contained in a domain as previously described. If
we know the collision cross section of the particles, then it is possible to
use billiard ball mathematics to determine collisions over a period of time.
First, we would evaluate the trajectories of all the particles. Second, for
each trajectory, we would test for intersection with every other. Any inter-

secting trajectories constitute collisions. This algorithm is fundamentally
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inefficient for large n. The number of operations per tinie-step can be ex-
pressed as the sum of the trajectory calculation phase (n operations) and
the intersection calculation 5(n —1)n. a total of n+ 1n(n — 1) operations;

such an algorithm scales approximately as O(n + n(n — 1)).

Self consistent particle field interaction: In the case of collisionless
charged particles, a similar method naturally presents itself: based on
basic electrostatic theory, the total force on each particle is the sum of
the forces exerted by all others. So on each time-step, the force exerted
by each particle is calculated by evaluating the force from all the others.
It is clear to see that in this case, such calculations scale as O(n?) for n
particles.

Since, for reasons such as sampling and numerical stability it is best to use many
particles (large n), something more efficient than the above O(n?) ‘particle-particle’
(PP) methods discussed. The methods discussed in the following sections are called
‘particle-mesh’ (PM), because the n? relationship is replaced with more tractable
computational costs (typically something like nlogn) by utilising some more other
auxiliary mesh based algorithm. Individual descriptions of the methods (DSMC.,
MCC, PIC) are contained in the following sections. Hockney and Eastwood [45] do
note the possibility of using hybrid ‘particle-particle-particle-mesh’ (P?*M) methods

for greater accuracy, although this has not been extensively researched.

3.2 Particle distributions

The fundamentals of the direct particle approach to the solution of the Boltzmann-
Vlasov equation have now been covered. Essentially, we are modelling a collection
of many real particles using a few simulated particles and relying on the statistical
nature of the solution being the same. In future sections, the collision term modelling
and plasma-dynamics will be covered, but it is first necessary to consider the method
by which simulated particles can be generated based on macroscopic ‘external’ defin-
itions such as temperature. Prior to presenting methods for generating the statistical

representation of the plasma, it is first necessary to discuss random numbers.

Pseudo random number generator

Computers have trouble generating truly random numbers. Instead, they are able
to produce sequences that are truly random, but that are identical in that the same
sequence can be repeatedly generated. This is a problem in cryptography, where truly

random numbers are required, but no problem at all for numerical simulations: we
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are not concerned over the repeatability characteristics of a sequence, but rather the
randomness of the sequence itself. In light of this, a high quality pseudo random num-
ber generator (PRNG) is a necessity for the statistical validity in numerical models
that use Monte Carlo techniques. The PRNG needs to provide a very long sequence
of random numbers that are uniformly distributed and uncorrelated at low computa-
tional cost. A popular free PRNG, used for all the results presented in this document,
is the ‘Mersenne Twister’ of Matsumoto and Nishimura [59]. This generator produces
a sequence that is random until the 21%%7th number. Once initialised, when the gen-
erator is called, it returns a number which is equivalent to the occurrence of R in
the following discussions. R is a uniformly distributed random number in the range
[0,1]. Clearly, it is important that we have confidence in such a generator; it would
be unwise to use one without checking for correctness. Some tests for the generator

of Matsunioto and Nishimura [59] are contained later in the validation section (§4.1).

Random Maxwellian velocity

A random sample from a Maxwellian velocity distribution of a given temperature can
be constructed based on the statistical analysis in either [9, App. C] or [12. §16.4].

For a temperature 7', the most probable thermal velocity is

vy = 1] 2L (3.12)
m

where m is the particle mass. The magnitude of the 2-D Maxwellian velocity v for

this temperature can be found via
V| = v = v/ — In(R) (3.13)

where R is as usual a uniformly distributed random number of range [0, 1]. From v,
it is then possible to extract any two components of velocity that are normal to each

other using the following:

0 = 27R
v; = vsinf (3.14)
v9 = vcost

where R is another (fresh) random number. Since particle velocities are three dimen-
sional vectors, this method is first applied twice to obtain v;_4, then the particle given
Uy = Uy, Uy = Vg, U, = Ug, while vy is carried over so that the above method is applied
only once for the next particle. In this way, only one R is required per particle velocity
component (so in general three calls to the random number generator are made to

construct one Maxwellian particle).



Figure 3.3: A conic frustum.

Random particles on objects in cylindrical co-ordinates

Generation of particle positions randomly on the surface of a cylinder that extends

from zg to z; at radius r, is trivial:

z=2zy+ hR (3.15)
r=re. (3.16)
0 =27R (3.17)

h = z1 — zp is the length of the cylinder. Recall that R is a uniform random number
on [0, 1] To generate a uniform covering of random positions on the surface of a disk,

the result of the derivation presented in Bird [9, Appendix C] is used:

r=+/a2+ (12 —a®)R (3.18)

~

where a and b represent the radii of two circles making up the (hollow) disk, b > a. 2
is constant and if needed, € is as eq. 3.15. For a non-hollow disk simply use a = 0.
Figure 3.3 shows a conic frustum. For this shape, standard results for s, the total

area and the description of the shape r(z) are

s=/(R; — Ry)2 + h2, (3.19)
A=7(R; + Ry)s, (3.20)
r(2) = Ri+ (Ry — Rl);i. (3.21)

Shapes such as disks, cones and cylinders can be described as ‘flat”. Although counter-
intuitive, this description refers to the idea that they can be constructed from a flat

plane (a cylinder is a rolled up rectangle or square) [54]. Hence, to obtain our required
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uniform random point, we ‘flatten’ the conic frustum so that it is trivial to select the

z point using eq (3.18). r follows using eq. (3.19). Hence, a uniformly distributed

random point on a conic frustum is simply:

2(z0.21) = /23 + (22 = )R
r(z) = Ry + (Ro — Rl‘)%
0=2nR

(3.22)
(3.23)

(3.24)

where h = ) — zp > 0. These techniques are used when generating uniformly injected

particles from a given surface.



3.3 Direct Simulation Monte Carlo

Nanbu [68] chooses to classify inter-particle collision algorithms into three classes
according to the nature of the particles involved: electrons, e, neutrals atoms A and

ionised atoms A™:

1. Short range collisions between unlike particles e.g. e-A, A-AT CEX,

]

. Short range collisions between like particles e.g. A-A. A-AT momentum transfer,

3. Coulomb collisions (between charged particles) e.g. e-¢, e-A™ etc...

Neutral gas flow consists entirely of type 2 collisions. Further, the particular algo-
rithm associated with these collisions—Bird’s DSMC-—is perhaps the most elegant
and efficient of the various collision methods.

The basic ideas behind DSMC were first introduced by Bird [6]. At this stage,
the fundamental molecular models were simply those inherited from classical kinetic
gas theory. Only with the introduction of more realistic molecular models such as
the Variable Hard Sphere that accounted for variable viscosity with temperature did
the model begin to show near perfect accuracy. A combination of Bird’s inability to
prove that the DSMC provided a solution to the Boltzmann equation, coupled with
insufficient computing power, held back the method until the early 1990s. Doubts
concerning the theoretical validity of the model were cast away when Wagner [104]
demonstrated that in the limit of zero time-step and mesh spacing, the DSMC formu-
lation represents an exact solution to the Boltzmann equation. Since this time, the
method has been embraced by many as the standard tool for rarefied gas dynamics.
The number of references presented previously relating to thruster plume modelling
gives only a small idea of the range of application of the technique. As has been
mentioned, the DSMC has recently been successfully applied to micro gas dynamics,
a comparatively recent but rapidly expanding field. There are two comprehensive
review papers covering the method: Bird [7] and more recently Oran et al. [75). The
definitive work on the method remains the book Molecular Gas Dynamics and the
Direct Simulation of Gas Flows, Bird [9]. A good review of the various experimental
validations of the DSMC is given by Harvey and Gallis [42].

An introduction to the core numerics of the DSMC is now presented. This consists
of two primary parts: the method for sampling collision events and the method for
determining post-collision properties based on the molecular description. The first
part introduces the ‘no time counter’ (NTC) sampling method of Bird [9]. During the
early stages of the evolution of the method (1970s), a slightly different method was
used: the ‘time counter’. There advantages of the NTC are such that the TC is only

of historical interest; in particular, the NTC uses a constant time-step and, as will



be seen in the following section. allows for the prediction of the number of colliding
particles in a cell explicitly. The NTC is also inherently vectorisable. The second part
of the introduction to the DSMC covers the molecular models that are used describe

collision cross section and derive post collision properties.

3.3.1 DSMUC collision sampling procedure

Consider the simulation space described in the early part of this chapter: a collection of
super-particles contained within the simulation volume, moved periodically at some
interval At, interacting with boundaries. This is the basic collisionless simulation.
The simulation domain is first subdivided into cells. Consider a cell with volume
Ve contained within are N super-particles. Each super-particle represents Fy real
particles. Hence, there are Fy /N real particles contained in V. The average number
density in the cell is n = FyN/V.

Consider a test particles moving with velocity g relative to another. For the
purposes of the discussions regarding collisions in the following sections, g = v, — v,
is the relative velocity between particles p and q. g is as usual simply |g|. The collision
probability between p and ¢ during time At is equal to the volume swept out by their

total cross section divided by the cell volume:

At 8
P = E\:O"]‘Q{TC. (323)

Now, in theory the full set of collisions could be evaluated by selecting all N(N —1)/2
potential collision pairs in the cell and calculating the collisions with probability P
each time. Since P is usually very small, this method is inefficient and the best
approach is only a fraction of the pairs are tested and the probability of each collision

increased by dividing eq. (3.25) by the fraction. The fraction is given by

At

at 3.26
v (3.26)

Pmaar = EN’(UTg)ma.l‘
The number of pair selections is obtained by multiplying this by N?2/2. In fact, for
a steady flow, since NV is varying, it is best to multiply by NN, where N is a time
averaged value of cell population. The method is then that

1. - \ At ‘
glNZJNYFAT(UTg)TnaZ- r (327)

-

prospective collision pairs are selected in the time-step, and collisions are evaluated

with probability
_0r9 (3.28)
(UTg ) max
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It is worth noting that the extent to which N Fy (which is equivalent to {(n) in the
cell) is averaged depends on whether the flow is steady or not. In the validation case
for the DSMC given later, an unstable flow is used, so no time averaging is used. In
general, if the gas consists of species of similar mass and energy, the above procedure
holds. In the case of a single species plasma, the ion mass is effectively identical to the
neutral mass, but the ion energy may be significantly different to the neutral energy.

In this case, it is worth using the DSMC procedure for gas mixtures, where,

- ‘, At [,
iiy\pj\/qﬂ’\?{(O—Tg)mal‘}pf] LT(* (‘329)

collisions are selected between species p and ¢ and collision probability evaluated as
o .
S — (3.30)

{ (079)max }pq

The collision models that describe the evaluation of o and the post-collision proper-

ties of a pair of molecules now follow.

3.3.2 Collision Models

Once a collision has been selected, there are various methods to resolve collision
mechanics. The the most basic is the hard sphere model, which was superseded
by the Variable Hard Sphere model of Bird [8], and refined further as the Variable
Soft Sphere model of Koura and Matsumoto [53]. All three are now presented and

compared.

Hard sphere model

The hard sphere model is a basic description of molecular interaction defined so that

the inter-molecular force during collision becomes effective at distance
1 L
r=(d+dy) = duy (3.31)

where d; are molecular diameters. r is physically the apse line between the centres of
the colliding spheres shown in figure 3.4. y is the deflection angle due to the collision.
it is this angle that allows us to calculate the post-collision velocities. In the figure,

the distance b is

b=dsinfy = dis cos(x/2) (3.32)
and 0 .
a = §d12 sin(x/2). (3.33)



Figure 3.4: Collision geometry of hard sphere molecules (from Bird [9]). g is the pre-
collision relative velocity (notice that the co-ordinate system is aligned with the frame
of reference due to g). y is the resulting deflection angle and g* is the post-collision
velocity.

Now, from basic theory of binary elastic collisions, the collision cross section, o, is

defined as

(3.34)

a =

b | db
dx

sin y

[9. eq. 2.13], so that

o L (x/2, L (3.35)
—dypsin(x/2) = —di,. 3
sin y 2 125 (x/2) 4 1 ‘

a =

Hence, the cross section is independent of x: the scattering is isotropic in the centre
of mass frame of reference (as can be inferred by examination of fig. 3.4). The total

cross section is defined as

AT
UTE/ odQ, (3.36)
0

where d€2 is the unit solid angle around vector g*. The total cross section for the hard

sphere collision model is then

1., [ .
op = ~d?, / dQ = 7d3,. (3.37)
4 J0

Variable Hard Sphere (VHS) model

Although the hard sphere model is very simple, it is unrealistic in two respects. First,
the scattering is real gas collisions is not necessarily isotropic. This does not repre-
sent a major problem, as for simple molecules changes in the scattering law are not
significant. Of greater importance is the fact that for a real gas, the effective cross

section varies with relative velocity and relative translational energy. In light of these
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Gas Degrees of  mass, m viscosity viscosity  diameter. d

freedom, £ coefficient. ¢ index, w
107" kg 107> Nsm™ 10710 m
Helium 3 6.65 1.865 0.66 2.33
Neon 3 33.5 2.975 0.66 2.77
Argon 3 66.3 2.117 0.81 4.17
Krypton 3 139.1 2.328 0.8 4.76
Xenon 3 218. 2.107 0.85 5.74
Table 3.2: VHS parameters for the inert gases. Diameters are referenced to a

temperature of 273 K, properties are given for standard conditions (101,325 Pa and
0°C). Degrees of freedom is 3 in all cases since all the elements are insert monatomic
species: the ratio of the specific heats is then v = (£ +2)/€ = (3+2)/3 = 1§ Radon,
the most massive of the insert gas species, is omitted for two reasons: (a) there is no
gas dynamic data available and (b) it is not available in sufficient quantities to be a
viable propellant for the hollow cathode.

objections. the variable hard sphere (VHS) model was introduced hy Bird [8]. The

VHS model allows d to vary with g, using an inverse power law

d=dy; <ggf > (3.38)

where subscript ;.. s refers to reference values. Via the Chapman-Enskog viscosity and
basic kinetic theory, it can be shown that the molecular diameter can be related to

the translational energy by

3
=

g (15/8)(777//7)%“"7?%]”)14 (3.39)
F<9/2 — w)/h"efET_i

Where w is the viscosity index and Fj is the translational energy of the molecule. fi.qf
and T,.s are tabulated for many gases. In particular, see table 3.2 for values for the
inert gases considered in this document. The collision deflection angle is given in the

same way as the hard sphere case
x = 2cos '(b/d), (3.40)
except that now d is a function of g so the scattering is no longer isotropic.

Variable Soft Sphere (VSS) model

The VSS was introduced by Koura and Matsumoto [53] to address the fact that the

VHS still inherits the deflection angle of the hard sphere model. It is identical to the



VHS in all other respects. The deflection angle is givel as
x = 2cos H(b/d)V] (3.41)

where o is the VSS coefficient that can be related directly to the Schmidt number by

9, eq. (3.74,3.76,A2)]
24«

T (3/5)(7 - 2w)a’

where w is the viscosity index. The VSS is less efficient than the VHS and produces

G (3.42)

only marginally better results under most circumstances. Ginielshein et al. [39], com-
pared the various collision models for the case of a plasma reactor, and conclude that
in the case of a plasma the exact reproduction of polvatomic rarefied gas flow does
not effect the overall plasma behaviour: plasma dynamic effects dominated. Further,
the gases that are considered in this work are exclusively mono-atomic inert species
(Kr, Ar. and Xe; perhaps a mixture two) i.e. they have onlv translational degrees of
freedom. This means that for our purposes, the VSS gains almost nothing, at some

additional cost (in mathematical operations per collision).

3.3.3 Producing a free stream flow in the DSMC

Previously, it was noted that the code written for this research was designed so that
inflow conditions for gases are set as a mass flow rate so that the results can be
easily compared to experimental data (this is because mass flux can be measured in
a laboratory accurately and easily). This method is valid for internal fluid dynamics,
but the DSMC is frequently used for external flows, as in the case of this example.
While we will be considering internal flows exclusively in this work, there is still a case
where ‘free stream’ conditions need to be generated: the downstrean: boundary. For
the purposes of experimental comparison. ‘vacuum’ chambers tend to have an ambient
particle density that could be significant. This is particularly true for experimental
data taken from the hollow cathode running within the ion thruster assembly as
the discharge chamber acts to contain a plasma at a density much higher than the
ambient vacuum chamber density. The method for determining the particle flux
through boundaries given free stream conditions is now briefly presented.

Starting with an expression for the equilibrium Maxwellian velocity distribution

function, written in the notation of Bird [9] as

L |
flv)= /—3 exp(— 3%, (3.43)

T2

[l
[$a



where Bird tends to use the abbreviation for y/m/2kT terms by defining

m

. 3.44
2T (3.44)

as must be the case by comparison of eq. (3.43) to any standard text on statistical
mechanics. Second, the most probable thermal velocity. the maximum of g(v), turns

out to be simply the inverse of 7:

12kT 1
1,?m}) = Uy = T = § (345)

By examining fluxal properties in a gas, it is possible to write an expression for the

inward number flur to a surface element due to a gas of density n as

Ny = = {exp(—s>cos’ ) + /mscos O[1 + erf(scos )] } . (3.46)

207
This expression is the result of a lengthy integration that is omitted for brevity, see
Bird [9, §4.2] for further detail. # is the angle between the element normal vector and

the stream velocity vector and s is the molecular speed ratio:

Use

§=Uf = —. (3.47)

Ump
N, is simply the number of particles that pass through an element of unit area per unit
time. This expression is used to determine the particle flux from uniform free stream
conditions. Equation (3.46) is of course much easier to implement when boundaries

are orthogonal to u,. For a boundary perpendicular to the stream velocity, 6 = 0, so
. n 2 9 410

N = ——=jexp(—s 78 rf(s)]} . 3.48

N NG {exp(—s*) + /ms[1 + erf(s)]} . (3.48)

and for a boundary parallel to the stream velocity, § = 7 /2, (or a stationary gas so
s=0)

¥

n
N, = . 3.49
NG S

This concludes the discussion on how a free stream flow is affected in a DSMC simu-

lation.

3.4 Monte Carlo Collisions (MCCQC)

This section covers both electron-atom collisions and Coulomb collisions. The theory

behind the collision selection and post-collision particle properties is covered by the
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Figure 3.5: Geometric representation of Nanbu's technique for the sampling of an
electron-atom collision event.

excellent review paper of Nanbu [68], which incidentally also includes a good but brief

discussion of the DSMC method.

3.4.1 e-A collisions: Event selection

Due to the complex nature of electron-molecule collision cross section variation with
energy, it is necessary to use a database of experimental data rather than a numerical
nmodel such as the VHS. This greatly increases confidence in electron-ion and electron-
neutral collisions compared to approximating the electron super particles as a DSMC
species. The MCC system follows the selection methodology found in Nanbu [6§].
The model allows for an arbitrary number of electron collision events (momentum
transfer, atomic excitation. ionisation) to be used. Nanbu’s modification allows that
both the event, and the collision probability of that event, be selected using a single
random number. The constant time-step niethod is presented here: this technique
is analogous to the DSMC NTC technique. The probability of an electron collision
with a background gas in time At is Pr = vAt, where v = ngvor is the collision rate.
ng is the background gas number density (which we already have from our DSMC
background flow) and v is the velocity of the electron under consideration. Moreover,
if there are K possible collisional events (elastic, inelastic (excitation) or ionisation).

then

.
Pr=>Y P (3.50)
k=1

where Fj. the probability of the kth event occurring is given by
Pk = ﬂgt’UkAt. (351)

Nanbu [68] presented a method by which both the event and collision probability
can be selected from a single random number, increasing efficiency. Equation 3.50 is
rewritten
K 1
l=FPr+(1—-Pp)= Pi+|—=—F ), 3.52
1<T>k§_‘;[,\h,k, (3.52)

as represented in figure 3.5.



Sample a random number A between 0 and 1 (in figure 3.5). If A lands in one of
the right hand parts, collision event k occurs. If A is located in a left hand part of any
interval, no collision event takes place. The integer part of 1 + AK determines the
interval, &, in which A falls. Now, only P, need be evaluated to determine whether
the collision occurs. The cross section of event k occurring at velocity v is sampled
from a database of experimental data (an example is given later in the results section
for electron-Xenon collision cross section).

This technique allows the modelling of ionisation, recombination and excitation
as well elastic momentum transfer from the electron cloud to the gas. Knowledge
of atomic excitation raises the prospect of extracting data based on photon emission

from super particles in the model for comparison with experimental data.

3.4.2 e-A collisions: Post collision properties

For electron with velocity v and molecule with velocity 'V, the relative pre-collision
velocity is g = v — V. Now, since in general v > V', the magnitude of the relative
velocity g is effectively just v. The differential collision cross section is a function of
the deflection angle x and velocity g ~ v: o(v, x). The integral cross section oy (v) is

defined as [68]

27 T
or(v) 7/ d@i’/ o(v, x)siny dy, (3.53)
0 0

where sin y dxdv is the solid angle into which the post-collision velocity of the electron
is directed, x is the polar angle and 0 the azimuthal angle. Post-collision properties
are denoted with a prime: electron post-collision velocity is v/. The probability that

v’ is in the solid angle sin y dydy is
osin x dxdv /oy, (3.54)

the product of (27)~'di and 27 (o /7;.) sin x dy. This means that the coefficient, (27) "}
of di is the probability density function of ¢. A random sample of 1) is obtained as

simply
2n R (3.55)

Similarly, the coefficient 27 (0 /o) sin x of dy is the probability density function of the

deflection angle y. In this case, a random sample of y can be obtained from

21

O';C(?))

X
/ o(v,x")siny dy' = R. (3.56)
0

Hence, y is a function of v and R. Unfortunately there is insufficient data on differ-

ential cross sections available for most collisions. The only option left in the absence

ot
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of such data is to assume that o(v, x) does not depend on y. Extensive data exists
for the collision cross section in the o(v) form, this is discussed in detail later in this

section. This means that (3.53) reduces to
or = 4mo. (3.57)

Further, this means that the post-collision velocity v/ is in a random direction: such
random scattering is isotropic. Such an assumption has been shown not to be the
source of significant error [72 84]. Hence, assuming isotropic scattering and using
fundamental conservation laws, it is possible to derive expressions from which post-

collision properties extracted.

Elastic and Inelastic momentum Transfer

The masses of the electron and atom are m and Af respectively. For a collision that
is either elastic (post-collision energy equals pre-collision energy) or some form of
exciting interaction that involves energy E, we have conservation of momentum and
energy as
mv' + MV =mv+ MV, (3.58)
1 / 1N\2 - 1 2 [
EIU,(V -V +E= E/L(V—V) (3.59)
respectively, where £/ = 0 for elastic momentum transfer and g is the reduced mass in
the sanie sense as referred to in the DSMC method; = mA{/(m + M). The energy

equation, (3.59), becomes

1
, 2E17
v -V = l:(V — V)~ } R (3.60)
1
where R is a vector in a uniformly random direction with |R| = 1. Put another

another way, R describes a random point on the surface of a sphere of unit radius
that has its centre at the origin. This results in isotropic scattering of the relative

pre-collision velocities. The momentum equation (3.58) is rearranged to

M M
vV=v+—-V -2V (3.61)
m m
which, substituted into (3.60) gives
Mo, M 7]
v_ My yio {(v V) QE} R (3.62)
m m 1



from which V' can be found. v’ follows directly from eq. (3.61). These final two equa-
tions are all that remain to be evaluated in order to determine post-collision proper-
ties for elastic momentum transfer and excitation collisions. Computation assuming
three-dimensional velocity vectors is not too problematic, even for large nunibers of
collisions. The pre-collision relative velocity that is calculated by necessity during
the event selection phase, thus the square root in the RHS of (3.60) need only be
evaluated once because g? = (v — V)% Indeed, in MCC code, the constant factor f

is defined so that

2E] - N
= {w vy } | (3.63)
i
Tonisation
For an e-A ionising collision, we are considering the reaction
e(v) + A(V) = e(V) +epv)) + AT(V), (3.64)

where the particles are written in terms of their velocities, primes denote post-collision
velocity and ¢, is electron freed from the atom during the ionisation. This collision
can only occur if the electron energy based on v exceeds the ionisation energy of the
ion. This is necessarily the case because the collision cross section o(F) evaluates to
zero if E(|v]) is too small. In the same way as above, it is possible to write equations
for conservation of momentum and energy. The centre of mass velocity, W, is defined
as -

W Y + JUV. (3.65)
[f this velocity is subtracted from all velocities, then the pre-collision momentum is

zero and the momentum equation is written
mV +m¥, + (M —m)V' =0, (3.66)

where the ™ refers to velocities that have had W subtracted. Conservation of energy
gives
Lo 4 T o 1(M ~m)V?+ E = 1 (v —=V) (3.67)
PA R A ’ ST e
where FE is the ionisation energy. For the cases of m <« A7, the momentum equation
(3.66) can be re-written

V= —— (¥ +¥) (3.68)

If the above equation is substituted in equation (3.67) it is clear that the third term

on the LHS is of negligible magnitude compared to the first two: it would contain an
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additional factor of A/m. Hence, re-writing (3.67) gives

1 ., 1 ., 1 N
Emzf/ + 5777,@]/) = 5/1,(V—V) — E(= AF) (3.69)

where AFE is the excess energy after ionisation. Generally, there is little published
data regarding the division of energy between e and e, so it is divided randomly so
that

1 : ‘
amii/‘z = AAFE (3.70)

1 ; _
5777@;‘ =(1-AAFE (3.71)

where A is simply a random number A = R. If it is assumed that V' and \7; are

isotropic, then it is possible to generate the post-collision velocities as

V' = 'Ry (3.72a)
v, = 7/ Ro (3.72D)

where R 5 are a pair of independently generated uniforni random unit vectors. Once
v' and \7;, are obtained, V' follows from (3.68). Velocities are converted v — v by
adding W.

Sonie minor assumptions were made during the derivation of the methods for
determining post-collision properties. In light of this, it is worth noting that results
generated using the above procedures were compared to the experimental data of
Nakamura and Kurachi [67] by Nanbu and Kondo [71] and showed excellent agreement.
See also Nanbu [68] for further analysis and Phelps [78] for the collision cross section

data for Xenon.

3.4.3 Jon-neutral Collisions

The most basic approach suggested by Nanbu [68] to the evaluation of ion neutral
collisions is to treat them as though they are neutral-neutral collisions, but take into
account the additional cross section for charge exchange. This means that in addition

to the elastic scattering
At (va) + B(vp) = AT(Vy) + B(vh), (3.73)
there is charge exchange (CEX), where

AF(va) + B(vg) = AV + BT (vY). (3.74)
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It is reasonable to assunie the the background gas is at rest and in equilibrium when
compared to the ion gas. This assumption is valid in the case where the ions have
a significantly higher temperature and higher stream velocity component compared
to the background neutrals. Based on this quasi-stationary background neutral gas
assumption, the probability that an ion A™ collides with a neutral in time interval At
15

P =npgor(g)At (3.75)

where ng is the background neutral density, g = |v4 —vp| is the relative velocity and
or is the total collision cross section, made up of a;’;[fft"’yc and crf 5‘\ . For the elastic cross
section, it is reasonable to use wd%y (the hard sphere model). The charge exchange
cross section is a function of relative velocity and two models fitted to experimental
data exist: the original Rapp and Francis [83] and the recent Miller et al. [60]. An
expression for the former was given during the mean free path analysis in section

2.4.4. The latter takes the form
c“FX = A — Blog(E) (3.76)

where, for Xenon, A =87.3 A, B=13.6 A and E is the ion energy 3mv?. Although
similar, the Miller et al. expression was fitted to a wider range of more accurate and
recent data, so it seems wise to use this one.

For an elastic collision, the scattering is assumed to be isotropic, so,

1
viq = —-————-(TTLAVA +mpve +mpgR)
ma+mp (3 77)
= + R) R
Vp = MaVv mpvp — 1My
B o e AVA BVEB AY

where as usual R is a uniformly distributed random unit vector. In the case of charge
exchange, the simplest method — shown to be reasonably accurate [68] — it to use an
identity switch. Using this method, v/, = v4 and vy = v, but charge is transferred
from A to B. This is actually equivalent to changing the relative velocity from vy —vp
to —(v4 — vp) and hence, the deflection angle of the collision is 7. Nanbu states that
a reasonable approximation is that half the collisions be elastic and half be CEX.
While this may be true under conditions where o“%X x g¢/es%¢ in this work the type
of collision is determined based on the comparative magnitudes of the cross sections.
The probability that a given collision is CEX is given by
GCEX

pP= : (3.78)

ar

and clearly the probability that it is elastic is then (1 — P). It is felt that this is
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a better method that the half and half approximation because there are collision
energies that upon substitution into eq. (3.76) yield ¢“#¥ significantly larger than
gelestic  Incidentally. for Xenon under these conditions, the CEX cross section never

falls to significantly less than the elastic cross section: CEX collision tend to dominate.

3.4.4 Coulomb Collisions

The Coulomb collision, also known as Rutherford scattering, is very different in nature
compared to all of the collision types considered until this point. Indeed, the term
collision is misleading because the interaction is not a binary event but a many body
‘collision’ that is continuous. It is nonetheless common to model Coulomb collisions in
plasma simulations using a Monte Carlo methodology: the charged particles undergo
a series of small angle binary collisions equivalent to the many-body force at a distance
Coulomb collision. This means that the method uses exactly the same ideas behind
the DSMC and e-A MCC collisions with regard to the fixed volume cell and fixed time-
step over which collisions manifest themselves. Due to the continuous collision nature
of the Coulomb collision, the method is somewhat easier to construct because no
collision selection is required: all particles ‘collide’ during each time-step. This means
that unlike with the DSMC and MCC electron-neutral collisions, the only section
of the algorithm that needs to be presented is the determination of post-collision
properties. The method is summarised by Nanbu [68], but a more complete review of
the underlying theory is given in [69]. Verification of the method by examination of
relaxation rates in plasmas is given by Nanbu and Kondo [71].

For collisions between particles of species o and 3 (the notation of Nanbu [68]),
we construct two arrays, one containing the as and the other the gs. If the cell
populations are not equal, N, # Nj. or the particle weightings are different. then the
At that follows can be adjusted so that all the particles collide to the correct extent
(see discussion on p.987 in Nanbu [68]). Once the two arrays are constructed, we have
N pairs of particles that can now experience the small angle binary collision that will

make up part of the ongoing Coulonib collision. The impact paranieter

Ay = — (q“qﬂ) In Ay, (3.79)

- dm \ eop

is defined, where n is the total number density, n = n, + ng, ¢, the charge on particle
@, pis again the reduced mass mamg/(mq+mg) and In A, 5 is the Coulomb logarithm

pertaining to the particles in question. A,z is given by

Arre 2 %\
A, — TCorGaz)AD (3.80)
' G045
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where Ap is the electron Debye length based on the local temperature of a and 3 and
(g§3> is the mean square relative velocity (g = v, — vz). (g2,) is the mean square
of all the particles in the cell, so A,s is only calculated once per cell not once per
collision pair. Once we have A,g, it is possible to obtain the value of 7, a parameter

that is used to select the scattering angle. For the 7/th pair of particles, 7 is

AnsA .
o Aaslt (3.81)
Vi — va|*
which allows us to evaluate cos y using
1 - .
cosx = A(7) In (67‘4(" + 2RSinl’1A(7)) ; (3.82)
A(r

where R is as usual a uniformly distributed random number between 0 and 1 and
A(T) is such that
cothd — At =¢" (3.83)

In general, to sufficient accuracy for a particle simulation, the Newton-Rhapson
method [107] can be used to tabulate A(7) between 0.01 and 3, while for 7 < 0.01,
A~ 1/7and 7 > 3, A =~ 3e . A verification of the tabulation used for this research
is contained in the validation section; it matches that given by Nanbu [69]. Once the

scattering angle, y, is found, the post collision velocities are

V= Uy — %—77:773@(1 — cosy) + hsin y] (3.84)
Vi =g+ m(lm:mj[g(l — cos x) + hsin x] (3.85)
where h is given as
g1 cosy
h = | —(gugycost + gg.sin ) /g, | . (3.86)

—(gr9: cos — gg,sini) /g1

where g, = \/nggf— The angle v is the azimuthal angle of the collisional plane,
¥ = 27 R. For the case of unequally weighted particles a and 3, the less weighted
particle always receives a new velocity, while the heavier one does with probability
Wiight/ Wheary- The method is can be arbitrarily extended to interaction between any
pair of charged species, including o = 4. This means that all three of e-e, e-A™ and
A7-A" are covered by the above. Nanbu verified this binary collision approximation
to Coulomb collision method against a number of test cases. As would be expected,

the inclusion of Coulomb collisions has a heating effect on the plasma. For more
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Particle Motion
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Y

Weighting /A\ Interpolation
AL
(E, B)m - Fp \j (Xa u)p - (P J)m

i

Fields
(P J)m - (E B)m

Figure 3.6: The Particle-Mesh algorithni applied to plasma physics. Subscripts 4,
and ,, refer to particle and mesh information respectively. Notice that the ‘Particle
Motion’ stage takes place entirely in ‘particle space’, while the field solution stage is
entirely in ‘mesh space’. Interpolation and weighting transfer information between
mesh and particle.

details on the validation of the method see Nanbu [G8].

