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Digital Signal Processing Techniques for Detection Applied to Biomedical Data 

by Hubert Dietl 

This thesis is concerned with the application of digital signal processing methods to different kinds of 

biomedical data by extracting their features and classifying them. 

In more detail we aim at a detection by feature extraction, feature selection and classification and 

apply these methods to two different kinds of data whereby the type of biomedical data studied is 

restricted to stimulus response electro-physiological data. 

Firstly, we give a review and a definition of linear transformations that can be employed for the 

analysis, parameterisation or compression of biomedical data. We are particularly considering the 

wavelet transform, the wavelet packet transformation and the Gabor expansion under the aspect of 

data defined on a finite interval. For this, we introduce a novel matrix notation for each transformation 

method. Also, appropriate signal extension methods are described for data on finite intervals. 

Secondly, methods for the feature selection are studied and developed. A simple energy reduction 

approach is stated to start with. Then, statistical tests are explained that can be used to increase 

the significance when only few data points are available. These methods select certain time-frequency 

coefficients and the separability performance of each selected coefficient can be evaluated by a receiver 

operating characteristic (ROC) analysis. The ROC analysis is used to develop a signal-to-noise-like 

criterion, that selects and combines significant time-frequency coefficients to a coefficient set for which 

a separability can be stated. Also, the found coefficient set can be again evaluated by ROC analysis. 

Thirdly, the classification method is introduced by support vector machines (SVM) starting with 

an introduction to learning theory, followed by the SVM theory. Then, we show how SVM can be used 

for detection of biomedical signals by introducing a connection to a diagnostic test. Also, multi-class 

SVM classifiers are stated with the novelty of introducing a neutral class. Moreover, it is shown that 

the non-linear decision boundary found by the SVM can also be evaluated by a ROC analysis. 

The first application of some of the introduced signal processing tools comprises data from subjects 

that suffer from panic disorder. The feature selection is shown for statistical tests based on time

frequency transformed data. This approach is confirmed by the use of SVM where better separability 

results are obtained for the parameterised data than for the unparameterised data. 

The second application is the development of a differential diagnosis method for determining 

cochlear hearing loss based on time-frequency transformed otoacoustic emissions. By our feature se

lection method a set of distinctive coefficients are determined which generalises and enhances previous 

studies. Then, SVM are applied for the classification which are again evaluated by a ROC analysis. 
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Chapter 1 

Introd uction 

This introductory chapter states firstly the underlying motivation for this contribution. Secondly, a 

summary over the novel methods that were developed for this thesis is given. The final part shows an 

overview of the following chapters. 

1.1 Research Motivation 

Researchers investigating biomedical data are faced with various difficulties. The signal-to-noise ratio 

may be very low, the features of the signal that are to be discovered may change over time and/or 

not appear at all. With this thesis a contribution is made to analyse and understand the behaviour 

of biomedical data better via means of digital signal processing tools. In more detail, we address the 

following question: How can we separate and distinguish different biomedical signals or patterns? To 

answer this question, we describe a parameterisation or compression of the data and how we assess or 

select certain of these parameters that allow us to conduct a separation and classification of the data. 

In current research studies, the reason for trying to identify differences in biomedical data is to 

be able to detect abnormalities or diseases, [1], [2]. The application of suitable signal processing 

tools shall enable an automatic detection of these abnormalities or diseases, [3], [4], [5], [6], [7]. For 

example, [8] aims to automatically detect epileptic activity. There, the data is preliminary filtered, 

then parameterised, after that features are selected, and finally a neural network and a so-called expert 

system are used to achieve significant detection rates. 

In this thesis, different approaches to separate biomedical data are shown whereby the type of 

biomedical data studied is restricted to stimulus response electro-physiological data. The applied ap

proaches consist of three main steps: Firstly, the data is parameterised by time-frequency transforms. 

Secondly, based on the transformed data, features are to be selected which contain the differences 

between two data sets. Thirdly, the selected features are fed into a classifier, that yields a detection 

decision. Compared to [8], we aim at improving the parameterisation and feature selection for the 

different kinds of data analysed. Also, we use a different method for the classification than in [8]. 

Figure 1.1 gives a general overview of our separation and detection approach. 

From biomedical data, the features are extracted by time-frequency (TF) transforms. Among the 

obtained TF coefficients, the ones containing the features are selected next. Finally, a classification 

1 
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TF transform based 
feature selection 

I L : Classification: . 
. DetectIOn decision Support vector machmes 

Figure 1.1: Overview of detection systeIIl. 

2 

is conducted using support vector machines (SVM), [9], yielding a binary detection decision. We will 

also show the development of a neutral classification result to account for data that is regarded as too 

difficult to be uniquely classified. 

For the parameterisation of biomedical data, well-know transformations like the discrete Fourier 

transform or the discrete wavelet transform are commonly used, see e.g. [10], [11]. Recently, data 

analysis incorporating wavelet packet transforms, Gabor transforms and Karhunen-Loeve transforms 

have attracted attention of biomedical researchers [10],[11], [12]. In Figure 1.2 an overview over these 

transforms is given. 

Parametelising transforms for biomedical data 

semi-adaptive transforms 

Karhunen-Loeve 
transform 

Figure 1.2: Overview of commonly used parameterisation transformations for biomedical data. 

The figure illustrates the differences of the mentioned transforms with respect to their time

frequency (TF) characteristics. While the discrete Fourier transform (DFT), the discrete wavelet 

transform (DWT) and the Gabor frames transform (GF) possess a fixed TF tiling, the wavelet pack

ets (WP) can be adapted to the data resulting in a specific TF decomposition. Karhunen-Loeve 

transforms (KLT) are directly connected to singular value decomposition (SVD), where the transform 

is fully adapted to the data. The short time Fourier transform (STFT) is not included in the Figure 1.2, 

as the GF can be regarded as a special case of the STFT, where the prototype filter defining the time 

window must fulfil more restricting conditions than for a STFT. There are very limited choices for 

the fixed transforms; the DvVT depends strongly on the selected mother wavelet, the same accounts 

for the GF, which is dependent on the chosen prototype filter. 

The second part of this work, namely the feature selection that contains the differences for data sets 

that ought to be distinguished is once based on a signal-to-noise(SNR)-like criterion. This criterion is 

used e.g. to determine cochlear status with otoacoustic emissions [13], [2]. Also, statistical tests form 

the basis of a feature extraction. Moreover, a simple energy reduction method is investigated. 

We apply our separation methods to two different types of data: Firstly, electroencephalogram 

(EEG) data from subjects who suffer from panic disorder are studied. For this kind of data, only 

statistical analyses have been conducted so far [14]. Hence, we are interested in investigating the 
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performance of a separation method that is based on TF transforms and implements statistical tests 

for feature selection. SVM are only used for the confirmation of the feature selection and not for 

classification, as there was not enough data available. The results of this analysis can be used to 

determine the success of a therapy. 

Secondly, the above mentioned otoacoustic emissions are analysed. Here, we aim at being able 

to distinguish and detect three types of cochlear hearing loss. We apply the DWT, WP and GF for 

parameterisation. The feature selection is conducted by an energy reduction method and a SNR-like 

criterion. SVM are used for classification. 

Moreover, the introduced methods can also be applied to separate data other than presented in 

this thesis. E.g. within the EEG, auditory evoked potentials can be used to determine objective 

audiograms [5]. Our methods can further contribute to research in that field. Also, one can think of 

and analysing sleep disorder, which is currently studied in [15]. 

In the next section, on overview of our contributions to the subject of separating and classifying 

biomedical data is stated. 

1.2 Novel Contributions 

In our contributions so far, we have focused on the application of the DWT, WP and GF and have not 

mentioned the STFT for parameterisation because as stated above, the GF can be viewed as a STFT 

where the windows are time-shifted and based on low-pass filters that are linearly independent when 

only the positive spectrum is considered. The KLT was assumed as being too data adaptive leading 

to a parameterisation including too much noise. This assumption was confirmed when studying panic 

disorder data justifying our selection of parameterising transforms. For our second application, the 

WP already showed a slight adaption to the data used for adjustment and hence, the KLT was not 

taken into consideration, as it was expected that the results would again contain too much noise and 

be therefore not generally valid, as it is the case for panic disorder data. 

In the following, our contributions concerning firstly the developed methodology and secondly the 

specific applications are described. 

As stated above, the aim of this thesis is to develop a detection system with feature extraction, 

feature selection and classification. Each of these components consists of state-of-the-art methods, 

e.g. Wavelet transforms for the parameterisation and support vector machines for the classification. 

The combination of these methods to one new detection system represents the basis of our novel 

contributions. Next, a more detailed overview of the specific contributions is given. 

For the parameterisation based on the TF transforms, a novel unified matrix notation is intro

duced. For finite discrete data, the transforms are conducted by a multiplication with a respective 

transformation matrix. Also, the signal extension which is an issue when dealing with finite data is 

incorporated into the transformation rnatrix. In terms of computational effort, fast implementations 

of the respective transforms avoiding a matrix representation may not be more efficient. After a suit

able feature selection, the determination of a limited number of significant elements can be conducted 

faster by calculating dot products of the finite discrete data to be transform.ed with the corresponding 
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rows of the transformation matrix. 

In terms of the classification, the application of SVM leads to a hard decision, meaning that data 

to be tested is classified to one certain class. However for electro-physiological data we studied as well 

as general biomedical data, it is often better not to make a decision, e.g. if a certain robustness of the 

classification is desired. To account for this, a neutral class is introduced. This means we establish a 

class for which no decision is made by the SVM classification aiming at a more reliable classifier. 

Now, we continue with a description how these methods were applied to real data. 

Concerning panic disorder, anxiety subjects that are presented with neutral and panic disorder 

triggering stimuli show different event-related brain potentials (ERP) within the EEG. We have inves

tigated this difference by applying TF revealing transforms (DWT,WP,GF) leading to an identification 

of a small number of significant parameterising coefficients able to differentiate between the presented 

stimulus categories. The features were selected by statistical tests only. The parameterisation results 

in [16] were improved by incorporation further statistical tests, also leading to an improved separa

bility in [17]. SVM are used in [18] to confirm the application of TF transforms, which yield better 

separability results than unparameterised data. 

The second type of data we studied are otoacoustic emissions. Here, we aim to determine frequency

specific cochlear hearing loss (HL) by means of transient evoked otoacoustic emissions (TEOAE). The 

differentiation of three groups of frequency-specific HL is performed by parametrisation of the time

domain TEOAE responses based on three transforms DWT, WP and GF. Using an SNR-like criterion, 

the various transforms are tested for their ability to differentiate between the three groups of hearing 

ability. SVM are used for classification, including a comparison of an introduced neutral class to the 

case without a neutral class. Our procedure is evaluated on a large group of data from subjects. To 

confirm the findings for each transform method, the results are checked against the data of a second 

control group and can be comprehensively found in [19]'[20]'[21]'[22]'[23]'[24]. 

The conclusion of this chapter follows next with an overview about the structure of this thesis. 

1.3 Overview 

This thesis is organised as follows: 

Chapter 2 shows a review and a definition of linear transforn~ations that can be employed 

for the analysis, parameterisation or compression of biomedical data. We are partic

ularly considering the wavelet transform, the wavelet packet transformation and the 

Gabor expansion under the aspect of data defined on a finite interval. For this, we 

introduce a matrix notation for each transformation method. Also, appropriate signal 

extension methods are described for data on finite intervals. 

Chapter 3 deals with the methods we studied and developed for the feature selection. 

Firstly, a simple energy reduction approach is stated. Then, statistical tests are ex

plained that can be used to increase the significance when only few data points are avail

able. These methods select certain TF coefficients and the separability performance of 
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each selected coefficient can be evaluated by a receiver operating characteristic (ROC) 

analysis. The ROC analysis is used to develop a SNR-like criterion, that selects and 

combines significant TF coefficients to a coefficient set for which a separability can be 

stated. Also, the found coefficient set can be again evaluated by a ROC analysis. 

Chapter 4 explains SVM starting with an introduction to learning theory, followed by the 

SVM theory. The third section shows how we can use SVM for detection of biomedical 

signals by introducing a connection to a diagnostic test. Also, multi-class SVM clas

sifiers are stated with the introduction of a neutral class. Moreover, it is shown that 

the non-linear decision boundary found by the SVM can also be evaluated by a ROC 

analysis. 

Chapter 5 introduces the application of some of the introduced signal processing tools to 

data from subjects that suffer from panic disorder. The chapter starts with a literature 

review, comprising analysis and studies that have been conducted on panic disorder so 

far. The feature selection is shown for statistical tests based on TF transformed data. 

This approach is confirmed by the use of SVM where better separability results are 

obtained for the parameterised data than for the unparameterised data. 

Chapter 6 comprises the development of a differential diagnosis method for determining 

cochlear hearing loss based on TF transformed TEOAE data. Firstly, a literature 

review is given. After this, frequency specific cochlear hearing loss is determined by 

analysing TEOAE data. By the method, a set of distinctive coefficients are obtained 

which generalises and enhances the method presented in [13]. Then, SVM are applied 

for the classification which is evaluated by ROC analysis. The chapter concludes with 

a comparison of the results for each transformation method and a summary. 

Chapter 7 concludes our study and discusses future work. 

5 



Chapter 2 

Feature Extraction: Time-Frequency 

Transforms 

This chapter reviews and defines linear transformations that can be employed for the analysis, param

eterisation or compression of biomedical data. We are particularly considering the wavelet transform, 

the wavelet packet transformation and the Gabor expansion under the aspect of data defined on a 

finite interval. For this, Section 2.1 introduces linear discrete transformations and their properties. 

Section 2.2 describes signal extension methods for data defined on finite intervals only. In Section 2.3 

the wavelet transformation is presented. Section 2.4 describes the wavelet packet transformation as a 

generalisation of the wavelet transformation. The last transformation introduced in Section 2.5 is the 

Gabor frames transformation. The chapter concludes with a brief summary and discussion in Section 

2.6. 

2.1 Introduction 

2.1.1 Linear Discrete Transformation 

A linear discrete transformation can be denoted as 

y=Hx, (2.1) 

with a coefficient vector x = [x [0] x[l] ... x[N -1]] T, a transform matrix HE CKxN and a transform 

vector y = [y[O] y[l] ... y[K l]f. The vector x defines the discrete data to be analysed on a finite 

interval 0 < n < N. The vector y contains the discrete transformed coefficients on a finite interval 

o < k < K. The basic aim of the transformation is to transfer the vector x in the time domain into a 

representation that allows us to see its main characteristics in the transform domain. 

The matrix H shall possess the property of being dense, meaning that for every vector x there 

exists one unique vector y in the transform domain. For this, a condition arises for the matrix H [25]: 

Its null-space has to be the trivial case 0 only, nUll{H} O. This means that y i- 0 V x i- o. If this 

condition is not met, the transformation is referred to as being not dense. 

6 
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2.1.2 Inverse Transformation 

For the linear discrete transformation to be invertible, the transformation matrix H must be dense. 

If H is dense, an inverse transformation exists. We can distinguish three cases [25]: 

1. For K = Nand rank{H} = N, the inverse transform matrix for H equals H-1 . 

2. For K> Nand rank{H} = N, the inverse transform matrix for H equals (HH . H)-lHH and 

is called left pseudo-inverse Ht. For this case, the columns of H are linearly independent. 

3. For K < N the transformation is not dense and hence not invertible. 

In the following, we briefly describe the transformations on the "edges" of Figure 1.2. For our 

studies, these transforms are mainly used for confirmation purposes of our approaches. 

2.1.3 Discrete Fourier Transform 

A well-known classical linear discrete transformation is the Discrete Fourier Transformation (DFT, 

[26]). The DFT transformation matrix is given by 

1 
HDFT = N 

aO.(N-l) 

a1-(N-l) 

a(N-l).(N-l) 

(2.2) 

with a = e- jc The DFT according to y = HDFTX represents the discrete approximation of the 

continuous Fourier-Integral Y(w) = J x(t)cjcwtdt. 

The advantages of the DFT are the fast implementation via Fast Fourier Transform (FFT, [27]) 

and that it gives access to frequency domain information. A disadvantage is that there is no resolution 

with respect to the time domain. Moreover, we refer to the DFT as a fixed transform, meaning the 

basis functions can not be adapted to the data that ought be be analysed. We continue with the other 

"extreme" case according to Figure 1.2. 

2.1.4 Karhunen-Loeve Transform 

The Karhunen-Loeve transform (KLT, [28]) is based on singular value decomposition (SVD) and hence 

we firstly introduce the SVD before explaining the KLT. To visualise structures in high-dimensional 

data, the SVD reduces the dimension and identifies subspaces that capture most of the features in 

the data and displays an ability to detect relative weak signatures along with achieving a reduction of 

noise [28]. SVD is also conceptually similar to principal component analysis [29], where a covariance 

matrix is used as input for the algorithm that conducts the SVD. The explanation of the algorithm 

as well as a detailed mathematical description is beyond our scope and can be found in [28]. We 
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introduce the SVD as a noise reduction method that is based on a lemma of linear algebra [25] saying 

that any matrix D with the dimension K x N can be decomposed the following way: 

D=U·S·yT , (2.3) 

with U E CKxK , S E CKxN and yT E CNxN . 

In more detail, for a square data matrix with K = N the SVD corresponds to: 

(2.4) 

with the entries in the diagonal of S, 0"1 ... O"K, called the singular values of D. If D has full rank, 

rank{D} = K, the singular values are unequal to zero. If D is rank-deficient, rank{D} = kd, kd < K, 

the singular values O"K ... O"K-k
d 

equal zero, leading to the following equation: 

o (2.5) 

o 0 

Also, a rectangular matrix D with K > Nand rank{D} = N has a SVD of: 

O"N r 
v[ 1 
v~ 

(2.6) 

o 

The explanation for our application is as follows: a original data matrix D of K samples by N 

variables is decomposed to a matrix of new orthogonal vectors contained by yT, representing linear 

combinations of the original variables, a square matrix S whose diagonal contains the singular values, 

and an orthonormal matrix of scores U for observations in the new orientation. 

The product U . S with dimension K x N can be interpreted as the coordinates of each column 

of D as a point in a transformed space spanned by the rows of yT. The transformed space has the 

property that the maximal possible variation occurs along the axis corresponding to the first column 

of U, the maximal remaining variation along the axis corresponding to the second column of U and 

so on. In most cases, the majority of the noise in a dataset may be eliminated by truncating (2.4) 

similarly to (2.5) to a kt-dimensional space kt < rank{D} while still providing a close approximation 

the original data matrix D. 

The real biomedical data for our studies usually has a rectangular data matrix as there are more 

samples than variables. Also, as our data is severely corrupted by noise which is the case for most 

biomedical data, the data matrix can be assumed to have full rank, similarly to (2.6). 



2.1.4. Karhunen-Loeve Transform 9 

o original vectors x 
* transformed vectors u· S 
x basis vectors for KL T by columns of U 

V' new coordinate system for transformed vectors by rows of VT 

5,-----------~----------, 2.5 

2 
0 

1.5 

0.5 

o x* 0 
V'x V' -0.5 

-1 
0 

-1.5 

* 
-2 

_5L-----------~----------~ -2.5 
-5 0 5 -2 -1 0 2 

Figure 2.1: Sample SVD decomposition. 

To underline the above statements an example illustrated by Figure 2.1 is given. The sample 

veet"' s [~] ,epresenting the signal whose featums "e to he identified is changed and eonupted 

3 [0.75] [ -0.1 ] . by noise the following way: Xl = - 4' s + and X2 = S + which leads to a data matnx 
-0.4 0.3 

[ 
-0.75 1.9] . for the left case of Figure 2.1; to illustrate a second example on the nght 
-2.65 3.3 

of the figure a signal vector s = [ 1] is changed the same way which leads to D = [ 0 0.9]. 
-2 1.1 -1.7 

For illustrative purposes the SVD decomposition for the two examples is shown graphically in 

Figure 2.1. A detailed observation of the figure yields that the plotted columns of U are orthogonal 

as well as the illustrated rows of V T . Furthermore, the most important property of the SVD can be 

seen: When looking at the the transformed vectors obtained by the product U . S for both examples, 

a relatively good approximation of the respective signal vectors is illustrated by one vector which 

corresponds to the first column of the product matrix and the noise is mainly contained in the second 

vector which corresponds to the second column of the product matrix. However, the transformed 

vectors U . S are based on a new coordinate system described by V T . Also, for the example in 

Figure 2.1 on the left, the approximation of the signal vector is reflected showing an opposite sign. 

To illustrate the property of the SVD for K > N, another dimension can be added to the signal 

r 
2 ] r 0.75 ] vector. s = 3 ,the changes made to the signal vector are: Xl = - ~ . s + -0.4 and X2 = 
3 0.85 

r 
-0.1 ] r -0.75 1.9] 

s + 0.3 which leads to a data rnatrix D -2.65 3.3 . The product matrix for this case 

-1.5 -1.4 1.5 
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[ 

1.97 0.54] 
equals: U . S = -4.23 -0.14 . Again, the first column of the product matrix yields a reasonable 

-2.04 -0.22 

appwximation of the original signal vector s ~ [! ] with an opposite sign in the coordinate system 

defined by V T , whereas the second column represents mostly noise. Now, representing the data matrix 

by only the first column of the product matrix reduces the dimension from N = 2 to kt = 1 for this 

example. This shows the property of the SVD to reduce the dimensions of high-dimensional data. 

Now, we can proceed to show the relation of the SVD to the KLT aiming at defining a trans

formation matrix H according to (2.1). Simply, based on the above explanations HK LT is defined 

as: 

(2.7) 

meaning the KLT transformation matrix uses the columns of U as basis vectors. For our examples, 

we get: 

[ -0.75 19] YI = HKLT 'XI = U T 
'XI = [ -0.42 -0.91 ] [ 272] For D = . Xl = 

-0.45 ' -2.65 3.3 -0.91 0.42 

Y2 = HKLT . X2 = U T 
. X2 = [ -0.42 

-0.91 
-0.91 ] 

0.42 
'X2 = [ -3.79] 

-0.32 ' 

foc D ~ [ 0 
1.1 

09] 
1.7 

Yl = HKLT 'Xl = U T 
'Xl 

[ 0.37 
-0.93 

-0.93] 
-0.37 

. Xl = [ -102] 
-0.40 ' 

T [0.37 -0.93] [1.91 ] 
Y2 = H KLT · X2 = U . X2 = . X2 = _ ' 

-0.93 -0.37 0.22 

[ 

-0.75 1.9 1 
for D -2.65 3.3 

-1.4 1.5 [ 

-0.39 -0.83 -0.40] [ 3.05] 
YI = HK LT . Xl u T . Xl = 0.90 -0.24 -0.37 . Xl = 0.48 , 

0.21 -0.50 0.83 0 

[ 

-0.39 -0.83 -0.40] [ -4.08] 
Y2 = HK LT . X2 = U T . X2 = 0.90 -0.24 -0.37 . X2 = 0.36. 

0.21 -0.50 0.83 0 

It can be observed that the KLT leads to a parameterisation of the data where the specially adapted 

first basis functions contain most of the signal information, resulting in transformed vectors Y with 

a very large component at the beginning, decreasing rapidly. This also shows that the KLT is fully 

adapted to the data. A major drawback of this transform is the generalisation. When control data is 

used to justify the selected features by the KLT, results can be very poor. 

To achieve better generalisation, other transforms need to be employed. Examples for such trans

fonns are the discrete wavelet transformation (DWT, [30]), the wavelet packets (WP, [31]) and Gabor 

frames (GF, [32]). Here, the transforms are based on short and temporally translated kernel functions 

that describe the signal information in the data matrix D. They can also be seen as a compromise 
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between the DFT and the KLT as they are not fully adapted to the data but can be modified based on 

certain data properties by changing and adapting the kernel functions. In this report the implemen

tation of these transforms based on filter banks is described. We wish to use the information obtained 

by the kernel functions and the resulting vicinity to filtering also at the end of the finite data vector 

x. Therefore, it is necessary to suitably extend x. 

2.2 Signal Extension 

This section deals with the boundary problem that is caused by data defined on finite intervals and 

shows an appropriate signal extension to solve the problem. 

For the linear discrete transformation y = Hx, we aim to be able to choose having the same or 

a greater vector length for y as for x. As the case of having the same length for y and x is more 

restrictive, we focus on this. Our transformation methods are based on finite-length filter banks, and 

the convolution of a discrete signal of length N with a discrete filter of length N F yields a signal with 

length N + NF - 1. In order to reduce this convolution result to N, we need to extend the signal. 

Three ways to accomplish such a signal extension are shown in [26]: 

• Extension with zeros (zero padding), 

• Periodic extension (wraparound), 

• Extension by reflection (symmetric extension). 

The DFT in 2.1.4 includes a periodic extension. As extension with zeros loses data and periodic 

extension suffers fronl blurring features hidden close to the interval margins of the data, we limit 

ourselves to apply only the extension by reflection to the linear discrete transformations. 

For this symmetric extension we separate two cases [26]: 

The impulse response of the filter is symmetric and of odd length or 

the impulse response of the filter is symmetric and of even length. 

The first case is illustrated in Figure 2.2. The figure shows that the convolution of a symmetrically 

extended discrete signal x[n] (to theoretically ±oo) with a discrete symmetric filter h[n] of odd length 

yields a symmetric signal y[n] with the same period as x[n]. We just cut out one period of it to 

find y[n] that has the same length as x[n]. The points of symmetry of x[n] are n = 4,7,10,13. A 

requirement for this extension is that the filter h[n] is symmetric. This leads to some constraints as for 

example some popular wavelets on which the DWT is based are not symmetric and therefore, cannot 

be extended symmetrically. 