3.5 Particle-in-Cell (PIC) Plasma model

The particle in cell plasma model is somewhat older than the DSMC. Since the 1950s,
PIC computational plasma physics has been studied. It is fair to say that compared
to the Monte Carlo collision particle models, the PIC model has been more widely
accepted for a longer period of time. This is largely due to the fact that the underlying
proof of the method has been available for longer: the relationship between the PIC
model and the Vlasov equation is clearer than, for instance, that between the DSMC
and the collision term of the Boltzmann equation (recall that Wagner [104] only
provided mathematical proof that the DSMC is a direct solution of the Boltzmann
equation as recently as 1990). The best historical review of the method is given by
the most important contributor to it: Birdsall [10]. The primary text describing the
method is Plasma Physics via Computer Simulation, Birdsall and Langdon [12].

While the Monte Carlo collision methods are referred to as particle-mesh meth-
ods because they employ meshes and rapid selection techniques to calculate particle
interaction while avoiding the O(N?) problem, the PIC method could be described
as a being a more pure particle-niesh algorithm, in the terminology of Hockney and
Eastwood [45]. Figure 3.6 illustrates the core algorithm.

Forces on the mesh are electric and magnetic fields. These are weighted to particles
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via the Lorentz force:

F= Felectric + Fn’lagneticv (3.87)
F=¢E+vxB) (3.88)

The application of such forces to the direct particle model covered in §3.1 is done using
the leap-frog method. Although higher order trajectory integrations would be more
accurate, data storage becomes excessive and as such all useful PIC codes known
to the author have used the low-storage leap-frog trajectory integration. For each

particle, then, the equations that describe motion in the presence of a force become

dv

— = F, 3.89
m =F. (359)

dx

- v, 3.90

dt v ( )

This covers the ‘Weighting” and ‘Particle Motion’ stages in fig. 3.6. The leap-frog
integrator has error, but since all PIC codes use it, there is extensive analysis of the
accuracy of the method. Such analysis is covered later once the whole algorithm has
been described.

Chronologically, the next stage in fig. 3.6 is ‘Interpolation’”. The simplest form of
interpolation is the nearest grid point (NGP) method. The name explains the nature
of this ‘zeroth order’ interpolation method. It has been found, however, that the
stability and accuracy of PIC simulations are increased by using smoother approxi-
mations to particle charge. In particular, the first order Cloud-in-Cell (CIC) method
that interpolates charge to two or more cells is often used since it is a good compro-
mise between computational expense and charge/current density smoothing. Details
regarding interpolation in cylindrical co-ordinates are given later in this section.

Finally, some form of force field equations are solve on a mesh to provide the values
for E and B. Typically the emphasis is on speed in the field equation solutions. Many
PIC codes compromise boundary flexibility so that spectral methods can be used,
although on modern computers iterative linear algebra solvers are the norm.

The following sections cover the the solution of the field equations, weighting of
forces to particles, and interpolation of charge and current density, with particular
emphasis on the co-ordinate system and problem we plan to solve. The field equation
section is presented first, because only with knowledge of the field structure is it

possible to write expressions of particle acceleration.
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3.5.1 Field Equations

The electric and magnetic fields present in the plasma are governed by Maxwell's

equations, expressed here in MKS units:

V-B=0. (3.91)
V-E= ﬁ; (Poisson’s equation) (3.92)
€0
7B \
VxE= —%—T, (Faraday’s law) (3.93)
ot

1 0E \

V x B =pugj+ —— (Ampere’s law) (3.94)
? ot

where E and B are the electric and magnetic fields, p = e(n. — n;) the charge density,
j the current density, ¢, the permittivity of free space, ¢ the speed of light and pp is

the permeability of free space. Poisson’s equation (3.92) can be expressed in terms of

V2= L (3.95)

The current density can be expressed in terms of the movement of charge so that for

a plasma with ion density n; and electron n, (where n; is not necessarily equal n.).
J= e(nivi - nﬁ’vt?’) (390)

where v, and v, are the drift velocities of the electron and ion species. In the PIC
algorithm. the problem is that of obtaining the fields E and B given knowledge of
current density and, if we wish to model transient fields, the rate of change of the
fields. There are a number of simplifying assumptions that are often made to reduce
the complexity of the problem.

The most broad assumption that is commonly used in PIC simulation is that
the magnetic field is constant; i.e. there is no significant current density and no
significantly fast changes in the electric field. This is the ‘electrostatic’ PIC model.
Note that particles in the simulation may still be affected by a magnetic field applied
by some boundary conditions, it is simply that the field does not change at all during
the simulation. The vast majority of previous PIC simulations of HET thrusters and
charged thruster plumes make this assumption. Clearly, for steady-state expansion of
plasmas at low current density, such assumptions are acceptable.

Without introducing the full complexity and computational expense of a transient
electromagnetic model, it is possible to solve for induced magnetic fields in a steady

state condition. In this case, the final term in both eqs. (3.93) and (3.94) are omitted,
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leaving a steadyv state form of Ampere’s law:
V x B = pugj. (3.97)

This assunmiption is often valid for DC discharges (or very low frequency AC dis-
charges). Using this. plus Poisson’s equation, allows for a steady state model that
includes induced magnetic effects. Further discussion of the relative importance of
magnetic effects follow the next section, in which the structure of the fields in our
chosen coordinate system is discussed.

The standard boundary condition in the solution of 3.95 are either a Dirichlet
(¢ =constant) on a solid wall, for instance, or a Neumann condition (¢’ =constant).
No other conditions are used for the solution of the Poisson problem in this work.
Dirichlet conditions are applied to the cathode surfaces and anode surfaces. Neumann
conditions are applied to upstream. downstream and radial extent boundaries where
applicable. The axis r = 0 is dealt with separately and described in the following

subsection.

Field equations in Axially symmetric cylindrical coordinates

In cvlindrical coordinates, Curl A is

(0142 @49) . (aA,- - 04) i (M _ 01’”) ; (3.98)

rdd 0z oz Or ror 1ol
and the Laplacian of v is

s 10 ([ o 1 0% &%
V W= ;5 (T 07") -+ r_2§§2 =+ 7 (399)

(See appendix C, Kreyszig [55]). Since we are considering an axially symmetric prob-

lem, scalar quantities are simply functions of 7 and z: p(r, z) and ¢(r, z). There is no

variation azimuthally; in the above expression, eq.(3.99), the second term vanishes:
v P U

VQ h=— + — = .
k ror  Or? 0z2

(3.100)

The first term in eq. (3.99) has been expanded via the product rule. The Laplacian
in Poisson’s equation takes on this form; the result is a second order linear elliptic
PDE which poses no particular problems to solve numerically. The solution method
is discussed in the appropriate section later.

For the steady state induced magnetic case, things are not so simple. Essentially,

we would like to express equation 3.97 so that given j we can find B. At first, this



miay not seem a problem: we can obtain j.F and j.z from the particle side of the
simulation, and due to rotational synumnetry jgff = 0. So we can solve for B. In fact,

things seem easier when the curl of B is taken:

'()(7"39)2 (3.101)

JBg . 0B, 0B.\ -
_6)~/r+ — — g+

ror

dz or

Here, all 9/00 terms are zero (see appendix C for differential operators in cylindrical
coordinates). We may omit the 0 term due to rotational symnietry. The problem is

that the equation

5B9A a(TBg)
0z T ror

is of no use. The system of PDEs in t and z for the solution of By is inconsistent. It

Z=741T+j.2 (3.102)
turns out that there is a further transformation that will yield an acceptable PDE for
the solution of By. The original steady state Ampeére law is that

V x B = puj. (3.103)
Now, it is possible to simply take the curl of both sides to give

VxVxB=puVxj. (3.104)

using the vector identity
Vx(VxA)=V(V-A)-VA (3.105)

and since due to Maxwell's equations the magnetic field must be divergence free

(V- B = 0) the problem becomes
-V?B = 1,y V x ] (3.106)
This result, expanded into cylindrical polars with the  and z terms removed, gives

B€ A 7r a]z A -

Again, B, and B. terms disappear because they are constant in the axi-symmetry

case. Equation (3.107) is second-order linear and numerical solution is of the same
level of complexity as the Poisson equation. As a check of the mathematics, it is worth
considering the physical reality of (3.107). Consider an infinite current carrying wire

of constant radius r (for very small ) lying on the z axis in (7, 8, z) space. The nature

of the problem implies 97./0z = 0. This means that the magnetic field induced by

69



the wire is present, according to eq. (3.107), will be azimuthal. Further, the field is
induced by the change in current density radially moving off the surface of the wire.
This is entirely consistent with basic electromagnetic physics.

The above analysis has been deliberately presented in detail because the steady-
state induced magnetic method is not often used in the literature. It is rather strange
that such a formulation of the PIC model is not used more often. The calculation
of the induced magnetic field is not significantly more troublesome than the electric
field, and the additional physics would surely enhance most electrostatic PIC codes.
A method similar to the steady-state induced magnetic one is mentioned although
not extensively presented by the primary authors on PIC simulations [12]. Birdsall
and Langdon’s book is on pure plasma physics using direct numerical simulation;
not practical plasma engineering. It is reasonable to conclude that the steady state
induced magnetic method is of little interest to pure plasma physicists who require
either a full electrostatic model or a full electromagnetic model. However, for plasma
device engineering. the steady state form becomes attractive: the highly restrictive
conditions of a transient electromagnetic model are removed. The nature of the sta-
hility criteria for PIC simulations is discussed once a description of each element of

the algorithm is complete.

3.5.2 Weighting (particle acceleration)

Particles in a plasma experience a force that is the result of both magnetic and elec-

trostatic element. Specifically the Lorentz force is
F=¢(E+vxB), (3.108)

where ¢ is the charge on the particle. This means that the (non-relativistic) acceler-

ation that the particle experiences due to the field is simply

IE+L(vxB) (3.109)
m m

a—

In order to accelerate particles due to both electric and magnetic fields, Birdsall and
Langdon [12] proposed a time centred scheme so that the particles experience a half
acceleration due to electric field. then a rotation due to magnetic field followed by the

remaining half acceleration. This is deemed acceptable because the (v x B) term is



By

O,

’

Figure 3.7: Illustration of the v x B rotation of velocity in cylindrical coordinates
due to azimuthal magnetic field (actually the case By > 0). The method of Boris [13]
states that Al = —w At i.e. 0 = —w,.

o

a rotation of v, not a change in magnitude. Thus. the method is that

q At ‘ ‘

Viiars = Vi + EIET (3.110)

V' = Vieays - (Vesaye x B). (3.111)

At ‘

Vienr =V + LEZD (3.112)
m 2

In the axially symmetric co-ordinate system used for the hollow cathode model the

half acceleration is
v+ (g/m)E, i; At

VitAt2 = g ; (3-113)
v, + (q/m)EZ%At

v is unchanged because g = 0 by virtue of axi-symmetry. The v x B force can be

considered a rotation of v. Specifically, the method of Boris [13] (see fig. 3.7) is then

v\ [ cosw At sinw ALY [t + At/2) (3.114)
v, | —sin WAt coswAt vt + At/2) .

where w, is defined as a local cyclotron frequency

that

We = iBg(Z, r>7 (3115)

m

and in a similar way to the previous equation, since we have only azimuthal magnetic
field in an axi-symmetric problem, vy is unaffected. The acceleration is completed
by an additional half acceleration the same as eq. (3.113). The above method is
shortened to the case of a single ¢E/m acceleration if magnetic fields are ignored.

Were there to be any source of azimuthal ‘swirl” (net vg) in the problem, then the
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above would not be valid. Of course, it is possible that instabilities in the plasma could
generate azimuthal currents and hence axial and radial magnetic fields, this is of course
the classical ‘Flute or ‘sausage’ instability that occurs in z-pinch plasmas (see [40.
£§19.7]). Modelling the Flute instability correctly requires that the problem become
fully three dimensional and computationally intractable at the expected densities’.
In any case. the objective of this research is to attempt to observe the steady state
internal plasma of the hollow cathode in the first place, investigation of any potential
three dimensional instabilities must surely wait. The assumption of steady state
jo = 0 and correspondingly induced B. = B, = 0 is not unreasonable for an axially
symmetric device. According to the PIC algorithm (fig 3.6), the natural progression
of the discussion at this point would be to examine particle motion. This has already
been covered in the description of the direct particle model, §3.1.1 on p. 40, so the
discussion now moves directly to interpolation of particle charge and current density

onto a mesh.

3.5.3 Interpolation

The interpolation phase is simply the phase involving the construction of p and per-
haps also j from the particles in the simulation. There are various methods of increas-
ing complexity that can be used to produce the interpolated description of the particle
distribution. Generally, the more complex the interpolation method, the smoother the
resulting source functions and hence the more stable the simulation tends to be. For
a weighting shape factor S,, where subscript , refers to grid quantities and subscript
, refers to particles, for charge conservation during the interpolation from particle to

mesh, we must have

D S, =1 (3.116)

g
for all x,, [89]. From this, the mesh-based charge density in the simulation domain

becomes

L
Py = 7/ S,(x,)dx,,. (3.117)

9

Two methods that each use different shape factors are are now presented, higher order

(more complex shape factor) methods are only of academic interest because while they
are theoretically more stable, the computational cost is prohibitive.

The first method is the so-called ‘mearest grid point’ (NGP) scheme. In this

scheme, a particle’s weight is simply added to the mesh point that it is nearest to.

This is illustrated in figure 3.8. The NGP scheme has a particle shape factor S(z)

1Of course, within the main chamber of the ion thruster, the applied magnetic can be considered
constant and hence axial and radial magnetic flux are used. Jugroot and Harvey [49] did this for the
ion thruster, and the fixed magnetic field method has often been used in HET simulations.
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Figure 3.8: Nearest grid point (NGP) PIC interpolation. Grid points are located
at X; with spacing Az. The density profile generated by a particle located at x; 1s
considered. See Figure 2-6a of Birdsall and Langdon [12]

that is Az wide and square in nature (this method is sometimes called the square
cloud method). The advantage of the NGP interpolation/weighting is that it is very
fast computationally. This is offset by the fact that due to the simplicity of the
density description, many particles are required in order that smooth density profiles
are produced.

First order weighting, the so-called ‘Cloud-in-cell’ (CIC) method provides a far
more realistic density description without too much prohibitive extra computation.
Higher order weighting is possible by use of quadratic and cubic splines that describe
particle shape, and this further reduces noise, but at greatly increased computation.
This is why CIC interpolation is the choice of most PIC algorithms: it is the ideal
trade-off. Figure 3.9 illustrates the method. The time-averaged shape factor S(z,)
perceived by the grid as the particle moves about in X;_; < x, < Xj41 is now a much
better approximation to the ‘cloud’ of particles that the single particle represents: the

shape factor is now 2Az wide and triangular. Cell j receives

Axr — (2, — X, X.,—=x )
qj:qp[ o )}—JT (3.118)

while cell 7 + 1 receives
(3.119)
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(a) 1st order ‘cloud-in-cloud’ particle weighting. The j*" grid point is located
at X; and a sample particle at xz,. The particle represents a uniformly
charged cloud that contributes g, charge to cell j and g, charge to cell 5+ 1.
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Figure 3.9: Cloud-in-Cloud (CIC) PIC interpolation. In the same way as the illustra-
tion of the NGP scheme (fig. 3.8), mesh points are located at X, and a test particle is
located at x,. Cell spacing is Az. For further explanation, see figure 2-6b of Birdsall
and Langdon [12] and associated description.

There are some additional reasons for using higher order weighting schemes for de-
scribing the particle distribution on a mesh. In general, such higher order schemes
tend to reduce some of the non-physical effects that can appear due to noise. Such

phenomena are discussed in the following section.

Weighting in cylindrical co-ordinates

For cylindrical co-ordinates, no modification needs to be made when using NGP inter-
polation/weighting. In the case of CIC weighting, however, the radial element of the
cylindrical co-ordinate system needs to be taken into account. The shape factors given
by Ruyten [89] are used. Ruyten’s method has been tested and used for Hall thruster
simulations, see for example Koo et al. [52]. In the axial direction, CIC weighting 1s

the same as above. For a particle located at r, radially, the following are used:

(rjgo1 —7)(2rj +3r; —7)

S.(r) = : A (3.120)
’ 2(7"j2‘+1 - j)
N =)@y 2 — ) 19
Sj+’1(7) - 2(7?+1 _ T?) (31“1)



Note that these expressions are charge conserving for an arbitrary arrangement of

monotonically increasing r; with j in the sense of eq. (3.116): it can be shown that

As must be the case for a charge conservative weighting.

3.5.4 Stability

It is possible to derive expressions that constrain the accuracy of the particle motion
in a PIC model based on the relationship between the particle oscillation frequency
and the time-step over which motion is descretised. When the leapfrog method is
applied to a simple harmonic operator, it can be shown that there is no amplitude
error in the particle motion for wAt < 2 [12]; wAt > 2 is inherently unstable in terms
of the finite difference representation of particle motion. This means that the first

absolute limit on the stability of PIC simulations is
wAL < 2. (3.123)

In fact, for accurate description of particle orbits in strong magnetic fields, and for
dense sheath regions, it is usually wise to keep wAf < 1. The type of frequency w
represents depends on the nature of the simulation. For the case of a sparse plasma
in the presence of a strong external magnetic field, the cyclotron frequency will be
larger than the plasma frequency, so the stability conditions is w.At < 1 to resolve
electron orbits. In an alternative scenario, w, > w,., the stability criterion becomes
wpe At < 1. Put simply, the condition is that wA¢ < 2 where w =max(w,, wp).

In terms of the grid, it is more difficult to define such an exact limit on stability.
In general, for charge-in-cell (CIC) interpolation, it is sufficient for a cell spacing
of Az that \p < Az. It should also be noted that the phenomenon of ‘numerical
heating’ introduced by rounding errors and other numerical artifacts is of some concern
for certain PIC plasma simulation cases. This is often not a problem for electric
propulsion device plasmas for several reasons. In particular, numerical heating is at its
worst when periodic (specularly bounded) plasma simulations are performed. Under
these conditions, numerical errors are retained and grow because particle velocities are
never ‘reset’ to reference values (for example by exiting and re-entering the simulation,
or by a thermally accommodating wall collision). In our case, particle collisions with
walls are frequent. In the case of the hollow cathode (and several other EP devices), a
DC discharge exists that involve injection and extraction of particles. None the less,

this effect should still be considered if results show abnormal temperatures.
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3.5.5 Finite difference discretisation

Standard methods are used for the discretisation of the various field equations via
the finite difference approximation. These are now briefly presented, with additional
tinie spent covering the nuances present when cylindrical coordinates are used. Using
the notation shown in fig 3.10, the forward difference scheme (FDS), backward differ-
ence scheme (BDS) and central difference scheme (CDS) approximations to the first

derivative are

dr ), xiy —a -
0() (bi — éi,1 .
— | = 3.125
<@JJ>1 T — Til1 ( )
and
o Qir1 — Qi1 . \
<a.17),[/ Tis1l — Li—1 ( )

These are presented without derivation, see Ferziger and Perié [35], for greater detail.
On boundaries, higher order schemes may be used. This is particularly relevant to this
case with reference to the Neumann condition (¢ =constant) of rotational symmetry.
A second order scheme derived from a parabolic fit to the boundary point and two

inner points again given by Ferziger and Peri¢ [35] is that

(@) L 03w —w) ool — )t — i ((ws — @) — ()Y 197)
ox ), (29 — x1) (13 — 1) (23 — 22) o

This notation can become cumbersome when using grid positions rather than assuming
a constant grid spacing Az. Since we are not considering constant mesh spacing in
the final problem, notation of the type shown in eq. (3.127) is used in the code; full
notation for variable mesh spacing is given.

Finally, a second-order accurate approximation to the second derivative is [35]

<52¢) Ol = w) ~ 9w — i) + 0 (T — ) (3.128)

dz? ], (i — v (@ — @) (a — = 1)

The notion of a computational molecule (see figure 3.10) is used to ease the un-
derstanding of the notation. The point P is that where the discretisation is taking
place, positions N.FE.S and W give the surrounding points corresponding to a; ji1-

Qi1,j, @i j—1 and a;_,; respectively.
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Figure 3.10: Cartesian grid computational molecule.

The Poisson Equation

Using this notation, we derive the discretisation of the cylindrical polar Poisson equa-

tion with rotational symmetry. The original PDE is

a2 92 oy
00 00,00 _p (3.129)

= T =5 TV = —,
0z2 Ot ror e

Using (3.128) for the second derivatives and the CDS - (3.126) — for the third term,

we arrive at

on(zp —x5) — op(ry — Ts) + ¢slan — xp)
slan —as)(zy — xp)(xp — 5)
oplep —aw) — oplzp —aw) + owlzr — 2p)
%(IE —aw)(zg —ap)(ap — 2w)
PN 05 _ PP (3130)
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%(SL‘N - .735)(?1,"\7 - l‘p)(l’p — l“g)
1 o 1
3 = : (3.132)
' %("L’E - I],{/)(ZEE - I}))(l’p - l'vyj
v = - (3.133)
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and

A = (zp—ua5)a
B = (ax —xg)a
C = (xy —xp)a,
D = (;L‘p — lnf)ﬁ,
F = (IE — 111;)/3,,
F = (ZE — Tp>3
G = 1
we obtain
A@N — Bop + COS 4+ Dogp — Eop + Fow + Goy — Gog = p—P, (3134)
€0
which reduces to the final form
(A+G)ox + (C = G)os + Dop + Fouw — (E+ B)op = ii (3.135)
0

There remains a question regarding how the axis r = 0 is dealt with. Here, 1t
would appear that the original equation (3.129) contains a discontinuity as r — 0

because the third term is

99 (3.136)
ror
L'Hépital’s rule [107] is that
£ e
lim /() = lim f/(T) (3.137)
20 g(x)  ==0g'(x)
For the expression in eq. (3.136)
do/or 5% V
' i = lim — 3.138
I S
This means that for grid points where r = 0, we solve
Po o p
>+ 2— = —, 3.139
92 " o €0 ( )
which, for ¢y = ¢g due to axial symmetry, descretises to
A+ C)on + Dop + Fon — (2B + E)op = Z—P (3.140)
0
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The finite difference schenies presented above are certainly the most basic; there
are many more exotic, higher order schemes available. In the context of PIC sim-
ulations, however, Birdsall and Langdon [12, p. 327| note that when examining
the error it is most important to reduce the maximum error in the whole system
X — p — ¢ — E — F within acceptable tolerances. Investigations by Birdsall and
Fuss [11] using a nine-point FD approximation showed that the improvements in the
reproduction of the final plasma physics were negligible: other parts of the algorithm

introduce comparatively greater error.

The Steady-state Ampere equation

The equation from §3.5.1 (=V?B = 1V x j) that allows us to find the steady state
(no time derivative) azimuthal induced magnetic field based on the axial and radial

current density expressed in cylindrical coordinates is

. B ‘03, 3.
2B, — 20 = Jr TE ) 3.141
V By . Hol 20 ~ o ) ( )

where we solve for By. Compared to the Poisson equation examined previously, the
magnetic field equation is very similar: there is a source term (actually just the curl of
the current density) and a Laplacian of the subject, By. The difference is that there 1s
an additional term: (—By/r?). This is important because on r = 0, By must be zero.
It is certainly true that the on-axis azimuthal magnetic field must be constant since
due to Maxwell’s equations, the magnetic field must be divergence free (V -B = 0).
The upshot of this extra term is largely that the on-axis boundary condition is trivial:
By = 0. The source term, the curl of the current density, is found on the mesh using a
central difference approximation to dj./dr and 33, /0z, where both are assunied to be
zero on the r = 0 axis due to azimuthal symmetry. The equation for By descretised

as before (abbreviating By to just B) is:

Bylxp — xg) — Bp(axy — x5) + Bslay — xp)
sley —xs)(zy — zp)(zp — 25)
Bg(xp —xw) = Bp(re — xw) + Bw(re — vp)
s o s
By — Bs Bp

ey —as) poV X j. (3.142)
AN T L

+

On free space boundaries (upstreani, downstream and radial extent), a Neumann
condition (¢ =constant) is applied to the magnetic field. On solid surfaces we assume
the magnetic field to be zero - a Diriclet condition phi =constant. This is obviously

incorrect in the case of current carrying or even simply ferrous materials, but it is
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assunied that the plasma induced magnetic field will be significantly stronger than
that generated by the cathode body (for example), and that none of the solid objects
in the simulation are highly magnetically susceptible, so that magnetisation is not
significant. Clearly however, in future work, a code to predict magnetic conditions

due to the cathode, anode, chamber etc.. would be useful.

3.5.6 Adjustments that enable PIC stability

This section covers the adjustments that are made to the simulation in order that
the PIC stability criteria (e.g. wpAt < 2) are fulfilled. The reason of applying these
standard modifications is to accelerate the solution: without them the mesh size and
time-step would be spectacularly unfeasible. First, modifications to allow for a given
mesh size are described, followed by an assessnient and solution to the problem of

large m; /me..

Mesh stability

Recall from section §3.5.4 that in order that the plasma physics is accurately repro-
duced using the PIC methodology Az < Ap. In the case of plasma device engineering
this can frequently cause problems because the nominal Ap dictates meshes that are
completely impractical given current computational capabilities. Consider the Debye

length of the plasma in the maximum density region of the hollow cathode (T, in eV):

Ap = = 0.74 pm. (3.143)

el \/ 8.85 x 10712 -1

nee YV 1020.1.6 x 10-19

This implies a minimum of 1000 cells radially between the central axis and the cathode
insert. For a 10 mm long section of insert, this results in a requirement for approxi-
mately 107 cells: computationally intractable. The question that inevitably arises is:
how can there exist such a large volume of existing electric propulsion device research
that uses this method, if it is apparently impossible? This answer is that there is a
modification that can be made to the fundamental physics that serves to stretch the
length scale of the plasma so that Ap becomes similar to Az for a reasonable mesh.
The method is simple: the permittivity, as used in the solution of the Poisson equation
for electric potential, is increased by some factor a® so that the artificial Debye length
is increased by a. Thus, the approach is to set a based on the discrepancy between
the real Debye length and the practical mesh. Of course, the effect of this modifica-
tion must be carefully considered when analysing the results, but the experience of
many past EP device simulations shows that it is valid. Despite such an apparently

major modification to the physics of the problem, it is important to emphasise that
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the method is a standard practice. For example. every single piece of published PIC-
simulation research in the field of electric propulsion uses at least this modification
to yield the problem tractable. Primary examples include Szabo [100], Gatsonis and
Yin [36], Wang et al. [105]. Boyd et al. [15], Sullivan et al. [99] and Celik et al. [18],

all of whom also generallv used the time-step acceleration modification presented in

the following section.

Time-step stability

As with the above section. it can easily be shown that some modifications are required
to ensure stability for the plasma that is expected. Consider some reference parame-
ters of interior hollow cathode conditions: for a discharge current in the region of 5
A the electron temperature will be 0.83 eV at an estimated density of approximately
102 m~*. These data are arbitrarily selected to be that of Monterde et al. [63], see

table 2.1 on p. 14. Under these conditions, the plasma frequency is

7’1,652 1020 . (1() % 10—16)2 N \
o : =5.6 Hz. 3.144
€071 R85 x 10-12.91 x 10-31 564 x 10 Z. ( )

I79)
“pe

which implies that the period is of the order 1072 s. The PIC time-step needs to
be less than the plasma period. The requirement for such a small time-step makes
PIC simulations of plasmas with densities similar to those found in electric propulsion
devices impossible for any volume of interest. This is further exacerbated by the fact
that a Xenon ion is about 240.000 times heavier than an electron. This again raises
the question: how can there be such a large body of successful research in EP that
uses the PIC method, if it is computationally so inefficient? There are two answers.

First, some EP simulation codes use fluid electron models with particle neutral/ion
simulations. This overcomes the electron mass problem at the cost of assuming that
the electron gas is a continuum (i.e. Maxwellian energy distribution) and that quasi-
neutrality is maintained for all x. Clearly, we are interested in both non-neutral
regions and non-Maxwellian electron velocity distribution functions, so this approach
is useless.

The second solution to the mass problem is quite simply to alter the mass. Bizarre
as this may sound, it is a very common trick used in all varieties of PIC plasma
physics. Increasing the electron mass not only allows for stability of the PIC method.,
but also reduces the difference in simulation residence time between electrons and
heavy particles. Clearly, such modification will have a major impact on the results,
but if the correct precautions are taken, meaningful results are still produced. An

example extensive EP research using a mass-modified PIC code is the simulations at
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MIT (see Szabo Jr et al. [101], Sullivan et al. [99], Celik et al. [18]). Results have
frequently compared very well with experimental data. The MIT code operates by
speeding up the neutrals and ions (decreasing mass) so that they have simulation
residence times similar to the electrons. An example of research in EP that has
retained neutral/ion mass and increased electron mass is the work of Okawa and
Takegahara [74] who ran PIC simulations of ion thruster grid optics with a wide variety
of electron masses. Since their computational domain was quite small, they were able
to run the simulation with the real electron mass (although this took weeks) and with
modified masses. Almost no difference was found between the ‘heavy electron’ case
and the case for real electron mass. Clearly then, if the correct compensations and
modifications are made, then results using smaller mass ratios can be perfectly valid.

The compensations used in this research follow.

Modifications that compensate for larger electron mass

At a fixed kinetic energy. as the electron mass is increased, so the velocity must fall:
by changing the mass, we alter the absolute velocity for a given energy. Changes
in absolute velocity manifest themselves in changes to the fluxes at boundaries. It
is possible to evaluate the change in flux and derive a method to compensate [101].
Consider the expression in §3.3.3 for the number flux though an element of unit area

in an equilibrium gas,

T .
N, = . 3.145
SRV~ (3.145)

Using 8, = +/m¢/2kT,, and the factor f by which the mass is changed, this can be

rewritten

n 2kT
27\ fme’

n 2T
27N me

Clearly then, fluxes vary according to v/f, so when electron currents (not ion currents)
are measured, the results need to be multiplied by 4/f. Similarly, when electrons are
injected into the simulation via the field enhanced emission routine, emitted current
needs to be reduced by multiplying by \/W .

It is also worth mentioning that care has been taken in the implementation of the

(3.146)

N/ f = (3.147)

MCC routine so that the electron mass issue does not change the collision dynamics.
In particular, recall that the collision probability for an individual event, k, is given
by

Py = nvo(E)At, (3.148)
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where n is the neutral density, v = |v,|. E the electron energy and At the time-step
(equation (3.51) in §3.4.1). The question is: should v,. the real electron velocity
(based on real mass) or v, the simulated velocity be used? Since v, = \/fu,. this
expression does not need altering at all. The energy, £ will be the same because
although we increase m,, the velocity is correspondingly lower: £ = E, = E,. In the
above expression, if we were to use the v = v, = \/m this would be incorrect
unless multiplied by \/1—/-}[ . Put another way, the collision probability is based on v
in terms of the electron flux relative to the neutral background; if we were to calculate
v, from the energy based on the real electron mass, then the probability would be
too high by a factor v/f. Thus, we can either evaluate v, from E and compensate by
\/1-/? or we can simply use v, directly, since \/ 1/f- \/ 2F /m, = v, In any case.
When evaluating post-collision properties, it is necessary to scale the electron
velocities so that they are correct with respect to m, by multiplying by +/f. If this

were not done, then relative velocity magnitudes would be incorrect. For example,

as fme — my, ve — ty;, 50 v, — (0 on average. In this case a large number of
ionising collisions would be rejected on the grounds of adverse neutral energy. Once

electron-neutral collisions are complete, the electron(s) velocity is scaled back down

by /f.
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Chapter 4

Validation

The following subsections cover various validation studies that have been conducted
on the components of the code to verify their correctness. A distinction is made be-
tween validation and experimental comparison: this section covers validation against
known results, some of which are known experimentally; the results section contains

comparisons with real experimental hollow cathode data.

4.1 Random number generator

The random number generator is clearly a critical component of any Monte-Carlo
based numerical code: it is essential to check that it is accurate. A program to
test the PRNG can be found in tests/prng/testran. There are two quick tests
that are made. First, we check that the gemerator does produce a uniform result,
ie. (R) = 0.5 over a large number of samples. For the reference sample size of 10°
calls to the generator, (R) = 0.49998. If the sequence seed is changed, the result is
consistently 0.5 & 1074, This verifies that the generated sequence is uniform about
0,1].

Secondly. it is important that successive numbers are not correlated. Sequential
correlation can be a major source of error in all Monte Carlo based numerical models.
In this case we are lucky since the problem is fundamentally three dimensional (three
velocity components). Hence, it is necessary to check for non-correlation over triplets
of random variates. In fact, for multi-dimensional problems solved using the Monte
Carlo method, it is a requirement that the RNG be non-correlated is at least as many
dimension. It was this requirement that led to the development of the Mersenne
twister PRNG used here. The MT is actually equidistributed (non-correlated) for
problems in up to 623 dimensions, so it should suffice for this work! Szabo [100]
provides a method for checking for any correlation in triplets — directly related to

3-velocity component particle codes. The method follows: three random numbers are
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generated successively and stored as

G =V2cos (27R)) . (41)
CQ — \/5('(,)5 (QTTRQ) . (42)
(3= \/5(108(27.'}'{3)_ (4.3)

Over a large number of generated nunibers, mean values for the following should hold:

(C1) = (L) = (C3) =0, (4.4)
@) =G =@ =1 (45
(C1¢2) = ((1¢3) = (Ca3) = 0. (4.6)

For the reference sample size of 108, the test program produces:

(¢1) = —0.00012063. (¢2) = —0.00006481, (C3) = 0.00003310;  (4.7)
(¢) = 0.99998223, ((3) = 0.99989672, (C3) = 1.00001385;  (4.8)
(C1¢2) = 0.00000001, {¢1¢3) = 0.00000001. (C2Cs) = 0.00000001.  (4.9)

This verifies that the random number generator of Matsurnoto and Nishimura [59]
provides sequences of pseudo random nmumbers that are both uniformly distributed
between 0 and 1. and exhibit no correlation. The results all fall within 107* of the
target, which for a sample size of 10® is expected. Having shown that the PRNG is
working correctly, the numerical methods that rely upon it can be tested.

A final note relating to random number generators is that of period. The period
is simply the number of numibers that can be output before the quality of the stream
begins to degrade (or repeat, become non-uniform, etc...). This is a non-issue for the
PRNG used here (the MT). The MT can be mathematically proven to have a period of
219937 _ 1 For perspective, this is enough for a theoretical stream producing a billion
numbers per second for the current lifetime of the universe: there is no computer

today that can come remotely close to exhausting the MT period.



T A T A

0.01 100.50 0.3 3.845
0.02 50.50 0.4 2.923
0.03 33.84 0.5 2.448
0.04 25.50 0.6 2.067
0.05 20.50 0.7 1.779
0.06 17.17 0.8 1.530
0.07 14.79 0.9 1.363
0.08 13.01 1.0 1.207
0.09 11.62 2.0 0.4105
0.10 9.60 3.0 0.1496
0.20 5.28 4.0 0.05495

Table 4.1: Tabulation of A(7) between 0.01 and 4 generated by the test function
within the code. This matches the data of Nanbu [69]

4.2 Coulomb collision coefficients

Recall that to find the scattering angle of the binary Coulomb collision, we need the

value A(7) where A is given by coth A — A™' = ¢77. The approximations

1/, 0 <7<0.01
A(r) = ¢ tabulated, 001 <7<4 (4.10)
3e7, 1 <7<

have been shown to be accurate enough for particle simulations [71], but we need
to verify that our tabulation is the same as that provided in [69]. For the Newton-

Rhapson iteration, we use

f(A) = cothA—A"l—e77 (4.11)
f,(A) = 1—coth’A+ A2 (4.12)

and a starting value Ay = 10~ for all values of 7; the convergence seems very stable
for the range 0.01 < 7 < 4. Table 4.1 shows data generated using the Newton-
Rhapson solver, the results match those printed in [69] to within numerical floating-
point accuracy. The test function is contained in mcc.c, the source for the Monte
Carlo collision code. The output is simply table 4.1. When comparing the above to
the original tabulation of Nanbu, in [71], note that the notation change between 1997
and 2000, so that in the original paper, 7 is equivalent to s (the notation used in this

docunient follows more recent version contained in the review paper, reference [68]).
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4.3 DSMC and direct particle transport

There are, of course, many papers covering methods of validation of DSMC codes.
An excellent review of the attempts to verify the DSMC against experimental data
is given hy Harvey and Gallis [42]. They conclude that for neutral flows, and flows

involving simple (plasma) lonising reactions, the DSMC provides very high quality
description of rarefied gas dynamics; their only concerns are over the implementation
of complex chemical reactions. Thankfully this does not apply to this research. There
are several factors to consider when choosing a test case against which to verify the
implementation of the DSMC presented in this thesis. Since the code developed for
this research is exclusively used in a 2D axially symmetric case, it is worth using
an example that is axi-symmetric. While verifying the DSMC routines, such an
axi-symmetric test case has the additional benefit of verifying the correctness and
accuracy of the particle move code that is non-trivial in the 2D axi-symmetric co-
ordinate system (recall §3.1.1). Bird [9, §15.3-15.5] gives three examples of axially
symmetric flow: hypersonic flow past a flat nosed cylinder, a Taylor-Couette flow,
and the impact of a supersonic jet on a flat plate. The second of these examples,
9. §15.4], is a good validation case because it has been studied by several others,
and is an example of an unsteady flow. Compared to the flow in a hollow cathode
(steady, low vorticity), reproducing an example as complex as the Taylor-Couette
flow would seem over-ambitious. This is not the case: the reasoning is that if the
code validates against a complex flow, then it should be correct for the comparatively
simple hollow cathode flow. The results against which the code developed for this
research are compared are those provided by Bird [9] and Stefanov and Cercignani

198]. In summary, the reasons for choosing this case are:

e It is an axially symmetric flow: this tests the axially symmetric direct particle

transport, mesh generation and sampling procedures;

e Bird's code (that provides the results for comparison) is the most tested and

validated of any DSMC code ever written: it is the quintessential ‘text-book’

example;

e The results have been previously verified by both Reichelmann and Nanbu [85]

and Stefanov and Cercignani [98] and found to be correct;

e The instabilities present in such flows are a standard case in fluid dynamics, and

the nature of the onset of instability is well known via the Taylor number.
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Figure 4.1: The configuration of the Taylor-Couette flow.  The concentric shapes

represent annular vorticies; this illustrates a stable three-vortex configuration.

4.3.1 Supersonic Taylor-Couette flow

The problem involves two cylinders of radii r; and 75, where o = 2ry. An initially
stationary uniform gas is placed between the cylinders at ¢ = 0, and the inner cylinder
is instantaneously provided with a constant angular velocity, w. The end conditions
are symmetric: as though the problem is mirrored on either side. End conditions are

not periodic. The Taylor number for such a flow is given by

4p2w2rf

= , 4.13
pA{l = (/2?1 449

Ta

where p is the gas density (kg m™3), w is the angular velocity and p is the viscosity.
It is know that for Ta > 33.100, the flow is unstable and vorticies will form. For
practical purposes, the flow must have a finite length axially, Bird chooses this to be
the diameter of the outer cylinder, giving the flow an aspect ratio of 4. Figure 4.1
illustrates the setup.

The specific configuration details used by Bird [9] now follow. The density 1s set
so that the mean free path is (r, —71)/50. For r; = 0.1 m, A = (0.2 —0.1)/50 = 0.02
m. This is chosen so that the Knudsen number based on 7 is 0.02. It is possible to

evaluate the density required to vield such conditions from A,

1 1

— — \ 4.14
" Vohor V2 wd?’ (4.14)




given o7 = wd? for a hard-sphere gas (see [9] and [98]). The reference density is then

-1

0.2 0.1 . \
n= (V22T (417 % 10719 = 64719 x 100 m (4.15)

50

where the gas is Argon (the miolecular diameter is taken from table 3.2 in §3.3.2).
Bird also states that the circumferential velocity of the inner cylinder, v, is to be set
to three times the niost probable molecular velocity, v,,,. The factor by which the
cylinder circumferential velocity varies compared to the thermal velocity is the speed
ratio, S (in fact, Stefanov and Cercignani [98] give results for a range of S from 1 to
15). The question is, what temperature should be used? Bird quotes a value for (Ta)
of 521,600 for the results of Stefanov and Cercignani [98]. Given the density specified
above. it is possible to reverse equation (4.13) to give a value for angular velocity of
w = 13362.6 rad s7!. This means that v, = 1336.26 m s~} and the temperature can

be derived from the definition of v,

[2kT .
Ve = SI’mp == S T (41())

=g (5)

rearranged to give

_ 663x 1077 /1336.26° (4.17)
2.138x 1072\ 3
= 476.362 K.

So, for the chosen dimensions of the flow, it is necessary to set the reference tem-
perature to 476.362 K so that the inner cylinder angular velocity results in a Taylor
number the same as that used by Stefanov and Cercignani [98] and subsequently Bird
[9].

The configuration files needed for repeating this test can be found in the directory
tests/Taylor-Couette/ from the source directory. Running the validation test is
easy: Bird limited the examples contained in [9] to fit within 8Mb of RAM and run in
under 24 hours on a 66Mhz 486. It was possible to reproduce the example using the
code developed for this research running on a 1.6 Ghz P4 in under 20 minutes. Bird
[9] limited the presented results to 20 revolutions of the inner cylinder at S = 3, which
further limited his ability to judge whether the three vortex structure is stable. Such
limits are not present today, and the stability of the vortex structure is discussed as

an aside in the following section.
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Figure 4.2: Contours of density ratio in a Taylor-Couette flow. Ta = 521637 and
Kn = 0.02. This snapshot of the flow field is taken after 30 rotations of the inner
cylinder (located at r=1). The aspect ratio of the plot is 2:1, the same as is used in

[98] and [9].

Results

The results of Stefanov and Cercignani [98], confirmed by Bird [9] and Reichelmann
and Nanbu [85] suggest that for Kn = 0.02 and Ta 520,000, there may be a stable
structure of five vorticies after at least 20 complete revolutions. Figures 4.2, 4.3 and
4.4 show density ratio, temperature ratio and axial-radial velocity vectors respectively.
The temperature and density ratio plots can be compared to those in [9, §15.4] or [98,
fig 3], the quiver plot can be compared to those shown in [98]. Notice that the plots
are shown at an aspect ratio of 2:1, this is why the vorticies do not appear circular.
Plots are shown in this way because they are displayed in the same way in both [9]
and [98]. All of the results compare very well: vorticies of the same magnitude and
direction are formed in the same positions as shown by both Stefanov and Cercignani
[98] and Bird [9]. Stefanov and Cercignani [98] investigated a range of speed ratios for
stability. They list the case shown in the figures (S = 3, Kn = 0.02) as being unstable

in the sense that Taylor vorticies will form, but stable in so far as the structure of the
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Figure 4.3: Contours of temperature ratio in a Taylor-Couette flow.

and Kn = 0.02. This snapshot of the flow field is taken after 30 rotations of the inner
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vorticies tends to be regular and stable®.

The excellent agreement of results for a flow problem that is significantly more
complex than that we intend to investigate in future sections provides a good level of
confidence in the results that are produced. The vast majority of the elements that

make up the code have been tested. In summary:

e the code for providing a uniform startup particle distribution is correct (both
the method discussed in §3.3.3 and the acceptance-rejection Maxwellian sanmple

generating code);

e the 2D axially symmetric particle mover described in §3.1.1 is working correctly.

This is, for obvious reasons, of great importance;

e the DSMC routines must be working correctly. As has been alluded to. this
validation case asks the code to reproduce complex unsteady annular vortex
structures: any minor errors present in the numerics of the DSMC code and/or
direct particle code would most likely show up under such stress. It is logical to
suggest that if this flow is reproduces flawlessly then the code should work well

on the ‘simpler’ hollow cathode flow.

e the method for constructing and comparing analytical and numerical velocity

distribution functions appears to be numerically correct.
e the sampling procedures and data processing code is working correctly.

This means that we have verified more than two thirds of the code. The remaining
section is the PIC algorithm. This is divided into a validation of the iterative solver,

and a verification of the particle—mesh algorithm.

4.4 Field solver and numerical discretisation

This section covers both a verification of the accuracy of the iterative field solver
developed for use in the PIC model, and an analysis of the quality of the discretisation
of Poisson’s equation. It is useful to directly validate the field solver against an
example similar to that with which it is used. In particular, it is important to use the
cylindrical polar Laplace equation because this will produce an asymmetric A matrix

in the linear algebra problem. Chao et al. [20] provide an example for the validation

'Stefanov and Cercignani [98] found that for S = 1 and § = 2 (but not S = 1.5!), no Taylor
vorticies are formed. At all other values of S from 3 to 15, the flow is unstable, in some cases
exhibiting transition to molecular chaos (S = 12 and 15). In sonie cases (S = 2 at Kn = 0.005 and
S = 1.5 at Kn = 0.02), 1o clear vortex structure is observed. Results such as these were confirmed
for air and compared very well with experimental results (see Reichelmann and Nanbu [85]).
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of a Poisson solver in cylindrical co-ordinates but provide no verification or derivation
of the analytical solution; this is now presented. The analytical result is evaluated
and comipared to the numerical one to assess the accuracy of both the solver and the

discretisation schemne.

Analytical Solution to Poisson equation

The particulars of the validation problem follow. We find a solution to Poisson’s
equation on a rectangular (r.z) domain of length L and radial extent R. Neumann
boundary conditions (0¢/dz = 0) are applied on z = 0 and z = L. On the z
axis, the axi-symmetry condition is applied: another Neumann condition so that

0¢/0r|,—o = 0. Finally, we choose to set the far wall potential so that

27z
¢(r. 2)|,=r = Vo cos ( 7 ) . (4.18)

l.e. a complete cosine wave scaled to some reference potential Vj.
Beginning with the cylindrical polar form of the Poisson equation with rotational
symmetry (see appendix C),
Po Po Do p

ge R _F 4.19
0z? * o2 T ror e ( )

where we solve for ¢(r, z). The charge density is zero: p(r,z) = 0. so this becomes
the Laplace equation. The PDE is a second order linear and elliptic. It is separable,

so that a general form of the solution is

olr.2) = (2)g(r), (4.20)
where
Pz - R(z) =0 (421)
and )
g"(r)+ ;g'(r) —c*g(r) = 0. (4.22)

Both of these ODEs have solutions, the first (eq. 4.21)
f(2) = aysin(cz) + g cos(cz). (4.23)

The second equation is in the form of the Bessel equation so the solution can be

expressed in terms of Bessel functions;

9(r) = vloler) +y2 Ko(cr), (4.24)
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where [, and K, are vth order modified Bessel functions of the first and second kinds
respectively. Combining these with the original general form gives the initial general
solution

o(r, z) = (aysin(cz) + ag cos(cz)) (loer) + v Ko(er)). (4.25)

By applying the conditions mentioned above, it is possible to deduce the values of the
unknown co-efficients. First, taking the derivative of eq. (4.25) with respect to r and

evaluating at r = ) gives

oo(r, =)

5 = 0 = (asinfcz) + ay cos(cz)) (—yeli(er) — ek (cr)). (4.26)
r=0

Since Ki(cr) — —oc asr — 0, and [1(0) = 0 we can say that for a physically realistic

solution, v, = 0. The solution becomes
@(r, z) = pysin(cz) ly(er) + po cos(ez) Iy(cr). (4.27)

where the coefficients have been condensed using p; = y11 and ps = 7100, We can

now apply (4.18) on z = 0, say, so that

O(T Z”r:R,z:O = Vb = pz](CR) (428)
which implies
R (4.29)
H2 ]Q(CR) h

By taking the derivative w.r.t. z on z = 0 we obtain

9o(r, 2)

: =0 = pycly(er). (4.30)
0z ..o

so 1 = 0. The current state of the solution is

, Vo
o(r,z) = os(cz) o(cr). 4.31
@(7/ J ]()(CR) COS(C ) 0((/") ( )
Applying eq. (4.18) gives
2z Vi .
A(r, 2)|r=r = Vo cos ( }J ) = ]O((E]R) cos(cz)lo(cR), (4.32)

which means that ¢ = 27/L. The final solution, which matches that given by Chao

et al. [20] is then

Vo 271z 27r o
S 2) = 0 ¢ oy 4.33
-9 = e (1) » (7)) -
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Poisson’s equation is discretised as explained in section 3.5.5 and solved using the
bi-conjugate gradient, the conjugate gradient and Jacobi solvers described previously

in this section.

Comparison with numerical solution

The analytical equation is evaluated nunierically at the same grid points that the nu-
merical solution uses. Numerical values for the zeroth order modified Bessel function
of the first kind, [y are obtained using the approximation of Press et al. [81], p.237.
Although there is no significant comment on the accuracy of the approximation, the
authors do state that the polynomial used to approximate I, is accurate to double
precision. This is good enough for us because the natural discretisation error that
will be observed in the following plots is several orders of magnitude greater than the
computational floating point accuracy (if it were the case that the computer accuracy
was worse than the quantifiable finite difference (FD) truncation error then we should
give up any hope of a real solution immediately!). As with many modules of the
source code, the field solver source contains a tester program that will reproduce the
results that now follow.

All plots here use L = 0.08 m and R = 0.04 m. The wall potential Vj is set to 1.0.
The numerical solution is carried out on a uniform 64 by 64 grid to an absolute residual
tolerance of w, = 1075 w, is defined as the sum of the total change in the value of
the solution between one timestep and the next. Hence, bearing in mind that there
are grid points on z = 0 and z = L so that there are 63 'cells’, Az = L/63 = 1.267
mm and Ar = R/63 = 0.635 mm. For this grid, the FD truncation error should be
orders of magnitude greater than the solver residual error w,. Figure 4.5a shows the
numerical evaluation of (4.33); figure 4.5b shows the equivalent numerical solution.
The similarity indicates that both the solver and discretisation scheme show excellent
agreement with the analytical solution.

Since it is possible to evaluate the magnitude of the FD truncation error, if we
subtract fig. 4.5a from 4.5b, and find that the result matches the FD error, then
it is possible to conclude that the BiCGStab solver is correctly written. Figure 4.6
shows the error between analytical and numerical solution. On the radial limit, the
difference reduces to zero. This must be the case because the evaluation of eq. (4.18)
is identical for both cases. Away from the wall, there is comparatively little radial
error. The can be explained due to the nature of high order derivatives of modified
Bessel functions: the radial variation in the original solution (figure 4.5a or b) is
due to the Iy(er) term in eq (4.33). The discretisation is much more accurate for the
radial term than the axial term.

Axially, the error clearly follows the shape of the boundary condition. At first, this
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Figure 4.5: Comparison of analytical and numerical solution of cylindrical Laplace
equation. The wall potential on r = R is Vycos(27z/L)
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Figure 4.6: Finite difference truncation error between analytical and numerical solu-

tion.

may seem strange, because it might be expected that the error would be greatest where
the derivative of the solution was greatest. More precisely, it could be expected that
the leading 9*¢/92* error would dominate and the error would be a sine wave between
the axial limits. In fact, since a uniform grid is used, the third order truncation error
disappears so that the the leading truncation error term is fourth order; the shape of
the error is consistent with what would be expected from FD truncation [35, §3.4].

When a finer mesh is used, smaller error is observed.

Comparison of numerical solvers

Figures 4.7a and 4.7b are included to further demonstrate the accuracy of the field
solvers. By way of self-validation, two reference solvers are included in the code,
against which the best (fastest) can be compared. In fig. 4.7, the same problem
has been computed by all three iterative solvers. The Jacobi solver represents an
elementary stationary iterative linear algebra solver of trivial complexity. The BiCG
solver is an example of a non-stationary method for asymmetric matrices. Since
the BiCG algorithm can exhibit highly erratic convergence behaviour, the stabilised
variant is used as the final solver. For more discussion, see Barrett et al. [5] or Ferziger
and Peri¢ [35]. The algorithms for these methods are shown in appendix B. As can
be seen, the difference between the obtained solutions is very small: of the order of
107! This is much smaller that the convergence residual of 1077, It is possible to

conclude that either (a) all three solvers are implemented correctly or (b) all three
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Figure 4.7: Comparison of various iterative solvers. Shown are the reference Jacobi
and BiCG solvers, and the final BiCGStab solver. Note reversed r axis in the top
figure.
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are implemented incorrectly so that they introduce very similar error. Given the
previous discussion regarding the origin and magnitude of the FD truncation error in
figure 4.6, coupled with the fact that the Jacobi and CG algorithms are very different,

it is reasonable to assume (a) is correct.

4.5 PIC validation

Thus far, we have shown tests that have verified a large fraction of the code: a test for
the particle transport and neutral-neutral collisions, small tests of various components
and an examination of the validity of the numerical solver and PDE discretisation.
The parts that remain unverified are few, but they are important. The charged particle
weighting and acceleration are unchecked, as is the method for injection of current
into the simulation. A classic case that presents itself that can check for all of these is
a simple discharge between a pair of flat plate electrodes in a vacuum (no neutrals).
A case similar to this has been studied using a PIC code by Asano et al. [3], see also
Takamura et al. [102]. In such a configuration, depending on the nature of emission
occurring (that in turn depends on the cathode temperature), the results can be
compared to known experimental/analytical results such as the thermionic emission
equation or the Child-Langmuir law based space-charge limited emission equation.
By running the code at a variety of temperatures, we expect to see a transition from
pure thermionic emission (following the Richardson-Dushmann equation) to space
charge limited emission. For the results to match the above equation in the space-
charge emission regime, the PIC code needs to correctly form a sheath adjacent to
the cathode that will limit the current density. This also verifies the assumption that

electrons incident on the cathode should be absorbed.

4.5.1 Flat plate discharge: Configuration and theory

The configuration is given in figure 4.8. Two disc shaped flat plates of radius L are
placed in vacuo with separation L. A potential of ¢, = 0 V is applied to the cathode
and ¢; = 50 V applied to the anode. The other boundaries are specified as specularly
reflecting: i.e. as non-intrusive as possible while maintaining a zero mass flux out of
the simulation. Under this configuration, we are examining current flow as a function
of cathode temperature. Hence, the independent variable that is altered is simply
the temperature of the plate at z=0. The temperature of the other plate is irrelevant
to the problem for two reasons. First, being an anode, it is assumed that the plate
emits zero current. Second, electrons in particle simulations are generally assumed to
be completely absorbed upon contact with conducting walls. If the discharge voltage

were a few orders of magnitude higher, then secondary electron emission could occur
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and the anode temperature would become important. For = 50 eV electron impact,
SEE can be safely ignored. As the cathode temperature is increased from zero, the

current density will begin to increase according to the thermionic emission equation:

1
[+

Lo

j = AgT? exp (;’Ouv) (4.34)

given in §2.3.1. Here, T, is the cathode temperature and the cathode material is
assuned to be a metal with a regular surface lattice, so Ay = 1.2 x 10 A m® (the
theoretical maximum Richardson constant). Recall that the work function, ¢,,. can
be reduced by the Schottky correction in the case of a favourable (enhancing) electric
field; this will not be the case here as this is simply a discharge in a vacuum: no
positive charge. The electric field strength produced by the 50 V anode-cathode
potential drop is insufficient to produce field emission because the plate separation is
large (1 cm). Once the electron density in the free space between cathode and anode
is such that Ap < L, a very sparse electro-negative plasma can be said to exist. This
follows the commonly held definition of a plasma, that L > Ap [12]. As T, and thus
j increases, so n, will increase and Ap will continue to fall. Once the density is high
enough, a space charge limiting sheath will form that will inhibit electron enission.

The cwrrent density will then scale according to the well known Child-Langmuir law

1
4 2e \? 3/ :

e

as

where ¢ is the potential applied to the anode plate and L is the plate separation
[40]. For the scaling to be correct, the PIC code must produce a sheath of the correct
magnitude to shield the current so that it will not vary with temperature. There will
be a temperature for which the thermionic current is equal to the maximum space
charge limited current. This intersection point is worth investigating.

In summary, we expect the current density to scale with 7, using eq. (4.34) for
low temperature. At high temperature, we expect the current density should remain
coustant as the cathode temperature is increased (according to eq. (4.35) with constant

¢r =50V and L =1 cm).

4.5.2 Thermionic to space charge limited emission

The configuration file for the code can be found in the test subdirectory. Different
data points are run by changing the cathode temperature. In addition to the test
itself, each simulation data point was run with two sample electron masses: real and
heavily modified. The setup is fairly standard: for the real electron mass examples,

a time-step of 107! s was used. A data set using an artificial electron mass was
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Figure 4.8: PIC validation case: configuration. Boundary A is a Neumann condition
for the solution of Poisson’s equation, and is set to reflect particles at a. = 0 so that
there is no radial current at B.

also run to verify the correctness of the compensations outlined in §3.5.6. In this
case, the modification to mass is 2.4 x 10°, which makes the electron have mass
approximately the same as a Xenon atom. The compensation to electron fluxes is
then /240000 = 489.89. The mass modification allows for a time-step of 103 s to be
used. 6000 computational electrons were modelled in both cases. The PIC mesh was
64 by 64 cells, uniformly distributed radially and scaled using a geometric progression
axially so that the space-charge limiting sheath can be accurately resolved. Data
points were run for each electron mass between 1250 K and 1450 K in 50 K intervals.
An additional simulation was run at a temperature of 1325 K since this is where the
theory predicts that the transition from a thermionic (no electron plasma) to a space
charge limited discharge should take place. The initial condition is simply n, = 0
everywhere.

Figure 4.9 shows a plot of current density as a function of temperature. The solid
line is the Richardson-Dushmann equation evaluated at ¢, = 3 eV as a function of
temperature. The dashed line is the maximum current density expected due to space-
charge limited emission at an inter-electrode spacing of 1 cm and voltage drop of 50 V.
The data points are obtained directly from the simulation by setting the cathode
temperature, circular points for real electron mass, crosses for artificial electron mass.

The first thing to notice is that changing the electron mass appears to have no
discernible effect on the results. This verifies that the compensations discussed in
63.5.6 are working correctly and that changing m, does not invalidate macroscopic
results such as current.

In terms of the location of the results, at low, thermionic-saturated tempera-
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Figure 4.9: Thermionic and Space charge emission. The anode potential is 50 V
and the separation is 2 mm. The plate material has a work function of ¢, = 3 eV.
Circular data points are for the discharge simulated using the real electron mass
(me = 9.1 x 1073 kg) and the crosses represent simulation runs at artificial electron
mass of 240000m.. or approximately one Xenon atoni.

tures that lead to a discharge with a Debye length greater than the plate separa-
tion, the discharge current matches the Richardson-Dushmann model exactly. This
is hardly surprising, given that the code contains the R-D model explicitly so that
thermionic emission can be modelled; the most this shows is that there are no bugs
In the thermionic emission model.

At temperatures higher than around 1325 K, the model again matches well known
analytical observations exactly: the PIC code reproduces the space-charge limiting
effect perfectly so that the current density matches that predicted by the Child-
Langmuir expression. This means that we can conclude that the model is correct
for the main emission regimes. To verify that the transition occurs at the correct
temperature, a data point was generated at 1325 K. This point correctly lies on the
intersection of the thermionic and field-saturated limits.

The final question to ask is: exactly what is happening to the electric potential
profile to induce this limitation? Figure 4.10 shows plots of potential as a function
of axial position near the cathode (which is located at z = 0). Two temperatures are
shown: 1300 K and 1400 K, these are deliberately chosen as thermo and space-charge
limited cases respectively. The retarding sheath can clearly be seen where the dashed
line drops below 0 V momentarily: this is what is causing the limitation. It is also

worth noticing that in the space charge limiting case, the increased current (1.5 mA
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Figure 4.10: Electric potential on axis for a flat plate discharge at two cathode tem-
peratures.

at 1300 K compared to 2.55 mA at 1400 K) means that the potential in the bulk
space hetween the electrodes is depressed somewhat.

The results demonstrate the following:

e routines for electron eniission appears to work well in thermo-emission and
space-charge limited emission.

e This implies that chosen electron particle boundary condition is correct (i.e.
absorb electrons at cathode surface) .

e Compensations for variable mass ratio appear to work: the heavy electron data
points are indistinguishable from the real electron points.

e The PIC particle-mesh algorithm appears to work well: formation of the space-
charge limiting sheath works correctly. In particular, this means the the axi-
symnietric CIC charge density routines are working well.

e Methods for recovering simulation currents based on particle fluxes work cor-

rectly (also that the mass ratio compensations in this area are correct).

It is also worth noting that the Coulomb electron-electron collisions were used for
these results. It would be wrong to claim that this implies that the Coulomb collision
routines are correct, because under these conditions it would not be expected for
Coulomb collisions to be significant, but clearly they are not drastically incorrect.

This completes the verification of the PIC model for vacummn emission.
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Conclusions

This concludes the discussions of verification of the code components. It has been
shown that the DSMC performs well when asked to reproduce a complex time-
dependant flow that is expected to be much more difficult to model accurately com-
pared to the simiple hollow cathode expansion. The PIC model and associated routines
has been shown to reproduce the key emission regime exactly according to analytical
expressions. Verification of the main components of the code by comparison to stan-
dard results is now complete, and the following chapter begins the presentation of the

analysis of the hollow cathode.
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Chapter 5
Results: Neutral propellant flow

The first set of results presented cover the characterisation of the hollow cathode
neutral flow. This section covers comparison of collision models, verification in terms
of grid and time-step and comparison to experimental data. Of course, the difficulty
is that there is very little known about the neutral flow environment, and the number
of experimenters who have gas data (usually a pressure measurement) is very small.
The first thing to do is to estimate the condition of the flow so that the time-step
and mesh configuration can be predicted. Second, the time-step and mesh need to
be verified by varying them. Once all of the verification and comparison is complete.

sets of exploratory data are given. This covers the effect of varying:
e mass flow
e cathode tip internal radius
e cathode temperature
® gas

For the purposes of initial verification, we use a reference set of parameters that forms
a central point for each of the four variables in the above list. Table 5.1 shows the
reference parameters for the neutral flow. Figure 5.1 show the large-scale and small
scale geometry of the cathode.

It is possible to estimate the condition of the flow, and the computational pa-
rameters such as grid size and time-step, based on the basic input parameters such
as mass flow rate and cathode temperature. Assuming the conditions upstream of
the simulation are those of a uniform reservoir of gas (the approach of Murray et al.
[65]), we can use the derivation of number flux through an element given in §3.3.3 to
estimate the upstream density based on the (known) mass flux and temperature. For

a stationary reservoir, u,, = 0, so the molecular speed ratio, s is zero. Hence, from
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Figure 5.1: Cathode

case:

2.5 mm. The dimensions

are essentially that of the T6 cathode. See table 5.1 for further reference dimensions.