The second case for symmetric extension appears when the impulse response of the filter is sym

metric and even. This case is shown in Figure 2.3. Here, the convolution of a symmetrically extended 

discrete signal x[n] (to theoretically ±oo) with a discrete symmetric filter h[n] of even length yields a 

symmetric signal y[n] whereby the period of y[n] equals the period of x[n] plus one. Hence, with this 

symmetric extension the signal y[n] which is obtained by filtering has one element more than x[n]. 
The points of symmetry of x[n] are n = 4.5,8.5,12.5. 
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Figure 2.2: Case 1: (top) extension of x[n] yielding x[n], (middle) odd length filter impulse response 

h[n] and (bottom) convolution result, from which y[n] can be extracted. 
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Figure 2.3: Case 2: (top) extension of x[n] yielding x[n], (middle) even length filter impulse response 

h[n] and (bottom) convolution result, from which y[n] can be extracted. 
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For the transformations that will be described in the next sections, we aim to incorporate the 

signal extension in the transformation matrix H. The examples for the DvVT and WP do also have a 

symmetric extension incorporated which cannot be observed as these examples are special cases. In 

Subsection 2.5.3 it is illustrated in detail how the signal extension is incorporated in the transformation 

matrix H which we applied exactly the same way to the DWT and WP transforms. 

2.3 Wavelets 

This section reviews the Wavelet Transformation for both the continuous and the discrete case [33], 

[34]. Then, the matrix representation of the discrete wavelet transformation is introduced. 

2.3.1 Continuous Wavelet 'Transformation 

The continuous wavelet transformation (CWT) for a function x(t) is defined as [27] 

(Wwx)(b, a) = J x(t)1J!b,a(t)dt, (2.8) 

with 

1J!b a(t) = ~ 1J! (t - b) 
, V lal a 

(2.9) 

for a, b E ]{, a i= O. The function 1J!(t) is called mother wavelet, which can be scaled and translated 

by the parameters a and b respectively. The mother wavelet is a prototype from which all wavelets 

used in the transformation are derived by scaling or translation. The term "wavelet" means local 

wave and refers to the finite support of 1J!(t). The wavelets are the basis functions for the CWT. 

This is in contrast to the Fourier Transform (see (2.2)) where the basis consists of sines and cosines. 

These are perfectly localised in frequency space but do not decay as a function of time; wavelets on 

the other hand decay to zero as t -+ ±oo and show good localisation properties in the frequency 

domain. Therefore, wavelets are better suited to represent functions that are localised both in time 

and frequency. 

The CWT according to (2.8) is redundant. Furthermore, there exists an inverse transform that is 

not clear [35]. To obtain a transform which can be implemented on a computing device, a discretisation 

of (2.8) is necessary. 

2.3.2 Discrete Wavelet 'Transformation (DWT) 

The discretisation of the parameters a, b in the transform domain leads to the discrete wavelet trans

formation (DWT). For a still continuous function x(t) the dyadic segnlentation of the basis system is 

of interest. Hence, the dyadic discrete wavelet basis system is 

j,k E Z. (2.10) 

We see that for a dyadic lattice a 2), b 2) k. As we analyse discrete data, we need to define the 

DWT for a discretisation in the time domain, leading to a approximation of the continuous case. The 
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DWT for a discrete function x[n] results in a modification to (2.8) as 

(Wwx)[j, k] = Tj/2 L x[n]W[2-j n - k]. (2.11) 
nEZ 

An efficient calculation of the DWT coefficients in the case of discrete-time data can be achieved 

with a multi-resolution algorithm (MRA, [30]). This MRA is performed by filtering the function 

to be analysed with an octave filter bank as shown in Figure 2.4. The high-pass filter hH[n] forms 

a quadrature mirror filter (QMF) pair [36] with the low-pass hL[n] of the filter bank. The input 

sequence to the octave filter bank, x[n], is the function to be analysed. Through successive low- and 

high-pass filtering of the samples in the lower frequency band, Yij [k], and decimation of the resulting 

signals by a factor of 2 (denoted as 1 2), subband samples Yd
j 
[k] are obtained, which, except of the 

lowest frequency band, represent the DWT coefficients and contain the detail information of x[n]. The 

coefficients Yij [k] are intermediate values and correspond to a dual basis function of the wavelet, a so 

called scaling function [30]. The filters h£ln] and hH [n] are sampled version of the underlying scaling 

function and wavelet, and therefore determine which DWT amongst a large variety of possible 

wavelet functions (see e.g. [30, 31, 37]) - is being implemented. 

xfnl 

Figure 2.4: Octave filter bank to compute an MRA of depth J = 3; deeper decompositions are achieved 

by further splitting Yi3 [k]. 

According to Figure 2.4, the scaling function follows the convolution equation: 

YiJ+l [k] = 21
/

2 LYij [n]hL [2k - n]. 
n 

Analogous to that, the wavelet equation results in 

YdJ+l [k] = 21
/

2 LYij [n]hH[2k - n] 
n 

where the coefficients of the high-pass filter hH[n] are called wavelet coefficients. 

The inverse transformation is obtained by 

x[n] = L L(Wwx)[j, k]Wj,k[n]. 
j k 

(2.12) 

(2.13) 

(2.14) 
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The scaled and translated wavelets have an advantageous property that makes the inverse transfor

mation unique and that, combined with a symmetric extension, leads to the same signal length for 

the original and transformed signal. They are orthonormal meaning that 

Vj,k,T,sEZ (2.15) 

where bj,r is the Kronecker symbol which is defined as 

b _ { 1 for j T; 
],r - 0 £ . -I-

lor J r T. 
(2.16) 

In the following, the meaning of one transformation coefficient is described more closely. According 

to (2.11), inner products [27] between x[n] and the analysing wavelets W[2- j n - k] are conducted to 

obtain (W\jJx)[j, k]. We calculate one coefficient for one specific scale j and translation k as 

(W\jJx)[j, k] =< Wj,k[n], x[n] > . (2.17) 

The inner product can be interpreted as a measure of similarity. For two discrete functions with their 

energy content normalised to 1, the inner product equals 

• 0, if they are orthogonal; 

• 1, if they are equal. 

It conducts a least squares fit of one discrete function to the other. Figure 2.5 shows a sample least 

squares fit. Hereby, the vector x corresponds to the finite discrete function x[n], the vectors hI, ho 

represent two analysing wavelets Wj,k[n]. The underlying basis or coordinate system for x is {ell eo}· 

I 
I 

I 
I 

I 
I 

.. f·, 
,,' I: 

, I 

I 

IX 

~-------L~--------------------------~~eo 
110 

Figure 2.5: Least squares fit of x onto hI, h o. 
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The vector x equals 

x ~ [ ~: 1 ~ ryl . e, + '10 . eo ~ (1 . hI + (0 . ho, (2.18) 

where (1 and (0 are the orthogonal projections of x onto the new basis {hI, ho}. The vector y based 

on the new basis {hI, h o} equals 

(2.19) 

where hI and ho are expressed in terms of the basis {eI,eO}' 

The vectors hI, ho represent two basic functions for the transformation. A least squares fit is 

conducted with the vector x. The vector y shows how good the basic functions match the vector x. 

For the DWT, we have N (vector length of x) basic functions which are the wavelets and one scaling 

function and for each wavelet and the scaling function, a least squares fit with the data vector x is 

conducted. Again, y shows how good the basic functions match the data vector. According to (2.15) 

the wavelet basic functions are orthonormal. Hence, we can address the DWT as a rotation of the 

coordinate system of x with the purpose that y which is defined by the coordinate system generated 

by the matrix HDWT gives us more insight on the characteristics of x. 

Let us have a closer look at the dyadic lattice mentioned above. It reveals the advantageous 

property of the DWT which is that the vector x is analysed both in time and frequency. Figure 2.6 

shows the time-frequency lattice for the DWT. The term frequency and not scale is used because the 

DWT can be implemented as a filter bank as explained above and the different scales equal different 

frequency bands [30]. Each rectangle in the figure represents one coefficient of the transform vector y 

and shows the zone in the time-frequency plane that is approximately covered by the coefficient. 

Time .. 

Levell,j=l 

LeveI2,j=2 

LeveI3,j=3 

LeveI4,j=4 

Leve14~j=4 

Figure 2.6: Time-frequency tiling for DWT. 

The "Level" expressions specify frequency ranges which are created by consecutive filtering with 

the high-pass and low-pass filters according to (2.12) and (2.13) (see [38]). The Levels 1 to 4 show the 
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detail information of the signal to be analysed. The Level 4* shows the part of the signal created by 

the scaling function. High frequencies are resolved poorly in frequency but quite accurately in time. 

For low frequencies it is the other way around. They are resolved well in frequency but poorly in time. 

This characteristic is very useful when the signal to be analysed has high frequency components for 

short durations and low frequency components for long durations which is the case for most medical 

data. 

2.3.3 DWT Transformation Matrix H DWT 

We proceed to how we derive the transformation matrix HDWT. Starting from (2.11), one decompo

sition level j is represented as 

(W\jJX)[j, k] = L x[n]hoj [n k] 
nELl', 

with 0 = {d, i} and N equals the length of the discrete function x[n]. For 0 = d, the equation for the 

filter coefficients that reveal the detail information of the analysed signal becomes: 

For 0 = i and a maximal decomposition depth of J = 10g2N, the equation that represents the "deepest" 

level becomes a constant c: 

The general structure of the transform vector y can be derived from Figure 2.4: 

y= 

By expressing the discrete functions in vector notation, YO j [k] 

y= 

Yd1 

Hence, the transformation equation can be written as: 

T . 
Yo" we arnve at: 

J 

x 

(2.20) 

(2.21) 

(2.22) 
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with K = N/2j . It is worth mentioning that for j = J, K = 1. This means that the matrices HdJ 

and HiJ are row vectors and therefore, the vectors Y dJ and YiJ contain only one element. 

We proceed to the definition of a sample matrix Hdj" For a arbitrary Nand j = 1, the matrix 

becomes: 

o 
(2.23) 

Note that the translation for the successive rows equals 2j and hence, in our example for j = 1, it is 

2. This shows how one row in the Matrix H DWT is defined. The incorporation of the signal extension 

is discussed later in the section about Gabor frames because of didactic reasons. The listed examples 

for the DWT and the Wavelet Packets are special cases and therefore can be seen as having a signal 

extension incorporated that cannot be observed. 

To illustrate the above statements the transformation equation with the matrix H DWT for a Haar 

wavelet [38] is shown: 

I I I I I I I I 
YI v's v's v's v's v's v's VS v's Xl 

I I I I I I I I 
Y2 v's v's v's v's v's -v's -VS -v's X2 

I I I I 0 0 0 0 Yi 3 Y3 2 2 -2 -2 x3 

0 0 0 0 I I I I 
Y d3 Y4 2 2 -2 -2 X4 

(2.24) I I 0 0 0 0 0 0 Yd2 Y5 yI2 -y12 X5 

Ydl Y6 0 0 I I 0 0 0 0 X6 yI2 -y12 

Y7 0 0 0 0 I I 0 0 X7 
yI2 -y12 

Ys 0 0 0 0 0 0 I I Xs 
v2 -y12 

The signal extension cannot be observed because of the specific properties of the Haar wavelet. The 

equation shows that the rows contain the coefficients of the wavelets. They are generated by scaling 

or translation of the preceding row. vVhen considering the DWT as a filter bank, the rows contain the 

impulse responses of the filters hOj [n]. Therefore, the transformation Y = HDWTX can be regarded 

as a filtering of x through digital filters hOj [n] that corresponds to the mathematical operation of 

convolution with the impulse response of the filters. Hence, the elements of Y contain the components 

of x that are approximately fixed by the wavelets hd
j 
[n] and the constant filter hiJ [n] as shown in 

Figure 2.7, where the Level 3* contains an approximation of the constant component of the signal. 

2.4 Wavelet Packets (WP) 

We start this section by explaining how and why we proceed from the DWT to the wavelet packet 

transform. Then, we give an example of a wavelet packet transformation matrix Hwp. 
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Figure 2.7: Time-frequency segmentation of the vector y for the DWT. 
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The explained dyadic tiling of the time-frequency plane is fixed for the case of the DWT as shown in 

the previous section. To adapt the transformation to specific data properties, it may be advantageous 

to further decompose for example level 2 in Figure 2.6 into level 3. This adaptive approach is called 

Wavelet Packet (WP) decomposition. 

As an example, Figure 2.8 depicts a comparison between a wavelet and a sample VVP decomposi

tion. The above mentioned properties for wavelets stay the same for WP for example the orthonor-

Wavelets 

Time .. 

Levell 

Level 2 

Level 3 

Level 4 

Level 4" 

Wavelet Packets 

Levell 

Level 3 

Level 3 

Level 2 

Time .. 

Figure 2.8: Time frequency tiling comparison between a Wavelet and a sample WP decomposition. 

mality of the transformation matrix Hwp. The difference between the wavelet matrix HDWT and 

the wavelet packet matrix Hwp lies in the change of the rows. The rows that contain the level 2 

coefficients in H DWT are replaced by level 3 coefficients in Hwp in our example in Figure 2.8. 
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2.4.1.1 Entropy Criterion 

One could ask the following question at this point: What criterion is used to find the optimal de

composition with WP? The answer is that we try to concentrate the energy of the vector x in as few 

coefficients as possible. One suitable measure for such a concentration is given by Shannon's Entropy 

[38], 
N-I 

E(Xnorm ) = - L In(xnorm 2[n]) . (xnorm 2[n]) , (2.25) 
n=O 

where In is the natural logarithm and X norm is the vector that represents the discrete function x[n] 

divided by its Euclidean vector norm Ilxll. E is measure for the concentration of the energy of a 

vector. The reason why we normalise the vector x is explained with an example. The entropies for 

the following unit energy vectors are: 

1 1 1 1 

1 1 1 1 1 1 0 
E - ;:::j 1.3863, E ;:::j 1.0986, E ;:::j 0.6931, E = O. 

2 1 J3 1 J2 0 0 

1 0 0 0 

We see that the entropy decreases from a maximum value for a vector where the energy is evenly dis

tributed over all coefficients to zero for a vector where all the energy is concentrated in one coefficient. 

To illustrate this by a vector with greater length, Figure 2.9 depicts the run of E(X) over the number 

of ones contained in x for a length of x of 512. If not normalised vectors are used the entropy equation 

will result in: 

N-I N-I 

E(C' x) = - L In(c· x2 [n]) . (c· x2 [n]) - L c· x2[n]· (In(x2[n]) + In(c)) = c· E(x[n]) + x2[n]. E(C), 
n=O n=O 

with c being a constant. 

Hence, as we want to measure concentration in as few elements as possible, x needs to be normalised 

by its energy prior to calculating E. According to [38], Shannon's Entropy follows a In function for a 

normalised signal vector x. 

Finding the optimal decomposition with WP using the minimisation of Shannon's Entropy works 

as follows: the entropy of a decomposition level is calculated. Then, the vector is decomposed into 

the next level and the entropy is calculated again. If the entropy of the higher level is smaller than 

the entropy of the lower level, the vector is decomposed into the higher level and the above procedure 

is repeated; if not the decomposition is stopped and the lower level decomposition is adopted. Figure 

2.10 shows how the sample decomposition in Figure 2.8 is obtained. The entropy of the vector x 

is calculated as EO. Then, the entropy E1 of the decomposed x into level 1 is compared with EO. As 

EO > EI, x is decomposed into level 1. In the next step, the entropies for the two level 1 decompositions 

EI,l, EI,2 are compared with the respective entropies E2,1, E2,2 of the level 2 decompositions. One level 

1 decomposition is further decomposed into level 2 because its entropy is larger than the one of the 

respective level 2. The decomposition of the other level 1 is stopped because its entropy is smaller 

than the entropy of the respective level 2. The procedure is repeated for level 3 and we arrive at 

the decomposition that is illustrated in Figure 2.8. For the decomposition into level 3, the entropy 

is calculated for the sub-segments only, and not for the entire vector in the example. Hereby, E3,1 
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Figure 2.9: Example of the entropy as a function of the sparseness of x yielding a In function for a 

normalised x in E(X). 
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Figure 2.10: WP decomposition of a vector by minimising its entropy. 
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and E3,2 are compared with E2,2,1 and E2,2,2. The correctness of the procedure is ensured because as 

Figure 2.9 shows, if only one element of x is decreased (towards zero), the entropy of the entire vector 

decreases. The implementation of this procedure is described in the following. 

2.4.1.2 Implementation of the Entropy Procedure 

To conduct the WP analysis based on the entropy method, we define the data matrix X~~{;' where 

its rows contain the time-domain biomedical data to be analysed. Hence, N defines the length of 

the finite discrete data and L is the number of data or measurements. The entropy procedure [NT 

described above is based on X data and yields a decomposition matrix Z with which the WP coefficients 

are determined according to 

WP coeffs, Z = [NT(Xdata ) (2.26) 

where Z has the same dimension as X data . The matrix Z contains the structure of the WP decompo

sition for each data vector in its rows according to 

Z= 

Figure 2.11 shows a sample row vector zT of Z for N 16. It also shows the structure of the DWT 

vector zbWT for comparison. The vector zT contains the level number of each coefficient sequentially 

according to the TF plane. 

The row vector zT in Z defines the structure of the transformation matrix Hwp. Therefore, we 

have L possible Hwp matrices. Among these we need to find the one that minimises the entropy for 

all data. Therefore, for each decomposition according to zT we calculate the entropy EzT of Xdata and 
I 

choose the smallest. This procedure is implemented as follows: Start a loop and execute the following 

for each zT: 

.. Generate the matrix W zT as 
I 

.. Determine the entropy for each column of W zT. 
I 

(2.27) 

• Calculate the entropy EzT by adding up the previously determined entropies in the columns of 
I 

W zT and save EzT. 
I I 

• At the end of the loop, choose the smallest EzT and denote the corresponding zT as Zrpt· 
I 

With this procedure we arrive at a WP decomposition, which is specially adapted to the matrix X data · 
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Figure 2.11: Structure comparison and respective TF tiling between (right) a sample WP vector and 

(left) the DWT vector. 

2.4.2 WP Transformation Matrix Hwp 

In this subsection, an example for a WP matrix Hwp is given. 

For instance, the entropy procedure [NT of a sample data matrix Xdata yields the optimal decom

position vector Z;;pt = [22221111] what defines the WP matrix Hwp and leads to a time-frequency 

tiling of y as shown in Figure 2.12 and a corresponding filter bank as shown in Figure 2.13. The 

Y7 Y8 Level 2 

Ys Y6 Level 2 

Yj Y2 Y3 Y4 Levell 

Time .. 

Figure 2.12: Time-frequency segmentation of the vector y for a sample WP decomposition. 
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Figure 2.13: Filter bank for the vector y for a sample WP decomposition. 

corresponding transformation equation for a Haar wavelet becomes 

1 1 0 0 0 0 0 0 
YI V2 V2 Xl 

0 0 1 I 0 0 0 0 Y2 V2 V2 X2 

Y3 0 0 0 0 I I 0 0 X3 V2 V2 

r Yd, 1 0 0 0 0 0 0 I I X4 Y4 V2 V2 (2.28) Yd2 
Y5 I 1 1 I 0 0 0 0 X5 

Yd1 
2 2 -2 2 

Y6 0 0 0 0 I I I I x6 
2 2 -2 -2 

Y7 I I I I 0 0 0 0 X7 
2 2 2 -2 

Ys 0 0 0 0 I I I I Xs 
2 -2 2 -2 

The equation illustrates the difference between the wavelet matrix HDWT and the wavelet packet 

matrix Hwp. The rows are changed according to the determined WP decomposition. 

2.5 Gabor Frames (GF) 

In this section, we firstly briefly explain the Gabor frames (GF) transform in general [32], [39]. Then, 

an implementation of the GF transform based on a generalised DFT filter bank with a symmetric 

signal extension is presented leading to a matrix representation of the GF transform. 

2.5.1 Gabor Frames Theory 

To introduce Gabor Frames (GF) we start with an explanation of the sampled Short Time Fourier 

Transformation (STFT), [40]. For the continuous case, the STFT for a function x( T) equals: 

(STFTgx)(w, t) = J X(T)g(t - T)e- jcWT dT, (2.29) 

where g( t - T) is a window function that specifies a certain window type (e.g. rectangular) and restricts 

X ( T) to a certain time interval. This is the reason for the term "short time" Fourier transformation 

which addresses that not the whole spread of X(T) in the time domain is transformed by one step t. 

The formula for the inverse transformation with the above specified window function is 

(2.30) 
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In the following, we will regard the modulation term e-jCWT as part of the window function. If 

{gj,d is a dictionary of time-frequency shifted versions (indexed by j and k as for the DWT) of a 

single window function g, it is called a Gabor frame [41]. A Gabor frame has the additional property 

that there exist constants A, B > 0, so-called frame bounds such that 

A II X 112:::; I: E ZII < x[n], gj,dn] > 112 :::; B II X 112 'l/x E H, 
j,k 

(2.31) 

where H is the Hilbert space of functions X(T). This property guarantees the completeness of gj,k 

meaning that any signal x E H can be represented as an absolutely convergent infinite series of the 

gj,k or in the finite case, a linear combination thereof. 

The discrete Gabor Frames transformation [42] becomes: 

j,k,D E Z, (2.32) 

where the Cj,k are called Gabor coefficients and g[n] is addressed as a Gabor elementary function. The 

parameter D denotes the time sampling interval. The gj,dn] follow the equation 

gj,dn ] = g[k . D - n] . e-21l"JcjbGn. (2.33) 

The gj,k[n] are time-shifted and modulated copies of the elementary function g[n] where bG denotes 

the frequency sampling interval. The formula for the inverse transformation [43] is 

x[n] = I: Cj,kgj,dn ]. 
j,kE'!, 

(2.34) 

The coefficients Cj,k span a lattice in the time frequency plane as it is shown in Figure 2.14. We 

) 

Time -

Figure 2.14: Time-frequency tiling for Gabor Frames (GF). 

see that the area that is covered by one coefficient Cj,k is a rectangle. Like the DWT the GF is a 

fixed transformation. However, by choosing elementary functions that have a different time-frequency 

tiling (changing the length and width of the rectangles), one elementary function can be selected that 

parameterises the data best. 
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The DWT is based on a signal representation with basis functions. The most important distinction 

between basis functions and frames is that the transformation coefficients in the basis representation 

are unique. But the transformation coefficients in the frame representation need not to be unique. For 

example in (2.34), we do not require the gj,k to be orthogonal, nor the Cj,k to be unique. The frames 

provide signal representations with more freedom. 

For our application of the GF transform, we need to ensure that the transform matrix H according 

to (2.1) is unitary to result in a fixed energy relation for the transform as it is the case for the DWT 

and WP. FOr this we require the transform to be based on a tight frame which is defined as having 

equal frame bounds A = B. Therefore, if the transformation equation equals y = HCFX, the vectors 

will show the following property: 
[[ Y [[2 IGZlP=C, (2.35) 

with C being a constant. To state this explicitly: When we speak of GF transform from now on, we 

always require the frames to have equal constant frame bounds. 

2.5.2 GF Based on a GDFT Filter Bank 

The GF transform can be implemented via an oversampled generalised DFT (GDFT) filter bank, see 

e.g. [44], [45] or [46], which fulfils the condition of possessing a tight frame meaning equal fraIne 

bounds. A general structure of a filter bank is shown in Figure 2.15. The bank decomposes a signal 

I-----Co [kJ 

x[nJ 
l-----C l [kJ 

o 

o 

o 

gJ/2-1 [nJ f--------I~ C J/2-1 [k ) 

Figure 2.15: GDFT filter bank with J-channels and decimation ratio D. 

x[n] into J subbands, each produced by a branch gj [n] by convolution and decimation by a factor D 

resulting in the Gabor coefficients cj[k]. The convolution and the down-sampling represent the time 

shift indexed by k, the index j accounts for different frequency bands equalling the frequency shift 

for the Gabor transform. The analysis filters gj [n] are derived from a real valued prototype FIR filter 

p[n] of even length NF by a GDFT, 

n,j E N. (2.36) 

The term generalised DFT stems from offsets jo!! and no!! introduced into the frequency and time 

indices [44]. The transform that is conducted by the filter bank is complex valued and as our data 
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is real, it is sufficient to cover the frequency range 0 < f < fa/2 where fa/2 denotes half of the 

sampling frequency because the skipped frequency range contains the same information of the data 

as it is conjugated complex. As an example the magnitude responses of an 8-channel filter bank are 

presented in Figure 2.16. We see that the Gabor coefficients Cj,k are obtained by filtering with the 
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Figure 2.16: Spectra of a 8-channel GDFT filter bank where the conjugated complex component is 

skipped for real data input. 

modulated window 9j[n] which is the modulated prototype filter p[nJ describing the j-th channel. The 

time-shift is accomplished by convolution (index k). This assumes a continuous data stream; to deal 

with data on a finite interval, again an appropriate signal extension or border filter is required. 

2.5.3 GF Transformation Matrix HGF 

Based on [47], we implement the GF transform over a GDFT filter bank with symmetric and even 

length filters. 

As the GDFT filter bank is oversampled [44], redundancy is introduced into the transformed signal. 

This increases the length for each frequency band compared to the critically sampled case. The amount 

of redundancy is determined by the decimation ratio D. If the discrete function x[n] in Figure 2.15 is 

represented by a vector x with length N and a GDFT filter bank with J frequency bands and with a 

symmetric extension is applied, the length KFB for each frequency band will be by 

KFB=N/D+l D<J, (2.37) 

where the "+ I" indicates the symmetric extension according to Figure 2.3 for an even length filter. 

Also, N needs to be an integer multiple of D. 

As we analyse real data only, half of the frequency range can be skipped because it contains the 

same information as it is conjugated complex. Hence, by considering just half of the frequency bands 

we arrive at a vector length K for the transform vector y obtained by GF transform with 

K = KFB' J/2 = (N/D + 1)· J/2. (2.38) 
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As mentioned above, N needs to be an integer multiple of D. In practise, this condition can be 

enforced by truncating the data in x. Although truncation can be potentially harmful to data, in the 

later application to evoked emissions, for example the pre-stimulus interval does not carry any vital 

information and therefore offers leeway for adjustment of the data segment x. 

The transformation matrix HCF is complex valued and contains in its rows the modulated and 

translated impulse responses of a prototype low pass filter. According to Y = RCFX, Y contains the 

results of the convolutions of the input signal with the respective filters for the different frequency 

bands. 

In the following we show a general procedure of how to obtain the matrix RCF. 