2 mm, r; = 0.5 mm,

s =2 =1 =1 mm, zg4 =

P
P

The points A, B and C are reference sample points where velocity distribution functions

are recorded. Taking the bottom left of the upper figure to be at (0,0) mm, A is at

(0.5, 0.5) mm, B at (10.5,0.5) mm and C at (15,1) mm.
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Parameter Value | Distance mi
gas Xenon | total axial length. z 24.00
mass flux, m (mg s™!) 1.0 | total radial length, 7 12.00
cathode T, (K) 1200 | cathode-keeper separation. z. 2.00
keeper T}, (K) 1200 | keeper-boundary separation. z;, 10.00
DSMC o VHS | cathode outer radius, r, 9.45
tip radius, 7y 0.50
tip thickness, 2 1.00
insert radius, 7y 1.00
insert length, z; 10.00
keeper thickness, zj 1.00
keeper inner radius, ry 2.50

Table 5.1: Neutral flow: reference case parameters. Lengths are in mm.

eq. (3.46), the number flux is

n
No=— 5.1
257 (5-1)

N;. the number flux per unit area can be written in terms of mass flow rate (in kg

s71) as simply m/mA., so the density can be written in ters of 1 as
m
n=20—]Vn7, 5.2
(m A) (5.2

where, for the reference case,

m 218 x 1027 &
3= = = 2.565 x 1073, 5.3
TN T \/2 138 x 10 21200 077 (5:3)

Given and ambient mass flux of the same order of magnitude to that specified in table

51 (m =1mgs™!) and A = 7(1073)?, so the predicted upstream density will be

, 1x 1076 0y
n=2 2565x10""- (218 » 10%_27 0 6) VI =1328x102m™.  (5.4)
.7‘—. -

Of course, this is a very approximate estimate, as it does not take into account the
constriction of the cathode tip. Nometheless, a density of 10%? m™* seems approxi-
mately right based on experimental experience [30]. The DSMC time-step needs to
be of the same order of magnitude (or preferably less than) the mean collision period.
Based on a density of 10?2 m~3 and the reference parameters in table 5.1, the collision
rate is

v =nvo =10%-390- 10718 = 3.9 x 10°, (5.5)
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2kT/m and the hard sphere ¢ = 7d* ~ 107*® for

Xenon. The mean time between collisions is then

where we have used v = vy, =

T=v1x25%x107s. (5.6)

This means the DSMC time-step needs to be around 10~ s. For an initial estimate of
mesh spacing (that in turn dictates particle population) recall from the mean free path
analysis in §2.4 that for collisions between species of similar velocities, A ~ (no)™! so

the mesh spacing needs to be less than
A= (107%.10%) 7 &~ 0.1 mm. (5.7)

This indicates that for a density of 10?2 m™3, only around 10 cells are required to
correctly resolve collisions radially between the axis and insert section. While this
may be the case for n = 10> m~2, it is clear that for an order of magnitude increase
in density (that we expect for small tip radius cases) A is an order of magnitude smaller
and so 100 cells may be required. The other factor that will effect mesh spacing is
collision cross section; the following section contains results covering the effect of using
the various collision models discussed in §3.3.2.

The final factor that it is worth estimating before examining the results is the
approximate time (and hence number of time-steps) it will take for a stable flow to
form. A conservative estimate of the mean axial drift velocity is 50 m s™! (this will
become clear when the results are examined). This means that the gas travels 50At
m per time-step or around % of a cell. Of course, we expect this; in reality, the mean
free path and mean collision time are inexorably linked in such a way that if one is
valid, then the other will probably also be. Returning to the original point, the transit
time of a particle is the total time it takes to pass from the upstream boundary to
the downstream boundary. This time, assuming z;, = 24 mm is then about % ms. For
a ‘jet” flow such as this, at least two transit times must pass before we can expect

stability. Hence the code must simulate at least 2 ms of real time.

Boundary Conditions

The upstream boundary condition consists of an injection of neutrals as per the nu-
merical method described in §3.3.3. The upstream temperature is set to experimental
conditions; i.e. room temperature 300K. Particles that diffuse in the upstream are
replaced during the following timestep with an equivalent particle at the 300K inlet
temperature. This maintains the mass flow rate at a constant value. In the re-
sults presented here, particles that diffuse past the downstream boundary are simply

deleted from the simulation. This is equivalent to a hard vacuum. The code also
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provides for a downstream “vacuum chamber” gas. Where this is used (primarily in
the plasnia simulation results) it is noted, although this conditions simply serves to

replicate vacuum chamber conditions recorded by experimenters for a particular test.

5.1 Numerical Validity

This section covers nuinerical studies of the effect of finite time-step and niesh spac-
ing. These numerical analyses are carried out at the reference conditions explained

previously.

5.1.1 Time-step

An expression was developed in the introduction to these results for the approximate
time-step based on a density of 10?2 m~® and temperature of 1200 K. The result was
a time-step of ~ 2.5 x 1077 s. To verify this, it is necessary to run the simulation
with time-steps both above and below At,.;, so that an indication of the degree of
time-step independence can be obtained.

It is useful at this point to quickly discuss timings. The symbol T, refers to the
total computational time taken to run a given case, for example 20 minutes, 12 hours
or however long. In contrast, 7}, is the real, physical time in seconds that is computed
withan the simulation. This will typically be very small, generally on the order of mil-
liseconds. For a given case, the two are related because to simulate from 7, =0 — 1
ms, say, may take 7, = 15 minutes, for example. so if we estimate that the simulation
comes into equilibrium after 4 ms, then we should allocate approximately one hour
CPU time. Of course. if, for example, the collision rate increases (thus increasing
computation per time-step), then computation may take longer than one hour before
T, = 4 ms. Some confusion of terminology can arise in discussions involving these
quantities, which is why the above definitions have been given. To re-iterate: physi-
cal, real or simulation time is the time that has passed within the simulation, while
computational time is the time you have to wait between starting the simulation and
viewing the results.

Having defined 7,, and 1, it is now possible to clearly explain a particular problem
that arises in the case of numerical studies of time-step. The code is written so that
the usual method of operation is to simply set the compute time 7, and allow the
simulation to continue ad nauseam during that period: 7,, is allowed to run on indefi-
nitely. Even if the code reaches equilibrium quickly, additional sampling time during
equilibrium is still beneficial (due to the statistical nature of the model the results will
be smoother). There are however some cases in which it is useful to run the code for

a fixed T}, and this is one such case. For this numerical study - the verification of
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time-step independence — it is imperative that all other parameters remain the same.
This means that we must run for the same time period, and start sampling for a set
period at the same 7T, as the flow structure may be exhibiting some time-dependant
fluctuations that would invalidate the analysis of time-step independence.

The extent by which the simulation has reached equilibrium can be seen in the
time history plots shown in figure 5.2. ‘Time history’ plots such as these are the main
mechanism by which flow stability is judged. Notice also that there is some statistical
ripple; this is to be expected from a numerical model that describes the flow physics
in a fundamentally particulate manner. The upper plot shows that the mass flux
out of the simulation is equal to the mass flux in (set to 1 mg s™! for this reference
case). The lower plot in figure 5.2 gives an impression of the degree of stability in the
collision calculations: the DSMC net collision frequency has stabilised at just over
8 x 10?! s71 neutral-neutral collisions in the simulation volume. Note that this value
has not physical meaning: it is a computational measure of the number of neutral-
neutral collisions that are being calculated by the DSMC routines per second physical
time (multiplied by the weighting of the colliding particles). In light of the previous
discussion regarding physical time over which the simulation is run, it was chosen that
for this test, the code would run for 3 ms before sampling would begin and continue
for an additional 1 ms. This seems reasonable by examination of fig. 5.2 since the flow
seems stable after only 2 ms. The value of 3 ms can further be seen to be in agreement
with the previous analytical estimate for particle residence (or transit) time.

In order to evaluate differences in flow conditions with change in time-step, three
different sample points were chosen. Point A is located Imm in from the upstream
boundary and % mm radially from the axis. Point B is located at the tip of the
cathode, % mm from the axis and sample point C is placed in the expansion plume,
10 mm downstream of the tip and 1 mm from the centreline axis radially. These can
be seen in figure 5.1(a). Values at these points are now presented and discussed for
a range of time-steps including the reference value (0.2 us), a run at 0.1 ps and runs
at 0.4, 0.6, 0.8 at 1 us. This selection of values covers a data point at a time-step
smaller that the reference case, as well as a range that covers an order of magnitude.
This should give a good indication of the magnitude and onset of and non-physical
descretisation effects.

Figure 5.3 shows plots of axial stream velocity at the three points as a function
of time-step. It is clear that there is very little variation in velocity as the time-step
is changed. With extended analysis, it may be that the variation could be shown to
be less than the statistical scatter present in the model. It seems that the maximum
velocity in the plume does fall somewhat as the time-step is increased, this is possibly

numerical. At our reference time-step, however, there is very little difference in the

110



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 5.2: Neutral gas time-step resolution test: 7 and vpgpe. These time history
plots are taken from the reference At = 0.2 us case. vpspyre 1s a computational value
that indicates the number of collisions calculated per second simulation time, not the
real collision rate in particles per second.
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Figure 5.3: Neutral gas time-step independence test: axial stream velocity. Simulation
results at three sample points for At = 0.1, 0.2, 0.4, 0.6, 0.8 and 1 ps.
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Figure 5.4: Neutral gas time-step independence test: density. Simulation results at
three sample points for At = 0.1, 0.2, 0.4, 0.6, 0.8 and 1 us.

result compared to a run with A¢/2. This gives a good initial verification that the
chosen time-step is valid, but it is worth checking some additional results.

Figure 5.4 shows results for density at the three sample points as a function of
run At. Again, there is very little variation between runs. At point A (near the
upstream boundary, hence the high density) the variation is less than 5%. What
is interesting is that the values for density vary very little between the 0.2, 0.6, 0.8
and 1 us cases, but the variation is a couple of percent for the 0.1 and 0.4 us cases.
At position B however, it does appear that there is a continued trend toward higher
density at smaller timesteps. This means that we cannot be fully sure that timestep
indenpendence is reached. Regardless of this, it is clear that the level of numerical
dependence on time-step looks to be at most the of the same order as the statistical
scatter, equivalent to £0.3 x 10%> m~ in this case.

The results show that the DSMC code seems to produce results well outside the
recommended time-step based on the predicted collision rate. This is to be expected;
regardless of the recommended 7, Monte Carlo collision models often exhibit excellent
levels of time-step independence well outside the theoretical range [9]. These results
show that for these conditions a time-step of At = 0.2 us is acceptable. Everything
else remaining the same, an increase of collision rate could result for increasing mass
flux or shrinking tip diameter (both of which will be done). At the reference time-

step, the results presented in this section indicate that there is some room for increased
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collision rate before numerical problems are observed.

5.1.2 Grid

Next, it is necessary to check whether the DSMC grid has an impact on the develop-
ment of the flow. Since the research DSMC was completed first, a mesh suitable for
MCC collision evaluation was first developed. The PIC mesh has different require-
nients, so two meshes are used for full plasma runs. In contrast to the traditional
discussions of meshes in CFD, where the geometric structure of the mesh can have
a significant effect on the stability and accuracy of the result, MCC meshes are very
simple. MCC meshes are analogous to a finite volume descretisation in traditional
CFD, but provided the simulation volume is descretised sufficiently for flow gradients
to be observed, factors such as the connectivity of the mesh are irrelevant [9]. It is
fair to say that the absence of instability and inaccuracy originating from the mesh is
a major attraction of direct particle methods when compared to continuum CEFD.

Much of the discussion in the previous section on time-step independence holds for
this case, in particular the issue of holding 7, the same. The difficulty that is encoun-
tered here that is not encountered with the previous results is that as the mesh density
is increased, so the number of particles should be increased. The recommendation of
Bird [9] is that the number of particles be calculated from the mesh based on the rule
that there should be at least 2.5 computational particles per cell. Bird show that this
number is high enough to remove computational effects from the DSMC calculations.
What this means is that the statistical sampling scatter will change as the grid is
refined, so rather than encountering an approximately similar level of scatter hetween
runs, it will increase as the grid is made finer.

Since most of the discussion is complete, results are now presented for three grids,
shown in figure 5.5. All of the grids use a DSMC sub-cell arrangement of 2 axial and
2 radial sub-cells per main cell. This means that the reference grid, fig. 5.5(a), has
5600 cells, but Monte Carlo collision cell volumes generally occur between particles in
the same sub-cell, so effectively the simulation volume is divided into 22400 regions.
Two grids with fewer cells are chosen: one with 3464 cells and one with 1550 cells.
The configuration files used to input these mesh descriptions can be found on the data
disc in data/neutral/res-grid/ under normal, sparse and very-sparse.

The same run time was used as per the time-step study, and for all three meshes,
the flow was steady well before the sampling time was reached. Results of axial stream
velocity and density are shown in figures 5.6 and 5.7 respectively.

Overall, the results show that there is no serious variation in macroscopic flow
data as the grid is changed. For the densest sample point (the one near the upstream

boundary, point A), there is very little variation in either stream velocity or density.
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(b) Sparse grid (13,856 sub-cells)

(¢) Very sparse grid (6,200 sub-cells)

Figure 5.5: Three levels of grid refinement used to evaluate grid independence in the
MCC collision routines.
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Figure 5.6: Neutral gas mesh refinement test: axial stream velocity. Simulation results
at the three sample points for three levels of mesh density.
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Figure 5.7: Neutral gas mesh refinement: axial stream velocity. Simulation results at
the three sample points three levels of mesh density.

In both plots, there does appear to be a slight anomaly in the interniediate grid,
this is manifested as a slightly lower density and higher velocity for the sample point
located in the tip. It is reasonable to attribute this to a temporary instability in the
flow that is picked up particularly well by this mesh. It is also true to say that since
the variation between data points is typically much less that 5%, and there there is
no discernible pattern to the variation — excluding the aforementioned exception —
the variation could be statistical scatter (for this case/position this was estimated
at around +0.3 x 10??). Of course, the comments contained in the previous section
regarding the statistical nature of particle simulations hold. In general, it is possible
to make a similar conclusion to that made for time-step: any numerical effect of the
mesh on the results is of a magnitude at least as small as the statistical scatter, under
the parameters we are using. A final note on the use of non-orthogonal elements in

the mesh follows.

A note on the chamfered tip cathode

It should be noted that the T6 cathode is generally used with some level of chamfer
drilled into the tip (from a downstream direction, see the diagram of a hollow cath-
ode in the introductory section, page 12). It was decided that the increase in mesh
complexity was not worth the additional accuracy of including the chamfer. This de-

cision is based on a number of factors. The first point to be made, albeit a somewhat
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wealk one is that traditionally, such meshes have been used. For instance. the work of
Murray et al. made the same decision (to omit the chamfer), based on mesh complex-
ity and the comparative unimportance of the small geometric difference on the bulk
cathode physics; some discussion is given in ref. [65]. The fact that it was proposed
by someone else is not sufficient reason to accept the omission of the chamfer. The
question must be asked: what is it there for? In the progress of research conducted
with Rudwan this question was address. There are some results provided by the code
presented in this document contained in the thesis of Rudwan that address the struc-
ture of the electric field due to the absence or otherwise of the chamfer. Given that a
primary object of the work of Rudwan was to investigate the breakdown (initiation)
of the cathode, we determined that chamfering allows for a significantly higher initial
electric field to penetrate the cathode for the purposes of the breakdown current ex-
traction. This in turn allows for the discharge starting at much lower voltages. The
conjecture that the chamfer is primarily an aid to breakdown was backed up at an
early stage in this research when a neutral gas run was completed using a chamfered
surface (at 45°) but a regular grid. It was found that the axial pressure varied by
less than 10% between the chamfered and non-chamfered cases. As a footnote, in
terms of comparison with experimental data. it should be remembered that the TH
cathode and earlier SERT cathodes were always unchamfered in any case (so that the
early Fearn and Philip and Siegfried and Wilbur work used unchamfered cathodes);

chamfering the tip was introduced in the T6 cathode.

5.2 DSMUC cross section model

Having concluded the discussion of mesh and time-step, there is one final element that
it is interesting to examine before a detailed analysis of the flow structure. Recall that
there are two different models of the collision cross section for neutral-neutral collisions
(section 3.3.2). In this section, results are briefly presented for the reference case for
runs with the two different models, these are also compared to a collisionless flow. To
speed up compute time, a shortened cathode insert was used: 5mm rather than 10mm.
This is the only deviation from the reference case stated previously. In summary, the

following are compared:

1. Collisionless c=0
2. Hard Sphere o= nd? |
’ ' d 2T\ 72 09
3. Variable Hard Sphere o = L : ’Tff
I'(/2—-w) | pv?
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Figure 5.8: Comparison of collision cross section ¢ for HS and VHS DSMC collision
models as a function of collision velocity.

where the final expression is that given by Bird [9] for the variable hard sphere collision
cross section. Tp.y is given for d,.y [9. app. A], while g is the relative collision velocity
between two particles, g = myms/(my + my) is, as usual, the reduced mass, w is the
viscosity index and I’ the gamma function. Refer to table 3.2 on p. 54 for values of w,
Tyey and d,; for the inert gases. The shape of the variation in o for case three can be
seen in figure 5.8, where cases two and three are compared. With the VHS, we expect
far higher collision probabilities in cold gases, while for large g (hot gas) the collision
probability will be less than that predicted by the constant HS approximation.
Figures 5.9 and 5.10 show axial centreline plots of density and axial stream veloc-
ity respectively for the three cases. Considering the plot of figure 5.9 first, the density
profile consists of an initial expansion that persists for Iimm from the upstream bound-
ary (the injected gas is at room temperature, while the cathode is several hundred
degrees warmer), followed by a gradual drop until the inner lip of the cathode ori-
fice is reached. Until the inner face of the tip, all three models give similar results.
Immediately prior to the expansion there is a slight anomaly in the collisionless ver-
sion, and once the flow is clear of the outer face of the tip (6 mm) there is a major
divergence between the collisionless and collisional models. Downstream boundary
density is around 7 X 1020 m=3 for both the collisional models and 1.5 x 10?* m~3 for
the collisionless case. These results tell us two things: first, it seems that it would be
incorrect to assume that the flow is collisionless, as the expansion appears incorrect

under such assumption (of course, we knew this already, but here it is confirmed).
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Figure 5.10: Axial centreline plot of axial stream velocity for the three collision models.
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Figure 5.11: Velocity distribution plots of particles simulated using the hard sphere
collision model near the upstream boundary.

Secondly, there is very little difference between the two collision models the VHS and
HS, except that the VHS model takes somewhat longer to run.

The plot of axial stream velocity (fig. 5.10) appears to back up these sentiments:
the expansion is incomplete in the collisionless case compared to the collisional ones.
The peak velocity for both collision models is around 380 m s~ !, located 2 mm down-
stream of the tip. In fact, the logarithmic y-axis of the density plot was hiding the
fact that the initial expansion near the upstream boundary (z = 0 to 0.5 mm) also
differs from what is predicted by either of the collisional models.

Finally, in order to fully appreciate the difference in the flows as collisions are
switched on, and to provide a little more evidence that the collision routines appear
to be operating correctly, velocity distribution functions can be examined for the hard
sphere and collision models. For sample point A (near the upstream boundary) these
are shown in figures 5.11 and 5.12. Since this is this first time such plots are used in
the analysis, a little explanation is required. These plots consist of four diagrams: the
upper two are axial and radial velocity distribution functions (v, and v, ) the lower two
are circumferential velocity and velocity magnitude functions (v, and |v|). The solid
lines are plotted as per theoretical Maxwell-Boltzmann statistics [40], while the data
points are real samples from the simulation. The Maxwellian plots are based on the
sampled macroscopic temperature from the simulation and shifted according to the

macroscopic sampled stream velocities. The dashed line is a line to show where the
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Figure 5.12: Velocity distribution plots of particles simulated using the collisionless
model model near the upstream boundary.

stream (mean) velocity lies. Figure 5.11 is an excellent example to start with, because
this is an example of a nearly stationary gas (the stream velocities are shown above the
individual plots) in thermal equilibrium. More importantly, it is the collision routines
that are causing the gas to tend to have a Maxwellian distribution in velocity: this
is what would be expected for Xenon at this temperature. In this way, the fact the
the data points lie on the theoretical lines is good because we would not expect a
gas under these conditions to behave otherwise. Indeed, it could be interpreted as
though the plots say that it would be fair to use a continuum representation of the
gas here. As as the sample point is moved downstream, and the rarefaction increases,
so the points will not tend to correlate with the lines and it would be certainly not
be fair to use a continuum representation — this has all been covered in the section
on the validity of the continuum assumption. What is interesting now is to compare
with the collisionless plots in figure 5.12. Here, clear divergences from the Maxwell-
Boltzmann distribution can be seen, particularly in the axial velocity. We have a two
temperature effect due to the difference in temperature of injected gas and gas that
has obtained the temperature of the insert wall. Such non-Maxwellian profiles are not
uncommon in plasmas, particularly within non-neutral (beam-creating) regions. In
this case, however, it is clear that collisions are very important and must be included.

This concludes the analysis of the model in terms of numerical accuracy and the

collision model. This chapter now continues to consider the structure of the flow in
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detail for the reference case, before evaluating the effects of varying some of the flow
parameters and cathode geometry. The reference case and all other results that follow

use the VHS model for neutral-neutral collisions.

5.3 Reference case: flow structure

This section provides a detailed analysis of the structure of the flow under reference
case conditions. Following sections proceed to alter various parameters to quantify
the effect they have on the flow character.

Since the flow is axially symmetric, the clearest picture is usually obtained by
plotting values axially. Once these have been analysed, further plots including 2-D
contour plots are also provided. Figure 5.13 shows axial centreline plots of density,
teniperature, pressure and Mach number. The numerical noise that can be seen
near the downstream end of the plots (particularly in the plot of Mach number) is
a sampling artefact: the data are sampled on a uniformly spaced PIC mesh, so due
to the variation in number density, there are correspondingly fewer computational
particles in the low density plume. Recall that this noise has no impact on Monte
Carlo collision sampling since MCC calculations are based on a different mesh, see for
example figure 5.5.

It can be seen that density falls monotonically throughout the length of the flow.
There is an initial expansion from reservoir upstream conditions due predominantly
to the fact that freshly entering gas on the upstream boundary has a temperature of
300 K while the cathode has temperature 1200 K. Within the insert section, the tem-
perature is broadly constant, although the density falls steadily, as does the pressure.
For a continuously expanding, accelerating flow in the positive z direction, there must
be a negative pressure gradient to drive the expansion. This can clear be seen in the
third from top figure and the final plot which shows axial stream velocity.

Once the tip is reached (located at z = 10 mm) there follows a powerful expan-
sion. The density falls about two orders of magnitude within the space of 3 mm. In
addition, there is a rapid cooling of the gas, and the scalar pressure drops three or-
ders of magnitude. Such an expansion is of course associated with the low becoming
supersonic. The sonic point occurs precisely on the outer lip of the tip (z = 11 mm).
This is the minimum area point of the flow, and so as expected, the hollow cathode
is operating as a choked convergent-divergent nozzle. The expansion of the plume is
not as steady and uniform as might be expected. This is entirely due to the presence
of the keeper protruding into the plume. The keeper, whose reference temperature is
set to 600 K, heats the plume by around 100 K (from approximately 350 K to 450

K). This directly affects the local sound speed and hence the Mach number is seen to
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Mach number

Figure 5.13: Axial centreline plots of number density, temperature, pressure and Mach
number for the neutral gas flow in the reference case hollow cathode.

dip from just above 2.0 to a minimum of 1.5. Once the plume clears the keeper, the
expansion continues. Recall that no downstream condition is applied: particles are
simply extracted as though a hard vacuum is present. In this case, the density has
dropped to around 2 x 10 m~? and the pressure to around 25 mPa. The vacuum
chamber used for hollow cathode experiments at the University of Southampton (see
any of Rudwan [88], Pottinger and Gabriel [80] or Gessini et al. [38]) with no propel-
lant flow pumps down to about 10~7 mbar. equivalent to 0.01 mPa. When operational
— when the cathode is supplied with 1 mg s™! of propellant - the chamber pressure

rises by a couple of orders of magnitude. This means that it is unlikely that the flow

122



Knudsen number
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Figure 5.14: Axial centreline plot of Knudsen number for the hollow cathode under
reference case conditions. The characteristic length is assumed to be equal to the tip
radius: 700 pam.

described by the figure would be altered significantly by the application of a small
downstream pressure condition.

The general flow structure is the same as that presented by Murray et al. [66]; i.e.
a shallow drop in pressure between upstream boundary and tip, followed by a rapid
expansion (with the sonic point located at the outer face of the tip). The work of
Murray represents the best continuum results for cathode interior neutral flow. The
peak Mach number reached is lower than that predicted by Murray et al. [66]. This
can be explained for two reasons. First, the mass flow rate in the Murray et al. [66]
reference case is 3.38 mg/s (more than 3 times larger than this case). Second, the
Murray et al. [66] work included no keeper. Murray predicts that the model is likely
to be accurate because at the flow rates he considers, rarefaction is unlikely to affect
his results.

An important question to ask is: how rarefied is the flow? One of the justifications
for the choice of particle method over continuum method was that the flow could be
significantly rarefied in the cathode expansion. Figure 5.14 shows an axial centreline
plot of Knudsen number based on a characteristic length of 0.7 mm (the tip radius).
The figure shows that the flow within the cathode is continuum (Kn < 0.1), while
the expansion is transitional: tricks like slip flow wall conditions or the use of the
Burnett equations would be reasonable here. In the far plume, the flow becomes very

rarefied and approaches free-molecular. There is some debate over exact terminology;
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Figure 5.16: Contours of temperature (K) for the reference case.

some prefer to refer to the rarefied regime as 0.1 < Kn < 10, with the flow being
collisionless for Kn > 10. This is of no real concern: the justification for using a
particle model was that the hollow cathode is a transitional device in the context
of the rarefaction of the propellant and thus, a model that is independent of Kn is
the wise choice. As was mentioned in the early discussions on the matter, the most
computationally efficient approach would be to use a Navier-Stokes solver for z < 10
mm and a DSMC code for z > 10 mm (in this case). Unfortunately, the question
of what to do at z = 10 on the interface between the models is one that is not fully
answered yet[14]: the objectives of this research are based on further understanding
of the hollow cathode; not on further developing hybrid continuum-particle methods
for the sake of increased computational efficiency.

Axial centreline plots of low data are the most informative, and easy to interpret.
An overall picture of the flow structure can be provided using 2-D contour plotting.
This can be seen in figures 5.15, 5.16, 5.17 and 5.18 that show density, temperature,

axial stream velocity and scalar pressure respectively.

5.4 Mass Flow rate

It is regrettable that there is no consistency in the unit used to measure mass flow rate
in hollow cathode studies. The two units that are used are SI base units, kg s™* for
example, and equivalent current (Aeq). The reason for the two measures stems from

the fact that it is is often useful, when trying to make sense of the complex current-
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Figure 5.17: Contours of axial stream velocity for the reference case.

Figure 5.18: Contours of scalar pressure (Pa, log scale) for the reference case.

voltage-mass flux relationship in hollow cathode physics, to express neutral flow in
terms of a current, so that current balances may be constructed for all plasma species.
Thus, in theoretical studies of HC physics it is usual to find neutral influx quoted in
equivalent Amperes. In terms of macroscopic performance (thrust, efficiency, etc...),
mass flux is more frequently found quoted in SI units. In order that the reader may
easily use values presented here in comparison with either measure of mass flux, the
independent variable is presented in mg s~! on the lower z axis and in Aeq on the
upper z axis; this is of course simply a conversion factor e/m.

Values are chosen to cover the entire range of values given by Rudwan [88], from
0.5 mg s~! to 4.0 mg s™! (for Xenon) in steps of 0.5 mg s~!. This is equivalent to Xe
mass fluxes of 0.367 Aeq to 2.94 Aeq in 0.367 Aeq steps. There is one practical note
worth making if the reader wishes to run sets of results while changing the mass flux.

To a much greater extent than any of the other parameters examined in this chapter,

Figure 5.19: Contours of Mach number for the reference case.
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Figure 5.20: velocity and density plotted as functions of mass flow rate

increases in mass flux induce large increases in interior density and hence collision
rate. The computation speed of Monte Carlo collision based codes is inevitably linked
very strongly to the collision rate. In this case, for instance, the 4.0 mg s~ ! case takes

niore than six times longer to run compared to the 0.5 mg s~ .

This example is a
stark reminder of how quickly Monte Carlo based techniques become unusable as the
continuum flow regime is approached.

Figure 5.20 shows data from the sample point near the tip. The two plots show
axial stream velocity and number density respectively. The primary trend that is
expected is that the density in the cathode interior will increase with mass flow rate.
This is shown in the lower plot. In fact, the relationship between interior density and
mass flux is very clear. It seems that density is proportional to mass flux. Given the
very clear linear relationship, a simple expression can be constructed for the variation
of mass flow rate with density. Based on doubling the mass flow rate from 2 to 4 mg

57! yielding an increase in density from 7.87 x 10°2 m~ to 1.61 x 10%* m™?,
n =412 x 10%m — 3.6 x 10*! (5.9)

for 1 specified in kg s7'. Of course, this expression is specific to the density at
the tip of the TG cathode with a 0.7 mm tip radius, so it is in no way generally
applicable. What is shows is that in the absence of a discharge, the interior density
scales in proportion to the mass flux. This is an important result that has been tacitly

assumed for the hollow cathode geometry but never explicitly demonstrated.
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Figure 5.21: Mach number and density plotted as functions of mass flow rate

Figure 5.21 provides plots of Mach number and density for the sample point within
the plume. Here, the same trend is shown for the density-mass flux relationship. The
Mach number is seen to rise slightly. The absolute axial velocities rise as mass flux
increases, but in addition, due to the higher density upstream of the expansion, plume
temperature is actually cooler for higher mass flux. Since the Mach number is seen
to rise slightly, this means that the rising stream velocity is marginally more strongly
related to increasing mass flow rate compared to the fall in local sound speed due to
the cooler plume. In summary: higher mass flow rates seem to result in an increasingly
cooler plume at a higher absolute velocity and Mach number.

A note was made near the start of this section about the increase in compute time,
particularly for the very high mass fluxes (greater than 3 mg s™!). It was stated that
as the mass flux and hence density increases, so the flow regime rapidly becomes more
collisional: it approaches continuum flow. To what extent does this occur? Figure
5.22 shows Knudsen number at the three sample points as a function of mass flow
rate. The Knudsen number is calculated based on the tip radius (L = 0.7 mm) from

macroscopic flow data using

RT
A (5.10)
\/§7Td2ijp
A critical continuum validity line is included in the plot, below which it would be ex-
pected that significant differences could be found between a Navier-Stokes and DSMC

(or Boltzmann) solution. It can be seen that the Knudsen number falls monotonically
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Figure 5.22: Knudsen number at the tip (o) and in the plume (x) of the cathode as
a function of Xenon mass flow rate.

as mass flux rises. In the plume, the Knudsen number is always far outside the limit
for validity of the continuum description. In the cathode interior, the flow falls within
the Kn= 0.1 limit for mass flow rates larger than 2 mg s~!. This is important as it
shows that if a very high mass flow rate cathode (with a 7n range of 5 to 10 mg s~ )
was used, it would be safe to use a continuum fluid model to describe the flow. In-
deed, from examining the figure, it seems as though the use of the Burnett equations
[1] would probably be reasonable down to n = 1 mg s~!. This is however not the
full truth. The precise definition of Knudsen number is really that it is the ratio of
mean free path to the length scale of the smallest flow gradient. In fact, the primary
expansion at the tip of the cathode flow extends to less than the cathode radius in
this case. In other words, the Knudsen number based on the correct resolution of flow
gradients is probably higher than that shown in the fig. 5.22. The main point that
it is possible to be precise about in this case is that the flow is transitional in the

cathode and rarefied in the plume.

5.5 Tip radius

In experimental studies of hollow cathode physics, the tip is often drilled out to pro-
gressively larger diameters. In the context of the present analysis of neutral gas flow

in the cathode, altering the tip diameter is likely to have a large effect on the flow
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conditions. This is because convergent-divergent expansion is known from elementary
theory to depend heavily on the minimum or throat area. Recall that in the intro-
ductory chapter of this thesis, §1.1.1, the specific impulse limit of a chemical rocket
was derived, and some basic quasi-1D isentropic relations were given. Using these
relations, it can further be shown that the area ratio of two parts of a variable area

duct is a function of Mach number:

AN 1 2 V=1 ]/
) Tl U 5.11
(A*) Az [“/H < T3 ﬂ (5.11)

where A* refers to throat (minimum) area and A the area at some other point. v is

the ratio of the specific heats. Complete derivation of the above is given by Anderson
[2, §5.4]. Tt is clear to see that M = f(A/A*), so if the cathode tip radius is changed,
so A* = 7r? will change and the nature of the flow could deviate significantly from
reference case conditions.

The range of radii usually considered experimentally generally spans a minimum
of approximately 0.3 mm to a maximum operational radius of 0.8 mm. The cathode
tends to become very inefficient and difficult to operate as r, — 7,. This perhaps
to be expected: it is assumed that as the tip is drilled away completely there is no
geometric confinement of the gas or plasma adjacent to the insert and the neutral
and plasma density that can be sustained drops significantly. The results presented
imminently demonstrate this explicitly for the first time. In light of these factors,
simulations are performed as per the reference case but varying 7, from 0.3 to 1 mm
in 0.1 mm steps. Of course, for the purposes of analysis the absolute value of the tip
radius is irrelevant: plotting results against the ratio of tip radius to cathode internal
radius is far more meaningful. Accordingly, the minimum, 0.3 mm, corresponds an
area ratio of 0.09.