The signal to be transformed is given by: x E CPo The filter vector h E CNF represents the 

impulse response of one modulated window function gj[n]. The decimation ratio is D and the filter 

bank to be implemented has J subbands in total. We aim at a transformation for one subband j 

according to Yj = Hjx, with Yj E C KFB . KFB follows (2.37). As mentioned in the previous sections, 

we show how to implement the symmetric extension of x. For this, we define a symmetrically extended 

version x of x over an extension matrix E for one subband according to 

x=E·x (2.39) 

with E E 7l,N+NFXN. The matrix E has the structure: 

(2.40) 

with A E 'Z/'VF/2XN. The matrix I is a N x N identity matrix. The matrix AF is a "flip" matrix of 

A defined as: 

(2.41) 

with R being the number of rows of A and J being a reverse identity matrix defined as 

1 

J= (2.42) 

1 

The structure of the matrix A depends on NF and N. The following condition describes the relation 

between these parameters: 

23N < NF ~ 2(3+ 1)N 

with 3 E NO. We can differentiate two cases: 

• 3 is even or 0; 

• 3 is odd. 



2.5.3. GF Transformation Matrix HGF 

For the first case, A is constructed as follows: 

J N F/2-sNxNF/2-sN 

A= 

with the matrix 0 containing only zeros. 

For the second case, A equals: 

ONF/2-sNX (s+l)N -NF/2 

A= 

I 

J 

I 

J 

J 

I 

J 

ONF /2-sNx(s+l)N-NF /2 

I N F/2-sNxNF/2-sN 

29 

(2.43) 
s 

(2.44) 
s 

This shows the construction of x as a suitably extended vector of x. Now, we need to define the 

filtering of x with the GDFT filter bank: 

with 

(2.45) 

where Hj E rcKFBXNF+N. The vector OD has D elements which are zeros. 

Now we can formulate the GF decomposition for one subband: 

Yj = H j . E . x = H j . x (2.46) 

with H j E rcKFBXN. Consequently, we arrive at the GF decomposition for x as: 

y= ·x= HGF ·X, (2.47) 
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with y E CK . 

Finally, to illustrate these statements we show an example of the transformation matrix HCF for 

a symmetrically extended signal vector x. Let us consider the case that the length for x is N = 12 

and assume that a complex filter bank with J = 4 frequency bands and decimation ratio D = 3 is 

applied. The length of the filter vector h shall be equal to the length of the signal x (N = N F)' Then, 

by using (2.38), the length for y equals K = 10. The matrix HJ· equals 

hT 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 hT 0 0 0 0 0 0 0 0 0 

H5x24 
J 0 0 0 0 0 0 hT 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 hT 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 hT 

according to (2.45). The matrix E that conducts the symmetric signal extension for all channels is 

Then, H j is obtained by multiplication of the matrices 

H 5X12 = H-5x24 . E24x12 
J J . 

Hence, H j has the following structure 

H5x12 
J l ho+ h, 

h5 + h8 h4 + h9 h3 + hlO h2 + hll hI + h12 0 0 0 0 0 0 

h3 + h4 h2 + h5 hI + h6 h7 h8 h9 hlO hll h12 0 0 0 

hI h2 h3 h4 h5 h6 h7 h8 h9 hlO hll h12 

0 0 0 hI h2 h3 h4 h5 h6 h7 + h12 h8 + hll h9 + hlO 

0 0 0 0 0 0 hI + h12 h2 + h11 h3 + hlO h4 + h9 h5 + h8 h6 + h7 

Consequently, for our case y equals 

Ylsubband 1 

y H 
[ 

Hsubband 1 1 
CF' X = . x = 

Hsubband 2 

Y5 subband 1 

Ylsubband 2 

Y5 subband 2 

This basic principle is used to attain the matrix HCF that analyses signals with longer support later 

for the application. Equally to DWT and WP, one transformation coefficient for the GF can be 

interpreted as a least squares fit between the modulated and translated elementary Gabor functions 

and the signal x. Again, y shows how good an elementary Gabor function matches x (see Figure 2.5) 

] 
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or we can say that y indicates when a certain frequency appears in x (see Figure 2.14). The only 

difference is that the elementary Gabor functions are not orthogonal; they are linearly dependent. 

Because the matrix HCF contains only half of the frequency subbands, rank{HcF} = K. This means 

that the rows of HCF are linearly independent. In other words, the comparison of the GF with 

orthogonal transforms (as illustrated in Figure 2.5) yields, that the elementary Gabor functions can 

have different angles among them and there are more than needed to describe the signal to be analysed 

which introduces redundancy. 

Apart from the restriction that N needs to be an integer multiple of D, there are no constraints in 

terms of the length of the signal to be analysed and the length of the analysing filter. This is a clear 

advantage of the presented GF transform compared to other approaches. 

2.6 Summary 

We have presented a unifying representation for various popular transforms in matrix notation, where 

a symmetric extension (extension by reflection, [26]) of the data is incorporated into H. It is not 

always the numerically most efficient way of computation. However, while fast implementations of 

DWT, WP [30] and GF [48] avoid matrix implementations, the calculation of a limited number of 

significant elements in y can be performed faster by extracting the according rows from H. 



Chapter 3 

TF Transform Based Feature Selection 

This chapter deals with feature selection methods for TF transformed data, as shown in Figure 1.1 in 

the middle. We start with Section 3.1 by explaining receiver operating (ROC) analysis, as it can be 

used to evaluate the separability performance of the succeeding feature selection methods. Section 3.2 

gives a simple energy reduction approach to select TF coefficients that contain most of the signal 

energy. If we deal with data, where only fewer than 60 measurements for one TF coefficient are 

available, Section 3.3 states statistical tests can be used to choose coefficients that show a statistical 

significant difference. Section 3.4 follows showing how TF coefficients containing a difference can be 

selected to increase the overall separability. This is done by introducing a SNR-like criterion that 

calculates a similarity measure for two partial averages of measured data. The separability applying 

the criterion is increased by an ROC analysis based selection of TF coefficients. Therefore, the ROC 

analysis is used twice: Firstly, for finding a selection of TF coefficients and secondly, for the evaluation 

of the found TF coefficients. The chapter concludes with a summary in Section 3.5. 

3.1 ROC Analysis 

A good measure for differentiation between two distributions are ROC curves [49], since the area under 

the ROC curve measures the separability independent of the selection of any threshold. Therefore, 

they have become remarkably useful in medical decision-making [50]. As they are very substantial to 

our work, they are described in more detail next. 

Firstly, we start by introducing the terms sensitivity and specificity [50]. We assume we a have 

population consisting of healthy controls and patients that suffer from a certain disease but do not 

know or cannot express their suffering (e.g. hearing loss in infants). Our goal is to determine the 

patient group out of the population. For this, we run an imaginary test on the population. The 

outcome of the test consists of one test parameter which is either positive indicating the tested person 

is diseased or negative meaning the tested person is healthy. In order to evaluate the performance of 

that test, the following values can be used, as illustrated in Table 3.1. 

The interrelationship equations in the table result from the fact that each person is classified as 

healthy or diseased by the test or in other words that a decision is made. In the following the terms 

represented in the table will be used equivalently, meaning that we always refer to the true positive 

32 
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Test for disease interrelationship 

diseased group healthy group 

Test result: true positive (TP) rate in %, false positive (FP) rate in %, TP + FN = 100% 

positive sensitivity, hit rate false alarm rate 

Test result: false negative (FN) rate in % true negative (TN) rate in %, TN + FP = 100% 

negative specificity 

Table 3.1: Definition of sensitivity and specificity. 

rate when speaking of sensitivity or hit rate. 

Secondly, we define predictive values. The sensitivity and specificity indicate the performance of 

test whether it is useful for diagnosis or not. They do not give the information that e.g. a positive 

test means a person is diseased with a certain probability based on the performance of the test. This 

information is given by the predictive values. The positive predictive value (PPV) is defined as the 

proportion of people that are diagnosed as positive and are actually diseased: 

PPV= TP 
TP+FP 

Respectively, the negative predictive value (NPV) equals: 

NPV= TN 
TN+FN 

(3.1) 

(3.2) 

Thirdly, we introduce the ROC curves. An ROC curve is a graphical representation of the trade 

off between sensitivity and specificity for every possible cut off. By tradition, the plot of the ROC 

curve shows the false positive rate on the x axis and the hit rate on the y axis. However, based on 

the interrelationships shown in Table 3.1, the axis of the ROC curve can be modified. Suppose the 

above mentioned test parameter yields distributions for the diseased and healthy groups as illustrated 

in Figure 3.1 on the left. 

The solid line represents the distribution of the test parameter for the patient group, the dashed 

line for healthy controls on the left in the figure. In the upper case the distributions have a distance 

of their means equalling two standard deviations, d = 2 whereby the distributions possess the same 

variances. The upper right of the figure shows the resulting ROC curve. The lower case shows the 

same but for d = 0.1. In order to explain the meaning and the difference of the area under the ROC 

curve which is given by F in the Figure 3.1, Table 3.2 shows sample values taken from the figure as 

indicated by the circles in Figure 3.1 (right). Table 3.2 uses the same layout as Table 3.1 to state the 

TP, FP, FN and TN rates. 

Ideally, for a good separation, the sensitivity and the specificity should be very high. As Table 3.2 

illustrates, a value for the area under the ROC curve close to 1 yields a relatively good separation, 

whereas a value close to 0.5 yields a very poor performance when taking both the sensitivity and 

specificity into account. 

Having introduced the ROC analysis, we continue by introducing the feature selection methods 

that can be evaluated upon their separability performance by the area under the ROC curve. 
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Figure 3.1: ROC explanation: sample distributions (left) for diseased (solid) and healthy (dashed) 

groups assuming an imaginary test parameter yielding ROC curves (right). The circles indicate the 

example values shown in Table 3.2 

Approximated sample values Approximated sample values 

upper case in Figure 3.1 lower case in Figure 3.1 

"solid" group "dashed" group "solid" group "dashed" group 

positive test result 90% 20 %, 90% 90% 

negative test result 10% 80 % 10% 10% 

Table 3.2: Example values represented by the circles in Figure 3.1. 

3.2 Energy Reduction 

To select the features from TF transformed data, a sensible and promising approach is to reduce the 

energy of the transformed data. The energy of the transformed vector y according to (2.1) equals: 

K-l 

E= LYk (3.3) 
k=O 

with Yk being the elements of the vector y with dimension K. 

An energy reduction can be conducted by setting the smallest TF coefficients whose sum-of-squares 

makes up for a certain amount of the total signal power to zero. Given the spares nature of the TF 

transforms, the proportion of such coefficients relative to the total number of coefficients is much 

greater than the energy reduction proportion, hence reducing computational effort at subsequent 
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stages. 

The complete approach is explained by an example. Suppose a discrete signal is given by the 

vector x as shown in Figure 3.2 top. The signal is corrupted by noise referred to as Xnoisy' 
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Figure 3.2: Example for energy reduction: (top) the signal x is corrupted by noise (middle). Discarding 

DWT coefficients that contribute less than 50% to the total energy yields the signal xenred (bottom). 

To reduce the noise, the vector is transformed according to (2.1) with a DWT applying Mallat's 

wavelet [30] for which good results concerning the analysis of biomedical data have been reported [13]. 

Figure 3.3 shows a basis function derived from the Mallat wavelet where the impulse response corre

sponds to the 25th row of HDWT for a signal length of N = 1024 for the signal Xnoisy to be analysed. 

It is a scaled and translated version of the mother wavelet. The figure also shows the magnitude 

response of this wavelet illustrating its band-pass characteristic or the selected detail in the frequency 

domain. The frequency is is the sampling frequency. 

Now, we apply an energy reduction to the transformed data vector y whereby all coefficients 

whose sum-of-squares contribute less than 50% to total energy are discarded. This yields only 13 out 

of K = 1024 for the example illustrated in Figure 3.2. Multiplying the reduced transformed vector 

with Hr;ivT yields xenred illustrated in Figure 3.2 (bottom). 

We see that the original sine wave is relatively well reconstructed and that the TF transform 

based energy reduction denoised the signal significantly revealing its main characteristic. Note that 

the relatively bad reconstruction in the middle is coincidental and is not connected to a characteristic 

of the transform. Concluding, it can be said that this approach seems to be well suited to select 

features for a later diagnosis or classification. Moreover, if we applied a diagnostic test assuming we 
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Figure 3.3: Basis function derived from the Mallat wavelet: (left) impulse response and (right) mag

nitude response. 

have got data from healthy and diseased people, we could conduct a ROC analysis for each selected 

TF coefficient yielding the area under the ROC curve which we could use to evaluate the separability 

performance of each TF coefficient. 

To test the obtained TF coefficients by the energy reduction in terms of their statistical significance, 

especially when only few measurements are available, statistical tests can be applied which is shown 

next. 

3.3 Statistical Tests 

Based on an energy reduction of TF transforms coefficients, we want to identify coefficients that allow 

us to conduct a statistical significant differentiation for two data sets with respect to their mean value 

when only few measurements are available. For this, the following statistical tests can be used. 

3.3.1 F-test 

Prior to the selection of significant coefficients that represent the main characteristics of the data, an 

F-test [51] is conducted to determine which method is used to identify them. The aim of this test is 

to determine whether two data sets are sampled from normal distributions with the same variances. If 

a value for the significance level P of lower than 0.05 is obtained by the F-test, we conclude that the 

hypothesis is rejected and the two data sets are sampled from normal distributions having different 

variances. The value of P = 0.05 is a limit commonly used in medical research [51]. When the sets 

Xl and X2 contain the series for one time or transformed coefficient for all measurements indexed by 

l taken for two data sets that ought to be separated, they can be compared by the F-value, which is 
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given by [51] 
0-
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(3.4) 

with o-f and o-§ being the variances of the two data sets. To find the significance level P for the F-test, 

we need to define the degrees of freedom for the two data sets according to 

(3.5) 

with L1 and L2 being the number of samples, V1 the degrees of freedom for the data set 1 and V2 the 

degrees of freedom for the data set 2. With the F-value defined by (3.4) and the degrees of freedom V1 

and V2, the significance level P for the F-test can be determined from lookup tables in the literature, 

e.g. [51]. The tabulated F-values are all greater than 1, thus the two data sets in (3.4) need to be 

labelled such that o-f ~ o-§. If the outcome of the F-test confirms that the two data sets are sampled 

from distributions with equal variances, we can subsequently conduct a t-test to determine distinctive 

coefficients. If the result of the F-test is that the underlying distributions from which the two data 

groups are sampled possess different variances we conduct a ut-test. The t-test and the ut-test are 

defined in the next subsection. 

3.3.2 t- and ut-Tests 

The t-test gives the probability that two data sets sampled from potentially two different distributions 

with identical variance possess different mean values, for which a significance is returned. The t-value 

is defined as [51] 

(3.6) 

with 0-
2 = o-f = o-§. The values Xl and X2 represent the means for the two data sets, according to 

Li-1 

L xdl ], i E {1,2}, (3.7) 
l=O 

The t-value also corresponds to a certain significance level P, which can be looked up from ta

bles [51], with the degrees of freedom defined by Vt = V1 + V2 = L1 + L2 - 2. A smaller value for 

P indicates that the data sets have a significantly different mean. For example, for P = 0.01 the 

probability that the differences in the means are due to a sampling error is 1%. To identify distinctive 

coefficients, the determination of the applied significance level will be discussed in the next subsection. 

The two tested distributions are the distributions for a specific transforrn parameter over the two data 

sets. 

For the case that the F-test yields a difference in variances such that the t-test cannot be used, 

we apply a ut-test for unequal variances defined as 

ut = 
Xl - X2 

2 2 
~ + (T2 
Ll L2 

(3.8) 
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According to [51], for data sets sampled from distributions with unequal variances, the i-distribution 

can be approximated by the ui value if the i-table is entered at the following defined degree of freedom: 

(3.9) 

This test tends to be less powerful than the usual i-test, since it uses fewer assumptions [51]. The 

main purpose of the ui-test is to have an analysis tool for all coefficients at hand whether they show 

equal variances or not. 

To determine a significance level P, the relation of the i-test to the receiver operating characteristic 

(ROC) analysis is shown in the next subsection. 

3.3.3 ROC Back Test 

Here, we make use of the ROC analysis to evaluate and obtain a significance level for the i-tests or 

ut-tests. The relation is investigated as follows. Different values for the area under the ROC curve are 

determined. Then, two Gaussian distributions are generated with zero mean, a standard deviation of 

one and a sample size of 100000 for each distribution. Then, a constant is added to each sample of 

one distribution to change its mean. That constant is adjusted so that a ROC analysis of the two 

distributions equals the previously determined ROC curve value. From these distributions, a certain 

number of random samples are taken out and based on a t-test or ut-test, the significance level for 

the i-test is calculated for these samples originating from the Gaussian distributions. This calculation 

is repeated with random samples from the distributions and the significance level is averaged until it 

converges. The ROC analysis is independent of the sample size whereas the i-test and ui-test depend 

on it. Therefore, different sample sizes yield different relations, which is illustrated in Figure 3.4 

for a significance level P found by the i-test. In more detail, to obtain one point in the curve, the 

corresponding number of samples are taken out of the distributions which possess the illustrated area 

under the ROC curve. Then, a significance level P is calculated by the i-test as shown in the previous 

subsection. This procedure is repeated until the significance level of the i-test converges to the value 

shown in the figure. When using the ui-test to investigate this relation, the results are very similar, 

e.g. no differences can be observed when also including the resulting curves on the plot in Figure 3.4. 

Note that the same number of samples is used for the ui-test as for the i-test. 

At this point, we emphasise that the studied relation between the area under the ROC curve 

value and a significance level P of a i-test is based on Gaussian distributions with different means but 

with a standard deviation of one each. The area under the ROC curve represents a parameter which 

evaluates both the distance between the means and different standard deviations for two distributions. 

We considered the variance of the distributions as constant and changed the difference in the means 

observing the effect on the area under the ROC curve value. 

To illustrate the above statements, let us take the analysis of the panic disorder in Chapter 5, 

which deals with a sample size of 24. Table 3.3 shows the relation between the areas under the ROC 

curve and the most commonly used significance levels P [51] for a i-test resulting from our back test 

approach, in more detail. 

In most social research significance levels of P = 0.05 or P = 0.01 are used to determine difference 
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Figure 3.4: Significance Level P for t-test over area under the ROC curve value for different sample 

sizes. 

Area under the ROC curve Significance level P of at-test 

according to our back test approach 

0.717 0.05 

0.778 0.01 

Table 3.3: Area under ROC curve and significance levels P for a sample size of 24. 

between two sets of data [51]. In other studies such as [13], ROC values of Rj 0.77 are found and stated 

to yield acceptable separation performance. Therefore, we choose a significance level of P = 0.01 

for our studies to obtain distinctive transform coefficients. However, we are aware that this selection 

is based on the assumption that the distributions characterised by a ROC value of 0.778 possess a 

standard deviation of one each. As we used this method only to determine a certain significance level 

for the t-test or back test results yielded by a t-test with a ROC analysis, this assumptions seems 

justified. 

The introduced methods allow us to select a certain amount of TF coefficients that can be used 

for diagnosis. However, they are found on the basis of containing a certain energy or a significant 

difference in their means. To select TF coefficients within the ones selected by the energy reduction 

method on the basis of their ability to increase the separability value obtained by the area under the 

ROC when added to one coefficient set, a SNR-like criterion is introduced in the next section. 

3.4 SNR-like Criterion 

So far, only TF coefficients containing much energy have been selected as features, which by means of 

statistical tests can also be applied when only little data is available. Among the coefficients obtained 

by the energy reduction method, we aim to select the ones that contain a significant difference, for 

diagnosis. 
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3.4.1 Difference Evaluation for Differential Diagnosis 

Let a measured time series of a biomedical signal be represented by a vector x. For one subject, 

repeated measurements that contain the response to a certain stimulus can be placed into a data 

matrix according to 

D= = [sp[l] sp[2] ... sp[N]] (3.10) 

xT[L] 

with sp[n] being the columns of the data matrix containing the distribution of the samples for the 

responses to the stimulus with length L. As biomedical data is prone to a considerable contamination 

by noise, measurement equipment, e.g. [52] performs averaging over a total of L responses x[l], l = 

O(l)L 1, whereby two partial averages can be labelled with subscripts A and B: 

2 L/2-1 

L L x[2l], (3.11) 
1=0 

2 L/2-1 

L L x[2l + 1]. (3.12) 
1=0 

Thus, our transformation equation that conducts the parameterisation becomes: 

(3.13) 

where Yi is a vector holding the transformation coefficients, i = {A, B} selects a partial average, e.g. 

according to (3.11) or (3.12) and jT = {DWT, WP, GP} the potential transform method. 

Standard assessment of biomedical data, e.g. transient evoked otoacoustic emissions [52] considers 

the correlation between the two partial averages, i.e. the value p = xI . XB, or an SNR value 

SNR = IlxA + xBII§ 
IlxA - xBII§ + I 

(3.14) 

where I is a small constant to avoid division by zero. If signal information is contained in both 

XA and XB, it will be subtracted out in the denominator leaving noise only; in the numerator, the 

signal information will be add up, yielding a sum of signal information plus noise from both averages. 

Therefore, this measure is described as a SNR-like ratio. These SNR values or the above mentioned 

correlation can be compared to a given threshold, yielding a binary decision for the presence or 

absence of biomedical signal information. Further tests to detect signal information according to [6] 
are a variance ratio Fr and a modified variance ratio Fsp: 

and 

F _ Var(xA + XB) 
r - Var(xA - XB) 

Var(XA!XB) 
Fsp = ---,;-;--::--~'----

k ~~:;01 Var(sp[n]) 

(3.15) 

(3.16) 

with sp[n] being the columns of a data matrix defined by (3.10) and Var being the variance. According 

to [6], especially the Fsp test is more powerful than the tests implemented in known screening devices, 

namely the correlation coefficient and the SNR value. This shows that there is space for improving 

the known SNR value, at which we aim in the following. 
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3.4.1.1 Modified SNR Criterion 

As the partial averages Xi according to (3.13) are finite, a symmetric extension of the data is incorpo

rated into HjT according to Section 2.2. The SNR criterion in (3.14) can be applied similarly to the 

transform vectors, since the Euclidean vector norm is invariant under orthonormal matrices HjT [28], 
which also holds for a GF transform matrix with tight frame bounds [42], 

~SNR = 
IIXA + xBII§ IIHjT(XA + xB)II§ 

IlxA - xBII§ + I - IIHjT(XA - xB)II§ + I 
IIYA + YBII§ 

IIYA - YBII§ + I 
(3.17) 

For further consideration, (3.17) can be written in element-wise notation, 

(3.18) 

Differences in the distribution of this criterion between different data groups will be employed for 

differentiation. 

Let us assume that the coefficients containing information of the biomedical data to be studied are 

given in the transform domain as 

Yi[k] { 
Cdata[k] + silk] , k E Copt 

sdk] ,k E C;pt ' 
(3.19) 

where only the set Copt includes coefficients with a significant contribution Cdata[k], and silk] is a 

random variable with zero mean and variance ()"2. We further assume independence between sAlk] and 

sB[k] Vk. With the expectation operator E{-}, we have 

Considering the SNR criterion in the form 

~SNR = (3.20) 

it is evident that, on average, the summations over set C;pt add the same constant term in numerator 

and denominator. Therefore, a stronger criterion for absence or presence of Cdata[k] is constructed 

according to 
A LkECopt IYA [k] + YB [k]12 

~SNR = LkEC t IYA[k] - YB[k]i2 + I 
op 

(3.21) 

by omitting the coefficient set C~t. This shows that, by aiming at a good parameterisation of the 

data, an improved criterion ~ over (3.20) can be attained. 

The criterion defined by (3.21) contains a fundamental difference to the correlation coefficient p. 

For the parameterised partial averages, this coefficient can be expanded as 

(3.22) 
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since H}; . H}T = I with I being the unitary matrix. 

By using (3.19), p becomes 

Hence, the expectation value for p equals 

£{p} = L Cdata[kF, 
kECopt 

kEC~ opt 

42 

(3.23) 

because the noise is uncorrelated to itself and coefficients that contain signal information of the data. 

As the noise averages out, it is not necessary to select Copt when using the correlation coefficient p 

for assessment of data information. It would possess the same distinctiveness as if all coefficients were 

chosen, meaning that a feature selection approach based on the correlation coefficient would yield the 

same separability results as applying no feature selection at all. 

3.4.1.2 Differentiating Groups 

To distinguish between two different data groups, the criterion tSNR has to yield distinct, separable 

distributions for both groups. A good measure for this separability are receiver operating characteristic 

(ROC) curves [49], since the area under the ROC curve measures the separability independent of the 

selection of any threshold as introduced in Section 3.1. 

The coefficient set Copt on which the evaluation of tSNR will be based may differ from the one 

described by (3.21). Of the coefficients that are indicative of the groups' signal information, only 

those representing a difference between groups rather than the mere presence or absence of signal 

information will be considered. Nevertheless, the proposed improvement of the criterion in 3.4.1.1, 

through disposing of non-indicative coefficients remains valid. 

3.4.1.3 Set Selection 

To determine the set Copt for the differentiation of two data groups, an iterative approach similar 

to [13] is proposed in the following. A starting value is found by evaluating the separability based on 

the ROC area of tSNR[k] for every single transform coefficient with index k = 0(1)511. Then from a 

suitably selected starting coefficient, the set Copt is grown by stepwise inclusion of further coefficients 

that maximise the separability of tSNR until no further improvement is gained. 

For the starting value, the separability of tSNR[k] for each single transform coefficient is measured 

over the training data containing two different data groups. From these coefficients, in [13] the one 

yielding the highest separability (denoted as first maximum) is chosen as a seed for Copt. Alternatively, 

for reasons detailed below, we will further consider that the second largest coefficient (denoted as 

second maximum) may be selected instead. Note that simply choosing the coefficients whose individual 

values tSl'm[k] separate well does not yield the optimal set Copt. Therefore, an iterative growth of 

Copt is suggested, starting with a set Co containing the first selected coefficient only. 
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The iterative growth at step i from set Ci - I to Ci includes one additional coefficient. The index r 

of this coefficient is determined by evaluating the separability of the criterion at step i, 

(YA[r] + YB[r])2 + I:kECi_l (YA[k] + YB[k])2 

(YA[r]- YB[r]? + I:kECi-l (YA[k]- YB[k])2 +,' (3.24) 

over all possible r E Ci~I' The coefficient maximising the separability of t~%R is added to the coefficient 

set, Ci = Ci - I U r. 