It seems logical to start by examining the data sampled at the tip itself to quantify
the effect of varying the tip radius. Figure 5.23 shows plots of axial stream velocity
and density sampled at the sample point in the tip for the full range of tip radii (or
area ratios). There are some clear trends. As the radius increases, the velocity that
is obtained within the tip increases monotonically, with a plateau at just above 200
m s~! for ratios greater than 0.5. The lower plot shows that the density decreases
monotonically, and continues without a plateau for area ratios greater than 0.5. This
plot (of number density) shows that the tip radius has a very significant effect on
interior density. The density varies by more than an order of magnitude as the tip
radius is increased from 300 to 1000 pm.

There is however a question that is raised by the configuration of these results.

Since the sample point is located in the same position for all cases, the plots shown
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Figure 5.23: Axial stream velocity and density at the tip as a function of tip to cathode
area ratio.

may not be telling the whole story. This is because if the tip radius is changed while
leaving the sample point in the same place, if there is a radial profile to the flow data,
then the sample point is recording both changes in the radial profile as well as the
effect of the wider tip. It is very difficult to separate these effects. If the motion of the
profile were known through further analysis, then the sample point could be moved
accordingly so that it always occupies the same place within the profile. While this
would seem the logical way to proceed, such analysis of the change in flow profile
would be complex and there is a more efficient way to gain an accurate view of the
effect of varying tip radius. Rather than go to the trouble of trying to normalise the
effect of the moving profile as the radius is altered, it is instead best to examine data
from the other sample points that are far removed from the tip: both upstream and
downstream. These sample points should give an indication of the effects of varying
tip radius without incurring error due to changes in the flow structure near the tip.
This approach would be flawed if the nature of the flow was changing catastrophically
as the tip was opened; it is not: the flow remains a stable and choked expansion for
all values of ;.

What should be expected to happen to the flow upstream and downstream of the
tip as the radius is changed? Tt is reasonable to propose that we will see significant
changes in the upstream (subsonic) region: an increase in axial flow velocity and a
decrease in density as the throat area ratio rises. Downstream of the expansion, it

may be that the flow is fairly similar regardless of area ratio.
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Figure 5.24: Axial stream velocity and density near the upstream boundary plotted
as a function of tip to cathode area ratio.

Figure 5.24 shows conditions near the upstream boundary. Although trends are
similar to those shown in fig. 5.23, there are some important differences. Axial
velocity still increases monotonically, but the plateau region is now absent. This is
strong evidence to suggest that the radial flow profile was interfering with the results
shown in figure 5.23. The situation is mirrored in the lower plot (that of density).
Here, the trend is the same, but the data point at A;/A; = 0.09 (the 300 pm case) lies
more accurately on an exponential extrapolation from the other points (not shown
here: this can be seen on a plot with log scale). These plots verify that there is
some interference from the varying radial profile. It is worth considering this when
tip radius variation is consider in the plasma discharge results.

It is worth examining plots of conditions downstream of the expansion to answer
the question regarding the effect of cathode tip radius on exterior dynamics. Figure
5.25 shows velocity and density as per the previous two figures. The difference is very
marked: the stream velocity does not vary significantly as the area ratio is changed.
This was what was predicted: far downstream in the supersonic plume, there is little
difference between a tip expansion at A,/4; = 0.1 and A;/A; = 1 since in both cases
there is a stable, choked flow of gas at 1 mg s~ ..

The final consideration is to plot Mach number as a function of area ratio so
that the code may be compared to the analytical relation given in equation (5.11).
Figure 5.26 shows Mach number at the three sample points as a function of area ratio.

The upper plot is for the plume sample point, while the lower plot shows both the
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Figure 5.25: Axial stream velocity and number density sampled downstream of the
expansion plotted as a function of tip to cathode area ratio.
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Figure 5.26: Mach number as a function of expansion area ratio at three different
sample points. Upper plot shows plume Mach number (position C), lower plot shows
interior and tip points (positions A and B). See fig. 5.1.
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upstream and tip Mach number values. The trend here is broadly similar to that
presented previously: there is very little variation in Mach number in the plume. In
fact there is a slight fall in Mach number as the area ratio is increased. Since it has
already been shown that there is almost no variation in axial stream velocity in the
plume for the difference area ratios, the slight drop in Mach number implies that the
gas must be hotter for the wider area ratios (M = v/a and v remains approximately
constant, so since a = /YRT, falling M with A;/A; implies rising 7). In other
words, the plume is warmer for wider tip cases. This is possibly due to the fact that
the expansion becomes weaker as A;/A; increases, so the post-expansion temperature
does not drop so much.

In the upstream region, there is an increase in Mach number with rising area ratio.
Recall that for these sample points, the stream velocity increases with area ratio; since
the trend is very similar to the previous plots, it is reasonable to first conclude that

a, and thus 7" is not changing significantly as the area is changed.

5.6 Gas

Another parameter that is clearly a candidate for examining is the propellant. Xenon
is generally used as the propellant for ion thrusters because the thrust per ion gener-
ated at a given accelerator grid voltage is greater (since the atomic mass of Xenon is
greater than both Argon and Krypton). Efficiency of ion-bombardment ion propul-
sion is strongly related to the ion creation cost in the main chamber [16]. Xenon is,
however, the most expensive gas commercially, and either Krypton or Argon are often
used in experimental studies to reduce cost. Although all three propellants are similar
in that they are all inert gases, cathode performance will necessarily vary significantly
at the same injected mass flux. This is because the equivalent current of the lighter
propellants is greater for a given m.

All three propellant gases are run under reference case conditions. Since all three
are inert gases, the ratio of the specific heats is unchanged at v = 5/3. The only differ-
ences between the three gases are then the mass and collision cross section (diameter
and viscosity-temperature index). The data are contained in table 3.2, on page 54.

Figure 5.27 shows axial centreline plots of key gas conditions for the three gases.
The results are as as would be predicted. Since the mass flow rate is fixed for the
three gases, it would be expected that the gas with the lowest atomic mass would
exhibit the highest number density within the cathode. The top plot in figure 5.27
shows this to be true: the highest number density is Argon (atomic mass 18) followed
by Krypton (36) and then Xenon (54).

There is almost no discernible difference in the gas temperature between the three
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Figure 5.27: Comparison of gas conditions for three different propellants at reference
case configuration. The upper plot shows density, the middle plot temperature and
the lower plot scalar pressure. All data are axial centerline values.

cases. This is because the model makes no provision for an external thermal simula-
tion. Recall that walls are assumed to be isothermal, and when set to full accommo-
dation (with respect to wall-particle collisions), gas molecules will always be returned
from an encounter with a surface with temperature equal to the surface temperature.
If the code were modified so that the heat flux to the gas was regulated (rather that
the absolute temperature being held constant), then there could be differences in
temperature between the gases. Although the code is unable to use external thermal
modelling, the heat fluxes through the walls are recorded, so that the magnitude of
this difference can be observed.

Figure 5.28 demonstrates this. By default, heat flux is recorded for each surface
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Figure 5.28: Time histories of heat flux between the cathode insert and working gas
for three different propellant at a fixed mass flow rate and wall temperature.

present in the simulation: this is done via a simple normal energy balance that is
calculated upon every particle-wall interaction. The figure shows the heat flux for the
cylindrical insert surface. The plot is similar to the time-histories examined previously.
In fact, a record of heat flux could be considered as valid a candidate for judging
convergence as exhaust mass flux or collision rate. The convergence can be seen in
this plot: for the reference conditions the simulation is run for 4 ms, at which time it
Is assumed the flow is steady. Data is then sampled for a further 1 ms. A negative
surface flux denotes a gas that is cooler than the surface (the wall is heating the gas).
a positive flux indicates a surface that is cooler that the gas, so the wall is taking
heat from the gas. The plot shows that the flux from the insert to the gas in the
three cases is stable at approximately 7.0, 11.5 and 29.0 kW m? for Xenon, Krypton
and Argon respectively. Do these values seem realistic? A quick calculation may be
performed to estimate the heat flux required to heat Argon based on the specific heat.
The area of the insert is 27r,;2; = 62.8 x 107% m? for a 10 mm long insert section. This
means that for the Argon case, the power input to the gas is 1.82 W. How does this
compare to the minimum predicted heat flux based on the specific heat and volume
of gas? The density is approximately 3 x 10?*> m~3, so the total mass of the gas
resident in the insert section is 6.1 x 107 kg (based on a volume of 31 x 1079 m?
and the mass of an Argon atom: 66.3 x 107?" kg). The temperature change between
the injection temperature (300 K) and free stream insert temperature (approx. 900

K) is then approximately 600 K. Given the specific heat of Argon at constant volume
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is 0.3122 kJ kg~ ! K1, the minimum energy required to heat the mass of gas present
is 0.12 mJ. Of course, the gas is resident within the cathode for only a fraction of
a second before being completely replaced: the stream velocity is of the order of 30
m s~!. This implies a residence time of the order 107* s, so that the 1.82 W power
input is equivalent to 0.18 mJ energy flow to the gas. This is very similar to the
minimum predicted by elementary physics of specific heats above (0.12 mlJ), so the
heat fluxes quoted seem reasonable. In particular, the energy flow to the gas exceeds
the minimum required to heat the gas by 600 K. This is a good verification of the
correctness of the fundamental thermodynamics reproduced by the code.

The difference between the values for @ confirms the suggestion that the heat flux
would be different between the gases, and further, this trend makes sense. Since the
number of Ar atoms is greatest, this means that the Argon flow at 1 mg s~ requires
a greater heat flux to reach a given temperature. In practical terms, this means that
the lighter gas at a fixed mass flow rate (and hence higher number density) is more
effective at cooling the cathode.

The final point to consider is the third plot in figure 5.27: pressure. This is
calculated using the ideal gas law p = nkT (n and T" are sampled directly from raw
particle data). At the given mass flow rate, and, due to the isothermal walls, fixed
temperature, the pressure is progressively greater for the lighter propellants. It is
clear to see that this must be the case not simply by definition through evaluation
of the gas law, but in a fundamental way since the heat flux is much greater for the
lighter propellant.

A final note that is worth including is to state that there is no provision for heat
transfer via thermal radiation. This is examined at greater length with respect to

these and other results in the discussion chapter.

5.7 Temperature

In light of the findings relating to the use of isothermal walls and heat flux, it is
necessary to examine the relationship between wall temperature and free stream flow
temperature. For this, the reference case flow is computed at a range of temperatures
typical of cathode operation. A range of 900 K to 1500 K in 100 K steps should give
a broad impression of the relationship between cathode body temperature and flow
structure. This range covers both the initialisation (breakdown) temperature regime
and the main discharge regime. Specifically, Rudwan [88], in experiments aimed at
determining minimum breakdown temperatures, was working in the range 900 to 1100
K. Typical cathode operating temperatures are estimated to be in the 1300 to 1500

K, although precise experimental measurements are sparse. Finally, a data point is
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Figure 5.29: Density and Mach number in the cathode plume plotted as a function of
cathode temperature.

computed for a cold case, a room temperature 300 K. This additional cold case 1s
included because recently Gessini et al. [38] has been conducting experiments to mea-
sure the thrust produced by the hollow cathode. To calibrate the thrust measurement
experiment, a cold gas example is run.

From a practical standpoint, computation time was found to increase as the tem-
perature is raised, although the change is nothing as drastic as for the variation in
mass flux. Compute time is increased by approximately 35% for the simulation at
1500 K compared to the 300 K case.

Figure 5.29 shows plots of density and Mach number in the cathode plume as tem-
perature is changed. Plume density shows a steady decrease as cathode temperature
is increased, while Mach number remains broadly constant, although there is a slight
drop in Mach number at the higher temperatures. Figure 5.30 shows pressure and
temperature in the plume. By comparing the trend in temperature to that in Mach
number, it is clear that as the cathode temperature is raised, so the plume temper-
ature increases, but due to the increased interior pressure, the expansion is stronger
yielding a higher absolute plume velocity. For comparison, the plume velocity at the
sample point for a cathode at 300 K is 240 m s~!, while the plume velocity for the
1500 K case is more than twice that value, at just above 500 m s~!. The variability
toward the high values of temperature is almost certainly a result of statistical scatter:
noise. Data in this region is best interpreted as though a trend line were used.

The relationship describes above is of course classic nozzle behaviour. The cathode
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Figure 5.30: Scalar pressure and temperature in the cathode plume plotted as a
function of cathode temperature.

temperature can be considered the ‘combustion chamber’, while the tip is effectively a
convergent-divergence nozzle. As was shown in the introductory part of this thesis the
exhaust velocity of a con-di nozzle is effectively just related to chamber temperature

if the pressure ratio is close to zero. Recall equation 1.12 from the introduction:

~ BT (v=1/~
v = | 2HO | (Yi> . (5.12)
v—1 Po

It is possible to numerically evaluate this expression and compare it to the recorded
Ves. Ty is set to the temperature at the sample point upstream of the tip (i.e.
the ‘chamber’ temperature). p. and pg are simply scalar pressures evaluated using
p = nkT for density and temperature in the plume and chamber (subscripts . and g
respectively). Since there is a vacuum downstream condition (particles are simply ex-
tracted from the simulation), the exit pressure (see fig. 5.30) is of the order of tens of
mPa. As has been seen, for the reference case, chamber pressures are approximately a
kPa. This means that the pressure ratio p,/po is of the order 10~%, and hence the ex-
haust velocity should not be very sensitive to pressure, rather it will be nearly totally
dependent on chamber temperature. Figure 5.31 shows both direct velocity data, and
equation (5.12).

The first thing to notice is that both data show a very similar trend. The direct nu-

merical result underestimates the exhaust velocity compared to the analytical relation
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Figure 5.31: Exhaust velocity as a function of chamber temperature. The dashed line
is numerically evaluated based on chamber temperature, chamber pressure and plume
pressure, while the solid line is directly sampled velocity data from the numerical
simulation.

by about 10%. This is of course to be expected: equation 5.12 takes no account of the
presence of the keeper interfering with the plume. In fact, it should be expected that
the value produced numerically underestimate v,, compared to the analytical result.
There is also a slight divergence between the analytical and computational results
at higher temperatures. This can be further explained due to keeper interference, or
more specifically, the fact that in the simulations, the cathode surface temperature is
varied, but the keeper temperature is held constant. Little is known about the keeper
temperature during discharge, not least because the thermal environment it is placed
within is quite complex. The keeper is never seen to glow [88] during normal opera-
tion (unlike the cathode tip) and the keeper is necessarily thermally insulated from
the cathode itself, since by definition it must be electrically insulated. In any case,
with respect to the divergence in v., with increasing 7T,, the presence of a constant
temperature ‘cool’ keeper is an adequate explanation. In terms of the accuracy of the
code, the reproduction of the expected nozzle expansion trend like this provides good

evidence that the code is valid.
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Chapter 6
Results: Plasma discharge

The results in this chapter can be considered a continuation of those from the previous
since here, the neutral gas flow is retained, while plasma modelling is included. The
code is the same as that used in the previous section. except that the plasma elements
are now included. This means that the level of confidence built up in the code through
validation in the neutral flow chapter applies here, although of course the new parts
that handle plasma mechanics need to be carefully considered.

The aim of the results presented here is then to investigate the hollow cathode
interior plasma, and experiment with changes to parameters and geometry.

Since this chapter is a continuation, this introduction can be very brief, as there
is no need to cover the detail of geometry and reference case conditions; these are the
same. The chapter begins by examining the structure of the discharge produced. This
is followed by an examination of the current-voltage behaviour of the configuration,
and then a comparison to experimental data. In order to assess the validity of the
numerical model, the results of some numerical studies of computational parameters
are then presented. Finally, the effect of varying the anode position and tip radius

are examined.

6.1 Additional configuration

There are several additional configuration parameters that now need to be set due
to the introduction of the plasma. It is necessary to choose the modification factor
to the electron mass (see §3.5.6), and choose a smaller time-step compared to the
neutral case. Of course, any possible effects of using these computational parameters
are examined first, before presentation of the main results. In the plasma model, an
arbitrary number of anodes can be included in the geometry if desired; these are cross-
referenced to the surfaces and mesh segments. For each additional anode, the ‘current

demand’ and capacitance must be set, along with initial voltage. The current demand
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of an anode, in the computational context, can be imagined as though it is the current
selected on a power supply attached to the anode. Choosing these values was done by
trial and error, until values that were stable were found. In addition to the criterion
that parameters provide numerical stability, a secondary motivation in the choice of
such values is that they tend to induce a rapid convergence to equilibrium. In terms
of electron emission, the surface temperature is simply used as it was in the previous
chapter, although the work function of the surface now needs to be set. Common
estimates are that ¢.fr = 2, so a value of 2.0 eV is used.

Next, additional surface boundary conditions need to be set, including particle
impact values such as recombination fraction and secondary electron emission fraction
yield. The value of the ion recombination fraction was discussed in §2.3.3 and it was
concluded that strongly emitting surfaces (such as the insert) are liable to have a
value between 0.5 and 1, while metal swrfaces with comparatively high work functions
(such as the cathode casing) may be considered as nearly insulating, so that the
value is likely to be close to 0. Based on the reasoning in §2.3.3, then the standard
configuration is for the insert surface to have §; = 0.5, while surfaces making up the
cathode casing have §; = 0. As for secondary electron emission, it was concluded
in §2.3.3 that secondary electron emission due to ion bombardment can be assumed
to be zero, due to the comparatively low energies encountered. while based again
on electron energy arguments from §2.3.2, the SEE electron yield from the cathode
surface will not tend to exceed 1. Thus, by default, dsee; = 0 and dsee = 1 for the
cathode, while all other surfaces are assumed not to yield secondary electrons.

Next, the PIC mesh needs to be defined. In the neutral gas flow chapter, the PIC
mesh was used for recording 2-D data because the PIC code includes the ‘smooth’
CIC interpolation sampling mechanism. Now, however, the PIC mesh is not simply
a luxury that can be used to generate attractive contour plots. When running a full
plasma simulation, it is necessary to ensure that the PIC cells are fine enough to
resolve the local Debye length at any given point within the simulation. Finally, a
large amount of extra species data is required by the Monte Carlo Collision routines.
This includes collision cross sections for electron-neutral collisions, neutral-ion charge
exchange collisions and the necessary parameters for Coulomb collision modelling (see
§3.4). At this stage, a lack of data precludes the use of Krypton and Argon, since
CEX collision cross sections are only known accurately for Xenon[82]. For this reason,
since real data is available only for Xenon, the results use this gas. It is of course
possible to run the code with the other two (Kr and Ar); in this case, the code will
assume the CEX collision cross section is simply double the hard sphere cross section
in the absence of real data; this approximation seems reasonable based on the data

i

available for Xenon[60], for the ion energy range expected.
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Parameter Value

cathode T, 1680 K
insert ¢y, 20 eV
start anode voltage V, 100.0 V
anode current [, 100 A
anode-cathode separation 5 mm

Table 6.1: Discharge: reference case parameters.

Additional parameters for the reference case discharge are shown in table 6.1.
The flat plate anode is located on the downstream boundary. This of course alters
the downstream neutral gas plume to some extent. Reference case anode and keeper
electric parameters are set as shown in the table. According to some authors [88], the
temperature is perhaps a high estimate for cathode temperature, but this is mitigated
by the fact that the anode current is set to 10 A, so the cathode would tend to be hot.
Of course, there is much debate over this, Malik and Fearn [506] estimate an internal
surface temperature of approximately 2000 K based on analysis of thermal properties
of the insert chemicals. The problem lies in the the fact that many analyses of
cathode temperature are based on arguments relating to the current density predicted
by the Richardson-Dushmann equation. Unfortunately (a) the work function is not
known exactly and (b) the equation is highly non-linear in 7". A combination of these
factors make prediction of temperature a very difficult task. The only realistic way
serious accuracy can be obtained would be for direct measurement to take place. A
temperature of 1680 K is not required for running the cathode at lower current. The
chosen startup voltage and default cathode-anode separation are as a result of the
investigation into how to cause a rapid breakdown and hence equilibrium state of the
plasma.

The final element of the discharge is the introduction of the neutral flow. Whenever
the code is run, a restart file is written that, in addition to auxiliary information, sim-
ply contains details of each particle at the final time-step: position, velocity, species,
weighting and excitation level (if required). In this way, incomplete simulations may
be restarted. In addition, for the simulation of a discharge, the neutral flow can be
modelled in the absence of the plasma at a large time-step, then the restart file of the
neutral gas used when the full discharge simulation is run. This avoids the need to
re-run the neutral simulation to equilibrium before electron emission is enabled.

Having completed the discussion of additional parameters that are set for the
discharge above those set in the previous chapter, the next step is to investigate what
happens when electron emission is enabled with no working propellant: this is the
‘pre-breakdown emission’ stage. Alternatively, we could have introduced the neutral

flow while maintaining a discharge voltage below the first ionisation energy of the
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propellant, so that now plasma would form.

6.2 Initialisation of the discharge

Before stepping directly into the analysis of the full, steady-state plasma discharge. it
is necessary to briefly explain and present some details relating to the pre-breakdown
transient state. In particular, what happens in the absence of neutral particles (an
‘empty’ discharge) and then what happens in terms of starting and sustaining the

plasma.

6.2.1 Pre-breakdown thermionic discharge

It is of course possible to operate the cathode without any propellant: the body is
heated and a thermionic (but space charge limited) current will flow from the cathode.
In the absence of a plasma (any positive charge), thermionically emitted electrons will
cause the the electric potential in the space upstream of the tip to be negative with
respect to the cathode. This is simply the case of space charge limited current emission
from the interior of a cylinder. It is worth examining this setup as this represents a
data point for . = 0, and it shows the nature of the vacuum emission.

Since we know that no plasma can form, it is futile to require that the anode
demand 10 A as is set for the reference case. The cathode casing will emit mA of
current, while regardless of the temperature of the insert, space charge limitation will
retard the cathode current to the mA range as well. In other words, at a given cathode
temperature, the casing gives up very little current, and the interior of the cathode
is under space charge limitation: in the absence of a plasma, the anode will never
receive 10 A (unless, for example, the temperature were set to an unrealistic value,
millions of K, say). Instead, as was done for some of the verficiation cases of the
PIC model (§4.5), the anode voltage is held constant and current received is recorded.
The configuration behaves as expected and forms a space charge limiting sheath on
the surface of the insert. As a result, under reference conditions, the anode receives
only about 150 mA. Increasing the temperature does not increase the anode current
above 150 mA: this means that under reference conditions in the absence of a plasma
or source propellant, the discharge is Child-Langmuir law current limited. Of course,
the anode current-voltage characteristic will not exhibit exactly the same trend as our
original expression — eq. (4.35) — for one obvious reason: the cathode is no longer
a flat plate located opposite the anode, it is now a confined cylinder.

Figure 6.1 shows time history plots of electron population and anode current.
Here, electron population is defined as simply the total number of electrons present

in the simulation volume at a given time. The electron population builds up very
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Figure 6.1: Time histories of electron population and anode current for the no-
propellant discharge
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Figure 6.2: Radial cut showing plasma potential and electron density at z = 10 mm
(mid way along the insert axially). The space charge limiting sheath can be seen.

rapidly, forming the space-charge limiting sheath on the surface of the insert. It then
takes an additional 20 ps for the anode current to become steady. At this point the
entire simulation volume is in equilibrium.

An impression of the radial profile of the limiting sheath in the cathode interior
can be seen in figure 6.2. Here, fig. 6.2(a) shows that the presence of the electron
gas in the interior cavity causes a negative electric potential and an electric field that
tends to force emitted electrons back toward the cathode. This effect gives rise to
the density profile seen in fig. 6.2(b). The on axis potential — approximately —0.3
V — is uniform axially for the entire length of the cathode cavity. At the tip, only
the presence of the adjacent anode at a potential 5 V above the cathode serves to
deflect the on axis plasma potential above -0.8 V. This data was generated using a

permittivity modification that allows for a plasma of density 10%° m~ to be simulated
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with stability, on the reference mesh (150x60 cells in the area 15x3 mm). Recall that
there would be little value in comparing the current here with the Child-Langmuir

result, because a orificed cylindrical geometry C-L result is not known.

6.2.2 Breakdown

The process of breakdown in the hollow cathode is complex and not fully understood.
In particular, some authors have found that discharge initialisation occurs at voltages
lower than are predicted theoretically. Reasons for this include the possibility of
Penning ionisation — the reader is referred to the thesis of Rudwan [88] for further
details.

Initiating the discharge at low temperature (1000 K) — similar to that predicted
experimentally — was, as expected, found to be difficult. This did not pose a problem
however as the range of current values that are to be examined (5-20 A) demand a hot
(2000 K) cathode. In this case, the cathode is set to the hot discharge temperature
as an initial condition, and the discharge tends to form rapidly without exception.
It would certainly be possible to conduct a future study of breakdown physics using
this model where the temperature of the cathode is gradually raised from some initial
low value until breakdown occurs. This would provide data on minimum breakdown
temperatures. In all data presented here, however, we are interested in gaining a
stable equilibrium discharge in the minimum time so that (a) sampling time of the
equilibrium discharge is maximised and (b) compute time is minimised. In addition,
since it is observed that the initial plasma forms outside the cathode, as is generally
accepted, it was found that the speed of the breakdown was enhanced by raising
the neutral density in the cathode exterior. This can be done in one of two ways.
First, the neutral expansion can be confined radially by placing a reflecting boundary
on the radial exterior limit. This is very similar to creating a ‘closed keeper’ type
arrangement. Secondly, a fixed neutral density may be set on the downstream exit
boundary and neutral gas introduced as per the method detailed in §3.3.3 (Bird’s
introduction of a free stream gas in the DSMC). It was found that the second method
was the least intrusive and actually most similar to many experimental setups. This is
because in a experiments, there is generally a non-zero ‘vacuum pressure’ present. In
fact, Rudwan [88] states that for operation, the hollow cathode requires a background
pressure of the order of 1077 mbar, while the actual chamber reached pressures of
107 mbar (7.5 x 107® Torr). This is equivalent to densities of the order 10! m™3
at room temperature. The result of replicating the experimental environment is that
breakdown becomes easier in the model, and hence this simulated environment is used

for all results presented here.
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6.3 Numerical Validity

As was the case previously, it is necessary to first asses the impact of the theoretical
assumptions made. Although it is possible to derive some confidence from the previous
results section, the code will not be free from non-physical numerical effects. This
is true for two reasons: first, components that have already been studied are now
being used under different conditions, both numerical conditions such as time-step
and physical factors such as increased temperatures. Secondly, there are elements
present in the PIC code such as the PIC mesh, and numerical effects such as the
electron mass modification.

In light of these concerns, several areas are now examined. In particular, the
time-step dependence must be re-assessed as there are now plasma oscillations and
high energy particles present, and because new charged particle collision models are
introduced that will have different collision frequencies compared to the neutral flow.
Secondly, the effect of the PIC mesh must be assessed. Although it was noted that
long term numerical heating on poor meshes is likely to be minimal since the problem
at hand is fundamentally a DC discharge (see §3.5.4, p. 75), it is still necessary to
investigate the possibility in any case. Finally, the factor by which the simulation is

accelerated computationally (the electron mass modification) must be considered.

6.3.1 Time-step

Holding all other parameters constant, including of course the real simulation time,
calculation of the plasma is made using four different time-steps: 100, 200 (ref), 300
and 400 ns. Of course, a wider range of At would be desirable, and is generally
expected in the case of conventional CFD numerical studies [35]. Here, a larger time-
step, say by order of magnitude into the microsecond range cannot be tried due to
reasons of PIC stability laid out in §3.5.4. Unfortunately, due to computational time
constraints, it was also impossible to demonstrate the code running in the tens of
nanosecond range. Although the range of analysis is far from what would be hoped
for, it is still useful analyse the results, as a range between %At and up to 2At is
still possible. Data characterising the results are shown in figures 6.3 and 6.4; these
data are represented as normalised plots of density and temperature taken from the
cathode interior velocity distribution function sample point.

As would be expected, there is a dependence between the results and the time-step.
Fig. 6.3 shows that in the case of neutral gas. there is now a slight density rise with
time-step. This is different compared to the examination of time-step dependence for
the neutral only code, which demonstrated very little numerical error with time-step

at these values (fig. 5.4). It is logical to suggest then that the neutral dependence
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Figure 6.3: Normalised species densities as a function of simulation time-step, Atf.
Values normalised to reference case value.

on time-step stems from the interaction between the neutral gas and the plasma.
due to the plasma model exhibiting an error relationship with time-step. There is
a strong relationship between simulation time-step and electron/ion density. Both
plasma species show the same behaviour, and this is likely due to the fact that the at
the sample point where the data is taken, the plasma is quasi-neutral, so the density of
the two species is the same. The difference between electron and ion values plotted is
then due to statistical scatter. Clearly, the density may be underestimated, although
near 100 ns, the difference falls to 15%. In light of these findings, future results use
only time-steps of 100 or 200 ns, and it is reasonable to suppose that values of density
may be underestimated by up to 10%.

The second figure (6.4) shows the effect of time-step on temperature. Here we see
that the neutral temperature varies very little, falling by perhaps 5% in the worst case
(largest time-step). In the case of plasma species, the temperature tends to rise with
increasing time-step, although again the error in the 100-200 ns range is minimal. It
is likely that the rapid accumulation in error as At becomes large is due to numerical
instability relating to the time-step-plasma frequency stability criterion of the PIC
model, this is to be expected as values under 200 ns are chosen to be stable in this
respect (w,At < 2). The code remains stable at 400 ns, but the error is increased; it
is of course reasonable to suppose that the error will increase as the stability point is
approached (by increasing At). Indeed, it would be unexpected for such a numerical

system to exhibit no error all the way until the maximum stability point, at which

147



ref

T

o e
- © -Xe*
—6— Xe |

i 1 L 1 | i
o] 50 100 150 200 250 300 350 400 450
At (ns)

Figure 6.4: Normalised species temperature as a function of simulation time-step, At.
Values normalised to reference case value.

the system would break down.

In conclusion, it has been shown that the numerical accuracy of the results is cor-
related with time-step, although statistical scatter and an inability to fully investigate
very small time-steps must be considered. However, for the time-steps that are used
in future results presented, the numerical error in density for the majority of the sim-
ulations is unlikely to exceed 20 percent, although in the worst case (peak density),
this may rise even further. The error in temperature due to time-step size is generally
smaller. It should be remebered though that there is an absolute error introduced into

the results as a direct consequence of being unable to use a small enough timestep.

6.3.2 Mesh

There are really two meshes in the simulation at this point. The Monte Carlo mesh
and the PIC mesh. It is possible to deduce that if we use a MC mesh similar to
that presented in the neutral gas results, then it will be completely adequate for the
plasma. This is because in light of the data on neutral density and the mean free
path analysis in §2.4 it seems that the neutral-neutral collision rate will tend to be
the highest of all collision types, due primarily to the fact that the neutral species has
the highest density. Hence as long as the recommendations of §5.1.2 are adhered to,
the MC mesh will be satisfactory for the plasma collisions.

Of course, the PIC mesh is in fact untested in the context of the hollow cathode

simulation, and so must be examined now. The simulation is run at meshes both
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(a) PIC (100 x 60, uniform, aligned)

(b) MCC/DSMC (block structured, block aligned)

Figure 6.5: Reference PIC' and MCC/DSMC meshes used in the plasma model.

smaller and larger than the reference case, on meshes of approximately 3, 6. 9 and 12
thousand cells. Specifically, 80 x 30 (2400 cells). 100 x 60 (6000 cells) and 120 x 90
(10800 cells), 150 x 90 (13500 cells). As an example, the standard mesh is shown n
figure 6.5, alongside the DSMC/MCC mesh for reference. The PIC mesh is aligned
along surface boundaries with the DSMC/MCC mesh and the blank area (cathode
interior) in the PIC mesh is not calculated even though it is shown here. (This area
is removed from calculation when the linear algebra problem is constructed).

Figures 6.6 and 6.7 show normalised data for the three species density and tem-
perature respectively taken at the plume VDF sample point. Considering the plot of
density first, there is a negative gradient in density with V, the number of PIC mesh
cells. The final data point in the neutral (solid line) data is somewhat anomalous, but
could arguably be due to statistical sampling error, as the value by which the point
varies from the general trend is small compared to the trend itself. It is also true
under these specific circumstances that the degree of statistical scatter increases for
the higher V. This is because the number of sample time-steps available for sampling
once a converged solution is reached is smaller if (as was the case here) all cases where
run for equivalent compute times.