To narrow the complexity of the algorithm, the search can be restricted to a neighbourhood of 

the coefficients contained in Ci-I. We consider neighbourhood of first order as direct adjacency of 

coefficients in the TF plane as performed in [13]. As a modification of this, and to provide a slightly 

larger search area, second order neighbourhood additionally includes all coefficients that are directly 

adjacent to first order neighbours. An additional benefit besides the reduced search complexity is 

the potentially improved generalisation to other data if adjacency is favoured over random coefficient 

placement, since the latter is easier prone to model noise in the data. 

The iteration is finally stopped if the separability of t~i~R is not increased over t~iN~)' Then the 

set of coefficients that are considered as significant for a differentiation between two hearing ability 

groups is complete, Copt = Ci-I. 

By this difference evaluation method, we aim at identifying differences in the TF characteristic of 

two data groups. If the TF characteristic of one data group fully overlaps the TF coefficients of the 

second data group, this method covers all possible areas, which can be used for differentiation of the 

two data groups. But if the second data group is not fully covered by the coefficients of data group 

one, this characteristic can also be used to increase the separability which is discussed in detail next. 

3.4.2 General Difference Evaluation Method for Data Groups with Partially Dis

joint Features 

Before we propose a generalised approach to Subsection 3.4.1, we motivate this extension by an 

example. Let us assume we apply the difference evaluation method described in the previous subsection 

to data groups showing a TF characteristic as illustrated in Figure 3.5 according to (3.19), where the 

black blocks represent constant coefficients Cdata and the noise Si is zero. 
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Figure 3.5: Sample TF coefficient distribution for data group one (left) and data group two (right). 
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We aim at separating these two data groups as well as possible with the difference evaluation 

method described in Subsection 3.4.l. By deploying this method, we aim at identifying the coefficient 

set illustrated in Figure 3.6 left, when the data groups are contaminated with noise. The reason 
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Figure 3.6: (Left) coefficient set C~Pt originating from data group one, (middle) coefficients (grey) 

that do not represent a difference, and (right) coefficient set C~Pt originating from data group two. 

that the difference evaluation method according to Subsection 3.4.1 results in identifying only the 

coefficients C~Pt originating from data group one is that these represent a difference to data group 

two. The grey coefficients shown in the middle part of Figure 3.6 do not contain a difference for the 

two data groups and are therefore not useful for increasing the separability for the two groups. The 

coefficients representing a difference originating from data group two are not identified as the applied 

search method aims at maximising the separability of the criterion according to (3.24). Therefore, the 

following question arises: How can we identify the coefficients originating from data group two that 

contain a difference to data group one (Figure 3.6 right)? Furthermore, how can we use this coefficient 

set C~Pt originating from data group two to increase the overall separability by defining a criterion 

for the whole coefficient set Copt? 

To address the first question, we have a closer look at the ROC area analysis. Based on a TF 

characteristic for the transform coefficients Yi shown in Figure 3.5, Figure 3.7 shows ROC area values 

of for every single transform coefficient y. For this sample analysis, 50 data vectors according to (3.19) 

for each y A and YB for each data group were generated with a relatively small noise contamination. 

For these noisy data vectors, the ROC area values for the distributions 6NR[kj1 and eSNR[kj2 were 

calculated. 

Figure 3.7 illustrates the coefficients shown in Figure 3.6 (left) with their ROC area value being 

close to one. The coefficients coming from data group two show a ROC area value close to zero, that 

can be observed in Figure 3.6 (right). The grey coefficients in Figure 3.6 middle do not show ROC 

area values that indicate a difference. 

In the following, we explain why the ROC analysis results in values close to zero and not just 

between 0.5 and one. Figure 3.8 shows the calculation of the ROC area value for 2 Gaussian distri

butions. Let us assume, that (left) the solid line is the distribution of e§NR for a coefficient k of data 

group one, and the dotted line the distribution of e§NR for the same coefficient k of data group two. 

If the analysed distribution of e§NR contains signal information of the data group one, k E C~Pt' we 

will expect it to have a positive mean. If the analysed distribution of e§NR contains noise only for 
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Figure 3.7: ROC area values for sample data groups with very little noise contamination. 

data group two, k E C6pt we will expect it to have a mean close to zero. The figure (top) illustrates 

this case for two distributions with a distance of their means equalling the standard deviation d. This 

explains how the values close to one in Figure 3.7 are attained. The figure (top right) also shows the 

run of the ROC curve for two distributions completely covering each other, d = 0 (dotted line). 
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Figure 3.8: (Left) ~SNR distribution for (solid) data group one and (dotted) data group two, and 

(right) ROC curves. 

The bottom part of the figure shows the case for the distribution ~§NR of a coefficient k E C';pt of 

data group two, analysed with the same coefficient k of data group one and for this group k E C;-pt· 

This leads to a ROC area value that is below 0.5 as illustrated in the figure (bottom right). This case 

corresponds to the values close to zero in Figure 3.7. 
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With these explanations the question can be formulated as follows: We compare two groups of 

data, represented by xh,B} and x{A,B}. For some coefficients k the criterion or measure according 
-1 -2 -1-2 

to (3.18) yields an average of ~SNR[kl > ~SNR[kl and for others, ~SNR[kl < ~SNR[kl. Both cases should 

be exploited to yield a good discrimination. 

The background of this problem is that we do not know which distribution is the reference. Usually, 

for a ROC analysis the distributions are known, there is no reference required. For our case, it is 

important to known from which distribution to start and in which direction the threshold is shifted 

during the ROC analysis. We could also just flip the sign of the analysis meaning we would look for 

the ROC values obtained by one minus the ROC values shown in Figure 3.7. However, for illustration 

purposes and a formulation of a combined SNR-criterion the discussion as it will be shown next seems 

more sensible. 

3.4.2.1 Reciprocal Difference Evaluation Method 

Based on the above explanations, the answer to the question how we can identify the coefficient set 

C;pt originating from data group two can be given. We define a reciprocal criterion according to 

(3.25) 

with the distinctive coefficient set for data group two referred to as C~Pt from now on. To explicitly 

state this, the coefficient set C~Pt refers to coefficients originating from data group one, yielding a 

difference to their counterparts of data group two which are an element of C~t. The coefficient set 

C;pt refers to coefficients originating from data group two, yielding a difference to their counterparts 

of data group one which are an element of C;pt. 

The ROC analysis based on this reciprocal criterion corresponds to the case is shown in Figure 3.9. 

Note that this figure refers to the reciprocal criterion and not Figure 3.8. Similar as before, we assume 

that (left) the solid line is the distribution of ~sNIl for a coefficient k of data group one, and the dotted 

line the distribution of ~SNtf for the same coefficient k of data group two. If the analysed distribution 

of ~sNA contains signal information of the data group two, k E C;Pt, we will expect it have a negative 

mean this time. If the analysed distribution of ~sNA contains noise only for data group one, k E C;-pt 

we will expect it to have a mean close to zero. Figure 3.9 (top) illustrates this case for two distributions 

with a distance of their means equalling the standard deviation d. 

\iVe see that with the reciprocal criterion, the ROC area analysis results in identifying a distinctive 

coefficient of data group two. However, as before, the bottom part of Figure 3.9 shows the case for 

the distribution ~sNA of a coefficient k E C~Pt of data group one, analysed with the same coefficient k 

of data group two and for this group k E C;pt. This leads to a ROC area value that is below 0.5 as 

illustrated in the figure (bottom right). 

Based on the reciprocal criterion according to (3.25), the ROC area values shown in Figure 3.7 

would be reversed. The values originating from data group one which are close to one would be close 

to zero, and the values originating from data group two which are close to zero would be close to one. 

To identify the coefficient set C~Pt that maximises the separability, we just grow the coefficient set 
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Figure 3.9: (Left) eSNR distribution for (solid) data group one and (dotted) data group two, and 

(right) ROC curves. 

according to (3.24) to maximise the separability, however applying to the following reciprocal equation 

crez (i) [ 1 
<"SNR r 

yielding the estimated coefficient set C~Pt. 

Now, having stated that by deploying iterative searches according to (3.24) and (3.26) we yield 

coefficient sets C~Pt and C~Pt that contain the difference between two data sets, we will answer the 

question how a combined criterion can be developed that uses the combined coefficient set Copt 

C~Pt U C~Pt· 

3.4.2.2 Combining Coefficient Sets C~Pt and C~Pt to Copt to Maximise Separability 

Based on the criteria (3.21) and (3.25) we propose two combined criteria in the following. In the next 

Subsection, we will evaluate and compare their performance for constructed artificial data. 

Firstly, a sum-like combination of (3.21) and (3.25) yields: 

(3.26) 

The idea for this proposal is the following: According to (3.19) for a coefficient k E C~Pt' the numerator 

will yield the sum of the energy of the signal information plus twice the noise. The denominator will 

contain twice the noise only. For k E C~Pt' the denominator contains the signal plus twice the noise 
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energy, the numerator the twice the noise energy only. This is expected to result in an improved 

separability compared to the results obtained by the single criteria according to (3 .21) or (3.25). 

The second proposal is a product of (3.21) and (3.25): 

(LkECl IYA[kj + YB[k]!2) . (LkEC2 IYA[kj - YB[k]!2) t* - opt opt 
SNR - (LkECl IYA[kj- YB[kjI2) . (LkEC2 IYA[kj + YB[k]!2) + 'Y ' 

opt opt 

(3.27) 

For a coefficient k E C~Pt the numerator contains a product of the signal information plus noise 

originating from k E C~Pt ' times one noise component originating from the second data group. The 

denominator equals the product for two noise components. For k E C:;pt , this statement is reversed 

meaning we yield a fraction of noise times noise divided by noise times the sum of noise and signal 

energy. Therefore, it can be expected that this criterion performs worse than (3.26) as the noise 

originating from a coefficient set containing no signal information enters the fraction as a product and 

no just a sum. 

To test and confirm the introduced methods for differential diagnosis, the next subsection discusses 

and shows the separability results for artificial data groups. 

3.4.3 Feature Selection for Constructed Data 

In this subsection, we generate artificial vectors Yi to test and validate the difference evaluation method 

to separate two data groups. 

3.4.3.1 Artificial Data Groups 

Exemplary in this subsection, the synthetic coefficients Yi are based on a DWT parameterisation, 

jT = DWT, see Figure 2.6, as the application of the difference evaluation method is independent of 

the parameterisation method. 

Our synthetic data group one is illustrated in Figure 3.10 left by the coefficients Yi that are 

contained by Copt. The presented time TF plane is based on DWT TF tiling and vector length of Yi 
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Figure 3.10: Created artificial data group one: (left) Yi without noise, (middle) sample YA contam

inated by noise, and (right) sample YB contaminated by noise with tiT being the normalised time 

axis. 

of K = 512. The parts in the middle and on the right of the figure show a contamination of the left 
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part by the same amount of noise. Real biomedical data can reveal a similar TF characteristic. When 

we conduct simulations to evaluate the performance of our difference evaluation method next, we will 

increase the amount of noise stepwise. To conduct a differential diagnosis, we need to determine a 

second data group, which is shown in Figure 3.11. 
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Figure 3.11: Created artificial data group two: (left) Yi without noise, (middle) sample YA contam

inated by noise, and (right) sample YB contaminated by noise with tiT being the normalised time 

axis. 

3.4.3.2 Simulation Adjustment 

To apply the methods discussed in the previous subsections, two data sets, Y A and YB are created for 

each data group, based on a TF characteristic shown above. For each Y A and YB for each data group, 

50 data sets are generated with a length of K = 512 (corresponding to 50 subjects for each data group 

for a real life case). The coefficients, that are illustrated by Figures 3.10 and 3.11 on the left, are set 

to a constant value, and then a certain amount of noise is added, according to 

!i.Q. . c2 

SNREN = 10 . log [K data 1 dB 
(j2 

(3.28) 

with SNREN denotes the signal to noise ratio for energies, Kc is the number of constants Cdata and 

(j2 the variance of the Gaussian noise according to (3.19), dB refers to the unit Decibel and log is the 

logarithm with the basis 10. Based on this SNREN, we create artificial data groups from -18 dB to 

-7 dB with a step-size varying form 1 dB to 0.5 dB. Figures 3.10 and 3.11 in the middle and on the 

right show one data set out of the 50 for YA and YB for SNREN = -13.5 dB. 

When we apply the method of difference evaluation to the artificial data groups, we obtain an 

estimated coefficient set C~Pt originating from data group one and C6p t from data group two for 

the criteria defined by (3.26) and (3.27) . E.g, Figure 3.12 shows these coefficient sets separately for 

illustration purposes for SNREN = -13.5 dB. The combined separability when using these coefficient 

sets for the ROC area analysis according to (3.26) and (3.27) results in 0.8864 and 0.8677, respectively. 

To confirm and back-test our results , control data groups are created. For the identified coefficient 

sets, the separability for these control data groups is calculated. The result of this test may give some 

hints whether the difference evaluation method is adapted to the data groups, form which they were 

generated or whether the method is generally valid. 
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Figure 3.12: Estimated coefficient set (left) C~Pt for data group one and (right) cgpt for data group 

two with a separability value of ~ 0.82 when regarding each case separately. 

As mentioned in 3.4.1.3, for identifying distinctive coefficients, the method is restricted to search 

only in first and second order neighbourhood of coefficients that have already been identified as signif

icant. To justify this approach, simulations for an exhaustive search were also conducted. Exhaustive 

search means, that the stepwise growth of the distinctive coefficient set is not limited, meaning that 

all coefficients are tested for increasing the separability by one iteration step. The expectation is that 

the exhaustive search shows better separability results but performs very badly for the control data 

and is hence not generalisable. To illustrate this search, Figure 3.13 shows the estimated coefficient set 

Copt separately for C~Pt and C~Pt for illustration purposes, where the combined separability results 

in the maximum separability value, 1.0000 and 1.0000 for t+ and t* respectively. 
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Figure 3.13: Estimated coefficient set (left) C~Pt for data group one with a separability value of 0.9996, 

and (right) C~Pt for data group two with a separability value of 0.9980 for an exhaustive search. 

Based on these statements, we finally present the simulation results for the general difference 

evaluation method for artificial data. 
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3.4.3.3 Simulation Results and Discussion 

In Figure 3.14, the simulation results are shown for first and second order neighbourhood coefficient 

growth compared for different criteria, including a test for control data groups. The results confirm 

the expectation, the criterion ~+ yields better results than ~*, for both the data used for adjustment 

and the control groups. Also, the application of both criteria is justified, as they result in improved 

separabilities compared the criteria aiming to identify the uncombined coefficient sets C~Pt or C';pt. 

In Figure 3.15 the results for the above mentioned exhaustive search are stated. The expectation 

is confirmed that this search yields better separability results but performs poorer for the control data 

groups meaning that the generalisation is better ensured by growing the coefficient set only by the first 

and second order neighbourhood. To underline this statement, Figure 3.16 illustrates the performance 

of the sum-like criterion according to (3.26) for the control data groups for a first and second order 

neighbourhood search compared with an exhaustive search. 

Based on these results, we conclude that the difference evaluation method to conduct a differential 

diagnosis of artificial data yields reasonable separability results. Hence, we apply the method to real 

life data parameterised by linear transformations. 

3.5 Summary 

In this chapter we have shown how features among TF transformed data can be selected. We firstly 

introduced ROC analysis which can be used as an evaluation method for our approaches. Then, an 

energy reduction of the transformed data was shown underlined by an example. For only little data, 

statistical tests were explained with a determination of a significance Level of P = 0.01 for a t-test for 

a later application. 

To select features which contain a significant difference, a SNR-like criterion was developed. It 

can be regarded as a similarity measure calculated by two partial averages. For data groups with 

partially disjoint features a sum-like and product SNR criterion was developed. The approach for 

these criteria was justified by a feature selection of artificial data. Here, a control group was used 

to study the performance yielding a confirmation of our approaches. Hence, the application of the 

presented methods for feature selection of TF transformed biomedical data seems to be well suited. 
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Figure 3.14: ROC area values based on the various criteria including control groups for neighbourhood 

search. 
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Figure 3.16: Comparison for control groups: ROC area values for sum-like combined criterion t+ for 

first and second order neighbourhood growth (solid) and for an exhaustive search (dashed). 



Chapter 4 

Classification: Support Vector 

Machines 

Having described the feature selection method in the previous chapter, we continue with the expla

nation of the classification methods we explored. Considering Figure 1.1, we arrived at the last part 

on the right. As stated in the previous chapter, the ROC analysis provides an evaluation of a clas

sification by linearly changing the threshold. In this chapter, we introduce a method that selects a 

threshold based on the selected features in a higher dimensional feature space aiming at an further 

improvement of the value given by the ROC curve. The obtained threshold can also be shifted in the 

higher dimensional space and hence, a ROC analysis of the classification can be conducted. Here, 

we are using support vector machines (SVM) as they are a relatively new classification method and 

their application to real-life data is still under investigation. For a detailed description, we refer to 

[9],[53],[54],[55],[56],[57],[58]. SVM are assumed to yield results competitive to neural networks (NN). 

As studies for the performance of NN exist for the type of data we analyse, we contribute to that 

research area by deploying SVM. The chapter is organised as follows: Firstly, a general introduction 

to learning theory is given by Section 4.1 to lay the foundation of learning machines such as SVM or 

NN. In Section 4.2, the SVM theory is introduced and their connection to learning theory is shown. 

These two sections are mainly based on the description of SVM in [54]. In Section 4.3, we introduce 

the adaptation of the theory to our application for diagnosis of potential diseases based on biomedical 

data. Section 4.4 gives a summary of the chapter. 

4.1 Introduction to Learning Theory 

The motivation for the development of learning theory can be regarded as the attempt to describe 

the problems with learning formally and based on that formulation, find solutions for those problems. 

The main issue regarding a learning machine is: How good does it generalise? As we will show later, 

the generalisation of a learning machine is closely connected to its capacity. Capacity is defined as 

the maximum number of points which can be correctly classified by a learning machine when the data 

points show the most unfavourable labels. We will give a more detailed definition of capacity later. 

If the capacity is too big, so-called overfitting can occur. If it is too small, underfitting can appear. 

54 
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This can be explained by an example trying to identify a tree [54]. A botanist with a photographic 

memory may say, unless the object has the same number of leaves as one tree she can remember, it is 

not a tree, which is overfitting. The botanist's lazy brother may conclude, it is a tree, as long as it is 

green, which corresponds to underfitting. 

4.1.1 Definitions: Training Data, Capacity Description 

In the following, we define some terms for learning machines, starting with the training data which is 

a data set with corresponding labels: 

( 4.1) 

where Xl E :m;.N are the training samples and Yl are the labels for the simple pattern recognition case 

Y E {±1}. The distribution probability Pp(x,y) is unknown hereby. We can assume that the Xl 

describe a space X in :m;. which ought to be split into two parts based on the labels Yl. For a detection 

system, the Xl could hold the TF transformed data after a feature selection as explained in the previous 

chapters. Then, the data would be labelled into healthy or diseased for the detection of a disease e.g., 

where L represents the number of measurements taken. 

A learning machine is a quantity of functions {f(po,)} with f(poc) : X ----7 {±1}, where Pa is a 

vector holding parameters. A certain choice of those parameters contained by Pa generates a trained 

machine, which separates the space X into the classes 1 and + 1. E.g. if {f(Pa)} is a set of linear 

functions, Pa would hold two parameters, the gradient and the offset from the origin. A certain 

selection of these parameters yields a trained learning machine. There are 2L possibilities to label the 

L samples. If one function from the quantity {f(Pa)} corresponds to one of those 2L possibilities, 

the learning machine is said to shatter those L points. The Vapnik-Chervonenkis (VC)-dimension 

hvc is defined as the maximal number of points that can be shattered by a learning machine. This 

means that the VC-dimension is used to describe the characteristic of f and is dependent on it, it is 

not dependent of a certain choice of the parameters Pa. The VC-dimension is a well-known measure 

for the capacity of a learning machine and will be explained in more detail by an example. To avoid 

confusion, hvc is the only definition and measure for the capacity of a learning machine which will 

be used from now on. 

Suppose the function set {f(Pa)} consists of oriented straight lines to shatter two classes in the 

space :m;.2. Those lines represent the separating hyperplanes. This learning machine has a VC-dimension 

of three, which is illustrated in Figure 4.1. In this example, the maximum number of points that can 

0)<. o -- 1--1 -
;Yo ~ o 0 .~ 

o 
o 0 

Figure 4.1: Oriented lines can shatter a maximum of three points in :m;. 2. 
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always be shattered by the learning machine is three except if the three points lie on a straight line. 

There are 8 possibilities how the three samples can be labelled and for each case there is a function 

f(PoJ Four points cannot always be shattered by this function set. These exceptions are illustrated 

by Figure 4.2. 

o 

o 

Figure 4.2: Oriented lines cannot shatter four points (left) or points that lie on a line (right) in JP?2. 

Generally, a function set of oriented hyperplanes in ]RN has a VC-dimension of N + 1 [9]. 

Intuitively, one could assume that a learning machine with many parameters Pa would possess a 

high VC-dimension, while a learning machine with few parameters would have a low VC-dimension. 

This is generally not the case. There exist learning machines with only one parameter and infinite 

VC-dimension. A learning machine with infinite VC-dimension is said to be able to shatter L points, 

no matter how large L is. For illustrative purposes, an example is given to explain these statements 

in more detail [54]. 

Example: 

In the following, the training data vector x is a scalar denoted by x, the same applies to Pa· 

Define the step function 

8(x) ~ { 
Consider the function set with one parameter Pa: 

For an arbitrary L, we choose Xl according to 

1, X> 0 

1, x < O. 

Xl 10-1
, l = 1, ... , L, 

with arbitrary labels Y1,Y2,.·· ,YL, YI E {±1}. 

Then, f(Pa) yields those labels for 

Pa = 11(1 + t (1 - ;1)10
1

), 
1=1 

and therefore, hvc( {f(Pa)}) ---700. 

(4.2) 

However, although this learning machine has infinite VC-dimension, we can also find four points, 

that cannot be shattered, which are illustrated in Figure 4.3. The white points belong to one class, 

the black point to the other class. This shows, that the class points need to fulfil the condition defined 

by (4.2) for the learning machine to be able to shatter an unlimited amount of points. One could also 

say, that the infinite VC-dimension is due to an ill-chosen f(x,Pa)' The purpose of this example is 

however to demonstrate that a learning machine with only one parameter can have infinite capacity. 

We continue with the definition of errors and their minimisation for a learning machine. 
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o o o 
x=o 2 3 4 

Figure 4.3: Four points that cannot be shattered by 8(sin(ax)), although hvc -7 00. 

4.1.2 Structural Risk Minimisation (SRM) 

The actual risk is the expected error for the trained learning machine and given by: 

(4.3) 

which we aim to minimise. However, the class allocation probability Pp(x, y) is unknown. Therefore, 

we can only calculate the empirical risk which is the error for the training data and defined as: 

( 4.4) 

The minimisation of Remp does not automatically lead to a small actual risk. Figure 4.4 shows a 

learning machine for a minimised Remp and different VC-dimensions emphasising the dependence 

of a minimised empirical risk on the capacity of the classifier. Therefore, when using empirical risk 

minimisation, we need to find a learning machine with an adequate capacity. Considering this issue, 

the statistical learning theory provides some bounds that limit the size of R(PoJ One such bound is 

called risk bound and given by [9]: 

(4.5) 

where cPvc(hvc, L, 5v c) is called VC-confidence and is defined by 

1 2L 4 
(-L (hvc(ln( -h + 1) + In-s: -) . 

vc uvc 
(4.6) cPvc(hvc, L, 5v c) = 

This bound is valid with a probability of 5v c. It is independent of Pp(x, y) and can be effortlessly 

determined when hvc is known. To obtain a well performing learning machine, we aim at minimising 

this risk bound. However, one has to keep the problems in mind that are connected with the theoretical 

risk bound R(Pa) ::; Remp(Pa) + cPvc(hvc, l, 5v c). For practical use, it often leads to non-trivial 

cases. Also, for a learning machine with infinite VC-dimension like the previous example, the bound 

is not even valid [9]. 

The VC-confidence depends on the function set and not on a certain choice of Pa, which will lead 

to difficulties if one aims at minimising it. This problem can be solved by introducing a structure for 

the function set meaning that we divide the entire function set {f(Pa)} into nested subsets as shown 

in Figure 4.5. 

The subsets are ordered by hyco Now, we just minimise the empirical risk for each subset. Then, 

the minimum of the risk bound is obtained by choosing the learning machine whose sum. of empirical 

risk and VC-confidence is minimal. This approach is called Structural Risk Minimisation (SRM). 

Figure 4.6 shows the SRM of (4.5) graphically. It illustrates the general relation between capacity, 

training error and the bound on the test error: The larger the capacity namely the VC-dimension hvc, 

the smaller the training error resulting in a learning machine too adapted to the training data and 
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Figure 4.4: Learning machine with (top left) good classification, (top right) underfitting and (bottom) 

overfitting resulting from a minimised Remp but different capacities (VC-dimensions). 

therefore resulting in a high bound on the test error. This case is referred to as overfitting. For small 

capacities of a learning machine, already the training error shows relatively large values, which also 

results in a large value for the bound on the test error, and is known as underfitting. With SRM we 

aim at finding the optimum trade-off between both the training error and VC-confidence to minimise 

the error for the test data. 

A learning machine with infinite VC-dimension can show a good performance, e.g. the k-nearest 

neighbour classifier with kk = 1 [54]. This learning machine has infinite VC-dimension and zero 

empirical risk, as any number of points, which are labelled arbitrary, can be successfully learned by 

the classifier (provided that no two points of opposite class lie on top of each other). Therefore, the 

bound provides no information. But nearest neighbour classifier can still perform well. This example 

shows that infinite capacity does not guarantee poor performance. 