The plot of normalised electron and ion density in figure 6.6 is encouraging as it
appears that there is very little deviation between the reference case and the highest
N value. This indicates that in terms of mesh, the solution is changing by only a
small extent for the chosen mesh. The plot also demonstrates that meshes such as
case A should not be used.

The second plot (6.7, that of normalised temperature, shows almost no variation
in neutral temperature with PIC' mesh. This would be expected because there is

no direct algorithmic connection between the two; only if the PIC mesh N were to
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Figure 6.6: Normalised species densities in the tip region (sample point B) as a
function of number of PIC mesh cells. Values normalised to reference case value
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Figure 6.7: Normalised species temperatures in the tip region (sample point B) as a
function of PIC mesh cells. Values normalised to reference case value (N = 10800).
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significantly affect the plasma and hence then the neutral flow would any variation.
It also appears that N has little effect on the ion species. The electron species does
however show a slight negative gradient that shows little sign of flattening as N
becomes large. Such an effect — a heating of the electrons on an over-sparse mesh
— is well known in PIC codes, see for instance Birdsall and Langdon [12]. It was
mentioned that some so-called “self-heating” of electrons may occur in section §3.5.4.
It is highly likely that this is example of this phenomena. In the original discussion,
the problem was dismissed due to the fact that in practical engineering DC discharges,
the phenomena is rarely a major problem. In this case it is fair to say that self heating
may be present, but is unlikely to have a major impact on the results. It should be
noted however in discussion of electron temperature in future sections.

Another factor to consider is that the DSMC mesh remains the same for consec-
utive PIC meshes. Since the computational sample population is a function of the
DSMC mesh density, this means that the sample rate per PIC cell decreases for com-
paratively denser PIC meshes. It is likely that this is a contributary factor to the
eITolr Seen.

In summary, as expected, the density of the PIC mesh has some effect on the
results. As usual, it is sometimes difficult to determine the error level amongst the
statistical scatter (whose magnitude will be similar to that estimated in the previous
chapter). In many cases, this effect is minimal, particularly at high N, where the
code is generally operated. It is also likely that there may be some numerical self-
heating of plasma species. This must be factored into the assessment of the accuracy

of temperature predictions.

6.3.3 Electron Mass Adjustment (value of \/f)

Here, we present results for the reference case electron mass correction factor, v/f =
480, and two lesser values: /f =420 and 360. These are referred to as the reference
case (A), cases B and C respectively. Recall that a flux adjustment factor of \/f
corresponds to an absolute multiplication of electron mass by f, so the reference case
of 480 results in an artificial electron mass a little less than the mass of a Xenon atom.
Of course, we could choose values of /f to be more than 480, so making the artificial
electrons heavier than the neutral particles. However, testing 1/f > 480 would surely
highlight if the adjustment is affecting the results, we are more interested in any trends:
recall that as f — 1, computational electron dynamics become indistinguishable from
real electron dynamics, so it makes sense to examine some values of /f that are
less than the reference value. It is difficult to predict if there will be a significant
impact on the simulation due to electron mass modification. All of the measures

discussed in §3.5.6 that correct for the modification are included, so provided that
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Figure 6.8: Normalised species densities as a function of electron mass adjustment
factor, f. Values normalised to reference case value (v/f = 480).

these modifications are (a) correct and (b) implemented correctly, it would be hoped
that the impact would be minimal.

Figures 6.8 and 6.9 show plots of density and temperature at the sample point
within the cathode. Considering the plots of density first, it is clear that the neutral
density is not constant with electron mass factor: there is a positive relationship,
and the variation between case A and C is around 10%. Interestingly, however, the
ion and electron density variation falls within statistical scatter inherent in stochastic
simulations. This outcome is quite unexpected. If anything, due to the comparative
density and inertia of the neutral flow, and due to the fact that there is no direct link
between the neutral dynamics and the PIC model, it could be suggested that changing
f would in the best case have little impact on electron, ion dynamics and no impact
on the neutral flow, while in the worst case, all three species would be affected. This
is clearly not the case here.

The second plot, that of temperature (6.9) shows that changing the electron mass
has little or no effect on the temperature of any of the three species. This is also
unexpected in the light of the density plot since it could be proposed that neutral
pressure remain constant as the electron mass factor is altered, so that temperature
would change in an opposing way compared to the neutral density (assuming the
neutral gas tends to obey an ideal gas law).

The trends shown are valuable in so far as they demonstrate that there is clearly

no major correlation between f and the discharge. We can be confident that using the

152



1-08‘ L

1.061

i ref

T/T

0.98 -

0.96+

0.94F ' 8

15 2 25
f x 10°

Figure 6.9: Normalised species temperatures as a function of electron mass adjustment
factor, f. Values normalised to reference case value (v/f = 480).

electron mass factor does not fully invalidate there results. It is however not under-
stood why the neutral gas density varies as it does: this requires more investigation.

It true to say that changing f will alter the real time taken for convergence to
equilibrium. This is trivially obvious since as f — 1, so the absolute electron veloc-
ities are higher, and the transit time through the simulation drops. Of course, the
motivation for using f in the first place is to bring the electron (plasma) equilibrium
time closer to the neutral time so that it is not necessary to waste huge computa-
tional resources simulating an equilibrium plasma while waiting for the slow neutrals
to come into equilibrium. Recall that for this numerical study, as must be the case,
all computational and simulation parameters are fixed except f. This means that the
simulation runs in all three cases for 60 ms real time (actually 12h compute time).
This leads to the conclusion that for smaller f, the plasma tends to come into equilib-
rium faster (in real time terms, although of course in compute terms the simulation
takes much longer) so although the plasma conditions may be very similar in all three
cases, the slow neutrals may be at slightly different levels of convergence between A,
B and C. Such an effect can be demonstrated by examining a time history of a critical
convergence indicator for neutral particles.

Figure 6.10 shows neutral mass flux for cases A and C plotted against time. Al-
though noisy, this plot tells us a lot, particularly within the first 15 ms. It is clear that
in the low f case (dashed line), the mass flux is higher during the breakdown period.

This indicates that the plasma discharge is likely to reach a state of equilibrium at a
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Figure 6.10: Neutral downstream mass flux time history for the reference and mini-
mum (case C) electron mass acceleration factor.

different time compared to the neutral flow, or more importantly, that the conditions
of the neutral flow at the point of plasma equilibrium will be different as f is changed.

It is highly probable that this could be compensated for by, for instance slowing the
neutral flow evolution to allow for the varying the plasma behaviour. This approach
of course leads to a circular argument as slowing the neutral in response to this
situation has the same effect as setting f smaller, thus re-introducing the difference in
7, compared to 7, that we are attempting to avoid! In summary, two points may be
suggested relating to the numerical study of the effect of f on the simulation. First,
due to the fact that varying f necessarily varies the real plasma equilibrium time
7. we find slightly different neutral equilibria at different f. No immediate method
presents itself by which this could be compensated for, but the difference in neutral
equilibria is insignificant compared to that found due to variation in, e.g. cathode
temperature, geometry, mass flux rate, etc. Put another way: although we know
that slightly different neutral equilibria are reached at different f values, these are
sufficiently insignificant that we will accept a potentially small error in some cases
since the error is much smaller that the variation in neutral characteristics under
other parameter changes. The second point to make is that fortunately, and perhaps
most importantly, changes in f tend not to have any great impact on the plasma
model. This is presumably due to the fact that the compensations to electron fluxes
and velocities presented in §3.5.6 are scaling correctly. It is likely that the reason

why the ion dynamics seem unaffected by altering f is due to the close relationship
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Figure 6.11: Contours of electron number density for the reference case discharge.
Note log scale colourmap.

between electron and ion motion due to the PIC model.
This concludes the examination of the results of the numerical studies performed
on the plasma discharge. The next stage of the analysis is to take a reference case

and thoroughly examine every aspect of the output data.

6.4 Discharge structure

The structure of the equilibrium discharge produced by the code is now presented.
The features are presented in three forms within this section; firstly, contour plots.
These allow a general picture of the condition of the three species spatially within the
discharge. While contour plots are attractive and allow for a macroscopic understand-
ing of the physics, they necessarily contain too much information and are difficult to
interpret and analyse for specific detail. Hence the other two subsections that present
the discharge contain firstly axial centreline plots of key results, followed by some
radial cuts. While axial centreline plots are perhaps the most powerful way to present
these results, it must me remembered that due to the nature of the code, it was hoped
that some sheath structure might be captured. This, of course, is primarily present
on the cathode insert surface and so radial cut plots are of great value here, although
the radial structure at the tip and in the plume are also of interest.

Contour plots of species densities are contained in figures 6.11, 6.12 and 6.13 for
electron, ion and neutral species respectively. These plots serve to give the best
qualitative view of what the computer simulation predicts for the discharge structure.

The first figure (6.11) shows electron density. The colour-map is on a log scale.
The disturbance or noise in the region adjacent to the cathode outer face near the
radial boundary is due to insufficient particle sampling statistics. In essence, the elec-
tron density is predicted to be so low here that the model tends not to provide many
particles for data sampling. This is expected and a natural consequence of attempting
to model a flow with very large density variations. The highest density occurs in the

space charge limiting wall sheath attached to the cathode surface, but there is also a
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Figure 6.12: Contours of ion number density for the reference case discharge. Note
log scale colourmap.
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Figure 6.13: Contours of neutral number density for the reference case discharge.
Note log scale colourmap.

region of high plasma density extending radially across the cathode interior just adja-
cent to the tip. This region of plasma density greater than 10%° m~* extends around 5
mm inside the cathode. An area of similar size has been proposed by several authors
[96], [34] although its existence has never conclusively been demonstrated previously.
The presence in this plot of the so-called emission region, first introduced by Siegfried
and Wilbur [96] as part of a theoretical model of the hollow cathode, can certainly
be interpreted as being a successful resolution of the internal hollow cathode plasma.
Comparison with experiment is difficult not least because measuring cathode internal
plasma density experimentally is a difficult task. Even so, the plasma density within
this region is within experimental error (the peak on-axis density, at around z=9 mm
is greater than 2x10%° m~2) of the predictions of Rudwan [88], although experimental
predictions under these conditions are consistently a little higher, sometimes more
than 102!, The data of Rudwan was obtained by examining the cathode axially using
spectroscopy. This means that the values given are actually integrated axially long
the length of the cathode and adjusted. Additional uncertainty in experimental data
is introduced by the fact that the value varies by up to a factor of 4 depending on
the spectroscopic analysis technique used; in this case either local thermodynamic
equilibrium (LTE) or collisional-radiative (CR). It is not particularly useful to make
absolute comparisons such as these at this stage; particularly when the experimen-
tal data is so sparse and potentially inaccurate. Even so, it is a good sign that the

computational results fall within the reasonable range set by experiment.
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Figure 6.14: Contours of electric potential (V) for the reference case discharge.

The emission region can also be seen very clearly in the contour plot of ion density,
fig. 6.12, again using a log scale colour-map. Here, the high density region can clearly
be seen. Iigure 6.13 shows the neutral gas density, from which, in comparison to the
ion plot, it is possible to deduce that the ionisation fraction (n;/n,) will only be a
few percent at the maximum point. This highest ionisation fraction region is located
in the main cavity of the cathode, adjacent to the inner face of the tip: z = 10 mm.

Another feature of the contour plots is the dense ion sheath region located on
the downstream face of the cathode. This is caused because this ion face has a
low recombination fraction meaning that ions are not neutralised, but rather forced
against the face by the exterior electric potential configuration, see contour plot fig.
6.14.

Figure 6.13 shows a plot of neutral Xenon density. Notice that qualitatively there
is no significant deviation from the plots of neutral density shown in the previous
chapter. From these plots it appears that the cathode interior plasma is nowhere near
fully ionised; which is not to say that the plasma density is not similar to that pre-
dicted experimentally. From these results it could be suggested that authors who have
asserted that the cathode interior plasma is nearly fully ionised simply underestimated
the magnitude of the neutral gas density.

Finally, figures 6.15 and 6.16 show contours of current density magnitude |j| (al-
though [j| =~ |j.|) and induced magnetic field. The data plotted are those directly
calculated and used in the simulation to affect particle motion — not post processed
from u,, u; and n.,n;, rather using the real simulation data for n., n;, ue, u;. Clearly,
the fast moving electrons in the plume, but also to some extent in the tip, generate
very high current densities. Bear in mind also that in the plume the electrons and ions
have drift velocities in opposing directions further enhancing the current density. As
expected then, a strong magnetic field is induced, the peak near the axis in the plume
exceeds 3 x 1073 T, 30 gauss, although it is also interesting to note the the magnetic
field reaches around 1072 T (10 gauss) just inside the cathode. Since the azimuthal
fleld is negative (anticlockwise) and the electron drift velocity is predominantly posi-

tive in Z, it is clear that what we observe in the plume is a classic z-pinch plasma. The
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Figure 6.15: Contours of current density |j| for the reference case discharge.
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Figure 6.16: Contours of azimuthal induced magnetic field By for the reference case
discharge.

presence of the induced magnetic field tends to lead to a radial force on the electrons
with positive u, (and u, >> u,) in the direction of the z axis. The presence of the
field pinches the electron flow toward the axis, increasing the on-axis density. This in
turn leads to a larger current density j, and correspondingly stronger magnetic field.
It is also true that ions formed by ionising collisions outside the cathode will, due
to the potential gradient, drift with a negative u,, and experience the same pinching
toward the axis. This is not as pronounced in the case of ion density since the ions
are much heavier so the characteristic distance over which the ion dynamics would be

affected by the magnetic field (effectively the Larmor radius) is far less.

6.4.1 Axial structure

The axial structure of the discharge is presented in plots containing data of the three
species (electron, ion and neutral, respectively) in density, temperature, axial mean
velocity, current density, neutral pressure and plasma potential. On all of these plots
that follow, the two vertical lines indicate the position of the cathode tip; the inner
and outer faces located at z = 10 mm and z = 11 mm respectively.

Figure 6.17 that shows the densities of the three species confirms the picture
presented in the contour plots. Upstream of the cathode tip, the electron and ion
densities are identical, indicating that we have a quasi-neutral plasma. There is also
a positive density gradient in the plasma, including a peak density region extending

close to the inner face of the tip, the density exceeds 10 m~3 — the emission region.
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Figure 6.17: Axial centreline number density of the three species for the reference
case discharge

In the far upstream the space charge limiting sheath exists as before, albeit somewhat
weaker due to the presence of a low density plasma in the main channel of the cathode.
Immediately downstream of the tip, the electron and ion densities diverge implying
a loss of quasi-neutrality. This is the axial sheath that exists due to the presence of
the anode: electrons are drawn from the internal plasma to the anode, while ions are
repelled back into the interior plasma. The electron density profile in the tip is to some
extent what would be expected due to the conclusions made previously regarding a
z-pinch structure to the sheath. In the region of maximum magnetic field (z > 15
mm), the pinching effect leads to a rise in on-axis electron density. This cannot be
seen in the ion profile, although based on the comparative ion/electron mass, it is
quite reasonable that the electron dynamics be guided my the magnetic fleld while
over this scale, there is little disturbance in the ion density.

As expected, due to its comparative magnitude, the neutral gas density is not
altered significantly from non-discharge flow (compare to fig. 5.13 in the previous
chapter). The gradual negative gradient exists as before.

The next triplet of axial centreline data plots (fig. 6.18) contains temperature
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measurements for the three species. Recall from section 3.1.1, table 3.1, that temper-
ature as directly sampled from a particle simulation is simply (m(v? — v2)/3k), where
v is the mean (stream) velocity in a cell and vg is the root mean square of the velocity
in a cell. This expression of course provides temperature in the correct way for the
case of a purely Maxwellian distribution of particle velocities from which to sample.
The exact meaning of the expression when a Maxwellian distribution is absent is not
well defined, although of course for a non-Maxwellian velocity distribution, neither
is the term ‘temperature’. The degree by which any or all of the species velocity
distributions diverge from the Maxwellian is examined later and further examination
of this matter can be found in the discussion, later.

The electron energy is consistently close to 0.8 eV within the cathode, while the
energy in the exterior (ionisation) region rises to a peak near 1.5 eV. These energies
are certainly consistent with experimental estimates: for a 5 A Xenon discliarge in a
similar geometry, Rudwan [88] gives a value of 1.12£0.05 V. It must be remembered.
however, that this value is an average integration of the electron energy from outside
the cathode, so much include some contribution from the temperature in the plume. In
the cathode exterior, adjacent to the anode, energies in the 1-2 eV range are predicted
by the code. This is also consistent with experimental findings: the majority of reliable
experimental data predicts electron energy in the 1-2 eV range within the cathode
plume. Crofton and Boyd [27] for instance, measures the electron temperature in a 16
cathode plume to be 1.4 £ 0.1 eV. The ion species seem to be in thermal equilibrium
with the neutral gas. This is not unexpected because the resonant charge exchange
cross section is very high, while the ion density is at least an order of magnitude less
than the neutral density. Due to the comparative importance of the CEX o, ions
will most likely spend most of their time colliding with neutrals while in the interior.
In the neutral density region immediately outside the cathode, there is a very hot
peak in ion temperature; it is reasonable to suggest this is where the majority of the
ionisation is taking place, and that there is large energy transfer from electrons with
large drift velocity. Of course, ionising electrons will have drift velocities in excess of
12.1 eV (Xe), so such energy transfer seems acceptable. The neutral temperature is
largely as expected, although it is work noticing the heating of the neutral gas in the
far plume (z > 15 mm), presumably due to the dense, on axis electron pinch. The
neutral gas inside the cathode remains approximately in thermal equilibrium with the
cathode surface. This is a somewhat important result as in important 1-D cathode
models (Siegfried and Wilbur [95] for example), this is assumed to be the case.

Another condition of all three species that is key to building a picture of the axial
physics of the cathode is axial mean velocity. This is plotted for the three species in

figure 6.19, as usual in vertically descending electron, ion, neutral order. Here we see
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Figure 6.18: Axial centreline temperature of the three species for the reference case
discharge, see note in text regarding calculation of temperature. The sudden drop on
the downstream value represents the anode: no temperature is recorded here. The
drop in temperature is not part of the modelled physics; it is a plotting anomaly.

very large electron and ion velocities associated with the acceleration region outside
the cathode, near the anode. Although perhaps difficult to see on this scale, it 1s
also true that there is a significant positive axial electron velocity throughout interior
of the cathode. The ion gas within the cathode is almost stationary axially; there
is no significant axial ion velocity within the heart of the emission region. This is
expected: the ion velocity immediately downstream of the tip is large and negative.
The ions are confined to the cathode by exterior conditions. Finally, we see a sustained
positive axial velocity in the neutral gas within the cathode, followed by the customary
expansion in the tip. The expansion is rapidly curtailed in the exterior because of the
presence of the anode, and the introduction of neutral boundary gas.

The final triplet of axial plots show some more derived characteristics of the axial
structure: pressure, current density and potential. Thankfully, in subplot 6.20-1, a
negative pressure gradient can be seen within the cathode (the plot uses a logarithmic
y-axis scale). This means that that the high interior axial neutral velocity seen in fig.

6.19-3 can be sustained.
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Figure 6.19: Axial centreline mean velocity in the axial direction of the three species
for the reference case discharge. The sudden drop on the downstream value in the
upper plot represents the anode: no data is recorded here. The drop in temperature
is not part of the modelled physics; it is a plotting anomaly

The second subplot of figure 6.20 shows current density, plotted on the centreline
assuming zero radial and circumferential velocity (u, = u. = 0) so that j = j.z only.
This is an important plot to show as it demonstrates the region of maximum induced
magnetic field due to the axial current flow. Within the cathode, for the duration of
the emitting region and tip, the current density increases monotonically. Next, the
on-azis j, falls a little, presumably due to the tip expansion. Note that the induced
magnetic field close to the tip is weak compared to that in the fully developed plume.
Hence, as we proceed downstream and the z-pinch plume develops, the on axis current
density increases. Such deviations are not inconsistent with the net current flow in the
simulation. If the current density is integrated radially at any point along the z-axis,
the result is consistent in terms of the net current flow in the simulation. Finally,
the lower plot shows the plasma potential, demonstrating that the potential in the
cathode interior is negligible compared to the gradient in the exterior, generated by
the anode. To better examine and understand the interior plasma potential, it is

useful to now examine radial profiles of data.
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Figure 6.20: Axial centreline plots of current density — e(n;u; — nou.), neutral scalar

pressure and plasma potential for the reference case discharge
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6.4.2 Radial profiles

Radial profiles are particularly useful in the case of these results. Not only can the
provide a ‘cross-section’ of areas such as the plume, more importantly, they allow
for the sheath structure of the plasma attached to the cathode insert and tip to be
examined. Remember however the comments made previously about the modifications
to the permittivity in the stability section. This means that the sheath sizes will not
be physically realistic, even though we anticipate that the fundamental physics is
retained.

Figure 6.21 shows radial cuts of electron density at z positions listed above the
individual plots (in mim) radially, while figure 6.22 shows radial cuts of ion density.
Near the wall, we expect these values to differ significantly; this is of course how the
sheaths are formed in any case. Notice, the plot at 10.8 mm extends only 0.5 mm
on the z-axis; this is because z = 10.8mm is in the tip, of radius 0.5 mm. For ease
of reference, plots are referred to as subplot 1-6, where plots 1,2,3 are the top three
reading left to right, 4,5,6 are the lower three in a similar way.

The first plot is very similar to those seen previously in the space-charge lim-
ited electron-only discharge. As could be deduced from the contour plots, near the
upstream boundary, space charge limitation is still present. Here, for instance, com-
paring subplots in figures 6.21-1 and 6.22-1 we see that the ion density is the same as
the electron density away from the r = 1 mm wall sheath, but the sheath is still space-
charge limiting. This can be further confirmed by examining the plasma potential;
recall that if the potential is negative then current flow is inhibited so we have space
charge limitation. Figure 6.23-1 shows just this. There is a sharp drop in potential
within the sheath, followed by a largely flat region in the main channel. Notice that
this does differ somewhat from a pure electron discharge in a vacuum, which tended
to have a monotonically decreasing plasma potential moving away from the wall (—r
direction). In 6.23-1, the plasma potential is somewhat altered due to the presence of
the low density quasi-neutral plasma in the main channel.

Subplots 2 and 3 are within the emitting region of the cathode. Here, the plasma
potential (6.23-1,2) rises sharply adjacent from the wall, serving to extract the current
emitted without allowing electrons to return to the cathode. Near the centreline, a
flat potential profile prevails. accompanied by a quasi-neutral plasma. This sheath is
generated by the charge difference near the wall, figs. 6.21-2.3 and 6.22-2,3. Notice
that the peak ion density (on the wall) exceeds 10?! m™3, while the peak electron
density does not. The insert wall is unable to provide enough electrons to neutralise
the sheath as they are immediately drawn away from the wall and downstream through
the tip. It is then possible to conclude that the emission at a point like this is

saturated. In other words, the size of the emitting region seems as though it must
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Figure 6.21: electron density: Radial cuts at various points axially (see individual
plot title) showing electron density, reference case discharge.

expand upstream, completely saturating the insert emission current, until it is able to
meet the anode current. The validity of this hypothesis is further considered in the
discussion.

Further downstream, in the tip, the sheath type is again very different. Although
the tungsten tip emits some current, the work function is more than 4.5 eV. This
means that at the same temperature and under similar electric fields, the tip will
emit orders of magnitude less current compared to the insert material. Hence, the
electron density on the tip is effectively zero. Strangely, however, the ion density 1s
quite high near the tip. It is possible to conclude that the reason for this is that
there is a large supply of ions (as is the case due to the intense ionisation rate nearby:
just outside the cathode) and also because the plasma potential in this region is
strongly influenced by the proximity of the anode. See figure 6.23-4 showing plasma
potential. Here, what looks like an emitting sheath has formed, but on the surface

of the tungsten tip. It is more likely that the high external potential caused by the
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Figure 6.22: ion density: Radial cuts at various points axially (see individual plot
title) showing ion density, reference case discharge.

anode is creating this structure. The result is that ions are rapidly drawn toward the
cathode creating a region of intense ion bombardment on the tip surface. Such an
effect can be qualitatively said to exist in experiment because authors frequently note
that the cathode tip glows under some circumstances [87].

Within the plume, away from solid surfaces, there are no significant radial sheaths
to observe; the plasma is close to quasi-neutral throughout. Indeed, far from the
cathode, the electron and ion densities are equal (figures -6), but in the fifth figures
of density, this is not quite true. Examining figures 6.23-5,6 showing plasma potential
shows a dip in potential toward the centreline. This could be attributed to a number of
effects, although a likely explanation is that due to the z-pinch effect show previously,
there is little opportunity for radial electron diffusion in this region: there is an
electron beam emitted from the cathode. In fig. 6.22-5, it can be seen that there
exists a radial gradient at r = 0. This is not expected and should not be the case.

The most likely explaination of this relates to an interation between the magnetic and
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Figure 6.23: Plasma potential: radial cuts at various points axially (see individual
plot title) showing plasma potential, reference case discharge. Cathode (at z = 1 mm,
plots 1-3 and z = 0.7 mm, plot 4) is at 0 V.

electric field solutions near r = 0. A solution to this may be to use a higher order
scheme for the magnetic solution on the axis. or different meshes for magnetic and
electric solvers.

This completes the presentation of radial cuts through the cathode. While these
plots go some way to explaining the structure of the radial sheaths, there still remains
much to be understood. Recall that one of the original justifications for using a
particle model was that some portions of the flow may be non-Maxwellian in velocity

distribution; such regions are now investigated.

6.4.3 Velocity Distribution Functions

Finally, as was the case with the analysis of the neutral gas flow, it is possible to
actually examine the particle velocity distributions. The analysis of contour plots,

axial and radial cuts has been somewhat conventional in traditional CFD terms until
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this point. It is however very unusual to be able to examine the particle velocity
distributions in this way: this is a unique advantage of direct particle simulation over
continuum models. Recall that the plots show two pieces of information: the distrib-
ution sampled directly from particles in the simulation (data points), the Maxwellian
distribution as per the mean velocity and temperature sampled for all particles. Start-
ing top-left, in a clockwise direction, the four plots show axial, radial and azimuthal
velocity. followed by the energy distribution. Above the plots are shown various
pleces of auxiliary information such the stream velocity. In the lower-left plot, that
of azimuthal velocity, stream velocity is shown and is generally non-zero. This is
counter-intuitive since it has already been stated that the problem under considera-
tion is assunied axially symmetric. In fact, non-zero circumferential velocity is simply
a statistical phenomenon: notice that the uy is generally at least an order of mag-
nitude lower than the minimum of (u,,u,). To within statistical sampling accuracy
then, the azimuthal velocity s zero in all species.

The following figures show electron and ion velocity distributions in three di-
mensions plus velocity magnitude distribution at two sample points: one within the
cathode in the main emitting plasma (at z = 5 mm) and another at z = 12 mm,
r = 0.2 mm. This second point is approximately at the point of maximum current
density, located in the heart of the plume and ionisation region.

The plot of electron distribution within the cathode is shown in fig. 6.24. In all
cases, the distribution of velocity agrees well with the classical definition. Deviations
from the Maxwellian are only observed near zero, particularly in the radial case.
Recall that the emitted energy distribution (§2.3.1 is an odd tail of the Fermi-Dirac
distribution, with few electrons with very small energies. This means that although
Coulomb collisions, electron-neutral collisions and the existence of a quasi-neutral
plasma in the PIC model have tended to pull the electron vdf into a true Maxwellian,
the influence of the emission energy remains in the low numbers of very low energy
electrons. This effect can be most clearly seen in the axial distribution. The radial
distribution contains deviations presumably to to the electron-sheath interaction.

Figure 6.25 again show electron velocity distribution, only this time in the plume.
[t is immediately obvious that the axial distribution is significantly shifted to the right,
due to the natural drift velocity of the electrons toward the anode. It is also true that
the axial simulated temperature is lower than the classically predicted temperature.
This can be inferred by the fact that the computed distribution is ‘thinner’ than the
classical one. Another interesting feature is the absence of higher energy electrons in
the azimuthal direction. The only natural explanation to this is that the magnetic
field is tending to restrict swirl in the model. Thankfully, this is a symmetric effect,

because where it not, significant swirl instabilities may have occurred.
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Figure 6.24: Velocity distribution plots of electrons in the cathode interior, at z = ¢
mm.
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Figure 6.26: Velocity distribution plots of Xenon ions in the cathode interior.

Considering the ions, fig. 6.26 shows ion velocity distributions for the cathode

I axially. The numerical

interior. Here, there is little drift velocity, only -17 m s~
simulation fits well with the classical Maxwellian distribution plots. This is to be
expected because the collision rate between neutrals and ions is high and the neutral
gas is close to being a continuum fluid in Knudsen number. This means that it is
likely that due to ion-neutral collisions, the two will be of a similar temperature and
tend toward a classical Maxwellian. The only deviation from the natural case occurs
in the radial. most likely due to the presence of the radial sheath.

Finally, fig. 6.27 shows velocity distributions of the ions within the plume. This
plot is completely different compared to the interior case. Because the neutral density
is very low in this region there is little neutral ion interaction. In addition, many ions
sampled at this point may be newly created ions due to ionising collisions between
electrons and neutrals. The axial plot is very interesting. It is clear that the ion
drift velocity is very strongly toward the cathode; this is due to the positive potential
gradient present in this region. In addition, the distribution is non-Maxwellian.

The majority of the ion gas is observed with a strong negative axial velocity: these
are the ions heading upstream toward the cathode. A final note when considering the
axial distribution is that the temperature — in qualitative terms the ‘width’” — of
the distribution is very large axially. The most reasonable explanation for this is
that most of the momentum involved in the ionisation is axial, so a large fraction

of the resulting redistribution of momentum that occurs during ionising collisions is
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Figure 6.27: Velocity distribution plots of Xenon ions in the cathode plume.

found in the axial direction. Hence, the large, hot distribution in the negative axial
velocity is due to newly formed ions from ionising collisions. Similar trends are seen
in the radial and azimuthal distributions. Considering the radial plot, we see that
the distribution is broadly shifted positive, implying, as expected, that the ion gas
created by ionisation is expanding radially. There is however a peak region for slow
ions that is shifted negative radial. First, we must ask: what is the origin of these
cold ions? The answer must of course be that they are the product of CEX collisions.
But what of their motion? This is naturally due to the presence of the magnetic
field. Recall that ions with low radial velocity but very high axial velocity will tend to
be pinched toward the central axis. This explains the negative radial velocity in the
figure. In the final plot, that of azimuthal velocity, we see that there is again a peak
non-Maxwellian density region corresponding to low ug ions. Again, the origin of the
peak of cold ions is most likely due to charge exchange collisions. This is most likely
due to the magnetic pinching effect on low radial velocity ions and the interaction

between velocities in the axially symmetric particle mover.

6.5 Current and Mass flow rate

When conducting hollow cathode experimentation, once the cathode is working. the
next step is always to run a voltage current characterisation. This indicates that the

device is operating as expected, although the results can often be obscured by spot
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to plume transition phenomena. It seems logical then that the first this to do with
a numerical model of a cathode is to run a characterisation at a couple of different
propellant flow rates across a range of currents.

Under some conditions, it is difficult to associate a particular mass flow rate as
being either spot or plume mode (since all very high current discharges tend to be
spot in any case), a ‘high” and ‘low’ mass flow rate are chosen to generally represent
‘spot” and ‘plume’. This is a common assumption. Of course, it may be the case that
the numerical model operates entirely in one mode; as has been stated, then cause for
the mode transitions in cathodes is still not understood.

In a very general sense then, the two mass flow rates are chosen refer to val-
ues at which plume and spot modes have been observed for the propellant under
consideration[88]. Hence, 1 mg s™! and 3.29 mg s™! Xe; the reference case presented
previously used m = 1 mg s~! Xe. The cwrrent range is chosen to be similar to
that which experimental researchers might use when characterising a hollow cathode,
namely 5 to 20 Amp in 5 Amp intervals.

This section now proceeds to examine the current voltage relationship before a
presentation of the variation in plasma conditions with current and mass flow rate.
First however, a brief note on the mechanics of recording current from an inherently

stochastic simulation.

On the accuracy of recording current in stochastic simulations

A note is required to cover the accuracy and error in the values of current and voltage.
This may seem strange in the case of a numerical model: on face value, if the current
is set to 15 A. say, then exactly 15 A might be expected to be drawn. This is not true
for stochastic particle based models! Figure 6.28 shows a time history of both anode
current (left axis) and anode voltage (right axis) for the reference case conditions (20
A, 1 mg s™!). This plot is also an excellent judge of the level of equilibrium present
in the discharge. The final values recorded in this case where 32 V and 19.98 A. The
noisy trace is that of current. This line rises rapidly during the startup to a current
of nearly 30 A after less than 0.1 ms. This is the phase where the cathode interior
is filled with ions and the internal emitting plasma forms. The internal density is
then regulated: since the anode is receiving too much current, the voltage drops from
the initial condition of 100 V to as little as 25 V. The discharge comes broadly into
equilibrium in terms of macroscopic currents after around 0.2 ms. Of course, flow
conditions with longer characteristic periods such as temperature may take longer
than this to reach equilibrium.

The noisiness of both lines in fig. 6.28 is due to the stochastic nature of the

simulation. An increase in computational particles would have the effect of smoothing
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Figure 6.28: Time history of anode current and voltage for the reference 20 A discharge
—1

case, Xe gas at 1 mg s
the trace. Regardless of this, it is possible to measure the average current and voltage
and write the result. Sampling of this average is generally done during the last 20
% of the run time available in the simulation, which, in the context of the figure
nieans that sampling begins at around 0.6 ms and continues to the end. In the case of
this specific run, this period consists of 10,000 time-steps with samples taken on each
time-step. Clearly, this is the origin of the noise. We could simply take the precaution

of sampling anode current and voltage data at wider intervals.

6.5.1 Current-Voltage

Figure 6.29 shows a current voltage plot for the two mass flux conditions. At low
mass flow rate (‘plume’). we see a positive current-voltage characteristic; voltages
are similar to and well within the range expected based on experimental data. The
positive gradient is also expected for the low mass flow plume condition. In the high
mass flow rate (*spot’) condition, a slightly negative current-voltage characteristic is
observed, and the anode voltage remains lower than the plume mode case. This is
all consistent with cathode behaviour under experimental conditions. In the case of
a real hollow cathode, results such as these would tend to suggest a valid setup.
Another feature of the IV plot is the absence of any unexpected trends. Often,
in experimental IV plots of cathode behaviour, spot to plume transition may occur
within one current sweep. This is intriguing: on the one hand, it may simply be that

there is insufficient data points in fig. 6.29 to show spot to plume transition. Perhaps
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Figure 6.29: Current-voltage behaviour of the cathode using Xenon at two different
mass flow rates (‘plume’ and ‘spot’ conditions).

the two 7h cases are simply well within spot or well within plume. This seems unlikely
however because the current range is very large in cathode terms. If one subscribes
to the hypothesis of Rudwan [88], however, then we should expect that with this
configuration, there should be no spot to plume transition at all. This is because
Rudwan proposes that transition phenomena are a function of large scale exterior
plasma effects that form when using a hollow anode located at least a few centimetres
from the cathode. Hence we should definitely not see transition. Unfortunately, as
was discussed in the introductory chapters, such matters are still poorly understood
so it is difficult to draw firm conclusions about the validity of the code based on the
absence or otherwise of transition.

This completes the presentation of the current-voltage characteristic of this simu-
lated cathode. It was included for completeness since a reader of any hollow cathode
research often expects the ubiquitous I-V plot; however from the perspective of this
research it provides little useful information bar a cursory indication of the validity of
the model. What it is possible to do now is to investigate how the plasma conditions

inside the cathode scale with current and mass flow rate.

6.5.2 Plasma conditions

Using the same results then to those that provided the I-V characterisation (fig. 6.29),

it is now possible to show the effect current and mass flow rate changes have upon the
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Figure 6.30: Cathode internal (i.e. reference position A) plasma density as a function
of current for two mass flow rates, 1 mg s~ (—) and 3.29 mg s~ (——). The data are
normalised to the 10 A, 1 mg s~ ! case for each species.

plasma itself. Considering first the interior plasma, in terms of density 6.30 shows the
species densities. The general trend for heavy particles is for the density to increase
with mass flow rate. Considering the first two plots (a) and (b), (that show electron
and ion densities), it is clear that the internal density does not vary significantly
between the two mass flow rate cases. This is unexpected: it would seem logical for
the plasma density to rise in the case of a higher neutral flow rate. Plot 6.30(c) shows
that the neutral density is generally at least a factor of two higher for the 3.29 mg s
case compared to the 1 mg s™! case. There is also an anomalous result in the electron
density, as the peak value occurs at the 10 A point, rather than (as is the case for
the heavy particles) as expected at 20 A. Remember that the internal sample cell is
in the maximum density emitting region near the emitting sheath, so if the sheath is
changing size with current (as would be expected), this might explain the anomalous
electron density.

Figure 6.31 shows plots of temperature as a function of discharge current. Con-



sidering first the electron temperature, fig. 6.31(a), there is a strong positive gradient
in temperature. At both m conditions, the electron temperature rises with discharge
current. This seems consistent based on the analysis of the previous figure showing
electron density: since the density seenis not to vary to a great extent in this region,
higher currents must then be due to larger electron drift velocities. A higher drift
velocity would then naturally imply a greater level of electron heating. The variation
in temperature is over a wider range than might have been expected; the range is
between a minimum of approximately 0.6 eV up to a maximum of around 1.5 eV
at 20 A. Such a gradient is unexpected as it is generally assumed from experimental
studies that the electron temperature remains at around 1 eV. Considering next the
ion temperature, it is clear that higher discharge currents lead to cooler ions. Such a
result is quite counter-intuitive, but there are certainly explanations. A possible ar-
gument is that since the ions are typically at a temperature higher than the neutrals
there is a heat flow from the ions to the neutral (that is particularly true due to the
frequency of charge exchange collisions). Hence given that (a) the heat capacity of
the neutral gas is very large compared to the ions because of the neutral density and
(b) there is a considerable rise in neutral density with discharge current, it is possible
that the neutral cooling effect on the ions actually increases with discharge current.
Such a hypothesis is of course strongly based on the assumption that the heat flux
between the ion and neutrals is closely related to neutral density. The small rise in
neutral temperature with discharge current shown in fig. 6.31(¢) would support such
a hypothesis.

Before considering the plume conditions, let us first recall the key findings in terms
of the internal plasma. The electron density shows an unexplained peak at 10 A, while
there is a strong positive gradient in electron temperature with discharge. The heavy
particle densities rise monotonically with current at both mass flow rates, while there
is an anomalous cooling of the ions with current density and a heating of the neutrals.
This is possibly explained by considering the heat flux between the species and the
comparative importance of CEX collisions.

It is interesting to note that the trends in plasma conditions for the internal plasma
did not seem to be particularly perturbed by the variation in mass flow rate (with
the exception of the neutral density, of course). When considering the plume density,
figure 6.32, we observe a monotonic rise in density with current for all species at all
mass flow rates. It is also shown that for all species, the density in the high mass flow
rate case is higher than the low mass flow rate (recall that the data are normalised
to the 10 A, 1 mg s™! case) — again this is expected. What is perhaps not expected
is that the ion density is generally a factor of 1.5 greater in the high mass flow rate

case, while the electron density is only around 1.2 greater. This implies that the axial
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function of current for two mass flow rates, 1 mg s~! (=) and 3.29 mg s~ (——). The
data are normalised to the 10 A, 1 mg s~ ! case for each species.

sheath in the plume is strengthening with increase in mass flow rate. In the case of
the neutral flow, a similar trend to that of the internal gas is seen, with the high mass
flow rate case rendering a neutral plume around a factor of 2 denser compared to the
low case. The neutral density also increases with current, implying that the neutral
containment near the cathode, presumably due to ion collisions, occurs in the plume
as well as within the cathode. It seems that a denser neutral plume is caused at high
current. This is of course important because the ionisation rate in the plume is a
function of neutral density, so in some senses, at high current, the ion compression of
the plume may lead to higher a ionisation rate.

Figure 6.33 shows plots of temperature in the plume as a function of mass flow
rate. In all cases, the variation in temperature is very little, particularly in the high
mass flow rate case. In the heavy particles, the higher mass flow rate is associated
with an increase in temperature as a function of discharge current, although this

trend is at most around 10%. Interestingly, however, in the case of the electrons, the
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temperature is slightly higher at the lowest current setting at both mass flow rates.
This contradicts some experimental results, Rudwan [88], and is hence considered in

greater detail during the experimental comparisons found in the following chapter.

In summary, the plume plasma at low mass flow rate behaves much as expected[27]:

there is a rise in density associated with higher currents, while there is very little

temperature change. No spot-plume transition was found to exist, although this was

not unexpected due to the geonietry of the simulation.
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6.6 Tip radius

As was the case for the neutral flow, it is expected that the tip radius of the cathode
will have a significant effect on the discharge characteristics. Four different values
are run, ranging from the minimum realistic radius of 0.3 mm, 0.5, and 0.7 mm, and
finally 0.9 mm. Cathodes are not typically run at 0.9 mm as this is very close to a
no-tip case.

In all cases, the simulation converged to an equilibrium state. Figures 6.34 and
6.35 shows plots of density in the cathode interior for all three species as a function
of tip radius. This may also be compared to a similar plot in the case of a neutral
only flow, fig. 5.25. For neutral Xe atoms the trend is very similar to that of the
neutral-only flow. The ion and electron trend is also of the same general character as
the neutral plot. In all species, the trend is for the density to decrease monotonically
with increasing tip radius. This is of course qualitatively expected since a smaller
tip radius implies less geometric containment of the internal plasma. For a stable
discharge, a higher internal neutral density then implies a higher plasma density: it
appears that the internal plasma density scales with tip radius as the neutral density.
Such a relationship is not unexpected since it is quite reasonable to suggest that the
plasma density in the emitting region rises to a point where the emitting region is
supplying sufficient current for the discharge. This can be further explained: first
of all, suppose that the size of the emitting region is strongly related to a pressure
balance between between the internal neutral flow and ion flow from the cathode
exterior into the emitting region. This means that it could be the case that there
is simply a direct relationship between the emitting region density and the neutral
density. Such a hypothesis is of clearly an oversimplification, particularly in the case
of a any temperature variation with tip radius, which it is necessary to examine next.

Species temperature in the interior is shown in fig. 6.35. The first point to no-
tice is that as with the plot of density, temperature decreases monotonically with
increasing tip radius. The neutral temperature does not change significantly at all.
the change being a few percent only. This supports the hypothesis that the neutral
temperature is strongly related to the cathode body temperature, and that neutral-
neutral collisions and neutral-wall collisions dominate the neutral temperature com-
pared neutral-plasma species collisions (at least in the cathode interior). The electron
temperature also does not deviate by a large amount, particularly between the more
enclosed configurations (0.3 and 0.5 mum). The temperature does however drop by
a factor of nearly a half in the 0.9 mm case. Such behaviour could be explained in
terms of the lower density. Perhaps the most interesting effect is the ion temperature,
which is greatly increased. Clearly, in the case of a small tip, and correspondingly

a higher density plasma, the ion temperature increasingly tends toward the electron
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temperature, while in the lower density case (wide tip), the ions are nch cooler.
Such a pronounced trend is unexpected and important because ion temperature (and
hence ion heat transfer to thruster components) is a critical factor in thruster lifetime
and reliability. The validity of this result, particularly since the model assumes an

1sothermal cathode, needs to be considered carefully however.

6.7 Anode position

It is currently a popular hypothesis that the position, type and/or geometry of the an-
ode in a diode configuration cathode discharge has a defining effect on the spot/plume
characteristics (§2.1, fig. 2.2 and [88]. For this reason, it is worth examining the effect
of the anode position has on the plasma conditions. There is however a reason why
this model may not show such an effect in detail due to the compromises made in
choosing parameters. Effectively, the model has been designed and verified to gener-
ate the most accurate reproduction of the hollow cathode internal plasma as possible.
This was because the least is known about the internal plasma, and hence the greatest
utility derived from examining it. Unfortunately, due to the dramatic difference in
density between the internal plasma and plume plasma, coupled with the fact that
particle codes do not tend to scale well over very large ranges of density, means that
we are less confident about the precise plume plasma. In essence, the code is opti-
mised for the internal plasma. but we suppose that changing the anode position most
greatly affects the external plasma. Finally, due to computational constraints, the
range over which the anode position can currently be varied is not great, compared
to that found in experimental studies.

Recall that the anode is simply set to exist on the downstream boundary (i.e. on
the line z = L), so changing anode position is akin to changing the ‘length’ of the
simulation. The default anode position in the reference case is at z = 20 mm (this is
10 mm {rom the inner face of the tip). In order to investigate the effect of the anode
upon the results, it is moved in increments of 2 mm both closer to and further from
the original position; the data points for anode position are: 8, 10, 12, and 14 mm,
expressed as a distance from the inner face of the cathode tip. In general, however,
anode position is expressed in plots in terms of deviation from the reference case Az.
There are no particular computational concerns over this range, although as the wider
separations are modelled, a larger simulation volume is required and compute time
rises accordingly.

All runs of the simulation where found to converge to an equilibrium state. Figure
6.36 shows a plot of anode voltage with anode position. This plot is unexpected both

in the trend, and in the absolute values shown. The trend is simple enough: the
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Figure 6.36: Anode voltage as a function of anode position at a fixed current.

voltage appears to be proportional to anode displacement. This is unexpected as one
would assume that as the anode-cathode separation approaches zero or oo, the voltage
would tend in an exponentional fashion to either zero or a very large value. What
might be expected would be a much shallower gradient, in which case the plot would
seem more reasonable. In any case, although such a result is worrying, it certainly
demonstrates that something significant is happening as the anode is moved. The
next question naturally is: how does the plasma vary with anode position?

A plot showing the variation of species density in the cathode interior and plume
are shown in figures 6.37 and 6.38 respectively. As usual, data are normalised to the
reference case value, and all three species are plotted.

Considering first figure 6.37 it is clear that the variation in internal plasma condi-
tions with anode position is considerable. The neutral density drops as the anode is
moved away from the cathode. This is natural since the extent by which the neutral
expansion is impeded is reduced as Az increases; in other words, a closer anode im-
plies a higher back pressure so that the internal density will tend to be higher. There
is a less pronounced change in internal plasma density, although in the case of most
distant anode, electron and ion densities drop in a similar fashion to the neutral gas.
As before it is natural to construct an argument based on the existence of an emitting
region requiring a constant plasma density to neutral density ratio (or equivalently
ionisation fraction), so if the neutral density drops, a lesser plasma density is required
to generate the same discharge current.

What is now interesting is that the anode position has a comparatively smaller im-
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pact on flow density in the plume (fig. 6.38). Apart from in the minimum case, there is
no change in neutral density, while for the plasma species, density drops monotonically
with increasing Az. The trend in plasma density is clear (apparently little statistical
scatter) and shows a difference in ion density of £10% over the range considered; the
plasma plume is thinning as the anode is moved away from the cathode.

Finally, species temperature in the plume is shown in 6.39. The extent by which
temperature varies is very little, a few percent only rising to a maximum of 5%.
The electron temperature rises slightly with Az, perhaps due to the increasing anode
voltage, while anode and neutral temperature both fall. It is significant to learn then,
that it seems as though the anode position apparently affect the voltage by a very
great degree (at least in this range of Az), that the density certainly changes, while
there is very little change in temperature.

Figures 6.40 and 6.41 show plots of the variation in plume pressure and velocity
for the three species. In both plasma species, there is a consistent drop in pressure as
the anode plate is moved away from the cathode. At the closest position, the neutral
pressure is low, while it tends not to change a great deal at the other positions. It is
difficult to explain why the neutral pressure should be lower in the closest position,
particularly as this corresponds to the highest ion and electron pressures. It is possible
this relates to the exact placement of the plume sample point (i.e. it is moving relative
to the plate at different conditions).

The second figure, that of axial stream velocity, shows that there is a gradual rise
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in electron velocity with anode position. The neutral velocity tends to be unchanged
at all but the closest position. Here, the velocity is elavated. This is consistent with
the plot of pressure: lower pressures corresponding to higher velocities. The trend in
ion velocity is very difficult to explain. This is likely due to a combination of factors,

perhaps relating to the ion sheath attached to the downstream wall of the cathode.

Summary

The results produced by the model that characterise the hollow cathode plasma have
been presented and examined. This concludes the main results section, although the
comparison between the numerical model and experimental data is contained in the

following chapter.



Chapter 7
Discussion

This chapter aims to assess how successful the research has been in fulfilling the ob-
jectives outlined in the introduction. This is done by discussing the results presented
previously in the context of the goals that were set. Additionally, the implications of

the presented results are considered.

7.1 Neutral Gas

The rarefied gas flow within the hollow cathode was examined in detail. The data
presented included a set of numerical studies designed to build confidence in the
results, followed by an examination of the flow structure. Several key parameters
were then examined in twrn, including mass flow rate, cathode tip radius (open area
fraction), the working gas and the cathode temperature. Finally, some comparisons
to experimental data were given.

The discussion of the results initially follows the order of the objectives set out
in the early stages of this thesis. The degree by which the objectives were met are

considered and further questions discussed.

7.1.1 Rarefaction

The objectives set out for the investigation of the neutral flow were three-fold. First,
it was supposed that the condition (rarefaction) of the flow could unique due to a
possible transition between flow regimes. In several of the plots shown in the results
chapter, Knudsen number was plotted for a given parameter, or for different points
within the flow. The code indicates that such a transition is present, as hypothesised
by the first objective of the research. This can be seen most clearly in figure 5.14. The
plot shows the three regions clearly, demonstrating that it is valid to assume a near

continuum flow within the cathode. The flow in the vicinity of the tip — and area that
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should be considered to be very important in providing an accurate description of the
flow ~— is shown to be transitional in Knudsen nuniber (0.1 < Kn < 1). In this region,
slip flow is expected to be significant. Finally, the plume of the cathode is certainly
rarefied. In the case of an expansion to a hard vacuum, it has been shown that within
a 1-2 cm downstream of the cathode, the plume expansion is such that Kn — oc
— the definition of free molecular flow. When a downstream pressure condition is
applied, even that of the interior of a typical laboratory vacuum chamber, the plume
rarefaction is reduced significantly.

The rarefaction transition that has be shown to exist here is important for future
cathode models. In particular, a model that assumes one level of rarefaction through-
out the flow is liable to error. It is however fair to state the the error introduced
by such an assumption is comparatively small and only relevant for models striving
for high levels of overall accuracy. The recommendation that can be drawn from this
finding is that simple models assume a continuum (preferably slip-flow) models, unless
the cathode is (a) exposed to a hard vacuum downstream and (b) operating a very
low mass flow rate. The justification being clearly that the combination of (a) and
(b) can lead to a rarefied condition even upstream of the tip. A final note is that
the rarefaction is amplified if the mass flux per unit area remains constant while the
cathode dimensions are reduced.

A final implication of the flow rarefaction is the possible extension into microfiu-
idics. Indeed, this was the subject of Crawford and Gabriel [25]. It is true say that
since the Knudsen number is the ratio of mean free path to characteristic length, re-
gardless of gas conditions, if the length is sufficiently small, then the flow must become
rarefied. DSMC simulations room temperature, atmospheric pressure air flowing inside
MEMS micro-channels have been completed, for example [73]. A natural conclusion is
then that micro hollow cathodes may be devices whose fluid flow is entirely rarefied.
This is potentially very important because as was seen in the plasma results, then
conventional scale cathode seems to heavily rely on the neutral pressure to contain
the main emitting plasma. A conclusion of this work would be that building a very
small cathode would necessitate an increase in mass flow rate per unit area to retain
the internal pressure. Hence, if it assumied that in all other respects, the cathode per-
formance scales linearly with size, but the normalised (to cathode dimension) mass
flux increases then it must be concluded that the specific impulse must fall compar-
atively. Hence this work predicts that cathode micro-thrusters may under-perform

compared to their full scale counterparts.
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7.1.2 Comparison to Experimental Results

Regrettably, there exists very little experimental data that describes neutral gas flow
within hollow cathodes. The most common data is a measurement of pressure in the
propellant feed pipe to the cathode. This can be compared to the upstream pressure
the code produces. The other candidate for experimental comparison is the results of

Gessini et al. [38], who aims to measure the thrust produced by the cathode.

Upstream pressure gauges

Fearn and Patterson [33] conducted some experiments on a cathode with similar
geometry to the reference case (the cathode used in the later T5 and current T6 lon
thruster). While the experiments presented in [33] were primarily aimed at investigat-
ing stability under high currents, the data are useful because a commercial pressure
transducer was attached to the Xenon feed pipe to the cathode. The authors then
provide results for cathode pressure. They find that the pressure in the feed pipe is
proportional to mass flow rate at a given discharge current. As the current is increased
(they examine currents of 5. 10, 15, 20 and 25 A) the pressure remains proportional
to mass flux, although at a higher discharge current, the same mass flux results in
a higher pressure. It is not unreasonable to suggest that the positive correlation be-
tween discharge current and pressure is due to a heating of the cathode (and hence
the gas). It has already been shown in section §5.7 of this work that an increase in
cathode surface temperature yields an increase in pressure.

Although many aspects of the experiment can be reproduced in the numerical
model (the geometry of the cathode, for example), there are some factors that are
unknown that could significantly affect pressure measurements. In particular, in light
of the discussions previously regarding the difficulty of measuring insert temperature,
it is not known what the insert and feed pipe temperature is. An additional point to
consider is the geometry of the feed pipe where the pressure is measured. It is not
possible to use the reference case data as it is because there is one very important
difference between the geometry of Fearn and Patterson and that used above: in the
experiments, the tip diameter was 0.75 mm. Given the strong dependence of cathode
interior density with tip radius (covered in §5.5), a new set of data is required with the
new tip radius (i.e. 0.375 mm, representing an open area fraction of 0.14 compared
to the cathode interior). This data set covers cases for two mass flow rates (0.63 mg
s7! and 1.0 mg s}, and a range of three cathode temperatures (1300, 1400, 1500
K). This range is chosen because it is not known what the internal wall temperature
is, and such a range covers the extremities of the expected temperature. A final
adjustment to the numerical data is required. The standard T6 cathode has a 20 mm

long insert. The numerical data here is obtained using a 10 mm long insert, so the
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Figure 7.1: Comparison of the experimental data of Fearn and Patterson for hollow
cathode upstream pressure to numerical results for the same cathode geometry. Nu-
nierical data is plotted for a range of insert temperatures and experimental data is
shown for 5 and 10 A discharge sweeps. In the simulation, the pressure monotoni-
cally increases with cathode temperature, so the larger pressure data points are at
the higher temperatures.

pressure should be extrapolated upwards to correspond to the additional 10 mm not
modelled. This extrapolation is valid for two reasons: firstly, pressure exhibits a direct
proportionality with axial position, with a negative axial gradient, obviously. This
can be seen is several figures contained previously in this chapter, see figure 5.27 for
example. Secondly, when the full 20 mm of the insert is modelled, it has been found
that extrapolated pressure line follows the real results very well. The full 20 mm is
is not modelled in the data presented in this section simply because the upstream 10
mm tells us very little, does not significantly affect the rest of the flow and is very
computationally intensive to capture correctly.

Figure 7.1 shows the numerical results plotted alongside the experimental data.
The numerical results compare well with the experimental data, particularly for the
cooler 5 A discharge. It is not expected that the results should be identical because
the numerical data is neutral gas only, while the experimental data is taken during
discharge. The similarity between the results tells us that it is possible that the
presence of the plasma near the tip of the cathode is not severely affecting the neutral
gas dynamics near the cathode entrance. This would support the commonly held
hypothesis that the plasma only extends a few centimetres upstream of the tip. At

the higher discharge current, the experimental data shows pressures higher than are
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achieved even for a 1500 K insert. This does not necessarily imply that the insert is
hotter than 1500 K in the experiment. as the increase in pressure is most probably
due to a stronger heating of the downstream gas as a larger current passes through
it. Fearn and Patterson give data for discharge currents all the way up to 25 A in
133] (the paper primarily covers high current hollow cathode characterisation). At
higher discharge currents still, the pressures are increased, although even at 20 A, the

upstream gauge does not read niuch higher than 4 kPa (at 0.63 mg s™1).

Plume gas dynamic measurements

Of interest downstream is how the thrust varies with 77, because there are some
analytical models against which we can compare the results. Gessini et al. [38] also
provides data from an experimental thrust measurement system; see appendix D for
details of the experimental method. It is easy to compare results with the setup of
Gessini because the configuration of the reference case broadly follows that of Rudwan
88], and Gessini uses the same experimental rig, vacuum chamber and cathode setup
(in both cases the cathode from the T6 ion thruster). The setup is then nearly identical
to the reference case. The exceptions are as follows. Firstly, the Gessini experiments
use Argon as a propellant. Next, cathode temperature is set to 300 K; this is the
thrust calibration test of Gessini, where the cathode is not heated. Finally, the range
of mass flux data taken is 0.207, 0.414, 0.621, 0.734 and 1.01 mg s~! (0.207 mg s™*
Argon is 0.5 Aeq). The data can be found in data/neutral/gessini including the
raw experimental data (thrustreadings.dat) on the CD.

The simplest way of deducing thrust in the numerical model is to measure the
plume exhaust velocity. If the gas is assunied to be stationary on the upstream
boundary (a reservoir condition), then the thrust is simply the product of the plume
velocity and the mass flow rate,

T = mu,,. (7.1)

The question is: what is the exhaust velocity? Figure 7.2 shows a plot of axial velocity
along the centreline of the cathode at reference conditions. After having negotiated the
main expansion, the flow actually slows slightly at a position adjacent to the keeper.
After this point, the flow accelerates to a plateau. It is the mean axial component
of the flow velocity in this plateau region that is equivalent to the exhaust velocity.
Radial velocity is ‘lost’” in terms of contribution to thrust as due to axisymmetry, only
net axial forces may exist.

Given these statements, it is possible to use the velocity measured by the sample
point in the plume as a good approximation to v, in equation 7.1. In addition,
it is possible to compare the code and experimental results to the ideal analytical

result for continuum expansion and for free molecular expansion. Specifically, from
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Figure 7.2: Axial centreline plot of axial stream velocity.

the expression for exhaust velocity (1.12), the thrust becomes

(7.2)

assuming a vacuum downstream conditions so that p./py = 0. Gessini et al. [38] also

quotes the thrust of a quasi 1-D free molecular expansion as

T:m\/f@.
2 m

It is expected that any results should lie between these two results: the continuum

Y
~J
o

S

result should act as a maximum thrust (if we find data points above the continuum re-
sults we should be worried!), while the free molecular result should act as a minimuni.
Of course, since the free molecular prediction is a theoretical maximum thrust for an
expansion of a collisionless gas, it is still possible to have a poorly designed nozzle that
produces less thrust than the collisionless maximum while operating in a continuum
regime. In summary: it should be expected that thrust data lie under the continuum
prediction (because the hollow cathode is by no means a perfect nozzle), and that
numerical results from the code are similar to those measured experimentally.
Figure 7.3 shows both of the above expressions plotted with both the data of
Gessini and numerical results. Both the experimental results and numerical results
show a similar trend to the analytical prediction: this is not surprising; it would be

expected that thrust should be proportional to mass flow rate. There is in fact very
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Figure 7.3: Comparison of numerical, experimental and analytical results for the
thrust produced by cold gas flow in the hollow cathode.

good agreement between experiment and computation. Both seem to indicate a similar
level of underestimation of thrust compared to the continuum prediction. The data
points from the numerical model are consistently within +5% of the experimental
data. Error bars for the experimental data are unavailable at this time, although
initial investigation indicates that they are of the order of 40 uN — equivalent to
approximately #8% for the 1 mg s~ ! case. Based on the error estimate for the
experiment, it is possible to state that the numerical results lie within experimental

error. This serves as an excellent verification of the numerical model.

Conclusions

The second major objective of the neutral gas analysis was to build a numerical model
that is accurately able to predict forces produced by (and within) the cathode. The
data were compared to the data of Gessini for absolute thrust produced by a cold
gas flow through a cathode. Since good agreement was found between experimental
and numerical data, it is fair to say that the model achieves the second objective.
While the evaluation of internal forces is possible, this is often not useful in the
case of cathode engineering since the design limits of the cathode are generally set
to withstand thermal conditions: the device is always heavily over-engineered with

respect to gas dynamic and structural forces present.
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Collaboration with Rudwan: hollow cathode breakdown

During the period of the research, extensive use was made of the neutral gas model
data by Rudwan [88]. The specific data used can be found in [88, appendix B]. As
part of the research, the mininmum voltage for breakdown of the cathode was inves-
tigated. The data were used to plot Paschen curves for the theoretical breakdown
voltage. The use of the data provided by this research by Rudwan was found to be
very helpful in crystallising the arguments put forward for the anomalous breakdown
characteristics of the cathode. The ability use of neutral gas data provided by this
model to construct Paschen curves was important because experimental evidence in-
dicated a ‘severe departure’ from the classical behaviour: this was demonstrated by
comparison of the curves to actual breakdown behaviour. Briefly, Rudwan hypoth-
esises that the primary reason for the departure from classical theory is due to the
Penning ionisation effect. This effect is occurs in a gas mixture and allows for ionisa-
tion to occur at energy lower than would be expected for the primary gas species (the
inert gas). The hypothesis that Barium evaporation from the cathode insert causes a
gas mixture conducive to the Penning effect seems to adequately explain the departure
from classical theory. The reader is referred to the thesis [88] for further information,
in particular the appendix that covers how Rudwan used the data produced in this
research to construct the Paschen curves. Some additional modelling of electric field
penetration into the cathode pre-breakdown was also conducted. This is discussed in

greater detail in the relevant (following) subsection.

7.1.3 Cathode geometry

It is clear that the primary design element to be changed in the cathode is the tip
radius. This is because in any nozzle, the throat area is of critical importance to the
flow. Several plots were shown as a function of area ratio; this is simply the ratio of
tip radius to insert radius, and so ranges from near zero for a very enclosed cathode
to 1 for a cathode with no protruding tip. The results show that the density at the tip
point drops following a e™* form where x is the area ratio, such that for area ratios
larger than around 0.7 the density changes very little. A similar trend is seen for tip
velocity. Indeed, for area ratios larger than 0.5, very little change is seen in the axial tip
speed. That the relationship between area ratio and upstream/tip flow properties was
consistently predictable for all area ratios indicates that under no value of A;/A; does
the flow become supersonic. This was confirmed. A final point to raise is that very
little change was observed in the plume of the cathode. As has been mentioned, taking
experimental measurements of the plume is frequently done partially because interior

experimentation is so difficult. This means that there exists a large body of plume

195



data. Fearn and Patterson [33], for example, provide data points for cathode radii of
0.375 mm and 0.65 mm (area ratios of 0.1406 and 0.4225 respectively) and analyse
cathode operation mode transitions for the two values. What this research indicates
is that if the neutral gas dynamics are affecting the transition characteristics of the
cathode at various tip radii, then the transition phenoniena is either (a) occurring
outside the cathode but comparatively independent of neutral gas effects, (b) processes
that occur inside the cathode that are in some way related to neutral gas interaction
or of course (¢) a combination. At this point, the discussion clearly leads toward
the implication of these results with respect to the various hypothesis regarding the
mechanisms of HC mode transitions. It is perhaps wise, however, to discuss the
findings based on this research relating to operation modes once the full plasma results
have been presented. The reason for the delay of the discussion is clear: the neutral
gas results presented thus far are always susceptible to the argument that the gas flow

may be significantly perturbed by the discharge.

7.1.4 Neutral gas parameters

To conclude the analysis of the neutral flow in the cathode, the effects of altering
various parameters were investigated. The results from these studies led to further
understanding of the onset of rarefaction within the cathode, as well as some detail

regarding the thermal modelling and heat transfer within the flow.