Based on the above introduction to learning theory, we can now show the relation to support 

vector machines (SVM). 
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Figure 4.5: Nested subsets of function set {f(Pa)}, ordered by declining hve: hve 1 < hve 2 < 
hve 3 < hve 4· 

4.1.3 SRM, SVM and Neural Networks 

SVM and neural networks (NN) can be regarded as instances of learning machines. Hereby, NN have 

a given structure by a number of layers, a number of nodes which can be seen as a type of non

linearity. The coefficients of the NN are optimised according to some cost function, e.g. the error on 

the training data which equals the empirical risk. SVM are applied based on a given empirical risk 

and the cost function according to which they are optimised, is the VC-confidence. They determine a 

separating hyperplane to which the distance for all data points for the two classes is the largest when 

all data points are accounted for. This statement is illustrated in Figure 4.7 for IR2 for a linear learning 

machine. The two parameters in Pa are the gradient and the offset from the origin. The offset from 

the origin is set to a constant value in the example. Then, the parameter which can be adjusted and 

optimised is the gradient. For the separating hyperplanes on the left, the sum of the distance for 

all data points to the corresponding separating hyperplanes is smaller than for the case on the right 

which represents the hyperplane with the largest distance when all data points are considered. Hence, 

the VC-confidence is minimised as the probability bve for the bound R(Pa) to be valid is maximised 

and enters (4.6) inversely. The data points needed for a definition of the separating hyperplane are 

called support vectors which can be seen as equivalent to the coefficients of aNN. 

The SVM aim at finding the support vectors by applying a constraint on the size of the margin. 

Related to SRM, finding the maximal margin corresponds to minimise the VC-confidence for a certain 

empirical risk. Moreover, to find the minimal R(Pa) also Remp and hvc can be varied. This will be 

explained in the next section where we continue with a more detailed description of the SVM theory. 

4.2 SVM Theory 

This section explains the SVM theory, starting with the simplest case of a linearly separable SVM, 

followed by the non-separable case and concluding with non-linear SVM classification. 
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Figure 4.7: (Left) possible separating hyperplanes for class one 0 and class two e; (right) separating 

hyperplane with maximal margin aimed at finding with SVM. 

4.2.1 Linearly Separable Case 

Let us assume that a two class learning problem is a given and the training data is defined according to 

(4.1) with the space X = ]RN. For the classification procedure it will also be assumed that supervised 

learning is conducted meaning that the allocation of the data to one of the classes is known and 

therefore, the classifier does not need to allocate single data to a class. For the data to be linearly 

separable, there exists a separating hyperplane for the data. This definition is illustrated in Figure 4.8 

(left) for ]R2. For ]R2 the separating hyperplanes are straight lines. 

To select one separating hyperplane among the possible ones, the hyperplane with the largest 

margin is sensible theoretically as well as illustratively. Figure 4.9 shows this hyperplane for the 

example in Figure 4.8 left. The hyperplane with the largest margin is defined by only a few data 

points which are called support vectors and are illustrated with dashed circles in Figure 4.9. 

To describe the above statements mathematically, we define a hyperplane formally. A quantity of 
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Figure 4.8: Data x for class one 0 and class twO.: (Left) linearly separable data and (right) non

linearly separable data. 

o • 

o • • 
o 

Figure 4.9: Separating hyperplane with maximal margin defining support vectors (dashed). 

vectors x following 
H N w . x + bs = 0, W, x E]R , bs E ~, (4.7) 

with w H being the Hermitian of an orthogonal vector w on the plane and bs being the scaled distance 

from the origin; in more detail the term II~II defines the perpendicular distance from the origin with 

Ilwll being the Euclidean norm of w. Figure 4.10 illustrates this definition for ]R2. 

w H . x + bs = const 

w H ·x+bs = (] 

Figure 4.10: Definition of a hyperplane; setting the right side of (4.7) to a constant yields a parallel 

shifting of the hyperplane. 

To separate data points by the hyperplane a linear classifier can be applied: 

f(x) = sign(wH 
. x + bs ) (4.8) 

According to (4.7), the hyperplane can be rescaled, e.g. c· w H . x + c . bs = ° with c being a constant. 

Based on this we can choose points closest to the hyperplane that satisfy l(wH . Xl) + bsl = 1, whereby 

the margin equals 1m = II~II' Figure 4.11 shows these assumptions for ]R2. The points determined by 
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Figure 4.11: Normalised maximal margin for classification. 
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this approach are the support vectors which are circled in the figure. To find them the problem can 

be described as an optimisation: 

minimise Ilwll, subject to yz(wH 
. Xz + bs ) 2: 1, 

whereby the latter condition ensures a correct classification for the data labelled by Yl and an empty 

zone within the margin. According to [9] this optimisation problem can be described by a general 

Lagrange function according to: 

( 1 2 ~ H L w, bs , 0:) = 211wll - L..., 0:z[Yl(W . Xl + bs ) - 1], (4.9) 
Z=l 

with 0:1 2: O. The task for finding the optimum is to minimise (4.9) with respect to w,bs and to 

maximise it with respect to 0:1 [55]. Instead of solving this optimisation directly it is easier to solve 

the Lagrangian dual problem [9] according to 

L 1 L 

0:opt = argn~xL'(0:) = L0:Z - 2 LY1Yi0:10:i(xf . Xi), 
Z=l l,i=l 

(4.10) 

with 0:z 2: 0 and 'i:.~1 YI0:Z = O. The solutions for this problem are obtained via so called Karush

Kuhn-Tucker conditions (KKT) [9]. 

Then, the solution 0:opt of the dual problem provides the wanted hyperplane: 

L 

w = L 0:opt,ZY1Xl· 
1=1 

There is also a solution for bs which is implicitly determined by the KKT [53]. 

(4.11) 

According to (4.9), for all data vectors that are located outside the margin, 0:1 = 0 and hence, 

this can be denoted as a sparse representation of the solution. If 0:z i- 0, the respective data vector 

Xl is a support vector. Moreover, the hyperplane is unique and represents the global optimum of the 

Lagrangian dual maximisation. 

Now, the determined support vectors Xl \j 0: i- 0 can be used for classification of a data vector X 

by substituting w in (4.8) resulting in the following decision function: 

f(x) sign(wH . X + bs ) 

sign ['i:.l:vaz#O 0:zYz(xf . x) + bs ] . 
( 4.12) 



4.2.2. Non-linearly Separable Case 63 

Having shown how the use of support vectors can reduce the complexity of the decision function 

for classification, we proceed form the linearly separable case to the non-separable case next. 

4.2.2 Non-linearly Separable Case 

For data that cannot be separated linearly as shown in Figure 4.8 on the right, we introduce a slack 

variable ~ that can be regarded as penalty for errors. Figure 4.12 illustrates ~. 

w H . X+ bs = 0 

w H . x+ bs = 1 

o 
o 

o • • 
o ~l ~o 

Xl 

Figure 4.12: Illustration of slack variable ~ for data classification which is not linearly separable. 

The formal description of the non-linearly separable case becomes: 

L 

minimise IIwl12 + CL6, ( 4.13) 

Z=l 
with yz(wH . Xz + bs ) 2': 1 - ~z and ~z 2': O. The parameter C can be chosen by the user, a larger C 

corresponds to assigning a higher penalty to errors. The dual formulation similar to (4.10) equals: 

O:opt = arg mgx L' (0:) (4.14) 

with C 2': o:z 2': 0 and 'I:.f=l YZO:l = O. Therefore, the only difference to the linearly separable case is 

the condition C 2': 0:1 2': O. The solution for this optimisation accords with the linearly separable case 

resulting again in a unique global optimum. When illustratively compared to the linearly separable 

case, the margin is not empty for the non-linear separable case and an increasing C leads to a smaller 

margin. Also, the identified support vectors are not only located on the margin but can also lie within 

the margin or can be wrongly classified data points which leads to qualitatively more support vectors 

than for the separable case. We call support vectors that lie on the margin bounded support vectors 

and the rest unbounded support vectors. 

Next, non-linear SVM are introduced. 

4.2.3 Non-linear SVM 

The basic concept of non-linear SVM is the transformation of the data in the input space into a higher 

dimensional feature space where a linear SVM classification is conducted as explained above. Let <I> 
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be the transformation function, then <I>(x) : ]RN f---+ F maps the input space to the feature space F. 

Figure 4.13 gives an example where the data in the input space can be regarded as an exclusive OR 

(XOR) wiring. 

• cP(xz) 

o • 

J linear SVM 

Figure 4.13: Mapping of a XOR wiring from ]R2 to ]R3 where a linear separating hyperplane can be 

found. 

The training data is mapped by <I> to a higher dimensional space, where a linear separation can be 

conducted which corresponds to a non-linear separation in the input space. However, the calculation 

of the hyperplane with maximal margin in F can be quite complex. Investigation of (4.12) and (4.14) 

reveals the most important property of support vector machines: For training and classification only 

dot products need to be calculated. For the non-linear case, the products (xr . Xi) in (4.14) would 

be substituted by (<I>(xZ)H . <I>(Xi)). However, these products can be substituted by efficient kernels 

according to KsVM(xz, Xi) = <I>(XZ)H . <I>(Xi). This substitution does not require the knowledge of <I> 

or F, and can be directly computed in the input space. This so called kernelisation is applicable to 

numerous linear algorithms. 

The kernel functions can be regarded as a measure of similarity or a general scalar product. The 

most common kernels are the following: 

• linear: KSVM(XI, Xi) = xr . Xi; 

• polynomial: KsVM(xz, Xi) = (xr . Xi + c)dp 

• sigmoid: KsVM(xz, Xi) = tanh(K,(xr . Xi) + 8) 

• Gaussian: KsVM(xz,Xi) = exp(-~fRIIXz xi11 2
) 

with dp being the order and c a constant; 

with K, being the gain and 8 the offset; 

with /R specifying the radius of the radial 

basis function (RBF) kernel. 

These kernels fulfil Mercer's condition [9] saying that any kernel which is positive definite can be 

expanded in its Eigenfunctions which is a requirement for the kernelisation. 



4.2.3. Non-linear SVM 65 

E.g. in Figure 4.13, a polynomial kernel of order two is shown according to 

(xt' . x;)' ~ ([ :;: 1 H . [ :;: l) 2 

([ ~~'XI' r [ ~~'Xi' ]) 

Note that neither the mapping <p(x) nor the space F are unique for a given kernel. The above 

mapping is just one example for a polynomial kernel of order two [54]. 

Now we can give the final formulation for the SVM theory. A support vector learning machine 

classifier is obtained by a training procedure according to: 

aopt = argn~L'(a) 
L 1 L 

Laz - 2" LYzYiazaiKsvM(xz,xi), ( 4.15) 
Z=l Z,i=l 

under the constraints C ~ az ~ 0 and ~f=l yzaz = O. To classify a data vector x with the so obtained 

learning machine the following equation is evaluated yielding a binary classification: 

f(x) = sign ( L azYzKsvM(XZ, x) + bS) . 
Z:Vcxz#O 

(4.16) 

Now, we are able to state the relation between the parameters for SVM and the learning theory 

described in the previous chapter. The empirical risk Remp is connected to the parameter C. The 

VC-dimension which describes the capacity of the learning machine is related to kernel parameters, e.g. 

for Gaussian RBF, via rR the capacity is determined; for a polynomial kernel, the order dp restricts 

the capacity. RBF show an infinite VC-dimension hvc as an infinite anlOunt of points that can be 

classified correctly, as long as rR is large enough. By decreasing rR an overfitted learning machine 

applying RBF kernels can lead to a good classification as illustrated in Figure 4.14. It shows that 

changing rR changes the capacity related to hvc of the learning machine, or in more detail, rR limits 

the maximal capacity of the learning machine, over which a constraint is applied during the training. 

Therefore, by restricting the maximal capacity hvc of a learning machine by kernel parameters, 

the classifier found by maximising the margin for a given empirical risk minimises the VC-confidence. 

Hence, related to SRM, Remp can be changed by C, along with hvc by kernel parameters and for 

each adjustment of these parameters, the VC-confidence is minimised. Hence, SRM can be practically 

conducted by minimising the number of support vectors when trying to find the optimum for C and 

hvc· 

The general architecture of SVM is shown in Figure 4.15. The input vector x and the support 

vectors Xz are non-linearly mapped into a higher dimensional space via <P. In this space, dot products 
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Figure 4.14: RBF learning machine with well adjusted capacity (left) and too large capacity (right) 

where all vectors are identified as support vectors. 

WI Weights 

(. ) (. ) 
Dot product 

(<P(X) . <P(XI)) KSVM(X, Xl) 

<P(X) <P(XI) Mapped vectors <P(x), <P(XI) 

7 4 Support vectors Xl ... Xl 

Test vector X 

Figure 4.15: Overview: Architecture of SVM. 
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are calculated. By the use of kernels, these steps are combined, without any knowledge of the feature 

space F. The results are linearly combined weights WI, resulting from solving a convex quadratic 

optimisation problem with WI = YI . o:z. The linear combination represents the input into a decision 

function O"d(X) with O"d(X) = sign(x + bs ). 

One popular algorithm to conduct the training and find the support vectors XI and weights Wz is 

called sequential minimal optimisation (SMO) [53]. There are quite a few implementations available 

on the internet from different research institutes, we have chosen to use [59] for our application. 

Having introduced the SVM and shown their connection to learning theory, one major question 

remains to be answered: How do we conduct the SRM with SVM or in other words: How do we find 

the optimal parameters C and kernel parameters like /R or dp with respect to the chosen kernel? 

The answer to this question is the calculation of a leave-one-out (1-0-0) estimation of the error rate 

as follows [9]: From the training samples, remove the first example. Train the SVM on the remaining 

samples. Then test the removed example. If the example is classified incorrectly, it is said to produce 

a leave-one-out error. A classifier with a low 1-0-0 error is supposed to possess a good generalisation 

avoiding overfitting, see Figure 4.14. Figure 4.14 shows the following statement illustratively: Only 

vectors identified as support vectors obtained by training on the complete data can influence the 1-0-0 

error [57]. Therefore, the pure number of support vectors is an indication of a 1-0-0 error prediction: 

The fewer support vectors, the lower the maximal possible 1-0-0 error. As stated before, the support 

vectors consist of the points that lie on the margin, inside the margin or are falsely classified vectors. 

In [57], a slightly narrower approach to estimate the maximum 1-0-0 error is shown avoiding training 

the SVM more than once, which is also used for our studies contained in this thesis. In general the 

estimation of the 1-0-0 error in [57] tends to overestimate the true error rate. However it provides 

a very computationally effective estimation and a more restricted solution than a pure count of the 

support vectors. Note that, in Figure 4.14 all support vectors are estimated to produce a 1-0-0 error. 

Now, we have all the necessary tools to apply SVM: We are able to evaluate a certain choice of 

empirical risk by the parameter C and the limitation of the capacity by kernel parameters like /R or 

dp with an estimation of a 1-0-0 error. 

\¥e continue with a description of how we apply SVM to real-life data. 

4.3 SVM for Diagnosis 

Firstly, we will give an outline how to apply support vector machines to a certain application. As 

the SVM conduct a sign decision between two classes we also address the following questions which 

arise for real-life data: How do we apply SVM e.g. to a diagnostic test? How do we adapt SVM 

to get a predetermined significance result for one parameter of a diagnostic test? Furthermore, can 

we determine soft decisions meaning that we reject some data vectors classifying them as neutral to 

achieve a certain significance result? Moreover, how do we deal with more than two classes? 
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4.3.1 Specific Application 

When applying SVM to data sets, a suitable data representation must be chosen first. This means the 

data has to be scaled to avoid that data in greater numeric ranges dominate those in smaller numeric 

ranges. The authors of [60] suggest a linear scaling of the input data to range of [-1, +1] which we 

adopt according to: 

Xl, scaled = 
arg max Ilxilloo 

Xl 
( 4.17) 

for i E CT with CT being the set of training data. We pick out the largest overall modulus Ilxi 1100 for 

the entire training data set by "arg max" and divide all training vectors by it. This is also known as 

the infinity norm which selects the largest row sum for a matrix and hence, when dealing with vectors, 

represents the maximal element of a vector. 

After scaling, a kernel for the learning machine must be chosen. Standard kernels are listed in the 

previous section, with the polynomial and Gaussian being the most popular and promising ones [55]. 

Also, one could design and implement a kernel for a specific application, however this is beyond our 

scope here. 

To determine the optimal values for the training error and the restriction of the capacity, the 

authors of [60] suggest a grid search varying the kernel parameters against C on a digital grid. The 

result for training is evaluated upon the 1-0-0 error estimation. The classifier showing the lowest 1-0-0 

error is chosen as the best learning machine. The so-obtained classifier can then be applied to the test 

data. 

At this point, let us give an example how we apply SVM also explaining SRM in more detail. 

Assuming we use a polynomial kernel, the number of bounded support vectors as defined in 4.2.2 is 

increased by increasing dp and hence, also hvc is increased as illustrated in Figure 4.5. Note that the 

kernel parameters are not part of the parameters Pet of a learning machine. The parameters in Pet that 

are optimised are the gradient and the offset of the separating hyperplane in the higher dimensional 

feature space. Now, Remp is changed by C and adjusts the number of unbounded support vectors. 

Therefore, the grid search for C and dp corresponds to the SRM shown in Figure 4.6, finding the 

minimum for R(pet) which again is found by minimising the VC-confidence. Also, as stated before, 

just selecting the values for C and dp which show the minimum number of support vectors represents 

SRM, as they show the minimum for bounded and unbounded support vectors. However, applying a 

1-0-0 error estimation is more restrictive. 

4.3.2 Application of SVM for Diagnosis 

The SVM defined in the previous section conducts a hard decision meaning that the sign function (4.16) 

allocates a data vector to one class. This decision is based on a boundary, found by an minimisation 

of the 1-0-0 error for generalisation purposes. When we think of a two class classification problem 

solved by SVM, we can connect that to a diagnostic test as it is defined in Section 3.1. Let us assume 

we conduct a diagnostic test similar to Section 3.1 with SVM: Class one consists of positive subjects, 

class two comprises negative subjects. The decision boundary found by the SVM can be evaluated by 

the rates shown in Table 3.1. E.g. Figure 4.16 shows the relation for a SVM classification and TP, 
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FP, TN and FN rates. Based on the decision boundary as shown in the figure, the TP equals 88%, 
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Figure 4.16: Connection of a SVM classification with a diagnostic test. 

the TN rate 86.7%, the FP is 13.3% and the FN rate is 12%. 

For such tests, one may select a certain threshold for one rate. E.g. for test on cancer, the 

falsely negatively classified rate should not exceed a certain value, say 2% even if that meant a higher 

falsely positively classified rate as it is better to wrongly classify people as having cancer than as 

falsely classify people as being healthy. We have developed a method how to set a threshold for one 

diagnostic test evaluation parameter, which we will show next. 

4.3.2.1 Decision Boundary Shifting 

To set a threshold for one of the rates TP, TN, FP or FN, we can just shift the decision boundary in 

the space F. In Figure 4.16 the class two margin is shown in the input space for a doubled margin 

for class two in the space F. If it is used as a decision boundary, there will be only one FN data 

vector compared to nine for the illustrated decision boundary. However this has to be traded off 

against the TN rate, which will decrease if the doubled two class margin is used as decision boundary. 

The shifting of the decision boundary is conducted in the higher dimensional space F of the SVM. 

According to Section 4.2.1 the margin for SVM classification can be rescaled to an interval of [-1; 1], 

where 0 determines the decision boundary, see Figure 4.11. Therefore, by using a value of e.g. -2, 

the nonlinear decision boundary in the input space is changed equalling a parallel shifting of the 

hyperplane in the space F. Basically, we adjust the parallel shifting of the hyperplane in the space F 

by the FN rate parameter in the input space. 

Clearly, shifting the hyperplane in F shifts a threshold over the data which can be analysed using 

a ROC. To illustrate the behaviour of the test rates for our example in Figure 4.16, Figure 4.17 

illustrates the ROC curves for changing the decision boundary from -5 to 5 for the separability (TN) 

and FN rates. 
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Figure 4.17: (Top) ROC curves: (left) TN vs FN, (right) zoomed in; (bottom left) run of the shift 

parameter for the decision boundary in the space F vs FN, (bottom right) zoomed in. 

The right of the figure illustrates the zoomed in area of the FN rate from O ... 2.5%. We see that 

for achieving a FN rate of below 2% (e.g. classifying only 2% or fewer positive people as negative), 

the margin needs to be -2 which is illustrated in Figure 4.16 and the TN rate decreases from ~ 86.7% 

to ~ 44% which is the trade off for the low TN rate. 

Based on the above explanations, we continue with the introduction of neutral decisions. 

4.3.2.2 Neutral Class 

For a diagnosis based on real-life data one can think of a decision, where the classifier gives a neutral 

result meaning that certain data points cannot be allocated as they are too close at the decision 

boundary. Hence, the introduction of a neutral class seems reasonable. Combined with the idea 

of setting a certain threshold for one diagnosis evaluation parameter, a neutral class can be defined 

by shifting the separating hyperplane in the higher dimensional space, starting from the decision 

boundary until a certain threshold is reached. This idea explained with the above example would lead 

to a neutral class illustrated in Figure 4.18. 

Compared with the decision boundary shifting, the FP test evaluation parameter does not suffer 

so much from the determination of the threshold because part of it is classified as neutral. Table 4.1 

shows the test evaluation parameters for the example illustrated in Figure 4.18 where the neutral class 

stretches from the original decision boundary found by the SVM applying a minimisation of the 1-0-0 

error to twice the original margin of class two. Also, the table shows the respective values for the 

basic SVM classification and the decision boundary shifting for comparison reasons. 

It is indicated that the introduction of a neutral class seems to be a good compromise when setting 

a threshold for one evaluation parameter for a diagnosis. 

We continue this section with multi-class SVM. 
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Figure 4.18: Neutral class yielding a FN rate of 2% obtained by shifting the separating hyperplane 

starting from the decision boundary to twice the original margin of class two. 

original SVM shifted decision neutral class 

classification boundary to spanning from 

achieve FN of 2% original decision 

boundary to threshold 

achieving FN of 2% 

class one class two class one class two class one class two 

(positive (negative (positive (negative (positive (negative 

group) group) group) group) group) group) 

correctly classified 88% 86.7% 98.7% 44% 88% 44.7% 

(TP I TN) 

neutrally classified - 10.7% 42% 

wrongly classified 12% 13.3% 1.3% 56% 1.3% 13.3% 

(FN I FP) 

Table 4.1: Results comparison for our example showing all test evaluation parameters. 
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4.3.3 Multi-Class SVM 

We have shown how to apply SVM for diagnosis including the rejection of a decision by a neutral class. 

Another important issue is the multi-class problem [61],[62],[9]. For a medical diagnosis application 

we can think of a test that aims at detecting different severities of an illness, e.g. different categories 

of hearing loss. As multi-class SVM is an area of strong interest in the research community, we give 

a very brief introduction and proceed straightforwardly to the method we have chosen. The solution 

for a multi-class SVM classification problem can be split into two groups: 

• a combination of several two class SVM, or 

• a integration of all data points, so-called all together methods. 

For the first case, three popular methods which are applied for pattern recognition e.g. in [61], are [62]: 

• one-versus-rest (l-v-r), where each class is classified against the rest; 

• one-versus-one (1-v-1), where all classes are classified against each other; 

• directed acyclic graph (DAG). 

For the second case, a general method is suggested by [9] based on a 1-v-r method. However, the 

classification is achieved by the solution of only one equation in contrast to the 1-v-r method, where 

each class is tested against the rest. 

In [62] a decision DAG for multi-class SVM is introduced. It is based on an 1-v-1 classification 

where the training is conducted for all possible combinations of the classes. Based on a trained SVM 

classifier for each possible class combination, a binary acyclic graph is used for testing. Figure 4.19 

shows a decision DAGSVM for four classes. 
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Figure 4.19: (Left) DAGSVM for four classes and (right) sample 1-v-1 SVM for training. 

According to [62] the DAGSVM shows the same results as a 1-v-r or 1-v-1 multi-class SVM clas

sification, however a much faster computation, as fewer tests are needed to arrive at a decision. Also, 
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all together methods do no outperform DAGSVM in terms of computational time [9]. These are the 

reasons why we have chosen DAGSVM for our application as a fast computational method based on 

a binary 1-v-1 SVM classification seems sensible. 

Next, we introduce neutral decisions for DAGSVM. 

4.3.4 Neutral Class for Multi-Class SVM 

We have shown how to set a threshold for a neutral class and how to deal with multi-classes. Now, 

we combine the two methods by introducing a neutral decision for each node of the DAGSVM. To 

illustrate the extreme case, we define the neutral class as large as possible meaning we aim at a FN and 

FP rate of zero for the training data. Figure 4.20 explains the idea for three classes for the training. 

~ Margin defining Neutral Class 

2 

: -<;----- SVM Classification Result 
, 

Figure 4.20: Definition of neutral classes for mulit-class SVM classification. 

For a later DAGSVM the dotted lines in Figure 4.20 determine the classification result for the 

training data. For the illustrated neutral class, a neutral decision is yielded for all data points that 

are classified incorrectly for the training data. However, as explained above, the cost for this can be 

a severe decrease in the TN and TP rates. 

The DAGSVM classification for testing is altered according to Figure 4.21 for the example for 

three classes. For the application of the introduced neutral DAGSVM a smaller threshold than the 

maximal possible can be used to determine the neutral class. Moreover, the DAGSVM decision tree 

can be altered according to the specific application to be analysed. In the figure, if there is a neutral 

outcome at the first node, the node in the mjddle described by " 2 vs 3 & 1 vs 2" will conduct an 

AND, meaning that a decision for class 2 will only occur if "2 vs 3" yields 2 AND "1 vs 2" yields 2. 

All other outcomes will be allocated to the neutral class. Furthermore, the decisions in the middle 

include a neutral class meaning that the result for "2 vs 3" and "1 vs 2" in the middle node can also 

be neutral. 

Recapitulating it can be said that the introduced approach seems promising to be a good compro

mise yielding neutral decisions for multi-class SVM. 
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Figure 4.21: DAGSVM with neutral decisions for three classes. 
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In this section, we have introduced SVM and shown their connection to learning theory by a math

ematical formulation of the training procedure, capacity limitation, classification and generalisation. 

We have also discussed SVM for the application for diagnosis introducing neutral decisions for multi

class classification. We conclude this section by giving an overview of the drawbacks and advantages 

of SVM from a practical point of view. 

One drawback is the high computational effort for standard techniques for learning and classifying. 

Also, there is no completed multi-class expansion, this issue is reduced to binary two class problems. 