Mass flow rate

A very clear relationship between interior gas density and mass flow rate was found
(fig. 5.20): it was discovered that interior density is proportional to injected mass
flux. The confirmation of this result is important as it can be used to help mass
flux dependence into the basic 1-D models being developed[50 86]. In relation to the
rarefaction of the gas, it was shown that the flow is rarefied for Xenon below 2 mg
s7! (1.48 Aeq) n the tip of the cathode. It had been suggested by some authors [38]
that the gas flow could always be assumed to be continuum (or at least slip-flow)
within the cathode and rarefied/collisionless outside. For low flow rates, particularly
less than 1 mg s7! (0.74 Aeq Xenon), the slip and rarefaction in the interior was
shown to be significant. Of course, such observations are only of relevance to low
mass flux cathode operation: generally when the cathode is used as an ion engine

plume neutraliser.
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Propellant species

Results were provided for flow using three different propellants, Argon, Krypton and
Xenon in ascending mass order. The results matched the rather obvious predictions
very well; in reality, since the mass flow rate was being held constant, but the mass
of the individual species varied between sets, predictions such as higher densities for
the less massive species were found to be correct. Since the cathode temperature
was fixed, and the channel was sufficiently long to heat all the species to the same
temperature, the resulting data showed a fixed fixed temperature, but variable density
and pressure. Higher density and thus pressure resulting from the lighter species. It
was surmised that the power input to the gas from the cathode would be different if
the different species where to reach the same temperature. A plot of wall heat flux
showed this to be true and revealed a common difference with particle based codes
when compared to traditional models. Setting absolute temperature in this way was
found to be simply the most robust, foolproof method in terms of the stability of the

code, despite the apparent disadvantages we see in some results.

Cathode body temperature

The results for neutral flow with different cathode body temperature revealed perhaps
the greatest weakness in the neutral model: that the cathode temperature must be
fixed and uniform. Ironically, however, the necessity during the neutral gas analysis to
fix the temperature led to an opportunity to directly validate the code by comparing
to basic compressible nozzle theory, and observing the v., o VT behaviour (figure
5.29). Upon completion of the results for neutral gas flow it became clear that this
was an area of weakness, so it would clearly be a recommendation for future work to

implement a thermal model. This is of course considered in greater detail later.
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7.2 Plasma Discharge

Following the work done to characterise and investigate the neutral flow in the hollow
cathode, the second phase of the research was to add a plasma model so that the
discharge could be simulated. It was first necessary to assess the degree of stability

present in the numerics.

7.2.1 Numerical Validity

Although it was possible to have some confidence in the validity of the model based on
the study of the neutral model, it was necessary run some addition numerical studies
to build confidence in the results. These studies allowed either for the numerical factor
to be shown to have no effect on the results, or to show the extent by which the factor
might affect the results — an estimate of error.

Although the time-step had already been analysed for the accuracy of the neutral
model, it was of course necessary to re-assess time-step dependence since the PIC
model is intimately linked to it. It was found that the numerical accuracy of the
results is strongly correlated with time-step. However, for the time-steps that where
used for all the results presented, the influence of time-step can be considered minimal.
It was unfortunately impossible to practically run the code at a time-step that we
could be sure of no influence. It was concluded then that the analysis showed that
the peak error in density due to time-step dependence was unlikely to exceed a few
percent, while the error in temperature is smaller than the statistical scatter.

Four different PIC meshes were tried, and it was found that density increased with
larger meshes, although the variation decayed so that for the mesh used to generate
the results presented, there was little difference in density compared to a denser mesh.
In terms of temperature, there was some evidence of so-called PIC ‘numerical heating’,
although again this was mitigated by using a finer mesh. It is possible to conclude
that compared to the other studies completed for the plasma model, the mesh seems
to have the least severe numerical impact on the final results. The magnitude of any
variation in other cases is greater.

Although several compensations were made to the model to effectively remove
the effect of electron mass modification (§3.5.6) it was necessary to test for electron
mass adjustment for two important reasons. First, to verify that the compensations
are correct and second, to judge whether even given correct compensations, the mass
modification would still affect the results. Although it was found that variation in the
data was minimal due to changes in mass modifications, further investigation did show
that the transient behaviour of the model was affected by electron mass modification.

It is possible then to tentatively assume that for steady-state studies, the electron
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mass modification has little adverse effect. However, we know now that it has some
effect, and this must be considered when discussing the findings of later results. That
the transient behaviour is affected by f means that the potential applicability of the

model to the study of hollow cathode breakdown or instability is limited.

7.2.2 Discharge Structure

The structure of the discharge was presented in four sections: contour plots, axial
centreline plots, radial cuts and velocity distribution functions. These allowed the
hollow cathode internal plasma to be examined in great detail. It was found that
the the proposed higher density emission region exists, and that two different types
of sheath exist within the insert section, with a different sheath again attached to
the tip. As expected, it was shown that the plume of the hollow cathode in diode
configuration forms a z—pinch plasma, so that there is a high on axis plasma den-
sity and a sharp drop far from the axis. A significant magnetic field is generated
by such a configuration. It was also found that the plasma species tended to form
Maxwellian velocity distribution functions in the high density cathode interior, while
highly non-Maxwellian distributions where observed in the plume. This was also
expected, see Crofton and Boyd [28] for examples of experimentally measured non-
Maxwellian plume distributions. It is fair to say that there were no major problems
or inconsistencies with the detailed analysis of the results. The major question that
remains is: to what extent are the absolute values presented similar to experimental

data?

7.2.3 Comparison to Experiment

The reference case geometry is effectively that of the cathode from the T6 ion thruster
and is a very popular cathode used by many researchers in experimental work. Perhaps
the best way to gain an initial impression of the similarity between experimental work
and this research is to extend table 2.1 (p. 14) to include the numerical results. Such
comparison tables are often very informative and useful when judging the validity
of a numerical model. This is the case here, although it is also true to say that
experimental data between different authors tends to vary as much as the results
from the numerical model vary compared to experiment. This can be seen in table
7.1.

Considering first the internal conditions, the best match between experimental
setup and numerical setup is that of Rudwan [88]; it is this data that is compared in
more detail to the simulation results later. For the range of data considered, both the

plasma density and energy fall well within the selection of experimental data given.
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Propellant  Cathode m (Acq) Is (A) T, (eV) ne (m™?) Vy (V)
Internal Plasma

Fearn and Phillip (1973) Hg UK-10 (T5) 0.014-0.12 1.5 0.1-0.6 1010 10" 4.5-7.5
Siegfried (1978) Hg SERT-IT 0.1 2.0 0.6 1.5 x 1016 - 4 x 102 4.0-8.0
6.0 0.4-0.6 1017 - 3% 10 4.0-6.0
Alnned Rudwan (2002)  Xe, Ar, Kr UK-25 (T6)  0.1-4 1-5 0.8 10%0 6 x 10?2 -
Crawford (2004) Xe UK-25 (T6) 1-3 520 0.8 10%0 2x 102 1

External Plasma

Csiky (1969) Hg SERT-II 0.05 0.3 1.5-2.0 10'6 - 1007 11
2.0 0.5 10" 10t 11
Siegfried (1978) g SERT-I1I 0.1 2.0 2-D Hx 1016 - 3 x 101 12-28
6.0 0.6 3% 1047 5x 10%  11-12
Singfield (1990) Xe UK-10 (T5)  0.175-0.475 1.1 0.4-2.2 1o data 8-13
Friedly (1992) Xe High 1, 0.37 20 2.0 1.5 % 1017 12
40 2.9 5x 10 1315
60 3.8 6 x 109 15-17
Monterde (1997) Xe UK-25 (T6) 1.67-3.11 5-10 0.3-04 1 x10Y7 5x10"7 ~ 1070 12
Edwards (1997) Xe, Ar, Kr UK-25 (T6)  0.3-1.2 2-15 15 5% 107 — 3% 1018 16-30
Crofton (2003) Xe UK-25 (T6) (.2-24 4-8 1.15 no data 10
Crawford (2004) Xe UK-25 (T6) 1-3 5-20 1-2 1018 V 10" 15-30

Table 7.1: Plasma properties reproduced for comparison with this research. Some of this table was originally complied by Edwards
[31] and has been adapted and extended to include several other, more recent results. Cathodes with names such as UK-25 refer to the
those that accompany RAE/DERA/Qinetiq gridded ion thrusters where the munber refers to the main discharge chamber diameter in
centimetres. SERT refers to the US ‘Space Electric Rocket Test’ program that evolved to provide the NASA DS-1 ion thruster.



Bear in mind however that experimental readings of plasma density in the cathode
interior are typically associated with error bars of up to two orders of magnitude [87].

One thing that is always immediately apparent from glancing at a table such
as this is that the majority of the data is external data. In fact, the table could
be further expanded with external plasma data on hollow cathodes; the ones that
are included are simply a representative set. The numerical data for the external
plasma compares very favourably with experimental data. Perhaps the only major
discrepancy 1s that the numerical values for plasma density tend to be quite high.
This could be explained due to the fact that the numerical data are for comparatively
high discharge currents and also due to geometry considerations. Virtually all of the
experimental data shown were obtained using diode configuration, as of course was the
nunierical data. The difference is that in many of the experiments, a hollow cathode
located in some cases several cni downstream of the cathode were used. The numerical
anode is comparatively very close to the cathode, so geometric containment enabling
higher densities is to be expected. It will be seen in the following comparisons of

experimental /simulation data that this effect may in fact be significant.

Plume magnetic field

Patterson and Fearn [77] provide a plots of current density and magnetic field radially
in the plume of a cathode of similar geometry to that presented in this document.
The data presented in [77] are derived from experimental measurements of current
density radially in the plume. For a discharge current of 15 A, the profiles obtained
are very similar to those generated in the code, while the peak magnetic field, located
at 7 =0.4 mm is given as 6.4 mT. This compares very favourably with the prediction
given by this model that the peak magnetic field is again located at approximately
r =0.3 mm, while the peak magnetic field is 3.8 mT, this can be seen in figure 7.4.

The magnetic field profile compares very well with that of Patterson and Fearn,
although the simulation predicts a slightly weaker field that is marginally closer to
the axis. There are several reasons for this. It should be noted that in Patterson’s
analysis, some assumptions are made to generating the plot of magnetic field from
current density data. In particular, it is assumed that the cathode has an effective
orifice of 1 mm, and further that the magnetic field is zero at the tip (‘there is no
pinching in the orifice’). When factors are considered, it seems that the degree of
agreement simulation and the results of Patterson are very good.

These quality of the agreement of the results of Patterson and Fearn and the
simulation are particularly important for two reasons. Firstly, they demonstrate that
modelling induced magnetism in the plume of the cathode is critical to a correct

cathode model. There was little doubt over this issue for high currents, but it seems
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Figure 7.4: Radial magnetic field profile in the plume. In the simulation, the radial
cut is made at z = 14 mm. Plot (b) is from Patterson and Fearn [77]



that even at 5 A the presence of the magnetic field significantly dictates the plume
structure. The second reason why this comparison is very important is that it acts as
a validation of the code’s magnetic field solution. This is in fact an excellent validation
case because for the exact magnetic field structure to be reproduced requires that the
nmagnetic field equations are solved correctly, but also that the v x B particle rotation

is implemented correctly.

Axially integrated electron temperature

In the recent experiments of Rudwan [88], the electron temperature was measured by
examining the plasma along the central axis, thus resulting in an average integration of
data. Such aresult is very important because it represents non-intrusive experimental
data from within the cathode. The only other example of this is Monterde et al. [63],
and the current work of Pottinger and Gabriel [80]. Here, the data is compared to
values in the simulation. Simulation data is processed so as to come as close to the
experimental method as possible; i.e. the effect of the axial integration is taken into
account. The comparison would tell us very little if a random point on the axis
were to be compared to the data of Rudwan [88]. In fact, since the simulation and
experimental data intersect, a judicious choice of sample point would render an exact
match, but with little scientific value. Hence, the mean of the simulation data is taken
axially. It is expected then that the simulation result will predict a temperature lower
than that of the experiment for one important reason. Specifically, it appears that
the higher temperatures (above 1eV) are found primarily in the plume, and further
that the plume temperature seems to vary little as a function of anode position. In
the experiments, Rudwan has a nominal cathode-anode separation of 40 mm, a factor
of 4 greater than in the simulation. Further. the experiment uses a hollow anode
so the plasma could extend as far as a quartz shield included to protect the optical
diagnostic equipment, located 55 mm from the cathode. It could be suggested then
that the volume of higher energy electrons would be larger in the experiment compared
to the simulation, so correspondingly the experimentally measured temperature due
to axial integration could be higher also.

Figure 7.5 shows a plot containing both the experimental data and simulation data
for electron temperature at a 5 A discharge for a range of mass flow rates (1.0, 1.5
and 3.29 mg s7!). Tt is important to note also that Rudwan observed plume to spot
transition between the 1.5 mg s ! data point and 3.29 mg s™! point. As expected,
the simulation result is a temperature slightly lower that the experimental result.
Although in the high mass flow rate the simulation data falls within the experimental
error bar for temperature. To assess the validity of the suggestion that the hot plume

might contribute to this underestimation, the simulation data is adjusted so that the
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Figure 7.5: Comparison of experimental data of Rudwan [88] to simulation results for
integrated axial electron temperature. Simulation data is given as average axial tem-
perature and compensated average axial temperature, where the plume temperature
is weighted to account for the experimental configuration.

plume region is temperature is weighted as if the data were continued for the volume
present in the experiment. To elaborate: in the experiment, the ratio of external axial
plume extent to internal plasma length is around 4, while in the simulation, this ratio
is 1. Hence, given N data points in the simulation, the compensated numerical results
are produced by multiplying the N,,; external data points by 4, adding the internal
values and dividing by (Nj, + 4N). Although crude, this method should give a
result similar to that produced by a spectroscopic examination of the plasma, as per
the experiments. These data are also plotted as ‘compensated’ simulation results. In
this case, the data lie within experimental error bars at both mass flow rate levels.
The degree of similarity with experimental results of Rudwan [88] is an excellent
indication of the accuracy of the results. This is particularly true because the experi-
mental results used are generally considered the most accurate data on cathode inter-

nal plasma properties due to the fact that the acquisition technique is non-intrusive.

7.2.4 Cathode Geometry

Two factors where examined to assess the impact geometry changes have on plasma
conditions. These were the tip radius and anode position. Tip radius is a critical factor
in all cathode studies; it is typical, for instance, for experimenters to progressively

drill out the cathode tip to gain an understanding of the tip behaviour. Hence it was
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logical to examine this. In terms of the anode position, recent findings by Rudwan [8§]
suggest that external experimental configuration can significantly affect the cathode

behaviour.

Tip Radius

As expected, it was found that reducing the tip radius leads to a hotter, denser plasma.
Plasma density was found to rise by a factor of 4 as the r is reduced from 0.9 to 0.3
mm. In terms of temperature, although neutral temperature remained very similar,
the model predicted a very significant rise in ion temperature, by a factor of more
than 3 when comparing the extreme cases. If such a trend is correct, the implications
are important, as it implies that cathodes with small tips produce very hot ions. It
is assumed that much of the damage caused to ion thruster components is due to
high energv ions. Hence, the recommendation based on the results of this work would
be that small cathode tips should be avoided if possible. Of course. one does not
design the cathode geometrv purely on the premise that ion temperature be reduced,
and there will be performance trade-offs if the tip radius is increased by too large an

amount.

Anode position

It is difficult to summarise whether the analysis of anode position produced the results
that where expected or not. This is of course because in one sense, the results support
current thinking on the subject, while when taken in isolation it is difficult to come
to terms with the absolute values in some cases. Rudwan [88] proposes that one
can understand the majority of cathode mode transition and behaviour due to the
existence and interaction with an anode. Hence, if these hiypotheses are to be believed,
we would expect a strong dependence between the macroscopic cathode characteristics
and anode position. This is certainly what was found, but the variation in voltage
with anode position was so large that doubt must lie over the result. Further, as has
been noted before, the model is optimised and designed to understand the internal
plasma first and foremost, even at the cost of decreased confidence in (low deusity)
external phenomena.

What was further confusing about these results was the fact that the plasma
conditions did not alter as violently as the anode voltage. Indeed, the results for both
internal and external plasma conditions were as expected, the most obvious trend
being for a drop in density corresponding with a more distant anode. It is fair to say
that the results presented for anode position had a negative effect on the confidence we
can have regarding the accuracy of the code, predominantly in studies of the cathode

exterior. It is certainly true that a trade-off was made to capture the internal plasma
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behaviour at the expense of the external. Was this necessary? The answer is that
within the constraints of this project, yves. However, the problems associated with
particle codes and large density variation are not so fundamental that it cannot be
imagined that in the future, a method could be devised whereby both regions could

be captured correctly in a single model.

7.2.5 Parallelism

The results presented in this document were almost exclusively produced by running
the serial version of the code. However, a computationally parallel version was devel-
oped and used to produce some of the neutral flow results, including some contained
in references [25] and [26]. The issues relating to the code performance in parallel
are now discussed. The hardware available for parallel computation was a ‘cluster’
machine. In parallel computing terms, this is a ‘distributed memory’ architecture,
which means that each compute node has direct access only to local memory, and
must communicate with other nodes if access to data located elsewhere is needed. In
this case, the primary task when developing parallel software is to reduce both the
volume and frequency of communication between nodes.

A simple approach was taken with the neutral gas code. The mesh (see, for instance
fig. 5.5) is divided axially between N nodes, so that each node has approximately
the same number of cells. Since the particle data is stored and accessed on the
DSMC mesh, this means that by domain decomposing the mesh, the particle data
is also automatically distributed. When particles pass from one node’s mesh area
to another, the particle data is sent to the correct node. This scheme proved fairly
effective. The volume of communication was always small, as only a few particles
would pass between nodes. The frequency of communication was quite high, however,
because particle sending occurred on every time-step. This tended to adversely affect
performance because time-steps are completed in a very small period of time (tens of
milliseconds). Indeed as N grows, each node has only a very small volume to model.
In addition, no overlapping of communication with computation was possible because
the DSMC cells must be filled correctly for the algorithm to proceed, and a node
receiving particles cannot know where those incoming particle need to be. It was
concluded that parallelisation of the DSMC via domain decomposition is moderately
successful. In fact, the efficiency is much better with larger numbers of particles. The
upshot of this is that this method leads to a parallel code that will compute a more
complex problem in the same time as the serial code. Unfortunately, on a distributed
memory architecture, computing the same problem in 1/N the time taken for a serial
run to complete is very difficult.

Of course, once the particle simulation and DSMC are parallel, it is trivial to add
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all kinds of Monte Carlo based collision routines. Hence, addition of the MCC is very
easy. Key numerical parts of the code (PIC, DSMC, MCC) are written in serial and
are insulated from the parallelism: particles are accessed on the DSMC grid and the
grid is segmented across nodes; each node ‘sees” a serial problem. Solution of the
Poisson equation efficiently in parallel under the hardware constraints present was
found to be impossible. This is primarily because the Poisson problem is so simple
and solved so rapidly (because a previous solution that is almost correct is always
available) that the solution time in serial is of the order of the time to complete a
single trivial communication! Hence. for this kind of code, solving this problem size,
on this architecture, it was difficult to see how the performance of the full PIC-DSMC-
MCC could become efficient.

In summary, the problem with parallelisation of codes such as this one stems from
the fact that many millions of very short (in computation) time-steps are completed,
with a necessity to communicate on every time-step. It is the opinion of the au-
thor then that communication/computation overlapping would yield a parallel neutral
DSMC that may achieve good efficiency. However, on todays cluster architectures,

PIC codes will suffer from very poor efficiency.



Chapter 8
Conclusions

Three topics are now summarised: first, a general overview of the findings of the
research. This is followed by a critical analysis of the novelty of the research itself, the
results produced, and the discussion. Finally, a summary of the key points regarding

future work is provided.

8.1 General Remarks

A fairly general particle based plasma physics code has been developed to aid under-
standing of the hollow cathode internal fluid dynamics. The choice of a particle model
rather than a continuum one is based on the prediction that a significant fraction of
the gas/plasma collisions may be rarefied and result in non-Maxwellian velocity dis-
tribution functions. This was shown to be the case and justifies the use of particle
models in low mass flow rate or vacuum downstream conditions.

The code was validated in several ways. This included component verification
for the random number generator and a test of the iterative solver against a PDE
with analytical solution. Standard examples such as a rarefied supersonic Taylor-
Couette flow and a flat plate discharge were then used to build confidence in the
model. In addition to these component and standard case tests, numerical studies
were undertaken to judge the degree of dependence between the data produced and
numerical factors such as time-step and mesh spacing. Finally, with real results from
a hollow cathode to hand, then model was compared to experimental data and was
found to show correct trends in almost all cases and come within experimental error
of many readings.

A full characterisation of the cathode neutral flow was presented including analyses
of DSMC collision model, variation in mass flux, cathode geometry, propellant and
cathode temperature. These data were used in collaboration with the research of

Rudwan [88]. It was shown that the predictions regarding pressure and thrust agree
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well with experimental data from the hollow cathode.

An attempt was made at full characterisation of the internal plasma during steady-
state discharge. The method degree of numerical error was assessed via some numeri-
cal studies and although the error was small, it was impossible to fully eradicate such
error due to computational constraints. The analysis allowed for an error estimation
to be made. In terms of the plasma itself, several features that had been theorised
for the internal structure of the plasma where reproduced, in particular the existence
of an emitting area region.

In addition, the plume region was reproduced accurately in terms of comparison
to experimental data. It was found by study of the plume structure that even at
low current (5 A), the plume structure was related strongly to the induced magnetic
field. This is an important result as previous PIC-DSMC codes have tended not to
implement steady-state induced magnetic solvers (Szabo Jr et al. [101], Crofton and
Bovd [28] for example).

The plasma data was compared to the experimental data including that for induced
magnetic field and plasma temperature. In both cases, the simulation fitted well
with experimental predictions, providing increased confidence in the predictions of
the model. Two elements of cathode geometry —— variation of tip radius and anode

position — were examined using the full plasma code.

8.2 Novelty of the Research

The research can be considered novel due to the following:

e This research represents the first complete and comprehensive analysis of the
rarefied neutral gas dynamics within the hollow cathode. The data produced
have already been used in more than one case to aid the analysis of experimental

data.

o It was demonstrated that the hollow cathode neutral low was indeed transitional
in terms of the degree of rarefaction present. This justifies the use of a particle-
based code to capture non-Maxwellian velocity distributions, particularly within

the plume.

e Due to the nature of the rarefied gas dynamics and scaling of the cathode geom-
etry, based on the new results presented here, the construction of micro-hollow
cathodes for thrust purposes would be discouraged. This is because the struc-
ture of the discharge requires a certain gas pressure to contain the emitting
region within the cathode: smaller cathodes would need to scale up the mass

flux per unit area.



e The results presented here are the first complete 2D model of the cathode in-
ternal plasma physics. This is of great importance because although much has
been written about cathode interior physics, due to the difficulties associated

with experimental investigation, there is almost no data available.

e In many of the investigations, it was found that the position of the anode had
a significant effect on the condition of the plume plasma and discharge voltage.
Although there are doubts regarding these findings, such a result does confirm
the recent suggestion that hollow cathode mode of operation depends primarily

on exterior discharge configuration.

e Rather than set a fixed magnet in the solution of the PIC simulation, an ex-
perimental steady-state induced magnetic field solver was used. This proved to
be very effective in reproducing the plume structure, and critical to obtaining

results that compared well to experiment plume data.

e It was predicted that internal ion temperature is strongly related to cathode
tip radius. This has very important implications as hot ion bombardment is
considered one of the most destructive elements of ion propulsions. Due to
these findings it is suggested that greater design pressure be placed on a wider

cathode tip since this may have the effect of increasing reliability and lifetime.

8.3 Recommendations for Future Work

With any numerical code. the scope for improvements and additional features is in-
evitably enormous. Rather than provide an exhaustive list of all possible additions,
this section seeks to examine a smaller set of improvements and research arcas that
would be most beneficial to the role of the model in cathode physics research. The im-
provements and recommendations presented here broadly represent those that would

have been included if time had been available.

Thermal model

It is easily deduced from reading the discussion of heat transfer between cathode and
gas/plasma that the fixed temperature wall model is a poor assumption. Although
the fixed model does not seem to introduce significant problems, self-consistent de-
termination of cathode temperature would be an important advantage, due to the
fact that temperature is a critical engineering parameter with respect to cathode op-
erational lifetime. This means that the first enhancement to be considered would be

a thermal model of the cathode (and possible the electrodes). This could take the
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form of a simple model whereby each surface has uniform temperature based on heat
fluxes to and from the surface all the way to a 2-D axisymmetric solution of the heat
flow problem within the cathode body. A problem that would be anticipated is that
the characteristic time for thermal dynamics (the thermal “capacitance”) is in reality
much larger than the plasma breakdown time, say, and indeed the physical tinie it
is possible to model on todays computers. This would mean that an artificially high
thermal conductivity would need to be used to allow the thermal and plasma dynamics
to come into equilibrium. The relationship and feedback between the plasma condi-
tions and thermal conditions would need very careful considerations as the cathode
electron emission scales as T2 exp(—7 ') (see eq. (2.4)). It is highly likely that with
an artificially low thermal time, instabilities could exist due to the coupling between
the electron emission and cathode temperature. It is possible, although improbable,
that the thermal time required for stable simulation could be prohibitively large in a

computational sense.

Hybrid continuum-particle CFD

Authors such as Boyd et al. [14] have recently been involved in research to create
hybrid particle-continuum models. Clearly, such an approach would be useful in this
case since to the problems encountered with the computational requirements of the
particle code at high plasma density would be mitigated by using a continuum model
instead. Unfortunately, such methods are currently not well understood and the
accuracy and stability of the transition between a particle and continuum model are
poor. It seems likely, however, that in the near future the best approach to hollow
cathode modelling would be such a hybrid model. Indeed, it is not hard to imagine the
addition of a continuum (MHD) model to the code presented here. once the numerics

of merging the codes are developed fully.

Other applications

There are two natural extension to the application of the cathode model. First, it is
clear that the ion thruster chamber could be modelled using the code in its existing
form. Minor extensions that would be required might include a method to efficiently
handle the extractor grid, and additional code to implement non-azimuthal externally
applied magnetic fields.

Secondly, it would be interesting to further investigate the downstream structure
of the discharge, perhaps to try to prove the hypothesis of Rudwan [88] regarding spot-
plume transition. As has been noted previously, it was found that the requirements
for accurately modelling the inside of the cathode differ to those for the exterior. The

emphasis in this work was the fundamental interior physics. It is easy to imagine,
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however, generating a suitable boundary condition at the tip exit and modelling the
plasma only in the exterior. An additional application here could include examination

of the cathode-ion thruster plume coupling plasma.

Species extension

Finally, it is often supposed that some trace species (such as Barium) are of great
importance in both cathode breakdown and operation. Deposition of harmful conta-
minant species is also a major concern in the reliability of ion thrusters. For these
reasons the model could be trivially extended to model more species and predict de-
position rates and damage rates within the ion thruster. Similar studies have been

undertaken in the case of HETSs.
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Appendix A

The Software

This thesis should be accompanied with a CD containing a copy of the code that
produced all of the results found within, a copy of all of the raw data, the processed
data and associated scripts used to construct the plots. In addition. a copy of this

thesis and associated scripts is included. The struct of the CD is as follows:

e src This contains the source code of the numerical model under the subdirectory
PICMCC/main. In this directory there are auxiliary scripts located under matlab,
while the code is built using a GNU Make makefile. Architecture specific compiler
flags are contained in the specific .mk files, so that for instance linux-gcc.mk
contains configuration for a Linux based machine compiling using GCC. Also
in the src directory is the cvs repository of the code. This can be used to track

and analyse changes made to the model during development.

e data Here, both raw and processed data is contained, along with scripts used for
generating plots. To save space, only data directly used in the thesis is provided
here. As such the arrangement broadly follows the classification by which data

is presented in the results section(s).

e thesis This directory contains a copy of the IXTEXsource used to generate this

thesis, plus the postscript files of the various images and plots.
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Appendix B

Field solver Algorithms

Algorithms for the three solver types compared and validated in section 4.4 are given
in full here. They are the trivial Jacobi (algorithm 1), and the BiCG (algorithm 2)
and BiCGStab (algorithm 3). The absence of the standard CG algorithm from the
triplet is due to the fact that it is only applicable to symmetric matricies. Given that
only cylindrical axially symmetric descretisations are considered in this work, only
asymmetric matricies are used. The most basic useful CG variant is therefore the

BiCG.

Algorithm 1 Jacobi
Choose initial (%
for k=1,2,... do

fori=1,2,...do

;=0
5: for ) =1,2,...,i—1i+1,...ndo
=T, + (Ltj;vj(tk*l)
end for
= (b — )/ aii
end for

10: k) =3
check convergence
end for

Iteratively approaches a solution for x given Az = b. Note that the number of
operations completed in one iteration of the Jacobi method is approximately equal to

one Matrix-Vector product [5].
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Algorithm 2 Bi-Conjugate Gradient

Compute 9 = p — 429 for some initial 2
7 =79 or some other estimate
for i =1,2, ... do
solve Afz(i71) = pli-1)
5. solve MTz0-1) = pli=1)
P = Z(i—l)T,F(i-—lj
if p;_1 = 0 method breaks down
if i =1 then

10: 15(’5) = 30-1)
else

Bic1 = pic1/pi—o
p@ = =1 4 g pli=D)
]5(*1’) = =1 ’51,_,1]3(1—1‘)
15:  end if
q(i) — Ap(z‘)
G = ATpO
Qe = /)i—l/ﬁmTq(‘“
2 = g7 4 g, p)
200 W ==l — q;q®
7)) — Fli-1) _ a,,[(}'(z‘)
check convergence
end for

The solve statements (lines 4 and 5) represent the precondition phase where M is
the preconditioner matrix. This algorithm requires two matrix-vector products (lines
16,17) and two inner products. The is equivalent to around one matrix-vector product
plus two inner products work per iteration. The CG methods derive their speed from
typically needing an order of magnitude fewer iterations to reach the same residual

compared to stationary methods.
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Algorithm 3 Bi-Conjugate Gradient Stabilized
0)

Compute % = b — A2 for some initial 2!
7 = r© or some other estimate
fori=1.2 ..do
o1 = FTp-)
5. if p;_1 = 0 method breaks down
if i =1 then

p = =)
else
Bi1= (pi—l/pi—?)(az‘—l/wifl)
10: p(i) = p0-1 L ,‘6)1'—1(/[7“_1) — wi_lv(i‘l))
end if
solve Mp = pt
v = Ap
;= pifl/fTU(‘i)

15 s =700 — g0l
check norm of s; if small set () = 2~V 4+ a,5 and stop
solve M5 =g
t=As
w; = tTs /1Tt

200 2 = 20-D + oup 4 wis
7"(1) =5 —wit
check convergence
if w; = 0 method breaks down

end for

Again, solve statements show the preconditioner points. Notice that in addition to
the BiCG breakdown on p;_; = 0 (line 5), there is an additional breakdown possibility
at line 23, where w; = 0. BiCGStab requires two matrix-vector products (13 and 18)
and four inner products (lines 4,14 and 19). This is two more inner products than the
BiCG, but it should be noted that the BiCGStab will take fewer iterations than the

BiCG method under most circumstances.



Appendix C

Differential Operators in

Cylindrical Coordinates

As a reference, vector calculus operators in cylindrical polar co-ordinates are now

provided. Most of the references in the text refer to the axially symmetric form of the
following, where Jv/00 = 0. See Kreyszig [55] or Goldston and Rutherford [40] for

further derivation.

Gradient

Divergence

Curl

Laplacian

o (20 0 av
Y= or rdf’ dz

d(rA,)  0Ay  OA,

VA= ror +7“f)6’+ Oz

OA,

Laplacian of a vector

L [O(AL) 9Ay DA, A, (rAy)
VXA_<TE)9—8,Z’8Z or " ror
oy 10 (L0, 1
Viv= o Uar ) T rar T e
. . 204, A . 2 0A,
2A — 24— S0 T g2 Yy T
Vv (V "2 0p 72 Voo F r? 00
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Appendix D

Experimental setup of Gessini et

al.

Gessini contents, as several other authors do currently, that the hollow cathode is
a viable candidate as a stand-alone microthruster. This is due to the presence of
anomanlously high energy ions that have been found to be emitted from the cathode
under certain circumstances. If this high energy ion emission could be optimised, then
the cathode may exhibit high specific impulse and become a viable thruster design.
In order to record the thrust produced by the cathode so that the high energy ion
emission may be characterised in terms of specific impulse, Gessini devised a thrust
measurement system. This consists of a cantilever beam target (CBT) and a Laser
optical Level (LOL). The plume of the cathode strikes the target and deflects the
beam. A laser is directed at the target and the reflected beam deflection is measured.
Since the structural properties of the beam are deliberately designed to be well defined,
it is possible to relate a the beam deflection to the force required to bend the beam.

This force is simply the force exerted due to the plume impinging upon the target.
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