Moreover, a proposition for classification reliability is missing. Finally, there exists no common criteria 

for selecting a certain kernel. 

The advantages of SVM are their illustrative functionality and that they are empirically explain

able. Furthermore, they are based on theory whereby the classifier is found by determining a guar

anteed global optimum which also allows an evaluation of generalisation. By fast implementations 

(SMO), the computational effort can be reduced. In addition, SVM are easily applicable, there are 

only few parameters too choose and only little a-priori-knowledge is required. Finally, the solution 

describes a sparse representation. 



Chapter 5 

TF Transform Based Feature Selection 

for Panic Disorder 

In medical facilities it is a common issue to judge the responses of subjects to stimuli in order to 

determine a potential physiological or psychological illness [5]. In cases where the response can be 

measured as an electrical signal, the signal evaluation used to be primarily based on an expert's decision 

regarding the waveforms of averaged signals. Such waveforms and often parameters derived from these 

as presented by standard clinical measurement devices were treated as additional information only. 

Recently, however, automated evaluation methods based on signal processing approaches have more 

and more frequently enhanced or even replaced the expert's judgement [8],[4],[5]. As a result, many 

different propositions were made concerning statistical signal evaluation in an effort to enhance or 

perhaps even replace the decision of a human expert. 

In the following two chapters, we contribute to evaluate the separation of biomedical data to 

describe potential illnesses by showing the application of the TF and feature selection methods intro

duced in Chapter 2 and 3. In this chapter, we analyse panic disorder based on event-related brain 

potentials (ERP) that are part of the electroencephalogram (EEG). ERP can be used to differenti

ate between the responses to neutral or panic disorder triggering stimuli when presented to anxiety 

patients. Moreover, we employ TF revealing transforms and statistical tests to identify a small num

ber of significant parameterising coefficients that permit us to perform as well as quantify - this 

differentiation. 

The chapter is organised as follows. Section 5.1 gives an introduction to EEG and panic disorder 

ERP. Based on some properties of ERP and a parameterisation by WP and GF analysis, Section 5.2 

contains the results and discussion of the feature selection by statistical tests as shown in Section 3.3 

as only data from one patient was available. As the introduced approach of analysing panic disorder 

is a novelty, Section 5.3 justifies our approach by comparing our results with other methods like a 

simple time domain average, a KLT transform or applying the statistical tests to unparameterised 

data. Finally, a summary is given in Section 5.4. 

75 
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5 .1 Introduction 

5.1.1 Electroencephalogram (EEG) and Its Sources 

The electroencephalogram (EEG) [1] is a relatively low-frequency (30 Hz) recording of a voltage signal 

taken from the scalp which reflects electrical activity of the brain. The first recordings were made 

by Hans Berger in 1929 [1]. The amplitude varies from as large as 150 fLV peak-to-peak to 50 fLV 

peak-to-peak which is more common. EEG can be used to diagnose brain abnormalities and also to 

localise brain volumes responsible for certain mental activities. Also, by applying visual or auditory 

stimuli, the response EEG can be used in psychology for diagnosis and psycho-physiological research 

[8]. 

In order to understand how the electrical activity of the brain can be disrupted, it is first necessary 

to have a basic idea of how this signalling works [1]. The brain is essentially a mass of cells, or neurons, 

which are capable of transmitting chemical signals to one another and propagating electrical signals 

internally. This information can be transmitted because neurons are each equipped with several special 

features that make them different from other cells. 

All neurons have a cell body and several extensions from this cell body called dendrites and axons. 

A typical neuron usually has many dendrites and only one very long axon. The dendrites contain 

receptors embedded in the membrane, which are proteins that respond to chemical signals. The axon 

has a terminal at its end that releases the chemical messengers, or neurotransmitters, to the next 

neuron. 

One of the most important ideas to consider about signal transmission in neurons is that there is an 

actual physical space between one neuron's axon and the next neuron's dendrites. This space is called 

the synapse and is the site of communication between cells. The neuron releasing the neurotransmitter 

is called the pre-synaptic neuron and the one accepting the neurotransmitter is called the post-synaptic 

neuron. The pre-synaptic neuron will release its neurotransmitter into the synapse. This chemical 

messenger will diffuse across the synapse and interact with specific receptors on the post-synaptic 

membrane. 

The interaction between the neurotransmitter and receptor will cause changes in the post-synaptic 

neuron which will cause the electrical potential (or signal) mentioned above to be generated. This 

electrical signal will be driven down the length of the axon until it reaches the terminal. When the 

signal hits this part of the axon it will cause the terminal to release neurotransmitter into the next 

synapse. These neurotransmitters will cross the synapse and interact with the receptors on the next 

neuron, thus continuing the process. 

All neurons in the brain generally function in this manner, but it is also important to realize that 

there are as many as about 100 billion neurons in the brain. The question arises how these electrical 

signals of the brain can be used to describe our abilities as human beings. When the brain is damaged 

by a tumour or stroke, for example, the electrical signals can't get through to their appropriate 

connections and the function of the brain is impaired which can be observed by measurements via an 

EEG. Therefore, in the next subsection, we show how the EEG is recorded. 
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5.1.2 EEG Recording 

The EEG is measured from electrodes which are placed in special positions on the scalp. These 

positions are identified by the recordist who measures the head using the international 10/20 system 

[lJ. This relies on taking voltage measurements between certain fixed points on the scalp. The 

EEG electrodes are placed on the scalp at 10 and 20 percent of certain measured distances. If a 

measurement was made around a skull, (e.g. a hat size measurement) a circumference distance would 

be determined. This measurement would be around 55 cm for an average-sized person. Therefore, 

10% of this measurement or 5.5 cm would be used to determine precise locations around the skull. 

An anatomic landmark is needed to know where to start with the measurements. These landmarks 

are the ear canals, the bridge of the nose (nasion) and the inion at the very back of the skull. 

The 10/20 system is based generally on the relationship between the location of an electrode 

and the underlying area of cerebral cortex, although exact relationships can only be determined with 

further confirmation of exactly where the various parts of the brain are. There are slight variations 

amongst individuals in brain shape and relationship to the skull landmarks. Each point, e.g. Cz , C3, 

Fpl , F7, etc. represents a standard place for a recording electrode. Each site has a letter to identify the 

lobe and a number or another letter to identify the hemisphere location. The letters F, T, C, P, and 0 

stand for frontal, temporal, central, parietal and occipital lobes. Note that there is no "central lobe" , 

but this is just used for identification purposes. Even numbers (2,4,6,8) refer to the right hemisphere 

and odd numbers (1,3,5,7) refer to the left hemisphere. The z refers to an electrode placed on the 

mid-line. The reference or ground electrode is usually placed on the ear lobe, Al or A2 [63J. Figure 

5.1 illustrates a sample location of the electrodes. Also note that the smaller the number, the closer 
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Figure 5.1: Sample location of the electrodes for EEG measurement according to the 10/20 system 

(with permission of BrainMaster Technologies, Inc., 24490 Broadway Avenue, Oakwood Village, Ohio 

44146, USA for academic use). 

the position is to the mid-line. 
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Many more placements can be defined for research purposes. Some researchers use 64, 128, or even 

256 electrode placements [1 J. Figure 5.2 shows a sample subject with EEG electrodes placed on her 

skull. 

Figure 5.2: EEG measurement (with permission of BrainMaster Technologies, Inc., 24490 Broadway 

Avenue, Oakwood Village, Ohio 44146, USA for academic use). 

We continue with a description of the various wave types found in an EEG. 

5.1.3 EEG Classification 

Spontaneous EEG activity can be broken down into 4 distinct frequency bands [lJ: 

• Beta activity ~ 13 Hz, 

• alpha activity 8 Hz - 13 Hz, 

• theta activity 4 Hz - 7 Hz and 

• delta activity:::::; 4 Hz. 

Beta activity is a normal activity present when the eyes are open or closed. It tends to be seen in 

the channels recorded from the centre or front of the head. Some drugs will increase the amount of 

beta activity in the EEG. 

Alpha activity is also a normal activity present in waking adults. It is mainly seen in the channels 

recorded from the back of the head. It is fairly symmetrical and has an amplitude of 40 f.L V to 100 f.L V. 

It is only seen when the eyes are closed and should disappear or reduce in amplitude when the eyes 

are open. 

Theta activity can be classed as both a normal and abnormal activity depending on the age and 

state of the subject. In adults it is normal if the subject is drowsy. However it can also indicate brain 

dysfunction if it is seen in a subject who is alert and awake. In younger subjects, theta activity may 

be the main activity seen in channels recorded from the back and central areas of the head. 

Delta activity is only normal in an adult subject if they are in a moderate to deep sleep. If it is 

spontaneously seen at any other time it would indicate brain dysfunction. 

Another activity that can be measured by the EEG are event related brain potentials [1 J which 

are described next. 
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5.1.4 Event Related Brain Potentials (ERP) 

ERP are the evoked transient EEG response to sensory stimulation either visual or auditory or tactile 

(transient pressure applied periodically to body parts). They can be used for diagnosis in psychology. 

Transient electrical activity is evoked by the applied transient stimuli; firstly from the sensory nerve 

input nuclei, then from the brain-stem and after this from the sensory cortex. ERP are generally 

small, often around 1 fL V peak. Therefore, ERP possess the same order of magnitude as amplifier 

noise and noise from muscles picked up by the EEG electrodes [1]. Furthermore, ERP can be smaller 

than other unrelated EEG activity measured by the respective electrode. 

Synchronous signal averaging is a common method to extract ERP transients out of the additive 

noise [1]. Here, we will use TF transformations to extract the features of the ERP. In the next 

subsection, the panic disorder ERP are described. 

5.1.5 Panic Disorder ERP studies 

Individuals with panic disorder are characterised by an abnormal fear of certain anxiety connected 

sensations such as palpitation, breathlessness, or dizziness [64]. The research into this disorder has led 

to studies investigating its symptoms by means of appropriate stimulation and measurement of the 

subsequent ERP [65, 66]. In this context, visual stimulation has been performed with words causing 

panic disorder, whereby the EEG can be recorded showing event related potentials. Previous studies 

have resulted in revealing a low frequent transient waveform appearing approximately 300 ms after 

stimulus onset as a distinctive characteristic which is referred to as P300. 

Signal averaging followed by analysis of variances (ANOVA) is commonly used in detecting the 

P300 and studying panic disorder based on the response ERP [14], [3]. Since the P300 has a transient 

behaviour, the application of TF analysis appears well suited, as it takes both spectral and temporal 

information into account [67]. In the next section we aim to investigate various transforms such as 

wavelet, wavelet packet, and Gabor transforms - with respect to their suitability for revealing the TF 

characteristics of the transient P300. We further optimise these transforms such that the distinction 

between panic disorder and normal responses is concentrated in only few transform coefficients, to 

which we apply a statistical test for the feature selection as only little data is available. 

5.2 Feature Selection for Panic Disorder 

In this section, we introduce the experimental conditions under which panic disorder data was ob

tained. Furthermore, TF transforms will be reviewed, which can parameterise the elicited event related 

potentials. Finally, test results for the described methods are presented and discussed including the 

application of the statistical tests according to Section 3.3. 

5.2.1 Description of Data 

For the measurement of panic disorder ERP, an anxiety patient was presented with fear-inducing or 

neutral words briefly at the perception threshold of panic disorder. The patient's perception threshold 
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for correctly identifying 50% of the words was determined with neutral words not used in the exper

iment. Based on the assumption that he/she will recognise a greater number of anxiety words given 

at his/her perception threshold than neutral words, the hypothesis examined is the expectation that 

his EEG exhibits an enhanced P300 wave for presented anxiety words [14]. 

The EEG was measured at the vertex electrode (Cz , see Figure 5.1) synchronously to the stimulus, 

whereby the recordings were started 100 111S before the onset of the visual word stimulus. The data 

analysed in this study contains 24 neutral word presentations and 24 anxiety word presentations to 

one panic patient. Figure 5.3 shows the average over the stimulus-synchronous EEG in reaction to 

the 24 words presented for each word category. There is a visible difference in the two averages with 

a stronger P300 and more positive EEG until approximately t = 700 ms in the panic disorder related 

data. 

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

time / [s] 

Figure 5.3: Average over 24 EEG segments showing responses to anxiety related and neutral stimuli 

at the perception threshold. 

To emphasise the use of TF transforms on which the feature selection will be based, Figure 5.4 

shows the averages over the neutral and anxiety words separately including the 68% confidence bands, 

meaning the single standard deviation added and subtracted for each average. As the bands are 

relatively wide, the application of statistical tests and TF transforms seem to be a sensible approach 

also to locate the right frequency ranges for the P300. 

5.2.2 Parameterising 'Transforms 

To parameterise the ERP in Figure 5.3, TF transforms lend themselves to account for the transient 

nature of the waveforms. To capture the impulsive rise of the P300, TF transforms with a good 

time resolution are required. The DWT generally yields a good frequency resolution and poor time 

resolution at low frequencies, yielding a too coarse time segmentation in the frequency range of interest 

which is due to the dyadic TF tiling, see Figure 2.6. The only adjustment that can be made is the 

appropriate selection of the mother wavelet. Therefore, instead we consider the WP transform, whose 

level of decomposition can be adapted to fit the nature of the data, as well as the Gabor transform, 

which yields a uniform tiling of the TF plane and hence can provide a desired resolution in a specific 

TF segment. 

Based on the implementation described in Chapter 2, the WP uses Mallat's wavelet [67], whereby 

the decomposition level of the transformation is adapted to minimise the entropy of the average ERP 

curves in Figure 5.3. The Gabor transform is based on an oversampled filter bank with 32 channels 
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Figure 5.4: 68% confidence bands for (top) anxiety EEG and (bottom) neutral EEG. 

constructed according to Section 2.5. The resulting approximate distribution of the coefficient energies 

in the TF plane is visualised in Figure 5.5. 

The application of the transform methods leads to a parameterisation of the ERP data whereby the 

features of the ERP are expressed in as few coefficients as possible. Within these ERP-parameterising 

coefficients, we isolate those that represent a significant difference between the two data sets by using 

the statistical tests described in Section 3.3 as only 24 measurements for each data category are 

available. 
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Figure 5.5: Average coefficient energy for (left) neutral words and (right) panic order related words 

using (top) WP and (bottom) Gabor transforms. 
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5.2.3 Results and Discussion 

As discussed in 5.2.2 and 3.3, we have different transform methods and a procedure to identify sig

nificant coefficients that enables us to separate between presented neutral and anxiety words. In 

the following, we will discuss the used transforms and present the results for separability which we 

obtained for the data described in 5.2.1. 

Thansform Adjustment 

The optimal decomposition structure for the WP is found over minimising the entropy as described 

in Section 2.4. The decomposition depth was limited to have at least 16 coefficients in one decompo

sition level as further decomposition would lead to a too coarse time segmentation. In terms of the 

Gabor transform, various filters were tested and it was found that using a prototype filter with length 

of NF 224, a frequency segmentation of J = 32 uniform scales and a time segmentation of D = 14 

for the oversampling shows the best results for the separability which is determined by the area under 

the ROC curve. Table 5.1 shows the area under the ROC curve results for various prototype filters to 

explain how the described filter was selected. 

Channel number J decimation ratio D length of prototype filter N F separability 

(area under the ROC curve) 

of "best" coefficient 

64 56 448 0.7135 

64 28 448 0.6944 

64 14 448 0.7066 

32 28 224 no coefficient found 

32 14 224 0.7388 

32 7 224 0.7108 

16 14 112 0.7033 

16 7 112 0.7050 

8 7 56 0.7052 

Table 5.1: Results for tested prototype filters for GF transform to separate presented panic and neutral 

words. 

Identified Coefficients and Difference Comparison 

The coefficients to which the statistical tests are applied were preselected whereby only coefficients 

are considered which contain 85% of the total energy according to (3.3), which is reasonable, as it 

reduces the probability of identifying coefficients that contain noise only. The value of 85% results 

from not considering coefficients that are located above 15 Hz in the TF plane, see Figure 5.5. 

Figure 5.6 shows the resulting coefficients when performing a difference evaluation on the parame

terised data, by statistical tests. We see that two coefficients (black and grey) for both transforms are 

identified. They cover approximately the area of the P300 slow wave as it is expected in 5.2.1. They 

are all identified via a t-test according to a prior F-test whereby the threshold for the significance 

level for the F-test was P 0.05, and for the t-test, it was set to P = 0.01 according to Section 3.3.3. 
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Figure 5.6: Resulting coefficients for (left) WP and (right) Gabor transforms. 
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Figure 5.7: Difference of raw neutral and anxiety EEG data compared with its parameterisation by 

the two identified coefficients for (top) WP and (bottom) Gabor transforms. 

Figure 5.7 shows the difference of the averages of the raw neutral and anxiety EEG compared 

with its parameterisation by the identified coefficients for the two investigated transforms. It can be 

observed that the two identified coefficients parameterise the P300 area very well for both transforms. 

To evaluate the separability of the identified coefficients, Table 5.2 indicates the ROC curve analysis 

for these coefficients. All coefficients obtained show an equal or greater value than 0.72 which can be 

Transform 

Coefficient WP GF 

black 0.73 0.73 

grey 0.72 0.72 

Table 5.2: Area under ROC curve for the identified coefficients. 

regarded as a reasonably good discrimination. Recapitulating, it can be said that with both transforms 

an adequate separation of data of both categories, namely presented neutral and anxiety words, can 

be achieved. To support this statement, we show the separability for a simple time domain average, 

other transforms like the DFT and KLT and a comparison with unparameterised data for further 

justification. 
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5.3 Justification of TF Transform Based Feature Selection for Panic 

Disorder 

5.3.1 Simple Time Domain Average 

One might ask, observing the difference between the time average for the neutral and anxiety data 

in Figure 5.3, why is it sensible to use TF transforms? Why not calculating a mean for the striking 

time range in Figure 5.3 to separate the two data sets? The answer to these questions is that the 

separability for a simple time domain average is less significant than the separability for the identified 

TF transform coefficients. This statement will be confirmed in the following. 

Suppose we calculate a time average from 0.3 s until 0.7 s for each measurement of the two data 

sets. This yields two distributions for the calculated means referred to as xNe 0.3/0.7 and xPa 0.3/0.7 

with a sample size of 24 each. The time frame over which is averaged is illustrated by Figure 5.8. 
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Figure 5.8: Time frame for simple time domain averages xNe 0.3/0.7 and xPa 0.3/0.7' 

Applying a t-test to xNe 0.3/0.7 and xPa 0.3/0.7 yields a significance level of P = 0.0234. Therefore, 

the significance level is higher than for the selected TF coefficients to describe the difference. Moreover, 

if the range from 0.3 s to 0.7 s is divided into 0.02 s intervals yielding 20 intervals in total, the value of 

the interval with the lowest significance level equals P = 0.0142 which is still above the significance level 

of the TF transform coefficients. This shows that although relatively good values for the significance 

level using simple time domain averages can be achieved, the separability results for the TF transform 

coefficients are better. 

5.3.2 Applying no or other Transforms like the DFT and KLT 

To further justify the chosen transforms, we show in the following the reconstruction results for 

the resulting coefficients yielded when the statistical tests are applied to mere time domain data, 

Fourier-transformed data or data transformed with a KLT. Similar to Figure 5.7, we use the obtained 

coefficients to reconstruct the difference and compare them with the difference of the averages of the 

two data sets. Figure 5.9 shows the reconstruction results for the time domain (top) and frequency 

domain (middle) averaged neutral and anxiety data. The bottom of the figure represents the range 

between 0.25 sand 0.7 s on an enlarged scale. 

We see at the top of the figure that two coefficient groups with a total of 18 coefficients at around 

0.41 sand 0.6 s are identified in the time domain based on a t-test. In the frequency domain, two 
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Figure 5.9: Top: difference of neutral and anxiety EEG data compared with the identified coefficients 

in the time dornain. Centre: difference of neutral and anxiety EEG data compared with the back

transformed identified coefficients in the frequency domain (broad line at 0 f.L V). Bottom: enlarged 

scale to illustrate the approximate sine resulting from the DFT analysis. 

coefficients are identified which back transformation to the time domain yields an approximate sine 

with a relatively small amplitude. This approximate sine cannot be clearly observed in the middle of 

figure, and is therefore illustrated at the bottom on an enlarged scale. 

Next, the results for a parameterisation of the data by a KLT are stated. The transform is 

conducted as explained in 2.1.4 according to equation (2.7). In more detail, a SVD is conducted for 

each data set meaning that a SVD is applied twice over 24 responses for each word category. This 

yields a transform matrix U T for each word category which is then multiplied with the respective data 

matrix yielding the distributions of the KLT coefficients that represent the similarity with each KLT 

basis function. Naturally, the best approximation of the signal information is contained by the first 

coefficient. The P values obtained by the t-test for the first KLT coefficients are: 0.026, 0.435 and 

0.367 for the 1st, 2nd and 3rd coefficient, respectively. The reconstruction of the difference based on 

these coefficients is illustrated in Figure 5.10. 

As it can be observed in the figure, the reconstruction of the difference for the first KLT coefficient 

resembles the difference very well for t > 1 s, but less for the interesting range from 0.3 s -0.7 s. The 

other presented coefficients do not show a good parameterisation of the difference either. This can be 

the explanation for not passing our t-test threshold of P 0.01. 

The above results show clearly that a parameterisation of the difference, based on the statistical 

tests introduced, can be much better accomplished by the introduced TF methods than with a mere 

parameterisation in the time domain, frequency domain or a complete adaptation to the data by a 

KLT transform. 
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Figure 5.10: Reconstruction results for the first three KLT coefficients 
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Finally, we compare the effect of the TF parameterisation with the unparameterised case. The features 

that are selected by statistical tests represent the input to a SVM classifier yielding a detection rate 

for the TF parametrised data. This is compared with detection rates obtained for unparameterised 

time domain data. 

When the selected features are used as an input for a SVM learning machine, it returns a trained 

support vector classification network. Using this network, a detection rate for a test data group is 

obtained. This method, as outlined in Figure 5.11 is applied to panic disorder data. We are especially 

interested in investigating the influence of the parameterisation and therefore, we compare the detec

tion results obtained for the selected features based on the TF parameterisations and unparameterised 

time domain data. As the amount of panic disorder data is limited, the TF transforms as well as the 

statistical tests are applied to all available data, before it is split into training and test data sets, as 

illustrated in Figure 5.11 to ensure a robust parameterisation. vVe consider a two class classification 

problem, namely one class defined by anxiety causing data, and one class describing neutral data, 

which is split into two data groups, namely training data and test data, respectively. As the main 

purpose of this approach is to evaluate and justify the parameterisation, the drawback compared to a 

study where the parameterisation is based on a training data set only can be accepted. 

In the following we describe the SVM classification in more detail. 

For Gaussian kernels, when using stretched out values for the limitation of training errors defined 

by C and the kernel parameter iR, overfitting can occur meaning that all training vectors are identified 

as support vectors. To avoid this for our application, we have chosen to use the polynomial kernel 

of order dp = 3 as this is assumed to be the best comprise between computational time, avoiding 
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Figure 5.11: Overview: Detection comparison study for (top) parameterised data and (bottom) time 

domain data. 

overfitting and yielding a good detection rate for the test data. 

Figure 5.12 shows a SVM classification with a minimised 1-0-0 error for a WP parameterisation. 

This can be shown in a two dimensional plane as the for the WP, two coefficients were identified as 

significant. The two coefficients are illustrated in Figure 5.6 (left). 
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Figure 5.12: SVM classification with two coefficients for a WP parameterisation on the axis. 

In Figure 5.12, one class is defined by 12 points originating from arbitrary chosen neutral words and 

the second class represents 12 panic causing words, also chosen arbitrary from the whole 24 defining 

one training data set. For this example, for class one, 11 out of 12 examples are assigned correctly; 
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class two gets assigned incorrectly in ~ of all cases. This rather asymmetric decision is due to the 

comparably small data size. Therefore, the SVM classification was conducted with 120 samples for 

each word category without replacement and averaged at the end. This means that in loop of 100 

runs, 12 arbitrary measurements for the two data groups were chosen, the SVM trained and the test 

group consisted of the remaining 12 measurements for each word category. In the next run, again 12 

arbitrary measurements were chosen from the set of 24 for each category and so on and the average 

calculated at the end. Table 5.3 shows the results for this procedure for the training data. It is well 

worth mentioning that all our results are based on the implementation of the SVM according to [59]. 

time GF WP 

domain transform transform 

sensitivity 99.55 % 66.78 % 92.00% 

specificity 93.13 % 65.88 % 96.28% 

number of 15.68 16.65 17.39 

support vectors 

Table 5.3: Results for training data. 

It can be seen that the time domain data and the WP parameterisation yield comparably high 

values, whereas the GF identifies around two out of three words correctly for the training data. The 

number of support vectors is similar for each case. 

Next, the more interesting results for the test groups are presented in Table 5.4. It can be seen 

time GF WP 

domain transform transform 

sensitivity 67.34 % 78.49 % 82.32% 

specificity 55.63% 54.39 % 52.82% 

Table 5.4: Results for test data. 

that the WP shows the overall best detection results for the test data, followed by the GF and the time 

domain data performing worst. However, for the specificity all three cases are similar around 50%. 

Also, for the GF, there is an improvement for the sensitivity, which can be due to the oversampled 

characteristic of transform. 

What can be expected from Figures 5.7 and 5.9 is confirmed: The WP parameterisation yields 

the best detection rates, followed by the GF transform and the unparameterised time domain data 

performing worst. However, the specificity for the TF-transforms is not significant although the test 

data is used for the adjustment of the parameterisation methods. This can be due to the relatively 

small amount of data available. Moreover, the t-test for obtaining distinctive coefficients may not 

be powerful. Therefore, more encouraging results for the analysis of biomedical data applying SVM 

can be expected when more measurements are available than here and a different lTlethod for the 

extraction of the features from the parameterised data is deployed. However, it is confirmed that the 

parameterised data can be separated better than without a parameterisation. 
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5.4 Summary 

We have presented a WP and Gabor transforms analysis comparison for parameterising ERP with the 

aim of differentiating between presented neutral and anxiety words to a subject with panic disorder. 

We have motivated the use of TF methods, and proposed an approach to obtain distinctive transform 

coefficients, whereby the results were verified by different tests for different cases. The selection of 

those transforms was confirmed by a comparison with other parameterising transforms, namely the 

DFT and the KLT. Moreover, a comparison with a simple time domain average and a test with 

completely unparameterised data was conducted. The results of those comparisons are that only 

considering the time domain data or applying a DFT is too "inflexible" to achieve good results as 

no adjustment to the data can be done. However, a complete adjustment to the characteristics of 

the data by a KLT does not yield satisfying results either. Also, calculating a simple time domain 

average does not outperform the separability results for the TF parameterised data. As the author is 

not aware of other work analysing panic disorder by TF transforms, these justifications shall confirm 

the described approaches. Therefore, it is concluded that these TF transforms can be very well used 

to analyse and select the features of panic disorder via ERP responses for the study shown. 



Chapter 6 

TF Transform Based Detection of 

Cochlear Hearing Loss Using SVM 

This chapter is concerned with the automated separation of biomedical data to detect and specify 

potential cochlear hearing loss by means of transient evoked otoacoustic emissions (TEOAE) by com

bining the parameterisation methods of Chapters 2 and 3 with the classification in Chapter 4. In more 

detail, we give an overview of otoacoustic emissions and their application to medical diagnosis in Sec

tion 6.1. Then, we describe and discuss the results for each of the studied parameterisation methods 

showing the DWT in Section 6.2, the WP in Section 6.3 and the GF transform based analysis results 

in Section 6.4. Each of these sections has the same layout, comprising of feature extraction, feature 

selection and classification. We compare and discuss the results including a comparison to a similar 

study in Section 6.5. Finally, the chapter concludes with a summary in Section 6.6. 

6.1 Introduction 

This section gives an overview over otoacoustic emissions and a brief review on screening and diagnosis 

methods based on these signals. 

6.1.1 Otoacoustic Emissions 

The current understanding of sound processing in the inner ear includes two components: a passive 

and an active mechanism. Interaction of these two mechanisms gives the inner ear its extremely 

high sensitivity and frequency-selectivity. The active amplification of the displacement of the basilar 

membrane produces vibrations which are transmitted backwards through the ossicular chain in the 

outer ear canal. Thus the inner ear does not only transform an acoustic stimulus into an electrical 

signal but can also actively emit sound. These sound emissions are considered as an epiphenomenon 

of the active cochlear amplification process and are called otoacoustic emissions (OAE) [2]. OAE are 

transmitted backwards to the physiological direction of sound into the outer ear canal where they can 

be measured by highly sensitive microphones. 

Basically we can distinguish between spontaneous (SOAE) and evoked otoacoustic emissions 

90 
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(EOAE). EOAE were first systematically described and analysed by Kemp [68], and are classified 

according to the applied stimulus into 

• transiently evoked emissions (TEOAE), 

• stimulus-frequency emissions (SFOAE) and 

• distortion product emissions (DPOAE). 

It is beyond controversy that the spontaneous and the evoked emissions originate in the cochlear 

amplifier and that they both occur only in a healthy inner ear [2],[7],[6]. In ears with a hearing loss 

of more than 35 dB it is impossible to detect any TEOAE [2]. However this is a frequency-specific 

effect; if there is a hearing loss in a strictly limited frequency range we can still measure emissions in 

the same ear in adjacent frequency ranges with normal hearing. 

The TEOAE are described in more detail next. 

6.1.2 Transient Evoked Otoacoustic Emissions (TEOAE) and Their Measurement 

TEOAE are evoked by brief acoustic stimuli, for instance a click (1-6 kHz) or a tone-burst. For 

the measurement an acoustic probe containing a loudspeaker for the delivery of the stimulus and a 

sensitive miniature microphone for the recording of the emitted sound signal are inserted into the 

external ear canal. Broadband acoustic signals from the cochlea are recorded when the inner ear is 

stimulated with a click. With a tone-burst the registered emissions correspond to the frequency of the 

stimulus. This allows to a certain extent a frequency-specific statement on the intactness of the outer 

hair cells inside the cochlea [2]. 

After a frequency-dependent latency the evoked sound emissions can be measured in the outer ear 

canal. Because of the frequency dispersion due to the representation of high frequencies at the base of 

the cochlea and of low frequencies at the apex, the latencies are strongly dependent on the emission 

frequency, e.g. 20 ms at 500 Hz and 4 ms at 5 kHz are common [2]; alternatively we can say that 

cochlear answers occur with a frequency-dependent time delay. The duration of the TEOAE ranges 

from a few ms to several hundred ms. 

An important characteristic of TEOAE is their non-linear behaviour: the amplitude increases up to 

stimulus levels of 35 dB sound pressure level (SPL) and saturates at higher stimulus levels. This non

linearity is important in the signal processing and evaluation stages. State-to-the-art measurement 

equipment [52] offers a non-linear stimulus mode, which releases a stimulus sequence of three positive 

acoustic impulses, referred to as "click" stimulus, followed by a three times greater one possessing an 

opposite phase meaning that it has a negative sign. The sum of the responses to this stimulus set is 

stored. This stimulus mode results in an average response that reduces stimulus artefacts and linear 

components in the response of the ear to the transients [2]. 

Standard equipment such as in [52] measures TEOAE synchronously to the stimulus over a certain 

time interval, and its time series is represented in a vector x. As TEOAE data is prone to a considerable 

contamination by noise, the measurement equipment performs averaging over a total of L responses 

to the above described stimulus set, whereby two partial averages, XA and XB, are formed according 
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to (3.11) and (3.12). Per measured ear, stimulus synchronous intervals of 20.48 ms represented in 

samples indexed by n are averaged with a sampling frequency of is 25 kHz. The number of 

averaged stimulus set responses is 260 for each average corresponding to L = 520 in default mode 

for [52]; the sample number equals N = 512. As there are 4 stimuli for each stimulus set, the two 

averages contain the responses to 2080 stimuli for one ear. 

The measurement of TEOAE with the IL088 measurement equipment [52] is part of the clinical 

routine to check the hearing ability of newborns. To describe the measurement procedure in more 

detail, Figure 6.1 shows a TEOAE measurement of the author. The applied "click" stimuli excite the 

frequency range from 0 Hz up to 6 kHz in the cochlear. 

OAf Analyser US. 
Patient: 
Ear.. Case: 
Date .... 21/05/2982 

STIMULUS 
MX Nonlin CLI IN 

dB GflIN 
-1.5 

lJaueforM 

F1 Hel 

Preset 
L-L-L-~~~~~~~ ______ ~~~~~~ __ _ 

SAVE DIRECTORY 
C::\ILO-V5\DATEN 

FILLED: 55/999 
RE',/IEW DIRECTORY 

C:\ILO-V5\DATEN 
SCREEN DATA SOURCE 
NEI~ DATA 

Figure 6.1: TEOAE measurement of the author with IL088 measurement equipment. 

The response waveform shows one partial average over 260 stimulus sets. Among the illustrated 

measurement results in Figure 6.1, the SNR according to equation (3.14) can be determined as the 

difference between the A&B mean and A-B diff equalling 20.4 dB-10.0 dB = 10.4 dB for the author. 

The most important measurement for the operator is the SNR value for the different centre fre

quencies of 1.0, 1.5, 2.0, 3.0 and 4.0 kHz. The values are illustrated in the window titled response, 

below the correlation coefficient values which are given in %. Values below a threshold of ~ 5 - 6 dB 

are critical indicating a possible hearing loss. In this case, a clinical operator might diagnose a slight 

high frequency hearing loss for the author. 

To illustrate the differences for subjects with different hearing ability, Figure 6.2 gives an example 
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Figure 6.2: TEOAE for subjects with (top) normal hearing ability and (bottom) pantonal hearing 

loss. 

for a TEOAE signal measured by [52] which shows the recorded partial average XA for a subject with 

normal hearing ability on the top and the recorded partial average XA for a patient with pantonal 

hearing loss on the bottom. 

TEOAE can be measured in more than 90% of all subjects with normal hearing. This important 

feature contributes to the clinical relevance of TEOAE. In subjects with normal or almost normal 

hearing (hearing loss up to 15-20 dB) the cochlear answer registered after click stimulation is a broad

band frequency spectrum. In contrast a hearing loss of more than 35 dB leads to a complete loss of 

active sound emissions. A localised damage of cochlear hair cells results in a reproducible reduction 

or even total loss of TEOAE in the corresponding frequency ranges [2]. 

The measurement of TEOAE is established in the clinical routine as an objective and non-invasive 

diagnostic tool. The measurement of TEOAE is very fast and brings minimal strain for the subject and 

is therefore an excellent screening method for the detection of cochlear hearing disorders in newborns 

and infants. Especially the early diagnosis of hearing impairment in children is most important for a 

prompt initiation of an adequate therapy which can avoid irreversible damage. 

After introducing TEOAE in general, the data used for our studies is described. 

6.1.3 Description of Data and Standard Analysis 

We try to differentiate between three different types of hearing loss (HL) - no HL, high-frequency HL, 

and pantonal HL as characterised in Figure 6.3 where the shaded area specifies a possible HL. 

The available TEOAE data consists of two data sets recorded at the Universities of Homburg and 

Heidelberg in Germany with measurement equipment according to [52] as described in Section 6.1.2, 

whereby each set evaluated roughly 200 ears, the exact numbers are given in Table 6.1. 
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Figure 6.3: Characterisation of hearing loss for (left) normal hearing, (middle) pantonal HL, and 

(right) high frequency HL. The shaded area indicates a possible hearing impairment. 

number of subjects Homburg Heidelberg 

NH 109 69 

HF 55 95 

PT 23 39 

Table 6.1: Number of subjects for each hearing ability group for each data set. 
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The measurements represent the response to a "click" stimulus as shown in Figure 6.1 on the top 

left. As stated before, each stimulus set consists of 3 stimuli as shown in the figure, and a fourth 

one with a three times bigger amplitude and an opposite sign to reduce linear components. For each 

partial average 260 stimulus set responses are averaged equalling 2080 stimuli for one ear. The medical 

history of the subjects in the data sets was known, and clear assignments to one of the three groups of 

different hearing ability, as defined in Figure 6.3, had been established at the Homburg and Heidelberg 

clinics. The author would like to acknowledge Prof. Ulrich Hoppe and Sebastian Hoth of the University 

of Erlangen, Germany, who kindly provided valuable expertise and the data. 

In the following we will show the results for an ROC analysis of the standard SNR values of the 

data sets. The SNR calculation according to equation (3.14) yields distributions for the SNR for each 

hearing ability group for the two data sets. E.g. Figure 6.4 shows the histogram for the SNR for the 

NH group of the Homburg data set. 

Based on the SNR distributions, we can calculate the area under the ROC curve for each distinction 

case for the two data sets. Table 6.2 shows the results. 

group distinction Homburg Heidelberg 

NH HF 0.772 0.773 

NH -- PT 0.856 0.953 

HF PT 0.668 0.840 

Table 6.2: ROC area values based on SNR distributions. 

It can be seen that the Heidelberg data is of better quality than the Homburg data. The distinction 

case NH vs PT is the easiest to separate, while the case HF vs PT is the most difficult. For the case 

NH vs HF, both data sets show the same ROC value. With our signal processing methods to be 

described in later sections of this chapter, we aim at improving these separabilities. 
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Figure 6.4: SNR histogram of the NH group of the Homburg data. 
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The tonotopic arrangement of the hair cells and the temporal aspects of the generation and propagation 

of anterograde and retrograde travelling waves account for a differently delayed appearance of TEOAE 

parts that originate at different locations on the basilar membrane [69]. Consequently, the spectrum 

of TEOAE signals is latency-dependent [70,71], whereby early emissions have a higher frequency than 

the ones that appear with an extended latency. Thus, time-frequency methods have been considered in 

order to better exploit this TEOAE characteristic and gain access to the different spectral component 

of the TEOAE bearing evidence of frequency dependent hearing. 

There exist quite a few studies on TEOAE. In [72], a "banana-like" TF pattern is identified 

for TEOAE via STFT and Gabor analysis based on Gaussian shape windows. This pattern is also 

obtained when a DWT based on Mallat's mother wavelet is applied to measured partial averages for 

a group of normal hearing subjects as shown in Figure 6.5. 

The study [72] also compares the TF analysis for people with normal hearing ability and patients 

with moderate and severe high-frequency hearing loss. In the latter, high-frequencies are absent 

in the TF plane and the frequency interactions at later TEOAE time segments decrease. Also, for a 

differentiation of normal hearing with severe high-frequency hearing loss, all frequencies are significant. 

For a separation of normal hearing and moderate high-frequency hearing loss, only high frequencies 

are useful. For the separation case moderate high-frequency hearing loss versus severe high-frequency 

hearing loss, low frequencies are significant. 

Further studies deal with enhancing the TEOAE measurement using filtering. E.g. in [73], the 

detection of TEOAE is enhanced by low-pass filtering leading to a better measurement efficiency. It 

is shown, that the same SNR value can be achieved by averaging 60 filtered sweeps as compared to 

260 averaged sweeps without filtering. According to [74], using a shorter time window from 2.5 ms to 

7.5 ms or 9 ms enhances TEOAE measurement efficiency, which results in a greater SNR. The usual 
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Figure 6.5: TEOAE energy in the TF plane showing a "banana" pattern. 
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window length is up to 20.48 ms as mentioned above. More responses can be averaged in the same 

time by using the shorter 2.5 ms to 7.5 ms time windows, such that a specified SNR can be reached 

up to five times faster. 

Wavelet-type analysis of TEOAE is presented in [75J to study the influence of a drug, using a 5 tap 

finite impulse response (FIR) filter as a prototype in a filter bank. The study concludes that TEOAE 

can be suppressed by drugs. Also, [76J includes the analysis of TEOAE by wavelet transforms, where 

the mother wavelet is a modulated cosine function. However it can be questioned if such a function 

can be attributed as a mother wavelet for a DWT. The study uses this type as mother wavelet and 

confirms the above mentioned "banana" pattern by revealing linearity in a logarithmic scale for latency 

versus frequency. Furthermore, a monotonic decrease is found in the latency-frequency diagram in 

logarithmic scale for increasing the stimulus intensity meaning that all frequencies appear faster for a 

higher stimulus. Pseudo Wigner Distributions are used to uncover the TEOAE characteristics in the 

TF domain in [77J , indicating another confirmation of the "banana" pattern. 

Furthermore, matching pursuit can be applied for TEOAE analysis [78J. It is claimed to provide 

a higher resolution than the DWT or WP. By overlapping 20 functions adequately chosen from a 

redundant dictionary, 80% of the energy can be represented. Also, a relation between the stimulus level 

and the frequency components is uncovered: For increasing stimulus, the level of the high-frequency 

components increases significantly less than the low frequency levels. 

In [6J different tests for the objective detection of TEOAE are described. Standard measurement 

equipment [52J gives parameters like an SNR value and a correlation coefficient. Among others, these 

two parameters are also included in the study. The conclusion is drawn, that a variance ratio test is the 

best suited for screening and detection applications, better than the SNR estimate or the correlation 

coefficient. This shows, that there is space for improvement over obtained standard results from the 

measurement equipment. 

A differential diagnosis of hearing loss based on TEOAE is conducted in [7J. There, a design of 

time windows is shown, which increases the separation results compared to the unwindowed case by 
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15%. In more detail, a parameterisation of the data by wavelet decomposition using the Coifiet5 as 

mother wavelet is conducted prior to applying an ensemble correlation technique. This is followed by 

deploying the time window design. Finally, using a mean cross-correlation, the improved separability 

values are achieved. Concerning our study, those results can be used for comparison. 

Having introduced TEOAE and discussed their clinical application, a novel method is developed 

for the differential diagnosis of hearing loss based on TEOAE in the next sections. We start by giving 

an outline of our approach next. 

6.1.5 Overview of our Analysis Approach 

We aim to improve the results shown in Table 6.2 by employing a range of TF parameterisations, apply 

the feature selection shown in 3.4 and classify the data with SVM according to 4.3. As the TEOAE 

data is not overlapping, the procedure described in Section 3.4.2 is left for future applications. 

In recent studies [79], [80] a SVM classification was conducted after signal processing methods were 

applied for the artifact removal of EEG data. Hence, the application of a SVM after the described 

feature extraction and selection seems also reasonable for TEOAE. Moreover, the application of the 

SVM classifier after our signal processing methods is justified by the results shown in Subsection 5.3.3. 

There, the time domain based SVM classification yielded the least significant results even though a 

feature selection method was applied. Therefore, it can be expected that using the pure time domain 

TEOAE data as input for a SVM will lead to similar results even though the dimension of the classifier 

is larger than the number of points defining the classes. For example in Section 5.3.3, 18 time domain 

coefficients were used to classify 24 data points. Applying no feature selection to the data with a 

sampling number of 266 yielded even poorer results there. 

Based on these explanations, we arrive at the following overview of our analysis approach: Fig

ure 6.6 shows that a ROC analysis after the feature selection and the classification is conducted in 

order to compare the results with Table 6.2. For the SVM classification, the results for a DAGSVM 

test and a DAGSVM test with a neutral class will be given. The latter classification will be explained 

and determined next. 
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As Table 6.2 shows, the case NH vs PT is the easiest to separate and hence, we determine that a 

SVM classification without a neutral class can be applied for this case. For the cases NH vs HF and 

HF vs PT, which are more difficult to separate, we define a neutral class as explained in Section 4.3.4 

with maximal possible margins to illustrate the extreme case. The DAGSVM decision tree for this 

case is shown in Figure 6.7 which is based on a separation of the classes according to Figure 6.8. 

The reason for this determination of the DAGSVM with a neutral class is that if we applied a 

DAGSVM decision as illustrated in Figure 4.21, the HF class would be required to be classified as 

neutral first and then pass another two tests. As the NH vs PT classification is based on a specially 

adapted coefficient set for this case, the outcome when testing the HF class seems quite unforeseeable. 

Therefore, it makes sense to use a hard decision here, where the HF class is divided up at the first 

classification node. For the following decisions the neutral class can contribute to assure a robust 

classification as the HF group is more difficult to separate from the other two. 

With these explanations, we give the results for the analysis for each parameterisation method in 

the following sections. All results shown within this chapter are based on the implementation of SVM 

according to [59] applying a Gaussian kernel. 

6.2 DWT Analysis of TEOAE 

This section presents the results for the detection of cochlear hearing loss based on TEOAE for a DWT 

parameterisation of the data. The section is divided in the three parts: feature extraction, feature 

selection and classification. The results are evaluated with a ROC which can be compared with the 

standard analysis results in Table 6.2. 
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According to a large number of studies in the literature [81],[34], [13],[78], Mallat's wavelet [30] is well 

suited for the analysis of biomedical data such as EEG. Furthermore, it is symmetric, and hence 

allows a symmetric extension of the data. As stated in Chapter 2, periodic extension suffers from 

blurring features hidden close to the interval margins of the data and therefore, wavelets that can only 

be extended periodically are not applied. For these reasons Mallat's wavelet is used for our DWT. 

The impulse and magnitude response of a basis function derived form Mallat's wavelet is shown in 

Figure 3.3. 

The energy of TF transformed data vector y according to (3.13) averaged over the partial DWT 

coefficients y A and YB for the three hearing ability groups for the Homburg data is shown in Figure 

6.9 to indicate how the energy of a TEOAE is resolved in the TF -plane. As the figure illustrates, 

the PT data is fully contained in the HF data, and the HF is again fully contained in the NH data. 
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Therefore, we can only apply the difference evaluation method described in Section 3.4.2 because 

there is no coefficient set that could be identified by (3.26). The clinical interpretation of the graphs 
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Figure 6.9: Average DWT coefficient energy for the Homburg data: (top left) normal hearing (NH), 

(top right) high frequency hearing loss (HF), and (bottom) pantonal hearing loss (PT). 

is as follows: The spectrum of the TEOAE for NH subjects shows early high frequencies and late low 

frequencies t hat can be observed quite clearly. In contrast , the TEOAE spectrum for HF patients 

lacks the high frequency components found in NH subjects. Finally, the TEOAE spectrum for PT 

patients shows very low energy components in t he whole TF plane. Hence, a good and meaningful 

distinction between the three hearing groups is indicated using the DWT coefficients. 

6.2.2 Feature Selection 

With the difference evaluation method introduced in Section 3.4.1, the resulting optimised coefficient 

set is characterised by their TF-coordinates in Figure 6.10. The results shown there are optimal in 

the sense that the best results for the Homburg data were attained. 

The arrangement of the coefficients in the TF plane in the figure is reasonable in terms of their 

physiological meaning. Referring to Figure 6.9 it makes sense that the separation coefficients for NH 
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Figure 6.10: Resulting DWT coefficients in the TF plane: (top left) NH vs HF yielding 8 coefficients, 

(top right) NH vs PT yielding 13 coefficients, and (bottom) HF vs PT yielding 7 coefficients. 

vs HF are at early high frequencies which are likely to be missing in patients with HF hearing loss. 

For the case NH vs PT the coefficients are located late in time and in the mid frequency range. As the 

average coefficient energy is quite small in that area for PT compared to NH, this result is reasonable. 

A very similar set of distinctive coefficients is identified for HF vs PT, which is likely to be due to the 

small amount of energy for PT in that area. 

The resulting coefficient set is obtained by the iterative search as described in section 3.4.1. How

ever, to get the best separability results, an exhaustive search approach would be well suited. But this, 

as shown in Section 3.4.3.2, is adaptable to noise and hence, it is taken out of consideration. Moreover, 

the results of the extensive simulations concerning the first and second order neighbourhood search 

show that for the case NH vs PT, the TF coefficients are too adapted to the Homburg data. As this 

case is the easiest to separate anyway, the search area is restricted to first order only. 

According to Figure 6.10, for the distinction cases NH vs HF and HF vs PT the best separability is 

obtained by searching the second order neighbourhood. For the case NH vs HF, the first maximum was 

identified and absorbed in the resulting coefficient set. However, for HF vs PT, the first maximum is 

not part of the identified coefficient set. For NH vs PT, the optimised separation is achieved by starting 

with the first maxinmm and considering first order neighbourhood only for growing the coefficient set 
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as mentioned above. 

In order to ensure that the selected coefficient set is generalisable from the Homburg data, from 

which it has been derived, we apply the same Copt to separate between the three cases of hearing 

ability for the Heidelberg data. The area under the ROC curves are summarised in Table 6.3 to 

quantify the separability. Compared with Table 6.2 the conducted feature selection method could 

separability results by 

coefficient set in Figure 6.10 

group distinction Homburg I Heidelberg 

NH HF 0.867 0.779 

NH-PT 0.959 0.955 

HF-PT 0.862 0.875 

Table 6.3: Separability (area under ROC curve) for the 3 hearing ability groups for the Homburg and 

Heidelberg data for DWT. 

improve the results for all cases except the HF group of the Heidelberg test data. Hence, we apply 

further methods like SVM aiming at further improvement. 

6.2.3 Classification 

For the classification, we compare two methods: A DAGSVM classification according to [62] and a 

DAGSVM with a neutral class as shown in Figure 6.7. Figures 6.11-6.13 illustrate the resulting ROC 

curves for the SVM analysis. 

The figures contain graphs for ROC curves for the separability for two unit variance Gaussian 

distributions separated by d. As mentioned in Section 3.1, for d = 0, both distributions match, 

while for d = 1 and d = 2, their means are separated by the standard deviation or twice this value, 

respectively. The dots in the curves for the NH vs HF and HF vs PT node state the thresholds for 

the neutral class. 

Observing the values of the area under the ROC curve which are shown on the top of each diagram 

in Figures 6.11-6.13, for the training data, a good classification is obtained for all cases which is not 

surprising for a SVM learning machine. Also, the NH vs PT case can be separated very well for 

the test data. However, there is no improvement compared to the separability value for the feature 

selection. For the other cases, the separability values even decrease compared to the feature selection. 

However, for this comparison one has to keep in mind that the HF group is split by the first node of 

the DAGSVM which means that for the classification, the NH vs HF and HF vs PT cases contain a 

divided HF group in contrast to the feature selection where the whole HF group was used. 

For the normal DAGSVM, 79.7% was the detection rate for the NH test group, 63.2% for the HF 

group and 69.3% for the PT group which matches with Table 6.2 where it can be expected that the 

NH group is the easiest to detect. 

The results for applying the neutral class are shown in Table 6.4. Illustratively, the neutral class 

can be observed in Figures 6.12 and 6.13 as the areas between the two dots on the ROC curves. We 



6.2.3. Classification 103 

Area under the ROC curve: 1.00 Area under the ROC curve: 0.95 
100~ 100 

/' /' 
d=~, ' ' / 

/ 

90 90 / 

/ 

80 , 
/ 

80 
/ , d=1 / , d=1 , , , 

70 70 I 
I 

I / / d=O /' d=O I 
/ , 

60 
/ 

/ 60 , 
/ 

~ 
/ 

~ I 
, 

/ 

/ 
I 

50 50 I / 

Z Z 
/ 

f- I f- I 

40 
, 

40 I /' 
! 

/ 
/ 

! 

30 
! 

/ 30 I / I 
I 

I 

20 I 20 I 

I 

10 10 
/ 

/ 

0 
0 10 20 30 40 50 60 70 80 90 100 

0 
0 10 20 30 40 50 60 70 80 90 100 

FN/[%] FN/[%] 

Figure 6.11: ROC curves for the NH vs PT DAGSVM node for (left) training and (right) testing based 

on a DWT parameterisation. 
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Figure 6.12: ROC curves for the NH vs HF DAGSVM node for (left) training and (right) testing based 

on a DWT parameterisation. The dots indicate the margins for the determined neutral class. 
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on a DWT parameterisation. The dots indicate the margins for the determined neutral class. 
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NH NH NH HF HF HF PT PT PT 

false neutral correct false neutral correct false neutral correct 

8.7% 31.9% 59.4% 24.3% 57.9% 17.8% 28.3% 25.6% 46.1% 

Table 6.4: Detection rates yielded by DAGSVM classification with a neutral class for test data for 

DWT parameterisation. 

see that the NH group can be detected most significantly whereas the PT group is the most difficult 

to detect. For the HF group, most patients are allocated as neutral. 

Comparison between the DAGSVM with and without neutral class yields that for the NH group 

the falsely classified rate is lowered from 20.3% to 8.7% at the cost of a decrease in the correctly 

classified from 79.7% - 59.4% = 20.3% which can be viewed as acceptable. However, for the PT 

group, the falsely classified rate is only decreased by 2.4% with the neutral class approach along with 

a decrease for the correctly classified of 23.2%. 
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6.3 WP Analysis of TEOAE 

The WP analysis of the TEOAE data shown in the following is based on the DWT implementation 

in Section 6.2, e.g. using the same mother wavelet. It utilises the method described in Section 2.4 

to find the optimal decomposition. Again, the section is divided in the decomposition of the data, 

feature selection and classification. 

6.3.1 Feature Extraction: Transform Adjustment and WP Decomposition 

To conduct the WP analysis according to Section 2.4, we define the data matrix X data as 

XA,NH 

XB,NH 

X LxN _ XA,HF 
(6.1) data -

XB,HF 

XA,PT 

XB,PT 

where the rows of Xi,NH for i = {A, B} contain the partial averages Xi of every normal hearing subject. 

The number of rows of Xi,NH represent the number of normal hearing subjects and is addressed as 

1NH. Respectively, 1HF means the number of patients with high frequency hearing loss and 1pT counts 

the number of patients with pantonal hearing loss. Therefore, the dimension L of the matrix X data 

equals: L = (INH + 1HF + 1pT ) . 2. N represents the length of the partial averages Xl and equals 

N = 512. The WP analysis is applied to Xdata and yields an optimised WP decomposition vector Zrpt 

according to the procedure described in Section 2.4.1.2. The resulting decomposition tree is shown in 

Figure 6.14. 

The figure shows that there are different decomposition depths for the low-pass (LP) as well as 

for the high-pass (HP) components. For comparison, in a DWT decomposition tree, only the LP 

component would always be decomposed further until level 9 is reached leaving the HP components 

undecom posed. 

The reason for patching all partial averages Xl into one matrix and not applying the WP analysis to 

the averaged TEOAE data is that a better entropy minimisation is achieved. Also, one could suggest 

that separate optimal decompositions for each of the three separation cases are conducted. This is in 

fact a valid argument and is the objective of the investigations in [21]. However, it was found that 

this approach shows poorer results for the test data and performs poorer for the control data as well. 

Therefore, the proposed approach seems to be well suited. For reasons of comparison, the results 

from [21] will also be shown and discussed. 

To confirm the approach of decreasing the entropy with WP compared to the DWT, Table 6.5 

shows an overview of the averaged entropies for the transform coefficients Yl. The values in the table 

correspond to the case that is illustrated in Figure 2.9 where the run of the entropy can be observed 

for a signal with a length of 512 and an energy content normalised to 1. 

Figure 6.15 presents the average WP coefficient energy for the WP decomposition for comparison 

reasons with the DWT. We see that approximately the same energy distribution is highlighted by the 
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Figure 6.14: WP decomposition structure for Homburg TEOAE data with the low-pass (LP) compo

nents on the right and the high-pass (HP) components on the left. 

entropy 

Transformation Homburg I Heidelberg 

DWT 

II 

3.643 

I 

3.784 

I WP 3.520 3.654 

Table 6.5: Entropy comparison between DWT and WP for the Homburg and Heidelberg data. 
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Figure 6.15: Average WP coefficient energy for the Homburg data: (top left) normal hearing (NH), 

(top right) high frequency hearing loss (HF), and (bottom) pantonal hearing loss (PT). 

WP coefficients as for the DWT. This indicates a good parameterisation. 

6.3.2 Feature Selection 

With the WP decomposition described above, we arrive at a coefficient set Copt as presented in 

Figure 6.16. Again, the results shown in the figure are optimal in the sense that the best results for 

the Homburg were attained. 

Table 6.6 indicates the respective separability results. 

As the WP decomposition is more flexible than the DWT, the search area for significant coefficients 

is limited to the first order neighbourhood. Second order neighbourhood searches result in incoherent 

coefficient sets meaning that too much noise is modelled. The resulting coefficient sets confirm this 

approach as they cover areas which make physiological sense similar to the DWT. Moreover, gener

alisation is assured as the Heidelberg data shows similar good separability apart from the NH vs HF 

case, where only a slight improvement to the standard analysis in Table 6.2 can be achieved. 
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Figure 6.16: Resulting WP coefficients in the TF plane: (top left) NH vs HF yielding 16 coefficients, 

(top right) NH vs PT yielding 5 coefficients, and (bottom) HF vs PT yielding 4 coefficients. 

separability 

group distinction Homburg I Heidelberg 

NH-HF 0.918 0.799 

NH-PT 0.954 0.944 

HF PT 0.843 0.843 

Table 6.6: Separability (area under ROC curve) between the 3 hearing ability groups for the Homburg 

and Heidelberg data for WP. 
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As mentioned in 6.3.1, we could also calculate WP decomposition for each distinction case sep

arately. Table 6.7 shows the results. It can be observed that the comparison with 6.6 yields poorer 

separability 

group distinction Homburg I Heidelberg 

NH HF 0.932 0.773 

NH PT 0.990 0.967 

HF PT 0.821 0.837 

Table 6.7: Separability (area under ROC curve) between the 3 hearing ability groups for the Homburg 

and Heidelberg data for a separate WP decomposition for each distinction case. 

results for the Homburg data, as well as for the Heidelberg data for the n~ajority of the cases although 

the Heidelberg data is supposed to be of better quality. Therefore, a uniform WP parameterisation 

of the data seems to be better suited. The reason for this can be that there is a larger choice when 

searching for an optimal decomposition among the whole data set as compared to only for data rep

resenting one distinction case. Moreover, the stated results in Table 6.7 include also second order 

neighbourhood search which can be the reason for the adaptation to the Homburg data. Hence, the 

restriction to the first order neighbourhood search seems reasonable. 

Recapitulating it can be said that the WP decomposition shows a slight adaptation to the data 

used for adjustment. One could suggest using a KLT [28] for parameterisation. However, the findings 

that a WP decomposition already shows a slight adaptation to the data used for adjustment and 

parameterises some noise lead to the expectation, that the KLT would not yield good results for the 

control data for confirming generalisation. 

6.3.3 Classification 

As for the DWT parameterisation, we firstly show the ROC curves for the WP based SVM classification 

of the data. Then, we compare and discuss the resulting detection rates for a normal DAGSVM and 

a DAGSVM with a neutral class. 

Again, Figures 6.17-6.19 show that the ROC values for the training are very high for all distinction 

cases. Moreover, although the ROC values for the feature selection are generally larger for the DWT, 

the separability values after the classification are larger for the WP than for the DWT especially 

for the cases NH vs HF and HF vs PT. Again, a one to one comparison between the ROC values 

after classification and before is faulty because the HF group is split by the DAGSVM decision tree. 

However, for the WP the separability values are in the same range for the test data as for the standard 

analysis in Table 6.2 which shows that with our methods a multi-class analysis can have the same 

significance as a standard comparison for each case against each other. This represents a major result 

for our studies. 

The detection rates for the DAGSVM without neutral class are 68.1% for the NH group, 74.7% for 

the HF group and 56.4% for the PT group. Compared to the DWT, the HF group detection rate is 

relatively higher, whereas the other two are smaller. The results for the DAGSVM with neutral class 

are shown next in Table 6.8. Again, the neutral class can also be observed in Figures 6.18 and 6.19 as 
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Figure 6.17: ROC curves for the NH vs PT DAGSVM node for (left) training and (right) testing based 

on a WP parameterisation. 
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Figure 6.18: ROC curves for the NH vs HF DAGSVM node for (left) training and (right) testing based 

on a WP parameterisation. The dots indicate the margins for the determined neutral class. 
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Figure 6.19: ROC curves for the HF vs PT DAGSVM node for (left) training and (right) testing based 

on a WP parameterisation. The dots indicate the margins for the determined neutral class. 



6.4. GF Analysis of TEOAE 111 

NH NH NH HF HF HF PT PT PT 

false neutral correct false neutral correct false neutral correct 

10.1% 42.0% 47.9% 7.4% 76.8% 15.8% 20.5% 51.3% 28.2% 

Table 6.8: Detection rates yielded by DAGSVlVI classification with a neutral class for test data for 

WP parameterisation. 

the area between the dots. We see that NH group can be detected easier than the PT group. The HF 

group is the most difficult to detect because the more than three quarters of the group are allocated 

as neutral. 

Compared with the DAGSVlVI without a neutral class, the detectability of the HF group is severely 

decreased by the neutral class from 74.7% to 15.8%. However, with a rate of 7.4% falsely detected 

patients, the HF group shows a relatively low error rate. This might also lead to the assumption that 

for a normal DAGSVlVI the detection of the HF group is the most untrustworthy. 

6.4 G F Analysis of TEOAE 

In this section, the results for the feature extraction, feature selection and classification for the GF 

analysis of TEOAE are shown. Also, we discuss how and why we apply the GF transform to the 

TEOAE data at the beginning. 

6.4.1 Feature Extraction: Transform Adjustment and GF Decomposition 

As the GF transform is based on a prototype filter where the channel number, decimation ratio and 

filter length can be chosen by the user, it can be seen as more flexible than the DWT and WP, where 

the basis functions are derived from one specific mother wavelet. Hence, the GF transform can be 

expected to yield better separability results. To find a starting point for the prototype filters to test, 

the results from the DWT and WP analysis of TEOAE can be used. E.g. for the distinction case NH 

vs HF, the resulting coefficient sets show a "small and long" characteristic in the TF plane, ranging 

from 2 to 8 ms and 3 to 6 kHz. Therefore, prototype filters with a relatively small channel number are 

supposed to parameterise this distinction case better than ones with larger channel numbers, which 

are more likely to yield significant results for the two other distinction cases. 

Only one condition restricts the flexibility of the filter bank design for the GF: the length of Xi 

holding the partial average needs to be an integer multiple of the time segmentation D. Therefore, 

when we conduct a GF transform, the first 64 values (~ 2.5ms) of the data are discarded. Signal 

information is not lost by this approach as the TEOAE data is expected to be absent for this time 

period. The reason for this expectation is that during the time period of these first 2.5ms the "click 

stimulus" is applied as seen in Figure 6.2. The generation of the matrix Hcp follows exactly the same 

procedure as discussed in Section 2.5.3 

Figure 6.20 shows the impulse and magnitude responses of the selected prototypes for the three 

distinction cases which were chosen after various elementary Gabor functions had been tested as filters. 
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Figure 6.20: (Left) impulse and (right) magnitude response for chosen prototype filters for (top) NH 

vs HF, (middle) NH vs PT and (bottom) HF vs PT. 
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The figure represents the absolute value of one row of the respective complex transform matrix HCF 

also stating the channel number, decimation ratio, filter length and signal length of the data. It can 

be seen that e.g. for the case NH vs PT, the signal length is 448 meaning that the first 64 values 

of the data are skipped to fulfil the above mentioned condition. Moreover, the signal extension can 

be observed from the impulse response of the chosen filter for the case HF vs PT, which leads to a 

"smearing" especially at the ends of the discrete filter which is due to the length of the filter with 896. 

For the case NH vs HF the length of the impulse response is 24 meaning that the signal extension has 

only an influence when the ends of the time interval are transformed. 

According to (2.37) and (2.38), the length of each transformed vector y is 324 for the case NH vs 

HF, 272 for the case NH vs PT and 288 for the case HF vs PT. The GF transform of the TEOAE 

data conducted by the respective transformation matrices lead to an absolute value of the average 

coefficient energy as shown in Figure 6.21. The comparison of this figure with the corresponding 

figures for the DWT and WP yields that the GF transform has a more compact TF characteristic 

than the WP and that in general the TF distribution obtained by the GF transform is more similar 

to the DWT than to the WP. 

6.4.2 Feature Selection 

For the GF transform described above, the feature selection method is applied to the absolute values of 

the transformed vector and yields the following coefficient set Copt as presented in Figure 6.22. Again, 

the results shown in the figure are optimal in the sense that the best result for the Homburg data 

was attained. Table 6.9 shows the respective separability results. Similar to the DWT, the extensive 

simulations for the neighbourhood search revealed a significant adaptation to the Homburg data for 

the case NH vs PT. Therefore, for this case the search for significant coefficients in the TF plane is 

restricted to first order only, as this case is the easiest to separate among the three which is indicated 

by Table 6.2. 

The differentiation NH vs HF is obtained by starting with the first l1l_aximum and the surrounding 

of first order. The obtained separability is more balanced for the Homburg and Heidelberg data 

than the results obtained by DWT or WP. The case NH vs PT also shows a good separability and 

a reasonable TF distribution of the coefficients. The results are obtained by starting with the first 

maximum and surrounding of first order. For the case HF vs PT, the results are obtained by starting 

with the first maximum and surrounding second order with separability values that are in between of 

the results for the DWT and WP. For the feature selection, the GF show the best overall results. This 

is likely due to the usage of the flexible prototype filters for creating the transformation matrix HCF· 

Moreover, the prototypes are chosen based on the results for the DWT and WP analysis and hence, 

incorporating previous analysis results. 
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Figure 6.21: Absolute values of the average GF coefficient energy for the Homburg data: (top left) 

normal hearing (NH) , (top right) high frequency hearing loss (HF) , and (bottom) pantonal hearing 

loss (PT). 

separability 

group distinction Homburg I Heidelberg 

NH - HF 0.869 0.829 

NH - PT 0.949 0.957 

HF - PT 0.840 0.859 

Table 6.9: Separability (area under ROC curve) between the 3 hearing ability groups for the Homburg 

and Heidelberg data for GF. 
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Figure 6.22: Resulting GF coefficients in the TF plane: (top left) NH vs HF yielding 12 coefficients, 

(top right) NH vs PT yielding 12 coefficients, and (bottom) HF vs PT yielding 6 coefficients. 

6.4.3 Classification 

Corresponding to the previous parameterisation methods, we give the separability values by the area 

under the ROC curve for the classification of the GF transformed data first. Then, we show and 

compare the results for a DAGSVM test and and a DAGSVM test with a neutral class. 

Figures 6.23- 6.25 show the ROC curves for the DAGSVM classification. The separability values 

for the training data are lower compared to the other transforms. Moreover, apart for the case NH vs 

PT, the separability values for the test data decrease even more than compared to equivalent case for 

the DWT. This is surprising as the ROC values for the feature selection are the best overall among 

all transforms. 

The detection rates for the test groups for a DAGSVM classification are 9l.3% for NH, 63.2% for 

HF and 53.9% for PT. Table 6.10 show the results for a DAGSVM with a neutral class which can 

illustratively be observed in Figures 6.24 and 6.25 as the areas between the dots. 

For the GF parameterisation the classification of the NH group is very high with 9l.3%. However, 

when applying a neutral class, 45.0% are allocated to that class, but no person is allocated incorrectly 
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NH NH NH HF HF HF PT PT PT 

false neutral correct false neutral correct false neutral correct 

0% 45.0% 55.0% 24.2% 71.6% 4.2% 15.4% 84.6% 0% 

Table 6.10: Detection rates yielded by DAGSVM classification with a neutral class for test data for 

GF parameterisation. 

from the NH test group. For the PT group, it is the other way around, no subject is classified correctly, 

84.6% are allocated as neutral. Overall, the neutral classes are relatively large for each group. 

Having given the classification results for each parameterisation method, we proceed with a com

parison and discussion of the results in the following. 
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Figure 6.23: ROC curves for the NH vs PT DAGSVM node for (left) training and (right) testing based 

on a GF parameterisation. 
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Figure 6.24: ROC curves for the NH vs HF DAGSVM node for (left) training and (right) testing based 

on a GF parameterisation. The dots indicate the margins for the determined neutral class. 
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Figure 6.25: ROC curves for the HF vs PT DAGSVM node for (left) training and (right) testing based 

on a GF parameterisation. The dots indicate the margins for the determined neutral class. 
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6.5 Comparison of the Results and Discussion 

To compare and discuss the results for the different parameterisations, an overview of the detection 

results for the test data is presented in Table 6.11. 

The table shows that the DWT yields the best overall results. The HF can be detected most 

significantly with the WP. The PT group is the most difficult to determine, just above half of the 

patients can be allocated correctly for the WP and GF. 

The results for the neutral class DAGSVM are shown by Table 6.12. 

These results may suggest that the WP outperform the DWT overall as the neutral classes are 

larger and hence, the error rates are smaller. The GF shows definitely the poorest performance. 

This could be due to the fact that the GF transform is redundant. When the SVM classification is 

conducted, the vectors in the input space are not linearly independent. Therefore, the determined 

SVM classifier cannot divide the data points as well as for orthogonal input parameters which is the 

case for the DWT and WP. This statement is confirmed when the redundancy is reviewed in more 

detail. The least redundancy is introduced for the case NH vs PT as the length of the transformed 

vector y is the smallest. This case shows separability results in the range of the other transforms in 

contrast to the other two cases which are tested based on a higher redundancy in the transformed 

data. 

group Detection rates for test data 

DWT WP GF 

NH 79.7% 68.1% 91.3% 

HF 63.2% 74.7% 63.2% 

PT 69.3% 56.4% 53.9% 

Table 6.11: Overview of detection rates yielded by DAGSVM classification for test data. 

group Detection rates for test data 

DWT WP GF 

NH false 8.7% 10.1% 0 

NH neutral 31.9% 42.0% 45.0% 

NH correct 59.4% 47.9% 55% 

HF false 24.3% 7.4% 24.2% 

HF neutral 57.9% 76.8% 71.6% 

HF correct 17.8% 15.8% 4.2% 

PT false 28.3% 20.5% 15.4% 

PT neutral 25.6% 51.3% 84.6% 

PT correct 46.1% 28.2% 0 

Table 6.12: Overview of detection rates yielded by DAGSVM classification for test data with neutral 

class. 
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Another point to explain the results especially the relatively high values for the neutral class for the 

HF group is the fact that we used so called unbalanced data, meaning that the classes have unequal 

class points for training data groups as well as the test data groups, e.g. the NH group is almost three 

times as large as the PT for the training data. For the 1-0-0 error estimation that is used to determine 

the classification network, it is more important to classify the larger class correctly than the smaller 

class when using unbalanced data. Hence, a larger sensitivity and a small separability can be the 

consequence. However, this statement also confirms our approach of introducing a neutral class as it 

is better to being able to say that no decision can be made instead of making many false decisions. 

Considering the overall detection results for our system, they may not seem to be encouraging. 

However, when only considering the the case NH vs PT, the following results are obtained: 

• DWT: NH 91.3%, PT 89.7%, 

• WP: NH 89.9%, PT 84.6% 

• GF: NH 99%, PT 84.6%, 

which is well in the range of other studies, e.g. [7]. As stated previously, one major result of our 

studies is that for the WP the separability values are in the same range for the test data as for the 

standard analysis in Table 6.2 which shows that with our methods a multi-class analysis can have the 

same significance as a standard comparison for each class against each other. 

In [7], a group of normal hearing is defined by no hearing loss up to 30 dB and a hearing impaired 

group with a hearing loss over 30 dB. A separation method based on wavelet transforms, ensemble 

correlation, time window design and mean cross-correlation is introduced. The study concludes with 

stating the separability values for a hit rate or sensitivity of 90% yielding a value of 65% for only 

considering the cross-correlation coefficient that is calculated by the measurement equipment. This 

value is increased by the various methods by approximately 15% to 80% in that study. Compared to 

our study we achieve slightly better results for the case NH vs PT, which can be seen as equivalent 

to the case shown in [7] as stated above. One could also argue, that our methods lead to a better 

separation of hearing loss as our threshold for defining the difference between NH and PT was 20 dB, 

and the worse the hearing loss gets, the weaker the TEOAE appear and therefore the easier it should 

be to separate them. On the other hand, as we achieve the lowest value of 65% for the specificity for 

the case HF vs PT, this shows that it is easier to separate when clear TEOAE are present, which is 

more likely the case for a threshold of hearing loss of 20 dB than for 30 dB. Moreover, the approach 

in [7] seems to be narrower, as the threshold for a specific sensitivity value is optimised. Maximising 

the ROC area is more general, and aims at optimising the specificity for any sensitivity. 

The reason why we mainly compare our results with [7] is the similar approach for analysing 

TEOAE, e.g. applying a wavelet transform for parameterisation. In the following other work on the 

classification of TEOAE is discussed. 

There are studies that deal with the pure detection of TEOAE, meaning classifying if TEOAE are 

present or not; for example in [82], TEOAE recordings are transformed into a parameter set which 

represents the input to an artificial neural network. The parameter set contains e.g. the correlation 

coefficient and 3 parameters based on a subdivision of the correlation coefficient. The results are 99.3% 
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sensitivity and 81.1 % specificity for a training group and 99.4% sensitivity and 87.3% specificity for a 

test group. Obviously, the applied methods in [82] are significantly different to our approach. 

In [4] fast Fourier transformed TEOAE data is studied yielding a sensitivity of 90.2% and specificity 

of 87.5% when comparing a normal hearing group with a HL group. These results are in the range of 

the results we obtained with our study. 

Recapitulating it can be said that our approach yields separation results that can well compete 

with other studies so far. 

6.6 Summary 

We have presented a TF analysis of TEOAE that aims at the detection of frequency specific hearing 

loss. We have motivated the use of TF methods, and applied a feature selection method to optimise a 

set of distinctive TF coefficients. This maximisation represents the input to a SVM classifier for the 

detection. We used two data sets for training and testing. The validity of the results was verified by 

a test group. Moreover, the results obtained proved to be competitive when they were compared to 

similar study which also aims at the detection of TEOAE. Therefore, the results appear reasonably 

robust and encourage frequency specific hearing loss detection via signal processing of TEOAE. 



Chapter 7 

Conclusions and Future Works 

7.1 Conclusions 

We have presented digital signal processing methods for the classification of biomedical data. In more 

detail, linear transformations, namely the DFT, DWT, WP, GF and the KLT were presented with 

focus on the DWT, WP and GF. For the implementation of the latter transforms, a common matrix 

notation was introduced. The signal extension necessary when dealing with data on finite support was 

incorporated in the transform matrix H. The application of these transforms is the parameterisation 

of data, for which we here considered panic disorder EEG and TEOAE with the aim of extracting their 

characteristic features. It was found that the DWT, WP and GF are better suited for parameterising or 

analysing transient biomedical signals, rather than the DFT and KLT, especially when generalisation 

is taken into account. 

The transforms are the basis for identifying the features in the data, which are application

dependent. For their identification, we aim for example to concentrate as much signal energy in as 

few transform coefficients as possible. Alternatively, we can also aim to find coefficients that provide 

a good distinction between two or more data sets. 

The selected features are the input for a learning machine which is implemented by SVM. Having 

shown their connection to learning theory by a mathematical formulation of the training procedure, 

capacity limitation, classification and generalisation, we introduced neutral decisions for multi-class 

classification for the application of SVM for diagnosis. 

For the panic disorder analysis, a novel approach to study the disease was shown by applying the 

TF transforms to separate data containing the responses to panic causing stimulus from responses 

to neutral stimulus. Transform coefficients, containing the main features of the data were selected 

by applying statistical tests resulting in a description of the differences by only two coefficients. The 

approach was confirmed by comparing it to several other methods including a simple time domain 

analysis to a SVM study. The results cannot only contribute to the understanding of the disorder but 

can also be applied, e.g. when investigating the success of a therapy. 

The second type of biomedical data studied were TEOAE, where we are trying to maximise the 

detection between various degrees of frequency specific hearing loss. Based on a SNR-like criterion, an 

algorithm was developed that searches for a distinctive coefficient set in the TF plane to extract the 

121 
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features of the data. Then, the data is classified by a multi-class SVM. Moreover, neutral decision were 

introduced for the SVM classification. The validity of this approach was confirmed by the following 

main points: Firstly, a test with a control group was conducted. Secondly, the achieved results for 

the differentiation and detection of hearing loss based on TEOAE were compared with a similar study 

and revealed a similar or even slightly better performance. Moreover, the general results represent an 

improvement over previously presented separabilities in [13] due to the improved selection of significant 

coefficients on which a decision will be based, and by deploying an enhanced criterion, as well as more 

flexible parameterisation methods. Also, the separability values for the multi-class analysis are in the 

same range as a standard analysis for each class against each other which shows that with our methods 

a multi-class analysis can have the same significance as a standard one against one comparison. 

7.2 Future Works 

Having regarded transforms in the TF domain ranging from fixed to fully data adaptive, it was 

found that DWT, WP and GF are a reasonable choice to parameterise biomedical data. The applied 

detection method were SVM. However, neural networks (NN) can be referred to as being the standard 

classification method. Therefore, it is of interest, what detection results could be achieved with NN 

and how they compare with the SVM results. Also, to make the detection more robust, a sequential 

statistical tests could be applied. E.g. for the TEOAE analysis, if the data is not averaged and each of 

the 520 measurements are analysed, a statistical test after the classification could yield a decision after 

a certain number of measurements analysed making the the analysis of all measurements dispensable. 

Concerning the SVM classification of TEOAE, the neutral class nlethod could be explored in more 

detail. The following questions seem to be the most interesting to answer: 

• What results are obtained when the neutral class for the SVM is also applied to the distinction 

case NH vs PT? 

• How can reasonable thresholds be determined for the neutral class? What sensible approach can 

be used for that? 

• vVhat are the results for balanced data sets? 

The main reason for not using a neutral class for the NH vs PT classification was that the coefficient 

set used for this distinction was specially adapted to these two groups and the results for the HF class 

are therefore unpredictable. So, the determination of a coefficient set for all three classes and a 

classification with the same thresholds for the neutral classes may be interesting to investigate which 

leads directly to the question how to select a threshold for the neutral class and with what approach. 

As we explained the threshold for the neutral class for our studies was as large as possible, leaving no 

errors for the training data. 

Also, our data sets were unbalanced, the NH group was almost three times as big as the PT group. 

Therefore, it can be expected that the detection rates for balanced data would show a more even 

characteristic meaning that the error rates are of similar size. For our studies the detection rates for 

the NH group proved to be the largest generally speaking. 
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Furthermore, the analysis of multichannel data, by which spatial information is obtained, for 

example by recording more than one electrode during an EEG measurement, could lead to another 

interesting area for the application of SVM based on TF transforms. 
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